An Application Framework for Mobile, Context- Aware
Trails

Cormac Driver

A thesis submitted to the University of Dublin, Trinity College
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

April 2007

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or
any other University, and that unless otherwise stated, it is entirely my own work. 1 agree

that Trinity College Library may lend or copy this thesis upon request.

Cormac Driver

Dated: April 26, 2007

Acknowledgements

Firstly I would like to thank my supervisor Dr. Siobhan Clarke for her guidance, en-
couragement and support over the years. I have learned a great deal from working with
her.

I also had the pleasure of working alongside Eamonn Linehan, Mike Spence and Shiu
Lun Tsang on the Hermes project; their insightful views on my work were and are much
appreciated.

I would like to thank my academic colleagues and friends in the Distributed Systems
Group for making it a pleasure to be part of this unique research environment.

Thank you to my parents, brothers and other family members for their constant
support with all of my academic endeavours over the years.

Finally, thanks to my wife for everything she has done to help me with this, she knows

exactly what it is and [appreciate it.

Cormac Driver
University of Dublin, Trinity College
April 2007

il

Abstract

Time management strategies for planning and scheduling activities increase the effective-
ness of either personal or corporate time use. Supporting techniques are commonly based
around the use of prioritised to-do lists. While the use of to-do lists for time management
is beneficial, their static nature reduces their effectiveness in dynamic environments where
users are mobile and activity properties can change over time. The prioritised ordering
of a carefully considered, predefined to-do list can quickly become obsolete as its owner
begins addressing activities and unforeseen events occur.

Mobile, context-aware computing is a computing paradigm in which small, portable
devices such as Personal Digital Assistants (PDAs) and smart phones have access to
information, known as context, about the situation in which they are being used and
dynamically adapt application behaviour as appropriate. This paradigm facilitates auto-
matic adaptation of a mobile user’s schedule so that it accurately reflects the reality in
which the user exists and maintains utility despite the occurrence of unforeseen events.
Automatic, context-based schedule adaptation is at the core of a wide range of applica-
tions for the mobile user who has a set of activities that may or should be carried out
throughout the day at different locations.

Implementing a mobile, context-aware activity scheduling application requires ad-
dressing two common challenges. Firstly, an application must be capable of automatically
ordering a list of activities in an effective manner with respect to relevant context. Exist-
ing approaches to mobile, context-based activity ordering are constrained in the number
of activities they can cope with or are server-based and subject to wireless network dis-
connection. Secondly, an application must be capable of identifying when it is necessary
to reorder a list of activities to ensure that the list order maintains utility in the face of

context change. Techniques for identifying when it is necessary to reorder a list of activi-

v

ties are generally based on periodically assessing the ordering, resulting in the possibility
of an activity ordering becoming temporarily out of sync with the user’s reality. To date,
mobile, context-based activity scheduling applications have typically been designed and
implemented in an application-specific manner - mostly as research prototypes. Conse-
quently, developers have had to repeatedly tackle the challenges inherent to this class of
application.

This thesis describes an application framework for the development of mobile, context-
aware trails-based applications. A trail is a contextually scheduled collection of activities
and represents a generic model that can be used to satisfy the activity management
requirements of a wide range of context-based activity scheduling applications. The
framework supports developers by providing a generic, extensible implementation of the
trails model. Structure and behaviour common to mobile, context-aware trails-based
applications is provided, supporting context-based activity schedule composition (trail
generation), identification of whether or not schedule reordering is required following
context change (reconfiguration point identification) and subsequent automatic schedule
reordering as appropriate (trail reconfiguration).

The framework is evaluated through the development of three case study applications.
The case studies illustrate how the framework can be reused and extended to support the
development of a range of mobile, context-aware trails-based applications with differing
requirements. In addition, results of empirical experiments conducted to assess the re-
sponsiveness of the trail generation implementation, the accuracy of the reconfiguration
point identification mechanism and human satisfaction with computer-generated trails

are presented.

Publications Related to this Ph.D.

Cormac Driver, Eamonn Linehan, Mike Spence, Shiu Lun Tsang, Laura Chan and
Siobhan Clarke. Facilitating Dynamic Schedules for Healthcare Professionals. In Pro-

ceedings of the 1st International Conference on Pervasive Computing Technologies for

Healthcare, Innsbruck, Austria, 2006. IEEE.

Cormac Driver, Eamonn Linehan and Siobhan Clarke. A Framework for Mobile,
Context-Aware Trails-based Applications: Experiences with an Application-led Approach.
In Workshop 1 - “What Makes for Good Application-led Research in Ubiquitous Comput-
ing?”, 3rd International Conference on Pervasive Computing (PERVASIVE 2005), Mu-
nich, Germany, 2005.

Mike Spence, Cormac Driver and Siobhén Clarke. Sharing Context History in Mobile,
Context-Aware Trails-based Applications. In 1st International Workshop on Ezploiting
Context Histories in Smart Environments, 3rd International Conference on Pervasive

Computing (PERVASIVE 2005), Munich, Germany, 2005.

Eamonn Linehan, Cormac Driver and Siobhan Clarke. Route Generation for Adapt-
able Trails-based Applications. In 3rd UK-UbiNet Workshop, University of Bath, UK,
2005.

Mike Spence, Cormac Driver and Siobhén Clarke. Collaborative Context in Mobile,
Context-Aware Trails-based Applications. In 3rd UK-UbiNet Workshop, University of
Bath, UK, 2005.

Cormac Driver and Siobhén Clarke. Hermes: Generic Designs for Mobile, Context-
Aware Trails-based Applications. In Workshop on Context Awareness, 2nd International
Conference on Mobile Systems, Applications, and Services (MobiSys 2004), Boston, USA,
2004.

vi

Cormac Driver and Siobhan Clarke. Hermes: A Software Framework for Mobile,
Context-Aware Trails. In 1st International Workshop on Computer Support for Human
Tasks and Activities, 2nd International Conference on Pervasive Computing (PERVA-
SIVE 2004), Vienna, Austria, 2004.

Siobhan Clarke and Cormac Driver. Context-Aware Trails. IEEE Computer, 37(8):97-
99, August, 2004.

vil

Contents

Acknowledgements iii
Abstract iv
Publications Related to this Ph.D. vi
List of Figures XV
List of Tables xvii
List of Listings xviii
Chapter 1 Introduction 1
1.1 Time Management 1
1.2 Mobile Context-Aware Computing 3
1.3 Trails. e 3
1.3.1 The Hermes Project 5}

1.4 Challenges 6
1.4.1 Trail Generation 6

1.4.2 Trail Reconfiguration Point Identification 8

1.4.3 Lack of Reusable Software 9

1.5 The Application Framework 9

1.6 Contribution. 11
1.7 Roadmap 12

viil

Chapter 2 State of the Art 14

2.1

2.2

2.3

Mobile, Context-Aware Tourist Guides 14
2.1.1 GUIDE 15

2.1.1.1 Trail Generation L. 16

2.1.1.2 Reconfiguration Point Identification 16

2.1.1.3 Developer Support 16
2.1.2 P-Tour 17

2.1.2.1 Trail Generation 18

2.1.2.2 Reconfiguration Point Identification 18

2.1.2.3 Developer Support L. 21
2.1.3 Dynamic Tourist Guide 21

2.1.3.1 Trail Generation 22

2.1.3.2 Reconfiguration Point Identification. 22

2.1.3.3 Developer Support L. 23
2.1.4 Cyberguide 24
2.1.5 LoL@ . .. 25
2.1.6 CRUMPET 25
217 m-ToGuide 26
2.1.8 Hypermedia Tour Guide 27
2.1.9 Summary 27
Context-Aware To-do Lists 30
2.2.1 TaskMindero 30
2.2.2 CybreMindero 32
2.2.3 comMotion 32
2.24 PlaceMail 33
225 Place-Its o o 34
226 Castaway 35
227 Summary 36
Mobile, Context-Aware Application Frameworks 36
2.3.1 Mobile Bristol 37
2.3.2 Stick-e Note 39

X

2.3.3 BerlinTainment o 40
2.3.4 PEACH e 43
235 HyCon 45
23.6 1CAP 47
2.3.7 Summaryo 48

2.4 Context-Awareness Frameworks 49
2.5 Chapter Summary 51
Chapter 3 Design 53
3.1 Design Approach 54
3.1.1 Initial High-Level Framework Design 25
3.1.2 Context Acquisition and Modelling in Hermes 57
3.1.2.1 Communication and Service Discovery 58

3.1.2.2 Message Types and Message Processing 60

3.1.2.3 Context Modelling 61

3.1.2.4 Summary 62

3.1.3 Application 1: Oisin Goes to Trinity 63
3.1.3.1 Trail Generation in Oisin 65

3.1.3.2 Reconfiguration Point Identification in Oisin 67

3.1.3.3 Summary 69

3.1.4 Application 2: RiddleHunt 69
3.1.4.1 Trail Generation in RiddleHunt 71

3.1.4.2 Reconfiguration Point Identification in RiddleHunt . . . 75

3.1.4.3 Summary 76

3.2 Application Framework L 77
3.2.1 Response Time 78
3.2.2 Multi-Attribute Utility Theory 80
3.2.3 Trail Generation 83
3.2.3.1 Completed Activities 84

3.2.3.2 Impossible Activities 84

3.2.3.3 Clashing Activities 85

3.2.3.4 The Relevant and Irrelevant Sets 87

3.2.3.5 Trail Ordering 89

3.2.3.6 Reusability and Extensibility 91

3.2.3.7 Summary 93

3.2.4 Reconfiguration Point Identification 93
3.2.4.1 Differences in Set Membership 94

3.2.4.2 Differences in Relevance Rankings 95

3.2.4.3 Reusability and Extensibility 97

3.2.4.4 Summary 98

3.3 Chapter Summary 98
Chapter 4 Implementation 99
4.1 Application Framework Overview 100
4.2 Trail/Activity Specification o o 0 103
4.2.1 Trail Persistenceo 105
4.2.2 Extensibility 107

4.3 Trail Generation 108
4.3.1 The reconfigure() method 109
4.3.2 Extensibility oo 114

4.4 Reconfiguration Point Identification 116
4.4.1 Extensibility oo 120

4.5 Configuration files.o o 121
4.5.1 Extensibility 125

4.6 Chapter Summary 126
Chapter 5 Evaluation 127
5.1 Framework Reusability and Extensibility 128
5.1.1 Day Planner 130
5.1.1.1 Implementation 130

5.1.1.2 Analysis 135

5.1.2 Music Festival Trail 0 136
5.1.2.1 Implementation L. 136

xi

5.2

5.3

5.1.2.2 Adding a new context source 137

5.1.2.3 Adding a new activity attribute 138
5.1.2.4 Using the new behaviour 138
5.1.2.5 User Interface 139
51.26 Analysiso 139
5.1.3 Theme Park Trail 140
5.1.3.1 Implementation L. 141
5.1.3.2 Adding a new context source 142
5.1.3.3 Adding a new activity attribute 143
5.1.3.4 Adding new activity comparators 143
5.1.3.5 Adding a new evaluation function 144
5.1.3.6 Using the new behaviour 144
5.1.3.7 User Interface 144
5.1.3.8° Amalysis 145
5.1.4 Summary 146
Trail Generation and Reconfiguration 147
5.2.1 Trail Generation - Activity Scheduling 149
5.2.1.1 Brute Force oL 150
5.2.1.2 Genetic Algorithm 150
5.2.1.3 Simulated Annealing 151
5.2.1.4 Anmalysis 152
5.2.2 Trail Generation - Activity Consideration 154
5.22.1 Results o 154
5.2.2.2 Anmalysis 154
5.2.3 Reconfiguration Point Identification Accuracy 155
5.2.3.1 Day Planner Results 157
5.2.3.2 Music Festival Results 157
5.2.3.3 Theme Park Results 161
5.2.3.4 Analysiso 161
Trail Quality o 163
5.3.1 Trail Quality Experiment Results 166

xii

5.3.2 Analysis
5.4 Chapter Summary

Chapter 6 Conclusions and Future Work

6.1 Achievements
6.2 Perspective L
6.3 Future Worko
6.3.1 Distributed Trail Generation
6.3.2 Trail Robustness
6.3.3 Activity Dependencies and Constraints
6.4 Chapter Summary

Appendix A User Study Results
A.1 Oisin goes to Trinity - User Study Results

Appendix B Further Implementation Detail
B.1 GPS Location Context

Appendix C Trail Quality Experiment Materials

C.1 Information Sheets
C1.1 Group 1l
C1.2 Group 2

C.2 Activity Scheduling Problems
C.2.1 Activity Scheduling Problem Legend
C.2.2 Example Problem
C.2.3 Example Solution
C.2.4 Group 1: Problem 1
C.2.5 Group 1: Problem 2
C.2.6 Group 1: Solution 1
C.2.7 Group 1: Solution 2
C.2.8 Group 2: Solution 1
C.2.9 Group 2: Solution 2
C.2.10 Group 2: Problem 1

171
171
174
176
177
177
178
179

180
180

182
182

C.2.11 Group 2: Problem 2 200
C.3 Questionnaire 201

Bibliography 202

Xiv

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4

5.1

The Hermes Architecture 5}
Reconfiguration point identification in P-Tour [117| 20
Separation between authoring tool and device-specific implementation |[105] 38

BerlinTainment framework architecture [135] 41
The HyCon framework architecture [17] 46
The conceptual framework for context-aware systems (9] 20
Ad hoc communication and service discovery in Hermes 59
Hermes context model top level hierarchy and examples 62
Screen shots of the Oisin graphical user interface on the Zaurus 64
High-level design of trails behaviour in Oisin 66
Screen shots of the reconfiguration menu and edit screen in Oisin 68
The activities in the set X and the player location 72
Identification of the members of set Y 73
High-level design of trails behaviour in RiddleHunt 74
Context-based activity set reduction 85
The trail generation process 86
High-level application framework class diagram 100
The Trail and Activity classes 104
High-level sequence of actions in trail generation 108
Interactions between classes in the trail generation implementation . . . 110
The text-based display produced for the day planner application 134

XV

5.2 The framework extensions facilitating the music festival application

5.3 The text-based display produced for the music festival application
5.4 The framework extensions facilitating the theme park application

5.5 The text-based display produced for the theme park application
5.6 Brute force trail generation response times
5.7 Simulated annealing trail generation response times
5.8 Results of the activity consideration experiment
5.9 Day planner results with 7 = 0.95 (top) and 7 = 0.85 (bottom)
5.10 Music festival results with 7 = 0.95 (top) and 7 = 0.85 (bottom)

5.11 Theme park results with 7 — 0.95 (top) and 7 — 0.85 (bottom)

5.12 An activity scheduling problem given to trails experiment subjects
B.1 GPS location context class diagram

C.1 Activity scheduling problem legend
C.2 Example activity scheduling problem
C.3 Example activity scheduling problem solution
C.4 Group 1: Activity scheduling problem 1.
C.5 Group 1: Activity scheduling problem 2.
C.6 Group 1: Activity scheduling problem solution 1
C.7 Group 1: Activity scheduling problem solution 2
C.8 Group 2: Activity scheduling problem solution 1
C.9 Group 2: Activity scheduling problem problem 2
C.10 Group 2: Activity scheduling problem 1.
C.11 Group 1: Activity scheduling problem 2.

C.12 The activity scheduling problem solution validation questionnaire

xXvi

137
139
142
145
150
151
155
158
159
160
165

183

190
191
192
193
194
195
196
197
198
199
200
201

List of Tables

2.1

3.1
3.2
3.3
3.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Trail evaluation dimensions (on a scale from 0-100) and sample data . . .
Activity evaluation dimensions for clash resolution and sample data . . .
Activity evaluation dimensions for relevance and sample data

The relevant set and the existing trail ranked by relevance

Explanation of extensions necessitated by the music festival application .
Explanation of extensions necessitated by the theme park application

Results of the reconfiguration point identification experiment
Further investigation of the trials with 7 —=0.95
Trail quality experiment timing results
Trail quality experiment solution validation results

Trail quality experiment solution quality results

xvii

28

82
87
88
95

List of Listings

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
5.1
5.2
5.3
B.1
B.2

An example activity specification 105
The update () method in the ReconfigurationEngine class 109
The reconfigure () method in the ReconfigurationEngine class 109
Calculating activity priority value in the MAUTRelevanceComparator class 112

The evaluation function in the Trailclass 113
Excerpt from the reconfigurationRequired() method 117
2nd excerpt from the reconfigurationRequired() method 118
The getKendallValueForReconfig() method 119
The trail.properties file 122
The userPreferences.properties file 123
The normalization.properties file 125
Excerpt from the day planner trail.properties file 131
The userPreferences.properties file 132
The normalization.properties file 133
The doLocationChange () method in the LocationGenerator class . . . 182
The convertToXY() method in the GPSConversion class 185

xviii

Chapter 1

Introduction

There is currently no reusable, extensible software designed to support developers to im-
plement mobile, context-aware activity scheduling applications. This thesis describes an
application framework for mobile, context-aware trails-based applications that eliminates
the need for developers to readdress common challenges each time they implement an ap-
plication of this type. This introductory chapter presents the motivation for investigating
context-based time management and introduces mobile, context-aware computing. The
trails concept is presented, along with a brief introduction to the Hermes project - an um-
brella project under which this work was completed. The common challenges in mobile,
context-aware activity scheduling are explained along with an overview of the application
framework and the contribution of this thesis. Finally, a roadmap for the remainder of

this document is presented.

1.1 Time Management

Time is a special resource in that it cannot be stored and saved for later use - time that
is not used wisely cannot be retrieved. Unfortunately, people are not naturally skilled
at managing their time. Many are good at keeping busy and appearing productive as
opposed to actually using their time effectively [95], with procrastination being the biggest
waster of time [83]. For this reason, tools and techniques for how best to manage time have
been actively studied for many years [13]. Time management concerns managing time as

effectively as possible, where effective means that the time available is used to complete

as many activities as possible without procrastinating, with important activities taking
precedence over those of lesser importance. Time management strategies for planning
and scheduling time are primarily based around the use of the prioritised to-do list [31].
A to-do list is a collection of activities that must be completed during a period of time,
with activities crossed off as they are completed. The activities in the list are generally
scheduled in order of importance but may simply be listed arbitrarily. The benefits of

using to-do lists to manage time include [116]:

e Less likelihood of forgetting even minor tasks.

e Less likelihood of procrastination because there is a realistic idea of the work that

needs to be done, and the time available to do it.

e Increased flexibility when deciding what to do and when to do it because high

priority tasks are identified.

e A short and long-range view of the work coming up.

To-do lists are traditionally created using paper and pen. Numerous software equivalents
are available on a range of hardware platforms, notably desktop computers, laptops,
Personal Digital Assistants (PDAs) and mobile phones [5, 34, 97, 119]. Many e-mail
clients include task list applications [55, 94, 125, 57| and several web-based task list
applications have been developed |1, 29, 47, 66, 129|.

While the use of to-do lists for time management is beneficial, their static nature
reduces their effectiveness in dynamic environments where users are mobile and activity
properties can change over time. People typically plan their to-do list at a base (typically
home or work) and take their list with them to refer to at the places where activities are
performed [77|. The prioritised ordering of a carefully considered to-do list can quickly
become obsolete as its owner leaves their base and begins addressing activities and unfore-
seen events occur. To remain useful, a task system must allow adaptation, in the form of
rescheduling, in the face of unexpected problems. Adaptation also enables opportunities

to save time spent on irrelevant or less than optimal tasks [76].

1.2 Mobile Context-Aware Computing

Mobile context-aware computing is a computing paradigm in which applications can dis-
cover and take advantage of contextual information (such as user location, time of day,
nearby people and computing devices, and user activity) [112]. Mobile computers are
generally small, portable devices that allow the user to move away from the traditional
desktop environment while retaining the ability to undertake computing tasks. Mobile
computing devices include laptops, mobile phones and PDAs. Mobile, context-aware
computing is based on the ability of mobile computing devices to recognise aspects of
the situation in which they are being used. This situational information is referred to as
context and has been defined by Dey as “any information that can be used to character-
ize the situation of an entity. An entity is a person, place or object that is considered
relevant to the interaction between a user and an application, including the user and the
applications themselves” [36]. Mobile, context-aware applications automatically adapt to
discovered context by changing their behaviour as appropriate to better suit the user. Ex-
ample applications of mobile, context-aware computing include location-aware telephone
call forwarding [130], situation-aware self-managing mobile phones [118|, context-aware
medication monitors [4] and weather-aware clothes hanger-based information displays
[82]. Mobile, context-aware computing exhibits the key properties necessary to facilitate
the implementation of an activity scheduling application for the mobile user that auto-
matically adapts so that it accurately reflects the reality in which the user exists and

maintains a relevant schedule of activities in the face of emergent, unforeseen events.

1.3 Trails

A trail is a contextually scheduled collection of activities and represents a generic model
that can be used to satisfy the activity management requirements of a wide range of
context-based activity scheduling applications for the mobile user [28|. Applications that
use knowledge of the user’s situation to maintain a list of activities that the user must
or should undertake can use the trails model, regardless of the nature of the application

presented to the end user. For example, the trails model can support the context-aware

activity scheduling behaviour in an application for delivery couriers in the same manner
as it can in applications used by schoolchildren on a field trip to a zoo, tourists visiting
a city or museum, doctors in a hospital or music fans at a music festival.

Trails are composed of activity specifications in a process known as trail generation.
An activity includes properties such as its opening hours, whether it is mandatory or
optional, a priority value, a description, a location, and an estimated duration. Trail
generation involves ordering activities in the most effective manner possible based on the
activity properties and context. For example, a person using a trails-based day planner
application may start the day by selecting a number of activities to undertake from
their database of common activities. Based on activity properties and the context being
considered by the application e.g., location, time and user preferences, the application
will generate a trail representing the most effective activity ordering for the user at that
moment in time.

Trail order is dynamically affected by significant changes in the context that is relevant
to the trail. This process is known as trail reconfiguration and involves re-executing the
trail generation mechanism with the new context data as input in order to find the
most effective trail for the user in the current situation. For example, in a trails-based
application for a healthcare professional operating in a hospital environment, receipt of
context from a patient heart rate monitor that is deemed to be irregular would cause
the user’s trail to be reconfigured so that the patient receives attention sooner than he
was scheduled to. Trail reconfiguration is triggered following the identification of a trail
reconfiguration point i.e., a point at which it is necessary to reconfigure the trail in order to
ensure that it reflects the user’s reality and maintains utility in the face of context change.
For example, in the hospital application described, the reading from the patient heart
rate monitoring equipment combined with the knowledge that the other patients on the
healthcare professional’s trail were stable, caused the trail to be reconfigured. The process
of recognising when a trail needs to be reconfigured is known as trail reconfiguration point

tdentification.

1.3.1 The Hermes Project

The Hermes project! is investigating extensible, generic components for mobile, context-
aware applications. The project is concerned with developing components for context
acquisition (infrastructure for obtaining context from sensor devices), collaborative con-
text (context information that is obtained via collaboration between a number of sensors
and higher-level devices), context reasoning (deducing new and relevant information from
various sources of context-data), context modelling (representing context in a manner
that makes it accessible to applications) and trail management (dynamically maintaining

a schedule of activities based on context).

....................

Madeling AL Context Contamer

Collaboration
inbound outbound

Trust Privacy

Acquisition Sharing

- - Senvice
Communications

Figure 1.1: The Hermes Architecture

This thesis is concerned specifically with the trails management component that pro-
vides Hermes-based applications with the ability to support the implementation of ap-
plications containing mobile, context-aware activity scheduling behaviour. The Trails
component resides beneath the Applications layer in the Hermes architecture illustrated

in Figure 1.1 and assumes the availability of the context service below. The context ser-

Thttp://www.dsg.cs.ted.ie/hermes

vice provides the Trails component with context information used for trail generation

and reconfiguration point identification in an application-usable format.

1.4 Challenges

The implementation of a mobile, context-aware activity scheduling application involves
addressing two challenges common to this type of application. Firstly, an application
must be capable of automatically ordering a list of activities in an effective manner with
respect to relevant context (trail generation). Existing approaches to mobile, context-
based activity ordering are either constrained in the number of activities they can cope
with because of device limitations, or are server-based and subject to wireless network
disconnection. Secondly, an application must be capable of identifying when it is nec-
essary to reorder a list of activities to ensure that the list order maintains utility in the
face of context change. A balance is required between avoiding the execution of unnec-
essary reordering processing (a resource-intensive task) on a resource-constrained mobile
device and ensuring the list order is always the ‘best’ one (trail reconfiguration point
identification). Existing techniques for identifying when it is necessary to reorder a list of
activities are generally based on periodically assessing the ordering. This approach raises
the possibility of an activity ordering becoming temporarily out of sync with the user’s
reality.

To date, mobile, context-based activity scheduling applications have typically been
designed and implemented in an application-specific manner. Consequently, developers
have had to repeatedly tackle the challenges inherent to this class of application, hin-
dering progress in areas that researchers are typically interested in such as application

deployment and user evaluation. These challenges are discussed in more detail below.

1.4.1 Trail Generation

Trail ordering is a combinatorial optimisation problem similar to the classic Travelling
Salesman Problem (TSP) [74]. Combinatorial optimisation problems are those where the
set of feasible solutions is discrete and the goal is to find the best possible solution by

exploring the usually large solution spaces of these problems [32]. The TSP is described

6

as follows: Given a collection of cities and the costs of travelling from any city to any
other city, what is the cheapest route that visits all of the cities and returns to the starting
point? The trail generation problem differs from the TSP in that the number of activities
is variable (based on context) and therefore the solution space can dynamically increase
and decrease in size. Additionally, in the general case, it is not necessary to return
to the starting point to complete a trail. The most obvious solution to combinatorial
optimisation problems is to generate all permutations of the elements in question and
rate each permutation against a predefined notion of optimality e.g., shortest round-trip
distance in the case of the TSP. However, the number of permutations is n!, where n is the
number of activities. From a response time perspective this brute force solution becomes
impractical as the number of elements in the set under consideration increases. Experience
with this approach in a mobile, context-aware activity scheduling application has shown
that it becomes infeasible as the number of activities increases [25]. Therefore, it is
necessary to find a satisfactory solution by trading solution quality against application
responsiveness. Using approximation algorithms (e.g., heuristic and random number-
based approaches) it is possible to achieve solutions with a high probability of being
within 2-3% of optimal in a practical amount of time. However, determining what exactly
a practical time is on a per-application basis and achieving this level of efficiency on a
resource-constrained mobile device are non-trivial issues.

The trail generation problem also compounds the TSP by necessitating a more com-
plex evaluation function [109]. An evaluation function quantifies the optimality of a
solution, essentially encoding a human notion of optimality within the trail generation
algorithm. The TSP typically uses the total distance between all cities to assess the
worth of a particular permutation of cities. However, when evaluating a trail composed
of, for example, activities on a campus, a wider range of factors must be considered.
Good general examples of such factors are activity properties (activity opening hours,
whether the activity is mandatory or optional, the category of the activity, crowding
levels at the activity location), the user’s current location and user preferences e.g., the
activity priority relative to other activities on the trail. The implementation of the evalu-
ation function therefore becomes a multi-attribute utility estimation problem |128|, where

weights representing relative importance are assigned to the various attributes considered

in the evaluation function and a single value for each permutation of activities is pro-
duced. This single value can be used in the same manner as the round-trip route distance
in the TSP to compare candidate solutions. The additional processing required by the

evaluation function affects the overall efficiency of the trail generation algorithm.

1.4.2 Trail Reconfiguration Point Identification

The ability of a mobile, context-aware activity schedule to reflect the state of the user’s
environment through the presentation of a consistently effective trail is central to its
acceptance by end-users. Trail reconfiguration point identification involves identifying
when a trail must be reconfigured so that it maintains utility following context change.
When a reconfiguration point is identified, the trail generation mechanism is re-executed
to determine the trail that best serves the user in the new contextual situation. Recon-
figuring the trail every time a new context event occurs ensures that the trail always
reflects the user’s reality. However, trail generation is a resource-intensive process and
reconfiguring the trail every time context changes can critically impact on application per-
formance when operating on a resource-constrained mobile device. The ideal situation
is one in which the trail is reconfigured only and always when necessary. Unfortunately,
it is not possible to fully understand the effects a context change will have on a trail
without reconfiguring the trail with the new context data as input. Therefore, a balance
must be realised between avoiding unnecessary reconfiguration and ensuring that the trail
consistently reflects the user’s reality.

A common approach is to avoid identifying when a trail needs to be reconfigured by
simply reconfiguring it periodically [24]. In this technique, an application is programmed
to invoke the trail generation mechanism every time a predefined period of time passes.
When the trail generation mechanism executes, the trail is reconfigured. The trail will
then represent the current state of the user’s environment. This avoids repeatedly recon-
figuring the trail and negatively impacting application performance. However, there are
two drawbacks to this approach. Firstly, it gives rise to the possibility that, during the
intervals between periodic reconfigurations, context events can occur that cause the trail

to become obsolete e.g., an activity that a user is en route to could close unexpectedly.

Therefore this approach is not suitable for use in applications where significant context
events may occur more frequently than periodic trail reconfiguration. Secondly, periodic
reconfiguration occurs regardless of the contextual situation and therefore will execute
unnecessarily if the context is the same as, or similar to, the context considered during

the last reconfiguration.

1.4.3 Lack of Reusable Software

It is often the case that the primary objective of research efforts involving mobile, context-
aware activity scheduling applications is not specifically related to investigating trail gen-
eration and reconfiguration point identification mechanisms. Evaluating human reaction
to mobile, context-aware computing applications [24, 12|, investigating new models of
service delivery in specific areas (e.g., tourism) [98, 63, 8|, investigating specific tech-
niques for user preference elicitation [70] and the capabilities of mobile, context-aware
hardware |24, 3| are examples of motivating factors that have led to researchers to im-
plement mobile, context-aware activity scheduling applications. Such applications have
been implemented from the ground up without the aid of reusable software to support
developers in tackling the challenges posed by trail generation and reconfiguration point
identification. The main drawbacks of developing applications without framework sup-
port are increased development timescales and increased costs [99].

Implementing reusable software requires developers to ensure that the components
they create are generic and extensible |[58|. This requires significantly more development
effort than implementing the required components in an application-specific manner with
as little effort as is necessary to support the primary research objectives. For this reason,
developers of mobile, context-aware activity scheduling applications have not tackled the
challenge of developing reusable software and have therefore had to repeatedly tackle the

common challenges.

1.5 The Application Framework

This thesis describes an application framework for mobile, context-aware trails-based

application development. The application framework supports developers by providing

generic structure and behaviour that addresses the common challenges in mobile, context-
aware activity scheduling.

A software framework is a reusable implementation of all or part of a software system
expressed as a set of classes (some abstract) with behaviours defining the way in which
instances of those classes collaborate [106]. The term ‘application framework’ is used
to describe a software framework that constitutes a generic application for a specific
domain area [100]. In answer to the challenges presented in Section 1.4, the framework
provides reusable and extensible mechanisms for trail generation and reconfiguration point
identification that execute on a mobile device.

The framework supports trail generation through context-based activity set reduction
and an extensible collection of activity permutation generation mechanisms. Context is
used to prune an application’s set of theoretically possible activities by removing im-
possible, complete and clashing activities. Clashes are resolved based on weighted user
preferences for clash resolution. If a pruned set of activities is too large to be reasoned
over in a reasonable response time (defined in Chapter 3) the activity set is divided. The
most relevant activities are grouped into a set known as the relevant set (the size of
which is defined by the developer depending on the desired response time). The remain-
ing activities are stored separately and migrate to the relevant set following significant
context change. Permutations of the activities in the relevant set are evaluated using a
user-preference-based evaluation function and a single permutation is composed into a
trail. The trail generation mechanism is capable of generating trails that humans consider
to be ‘reasonable’.

Trail reconfiguration and reconfiguration point identification are supported through
the identification of significant context events and subsequent trail reconfiguration that
invokes the trail generation mechanism. Context event significance is measured by calcu-
lating the effect that a context event has on the correlation between two sets of activities,
where both sets are ranked by relevance. The activity set is ranked by relevance follow-
ing a context event and the activities in the current trail are ranked by relevance. The
correlation between the two ranked sets is calculated and the context event is classified as
significant if the similarity value calculated is below a developer or user defined threshold.

The framework facilitates developers in implementing mobile, context-aware trails-

10

based applications by providing generic, extensible solutions to common trails-related
issues. This makes the development of these applications more accessible to software

developers.

1.6 Contribution

The application framework described in this thesis contributes to the state of the art in

the area of mobile, context-aware activity scheduling by addressing the following issues:

e Current approaches to trail generation in mobile, context-aware activity scheduling
applications are limited in the number of activities that they can consider due to
response time requirements. This thesis describes a mobile-device-based trail gen-
eration mechanism that uses context-based activity pruning to reduce the number
of activities considered during permutation evaluation. This allows applications
to include a large number of activities, with activities being considered during the

scheduling process based on how relevant they are to the user’s current situation.

e Current permutation generation and evaluation mechanisms are implemented in an
application-specific manner, hindering their reuse in subsequent development ef-
forts. The application framework described in this thesis provides three approaches
to permutation generation as well as an architecture purposely designed to facilitate
the extension of the framework through the addition of new permutation generation
approaches that integrate with the remainder of the framework. Activity permuta-

tions are evaluated by a user preference-driven evaluation function.

e Current approaches to trail reconfiguration point identification are based on periodic
trail reordering. This thesis describes a preference-driven trail reconfiguration point
identification mechanism that address the limitations with periodic reconfiguration
by identifying significant context events that necessitate trail reconfiguration as

they occur.

e The trail generation and reconfiguration point identification approaches in the ap-

plication framework are based on an extensible range of user preferences, allowing

11

the algorithms to produce user-specific results without requiring source code mod-
ifications. Trail generation is extensible through the consideration of additional
contexts and preferences for activity pruning and activity permutation evaluation,
and the specification of additional permutation generation mechanisms. The recon-
figuration point identification mechanism is extensible through the consideration of
additional contexts. Both the trail generation and reconfiguration point identifica-

tion behaviour can be reused regardless of whether or not it has been extended.

This thesis describes three main evaluation approaches. First, the contribution as regards
the reusability and extensibility of the framework is evaluated through the development
of three case study applications. The case studies illustrate how the framework can be
reused and extended to support the development of a range of mobile, context-aware
trails-based applications. Second, results of empirical experiments conducted to assess
the responsiveness of the trail generation implementation and the accuracy of the recon-
figuration point identification mechanism are presented. Third, details of an experiment

concerning human satisfaction with the trails generated by the framework are presented.

1.7 Roadmap

The reminder of this thesis is organised as follows. Chapter 2 presents an overview of the
state of the art in the areas of mobile, context-aware tourist guides, context-aware to-do
lists and application frameworks for mobile, context-aware applications. The discussion
of research into mobile, context-aware activity scheduling focuses on how the related
research deals with trail generation and trail reconfiguration point identification. Chapter
3 describes the design of the application framework for mobile, context-aware trails-based
applications and Chapter 4 presents implementation detail. In Chapter 5, the framework
is evaluated by applying it to the development of three mobile, context-aware activity
scheduling applications with differing requirements, illustrating reuse of, and extension
to, the base application framework. The results of empirical experiments conducted to
assess the responsiveness of the trail generation mechanism and the accuracy of the trail

reconfiguration point identification mechanism are also presented, along with the results

12

of the trail quality experiment. Finally, Chapter 6 concludes and discusses potential areas

for further research.

13

Chapter 2

State of the Art

This chapter assesses research that investigates, to varying degrees, mobile, context-aware
activity scheduling behaviour. The extent to which each of the related projects addresses
the challenges identified in Section 1.4 is discussed. The state of the art in the following

areas is presented:

e Mobile, context-aware tourist guides.
o Context-aware to-do lists.

e Application frameworks for mobile, context-aware computing.

A brief overview of context-awareness frameworks in general is also presented.

2.1 Mobile, Context-Aware Tourist Guides

To date, most research into mobile, context-aware activity scheduling has focused on
development of tourist guide applications. However, many of these applications do not
support dynamic, context-based activity management. Some present the user with a
static tour on a mobile device and track their location, while others use context to gen-
erate a tour but offer no subsequent tour adaptation. In terms of trail generation and
reconfiguration point identification, GUIDE [24], P-Tour [81] and the Dynamic Tourist
Guide (DTG) [70] are the most sophisticated. In addition, Cyberguide [3|, LoL@ [§],
Crumpet |98], m-ToGuide |63] and the Hypermedia Tour Guide [12] include trails-related

14

behaviour such as activity selection based on user preferences, tour provision (albeit
static), location-based activities and user location tracking. The remainder of this sec-
tion reviews these applications and analyses the extent to which they support mobile,

context-aware activity scheduling.

2.1.1 GUIDE

GUIDE is a mobile, context-aware tourist guide application for tourists in the city of
Lancaster, UK |24]|. GUIDE users can view web-based information related to their current
location, access interactive services e.g., accommodation booking systems, and send and
receive messages, enabling groups of tourists to keep in touch while exploring the city.
The system also allows users to request a structured city tour by selecting attractions
from a predefined, categorised set of popular Lancaster attractions. The system, deployed
on a mobile device, generates a recommended sequence for visiting the chosen attractions
based on the user’s location (derived from the WiFi base station to which the user is
connected) and the opening and closing times of the attractions. The ordering of the
tour can dynamically change based on the user’s location and the current time. To
avoid seeming overly authoritarian, the system allows users to manually change the tour
ordering by selecting the activity they wish to do next, regardless of its place in the
recommended tour and the effect the decision has on the feasibility of the other activities.
The GUIDE developers carried out an extensive user study to validate the concept of using
mobile, context-aware technology to assist users with completing a collection of activities.
This user study illustrates that the GUIDE system was successfully deployed, with all
users considering the location-aware navigation and information retrieval mechanisms
provided by the system to be both useful and reassuring. Additionally, the majority of
the user study subjects said that they were prepared to trust the information presented
by the system, including the navigation instructions. The published lessons learned and
experiences in terms of location context acquisition, information modelling, context-aware
user interface design and context-aware information presentation are valuable to those

who wish to develop and deploy interactive context-aware systems.

15

2.1.1.1 Trail Generation

GUIDE uses a brute force algorithm to generate the optimal ordering for visiting a set
of attractions. This brute force approach systematically enumerates all the possible
attraction orderings and retains the ordering that best satisfies the user’s requirements
in terms of visiting the maximum amount of the activities selected for the least cost
(in terms of time and walking distance). The resource-intensive nature of this approach
limits GUIDE to a maximum of nine activities if a reasonable response time is required
[25]. The developers of the GUIDE system do not specify the response time value that

they consider to be reasonable.

2.1.1.2 Reconfiguration Point Identification

The GUIDE system “regularly” calculates whether or not the tour that the user is fol-
lowing is appropriate given the current context. A tour can become inappropriate if the
user stays longer than anticipated at an attraction or an attraction announces that it
is closing early. The implementation details of this periodic approach to reconfiguration
point identification are not presented by the GUIDE developers.

Periodic reconfiguration techniques expose tours to the possibility of becoming out of
sync with the user’s reality as described in Section 1.4.2. This issue is exacerbated by
the fact that only positional and temporal context are sensed automatically in GUIDE,
meaning that other context events such as changes to activity opening and closing hours

must be uploaded manually if they are to be considered by the system.

2.1.1.3 Developer Support

The initial objective of the GUIDE project was to investigate the use of wireless broadcast
schedules. GUIDE uses a cell-based wireless communications infrastructure to download
the attraction information that is displayed to tourists and also to generate tourist loca-
tion context (a tourist’s location is the WiFi cell server they are currently communicating
with). This objective evolved once the project began and the focus shifted to exploring
the human factors issues associated with developing a mobile, context-aware tour guide

application [26]. Although the information model, cell-based wireless communications

16

infrastructure and the high-level software architecture have been discussed in GUIDE
publications [33|, the provision of application framework support was not a research ob-
jective. The trail reconfiguration and reconfiguration point identification mechanisms
were designed in an application-specific manner to meet the requirements of the GUIDE

system, resulting in limited potential for reuse in future development efforts.

2.1.2 P-Tour

P-Tour is a personal navigation system that allows tourists in Nara, Japan to compose
a sub-optimal (within 2% of optimal) multi-destination schedule [81]. P-Tour takes the

following factors into account when generating a tourist schedule:
e User preferences:

— The user-assigned priority for each destination.

— The time at which the user wishes to visit each destination.

e The monetary outlay required to visit each destination.
e The user’s current location and the location of each destination.

e The destination time restrictions (opening and closing hours).

Similar to the GUIDE system, tour destinations in P-Tour are selected from a predefined
list. Users can also add their own destinations to the collection of available destinations.
The end-user application resides on a mobile device and communicates via WiFi with a
remote server that is responsible for tour generation. Routes between the destinations
on the tour are illustrated on a map-based user interface. The schedule of destinations is
dynamically adapted based on deviation from the route between two tour destinations.
The P-Tour system successfully achieves its stated goals of providing multi-destination
schedules based on multiple criteria, navigating the user from destination to destination
and modifying the schedule automatically based on context changes. The use of a heuris-

tic approach to tour generation illustrates the feasibility of non-optimal tour generation

17

techniques, while the reconfiguration point identification technique illustrates how con-
text can be used to move beyond simple periodic reconfiguration by identifying when a

tour actually needs to be reconfigured.

