
An Application Framework for Mobile, Context-AwareTrails
Cormac Driver

A thesis submitted to the University of Dublin, Trinity Collegein partial ful�llment of the requirements for the degree ofDoctor of Philosophy (Computer Science)
April 2007

Declaration
I, the undersigned, declare that this work has not previously been submitted to this orany other University, and that unless otherwise stated, it is entirely my own work. I agreethat Trinity College Library may lend or copy this thesis upon request.

Cormac DriverDated: April 26, 2007

Acknowledgements
Firstly I would like to thank my supervisor Dr. Siobhán Clarke for her guidance, en-couragement and support over the years. I have learned a great deal from working withher.I also had the pleasure of working alongside Éamonn Linehan, Mike Spence and ShiuLun Tsang on the Hermes project; their insightful views on my work were and are muchappreciated.I would like to thank my academic colleagues and friends in the Distributed SystemsGroup for making it a pleasure to be part of this unique research environment.Thank you to my parents, brothers and other family members for their constantsupport with all of my academic endeavours over the years.Finally, thanks to my wife for everything she has done to help me with this, she knowsexactly what it is and I appreciate it.
Cormac DriverUniversity of Dublin, Trinity CollegeApril 2007

iii

Abstract
Time management strategies for planning and scheduling activities increase the e�ective-ness of either personal or corporate time use. Supporting techniques are commonly basedaround the use of prioritised to-do lists. While the use of to-do lists for time managementis bene�cial, their static nature reduces their e�ectiveness in dynamic environments whereusers are mobile and activity properties can change over time. The prioritised orderingof a carefully considered, prede�ned to-do list can quickly become obsolete as its ownerbegins addressing activities and unforeseen events occur.Mobile, context-aware computing is a computing paradigm in which small, portabledevices such as Personal Digital Assistants (PDAs) and smart phones have access toinformation, known as context, about the situation in which they are being used anddynamically adapt application behaviour as appropriate. This paradigm facilitates auto-matic adaptation of a mobile user's schedule so that it accurately re�ects the reality inwhich the user exists and maintains utility despite the occurrence of unforeseen events.Automatic, context-based schedule adaptation is at the core of a wide range of applica-tions for the mobile user who has a set of activities that may or should be carried outthroughout the day at di�erent locations.Implementing a mobile, context-aware activity scheduling application requires ad-dressing two common challenges. Firstly, an application must be capable of automaticallyordering a list of activities in an e�ective manner with respect to relevant context. Exist-ing approaches to mobile, context-based activity ordering are constrained in the numberof activities they can cope with or are server-based and subject to wireless network dis-connection. Secondly, an application must be capable of identifying when it is necessaryto reorder a list of activities to ensure that the list order maintains utility in the face ofcontext change. Techniques for identifying when it is necessary to reorder a list of activi-iv

ties are generally based on periodically assessing the ordering, resulting in the possibilityof an activity ordering becoming temporarily out of sync with the user's reality. To date,mobile, context-based activity scheduling applications have typically been designed andimplemented in an application-speci�c manner - mostly as research prototypes. Conse-quently, developers have had to repeatedly tackle the challenges inherent to this class ofapplication.This thesis describes an application framework for the development of mobile, context-aware trails-based applications. A trail is a contextually scheduled collection of activitiesand represents a generic model that can be used to satisfy the activity managementrequirements of a wide range of context-based activity scheduling applications. Theframework supports developers by providing a generic, extensible implementation of thetrails model. Structure and behaviour common to mobile, context-aware trails-basedapplications is provided, supporting context-based activity schedule composition (trailgeneration), identi�cation of whether or not schedule reordering is required followingcontext change (recon�guration point identi�cation) and subsequent automatic schedulereordering as appropriate (trail recon�guration).The framework is evaluated through the development of three case study applications.The case studies illustrate how the framework can be reused and extended to support thedevelopment of a range of mobile, context-aware trails-based applications with di�eringrequirements. In addition, results of empirical experiments conducted to assess the re-sponsiveness of the trail generation implementation, the accuracy of the recon�gurationpoint identi�cation mechanism and human satisfaction with computer-generated trailsare presented.

v

Publications Related to this Ph.D.Cormac Driver, Éamonn Linehan, Mike Spence, Shiu Lun Tsang, Laura Chan andSiobhán Clarke. Facilitating Dynamic Schedules for Healthcare Professionals. In Pro-ceedings of the 1st International Conference on Pervasive Computing Technologies forHealthcare, Innsbruck, Austria, 2006. IEEE.Cormac Driver, Éamonn Linehan and Siobhán Clarke. A Framework for Mobile,Context-Aware Trails-based Applications: Experiences with an Application-led Approach.In Workshop 1 - �What Makes for Good Application-led Research in Ubiquitous Comput-ing?�, 3rd International Conference on Pervasive Computing (PERVASIVE 2005), Mu-nich, Germany, 2005.Mike Spence, Cormac Driver and Siobhán Clarke. Sharing Context History in Mobile,Context-Aware Trails-based Applications. In 1st International Workshop on ExploitingContext Histories in Smart Environments, 3rd International Conference on PervasiveComputing (PERVASIVE 2005), Munich, Germany, 2005.Éamonn Linehan, Cormac Driver and Siobhán Clarke. Route Generation for Adapt-able Trails-based Applications. In 3rd UK-UbiNet Workshop, University of Bath, UK,2005.Mike Spence, Cormac Driver and Siobhán Clarke. Collaborative Context in Mobile,Context-Aware Trails-based Applications. In 3rd UK-UbiNet Workshop, University ofBath, UK, 2005.Cormac Driver and Siobhán Clarke. Hermes: Generic Designs for Mobile, Context-Aware Trails-based Applications. In Workshop on Context Awareness, 2nd InternationalConference on Mobile Systems, Applications, and Services (MobiSys 2004), Boston, USA,2004.
vi

Cormac Driver and Siobhán Clarke. Hermes: A Software Framework for Mobile,Context-Aware Trails. In 1st International Workshop on Computer Support for HumanTasks and Activities, 2nd International Conference on Pervasive Computing (PERVA-SIVE 2004), Vienna, Austria, 2004.Siobhán Clarke and Cormac Driver. Context-Aware Trails. IEEE Computer, 37(8):97-99, August, 2004.

vii

Contents
Acknowledgements iiiAbstract ivPublications Related to this Ph.D. viList of Figures xvList of Tables xviiList of Listings xviiiChapter 1 Introduction 11.1 Time Management . 11.2 Mobile Context-Aware Computing . 31.3 Trails . 31.3.1 The Hermes Project . 51.4 Challenges . 61.4.1 Trail Generation . 61.4.2 Trail Recon�guration Point Identi�cation 81.4.3 Lack of Reusable Software . 91.5 The Application Framework . 91.6 Contribution . 111.7 Roadmap . 12

viii

Chapter 2 State of the Art 142.1 Mobile, Context-Aware Tourist Guides 142.1.1 GUIDE . 152.1.1.1 Trail Generation . 162.1.1.2 Recon�guration Point Identi�cation 162.1.1.3 Developer Support . 162.1.2 P-Tour . 172.1.2.1 Trail Generation . 182.1.2.2 Recon�guration Point Identi�cation 182.1.2.3 Developer Support . 212.1.3 Dynamic Tourist Guide . 212.1.3.1 Trail Generation . 222.1.3.2 Recon�guration Point Identi�cation 222.1.3.3 Developer Support . 232.1.4 Cyberguide . 242.1.5 LoL@ . 252.1.6 CRUMPET . 252.1.7 m-ToGuide . 262.1.8 Hypermedia Tour Guide . 272.1.9 Summary . 272.2 Context-Aware To-do Lists . 302.2.1 TaskMinder . 302.2.2 CybreMinder . 322.2.3 comMotion . 322.2.4 PlaceMail . 332.2.5 Place-Its . 342.2.6 Castaway . 352.2.7 Summary . 362.3 Mobile, Context-Aware Application Frameworks 362.3.1 Mobile Bristol . 372.3.2 Stick-e Note . 39ix

2.3.3 BerlinTainment . 402.3.4 PEACH . 432.3.5 HyCon . 452.3.6 iCAP . 472.3.7 Summary . 482.4 Context-Awareness Frameworks . 492.5 Chapter Summary . 51Chapter 3 Design 533.1 Design Approach . 543.1.1 Initial High-Level Framework Design 553.1.2 Context Acquisition and Modelling in Hermes 573.1.2.1 Communication and Service Discovery 583.1.2.2 Message Types and Message Processing 603.1.2.3 Context Modelling . 613.1.2.4 Summary . 623.1.3 Application 1: Oisín Goes to Trinity 633.1.3.1 Trail Generation in Oisín 653.1.3.2 Recon�guration Point Identi�cation in Oisín 673.1.3.3 Summary . 693.1.4 Application 2: RiddleHunt . 693.1.4.1 Trail Generation in RiddleHunt 713.1.4.2 Recon�guration Point Identi�cation in RiddleHunt . . . 753.1.4.3 Summary . 763.2 Application Framework . 773.2.1 Response Time . 783.2.2 Multi-Attribute Utility Theory 803.2.3 Trail Generation . 833.2.3.1 Completed Activities . 843.2.3.2 Impossible Activities . 843.2.3.3 Clashing Activities . 85x

3.2.3.4 The Relevant and Irrelevant Sets 873.2.3.5 Trail Ordering . 893.2.3.6 Reusability and Extensibility 913.2.3.7 Summary . 933.2.4 Recon�guration Point Identi�cation 933.2.4.1 Di�erences in Set Membership 943.2.4.2 Di�erences in Relevance Rankings 953.2.4.3 Reusability and Extensibility 973.2.4.4 Summary . 983.3 Chapter Summary . 98Chapter 4 Implementation 994.1 Application Framework Overview . 1004.2 Trail/Activity Speci�cation . 1034.2.1 Trail Persistence . 1054.2.2 Extensibility . 1074.3 Trail Generation . 1084.3.1 The reconfigure() method . 1094.3.2 Extensibility . 1144.4 Recon�guration Point Identi�cation . 1164.4.1 Extensibility . 1204.5 Con�guration �les . 1214.5.1 Extensibility . 1254.6 Chapter Summary . 126Chapter 5 Evaluation 1275.1 Framework Reusability and Extensibility 1285.1.1 Day Planner . 1305.1.1.1 Implementation . 1305.1.1.2 Analysis . 1355.1.2 Music Festival Trail . 1365.1.2.1 Implementation . 136xi

5.1.2.2 Adding a new context source 1375.1.2.3 Adding a new activity attribute 1385.1.2.4 Using the new behaviour 1385.1.2.5 User Interface . 1395.1.2.6 Analysis . 1395.1.3 Theme Park Trail . 1405.1.3.1 Implementation . 1415.1.3.2 Adding a new context source 1425.1.3.3 Adding a new activity attribute 1435.1.3.4 Adding new activity comparators 1435.1.3.5 Adding a new evaluation function 1445.1.3.6 Using the new behaviour 1445.1.3.7 User Interface . 1445.1.3.8 Analysis . 1455.1.4 Summary . 1465.2 Trail Generation and Recon�guration . 1475.2.1 Trail Generation - Activity Scheduling 1495.2.1.1 Brute Force . 1505.2.1.2 Genetic Algorithm . 1505.2.1.3 Simulated Annealing . 1515.2.1.4 Analysis . 1525.2.2 Trail Generation - Activity Consideration 1545.2.2.1 Results . 1545.2.2.2 Analysis . 1545.2.3 Recon�guration Point Identi�cation Accuracy 1555.2.3.1 Day Planner Results . 1575.2.3.2 Music Festival Results 1575.2.3.3 Theme Park Results . 1615.2.3.4 Analysis . 1615.3 Trail Quality . 1635.3.1 Trail Quality Experiment Results 166xii

5.3.2 Analysis . 1675.4 Chapter Summary . 169Chapter 6 Conclusions and Future Work 1716.1 Achievements . 1716.2 Perspective . 1746.3 Future Work . 1766.3.1 Distributed Trail Generation . 1776.3.2 Trail Robustness . 1776.3.3 Activity Dependencies and Constraints 1786.4 Chapter Summary . 179Appendix A User Study Results 180A.1 Oisín goes to Trinity - User Study Results 180Appendix B Further Implementation Detail 182B.1 GPS Location Context . 182Appendix C Trail Quality Experiment Materials 187C.1 Information Sheets . 187C.1.1 Group 1 . 187C.1.2 Group 2 . 188C.2 Activity Scheduling Problems . 190C.2.1 Activity Scheduling Problem Legend 190C.2.2 Example Problem . 191C.2.3 Example Solution . 192C.2.4 Group 1: Problem 1 . 193C.2.5 Group 1: Problem 2 . 194C.2.6 Group 1: Solution 1 . 195C.2.7 Group 1: Solution 2 . 196C.2.8 Group 2: Solution 1 . 197C.2.9 Group 2: Solution 2 . 198C.2.10 Group 2: Problem 1 . 199xiii

C.2.11 Group 2: Problem 2 . 200C.3 Questionnaire . 201Bibliography 202

xiv

List of Figures
1.1 The Hermes Architecture . 52.1 Recon�guration point identi�cation in P-Tour [117] 202.2 Separation between authoring tool and device-speci�c implementation [105] 382.3 BerlinTainment framework architecture [135] 412.4 The HyCon framework architecture [17] 462.5 The conceptual framework for context-aware systems [9] 503.1 Ad hoc communication and service discovery in Hermes 593.2 Hermes context model top level hierarchy and examples 623.3 Screen shots of the Oisín graphical user interface on the Zaurus 643.4 High-level design of trails behaviour in Oisín 663.5 Screen shots of the recon�guration menu and edit screen in Oisín 683.6 The activities in the set X and the player location 723.7 Identi�cation of the members of set Y 733.8 High-level design of trails behaviour in RiddleHunt 743.9 Context-based activity set reduction . 853.10 The trail generation process . 864.1 High-level application framework class diagram 1004.2 The Trail and Activity classes . 1044.3 High-level sequence of actions in trail generation 1084.4 Interactions between classes in the trail generation implementation . . . 1105.1 The text-based display produced for the day planner application 134xv

5.2 The framework extensions facilitating the music festival application . . . 1375.3 The text-based display produced for the music festival application 1395.4 The framework extensions facilitating the theme park application 1425.5 The text-based display produced for the theme park application 1455.6 Brute force trail generation response times 1505.7 Simulated annealing trail generation response times 1515.8 Results of the activity consideration experiment 1555.9 Day planner results with τ = 0.95 (top) and τ = 0.85 (bottom) 1585.10 Music festival results with τ = 0.95 (top) and τ = 0.85 (bottom) 1595.11 Theme park results with τ = 0.95 (top) and τ = 0.85 (bottom) 1605.12 An activity scheduling problem given to trails experiment subjects 165B.1 GPS location context class diagram . 183C.1 Activity scheduling problem legend . 190C.2 Example activity scheduling problem . 191C.3 Example activity scheduling problem solution 192C.4 Group 1: Activity scheduling problem 1 193C.5 Group 1: Activity scheduling problem 2 194C.6 Group 1: Activity scheduling problem solution 1 195C.7 Group 1: Activity scheduling problem solution 2 196C.8 Group 2: Activity scheduling problem solution 1 197C.9 Group 2: Activity scheduling problem problem 2 198C.10 Group 2: Activity scheduling problem 1 199C.11 Group 1: Activity scheduling problem 2 200C.12 The activity scheduling problem solution validation questionnaire 201

xvi

List of Tables
2.1 Summary of mobile, context-aware activity scheduling support 283.1 Trail evaluation dimensions (on a scale from 0-100) and sample data . . . 823.2 Activity evaluation dimensions for clash resolution and sample data . . . 873.3 Activity evaluation dimensions for relevance and sample data 883.4 The relevant set and the existing trail ranked by relevance 955.1 Explanation of extensions necessitated by the music festival application . 1405.2 Explanation of extensions necessitated by the theme park application . . 1465.3 Results of the recon�guration point identi�cation experiment 1615.4 Further investigation of the trials with τ = 0.95 1625.5 Trail quality experiment timing results 1675.6 Trail quality experiment solution validation results 1685.7 Trail quality experiment solution quality results 169

xvii

List of Listings
4.1 An example activity speci�cation . 1054.2 The update() method in the ReconfigurationEngine class 1094.3 The reconfigure() method in the ReconfigurationEngine class 1094.4 Calculating activity priority value in the MAUTRelevanceComparator class 1124.5 The evaluation function in the Trail class 1134.6 Excerpt from the reconfigurationRequired() method 1174.7 2nd excerpt from the reconfigurationRequired() method 1184.8 The getKendallValueForReconfig() method 1194.9 The trail.properties �le . 1224.10 The userPreferences.properties �le 1234.11 The normalization.properties �le . 1255.1 Excerpt from the day planner trail.properties �le 1315.2 The userPreferences.properties �le 1325.3 The normalization.properties �le . 133B.1 The doLocationChange() method in the LocationGenerator class . . . 182B.2 The convertToXY() method in the GPSConversion class 185

xviii

Chapter 1
Introduction
There is currently no reusable, extensible software designed to support developers to im-plement mobile, context-aware activity scheduling applications. This thesis describes anapplication framework for mobile, context-aware trails-based applications that eliminatesthe need for developers to readdress common challenges each time they implement an ap-plication of this type. This introductory chapter presents the motivation for investigatingcontext-based time management and introduces mobile, context-aware computing. Thetrails concept is presented, along with a brief introduction to the Hermes project - an um-brella project under which this work was completed. The common challenges in mobile,context-aware activity scheduling are explained along with an overview of the applicationframework and the contribution of this thesis. Finally, a roadmap for the remainder ofthis document is presented.1.1 Time ManagementTime is a special resource in that it cannot be stored and saved for later use - time thatis not used wisely cannot be retrieved. Unfortunately, people are not naturally skilledat managing their time. Many are good at keeping busy and appearing productive asopposed to actually using their time e�ectively [95], with procrastination being the biggestwaster of time [83]. For this reason, tools and techniques for how best to manage time havebeen actively studied for many years [13]. Time management concerns managing time ase�ectively as possible, where e�ective means that the time available is used to complete1

as many activities as possible without procrastinating, with important activities takingprecedence over those of lesser importance. Time management strategies for planningand scheduling time are primarily based around the use of the prioritised to-do list [31].A to-do list is a collection of activities that must be completed during a period of time,with activities crossed o� as they are completed. The activities in the list are generallyscheduled in order of importance but may simply be listed arbitrarily. The bene�ts ofusing to-do lists to manage time include [116]:
• Less likelihood of forgetting even minor tasks.
• Less likelihood of procrastination because there is a realistic idea of the work thatneeds to be done, and the time available to do it.
• Increased �exibility when deciding what to do and when to do it because highpriority tasks are identi�ed.
• A short and long-range view of the work coming up.To-do lists are traditionally created using paper and pen. Numerous software equivalentsare available on a range of hardware platforms, notably desktop computers, laptops,Personal Digital Assistants (PDAs) and mobile phones [5, 34, 97, 119]. Many e-mailclients include task list applications [55, 94, 125, 57] and several web-based task listapplications have been developed [1, 29, 47, 66, 129].While the use of to-do lists for time management is bene�cial, their static naturereduces their e�ectiveness in dynamic environments where users are mobile and activityproperties can change over time. People typically plan their to-do list at a base (typicallyhome or work) and take their list with them to refer to at the places where activities areperformed [77]. The prioritised ordering of a carefully considered to-do list can quicklybecome obsolete as its owner leaves their base and begins addressing activities and unfore-seen events occur. To remain useful, a task system must allow adaptation, in the form ofrescheduling, in the face of unexpected problems. Adaptation also enables opportunitiesto save time spent on irrelevant or less than optimal tasks [76].

2

1.2 Mobile Context-Aware ComputingMobile context-aware computing is a computing paradigm in which applications can dis-cover and take advantage of contextual information (such as user location, time of day,nearby people and computing devices, and user activity) [112]. Mobile computers aregenerally small, portable devices that allow the user to move away from the traditionaldesktop environment while retaining the ability to undertake computing tasks. Mobilecomputing devices include laptops, mobile phones and PDAs. Mobile, context-awarecomputing is based on the ability of mobile computing devices to recognise aspects ofthe situation in which they are being used. This situational information is referred to ascontext and has been de�ned by Dey as �any information that can be used to character-ize the situation of an entity. An entity is a person, place or object that is consideredrelevant to the interaction between a user and an application, including the user and theapplications themselves� [36]. Mobile, context-aware applications automatically adapt todiscovered context by changing their behaviour as appropriate to better suit the user. Ex-ample applications of mobile, context-aware computing include location-aware telephonecall forwarding [130], situation-aware self-managing mobile phones [118], context-awaremedication monitors [4] and weather-aware clothes hanger-based information displays[82]. Mobile, context-aware computing exhibits the key properties necessary to facilitatethe implementation of an activity scheduling application for the mobile user that auto-matically adapts so that it accurately re�ects the reality in which the user exists andmaintains a relevant schedule of activities in the face of emergent, unforeseen events.1.3 TrailsA trail is a contextually scheduled collection of activities and represents a generic modelthat can be used to satisfy the activity management requirements of a wide range ofcontext-based activity scheduling applications for the mobile user [28]. Applications thatuse knowledge of the user's situation to maintain a list of activities that the user mustor should undertake can use the trails model, regardless of the nature of the applicationpresented to the end user. For example, the trails model can support the context-aware3

activity scheduling behaviour in an application for delivery couriers in the same manneras it can in applications used by schoolchildren on a �eld trip to a zoo, tourists visitinga city or museum, doctors in a hospital or music fans at a music festival.Trails are composed of activity speci�cations in a process known as trail generation.An activity includes properties such as its opening hours, whether it is mandatory oroptional, a priority value, a description, a location, and an estimated duration. Trailgeneration involves ordering activities in the most e�ective manner possible based on theactivity properties and context. For example, a person using a trails-based day plannerapplication may start the day by selecting a number of activities to undertake fromtheir database of common activities. Based on activity properties and the context beingconsidered by the application e.g., location, time and user preferences, the applicationwill generate a trail representing the most e�ective activity ordering for the user at thatmoment in time.Trail order is dynamically a�ected by signi�cant changes in the context that is relevantto the trail. This process is known as trail recon�guration and involves re-executing thetrail generation mechanism with the new context data as input in order to �nd themost e�ective trail for the user in the current situation. For example, in a trails-basedapplication for a healthcare professional operating in a hospital environment, receipt ofcontext from a patient heart rate monitor that is deemed to be irregular would causethe user's trail to be recon�gured so that the patient receives attention sooner than hewas scheduled to. Trail recon�guration is triggered following the identi�cation of a trailrecon�guration point i.e., a point at which it is necessary to recon�gure the trail in order toensure that it re�ects the user's reality and maintains utility in the face of context change.For example, in the hospital application described, the reading from the patient heartrate monitoring equipment combined with the knowledge that the other patients on thehealthcare professional's trail were stable, caused the trail to be recon�gured. The processof recognising when a trail needs to be recon�gured is known as trail recon�guration pointidenti�cation.
4

1.3.1 The Hermes ProjectThe Hermes project1 is investigating extensible, generic components for mobile, context-aware applications. The project is concerned with developing components for contextacquisition (infrastructure for obtaining context from sensor devices), collaborative con-text (context information that is obtained via collaboration between a number of sensorsand higher-level devices), context reasoning (deducing new and relevant information fromvarious sources of context-data), context modelling (representing context in a mannerthat makes it accessible to applications) and trail management (dynamically maintaininga schedule of activities based on context).