2.1.2.1 Trail Generation

The P-Tour client application (residing on a mobile device) communicates, via WiF1i, with
a remote server that executes a genetic algorithm [109]| written in Java. The algorithm is
capable of computing tours of 14 activities to within 2% of optimal in 15.5 seconds. The
application limits the number of activities considered so that the application responds to
the user in a timely manner. A genetic algorithm is a guided random search technique
used to find approximate solutions to combinatorial optimisation problems through appli-
cation of the principles of evolutionary biology to computer science. Genetic algorithms
use biologically-derived techniques such as inheritance, mutation, natural selection, and
recombination (or crossover). Candidate solutions are evaluated by means of a fitness
function. A fitness function quantifies the optimality of a solution in a genetic algorithm
so that each individual solution may be ranked against all the other candidate solu-
tions. The optimal tour for the 14 destinations was also calculated once using an exact
algorithm e.g., brute force, with no time constraints so that the results of the genetic
algorithm could be compared to the known optimal solution.

The P-Tour client application residing on the mobile device does not contain any
behaviour to dynamically adapt the user’s schedule. In the case of disconnection from the
wireless network the application ceases to function as it should and the user experiences
loss of tour maintenance service. The P-Tour algorithm is designed to work on a powerful
server platform and its performance in terms of response time would be significantly

degraded by migration to a resource-constrained platform such as a PDA or smart phone.

2.1.2.2 Reconfiguration Point Identification

The P-Tour reconfiguration point identification mechanism, introduced as an extension to
the initial application, is based on identifying the geographical area that the user should
be in at any point along the tour [117|. The application calculates expected locations for

a user by assuming that the user moves at a predefined constant speed. P-tour tracks

18

the user’s location at “regular intervals (for example, every 60 seconds)” and records
their current situation. If the user has deviated from the suggested route between two
destinations the negative impact of the deviation is calculated. This value is calculated
as the difference between the tour evaluation value for the current tour and the tour
evaluation value for the new schedule computed with the delay. If the negative impact is
significant a reconfigured tour is displayed to the user (otherwise a warning is displayed).
The details of the approach to determining route deviation are illustrated in Figure 2.1

and listed below:

1. Calculate the expected location of the user Xgeheduled (t) at time ¢, assuming that the

user moves at a constant speed.

2. Measure the user’s actual location Xcyment (t) at time ¢, using the client’s location

system.

3. Find the location Xcurrent on road (t) 0N the route that is nearest to the user’s current

location Xeyrrent ()-
4. Let errorx be the distance between Xcyrrent (t) and Xcurrent on road (£)-

5. Let errory be the distance on the route between Xgceduted () and Xeurrent on_ road (£)-

If the user is going behind schedule errory is multiplied by -1.

The user’s situation is defined by the values of errorx and errory as follows (here a(7)
is determined by the width of the road ¢. 5 and ~ are constants determined by how tight

the current schedule is):

e Wrong route: (i) < errorx
e A little behind scheduled: v < errory < (8
e Severely behind schedule: errory < v

e Ahead of schedule: § < errory

In order for this approach to work, the server periodically (at the same interval as it

acquires the user’s location) recalculates the tour to assess the impact of the deviation.

19

Figure 2.1: Reconfiguration point identification in P-Tour |117]

If there is no delay then the cost of generating the value of the tour with the current
delay value is incurred unnecessarily. The approach has been evaluated over a distance
of 1.5km, comparing the errory value with and without the warning facility. The errory
value was shown to be -20 with the warning facility in place and -60 without the warning
facility. This result shows that the approach is effective at keeping users on schedule.
While the reconfiguration point identification mechanism employed by P-Tour im-
proves on the basic periodic approach introduced by the GUIDE system, it has some
limitations. The time-based periodic element of the mechanism (location is tracked peri-
odically) raises the possibility that an important context event could occur between one
context assessment and the next. This means that the tour can be in a state inconsistent
with the user’s reality, without an alert being issued or a reconfiguration occurring. It
is unlikely that this would actually be a problem in the P-Tour application where only
location context is considered during reconfiguration and users on foot cannot move too
far between reconfigurations. However, if this approach was used by applications that
consider more dynamic contexts (not just user location) it is likely that inconsistencies
between the real world and the computer representation would occur. Additionally, the
P-Tour reconfiguration point identification approach is based on changes in location con-

text only and the model does not cater for extension through the addition of non-spatial

20

contexts such as changes to activity opening hours, queuing times at attractions and

changes in user preferences.

2.1.2.3 Developer Support

The objective of the P-Tour project was to build on existing applications used in Japan
for single destination navigation by providing a mobile, context-aware system for tourists,
who typically want to visit multiple destinations. The application uses an application-
specific approach to trail generation and reconfiguration point identification and does not

aim to support developers who wish to reuse the algorithms.

2.1.3 Dynamic Tourist Guide

The Dynamic Tourist Guide (DTG) is a mobile agent that selects tourist attractions in
Goerlitz, Germany from a predefined database (based on elicited user preferences) and
plans a tour of these attractions [70]. The user’s interest level in the attractions, the
time available for the tour, the attraction opening hours and the user’s location are used
to generate a schedule of attractions. The DTG can generate a schedule of 16 activities
to within 5% of optimal in 5.5 seconds. The DTG provides users with schedules that
serve their needs by being sensitive to their personal interests. The schedules created
by the DTG aid tourist destination management organisations by distributing tourists
evenly across a set of geographically dispersed tourist attractions, therefore minimising
queuing and maximising throughput. The DTG end-user application is deployed on a
mobile device that communicates via WiFi with a remote tour-generation server. Tours
are dynamically reconfigured based a user’s progress on a tour, similar to the approach
employed in P-Tour. The DTG developers have designed and evaluated three preference
elicitation techniques and have illustrated some success with automatically predicting user
preference for a collection of destinations based on elicited preferences. These preferences
can be used to automatically select destinations for tourists to visit, serving the tourist
by exposing them to destinations they were not aware of and the tourist industry by

spreading tourists among attractions, hence reducing crowding at popular attractions.

21

2.1.3.1 Trail Generation

The DTG is capable of computing a tour composed of 16 activities to within 5% of optimal
in a response time of 5.5 seconds [123]. The DTG limits the number of activities on a
tour so that the response time requirement of 5 seconds can be met. The server-based
agent uses a directed depth-first algorithm [109] that incorporates a number of heuristics.
Depth-first search is an algorithm for traversing a tree (representing the solution space)
that starts at the root and explores each branch as far as possible before backtracking.
The DTG search algorithm is augmented with a number of heuristics for choosing the
branches that look the most likely to yield a good solution. The heuristics include using an
average duration estimate for all attractions and trading off attraction relevance against
the cost (in time) of traveling to and exploring the attraction. These heuristics, while
increasing the efficiency of the algorithm, can result in tours that maximise the number
of attractions, hence achieving a higher overall score (based on the DTG tour evaluation
function). However, such tours can have a lower average score per attraction, meaning
that tourists may not be that interested in many of the attractions and their favourites
may be absent.

The DTG developers have acknowledged the problem of wireless network disconnec-
tion and take advantage of periods of connectivity by using a preloader to cache infor-
mation about the forthcoming tour activities. However, there is no tour management
behaviour on the mobile device that can be used while disconnected. As with the P-Tour
tour generation algorithm, the DTG tour generation algorithm is implemented to work
on a powerful server platform and cannot be easily migrated to the mobile device-based

client application.

2.1.3.2 Reconfiguration Point Identification

The DTG reconfiguration point identification mechanism is based on periodically tracking
user progress on a tour. The tour can be adapted by adding activities if the initial
activities are completed ahead of time and by removing activities when the user spends
longer than anticipated at an activity. The authors state that “the permanent tracking

of the tour progress considers external influences to adapt the tour” [124]. They also

22

mention “permanent supervision” of the tour [124] and that the application contains
behaviour to “consistently supervise the ongoing tour” [69]. However, the DTG actually
checks if reconfiguration is required every 3 minutes, similar to the periodic approach
used in GUIDE. However, the behaviour that executes periodically is not simply trail
reordering as in GUIDE but a method to assess if reconfiguration is required. The DTG
assesses if the user’s current tour progress has caused them to deviate from the initial
plan by more than 30 minutes. If this is the case the tour is reconfigured e.g., activities
are added if the user is ahead of schedule or removed if they are behind schedule.

The reconfiguration point identification approach improves on that used in GUIDE
by adding intelligence to the behaviour that executes periodically, consequently avoiding
unnecessary reconfiguration. However, by tracking only user progress on the tour (similar
to the approach taken by P-Tour) the DTG does not consider other contexts that can
affect a tour such as changes to activity opening hours or resource expiration e.g., all
tickets for a play selling out while a user is en route to the theatre. Additionally, by
executing the tour comparison behaviour periodically the DTG is subject to the same
issues as GUIDE and P-Tour in terms of tours becoming temporarily out of sync with
the user’s reality.

The evaluation of the DTG reconfiguration point identification mechanism was con-
ducted using tours that had durations of between 1 hour and 1.5 hours. The threshold
of 30 minutes proved to be too long relative to the tour durations, resulting in very few
tour adaptations (only 9% of all tours were adapted). This resulted in users following

tours that did not accurately reflect their reality.

2.1.3.3 Developer Support

The primary objectives of the DTG project concern the investigation of user preference
elicitation techniques, and the use of profile information to compose schedules of activities
for users. Developing the trail generation algorithm in a generic and extensible manner
for use by other developers was not a design concern. This is evidenced by the use
of heuristics for search algorithm optimisation. The heuristics used are tailored to the
tourism domain and do not generalise to mobile, context-aware activity scheduling in

general. For example, it may not be possible to make generalisations about a physician’s

23

tasks in the way that the DTG makes generalisations about tourist attractions e.g., using
a single activity duration regardless of whether the attraction is a church spire or an art

museumn.

2.1.4 Cyberguide

The Cyberguide system developed at Georgia Institute of Technology, Atlanta represents
the earliest work on developing a mobile, context-aware system for tourists [3|. Cyber-
guide was a major inspiration to the related systems that followed, notably GUIDE.
The system does not support activity scheduling but lets the user discover attractions
at different locations by providing a map annotated with the user’s location. The Cy-
berguide system executes on a mobile device and uses an infrared beacon-based location
service to position a tourist on a map. The map displays the locations of various demos
on display at the Graphics, Visualization, and Usability Center at Georgia Tech. Users
can use the map to guide themselves to the various attractions, and attraction icons are
updated to show that the user has visited them. The outdoor version of the system (Cy-
BARguide) utilises the Global Positioning System (GPS) to obtain information data and
allows users to view the locations of various bars near the Georgia Tech campus. Users
can make notes about the bars they visit and can also add establishments not already
present in the database.

The Cyberguide system did not focus on providing trails to users and therefore it
does not contain trail generation or reconfiguration point identification behaviour in the
same manner as GUIDE, P-Tour and the DTG. However, it did introduce the concept
of allowing a user to navigate through a collection of activities using a mobile device,
location tracking system and map-based user interface. Subsequent mobile, context-
aware activity scheduling applications, including those that can be developed using the
application framework described in this thesis, have built on the concepts introduced in

the Cyberguide system.

24

2.1.5 LoL@

LoLL@, the Local Location Assistant, is a mobile, context-aware tour guide for visitors
to the first district of Vienna, Austria [8]. The LoL@ application executes on a mobile
device and uses a UMTS!-based |43| location service to guide tourists on a static tour,
providing them with multimedia information related to the sights they encounter. The
location information is used to position users on the map-based interface and guide them
to the next point of interest.

The application was developed as a prototype UMTS application in an effort to pro-
vide a UMTS-based location service and therefore the primary focus is not on activity
scheduling. The tours provided are predefined by the application developers and therefore
the application has no requirement for context-based trail generation or dynamic context-
based trail adaptation. LoL@ extends the concepts introduced by the Cyberguide system
by ordering the activities that users can undertake. Additionally, LoL.@ further validates
the concept of using mobile, context-aware technology to assist users in completing a set

of activities.

2.1.6 CRUMPET

The CRUMPET (CReation of User-friendly Mobile services PErsonalised for Tourism)
system provides a tourist attraction recommendation service to users based on their per-
sonal interests and current location [113]. The objectives of the CRUMPET project are to
implement and trial tourism-related, value-added services to nomadic users across fixed
and mobile networks, and to evaluate agent technology as a suitable approach for creating
nomadic services. The end-user application executes on a mobile device that communi-
cates via a wireless network (WiFi or GSM) connection with the remote CRUMPET
services. The user can select an attraction from the list provided by CRUMPET and
request a tour to this attraction i.e., a route from their current location to the selected
attraction.

CRUMPET does not support the creation of multi-attraction tours (trail generation)

and therefore does not consider the concept of reconfiguration point identification in the

!Universal Mobile Telecommunications System

25

same manner as the applications discussed at the beginning of this section. However,
CRUMPET illustrates how contexts such as location and user preferences can be used to
determine the set of activities that are relevant to a particular user in a specific contextual

situation.

2.1.7 m-ToGuide

m-ToGuide is a tourist guide application designed for city travellers [63]. The prototype
application was developed as part of an industry-led project targeted at the European
tourism market. The primary objective was to replicate the services of a human tour
guide on a mobile device that can be rented to tourists. The application runs on a mobile
device and communicates via WiFi and GSM/GPRS with the remote m-ToGuide server.
The application shows the tourist’s location on a map-based interface. Predefined points
of interest are automatically selected from a database based on stereotyped default user
profiles e.g., family, business traveller. The user’s profile is dynamically updated and
refined by tracking user behaviour (and subsequently adapting) and through manual user
input. The recommended attractions are then dynamically adapted based on refinement
of the user’s profile. The application guides users through the points of interest, providing
routes between the attractions. The application also provides a ticketing facility that
allows users to purchase tickets for attractions on their tour.

m-ToGuide does not support context-based activity schedule generation and reconfig-
uration point identification. The adaptation in m-ToGuide concerns updating the user’s
preference model based on context events (user input and user actions i.e., what attrac-
tions are visited). Updated preference models are used to improve the recommendations
that the application makes to users. This type of behaviour is particularly useful in
tourist applications when users do not necessarily know exactly what attractions they
want to see. The DTG and CRUMPET also recommend attractions to users based on
elicited preferences, however only m-ToGuide learns about preferences automatically and

refines its recommendations accordingly.

26

2.1.8 Hypermedia Tour Guide

A multimedia tourist guide has been developed for Genoa’s Costa Aquarium [12]. The
guide, executing on a mobile device, assists users throughout their tour of the aquarium
by providing information about each exhibit (fish tank). Tour order is predefined (as
in LoL@) and is not sensitive to changes in context. The tour on the mobile device is
arranged in the same sequence as the physical layout of the tanks in the museum, and
users select the “next tank” option when they want to view the multimedia information
for the next exhibit. Users can create thematic paths through the aquarium by using a
“link” tool to link related tanks together e.g., a tour of all crustacean tanks. Through
these tools, users can manually create trails and manually reorder them.

The Hypermedia Tour Guide does not contain trail generation and reconfiguration
point identification behaviour, nor does it provide activity recommendations like CRUM-
PET and m-ToGuide. It can provide static tours like those provided by Lol@. By
conducting a comprehensive user study of the application, the Hypermedia Tour Guide
project validates the concept of mobile device-based guide applications. The user study
illustrated strong public interest and acceptance of computer-based personal guides that
provide context-based information e.g., information about the tank at which the user is

situated.

2.1.9 Summary

Table 2.1 provides a summary of the features provided by state of the art mobile, context-
aware tourists guides. None of the projects surveyed state the provision of generic sup-
port for trail generation and reconfiguration point identification as a research objective.
GUIDE (Section 2.1.1), P-Tour (Section 2.1.2) and the DTG (Section 2.1.3) are the most
sophisticated applications but they do not provide any level of support for software reuse
in terms of their trail generation and trail reconfiguration implementations. All applica-
tions that support trail generation impose a limit on the number of activities considered
by the application in order to meet response time requirements. The server-based ap-
proaches of P-Tour and the DTG are not appropriate for deployment on a mobile platform

due to their dependence on the considerable resources of their host servers. Addition-

27

ally, these applications provide no support for disconnected operation. The assumptions
made by the DTG trail generation algorithm (in the form of heuristics) make it unsuit-
able for general use outside of the tourism domain (as does the fact that tour attractions
are selected based on preferences and not by the user directly). The periodic nature of
the reconfiguration point identification mechanisms employed by GUIDE, and to a lesser
extent P-Tour and the DTG, mean that the tours provided by these applications are
susceptible to becoming temporarily out of sync with the user’s reality. Additionally, P-
Tour and the DTG monitor user progress on a trail for deciding if reconfiguration should

occur, ignoring contexts related to activity properties.

=

&

, . <

< e

= = |

M| =) g

2 Elulz|elB|F) 5

SIEIE|= |25 2| &

Feature Ul gl0o|lz

Trail Generation
Mobile device-based
Server-based
Unlimited activities
Reconfiguration Point Identification
Periodic
Context-based
Developer Support
v/ — full support o — no support

o
o
o
o

olol<
ol< o
<
o
o

o
o
o

VaRY
VaRY

O @] (@] o

o] o<

Table 2.1: Summary of mobile, context-aware activity scheduling support

A survey of the state of the art in context-aware, mobile tourism guides has been
conducted at the Vienna University of Technology, Austria [115]. Of the tour guides
included in the survey only GUIDE provides trail generation and dynamic reconfiguration
behaviour (P-Tour and the DTG are not discussed). In the ‘Lessons Learned’ section the
authors point out the unaddressed issues that they identified in the state of the art during
their survey. The issues identified are as follows (issues addressed in this thesis are listed

in italics):

e Tourism is not considered as a social activity.

28

o The balance between thin and thick clients is problematic.

e Potential of incorporating external context not exploited.

e OGC standards for exchanging geospatial information widely ignored.
o Time and network context are seldom used.

e The potential of combining context properties is not exploited.
e Context chronology not widely supported.

e Proprietary representation of context data.

e Context availability partly regarded.

e Varying automation of context acquisition.

e Push-based context access not widely supported.

e Dynamic adaptation of guided tours is not generally provided.

e Futensibility of adaptation operations is not commonly recognised.

The application framework presented in this thesis answers the issues listed in italics
through the provision of reusable and extensible trail generation and reconfiguration
point identification components for mobile devices that consider multiple context sources
(the relevance of which can be set by the user) to make trail generation and reconfigu-
ration point identification decisions. Of those issues not addressed by this thesis, all but
the first issue listed are addressed by other components in the Hermes framework (no-
tably the Context Management component and the Geographical Information System
component). The first issue (‘tourism is not considered as a social activity’) is partially
addressed in GUIDE through the provision of a messaging client that assists groups of

tourists with keeping in touch as they explore the city separately or in subgroups.

29

2.2 Context-Aware To-do Lists

This section presents research projects involving the design and implementation of context-
aware to-do lists and discusses the behaviour they provide that addresses the challenges

described in Section 1.4.

2.2.1 TaskMinder

The TaskMinder |73] application developed at Georgia Institute of Technology uses con-
text information (location, user activity, task history) and machine learning techniques
to provide a to-do list management tool that recommends tasks to the user based on
context. The primary objective is to improve on static computerised to-do lists such as
Outlook Task [5], Daily To-Do List [34], Tree To Do List [97] and Task-O-Matic [119).
The end-user application is deployed on a laptop and communicates via WiFi with a
remote TaskMinder server. The server is responsible for suggesting which tasks the user
should undertake when the user makes a task query (tasks are initially entered by the
user), similar to the task suggestion behaviour in m-ToGuide, CRUMPET and the DTG.

The server suggests tasks to users based on the following factors:

The user’s current level of activity - derived from the number of application windows

the user has open on their laptop.

The user’s location - derived from WiFi information.

The current time of day.

The due date of the task (if previously specified by the user).

Historical user requests:

— The type of task requests the user has made in the past.
— The times at which the requests were made.

— The feedback rating the user assigned to the task suggestions previously re-

ceived.

30

Task suggestions are made based on user input that consists of a preferred task duration.
The system estimates how long certain tasks will take based on task history (it is not
possible for the user to specify task durations when entering a task to the system) and
returns the appropriate tasks, in order of importance, to the user. The server uses
a weighted syntactic matching technique to map existing tasks to historical tasks to
ascertain if the existing tasks are similar to those that have been completed in the past.
The words in the task description are weighted so that certain words have a greater effect
on finding a match. For example, if searching for matches to a task called ‘Lunch with
Jeff’, the word ‘Lunch’ has a higher weight than the word ‘with’. If a match is found,
the situation that the historical task was completed in is compared to the user’s current
context. If the situations match then the task is considered to be appropriate for the
user. If no matches are found (or if the user has no task history) the system assigns
default values to tasks so that some tasks, regardless of relevance, are returned. System
recommendations improve incrementally as a task history database is compiled.
TaskMinder does not feature the concept of generating a trail through a set of tasks
defined by the user, nor does it let users directly specify situations in which they want to
be reminded about tasks. The task specification is rather course-grained e.g., the user is
unable to specify how long they estimate a task will take, inhibiting schedule generation
behaviour. The application is not proactive in the manner of a mobile, context-aware
activity scheduling application. The list of tasks recommended to the user does not
automatically update based on context change. Finally, the tasks recommended to the
user are recommended in order of importance and there is no consideration of the list as
an entity or the relationships between activities. Without considering the list as an entity
it is not possible to compare candidate lists and provide the best list ordering to the user
i.e., to ensure that lists don’t contain activities that clash. Therefore, it is possible that
the activities on the list provided by TaskMinder may clash with each other, forcing the

user to make clash resolution decisions.

31

2.2.2 CybreMinder

The CybreMinder system addresses the need for context-awareness in to-do lists by pro-
viding context-aware reminder behaviour [35]. The tool has two main features - reminder
creation and reminder delivery. Reminders can be created by the user for himself or
for third parties. A collection of reminders serves as a to-do list. Each reminder has a
subject, a priority level (from lowest to highest), a description and an expiration date.
Users can also associate a situation with each reminder e.g., the user must be in a certain
building at a certain time for the reminder to be valid. Relationships other than ‘=" can
be used. For example, the user could set a trigger time for after 9pm by using the ‘>’
relation. Other supported relations are ‘<’, ‘>’ and ‘<.

Reminders are delivered when the situation specified in a task reminder exists or
when the task expiration date has been reached. Users can be notified by email, SMS on
a mobile phone, the display on a nearby computer or by local printer (to emulate paper
to-do lists).

CybreMinder, by allowing users to schedule reminders for specific situations, gives
them more control over the activities they are reminded about than TaskMinder. How-
ever, like TaskMinder, the application does not consider the notion of grouping sets of
reminders effectively based on the user’s context. The application is primarily focused
on supporting the specification and triggering of individual tasks. If multiple tasks are
triggered simultaneously there is no facility to reason about the collection of tasks and
suggest how the user should address them. Therefore CybreMinder cannot be used to
support trail generation or reconfiguration point identification, only static tour behaviour

such as that featured in LoLL@ and the Hypermedia Tour Guide.

2.2.3 comMotion

comMotion is a location-aware reminder system that maintains to-do lists for users at the
locations that the lists are associated with [80]. comMotion introduces a location-learning
agent that observes the user’s frequent locations over time and allows them to be labelled
e.g., ‘Work’, ‘Home’. To-do lists can then be associated with these labelled locations. A

to-do list in comMotion is composed of text items or audio recordings. When users enter

32

a location associated with a to-do list they will be notified by an audio alert that they
have tasks associated with their current location. Tasks are ticked off by the user as they
are completed.

comMotion also provides a reminder system based on the 3M Post-It? note metaphor.
This behaviour is similar to that provided by CybreMinder. Context-aware reminders
can be sent via email, specifying the location name in the subject line. Reminders can
be constrained to a certain date or date and time range and the user can specify the
frequency of repetition for the reminder e.g., daily, weekly, monthly or none. When the
user enters a context specified by a reminder the relevant reminder will be displayed.
Users can also subscribe to information services such as headline news, weather forecasts
and current movie listings on a per-location and time basis e.g., the user could request
to receive a movie schedule on a Friday after leaving their place of work.

Similar to TaskMinder and CybreMinder, comMotion does not support reasoning
about how best to undertake the tasks specified in a to-do list when a to-do list is displayed
to the user. There is no reasoning beyond identification of when a reminder should be
triggered. This prevents comMotion from being able to facilitate the implementation of
mobile, context-aware activity scheduling applications apart from those in which the user

or programmer is responsible for manually scheduling all tasks.

2.2.4 PlaceMail

The PlaceMail system [77]| developed at the University of Minnesota provides location-
aware reminders in a manner similar to CybreMinder and comMotion. Users of PlaceMail
can use the system to specify messages to be delivered to them when they are in a specific
predefined location or set of locations. Users can also specify a delivery date and time
instead of, or in addition to, delivery locations. The PlaceMail system executes on a
mobile phone platform, differing from TaskMinder, CybreMinder and comMotion which
are deployed on laptop, desktop to multiple delivery platforms and mobile PC respectively.
While there is a task creation interface on the phone there is also a web interface, with the

same functionality, for ease of task entry. Messages are entered by providing a delivery

2http://www.postit.com

33

location (or set of delivery locations), a message body (text or audio) and an optional date
and time. The user is notified of message delivery by a short audio alert and delivered
messages can be rescheduled for future redelivery.

PlaceMail uses a client-server architecture. User data and locations are stored in a
database residing on a remote server. The user’s mobile phone receives the user’s tasks
and locations via a wireless network connection when the user logs into PlaceMail. The
user’s mobile phone (equipped with GPS) transmits its location to the server every 60
seconds and the server determines whether there are any messages relevant to the current
location. Messages deemed relevant are delivered.

Context-aware delivery of individual messages is the primary focus of the PlaceMail
application, a focus it shares with all of the context-aware to-do list applications reviewed
so far. As a result, PlaceMail does not support reasoning about groups of reminders to
determine the most effective way to undertake the tasks described in the reminders.
PlaceMail can be used to develop applications with static activity schedules but not

context-aware schedules such as those offered by GUIDE, P-Tour and the DTG.

2.2.5 Place-Its

A Place-It is a virtual post-it note that can be posted by its author to remote places and
displayed to the author when he enters that location in the future [120]. This behaviour
is similar to that provided by CybreMinder, comMotion and PlaceMail. Like PlaceMail,
the Place-Its application executes on a mobile phone and considers user location when
deciding whether or not a note should be shown to the user. Three main components

collaborate to provide the Place-Its reminder functionality:

1. Trigger - identifies whether the reminder should be signalled upon arrival at or

departure from the associated location.
2. Text - the message associated with the note.

3. Place - the location with which the note is associated.

Once a note is triggered it is automatically placed in a Removed Place-Its list, unlike

notes in comMotion (Section 2.2.3) where the user manually specifies that notes have

34

been addressed. Once a note has been removed it can be edited and re-posted to the
same or a different location. This functionality prevents loss of information in the case
where a note is displayed to the user but not actually acted upon in the real world.

The Place-Its system follows the same single activity-centric model of task manage-
ment as TaskMinder, CybreMinder, comMotion and PlaceMail. The Place-Its system
does not support any form of context-aware reasoning about collections of notes in terms
of recommending a schedule of activities based on the contents of the Place-Its. It intro-

duces the notion of automatically designating a task as having been completed.

2.2.6 Castaway

The Castaway project is investigating the development of a context-aware task manage-

ment system [65]. The vision of the Castaway project consists of three parts:

1. To support the fast and convenient input of tasks the instant they are conceived.
2. To provide a lightweight, flexible tool to view and manage these tasks.

3. To provide a system for reminding users of their tasks at precisely the right place

and /or time.

The Castaway developers are currently investigating the application user interface, which
is a major focus of their work. Castaway has prototyped various task views including a
list view, a map view and a calendar view and has evaluated these views by means of a
user study. This user study highlighted user preferences for map-based task management
interfaces. The Castaway developers have also investigated techniques for managing infor-
mation display when clusters of task icons appear in one location and obscure each other.
In terms of user interface design the Castaway project is significantly more advanced than
the other context-aware to-do list applications described in this section.

The task management behaviour envisioned in Castaway is described in a similar
manner to that of TaskMinder, CybreMinder, PlaceMail and Place-Its, where the focus is
on managing individual tasks as opposed to providing the user with an effective context-
aware ordering for a collection of tasks. This will prevent Castaway from providing

context-aware activity scheduling.

35

2.2.7 Summary

This section has presented the state of the art in mobile, context-aware to-do lists. In
general, the applications allow users to specify contextual situations e.g., a location and
time pair, with which reminders are associated. The user is notified of a reminder when
its associated contextual situation exists.

The applications surveyed are informative from the perspective of learning about the
type of context information users typically need to schedule reminders. Location and time
are the two contexts mostly widely used by the applications discussed. These contexts
are supported in the application framework presented in this thesis.

While context-aware to-do list applications improve on static to-do lists by prompt-
ing the user about specific tasks when appropriate, the applications do not facilitate
context-aware activity scheduling. Tasks are reasoned about individually as opposed to
collectively, meaning that the concept of one specific task grouping being more valuable
to the user than another is not considered. When a collection of tasks or reminders
is displayed to the user there is no advice regarding how to go about undertaking the
various activities i.e., there is no activity ordering. Tasks/reminders are presented when
the contextual situation associated with the task exists, regardless of whether the user is
actually in a position to act on the task or not. Additionally, tasks presented to the user
simultaneously may clash.

Apart from TaskMinder, all of the applications reviewed can be used to develop mo-
bile, context-aware applications that provide static activity schedules to user in the same
manner as the LoL@Q tourist guide application. Dynamic context-aware activity schedul-

ing behaviour is not supported.

2.3 Mobile, Context-Aware Application Frameworks

This section describes projects investigating application frameworks for mobile, context-
aware computing. The types of applications supported by these application frameworks
include mediascapes, context-aware museum and city guides, hypermedia applications
and generic rules-based context-aware applications. Although none of the application

frameworks specifically address mobile, context-aware activity scheduling in the same

36

manner as GUIDE, P-Tour and the DTG, they can be used to develop applications that
provide some support for activity scheduling for the mobile user. The basic functionality
of each application framework is presented, along with a discussion of the support for
context-aware activity scheduling provided and the application framework design. The
projects reviewed are informative in terms of illustrating how application frameworks can

support developers in implementing mobile, context-aware applications.

2.3.1 Mobile Bristol

The Mobile Bristol toolkit is an application framework that supports rapid authoring of
mobile, context-aware applications [105]. The application area supported by the frame-
work is that of ‘mediascapes’ - applications that are concerned with delivering digital
media e.g., video, audio, still images, plain text or HI'ML, when predefined contextual
situations occur e.g., when the user enters a specific geographic area. The application

allows users to specify the following properties of their application:

The type of digital content the user will encounter.

Where the content is encountered (e.g., inside a specific area, outside a set of areas).

e How the digital media is triggered (e.g., automatically, when a button is pressed,

at a certain time).

How interactions are presented to the user (audio or screen-based).

The Mobile Bristol developers were inspired by the democratisation of publishing en-
abled by the Web where almost anyone can make and deploy a simple web site. The
toolkit has been used to build applications by diverse user groups (aided by developers)
including school children, educationalists, artists and television programme makers. Ap-
plications developed include soundscapes for a piece of open ground near a school |133],
a location-sensitive heritage guide for a ferry boat company [30] and mediascape-based
art installations for an urban square [105].

In line with the project objective of enabling non-programmers to develop mobile,

context-aware applications, the toolkit provides an authoring environment that has a

37

graphical user interface (GUI). A programmer’s editor is provided for users who wish
to specify behaviour that is more complex than that supported by the GUI. Each new
function that is programmatically defined is added to the default set available via the
GUI, allowing toolkit extensions defined by experienced developers be used by developers
who only use the GUIL. New functions are described in a scripting language called MBML
(Mobile Bristol Markup Language). This XML-based language contains constructs for
conditional logic, state variables and functions and makes the authoring environment
independent from the deployment platform, as illustrated in Figure 2.2. MBML scripts
must be interpreted by client devices and to date an implementation for the iPAQ?* PDA
has been developed. The separation of the behavioural specification from the device-
specific interpretation has the desirable property of facilitating the deployment of the
same application on many platforms. This benefits application developers but requires a

significant amount of work on the part of a third party to write the device-specific MBML

translations.
application
desktop <region name="northwest"> script
authoring <circle x="123" y="456" range="20"/>
tool <onEnter>
<playMedia media="harp"/>
</onEnter>
</region>

. context
| aware

dowm’oaded to devices

Figure 2.2: Separation between authoring tool and device-specific implementation [105]

The Mobile Bristol toolkit can be used to develop static tour guide applications similar
to the LoL@ application described in Section 2.1.5 and location-aware reminder systems
like those discussed in Section 2.2. However, the toolkit does not support the notion of

dynamically changing the manner in which users of mediascape applications are directed

3http://www.ipaq.com

38

through an active space and therefore does not automatically support context-aware
activity scheduling. The framework could extended to facilitate context-based activity
scheduling through the addition of new MBML functions, although this would be a sig-

nificant undertaking for an application developer.

2.3.2 Stick-e Note

The Stick-e Note architecture developed at the University of Kent, UK was one of the
first attempts at supporting the development of mobile, context-aware applications [18|.
The conceptual architecture proposes the use of the electronic equivalent of a post-It
note to allow authors to develop mobile, context-aware applications in much the same
manner as they would web pages. Stick-e notes reside on a mobile device and contain
information that is displayed to users when the contextual situation described in the note
exists. Notes are created using Standard Generalized Markup Language (SGML) and
displayed in a web browser. The following types of context can be considered by Stick-e

Note applications:

e Location - a note is triggered when a user is in the location specified by the note.

e Adjacency - a note is triggered when the user is near other objects e.g., user is in
the presence of John (or any person, animal, object carrying a suitable identity

transponder).

e C(ritical states - a note is triggered when a critical state is reached e.g., a share price

or the air temperature rises above a specified threshold.
e Computer states - a note is triggered when a user accesses a certain directory.

e Imaginary companions - notes are triggered based on users stating that they are in
the presence of imaginary companions e.g., architects, cartographers. Notes relevant
to the imaginary companion’s specialist topic are triggered when appropriate to

simulate a guided tour by an expert.

e Time - a note is triggered at a specified time.

39

The software to support the use of SGML Stick-e documents consists of four components.
SEPREPARE allows authors to prepare notes and documents. SEMANAGE deals with
the management of primed documents (a subset of all the notes on the device that user
has marked as being eligible for triggering). SETRIGGER runs in the background and
causes any of the currently primed notes to be triggered if its context becomes satisfied.
SESHOW stores the triggered notes and presents them to the user. Several instances of
this component may run at once, each one representing a different application e.g., tourist
guide, personal pager etc. An actual implementation of the software is not discussed. The
software components are not accessible to Stick-e note authors, who define application
behaviour through SGML note specifications in a similar manner to authors of Mobile
Bristol applications.

The Stick-e architecture can be used to create guided tour applications that work by
triggering notes based on user location. The notes could guide the user by containing
directions to the next note location, as well as the information about the location the user
is currently in. The architecture can also be used to develop task reminder applications
that notify the user of tasks that can be completed when they are in specific situations,
similar to the context-aware to-do list applications discussed in Section 2.2. Like the
context-aware to-do list applications, Stick-e notes are not reasoned about collectively
and therefore the Stick-e architecture does not automatically support the concept of a
dynamic activity schedule. The framework could be extended to provide dynamic note
content based on current context. Such notes could be used to implement mobile, context-
aware activity scheduling applications. The proposed extension would require significant

changes to all framework components.

2.3.3 BerlinTainment

The BerlinTainment serviceware framework is a multi-agent system that supports the
development of mobile, context-aware services [135]. The framework supports the con-
nection of heterogeneous end-user mobile devices to a remote application server’s services,
with a focus on the provision of entertainment services. The framework, illustrated in

Figure 2.3 consists of several modules, each of which contains several services:

40

e The context-awareness module provides services for:

— Personalisation (filtering information based on user context).

— Location-based services (provides knowledge of the user’s location and co-

located points of interest).

— Device and network independence (generates user interfaces for different de-

vices and intelligent session management for network migration).

e The infrastructure module provides services for management of users, sessions and

services.

e The external utilities module provides services for mapping, route planning and

data filtering (used by the context-awareness component).

e

Device Independent Access

| >

Application
Service

><\

(Ill) Secondary Services

(I) Context Awareness Module (l) Infrastructure
Personalization Device Inde- LBS AAA User/ Session Additional
pendence Management Management

External Utilities

L A Y

Feature-Based Mapping &
Filtering Route Rlanning

Figure 2.3: BerlinTainment framework architecture [135]

The framework implementation is based on a FIPA*-compliant Multi-Agent System archi-

tecture called JIAC (Java Intelligent Agent Componentware) [7]. JIAC is a component-

4The Foundation for Intelligent Physical Agents - http://www.fipa.org

41

based architecture and provides services such as mobility, communication, security and a
general methodology for agent-oriented application development. As illustrated in Fig-
ure 2.3, the architecture is server-based, with client devices communicating wirelessly
with application services hosted on remote servers. JIAC provides behaviour to support
device-independent access to services by determining the device type and transforming
the user interfaces as appropriate e.g., into HTML/WML for browser-based devices or
VXML for voice-based interfaces. The component-oriented nature of the BerlinTainment
framework facilitates component replacement without affecting the behaviour of client
components. Additionally, applications can choose which components are necessary and
limit the application to only those components.

The service framework has been used to build an entertainment planning application
for the city of Berlin, Germany [134|. The application assists users in finding restaurants,
plays, movies and concerts based on their location, and provides a routing service to
selected attractions. The application also provides an intelligent day planner service.
The day planner allows the user to schedule multiple high-level activities for a given day
and to receive personalised, location-based recommendations for each activity e.g., specific
film recommendations if the user selected a cinema activity. The user uses the system
to connect to the ticketing services of relevant attractions and to plan routes between
the various attraction locations. The service selects and schedules attractions based on
their properties, most notably time constraints and location, to minimise the temporal
and spatial distances between the recommended activities. The schedules presented to
users can be changed by removing attractions or searching for new recommendations.
The BerlinTainment-related publications have not discussed the details of the schedule
generation algorithm used by the remote server when composing schedules.

The BerlinTainment service framework does not support dynamic reordering of a
suggested schedule based on changes in user context and there is no concept of changes
to activity properties. Additionally, the client/server architecture employed indicates that
the schedule generation algorithm is designed to use the resources of a powerful server
platform like P-Tour and the DTG and would require significant re-engineering if it was
to be deployed on a mobile client device. Like CRUMPET, BerlinTainment illustrates

how context can be used to determine the activities that are relevant to a particular user

42

given his current context.

2.3.4 PEACH

The Personal Experience with Active Cultural Heritage Project (PEACH) is investigating

the concept of an ‘Active Museum’ [71]. Active museums are characterised by:

e Multiple users in a single place.
e The size of the set of users using the active museum system changing dynamically.

e Services being provided by a collection of components that can join and leave the
environment and can operate anywhere. This behaviour is hidden from the user

who interacts with the system as if it is a standalone system.

e Overlapping services that require components with overlapping behaviour to coor-
dinate in order to decide which component should provide a specific service and

how.

The objective of the project is to provide an agent-based architecture to support the
development of museum guide systems that integrate with the visitor’s physical museum
experience and do not compete with the actual exhibit items for the visitor’s attention.
Through the development of two museum guide systems for museums in Trento, Italy and
Haifia, Israel the PEACH developers composed a set of generic agents that can be used
to provide context-based guide systems for museums. The agent framework contains the

following components:

e Spatial Information Mediator - responsible for providing the user’s location to the
other agents that use this information. Location data is provided periodically or
can be requested. The agent models positioning relationships between users and

museum exhibits.

e User Modellers - responsible for providing a collection of ways in which to model

system users.

43

e Presentation Composer - responsible for providing audio, text, slide or video pre-

sentations about exhibits.

e Information Brokers - responsible for providing the information that is displayed

to the users (multimedia artefacts that can be stored locally or remotely).

e Presentation Clients - responsible for managing the presentation of information in

a device-specific manner.

The Presentation Clients reside on the user’s mobile device while the remainder of the
components are deployed remotely. The components are relatively application-specific
e.g., a component is dedicated to location sensing and dissemination as opposed to con-
text management in general. However, within the application area supported by the
framework there is scope for component extension without affecting the system as a
whole e.g., the specifics of the location system can be changed without any effect on
clients.

Using these components, developers can implement active museum applications that,
based on user location and mobile device characteristics, will display multimedia infor-
mation about the exhibit the user is near. The PEACH framework facilitates the devel-
opment of applications like CybreMinder, LLol.@ and, to a lesser extent, applications that
can be built using the Mobile Bristol toolkit and the Stick-e Note architecture. PEACH
does not have the expressive power of Mobile Bristol or Stick-e Note in terms of describ-
ing contextual situations. Although the framework supports tour guide applications it
does so only in the same manner as the Stick-e Note architecture and the Mobile Bristol
toolkit, where the tours are specified by developers before the user uses the application,
meaning that there is no scope for flexibility. The concept of reasoning about collections
of activities is not considered, as all logic supported is at the individual activity level.
Therefore PEACH does not support museum guide applications featuring context-based

trail generation and reconfiguration point identification.

44

2.3.5 HyCon

HyCon is an application framework for context-aware hypermedia systems [17]. HyCon
supports the implementation of ‘authoring in the field’-type applications, allowing users
annotate locations on a map-based interface with information (hyperlinks and other mul-
timedia information) while exploring the actual location in the physical world.

The HyCon framework is divided into four layers as illustrated in Figure 2.4. The
storage layer (at the bottom of the diagram) is responsible for persistent storage and
resides on a remote server. The server layer forms the basic functionality of the frame-
work, providing data layer, location, annotation and subscription sub-components. The
terminal layer resides on end-user mobile devices that have access to sensor information,
and provides mechanisms for communicating with the remote server housing the storage
and server layers. The sensor layer provides mechanisms for parsing and reasoning about
raw sensor information. The components at each layer are used to create service applica-
tions that implement interfaces to the components’ functionality. The component-based
approach is similar to that used in BerlinTainment, PEACH and Hermes (with which Hy-
Con shares common components), minimising inter-component dependencies to facilitate
component reuse and extension.

The HyCon framework has been used to implement a prototype application called
HyConExplorer. The application is deployed on a mobile device and communicates with
the server components via WiFi or GPRS. The map-based application provides imple-

mentations of several context-aware hypermedia techniques:

e Context-aware browsing - allows users to see hypermedia artefacts based on their
current location and the current time of day. The user’s map-based interface is
annotated with the hypermedia artefacts that exist for the location the user is

currently in.

e Context-aware searching - allows users to search for specific artefacts e.g., shops,
and bases the results on the user’s location, the time of day and the opening hours

of the shops.

e Context-aware annotation - allows users to associate hypermedia content with map

45

e

Sensor Layer

LS

IR ' RFID ' Wind measurement gauge ' '

GPS unit . Camera . Sound recorder . Thermometer .

(Terminal Layer

Application 1 I Application 2 I
Components

Bluetooth communication ' GPS abstraction ' '
Server communication ' \Weather '
.

(Server Layer

Application 1 Application 2
Components
Profile ' Search ' Location ' Annota!ion' '

LS

Data layer

W =4

lo

e Context-aware linking - allows users to link geographically distinct hypermedia

—Infra structure

Sensor equipment

Sensor abstraction

Symbian applications,
Tablet applications,
Web browsers

Servlets,
Web services

HyperContext
Server Components

Data |
(Storage Layer TR

3 3 .

Data Data
: MysQL

S /

Figure 2.4: The HyCon framework architecture [17]
cations.

artefacts together.

The HyConExplorer application can use its context-aware linking functionality to express
links or paths through a collection of hypermedia objects. Each link represents directions
from one location to another, with the linked objects representing the destinations. Using
this functionality the tool can be used to create static tours like those provided by LoL@.
Tour guide applications created by the HyConExplorer work in the same manner as those
created using the Mobile Bristol toolkit, the Stick-e Note architecture and PEACH, where

digital artefacts are associated with specific locations and contain information about the

46

current location as well as directions to the next location on the tour. HyConExplorer
does not consider the concept of dynamically adapting link relationships between hyper-
media objects and therefore cannot support the dynamic generation and reconfiguration

of trails through hypermedia objects based on context information.

2.3.6 i1CAP

iCAP (Context-aware Application Prototyper) is an application framework that facili-
tates the authoring of context-aware applications by the end-user (similar to the Mobile
Bristol toolkit) [37]. iCAP allows users to describe a situation and an action to associate
with it. The desktop-based system facilitates prototyping via a visual, rule-based system

that supports three types of context-aware behaviour:

1. Simple if-then rules - rules where an action is triggered when a condition is satisfied

e.g., “If I am home alone, then play my favourite music at high volume”.

2. Relationship-based actions - supports behaviours involving personal, spatial and
temporal relations e.g., “If my housemate is in the next room while I am in the

house, then remind me to ask him about the grocery shopping”.

3. Environment personalisation - supports the personalisation of environments based
on the different preferences of its inhabitants e.g., adjust room light level depending

on the preferences of its current occupant(s).

Users interact with iCAP by first creating elements relevant to their rules (if they do not
already exist in the system repository). The elements included in the system repository
by default are: objects, activities, locations, people and time. Second, the elements creat-
ed/selected are composed to create rules e.g., associating objects with locations. Finally,
the rule created can be simulated or connected to live context sensing infrastructure.
iCAP contains two main components: a visual rule-building interface and a rules
engine that stores the user-specified rules and evaluates them when an application using
the rule is running. The software components themselves are not designed with the
express purpose of being extensible by iCAP users. The iCAP user interface allows non-

technical users to specify rules for context-aware applications through the manipulation

47

of graphics. Users are not required to edit rule source code. Therefore any extension
of application default behaviour is done through the specification of new rules and the
elements relevant to rules. This is a similar approach to that taken in the Mobile Bristol
toolkit.

iCAP can be used to build guide applications by creating a collection of rules that
present content e.g., user-defined activity descriptions, when someone enters a particular
location. Reminder systems can be built in much the same way. In this way, iCAP
facilitates the creation of systems like the context-aware to-do lists described in Section 2.2
and context-aware tour-guides such as LoL@, as opposed to dynamic activity scheduling
applications like GUIDE, P-Tour and the DTG. The expressiveness of iCAP in terms of
defining situations is similar to that of the Mobile Bristol toolkit and the Stick-e Note

architecture as opposed to more domain specific frameworks such as PEACH.

2.3.7 Summary

This section has presented the state of the art in application frameworks for mobile,
context-aware applications. Some of the frameworks facilitate the creation of context-
aware applications through the use of a graphical user interface and extensible rule-base
(Mobile Bristol toolkit, Stick-e Note and iCAP), while the remainder provide generic
application components that can be reused and extended by software developers.
Although none of the application frameworks explicitly support mobile, context-aware
activity scheduling, they can be used to provide some level of related behaviour. All of
the application frameworks reviewed can be used to create both static tour guide appli-
cations and context-aware to-do lists applications. iCAP, the Stick-e Note architecture,
BerlinTainment and HyCon list these applications in their publications as examples of
applications that can be built using their respective application frameworks. However,
none of the application frameworks target the mobile, context-aware activity scheduling
domain. In the same manner as the context-aware to-do lists discussed in Section 2.2,
the application frameworks do not support the development of applications that can rea-
son about the relationships between collections of tasks or activities - they support only

reasoning about individual activities. For this reason the application frameworks can not

48

automatically provide generic, reusable and extensible support for mobile, context-aware
trails-based applications. A significant amount of software development effort is required
in order to extend the relevant application frameworks so that they can be used to develop

trails applications.

2.4 Context-Awareness Frameworks

Context-awareness frameworks provide developers with some or all of the basic tools re-
quired to create applications that adapt their behaviour based on changes in relevant
context. Numerous frameworks have been proposed in recent years such as JCAF [10],
the Sentient Object Model [14], AURA |22|, Hydrogen [51|, ContextFabric [52|, Con-
text Shadow [59], ContextStudio [68], ContextPhone [103], Gaia [107] and the Context
Toolkit [110]. The primary goal of a context-awareness framework is to make context
information available to application developers so that they can build applications with-
out concerning themselves with the specifics of context acquisition and management.
Context-awareness frameworks therefore address challenges such as context retrieval (ac-
quisition of raw context data from heterogeneous sensors), context data transformation
(converting raw context data to a higher-level format), context reasoning (deducing new
context information by combining context from various sources) and context modelling
(providing application developers with access to context).

Baldauf et al. at the Vienna University of Technology, Austria have published a
survey of context-awareness frameworks that explains the different elements common to
context-aware systems by describing a conceptual context-awareness framework [9]. The

framework, illustrated in Figure 2.5, consists of the following layers (from bottom to top):

e Sensor Layer - this layer consists of physical sensors (e.g., light, audio, location,
acceleration, touch, temperature), virtual sensors (e.g., activity sensing by monitor-
ing mouse movement and keystrokes) and logical sensors - combining physical and
virtual sensors (e.g., determining user location by recording PC logins and looking

up a database that maps PCs to locations).

e Raw Data Retrieval - uses appropriate drivers for physical sensors and APIs for

49

virtual and logical sensors to provide abstract methods for sensor access, making
it possible to exchange underlying sensors e.g., a GPS location system could be
replaced by an RFID system without major modification to the current and upper

layers.

e Preprocessing - responsible for reasoning and interpreting contextual information,
raising the results of the Raw Data Retrieval layer to a higher level of abstraction

for use by application developers.

e Storage Management - this layer organises the context data gathered by the lower
layers and offers them to the client (Application layer) via public interfaces. This
layer supports both synchronous (client polls server) and asynchronous (client sub-

scribes to server) context data access.

e Application - the behaviour that reacts to context events is implemented in this layer
e.g., a smart device display that uses the lower layers to detect bad environment

illumination and reacts by displaying text in higher colour contrast.

Application

Storage/Management

Preprocessing

Raw data retrieval

Sensors

Figure 2.5: The conceptual framework for context-aware systems |9|

The survey also discusses existing context-awareness frameworks and illustrates the ser-
vices they provide to application developers. These frameworks address common chal-

lenges in context management such as context acquisition, fusion and reasoning but due

50

to their application-independent nature they do not explicitly support context-aware ac-
tivity scheduling. The concepts put forward in these works are informing related areas

of the Hermes framework architecture, as discussed briefly in Chapter 3.

2.5 Chapter Summary

This chapter has presented the state of the art in mobile, context-aware activity schedul-
ing for tourists, context-aware to-do lists and application frameworks for mobile, context-
aware computing. A brief overview of context-awareness frameworks in general was also
presented. While the most sophisticated approaches to activity scheduling for mobile
tourists (GUIDE, P-Tour and the DTG) provide mechanisms for trail generation and
reconfiguration point identification that are suitable for meeting their specific objectives,
the techniques are not sufficiently generic and therefore cannot be used to support ap-
plication developers implementing mobile, context-aware activity scheduling applications
outside the tourism domain. In addition, the trail generation mechanism used by GUIDE
limits the number of activities that can be considered to nine and considers a limited range
of contexts. This situation is improved by P-Tour and the DTG but at the cost of in-
troducing a remote tour calculation server. P-Tour and the DTG do not provide tour
management behaviour on the mobile device to support disconnected operation. The
reconfiguration point identification mechanisms provided by all three approaches contain
a periodic element, leading to potential for tours becoming out of date between periodic
reconfigurations. Although P-Tour and the DTG improve on the GUIDE approach by
only reconfiguring the tour if necessary, their reconfiguration point identification decision
making techniques are based on user location and cannot be easily extended to cater for
other types of non-spatial context.

The state of the art projects in context-aware to-do list management allow users to as-
sociate reminders (in various forms e.g., text and audio) with contextual situations. The
reminders are triggered when appropriate. These applications cannot make suggestions,
based on context, about how users should go about undertaking the activities referred
to in their reminders in the case where users have multiple reminders in a contextual

situation. The applications reason about single activities as opposed to the relationships

51

between multiple activities and therefore do not support context-aware activity schedul-
ing.

Application frameworks for numerous mobile, context-aware application areas exist
but none support the implementation of mobile, context-aware activity scheduling in a
way that meets the challenges presented in Section 1.4. Many of the frameworks facilitate
the implementation of tour guides that provide static tours and context-aware to-do list
management applications. However, for the same reason that the context-aware to-do
list management systems do not support trail generation and reconfiguration, the mobile,
context-aware application frameworks cannot, without significant extension, be used to
build mobile, context-aware trails-based applications. Context-awareness frameworks do
not support the implementation of specific application types.

The next chapter describes the design of an application framework that addresses
these limitations and provides components for trail generation and reconfiguration point
identification to support developers in implementing mobile, context-aware trails-based

applications.

52

Chapter 3
Design

The state of the art approaches to mobile, context-aware activity management presented
in the previous chapter illustrate that the challenges discussed in Section 1.4 are not
addressed by existing tools and applications.

A trail generation mechanism should execute on a mobile platform to avoid loss of
service due to wireless network disconnection, and should not constrain the number of
activities that an application can consider. State of the art approaches to trail generation
are server-based, and provide no disconnected operation in relation to trail generation.
These approaches also limit the maximum number of activities they can consider based
on their response time requirements.

A reconfiguration point identification mechanism should identify when trail reconfig-
uration is actually necessary in order to avoid needlessly consuming resources through
unnecessary speculative trail reconfiguration. Additionally, the mechanism should max-
imise the amount of time that the trail accurately represents the state of the user’s en-
vironment. State of the art approaches to reconfiguration point identification are based
on periodic trail reconfiguration and the consideration of a limited and non-extensible
set of contexts, giving rise to the possibility that the trail will become out of sync with
the user’s environment. Additionally, none of the state of the art approaches to trail
generation and reconfiguration point identification are designed to be reused or extended
by third party developers.

This chapter describes the design of an application framework for mobile, context-

aware trails-based applications that addresses trail generation and reconfiguration point

23

identification in a reusable, extensible, application-independent manner. The chapter
begins with a discussion of the application development-led design approach followed
during the development of the framework. The initial high-level design of the Hermes
framework is present next, along with an overview of how Hermes supports the acquisition
and modelling of context for use in trails applications. This is followed by a discussion of
the trails applications developed during the design process, and details of the design of
the trail generation and trail reconfiguration point identification mechanisms included in

the application framework.

3.1 Design Approach

The application framework for mobile, context-aware trails was developed based on the
‘Three Examples’ approach to framework development [106]. This approach involves
building three example applications (prototype applications) of the same type e.g., trails
applications, and composing a framework from the elements common to the three appli-
cations. This approach is suitable for developing application frameworks for a specific
problem domain. The rationale behind the approach is that “no one is smart enough”
to develop the correct abstractions for a particular class of application on paper alone.
Initial designs may be acceptable for single applications but the ability to generalise for
many applications can only be acquired by building applications and determining which
abstractions are being reused across the applications. The more example applications
that are considered during this process, the more general the resultant framework will
be. However, designing and implementing applications is a non-trivial undertaking and
therefore limiting the number of applications developed is necessary to arrive at a com-
pleted framework within a reasonable time frame.

The ‘Three Examples’ approach was adapted for the implementation of the application
framework described in this thesis. The development of the first example application was
substituted with an investigation into the design of four mobile, context-aware trails-
based applications in order to learn about behaviour that different mobile, context-aware
trails-based applications potentially have in common without going to the expense of

full application development. Two example applications were developed subsequently -

54

informed by the design work already completed.

The remainder of this subsection discusses the initial design phase and the trail gen-
eration and reconfiguration point identification behaviour included in the two prototype
applications developed as part of the application framework development process. The
context acquisition and modelling behaviour available in the Hermes framework is also
presented in this section to illustrate how trails applications can acquire and manage

context.

3.1.1 Initial High-Level Framework Design

Prior to the implementation of the first example application, requirements for four mobile,
context-aware trails-based applications were specified. UML use case, component, class
and sequence diagrams were subsequently composed for the four applications. The goal
of this process was to identify the high-level responsibilities of the components required
to implement a mobile, context-aware trails-based application, hence defining the core

research areas on the Hermes project. The four applications were:

1. A City Route Planner. This application supports city visitors or inhabitants gener-
ating routes from their current location to another location or collection of locations.
The focus is more on context-aware route planning than multiple activity schedul-
ing, where context such as live road traffic data, mode of transport and location of
friends can dynamically affect a user’s route. The key characteristic of this applica-
tion from a research perspective is the consideration of context data in determining
the most effective order in which to visit city locations, necessitating the design of

behaviour to acquire context and generate and evaluate candidate trail solutions.

2. A Delivery Courier Support System. This application supports the operation of
mobile delivery couriers by effectively scheduling delivery jobs assigned to them
from a centralised head office. A courier’s trail is composed of delivery jobs and
is generated and reconfigured based on contexts such as job priority, package type,
courier location, delivery location, delivery deadline, and courier shift start/end
times. The key characteristics of this application, besides the requirement for trail

generation, are the consideration of contexts not considered in the route planner

%)

application, notably the restrictions on primary actor availability i.e., the courier’s

shift times, and the application of the concept of a trail in a business application.

3. A Treasure Hunt Game. This application generates trails for participants in a
mobile, context-aware treasure hunt game. Trails are used to navigate between
clue locations and are generated based on player preference for factors such as clue
type and difficulty level. The key characteristic of this application is the potential
necessity for dynamic trail reconfiguration that arises as a result of changes in
the difficulty level of treasure hunt clues. The difficulty level of a clue increases
when solved, making it more difficult for each subsequent player that views it.
The application of the trails concept to mobile gaming is also notable as it further

illustrates the applicability of the concept.

4. A Campus-based Student Support System. This application supports students in
completing a set of compulsory and optional activities on their first day at college.
The trails are affected by user location and activity opening hours, activity type,
activity obligation (whether the activity is mandatory or not) and user-specified
priority level. The key characteristic of this application is the introduction of the
notion of activity obligation, facilitating the specification of activities that must be
completed and are therefore treated preferentially in a situation where all activities

cannot be completed.

During the design of these four applications, the following trails-related requirements

were identified:

1. A trail generation component should generate effective activity schedules based on
an extensible range of context sources and an extensible user preference model,
without constraining the number of activities an application can consider. The
component should support code reuse and extension to facilitate the development

of a range of trails applications.

2. The trail generation component must be capable of scheduling a non-trivial number

of activities.

26

3. The trail generation component should generate trails that are considered reason-

able by humans.

4. Trails applications must contain behaviour to identify when an activity schedule
needs to be reconfigured so that the schedule accurately reflects the state of the
user’s environment following context change. This behaviour should be reusable

and extensible so as to facilitate the development of a range of trails applications.

Requirements for acquiring and modelling the context information required by the trail
generation and reconfiguration point identification behaviour were also identified, and
these requirements are being addressed in the Hermes framework as described in Sec-
tion 3.1.2. The initial framework design phase was followed by the development of two
prototype mobile, context-aware trails-based applications. A campus-guide application
for Trinity College is described in Section 3.1.3 and RiddleHunt, a trails-based riddle

solving game, is described in Section 3.1.4.

3.1.2 Context Acquisition and Modelling in Hermes

The Hermes framework contains reusable context acquisition and modelling behaviour, in
addition to the trails-based behaviour proposed in this thesis, that supports applications
in acquiring and modelling context from a range of sources e.g., remote mobile devices
and sensors. Although not a contribution of this thesis, the author worked on a team that
implemented the context acquisition and modelling behaviour in Hermes that is described
in this section to illustrate how context can be acquired by trails-based applications in
practice. Both the trail generation and reconfiguration point identification behaviour
in the application framework assume the availability of context data as input in order
to produce results i.e., to generate a trail that best serves the user given their current
situation as described by the available context data, and to identify, based on context
change, when the trail should be reconfigured. Certain contexts, such as user location and
current time, can be acquired via local sensor access e.g., a directly connected GPS device
for location and the system clock for current time. However, remote context sources such
as the location of other players (a context used in RiddleHunt) must be acquired through

collaboration with the producers of the context e.g., the other game players in the case of

o7

remote player location context. Hermes provides components to facilitate the acquisition
of both local and remote context. Peer-to-peer ad hoc service discovery is used to discover
and communicate with remote devices that provide a context service. Hermes provides
an object-oriented context model with XML mapping so that context information can be
queried by application logic and shared between devices.

It is important to note that trails applications built using the application framework do
not have to use the Hermes context acquisition and modelling behaviour in order obtain
context. Developers can implement the classes responsible for context generation by using
the Hermes framework or they can implement their own custom context management

behaviour.

3.1.2.1 Communication and Service Discovery

The Communication component in the Hermes framework illustrated in Figure 1.1 on
page 5 is responsible for peer-to-peer ad hoc device discovery. It facilitates the discov-
ery of remote devices and the transfer of context e.g., player game state and location in
RiddleHunt, between application users. Remote devices within proximity are discovered
via an ad hoc service discovery protocol and devices then connect directly to share con-
text. Every device broadcasts and listens for remote devices on a well known port. The
broadcast device periodically sends the IP address and port that remote devices can use
to establish a connection. When a remote device receives this broadcast, it first verifies
that the broadcasting device is not already connected. The remote device then connects
and sends its service discovery information to the broadcasting device. On receiving the
remote device’s service discovery information, the broadcasting device sends its own ser-
vice discovery information. The two devices are now connected and can exchange context
data.

In order to eliminate reliance on a fixed network or third party, it must be possible
to locally determine when a connection to a device is no longer valid. Inactive connec-
tions must be removed in order to reclaim resources, such as ports or memory, allocated
for service discovery information. A connection remains valid until no messages are ex-
changed between devices for a specified interval of time. This implies the devices are no

longer in communication range or the communication component has been disabled, as

58

the broadcast messages should be received within the time interval.

The Service Discovery component allows a device to advertise, discover and invoke
services on remote devices. Context-aware service discovery is important for applications
executing on mobile devices, as not all devices encountered will offer the same services.
Additionally, the invocation methods may be different for functionally equivalent services.
Hermes supports the use of service discovery to discover and retrieve remote context in a
generic manner. To explore what context is available, an application first decides which
context types it is interested in receiving. To be useful to a specific application, this
should be a subset of the types that the application can handle. The context acquisition
process is illustrated in Figure 3.1. When a remote device advertises a context type an
application is interested in, the Service Discovery component of the local device sends a
context type request through the Communication component. The remote device then

handles the request and responds with the desired context value.

Advertise context type

A

Request context type

v

Respond with context value

-+

Local Remote

<message messageType="0" messageClass="2" creationTime="24836015">
<service serviceType="2">
<bindingr<ipAddress>134. 226, 36.9%4</ipAddress></bhinding>
<content><contextType>LatLonCoordinate</contextType>
<creationTime>24835968</creationTime></content></service>
<service serviceType="2">
<bhindingr<iphddress>134.226.36.%4</ipAddress></binding>
<content><contextType>Game</context Type>
<creationTime>24835968</creationTime></content>
</service>

</message>

Figure 3.1: Ad hoc communication and service discovery in Hermes

Service Discovery also handles advertisement of context services offered by the local

29

device. An application specifies the context types it is interested in sharing, taking the
privacy preferences of the user into account. A service description message describing each
type of sharable context on the device is then created. For example, the service description
message illustrated in the lower part of Figure 3.1 is advertising the LatLonLocation and
the Game types in the RiddleHunt application. This message is sent to remote devices
every time one of the relevant context types is updated locally e.g., every time the user
solves a riddle or changes location. The time each context type was last modified is also
included in the description. This prevents remote devices from requesting context values

they already have.

3.1.2.2 Message Types and Message Processing

The context acquisition and modelling behaviour in Hermes supports the following types

of incoming and outgoing messages:

e Context data from various sources:

— Application derived contexts e.g., context input from users.
— Device contexts e.g., battery life.

— Context obtained from devices connected directly to the device e.g., informa-

tion from a GPS device or motion sensor.

— Contexts supplied by third parties e.g., wireless sensors or other user devices.

Context requests to remote devices.

Service description messages to remote devices.

Application messages e.g., start and join game messages for RiddleHunt.

Broadcast messages advertising the port and IP address used to communicate with

the user’s device.

XML is used as the message format in Hermes, meaning that applications can use the

portions of the message they understand, while ignoring parts that they do not. XML also

60

facilitates standardisation of communication between different platforms and program-
ming languages. Leveraging the extensibility and standardisation of XML provides the
opportunity for different versions of an application, or completely different applications
on diverse device types, to communicate.

Message processing components on mobile devices should be able to handle multiple
messages at once. At the same time, they should not allow the number of messages
processed to hinder application responsiveness. Hermes accomplishes this by employing
a message-handling thread pool with a limited number of threads. When a message is
received, regardless of the source, it is placed in the queue. When all preceding messages
have been removed from the queue, the XML message description is converted to a
message object and a thread from the pool is assigned to that message. This thread owns
the message and carries it through the appropriate components until it comes to its final
destination. For example, if the message is a piece of context that is deemed consistent
with the context already stored by the application, it is marshalled through the modelling
component and into the context model. Similarly, if it is an application message, it is

delivered directly to the application

3.1.2.3 Context Modelling

The way in which context is modelled determines not only how context will be stored but
also the formats in which it can be exchanged and the possible reasoning over it. Hermes
uses a hierarchical, object-oriented context model. This model lends itself to modelling
real-world objects and their various relationships. Object orientation provides for a world
model that is extensible, and enables the use of XML for context storage and exchange
via an object XML mapping.

The structure of the context model impacts on services such as the context query
processor and the context fusion service, as it determines the complexity and responsive-
ness of operations performed by these components. The context model’s structure also
facilitates extension through the addition of new types of context while minimising the
impact of such changes on clients. The Hermes context model places the following four

types of context at the root of the hierarchy:

61

e Activities - real world tasks that can form part of a trail.
e People - information about people.
e Artefact - virtual objects or services as well as mobile objects.

e Features - information about the structure of the environment.

These context types, along with example subclasses, are illustrated in Figure 3.2. An
example XML context description is illustrated in Figure 3.1. The two context types,
LatLonCoordinate and Game, are subtypes of Feature and Artefact respectively. The
context model makes the context data acquired through Hermes’s context acquisition
behaviour accessible to applications in a manner that facilitates ease of use in trails and

other context-aware applications.

Context
etimestamp © long

AN

Feature Person Activity Artefact
LatLonCoordinate Game
&precision - int &pduration - long

*| atl onCoordinate() ®Game()

BioxL) StaxL()

g ML) Sfromxnd L{)

$compareTol) SaddPlayer()

®0etPrecision|) %getBoundary()

¥satPrecsision|) $qetDuration|)
getPlayers()
SyetRiddles()
%sctBoundary()
SsetDuration))
®setPlayers()
SsetRiddles()

Figure 3.2: Hermes context model top level hierarchy and examples

3.1.2.4 Summary

In addition to the trails-related behaviour described in this thesis, Hermes facilitates

peer-to-peer service discovery and object-oriented context modelling with XML mapping.

62

The components encapsulating this behaviour support the acquisition and modelling of
context information from both local and remote sources that is required as input to the
trail generation and reconfiguration point identification behaviour described in this thesis.
The RiddleHunt application (discussed in Section 3.1.4) uses Hermes’s context support
to access to information regarding the location and game state of other players that is

used during trail generation and reconfiguration point identification.

3.1.3 Application 1: Oisin Goes to Trinity

The ‘Oisin goes to Trinity” application (abbreviated to Oisin) provides campus-wide trails
for the Trinity College Dublin campus. As Oisin was the first prototype application
developed, the primary research goal was the validation of the trails concept. This was
achieved through the development of a mobile, context-aware trails-based application
(Oisin) and its subsequent evaluation via user trial. In terms of trail generation and
reconfiguration point identification, the focus was on assessing the practicality of brute
force trail generation and minimising the amount of time that the user’s trail is out of
sync with their physical environment.

Oisin was implemented using the Java 2 Micro Edition (Personal Basis Profile) |84]
that supports the implementation of Java applications with graphical user interfaces on
resource-constrained mobile devices. The application was deployed on a Sharp Zaurus SL-
5600" PDA and used an external serial Magellan SporTrakPRO? GPS device to determine
user location.

Oisin can be used to provide a range of campus-based mobile, context-aware trails
applications including a tourist guide application for visitors to the many attractions on
the 400-year-old campus and the student support application described in Section 3.1.1.
Figure 3.3 contains two screen shots of Oisin running the student support system on the
Zaurus. Screen shot A shows the user’s location (indicated by a red dot icon as well as
the textual description ‘College Park, North East’ in the status bar). A path from the
user’s location to the location of the first activity and the location of the third activity

are also shown. The third activity is currently deemed to be impossible, indicated by a

Thttp://www.zaurus.com
2http://www.magellangps.com

63

red outline on the activity icon. Screen shot B illustrates the context-sensitive activity
menu that is accessed by clicking (screen tapping) on any activity icon. The menu shows
information specific to the activity selected (in this case Activity #1 - submission of a
library bond), including the estimated activity start and end times based on its position

in the trail.

File M Trail F fi ti Hel File M s =
ile Map Trail Reconfiguration Helg ile: aFLihrar!.r =

Description

Opening tirne; 9:30
A Clasing tirme: 17:30
. - Estimated start: 1430
a Estimated end: 15:15

= Activity is optional
_-.“ Priority: 2
Edlit activity...

Collegge Park, Morth East College Park, Morth ‘West

=R RPEAMD 4z G - SBR[1429
A B

Figure 3.3: Screen shots of the Oisin graphical user interface on the Zaurus

A user study involving 21 subjects was conducted to assess various aspects of Oisin,
including the user interface, the hardware form factor, the trail generation and reconfigu-
ration behaviour and user acceptance of mobile, context-aware trails-based applications.
Subjects were familiarised with the concept of mobile, context-aware activity scheduling
and then used a campus activity guide application to complete a number of activities
on the Trinity College campus such as visiting an art gallery, a natural history museum
and the Book of Kells. The unexpected closure of a high priority activity was simulated
to force a significant trail reconfiguration while the user was en route to the activity in
question. Trail reconfiguration also occurred based on changes in user location. Subjects
completed a questionnaire and informal interview following the application trial. The

results of the trails-related user study questions are included in Appendix A.1. These

64

results indicate a general acceptance of the trails concept and an appreciation of its util-
ity. The majority of the subjects noticed that the order of the activities on their trail
changed when the trail was reconfigured. These changes were anticipated and deemed
positive by the majority of subjects. As regards the negative aspects of the application,
the hardware form factor, which required subjects to hold two separate devices connected
via cable, was deemed to be awkward to use by the majority of subjects. Additionally,
subjects commented in post-trial interviews that the application was “slow” and subject
to pauses during execution. This was the result of a high degree of unnecessary trail
reconfiguration (discussed in Section 3.2.4).

The following subsections discuss the design of the trail generation and reconfiguration

point identification techniques used in Oisin.

3.1.3.1 Trail Generation in Oisin

Trails are generated in Oisin using a brute force algorithm, the execution of which is
triggered by the receipt of location and time lapse contexts. The brute force algorithm
exhaustively generates and evaluates all permutations of the user’s current trail and
returns the trail deemed optimal by the evaluation function. Oisin’s high-level soft-
ware design, containing only key classes and methods, is illustrated in Figure 3.4. The
ReconfigurationBroker class is responsible for coordinating trail generation and receives
location and time context from the LocationContext and TimeLapseContext classes.
The receipt of this context triggers the execution of the trail generation mechanism.
The brute force trail generation mechanism uses the PermutationSet class to gen-
erate all permutations of the trail. These permutations are assessed by an evalua-
tion function that assigns a value to candidate trails based on specific trail proper-
ties or combinations of properties. Numerous trail evaluation strategies, subclasses of
TrailReconfigurationStrategy, are included in Oisin. ScoreStrategy is the evalu-
ation function used in Oisin because it incorporates all the trail properties considered
by the other strategy classes. ScoreStrategy assigns relative importance weights to the
trail properties it considers so that, for example, a candidate trail containing a greater
number of compulsory activities is assigned a higher score than a trail with activities

that are not compulsory but are nearer to the user. In Oisin, the user’s obligation to

65

— I Context

' ReconfigurationBroker

TimeLapseContext ®*onLocationChange()
‘onTimeLapseChange()
*onTrailEdit()

LocationContext \l’
ReconfigurationContext

*raconfigure()

CompulsoryStrategy DistanceStrategy OpeningTimeStrategy

TrailReconfigurationStrategy

_____________________________ = *reconfigurel)
B TRbey
PriontyStrategy Priority TimeStrategy PossibleStrategy
__ ScoreStrategy

e

TrailAssessor TrailModifier PermutationSet
*scoraTrail() *updateTimeEstimates() ®getPermutations()

Figure 3.4: High-level design of trails behaviour in Oisin

undertake an activity (whether an activity is compulsory or not) is more important than
the proximity of an activity to the user.

Once all permutations of the user’s trail have been generated, ScoreStrategy calcu-
lates the estimated start time and end time for each activity using the TrailModifier
class. These values are calculated based on both the position of the activity in the can-
didate trail and the estimated activity duration. The estimated start and end times for
each activity are used to determine whether it will be possible for the user to undertake
all activities if following the candidate trail in question. Activities are marked as possible
or impossible based on their estimated start and end times.

The reconfigure () method in ScoreStrategy assigns a single value numerical score
to each permutation of activities. The score value for each candidate solution is generated

by the scoreTrail () method in TrailAssessor. This method scores each trail permu-

66

tation based on six trail properties. The trail properties considered in the evaluation

function are as follows:

e Trail length (in metres).

The number of activities possible.

The efficiency of the time usage.

The user priorities satisfied.

The number of compulsory activities possible.

Whether the user’s chosen first activity is scheduled in the first position on the trail.

The user study questions presented in Appendix A.1 indicate that this technique is ca-
pable of generating trails that users agree with. However, similar to the brute force
trail generation technique implemented in the GUIDE system, the responsiveness of trail
generation mechanism in Oisin deteriorated significantly as the number of activities in-
creased. In post-trial interviews, user study subjects expressed frustration with the trail
reconfiguration response time of 30 seconds, during which time the application was ‘busy’,
denying service to users. This frustration was exacerbated by the fact that trail was re-
configured far more frequently than was actually necessary in an effort to ensure that the
user’s trail consistently reflected their physical environment. The trail reconfiguration

point identification mechanism is explained in the following subsection.

3.1.3.2 Reconfiguration Point Identification in Oisin

There are five events that trigger trail reconfiguration in Oisin.

1. Location change - when the user changes symbolic location e.g., from Front Square

west to Front Square east.
2. Time lapse - every time a specified period of time elapses.

3. Selection of the ‘Do Next’ option - when the user specifies that a certain activity

should be done next, overriding trail order.

67

4. Activity priority change - when the user changes the priority of an activity via the

user interface.

5. Activity completion - when the user specifies via the user interface that an activity

has been completed.

File Map Trail |Hemnﬂguratinn Help
4]

|:4_n:|catin:-n trigoers

Activity name

aff

Drescription
’ ’ ety minutes Stucent registrz}tinn = gnmpulsu:ury for all
i |:'Ever5.-' 5 minutes students {morning session’)
Ewery 10 minutes
t Ewery 20 minutes
" ‘ Ewery 30 minutes

b »®

Opening tirme:; 9:30

Do Mext: [

: Ewery 45 minutes o
- Priarity:

Completed: (|

fr e I Ok I I Cancel |
Colleqe Park, Morth East

R s R e | B AR 142
A B

Figure 3.5: Screen shots of the reconfiguration menu and edit screen in Oisin

Figure 3.5 contains screen shots of Oisin’s reconfiguration menu (screen shot A) and
activity edit screen (screen shot B). The reconfiguration menu allows users to control
events 1 and 2. Location triggers can either be on or off. Time lapse triggers can be
turned off or set to one of a range of time lapse intervals. Location and time triggers
can run simultaneously. The ReconfigurationBroker class illustrated in Figure 3.4
contains methods to invoke its reconfigure () method when it receives location change
and time lapse context events. The activity edit screen allows users to control events
3-5. The selection of any of these options invokes the onTrailEdit () method in the
ReconfigurationBroker, resulting in trail reconfiguration.

In the case of events 3 and 5, reconfiguration is always done only when necessary i.e.,

activity completion and ‘Do Next’ always cause the trail ordering to change. However,

68

while events 1, 2 and 4 cause reconfiguration to occur, the trail ordering does not always
change following reconfiguration triggered by these events. Reconfiguration that does not
cause trail order to change results in the limited resources of the Zaurus being needlessly
consumed. Unnecessary reconfiguration occurred most notably in relation to location
change events. These events occurred most frequently but rarely changed the ordering of
the trail due to the relatively low importance of activity proximity in the candidate trail

evaluation function.

3.1.3.3 Summary

The Oisin goes to Trinity application provides developers with the ability to deploy
campus-based trails applications. However, it is limited by the approaches to trail gener-
ation and reconfiguration point identification used. The basic brute force approach limits
the number of activities that can be considered by the application and the hard-coded
weights in the candidate trail evaluation function make the customisation of applica-
tion behaviour difficult. The reconfiguration point identification technique used has the
potential to reconfigure the trail unnecessarily and frequently did so in practice.

The next application implemented was RiddleHunt, a mobile, city-based riddle solving
game. The development of RiddleHunt, in terms of trail generation and reconfiguration
focused on finding solutions to the problems encountered in the development of Oisin

goes to Trinity.

3.1.4 Application 2: RiddleHunt

After the implementation and evaluation of Oisin, the first version of the application
framework existed. The goal of the trails-related work in the second application was to
address the problems encountered in relation to trail generation and reconfiguration point
identification in Oisin. In terms of trail generation, the focus was on extending the number
of activities an application can consider, thereby increasing the range of applications that
can be built using the application framework. This is achieved by scheduling a subset of
the total number of activities each time the trail is reconfigured. In order to select the

activities to be included in the trail each time it is reconfigured, a measure of activity

69

‘relevance’ is introduced. The relevance value of an activity represents how deserving
the activity is of the user’s attention relative to the other activities i.e., how relevant the
activity is to the user. Activity relevance is calculated based on the user’s preferences
and the current state of the context being considered by the application. In terms of
reconfiguration point identification, the goal was to reduce the number of unnecessary
trail reconfigurations by monitoring the subset of activities considered relevant. Trail
reconfiguration is identified as necessary when a change in relevant set membership occurs.
Improving the trail generation and reconfiguration point identification mechanisms in the
manner proposed allows for more realistic user schedules to be modelled, and reduces
unnecessary resource usage on mobile devices.

RiddleHunt is a mobile, context-aware riddle solving game designed to be played
in Dublin City. The game is played by multiple players who have to solve riddles at
various locations around the city. The application was implemented using the Java 2
Micro Edition (Personal Basis Profile) for deployment on a Hewlett-Packard iPAQ Pocket
PC (h6300 series) and uses an external Bluetooth Tom Tom Navigator® GPS device to
determine user location.

RiddleHunt allows application designers to distribute virtual riddles throughout the
city, and players are required to answer as many riddles as possible during the allotted
game time. Trails are generated to aid users in getting to as many suitable riddle locations
are possible. Riddle suitability depends on user preferences for trail generation e.g.,
preference for riddle type and riddle value. Riddles have a type e.g., ‘Maths’, “Trivia’
and ‘Word’, and a value that is based on the difficulty level of the riddle e.g., novice,
intermediate or expert. RiddleHunt uses the context acquisition and modelling behaviour
in the Hermes framework to share game state context between mobile players. When
players are within proximity of each other they can connect directly to share context.
The ability to share game state information allows trails to be generated based on up to
date information about riddles i.e., has another player already solved a particular riddle
(in this case the riddle is not worth as much to other players). Bonus points are added
to a player’s score if they solve a certain riddle before another player.

In terms of game design rationale, the decision to reduce the value of a riddle each

3http://www.tomtom.com

70

time it is solved was taken for two reasons. First, it adds a new source of context that
was not considered in Oisin i.e., activity property change. By making a greater number of
context sources available to the trail generation algorithm, it can generate trails that more
accurately reflect the user’s environment. Second, it generates context information that
players cannot easily obtain themselves, illustrating the benefit of following a context-
aware trail when playing a mobile game.

The trail generation and reconfiguration point identification mechanisms used in Rid-

dleHunt are discussed below.

3.1.4.1 Trail Generation in RiddleHunt

Trail generation in RiddleHunt extends the basic approach used in Oisin by increasing
the number of activities that the application can consider. However, because brute force
trail generation has time complexity O(n!), it is not possible from an application respon-
siveness perspective to simply reuse the brute force algorithm from Oisin with a bigger
n value. Therefore, RiddleHunt takes advantage of the context information available to
reduce the number of activities (riddles) considered during each execution of the trail
generation algorithm. For example, a RiddleHunt application contains a predefined set
of 20 riddles, X, where X = {a,b,c,d, ...t} and the riddles are geographically dispersed
around Dublin City. This situation is illustrated in Figure 3.6, which shows player and
riddle locations. Red riddles i.e., {c,d,g,1,j,m, 0,7}, are the most valuable while green
riddles i.e., {a, h,l, p, s}, are the least valuable. In order to generate trails for RiddleHunt
players within a reasonable response time* the application considers only a subset of the
riddles in X. Based on the current context (player location, player preferences and riddle
properties), the trail generation behaviour in RiddleHunt composes a set of activities, Y,
where Y C X and the cardinality of Y is the maximum number of riddles that can be
reasoned about using a brute force approach in a reasonable response time. Using this
approach, RiddleHunt can provide trails to users that consist of the activities that are
most relevant to the user at the time of trail generation. The riddles identified as relevant

to the player in the example situation are illustrated in Figure 3.7, with the irrelevant

4The meaning of the word ‘reasonable’ in relation to trail generation response time is discussed in
Section 3.2.1.

71

Rens e é}'
Ly
The Parioz &
Insiifute gy, §
S, o

Ryl ik & cacer

Hows|

o
o C' I p
h o <

Q" -0 ‘o 9

Figure 3.6: The activities in the set X and the player location

activities greyed out. As riddles are completed or context changes, membership of the
set of relevant activities (Y') is updated and trail reconfiguration occurs.

Figure 3.8 illustrates the high-level class design of the trails behaviour in RiddleHunt.
Only key classes and methods are shown in the diagram. The TrailsLogic class, respon-
sible for coordinating trail generation, receives Player and Game context updates that
provide player location and riddle state context respectively. When these context events
are received, the collection of activities considered by the application is first pruned and
then sorted by relevance.