Figure 1.1: The Hermes ArchitectureThis thesis is concerned speci�cally with the trails management component that pro-vides Hermes-based applications with the ability to support the implementation of ap-plications containing mobile, context-aware activity scheduling behaviour. The Trailscomponent resides beneath the Applications layer in the Hermes architecture illustratedin Figure 1.1 and assumes the availability of the context service below. The context ser-1http://www.dsg.cs.tcd.ie/hermes 5

vice provides the Trails component with context information used for trail generationand recon�guration point identi�cation in an application-usable format.1.4 ChallengesThe implementation of a mobile, context-aware activity scheduling application involvesaddressing two challenges common to this type of application. Firstly, an applicationmust be capable of automatically ordering a list of activities in an e�ective manner withrespect to relevant context (trail generation). Existing approaches to mobile, context-based activity ordering are either constrained in the number of activities they can copewith because of device limitations, or are server-based and subject to wireless networkdisconnection. Secondly, an application must be capable of identifying when it is nec-essary to reorder a list of activities to ensure that the list order maintains utility in theface of context change. A balance is required between avoiding the execution of unnec-essary reordering processing (a resource-intensive task) on a resource-constrained mobiledevice and ensuring the list order is always the `best' one (trail recon�guration pointidenti�cation). Existing techniques for identifying when it is necessary to reorder a list ofactivities are generally based on periodically assessing the ordering. This approach raisesthe possibility of an activity ordering becoming temporarily out of sync with the user'sreality.To date, mobile, context-based activity scheduling applications have typically beendesigned and implemented in an application-speci�c manner. Consequently, developershave had to repeatedly tackle the challenges inherent to this class of application, hin-dering progress in areas that researchers are typically interested in such as applicationdeployment and user evaluation. These challenges are discussed in more detail below.1.4.1 Trail GenerationTrail ordering is a combinatorial optimisation problem similar to the classic TravellingSalesman Problem (TSP) [74]. Combinatorial optimisation problems are those where theset of feasible solutions is discrete and the goal is to �nd the best possible solution byexploring the usually large solution spaces of these problems [32]. The TSP is described6

as follows: Given a collection of cities and the costs of travelling from any city to anyother city, what is the cheapest route that visits all of the cities and returns to the startingpoint? The trail generation problem di�ers from the TSP in that the number of activitiesis variable (based on context) and therefore the solution space can dynamically increaseand decrease in size. Additionally, in the general case, it is not necessary to returnto the starting point to complete a trail. The most obvious solution to combinatorialoptimisation problems is to generate all permutations of the elements in question andrate each permutation against a prede�ned notion of optimality e.g., shortest round-tripdistance in the case of the TSP. However, the number of permutations is n!, where n is thenumber of activities. From a response time perspective this brute force solution becomesimpractical as the number of elements in the set under consideration increases. Experiencewith this approach in a mobile, context-aware activity scheduling application has shownthat it becomes infeasible as the number of activities increases [25]. Therefore, it isnecessary to �nd a satisfactory solution by trading solution quality against applicationresponsiveness. Using approximation algorithms (e.g., heuristic and random number-based approaches) it is possible to achieve solutions with a high probability of beingwithin 2-3% of optimal in a practical amount of time. However, determining what exactlya practical time is on a per-application basis and achieving this level of e�ciency on aresource-constrained mobile device are non-trivial issues.The trail generation problem also compounds the TSP by necessitating a more com-plex evaluation function [109]. An evaluation function quanti�es the optimality of asolution, essentially encoding a human notion of optimality within the trail generationalgorithm. The TSP typically uses the total distance between all cities to assess theworth of a particular permutation of cities. However, when evaluating a trail composedof, for example, activities on a campus, a wider range of factors must be considered.Good general examples of such factors are activity properties (activity opening hours,whether the activity is mandatory or optional, the category of the activity, crowdinglevels at the activity location), the user's current location and user preferences e.g., theactivity priority relative to other activities on the trail. The implementation of the evalu-ation function therefore becomes a multi-attribute utility estimation problem [128], whereweights representing relative importance are assigned to the various attributes considered7

in the evaluation function and a single value for each permutation of activities is pro-duced. This single value can be used in the same manner as the round-trip route distancein the TSP to compare candidate solutions. The additional processing required by theevaluation function a�ects the overall e�ciency of the trail generation algorithm.1.4.2 Trail Recon�guration Point Identi�cationThe ability of a mobile, context-aware activity schedule to re�ect the state of the user'senvironment through the presentation of a consistently e�ective trail is central to itsacceptance by end-users. Trail recon�guration point identi�cation involves identifyingwhen a trail must be recon�gured so that it maintains utility following context change.When a recon�guration point is identi�ed, the trail generation mechanism is re-executedto determine the trail that best serves the user in the new contextual situation. Recon-�guring the trail every time a new context event occurs ensures that the trail alwaysre�ects the user's reality. However, trail generation is a resource-intensive process andrecon�guring the trail every time context changes can critically impact on application per-formance when operating on a resource-constrained mobile device. The ideal situationis one in which the trail is recon�gured only and always when necessary. Unfortunately,it is not possible to fully understand the e�ects a context change will have on a trailwithout recon�guring the trail with the new context data as input. Therefore, a balancemust be realised between avoiding unnecessary recon�guration and ensuring that the trailconsistently re�ects the user's reality.A common approach is to avoid identifying when a trail needs to be recon�gured bysimply recon�guring it periodically [24]. In this technique, an application is programmedto invoke the trail generation mechanism every time a prede�ned period of time passes.When the trail generation mechanism executes, the trail is recon�gured. The trail willthen represent the current state of the user's environment. This avoids repeatedly recon-�guring the trail and negatively impacting application performance. However, there aretwo drawbacks to this approach. Firstly, it gives rise to the possibility that, during theintervals between periodic recon�gurations, context events can occur that cause the trailto become obsolete e.g., an activity that a user is en route to could close unexpectedly.8

Therefore this approach is not suitable for use in applications where signi�cant contextevents may occur more frequently than periodic trail recon�guration. Secondly, periodicrecon�guration occurs regardless of the contextual situation and therefore will executeunnecessarily if the context is the same as, or similar to, the context considered duringthe last recon�guration.1.4.3 Lack of Reusable SoftwareIt is often the case that the primary objective of research e�orts involving mobile, context-aware activity scheduling applications is not speci�cally related to investigating trail gen-eration and recon�guration point identi�cation mechanisms. Evaluating human reactionto mobile, context-aware computing applications [24, 12], investigating new models ofservice delivery in speci�c areas (e.g., tourism) [98, 63, 8], investigating speci�c tech-niques for user preference elicitation [70] and the capabilities of mobile, context-awarehardware [24, 3] are examples of motivating factors that have led to researchers to im-plement mobile, context-aware activity scheduling applications. Such applications havebeen implemented from the ground up without the aid of reusable software to supportdevelopers in tackling the challenges posed by trail generation and recon�guration pointidenti�cation. The main drawbacks of developing applications without framework sup-port are increased development timescales and increased costs [99].Implementing reusable software requires developers to ensure that the componentsthey create are generic and extensible [58]. This requires signi�cantly more developmente�ort than implementing the required components in an application-speci�c manner withas little e�ort as is necessary to support the primary research objectives. For this reason,developers of mobile, context-aware activity scheduling applications have not tackled thechallenge of developing reusable software and have therefore had to repeatedly tackle thecommon challenges.1.5 The Application FrameworkThis thesis describes an application framework for mobile, context-aware trails-basedapplication development. The application framework supports developers by providing9

generic structure and behaviour that addresses the common challenges in mobile, context-aware activity scheduling.A software framework is a reusable implementation of all or part of a software systemexpressed as a set of classes (some abstract) with behaviours de�ning the way in whichinstances of those classes collaborate [106]. The term `application framework' is usedto describe a software framework that constitutes a generic application for a speci�cdomain area [100]. In answer to the challenges presented in Section 1.4, the frameworkprovides reusable and extensible mechanisms for trail generation and recon�guration pointidenti�cation that execute on a mobile device.The framework supports trail generation through context-based activity set reductionand an extensible collection of activity permutation generation mechanisms. Context isused to prune an application's set of theoretically possible activities by removing im-possible, complete and clashing activities. Clashes are resolved based on weighted userpreferences for clash resolution. If a pruned set of activities is too large to be reasonedover in a reasonable response time (de�ned in Chapter 3) the activity set is divided. Themost relevant activities are grouped into a set known as the relevant set (the size ofwhich is de�ned by the developer depending on the desired response time). The remain-ing activities are stored separately and migrate to the relevant set following signi�cantcontext change. Permutations of the activities in the relevant set are evaluated using auser-preference-based evaluation function and a single permutation is composed into atrail. The trail generation mechanism is capable of generating trails that humans considerto be `reasonable'.Trail recon�guration and recon�guration point identi�cation are supported throughthe identi�cation of signi�cant context events and subsequent trail recon�guration thatinvokes the trail generation mechanism. Context event signi�cance is measured by calcu-lating the e�ect that a context event has on the correlation between two sets of activities,where both sets are ranked by relevance. The activity set is ranked by relevance follow-ing a context event and the activities in the current trail are ranked by relevance. Thecorrelation between the two ranked sets is calculated and the context event is classi�ed assigni�cant if the similarity value calculated is below a developer or user de�ned threshold.The framework facilitates developers in implementing mobile, context-aware trails-10

based applications by providing generic, extensible solutions to common trails-relatedissues. This makes the development of these applications more accessible to softwaredevelopers.1.6 ContributionThe application framework described in this thesis contributes to the state of the art inthe area of mobile, context-aware activity scheduling by addressing the following issues:
• Current approaches to trail generation in mobile, context-aware activity schedulingapplications are limited in the number of activities that they can consider due toresponse time requirements. This thesis describes a mobile-device-based trail gen-eration mechanism that uses context-based activity pruning to reduce the numberof activities considered during permutation evaluation. This allows applicationsto include a large number of activities, with activities being considered during thescheduling process based on how relevant they are to the user's current situation.
• Current permutation generation and evaluation mechanisms are implemented in anapplication-speci�c manner, hindering their reuse in subsequent development ef-forts. The application framework described in this thesis provides three approachesto permutation generation as well as an architecture purposely designed to facilitatethe extension of the framework through the addition of new permutation generationapproaches that integrate with the remainder of the framework. Activity permuta-tions are evaluated by a user preference-driven evaluation function.
• Current approaches to trail recon�guration point identi�cation are based on periodictrail reordering. This thesis describes a preference-driven trail recon�guration pointidenti�cation mechanism that address the limitations with periodic recon�gurationby identifying signi�cant context events that necessitate trail recon�guration asthey occur.
• The trail generation and recon�guration point identi�cation approaches in the ap-plication framework are based on an extensible range of user preferences, allowing11

the algorithms to produce user-speci�c results without requiring source code mod-i�cations. Trail generation is extensible through the consideration of additionalcontexts and preferences for activity pruning and activity permutation evaluation,and the speci�cation of additional permutation generation mechanisms. The recon-�guration point identi�cation mechanism is extensible through the consideration ofadditional contexts. Both the trail generation and recon�guration point identi�ca-tion behaviour can be reused regardless of whether or not it has been extended.This thesis describes three main evaluation approaches. First, the contribution as regardsthe reusability and extensibility of the framework is evaluated through the developmentof three case study applications. The case studies illustrate how the framework can bereused and extended to support the development of a range of mobile, context-awaretrails-based applications. Second, results of empirical experiments conducted to assessthe responsiveness of the trail generation implementation and the accuracy of the recon-�guration point identi�cation mechanism are presented. Third, details of an experimentconcerning human satisfaction with the trails generated by the framework are presented.1.7 RoadmapThe reminder of this thesis is organised as follows. Chapter 2 presents an overview of thestate of the art in the areas of mobile, context-aware tourist guides, context-aware to-dolists and application frameworks for mobile, context-aware applications. The discussionof research into mobile, context-aware activity scheduling focuses on how the relatedresearch deals with trail generation and trail recon�guration point identi�cation. Chapter3 describes the design of the application framework for mobile, context-aware trails-basedapplications and Chapter 4 presents implementation detail. In Chapter 5, the frameworkis evaluated by applying it to the development of three mobile, context-aware activityscheduling applications with di�ering requirements, illustrating reuse of, and extensionto, the base application framework. The results of empirical experiments conducted toassess the responsiveness of the trail generation mechanism and the accuracy of the trailrecon�guration point identi�cation mechanism are also presented, along with the results12

of the trail quality experiment. Finally, Chapter 6 concludes and discusses potential areasfor further research.

13

Chapter 2
State of the Art
This chapter assesses research that investigates, to varying degrees, mobile, context-awareactivity scheduling behaviour. The extent to which each of the related projects addressesthe challenges identi�ed in Section 1.4 is discussed. The state of the art in the followingareas is presented:

• Mobile, context-aware tourist guides.
• Context-aware to-do lists.
• Application frameworks for mobile, context-aware computing.A brief overview of context-awareness frameworks in general is also presented.2.1 Mobile, Context-Aware Tourist GuidesTo date, most research into mobile, context-aware activity scheduling has focused ondevelopment of tourist guide applications. However, many of these applications do notsupport dynamic, context-based activity management. Some present the user with astatic tour on a mobile device and track their location, while others use context to gen-erate a tour but o�er no subsequent tour adaptation. In terms of trail generation andrecon�guration point identi�cation, GUIDE [24], P-Tour [81] and the Dynamic TouristGuide (DTG) [70] are the most sophisticated. In addition, Cyberguide [3], LoL@ [8],Crumpet [98], m-ToGuide [63] and the Hypermedia Tour Guide [12] include trails-related14

behaviour such as activity selection based on user preferences, tour provision (albeitstatic), location-based activities and user location tracking. The remainder of this sec-tion reviews these applications and analyses the extent to which they support mobile,context-aware activity scheduling.2.1.1 GUIDEGUIDE is a mobile, context-aware tourist guide application for tourists in the city ofLancaster, UK [24]. GUIDE users can view web-based information related to their currentlocation, access interactive services e.g., accommodation booking systems, and send andreceive messages, enabling groups of tourists to keep in touch while exploring the city.The system also allows users to request a structured city tour by selecting attractionsfrom a prede�ned, categorised set of popular Lancaster attractions. The system, deployedon a mobile device, generates a recommended sequence for visiting the chosen attractionsbased on the user's location (derived from the WiFi base station to which the user isconnected) and the opening and closing times of the attractions. The ordering of thetour can dynamically change based on the user's location and the current time. Toavoid seeming overly authoritarian, the system allows users to manually change the tourordering by selecting the activity they wish to do next, regardless of its place in therecommended tour and the e�ect the decision has on the feasibility of the other activities.The GUIDE developers carried out an extensive user study to validate the concept of usingmobile, context-aware technology to assist users with completing a collection of activities.This user study illustrates that the GUIDE system was successfully deployed, with allusers considering the location-aware navigation and information retrieval mechanismsprovided by the system to be both useful and reassuring. Additionally, the majority ofthe user study subjects said that they were prepared to trust the information presentedby the system, including the navigation instructions. The published lessons learned andexperiences in terms of location context acquisition, information modelling, context-awareuser interface design and context-aware information presentation are valuable to thosewho wish to develop and deploy interactive context-aware systems.
15

2.1.1.1 Trail GenerationGUIDE uses a brute force algorithm to generate the optimal ordering for visiting a setof attractions. This brute force approach systematically enumerates all the possibleattraction orderings and retains the ordering that best satis�es the user's requirementsin terms of visiting the maximum amount of the activities selected for the least cost(in terms of time and walking distance). The resource-intensive nature of this approachlimits GUIDE to a maximum of nine activities if a reasonable response time is required[25]. The developers of the GUIDE system do not specify the response time value thatthey consider to be reasonable.2.1.1.2 Recon�guration Point Identi�cationThe GUIDE system �regularly� calculates whether or not the tour that the user is fol-lowing is appropriate given the current context. A tour can become inappropriate if theuser stays longer than anticipated at an attraction or an attraction announces that itis closing early. The implementation details of this periodic approach to recon�gurationpoint identi�cation are not presented by the GUIDE developers.Periodic recon�guration techniques expose tours to the possibility of becoming out ofsync with the user's reality as described in Section 1.4.2. This issue is exacerbated bythe fact that only positional and temporal context are sensed automatically in GUIDE,meaning that other context events such as changes to activity opening and closing hoursmust be uploaded manually if they are to be considered by the system.2.1.1.3 Developer SupportThe initial objective of the GUIDE project was to investigate the use of wireless broadcastschedules. GUIDE uses a cell-based wireless communications infrastructure to downloadthe attraction information that is displayed to tourists and also to generate tourist loca-tion context (a tourist's location is the WiFi cell server they are currently communicatingwith). This objective evolved once the project began and the focus shifted to exploringthe human factors issues associated with developing a mobile, context-aware tour guideapplication [26]. Although the information model, cell-based wireless communications16

infrastructure and the high-level software architecture have been discussed in GUIDEpublications [33], the provision of application framework support was not a research ob-jective. The trail recon�guration and recon�guration point identi�cation mechanismswere designed in an application-speci�c manner to meet the requirements of the GUIDEsystem, resulting in limited potential for reuse in future development e�orts.2.1.2 P-TourP-Tour is a personal navigation system that allows tourists in Nara, Japan to composea sub-optimal (within 2% of optimal) multi-destination schedule [81]. P-Tour takes thefollowing factors into account when generating a tourist schedule:
• User preferences:� The user-assigned priority for each destination.� The time at which the user wishes to visit each destination.
• The monetary outlay required to visit each destination.
• The user's current location and the location of each destination.
• The destination time restrictions (opening and closing hours).Similar to the GUIDE system, tour destinations in P-Tour are selected from a prede�nedlist. Users can also add their own destinations to the collection of available destinations.The end-user application resides on a mobile device and communicates via WiFi with aremote server that is responsible for tour generation. Routes between the destinationson the tour are illustrated on a map-based user interface. The schedule of destinations isdynamically adapted based on deviation from the route between two tour destinations.The P-Tour system successfully achieves its stated goals of providing multi-destinationschedules based on multiple criteria, navigating the user from destination to destinationand modifying the schedule automatically based on context changes. The use of a heuris-tic approach to tour generation illustrates the feasibility of non-optimal tour generation17

techniques, while the recon�guration point identi�cation technique illustrates how con-text can be used to move beyond simple periodic recon�guration by identifying when atour actually needs to be recon�gured.2.1.2.1 Trail GenerationThe P-Tour client application (residing on a mobile device) communicates, via WiFi, witha remote server that executes a genetic algorithm [109] written in Java. The algorithm iscapable of computing tours of 14 activities to within 2% of optimal in 15.5 seconds. Theapplication limits the number of activities considered so that the application responds tothe user in a timely manner. A genetic algorithm is a guided random search techniqueused to �nd approximate solutions to combinatorial optimisation problems through appli-cation of the principles of evolutionary biology to computer science. Genetic algorithmsuse biologically-derived techniques such as inheritance, mutation, natural selection, andrecombination (or crossover). Candidate solutions are evaluated by means of a �tnessfunction. A �tness function quanti�es the optimality of a solution in a genetic algorithmso that each individual solution may be ranked against all the other candidate solu-tions. The optimal tour for the 14 destinations was also calculated once using an exactalgorithm e.g., brute force, with no time constraints so that the results of the geneticalgorithm could be compared to the known optimal solution.The P-Tour client application residing on the mobile device does not contain anybehaviour to dynamically adapt the user's schedule. In the case of disconnection from thewireless network the application ceases to function as it should and the user experiencesloss of tour maintenance service. The P-Tour algorithm is designed to work on a powerfulserver platform and its performance in terms of response time would be signi�cantlydegraded by migration to a resource-constrained platform such as a PDA or smart phone.2.1.2.2 Recon�guration Point Identi�cationThe P-Tour recon�guration point identi�cation mechanism, introduced as an extension tothe initial application, is based on identifying the geographical area that the user shouldbe in at any point along the tour [117]. The application calculates expected locations fora user by assuming that the user moves at a prede�ned constant speed. P-tour tracks18

the user's location at �regular intervals (for example, every 60 seconds)� and recordstheir current situation. If the user has deviated from the suggested route between twodestinations the negative impact of the deviation is calculated. This value is calculatedas the di�erence between the tour evaluation value for the current tour and the tourevaluation value for the new schedule computed with the delay. If the negative impact issigni�cant a recon�gured tour is displayed to the user (otherwise a warning is displayed).The details of the approach to determining route deviation are illustrated in Figure 2.1and listed below:1. Calculate the expected location of the user xscheduled(t) at time t, assuming that theuser moves at a constant speed.2. Measure the user's actual location xcurrent(t) at time t, using the client's locationsystem.3. Find the location xcurrent_on_road(t) on the route that is nearest to the user's currentlocation xcurrent(t).4. Let errorX be the distance between xcurrent(t) and xcurrent_on_road(t).5. Let errorY be the distance on the route between xscheduled(t) and xcurrent_on_road(t).If the user is going behind schedule errorY is multiplied by -1.The user's situation is de�ned by the values of errorX and errorY as follows (here α(i)is determined by the width of the road i. β and γ are constants determined by how tightthe current schedule is):
• Wrong route: α(i) < errorX
• A little behind scheduled: γ ≤ errorY ≤ β

• Severely behind schedule: errorY < γ

• Ahead of schedule: δ < errorYIn order for this approach to work, the server periodically (at the same interval as itacquires the user's location) recalculates the tour to assess the impact of the deviation.19

Figure 2.1: Recon�guration point identi�cation in P-Tour [117]If there is no delay then the cost of generating the value of the tour with the currentdelay value is incurred unnecessarily. The approach has been evaluated over a distanceof 1.5km, comparing the errorY value with and without the warning facility. The errorYvalue was shown to be -20 with the warning facility in place and -60 without the warningfacility. This result shows that the approach is e�ective at keeping users on schedule.While the recon�guration point identi�cation mechanism employed by P-Tour im-proves on the basic periodic approach introduced by the GUIDE system, it has somelimitations. The time-based periodic element of the mechanism (location is tracked peri-odically) raises the possibility that an important context event could occur between onecontext assessment and the next. This means that the tour can be in a state inconsistentwith the user's reality, without an alert being issued or a recon�guration occurring. Itis unlikely that this would actually be a problem in the P-Tour application where onlylocation context is considered during recon�guration and users on foot cannot move toofar between recon�gurations. However, if this approach was used by applications thatconsider more dynamic contexts (not just user location) it is likely that inconsistenciesbetween the real world and the computer representation would occur. Additionally, theP-Tour recon�guration point identi�cation approach is based on changes in location con-text only and the model does not cater for extension through the addition of non-spatial20

contexts such as changes to activity opening hours, queuing times at attractions andchanges in user preferences.2.1.2.3 Developer SupportThe objective of the P-Tour project was to build on existing applications used in Japanfor single destination navigation by providing a mobile, context-aware system for tourists,who typically want to visit multiple destinations. The application uses an application-speci�c approach to trail generation and recon�guration point identi�cation and does notaim to support developers who wish to reuse the algorithms.2.1.3 Dynamic Tourist GuideThe Dynamic Tourist Guide (DTG) is a mobile agent that selects tourist attractions inGoerlitz, Germany from a prede�ned database (based on elicited user preferences) andplans a tour of these attractions [70]. The user's interest level in the attractions, thetime available for the tour, the attraction opening hours and the user's location are usedto generate a schedule of attractions. The DTG can generate a schedule of 16 activitiesto within 5% of optimal in 5.5 seconds. The DTG provides users with schedules thatserve their needs by being sensitive to their personal interests. The schedules createdby the DTG aid tourist destination management organisations by distributing touristsevenly across a set of geographically dispersed tourist attractions, therefore minimisingqueuing and maximising throughput. The DTG end-user application is deployed on amobile device that communicates via WiFi with a remote tour-generation server. Toursare dynamically recon�gured based a user's progress on a tour, similar to the approachemployed in P-Tour. The DTG developers have designed and evaluated three preferenceelicitation techniques and have illustrated some success with automatically predicting userpreference for a collection of destinations based on elicited preferences. These preferencescan be used to automatically select destinations for tourists to visit, serving the touristby exposing them to destinations they were not aware of and the tourist industry byspreading tourists among attractions, hence reducing crowding at popular attractions.
21

2.1.3.1 Trail GenerationThe DTG is capable of computing a tour composed of 16 activities to within 5% of optimalin a response time of 5.5 seconds [123]. The DTG limits the number of activities on atour so that the response time requirement of 5 seconds can be met. The server-basedagent uses a directed depth-�rst algorithm [109] that incorporates a number of heuristics.Depth-�rst search is an algorithm for traversing a tree (representing the solution space)that starts at the root and explores each branch as far as possible before backtracking.The DTG search algorithm is augmented with a number of heuristics for choosing thebranches that look the most likely to yield a good solution. The heuristics include using anaverage duration estimate for all attractions and trading o� attraction relevance againstthe cost (in time) of traveling to and exploring the attraction. These heuristics, whileincreasing the e�ciency of the algorithm, can result in tours that maximise the numberof attractions, hence achieving a higher overall score (based on the DTG tour evaluationfunction). However, such tours can have a lower average score per attraction, meaningthat tourists may not be that interested in many of the attractions and their favouritesmay be absent.The DTG developers have acknowledged the problem of wireless network disconnec-tion and take advantage of periods of connectivity by using a preloader to cache infor-mation about the forthcoming tour activities. However, there is no tour managementbehaviour on the mobile device that can be used while disconnected. As with the P-Tourtour generation algorithm, the DTG tour generation algorithm is implemented to workon a powerful server platform and cannot be easily migrated to the mobile device-basedclient application.2.1.3.2 Recon�guration Point Identi�cationThe DTG recon�guration point identi�cation mechanism is based on periodically trackinguser progress on a tour. The tour can be adapted by adding activities if the initialactivities are completed ahead of time and by removing activities when the user spendslonger than anticipated at an activity. The authors state that �the permanent trackingof the tour progress considers external in�uences to adapt the tour� [124]. They also22

mention �permanent supervision� of the tour [124] and that the application containsbehaviour to �consistently supervise the ongoing tour� [69]. However, the DTG actuallychecks if recon�guration is required every 3 minutes, similar to the periodic approachused in GUIDE. However, the behaviour that executes periodically is not simply trailreordering as in GUIDE but a method to assess if recon�guration is required. The DTGassesses if the user's current tour progress has caused them to deviate from the initialplan by more than 30 minutes. If this is the case the tour is recon�gured e.g., activitiesare added if the user is ahead of schedule or removed if they are behind schedule.The recon�guration point identi�cation approach improves on that used in GUIDEby adding intelligence to the behaviour that executes periodically, consequently avoidingunnecessary recon�guration. However, by tracking only user progress on the tour (similarto the approach taken by P-Tour) the DTG does not consider other contexts that cana�ect a tour such as changes to activity opening hours or resource expiration e.g., alltickets for a play selling out while a user is en route to the theatre. Additionally, byexecuting the tour comparison behaviour periodically the DTG is subject to the sameissues as GUIDE and P-Tour in terms of tours becoming temporarily out of sync withthe user's reality.The evaluation of the DTG recon�guration point identi�cation mechanism was con-ducted using tours that had durations of between 1 hour and 1.5 hours. The thresholdof 30 minutes proved to be too long relative to the tour durations, resulting in very fewtour adaptations (only 9% of all tours were adapted). This resulted in users followingtours that did not accurately re�ect their reality.2.1.3.3 Developer SupportThe primary objectives of the DTG project concern the investigation of user preferenceelicitation techniques, and the use of pro�le information to compose schedules of activitiesfor users. Developing the trail generation algorithm in a generic and extensible mannerfor use by other developers was not a design concern. This is evidenced by the useof heuristics for search algorithm optimisation. The heuristics used are tailored to thetourism domain and do not generalise to mobile, context-aware activity scheduling ingeneral. For example, it may not be possible to make generalisations about a physician's23

tasks in the way that the DTG makes generalisations about tourist attractions e.g., usinga single activity duration regardless of whether the attraction is a church spire or an artmuseum.2.1.4 CyberguideThe Cyberguide system developed at Georgia Institute of Technology, Atlanta representsthe earliest work on developing a mobile, context-aware system for tourists [3]. Cyber-guide was a major inspiration to the related systems that followed, notably GUIDE.The system does not support activity scheduling but lets the user discover attractionsat di�erent locations by providing a map annotated with the user's location. The Cy-berguide system executes on a mobile device and uses an infrared beacon-based locationservice to position a tourist on a map. The map displays the locations of various demoson display at the Graphics, Visualization, and Usability Center at Georgia Tech. Userscan use the map to guide themselves to the various attractions, and attraction icons areupdated to show that the user has visited them. The outdoor version of the system (Cy-BARguide) utilises the Global Positioning System (GPS) to obtain information data andallows users to view the locations of various bars near the Georgia Tech campus. Userscan make notes about the bars they visit and can also add establishments not alreadypresent in the database.The Cyberguide system did not focus on providing trails to users and therefore itdoes not contain trail generation or recon�guration point identi�cation behaviour in thesame manner as GUIDE, P-Tour and the DTG. However, it did introduce the conceptof allowing a user to navigate through a collection of activities using a mobile device,location tracking system and map-based user interface. Subsequent mobile, context-aware activity scheduling applications, including those that can be developed using theapplication framework described in this thesis, have built on the concepts introduced inthe Cyberguide system.
24

2.1.5 LoL@LoL@, the Local Location Assistant, is a mobile, context-aware tour guide for visitorsto the �rst district of Vienna, Austria [8]. The LoL@ application executes on a mobiledevice and uses a UMTS1-based [43] location service to guide tourists on a static tour,providing them with multimedia information related to the sights they encounter. Thelocation information is used to position users on the map-based interface and guide themto the next point of interest.The application was developed as a prototype UMTS application in an e�ort to pro-vide a UMTS-based location service and therefore the primary focus is not on activityscheduling. The tours provided are prede�ned by the application developers and thereforethe application has no requirement for context-based trail generation or dynamic context-based trail adaptation. LoL@ extends the concepts introduced by the Cyberguide systemby ordering the activities that users can undertake. Additionally, LoL@ further validatesthe concept of using mobile, context-aware technology to assist users in completing a setof activities.2.1.6 CRUMPETThe CRUMPET (CReation of User-friendly Mobile services PErsonalised for Tourism)system provides a tourist attraction recommendation service to users based on their per-sonal interests and current location [113]. The objectives of the CRUMPET project are toimplement and trial tourism-related, value-added services to nomadic users across �xedand mobile networks, and to evaluate agent technology as a suitable approach for creatingnomadic services. The end-user application executes on a mobile device that communi-cates via a wireless network (WiFi or GSM) connection with the remote CRUMPETservices. The user can select an attraction from the list provided by CRUMPET andrequest a tour to this attraction i.e., a route from their current location to the selectedattraction.CRUMPET does not support the creation of multi-attraction tours (trail generation)and therefore does not consider the concept of recon�guration point identi�cation in the1Universal Mobile Telecommunications System 25

same manner as the applications discussed at the beginning of this section. However,CRUMPET illustrates how contexts such as location and user preferences can be used todetermine the set of activities that are relevant to a particular user in a speci�c contextualsituation.2.1.7 m-ToGuidem-ToGuide is a tourist guide application designed for city travellers [63]. The prototypeapplication was developed as part of an industry-led project targeted at the Europeantourism market. The primary objective was to replicate the services of a human tourguide on a mobile device that can be rented to tourists. The application runs on a mobiledevice and communicates via WiFi and GSM/GPRS with the remote m-ToGuide server.The application shows the tourist's location on a map-based interface. Prede�ned pointsof interest are automatically selected from a database based on stereotyped default userpro�les e.g., family, business traveller. The user's pro�le is dynamically updated andre�ned by tracking user behaviour (and subsequently adapting) and through manual userinput. The recommended attractions are then dynamically adapted based on re�nementof the user's pro�le. The application guides users through the points of interest, providingroutes between the attractions. The application also provides a ticketing facility thatallows users to purchase tickets for attractions on their tour.m-ToGuide does not support context-based activity schedule generation and recon�g-uration point identi�cation. The adaptation in m-ToGuide concerns updating the user'spreference model based on context events (user input and user actions i.e., what attrac-tions are visited). Updated preference models are used to improve the recommendationsthat the application makes to users. This type of behaviour is particularly useful intourist applications when users do not necessarily know exactly what attractions theywant to see. The DTG and CRUMPET also recommend attractions to users based onelicited preferences, however only m-ToGuide learns about preferences automatically andre�nes its recommendations accordingly.
26

2.1.8 Hypermedia Tour GuideA multimedia tourist guide has been developed for Genoa's Costa Aquarium [12]. Theguide, executing on a mobile device, assists users throughout their tour of the aquariumby providing information about each exhibit (�sh tank). Tour order is prede�ned (asin LoL@) and is not sensitive to changes in context. The tour on the mobile device isarranged in the same sequence as the physical layout of the tanks in the museum, andusers select the �next tank� option when they want to view the multimedia informationfor the next exhibit. Users can create thematic paths through the aquarium by using a�link� tool to link related tanks together e.g., a tour of all crustacean tanks. Throughthese tools, users can manually create trails and manually reorder them.The Hypermedia Tour Guide does not contain trail generation and recon�gurationpoint identi�cation behaviour, nor does it provide activity recommendations like CRUM-PET and m-ToGuide. It can provide static tours like those provided by LoL@. Byconducting a comprehensive user study of the application, the Hypermedia Tour Guideproject validates the concept of mobile device-based guide applications. The user studyillustrated strong public interest and acceptance of computer-based personal guides thatprovide context-based information e.g., information about the tank at which the user issituated.2.1.9 SummaryTable 2.1 provides a summary of the features provided by state of the art mobile, context-aware tourists guides. None of the projects surveyed state the provision of generic sup-port for trail generation and recon�guration point identi�cation as a research objective.GUIDE (Section 2.1.1), P-Tour (Section 2.1.2) and the DTG (Section 2.1.3) are the mostsophisticated applications but they do not provide any level of support for software reusein terms of their trail generation and trail recon�guration implementations. All applica-tions that support trail generation impose a limit on the number of activities consideredby the application in order to meet response time requirements. The server-based ap-proaches of P-Tour and the DTG are not appropriate for deployment on a mobile platformdue to their dependence on the considerable resources of their host servers. Addition-27

ally, these applications provide no support for disconnected operation. The assumptionsmade by the DTG trail generation algorithm (in the form of heuristics) make it unsuit-able for general use outside of the tourism domain (as does the fact that tour attractionsare selected based on preferences and not by the user directly). The periodic nature ofthe recon�guration point identi�cation mechanisms employed by GUIDE, and to a lesserextent P-Tour and the DTG, mean that the tours provided by these applications aresusceptible to becoming temporarily out of sync with the user's reality. Additionally, P-Tour and the DTG monitor user progress on a trail for deciding if recon�guration shouldoccur, ignoring contexts related to activity properties.
Feature GUIDE P-Tour DTG Cyberguide LoL@ m-ToGuide CRUMPET Hypermedia

Guide
Trail GenerationMobile device-based √ ◦ ◦ ◦ ◦ ◦ ◦ ◦Server-based ◦ √ √ ◦ ◦ ◦ ◦ ◦Unlimited activities ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦Recon�guration Point Identi�cationPeriodic √ √ √ ◦ ◦ ◦ ◦ ◦Context-based ◦ √ √ ◦ ◦ ◦ ◦ ◦Developer Support ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦√ = full support ◦ = no supportTable 2.1: Summary of mobile, context-aware activity scheduling supportA survey of the state of the art in context-aware, mobile tourism guides has beenconducted at the Vienna University of Technology, Austria [115]. Of the tour guidesincluded in the survey only GUIDE provides trail generation and dynamic recon�gurationbehaviour (P-Tour and the DTG are not discussed). In the `Lessons Learned' section theauthors point out the unaddressed issues that they identi�ed in the state of the art duringtheir survey. The issues identi�ed are as follows (issues addressed in this thesis are listedin italics):

• Tourism is not considered as a social activity.28

• The balance between thin and thick clients is problematic.
• Potential of incorporating external context not exploited.
• OGC standards for exchanging geospatial information widely ignored.
• Time and network context are seldom used.
• The potential of combining context properties is not exploited.
• Context chronology not widely supported.
• Proprietary representation of context data.
• Context availability partly regarded.
• Varying automation of context acquisition.
• Push-based context access not widely supported.
• Dynamic adaptation of guided tours is not generally provided.
• Extensibility of adaptation operations is not commonly recognised.The application framework presented in this thesis answers the issues listed in italicsthrough the provision of reusable and extensible trail generation and recon�gurationpoint identi�cation components for mobile devices that consider multiple context sources(the relevance of which can be set by the user) to make trail generation and recon�gu-ration point identi�cation decisions. Of those issues not addressed by this thesis, all butthe �rst issue listed are addressed by other components in the Hermes framework (no-tably the Context Management component and the Geographical Information Systemcomponent). The �rst issue (`tourism is not considered as a social activity') is partiallyaddressed in GUIDE through the provision of a messaging client that assists groups oftourists with keeping in touch as they explore the city separately or in subgroups.

29

2.2 Context-Aware To-do ListsThis section presents research projects involving the design and implementation of context-aware to-do lists and discusses the behaviour they provide that addresses the challengesdescribed in Section 1.4.2.2.1 TaskMinderThe TaskMinder [73] application developed at Georgia Institute of Technology uses con-text information (location, user activity, task history) and machine learning techniquesto provide a to-do list management tool that recommends tasks to the user based oncontext. The primary objective is to improve on static computerised to-do lists such asOutlook Task [5], Daily To-Do List [34], Tree To Do List [97] and Task-O-Matic [119].The end-user application is deployed on a laptop and communicates via WiFi with aremote TaskMinder server. The server is responsible for suggesting which tasks the usershould undertake when the user makes a task query (tasks are initially entered by theuser), similar to the task suggestion behaviour in m-ToGuide, CRUMPET and the DTG.The server suggests tasks to users based on the following factors:
• The user's current level of activity - derived from the number of application windowsthe user has open on their laptop.
• The user's location - derived from WiFi information.
• The current time of day.
• The due date of the task (if previously speci�ed by the user).
• Historical user requests:� The type of task requests the user has made in the past.� The times at which the requests were made.� The feedback rating the user assigned to the task suggestions previously re-ceived. 30

Task suggestions are made based on user input that consists of a preferred task duration.The system estimates how long certain tasks will take based on task history (it is notpossible for the user to specify task durations when entering a task to the system) andreturns the appropriate tasks, in order of importance, to the user. The server usesa weighted syntactic matching technique to map existing tasks to historical tasks toascertain if the existing tasks are similar to those that have been completed in the past.The words in the task description are weighted so that certain words have a greater e�ecton �nding a match. For example, if searching for matches to a task called `Lunch withJe�', the word `Lunch' has a higher weight than the word `with'. If a match is found,the situation that the historical task was completed in is compared to the user's currentcontext. If the situations match then the task is considered to be appropriate for theuser. If no matches are found (or if the user has no task history) the system assignsdefault values to tasks so that some tasks, regardless of relevance, are returned. Systemrecommendations improve incrementally as a task history database is compiled.TaskMinder does not feature the concept of generating a trail through a set of tasksde�ned by the user, nor does it let users directly specify situations in which they want tobe reminded about tasks. The task speci�cation is rather course-grained e.g., the user isunable to specify how long they estimate a task will take, inhibiting schedule generationbehaviour. The application is not proactive in the manner of a mobile, context-awareactivity scheduling application. The list of tasks recommended to the user does notautomatically update based on context change. Finally, the tasks recommended to theuser are recommended in order of importance and there is no consideration of the list asan entity or the relationships between activities. Without considering the list as an entityit is not possible to compare candidate lists and provide the best list ordering to the useri.e., to ensure that lists don't contain activities that clash. Therefore, it is possible thatthe activities on the list provided by TaskMinder may clash with each other, forcing theuser to make clash resolution decisions.
31

2.2.2 CybreMinderThe CybreMinder system addresses the need for context-awareness in to-do lists by pro-viding context-aware reminder behaviour [35]. The tool has two main features - remindercreation and reminder delivery. Reminders can be created by the user for himself orfor third parties. A collection of reminders serves as a to-do list. Each reminder has asubject, a priority level (from lowest to highest), a description and an expiration date.Users can also associate a situation with each reminder e.g., the user must be in a certainbuilding at a certain time for the reminder to be valid. Relationships other than `=' canbe used. For example, the user could set a trigger time for after 9pm by using the `>'relation. Other supported relations are `≤', `≥' and `<'.Reminders are delivered when the situation speci�ed in a task reminder exists orwhen the task expiration date has been reached. Users can be noti�ed by email, SMS ona mobile phone, the display on a nearby computer or by local printer (to emulate paperto-do lists).CybreMinder, by allowing users to schedule reminders for speci�c situations, givesthem more control over the activities they are reminded about than TaskMinder. How-ever, like TaskMinder, the application does not consider the notion of grouping sets ofreminders e�ectively based on the user's context. The application is primarily focusedon supporting the speci�cation and triggering of individual tasks. If multiple tasks aretriggered simultaneously there is no facility to reason about the collection of tasks andsuggest how the user should address them. Therefore CybreMinder cannot be used tosupport trail generation or recon�guration point identi�cation, only static tour behavioursuch as that featured in LoL@ and the Hypermedia Tour Guide.2.2.3 comMotioncomMotion is a location-aware reminder system that maintains to-do lists for users at thelocations that the lists are associated with [80]. comMotion introduces a location-learningagent that observes the user's frequent locations over time and allows them to be labellede.g., `Work', `Home'. To-do lists can then be associated with these labelled locations. Ato-do list in comMotion is composed of text items or audio recordings. When users enter32

a location associated with a to-do list they will be noti�ed by an audio alert that theyhave tasks associated with their current location. Tasks are ticked o� by the user as theyare completed.comMotion also provides a reminder system based on the 3M Post-It2 note metaphor.This behaviour is similar to that provided by CybreMinder. Context-aware reminderscan be sent via email, specifying the location name in the subject line. Reminders canbe constrained to a certain date or date and time range and the user can specify thefrequency of repetition for the reminder e.g., daily, weekly, monthly or none. When theuser enters a context speci�ed by a reminder the relevant reminder will be displayed.Users can also subscribe to information services such as headline news, weather forecastsand current movie listings on a per-location and time basis e.g., the user could requestto receive a movie schedule on a Friday after leaving their place of work.Similar to TaskMinder and CybreMinder, comMotion does not support reasoningabout how best to undertake the tasks speci�ed in a to-do list when a to-do list is displayedto the user. There is no reasoning beyond identi�cation of when a reminder should betriggered. This prevents comMotion from being able to facilitate the implementation ofmobile, context-aware activity scheduling applications apart from those in which the useror programmer is responsible for manually scheduling all tasks.2.2.4 PlaceMailThe PlaceMail system [77] developed at the University of Minnesota provides location-aware reminders in a manner similar to CybreMinder and comMotion. Users of PlaceMailcan use the system to specify messages to be delivered to them when they are in a speci�cprede�ned location or set of locations. Users can also specify a delivery date and timeinstead of, or in addition to, delivery locations. The PlaceMail system executes on amobile phone platform, di�ering from TaskMinder, CybreMinder and comMotion whichare deployed on laptop, desktop to multiple delivery platforms and mobile PC respectively.While there is a task creation interface on the phone there is also a web interface, with thesame functionality, for ease of task entry. Messages are entered by providing a delivery2http://www.postit.com 33

location (or set of delivery locations), a message body (text or audio) and an optional dateand time. The user is noti�ed of message delivery by a short audio alert and deliveredmessages can be rescheduled for future redelivery.PlaceMail uses a client-server architecture. User data and locations are stored in adatabase residing on a remote server. The user's mobile phone receives the user's tasksand locations via a wireless network connection when the user logs into PlaceMail. Theuser's mobile phone (equipped with GPS) transmits its location to the server every 60seconds and the server determines whether there are any messages relevant to the currentlocation. Messages deemed relevant are delivered.Context-aware delivery of individual messages is the primary focus of the PlaceMailapplication, a focus it shares with all of the context-aware to-do list applications reviewedso far. As a result, PlaceMail does not support reasoning about groups of reminders todetermine the most e�ective way to undertake the tasks described in the reminders.PlaceMail can be used to develop applications with static activity schedules but notcontext-aware schedules such as those o�ered by GUIDE, P-Tour and the DTG.2.2.5 Place-ItsA Place-It is a virtual post-it note that can be posted by its author to remote places anddisplayed to the author when he enters that location in the future [120]. This behaviouris similar to that provided by CybreMinder, comMotion and PlaceMail. Like PlaceMail,the Place-Its application executes on a mobile phone and considers user location whendeciding whether or not a note should be shown to the user. Three main componentscollaborate to provide the Place-Its reminder functionality:1. Trigger - identi�es whether the reminder should be signalled upon arrival at ordeparture from the associated location.2. Text - the message associated with the note.3. Place - the location with which the note is associated.Once a note is triggered it is automatically placed in a Removed Place-Its list, unlikenotes in comMotion (Section 2.2.3) where the user manually speci�es that notes have34

been addressed. Once a note has been removed it can be edited and re-posted to thesame or a di�erent location. This functionality prevents loss of information in the casewhere a note is displayed to the user but not actually acted upon in the real world.The Place-Its system follows the same single activity-centric model of task manage-ment as TaskMinder, CybreMinder, comMotion and PlaceMail. The Place-Its systemdoes not support any form of context-aware reasoning about collections of notes in termsof recommending a schedule of activities based on the contents of the Place-Its. It intro-duces the notion of automatically designating a task as having been completed.2.2.6 CastawayThe Castaway project is investigating the development of a context-aware task manage-ment system [65]. The vision of the Castaway project consists of three parts:1. To support the fast and convenient input of tasks the instant they are conceived.2. To provide a lightweight, �exible tool to view and manage these tasks.3. To provide a system for reminding users of their tasks at precisely the right placeand/or time.The Castaway developers are currently investigating the application user interface, whichis a major focus of their work. Castaway has prototyped various task views including alist view, a map view and a calendar view and has evaluated these views by means of auser study. This user study highlighted user preferences for map-based task managementinterfaces. The Castaway developers have also investigated techniques for managing infor-mation display when clusters of task icons appear in one location and obscure each other.In terms of user interface design the Castaway project is signi�cantly more advanced thanthe other context-aware to-do list applications described in this section.The task management behaviour envisioned in Castaway is described in a similarmanner to that of TaskMinder, CybreMinder, PlaceMail and Place-Its, where the focus ison managing individual tasks as opposed to providing the user with an e�ective context-aware ordering for a collection of tasks. This will prevent Castaway from providingcontext-aware activity scheduling. 35

2.2.7 SummaryThis section has presented the state of the art in mobile, context-aware to-do lists. Ingeneral, the applications allow users to specify contextual situations e.g., a location andtime pair, with which reminders are associated. The user is noti�ed of a reminder whenits associated contextual situation exists.The applications surveyed are informative from the perspective of learning about thetype of context information users typically need to schedule reminders. Location and timeare the two contexts mostly widely used by the applications discussed. These contextsare supported in the application framework presented in this thesis.While context-aware to-do list applications improve on static to-do lists by prompt-ing the user about speci�c tasks when appropriate, the applications do not facilitatecontext-aware activity scheduling. Tasks are reasoned about individually as opposed tocollectively, meaning that the concept of one speci�c task grouping being more valuableto the user than another is not considered. When a collection of tasks or remindersis displayed to the user there is no advice regarding how to go about undertaking thevarious activities i.e., there is no activity ordering. Tasks/reminders are presented whenthe contextual situation associated with the task exists, regardless of whether the user isactually in a position to act on the task or not. Additionally, tasks presented to the usersimultaneously may clash.Apart from TaskMinder, all of the applications reviewed can be used to develop mo-bile, context-aware applications that provide static activity schedules to user in the samemanner as the LoL@ tourist guide application. Dynamic context-aware activity schedul-ing behaviour is not supported.2.3 Mobile, Context-Aware Application FrameworksThis section describes projects investigating application frameworks for mobile, context-aware computing. The types of applications supported by these application frameworksinclude mediascapes, context-aware museum and city guides, hypermedia applicationsand generic rules-based context-aware applications. Although none of the applicationframeworks speci�cally address mobile, context-aware activity scheduling in the same36

manner as GUIDE, P-Tour and the DTG, they can be used to develop applications thatprovide some support for activity scheduling for the mobile user. The basic functionalityof each application framework is presented, along with a discussion of the support forcontext-aware activity scheduling provided and the application framework design. Theprojects reviewed are informative in terms of illustrating how application frameworks cansupport developers in implementing mobile, context-aware applications.2.3.1 Mobile BristolThe Mobile Bristol toolkit is an application framework that supports rapid authoring ofmobile, context-aware applications [105]. The application area supported by the frame-work is that of `mediascapes' - applications that are concerned with delivering digitalmedia e.g., video, audio, still images, plain text or HTML, when prede�ned contextualsituations occur e.g., when the user enters a speci�c geographic area. The applicationallows users to specify the following properties of their application:
• The type of digital content the user will encounter.
• Where the content is encountered (e.g., inside a speci�c area, outside a set of areas).
• How the digital media is triggered (e.g., automatically, when a button is pressed,at a certain time).
• How interactions are presented to the user (audio or screen-based).The Mobile Bristol developers were inspired by the democratisation of publishing en-abled by the Web where almost anyone can make and deploy a simple web site. Thetoolkit has been used to build applications by diverse user groups (aided by developers)including school children, educationalists, artists and television programme makers. Ap-plications developed include soundscapes for a piece of open ground near a school [133],a location-sensitive heritage guide for a ferry boat company [30] and mediascape-basedart installations for an urban square [105].In line with the project objective of enabling non-programmers to develop mobile,context-aware applications, the toolkit provides an authoring environment that has a37

graphical user interface (GUI). A programmer's editor is provided for users who wishto specify behaviour that is more complex than that supported by the GUI. Each newfunction that is programmatically de�ned is added to the default set available via theGUI, allowing toolkit extensions de�ned by experienced developers be used by developerswho only use the GUI. New functions are described in a scripting language called MBML(Mobile Bristol Markup Language). This XML-based language contains constructs forconditional logic, state variables and functions and makes the authoring environmentindependent from the deployment platform, as illustrated in Figure 2.2. MBML scriptsmust be interpreted by client devices and to date an implementation for the iPAQ3 PDAhas been developed. The separation of the behavioural speci�cation from the device-speci�c interpretation has the desirable property of facilitating the deployment of thesame application on many platforms. This bene�ts application developers but requires asigni�cant amount of work on the part of a third party to write the device-speci�c MBMLtranslations.

Figure 2.2: Separation between authoring tool and device-speci�c implementation [105]The Mobile Bristol toolkit can be used to develop static tour guide applications similarto the LoL@ application described in Section 2.1.5 and location-aware reminder systemslike those discussed in Section 2.2. However, the toolkit does not support the notion ofdynamically changing the manner in which users of mediascape applications are directed3http://www.ipaq.com 38

through an active space and therefore does not automatically support context-awareactivity scheduling. The framework could extended to facilitate context-based activityscheduling through the addition of new MBML functions, although this would be a sig-ni�cant undertaking for an application developer.2.3.2 Stick-e NoteThe Stick-e Note architecture developed at the University of Kent, UK was one of the�rst attempts at supporting the development of mobile, context-aware applications [18].The conceptual architecture proposes the use of the electronic equivalent of a post-Itnote to allow authors to develop mobile, context-aware applications in much the samemanner as they would web pages. Stick-e notes reside on a mobile device and containinformation that is displayed to users when the contextual situation described in the noteexists. Notes are created using Standard Generalized Markup Language (SGML) anddisplayed in a web browser. The following types of context can be considered by Stick-eNote applications:
• Location - a note is triggered when a user is in the location speci�ed by the note.
• Adjacency - a note is triggered when the user is near other objects e.g., user is inthe presence of John (or any person, animal, object carrying a suitable identitytransponder).
• Critical states - a note is triggered when a critical state is reached e.g., a share priceor the air temperature rises above a speci�ed threshold.
• Computer states - a note is triggered when a user accesses a certain directory.
• Imaginary companions - notes are triggered based on users stating that they are inthe presence of imaginary companions e.g., architects, cartographers. Notes relevantto the imaginary companion's specialist topic are triggered when appropriate tosimulate a guided tour by an expert.
• Time - a note is triggered at a speci�ed time.39

The software to support the use of SGML Stick-e documents consists of four components.SEPREPARE allows authors to prepare notes and documents. SEMANAGE deals withthe management of primed documents (a subset of all the notes on the device that userhas marked as being eligible for triggering). SETRIGGER runs in the background andcauses any of the currently primed notes to be triggered if its context becomes satis�ed.SESHOW stores the triggered notes and presents them to the user. Several instances ofthis component may run at once, each one representing a di�erent application e.g., touristguide, personal pager etc. An actual implementation of the software is not discussed. Thesoftware components are not accessible to Stick-e note authors, who de�ne applicationbehaviour through SGML note speci�cations in a similar manner to authors of MobileBristol applications.The Stick-e architecture can be used to create guided tour applications that work bytriggering notes based on user location. The notes could guide the user by containingdirections to the next note location, as well as the information about the location the useris currently in. The architecture can also be used to develop task reminder applicationsthat notify the user of tasks that can be completed when they are in speci�c situations,similar to the context-aware to-do list applications discussed in Section 2.2. Like thecontext-aware to-do list applications, Stick-e notes are not reasoned about collectivelyand therefore the Stick-e architecture does not automatically support the concept of adynamic activity schedule. The framework could be extended to provide dynamic notecontent based on current context. Such notes could be used to implement mobile, context-aware activity scheduling applications. The proposed extension would require signi�cantchanges to all framework components.2.3.3 BerlinTainmentThe BerlinTainment serviceware framework is a multi-agent system that supports thedevelopment of mobile, context-aware services [135]. The framework supports the con-nection of heterogeneous end-user mobile devices to a remote application server's services,with a focus on the provision of entertainment services. The framework, illustrated inFigure 2.3 consists of several modules, each of which contains several services:40

• The context-awareness module provides services for:� Personalisation (�ltering information based on user context).� Location-based services (provides knowledge of the user's location and co-located points of interest).� Device and network independence (generates user interfaces for di�erent de-vices and intelligent session management for network migration).
• The infrastructure module provides services for management of users, sessions andservices.
• The external utilities module provides services for mapping, route planning anddata �ltering (used by the context-awareness component).