TrailsLogic contains methods to prune completed activities/riddles from the trail,
reducing the number of trail permutations and consequently making trail generation
more efficient. TrailsLogic also contains behaviour to select the most relevant activities
for consideration during trail generation if necessary i.e., when the number of activ-
ities is greater than that which can be considered in a reasonable response time. The
sortByRelevance () method sorts the collection of activities by relevance. The relevance
of an activity in RiddleHunt is defined by the proximity of the activity to the user, the
value of the riddle and the relationship between the activity type and the user’s preference

for activity type (riddle category).

72

Holel @ !

—r,,
-.:.

Figure 3.7: Identification of the members of set YV

When the collection of activities has been pruned of any completed activities and
sorted by relevance, it can be assessed to see whether or not it should be reconfigured.
This behaviour is encapsulated in the reconfigurationRequired() method (discussed
in Section 3.1.4.2). If reconfiguration is necessary, the getReconfiguredTrail() method
is invoked. This method assesses the number of activities in the trail. If the number of
activities in the trail is greater than the number of activities that can be reasoned about
in a reasonable response time using the brute force method, the createTrail () method
in TrailManipulator is used to create a subtrail of the most relevant activities. The
subTrailSize attribute stores the size of the subtrail to create. The createTrail()
method represents the implementation of the identification of the relevant set Y as illus-
trated in Figure 3.7.

When a subtrail has been created, the optimal ordering of the activities in the sub-
trail is calculated. A significant difference from the Oisin implementation is that the
trail generation strategy classes no longer provide different methods of scoring candidate
solutions. RiddleHunt considers trail generation strategies to be different techniques for
generating candidate solutions to be evaluated by a single evaluation function stored in

the Trail class. This decision was made because all trail properties should be consid-

73

Context

Location Player Game Riddle
®getlocation]) ®getRiddles()
TrailsLogic
& subTrailSize - Int
TrailManipulatar
ScreateTrail() :recunﬂgure[; o
HjainTrails() I'ECDI'IﬂgLIT?ItIDI'IREqUIrEElL.:
FremoveCompletedActivites) pruneTrail()

‘getReconﬂguredTrail[}
‘smtElyReIe\;ance[]

Sw

RelevanceComparator ReconfigurationContext Trail TrailTimeMaodifier

Scompars() Sraconfigura() ®getScors() SupdateTimsEstimates()

=7

TrailAssessor

BruteForce ®getDuration()

‘ 5 i
Y f A getDistance()
FEEDINael ‘getF’referenu:esSatisﬂed[_:-

TrailReconfigurationStrategy oo

Sreconfigure()

Figure 3.8: High-level design of trails behaviour in RiddleHunt

ered during candidate solution evaluation, while different candidate solution generation
techniques e.g., brute force and genetic algorithm, may be appropriate depending on ap-
plication requirements and device capabilities. Brute force is the trail generation strategy
used in RiddleHunt. BruteForce generates candidate trails to represent all permutations
of the subtrail and uses the getScore() method in each candidate solution to return a
numerical value.

The getScore() method in Trail, using TrailTimeModifier and TrailAssessor
to perform the same function as they did in Oisin (Figure 3.4), is the evaluation function
used in RiddleHunt. The following factors are considered when calculating the score of a

trail:

e Trail length (in metres).

e Trail duration (in minutes).

74

e Riddle values.

e The extent to which user preferences for riddle type are satisfied.

The trail with the highest score is returned to TrailsLogic. The activities not considered
during trail generation are appended to the subtrail using the joinTrails() method in
TrailManipulator, and marked as unscheduled. The trail, containing both scheduled
and unscheduled activities, is returned to the client. Annotating activities with infor-
mation regarding whether or not they are currently scheduled allows the user interface
logic to represent currently scheduled and unscheduled activities differently. For exam-
ple, scheduled activities can be represented by coloured icons and overlayed with sequence
numbers representing their position in the trail, whereas unscheduled activities can be

represented by greyed out icons with no sequencing information.

3.1.4.2 Reconfiguration Point Identification in RiddleHunt

Reconfiguration point identification in RiddleHunt is based on changes in membership of
the set of activities that constitute the subtrail (set Y'). Therefore, only context events
that cause a significant difference in the relevance values of the activities will cause trail
reconfiguration to occur. The decision to move away from the reconfiguration point iden-
tification mechanism used in Oisin, where all context events trigger reconfiguration, was
taken in a bid to minimise the number of unnecessary trail reconfigurations. The re-
configuration point identification mechanism used in RiddleHunt triggers reconfiguration
only when it will result in the generation of a trail different to the one currently being
followed by the user.

The trail activities (set X) are sorted by relevance each time a context event occurs
and the top z activities, where z = subTrailSize, are isolated, producing set X,. If the
activities in X, are equal to those in the existing subtrail Y (X, = Y’) then reconfiguration
does not occur. There are three context events that cause membership differences between

X, and Y:

1. Riddle completion. When a riddle is completed it is pruned from the trail and

no longer considered during reconfiguration. The completed riddle, r, cannot be

7

a member of X (r ¢ X) and therefore cannot be a member of X, (r ¢ X,).
Therefore it is no longer possible for X, to be equal to Y (X, # Y), necessitating,

and consequently triggering, trail reconfiguration.

2. Player location change. When players move around the game space their proximity
to riddles changes, causing relevant activities to become irrelevant and previously
irrelevant activities to become relevant, affecting the membership of X,. In Rid-
dleHunt, a location change occurs when the user’s GPS position causes a change in
the user’s X, Y position on the user interface. Any effect to the membership of X,

results in X, # Y, triggering reconfiguration.

3. Riddle value change. When a riddle is solved by a player its value to other players
who have not yet solved it is reduced. A reduction in riddle value makes a riddle less
relevant to a player looking for riddles to solve. The reduction of a riddle’s value may

be great enough to cause it to be removed it from X,, triggering reconfiguration.

By monitoring changes in the set X, from which the subtrail is composed it is possible
to identify when trail reconfiguration should occur. Context events that do not result
in X, # Y are ignored, meaning that no unnecessary reconfiguration occurs. However,
this approach does not recognise the need for reconfiguration caused by fluctuations in
the relevance values of the activities deemed relevant (those currently in the subtrail).
These fluctuations may not be significant enough to cause a change in set membership,
but they can be significant enough to cause the trail being followed to be suboptimal.
For example, if the user moves towards a riddle, f, away from another activity, 7, then,
all things being equal, f will become more relevant than j based on proximity. This
change in the relevance values of the two activities may not be great enough to cause
7 to be removed from X, but it should cause the trail to be reconfigured so that the
user is instructed to focus his attentions on f. This issue is addressed in the application

framework.

3.1.4.3 Summary

RiddleHunt introduces a trail generation approach that allows an application to include a

large number of activities by using context to reduce the number of activities considered

76

during each trail reconfiguration. The set of activities that are considered are those
deemed most relevant at the time of reconfiguration.

The reconfiguration point identification mechanism is based on changes to the set of
activities with the highest relevance values. This method eradicates unnecessary recon-
figuration. However, due to an inability to reason about the internal structure of the set
of relevant activities, the trail that the user is following can become suboptimal without
reconfiguration being triggered. This issue is addressed in the application framework,

which is described in the next section.

3.2 Application Framework

RiddleHunt introduced the notion of removing completed activities and calculating a
relevance value for each activity to improve on the limited trail generation and reconfigu-
ration point identification behaviour in Oisin. While these advances allowed applications
to include more activities by considering only the most relevant during trail generation,
areas for improvement remained. First, in terms of removing irrelevant activities from
the activity set before the trail generation process begins, activities that are not possible
due to the current context and activities involved in clashes can also be removed. Second,
in terms of trail reconfiguration, significant differences between the relevance values of
activities should be acted on, even if they do not cause a membership change in the set
of relevant activities used to generate a trail. Third, both Oisin and RiddleHunt assume
a fixed set of application-specific user preferences, precluding the generation of trails
based on the preferences of individual users. Finally, although RiddleHunt introduced
the ability to utilise many candidate trail generation techniques, both applications were
restricted to using brute force. These issues are addressed in the application framework.

The remainder of this section is as follows. Section 3.2.1 discusses application re-
sponse time as it relates to trail generation and proposes a reasonable response time for
the trail generation algorithm in the application framework. Section 3.2.2 introduces
Multi-Attribute Utility Theory - a preference-based object evaluation technique used to
facilitate the consideration of non-static user preferences in the trail generation algorithm

without requiring source code modification. This background information is followed by

77

the design of the trail generation and reconfiguration point identification techniques in

Section 3.2.3 and Section 3.2.4 respectively.

3.2.1 Response Time

The “Holy Grail” of system response time engineering was defined by Miller in a theoretical
paper that proposes a set of guidelines for application developers [85]. Miller suggests a
maximum delay of 2 seconds following a request, with an optimum response time of 0.5
seconds so as to maintain the conversational nature of the interaction between humans
and machines. According to Galletta et al., this theory was upheld as a “gold standard”
in web-design well into the 90s [44]. However, the goal has not been widely achieved.

Application response time literature suggests that there is a timescale within which
it is optimal to deliver a result to the user. Returning an answer past the wrong end
of this timescale has the potential to frustrate the user and can discourage them from
using the application in the future |88]. In the most extreme case, the result will not
be returned at all due to the user terminating the operation after an amount of time
spent waiting. This second phenomenon is described in a discussion of website response
time where it is advised that applications should not take too long to return a result
due to the tendency of users to abandon tasks that take too long [44]|. Galletta et al.
discuss a generally accepted maximum response time of between 8-12 seconds and states
that anywhere between 0-9 seconds is acceptable for websites. Hoxmeier and DiCesare
have shown that satisfaction with website response time is constant from 0-9 seconds and
begins to diminish from 12 seconds onwards [53].

Myers proposes that the range of an acceptable response time, 0-9 seconds, can be
extended by presenting feedback to the user during the waiting period |87|. Nah and
Kim have demonstrated this effect, showing that subjects given a progress indicator e.g.,
a progress bar, will wait on average 38 seconds for a hyperlink that does not return a result
[88]. Subjects given the same link without any progress indication terminated the action
after 13 seconds. However, in subsequent trials, the group without progress indication
only waited for 3 seconds and the wait time for those with progress indication dropped

to 7 seconds. The conclusion is that patience does not last forever and appropriate wait

78

times are determined dynamically, evolving based on user experience with a system.

On the question of what exactly is the ideal response time for a website, Galletta et
al. state that a website requires a maximum response time of 8 seconds to promote a
positive reaction. However, he goes on to say that users are more likely to tolerate more
lengthy delays from familiar sites, presumably as they are aware of what they are waiting
for and place a certain value on it. In other words, it is worth waiting 20 seconds to view
a particular piece of content that is known to be of a certain quality.

The question that arises is whether or not the findings of researchers involved in
website response time research can be generalised and applied to the question of trail
generation response time. T.W. Butler begins his study into computer response time
and its effect on user performance by stating that although there has been a lack of
work in this area at the time of writing (1983), it was generally accepted that different
user tasks have different response time requirements for optimal user performance [19].
Testing these assertions he concluded that degradation of user performance in response
to increased response time appears to be similar for tasks that are cognitively different.
This throws some doubt on the generally accepted assertion that different tasks have
different optimal response times.

The fundamental advice on response time has basically been the same for about forty
years according to Nielsen |89|. He presents the following guidelines based on Miller’s

early work and later work by Card et al. [20)].

0.1 seconds is the limit for having the user believe that the system is reacting

instantaneously.

e 1 second is the limit for the user’s flow of thought to stay uninterrupted, but even

then they will notice delay.
e 10 seconds is about the limit for keeping the user’s attention focused on the dialogue.

e For longer delays, users will want to perform other tasks while waiting and so should
be given feedback indicating when the computer expects to be done. Feedback is
especially important if the delay is variable, as the user doesn’t know what to

expect.

79

Nielsen has also stated, in a non-peer reviewed addendum to his writing on response time
(published on his personal website®), that the guidelines he presents are applicable to all
applications and that the guidelines for web-based applications are the same as those for
all applications. He goes on to say that given that the guidelines have been in place for
so long that they are unlikely to change any time soon, regardless of what technology
comes next [90].

For the purposes of this thesis, a ‘reasonable’ response time for the trail generation
algorithm is considered to be between 0-12 seconds. The upper-bound can be increased
through the provision of suitable progress indication to the user. The approach to trail
generation in the application framework is designed to allow a variable number of activi-
ties to be considered during trail generation so that this reasonable response time can be
adhered to. The number of activities considered in a specific application depends on the
capabilities of the mobile device hosting the trails application and the manner in which

candidate trails are generated.

3.2.2 Multi-Attribute Utility Theory

The evaluation functions in both Oisin and RiddleHunt contain hard-coded values that
specify how much bearing particular trail properties have on the score for each candidate
solution. This approach to multi-attribute decision making is not suitable for a generic
trail generation algorithm due to its lack of flexibility, and therefore the approach in the
application framework has been implemented in a manner that facilitates user specifica-
tion of weights for trail properties considered during trail generation, without requiring
source code modifications. This approach is based on Multi-Attribute Utility Theory
(MAUT) [128].

Multi-Attribute Utility Theory is a technique for evaluating objects based on user
interest in various aspects of the objects. The overall evaluation v(z) of an object x
is defined as the weighted addition of its evaluation with respect to its relevant value
dimensions. For example, a trail can be evaluated on dimensions such as number of

activities possible, duration and length. The object evaluation is defined by the overall

Swww.useit.com

80

value function:

v(z) = Z w;v;(x)

In this function, v;(x) is the evaluation of the object on the i-th value dimension d;,
and w; is the weight determining the impact of the i-th value dimension on the overall
function, also known as the relative importance of the dimension. n is the number of
different value dimensions and) ;" , w; = 1, meaning that the sum of the weights for the
different value dimensions equals 1.

For each value dimension d; the evaluation v;(z) is defined as the evaluation of the

attributes composing the dimension:

vi(r) = Y weivai(l(a))
acA;

Here A; is the set of all attributes relevant for d; and v,;(l(a)) is the evaluation of the
actual level [(a) of attribute a on d;. w,; is the weight determining the impact of the
evaluation of attribute a on value dimension d;. w,; is also referred to as the relative
importance of attribute a for d;. For all d;(i = 1,...,n) holds ZaeAi wy; = 1. For
example, the scenic value of a tourist trail can be calculated by considering attributes
such as the type of structure housing each activity and the existence of proximate public
parks and spaces.

Attributes are evaluated on a scale representing the levels of an attribute e.g., on a
scale of 0 to 100 a very scenic trail might have the value 95. All values must be normalised
to this scale for comparison.

Table 3.1 illustrates the evaluation of four candidate trail solutions along five value
dimensions. The user-specified relative weights are included in the right-most column
and the total score calculated for each trail is included in the bottom row. A higher
score indicates trail superiority. The values for trail length, duration and idle time are
represented using negative values as these are negative trail characteristics and should

decrease the trail score. The score for Trail 1 is calculated as follows:
(80 % 0.55) + (50 % 0.15) + (=55 % 0.0) 4+ (=38 % 0.1) 4+ (0% 0.2) = 47.7
In this manner, the worth of a collection of candidate trails can be calculated based on

81

user preferences to determine best trail for a particular user. The user weights can be

changed to produce different trail evaluations without changing the underlying approach.

‘ Dimension ‘ Trail 1 ‘ Trail 2 ‘ Trail 3 | Trail 4 | User Weight
Activities Possible 80 40 70 80 0.55
Mandatory Activities 50 10 40 40 0.15
Length -55 -64 -72 -83 0.0
Duration -38 -85 -84 -92 0.1
Idle Time 0 0 =27 -12 0.2
| Score | 477 | 2365 [307 | 384 | 1 |

Table 3.1: Trail evaluation dimensions (on a scale from 0-100) and sample data

Apart from MAUT, a number of alternative approaches to multi-attribute decision
making were considered. Constraint satisfaction problems [127] were investigated as a
technique for representing variable user preference values for multiple trail properties, but
the concept of using constraints to model user preference, as illustrated by Zhang and
Pu [136], did not map to the problem specification as naturally as MAUT. Conditional
preference networks (CP-Networks) [16] can be used to solve multi-attribute decision
problems where user preferences are unknown or incompletely specified. CP-Networks
are therefore suitable for use in situations where user preferences can only be elicited
in an incremental manner during the execution of the application. This is not the case
in trails applications, where value dimensions represent basic, comprehensible trail or
activity concepts and related preferences can be set either by the developer or user prior
to initial trail generation. As user preferences evolve based on experience using the
application, the preference values for all value dimensions can be updated repeatedly,
facilitating incremental revelation of preferences. Therefore, the use of CP-Networks was
deemed unnecessary. Various heuristic strategies for preference-based object evaluation
such as the equal weight heuristic, the elimination-by-aspects heuristic and the satisficing
strategy |96| were also considered. These heuristic approaches are modelled on techniques
used by humans, both individually and in groups, to solve multi-attribute problems |2].
The possibility of using heuristics was discarded as they are not guaranteed to find the

solution that maximises each of the value dimensions relative to the user preferences.

60].

82

3.2.3 Trail Generation

The major challenge in trail generation concerns the production an effective trail within a
reasonable amount of time without restricting the number of activities an application can
consider. Additionally, the evaluation function used to evaluate candidate trail solutions
should recognise the preferences of individual users. Oisin limits the number of activities
it can consider based on the behaviour of the brute force algorithm used to generate the
optimal trail. The evaluation function used to evaluate candidate solutions contains hard
coded relative importance weights, meaning that all users receive the same trail when in
the same contextual situations, regardless of their personal preferences. RiddleHunt im-
proves on Qisin by introducing the notions of activity relevance and subtrails, facilitating
the generation of trails composed of the activities that are most relevant to the user and
allowing RiddleHunt to consider a large number of activities. RiddleHunt also introduces
the concept of pruning activities that no longer need to be considered when generating
trails, reducing the number of candidate solutions that must be evaluated. However, like
Oisin, RiddleHunt does not provide a preference elicitation mechanism and consequently,
the relative importance weights in both the evaluation function and the activity relevance
function are hard coded.

The generic trail generation algorithm in the application framework extends the
context-based activity set reduction and partial trail generation techniques introduced
in RiddleHunt. As well as removing completed activities, activities that are not possible
based on the current context e.g., those that cannot be done due to time restrictions or
those that clash with other, more preferable activities, are also removed. This reduces
the number of activities (and permutations thereof) that must be considered by the trail
generation algorithm, increasing algorithm efficiency. If the number of activities remain-
ing after activities have been removed is greater than that which can be reasoned about
in a reasonable amount of time, the activities are assigned a relevance value and the
most relevant activities (based on user preferences and current context) are considered
during trail generation. This allows a trail containing the most relevant activities to be
generated for the user even when the application contains more activities than can be

reasoned about efficiently. This approach is explained in detail throughout the remainder

83

of this section.

An activity set contains all of the activities that a user can theoretically do while using
a trails application. Reducing the number of prospective activities reduces the number
of trail permutations that must be evaluated when finding the best activity ordering.
The trail generation mechanism in the application framework uses context in four main
ways: first to prune the activity set of completed activities, second to prune the activity
set of impossible activities, third to resolve activity clashes and finally, if necessary, to
divide the remaining activities into two sets, the relevant set and the irrelevant set.
This process is illustrated in Figure 3.9. Line 1 in Figure 3.9 represents a complete
activity set, X, containing ten activities named with letters of the alphabet a through j:
X ={a,b,c,de, f,g,h,i,j}. A high-level overview of the decisions and actions involved
in the process of generating a trail from a set of activities is illustrated in the activity

diagram in Figure 3.10.

3.2.3.1 Completed Activities

An activity is completed when the activity status is manually changed to ‘complete’ via
an application user interface. Line 2 in Figure 3.9 illustrates the identification of two
completed activities in X, ¢ and i. These activities are removed from X, reducing the set
cardinality by 2. In the activity diagram in Figure 3.10, completed activities are removed

in step (A).

3.2.3.2 Impossible Activities

An activity is considered to be impossible if it is not available for the user to undertake
even though it has not been completed. There are two ways in which an activity can
become impossible. First, when it is no longer possible for the user to get to the activity
location and complete it before the activity closing time is reached. Second, when a
non-temporal activity limit is reached. For example, it will eventually become impossible
to attend a movie when the theatre reaches capacity attendance. Line 3 in Figure 3.9
illustrates the identification of an impossible activity, a, based on the current location
context which is represented by the globe icon. a is removed from X. Figure 3.10

illustrates that impossible activities are removed at step (A) following the removal of

84

="y

@OOEOEOE®OO
@OOOOOO®OO
OOOEOOO®O ~ @
OO0t OO

[]

2

B

(&) O
GG
I ©
© ©
® ©®

v

@ = Completed @ = Irrelevant
® = Impossible @ = Context

\3‘ = Clashing p = Policy
Figure 3.9: Context-based activity set reduction

completed activities.

3.2.3.3 Clashing Activities

Two activities clash when, although independently possible, their opening hours and
estimated durations conflict, leading to a situation in which the completion of one activity
renders the other impossible. For example, two movies clash if they are showing at the
same time and have similar running times. When clashes are identified they must be
resolved, resulting in the rejection of one activity and its removal from the activity set.
Clash resolution is achieved via a technique based on MAUT that considers user-

specified weights when comparing the following activity properties:

e Proximity - the distance from the user’s current location to the activity location.

85

Trail Generation Reconfiguration Point Identification

?

Prune Activity Set

(A) Sort Activities by (B)

Relavance

do/ remove completed actiities
do/ remove impessible activities
do/ resolve clashes

(C)
/Reconfiguration Required’?)

w

Not Required Required

Update Trail
Times

Subtrail
Required?

Not Required

(E2) .
Generate
Best Trail

Required
E1)

Create
Subtrail

9 (©) (F)
Join Scheduled and Generate
Unscheduled Best Subtrail

Figure 3.10: The trail generation process

e Priority - the user-specified numerical priority level for the activity e.g., 5 for high,

1 for low.

e Obligation - whether the activity is mandatory or optional.

The clash resolution technique produces a single value for each activity by aggregating
values for the set of weighted trail properties listed above. A numerical value for each
relevant activity property is calculated, normalised and multiplied by the user-specified
weight for that property. The values for each of the properties are summed and the
activity with the lowest overall value is rejected and removed from the activity set. In
the unlikely event that the scores are equal, a single activity is randomly selected for
rejection. Table 3.2 illustrates the comparison of two clashing activities. Activity 2 is
rejected because it has a lower score than Activity 1. Activities that have been removed
from the activity set as a result of clash resolution can be reinstated in the event of

significant context change.

86

‘ Dimension | Activity 1 | Activity 2 | User Weight

Proximity -80 -40 0.6
Priority 60 10 0.1
Obligation 100 0 0.3

| Score | -12 | -23 1 |

Table 3.2: Activity evaluation dimensions for clash resolution and sample data

Line 4 in Figure 3.9 illustrates the identification of a clash between activities e and h
based on knowledge of activity properties and user location. The clash is resolved using
the policy described above which is represented by the file icon. e is rejected and removed
from X. Step (A) in Figure 3.10 shows that activities rejected as a result of a clash are

removed following the removal of completed and impossible activities.

3.2.3.4 The Relevant and Irrelevant Sets

After the context-based pruning of the activity set X, a number of candidate activities
remain from which a trail is composed. Depending on the number of activities in X, the
activity set may be split into a relevant set (X,) and an irrelevant set (X,). This division
occurs if the cardinality of the activity set X is greater than the number of activities that
can be reasoned over in a reasonable application response time (between 0-12 seconds).
The relevant set X, comprises activities that, based on context, are considered most
relevant for the user at a given point in time.

Activities are sorted by relevance (shown as part of both the trail generation and
reconfiguration point identification processes in step (B), Figure 3.10) and a decision
regarding whether or not reconfiguration is required (discussed in Section 3.2.4) is made
in step (C). If reconfiguration is not required, the estimated activity start and end time
of each activity scheduled on the trail is updated based on the current context and the
process terminates. If reconfiguration is required, a check occurs to assess whether a
subtrail is necessary. If so, the top z activities (where z is the cardinality of X, defined
by the application developer based on a desire to achieve a reasonable response time)
are stored in X,. This process is illustrated by step (E1) in Figure 3.10. The remaining
activities are stored in the irrelevant set X,. Step (E2) represents the situation in which

there is no necessity to create a subtrail during trail generation.

87

The relevance value for an activity is calculated using a user preference-driven MAUT
approach similar to that used for clash resolution. The relevance value is the result of

summing normalised weighted values for the following activity properties:

Proximity (defined in Section 3.2.3.3).

Priority (defined in Section 3.2.3.3).

Obligation (defined in Section 3.2.3.3).

Urgency - how urgently an activity must be addressed based on its opening hours.

Table 3.3 illustrates the comparison of two activities based on user-defined weights for the

four value dimensions. Activity 2 is rejected because it has the lower score. Lines 5 and 6

‘ Dimension ‘ Activity 1 ‘ Activity 2 ‘ User Weight ‘

Proximity -45 -o7 0.6
Priority 20 80 0.15
Obligation 100 0 0.05
Urgency 82 64 0.2

| Score | -2.6 | -9.4 | 1

Table 3.3: Activity evaluation dimensions for relevance and sample data

in Figure 3.9 illustrate sorting an activity set by relevance based on current context and
a user-defined policy. Line 7 illustrates the division of the activity set into the relevant
and irrelevant sets, X, and X,.

When the relevant set has been populated with activities, the trail that best satisfies
the user’s preferences can be generated (step (F) in Figure 3.10). This trail represents
a specific ordering of the activities in X,. The activities in the irrelevant set X, are
appended to the generated trail (X,UX,) and marked as unscheduled, illustrated in step
(G). This allows all of the activities to be displayed to the user, but only those scheduled
on the trail have scheduling information associated with them e.g., a position in the trail
and an estimated start/end time. The completion of a trail activity results in a member
of the irrelevant set X, being drawn into the relevant set X, and scheduled on the trail.
At any point, a context event can cause a revision of the relevant set that results in

activity migration from the irrelevant set to the relevant set and vice versa.

88

3.2.3.5 Trail Ordering

The trail ordering mechanism assesses relevant set orderings and returns the best fit to the
user’s preferences. A MAUT-based evaluation function considers user-specified weights
for various trail properties and returns a single numerical value for each permutation.

The following trail properties are considered when evaluating a candidate trail:

e The number of activities possible.

The number of mandatory activities possible.
e The total trail length/travel distance required.

The trail duration.

The amount of idle time.

Table 3.1 in Section 3.2.2 illustrates the evaluation of four candidate trails using the value
dimensions listed above. Three approaches for generating candidate trails are included

in the framework:

e Brute force.
e Simulated annealing.

e Genetic algorithm.

Brute force trail generation finds the optimal trail by exhaustively evaluating all permu-
tations of a set of activities and returning the best trail. Brute force trail generation has
time complexity O(n!). Therefore it is not advisable to allow a trail generation algorithm
using brute force to execute without controlling the number of activities considered as
this would have a detrimental effect on application responsiveness.

Simulated annealing is a probabilistic approach to combinatorial optimisation prob-
lem solving [109]. In metallurgy, annealing is the process used to harden metals and glass
by heating the materials to a high temperature and cooling them gradually in a controlled
manner to increase the size of the crystals and reduce defects. The heat causes atoms to

become unstuck from their initial positions and wander randomly through states of higher

89

energy, with the slow cooling providing more chance of finding configurations with lower
internal energy (greater hardness) than the initial one. Mapping this technique to trails,
activities are analogous to atoms and the trails are analogous to the material, composed
of atoms, that is being modified. The simulated annealing algorithm replaces the current
solution with a random ‘nearby’ solution i.e., the order of the activities in the trail is
modified to some degree at each step. The nearby solution is chosen based on the value
of a temperature parameter that controls the cooling of the material. The temperature
parameter represents a numeric parameter that controls the magnitude of change to the
trail being modified at each step in the algorithm. The solution changes almost randomly
when the temperature is high but changes become increasingly less dramatic as the tem-
perature moves towards zero. Therefore, when the control (temperature) parameter is
high, the order of the activities in the trail will fluctuate almost randomly in a bid to find
a better configuration. As the control parameter moves towards zero, the changes will
become less erratic until the order stabilises and the final trail ordering is returned. In
simulated annealing, the solution produced is not guaranteed to be optimal, but solution
quality depends on the length of the annealing schedule i.e., how long the algorithm is
programmed to run for (the starting value of the temperature parameter and how fast it
moves towards zero) and how many trials the algorithm carries out at each step.

A Genetic algorithm (GA) is a guided random search technique that simulates bio-
logical evolution by combining two parent candidate trails to produce what should be
a better child trail [109]. A genetic algorithm begins with a set of randomly generated
candidate trails (chromosomes in GA terminology) known as the initial population. The
next generation of states is produced by first selecting the best trails from the current
generation as judged by a fitness function (i.e., the evaluation function used to generate
scores for candidate trails). Pairs of trails are then selected to reproduce using a crossover
method that selects the number of activities (genes in GA terminology) from each trail
that make it into the new child trail. Finally, newly created trails are subject to random
mutation with a small independent probability, swapping the position of two activities in
the trail. Evolution continues for the number of generations specified. Genetic algorithm
solution quality depends on the size of the population and the number of generations the

algorithm runs for. In turn, these factors affect the execution time.

90

Brute force trail generation is appropriate when the number of activities to be con-
sidered during trail generation can be limited to a number that can be reasoned about
in a reasonable response time. This is suitable for many applications in which users pre-
fer to have a subset of their activities scheduled optimally as opposed to have all their
activities scheduled suboptimally. However, as response times with brute force increase
exponentially as activities are added, going beyond the consideration of a small num-
ber of activities during trail generation is not feasible. Response times with simulated
annealing and genetic algorithms do not increase exponentially, the increase in response
time following the addition of an activity is far less significant than with the brute force
algorithm. Simulated annealing has been shown to perform better (in terms of solution
quality) than genetic algorithms when both algorithms are terminated after the same time
period [72|. Therefore, simulated annealing is preferable when application execution time
must be constrained. Achieving a reasonable response time with simulated annealing or
a genetic algorithm requires making concessions in terms of solution quality, depending
on the number of activities being considered. If the number of activities is relatively
large then solution quality must be sacrificed if the application is to respond in a timely
fashion. This illustrates the general trade-off between solution quality and application
responsiveness in combinatorial optimisation problem solving.

Lines 7 and 8 in Figure 3.9 illustrate the trail ordering process, using current context

and a user-weighted policy to order the relevant set to best serve the user.

3.2.3.6 Reusability and Extensibility

The trail generation mechanism in the application framework provides a generic approach
to trail generation that can be reused when implementing mobile, context-aware trails-
based applications. The proposed approach has also been designed to be customised and
extended by developers. The following aspects of the trail generation mechanism can be

customised by developers without requiring invasive source code modifications:

e (Clash resolution policy. The weights of the properties considered during clash
resolution can be altered on a per-application or per-user basis to achieve different

results with the same clash resolution implementation.

91

e Definition of relevance. The weights of the properties considered in the definition of
activity relevance can be set in many different configurations to produce different

‘most relevant’ orderings from the same set of activities.

e Relevant set size. The number of activities in the relevant set can be specified on a

per-application or per-user basis.

e Evaluation function. The weights assigned to the trail properties used in the eval-
uation function are configurable in the same manner as those used in the clash res-
olution and relevance policies, facilitating the production of many different ‘best’

trails without source code modification.

e (Candidate solution generation algorithm. The candidate solution generation algo-
rithm used at runtime can be selected on a per-application or per-user basis without
requiring source code modification. Additionally, the properties of the genetic and
simulated annealing algorithms can be configured by the developer without requir-

ing source code modification.

In terms of extensibility, the approach is designed to facilitate the implementation of
multiple approaches to candidate solution generation and evaluation e.g., brute force
and genetic algorithm. The specifics of whether an exact or heuristic approach is used
are hidden from the client, allowing developers to extend the application framework by
plugging in new implementations. This provides the opportunity for experimentation
with specific implementations of combinatorial optimisation problem solving techniques.

The application framework can also be extended to add new contexts and trail /activity
properties by subclassing the relevant classes in the default implementation. A generic
context source specification is extended to provide location and time lapse context. This
generic specification can be extended to provide further concrete context types. The
default trail and activity specifications containing generic attributes and behaviour that
are provided in the framework can be extended and customised through inheritance to

meet the requirements of specific applications.

92

3.2.3.7 Summary

The trail generation mechanism included in the application framework facilitates the
development of applications that can include a large number of activities by using context
to prune the activity set of completed, impossible and clashing activities, and to determine
the relevance of each activity. Clashes between activities are resolved based on user
preferences for clash resolution. The notion of activity relevance is also determined by user
preference values. Based on a maximum response time of 12 seconds an application using
this approach will include as many of the relevant activities as possible when generating
and reconfiguring trails. The remaining activities are marked as unscheduled. The user’s
trail is composed of the activities that are most relevant to the user given the current

situation.

3.2.4 Reconfiguration Point Identification

The major challenge in reconfiguration point identification concerns minimising unnec-
essary trail reconfiguration (which needlessly consumes mobile device resources) while
maximising the amount of time that the trail reflects the reality in which the user exists.
Reconfiguration point identification in Oisin is based on the occurrence of context events,
namely location change and time lapse events. Trail reconfiguration is triggered each time
a context event occurs. This approach ensures that the trail always reflects events in the
user’s physical environment (in terms of location), however it also results in the majority
of reconfigurations having no effect on the ordering of the existing trail. Reconfiguration
point identification in RiddleHunt is based on changes in the set of activities judged to
be most relevant to the user following the receipt of a context event. This approach
avoids unnecessary trail generation by triggering reconfiguration only when the set of
activities to be included on the trail has changed, meaning that the resultant trail will
contain at least one activity not in the current trail. However, this technique considers
only a shallow, surface-level comparison of the activity sets, reacting only to relevant set
membership change as opposed to changes in the internal composition of the relevant set.
Consequently, context events that cause significant changes to the internal structure of

the relevant set do not trigger reconfiguration, meaning that the user can potentially be

93

following a trail that does not reflect recent context events.

The reconfiguration point identification technique in the application framework is
based on the concept of activity relevance introduced by the trail generation mechanism
and extends the basic approach developed for RiddleHunt. A trail is reconfigured if there
is a ‘significant’ difference between the set of relevant activities from which the existing
trail is composed and the new set of relevant activities generated following notification
of a new context event e.g., each time the user changes location or an activity property
changes. This decision point is illustrated by step (B) in Figure 3.10. Periodic reconfigu-
ration is also supported to cater for situations when no other context events are generated.
Both the time interval for periodic reconfiguration and the significance threshold used
for identifying differences between the two sets of relevant activities are configurable by
the application developer or user. There are two ways in which a significant difference
between activity sets can arise - differences in set membership and differences in activity

relevance rankings.

3.2.4.1 Differences in Set Membership

If the new relevant set generated following notification of a context event contains one or
more activities that are not on the current trail then the trail is reconfigured automat-
ically. It is not possible in this case for trail reconfiguration to occur unnecessarily i.e.,
without changing the composition of the trail, as the two activity sets are not equal and
therefore the new trail will contain at least one activity that was not scheduled on the

previous trail. This behaviour caters for the following situations:
1. Activity migration between the relevant set and the irrelevant set.
2. Activity completion.
3. An activity becoming impossible.

4. The dynamic addition of new activities to the application that have a high relevance

value.

If the two relevant sets contain the same activities then none of the situations listed

above exist. In the case of relevant set equality an examination of the activity rankings

94

generated based on activity relevance is required.

3.2.4.2 Differences in Relevance Rankings

A trail is not automatically reconfigured if the new relevant set contains the same activities
as the relevant set that the current trail is based on. In this case a comparison of the two
sets of activities is required to ascertain if there are differences in the internal composition
of the two sets that warrant reconfiguration. This is the behaviour that is not included in
the RiddleHunt implementation of reconfiguration point identification (Section 3.1.4.2).

Kendall’s rank correlation coefficient, known as Kendall’s 7, calculates the corre-
spondence between two rankings [64]. This approach is used to calculate the degree of
correspondence between the new relevant set and the relevant set used to generate the

user’s current trail. Kendall’s 7 coefficient is defined as follows:

2P — 1= 4P -1

= LD = D)

where n is the number of items and P is the sum, over all the items, of items ranked after

the given item by both rankings. The 7 coefficient has the following properties:

o If the agreement between two rankings is perfect (i.e., the two rankings are the

same) the coefficient has value 1.

e If the disagreement between two rankings is perfect (i.e., the rankings are opposites

of each other) the coefficient has value -1.

e For all other arrangements the value lies between -1 and 1, with higher values
indicating stronger agreement between rankings. If the rankings are completely

independent the coefficient has value 0.

‘ Activity ‘a‘b‘c‘d‘e‘f‘g‘h‘
New relevant set 1121345678
Previous relevant set | 3 |4 |12 |5 |78 |6

Table 3.4: The relevant set and the existing trail ranked by relevance

The following example (adapted from [122]) illustrates how Kendall’s 7 can be used to cal-

culate the degree of agreement between two sets of relevance-ranked trail activities. Table

95

3.4 illustrates the positions of eight activities in the relevant set ({a,b,c,d, e, f, g, h}) gen-
erated following notification of a context event and the relevant set used to generate the
current trail ({c,d,a,b,e, h, f,g}). There is some correlation between the two rankings,
however the correlation is far from exemplifying perfect agreement. Kendall’s 7 can be
used to calculate the degree of agreement between the two sets. The first entry in the
previous relevant set ranking has five higher ranks to the right of it, therefore contributing
5 to the P value for this entry. The second entry in the existing trail ranking has four
higher ranks to the right of it making 4 the contribution to P. Moving through the set

in this way results in the following:
P=5+4+54+44+3+14+0+0=22
Following the calculation of P it is possible to calculate 7:

__ 44 _

The resultant 7 value, 0.57, indicates a moderate level of agreement between the two
rankings.

In the case of relevant set membership equality, a trail is reconfigured in the application
framework if the 7 value for correspondence between the new and previous relevant sets is
below a threshold defined by the application developer or user. For example, if a threshold
of 0.8 was in place for the example above then the trail would be reconfigured. This
approach allows an extensible range of contexts to be considered during reconfiguration
point identification as the receipt of any context event can trigger the generation of a
new relevant set and the comparison of this set to the set used to form the existing trail.
The contexts that trigger reconfiguration must be considered in the MAUT approach
to activity relevance calculation, otherwise they can have no effect on the relevant set
generated following the notification of the new context event. The cost (in terms of time)
of comparing relevant sets each time a context event occurs is far less than the cost
incurred by unnecessary trail reconfiguration, making reconfiguration point identification
a preferable alternative to reconfiguring the trail each time a context event is received.
This is illustrated by example in Section 5.2.3.4 during an analysis of the accuracy of the

reconfiguration point identification technique.

96

Apart from Kendall’s 7, a number of alternative rank correlation techniques were
considered for use in the design of the reconfiguration point identification mechanism.
Pearson’s product-moment correlation coefficient (PMCC) [23] is a measure of correlation
between two variables measured on the same object. PMCC measures the tendency of
the variables to increase or decrease together e.g., does human body weight increase
with height? This measure requires the assumption that the relationship between the
variables is linear, which isn’t the case in the comparison of two ranked sets of activities.
Additionally, PMCC is not well suited for use with small sample sets such as the subtrails
used in trail generation. Spearman’s p [121], a rank correlation coefficient that performs
a similar function to Kendall’s 7, was also considered for use in measuring the difference
between relevant sets. Like Kendall’'s 7, p does not require the assumption that the
relationship between variables is linear. Spearman’s p is considered to be comparable to
Kendall’s 7 in terms of statistical power [15, 50] and is noted as being the most commonly
used method of calculating rank correlation [46]. However, as discussed by Noether
[91], the interpretation of Kendall’s coefficient is intuitively simple whereas assigning an
interpretation to Spearman’s coefficient is a non-trivial undertaking. Additionally, the
algebraic structure of Spearman’s coefficient is far more complex than that of Kendall’s.

Consequently, Kendall’s 7 was deemed the most appropriate approach to adopt.

3.2.4.3 Reusability and Extensibility

The application framework provides a generic solution to reconfiguration point identifi-
cation. The approach can be reused as is or can be customised and extended to meet
the needs of specific applications. In terms of customisation, the 7 value that specifies
when a difference between two sets of activities ranked by relevance is significant can be
modified without source code alteration to change the sensitivity of the reconfiguration
point identification approach. The approach is based on the concept of activity relevance
and therefore when the framework is extended through the introduction of new contexts
or trail properties into the activity relevance calculation, the reconfiguration point iden-
tification mechanism will automatically consider the new information. It is not apparent
that developers will need to extend the rank correlation method used to compare relevant

sets. However, irrespective of this, it is possible to extend the existing implementation

97

and override the default rank correlation behaviour.

3.2.4.4 Summary

The reconfiguration point identification mechanism included in the application framework
improves on the approach used in RiddleHunt by supporting not only reconfiguration trig-
gered by changes in relevant activity set membership, but also by significant differences
in the relevance values of individual activities when relevant set membership is the same.
The difference between the relevance rankings of two sets containing the same activities is
measured using Kendall’s rank correlation coefficient. The definition of what is a signifi-
cant difference between two sets is configurable by the developer or user. This approach
facilitates the minimisation of the occurrence of unnecessary trail reconfigurations, i.e.,
minimising mobile device resource wastage, while maintaining consistency between the
user’s physical environment and the representation of that environment provided by the

trails application on their mobile device.

3.3 Chapter Summary

This chapter has described the design methodology with which the application frame-
work proposed in this thesis was developed. The chapter illustrates how the application
framework evolved through early requirements gathering work and how Hermes supports
context acquisition and modelling. The implementation of two prototype mobile, context-
aware trails-based applications, Oisin and RiddleHunt, was described in terms of the role
the applications played in the application framework development process. The design of
the trail generation and reconfiguration point identification mechanisms included in the
application framework were then described. The following chapter presents the imple-

mentation detail of the application framework features described in this chapter.

98

Chapter 4

Implementation

The previous chapter describes the design of the trail generation and reconfiguration
point identification techniques and illustrates how the application framework supports
the generation and reconfiguration of trails composed of the activities that are considered,
based on context, to be most relevant to the user. This chapter describes in detail how
these techniques are implemented. The application framework, implemented in Java',
is composed of generic implementations of the trail generation and reconfiguration point
identification techniques that can be reused by applications that require trails behaviour.
The default implementations are developed in a manner that facilitates extension by
developers who wish to specify application-specific trails behaviour.

The chapter begins with a high-level overview of the classes that compose the ap-
plication framework. This is followed by a presentation of the attributes and behaviour
in the generic trail and activity specifications, and a discussion regarding the manner in
which the default implementations can be extended to support specialised activity and
trail attributes and behaviour. The implementation details for both the trail generation
and reconfiguration point identification techniques are presented next, illustrating how
the classes in the application framework collaborate to provide trail generation and re-
configuration behaviour. A discussion of the extension points in both implementations is
also presented. Finally, the configuration files that facilitate customisation of application

framework behaviour without requiring source code modification are discussed.

LJava 2 Micro Edition (J2ME) Personal Basis Profile [84]

99

4.1 Application Framework Overview

The application framework consists of 34 classes and 5 properties files that provide struc-

ture and behaviour for mobile, context-aware trails-based applications. This section de-

scribes the implementation of the application framework at a high-level, illustrating the

core classes? and outlining their responsibilities. Figure 4.1 illustrates ‘uses’ relationships

between the classes in the application framework. The classes are logically grouped into

7 groups and each class in the diagram is annotated with the number of the group it

belongs to. The class groups that compose the application framework are as follows:

v

UseriModel

Trail

6

CompletedComparator

= 1 TrailAssessor

TrailTimelModifier

Activity
1

Subject
3

5

MAUT ClashResolutionComparator

MAUTRelevanceComparator

S

’

LocationGenerator
3 13

ContextGeneralor

e

ReconfigurationTimer

PossibilityComparator

5

MNormalize

6

1 TrailManipulator

Traillti
6

__®
|

TrailRepository

4

ReconfigurationContext |

2

ReconfigurationEngine =

KendallsT
5

4

rallReconfiguralionStrategy

o o

3
2 TrailGeneration fﬁ_—_ﬂo

Observer

BruteForceStrategy 4 SimulatedAnnealingStrategy

4 GeneticAlgorithmStrategy

Figure 4.1: High-level application framework class diagram

1. Trails. This collection of classes has four primary responsibilities:

(a) To provide a representation of the user’s trail. Section 4.2 discusses the classes

that define the behaviour and attributes of a trail and an activity.

2The classes omitted from the diagram are those related to the implementation of the concrete trail

reconfiguration strategies.

100

(b) To provide behaviour to manipulate both the contents of the trail and the
attributes of the activities. The number of activities on a trail is modified
when subtrails are created and when activities are completed, become impos-
sible or are removed as a result of a clash. This behaviour is contained in
TrailManipulator. Additionally, activity properties must be updated fol-
lowing context events e.g., the activity start and end time estimates must
be updated based on changes in user location or the passage of time. This

behaviour is contained in TrailTimeModifier.

(c) To provide various types of information about candidate trail solutions based
on their activity ordering and the current context e.g., the number of possible
activities and the total time required to complete the activities on the trail.

This behaviour is encoded in TrailAssessor.

(d) To provide a trail evaluation function. The class that represents the user’s
trail (Trail) is self-describing in that it contains behaviour to evaluate the
activity ordering it contains. The evaluation function uses TrailAssessor
to assess candidate trail solutions along the value dimensions discussed in

Section 3.2.3.5.

2. Controllers. This group of classes is responsible for using the behaviour defined in
the other class groups to coordinate the trail generation and reconfiguration process.
TrailGeneration acts as a gateway to the services of the application framework
which are coordinated by ReconfigurationEngine. ReconfigurationEngine re-
ceives context events, assesses if reconfiguration is required and reconfigures the trail
as appropriate. ReconfigurationEngine informs TrailGeneration of changes to

the user’s trail following reconfiguration.

3. Context Generators. The classes in this group are responsible for generating context
information and making it available to the class that is responsible for coordinat-
ing trail reconfiguration (ReconfigurationEngine in the Controllers group). The
Subject class, along with the Observer interface, represents the implementation
of the Observer design pattern that defines a one-to-many relationship between a

subject object and any number of observers so that when a subject changes state,

101

all its observer objects are notified and updated automatically [45|. Clients e.g.,
ReconfigurationEngine, subscribe for notification about context events generated
by the classes that implement the abstract ContextGenerator class. The applica-
tion framework provides location and time lapse contexts by default. A detailed
description of the GPS-based implementation of the LocationGenerator class is

included in Appendix B.1.

. Trail Reconfiguration Strategies. This group of classes is responsible for shielding
the primary application controller (ReconfigurationEngine) from the specifics of
how candidate trail solutions are generated during trail reconfiguration. A num-
ber of different strategies can be used to generate and evaluate candidate trails.
ReconfigurationContext forms part of the Strategy design pattern [45]. The
Strategy pattern allows a family of algorithms to be defined, encapsulated and used
interchangeably. This facilitates multiple variants of the candidate trail generation
behaviour without requiring the client, ReconfigurationEngine, to change how it
invokes the behaviour or uses the returned value. TrailReconfigurationStrategy
specifies the methods that must be implemented by the concrete strategies (BruteForce,

SimulatedAnnealing and GeneticAlgorithm).

. Activity Comparators. Comparator classes, which implement the Comparator in-
terface from the standard java.util package, provide a comparison function that
imposes a total ordering on some collection of objects. The activity comparators
in the application framework are responsible for providing various ways in which
to compare activities. Activity comparators are generally used to sort collections
of activities based on some criteria e.g., activities are compared by relevance in
MAUTRelevanceComparator which compares activities based on multiple value di-
mensions. Comparators can also be used to compare two activities at a time.
This usage model is employed when MAUTClashResolutionComparator is invoked
to resolve a clash between two activities. The implementation of Kendall’s rank

correlation coefficient (KendallsT) is also included in this group.

Utilities. The utilities group contains classes that do not provide core application

framework behaviour but are necessary nonetheless. Normalize provides methods

102

to transform trail and activity assessment values e.g., the number of activities pos-
sible and the trail length, so that they are relative to each other on a specified scale,
enabling comparison. UserModel provides access to the weights that are used in
both the MAUT-based techniques for activity comparison and the trail evaluation
function, both of which evaluate objects based on multiple value dimensions for
which preference weights are specified. TrailRepository and TrailUtil provide
behaviour to load trail specifications from disk and perform miscellaneous behaviour

e.g., data format conversion and distance estimation, respectively.

The remainder of this chapter discusses how the groups of classes in the application frame-
work collaborate to provide reusable, extensible trails behaviour. Section 4.2 discusses
the attributes and behaviour in the trail and activity implementations and illustrates
how the default implementations can be extended. Section 4.3 illustrates how the class
groups collaborate to provide trail generation behaviour and discusses how the generic
trail generation behaviour can be extended. Section 4.4 presents the implementation
of reconfiguration point identification technique based on Kendall’s rank correlation co-
efficient and discusses how it can be extended. Section 4.5 discusses the configuration
files used to specify application properties and customise behaviour without source code

modification.

4.2 Trail/Activity Specification

In order to implement the concrete classes that represent a trail and an activity, the
attributes and behaviour of both objects had to be stated explicitly. The primary goal
during of the implementation of the trail and activity classes was to specify enough at-
tributes and behaviour to make the classes suitable for reuse without extension, without
precluding or discouraging applications from reusing the default implementations®. The
attributes selected for inclusion in the generic implementation of a trail are those that
have been observed, during the design process, to be common to all the trails appli-

cations considered. The same design rationale was applied to the selection of activity

31t is reasoned that the presence of a significant amount of irrelevant attributes and behaviour relative
to the application under consideration discourages framework use.

103

attributes. However, although certain applications e.g., RiddleHunt, do not consider the
notion of activity time constraints, a decision was made to include support for activity
time constraints by default as time is generally an important factor in scheduling activi-
ties. Activity properties that do not apply to the activities in a specific application can
remain set to default values so that they are essentially ignored e.g., if an activity does
not have time constraints then the opening and closing time are ignored. The behaviour
in the trail implementation represents generic trail operations e.g., add activity and get
activity, as well as the evaluation function.

Figure 4.2 illustrates the behaviour and properties of the trail and activity represen-
tations in the application framework. The class diagram shows all the attributes and
methods in Trail and all the attributes and selected® methods in Activity. A trail can

be composed of one or more activities.

Trail
actritylMap - HashMap —
scoreValue - double Activity
reconfigurationTime - long index - int
activities - Activity(] name - String
xCoord - double
clone() - Object yCoord - double
Trail{activities - Actiity[]) duration : int
Trail{indexes - int[]) durationLesway - int
getActivities() - Activity[] revisedCuration - int
setActivities(activities - Activity[]) - void openingTime - long
getMumbctivities() - int closingTime - long
add{newActivities - ArrayList) - void contains breakStartTime - long
add{activity : Activity) - void breakEndTime - long
toString() - String 1 1..n |currentlyPossible - boolean
toString'erboselnumToShow - int) - String estStantTime : long
getlength() - double estEndTime - long
contains{activity - Activity) - boolean priority - int
populateHashiactivities - Activity[]} - void complete - boolean
getActivity(i - int) : Activity mandatory - boolean
getSubTrail(limit - int) - Trail scheduled - boolean
getScoreValue() - double
setScoreValue{score - double) - void clane()
getReconfigurationTime() : long Activityl)
setReconfigurationTime{reconfigurationTime - leng) - void toString()
getScore() - double
equals(o : Object} : boclean

Figure 4.2: The Trail and Activity classes

Activity contains the attributes that describe a generic activity. Some attributes are

assigned a value at application start-up whereas other attributes are only assigned a value

4The only methods not shown are the accessor methods for the attributes listed.

104

at runtime. For example, activity attributes such as name, duration and opening time are
included in the persistent specification of an activity on disk (discussed in Section 4.2.1),
whereas the estimated activity start time and whether the activity is currently possible
can only be determined during the trail generation process, as the values are based on
the activity’s position in the trail.

The Trail class contains a collection of activities called activities. The contents
of the activities collection is dynamic, with the order of the activities in the collection
representing the order of the activities on the trail. Activities can be added and removed,
change position and can have their attribute values updated. The Trail class contains
a scoreValue attribute that is set by the getScore() method which represents the
implementation of the trail evaluation function. The majority of the methods in Trail
are concerned with the collection of activities it stores, either returning information about

it or modifying the contents.

4.2.1 Trail Persistence

Trail information i.e., the static specification of information regarding the activities on
a trail, resides on disk and is read into the application at application startup. The
application framework contains a utility class (TrailRepository) that is responsible for
reading trail information from disk and creating Activity and Trail objects based on
textual activity specifications. Trails are described as a collection of activity specifications
in a properties file® that is read by the TrailRepository class. An example activity
specification is illustrated in Listing 4.1. The activity specification contains the unique
activity identifier (the number between the word activity and the specific property name
e.g., description at line 1). It also contains a value for each activity attribute that is

known prior to runtime. These attributes are described below:

Listing 4.1: An example activity specification

1 activity .1.description=Data Structures Lecture

A relational-database management system (RDBMS) was used to manage trail /activity information
in Qisin, but a more generic, flat file-based approach needed to be adopted based on the lack of widespread
RDBMS support on mobile platforms.

105

2 activity .1.x=435

3 activity .l.y—365

4 activity .l.openingTime=09:30

5 activity .1.closingTime=10:30

6 activity .1l.closingTime .leeway—0
7 activity .1.breakStart=0

s activity .1.breakEnd=0

9 activity .l.duration=60

10 activity.1l.duration.leeway=0

1 activity .l.priority=>5

12 activity .1l.mandatory—false

e description - a short text description or name for the activity e.g., ‘Data Struc-

tures Lecture’ as illustrated on line 1 in Listing 4.1.

e x - the x activity location coordinate (activities are located on a 2D grid that

corresponds to their position on a map-based interface?).
e y - the y activity location coordinate.
e openingTime - the time from which the activity is available to be undertaken.
e closingTime - the time at which the activity ceases to be available to the user.

e closingTime.leeway - the amount of leeway in the activity closing time e.g., a shop
may stay open 10 minutes later than advertised to facilitate customers in finishing

their shopping. This property is set to zero by default.

e breakStart - the time at which the activity becomes temporarily unavailable e.g.,
if the activity is not available during lunch hours. By default, activities do not have

breaks.

6X, Y coordinates were chosen as the format to represent activity location as it is envisaged that trails
applications will have map-based user interfaces and it is easier for developers to acquire X,Y coordinates
for a map location than, for example, GPS coordinates. Therefore, developers can specify locations as
X,Y coordinates and user location data e.g., GPS information, can be translated to X,Y to calculate the
user’s location from the activity locations. GPS to X, Y translation is described in Appendix B.1. Text
names cannot be used to represent locations as it is not possible to calculate distances using text-based
location data.

106

e breakEnd - the time at which the activity resumes availability.

e duration - the estimated amount of time (in minutes) that the user needs to spend

to complete the activity.

e duration.leeway - the amount of leeway in the duration i.e., how much quicker

can the activity be completed if necessary.

e priority - the priority of this activity relative to other activities. Higher numerical

values indicate higher priority.

e mandatory - a Boolean value indicating whether or not the activity must be under-

taken.

The loadTrail() method in TrailRepository iterates through the activity specifica-
tions contained in the properties file and creates an Activity object for each. A Trail
is then instantiated with the collection of activities passed as an argument to the con-
structor. The initial trail order reflects the order in which the activities are listed in the
properties file and is not based on the context information considered by the application.
It is this trail that is manipulated by the trail generation behaviour. Once a trail has
been loaded from disk it is possible to generate a trail order that reflects the current

context.

4.2.2 Extensibility

The application framework provides generic, reusable implementations of a trail and an
activity. If the default trail and activity specifications are not expressive enough they can
be extended through standard Java inheritance. For example, to cater for the inclusion
of an application-specific activity property a new class is defined that extends Activity.
In the case that the new property is static and known prior to runtime e.g., a property
that provides further descriptive information about an activity, the new property is in-
cluded in the persistent activity specification stored on disk. Consequently, the utility
class that loads activity specifications from disk and creates an initial trail containing

these activities must be extended. The new utility class extends TrailRepository and

107

ContextGenerator ReconfigurationEngine TrailGeneration

context event oCcurs

update()

: reconfigure()

< update()

Figure 4.3: High-level sequence of actions in trail generation

overrides the loadTrail () method so that it considers the new activity property when
instantiating Activity objects based on activity specifications. An example of the ap-
plication framework being extended in this manner is discussed in Chapter 5 during the

evaluation of the reusability and extensibility of the application framework.

4.3 Trail Generation

The trail generation process that produces the best trail for the user based on the cur-
rent context, including user preferences, is triggered by the occurrence of context events.
Figure 4.3 contains a sequence diagram illustrating the interaction between the classes in-
volved in invoking trail generation behaviour. Concrete instances of ContextGenerator
e.g., LocationGenerator and ReconfigurationTimer, generate context events and sub-
sequently invoke the update () method in ReconfigurationEngine, which is an observer
of context events. The update() method, illustrated in Listing 4.2, evaluates the origin
of the call and acts based on the type of context event that is received. If a location event
is received (line 2), the reconfigure() method (discussed in Section 4.3.1) is invoked
(line 3). The reconfigure() method checks if reconfiguration is necessary before recon-
figuring the trail. If a periodic reconfiguration context event is received (line 4) the trail is
reconfigured using the forceReconfigure() method (line 5). This method reconfigures

the trail without consideration for whether it is necessary or not, ensuring that the trail

108

is periodically reconfigured in the absence of other context events. TrailGeneration,
which makes the trail available to non-application framework code e.g., the user interface

code, is notified when the trail is reconfigured.

Listing 4.2: The update () method in the ReconfigurationEngine class

1 public void update(Subject s) {

2 if (s instanceof LocationGenerator) {

3 reconfigure () ;

4 } else if (s instanceof ReconfigurationTimer) {
5 forceReconfigure () ;

; }

-

4.3.1 The reconfigure() method

The reconfigure () method in ReconfigurationEngine, illustrated in Listing 4.3, con-
tains behaviour to reconfigure a trail following notification of a context event. Figure 4.4
illustrates the interactions between the primary classes involved in the implementation

of the trail generation behaviour.

Listing 4.3: The reconfigure () method in the ReconfigurationEngine class

1 public synchronized Trail reconfigure() {

2 setTrail (this.pruneTrail(trail));

3 setTrail (this.sortByRelevance(trail));

4

5 if (reconfigurationRequired ()) {

6 this.setTrail (this. getReconfiguredTrail (trail));
7 if (currentTrail != null)

8 this.setCurrentTrail ((Trail) trail.clone());
9 notifyObservers () ;

10 } else {

11 TrailTimeModifier .updateTrailTimes

109

(aunByuoaal

21008 BIE|NI|ED [jua
SALUL 1B AUpOL [Aua

8 (120015120

(1eq

(Jsles L uol

(Jsiariasgohinou

(3)

(eq) /
(nes yas e
(za) //// |leq painByuosal 126 fus
pauoa uonemnByuoosal sjepdn pua
C__m._u.ﬂjmwmm |IENgNS 81Ba1D (fus
(ta)
(el | painbiuolaxi=hb
(a)
A {Ipannbaxuoneinbiyuoaa) U (o)
(1ojeledwonsauess | B YL MY IUOS JUlus
saninze Sulyse|s arolal pus (Jauensiaxiguos
(neledwonuonnossyUSED LY IIU0S s (g)
{IsamanryBuiyseDanoLl
- - (ev) NsanmnryBuiyse|DasoLual fuus
: _._ﬂ_m m_n_mhm_un_E_ m._,,n_Em: .ﬁ,.ﬂ_._Em/\ WEE] wa|gIssodilasollal fuus
(oeredwonfmgissogipos us (IsamAEypaIadwaDen0Wal (us
()samAnIyalaIssodasowa) \/ (zv) \\\.\\A Oaunid
SapRe palaldulo saowal jfnua (%)
(ojesedwonpaladwoniuos fiius
(1)
jiesy aanbyuoaas
()saninnrypalsdwoganolal
Wejuouoneinbyuooey lreil Joje|ndiuepyjies| suluguoneinbyuodey

ions between classes in the trail generation implementation

Interact

Figure 4.4

110

12 (this.getCurrentTrail());

13 trail — (Trail) this.getCurrentTrail().clone();
14 notifyObservers () ;

P

16 return trail;

")

The reconfigure() method begins by removing unnecessary activities from the
trail using the prune() method in ReconfigurationEngine (step A in Figure 4.4).
prune() (line 2 in Listing 4.3) is responsible for pruning the trail of completed, im-
possible and clashing activities. Three individual methods in TrailManipulator imple-
ment the pruning behaviour. The method responsible for removing completed activities
(removeCompletedActivities() at step Al) from the trail uses CompletedComparator
to first sort the activities in the trail by whether they are completed or not. The com-
pleted activities are then removed from the trail. removeImpossibleActivities() (step
A2) works in the same manner, using the PossibilityComparator to sort the activities
in the trail based on whether they are currently possible or not. Activities that are not
possible are removed from the trail. The removeClashingActivities() method (step
A3) uses MAUTClashResolutionComparator to resolve clashes between activities that are
identified as clashing. The clash resolution comparator uses Normalize to convert activ-
ity assessment values so that they are relative to each other, and UserModel is used to
access the user-specified weights for comparing clashing activities. When the trail has
been pruned of unnecessary and impossible activities it is sorted by relevance.

The sortByRelevance() method (step B) in ReconfigurationEngine is invoked
after prune () returns (line 3). MAUTRelevanceComparator sorts activities by comparing
them by how relevant they are to the user. In order to calculate the relevance value
of an activity, MAUTRelevanceComparator calculates values for the following activity

properties:

e Proximity - how near is the activity to the user.

e Priority - what is the priority of the activity.

111

e Obligation - is the activity mandatory or not.

e Urgency - how soon is the activity closing time.

The values for these properties are first normalised and then multiplied by the user-
specified preference weights acquired from UserModel. The normalised activity properties
are multiplied by their associated weights and added to, or subtracted from, the total ac-
tivity score as appropriate. The score is increased in the case of the priority value and the
obligation value, and reduced in the case of proximity and urgency as a greater distance
from the user and an activity closing time further in the future makes an activity less
relevant. If the score for the first activity is greater than that for the second activity then
the first activity is considered more relevant. Listing 4.4 illustrates how the contribu-
tion of activity priority towards the overall activity score is calculated in the compare ()
method in MAUTRelevanceComparator. Lines 1 and 2 illustrate how the priority value of
the first activity is retrieved, normalised and multiplied by the user-specified weight for

priority. Lines 4 and 5 calculate the value for the second activity.

Listing 4.4: Calculating activity priority value in the MAUTRelevanceComparator class

1 scoreA += (Normalize.getNormalizedValue (actA.getPriority (),

» Normalize . getInstance ().getPriorityRange ()) % priorityWeight);
3

4 scoreB += (Normalize.getNormalizedValue (actB. getPriority (),

5 Normalize . getInstance ().getPriorityRange ()) % priorityWeight);

When the trail has been sorted by relevance it is ready to be reconfigured if neces-
sary. The reconfigurationRequired() method (step C and line 5 in Listing 4.3) in
ReconfigurationEngine is invoked next. This method, discussed in Section 4.4, iden-
tifies whether reconfiguration is required (Figure 4.4 assumes that reconfiguration is re-
quired). If reconfiguration is required the trail is reconfigured using getReconfiguredTrail ()
(line 6 in Listing 4.3). If reconfiguration is not required then the estimated activity start
and end times are updated (lines 11 and 12) based on the current time and the user’s

location. This behaviour is encapsulated in TrailTimeModifier.

112

The getReconfiguredTrail() method (step D) first assesses if a subtrail is neces-
sary. This is achieved by comparing the number of activities in the trail against the
maximum subtrail size set by the developer in a properties file. A subtrail is created if
the trail is larger than the maximum subtrail size. Figure 4.4 assumes that a subtrail is
necessary (step D1). The subtrail is passed to ReconfigurationContext (step D2) and
the reconfigure() method (in ReconfigurationContext) is invoked (step D3).

The reconfigure() method in ReconfigurationContext invokes one of the concrete
implementations of TrailReconfigurationStrategy (not shown in the diagram). These
classes use exact or heuristic approaches to generate candidate trail solutions and, as
illustrated in step D3.1 in Figure 4.4, they use the getScore() method in Trail to

evaluate the worth of each candidate solution.

Listing 4.5: The evaluation function in the Trail class

1 public double getScore () {

2 TrailTimeModifier .updateTrailTimes (this) ;

3 double trailScore = 0;

1

5 double activitiesPossibleWeight — UserModel. getInstance ().
6 getScoreActivitiesPossibleWeight () ;

7

8 int activitiesPossible = TrailAssessor.

9 getNumberOfActivitesPossible(this) ;

10

1 if (!TrailAssessor.isTrailFullylmpossible(this)) {

12 trailScore 4= Normalize.getNormalizedValue

13 (activitiesPossible , this.getNumActivities ())
14 * activitiesPossibleWeight;

15

16 } else {

17 trailScore = 0;

v

19 this.setScoreValue(trailScore);

113

20 this.setReconfigurationTime (System.currentTimeMillis());

21 return trailScore;

22}

The getScore() method is the implementation of the trail evaluation function. The
method first updates the trail time estimates based on the user’s current location, the
current time and the position of each activity in the trail. The estimated start and end
time of each activity in the trail is updated by TrailTimeModifier. Line 2 in Listing 4.5
illustrates the invocation of this behaviour. Lines 5 and 6 illustrate the setting of the
weight for the activities possible value dimension. The other value dimensions - obliga-
tion, length, duration and idle time - are not illustrated in Listing 4.5 but are also set
(represented by the ellipses at line 7). Next, TrailAssessor is used to determine the
number of activities on the trail that are possible. If the candidate trail has any activi-
ties possible then the value for each value dimension, normalised and multiplied by the
user-specified weight for the dimension, is added or subtracted to/from the trailScore
attribute as appropriate. Lines 12-14 illustrate the addition of the value for the activities
possible value dimension to the trailScore attribute. When all value dimensions have
been assessed, the score attribute of the trail is set to be equal to the trail score just
calculated and the time that the reconfiguration occurred at is recorded (shown on lines
19-20). The trail score is then returned to the client.

When the best trail has been returned to the getReconfiguredTrail() method in
ReconfigurationEngine, TrailManipulator is used to join the scheduled activities with
those not considered relevant enough for inclusion in the set of activities ordered by the
trail reconfiguration strategy (step D4). The subtrail is joined with the activities of lower
relevance and a trail consisting of scheduled and unscheduled activities is returned. Any
observers of trail reconfiguration, in this case TrailGeneration, are notified (step E and

line 9 in Listing 4.3).

4.3.2 Extensibility

The generic trail generation behaviour in the application framework has been designed

to facilitate extension through the specification of application-specific behaviour. The

114

default trail generation implementation is extensible in the following ways:

Implementation of new strategies for generating candidate trail solutions.

Implementation of new context sources.

Extension /redefinition of the trail evaluation function.

Extension /redefinition of the activity comparators.

The Strategy pattern is used to facilitate the addition of trail reconfiguration strategies
to the application framework. This is achieved by defining new behaviour that extends
the parent class of the trail reconfiguration strategies that are provided by default (brute
force, genetic algorithm and simulated annealing). TrailReconfigurationStrategy is
an abstract class that contains one method - reconfigure(). This method accepts a
ReconfigurationContext object as a parameter and returns a reconfigured trail. The
reconfigure () method must be implemented by all concrete trail reconfiguration strate-
gies. How this method is implemented does not concern the client, as long as a reconfig-
ured trail is returned. This facilitates the creation of many trail reconfiguration strategies
that take different approaches (e.g., exact, heuristic) to finding the best trail for the user
based on the current context. Extensions to the framework in this manner are hidden
from ReconfigurationEngine, requiring only ReconfigurationContext to be extended
so that it makes the new trail reconfiguration strategy available for use during reconfig-
uration.

The application framework can also be extended to consider new types of context
during reconfiguration by defining new context sources that extend ContextGenerator.
ContextGenerator extends Subject, a class that provides methods for adding, remov-
ing and notifying observers of events in subjects. The Observer interface provides an
update () method that is called in concrete implementations of the notifyObservers ()
method in subclasses of Subject i.e., ContextGenerator. When a subject changes state,
all its observer objects are notified and updated automatically. Once a new context source
has been defined, ReconfigurationEngine must be extended to take the new informa-
tion into account. The constructor is extended to add ReconfigurationEngine as an

observer of the new context source. The update () method in ReconfigurationEngine,

115

invoked by context generators following context events, is overridden with an imple-
mentation that takes the appropriate behaviour based on the type/value of the received
context event. In the general case, the appropriate behaviour will involve the invocation
of reconfigure () as illustrated on line 3 of Listing 4.2, where reconfigure () is invoked
following the receipt of a location context event.

The trail evaluation function can be extended /redefined by implementing a new trail
class that extends Trail and overrides the getScore () method. The evaluation function
is typically extended when a new activity attribute and associated context source are
implemented. The evaluation function is extended to consider the value of the new
activity attribute during trail evaluation.

In terms of activity comparison techniques, the framework can be extended by either
defining a new class that implements the java.util.Comparator interface or by ex-
tending the appropriate existing comparator class e.g., MAUTRelevanceComparator and
overriding the sole method of that class, compare(). In the case that the application
framework is extended through the addition of a new context type, the relevant com-
parator classes should, if appropriate, be extended so that their compare() methods
consider the new context value when comparing activities e.g., if the new context type

impacts on activity relevance.

4.4 Reconfiguration Point Identification

Reconfiguration point identification is implemented in ReconfigurationEngine by the
reconfigurationRequired() method. The Boolean value returned by this method in-
dicates whether or not the trail should be reconfigured following the receipt of a context
event. As illustrated at step C in Figure 4.4 and line 5 in Listing 4.3, the reconfiguration
point identification behaviour is invoked as part of the trail generation behaviour.

The first part of the reconfigurationRequired () method is illustrated in Listing 4.6.
This behaviour assesses changes in the membership of the relevant set following receipt
of a context event. Line 7 caters for the first trail reconfiguration, a situation in which
the user’s current trail is null and therefore reconfiguration of the initial trail read in

from disk is always required. The lastRelevanceSort attribute (that represents the

116

current trail sorted by relevance) is assigned a value and true, indicating reconfiguration
is required, is returned. Lines 11 and 12 check if the trail recently sorted by relevance
and the current trail being followed by the user have the same amount of activities. If the
number of activities in both trails is not equal e.g., if an activity has become impossible
due to time constraints, then reconfiguration is required and true is returned. If the
trails do contain the same amount of activities then their contents must be compared.
Lines 17-23 calculate how many activities need to be compared (the maximum being the
subtrail size) and lines 25-30 compare the contents of the current trail and the trail sorted
by relevance. If the content differs i.e., if one trail has an activity that the other doesn’t,

then reconfiguration is required.

Listing 4.6: Excerpt from the reconfigurationRequired() method

1 private boolean reconfigurationRequired () {

2 boolean reconfigRequired = false;

3 // the trail sorted by relevance

1 Trail trail — this.getTrail () ;

5 Trail current = this.getCurrentTrail () ;

6

7 if (current — null) {

8 lastRelevanceSort = (Trail) this.getTrail ().clone();
9 return true;

W)

1 else if (trail.getNumActivities () !=

12 current . getNumActivities ()) {

13 lastRelevanceSort — (Trail) this.getTrail().clone();
14 return true;

v

16

17 int numActivities = 0;

18 if (trail.getNumActivities() > subTrailSize) {

19 numActivities = subTrailSize;

oo

117

21 else {

22 numActivities — trail.getNumActivities () ;
oo

24

2 for (int i — 0; i < numActivities; i++) {

26 Activity activityB = current.getActivities()[i];
27 if (!trail.contains(activityB)) {

28 reconfigRequired = true;

.)

ool

31

The second part of the reconfigurationRequired() method, illustrated in List-
ing 4.7 (which follows on from Listing 4.6), caters for the situation in which the contents
of the two sets of activities being compared are equal. Line 4 checks if the value returned
by assessing the correlation between the ordering of the trail sorted by relevance and
the last time the trail was sorted by relevance (which is the current trail sorted by rele-
vance) is less than the variance threshold set in the properties file (shown in Listing 4.9

in Section 4.5). If so, then reconfiguration is required (line 6).

Listing 4.7: 2nd excerpt from the reconfigurationRequired() method

» if (!reconfigRequired) {

3 if (!trail.equals(lastRelevanceSort)) {

4 if (KendallsT.getKendallValueForReconfig (lastRelevanceSort ,
5 trail) < relevantSetVarianceThreshold) {

6 reconfigRequired = true;

v }

e}

0}

10 lastRelevanceSort = (Trail) this.getTrail().clone();

1 return reconfigRequired ;

118

KendallsT is used to produce the correlation value (7). This class contains a method
called getKendallValueForReconfig(), illustrated in Listing 4.8. This method imple-
ments Kendall’s 7 rank correlation coefficient as described in Section 3.2.4.2. The method
first creates an int array that represents the positions of the activities in the activity set
sorted by relevance (the second argument) relative to the ordering of the activities in the
current trail sorted by relevance. This process is illustrated by the following example.
An application considers five activities - Act #1...Act #5. Trail 1 is the existing trail
sorted by relevance and Trail 2 is the activity set sorted by relevance following the receipt
of a context event. An ordering is produced for the activities in Trail 2 based on their

positions relative to the ordering in Trail 1:

Trail 1: Act #4, Act #5, Act #1, Act #3, Act #2 — 1,2,3,4,5

Trail 2: Act #3, Act #5, Act #4, Act #1, Act #2 — 4,2, 1, 3,5

This behaviour is implemented between lines 4-9. With the relative ordering in place,
the P value is calculated (lines 11-20). The P value is used to complete the calculation
of the 7 value. This behaviour is contained on lines 22-24. The 7 value is returned and
compared to the reconfiguration threshold value in the ReconfigurationEngine class

where a decision is made regarding whether reconfiguration is required or not.

Listing 4.8: The getKendallValueForReconfig() method

1 public static double getKendallValueForReconfig (Trail

2 existingTrail , Trail newlyGenerated) {

3 double kendall = 0.0;

a int|| activities = new int|newlyGenerated.getNumActivities () |;
5 for (int i — 0; i < newlyGenerated.getNumActivities (); i++) {

6 Activity activity = newlyGenerated.getActivities () |1];

7 int index = getPosition (existingTrail ,activity.getIndex());
8 activities|[index]| — i;

o}

10

119

1 int p = 0;

12 for (int i — 0; i < activities.length; i++) {

13 int index = activities|i];

14 for (int j =1 + 1; j < activities.length; j++) {
15 int anotherIndex — activities|[j];

16 if (index < anotherIndex) {

17 p++;

;)

’)

0o

21

22 kendall = (((p * 2) / ((new Double(existingTrail.

23 getNumActivities ()).doubleValue() / 2) % (existingTrail.
24 getNumActivities () — 1))) —1);

25 return kendall;

-

4.4.1 Extensibility

The reconfiguration point identification mechanism is based on measuring differences
between two sets of activities sorted by relevance. Therefore, extending or redefining
the behaviour of the mechanism involves modifying the code that calculates either the
relevance of an activity or the difference between two sets of activities that contain the
same activities.

Extending or redefining the measure of activity relevance involves creating a new com-
parator class that implements java.util.Comparator and implements the compare ()
method”. By default, relevance is calculated based on user specified weights for four
activity properties (proximity, priority, obligation and urgency). If a new property is
added, a value dimension weight must be specified for the new property in the properties
file (discussed in Section 4.5) that stores user preferences for activity comparison. As

a result, UserModel must also be extended to take the new user context into account.

"MAUTRelevanceComparator can also be extended. In this case compare() must be overridden.

120

The behaviour of the default relevance comparator class can also be modified without
extension by setting the value dimension weights in the relevant properties file.

The implementation of Kendall’s rank correlation coefficient can be extended by speci-
fying a new class derived from KendallsT and overriding getKendallValueForReconfig().
However, due to the lack of obvious advantages associated with using alternative tech-
niques such as Spearman’s p [121]| (as discussed in Section 3.2.4.2) it is not envisaged
that developers will be interested in extending the activity comparison behaviour. It is
more likely that the threshold value that determines whether a significant difference exists
between two equal (in terms of membership) sets of activities will need to be modified.
The value of the threshold can be modified external to the application framework source
code in a properties file. The configuration files used by the application framework source

code are discussed in the next section.

4.5 Configuration files

The java.util.Properties class loads and stores key/value pairs from a file and man-
ages them in memory, thereby facilitating the use of persistent application variables. The
application framework uses properties files to store application properties that are used
to customise the behaviour of the application framework without requiring source code

modification. Properties files are used by the following classes:

UserModel - reads user preferences (MAUT value dimension weights) from disk.

e ReconfigurationEngine - reads the relevant set size and the 7 threshold for re-

configuration point identification (discussed in Section 4.4).

e TrailRepository - reads the activity definitions when creating the initial trail at

application start time.
e ReconfigurationTimer - reads the periodic reconfiguration interval.

e ReconfigurationContext - reads which concrete TrailReconfigurationStrategy

class to use.

121

e Normalization - reads trail and activity ranges used for producing normalised

values.
e GeneticAlgorithmStrategy - reads genetic algorithm algorithm parameters.

e SimulatedAnnealingStrategy - reads simulated annealing algorithm parameters.

The trail.properties file, populated with sample data, is illustrated in Listing 4.9.
Line 3 contains the property that sets the value for the subTrailSize attribute in
ReconfigurationEngine. Line 5 contains the property (in milliseconds) read by the
ReconfigurationTimer class to determine the time intervals between periodic reconfig-
uration. Lines 7-9 contain three properties, only one of which is active at any one time.
These properties specify the concrete trail reconfiguration strategy that is used to find
the best trail for the user. This property is read by the ReconfigurationContext class.
Line 15 specifies the number of activities that should be read from the list of activity
specifications that follow below (previously discussed in relation to Listing 4.1). This

property is read by the TrailRepository class, as are the activity specifications.

Listing 4.9: The trail.properties file

1 # TRAIL GENERATION PROPERTIES

3 trail . generation.subtrail=)

5 trail.reconfiguration.timelnterval=10000

7 trail . reconfiguration.strategy—=brute

s #trail .reconfiguration.strategy—genetic

o #trail .reconfiguration.strategy=annealing

1 trail.reconfiguration.relevantSet.varianceThreshold=0.8

13 # ACTIVITY SPECIFICATION

122

15 activities .number=7

16

17 activity .1.description=Attend Lecture 1
13 activity .1.x=435

19 activity .1.y 365

20 activity .1l.openingTime=09:30

21 activity .1.closingTime=10:30

22 activity .l.closingTime .leeway=0
23 activity .l.breakStart=0

24 activity .1.breakEnd=0

25 activity .1l.duration=60

26 activity .l.duration.leeway=0

27 activity .l.priority=5

25 activity .l.mandatory—false

29

30 ...

The userPreferences.properties file is illustrated in Listing 4.10. Lines 8-11 con-
tain the user-specified weights for each of the value dimensions considered during activ-
ity relevance determination. Lines 17-19 contain the weights for clash resolution and
lines 25-29 contain the weights used in the trail evaluation function. All properties
in the userPreferences.properties file are read by the UserModel class that makes
them available to the MAUTRelevanceComparator, MAUTClashResolutionComparator

and Trail classes.

Listing 4.10: The userPreferences.properties file

1 # USER PREFERENCE PROPERTIES

1 T RELEVANCE PREFERENCES 35564

5 # weights for sorting activities by relevance

¢ # values should add up to 1

123

s relevance . proximity . weight=0.5

o relevance . priority . weight=0.1

10 relevance .mandatory.weight=0.1

1 relevance .urgency .weight —0.3

12

13 HHHHEHARAARAE CLASH RESOLUTION #45HAHHEHHERHARHARRH
14 # weights to use when resolving activity clashes

15 # preference values should add up to 1

16

17 clash . proximity . weight =0.3

15 clash . priority . weight=0.2

19 clash .mandatory.weight =0.5

20

o1 A TRAIL GENERATION/RECONFIGURATION A
22 # weight for trail scoring (trail generation/reconfig)
23 # preference values should add up to 1

24

25 score.activitiesPossible.weight=0.6

26 score . mandatorySupported . weight =0.00

27 score.length . weight —0.2

2s score.duration.weight=0.00

20 score.idleTime.weight=0.2

The normalization.properties file contains the upper limits for the trail and activ-
ity properties that are normalised during activity and trail comparison and evaluation.
Listing 4.11 contains a normalization.properties file with sample contents. Line 6
contains the value for the proximityRange property, meaning that any activity that is
1000 metres or more from the user will have the maximum value of 100 when normalised.
Line 9 contains the value for the length of a trail. Line 12 contains the value that specifies
what constitutes the highest priority value. The value considered to be the maximum

trail duration is specified on line 15 and line 18 specifies the daily time range, which in

124

this case is 24 hours (86400000 milliseconds).

Listing 4.11: The normalization.properties file

1 # TRAIL NORMALIZATION PROPERTIES

1 #the distance range for proximity i.e., zero to the value
5 #specified below — in metres.

¢ trail .normalize.proximityRange=1000

7

s #the length range for a whole trail — in metres.

9 trail .normalize.lengthRange=100000

10

11 #the range for priority — between 1 and 5, where 5 is the highest
12 trail .normalize . priorityRange=5

13

14 #the range for trail duration — in minutes

15 trail .normalize.durationRange=600

16

17 #the range of time within a day in milliseconds

18 trail .normalize.dailyTimeRange=86400000

4.5.1 Extensibility

All of the properties files in the application framework are extensible by augmenting the
existing files with new property specifications (no notion of extension via inheritance ex-
ists in relation to properties files). For example, defining a new property to represent
the weight of a new value dimension for activity relevance calculation involves adding the
new property to the userPreferences.properties file using the same notation as the
existing properties. UserModel, the class that makes user preferences available to the be-
haviour that uses MAUT to evaluate objects, must be extended to take the new property

into account i.e., it must read the property from disk and provide accessor methods. The

125

properties files that express activity specifications and application/algorithm properties

can all be extended in the same manner as the user preferences properties file.