Figure 2.3: BerlinTainment framework architecture [135]The framework implementation is based on a FIPA4-compliant Multi-Agent System archi-tecture called JIAC (Java Intelligent Agent Componentware) [7]. JIAC is a component-4The Foundation for Intelligent Physical Agents - http://www.�pa.org41

based architecture and provides services such as mobility, communication, security and ageneral methodology for agent-oriented application development. As illustrated in Fig-ure 2.3, the architecture is server-based, with client devices communicating wirelesslywith application services hosted on remote servers. JIAC provides behaviour to supportdevice-independent access to services by determining the device type and transformingthe user interfaces as appropriate e.g., into HTML/WML for browser-based devices orVXML for voice-based interfaces. The component-oriented nature of the BerlinTainmentframework facilitates component replacement without a�ecting the behaviour of clientcomponents. Additionally, applications can choose which components are necessary andlimit the application to only those components.The service framework has been used to build an entertainment planning applicationfor the city of Berlin, Germany [134]. The application assists users in �nding restaurants,plays, movies and concerts based on their location, and provides a routing service toselected attractions. The application also provides an intelligent day planner service.The day planner allows the user to schedule multiple high-level activities for a given dayand to receive personalised, location-based recommendations for each activity e.g., speci�c�lm recommendations if the user selected a cinema activity. The user uses the systemto connect to the ticketing services of relevant attractions and to plan routes betweenthe various attraction locations. The service selects and schedules attractions based ontheir properties, most notably time constraints and location, to minimise the temporaland spatial distances between the recommended activities. The schedules presented tousers can be changed by removing attractions or searching for new recommendations.The BerlinTainment-related publications have not discussed the details of the schedulegeneration algorithm used by the remote server when composing schedules.The BerlinTainment service framework does not support dynamic reordering of asuggested schedule based on changes in user context and there is no concept of changesto activity properties. Additionally, the client/server architecture employed indicates thatthe schedule generation algorithm is designed to use the resources of a powerful serverplatform like P-Tour and the DTG and would require signi�cant re-engineering if it wasto be deployed on a mobile client device. Like CRUMPET, BerlinTainment illustrateshow context can be used to determine the activities that are relevant to a particular user42

given his current context.2.3.4 PEACHThe Personal Experience with Active Cultural Heritage Project (PEACH) is investigatingthe concept of an `Active Museum' [71]. Active museums are characterised by:
• Multiple users in a single place.
• The size of the set of users using the active museum system changing dynamically.
• Services being provided by a collection of components that can join and leave theenvironment and can operate anywhere. This behaviour is hidden from the userwho interacts with the system as if it is a standalone system.
• Overlapping services that require components with overlapping behaviour to coor-dinate in order to decide which component should provide a speci�c service andhow.The objective of the project is to provide an agent-based architecture to support thedevelopment of museum guide systems that integrate with the visitor's physical museumexperience and do not compete with the actual exhibit items for the visitor's attention.Through the development of two museum guide systems for museums in Trento, Italy andHai�a, Israel the PEACH developers composed a set of generic agents that can be usedto provide context-based guide systems for museums. The agent framework contains thefollowing components:
• Spatial Information Mediator - responsible for providing the user's location to theother agents that use this information. Location data is provided periodically orcan be requested. The agent models positioning relationships between users andmuseum exhibits.
• User Modellers - responsible for providing a collection of ways in which to modelsystem users. 43

• Presentation Composer - responsible for providing audio, text, slide or video pre-sentations about exhibits.
• Information Brokers - responsible for providing the information that is displayedto the users (multimedia artefacts that can be stored locally or remotely).
• Presentation Clients - responsible for managing the presentation of information ina device-speci�c manner.The Presentation Clients reside on the user's mobile device while the remainder of thecomponents are deployed remotely. The components are relatively application-speci�ce.g., a component is dedicated to location sensing and dissemination as opposed to con-text management in general. However, within the application area supported by theframework there is scope for component extension without a�ecting the system as awhole e.g., the speci�cs of the location system can be changed without any e�ect onclients.Using these components, developers can implement active museum applications that,based on user location and mobile device characteristics, will display multimedia infor-mation about the exhibit the user is near. The PEACH framework facilitates the devel-opment of applications like CybreMinder, LoL@ and, to a lesser extent, applications thatcan be built using the Mobile Bristol toolkit and the Stick-e Note architecture. PEACHdoes not have the expressive power of Mobile Bristol or Stick-e Note in terms of describ-ing contextual situations. Although the framework supports tour guide applications itdoes so only in the same manner as the Stick-e Note architecture and the Mobile Bristoltoolkit, where the tours are speci�ed by developers before the user uses the application,meaning that there is no scope for �exibility. The concept of reasoning about collectionsof activities is not considered, as all logic supported is at the individual activity level.Therefore PEACH does not support museum guide applications featuring context-basedtrail generation and recon�guration point identi�cation.

44

2.3.5 HyConHyCon is an application framework for context-aware hypermedia systems [17]. HyConsupports the implementation of `authoring in the �eld'-type applications, allowing usersannotate locations on a map-based interface with information (hyperlinks and other mul-timedia information) while exploring the actual location in the physical world.The HyCon framework is divided into four layers as illustrated in Figure 2.4. Thestorage layer (at the bottom of the diagram) is responsible for persistent storage andresides on a remote server. The server layer forms the basic functionality of the frame-work, providing data layer, location, annotation and subscription sub-components. Theterminal layer resides on end-user mobile devices that have access to sensor information,and provides mechanisms for communicating with the remote server housing the storageand server layers. The sensor layer provides mechanisms for parsing and reasoning aboutraw sensor information. The components at each layer are used to create service applica-tions that implement interfaces to the components' functionality. The component-basedapproach is similar to that used in BerlinTainment, PEACH and Hermes (with which Hy-Con shares common components), minimising inter-component dependencies to facilitatecomponent reuse and extension.The HyCon framework has been used to implement a prototype application calledHyConExplorer. The application is deployed on a mobile device and communicates withthe server components via WiFi or GPRS. The map-based application provides imple-mentations of several context-aware hypermedia techniques:
• Context-aware browsing - allows users to see hypermedia artefacts based on theircurrent location and the current time of day. The user's map-based interface isannotated with the hypermedia artefacts that exist for the location the user iscurrently in.
• Context-aware searching - allows users to search for speci�c artefacts e.g., shops,and bases the results on the user's location, the time of day and the opening hoursof the shops.
• Context-aware annotation - allows users to associate hypermedia content with map45

Figure 2.4: The HyCon framework architecture [17]locations.
• Context-aware linking - allows users to link geographically distinct hypermediaartefacts together.The HyConExplorer application can use its context-aware linking functionality to expresslinks or paths through a collection of hypermedia objects. Each link represents directionsfrom one location to another, with the linked objects representing the destinations. Usingthis functionality the tool can be used to create static tours like those provided by LoL@.Tour guide applications created by the HyConExplorer work in the same manner as thosecreated using the Mobile Bristol toolkit, the Stick-e Note architecture and PEACH, wheredigital artefacts are associated with speci�c locations and contain information about the46

current location as well as directions to the next location on the tour. HyConExplorerdoes not consider the concept of dynamically adapting link relationships between hyper-media objects and therefore cannot support the dynamic generation and recon�gurationof trails through hypermedia objects based on context information.2.3.6 iCAPiCAP (Context-aware Application Prototyper) is an application framework that facili-tates the authoring of context-aware applications by the end-user (similar to the MobileBristol toolkit) [37]. iCAP allows users to describe a situation and an action to associatewith it. The desktop-based system facilitates prototyping via a visual, rule-based systemthat supports three types of context-aware behaviour:1. Simple if-then rules - rules where an action is triggered when a condition is satis�ede.g., �If I am home alone, then play my favourite music at high volume�.2. Relationship-based actions - supports behaviours involving personal, spatial andtemporal relations e.g., �If my housemate is in the next room while I am in thehouse, then remind me to ask him about the grocery shopping�.3. Environment personalisation - supports the personalisation of environments basedon the di�erent preferences of its inhabitants e.g., adjust room light level dependingon the preferences of its current occupant(s).Users interact with iCAP by �rst creating elements relevant to their rules (if they do notalready exist in the system repository). The elements included in the system repositoryby default are: objects, activities, locations, people and time. Second, the elements creat-ed/selected are composed to create rules e.g., associating objects with locations. Finally,the rule created can be simulated or connected to live context sensing infrastructure.iCAP contains two main components: a visual rule-building interface and a rulesengine that stores the user-speci�ed rules and evaluates them when an application usingthe rule is running. The software components themselves are not designed with theexpress purpose of being extensible by iCAP users. The iCAP user interface allows non-technical users to specify rules for context-aware applications through the manipulation47

of graphics. Users are not required to edit rule source code. Therefore any extensionof application default behaviour is done through the speci�cation of new rules and theelements relevant to rules. This is a similar approach to that taken in the Mobile Bristoltoolkit.iCAP can be used to build guide applications by creating a collection of rules thatpresent content e.g., user-de�ned activity descriptions, when someone enters a particularlocation. Reminder systems can be built in much the same way. In this way, iCAPfacilitates the creation of systems like the context-aware to-do lists described in Section 2.2and context-aware tour-guides such as LoL@, as opposed to dynamic activity schedulingapplications like GUIDE, P-Tour and the DTG. The expressiveness of iCAP in terms ofde�ning situations is similar to that of the Mobile Bristol toolkit and the Stick-e Notearchitecture as opposed to more domain speci�c frameworks such as PEACH.2.3.7 SummaryThis section has presented the state of the art in application frameworks for mobile,context-aware applications. Some of the frameworks facilitate the creation of context-aware applications through the use of a graphical user interface and extensible rule-base(Mobile Bristol toolkit, Stick-e Note and iCAP), while the remainder provide genericapplication components that can be reused and extended by software developers.Although none of the application frameworks explicitly support mobile, context-awareactivity scheduling, they can be used to provide some level of related behaviour. All ofthe application frameworks reviewed can be used to create both static tour guide appli-cations and context-aware to-do lists applications. iCAP, the Stick-e Note architecture,BerlinTainment and HyCon list these applications in their publications as examples ofapplications that can be built using their respective application frameworks. However,none of the application frameworks target the mobile, context-aware activity schedulingdomain. In the same manner as the context-aware to-do lists discussed in Section 2.2,the application frameworks do not support the development of applications that can rea-son about the relationships between collections of tasks or activities - they support onlyreasoning about individual activities. For this reason the application frameworks can not48

automatically provide generic, reusable and extensible support for mobile, context-awaretrails-based applications. A signi�cant amount of software development e�ort is requiredin order to extend the relevant application frameworks so that they can be used to developtrails applications.2.4 Context-Awareness FrameworksContext-awareness frameworks provide developers with some or all of the basic tools re-quired to create applications that adapt their behaviour based on changes in relevantcontext. Numerous frameworks have been proposed in recent years such as JCAF [10],the Sentient Object Model [14], AURA [22], Hydrogen [51], ContextFabric [52], Con-text Shadow [59], ContextStudio [68], ContextPhone [103], Gaia [107] and the ContextToolkit [110]. The primary goal of a context-awareness framework is to make contextinformation available to application developers so that they can build applications with-out concerning themselves with the speci�cs of context acquisition and management.Context-awareness frameworks therefore address challenges such as context retrieval (ac-quisition of raw context data from heterogeneous sensors), context data transformation(converting raw context data to a higher-level format), context reasoning (deducing newcontext information by combining context from various sources) and context modelling(providing application developers with access to context).Baldauf et al. at the Vienna University of Technology, Austria have published asurvey of context-awareness frameworks that explains the di�erent elements common tocontext-aware systems by describing a conceptual context-awareness framework [9]. Theframework, illustrated in Figure 2.5, consists of the following layers (from bottom to top):
• Sensor Layer - this layer consists of physical sensors (e.g., light, audio, location,acceleration, touch, temperature), virtual sensors (e.g., activity sensing by monitor-ing mouse movement and keystrokes) and logical sensors - combining physical andvirtual sensors (e.g., determining user location by recording PC logins and lookingup a database that maps PCs to locations).
• Raw Data Retrieval - uses appropriate drivers for physical sensors and APIs for49

virtual and logical sensors to provide abstract methods for sensor access, makingit possible to exchange underlying sensors e.g., a GPS location system could bereplaced by an RFID system without major modi�cation to the current and upperlayers.
• Preprocessing - responsible for reasoning and interpreting contextual information,raising the results of the Raw Data Retrieval layer to a higher level of abstractionfor use by application developers.
• Storage Management - this layer organises the context data gathered by the lowerlayers and o�ers them to the client (Application layer) via public interfaces. Thislayer supports both synchronous (client polls server) and asynchronous (client sub-scribes to server) context data access.
• Application - the behaviour that reacts to context events is implemented in this layere.g., a smart device display that uses the lower layers to detect bad environmentillumination and reacts by displaying text in higher colour contrast.

Figure 2.5: The conceptual framework for context-aware systems [9]The survey also discusses existing context-awareness frameworks and illustrates the ser-vices they provide to application developers. These frameworks address common chal-lenges in context management such as context acquisition, fusion and reasoning but due50

to their application-independent nature they do not explicitly support context-aware ac-tivity scheduling. The concepts put forward in these works are informing related areasof the Hermes framework architecture, as discussed brie�y in Chapter 3.2.5 Chapter SummaryThis chapter has presented the state of the art in mobile, context-aware activity schedul-ing for tourists, context-aware to-do lists and application frameworks for mobile, context-aware computing. A brief overview of context-awareness frameworks in general was alsopresented. While the most sophisticated approaches to activity scheduling for mobiletourists (GUIDE, P-Tour and the DTG) provide mechanisms for trail generation andrecon�guration point identi�cation that are suitable for meeting their speci�c objectives,the techniques are not su�ciently generic and therefore cannot be used to support ap-plication developers implementing mobile, context-aware activity scheduling applicationsoutside the tourism domain. In addition, the trail generation mechanism used by GUIDElimits the number of activities that can be considered to nine and considers a limited rangeof contexts. This situation is improved by P-Tour and the DTG but at the cost of in-troducing a remote tour calculation server. P-Tour and the DTG do not provide tourmanagement behaviour on the mobile device to support disconnected operation. Therecon�guration point identi�cation mechanisms provided by all three approaches containa periodic element, leading to potential for tours becoming out of date between periodicrecon�gurations. Although P-Tour and the DTG improve on the GUIDE approach byonly recon�guring the tour if necessary, their recon�guration point identi�cation decisionmaking techniques are based on user location and cannot be easily extended to cater forother types of non-spatial context.The state of the art projects in context-aware to-do list management allow users to as-sociate reminders (in various forms e.g., text and audio) with contextual situations. Thereminders are triggered when appropriate. These applications cannot make suggestions,based on context, about how users should go about undertaking the activities referredto in their reminders in the case where users have multiple reminders in a contextualsituation. The applications reason about single activities as opposed to the relationships51

between multiple activities and therefore do not support context-aware activity schedul-ing.Application frameworks for numerous mobile, context-aware application areas existbut none support the implementation of mobile, context-aware activity scheduling in away that meets the challenges presented in Section 1.4. Many of the frameworks facilitatethe implementation of tour guides that provide static tours and context-aware to-do listmanagement applications. However, for the same reason that the context-aware to-dolist management systems do not support trail generation and recon�guration, the mobile,context-aware application frameworks cannot, without signi�cant extension, be used tobuild mobile, context-aware trails-based applications. Context-awareness frameworks donot support the implementation of speci�c application types.The next chapter describes the design of an application framework that addressesthese limitations and provides components for trail generation and recon�guration pointidenti�cation to support developers in implementing mobile, context-aware trails-basedapplications.

52

Chapter 3
Design
The state of the art approaches to mobile, context-aware activity management presentedin the previous chapter illustrate that the challenges discussed in Section 1.4 are notaddressed by existing tools and applications.A trail generation mechanism should execute on a mobile platform to avoid loss ofservice due to wireless network disconnection, and should not constrain the number ofactivities that an application can consider. State of the art approaches to trail generationare server-based, and provide no disconnected operation in relation to trail generation.These approaches also limit the maximum number of activities they can consider basedon their response time requirements.A recon�guration point identi�cation mechanism should identify when trail recon�g-uration is actually necessary in order to avoid needlessly consuming resources throughunnecessary speculative trail recon�guration. Additionally, the mechanism should max-imise the amount of time that the trail accurately represents the state of the user's en-vironment. State of the art approaches to recon�guration point identi�cation are basedon periodic trail recon�guration and the consideration of a limited and non-extensibleset of contexts, giving rise to the possibility that the trail will become out of sync withthe user's environment. Additionally, none of the state of the art approaches to trailgeneration and recon�guration point identi�cation are designed to be reused or extendedby third party developers.This chapter describes the design of an application framework for mobile, context-aware trails-based applications that addresses trail generation and recon�guration point53

identi�cation in a reusable, extensible, application-independent manner. The chapterbegins with a discussion of the application development-led design approach followedduring the development of the framework. The initial high-level design of the Hermesframework is present next, along with an overview of how Hermes supports the acquisitionand modelling of context for use in trails applications. This is followed by a discussion ofthe trails applications developed during the design process, and details of the design ofthe trail generation and trail recon�guration point identi�cation mechanisms included inthe application framework.3.1 Design ApproachThe application framework for mobile, context-aware trails was developed based on the`Three Examples' approach to framework development [106]. This approach involvesbuilding three example applications (prototype applications) of the same type e.g., trailsapplications, and composing a framework from the elements common to the three appli-cations. This approach is suitable for developing application frameworks for a speci�cproblem domain. The rationale behind the approach is that �no one is smart enough�to develop the correct abstractions for a particular class of application on paper alone.Initial designs may be acceptable for single applications but the ability to generalise formany applications can only be acquired by building applications and determining whichabstractions are being reused across the applications. The more example applicationsthat are considered during this process, the more general the resultant framework willbe. However, designing and implementing applications is a non-trivial undertaking andtherefore limiting the number of applications developed is necessary to arrive at a com-pleted framework within a reasonable time frame.The `Three Examples' approach was adapted for the implementation of the applicationframework described in this thesis. The development of the �rst example application wassubstituted with an investigation into the design of four mobile, context-aware trails-based applications in order to learn about behaviour that di�erent mobile, context-awaretrails-based applications potentially have in common without going to the expense offull application development. Two example applications were developed subsequently -54

informed by the design work already completed.The remainder of this subsection discusses the initial design phase and the trail gen-eration and recon�guration point identi�cation behaviour included in the two prototypeapplications developed as part of the application framework development process. Thecontext acquisition and modelling behaviour available in the Hermes framework is alsopresented in this section to illustrate how trails applications can acquire and managecontext.3.1.1 Initial High-Level Framework DesignPrior to the implementation of the �rst example application, requirements for four mobile,context-aware trails-based applications were speci�ed. UML use case, component, classand sequence diagrams were subsequently composed for the four applications. The goalof this process was to identify the high-level responsibilities of the components requiredto implement a mobile, context-aware trails-based application, hence de�ning the coreresearch areas on the Hermes project. The four applications were:1. A City Route Planner. This application supports city visitors or inhabitants gener-ating routes from their current location to another location or collection of locations.The focus is more on context-aware route planning than multiple activity schedul-ing, where context such as live road tra�c data, mode of transport and location offriends can dynamically a�ect a user's route. The key characteristic of this applica-tion from a research perspective is the consideration of context data in determiningthe most e�ective order in which to visit city locations, necessitating the design ofbehaviour to acquire context and generate and evaluate candidate trail solutions.2. A Delivery Courier Support System. This application supports the operation ofmobile delivery couriers by e�ectively scheduling delivery jobs assigned to themfrom a centralised head o�ce. A courier's trail is composed of delivery jobs andis generated and recon�gured based on contexts such as job priority, package type,courier location, delivery location, delivery deadline, and courier shift start/endtimes. The key characteristics of this application, besides the requirement for trailgeneration, are the consideration of contexts not considered in the route planner55

application, notably the restrictions on primary actor availability i.e., the courier'sshift times, and the application of the concept of a trail in a business application.3. A Treasure Hunt Game. This application generates trails for participants in amobile, context-aware treasure hunt game. Trails are used to navigate betweenclue locations and are generated based on player preference for factors such as cluetype and di�culty level. The key characteristic of this application is the potentialnecessity for dynamic trail recon�guration that arises as a result of changes inthe di�culty level of treasure hunt clues. The di�culty level of a clue increaseswhen solved, making it more di�cult for each subsequent player that views it.The application of the trails concept to mobile gaming is also notable as it furtherillustrates the applicability of the concept.4. A Campus-based Student Support System. This application supports students incompleting a set of compulsory and optional activities on their �rst day at college.The trails are a�ected by user location and activity opening hours, activity type,activity obligation (whether the activity is mandatory or not) and user-speci�edpriority level. The key characteristic of this application is the introduction of thenotion of activity obligation, facilitating the speci�cation of activities that must becompleted and are therefore treated preferentially in a situation where all activitiescannot be completed.During the design of these four applications, the following trails-related requirementswere identi�ed:1. A trail generation component should generate e�ective activity schedules based onan extensible range of context sources and an extensible user preference model,without constraining the number of activities an application can consider. Thecomponent should support code reuse and extension to facilitate the developmentof a range of trails applications.2. The trail generation component must be capable of scheduling a non-trivial numberof activities. 56

3. The trail generation component should generate trails that are considered reason-able by humans.4. Trails applications must contain behaviour to identify when an activity scheduleneeds to be recon�gured so that the schedule accurately re�ects the state of theuser's environment following context change. This behaviour should be reusableand extensible so as to facilitate the development of a range of trails applications.Requirements for acquiring and modelling the context information required by the trailgeneration and recon�guration point identi�cation behaviour were also identi�ed, andthese requirements are being addressed in the Hermes framework as described in Sec-tion 3.1.2. The initial framework design phase was followed by the development of twoprototype mobile, context-aware trails-based applications. A campus-guide applicationfor Trinity College is described in Section 3.1.3 and RiddleHunt, a trails-based riddlesolving game, is described in Section 3.1.4.3.1.2 Context Acquisition and Modelling in HermesThe Hermes framework contains reusable context acquisition and modelling behaviour, inaddition to the trails-based behaviour proposed in this thesis, that supports applicationsin acquiring and modelling context from a range of sources e.g., remote mobile devicesand sensors. Although not a contribution of this thesis, the author worked on a team thatimplemented the context acquisition and modelling behaviour in Hermes that is describedin this section to illustrate how context can be acquired by trails-based applications inpractice. Both the trail generation and recon�guration point identi�cation behaviourin the application framework assume the availability of context data as input in orderto produce results i.e., to generate a trail that best serves the user given their currentsituation as described by the available context data, and to identify, based on contextchange, when the trail should be recon�gured. Certain contexts, such as user location andcurrent time, can be acquired via local sensor access e.g., a directly connected GPS devicefor location and the system clock for current time. However, remote context sources suchas the location of other players (a context used in RiddleHunt) must be acquired throughcollaboration with the producers of the context e.g., the other game players in the case of57

remote player location context. Hermes provides components to facilitate the acquisitionof both local and remote context. Peer-to-peer ad hoc service discovery is used to discoverand communicate with remote devices that provide a context service. Hermes providesan object-oriented context model with XML mapping so that context information can bequeried by application logic and shared between devices.It is important to note that trails applications built using the application framework donot have to use the Hermes context acquisition and modelling behaviour in order obtaincontext. Developers can implement the classes responsible for context generation by usingthe Hermes framework or they can implement their own custom context managementbehaviour.3.1.2.1 Communication and Service DiscoveryThe Communication component in the Hermes framework illustrated in Figure 1.1 onpage 5 is responsible for peer-to-peer ad hoc device discovery. It facilitates the discov-ery of remote devices and the transfer of context e.g., player game state and location inRiddleHunt, between application users. Remote devices within proximity are discoveredvia an ad hoc service discovery protocol and devices then connect directly to share con-text. Every device broadcasts and listens for remote devices on a well known port. Thebroadcast device periodically sends the IP address and port that remote devices can useto establish a connection. When a remote device receives this broadcast, it �rst veri�esthat the broadcasting device is not already connected. The remote device then connectsand sends its service discovery information to the broadcasting device. On receiving theremote device's service discovery information, the broadcasting device sends its own ser-vice discovery information. The two devices are now connected and can exchange contextdata.In order to eliminate reliance on a �xed network or third party, it must be possibleto locally determine when a connection to a device is no longer valid. Inactive connec-tions must be removed in order to reclaim resources, such as ports or memory, allocatedfor service discovery information. A connection remains valid until no messages are ex-changed between devices for a speci�ed interval of time. This implies the devices are nolonger in communication range or the communication component has been disabled, as58

the broadcast messages should be received within the time interval.The Service Discovery component allows a device to advertise, discover and invokeservices on remote devices. Context-aware service discovery is important for applicationsexecuting on mobile devices, as not all devices encountered will o�er the same services.Additionally, the invocation methods may be di�erent for functionally equivalent services.Hermes supports the use of service discovery to discover and retrieve remote context in ageneric manner. To explore what context is available, an application �rst decides whichcontext types it is interested in receiving. To be useful to a speci�c application, thisshould be a subset of the types that the application can handle. The context acquisitionprocess is illustrated in Figure 3.1. When a remote device advertises a context type anapplication is interested in, the Service Discovery component of the local device sends acontext type request through the Communication component. The remote device thenhandles the request and responds with the desired context value.

Figure 3.1: Ad hoc communication and service discovery in HermesService Discovery also handles advertisement of context services o�ered by the local59

device. An application speci�es the context types it is interested in sharing, taking theprivacy preferences of the user into account. A service description message describing eachtype of sharable context on the device is then created. For example, the service descriptionmessage illustrated in the lower part of Figure 3.1 is advertising the LatLonLocation andthe Game types in the RiddleHunt application. This message is sent to remote devicesevery time one of the relevant context types is updated locally e.g., every time the usersolves a riddle or changes location. The time each context type was last modi�ed is alsoincluded in the description. This prevents remote devices from requesting context valuesthey already have.3.1.2.2 Message Types and Message ProcessingThe context acquisition and modelling behaviour in Hermes supports the following typesof incoming and outgoing messages:
• Context data from various sources:� Application derived contexts e.g., context input from users.� Device contexts e.g., battery life.� Context obtained from devices connected directly to the device e.g., informa-tion from a GPS device or motion sensor.� Contexts supplied by third parties e.g., wireless sensors or other user devices.
• Context requests to remote devices.
• Service description messages to remote devices.
• Application messages e.g., start and join game messages for RiddleHunt.
• Broadcast messages advertising the port and IP address used to communicate withthe user's device.XML is used as the message format in Hermes, meaning that applications can use theportions of the message they understand, while ignoring parts that they do not. XML also60

facilitates standardisation of communication between di�erent platforms and program-ming languages. Leveraging the extensibility and standardisation of XML provides theopportunity for di�erent versions of an application, or completely di�erent applicationson diverse device types, to communicate.Message processing components on mobile devices should be able to handle multiplemessages at once. At the same time, they should not allow the number of messagesprocessed to hinder application responsiveness. Hermes accomplishes this by employinga message-handling thread pool with a limited number of threads. When a message isreceived, regardless of the source, it is placed in the queue. When all preceding messageshave been removed from the queue, the XML message description is converted to amessage object and a thread from the pool is assigned to that message. This thread ownsthe message and carries it through the appropriate components until it comes to its �naldestination. For example, if the message is a piece of context that is deemed consistentwith the context already stored by the application, it is marshalled through the modellingcomponent and into the context model. Similarly, if it is an application message, it isdelivered directly to the application3.1.2.3 Context ModellingThe way in which context is modelled determines not only how context will be stored butalso the formats in which it can be exchanged and the possible reasoning over it. Hermesuses a hierarchical, object-oriented context model. This model lends itself to modellingreal-world objects and their various relationships. Object orientation provides for a worldmodel that is extensible, and enables the use of XML for context storage and exchangevia an object XML mapping.The structure of the context model impacts on services such as the context queryprocessor and the context fusion service, as it determines the complexity and responsive-ness of operations performed by these components. The context model's structure alsofacilitates extension through the addition of new types of context while minimising theimpact of such changes on clients. The Hermes context model places the following fourtypes of context at the root of the hierarchy:61

• Activities - real world tasks that can form part of a trail.
• People - information about people.
• Artefact - virtual objects or services as well as mobile objects.
• Features - information about the structure of the environment.These context types, along with example subclasses, are illustrated in Figure 3.2. Anexample XML context description is illustrated in Figure 3.1. The two context types,LatLonCoordinate and Game, are subtypes of Feature and Artefact respectively. Thecontext model makes the context data acquired through Hermes's context acquisitionbehaviour accessible to applications in a manner that facilitates ease of use in trails andother context-aware applications.

Figure 3.2: Hermes context model top level hierarchy and examples3.1.2.4 SummaryIn addition to the trails-related behaviour described in this thesis, Hermes facilitatespeer-to-peer service discovery and object-oriented context modelling with XML mapping.62

The components encapsulating this behaviour support the acquisition and modelling ofcontext information from both local and remote sources that is required as input to thetrail generation and recon�guration point identi�cation behaviour described in this thesis.The RiddleHunt application (discussed in Section 3.1.4) uses Hermes's context supportto access to information regarding the location and game state of other players that isused during trail generation and recon�guration point identi�cation.3.1.3 Application 1: Oisín Goes to TrinityThe `Oisín goes to Trinity' application (abbreviated to Oisín) provides campus-wide trailsfor the Trinity College Dublin campus. As Oisín was the �rst prototype applicationdeveloped, the primary research goal was the validation of the trails concept. This wasachieved through the development of a mobile, context-aware trails-based application(Oisín) and its subsequent evaluation via user trial. In terms of trail generation andrecon�guration point identi�cation, the focus was on assessing the practicality of bruteforce trail generation and minimising the amount of time that the user's trail is out ofsync with their physical environment.Oisín was implemented using the Java 2 Micro Edition (Personal Basis Pro�le) [84]that supports the implementation of Java applications with graphical user interfaces onresource-constrained mobile devices. The application was deployed on a Sharp Zaurus SL-56001 PDA and used an external serial Magellan SporTrakPRO2 GPS device to determineuser location.Oisín can be used to provide a range of campus-based mobile, context-aware trailsapplications including a tourist guide application for visitors to the many attractions onthe 400-year-old campus and the student support application described in Section 3.1.1.Figure 3.3 contains two screen shots of Oisín running the student support system on theZaurus. Screen shot A shows the user's location (indicated by a red dot icon as well asthe textual description `College Park, North East' in the status bar). A path from theuser's location to the location of the �rst activity and the location of the third activityare also shown. The third activity is currently deemed to be impossible, indicated by a1http://www.zaurus.com2http://www.magellangps.com 63

red outline on the activity icon. Screen shot B illustrates the context-sensitive activitymenu that is accessed by clicking (screen tapping) on any activity icon. The menu showsinformation speci�c to the activity selected (in this case Activity #1 - submission of alibrary bond), including the estimated activity start and end times based on its positionin the trail.

Figure 3.3: Screen shots of the Oisín graphical user interface on the ZaurusA user study involving 21 subjects was conducted to assess various aspects of Oisín,including the user interface, the hardware form factor, the trail generation and recon�gu-ration behaviour and user acceptance of mobile, context-aware trails-based applications.Subjects were familiarised with the concept of mobile, context-aware activity schedulingand then used a campus activity guide application to complete a number of activitieson the Trinity College campus such as visiting an art gallery, a natural history museumand the Book of Kells. The unexpected closure of a high priority activity was simulatedto force a signi�cant trail recon�guration while the user was en route to the activity inquestion. Trail recon�guration also occurred based on changes in user location. Subjectscompleted a questionnaire and informal interview following the application trial. Theresults of the trails-related user study questions are included in Appendix A.1. These64

results indicate a general acceptance of the trails concept and an appreciation of its util-ity. The majority of the subjects noticed that the order of the activities on their trailchanged when the trail was recon�gured. These changes were anticipated and deemedpositive by the majority of subjects. As regards the negative aspects of the application,the hardware form factor, which required subjects to hold two separate devices connectedvia cable, was deemed to be awkward to use by the majority of subjects. Additionally,subjects commented in post-trial interviews that the application was �slow� and subjectto pauses during execution. This was the result of a high degree of unnecessary trailrecon�guration (discussed in Section 3.2.4).The following subsections discuss the design of the trail generation and recon�gurationpoint identi�cation techniques used in Oisín.3.1.3.1 Trail Generation in OisínTrails are generated in Oisín using a brute force algorithm, the execution of which istriggered by the receipt of location and time lapse contexts. The brute force algorithmexhaustively generates and evaluates all permutations of the user's current trail andreturns the trail deemed optimal by the evaluation function. Oisín's high-level soft-ware design, containing only key classes and methods, is illustrated in Figure 3.4. TheReconfigurationBroker class is responsible for coordinating trail generation and receiveslocation and time context from the LocationContext and TimeLapseContext classes.The receipt of this context triggers the execution of the trail generation mechanism.The brute force trail generation mechanism uses the PermutationSet class to gen-erate all permutations of the trail. These permutations are assessed by an evalua-tion function that assigns a value to candidate trails based on speci�c trail proper-ties or combinations of properties. Numerous trail evaluation strategies, subclasses ofTrailReconfigurationStrategy, are included in Oisín. ScoreStrategy is the evalu-ation function used in Oisín because it incorporates all the trail properties consideredby the other strategy classes. ScoreStrategy assigns relative importance weights to thetrail properties it considers so that, for example, a candidate trail containing a greaternumber of compulsory activities is assigned a higher score than a trail with activitiesthat are not compulsory but are nearer to the user. In Oisín, the user's obligation to65

Figure 3.4: High-level design of trails behaviour in Oisínundertake an activity (whether an activity is compulsory or not) is more important thanthe proximity of an activity to the user.Once all permutations of the user's trail have been generated, ScoreStrategy calcu-lates the estimated start time and end time for each activity using the TrailModifierclass. These values are calculated based on both the position of the activity in the can-didate trail and the estimated activity duration. The estimated start and end times foreach activity are used to determine whether it will be possible for the user to undertakeall activities if following the candidate trail in question. Activities are marked as possibleor impossible based on their estimated start and end times.The reconfigure() method in ScoreStrategy assigns a single value numerical scoreto each permutation of activities. The score value for each candidate solution is generatedby the scoreTrail() method in TrailAssessor. This method scores each trail permu-66

tation based on six trail properties. The trail properties considered in the evaluationfunction are as follows:
• Trail length (in metres).
• The number of activities possible.
• The e�ciency of the time usage.
• The user priorities satis�ed.
• The number of compulsory activities possible.
• Whether the user's chosen �rst activity is scheduled in the �rst position on the trail.The user study questions presented in Appendix A.1 indicate that this technique is ca-pable of generating trails that users agree with. However, similar to the brute forcetrail generation technique implemented in the GUIDE system, the responsiveness of trailgeneration mechanism in Oisín deteriorated signi�cantly as the number of activities in-creased. In post-trial interviews, user study subjects expressed frustration with the trailrecon�guration response time of 30 seconds, during which time the application was `busy',denying service to users. This frustration was exacerbated by the fact that trail was re-con�gured far more frequently than was actually necessary in an e�ort to ensure that theuser's trail consistently re�ected their physical environment. The trail recon�gurationpoint identi�cation mechanism is explained in the following subsection.3.1.3.2 Recon�guration Point Identi�cation in OisínThere are �ve events that trigger trail recon�guration in Oisín.1. Location change - when the user changes symbolic location e.g., from Front Squarewest to Front Square east.2. Time lapse - every time a speci�ed period of time elapses.3. Selection of the `Do Next' option - when the user speci�es that a certain activityshould be done next, overriding trail order.67

4. Activity priority change - when the user changes the priority of an activity via theuser interface.5. Activity completion - when the user speci�es via the user interface that an activityhas been completed.

Figure 3.5: Screen shots of the recon�guration menu and edit screen in OisínFigure 3.5 contains screen shots of Oisín's recon�guration menu (screen shot A) andactivity edit screen (screen shot B). The recon�guration menu allows users to controlevents 1 and 2. Location triggers can either be on or o�. Time lapse triggers can beturned o� or set to one of a range of time lapse intervals. Location and time triggerscan run simultaneously. The ReconfigurationBroker class illustrated in Figure 3.4contains methods to invoke its reconfigure() method when it receives location changeand time lapse context events. The activity edit screen allows users to control events3-5. The selection of any of these options invokes the onTrailEdit() method in theReconfigurationBroker, resulting in trail recon�guration.In the case of events 3 and 5, recon�guration is always done only when necessary i.e.,activity completion and `Do Next' always cause the trail ordering to change. However,68

while events 1, 2 and 4 cause recon�guration to occur, the trail ordering does not alwayschange following recon�guration triggered by these events. Recon�guration that does notcause trail order to change results in the limited resources of the Zaurus being needlesslyconsumed. Unnecessary recon�guration occurred most notably in relation to locationchange events. These events occurred most frequently but rarely changed the ordering ofthe trail due to the relatively low importance of activity proximity in the candidate trailevaluation function.3.1.3.3 SummaryThe Oisín goes to Trinity application provides developers with the ability to deploycampus-based trails applications. However, it is limited by the approaches to trail gener-ation and recon�guration point identi�cation used. The basic brute force approach limitsthe number of activities that can be considered by the application and the hard-codedweights in the candidate trail evaluation function make the customisation of applica-tion behaviour di�cult. The recon�guration point identi�cation technique used has thepotential to recon�gure the trail unnecessarily and frequently did so in practice.The next application implemented was RiddleHunt, a mobile, city-based riddle solvinggame. The development of RiddleHunt, in terms of trail generation and recon�gurationfocused on �nding solutions to the problems encountered in the development of Oisíngoes to Trinity.3.1.4 Application 2: RiddleHuntAfter the implementation and evaluation of Oisín, the �rst version of the applicationframework existed. The goal of the trails-related work in the second application was toaddress the problems encountered in relation to trail generation and recon�guration pointidenti�cation in Oisín. In terms of trail generation, the focus was on extending the numberof activities an application can consider, thereby increasing the range of applications thatcan be built using the application framework. This is achieved by scheduling a subset ofthe total number of activities each time the trail is recon�gured. In order to select theactivities to be included in the trail each time it is recon�gured, a measure of activity69

`relevance' is introduced. The relevance value of an activity represents how deservingthe activity is of the user's attention relative to the other activities i.e., how relevant theactivity is to the user. Activity relevance is calculated based on the user's preferencesand the current state of the context being considered by the application. In terms ofrecon�guration point identi�cation, the goal was to reduce the number of unnecessarytrail recon�gurations by monitoring the subset of activities considered relevant. Trailrecon�guration is identi�ed as necessary when a change in relevant set membership occurs.Improving the trail generation and recon�guration point identi�cation mechanisms in themanner proposed allows for more realistic user schedules to be modelled, and reducesunnecessary resource usage on mobile devices.RiddleHunt is a mobile, context-aware riddle solving game designed to be playedin Dublin City. The game is played by multiple players who have to solve riddles atvarious locations around the city. The application was implemented using the Java 2Micro Edition (Personal Basis Pro�le) for deployment on a Hewlett-Packard iPAQ PocketPC (h6300 series) and uses an external Bluetooth Tom Tom Navigator3 GPS device todetermine user location.RiddleHunt allows application designers to distribute virtual riddles throughout thecity, and players are required to answer as many riddles as possible during the allottedgame time. Trails are generated to aid users in getting to as many suitable riddle locationsare possible. Riddle suitability depends on user preferences for trail generation e.g.,preference for riddle type and riddle value. Riddles have a type e.g., `Maths', `Trivia'and `Word', and a value that is based on the di�culty level of the riddle e.g., novice,intermediate or expert. RiddleHunt uses the context acquisition and modelling behaviourin the Hermes framework to share game state context between mobile players. Whenplayers are within proximity of each other they can connect directly to share context.The ability to share game state information allows trails to be generated based on up todate information about riddles i.e., has another player already solved a particular riddle(in this case the riddle is not worth as much to other players). Bonus points are addedto a player's score if they solve a certain riddle before another player.In terms of game design rationale, the decision to reduce the value of a riddle each3http://www.tomtom.com 70

time it is solved was taken for two reasons. First, it adds a new source of context thatwas not considered in Oisín i.e., activity property change. By making a greater number ofcontext sources available to the trail generation algorithm, it can generate trails that moreaccurately re�ect the user's environment. Second, it generates context information thatplayers cannot easily obtain themselves, illustrating the bene�t of following a context-aware trail when playing a mobile game.The trail generation and recon�guration point identi�cation mechanisms used in Rid-dleHunt are discussed below.3.1.4.1 Trail Generation in RiddleHuntTrail generation in RiddleHunt extends the basic approach used in Oisín by increasingthe number of activities that the application can consider. However, because brute forcetrail generation has time complexity O(n!), it is not possible from an application respon-siveness perspective to simply reuse the brute force algorithm from Oisín with a bigger
n value. Therefore, RiddleHunt takes advantage of the context information available toreduce the number of activities (riddles) considered during each execution of the trailgeneration algorithm. For example, a RiddleHunt application contains a prede�ned setof 20 riddles, X, where X = {a, b, c, d, . . . , t} and the riddles are geographically dispersedaround Dublin City. This situation is illustrated in Figure 3.6, which shows player andriddle locations. Red riddles i.e., {c, d, g, i, j, m, o, r}, are the most valuable while greenriddles i.e., {a, h, l, p, s}, are the least valuable. In order to generate trails for RiddleHuntplayers within a reasonable response time4 the application considers only a subset of theriddles in X. Based on the current context (player location, player preferences and riddleproperties), the trail generation behaviour in RiddleHunt composes a set of activities, Y ,where Y ⊂ X and the cardinality of Y is the maximum number of riddles that can bereasoned about using a brute force approach in a reasonable response time. Using thisapproach, RiddleHunt can provide trails to users that consist of the activities that aremost relevant to the user at the time of trail generation. The riddles identi�ed as relevantto the player in the example situation are illustrated in Figure 3.7, with the irrelevant4The meaning of the word `reasonable' in relation to trail generation response time is discussed inSection 3.2.1. 71

Figure 3.6: The activities in the set X and the player locationactivities greyed out. As riddles are completed or context changes, membership of theset of relevant activities (Y) is updated and trail recon�guration occurs.Figure 3.8 illustrates the high-level class design of the trails behaviour in RiddleHunt.Only key classes and methods are shown in the diagram. The TrailsLogic class, respon-sible for coordinating trail generation, receives Player and Game context updates thatprovide player location and riddle state context respectively. When these context eventsare received, the collection of activities considered by the application is �rst pruned andthen sorted by relevance.TrailsLogic contains methods to prune completed activities/riddles from the trail,reducing the number of trail permutations and consequently making trail generationmore e�cient. TrailsLogic also contains behaviour to select the most relevant activitiesfor consideration during trail generation if necessary i.e., when the number of activ-ities is greater than that which can be considered in a reasonable response time. ThesortByRelevance() method sorts the collection of activities by relevance. The relevanceof an activity in RiddleHunt is de�ned by the proximity of the activity to the user, thevalue of the riddle and the relationship between the activity type and the user's preferencefor activity type (riddle category). 72

Figure 3.7: Identi�cation of the members of set YWhen the collection of activities has been pruned of any completed activities andsorted by relevance, it can be assessed to see whether or not it should be recon�gured.This behaviour is encapsulated in the reconfigurationRequired() method (discussedin Section 3.1.4.2). If recon�guration is necessary, the getReconfiguredTrail() methodis invoked. This method assesses the number of activities in the trail. If the number ofactivities in the trail is greater than the number of activities that can be reasoned aboutin a reasonable response time using the brute force method, the createTrail() methodin TrailManipulator is used to create a subtrail of the most relevant activities. ThesubTrailSize attribute stores the size of the subtrail to create. The createTrail()method represents the implementation of the identi�cation of the relevant set Y as illus-trated in Figure 3.7.When a subtrail has been created, the optimal ordering of the activities in the sub-trail is calculated. A signi�cant di�erence from the Oisín implementation is that thetrail generation strategy classes no longer provide di�erent methods of scoring candidatesolutions. RiddleHunt considers trail generation strategies to be di�erent techniques forgenerating candidate solutions to be evaluated by a single evaluation function stored inthe Trail class. This decision was made because all trail properties should be consid-73

Figure 3.8: High-level design of trails behaviour in RiddleHuntered during candidate solution evaluation, while di�erent candidate solution generationtechniques e.g., brute force and genetic algorithm, may be appropriate depending on ap-plication requirements and device capabilities. Brute force is the trail generation strategyused in RiddleHunt. BruteForce generates candidate trails to represent all permutationsof the subtrail and uses the getScore() method in each candidate solution to return anumerical value.The getScore() method in Trail, using TrailTimeModifier and TrailAssessorto perform the same function as they did in Oisín (Figure 3.4), is the evaluation functionused in RiddleHunt. The following factors are considered when calculating the score of atrail:
• Trail length (in metres).
• Trail duration (in minutes). 74

• Riddle values.
• The extent to which user preferences for riddle type are satis�ed.The trail with the highest score is returned to TrailsLogic. The activities not consideredduring trail generation are appended to the subtrail using the joinTrails() method inTrailManipulator, and marked as unscheduled. The trail, containing both scheduledand unscheduled activities, is returned to the client. Annotating activities with infor-mation regarding whether or not they are currently scheduled allows the user interfacelogic to represent currently scheduled and unscheduled activities di�erently. For exam-ple, scheduled activities can be represented by coloured icons and overlayed with sequencenumbers representing their position in the trail, whereas unscheduled activities can berepresented by greyed out icons with no sequencing information.3.1.4.2 Recon�guration Point Identi�cation in RiddleHuntRecon�guration point identi�cation in RiddleHunt is based on changes in membership ofthe set of activities that constitute the subtrail (set Y). Therefore, only context eventsthat cause a signi�cant di�erence in the relevance values of the activities will cause trailrecon�guration to occur. The decision to move away from the recon�guration point iden-ti�cation mechanism used in Oisín, where all context events trigger recon�guration, wastaken in a bid to minimise the number of unnecessary trail recon�gurations. The re-con�guration point identi�cation mechanism used in RiddleHunt triggers recon�gurationonly when it will result in the generation of a trail di�erent to the one currently beingfollowed by the user.The trail activities (set X) are sorted by relevance each time a context event occursand the top z activities, where z = subTrailSize, are isolated, producing set Xo. If theactivities in Xo are equal to those in the existing subtrail Y (Xo = Y) then recon�gurationdoes not occur. There are three context events that cause membership di�erences between

Xo and Y :1. Riddle completion. When a riddle is completed it is pruned from the trail andno longer considered during recon�guration. The completed riddle, r, cannot be75

a member of X (r /∈ X) and therefore cannot be a member of Xo (r /∈ Xo).Therefore it is no longer possible for Xo to be equal to Y (Xo 6= Y), necessitating,and consequently triggering, trail recon�guration.2. Player location change. When players move around the game space their proximityto riddles changes, causing relevant activities to become irrelevant and previouslyirrelevant activities to become relevant, a�ecting the membership of Xo. In Rid-dleHunt, a location change occurs when the user's GPS position causes a change inthe user's X, Y position on the user interface. Any e�ect to the membership of Xoresults in Xo 6= Y , triggering recon�guration.3. Riddle value change. When a riddle is solved by a player its value to other playerswho have not yet solved it is reduced. A reduction in riddle value makes a riddle lessrelevant to a player looking for riddles to solve. The reduction of a riddle's value maybe great enough to cause it to be removed it from Xo, triggering recon�guration.By monitoring changes in the set Xo from which the subtrail is composed it is possibleto identify when trail recon�guration should occur. Context events that do not resultin Xo 6= Y are ignored, meaning that no unnecessary recon�guration occurs. However,this approach does not recognise the need for recon�guration caused by �uctuations inthe relevance values of the activities deemed relevant (those currently in the subtrail).These �uctuations may not be signi�cant enough to cause a change in set membership,but they can be signi�cant enough to cause the trail being followed to be suboptimal.For example, if the user moves towards a riddle, f , away from another activity, j, then,all things being equal, f will become more relevant than j based on proximity. Thischange in the relevance values of the two activities may not be great enough to cause
j to be removed from Xo but it should cause the trail to be recon�gured so that theuser is instructed to focus his attentions on f . This issue is addressed in the applicationframework.3.1.4.3 SummaryRiddleHunt introduces a trail generation approach that allows an application to include alarge number of activities by using context to reduce the number of activities considered76

during each trail recon�guration. The set of activities that are considered are thosedeemed most relevant at the time of recon�guration.The recon�guration point identi�cation mechanism is based on changes to the set ofactivities with the highest relevance values. This method eradicates unnecessary recon-�guration. However, due to an inability to reason about the internal structure of the setof relevant activities, the trail that the user is following can become suboptimal withoutrecon�guration being triggered. This issue is addressed in the application framework,which is described in the next section.3.2 Application FrameworkRiddleHunt introduced the notion of removing completed activities and calculating arelevance value for each activity to improve on the limited trail generation and recon�gu-ration point identi�cation behaviour in Oisín. While these advances allowed applicationsto include more activities by considering only the most relevant during trail generation,areas for improvement remained. First, in terms of removing irrelevant activities fromthe activity set before the trail generation process begins, activities that are not possibledue to the current context and activities involved in clashes can also be removed. Second,in terms of trail recon�guration, signi�cant di�erences between the relevance values ofactivities should be acted on, even if they do not cause a membership change in the setof relevant activities used to generate a trail. Third, both Oisín and RiddleHunt assumea �xed set of application-speci�c user preferences, precluding the generation of trailsbased on the preferences of individual users. Finally, although RiddleHunt introducedthe ability to utilise many candidate trail generation techniques, both applications wererestricted to using brute force. These issues are addressed in the application framework.The remainder of this section is as follows. Section 3.2.1 discusses application re-sponse time as it relates to trail generation and proposes a reasonable response time forthe trail generation algorithm in the application framework. Section 3.2.2 introducesMulti-Attribute Utility Theory - a preference-based object evaluation technique used tofacilitate the consideration of non-static user preferences in the trail generation algorithmwithout requiring source code modi�cation. This background information is followed by77

the design of the trail generation and recon�guration point identi�cation techniques inSection 3.2.3 and Section 3.2.4 respectively.3.2.1 Response TimeThe �Holy Grail� of system response time engineering was de�ned by Miller in a theoreticalpaper that proposes a set of guidelines for application developers [85]. Miller suggests amaximum delay of 2 seconds following a request, with an optimum response time of 0.5seconds so as to maintain the conversational nature of the interaction between humansand machines. According to Galletta et al., this theory was upheld as a �gold standard�in web-design well into the 90s [44]. However, the goal has not been widely achieved.Application response time literature suggests that there is a timescale within whichit is optimal to deliver a result to the user. Returning an answer past the wrong endof this timescale has the potential to frustrate the user and can discourage them fromusing the application in the future [88]. In the most extreme case, the result will notbe returned at all due to the user terminating the operation after an amount of timespent waiting. This second phenomenon is described in a discussion of website responsetime where it is advised that applications should not take too long to return a resultdue to the tendency of users to abandon tasks that take too long [44]. Galletta et al.discuss a generally accepted maximum response time of between 8-12 seconds and statesthat anywhere between 0-9 seconds is acceptable for websites. Hoxmeier and DiCesarehave shown that satisfaction with website response time is constant from 0-9 seconds andbegins to diminish from 12 seconds onwards [53].Myers proposes that the range of an acceptable response time, 0-9 seconds, can beextended by presenting feedback to the user during the waiting period [87]. Nah andKim have demonstrated this e�ect, showing that subjects given a progress indicator e.g.,a progress bar, will wait on average 38 seconds for a hyperlink that does not return a result[88]. Subjects given the same link without any progress indication terminated the actionafter 13 seconds. However, in subsequent trials, the group without progress indicationonly waited for 3 seconds and the wait time for those with progress indication droppedto 7 seconds. The conclusion is that patience does not last forever and appropriate wait78

times are determined dynamically, evolving based on user experience with a system.On the question of what exactly is the ideal response time for a website, Galletta etal. state that a website requires a maximum response time of 8 seconds to promote apositive reaction. However, he goes on to say that users are more likely to tolerate morelengthy delays from familiar sites, presumably as they are aware of what they are waitingfor and place a certain value on it. In other words, it is worth waiting 20 seconds to viewa particular piece of content that is known to be of a certain quality.The question that arises is whether or not the �ndings of researchers involved inwebsite response time research can be generalised and applied to the question of trailgeneration response time. T.W. Butler begins his study into computer response timeand its e�ect on user performance by stating that although there has been a lack ofwork in this area at the time of writing (1983), it was generally accepted that di�erentuser tasks have di�erent response time requirements for optimal user performance [19].Testing these assertions he concluded that degradation of user performance in responseto increased response time appears to be similar for tasks that are cognitively di�erent.This throws some doubt on the generally accepted assertion that di�erent tasks havedi�erent optimal response times.The fundamental advice on response time has basically been the same for about fortyyears according to Nielsen [89]. He presents the following guidelines based on Miller'searly work and later work by Card et al. [20].
• 0.1 seconds is the limit for having the user believe that the system is reactinginstantaneously.
• 1 second is the limit for the user's �ow of thought to stay uninterrupted, but eventhen they will notice delay.
• 10 seconds is about the limit for keeping the user's attention focused on the dialogue.
• For longer delays, users will want to perform other tasks while waiting and so shouldbe given feedback indicating when the computer expects to be done. Feedback isespecially important if the delay is variable, as the user doesn't know what toexpect. 79