4.6 Chapter Summary

This chapter has described the implementation of the trail generation and reconfiguration
point identification techniques described in Chapter 3. The application framework pro-
vides a generic trail and activity specification that facilitates reuse while also supporting
extension. The approaches to trail generation and reconfiguration are implemented in
a similar manner and can be reused as is or can be extended through the development
of new candidate solution generation techniques, a new evaluation function, new context
sources and new activity comparison measures. The behaviour of the evaluation function,
candidate solution generation techniques, reconfiguration point identification technique
and the activity comparison techniques can be customised external to the source code
through the use of configuration files.

The following chapter evaluates the application framework through the development
of three case study applications that illustrate how it can be reused and extended. The
chapter also describes the evaluation of the responsiveness of the trail generation imple-
mentation and the accuracy of the reconfiguration point identification implementation.
Details of an experiment concerning human satisfaction with trails generated by the

framework are also discussed.

126

Chapter 5

Evaluation

The previous chapter describes how the approaches to trail generation and reconfiguration
point identification proposed in Chapter 3 are implemented to realise the application
framework. This chapter discusses its evaluation in relation to the stated requirements

in Section 3.1.1, which was conducted with three objectives:

1. To determine the extent to which the application framework can be reused and
extended to facilitate the development of a range of mobile, context-aware trails-

based applications.

2. To quantify both the responsiveness of the trail generation implementation and the

accuracy of the reconfiguration point identification implementation.

3. To evaluate human opinion on the quality of the trails generated by the application

framework.

Section 5.1 discusses how the first evaluation objective was achieved through the exam-
ination of a number of case study applications built using the application framework.
Section 5.2 discusses how the second evaluation objective was achieved by means of lab
experiments. Section 5.3 discusses the study conducted in order to meet the third evalu-
ation objective. The chapter concludes in Section 5.4 with a summary of the evaluation

findings.

127

5.1 Framework Reusability and Extensibility

Object-oriented application frameworks are intended to reduce the cost and improve the
quality of software by making reusable software available to developers [40]. Accord-
ingly, application frameworks consist of ready-to-use and partially complete classes that
compose an overall application architecture that specifies the composition and interac-
tion of classes. The production of concrete applications using an application framework
typically involves customising existing behaviour by overriding methods in newly created
subclasses, hence saving developer time and ensuring adherence to a proven design [100].
Therefore, in order to be considered useful, an application framework must be capable of
serving as the basis to a range of applications within a specific domain i.e., it must be
reusable. In addition, a useful application framework must also be capable of support-
ing the specification of behaviour that it does not cater for by default i.e., it must be
extensible.

Although proven techniques for evaluating specific applications exist, techniques for
designing and evaluating the infrastructure intended to aid the development of these appli-
cations are much less well formed [39]. For example, an evaluation framework for mobile,
context-aware applications has been developed by Scholtz and Consolvo [114]. However,
the evaluation areas, which include attention, adoption and appeal, are only applicable
to reasoning about applications as opposed to the infrastructure used to develop them.
According to Edwards et. al [39] and Johnson [61], user-centered infrastructure design
demands applications to demonstrate the power of the infrastructure. That is, in order
to illustrate the capabilities of an application framework it is necessary to develop appli-
cations that use the framework as their basis. By developing and studying applications
developed with a software framework it is possible to illustrate the capabilities of the
framework in terms of reusability and extensibility.

A case study is an in-depth examination of a single instance or event [41] and can pro-
vide sufficient information to help judge if specific computing technologies are of benefit
when applied in a specific domain |67|. Case studies can be used to illustrate the capa-
bilities of an application framework by considering each application in a set of example

applications as an individual case study, and evaluating the degree of reuse and the ease

128

of extensibility afforded by the application framework in each case. The consideration of
multiple case studies serves to evaluate the suitability of an application framework for
developing a range of applications within a specific domain. Of the projects reviewed in
Chapter 2, all but one® of the mobile, context-awareness application frameworks discussed
in Section 2.3 used application case studies as a means of framework evaluation, indicat-
ing that the use of case studies is an accepted form of framework evaluation and that
framework evaluation is generally of a qualitative nature and rather than a quantitative
one.

The use of a single case study for conducting an evaluation of a software method or
tool has been criticised because single case study results are difficult to generalise [67]. It
is preferable to conduct multiple case studies or a survey of a large group of development
projects using a software framework (although such surveys can be prohibitively expen-
sive [67]). However, Flyvbjerg has illustrated that it is a common misconception that
it is not possible to generalise from a single case. He states that it is often possible to
generalise on the basis of a single case, and that the case study may be “central to scien-
tific development via generalisation as supplement or alternative to other methods” [41].
Regardless of this argument, the application framework evaluation contained in this sec-
tion errs on the side of caution and discusses three application case studies that illustrate
how the application framework can be reused and extended to implement applications
with different requirements. All three applications reuse the base framework behaviour,
with two of the applications requiring specific framework extensions. The case study
applications were selected to illustrate how the application framework can be used by de-
velopers to implement applications of varying complexity. The first case study illustrates
how the application framework can be reused without extension to develop a basic trails
application. Application specifics are defined in the framework’s properties files and no
source code extensions are necessary. The second case study explores the development
of an application that requires framework extensions to support a context source and
activity attribute that are not supported by default in the application framework. The

third case study investigates the implementation of an application with requirements that

1Stick-e Note [18] is a conceptual framework and was not implemented, precluding evaluation by
application development case study.

129

necessitate extensions to fundamental framework behaviour such as the trail evaluation
function and the activity relevance measurement mechanism. The three case studies are

discussed throughout the remainder of this section.

5.1.1 Day Planner

The easiest way to use a framework is to use existing classes only i.e., without imple-
menting any concrete subclasses |61|. The first case study explores how the application
framework can be used to develop a day planner application. Its key characteristic is
that it represents the set of trails applications that can be built using the application
framework without extension (e.g., tourist guide applications like those discussed in Sec-
tion 2.1 or a campus activity planner like the Oisin goes to Trinity application discussed
in Section 3.1.3). The day planner application is required to help the user undertake a set
of activities by generating and managing a trail based on the properties of the activities
specified, the user’s location, the current time and the user’s preferences. The default be-
haviour in the application framework can be reused, without extension, to implement the
day planner application. The developer is only required to provide application-specific

information, such as the details of each activity, via the properties files.

5.1.1.1 Implementation

In order to implement the day planner application using the application framework the
developer is required to edit the trail.properties file (introduced in Section 4.5) to

specify activity details and configure the following application properties:

e The maximum number of activities that can be scheduled during trail generation

i.e., the subtrail /relevant set size.
e The periodic reconfiguration time interval.

e The 7 threshold for reconfiguration point identification i.e., the minimum level of
similarity that must exist between the activities in the current trail and the activity
set sorted by relevance following a context event in order for reconfiguration to be

deemed unnecessary.

130

Listing 5.1 contains an excerpt from the trail.properties file for the day planner
application. A subtrail size of 5 is set on line 1, specifying that the user’s five most
relevant activities will be selected for scheduling at times when the user has five or more
activities to complete. The periodic reconfiguration interval is set on line 2 to be five
minutes (30000 milliseconds) so that, in the absence of location change events, the user’s
trail will be reconfigured automatically every five minutes. The brute force strategy for
trail generation is selected on line 3, meaning that the user’s trail will be managed through
the process of exhaustively evaluating all activity permutations each time reconfiguration
is deemed necessary. The 7 value of 0.8 (line 4) defines the effect a location or time
lapse context event must have on the correspondence between the user’s trail and the
activity set (sorted by relevance following the context event) in order for reconfiguration
to be deemed necessary. Line 6 specifies the number of activities to be included in the
application and the first activity specification is contained between lines 6-17, with the

remainder following below in the same fashion (as indicated by the ellipses on line 20).

Listing 5.1: Excerpt from the day planner trail.properties file

1 trail . generation.subtrail-—5
» reconfiguration.timelnterval=30000
s trail . reconfiguration.strategy=brute

4 relevantSet.varianceThreshold —0.8

6 activities .number=7

s activity .1.description—=Tennis w/ John
o activity .1l.x=435

10 activity .1.y 365

n activity .l.openingTime=09:30

12 activity .1.closingTime=10:30

13 activity .1.closingTime .leeway—0

14 activity .1.breakStart—0

15 activity .1.breakEnd=0

16 activity .1l.duration=60

131

17 activity .1.duration.leeway=0
18 activity .1. priority 5
19 activity .1l.mandatory=true

20 . ..

The developer can also edit user preferences, although defaults can be used. The
contents of the userPreferences.properties file (introduced in Section 4.5) for the day
planner application are illustrated in Listing 5.2. The user preferences for determining
activity relevance are specified between lines 9 and 12. The preferences for clash resolution
are contained between lines 19 and 21 and the trail evaluation function preferences are
specified on lines 28-32. The modification of these values affects which activities are

selected for scheduling and the ordering of the user’s trail.

Listing 5.2: The userPreferences.properties file

1 # USER PREFERENCE PROPERTIES

@ AR RELEVANCE PREFERENCES sH5H AR

5
6 # preferences to use when sorting activities by relevance
7 # preference values should add up to 1
8
o relevance . proximity . weight=0.5

10 relevance . priority .weight=0.1

11 relevance . mandatory.weight=0.1

12 relevance . urgency . weight —0.3

13

1 AR CLASH RESOLUTION J5EEHHARHAHARHAHAHRH

15

16 # preferences to use when resolving activity clashes

17 # preference values should add up to 1

18

132

19 clash . proximity .weight=0.3

20 clash . priority . weight=0.2

21 clash . mandatory.weight =0.5

22

o3 AR TRAIL GENERATION/RECONFIGURATION A
24

25 # preferences for trail generation and reconfiguration
26 # preference values should add up to 1

27

2s score.activitiesPossible.weight=0.7

29 score . mandatorySupported . weight —=0.00

30 score.length.weight—0.3

31 score.duration.weight=0.00

s2 score.idleTime. weight —0.00

The properties in the normalization.properties file (introduced in Section 4.5)
can also be set. Listing 5.3 illustrates the values of the trail and activity ranges used for

normalisation in the day planner application.

Listing 5.3: The normalization.properties file

1 # TRAIL PROPERTY NORMALIZATION PROPERTIES

14 #the distance range for proximity i.e., zero to the value

5 #specified below — in metres.

e trail .normalize.proximityRange=1000

7

s #the length range for a whole trail — in metres.

9 trail .normalize.lengthRange—3200

10

1 #the range for priority — between 1 and 5, where 5 is the highest
12 trail .normalize . priorityRange=5

13

133

14 #the range for trail duration — in minutes

15 trail . normalize.durationRange—600

16

17 #the range of time within a day in milliseconds

15 trail . normalize.dailyTimeRange—86400000

Figure 5.1 shows an annotated screen shot of the default text-based user interface that
is produced by the application framework for the day planner application. A message is
displayed each time that the trail is reconfigured that includes the time that the recon-
figuration occurred. Information about the user’s trail is displayed below and includes

the following details:

Estimated Start/End Time

Position on Trail

N oo w h,:/
W e O
£ t
:
J

Activity Name

Figure 5.1: The text-based display produced for the day planner application

e The position of the activity on the trail. The activity either has a number associated

with it to indicate its position or a ‘-’ character to indicate that it is currently

unscheduled.

e The activity name. This information is displayed regardless of whether the activity

is scheduled or not.

e The estimated start and end time of each activity given its position on the trail.
If an activity is currently unscheduled then the word ‘unscheduled’ is displayed in

place of the time information.

134

5.1.1.2 Analysis

Reuse level is the standard metric for measuring the amount of software reuse in an
application [99] and is generally expressed as a percent of the total source lines for the
application. The metric measures the ratio of external items to total items used in an
application, where external items are those whose implementation is necessitated due to
lack of infrastructure support.

Given concrete definitions of a mobile user’s set of activities and specific values for
trail generation, user preference and trail property normalisation properties, 100% of
the application framework’s code base can be reused without extension to provide trail
management behaviour for the day planner application. In order to use the application
framework in this manner, software developers are not required to fully learn the frame-
work. This is an advantage to developers as learning an application framework is more
difficult than learning, for example, a regular class library. Class libraries can be learned
one class at a time whereas frameworks, the classes of which are designed to work to-
gether, must be learned all at once [61]. The developer of the day planner and similar
applications is required to understand only the meaning of each property in the properties
files and how the value of each property affects the behaviour (in terms of trails produced)
of the application framework. The manner in which in the behaviour that produces the
results is implemented does not need to be understood as no subclassing is necessary.

Figure 5.1 illustrates the text-based user interface that is produced by default when
the application framework is used to implement an application. The provision of graph-
ical interfaces does not fall within the scope of the framework discussed in this thesis.
However, the Hermes framework (discussed in Section 1.3), of which the application
framework described in this thesis is a component, is investigating map-based user inter-
faces for trails application. Therefore, support for trails-based applications with graphical
user interfaces will be available to developers using the completed Hermes framework. Al-
ternatively, developers can implement their own application-specific graphical interfaces

based on the trail information produced by the application framework.

135

5.1.2 Music Festival Trail

Not all trails applications can be implemented in the same manner as the day planner
application i.e., by reusing the application framework without extension. Another way
to use an application framework is to define new concrete subclasses of framework classes
and use them to implement an application [61]. The second case study explores how the
application framework can be extended to cater for applications that require the following

behaviour:

e The use of a context type not provided by the application framework.

e The use of activities with an attribute not provided by the application framework.

These two framework extensions are not interdependent and therefore the case study
also serves to illustrate how applications that only require one of these extensions can be
implemented.

Music festivals present numerous musical performances, usually related by genre or
theme, across multiple stages. Music fans must therefore choose which performances to
see on which stages, inevitably having to resolve clashes between favourite artists. Fans
generally make a plan from the published running order, but scheduled stage times are
often deviated from. This means that music fans are left waiting for an artist to appear
while missing an artist they would have liked to see on another stage. The music festival
application is required to manage a user’s schedule of selected musical performances by
generating and reconfiguring trails based on dynamic stage time information, the user’s
location, the current time and their preferences. In order to implement a trails application
for music festival goers the application framework must be extended by adding a stage
time context generator and related logic. A new activity attribute, genre, is also added

to aid activity descriptions.

5.1.2.1 Implementation

Figure 5.2 illustrates the classes (and their respective parent classes) that are added to
the application framework in order to implement the music festival application. The
application-specific classes are annotated with diamond shapes to distinguish them from

framework classes.

136

ContextGenerator I Subject

; :

SHEETMECIBgE ReconfigurationEngine

index : int
newOpeningTime © long
newClosingTime : loeng
newDuration - int

RecaonfigurationEngineExtend
getinstance() = ReconfigurationEngineExtendi)
runi} getOptimalTrail()
setStageTime() update()
getinde:x()
getMewClosingTime() = -
getMewDuration) TrailGeneration
getMewOpeningTime() getTrailRepository()
=== getReconfigurationEngine()
TrailRepository Activity
4 ExtendedActivity
TrailRepositoryExtend e B
getinstance() clone()
TrailRepositaryExtend|) ExtendedActivity()
loadTrail() getGenre()
setGenre()
toStrngi)

Figure 5.2: The framework extensions facilitating the music festival application

5.1.2.2 Adding a new context source

The new stage time change context source is catered for through the addition of a class
that extends the generic context source in the application framework. StageTimeChanger
is responsible for acquiring and sending stage time context events to the class coordinat-
ing trail reconfiguration (a child of ReconfigurationEngine), triggering trail reconfig-
uration if necessary. StageTimeChanger extends the abstract ContextGenerator class
in the same manner as the application framework’s default context sources, location and
time lapse (as discussed in Section 4.1), and includes code to acquire stage time context
information from a remote context generation server.

ReconfigurationEngine, the class responsible for receiving context events and con-
sequently invoking trail reconfiguration, is extended to take the new context source into

account. The constructor in ReconfigurationEngineExtended adds itself as an ob-

137

server of context events generated by the new stage time context source. The update ()
method, responsible for taking action based on context events, is overridden so that stage
time context changes are handled i.e., the reconfigure() method is invoked and trail

reconfiguration occurs as necessary.

5.1.2.3 Adding a new activity attribute

A new attribute, genre, is added to the default activity description so that musical
performances can be better described?. This necessitates the extension of the standard
activity specification. Activity is extended by adding the genre attribute and extending
the constructor, toString () and clone () methods so that they include the new attribute
in their behaviour. Accessor methods for the new attribute are also added.

As a result of the introduction of a new activity attribute, the activity specification
stored in the trail.properties file (illustrated in its default form in Listing 4.9) is
extended. Consequently, the behaviour that reads in activity specifications from disk
and creates the initial trail must be modified to read the new activity attribute as well
as the default ones. TrailRepository is extended, producing TrailRepositoryExtend
that overrides the loadTrail () method from the parent class. The new method creates
an instance of the extended activity for each activity listed in the trail.properties file

and returns a trail containing these activities.

5.1.2.4 Using the new behaviour

TrailGeneration is responsible for both invoking the application framework’s trail man-
agement behaviour and for making the trail available to the user interface and any
other application logic that developers wish to implement. TrailGeneration invokes
the behaviour that loads an initial trail from disk, starts the context service and in-
stantiates the class that coordinates trail reconfiguration based on context change. The
getTrailRepository() and getReconfigurationEngine() methods are redefined so
that the framework uses the extended versions of the classes referenced by these meth-
ods. The startContextService() method is augmented to initialise the stage time

context source.

2A band’s name tends to reveal little about the type of music they perform.

138

Finally, as with the day planner application described in Section 5.1.1, user preferences

and application properties can be set in the relevant properties files.

5.1.2.5 User Interface

Console

Trail Reconfigured 8 16:06

Cutkazt — Main

5
Buck 55 — Bising 5
=

SR R)
[
B o |

[I Ve B]
I~
I
1 -

Lo

it N O = R PR

in I [ERI I
1
L

i b= -_l
4
L
i
1
i
1]
|
=)
[
ai]

=1 o

i
m
3
I
I
|
%]
%]
L
I

Figure 5.3: The text-based display produced for the music festival application

Figure 5.3 contains a screen shot of the default text-based user interface produced
by the application framework, without extension, for the music festival application. The
user interface contains the same type of information about the trail as is illustrated in the
annotated day planner user interface in Figure 5.1. The screen shot of the music festival
interface also contains information regarding the activities that the user has already
completed. Similar information was not shown in relation to the day planner application

as the user had not completed any activities.

5.1.2.6 Analysis

Through the addition of a source of stage time context and the extension of the activity
specification, the application framework is equipped to support the management of a set
of disparately located musical performances. The application is responsive to changes in

user location, performance stage times and current time. 483 lines of code spread across

139

4 classes were added to the 5776 lines of code in the base application framework. This
represents a code reuse percentage of 91.6%.
Table 5.1 lists the extensions made to the application framework during the imple-

mentation of the music festival application and identifies the reason for each extension.

‘ Extension ‘ New Context Source ‘ New Activity Property
New stage time context v
Extended reconfiguration engine v
Extended activity vV
Extended trail repository Vv
Redefined initialisation class vV Vv

Table 5.1: Explanation of extensions necessitated by the music festival application

Both of the new behaviours added (the new context source and the new activity at-
tribute) required the extension of two framework classes, while the class that invokes the
application framework’s behaviour was redefined to consider the framework extensions.
The music festival case study illustrates how the use of design patterns in the imple-
mentation provides hooks to ease the extension of the application framework in relation
to the new context source (Observer pattern as discussed in Section 4.1). However, while
the framework is designed to facilitate extension, using the application framework in the
manner described in this case study is naturally more complicated than using it without
extension. However, the case study illustrates that, in the hands of a developer with
a moderate understanding of the application framework, the framework can be used to
express a much wider range of applications than those that use location and time lapse

context only.

5.1.3 Theme Park Trail

The music festival case study illustrates how the application framework can be extended
to support applications that require additional context sources and activity attributes.
However, it does not represent the situation in which a developer wishes to implement a
new context source that the affects the behaviour of the trail evaluation function and the
activity comparison techniques in the application framework. The context added in the

music festival case study resulted in changes to the activity opening and closing times.

140

These attributes are considered, by default, during both the evaluation of a trail and
activity comparison. The third case study explores how the application framework can
be extended through the addition of a context source that necessitates extension to the
default activity specification and the consideration of the new activity attribute during
trail evaluation and activity comparison.

Theme parks are notorious for the amount of time that patrons spend queuing for
rides. This case study illustrates the manner in which the application framework can
be extended to consider the notion of activity queuing time, and support an application
for theme park visitors. The theme park application is required to consider ride queuing
time, along with user location, preferences and the current time, when generating a trail
for a theme park visitor. Implementing the theme park application involves extending
the default activity specification so that each activity has an associated queuing time,
and providing a source of ride queuing time context. The addition of the new context

source and related activity attribute impacts on the following areas of the framework:

e The trail evaluation function. The evaluation function is required to consider ride

queuing time when scheduling the user’s chosen activities.

e The clash resolution mechanism. The queuing time associated with each activity
must be considered when assessing whether any of the user’s chosen activities clash

with each other.

e The activity relevance measurement mechanism. Activity queuing time must be
considered as a value dimension in the calculation of the relevance of each activity
as users are likely to consider activities with shorter queuing times to be more

relevant than those with longer queuing times.

5.1.3.1 Implementation

Figure 5.4 illustrates the extensions and new behaviours that are necessary in order to
support the theme park application. Due to space limitations the diagram generally
depicts the subclasses added to the application framework and not the classes that have

been extended.

141

ContextGenerator

QueueTimeChanger

index :int
newueuingTime | int

aetinstance)

TrailRepositoryExtend
getinstance()
TrailRepositoryExdend()
loadTrail(}

TrailGeneraticn

getTrailRepository()
getReconfigurationContext()

|

ReconfigurationEngineExtend

runiy
setQuelingTimel)
getindex()

ReconfigurationEngineExend()

TrailAssessorExtend

getComparisionWithTrailZoriedByQueuelenagth()

ExtendedTrail
getscore()

ExtendedActivity

queuingTime :int

clane()

pruneTrail()
sonByRelevance()
update()

ExtendedActivity()
getDuration(}
setQueuingTime()
getCiueuingTime()

gethlewliueuingTimel)

b

MAUTRelevanceComparatorExtend
campare(}

UserModelExtend

relevanceCueueTimeWeight : double
clashingCueueTimeWeight : double \1(
scoreCiueueTimeWeight : double NormalizeExtend

fqueueTimeRange :int

getinstance()
UserModelExtend)

getClashingQueueTimelWeight() e QEtlnStafce'-: o
getRelevancefueusTimeWeight) o r|na|ue|?ﬂﬁ):1dy. &
getScoreCueueTimeWeight!) setPeremgsL. "
setClashingQueueTimeWeight!; getOueueT!meRange[li
setRelevanceCueueTimeWeight!) setQueueTimeRange()
setEcoreQueueTimeWeight() P —

L

[

W

MAUTClashResolutionComparatorExtend TrailManipulatorExtend

compare() remaoveClashingActivities()

Figure 5.4: The framework extensions facilitating the theme park application

5.1.3.2 Adding a new context source

The application framework is extended through the implementation of a class to generate
queuing time context events in the same manner as stage time change context was imple-
mented in the music festival application (described in Section 5.1.2.2). QueueTimeChanger,
a class that extends the application framework’s generic context generation class, is re-
sponsible for acquiring and sending ride queuing time context events to observers. The
sole observer of the events generated by QueueTimeChanger is the class coordinating trail
generation /reconfiguration, an extension of ReconfigurationEngine.

The constructor in ReconfigurationEngineExtended adds itself as an observer of
context events generated by the new queuing time context source. The update () method

from the parent class, responsible for taking action based on context events, is overridden

142

so that queuing time context events trigger the invocation of the reconfigure () method.

5.1.3.3 Adding a new activity attribute

A new activity attribute, queuingTime, is added to the default activity specification so
that the queuing time of each theme park activity can be represented. This behaviour is
contained in ExtendedActivity, a subclass of Activity. The extended activity also
adds accessor methods for the new attribute and overrides the default behaviour of
getDuration() from Activity so that the activity queuing time is added to the es-
timated duration before the estimated duration is returned. Similar to the extension of
the activity specification in the music festival application (described in Section 5.1.2.3),
TrailRepository is extended to initialise a trail composed of extended activities at ap-

plication startup.

5.1.3.4 Adding new activity comparators

Unlike the addition of stage time change context in the music festival case study, the ad-
dition of queuing time context affects an activity attribute that is not already considered
when activities are being compared®. Therefore, the behaviour used to compare activities
during both clash resolution and relevance sorting must be redefined so that it considers
the queuing time of each activity when making activity comparison decisions.

Two new comparator classes are implemented by extending java.util.Comparator.
MAUTClashResolutionComparatorExtend is used to resolve clashes between two activ-
ities and MAUTRelevanceComparatorExtend is used to sort a collection of activities by
relevance. The compare () method in each comparator is augmented so that it now con-
siders queuing time as a value dimension. The userPreferences.properties file is
extended to add queuing time weights for clash resolution, activity relevance and trail
evaluation (the extended evaluation function is discussed in Section 5.1.3.5) so that devel-
opers/users can specify how much of an impact activity queuing time should have on the
respective behaviours. UserModel is extended to make the value dimension weights avail-

able to the activity and trail comparison behaviour. The normalization.properties

3The stage time context in the music festival application affects the opening and closing time of each
activity. These attributes are considered by default during trail evaluation and activity comparison.

143

files and Normalize are also extended to facilitate the comparison of an activity’s queuing

time to other activity properties.

5.1.3.5 Adding a new evaluation function

The trail evaluation function must also take the queuing time attribute into account when
generating trail scores so that the trail produced reflects the user’s preference as regards
queuing time e.g., the user may want the trail that minimises queuing time. Trail
is extended to produce ExtendedTrail, and the getScore() method is overridden to
provide a new implementation of the evaluation function that factors in the total queuing
time for the trail. This behaviour is supported by the implementation of a method in the
extended version of TrailAssessor that compares how similar the trail being evaluated

is to the trail activities ordered by least queuing time.

5.1.3.6 Using the new behaviour

The new behaviour implemented for the theme park application is used in the same man-
ner as the new behaviour implemented for the music festival application (described in
Section 5.1.2.4). The getTrailRepository() and getReconfigurationEngine () meth-
ods in TrailGeneration are redefined to provide access to the extended classes, and the
method that starts the context services is augmented to include the context source added
in the theme park application.

Finally, as in the day planner and music festival case studies, user preferences and
application properties (notably the user-specified weights for queuing time in relation
to activity clash resolution, relevance calculation and trail evaluation) can be set in the

relevant properties files.

5.1.3.7 User Interface

Figure 5.5 contains a screen shot of the text-based user interface that is produced without
framework extension for the theme park application. This display contains the same
information as the user interface screen shot discussed in relation to the day planner case

study (Section 5.1.1.1).

144

Trail Beconfigured & 10:1

2: Imfdisng Jomes (10:51 — 131:28

3: Peter Pan (11:27 - 11:52)

4: DomaYd's Boat [11:5685 = 12:30

5: Californis Screaming 2212 = 12:32)

=i Enchanted Tiki Room [(unscheduled)
Pirates of the Caribbesn [(unschedunled)

i :C-‘ =

gin Bailroad (unschedunled)
Figure 5.5: The text-based display produced for the theme park application

5.1.3.8 Analysis

By extending the application framework so that it can cater for the concept of activity
queuing time, it is possible to implement a trails application to aid theme park visitors
in reducing queuing time. The theme park application is responsive to changes in user
location, ride queuing time, user preferences and current time. 903 lines of code spread
across 11 classes were added to the 5776 lines of code in the base application framework.
This represents a code reuse percentage of 84.3%.

Table 5.2 lists the extensions made to the application framework during the imple-
mentation of the theme park application and identifies the reason for each extension.
Comparing Table 5.2 to Table 5.1 on page 140 illustrates that 7 of the 12 extensions
(those marked with an asterisk) are exclusive to the theme park case study and support
the addition of a new concept (queuing time) to the framework as opposed to just a
context source relating to existing activity attributes and a descriptive activity attribute.
The difference in the code reuse percentage between the two case studies (91.6% in the
music festival case study, 84.3% in the theme park case study) illustrates the impact of
the extra extensions necessitated by the theme park application.

It is clear from this case study that reusing the application framework to implement
the theme park application requires a good understanding of the framework. Extending

the classes that form the core of the framework is the most difficult way to reuse a

145

Extension New Context Source | New Activity Property

Queuing time context V

Extended reconfiguration engine V

Extended activity

Extended trail repository

Redefined initialisation class

Extended evaluation function*

New relevance measure*

New clash resolution measure*

Extended trail assessor*

Extended trail manipulator*

Extended user model*

S S S
S S S S S

Extended normalize*

Table 5.2: Explanation of extensions necessitated by the theme park application

software framework, however it is also the most powerful [61|. Therefore, by spending
the time required to learn the application framework, developers will be able to add new
concepts to the default base, greatly altering the default behaviour while retaining a
high level of code reuse. This case study has illustrated that the application framework
provides both structure to encourage extension (in relation to the context and comparator
superclasses) and behaviour that can be customised (e.g., the evaluation function) to
foster the development of trails applications that consider an unbounded set of contexts

and behaviours.

5.1.4 Summary

The case studies presented in this section illustrate how the application framework can
either be reused without modification to develop specific trails applications based on lo-
cation and time lapse context, or extended through the addition of new context sources,
activity properties and new concepts that affect behaviour such as the evaluation func-
tion. As the amount of knowledge that developers have about the application framework
increases, their ability to reuse and extend the framework to produce applications based
on unforeseen context sources that consider new trail concepts increases in tandem. The
code reuse level was shown to decrease as application framework usage became more ad-
vanced and the amount of extensions increased. However, the code reuse level was above

84% in all three case studies.

146

While the case studies are concerned with the details of specific applications, they
also serve to illustrate the scope of the applications that can be developed using the
framework. Without extension the framework is capable of being reused to produce
applications based on user location, activity time constraints and user preferences. Ex-
amples of such applications include field study support applications for school children
(similar to those described in relation to the HyCon Framework [17| but with dynamic
trail adaptation), trails applications for tourists such as those described in Section 2.1
and to-do list/day planner applications similar to those discussed in Section 2.2 but with
automatic context-based schedule reordering. Extending the framework to consider addi-
tional context sources greatly widens the scope of the applications that can be developed.
By considering contexts that affect default activity properties such as time constraints
and activity location, the highly dynamic environment in which mobile delivery couri-
ers operate can be modelled. In this situation, activities represent parcel delivery and
collection jobs, and priority can be used to represent the importance of each job. Recon-
figuration can be triggered by changes in delivery urgency and collection location. The
scope of the applications produced by the framework can be expanded even further when
extensions are made that facilitate the consideration of new concepts that affect both
the definition of an activity and the way in which activities and trails are evaluated e.g.,
the concept of queuing time that was added in the theme park case study. This opens
up a range of possibilities including an application to dynamically schedule activities for
doctors working in hospitals [38], where activities are used to represent both medical and
administrative duties, and context generated by patient monitoring sensors is considered
alongside standard framework contexts such as activity time constraints and user location
when evaluating trails and activities.

The following section presents the quantitative evaluation of two core aspects of appli-
cation framework behaviour - the trail generation and reconfiguration point identification

mechanisms.

5.2 Trail Generation and Reconfiguration

This section presents the results of lab experiments conducted to assess the following:

147

e The number of activities that can be scheduled during trail generation while adher-

ing to a response time of 12 seconds.

e The number of activities that can be considered (but not scheduled) during trail
generation. A response time of 2 seconds was imposed on the behaviour being
assessed during this experiment. 2 seconds was considered to be a reasonable pro-
portion of the total response time (12 seconds) to dedicate to activity set pruning

and activity relevance calculation.

e The accuracy of the trail reconfiguration point identification mechanism.

The trail generation evaluation had two objectives. The first was to quantify the capa-
bilities of each of the three concrete trail generation techniques that are included in the
application framework (brute force, genetic algorithm and simulated annealing). This
involved measuring how many activities each technique can schedule on a trail within
12 seconds, where the trail produced is the best fit to the user’s preferences for trail
generation. The specifics of how the results were calculated are explained further in Sec-
tion 5.2.1. The results of this experiment illustrate that the application framework is
capable of generating trails on a resource-constrained mobile platform within a reason-
able response time that contain a non-trivial number of scheduled activities. Therefore,
applications developed using the framework are capable of producing trails that are of
higher quality than non-computer-generated trails (this statement is supported by the
results of the trail quality study discussed in Section 5.3). The results of the trail gen-
eration experiment can also be used by framework developers to a) inform their decision
regarding which trail generation approach to use and b) reason about the capabilities of
their own framework extensions in the area of trail generation strategies. The second
objective of the trail generation evaluation was to quantify how many activities can be
considered during trail generation without spending more than 2 seconds on activity set
pruning and sorting of the activity set by relevance. This involved measuring the time
taken to prune the activity set and sort activities by relevance following the receipt of
a context event. Details of precisely how the results were calculated are contained in

Section 5.2.2.

148

The objective of the reconfiguration point identification experiment was to quantify
the accuracy of the technique in determining whether or not trail reconfiguration is nec-
essary following the occurrence of a context event. This involved assessing the decisions
made by the reconfiguration point identification technique following the receipt of con-
text events, where the decision that should be made in each case is known. Full details
regarding how the results were calculated are provided in Section 5.2.3.

All experiments required context events to trigger the execution of the behaviour being
measured - either trail generation or reconfiguration point identification. These context
events were simulated in the lab as opposed to generated during real world deployment.
The simulation of context data, an active research area within mobile, context-aware
computing [54, 11, 93, 86|, allows researchers to conduct evaluations of context-based
technology without undergoing the cost of a full application deployment. The use of
simulations provides control over environmental parameters, facilitating evaluations that
may prove difficult to conduct in the real world, given its volatile nature. While there is no
substitute for using deployment and subsequent user studies to evaluate the effectiveness
of a system in terms of criteria such as those proposed by Scholtz [114] (e.g., application
appeal and command of user attention), simulation is an appropriate technique for certain
types of evaluation. The experiments discussed in this section do not require user input,
nor are the results user-specific or subjective. Therefore they are suitable candidates for
the use of simulation.

The remainder of this section presents and discusses the results produced during lab
experiments that measured the behaviour of the trail generation and reconfiguration point

identification techniques.

5.2.1 Trail Generation - Activity Scheduling

The responsiveness of the trail generation mechanism was calculated by recording the
duration between the instant before the invocation of the reconfigure() method in
ReconfigurationEngine and the instant after reconfigure () returns. All three candi-
date solution generation techniques were evaluated and the results are discussed through-

out the remainder of this subsection. The mobile device used for the experiments was a

149

HP iPAQ h6300 series with a Texas Instruments OMAP1510 168 MHz processor and 64
MB of RAM.

5.2.1.1 Brute Force

Figure 5.6 illustrates the response times of the brute force trail generation algorithm for 5,
6 and 7 activities over the course of 100 trail reconfigurations. The average response time
of the trail generation algorithm with a subtrail size of 5 activities is 3.16 seconds, 12.16
seconds for 6 activities and 82.5 seconds for 7 seconds. Therefore, the trail generation
approach in the application framework can generate an optimal subtrail of 5 activities
within a reasonable response time (or 6 activities by marginally exceeding the response

time limit) on the mobile device used in the experiment.

90
80
70

60

a ——5 activities

——6 activities

Seconds

40 —T activities

30

20

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Reconfigurations

Figure 5.6: Brute force trail generation response times

5.2.1.2 Genetic Algorithm

The genetic algorithm proves unable to generate an optimal subtrail of 5 activities within

a reasonable response time. Executing the genetic algorithm on the mobile device with a

150

subtrail size of 5, and parameters that result in the generation of the optimal trail, takes

158.1 seconds on average.

5.2.1.3 Simulated Annealing

Figure 5.7 illustrates the response times for four subtrail sizes (5, 6, 7 and 8) using
the simulated annealing trail generation algorithm over 100 trail reconfigurations. The
algorithm is supplied with parameters that result in the consistent generation of the
optimal trail. The average response time with a subtrail of 5 activities is 6.9 seconds,
8.6 seconds for 6 activities, 11.2 seconds for 7 activities and 12.6 seconds for 8 activities.
Using the simulated annealing algorithm therefore facilitates the generation of trails with
a subtrail of 7 activities within a reasonable response time on the mobile device used in
the experiment. It is possible to consider 8 activities in the subtrail if the response time
upper limit is marginally exceeded.

16
14
12 H

10

Seconds
o

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 V7 81 85 89 93 097

Reconfigurations

Figure 5.7: Simulated annealing trail generation response times

151

—5 activities
—8 activities
—7 activities

| |=——28 activities

5.2.1.4 Analysis

The response time experiments show that the application framework is capable of schedul-
ing between 5 and 7 activities within a reasonable response time using brute force and
simulated annealing, while the genetic algorithm proves to be too resource intensive for
deployment on the mobile device used in the experiments.

The brute force results in Figure 5.6 illustrate the exponential nature of the algorithm
and the infeasibility of its usage as the number of activities in the subtrail is increased.
Improvements in mobile device technology will increase the number of activities that can
be considered using brute force within a reasonable response time. For example, the
desktop machine used to develop the application framework? can generate an optimal
subtrail of 10 activities in 9.3 seconds using the brute force algorithm.

The genetic algorithm, which creates many objects during execution to simulate the
process of biological evolution, proves to be unsuitable for deployment on a resource-
constrained mobile device. The response of time 158.1 seconds for a subtrail of 5 activities
shows that it is infeasible to use this approach on the mobile device used in the experiment.
The same algorithm executing on the desktop machine has an average response time of
1.25 seconds for 5 activities. Subtrails of 6 and 7 activities respond in 3.5 and 6 seconds
respectively, indicating the linear nature of the algorithm and its potential for use on
more sophisticated mobile devices.

Simulated annealing works by modifying a single solution (as opposed to the genetic
algorithm which generates many candidate solutions and evolves them until a single
solution is chosen). It has been shown previously that genetic algorithms typically take
10-24 times longer than simulated annealing to achieve similar results [79]. Additionally,
it has also been shown that simulated annealing algorithms perform better than genetic
algorithms when both algorithms are given the same amount of time within which to
produce a result |72|. The simulated annealing algorithm outperforms both the brute
force algorithm and the genetic algorithm, with the results in Figure 5.7 illustrating the
linear nature of the algorithm and the contrast between the cost of adding an activity

when using simulated annealing and the cost of the same operation with brute force.

4A Dell Optiplex GX260 with an Intel Pentium 4 2.2GHz processor and 512 MB of RAM.

152

Simulated annealing can generate an optimal subtrail of 8 activities within 12.6 seconds.
This response time, along with that of brute force at 6 activities, is marginally above
what is considered to be reasonable for the purpose of this thesis. The reduction of the
subtrail size by one in both cases ensures that the response times adhere to the acceptable
boundary.

The results of this experiment indicate that simulated annealing is the best algorithm
to select when developing an application because it can consider the most activities within
a reasonable response time. However, as discussed in Section 3.2.3.5, using this algorithm
requires an understanding of how the parameters in the simulatedAnnealing.properties
file affect the behaviour of the algorithm in terms of execution time and solution quality.
Brute force is guaranteed to produce the best trail and can consider a significant number
of activities within a reasonable response time. Therefore, brute force it is a better choice
in terms of lessening the cognitive burden on the developer.

In summary, the results of the trail generation experiments demonstrate that the
application framework is capable of generating non-trivial trails within a reasonable re-
sponse time. The trail quality experiment discussed in Section 5.3 illustrates that activity
scheduling problems involving seven activities pose a significant challenge to humans who
typically spend close to two minutes (or more) composing a solution that may not be the
best fit to their preferences given the current context.

Finally, it is important to note that the experiments described in this section do not
measure response time as the end-to-end response time defined by Macabee [78]. In
the words of Macabee, end-to-end response time is: “The time between the start of users
request (indicated by depressing a key or a button) and the time when the user can use the
data supplied in response to the request”. The measurements used in the trail generation
experiments do not consider the time required to render the result of the trail generation
process to the user. The amount of time required for this operation will vary depending
on the user interface employed. The subtrail sizes in both the brute force algorithm
and simulated annealing algorithm can, if necessary, be reduced to compensate for the
result rendering overheard, therefore facilitating an end-to-end response time within the

reasonable bounds.

153

5.2.2 Trail Generation - Activity Consideration

Pruning the activity set and sorting the activity set by relevance (shortened to ‘activity
set preparation’) are the first steps in the trail generation process. The amount of taken by
these operations dictates how much time is left for the generation of the best trail for the
user. Therefore, if too many activities are included in an application, the time required for
activity set preparation will have the effect of reducing the number of activities that can be
scheduled on the trail. This experiment quantifies how many activities can be included in
an application so that the time spent on preparing the activity set for activity scheduling
does not exceed 2 seconds. The responsiveness of the activity set preparation behaviour
was calculated by executing the day planner application on the same mobile device used in
activity scheduling experiment® and recording the time taken for activity set preparation
i.e., the combined execution time of the pruneTrail () and sortByRelevance () methods
in ReconfigurationEngine. The day planner application was executed with multiples
of 10 activities until the response time limit of 2 seconds was reached. 100 context events

were generated per execution of the application.