Nielsen has also stated, in a non-peer reviewed addendum to his writing on response time(published on his personal website5), that the guidelines he presents are applicable to allapplications and that the guidelines for web-based applications are the same as those forall applications. He goes on to say that given that the guidelines have been in place forso long that they are unlikely to change any time soon, regardless of what technologycomes next [90].For the purposes of this thesis, a `reasonable' response time for the trail generationalgorithm is considered to be between 0-12 seconds. The upper-bound can be increasedthrough the provision of suitable progress indication to the user. The approach to trailgeneration in the application framework is designed to allow a variable number of activi-ties to be considered during trail generation so that this reasonable response time can beadhered to. The number of activities considered in a speci�c application depends on thecapabilities of the mobile device hosting the trails application and the manner in whichcandidate trails are generated.3.2.2 Multi-Attribute Utility TheoryThe evaluation functions in both Oisín and RiddleHunt contain hard-coded values thatspecify how much bearing particular trail properties have on the score for each candidatesolution. This approach to multi-attribute decision making is not suitable for a generictrail generation algorithm due to its lack of �exibility, and therefore the approach in theapplication framework has been implemented in a manner that facilitates user speci�ca-tion of weights for trail properties considered during trail generation, without requiringsource code modi�cations. This approach is based on Multi-Attribute Utility Theory(MAUT) [128].Multi-Attribute Utility Theory is a technique for evaluating objects based on userinterest in various aspects of the objects. The overall evaluation v(x) of an object xis de�ned as the weighted addition of its evaluation with respect to its relevant valuedimensions. For example, a trail can be evaluated on dimensions such as number ofactivities possible, duration and length. The object evaluation is de�ned by the overall5www.useit.com 80

value function:
v(x) =

n∑

i=1

wivi(x)In this function, vi(x) is the evaluation of the object on the i-th value dimension di,and wi is the weight determining the impact of the i-th value dimension on the overallfunction, also known as the relative importance of the dimension. n is the number ofdi�erent value dimensions and ∑
n

i=1 wi = 1, meaning that the sum of the weights for thedi�erent value dimensions equals 1.For each value dimension di the evaluation vi(x) is de�ned as the evaluation of theattributes composing the dimension:
vi(x) =

∑

a∈Ai

waivai(l(a))Here Ai is the set of all attributes relevant for di and vai(l(a)) is the evaluation of theactual level l(a) of attribute a on di. wai is the weight determining the impact of theevaluation of attribute a on value dimension di. wai is also referred to as the relativeimportance of attribute a for di. For all di(i = 1, . . . , n) holds ∑
a∈Ai

wai = 1. Forexample, the scenic value of a tourist trail can be calculated by considering attributessuch as the type of structure housing each activity and the existence of proximate publicparks and spaces.Attributes are evaluated on a scale representing the levels of an attribute e.g., on ascale of 0 to 100 a very scenic trail might have the value 95. All values must be normalisedto this scale for comparison.Table 3.1 illustrates the evaluation of four candidate trail solutions along �ve valuedimensions. The user-speci�ed relative weights are included in the right-most columnand the total score calculated for each trail is included in the bottom row. A higherscore indicates trail superiority. The values for trail length, duration and idle time arerepresented using negative values as these are negative trail characteristics and shoulddecrease the trail score. The score for Trail 1 is calculated as follows:
(80 ∗ 0.55) + (50 ∗ 0.15) + (−55 ∗ 0.0) + (−38 ∗ 0.1) + (0 ∗ 0.2) = 47.7In this manner, the worth of a collection of candidate trails can be calculated based on81

user preferences to determine best trail for a particular user. The user weights can bechanged to produce di�erent trail evaluations without changing the underlying approach.Dimension Trail 1 Trail 2 Trail 3 Trail 4 User WeightActivities Possible 80 40 70 80 0.55Mandatory Activities 50 10 40 40 0.15Length -55 -64 -72 -83 0.0Duration -38 -85 -84 -92 0.1Idle Time 0 0 -27 -12 0.2Score 47.7 23.65 30.7 38.4 1Table 3.1: Trail evaluation dimensions (on a scale from 0-100) and sample dataApart from MAUT, a number of alternative approaches to multi-attribute decisionmaking were considered. Constraint satisfaction problems [127] were investigated as atechnique for representing variable user preference values for multiple trail properties, butthe concept of using constraints to model user preference, as illustrated by Zhang andPu [136], did not map to the problem speci�cation as naturally as MAUT. Conditionalpreference networks (CP-Networks) [16] can be used to solve multi-attribute decisionproblems where user preferences are unknown or incompletely speci�ed. CP-Networksare therefore suitable for use in situations where user preferences can only be elicitedin an incremental manner during the execution of the application. This is not the casein trails applications, where value dimensions represent basic, comprehensible trail oractivity concepts and related preferences can be set either by the developer or user priorto initial trail generation. As user preferences evolve based on experience using theapplication, the preference values for all value dimensions can be updated repeatedly,facilitating incremental revelation of preferences. Therefore, the use of CP-Networks wasdeemed unnecessary. Various heuristic strategies for preference-based object evaluationsuch as the equal weight heuristic, the elimination-by-aspects heuristic and the satis�cingstrategy [96] were also considered. These heuristic approaches are modelled on techniquesused by humans, both individually and in groups, to solve multi-attribute problems [2].The possibility of using heuristics was discarded as they are not guaranteed to �nd thesolution that maximises each of the value dimensions relative to the user preferences.[60]. 82

3.2.3 Trail GenerationThe major challenge in trail generation concerns the production an e�ective trail within areasonable amount of time without restricting the number of activities an application canconsider. Additionally, the evaluation function used to evaluate candidate trail solutionsshould recognise the preferences of individual users. Oisín limits the number of activitiesit can consider based on the behaviour of the brute force algorithm used to generate theoptimal trail. The evaluation function used to evaluate candidate solutions contains hardcoded relative importance weights, meaning that all users receive the same trail when inthe same contextual situations, regardless of their personal preferences. RiddleHunt im-proves on Oisín by introducing the notions of activity relevance and subtrails, facilitatingthe generation of trails composed of the activities that are most relevant to the user andallowing RiddleHunt to consider a large number of activities. RiddleHunt also introducesthe concept of pruning activities that no longer need to be considered when generatingtrails, reducing the number of candidate solutions that must be evaluated. However, likeOisín, RiddleHunt does not provide a preference elicitation mechanism and consequently,the relative importance weights in both the evaluation function and the activity relevancefunction are hard coded.The generic trail generation algorithm in the application framework extends thecontext-based activity set reduction and partial trail generation techniques introducedin RiddleHunt. As well as removing completed activities, activities that are not possiblebased on the current context e.g., those that cannot be done due to time restrictions orthose that clash with other, more preferable activities, are also removed. This reducesthe number of activities (and permutations thereof) that must be considered by the trailgeneration algorithm, increasing algorithm e�ciency. If the number of activities remain-ing after activities have been removed is greater than that which can be reasoned aboutin a reasonable amount of time, the activities are assigned a relevance value and themost relevant activities (based on user preferences and current context) are consideredduring trail generation. This allows a trail containing the most relevant activities to begenerated for the user even when the application contains more activities than can bereasoned about e�ciently. This approach is explained in detail throughout the remainder83

of this section.An activity set contains all of the activities that a user can theoretically do while usinga trails application. Reducing the number of prospective activities reduces the numberof trail permutations that must be evaluated when �nding the best activity ordering.The trail generation mechanism in the application framework uses context in four mainways: �rst to prune the activity set of completed activities, second to prune the activityset of impossible activities, third to resolve activity clashes and �nally, if necessary, todivide the remaining activities into two sets, the relevant set and the irrelevant set.This process is illustrated in Figure 3.9. Line 1 in Figure 3.9 represents a completeactivity set, X, containing ten activities named with letters of the alphabet a through j:
X = {a, b, c, d, e, f, g, h, i, j}. A high-level overview of the decisions and actions involvedin the process of generating a trail from a set of activities is illustrated in the activitydiagram in Figure 3.10.3.2.3.1 Completed ActivitiesAn activity is completed when the activity status is manually changed to `complete' viaan application user interface. Line 2 in Figure 3.9 illustrates the identi�cation of twocompleted activities in X, c and i. These activities are removed from X, reducing the setcardinality by 2. In the activity diagram in Figure 3.10, completed activities are removedin step (A).3.2.3.2 Impossible ActivitiesAn activity is considered to be impossible if it is not available for the user to undertakeeven though it has not been completed. There are two ways in which an activity canbecome impossible. First, when it is no longer possible for the user to get to the activitylocation and complete it before the activity closing time is reached. Second, when anon-temporal activity limit is reached. For example, it will eventually become impossibleto attend a movie when the theatre reaches capacity attendance. Line 3 in Figure 3.9illustrates the identi�cation of an impossible activity, a, based on the current locationcontext which is represented by the globe icon. a is removed from X. Figure 3.10illustrates that impossible activities are removed at step (A) following the removal of84

Figure 3.9: Context-based activity set reductioncompleted activities.3.2.3.3 Clashing ActivitiesTwo activities clash when, although independently possible, their opening hours andestimated durations con�ict, leading to a situation in which the completion of one activityrenders the other impossible. For example, two movies clash if they are showing at thesame time and have similar running times. When clashes are identi�ed they must beresolved, resulting in the rejection of one activity and its removal from the activity set.Clash resolution is achieved via a technique based on MAUT that considers user-speci�ed weights when comparing the following activity properties:
• Proximity - the distance from the user's current location to the activity location.85

Figure 3.10: The trail generation process
• Priority - the user-speci�ed numerical priority level for the activity e.g., 5 for high,1 for low.
• Obligation - whether the activity is mandatory or optional.The clash resolution technique produces a single value for each activity by aggregatingvalues for the set of weighted trail properties listed above. A numerical value for eachrelevant activity property is calculated, normalised and multiplied by the user-speci�edweight for that property. The values for each of the properties are summed and theactivity with the lowest overall value is rejected and removed from the activity set. Inthe unlikely event that the scores are equal, a single activity is randomly selected forrejection. Table 3.2 illustrates the comparison of two clashing activities. Activity 2 isrejected because it has a lower score than Activity 1. Activities that have been removedfrom the activity set as a result of clash resolution can be reinstated in the event ofsigni�cant context change. 86

Dimension Activity 1 Activity 2 User WeightProximity -80 -40 0.6Priority 60 10 0.1Obligation 100 0 0.3Score -12 -23 1Table 3.2: Activity evaluation dimensions for clash resolution and sample dataLine 4 in Figure 3.9 illustrates the identi�cation of a clash between activities e and hbased on knowledge of activity properties and user location. The clash is resolved usingthe policy described above which is represented by the �le icon. e is rejected and removedfrom X. Step (A) in Figure 3.10 shows that activities rejected as a result of a clash areremoved following the removal of completed and impossible activities.3.2.3.4 The Relevant and Irrelevant SetsAfter the context-based pruning of the activity set X, a number of candidate activitiesremain from which a trail is composed. Depending on the number of activities in X, theactivity set may be split into a relevant set (Xo) and an irrelevant set (Xa). This divisionoccurs if the cardinality of the activity set X is greater than the number of activities thatcan be reasoned over in a reasonable application response time (between 0-12 seconds).The relevant set Xo comprises activities that, based on context, are considered mostrelevant for the user at a given point in time.Activities are sorted by relevance (shown as part of both the trail generation andrecon�guration point identi�cation processes in step (B), Figure 3.10) and a decisionregarding whether or not recon�guration is required (discussed in Section 3.2.4) is madein step (C). If recon�guration is not required, the estimated activity start and end timeof each activity scheduled on the trail is updated based on the current context and theprocess terminates. If recon�guration is required, a check occurs to assess whether asubtrail is necessary. If so, the top z activities (where z is the cardinality of Xo de�nedby the application developer based on a desire to achieve a reasonable response time)are stored in Xo. This process is illustrated by step (E1) in Figure 3.10. The remainingactivities are stored in the irrelevant set Xa. Step (E2) represents the situation in whichthere is no necessity to create a subtrail during trail generation.87

The relevance value for an activity is calculated using a user preference-driven MAUTapproach similar to that used for clash resolution. The relevance value is the result ofsumming normalised weighted values for the following activity properties:
• Proximity (de�ned in Section 3.2.3.3).
• Priority (de�ned in Section 3.2.3.3).
• Obligation (de�ned in Section 3.2.3.3).
• Urgency - how urgently an activity must be addressed based on its opening hours.Table 3.3 illustrates the comparison of two activities based on user-de�ned weights for thefour value dimensions. Activity 2 is rejected because it has the lower score. Lines 5 and 6Dimension Activity 1 Activity 2 User WeightProximity -45 -57 0.6Priority 20 80 0.15Obligation 100 0 0.05Urgency 82 64 0.2Score -2.6 -9.4 1Table 3.3: Activity evaluation dimensions for relevance and sample datain Figure 3.9 illustrate sorting an activity set by relevance based on current context anda user-de�ned policy. Line 7 illustrates the division of the activity set into the relevantand irrelevant sets, Xo and Xa.When the relevant set has been populated with activities, the trail that best satis�esthe user's preferences can be generated (step (F) in Figure 3.10). This trail representsa speci�c ordering of the activities in Xo. The activities in the irrelevant set Xa areappended to the generated trail (Xo∪Xa) and marked as unscheduled, illustrated in step(G). This allows all of the activities to be displayed to the user, but only those scheduledon the trail have scheduling information associated with them e.g., a position in the trailand an estimated start/end time. The completion of a trail activity results in a memberof the irrelevant set Xa being drawn into the relevant set Xo and scheduled on the trail.At any point, a context event can cause a revision of the relevant set that results inactivity migration from the irrelevant set to the relevant set and vice versa.88

3.2.3.5 Trail OrderingThe trail ordering mechanism assesses relevant set orderings and returns the best �t to theuser's preferences. A MAUT-based evaluation function considers user-speci�ed weightsfor various trail properties and returns a single numerical value for each permutation.The following trail properties are considered when evaluating a candidate trail:
• The number of activities possible.
• The number of mandatory activities possible.
• The total trail length/travel distance required.
• The trail duration.
• The amount of idle time.Table 3.1 in Section 3.2.2 illustrates the evaluation of four candidate trails using the valuedimensions listed above. Three approaches for generating candidate trails are includedin the framework:
• Brute force.
• Simulated annealing.
• Genetic algorithm.Brute force trail generation �nds the optimal trail by exhaustively evaluating all permu-tations of a set of activities and returning the best trail. Brute force trail generation hastime complexity O(n!). Therefore it is not advisable to allow a trail generation algorithmusing brute force to execute without controlling the number of activities considered asthis would have a detrimental e�ect on application responsiveness.Simulated annealing is a probabilistic approach to combinatorial optimisation prob-lem solving [109]. In metallurgy, annealing is the process used to harden metals and glassby heating the materials to a high temperature and cooling them gradually in a controlledmanner to increase the size of the crystals and reduce defects. The heat causes atoms tobecome unstuck from their initial positions and wander randomly through states of higher89

energy, with the slow cooling providing more chance of �nding con�gurations with lowerinternal energy (greater hardness) than the initial one. Mapping this technique to trails,activities are analogous to atoms and the trails are analogous to the material, composedof atoms, that is being modi�ed. The simulated annealing algorithm replaces the currentsolution with a random `nearby' solution i.e., the order of the activities in the trail ismodi�ed to some degree at each step. The nearby solution is chosen based on the valueof a temperature parameter that controls the cooling of the material. The temperatureparameter represents a numeric parameter that controls the magnitude of change to thetrail being modi�ed at each step in the algorithm. The solution changes almost randomlywhen the temperature is high but changes become increasingly less dramatic as the tem-perature moves towards zero. Therefore, when the control (temperature) parameter ishigh, the order of the activities in the trail will �uctuate almost randomly in a bid to �nda better con�guration. As the control parameter moves towards zero, the changes willbecome less erratic until the order stabilises and the �nal trail ordering is returned. Insimulated annealing, the solution produced is not guaranteed to be optimal, but solutionquality depends on the length of the annealing schedule i.e., how long the algorithm isprogrammed to run for (the starting value of the temperature parameter and how fast itmoves towards zero) and how many trials the algorithm carries out at each step.A Genetic algorithm (GA) is a guided random search technique that simulates bio-logical evolution by combining two parent candidate trails to produce what should bea better child trail [109]. A genetic algorithm begins with a set of randomly generatedcandidate trails (chromosomes in GA terminology) known as the initial population. Thenext generation of states is produced by �rst selecting the best trails from the currentgeneration as judged by a �tness function (i.e., the evaluation function used to generatescores for candidate trails). Pairs of trails are then selected to reproduce using a crossovermethod that selects the number of activities (genes in GA terminology) from each trailthat make it into the new child trail. Finally, newly created trails are subject to randommutation with a small independent probability, swapping the position of two activities inthe trail. Evolution continues for the number of generations speci�ed. Genetic algorithmsolution quality depends on the size of the population and the number of generations thealgorithm runs for. In turn, these factors a�ect the execution time.90

Brute force trail generation is appropriate when the number of activities to be con-sidered during trail generation can be limited to a number that can be reasoned aboutin a reasonable response time. This is suitable for many applications in which users pre-fer to have a subset of their activities scheduled optimally as opposed to have all theiractivities scheduled suboptimally. However, as response times with brute force increaseexponentially as activities are added, going beyond the consideration of a small num-ber of activities during trail generation is not feasible. Response times with simulatedannealing and genetic algorithms do not increase exponentially, the increase in responsetime following the addition of an activity is far less signi�cant than with the brute forcealgorithm. Simulated annealing has been shown to perform better (in terms of solutionquality) than genetic algorithms when both algorithms are terminated after the same timeperiod [72]. Therefore, simulated annealing is preferable when application execution timemust be constrained. Achieving a reasonable response time with simulated annealing ora genetic algorithm requires making concessions in terms of solution quality, dependingon the number of activities being considered. If the number of activities is relativelylarge then solution quality must be sacri�ced if the application is to respond in a timelyfashion. This illustrates the general trade-o� between solution quality and applicationresponsiveness in combinatorial optimisation problem solving.Lines 7 and 8 in Figure 3.9 illustrate the trail ordering process, using current contextand a user-weighted policy to order the relevant set to best serve the user.3.2.3.6 Reusability and ExtensibilityThe trail generation mechanism in the application framework provides a generic approachto trail generation that can be reused when implementing mobile, context-aware trails-based applications. The proposed approach has also been designed to be customised andextended by developers. The following aspects of the trail generation mechanism can becustomised by developers without requiring invasive source code modi�cations:
• Clash resolution policy. The weights of the properties considered during clashresolution can be altered on a per-application or per-user basis to achieve di�erentresults with the same clash resolution implementation.91

• De�nition of relevance. The weights of the properties considered in the de�nition ofactivity relevance can be set in many di�erent con�gurations to produce di�erent`most relevant' orderings from the same set of activities.
• Relevant set size. The number of activities in the relevant set can be speci�ed on aper-application or per-user basis.
• Evaluation function. The weights assigned to the trail properties used in the eval-uation function are con�gurable in the same manner as those used in the clash res-olution and relevance policies, facilitating the production of many di�erent `best'trails without source code modi�cation.
• Candidate solution generation algorithm. The candidate solution generation algo-rithm used at runtime can be selected on a per-application or per-user basis withoutrequiring source code modi�cation. Additionally, the properties of the genetic andsimulated annealing algorithms can be con�gured by the developer without requir-ing source code modi�cation.In terms of extensibility, the approach is designed to facilitate the implementation ofmultiple approaches to candidate solution generation and evaluation e.g., brute forceand genetic algorithm. The speci�cs of whether an exact or heuristic approach is usedare hidden from the client, allowing developers to extend the application framework byplugging in new implementations. This provides the opportunity for experimentationwith speci�c implementations of combinatorial optimisation problem solving techniques.The application framework can also be extended to add new contexts and trail/activityproperties by subclassing the relevant classes in the default implementation. A genericcontext source speci�cation is extended to provide location and time lapse context. Thisgeneric speci�cation can be extended to provide further concrete context types. Thedefault trail and activity speci�cations containing generic attributes and behaviour thatare provided in the framework can be extended and customised through inheritance tomeet the requirements of speci�c applications.

92

3.2.3.7 SummaryThe trail generation mechanism included in the application framework facilitates thedevelopment of applications that can include a large number of activities by using contextto prune the activity set of completed, impossible and clashing activities, and to determinethe relevance of each activity. Clashes between activities are resolved based on userpreferences for clash resolution. The notion of activity relevance is also determined by userpreference values. Based on a maximum response time of 12 seconds an application usingthis approach will include as many of the relevant activities as possible when generatingand recon�guring trails. The remaining activities are marked as unscheduled. The user'strail is composed of the activities that are most relevant to the user given the currentsituation.3.2.4 Recon�guration Point Identi�cationThe major challenge in recon�guration point identi�cation concerns minimising unnec-essary trail recon�guration (which needlessly consumes mobile device resources) whilemaximising the amount of time that the trail re�ects the reality in which the user exists.Recon�guration point identi�cation in Oisín is based on the occurrence of context events,namely location change and time lapse events. Trail recon�guration is triggered each timea context event occurs. This approach ensures that the trail always re�ects events in theuser's physical environment (in terms of location), however it also results in the majorityof recon�gurations having no e�ect on the ordering of the existing trail. Recon�gurationpoint identi�cation in RiddleHunt is based on changes in the set of activities judged tobe most relevant to the user following the receipt of a context event. This approachavoids unnecessary trail generation by triggering recon�guration only when the set ofactivities to be included on the trail has changed, meaning that the resultant trail willcontain at least one activity not in the current trail. However, this technique considersonly a shallow, surface-level comparison of the activity sets, reacting only to relevant setmembership change as opposed to changes in the internal composition of the relevant set.Consequently, context events that cause signi�cant changes to the internal structure ofthe relevant set do not trigger recon�guration, meaning that the user can potentially be93

following a trail that does not re�ect recent context events.The recon�guration point identi�cation technique in the application framework isbased on the concept of activity relevance introduced by the trail generation mechanismand extends the basic approach developed for RiddleHunt. A trail is recon�gured if thereis a `signi�cant' di�erence between the set of relevant activities from which the existingtrail is composed and the new set of relevant activities generated following noti�cationof a new context event e.g., each time the user changes location or an activity propertychanges. This decision point is illustrated by step (B) in Figure 3.10. Periodic recon�gu-ration is also supported to cater for situations when no other context events are generated.Both the time interval for periodic recon�guration and the signi�cance threshold usedfor identifying di�erences between the two sets of relevant activities are con�gurable bythe application developer or user. There are two ways in which a signi�cant di�erencebetween activity sets can arise - di�erences in set membership and di�erences in activityrelevance rankings.3.2.4.1 Di�erences in Set MembershipIf the new relevant set generated following noti�cation of a context event contains one ormore activities that are not on the current trail then the trail is recon�gured automat-ically. It is not possible in this case for trail recon�guration to occur unnecessarily i.e.,without changing the composition of the trail, as the two activity sets are not equal andtherefore the new trail will contain at least one activity that was not scheduled on theprevious trail. This behaviour caters for the following situations:1. Activity migration between the relevant set and the irrelevant set.2. Activity completion.3. An activity becoming impossible.4. The dynamic addition of new activities to the application that have a high relevancevalue.If the two relevant sets contain the same activities then none of the situations listedabove exist. In the case of relevant set equality an examination of the activity rankings94

generated based on activity relevance is required.3.2.4.2 Di�erences in Relevance RankingsA trail is not automatically recon�gured if the new relevant set contains the same activitiesas the relevant set that the current trail is based on. In this case a comparison of the twosets of activities is required to ascertain if there are di�erences in the internal compositionof the two sets that warrant recon�guration. This is the behaviour that is not included inthe RiddleHunt implementation of recon�guration point identi�cation (Section 3.1.4.2).Kendall's rank correlation coe�cient, known as Kendall's τ , calculates the corre-spondence between two rankings [64]. This approach is used to calculate the degree ofcorrespondence between the new relevant set and the relevant set used to generate theuser's current trail. Kendall's τ coe�cient is de�ned as follows:
τ = 2P

1

2
n(n−1)

− 1 = 4P

n(n−1)
− 1where n is the number of items and P is the sum, over all the items, of items ranked afterthe given item by both rankings. The τ coe�cient has the following properties:

• If the agreement between two rankings is perfect (i.e., the two rankings are thesame) the coe�cient has value 1.
• If the disagreement between two rankings is perfect (i.e., the rankings are oppositesof each other) the coe�cient has value -1.
• For all other arrangements the value lies between -1 and 1, with higher valuesindicating stronger agreement between rankings. If the rankings are completelyindependent the coe�cient has value 0.Activity a b c d e f g hNew relevant set 1 2 3 4 5 6 7 8Previous relevant set 3 4 1 2 5 7 8 6Table 3.4: The relevant set and the existing trail ranked by relevanceThe following example (adapted from [122]) illustrates how Kendall's τ can be used to cal-culate the degree of agreement between two sets of relevance-ranked trail activities. Table95

3.4 illustrates the positions of eight activities in the relevant set ({a, b, c, d, e, f, g, h}) gen-erated following noti�cation of a context event and the relevant set used to generate thecurrent trail ({c, d, a, b, e, h, f, g}). There is some correlation between the two rankings,however the correlation is far from exemplifying perfect agreement. Kendall's τ can beused to calculate the degree of agreement between the two sets. The �rst entry in theprevious relevant set ranking has �ve higher ranks to the right of it, therefore contributing5 to the P value for this entry. The second entry in the existing trail ranking has fourhigher ranks to the right of it making 4 the contribution to P . Moving through the setin this way results in the following:
P = 5 + 4 + 5 + 4 + 3 + 1 + 0 + 0 = 22Following the calculation of P it is possible to calculate τ :

τ = 44
28

− 1 = 0.57The resultant τ value, 0.57, indicates a moderate level of agreement between the tworankings.In the case of relevant set membership equality, a trail is recon�gured in the applicationframework if the τ value for correspondence between the new and previous relevant sets isbelow a threshold de�ned by the application developer or user. For example, if a thresholdof 0.8 was in place for the example above then the trail would be recon�gured. Thisapproach allows an extensible range of contexts to be considered during recon�gurationpoint identi�cation as the receipt of any context event can trigger the generation of anew relevant set and the comparison of this set to the set used to form the existing trail.The contexts that trigger recon�guration must be considered in the MAUT approachto activity relevance calculation, otherwise they can have no e�ect on the relevant setgenerated following the noti�cation of the new context event. The cost (in terms of time)of comparing relevant sets each time a context event occurs is far less than the costincurred by unnecessary trail recon�guration, making recon�guration point identi�cationa preferable alternative to recon�guring the trail each time a context event is received.This is illustrated by example in Section 5.2.3.4 during an analysis of the accuracy of therecon�guration point identi�cation technique.96