5.2.2.1 Results

Figure 5.8 illustrates the results of the activity consideration experiment. The results
show that the process of activity set preparation for an activity set of size 10 took 26.18
milliseconds on average. As activities are added to the activity set, the average response
time for activity set preparation increases in a linear fashion to the point where an activity

set size of 110 takes 2140.69 milliseconds (just over 2 seconds).

5.2.2.2 Analysis

The results of the activity consideration experiment illustrate that between 100 and 110
activities can be considered during trail generation without spending more than 2 sec-
onds on activity set preparation. This contrasts with applications like GUIDE, P-Tour
and the DTG (discussed in Section 2.1), where the maximum number of activities that

can be considered within a reasonable response time are 9, 14 and 16 respectively. The

SHP iPAQ h6300 series with a Texas Instruments OMAP1510 168 MHz processor and 64 MB of RAM

154

2500

2000 +

Milliseconds

:

10 20 30 40 50 60 70 80 a0 100 110
Number of Activities

Figure 5.8: Results of the activity consideration experiment

number of activities that can be considered during trail generation and reconfiguration
in applications built using the application framework depends on the capabilities of the
device executing the application e.g., the desktop machine used to develop the applica-
tion framework can consider 1000 activities in 2 seconds. The ability of the application
framework to include a large number of activities and schedule them as they become rel-
evant to the user gives developers the power to design and implement applications such
as RiddleHunt (discussed in Section 3.1.4) in which it is necessary to have a relatively

large amount of activities to make the game interesting for players.

5.2.3 Reconfiguration Point Identification Accuracy

The accuracy of the trail reconfiguration point identification mechanism was assessed by
simulating context events in each of the case study applications described in Section 5.1
and identifying if each context event was correctly handled by the reconfiguration point

identification mechanism. Each application was executed twice, once with no reconfigura-

155

tion point identification (reconfiguration was triggered each time a context event occurs)
and once with the reconfiguration point identification mechanism in place. During the
first execution of the application, a file was created that noted whether or not each re-
configuration was necessary or unnecessary. This was measured by comparing the trail
produced by the reconfiguration to the trail prior to reconfiguration - if they were the
same then the reconfiguration was unnecessary. During the second execution, in which
smart reconfiguration was used, the decisions made by the reconfiguration point identi-
fication mechanism (required or not required) were recorded. The decisions made in the
first and second trials were then compared.

The same one hundred context events were generated during the execution of each
version of each case study application, and the reconfiguration point identification trials
were carried out using two 7 values - 0.95 and 0.85. These 7 values were chosen because 7
values in and around that region (0.8 - 0.95) were shown to produce good results during
application development and testing. When comparing the findings of the first trial for
each application against the trials with reconfiguration point identification there are four

possible outcomes. Each trail reconfiguration is classed as one of the following:

1. Unnecessary as Not Required. Reconfiguration proven to be unnecessary by the
first trial is identified as ‘Not Required’ by the reconfiguration point identification

mechanism. This is a positive result.

2. Required as Required. Reconfiguration proven to be required is identified as ‘Re-
quired’ by the reconfiguration point identification mechanism. This is a positive

result.

3. Required as Not Required. Reconfiguration proven to be required is identified as
‘Not Required” by the reconfiguration point identification mechanism. This is a

negative result.

4. Unnecessary as Required. Reconfiguration proven to be unnecessary is identified as
‘Required’ by the reconfiguration point identification mechanism. This is a negative
result, although not as detrimental as classification 3 in that it does not result in a

discrepancy between the user’s trail and their environment.

156

It was expected that the number of instances of classification #3 would be minimised
at the higher 7 value, resulting in instances of classification #4 being relatively high by
comparison. This is because the likelihood of reconfiguration being deemed necessary in-
creases as T increases. At the lower 7 value it was expected that instances of classification
#3 would increase and instances of classification #4 would decrease. Therefore, it was
expected that the higher 7 value would result in the trail more accurately reflecting the
contextual situation, but that achieving this accuracy would require sacrificing resources

to unnecessary reconfigurations.

5.2.3.1 Day Planner Results

The results of processing 100 location change events in the day planner application are
illustrated in Figure 5.9. With 7 — 0.95, 75 context events out of the 100 that are
generated are handled correctly. Of the remaining 25 context events, 21 are handled by
unnecessarily reconfiguring the trail and 4 events that should cause reconfiguration do not.
This data is illustrated in the top half of Figure 5.9. With 7 — 0.85, the number of events
handled correctly rises to 86. However, of the 14 context events that are mishandled, 3
cause unnecessary reconfiguration and 11 cause significant context events to be ignored.
This data is illustrated in the bottom half of the figure. The difference between the results
obtained using the two 7 values correlates with expectations for the experiment i.e., more

context events resulted in classification #3 when 7 was at the lower value.

5.2.3.2 Music Festival Results

The results of the reconfiguration point identification experiment as conducted by gener-
ating 100 stage time context events in the music festival trail application are illustrated in
Figure 5.10. With 7 = 0.95 (illustrated in the top half of Figure 5.10), 83 context events
are handled correctly. Of the remaining 17 events, 12 unnecessary reconfigurations are
carried out and 5 necessary reconfigurations do not take place. When the 7 value is
reduced to 0.85 (illustrated in the bottom half of the figure), the number of events iden-
tified correctly increases to 88. As expected, the remaining 12 events contain more cases
in which reconfiguration should have taken place (7) than cases in which reconfiguration

was unnecessary (5).

157

T=0.95

E Unnecessary as Not Required
W Required as Required

O Required as Not Required

Frequency of DT

B Unnecessary as Required

1
Decision Type (DT)

T=0.85

E Unnecessary as Not Required
W Required as Required

ORequired as Not Required

Frequency of DT

B Unnecessary as Required

1
Decision Type (DT)

Figure 5.9: Day planner results with 7 — 0.95 (top) and 7 — 0.85 (bottom)

158

70

60

58

50

40

30

25

Frequency of DT

20

10

860

1
Decision Type (DT)

50

40

30

Frequency of DT

20

10

Figure 5.10: Music festival results with 7 — 0.95 (top) and 7 — 0.85 (bottom)

56

T=0.95

Unnecessary as Not Required
H Required as Required

O Required as Not Required

B Unnecessary as Required

T=0.85

Unnecessary as Not Required
H Required as Required

O Required as Not Required

B Unnecessary as Required

1
Decision Type (DT)

159

Frequency of DT

1
Decision Type (DT)

Frequency of DT

1
Decision Type (DT)

T=0.95

| |E Unnecessary as Not Required
B Required as Required

O Required as Not Required

| W Unnecessary as Required

T=085

@ Unnecessary as Not Required

| | @ Required as Required

O Required as Not Required

M Unnecessary as Required

Figure 5.11: Theme park results with 7 — 0.95 (top) and 7 — 0.85 (bottom)

160

5.2.3.3 Theme Park Results

The experiment results for the theme park application dealing with 100 queuing time
change events are illustrated in Figure 5.11. With 7 — 0.95 (illustrated in the top half of
Figure 5.11), 92 context events are correctly handled. Of the remaining 8 events, there
were 8 unnecessary reconfigurations and 0 incorrectly classified necessary reconfigurations,
meaning that the trail was never in a state inconsistent with the context. Moving 7 to 0.85
(illustrated in the bottom half of the figure) reduces the number of context events handled
correctly to 87. The remaining 13 events are composed of 5 unnecessary reconfigurations
and 8 required reconfigurations that were deemed to be not required. These results,
along with those generated in the trials involving the day planner and music festival

applications, correlate with the experiment expectations.

5.2.3.4 Analysis

Table 5.3 summarises the results of the reconfiguration point identification experiment.

o]

9]

.ﬁ v

=

g £17T

Mg | &8

+ o Q o

(=) ot m Q

Z 5% |

w0 Q Q w0 = =

‘; =i i = | &

o Q

Flels 52~

213132 o8

SlE|lE|8|2]E

Q = = Q et <

Sl oo 8| B e

=] Q Q =] o ()

ol o= =R e B | I s Vi N 4
Day planner 7 = 0.95 | 65| 10| 4 |21 || 75| 25
Day planner 7 = 0.85 |83 | 3 |11 | 3 || 86 | 14
Music festival 7 = 0.95 | 25 | 58 | 5 | 12| 83 | 17
Music festival 7 = 0.85 | 32 |56 | 7 | 5 || 88 | 12
Theme park 7 — 0.95 |62 |30 0 | 8 |92] 8
Theme park 7 — 0.85 | 67 |20 | 8 | 5 || 87 | 13

Table 5.3: Results of the reconfiguration point identification experiment

The results illustrate that, on average, the reconfiguration point identification technique

handles 88.6% of context events correctly. Of the remaining context events, 4.3% result

161

2| Reconfiguration Unnecessary,

Day Planner

£ 2| = Reconfiguration Necessary

2|9 5| Classified Correctly
3| | | Classified Correctly

Music Festival 36
Theme Park 70
| Total | 108 [98] 192 [152 |

Table 5.4: Further investigation of the trials with 7 — 0.95

in unnecessary reconfigurations and 7.1% result in reconfiguration not being invoked
when it should be. These figures are calculated by taking the ‘best’ result from each
experiment i.e., 7 — 0.85 in the day planner, 0.85 in the music festival application and
0.95 for the theme park application. This assumes that ‘best’ means that as many context
events as possible are handled correctly. However, if the trials that minimise the amount
of miscategorised required reconfigurations (classification #3) are selected as the best
results i.e., 7 — 0.95 in all applications, then 83.3% of the context events are handled
correctly, 13.7% of the events result in unnecessary reconfigurations and 3% of the events
that should cause reconfiguration do not. The reduction in miscategorisation of context
events that necessitate reconfiguration relates primarily to the day planner application
which has 4 when 7 — 0.95 and 11 at 0.85.

Table 5.4 further illustrates the way context events were handled in the experiments
that produced the best results (where the second definition of best is used). Of all
the context events that necessitate reconfiguration (108 out of 300), the reconfiguration
point identification mechanism correctly classified 98 of these events, or 90.7%. Of the
remaining context events (192 out of 300) that do not require reconfiguration to occur,
the mechanism (with 7 — 0.95) correctly classifies 152 of these events, or 79.2%. This

means the majority of the context events that are handled incorrectly result in computing

162

resources being needlessly consumed as opposed to the trail becoming out of sync with
the world that it represents.

The analysis of the experiment results illustrates that the reconfiguration point iden-
tification in the application framework can categorise context events correctly in the ma-
jority of cases. Developers can customise the 7 value as appropriate on a per-application
basis to achieve a suitable balance between unnecessary reconfiguration and miscategori-
sation of required context events. The importance of the conflicting goals of maintaining
trail relevance and conserving system resources will dictate the 7 value used. As expected,
a higher 7 value was shown to increase the amount of time that the trail accurately rep-
resents the user’s context. Therefore, a higher 7 value is appropriate for use in trails
applications where accuracy is critical e.g., in the healthcare application described in
Section 5.1.4. However, a higher 7 value means there is a greater chance of incurring un-
necessary reconfigurations. Lowering the 7 value has the effect of reducing unnecessary
reconfiguration and increasing the number of required reconfigurations that are miscat-
egorised. The use of a lower 7 value is appropriate in trails applications where constant
accuracy is not paramount e.g., in a tourist guide application.

Finally, the average execution time of the reconfiguration point identification be-
haviour following the receipt of a context event is 777 milliseconds®. Therefore, it is
preferable to incur this cost for each context event rather than risk a high number of
unnecessary trail reconfigurations that are far more costly in terms of response time e.g.,
between 12-13 seconds for 6 activities using brute force or 8 activities using simulated

annealing.

5.3 Trail Quality

The application framework provides a reusable and extensible way to produce context-
aware trails for mobile users. While the case studies in Section 5.1 and lab experiments in
Section 5.2 evaluate technical aspects, they do not provide any information regarding how

humans perceive the decisions made by the framework. Consequently, the trail quality

6This figure was calculated by averaging the time taken to execute the reconfiguration point identi-
fication behaviour in the day planner application (running on the iPAQ) 100 times with a subtrail of 8
activities.

163

experiment was conceived to evaluate this aspect. The objectives of the trail quality
experiment were to determine human opinion on the quality of the trails generated,
and to investigate if the application framework provides an advantage over manual trail

ordering. Three hypotheses were tested:

1. If the trail generation mechanism in the application adequately models the key
factors involved in making activity scheduling decisions in a given situation, then
subjects, when in that same situation, will be satisfied with the trails produced by

the application framework.

2. Ifsubjects are presented with a trails solution to a context-based activity scheduling
problem they will spend less time validating the solution (even when they have no
reason to trust it) than they would spend devising their own solution to a similar

problem.

3. If presented with a context-based activity scheduling problem to solve, subjects
may not make the best use of their resources, primarily their time. Subjects, when
shown the computationally generated trails solution to the problem, may be more

satisfied with it than with their own solution.

Forty subjects participated in the experiment (29 male and 11 female). Ages ranged
from 22 to 56, although the majority of subjects were aged between 24 and 32. Balanc-
ing gender and achieving a balance across several age categories were not considered as
important as ensuring that all subjects were familiar with the geographic area in which
the activity scheduling problems used in the experiment were based. For this reason,
all subjects were selected based on their knowledge of the Trinity College campus. The
activities in the scheduling problems were located on campus, and all subjects involved
in the experiment had a good understanding of the layout of the campus, the majority
being either Trinity students or employees. Subjects could therefore use their knowledge
of the campus to make informed estimates about distances and related traversal times
between activity locations. Additionally, subjects were familiar with the idea of having
to carry out several activities at different locations around the campus.

Subjects were first asked to read an information sheet (presented in Appendix C.1)

that explained the concept of a trail and described what the experiment would entail.

164

Current Time: 11:20

Ses Concert
1.5 hours
1

Visit Art Gallary |
- 20 minukes
=] i0:00-18:30

@ Hich erionty Activity G Mandatory High Priority Activity o
. 1y S Activity Description
. Medium Priority Activity g Your current location Estimated Durstion
Co=ning Hours

. Low Prioity Activity
Figure 5.12: An activity scheduling problem given to trails experiment subjects

Next, a simple activity scheduling problem and solution validation problem (shown in
Appendix C.2.2 and C.2.3) were worked through to familiarise subjects with the tasks
involved in the experiment. Subjects were then asked to manually solve an activity
scheduling problem involving seven activities and re-solve it following the introduction
of new context”. Finally, subjects were also asked to validate that computer-generated
solutions to similar problems were ‘reasonable’, where reasonable is intentionally subjec-
tive and measured on a Likert scale |75 (the questionnaire is included in Appendix C.3).
The subjects were divided equally into two groups. Group 1 solved problems first and
validated computer-generated solutions second. Group 2 did the tasks in reverse order.
This facilitated the observation of potential learning effects. All tasks were timed. Figure

5.12 illustrates the first activity ordering problem that subjects in Group 1 were asked

"Appendix C.2 contains all of the activity scheduling problems and solutions used in the experiment.

165

to solve. Each activity has the following information associated with it: description,
location, estimated duration, opening hours, priority, obligation and location. Subjects
were required to identify impossible activities, resolve clashes and order the remaining
activities (five activities remained for users to schedule after they had pruned the activity

set).

5.3.1 Trail Quality Experiment Results

The trail quality experiment produced three types of result for each group of subjects:

1. Timing. These results relate to the amount of time subjects spent a) solving activ-
ity scheduling problems and b) validating computer-generated solutions to similar

problems.

2. Solution validation. These results represent the extent to which subjects agreed that
solutions to activity scheduling problems produced by the application framework

are reasonable.

3. Solution quality. These results represent the quality of the activity scheduling

solutions produced by subjects.

Table 5.5 contains the results of the timed element of the experiment. The median time
taken to solve a problem in Group 1 was 108 seconds, with 58 seconds being the median
time for validating a computer-generated solution. The results of the solution valida-
tion element of the experiment are contained in Table 5.6. When shown the computer-
generated solution to a problem similar to that which they had solved, 95% of Group
1 totally agreed that the computer-generated trail was reasonable, 5% partially agreed.
100% agreed that the reconfiguration decision made by the computer was reasonable. The
results of the experiment in relation to the quality of the solutions produced by subjects,
and their view of how they compare with the computer-generated solutions to the same
problems, are summarised in Table 5.7. 55% of subjects in Group 1 solved the trail gener-
ation problem in the same manner as the application framework. All subjects who solved
the problem incorrectly agreed that the computer-generated solution was better than the

one they had composed. 45% of subjects in Group 1 solved the reconfiguration problem

166

in the same manner as the application framework. All subjects who did not solve the re-
configuration problem correctly indicated preference for the computer-generated solution

over their solution.

‘ ‘ Group 1 ‘ Group 2 ‘

Solve problem (median time) | 108 seconds | 161 seconds
Validate solution (median time) | 58 seconds | 65 seconds

Table 5.5: Trail quality experiment timing results

The median time taken for solving a problem in Group 2 was 161 seconds, with 65
seconds being the median time for validating a solution. 95% of Group 2 totally agreed
that the computer-generated trail for a similar problem was reasonable, 5% partially
agreed. 85% of Group 2 totally agreed that the reconfiguration decision was reasonable,
15% partially agreed. 65% of subjects in Group 2 solved the trail generation problem in
the same manner as the computer, while 45% percent of subjects composed a solution to
the reconfiguration problem that was identical to that produced by the computer. As with
Group 1, all subjects, when shown the computer-generated solution to both problems,

indicated a preference for it over their own solution.

5.3.2 Analysis

In relation to the first hypothesis, which states that subjects will agree that trails pro-
duced by the application framework are reasonable if the framework adequately models
how subjects make trail decisions, the results, illustrated in Table 5.6, show an average
of 93.75% total agreement. This result validates hypothesis 1. The reasons for non-total
agreement were collected via questionnaire. The main issue was the lack of leeway in
the estimated activity durations used for trail generation. This lack of flexibility caused
certain activities to be marked as impossible because the application framework calcu-
lated that undertaking them would involve overrunning the activity closing time. In cases
where the overrun was only a few minutes, subjects felt that in reality they would still do
the activity but not spend as long doing it. The concepts of estimated activity duration
leeway and closing time leeway (discussed in Section 4.2.1) were added to the framework

to address this.

167

o
a) T
® & < | B
g a0 - | o
&b < A | .2
< >y > | A
2|3 8|5 | &
< | g
5 | & |z |& |8
Group 1
Solution reasonable? 9%% | 5% | 0% | 0% | 0%
Reconfiguration solution reasonable? | 100% | 0% | 0% | 0% | 0%
Group 2
Solution reasonable? 9% | 5% | 0% | 0% | 0%
Reconfiguration solution reasonable? | 85% | 15% | 0% | 0% | 0%

Table 5.6: Trail quality experiment solution validation results

It took subjects just over twice as long on average to manually solve an activity
scheduling problem themselves than to validate a computer-generated solution to a similar
problem. Subjects in Group 2 spent a significantly longer time solving problems than
subjects in Group 1. It is thought that the increase in the median time taken by subjects
in Group 2 to generate a solution is a result of being exposed to a solved activity scheduling
problem before having to attempt to solve a problem themselves. As a result of having a
greater understanding of how to solve activity scheduling problems, a higher percentage
of subjects in Group 2 solved the activity scheduling problem in the same manner as the
computer. The results of the timed aspect of the experiment, illustrated in Table 5.5,
validate the second hypothesis, which states that users will spend less time validating
computer-generated solutions than devising solutions to similar problems.

The results presented in Table 5.7 illustrate that, on average, 52.5% of subjects solved
activity scheduling problems in the same manner as the application framework. 100% of
the subjects that did not solve their activity scheduling problems in the same manner
as the application framework agreed that the computer-generated solutions to the prob-
lems they attempted were better than those they had produced themselves. The reason
subjects preferred the computer-generated solutions was because the computer-generated
solutions made better use of the time available. This result validates hypothesis 3, which
states that subjects may be more satisfied with the computer-generated solution to an

activity scheduling problem than their own solution.

168

Prefer Framework Solution

Solved Correctly
Solved Incorrectly

Group 1

Solution generation problem | 55% | 45% | 100%
Reconfiguration problem | 45% | 55% | 100%
Group 2

Solution generation problem | 65% | 35% | 100%
Reconfiguration problem | 45% | 55% | 100%

Table 5.7: Trail quality experiment solution quality results

In summary, the results of the trail experiment support the thesis that the trails
generated by the application framework are reasonable, and are often superior to the
solutions generated by humans. The results also indicate that presenting the user with
a trail will significantly reduce the amount of time they spend scheduling activities, even
in the case where they have no trust in the computer. It is expected that trust in the
computer-generated trails will increase through positive experience, reducing the median

time for solution validation and increasing time savings.

5.4 Chapter Summary

This chapter has described the evaluation of various aspects of the application framework.
The case studies illustrate that the application framework fulfills its requirements in
relation to supporting both reusability and extensibility, with the extent to which the
framework can be extended depending on the developer’s knowledge of the framework.
The evaluation of the trail generation behaviour illustrates that the application frame-
work is capable of considering just under 110 activities and scheduling between 5-7 of the

most relevant activities within a reasonable response time on a resource-constrained mo-

169

bile device. The reconfiguration point identification mechanism was shown to correctly
classify just over 83% of context events, with the majority of the incorrectly classified
events not affecting the accuracy of the trail in relation to the user’s contextual situation.
The trail quality study revealed that subjects typically spent almost 2 minutes solving
an activity scheduling problem involving seven activities, and that 60% of subjects solved
the problem correctly. The vast majority of subjects agreed that solutions to similar
activity scheduling problems produced by the application framework were reasonable.
The following chapter summarises the most significant contributions of this thesis
and its contributions to the state of the art. Related research issues that remain open

for future work are also discussed.

170

Chapter 6

Conclusions and Future Work

The research presented in this thesis has investigated the development of an application
framework for mobile, context-aware trails-based applications. More specifically, the
research has focused on providing solutions to the challenges of trail generation and trail
reconfiguration point identification that can be reused and extended by developers who
wish to implement trails applications for deployment on mobile platforms. This chapter
summarises the significant achievements of the work and its contributions to the state
of the art, places them in a greater context, and outlines potential areas for future work

relating to this thesis.

6.1 Achievements

The motivation for the work presented in this thesis arose from two observations on
the state of the art research into context-aware activity scheduling for the mobile user.
First, the approaches to trail generation and reconfiguration point identification used in
existing applications are constrained by the number of activities they can consider and
the number and types of contexts used to trigger reconfiguration respectively. Reconfig-
uration point identification techniques based on reasoning about specific context types
e.g., location, are not scalable because they cannot consider different context types e.g.,
changes in activity availability, if/when they become available. Second, as a result of
having research aims unrelated to providing generic support for mobile, context-aware

activity scheduling, the research projects generally focus on the development of specific

171

applications as opposed to generic software to support the implementation of a range
of similarly themed applications. While the existing application frameworks for mobile,
context-aware application development discussed in Chapter 2 can be used to develop
various types of applications e.g., mediascapes and museum guides, with partial activity
scheduling support, none of them fully support trails application development.

To address these issues, this thesis presented an application framework composed
of reusable and extensible trail generation and reconfiguration point identification be-
haviour. Chapter 3 describes how the behaviour in the application framework was de-
signed to address the issues with the state of the art in relation to trail generation and
reconfiguration point identification. An iterative, application-led design methodology was
used to design generic, extensible approaches to trail generation and reconfiguration point
identification. The trail generation mechanism uses context-based activity set pruning
to reduce the number of activities considered during trail generation, and calculates a
context-based relevance value for each activity. In cases where all activities cannot be
scheduled due to response time requirements, the generated trail contains both sched-
uled and unscheduled activities, where the scheduled activities are those that are most
relevant to the user based on the current context. This facilitates the implementation of
applications that include a large number of activities. The reconfiguration point identi-
fication technique is based on the observation of differences between the set of activities
scheduled on the current trail and the state of the activity set as a whole, ranked by rel-
evance, following a context event. This generic approach facilitates the consideration of
an extensible range of context types during reconfiguration point identification. The be-
haviour of the trail generation and reconfiguration point identification techniques can be
customised by the developer or the user through the specification of preference values ex-
ternal to the application framework source code. The combination of the trail generation
and reconfiguration point identification mechanisms proposed in this thesis has removed
the restrictions associated with existing context-aware activity scheduling applications
i.e., constrictive activity limits and context-specific reconfiguration point identification
mechanisms, facilitating the development of trails applications that can consider a large
number of activities and contexts during trail generation and reconfiguration point iden-

tification and can be deployed on mobile devices.

172

The implementation of the generic approaches to trail generation and reconfiguration
point identification designed in Chapter 3 was described in Chapter 4, which illustrated
how the application framework was implemented in a manner that facilitates both reuse of
the base framework behaviour and the development of extensions to a number of areas of
the framework. By implementing the trail generation and reconfiguration point behaviour
in a reusable, extensible manner, the lack of generic support for mobile, context-aware
activity scheduling application development in the state of the art research has been
addressed. This supports developers in implementing trails applications without having
to repeatedly address the common challenges associated with such applications.

The evaluation of the application framework was described in Chapter 5. The evalu-
ation showed that the application framework is suitable for use as the basis to a range of
mobile, context-aware applications that can generate and reconfigure trails in a manner
that humans find reasonable. The evaluation also illustrated that the applications pro-
duced by the framework have the potential to save users a significant amount of time by
relieving them of the burden of activity scheduling.

In summary, the research presented in this thesis has focused on investigating the
provision of reusable and extensible techniques for trail generation and reconfiguration
point identification to aid developers in implementing mobile, context-aware trails-based

applications. The main contributions of this thesis can be summarised as follows:

e An overview of mobile, context-aware tourist guides, context-aware to-do lists and
application frameworks for mobile, context-aware computing with respect to the
provision of generic support for developing mobile, context-aware trails-based ap-

plications for deployment on mobile platforms.

e A user-preference driven approach to trail generation that uses context-based ac-
tivity pruning and the notion of activity relevance to allow trails applications to
consider a relatively large number of activities (between 100 and 110 when deployed
on a HP iPAQ h6300 series PDA), with activities being selected for scheduling based

on how relevant they are to the current contextual situation.

e A customisable approach to trail reconfiguration point identification that identifies

significant context events that necessitate trail reconfiguration as they occur. The

173

evaluation of this technique illustrated that it correctly identifies just over 83% of
context events, with the majority of the incorrectly classified events resulting in
unnecessary reconfiguration and therefore not affecting the accuracy of the trail the

user is following.

e An application framework that provides reusable, extensible implementations of
the approaches to trail generation and reconfiguration point identification. The
evaluation illustrated that the framework can used in numerous ways, ranging from
direct reuse to major extension. Each of the application development case studies

discussed had a code reuse level of over 84%.

e A demonstration of the application framework’s ability to serve as the basis to a
range of mobile, context-aware trails-based applications that are capable of gener-
ating and reconfiguring trails in a reasonable manner. 93.75% of the subjects that
took part in the trail quality experiment agreed that the trails generated by the

application framework were reasonable.

6.2 Perspective

Mark Weiser, often referred to as the father of ubiquitous computing!, envisioned a world
in which computing technology would weave itself into the fabric of everyday life until it
became indistinguishable from it [131]. He proposed that computing technology would go
through a similar process to that of writing, which he calls the first form of information
technology. The constant presence of the written word does not require active attention
from humans, but the information to be conveyed is ready for use at a glance. This is
a result of people learning to read to a standard that allows them to cease to be aware
that they are doing it. Weiser believed that the way to achieve a similar effect in relation
to computing technology was to integrate computing technology into the world at large
by making it available to people at all times. This would allow people to become more

familiar with using computers of all types e.g., mobile devices and communal digital

!Ubiquitous computing integrates computation into the environment in the hope that this will enable
people to interact with information-processing devices more naturally and casually than they currently
do, and in ways that suit the context they find themselves in.

174

whiteboards, and to get on with achieving what they want to do.

Over the period in which the research described in this thesis has been conducted,
Weiser’s vision of the ‘disappearing computer’ has moved closer to becoming a reality.
When the Hermes project began it was thought that trails applications would execute on
PDAs, and therefore the relevance of the application framework discussed in this thesis
was somewhat dependent on the widespread adoption of PDA-type mobile devices. It
transpired that the general public did not adopt the PDA to the extent that the associated
industry had hoped. However, while the PDA was failing to become ubiquitous, the
mobile phone was becoming increasingly popular. The Irish mobile penetration rate? is
currently 106% [42] and the average European penetration rate is over 100% [92]. These
penetration rates illustrate that people are comfortable carrying and using mobile devices
that, while perceived to be telephones, offer both telephonic and non-telephonic services
such text messaging and games. The rise in popularity of the mobile phone has resulted
in mobile handsets becoming more and more technically sophisticated, to the point where
they now have the capabilities of PDAs. For example, Apple Inc. have recently announced
the iPhone |56/, a powerful smart phone with a large graphical display, integrated wireless
networking (including WiFi and Bluetooth) and support for Java applications and Google
Maps®. Additionally, it is predicted that over the next two years, GPS will become
a common feature in mobile phones, with eighty three million GPS-enabled handsets
shipped in the last year alone [104]. The widespread adoption of mobile phones naturally
provides an ideal environment for the development and deployment of context-aware
applications.

Despite the progress towards Weiser’s vision in terms of hardware, building context-
aware applications for mobile users remains a significant undertaking. This is evidenced
by the amount of research into framework support for such applications e.g., the work
described in this thesis and the related work discussed in Section 2.3. A bird’s eye
view of the work described in this thesis is therefore that it has the potential to help
software developers take advantage of the opportunities presented by the emergence of

sophisticated mobile devices that provide wireless networking, positioning and mapping

2The mobile penetration rate is calculated based on the number of mobile subscribers and the popu-
lation size. It must be noted that some subscribers may have more than one active SIM card.
3http://maps.google.com

175

in a format that people have already adopted. It is expected that access to an application
framework for developing trails applications will help developers to prototype, test and
deploy trails applications in a reasonable amount of time, facilitating further exploration
of the potential of context-aware activity scheduling for mobile users.

The widespread applicability of trail-based applications is evidenced by the existence
of many commonly assumed business-related roles in which activity scheduling in a dy-
namic environment is an inherent requirement. Context-based activity scheduling is an
aspect of the work conducted by individuals in workplaces such as hospitals (schedul-
ing patient rounds and administrative tasks), warehouses (managing the order in which
requests for items are fulfilled), hotels (managing the order in which rooms are serviced /-
cleaned) and prisons (managing the order in which inmates are monitored by guards).
Those working in professions that involve greater mobility e.g., mobile salespeople and
tradespeople (plumbers, electricians, office equipment technicians), on call care givers
(doctors, veterinarians), taxi drivers and mobile delivery personnel (parcel/food/flower
delivery couriers) also manage their working lives by using relevant context to schedule
their pending and emergent activities. Away from the business world, context-based ac-
tivity scheduling is used informally by many. At the simplest level, people use context
to manage their day-to-day activities. Context-based activity scheduling is also used by
people in more specific leisure-related situations such as when sightseeing, attending a
music festival, playing treasure hunt-type games, visiting a theme park or going shop-
ping at a particularly busy time e.g., Christmas time. The pervasiveness of the mobile
phone and its recent technical advancement, combined with the trails-based application
development support presented in this thesis, creates an environment in which computer
support for context-based activity scheduling can be realised to support users in both

business and leisure scenarios.

6.3 Future Work

Throughout the process of designing, implementing and evaluating the application frame-
work presented in this thesis, a number of issues worthy of further investigation were

identified. This work relates to distributed trail generation, trail robustness and activity

176

dependencies and constraints.

6.3.1 Distributed Trail Generation

The application framework is designed to execute on mobile devices so that the trails
service is not affected by wireless network disconnection. However, in situations where
wireless network connectivity is available, it would be interesting to investigate the possi-
bility of taking advantage of the increased processing power of remote servers. The trail
generation algorithm is designed in a scalable manner, making it suitable for execution
on a resource-rich platform without modification. This behaviour could be deployed as
follows. The trail generation algorithm would reside on a remote server, with the subtrail
size increased to take advantage of the server’s processing power. The reconfiguration
point identification mechanism would execute on the mobile device and trigger the up-
load of the activity set to the remote server when reconfiguration is deemed necessary.
The remote server would generate a trail from the activities received and return it to the
mobile device.

While the completion of this work would be relatively straightforward from a technical
perspective, it raises the issue of data privacy. Privacy has long been noted as one of
the major issues in mobile, context-aware computing [132, 111], and remains a popular
research area e.g., [137, 21, 6, 108, 27, 102, 49]. As sending the activity set to a remote
server involves sending details of what the user plans to do in the future, as well as other
information about the user such as their current location, the privacy issue would need

to be suitably addressed in order for distributed trail generation to be effective.

6.3.2 Trail Robustness

The robustness of a solution to any problem based on dynamic variables refers to how
sensitive the solution is to minor environmental fluctuations. The concept of route robust-
ness has been studied in mobile, ad hoc networking [126]| and vehicle route generation
[48, 62] in order to extend the lifetime of an individual route, therefore increasing its
utility. Robustness is a desirable trail characteristic as it reduces the frequency of trail

reconfiguration triggered by what users may perceive to be trivial context events. For

177

example, it is likely that a trail would not be considered robust if it reconfigured seconds
after it had been generated because the user had not proceeded as expected. During the
trail quality experiment it emerged that subjects in Group 2 were dissatisfied with the
fragile nature of the computer generated solution they were shown (Section 5.3.2). This
was addressed in the application framework with the addition of two activity attributes -
estimated duration leeway and closing time leeway. This solution is satisfactory because
application framework activities are subject to temporal constraints only. It would be
interesting to further explore the issue of trail robustness and investigate a robustness
mechanism that considers non-temporal as well as temporal activity constraints. An ex-
ample of an activity with a non-temporal constraint is going to see a movie. The activity

will eventually become impossible when the theatre reaches capacity attendance.

6.3.3 Activity Dependencies and Constraints

An activity constraint is a restriction set on the start and/or finish date of an activity. The
activity model in the application framework uses activity opening and closing hours to
model activity constraints. Therefore, by setting appropriate activity opening and closing
times the framework can model common inflexible constraints such as ‘Must Start On’,
‘Must Finish On’, ‘Finish No Earlier Than’, ‘Finish No Later Than’, ‘Start No Earlier
Than’ and ‘Start No Later Than’ [101]. However, the application framework does not
support the specification of flexible activity constraints such as ‘As Soon As Possible’ and
‘As Late As Possible’.

A dependency between two activities exists when the start or end date of one activity
is constrained by the start or end date of another activity. The activity model in the
application framework does not explicitly cater for dependency relationships such as
‘Activity B can start only after Activity A has been completed’ and ‘Activity B must
start directly after Activity A has been completed’. Dependency relations can be loosely
modelled using activity priority, which can represent relative importance relationships
between activities. Activity obligation (the designation of activities as either mandatory
or optional) can also be used to loosely model activity dependency. However, neither of

these approaches is guaranteed to enforce dependency relationships.

178

The activity model in the application framework could be extended to provide full
support for activity constraints and dependencies. Such an extension would give de-
velopers the capability to define activity sets with more complex relationships between
constituent activities. It would also provide more control over the trail generation pro-
cess i.e., developers/users could specify partial trail orderings that would be maintained

regardless of the context.

6.4 Chapter Summary

This chapter summarised both the motivations for and most significant achievements of
the work presented in this thesis. In particular, it outlined how this work has contributed
reusable and extensible approaches to trail generation and trail reconfiguration point
identification that aid developers of mobile, context-aware trails-based applications. The
chapter also placed the contributions of this thesis in a greater context and made sug-
gestions for possible future work arising from the research undertaken in relation to this

thesis.

179

Appendix A

User Study Results

A.1 Oisin goes to Trinity - User Study Results

The results of the trail generation and reconfiguration questions from the ‘Oisin goes to

Trinity’ user study questionnaire are listed below.

Q1: Did you notice the order of the activities change while you were using the applica-

tion?
e Yes - 76%
e No - 5%

e Not Sure - 19%
Q2: Were you anticipating that the trail would be automatically reordered when it was?
e Yes, all of the time - 21%

e Yes, most of the time - 42%

Some of the time - 16%

e No, not really - 11%

No, not at all - 11%

180

Q3: Did you agree with the reordering decisions made by the application?

Yes, all of the time - 55%

Yes, most of the time - 28%

Some of the time - 6%

e No, not really - 11%

Q4: The trail reordering decisions were better than those you could have made yourself?

Totally agree - 28%

Partially agree - 17%

Neither agree or disagree - 44%

Partially disagree - 0%

Totally disagree - 11%

Q5: How did you feel about the amount of control the application had when reordering

your trail?

Far too much - 6%

A bit too much - 11%

OK - 60%

A bit too little - 17%

Far too little - 6%

181

Appendix B

Further Implementation Detail

B.1 GPS Location Context

Figure B.1 illustrates the classes used to the implement the GPS version of LocationGenerator.
The ContextGenerator, LocationGenerator and Subject classes are the same as those
discussed in Section 4.1. The remaining classes in Figure B.1 form part of the GIS world
model component of the Hermes framework. These classes have been made available to

the application framework so that it can be used in isolation from the Hermes framework

if desired.

The doLocationChange() method is illustrated in Listing B.1. Line 2 creates a
Connection object and lines 3-11 use this object to establish a BufferedReader object
that is used to read GPS data from the mobile device’s COM port. Line 18 sees the
buffered reader instance (gpsReader) reading a line of GPS data. A check occurs to
assess if the line contains latitude and longitude information, as GPS devices can deliver
a range of information e.g., the current time and the direction the user is heading.

GPSConversion contains a String parsing method to evaluate lines of GPS data.
If the current line contains the desired location data, the convertToXY() method of
GPSConversion is used to convert the GPS coordinates to X, Y coordinates on the map-

based interface used by the application.

Listing B.1: The doLocationChange () method in the LocationGenerator class

1 public void doLocationChange () {

182

O

Projection

Subject

pixelToWorld()

Z> worldToPixel()
setiapExtentsi)
getiapExtentsi()

setRotationDegrees()

getRotationDegrees()
getScreenVVidthi)
getScreenHeight()

ContextGenerator

LocationGenerator

Xmin _ double Matrix
YK—'“”‘-'jd”“":}'le FastScreenProjection All] th“b'E
K¥max - double FOWsE - in
A e mapExtent[] - double ;
Ys—é?:;mdnﬂ?le transformMap : HashMap il
e rotationDegrees - double SR
screeny - int i Matrix()

" slopex : double T
% - int ; b Iatrix()
o interceptX . double)
y:int slopeY : double getArr;E:i‘

i ; ru

getinstancel) intercept’ - double t0String()
rdLg?_l-iucatinnChan) FastScreenProjection() gg;sg:ﬁ:f

gel) worldToPixel() e
geti() getCols()
gety() setCols)
setXand|) J

Coordinate .
_latitude . double MatrixMath
_longitude - double

miulttiplyidatrix()
addMatricies()
checkMatrixDimensions()

GPEConversion

Coordinate()
get latitude()
set_latitude()
get longitude()
set_longitude()

getinstance()
convertToXY()
containsLatLon()
getNMEALatLongi)
getNMEAF|oat)
getMEAInt()

Figure B.1: GPS location context class diagram

Connection connection — new Connection () ;

try {
String [||| parameters = {{"baudrate", (new Integer (9600)).

toString () }};

connection .setParameters ("1", parameters, 3, true);
InputStream inputStream = connection.openlnputStream () ;
InputStreamReader inputStreamReader = new InputStreamReader

(inputStream) ;

10

11

12

BufferedReader gpsReader = new BufferedReader

(inputStreamReader) ;

183

13 String sentence = new String();

14 boolean noMoreGPSData — false;

15 while (!noMoreGPSData) {

16 if (!paused) {

17 try {

18 sentence = gpsReader.readLine () ;

19 if (sentence != null) {

20 if (GPSConversion. getInstance ().containsLatLon
21 (sentence)){

22 int [| xy = GPSConversion. getlnstance ().
23 convert ToXY (sentence ,Xmin, Ymin, Xmax,
24 Ymax, screenX screenY)

25 if (x I= xy|[0] & y = xy|[1]) {

26 x — xy|0];

27 y — xy[1];

28 setXandY (x, y);

}

}

")

32 } catch (IOException e) {...}

}

34 } catch (Exception e) {...}

-

The convertToXY () method of GPSConversion is illustrated in Listing B.2. The method

takes the following arguments:

e GPSSentence - a GPS sentence containing latitude and longitude information.

e Xmin - the longitude reading at the real-world position represented by the top left-

hand corner of the map being used.

e Ymin - the latitude reading at the real-world position represented by the top left-

hand corner of the map being used.

184

e Xmax - the latitude reading at the real-world position represented by the bottom

right-hand corner of the map being used.

e Ymax - the latitude reading at the real-world position represented by the bottom

right-hand corner of the map being used.

e screenX - the width of the screen on the device the application is being deployed

on.

e screenY - the height of the screen on the device the application is being deployed

on.

Lines 4-7 generate two float variables from the GPS sentence using the getNMEALatLong ()
method from GPSConversion. This method extracts latitude and longitude information
from a GPS sentence and converts it to decimal format. The worldToPixel() method
from FastScreenProjection is then used (line 12) to convert the GPS data to X, Y
coordinates. This method takes the screen dimensions and the map extents as parameters.
The worldToPixel() method uses linear regression convert the GPS coordinates to X,
Y screen coordinates. An int array of size 2 containing the X, Y values is returned on
line 13.