Apart from Kendall's τ , a number of alternative rank correlation techniques wereconsidered for use in the design of the recon�guration point identi�cation mechanism.Pearson's product-moment correlation coe�cient (PMCC) [23] is a measure of correlationbetween two variables measured on the same object. PMCC measures the tendency ofthe variables to increase or decrease together e.g., does human body weight increasewith height? This measure requires the assumption that the relationship between thevariables is linear, which isn't the case in the comparison of two ranked sets of activities.Additionally, PMCC is not well suited for use with small sample sets such as the subtrailsused in trail generation. Spearman's ρ [121], a rank correlation coe�cient that performsa similar function to Kendall's τ , was also considered for use in measuring the di�erencebetween relevant sets. Like Kendall's τ , ρ does not require the assumption that therelationship between variables is linear. Spearman's ρ is considered to be comparable toKendall's τ in terms of statistical power [15, 50] and is noted as being the most commonlyused method of calculating rank correlation [46]. However, as discussed by Noether[91], the interpretation of Kendall's coe�cient is intuitively simple whereas assigning aninterpretation to Spearman's coe�cient is a non-trivial undertaking. Additionally, thealgebraic structure of Spearman's coe�cient is far more complex than that of Kendall's.Consequently, Kendall's τ was deemed the most appropriate approach to adopt.3.2.4.3 Reusability and ExtensibilityThe application framework provides a generic solution to recon�guration point identi�-cation. The approach can be reused as is or can be customised and extended to meetthe needs of speci�c applications. In terms of customisation, the τ value that speci�eswhen a di�erence between two sets of activities ranked by relevance is signi�cant can bemodi�ed without source code alteration to change the sensitivity of the recon�gurationpoint identi�cation approach. The approach is based on the concept of activity relevanceand therefore when the framework is extended through the introduction of new contextsor trail properties into the activity relevance calculation, the recon�guration point iden-ti�cation mechanism will automatically consider the new information. It is not apparentthat developers will need to extend the rank correlation method used to compare relevantsets. However, irrespective of this, it is possible to extend the existing implementation97

and override the default rank correlation behaviour.3.2.4.4 SummaryThe recon�guration point identi�cation mechanism included in the application frameworkimproves on the approach used in RiddleHunt by supporting not only recon�guration trig-gered by changes in relevant activity set membership, but also by signi�cant di�erencesin the relevance values of individual activities when relevant set membership is the same.The di�erence between the relevance rankings of two sets containing the same activities ismeasured using Kendall's rank correlation coe�cient. The de�nition of what is a signi�-cant di�erence between two sets is con�gurable by the developer or user. This approachfacilitates the minimisation of the occurrence of unnecessary trail recon�gurations, i.e.,minimising mobile device resource wastage, while maintaining consistency between theuser's physical environment and the representation of that environment provided by thetrails application on their mobile device.3.3 Chapter SummaryThis chapter has described the design methodology with which the application frame-work proposed in this thesis was developed. The chapter illustrates how the applicationframework evolved through early requirements gathering work and how Hermes supportscontext acquisition and modelling. The implementation of two prototype mobile, context-aware trails-based applications, Oisín and RiddleHunt, was described in terms of the rolethe applications played in the application framework development process. The design ofthe trail generation and recon�guration point identi�cation mechanisms included in theapplication framework were then described. The following chapter presents the imple-mentation detail of the application framework features described in this chapter.
98

Chapter 4
Implementation
The previous chapter describes the design of the trail generation and recon�gurationpoint identi�cation techniques and illustrates how the application framework supportsthe generation and recon�guration of trails composed of the activities that are considered,based on context, to be most relevant to the user. This chapter describes in detail howthese techniques are implemented. The application framework, implemented in Java1,is composed of generic implementations of the trail generation and recon�guration pointidenti�cation techniques that can be reused by applications that require trails behaviour.The default implementations are developed in a manner that facilitates extension bydevelopers who wish to specify application-speci�c trails behaviour.The chapter begins with a high-level overview of the classes that compose the ap-plication framework. This is followed by a presentation of the attributes and behaviourin the generic trail and activity speci�cations, and a discussion regarding the manner inwhich the default implementations can be extended to support specialised activity andtrail attributes and behaviour. The implementation details for both the trail generationand recon�guration point identi�cation techniques are presented next, illustrating howthe classes in the application framework collaborate to provide trail generation and re-con�guration behaviour. A discussion of the extension points in both implementations isalso presented. Finally, the con�guration �les that facilitate customisation of applicationframework behaviour without requiring source code modi�cation are discussed.1Java 2 Micro Edition (J2ME) Personal Basis Pro�le [84]99

4.1 Application Framework OverviewThe application framework consists of 34 classes and 5 properties �les that provide struc-ture and behaviour for mobile, context-aware trails-based applications. This section de-scribes the implementation of the application framework at a high-level, illustrating thecore classes2 and outlining their responsibilities. Figure 4.1 illustrates `uses' relationshipsbetween the classes in the application framework. The classes are logically grouped into7 groups and each class in the diagram is annotated with the number of the group itbelongs to. The class groups that compose the application framework are as follows:

Figure 4.1: High-level application framework class diagram1. Trails. This collection of classes has four primary responsibilities:(a) To provide a representation of the user's trail. Section 4.2 discusses the classesthat de�ne the behaviour and attributes of a trail and an activity.2The classes omitted from the diagram are those related to the implementation of the concrete trailrecon�guration strategies. 100

(b) To provide behaviour to manipulate both the contents of the trail and theattributes of the activities. The number of activities on a trail is modi�edwhen subtrails are created and when activities are completed, become impos-sible or are removed as a result of a clash. This behaviour is contained inTrailManipulator. Additionally, activity properties must be updated fol-lowing context events e.g., the activity start and end time estimates mustbe updated based on changes in user location or the passage of time. Thisbehaviour is contained in TrailTimeModifier.(c) To provide various types of information about candidate trail solutions basedon their activity ordering and the current context e.g., the number of possibleactivities and the total time required to complete the activities on the trail.This behaviour is encoded in TrailAssessor.(d) To provide a trail evaluation function. The class that represents the user'strail (Trail) is self-describing in that it contains behaviour to evaluate theactivity ordering it contains. The evaluation function uses TrailAssessorto assess candidate trail solutions along the value dimensions discussed inSection 3.2.3.5.2. Controllers. This group of classes is responsible for using the behaviour de�ned inthe other class groups to coordinate the trail generation and recon�guration process.TrailGeneration acts as a gateway to the services of the application frameworkwhich are coordinated by ReconfigurationEngine. ReconfigurationEngine re-ceives context events, assesses if recon�guration is required and recon�gures the trailas appropriate. ReconfigurationEngine informs TrailGeneration of changes tothe user's trail following recon�guration.3. Context Generators. The classes in this group are responsible for generating contextinformation and making it available to the class that is responsible for coordinat-ing trail recon�guration (ReconfigurationEngine in the Controllers group). TheSubject class, along with the Observer interface, represents the implementationof the Observer design pattern that de�nes a one-to-many relationship between asubject object and any number of observers so that when a subject changes state,101

all its observer objects are noti�ed and updated automatically [45]. Clients e.g.,ReconfigurationEngine, subscribe for noti�cation about context events generatedby the classes that implement the abstract ContextGenerator class. The applica-tion framework provides location and time lapse contexts by default. A detaileddescription of the GPS-based implementation of the LocationGenerator class isincluded in Appendix B.1.4. Trail Recon�guration Strategies. This group of classes is responsible for shieldingthe primary application controller (ReconfigurationEngine) from the speci�cs ofhow candidate trail solutions are generated during trail recon�guration. A num-ber of di�erent strategies can be used to generate and evaluate candidate trails.ReconfigurationContext forms part of the Strategy design pattern [45]. TheStrategy pattern allows a family of algorithms to be de�ned, encapsulated and usedinterchangeably. This facilitates multiple variants of the candidate trail generationbehaviour without requiring the client, ReconfigurationEngine, to change how itinvokes the behaviour or uses the returned value. TrailReconfigurationStrategyspeci�es the methods that must be implemented by the concrete strategies (BruteForce,SimulatedAnnealing and GeneticAlgorithm).5. Activity Comparators. Comparator classes, which implement the Comparator in-terface from the standard java.util package, provide a comparison function thatimposes a total ordering on some collection of objects. The activity comparatorsin the application framework are responsible for providing various ways in whichto compare activities. Activity comparators are generally used to sort collectionsof activities based on some criteria e.g., activities are compared by relevance inMAUTRelevanceComparator which compares activities based on multiple value di-mensions. Comparators can also be used to compare two activities at a time.This usage model is employed when MAUTClashResolutionComparator is invokedto resolve a clash between two activities. The implementation of Kendall's rankcorrelation coe�cient (KendallsT) is also included in this group.6. Utilities. The utilities group contains classes that do not provide core applicationframework behaviour but are necessary nonetheless. Normalize provides methods102

to transform trail and activity assessment values e.g., the number of activities pos-sible and the trail length, so that they are relative to each other on a speci�ed scale,enabling comparison. UserModel provides access to the weights that are used inboth the MAUT-based techniques for activity comparison and the trail evaluationfunction, both of which evaluate objects based on multiple value dimensions forwhich preference weights are speci�ed. TrailRepository and TrailUtil providebehaviour to load trail speci�cations from disk and perform miscellaneous behavioure.g., data format conversion and distance estimation, respectively.The remainder of this chapter discusses how the groups of classes in the application frame-work collaborate to provide reusable, extensible trails behaviour. Section 4.2 discussesthe attributes and behaviour in the trail and activity implementations and illustrateshow the default implementations can be extended. Section 4.3 illustrates how the classgroups collaborate to provide trail generation behaviour and discusses how the generictrail generation behaviour can be extended. Section 4.4 presents the implementationof recon�guration point identi�cation technique based on Kendall's rank correlation co-e�cient and discusses how it can be extended. Section 4.5 discusses the con�guration�les used to specify application properties and customise behaviour without source codemodi�cation.4.2 Trail/Activity Speci�cationIn order to implement the concrete classes that represent a trail and an activity, theattributes and behaviour of both objects had to be stated explicitly. The primary goalduring of the implementation of the trail and activity classes was to specify enough at-tributes and behaviour to make the classes suitable for reuse without extension, withoutprecluding or discouraging applications from reusing the default implementations3. Theattributes selected for inclusion in the generic implementation of a trail are those thathave been observed, during the design process, to be common to all the trails appli-cations considered. The same design rationale was applied to the selection of activity3It is reasoned that the presence of a signi�cant amount of irrelevant attributes and behaviour relativeto the application under consideration discourages framework use.103

attributes. However, although certain applications e.g., RiddleHunt, do not consider thenotion of activity time constraints, a decision was made to include support for activitytime constraints by default as time is generally an important factor in scheduling activi-ties. Activity properties that do not apply to the activities in a speci�c application canremain set to default values so that they are essentially ignored e.g., if an activity doesnot have time constraints then the opening and closing time are ignored. The behaviourin the trail implementation represents generic trail operations e.g., add activity and getactivity, as well as the evaluation function.Figure 4.2 illustrates the behaviour and properties of the trail and activity represen-tations in the application framework. The class diagram shows all the attributes andmethods in Trail and all the attributes and selected4 methods in Activity. A trail canbe composed of one or more activities.

Figure 4.2: The Trail and Activity classesActivity contains the attributes that describe a generic activity. Some attributes areassigned a value at application start-up whereas other attributes are only assigned a value4The only methods not shown are the accessor methods for the attributes listed.104

at runtime. For example, activity attributes such as name, duration and opening time areincluded in the persistent speci�cation of an activity on disk (discussed in Section 4.2.1),whereas the estimated activity start time and whether the activity is currently possiblecan only be determined during the trail generation process, as the values are based onthe activity's position in the trail.The Trail class contains a collection of activities called activities. The contentsof the activities collection is dynamic, with the order of the activities in the collectionrepresenting the order of the activities on the trail. Activities can be added and removed,change position and can have their attribute values updated. The Trail class containsa scoreValue attribute that is set by the getScore() method which represents theimplementation of the trail evaluation function. The majority of the methods in Trailare concerned with the collection of activities it stores, either returning information aboutit or modifying the contents.4.2.1 Trail PersistenceTrail information i.e., the static speci�cation of information regarding the activities ona trail, resides on disk and is read into the application at application startup. Theapplication framework contains a utility class (TrailRepository) that is responsible forreading trail information from disk and creating Activity and Trail objects based ontextual activity speci�cations. Trails are described as a collection of activity speci�cationsin a properties �le5 that is read by the TrailRepository class. An example activityspeci�cation is illustrated in Listing 4.1. The activity speci�cation contains the uniqueactivity identi�er (the number between the word activity and the speci�c property namee.g., description at line 1). It also contains a value for each activity attribute that isknown prior to runtime. These attributes are described below:Listing 4.1: An example activity speci�cation1 a c t i v i t y . 1 . d e s c r i p t i o n=Data St ruc tu r e s Lecture5A relational-database management system (RDBMS) was used to manage trail/activity informationin Oisín, but a more generic, �at �le-based approach needed to be adopted based on the lack of widespreadRDBMS support on mobile platforms. 105

2 a c t i v i t y . 1 . x=4353 a c t i v i t y . 1 . y=3654 a c t i v i t y . 1 . openingTime=09:305 a c t i v i t y . 1 . c los ingTime =10:306 a c t i v i t y . 1 . c los ingTime . leeway=07 a c t i v i t y . 1 . breakStart=08 a c t i v i t y . 1 . breakEnd=09 a c t i v i t y . 1 . durat ion=6010 a c t i v i t y . 1 . durat ion . leeway=011 a c t i v i t y . 1 . p r i o r i t y=512 a c t i v i t y . 1 . mandatory=f a l s e
• description - a short text description or name for the activity e.g., `Data Struc-tures Lecture' as illustrated on line 1 in Listing 4.1.
• x - the x activity location coordinate (activities are located on a 2D grid thatcorresponds to their position on a map-based interface6).
• y - the y activity location coordinate.
• openingTime - the time from which the activity is available to be undertaken.
• closingTime - the time at which the activity ceases to be available to the user.
• closingTime.leeway - the amount of leeway in the activity closing time e.g., a shopmay stay open 10 minutes later than advertised to facilitate customers in �nishingtheir shopping. This property is set to zero by default.
• breakStart - the time at which the activity becomes temporarily unavailable e.g.,if the activity is not available during lunch hours. By default, activities do not havebreaks.6X, Y coordinates were chosen as the format to represent activity location as it is envisaged that trailsapplications will have map-based user interfaces and it is easier for developers to acquire X,Y coordinatesfor a map location than, for example, GPS coordinates. Therefore, developers can specify locations asX,Y coordinates and user location data e.g., GPS information, can be translated to X,Y to calculate theuser's location from the activity locations. GPS to X, Y translation is described in Appendix B.1. Textnames cannot be used to represent locations as it is not possible to calculate distances using text-basedlocation data. 106

• breakEnd - the time at which the activity resumes availability.
• duration - the estimated amount of time (in minutes) that the user needs to spendto complete the activity.
• duration.leeway - the amount of leeway in the duration i.e., how much quickercan the activity be completed if necessary.
• priority - the priority of this activity relative to other activities. Higher numericalvalues indicate higher priority.
• mandatory - a Boolean value indicating whether or not the activity must be under-taken.The loadTrail() method in TrailRepository iterates through the activity speci�ca-tions contained in the properties �le and creates an Activity object for each. A Trailis then instantiated with the collection of activities passed as an argument to the con-structor. The initial trail order re�ects the order in which the activities are listed in theproperties �le and is not based on the context information considered by the application.It is this trail that is manipulated by the trail generation behaviour. Once a trail hasbeen loaded from disk it is possible to generate a trail order that re�ects the currentcontext.4.2.2 ExtensibilityThe application framework provides generic, reusable implementations of a trail and anactivity. If the default trail and activity speci�cations are not expressive enough they canbe extended through standard Java inheritance. For example, to cater for the inclusionof an application-speci�c activity property a new class is de�ned that extends Activity.In the case that the new property is static and known prior to runtime e.g., a propertythat provides further descriptive information about an activity, the new property is in-cluded in the persistent activity speci�cation stored on disk. Consequently, the utilityclass that loads activity speci�cations from disk and creates an initial trail containingthese activities must be extended. The new utility class extends TrailRepository and107

Figure 4.3: High-level sequence of actions in trail generationoverrides the loadTrail() method so that it considers the new activity property wheninstantiating Activity objects based on activity speci�cations. An example of the ap-plication framework being extended in this manner is discussed in Chapter 5 during theevaluation of the reusability and extensibility of the application framework.4.3 Trail GenerationThe trail generation process that produces the best trail for the user based on the cur-rent context, including user preferences, is triggered by the occurrence of context events.Figure 4.3 contains a sequence diagram illustrating the interaction between the classes in-volved in invoking trail generation behaviour. Concrete instances of ContextGeneratore.g., LocationGenerator and ReconfigurationTimer, generate context events and sub-sequently invoke the update() method in ReconfigurationEngine, which is an observerof context events. The update() method, illustrated in Listing 4.2, evaluates the originof the call and acts based on the type of context event that is received. If a location eventis received (line 2), the reconfigure() method (discussed in Section 4.3.1) is invoked(line 3). The reconfigure() method checks if recon�guration is necessary before recon-�guring the trail. If a periodic recon�guration context event is received (line 4) the trail isrecon�gured using the forceReconfigure() method (line 5). This method recon�guresthe trail without consideration for whether it is necessary or not, ensuring that the trail108

is periodically recon�gured in the absence of other context events. TrailGeneration,which makes the trail available to non-application framework code e.g., the user interfacecode, is noti�ed when the trail is recon�gured.Listing 4.2: The update() method in the ReconfigurationEngine class1 public void update (Subject s) {2 i f (s instanceof Locat ionGenerator) {3 r e c o n f i g u r e () ;4 } else i f (s instanceof Reconf igurat ionTimer) {5 f o r c eRe con f i gu r e () ;6 }7 }4.3.1 The reconfigure() methodThe reconfigure() method in ReconfigurationEngine, illustrated in Listing 4.3, con-tains behaviour to recon�gure a trail following noti�cation of a context event. Figure 4.4illustrates the interactions between the primary classes involved in the implementationof the trail generation behaviour.Listing 4.3: The reconfigure() method in the ReconfigurationEngine class1 public synchronized Tra i l r e c o n f i g u r e () {2 s e tT r a i l (this . p runeTra i l (t r a i l)) ;3 s e tT r a i l (this . sortByRelevance (t r a i l)) ;45 i f (r e con f i gu ra t i onRequ i r ed ()) {6 this . s e tT r a i l (this . g e tRecon f i gu r edTra i l (t r a i l)) ;7 i f (cu r r en tTra i l != null)8 this . s e tCur r en tTra i l ((T ra i l) t r a i l . c l one ()) ;9 not i f yObse rve r s () ;10 } else {11 Trai lTimeModif ie r . updateTrai lTimes109

Figure 4.4: Interactions between classes in the trail generation implementation110

12 (this . g e tCur r en tTra i l ()) ;13 t r a i l = (Tra i l) this . g e tCur r en tTra i l () . c l one () ;14 not i f yObse rve r s () ;15 }16 return t r a i l ;17 }The reconfigure() method begins by removing unnecessary activities from thetrail using the prune() method in ReconfigurationEngine (step A in Figure 4.4).prune() (line 2 in Listing 4.3) is responsible for pruning the trail of completed, im-possible and clashing activities. Three individual methods in TrailManipulator imple-ment the pruning behaviour. The method responsible for removing completed activities(removeCompletedActivities() at step A1) from the trail uses CompletedComparatorto �rst sort the activities in the trail by whether they are completed or not. The com-pleted activities are then removed from the trail. removeImpossibleActivities() (stepA2) works in the same manner, using the PossibilityComparator to sort the activitiesin the trail based on whether they are currently possible or not. Activities that are notpossible are removed from the trail. The removeClashingActivities() method (stepA3) uses MAUTClashResolutionComparator to resolve clashes between activities that areidenti�ed as clashing. The clash resolution comparator uses Normalize to convert activ-ity assessment values so that they are relative to each other, and UserModel is used toaccess the user-speci�ed weights for comparing clashing activities. When the trail hasbeen pruned of unnecessary and impossible activities it is sorted by relevance.The sortByRelevance() method (step B) in ReconfigurationEngine is invokedafter prune() returns (line 3). MAUTRelevanceComparator sorts activities by comparingthem by how relevant they are to the user. In order to calculate the relevance valueof an activity, MAUTRelevanceComparator calculates values for the following activityproperties:
• Proximity - how near is the activity to the user.
• Priority - what is the priority of the activity.111

• Obligation - is the activity mandatory or not.
• Urgency - how soon is the activity closing time.The values for these properties are �rst normalised and then multiplied by the user-speci�ed preference weights acquired from UserModel. The normalised activity propertiesare multiplied by their associated weights and added to, or subtracted from, the total ac-tivity score as appropriate. The score is increased in the case of the priority value and theobligation value, and reduced in the case of proximity and urgency as a greater distancefrom the user and an activity closing time further in the future makes an activity lessrelevant. If the score for the �rst activity is greater than that for the second activity thenthe �rst activity is considered more relevant. Listing 4.4 illustrates how the contribu-tion of activity priority towards the overall activity score is calculated in the compare()method in MAUTRelevanceComparator. Lines 1 and 2 illustrate how the priority value ofthe �rst activity is retrieved, normalised and multiplied by the user-speci�ed weight forpriority. Lines 4 and 5 calculate the value for the second activity.Listing 4.4: Calculating activity priority value in the MAUTRelevanceComparator class1 scoreA += (Normalize . getNormalizedValue (actA . g e tP r i o r i t y () ,2 Normalize . g e t In s tance () . getPr ior i tyRange ()) ∗ pr ior i tyWeight) ;34 scoreB += (Normalize . getNormalizedValue (actB . g e tP r i o r i t y () ,5 Normalize . g e t In s tance () . getPr ior i tyRange ()) ∗ pr ior i tyWeight) ;When the trail has been sorted by relevance it is ready to be recon�gured if neces-sary. The reconfigurationRequired() method (step C and line 5 in Listing 4.3) inReconfigurationEngine is invoked next. This method, discussed in Section 4.4, iden-ti�es whether recon�guration is required (Figure 4.4 assumes that recon�guration is re-quired). If recon�guration is required the trail is recon�gured using getReconfiguredTrail()(line 6 in Listing 4.3). If recon�guration is not required then the estimated activity startand end times are updated (lines 11 and 12) based on the current time and the user'slocation. This behaviour is encapsulated in TrailTimeModifier.112

The getReconfiguredTrail() method (step D) �rst assesses if a subtrail is neces-sary. This is achieved by comparing the number of activities in the trail against themaximum subtrail size set by the developer in a properties �le. A subtrail is created ifthe trail is larger than the maximum subtrail size. Figure 4.4 assumes that a subtrail isnecessary (step D1). The subtrail is passed to ReconfigurationContext (step D2) andthe reconfigure() method (in ReconfigurationContext) is invoked (step D3).The reconfigure() method in ReconfigurationContext invokes one of the concreteimplementations of TrailReconfigurationStrategy (not shown in the diagram). Theseclasses use exact or heuristic approaches to generate candidate trail solutions and, asillustrated in step D3.1 in Figure 4.4, they use the getScore() method in Trail toevaluate the worth of each candidate solution.Listing 4.5: The evaluation function in the Trail class1 public double getScore () {2 Trai lTimeModif ie r . updateTrai lTimes (this) ;3 double t r a i l S c o r e = 0 ;45 double a c t i v i t i e sP o s s i b l eWe i g h t = UserModel . g e t In s tance () .6 g e tS co r eAc t i v i t i e sPo s s i b l eWe i gh t () ;7 . . .8 int a c t i v i t i e s P o s s i b l e = Tra i lA s s e s s o r .9 getNumberOfAct iv i te sPoss ib l e (this) ;1011 i f (! T r a i lA s s e s s o r . i sT r a i l Fu l l y Impo s s i b l e (this)) {12 t r a i l S c o r e += Normalize . getNormalizedValue13 (a c t i v i t i e s P o s s i b l e , this . getNumActiv it i es ())14 ∗ a c t i v i t i e sP o s s i b l eWe i g h t ;15 . . .16 } else {17 t r a i l S c o r e = 0 ;18 }19 this . s e tScoreValue (t r a i l S c o r e) ;113