Line 25 in Listing B.1 contains a check on the new X, Y values. If they are the
same as the X, Y values already held by LocationGenerator then the new informa-
tion is ignored. If either the X or Y value differs from the X or Y value already held
then the x and y attributes in LocationGenerator are updated using the setXandY ()
method (line 28). This method invokes the notifyObservers() method that informs

ReconfigurationEngine of the user’s new real-world position.

Listing B.2: The convertToXY() method in the GPSConversion class

1 public int|] convertToXY(String GPSSentence, double Xmin, double

2 Ymin, double Xmax, double Ymax, int screenX, int screenY) {
3

1 double north — getNMEALatLong(GPSSentence.substring (7, 16),
5 GPSSentence. substring (18, 19));

185

10

11

12

13

double west = getNMEALatLong(GPSSentence. substring (19, 39),
GPSSentence.substring (32, 33));

Dimension d = new Dimension (X, Y);

double || gps — new double || { Xmin, Ymin, Xmax, Ymax };
FastScreenProjection fsp = new FastScreenProjection(d, gps);
int || xy = fsp.worldToPixel (north, west);

return xy;

186

Appendix C

Trail Quality Experiment Materials

C.1 Information Sheets

C.1.1 Group 1

Thank you for taking part in this experiment. It will take approximately 15 minutes. If
you have any questions please feel free to ask.

A trail is an ordered collection of activities. Activities are ordered based on their
various properties e.g., priority, opening hours, whether they are mandatory or optional,
and their relationship to the person undertaking the activities e.g., proximity. A trail
ordering aims to make the maximum number of activities possible while reducing the
total distance the user must cover, and the time the user must spend, to complete the
trail activities.

The experiment consists of two parts. In part one you will be presented with a map
of the Trinity College Dublin campus annotated with a number of activities. You are

required to:

1. Identify the relevant activities based on their properties. The relevant activities are
those that are currently possible to complete, regardless of ordering. An activity is
impossible if its opening hours have passed (or will pass before the activity can be

completed) or it clashes with a more important activity.

2. Order the activities. The aim is to maximise the number of activities possible while

187

minimising the cost in terms of time and distance required.

You will then be shown another version of the map in which some activities have been
completed. An unexpected event has occurred which may affect your ordering. You are

required to:
e Reorder the activities with respect to the unexpected event.

In part two you will be shown a map of the Trinity College Dublin campus annotated
with a computer-generated trail consisting of a number of activities (different to those in

part one). You are required to:

o Validate that the computer-generated trail is reasonable. The impossible activities
are identified and marked as impossible. Each possible activity is marked with
a sequence number. Collectively these numbers indicate the order in which the
activities will be completed. Estimated start and end times are shown, as well as

paths between the activities.

You will then be shown another version of the map in which the some activities have
been completed and an unexpected event has occurred. The trail has been reordered

with respect to this event. You are required to:
o Vulidate that the reordered trail is reasonable.

You will be asked to fill out a short questionnaire following the completion of part two.

All tasks will be timed.

C.1.2 Group 2

Thank you for taking part in this experiment. It will take approximately 15 minutes. If
you have any questions please feel free to ask.

A trail is an ordered collection of activities. Activities are ordered based on their
various properties e.g., priority, opening hours, whether they are mandatory or optional,
and their relationship to the person undertaking the activities e.g., proximity. A trail

ordering aims to make the maximum number of activities possible while reducing the

188

total distance the user must cover, and the time the user must spend, to complete the
trail activities.

The experiment consists of two parts. In part one you will be shown a map of the
Trinity College Dublin campus annotated with a computer-generated trail consisting of

a number of activities. You are required to:

o Validate that the computer-generated trail is reasonable. The impossible activities
are identified and marked as impossible. Each possible activity is marked with
a sequence number. Collectively these numbers indicate the order in which the
activities will be completed. Estimated start and end times are shown, as well as

paths between the activities.

You will then be shown another version of the map in which some activities have been
completed. An unexpected event has occurred. The trail has been reordered with respect

to this event. You are required to:
o Vulidate that the reordered trail is reasonable.

You will be asked to fill out a short questionnaire following the completion of part one.
In part two you will be presented with a map of the Trinity College Dublin campus
annotated with just activities (different to those used in part one), no trail. You are

required to:

1. Identify the relevant activities based on their properties. The relevant activities are
those that are currently possible to complete, regardless of ordering. An activity is
impossible if its opening hours have passed (or will pass before the activity can be

completed) or it clashes with a more important activity.

2. Order the activities. The aim is to maximise the number of activities possible while

minimising the cost in terms of time and distance required.

You will then be shown another version of the map in which some activities have been
completed. An unexpected event has occurred which may affect your ordering. You are

required to:
e Reorder the activities with respect to the unexpected event.

All tasks will be timed.

189

C.2 Activity Scheduling Problems

C.2.1 Activity Scheduling Problem Legend

. High Pricnty Activity {can also contain a number indicating its position in a trail e.g..e is done 37}
Medwim Prionty Activily (can also contain a number indicating its position in a trail e.g. Is done 1=t

‘ Low Prionty Activily {can also contain a number indicating its position in a trail e g 0 is done 47}

Q Mandatory High Prionty Activity (must be done if possible, overrides priority)

m Aciivity Not Possible (low priority activity shown, though any activity can be impossible)}

O Activity Mot Possible due to Clash (low priority activity shown, any activity can be impossible due to a clash)

. Activity Completed (high priority activity shown, though any activity can be completed)

}i{ Your current location (the location of this icon on the map represents your real-world position)

Activity Defalls Box {describes details of an activity — description, opening hours and estimated duration)

Adtivity Desaiption
Estimated Dursticn

Opening Hours

Tralls Activity Details Box (describes details of a trail activity — adds estimated start and end time to the above info}

Activity Desoiption
Estimatsed Durstion
Cpsning Hours

Ezfimsted Start’End Time

New Context Info (Contains a message to describe the new information learned Necessitates activity reordering)

The current time in each scenario is shown at the top right of the map

Figure C.1: Activity scheduling problem legend

190

C.2.2 Example Problem

@ icn Prorty Activity q Mandatory High Priority Activity Activity Details Box
. Wedium Priority Activity . Activity Nat Possible e
. Low Priority Activity Q Activity Mot Possible due to clash 8 Your current location

Figure C.2: Example activity scheduling problem

191

C.2.3 Example Solution

Current Time: 13:50

14:00— 1500 o 4] | 20 minutss
14:.00—- 1500 L i 08:20-12:00

hest Frisnd
48 minutss

15:00 — 1800
15.07— 15.52

. High Priority Activity & Mandatory High Priority Activity Activity Details Box
Activity Desorigtion
; E_ﬂrn&tedw [_}Lf;tion
. Medium Priority Activity . Activity Not Possible Opening Hours
) ' Estimsted StstEnd Time
. Low Priority Activity Q Activity Not Possible due to clash g Your current location

Figure C.3: Example activity scheduling problem solution

192

C.2.4 Group 1: Problem 1

Play Tennis il:'ﬂrmrﬂ Tiﬁ:l&"l’ﬁﬂ
1 hour
14:00 —15:00 Ses Concert

14:00— 15:20

10 minuts

Visit At Ballery S| 10:00=18:30
20 minutes. [TR ’ o]

. High Priority Activity & Mandatory High Priority Activity TR
. 15 .- Activity Description
. Medium Priority Activity g Your current location Estimsted Duration
Oq:'errhg Hours
. Low Priority Activity

Figure C.4: Group 1: Activity scheduling problem 1

193

C.2.5 Group 1: Problem 2

et A 1o e
Flzay Tannis Eun"eemffmea 11-3&
1 hour-
1400 -1500

10 minutes
13:00 —13:10

2 %
& o
E==n

==r[. "l

WVisit Art Gallery
= = 30 minutes
i:"::n“t'.*\, 10:00—18:20

o

.-... ‘-I'il‘_

. Activity Completed

. High Priority Activity & Mandatary High Priority Activity

. Medium Priority Activity . Activity Mot Possible A\
.) *— MNew Context Info
. Low Priority Activity Q Activity Not Possible due to clash

Figure C.5: Group 1: Activity scheduling problem 2

194

C.2.6 Group 1: Solution 1

I Lunchime Play |

1 hour
121513158 Goto Gym
1.5 hours
08:00—1830
14:35- 1605 e M
; TTRR,

.....

3 hours.
18:00— 23320

. High Priority Activity & Mandatory High Priority Activity Activity Details Box
Adtivity Desaiption
; 4o A Estimatsd Duration
. Medium Priority Activity ‘ Activity Not Possible Cosning Heur
' Eziimaied Start/End Time
. Low Priority Activity Q Activity Mot Possible due to clash g Your current location

Figure C.6: Group 1: Activity scheduling problem solution 1

195

C.2.7 Group 1: Solution 2

Current Time: 14:04

Attend Talk
15 hows
12:00— 1430

Attznd Tutorizl [
10:30— 1120 -
1 hour 4

20
Iz

@ o Priority Actiity A Mandatary High Priority Activity @ ~ctivity Compietea
. Mediurm Priority Activity ‘ Activity Mot Possible ;

Mew Context Info
. Low Priority Activity Q Activity Mot Possible due to clash Messnge

Figure C.7: Group 1: Activity scheduling problem solution 2

196

C.2.8 Group 2: Solution 1

] W Current Time: 11:20
- ‘I—ﬂm- 44001500) :
® L]

Meet Friend

10 minutes |
| 12:00-12:10
13001340
| |- g

..........

Return Library Books
" 10 minuts
Visit At Gallany E'j r_ 10:00 1820
30 minuies | 27— 1247
Jaap-tean [SAL T

. High Priority Activity & Mandatory High Priority Activity Activity Details Box
Adtivity Desoription
. i Estimated Duration
. Wedium Priority Activity ‘ Activity Not Possible B o
Eatimsied Star/End Time
. Low Priority Activity Q Activity Not Possible due to clash g Your current location

Figure C.8: Group 2: Activity scheduling problem solution 1

197

C.2.9 Group 2: Solution 2

E e — { Flay Tennis
1 heur
14:00—1600
14:00— 1500

| 2= concent
1.5 hours
14:00— 1530 f

12:00=12:10
13:00= 13:10

i
10 minutes J

Wisit Art Galleny
30 minutes |
w| 12:00-15:30
| 13141344

10:00—15:30
=g b 13:47— 1357

. High Priority Activity & Mandatory High Priority Activity
{0 Mediom Priority Activiy @8 Activty Not Possible
. Low Priarity Activity Q Activity Mot Possible due to clash

Figure C.9: Group 2: Activity scheduling problem problem 2

198

C.2.10 Group 2: Problem 1

Current Time: 11:25

@ ticherorty Actvy (@ Wandatory High Prioty Activy Activity Details Sox
Activity Desoription
i iori ivi Estimated Duraticn
. Medium Priority Activity g e
. Low Priority Activity g Your current location

Figure C.10: Group 2: Activity scheduling problem 1

199

C.2.11 Group 2: Problem 2

10:20 — 1120 Q8
o= |

|

. High Priority Activity a Mandatory High Priority Activity Activity Gompleted
. Medium Priority Activity ‘ Activity Mot Possible A{i

. . _ S Mew Context Info
. Low Priority Activity Q Activity Mot Possible due to clash

Figure C.11: Group 1: Activity scheduling problem 2

200

C.3 Questionnaire

Trails Decision Validation — please give vour opinion on the statement below

51: The first trail shown waz reasonable.

" Totally agree

" Partially agree

" Neither agree or disagree
" Partialty disagree

" Totally disagree

If vou did not fully agree with the statement above please explain vour reason(s) below.

Recunﬁguraﬁun Decision Validation — please give yvour opinion on the statement below

52: The zecond, reordered trail was reazonable.

" Totally agree

" Partially agree

" Neither agree or disagree
" Partially disagree

" Totally disagree

If vou did not fully agree with the statement above please explain vour reason(s) below,

Figure C.12: The activity scheduling problem solution validation questionnaire

201

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

37signals. Ta-da Lists. Online; accessed 11-September-2006. http://www.

tadalist.com/.

Robert P. Abelson and Ariel Levi. The Handbook of Social Psychology, Vol. 1,
pages 231-309. Random House, 1985.

Gregory Abowd, Christopher Atkeson, Jason Hon, Sue Long, Rob Kooper, and
Mike Pinkerton. Cyberguide: A Mobile Context-Aware Tour Guide. ACM Wireless
Networks, 3:421-433, 1997.

Anand Agarawala, Saul Greenberg, and Geoffrey Ho. The Context-Aware Pill
Bottle and Medication Monitor. Technical Report 2004-752-17, Department of

Computer Science, University of Calgary, 2004.

AKS-Labs. Outlook Task. Online; accessed 11-September-2006. http://www.

outlook-task.com/.

Jalal Al-Muhtadi, Raquel Hill, Roy Campbell, and M. Dennis Mickunas. Con-
text and Location-Aware Encryption for Pervasive Computing Environments. In
Proceedings of the 4th Annual IEEE International Conference on Pervasive Com-

puting and Communications Workshops (PerComW ’06), page 283, Washington,
DC, USA, 2006. IEEE Computer Society.

Sahin Albayrak and Ralf Sesseler. Serviceware Framework for Developing 3G Mo-
bile Devices. In Proceedings of the 16th International Symposium on Computer and

Information Sciences (ISCIS 2001). Isik University Publications, 2001.

202

8]

191

[10]

[11]

[12]

[13]

[14]

[15]

|16]

Hermann Anegg, Harald Kunczier, Elke Michlmayr, Giinther Pospischil, and Mar-
tina Umlauft. LoL@Q: designing a location based UMTS application. eédi - elek-
trotechnik € informationstechnik, 119(2), February 2002.

Mathias Baldauf and Schahram Dustdar Florian Rosenberg. A Survey on Context-
Aware Systems. International Journal of Ad Hoc and Ubiquitous Computing, 2006.

Jakob E. Bardram. The Java Context Awareness Framework (JCAF) - A Service
Infrastructure and Programming Framework for Context-Aware Applications. In

Proceedings of the 3rd International Conference on Pervasive Computing (PERVA-
SIVE 2005). Springer-Verlag, 2005.

John Barton and Vikram Vijayaraghavan. UBIWISE: A Ubiquitous Wireless In-
frastructure Simulation Environment. Technical Report HPL-2002-303, HP Labs,
Palo Alto, CA, USA, 2002.

Francesco Bellotti, Riccardo Berta, Alessandro De Gloria, and Massimiliano Mar-
garone. User Testing a Hypermedia Tour Guide. IEEE Pervasive Computing, 1(2):
33-41, 2002.

Arnold Bennett. How to Live on 2/ Hours a Day. George H. Doran, New York,
1910.

Gregory Biegel and Vinny Cahill. A Framework for Developing Mobile, Context-
aware Applications. In Proceedings of the 2nd Annual IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom ’04), page 361, Los

Alamitos, CA, USA, 2004. IEEE Computer Society.

Soranna-Daniela Bolboaca and Lorentz Jantschi. Pearson versus Spearman,
Kendall’s Tau Correlation Analysis on Structure-Activity Relationships of Biologic

Active Compounds. Leonardo Journal of Sciences, 9:179-200, 2006.

Craig Boutilier, Ronen Brafman, Christopher Geib, and David Poole. A Constraint-
Based Approach to Preference Elicitation and Decision Making. In Jon Doyle and

Richmond H. Thomason, editors, Working Papers of the AAAI Spring Symposium

203

[17]

18]

[19]

20]

[21]

22|

23]

24|

on Qualitative Preferences in Deliberation and Practical Reasoning, pages 19-28,

Menlo Park, California, 1997. American Association for Artificial Intelligence.

Niels Olof Bouvin, Bent G. Christensen, Kaj Grgnbak, and Frank Allan Hansen.
HyCon: a framework for context-aware mobile hypermedia. Hypermedia, 9(1):59

88, 2003. ISSN 0955-8543.

Peter J. Brown. The Stick-E Document: A Framework for Creating Context-Aware
Applications. In Proceedings of the 6th International Conference on Electronic Doc-

uments, Document Manipulation, and Document Dissemination (EP °96), pages

259-272. John Wiley & Sons, 1996.

T. W. Butler. Computer response time and user performance. In Proceedings of
the SIGCHI conference on Human Factors in Computing Systems (CHI ’83), pages
58-62, New York, NY, USA, 1983. ACM Press.

Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. The Information
Visualizer, an Information Workspace. In Proceedings of the SIGCHI conference
on Human factors in computing systems (CHI ’91), pages 181 186, New York, NY,
USA, 1991. ACM Press.

Roberto Speicys Cardoso and Valerie Issarny. Architecting Pervasive Computing
Systems for Privacy: A Survey. In The Working IEEE/IFIP Conference on Software
Architecture (WICSA’07), 2007.

Guanling Chen, Ming Li, and David Kotz. Design and Implementation of a Large-
Scale Context Fusion Network. In Proceedings of the 1st Annual International Con-
ference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous
’04), volume 00, pages 246-255, Los Alamitos, CA, USA, 2004. IEEE Computer

Society.

Peter Y. Chen and Paula M. Popovich. Correlation: Parametric and Nonparametric

Measures. Sage Publications Inc, 2002.

Keith Cheverst, Nigel Davies, Keith Mitchell, and Adrian Friday. Experiences of

Developing and Deploying a Context-Aware Tourist Guide: The GUIDE Project.

204

[25]

[26]

27]

28]

[29]

[30]

[31]

32|

[33]

[34]

In Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking (MobiCom ’00), pages 20-31, New York, NY, USA, 2000. ACM

Press.

Keith Cheverst, Nigel Davies, Keith Mitchell, and Adrian Friday. Using and Deter-
mining Location in a Context-Sensitive Tour Guide. IEEE Computer, 34(8):35 41,
August 2001.

Keith Cheverst, Nigel Davies, and Keith Mitchell. A Reflective Study of the GUIDE
System. In Barbara Schmidt-Belz and Keith Cheverst, editors, Proceedings of the
1st Workshop on Mobile Tourism Support, pages 17 23, 2002.

John A. Clark, Richard F. Paige, Fiona A.C. Polack, and Phillip J. Brooke, editors.

Security in Pervasive Computing: Third International Conference, 2006. Springer.

Siobhan Clarke and Cormac Driver. Context-Aware Trails. IEEE Computer, 37
(8):97 99, August 2004.

Jon A. Cockle. Orchestrate. Online; accessed 11-September-2006. http://www.

orchestratehq.com/.

Bristol Ferry Boat Company. Online; accessed 14-November-2006. http://www.

bristolferryboat.co.uk.

Marshall J. Cook. Time Management: Proven Techniques for Making the Most of
Your Valueable Time. Adams Media Corporation, 1998.

William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander
Schrijver. Combinatorial Optimization. John Wiley & Sons, 1997.

Nigel Davies, Keith Cheverst, Keith Mitchell, and Adrian Friday. Caches in the
Air: Disseminating Tourist Information in the GUIDE System. In Proceedings of
the 2nd IEEE Workshop on Mobile Computing Systems and Applications. IEEE
Computer Society Press, 1999.

Dextronet. Daily To-Do List. Online; accessed 11-September-2006. http://www.

dextronet.com/daily-to-do-1list.php.

205

[35]

[36]

37|

[38]

[39]

|40]

[41]

42|

43|

Anind K. Dey and Gregory D. Abowd. CybreMinder: A Context-Aware System
for Supporting Reminders. In Proceedings of the 2nd international symposium on
Handheld and Ubiquitous Computing (HUC '00), pages 172 186, London, UK, 2000.

Springer-Verlag.

Anind K. Dey and Gregory D. Abowd. Towards a Better Understanding of Con-
text and Context-Awareness. Technical Report TR2000-381, Georgia Institute of

Technology, College of Computing, 1999.

Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. iCAP: Interactive
Prototyping of Context-Aware Applications. In Proceedings of the 4th International
Conference on Pervasive Computing (PERVASIVE 2006). Springer, 2006.

Cormac Driver, Eamonn Linehan, Mike Spence, Shiu Lun Tsang, Laura Chan, and
Siobhén Clarke. Facilitating Dynamic Schedules for Healthcare Professionals. In
Proceeding of 1st International Conference on Pervasive Computing Technologies

for Healthcare. IEEE, 2006.

Keith Edwards, Victoria Bellott, Anind K. Dey, and Mark Newman. Stuck in the
Middle: The Challenges of User-Centered Design and Evaluation for Middleware. In
Gilbert Cockton and Panu Korhonen, editors, Proceedings of the SIGCHI conference
on Human Factors in Computing Systems (CHI ’03). ACM Press, 2003.

Mohamed Fayed and Douglas C. Schmidt. Object-Oriented Application Frame-

works. Communications of the ACM: Special Issue on Object-Oriented Frameworks,

40:32 38, 1997.

Bent Flyvbjerg. Five Misunderstandings About Case Study Research. Qualitative
Inquiry, 12(2):219-245, 2006.

Commision for Communications Regulation (ComReg). Irish Communications
Market: Key Data Report, December 2006. Online; accessed 24-January-2007.

http://www.comreg.ie/_fileupload/publications/ComReg0668.pdf.

UMTS Forum. UMTS Forum website. Online; accessed 16-September-2006. http:

//www.umts-forum.org/.

206

|[44] Dennis F. Galletta, Raymond Henry, Scott McCoy, and Peter Polak. Web Site
Delays: How Tolerant are Users? Journal of the Association for Information

Systems, 5(1):1 28, January 2004.

|45 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[46] David Griffiths. A Pragmatic Approach to Spearman’s Rank Correlation Coeffi-
cient. Teaching Statistics, 2:10 13, 1980.

[47] Geoffrey Grosenbach. Rough Underbelly. Online; accessed 11-September-2006.
http://www.roughunderbelly.com/.

[48] Hisashi Handa, Lee Chapman, and Xin Yao. Robust Route Optimization for Grit-
ting/Salting Trucks: A CERCIA Experience. [EEE Computational Intelligence
Magazine, 1(1):6-9, 2006.

[49] Urs Hengartner and Peter Steenkiste. Avoiding Privacy Violations Caused by
Context-Sensitive Services. In Proceedings of the 4th Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom ’06), pages

222 233, Washington, DC, USA, 2006. IEEE Computer Society.

[50] Thomas Hill and Pawel Lewicki. Statistics: Methods and Applications. StarSoft,
2006.

[51] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger, Josef
Altmann, and Werner Retschitzegger. Context-Awareness on Mobile Devices -
the Hydrogen Approach. In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS’03), page 292.1, Washington, DC, USA,
2003. IEEE Computer Society.

[52] Jason I. Hong and James A. Landay. An architecture for privacy-sensitive ubiq-
uitous computing. In Proceedings of the 2nd International Conference on Mobile
Systems, Applications, and Services (MobiSys 04), pages 177-189, New York, NY,
USA, 2004. ACM Press.

207

53]

[54]

[55]

[56]

57|

|58

[59]

[60]

[61]

[62]

|63]

John A. Hoxmeier and Chris DiCesare. System Response Time and User Satis-
faction: An Experimental Study of Browser-based Applications. In Proceedings of
Association of Information Systems Americas Conference (AMCIS 2000), 2000.

Markus C. Huebscher and Julie A. McCann. Simulation Model for Self-Adaptive
Applications in Pervasive Computing. In Proceedings of the 15th International
Workshop on Database and Expert Systems Applications (DEXA ’04), pages 694—
698. IEEE Computer Society, 2004.

IBM. Lotus Notes Email. Online; accessed 11-September-2006. http://www.ibm.

com/software/lotus/.

Apple Computer Inc. iPhone. Online; accessed 24-January-2007. http://www.

apple.com/iphone/.

Novell Incorporated. Novell Evolution. Online; accessed 11-September-2006. http:

//www.gnome.org/projects/evolution/.

Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse: Architecture,

Process and Organization for Business Success. ACM Press Books, 1997.

Martin Jansson. Context Shadow: An Infrastructure for Context Aware Comput-

ing. In Third workshop on Artificial Intelligence in Mobile Systems (AIMS), 2002.

Eric J. Johnson and John W. Payne. Effort and Accuracy in Choice. Management
Science, 31:394 414, 1985.

Ralph E. Johnson. Components, Frameworks, Patterns. In Proceedings of the 1997
Symposium on Software Reusability (SSR '97), pages 10 17. ACM Press, 1997.

Arun Jotshi and Rajan Batta. Finding Robust Paths for Routing Ambulances in
a Dynamic Disaster Environment. In Proceedings of the 13th Annual International

Engineering Research Conference (IERC 2004), 2004.

A. Kamar. Mobile Tourist Guide (m-ToGuide). Deliverable 1.4, Project Final
Report IST-2001-36004, Mobile Tourist Guide Consortium, 2003.

208

|64]

|65]

|66]

67]

|68

[69]

[70]

[71]

Maurice G. Kendall. Rank Correlation Methods. Hafner Publishing Company, New
York, 1955.

Angela Kessell and Christopher Chan. Castaway: a context-aware task management
system. In Fxtended extended abstracts of the 2006 Conference on Human Factors
in Computing Systems (CHI *06), pages 941 946, New York, NY, USA, 2006. ACM

Press.

Emily Boydand Omar Kilani. Remember The Milk. Online; accessed 11-September-

2006. http://www.rememberthemilk.com/.

Barbara Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger. Case Studies for
Method and Tool Evaluation. IEEE Software, 12(4):52-62, 1995. ISSN 0740-7459.

Panu Korpipaa, Esko-Juhani Malm, Ilkka Salminen, Tapani Rantakokko, Vesa
Kyllonen, and Ilkka Kansala. Context management for end user development of
context-aware applications. In Proceedings of the 6th International Conference on
Mobile Data Management (MDM ’05), pages 304 308, New York, NY, USA, 2005.
ACM Press.

Ronny Kramer, Marko Modsching, Joerg Schulze, Marcel Hermkes, and Klaus ten
Hagen. Context driven, adaptive tour computation and information presentation.
In 1st International Workshop on Managing Context Information in Mobile and

Pervasive Environments (MCMP ’05), 2005.

Ronny Kramer, Marko Modsching, and Klaus ten Hagen. Development and Evalua-
tion of a Context-driven, Mobile Tourist Guide. International Journal of Pervasive

Computing and Communication, 1(1), March 2005.

Tsvi Kuflik, Adriano Albertini, Paolo Busetta, Cesare Rocchi, Oliviero Stock, and
Massimo Zancanaro. An Agent-Based Architecture for Museum Visitors’ Guide
Systems. In Proceedings of the 13th International Conference on Information Tech-
nology and Travel and Tourism (ENTER 2006). The International Federation for
IT and Travel & Tourism, January 2006.

209

72|

73]

|74]

|75]

[76]

7]

78]

[79]

[80]

Jussi Lahtinen, Petri Myllymaki, Tomi Silander, and Henry Tirri. Empirical
Comparison of Stochastic Algorithms. In J. Alander, editor, Proceedings of the
2nd Nordic Workshop on Genetic Algorithms and their Applications, pages 45 59.
Vaasa, 1996.

Brian M. Landry, Rahul Nair, Zach Pousman, and Manas Tungare. TaskMinder:
A Context- and User-Aware To-do List Management System. Technical report,
Georgia Institute of Technology, GVU Center, 2003.

Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, and David B.
Shmoys. The Traveling Salesman Problem: A Guided Tour of Combinatorial Op-
timization. John Wiley & Sons, 1985.

Rensis A. Likert. A Technique for the Measurement of Attitudes. Archives of
Psychology, 21(140):5 54, 1932.

Wikipedia. Task list. Online; accessed 10-September-2006. http://en.wikipedia.

org/wiki/Task_list.

Pamela J. Ludford, Dan Frankowski, Ken Reily, Kurt Wilms, and Loren Terveen.
Because I carry my cell phone anyway: functional location-based reminder appli-
cations. In Proceedings of the SIGCHI conference on Human Factors in computing

systems (CHI ’06), pages 889-898, New York, NY, USA, 2006. ACM Press.

Mark M. Maccabee. Client/Server End-to-End Response Time: Real Life Ex-
perience. In Proceeding of the 22nd International Computer Measurement Group

Conference. Computer Measurement Group, 1996.

Jason W. Mann and George D. Smith. Modern Heuristic Search Methods, chap-
ter 14, pages 235 253. John Wiley & Sons, 1996.

Natalia Marmasse and Chris Schmandt. Location-Aware Information Delivery with
ComMotion. In Proceedings of the 2nd international symposium on Handheld and
Ubiquitous Computing (HUC ’00), pages 157-171, London, UK, 2000. Springer-
Verlag.

210

81]

[82]

83

[84]

[85]

[86]

87|

88

189]

190]

|91

A. Maruyama, Naoki Shibata, Yoshihiro Murata, Keiichi Yasumoto, and Minoru
Ito. P-Tour: A Personal Navigation System for Tourism. In Proceedings of the 11th
World Congress on Intelligent Transport Systems, volume 2, pages 18 21, 2004.

Tara Matthews, Hans-Werner Gellersen, Kristof Van Laerhoven, and Anind K. Dey.
Augmenting Collections of Everyday Objects: A Case Study of Clothes Hangers

as an Information Display. In Proceedings of the 2n International Conference on

Pervasive Computing (PERVASIVE 2004), 2004.

Jeffrey Mayer. If You Haven’t Got the Time to Do It Right, When Will You Find
Time to Do It Over? Simon and Schuster, New York, 1990.

Sun Microsystems. Java Micro Edition: Personal Basis Profile. Online; accessed

26-September-2006. http://java.sun.com/products/personalprofile/.

Robert B. Miller. Response Time in Man-Computer Conversational Transactions.

In Fall Joint Computer Conference 33 (part 1), pages 267 277. AFIPS Press, 1968.

Ricardo Morla and Nigel Davies. Evaluating a Location-Based Application: A
Hybrid Test and Simulation Environment. IEEE Pervasive Computing, 3(3):48-
56, 2004. ISSN 1536-1268.

Brad A. Myers. The importance of percent-done progress indicators for computer-
human interfaces. In Proceedings of the SIGCHI conference on Human factors in

computing systems (CHI ’85), pages 11 17, New York, NY, USA, 1985. ACM Press.

Fui Hoon Nah and Kihyun Kim. Managing Web-enabled Technologies in Organi-
zations: a global perspective, chapter 7, pages 146-161. Idea Group Publishing,
Hershey, PA, USA, 2000.

Jakob Nielsen. Usability Engineering. Academic Press Inc., 1993.

Jakob Nielsen. Response Times: The Three Important Limits. Online; accessed

02-October-2006. http://www.useit.com/papers/responsetime.html.

Gottfried E. Noether. The Best of Teaching Statistics, chapter 4, pages 41-43. The
Teaching Statistics Trust, Nottingham, England, UK, 1986.

211

92|

193]

|94]

195]

[96]

197]

98]

[99]

[100]

Wikipedia. List of mobile network operators of Europe. Online; accessed 25-
January-2007. http://en.wikipedia.org/wiki/List_of_mobile_network_

operators_of_Europe.

Eleanor O’Neill, Martin Klepal, David Lewis, Tony O’Donnell, Declan O’Sullivan,
and Dirk Pesch. A Testbed for Evaluating Human Interaction with Ubiquitous
Computing Environments. In Proceedings of the 1st International Conference on
Testbeds and Research Infrastructures for the DEvelopment of Ne Tworks and COM-
munities (TRIDENTCOM’05), pages 60 69. IEEE Computer Society, 2005.

Microsoft Corporation. Microsoft Outlook. Online; accessed 11-September-2006.

http://www.microsoft.com/outlook/.

Steven J. Parrillo and Fred G. Wenger. Time Management for the Academic Emer-
gency Physician. eMedicine Clinical Knowledge Database, 2006. Online; accessed

11-September-2006. http://www.emedicine.com/EMERG/topic673.htm.

John W. Payne, James R. Bettman, and Eric J. Johnson. The Adaptive Decision
Maker. Cambridge University Press, 1993.

PocketGear.com. Tree ToDo List. Online; accessed 11-September-2006. http:

//www .pocketgear.com/.

Stefan Poslad, Heimo Laamanen, Rainer Malaka, Achim Nick, Phil Buckle, and
Alexander Zipf. CRUMPET: creation of user-friendly mobile services personalised

for tourism. In Proceedings of the 2nd International Conference on 3G Mobile

Communication Technologies (3G 2001), pages 28 32, 2001.

Jeffrey S. Poulin. Measuring Software Reuse: Principles, Practices, and Fconomic

Models. Addison-Wesley Professional, 1996.

Wolfgang Pree. Meta Patterns - A Means For Capturing the Essentials of Reusable
Object-Oriented Design. In Proceedings of the 8th European Conference on Object-
Oriented Programming (ECOOP ’94), pages 150-162, London, UK, 1994. Springer-
Verlag.

212

[101]

[102]

[103]

[104]

[105]

[106]

107]

108

[109]

[110]

Microsoft. Microsoft Office Project. Online; accessed 23-January-2007. http://

www.microsoft.com/project.

Mika Raento and Antti Oulasvirta. Privacy Management for Social Awareness
Applications. In Proceedings of the workshop on Contexrt Awareness for Proactive

Systems (CAPS 2005), pages 105 114. Helsinki University Press, 2005.

Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu Toivonen. ContextPhone:
A Prototyping Platform for Context-Aware Mobile Applications. IEEE Pervasive
Computing, 04(2):51-59, 2005. ISSN 1536-1268.

IMS Research. GPS Positioned for Mass Cellular Uptake. IMS Research, October
2006.

Ben Clayton Richard Hull and Tom Melamed. Rapid Authoring of Mediascapes.
In UbiComp 2004: Ubiquitous Computing: 6th International Conference, Lecture
Notes in Computer Science, pages 125 142. Springer, 2004.

Don Roberts and Ralph Johnson. ACM Pattern Languages of Program Design 3,
chapter Evolving Frameworks: A Pattern Language for Developing Object-Oriented
Frameworks, pages 471 486. Addison-Wesley Longman Publishing Co., Inc., 1996.

Manuel Romén, Christopher K. Hes, Renato Cerqueira, Anand Ranganathan,
Roy H. Campbell, and Klara Nahrstedt. Gaia: A Middleware Infrastructure to
Enable Active Spaces. IEEE Pervasive Computing, 1(4):74-83, Oct—Dec 2002.

Peter Ruppel, Georg Treu, Axel Kiipper, and Claudia Linnhoff-Popien. Anonymous
User Tracking for Location-based Community Services. In Proceedings of the 2nd
International Workshop on Location and Context-Awareness (LoCa 2006), pages
116 133. Springer-Verlag, 2006.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, second international edition edition, 2003.

Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit: Aiding
the Development of Context-Enabled Applications. In CHI ’99: Proceedings of the

213

[111]

112]

[113]

[114]

[115]

|116]

[117]

[118]

SIGCHI conference on Human factors in computing systems, pages 434-441. ACM
Press, 1999.

Mahadev Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE
Personal Commaunications, 8(4):10 17, 2001.

Bill Schilit, Norman Adams, and Roy Want. Context-Aware Computing Applica-
tions. In Proceedings of the Workshop on Mobile Computing Systems and Applica-
tions, pages 85 90, Santa Cruz, CA, US, 1994. IEEE Computer Society.

Barbara Schmidt-Belz, Heimo Laamanen, Stefan Posland, and Alexander Zipf.
Location-based Mobile Tourist Services — First User Interaction. In Proceedings
of 10th International Conference on Information and Communication Technology

in Tourism (ENTER 2003). Springer Computer Science, 2003.

Jean Scholtz and Sunny Consolvo. Toward a Framework for Evaluating Ubiquitous

Computing Applications. IEEE Pervasive Computing, 3(2):82-88, 2004.

Wieland Schwinger, Christoph Griin, Birgit Préll, Werner Retschitzegger, and An-
drea Schauerhuber. Context-awareness in Mobile Tourism Guides - A Comprehen-

sive Survey. Technical report, Vienna University of Technology, 2005.

Learning Commons Fast Facts Series. Making a Task List. The Learning Com-
mons, University of Guelph, Canada, 2004. Online; accessed 11-September-2006.
http://www.learningcommons.uoguelph.ca/ByFormat/OnlineResources/
OnlineFastfacts/OnlinelLearningFastfacts/Fastfacts-MakingTaskList.

html.

Takayuki Shiraishi, Munenobu Nagata, Naoki Shibata, Yoshihiro Murata, Keiichi
Yasumoto, and Minoru Ito. A Personal Navigation System with a Schedule Planning
Facility Based on Multi-Objective Criteria. In Second International Conference on

Mobile Computing and Ubiquitous Networking. Information Processing Society of

Japan, 2005.

Daniel Siewiorek, Asim Smailagic, Junichi Furukawa, Andreas Krause, Neema

Moraveji, Kathryn Reiger, Jeremy Shaffer, and Fei Lung Wong. SenSay: A Context-

214

[119]

[120]

[121]

[122]

[123]

[124)

[125]

[126]

Aware Mobile Phone. In Proceedings of the 7th IEEE International Symposium on
Wearable Computers (ISWC ’03), page 248, Washington, DC, USA, 2003. IEEE
Computer Society.

Pollen Software. Task-O-Matic. Online; accessed 11-September-2006. http://www.

pollensoftware.com/task-o-matic/index.html.

Timothy Sohn, Kevin A. Li, Gunny Lee, lan E. Smith, James Scott, and William G.
Griswold. Place-Its: A Study of Location-Based Reminders on Mobile Phones.
In Proceedings of the 7th International Conference on Ubiquitous Computing (Ubi-
Comp 2005), Lecture Notes in Computer Science, pages 232-250. Springer, Septem-
ber 2005.

Charles Spearman. The Proof and Measurement of Association Between Two

Things. American Journal of Psychology, 15:72 101, 1904.

Wikipedia. Kendall tau rank correlation coefficient. Online; accessed 20-October-
2006. http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_

coefficient.

Klaus ten Hagen, Ronny Kramer, Marcel Hermkes, Bjorn Schumann, and Patrick
Miiller. Semantic Matching and Heuristic Search for a Dynamic Tour Guide. In
Proceedings of the 12th International Conference on Information and Communica-

tion Technology in Tourism (ENTER 2005). Springer-Verlag, 2005.

Klaus ten Hagen, Marko Modsching, and Ronnie Krammer. A Location Aware
Mobile Tourist Guide Selecting and Interpreting Sights and Services by Context
Matching. In Proceeding of the 2nd International conference on Mobile and Ubiq-
uitous Systems (MobiQuitous '05), pages 293-304. IEEE Computer Society, 2005.

Mozilla Corporation. Mozilla Thunderbird. Online; accessed 11-September-2006.

http://www.mozilla.com/thunderbird.

Omesh Tickoo, Satish Raghunath, and Shivkumar Kalyanaraman. Route Fragility:
A Novel Metric for Route Selection in Mobile Ad Hoc Networks. In Proceedings of

215

127

[128]

[129]

[130]

[131]

[132]

[133]

[134]

135

the 11th IEEE International Conference on Networks (ICON 2003), pages 537-542.
IEEE, 2003.

Edward P.K Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

Detlov von Winterfeld and Ward Edwards. Decision Analysis and Behavioral Re-

search. Cambridge University Press, 1986.

Wallnote. Wallnote. Online; accessed 11-September-2006. http://www.wallnote.

com/.

Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The Active
Badge System. ACM Transactions on Information Systems (TOIS), 10(1):91-102,
1992. ISSN 1046-8188.

Mark Weiser. The Computer for the 21st Century. SIGMOBILE Mobile Computing
and Communications Review, 3(3):3 11, 1999. ISSN 1559-1662.

Mark Weiser. Some Computer Science Issues in Ubiquitous Computing. Commu-

nications of the ACM, 36(7):75 84, 1993. ISSN 0001-0782.

Morris Williams, Constance Fleuriot, John Reid, Richard Hull, Keri Facer, and
Owain Jones. Mobile Bristol: A New Sense Of Place. In Peter Ljungstrandand
and Lars Erik Holmquist, editors, Adjunct Proceedings of the 4th International
Conference on Ubiquitous Computing (UBICOMP 2002), pages 27 28. Viktoria
Institute, Goteborg, Sweden, September 2002.

Jens Wohltorf, Richard Cissée, Andreas Rieger, and Heiko Scheunemann. Berlin-
Tainment - An Agent-Based Serviceware Framework for Context-Aware Services.

In Proceedings of the 1st International Symposium on Wireless Communication

Systems (ISWCS 2004). IEEE, September 2004.

Jens Wohltorf, Richard Cissée, and Andreas Rieger. BerlinTainment: an agent-
based context-aware entertainment planning system. Communications Magazine,

43(6):102 109, June 2005.

216

136

[137]

Jiyong Zhang and Pearl Pu. Survey of Solving Multi-Attribute Decision Problems.
Technical Report 1C/2004/54, Swiss Federal Institute of Technology, Lausanne,
Switzerland, June 2004.

Feng Zhu, Matt W. Mutka, and Lionel M. Ni. The Master Key: A Private Authen-
tication Approach for Pervasive Computing Environments. In Proceedings of the 4th
Annual IEEE International Conference on Pervasive Computing and Communica-
tions (PerCom ’06), pages 212-221, Washington, DC, USA, 2006. IEEE Computer
Society.

217