20 this . s e tReconf igurat ionTime (System . cur r en tT imeMi l l i s ()) ;21 return t r a i l S c o r e ;22 }The getScore() method is the implementation of the trail evaluation function. Themethod �rst updates the trail time estimates based on the user's current location, thecurrent time and the position of each activity in the trail. The estimated start and endtime of each activity in the trail is updated by TrailTimeModifier. Line 2 in Listing 4.5illustrates the invocation of this behaviour. Lines 5 and 6 illustrate the setting of theweight for the activities possible value dimension. The other value dimensions - obliga-tion, length, duration and idle time - are not illustrated in Listing 4.5 but are also set(represented by the ellipses at line 7). Next, TrailAssessor is used to determine thenumber of activities on the trail that are possible. If the candidate trail has any activi-ties possible then the value for each value dimension, normalised and multiplied by theuser-speci�ed weight for the dimension, is added or subtracted to/from the trailScoreattribute as appropriate. Lines 12-14 illustrate the addition of the value for the activitiespossible value dimension to the trailScore attribute. When all value dimensions havebeen assessed, the score attribute of the trail is set to be equal to the trail score justcalculated and the time that the recon�guration occurred at is recorded (shown on lines19-20). The trail score is then returned to the client.When the best trail has been returned to the getReconfiguredTrail() method inReconfigurationEngine, TrailManipulator is used to join the scheduled activities withthose not considered relevant enough for inclusion in the set of activities ordered by thetrail recon�guration strategy (step D4). The subtrail is joined with the activities of lowerrelevance and a trail consisting of scheduled and unscheduled activities is returned. Anyobservers of trail recon�guration, in this case TrailGeneration, are noti�ed (step E andline 9 in Listing 4.3).4.3.2 ExtensibilityThe generic trail generation behaviour in the application framework has been designedto facilitate extension through the speci�cation of application-speci�c behaviour. The114

default trail generation implementation is extensible in the following ways:
• Implementation of new strategies for generating candidate trail solutions.
• Implementation of new context sources.
• Extension/rede�nition of the trail evaluation function.
• Extension/rede�nition of the activity comparators.The Strategy pattern is used to facilitate the addition of trail recon�guration strategiesto the application framework. This is achieved by de�ning new behaviour that extendsthe parent class of the trail recon�guration strategies that are provided by default (bruteforce, genetic algorithm and simulated annealing). TrailReconfigurationStrategy isan abstract class that contains one method - reconfigure(). This method accepts aReconfigurationContext object as a parameter and returns a recon�gured trail. Thereconfigure() method must be implemented by all concrete trail recon�guration strate-gies. How this method is implemented does not concern the client, as long as a recon�g-ured trail is returned. This facilitates the creation of many trail recon�guration strategiesthat take di�erent approaches (e.g., exact, heuristic) to �nding the best trail for the userbased on the current context. Extensions to the framework in this manner are hiddenfrom ReconfigurationEngine, requiring only ReconfigurationContext to be extendedso that it makes the new trail recon�guration strategy available for use during recon�g-uration.The application framework can also be extended to consider new types of contextduring recon�guration by de�ning new context sources that extend ContextGenerator.ContextGenerator extends Subject, a class that provides methods for adding, remov-ing and notifying observers of events in subjects. The Observer interface provides anupdate() method that is called in concrete implementations of the notifyObservers()method in subclasses of Subject i.e., ContextGenerator. When a subject changes state,all its observer objects are noti�ed and updated automatically. Once a new context sourcehas been de�ned, ReconfigurationEngine must be extended to take the new informa-tion into account. The constructor is extended to add ReconfigurationEngine as anobserver of the new context source. The update() method in ReconfigurationEngine,115

invoked by context generators following context events, is overridden with an imple-mentation that takes the appropriate behaviour based on the type/value of the receivedcontext event. In the general case, the appropriate behaviour will involve the invocationof reconfigure() as illustrated on line 3 of Listing 4.2, where reconfigure() is invokedfollowing the receipt of a location context event.The trail evaluation function can be extended/rede�ned by implementing a new trailclass that extends Trail and overrides the getScore() method. The evaluation functionis typically extended when a new activity attribute and associated context source areimplemented. The evaluation function is extended to consider the value of the newactivity attribute during trail evaluation.In terms of activity comparison techniques, the framework can be extended by eitherde�ning a new class that implements the java.util.Comparator interface or by ex-tending the appropriate existing comparator class e.g., MAUTRelevanceComparator andoverriding the sole method of that class, compare(). In the case that the applicationframework is extended through the addition of a new context type, the relevant com-parator classes should, if appropriate, be extended so that their compare() methodsconsider the new context value when comparing activities e.g., if the new context typeimpacts on activity relevance.4.4 Recon�guration Point Identi�cationRecon�guration point identi�cation is implemented in ReconfigurationEngine by thereconfigurationRequired() method. The Boolean value returned by this method in-dicates whether or not the trail should be recon�gured following the receipt of a contextevent. As illustrated at step C in Figure 4.4 and line 5 in Listing 4.3, the recon�gurationpoint identi�cation behaviour is invoked as part of the trail generation behaviour.The �rst part of the reconfigurationRequired() method is illustrated in Listing 4.6.This behaviour assesses changes in the membership of the relevant set following receiptof a context event. Line 7 caters for the �rst trail recon�guration, a situation in whichthe user's current trail is null and therefore recon�guration of the initial trail read infrom disk is always required. The lastRelevanceSort attribute (that represents the116

current trail sorted by relevance) is assigned a value and true, indicating recon�gurationis required, is returned. Lines 11 and 12 check if the trail recently sorted by relevanceand the current trail being followed by the user have the same amount of activities. If thenumber of activities in both trails is not equal e.g., if an activity has become impossibledue to time constraints, then recon�guration is required and true is returned. If thetrails do contain the same amount of activities then their contents must be compared.Lines 17-23 calculate how many activities need to be compared (the maximum being thesubtrail size) and lines 25-30 compare the contents of the current trail and the trail sortedby relevance. If the content di�ers i.e., if one trail has an activity that the other doesn't,then recon�guration is required.Listing 4.6: Excerpt from the reconfigurationRequired() method1 private boolean r e con f i gu ra t i onRequ i r ed () {2 boolean r e con f i gRequ i r ed = fa l se ;3 // the t r a i l s o r t ed by re l e vance4 Tra i l t r a i l = this . g e tT ra i l () ;5 Tra i l cu r r en t = this . g e tCur r en tTra i l () ;67 i f (cu r r en t == null) {8 l a s tRe l evanceSor t = (Tra i l) this . g e tT ra i l () . c l one () ;9 return true ;10 }11 else i f (t r a i l . getNumActiv it ie s () !=12 cur r en t . getNumActiv it ie s ()) {13 l a s tRe l evanceSor t = (Tra i l) this . g e tT ra i l () . c l one () ;14 return true ;15 }1617 int numAct iv i t i e s = 0 ;18 i f (t r a i l . getNumActiv it i e s () > subTra i l S i z e) {19 numAct iv i t i e s = subTra i l S i z e ;20 } 117

21 else {22 numAct iv i t i e s = t r a i l . getNumActiv it i es () ;23 }2425 for (int i = 0 ; i < numAct iv i t i e s ; i++) {26 Act iv i ty ac t i v i tyB = cur r en t . g e tA c t i v i t i e s () [i] ;27 i f (! t r a i l . c on ta in s (ac t i v i tyB)) {28 r e con f i gRequ i r ed = true ;29 }30 }31 . . .The second part of the reconfigurationRequired() method, illustrated in List-ing 4.7 (which follows on from Listing 4.6), caters for the situation in which the contentsof the two sets of activities being compared are equal. Line 4 checks if the value returnedby assessing the correlation between the ordering of the trail sorted by relevance andthe last time the trail was sorted by relevance (which is the current trail sorted by rele-vance) is less than the variance threshold set in the properties �le (shown in Listing 4.9in Section 4.5). If so, then recon�guration is required (line 6).Listing 4.7: 2nd excerpt from the reconfigurationRequired() method1 . . .2 i f (! r e con f i gRequ i r ed) {3 i f (! t r a i l . equa l s (l a s tRe l evanceSor t)) {4 i f (KendallsT . getKendal lValueForReconf ig (l a s tRe l evanceSor t ,5 t r a i l) < re l evantSetVar ianceThresho ld) {6 r e con f i gRequ i r ed = true ;7 }8 }9 }10 l a s tRe l evanceSor t = (Tra i l) this . g e tT ra i l () . c l one () ;11 return r e con f i gRequ i r ed ; 118

KendallsT is used to produce the correlation value (τ). This class contains a methodcalled getKendallValueForReconfig(), illustrated in Listing 4.8. This method imple-ments Kendall's τ rank correlation coe�cient as described in Section 3.2.4.2. The method�rst creates an int array that represents the positions of the activities in the activity setsorted by relevance (the second argument) relative to the ordering of the activities in thecurrent trail sorted by relevance. This process is illustrated by the following example.An application considers �ve activities - Act #1...Act #5. Trail 1 is the existing trailsorted by relevance and Trail 2 is the activity set sorted by relevance following the receiptof a context event. An ordering is produced for the activities in Trail 2 based on theirpositions relative to the ordering in Trail 1:Trail 1: Act #4, Act #5, Act #1, Act #3, Act #2 → 1, 2, 3, 4, 5Trail 2: Act #3, Act #5, Act #4, Act #1, Act #2 → 4, 2, 1, 3, 5This behaviour is implemented between lines 4-9. With the relative ordering in place,the P value is calculated (lines 11-20). The P value is used to complete the calculationof the τ value. This behaviour is contained on lines 22-24. The τ value is returned andcompared to the recon�guration threshold value in the ReconfigurationEngine classwhere a decision is made regarding whether recon�guration is required or not.Listing 4.8: The getKendallValueForReconfig() method1 public stat ic double getKendal lValueForReconf ig (T ra i l2 e x i s t i n gT r a i l , T r a i l newlyGenerated) {3 double kenda l l = 0 . 0 ;4 int [] a c t i v i t i e s = new int [newlyGenerated . getNumActiv it i es ()] ;5 for (int i = 0 ; i < newlyGenerated . getNumActiv it i es () ; i++) {6 Act iv i ty a c t i v i t y = newlyGenerated . g e tA c t i v i t i e s () [i] ;7 int index = ge tPo s i t i on (e x i s t i n gT r a i l , a c t i v i t y . getIndex ()) ;8 a c t i v i t i e s [index] = i ;9 }10 119

11 int p = 0 ;12 for (int i = 0 ; i < a c t i v i t i e s . l ength ; i++) {13 int index = a c t i v i t i e s [i] ;14 for (int j = i + 1 ; j < a c t i v i t i e s . l ength ; j++) {15 int anotherIndex = a c t i v i t i e s [j] ;16 i f (index < anotherIndex) {17 p++;18 }19 }20 }2122 kenda l l = (((p ∗ 2) / ((new Double (e x i s t i n gT r a i l .23 getNumActiv it i es ()) . doubleValue () / 2) ∗ (e x i s t i n gT r a i l .24 getNumActiv it i es () − 1))) −1) ;25 return kenda l l ;26 }
4.4.1 ExtensibilityThe recon�guration point identi�cation mechanism is based on measuring di�erencesbetween two sets of activities sorted by relevance. Therefore, extending or rede�ningthe behaviour of the mechanism involves modifying the code that calculates either therelevance of an activity or the di�erence between two sets of activities that contain thesame activities.Extending or rede�ning the measure of activity relevance involves creating a new com-parator class that implements java.util.Comparator and implements the compare()method7. By default, relevance is calculated based on user speci�ed weights for fouractivity properties (proximity, priority, obligation and urgency). If a new property isadded, a value dimension weight must be speci�ed for the new property in the properties�le (discussed in Section 4.5) that stores user preferences for activity comparison. Asa result, UserModel must also be extended to take the new user context into account.7MAUTRelevanceComparator can also be extended. In this case compare() must be overridden.120

The behaviour of the default relevance comparator class can also be modi�ed withoutextension by setting the value dimension weights in the relevant properties �le.The implementation of Kendall's rank correlation coe�cient can be extended by speci-fying a new class derived from KendallsT and overriding getKendallValueForReconfig().However, due to the lack of obvious advantages associated with using alternative tech-niques such as Spearman's ρ [121] (as discussed in Section 3.2.4.2) it is not envisagedthat developers will be interested in extending the activity comparison behaviour. It ismore likely that the threshold value that determines whether a signi�cant di�erence existsbetween two equal (in terms of membership) sets of activities will need to be modi�ed.The value of the threshold can be modi�ed external to the application framework sourcecode in a properties �le. The con�guration �les used by the application framework sourcecode are discussed in the next section.4.5 Con�guration �lesThe java.util.Properties class loads and stores key/value pairs from a �le and man-ages them in memory, thereby facilitating the use of persistent application variables. Theapplication framework uses properties �les to store application properties that are usedto customise the behaviour of the application framework without requiring source codemodi�cation. Properties �les are used by the following classes:
• UserModel - reads user preferences (MAUT value dimension weights) from disk.
• ReconfigurationEngine - reads the relevant set size and the τ threshold for re-con�guration point identi�cation (discussed in Section 4.4).
• TrailRepository - reads the activity de�nitions when creating the initial trail atapplication start time.
• ReconfigurationTimer - reads the periodic recon�guration interval.
• ReconfigurationContext - reads which concrete TrailReconfigurationStrategyclass to use. 121

• Normalization - reads trail and activity ranges used for producing normalisedvalues.
• GeneticAlgorithmStrategy - reads genetic algorithm algorithm parameters.
• SimulatedAnnealingStrategy - reads simulated annealing algorithm parameters.The trail.properties �le, populated with sample data, is illustrated in Listing 4.9.Line 3 contains the property that sets the value for the subTrailSize attribute inReconfigurationEngine. Line 5 contains the property (in milliseconds) read by theReconfigurationTimer class to determine the time intervals between periodic recon�g-uration. Lines 7-9 contain three properties, only one of which is active at any one time.These properties specify the concrete trail recon�guration strategy that is used to �ndthe best trail for the user. This property is read by the ReconfigurationContext class.Line 15 speci�es the number of activities that should be read from the list of activityspeci�cations that follow below (previously discussed in relation to Listing 4.1). Thisproperty is read by the TrailRepository class, as are the activity speci�cations.Listing 4.9: The trail.properties �le1 # TRAIL GENERATION PROPERTIES2 ##3 t r a i l . g ene ra t i on . s u b t r a i l=545 t r a i l . r e c o n f i g u r a t i o n . t ime In t e r va l=1000067 t r a i l . r e c o n f i g u r a t i o n . s t r a t e gy=brute8 #t r a i l . r e c o n f i g u r a t i o n . s t r a t e gy=gene t i c9 #t r a i l . r e c o n f i g u r a t i o n . s t r a t e gy=annea l ing1011 t r a i l . r e c o n f i g u r a t i o n . r e l e van tS e t . var ianceThresho ld =0.81213 # ACTIVITY SPECIFICATION14 ##122

15 a c t i v i t i e s . number=71617 a c t i v i t y . 1 . d e s c r i p t i o n=Attend Lecture 118 a c t i v i t y . 1 . x=43519 a c t i v i t y . 1 . y=36520 a c t i v i t y . 1 . openingTime=09:3021 a c t i v i t y . 1 . c los ingTime =10:3022 a c t i v i t y . 1 . c los ingTime . leeway=023 a c t i v i t y . 1 . breakStart=024 a c t i v i t y . 1 . breakEnd=025 a c t i v i t y . 1 . durat ion=6026 a c t i v i t y . 1 . durat ion . leeway=027 a c t i v i t y . 1 . p r i o r i t y=528 a c t i v i t y . 1 . mandatory=f a l s e2930 . . .The userPreferences.properties �le is illustrated in Listing 4.10. Lines 8-11 con-tain the user-speci�ed weights for each of the value dimensions considered during activ-ity relevance determination. Lines 17-19 contain the weights for clash resolution andlines 25-29 contain the weights used in the trail evaluation function. All propertiesin the userPreferences.properties �le are read by the UserModel class that makesthem available to the MAUTRelevanceComparator, MAUTClashResolutionComparatorand Trail classes.Listing 4.10: The userPreferences.properties �le1 # USER PREFERENCE PROPERTIES2 ##34 ############ RELEVANCE PREFERENCES #################5 # weights f o r s o r t i n g a c t i v i t i e s by re l evance6 # va lue s should add up to 1 123

78 r e l evance . proximity . weight =0.59 r e l evance . p r i o r i t y . weight =0.110 r e l evance . mandatory . weight =0.111 r e l evance . urgency . weight =0.31213 ############# CLASH RESOLUTION #####################14 # weights to use when r e s o l v i n g a c t i v i t y c l a sh e s15 # pre f e r en c e va lue s should add up to 11617 c l a sh . proximity . weight =0.318 c l a sh . p r i o r i t y . weight =0.219 c l a sh . mandatory . weight =0.52021 ############# TRAIL GENERATION/RECONFIGURATION #####22 # weight f o r t r a i l s c o r i n g (t r a i l g ene ra t i on / r e c o n f i g)23 # pre f e r en c e va lue s should add up to 12425 s co r e . a c t i v i t i e s P o s s i b l e . weight =0.626 s co r e . mandatorySupported . weight =0.0027 s co r e . l ength . weight =0.228 s co r e . durat ion . weight =0.0029 s co r e . id leTime . weight =0.2The normalization.properties �le contains the upper limits for the trail and activ-ity properties that are normalised during activity and trail comparison and evaluation.Listing 4.11 contains a normalization.properties �le with sample contents. Line 6contains the value for the proximityRange property, meaning that any activity that is1000 metres or more from the user will have the maximum value of 100 when normalised.Line 9 contains the value for the length of a trail. Line 12 contains the value that speci�eswhat constitutes the highest priority value. The value considered to be the maximumtrail duration is speci�ed on line 15 and line 18 speci�es the daily time range, which in124

this case is 24 hours (86400000 milliseconds).Listing 4.11: The normalization.properties �le1 # TRAIL NORMALIZATION PROPERTIES2 ##34 #the d i s tance range f o r proximity i . e . , ze ro to the value5 #sp e c i f i e d below − in metres .6 t r a i l . normal i ze . proximityRange=100078 #the length range f o r a whole t r a i l − in metres .9 t r a i l . normal i ze . lengthRange=1000001011 #the range f o r p r i o r i t y − between 1 and 5 , where 5 i s the h ighe s t12 t r a i l . normal i ze . pr io r i tyRange=51314 #the range f o r t r a i l durat ion − in minutes15 t r a i l . normal i ze . durationRange=6001617 #the range o f time with in a day in m i l l i s e c o nd s18 t r a i l . normal i ze . dailyTimeRange=86400000
4.5.1 ExtensibilityAll of the properties �les in the application framework are extensible by augmenting theexisting �les with new property speci�cations (no notion of extension via inheritance ex-ists in relation to properties �les). For example, de�ning a new property to representthe weight of a new value dimension for activity relevance calculation involves adding thenew property to the userPreferences.properties �le using the same notation as theexisting properties. UserModel, the class that makes user preferences available to the be-haviour that uses MAUT to evaluate objects, must be extended to take the new propertyinto account i.e., it must read the property from disk and provide accessor methods. The125

properties �les that express activity speci�cations and application/algorithm propertiescan all be extended in the same manner as the user preferences properties �le.4.6 Chapter SummaryThis chapter has described the implementation of the trail generation and recon�gurationpoint identi�cation techniques described in Chapter 3. The application framework pro-vides a generic trail and activity speci�cation that facilitates reuse while also supportingextension. The approaches to trail generation and recon�guration are implemented ina similar manner and can be reused as is or can be extended through the developmentof new candidate solution generation techniques, a new evaluation function, new contextsources and new activity comparison measures. The behaviour of the evaluation function,candidate solution generation techniques, recon�guration point identi�cation techniqueand the activity comparison techniques can be customised external to the source codethrough the use of con�guration �les.The following chapter evaluates the application framework through the developmentof three case study applications that illustrate how it can be reused and extended. Thechapter also describes the evaluation of the responsiveness of the trail generation imple-mentation and the accuracy of the recon�guration point identi�cation implementation.Details of an experiment concerning human satisfaction with trails generated by theframework are also discussed.

126

Chapter 5
Evaluation
The previous chapter describes how the approaches to trail generation and recon�gurationpoint identi�cation proposed in Chapter 3 are implemented to realise the applicationframework. This chapter discusses its evaluation in relation to the stated requirementsin Section 3.1.1, which was conducted with three objectives:1. To determine the extent to which the application framework can be reused andextended to facilitate the development of a range of mobile, context-aware trails-based applications.2. To quantify both the responsiveness of the trail generation implementation and theaccuracy of the recon�guration point identi�cation implementation.3. To evaluate human opinion on the quality of the trails generated by the applicationframework.Section 5.1 discusses how the �rst evaluation objective was achieved through the exam-ination of a number of case study applications built using the application framework.Section 5.2 discusses how the second evaluation objective was achieved by means of labexperiments. Section 5.3 discusses the study conducted in order to meet the third evalu-ation objective. The chapter concludes in Section 5.4 with a summary of the evaluation�ndings.

127

5.1 Framework Reusability and ExtensibilityObject-oriented application frameworks are intended to reduce the cost and improve thequality of software by making reusable software available to developers [40]. Accord-ingly, application frameworks consist of ready-to-use and partially complete classes thatcompose an overall application architecture that speci�es the composition and interac-tion of classes. The production of concrete applications using an application frameworktypically involves customising existing behaviour by overriding methods in newly createdsubclasses, hence saving developer time and ensuring adherence to a proven design [100].Therefore, in order to be considered useful, an application framework must be capable ofserving as the basis to a range of applications within a speci�c domain i.e., it must bereusable. In addition, a useful application framework must also be capable of support-ing the speci�cation of behaviour that it does not cater for by default i.e., it must beextensible.Although proven techniques for evaluating speci�c applications exist, techniques fordesigning and evaluating the infrastructure intended to aid the development of these appli-cations are much less well formed [39]. For example, an evaluation framework for mobile,context-aware applications has been developed by Scholtz and Consolvo [114]. However,the evaluation areas, which include attention, adoption and appeal, are only applicableto reasoning about applications as opposed to the infrastructure used to develop them.According to Edwards et. al [39] and Johnson [61], user-centered infrastructure designdemands applications to demonstrate the power of the infrastructure. That is, in orderto illustrate the capabilities of an application framework it is necessary to develop appli-cations that use the framework as their basis. By developing and studying applicationsdeveloped with a software framework it is possible to illustrate the capabilities of theframework in terms of reusability and extensibility.A case study is an in-depth examination of a single instance or event [41] and can pro-vide su�cient information to help judge if speci�c computing technologies are of bene�twhen applied in a speci�c domain [67]. Case studies can be used to illustrate the capa-bilities of an application framework by considering each application in a set of exampleapplications as an individual case study, and evaluating the degree of reuse and the ease128

of extensibility a�orded by the application framework in each case. The consideration ofmultiple case studies serves to evaluate the suitability of an application framework fordeveloping a range of applications within a speci�c domain. Of the projects reviewed inChapter 2, all but one1 of the mobile, context-awareness application frameworks discussedin Section 2.3 used application case studies as a means of framework evaluation, indicat-ing that the use of case studies is an accepted form of framework evaluation and thatframework evaluation is generally of a qualitative nature and rather than a quantitativeone.The use of a single case study for conducting an evaluation of a software method ortool has been criticised because single case study results are di�cult to generalise [67]. Itis preferable to conduct multiple case studies or a survey of a large group of developmentprojects using a software framework (although such surveys can be prohibitively expen-sive [67]). However, Flyvbjerg has illustrated that it is a common misconception thatit is not possible to generalise from a single case. He states that it is often possible togeneralise on the basis of a single case, and that the case study may be �central to scien-ti�c development via generalisation as supplement or alternative to other methods� [41].Regardless of this argument, the application framework evaluation contained in this sec-tion errs on the side of caution and discusses three application case studies that illustratehow the application framework can be reused and extended to implement applicationswith di�erent requirements. All three applications reuse the base framework behaviour,with two of the applications requiring speci�c framework extensions. The case studyapplications were selected to illustrate how the application framework can be used by de-velopers to implement applications of varying complexity. The �rst case study illustrateshow the application framework can be reused without extension to develop a basic trailsapplication. Application speci�cs are de�ned in the framework's properties �les and nosource code extensions are necessary. The second case study explores the developmentof an application that requires framework extensions to support a context source andactivity attribute that are not supported by default in the application framework. Thethird case study investigates the implementation of an application with requirements that1Stick-e Note [18] is a conceptual framework and was not implemented, precluding evaluation byapplication development case study. 129

necessitate extensions to fundamental framework behaviour such as the trail evaluationfunction and the activity relevance measurement mechanism. The three case studies arediscussed throughout the remainder of this section.5.1.1 Day PlannerThe easiest way to use a framework is to use existing classes only i.e., without imple-menting any concrete subclasses [61]. The �rst case study explores how the applicationframework can be used to develop a day planner application. Its key characteristic isthat it represents the set of trails applications that can be built using the applicationframework without extension (e.g., tourist guide applications like those discussed in Sec-tion 2.1 or a campus activity planner like the Oisín goes to Trinity application discussedin Section 3.1.3). The day planner application is required to help the user undertake a setof activities by generating and managing a trail based on the properties of the activitiesspeci�ed, the user's location, the current time and the user's preferences. The default be-haviour in the application framework can be reused, without extension, to implement theday planner application. The developer is only required to provide application-speci�cinformation, such as the details of each activity, via the properties �les.5.1.1.1 ImplementationIn order to implement the day planner application using the application framework thedeveloper is required to edit the trail.properties �le (introduced in Section 4.5) tospecify activity details and con�gure the following application properties:
• The maximum number of activities that can be scheduled during trail generationi.e., the subtrail/relevant set size.
• The periodic recon�guration time interval.
• The τ threshold for recon�guration point identi�cation i.e., the minimum level ofsimilarity that must exist between the activities in the current trail and the activityset sorted by relevance following a context event in order for recon�guration to bedeemed unnecessary. 130

Listing 5.1 contains an excerpt from the trail.properties �le for the day plannerapplication. A subtrail size of 5 is set on line 1, specifying that the user's �ve mostrelevant activities will be selected for scheduling at times when the user has �ve or moreactivities to complete. The periodic recon�guration interval is set on line 2 to be �veminutes (30000 milliseconds) so that, in the absence of location change events, the user'strail will be recon�gured automatically every �ve minutes. The brute force strategy fortrail generation is selected on line 3, meaning that the user's trail will be managed throughthe process of exhaustively evaluating all activity permutations each time recon�gurationis deemed necessary. The τ value of 0.8 (line 4) de�nes the e�ect a location or timelapse context event must have on the correspondence between the user's trail and theactivity set (sorted by relevance following the context event) in order for recon�gurationto be deemed necessary. Line 6 speci�es the number of activities to be included in theapplication and the �rst activity speci�cation is contained between lines 6-17, with theremainder following below in the same fashion (as indicated by the ellipses on line 20).Listing 5.1: Excerpt from the day planner trail.properties �le1 t r a i l . g ene ra t i on . s u b t r a i l=52 r e c o n f i g u r a t i o n . t ime In t e r va l=300003 t r a i l . r e c o n f i g u r a t i o n . s t r a t e gy=brute4 r e l e van tS e t . var ianceThresho ld =0.856 a c t i v i t i e s . number=778 a c t i v i t y . 1 . d e s c r i p t i o n=Tennis w/ John9 a c t i v i t y . 1 . x=43510 a c t i v i t y . 1 . y=36511 a c t i v i t y . 1 . openingTime=09:3012 a c t i v i t y . 1 . c los ingTime =10:3013 a c t i v i t y . 1 . c los ingTime . leeway=014 a c t i v i t y . 1 . breakStart=015 a c t i v i t y . 1 . breakEnd=016 a c t i v i t y . 1 . durat ion=60 131

17 a c t i v i t y . 1 . durat ion . leeway=018 a c t i v i t y . 1 . p r i o r i t y=519 a c t i v i t y . 1 . mandatory=true20 . . .The developer can also edit user preferences, although defaults can be used. Thecontents of the userPreferences.properties �le (introduced in Section 4.5) for the dayplanner application are illustrated in Listing 5.2. The user preferences for determiningactivity relevance are speci�ed between lines 9 and 12. The preferences for clash resolutionare contained between lines 19 and 21 and the trail evaluation function preferences arespeci�ed on lines 28-32. The modi�cation of these values a�ects which activities areselected for scheduling and the ordering of the user's trail.Listing 5.2: The userPreferences.properties �le1 # USER PREFERENCE PROPERTIES2 ##34 ############ RELEVANCE PREFERENCES #################56 # pre f e r en c e s to use when so r t i n g a c t i v i t i e s by re l evance7 # pre f e r en c e va lue s should add up to 189 r e l evance . proximity . weight =0.510 r e l evance . p r i o r i t y . weight =0.111 r e l evance . mandatory . weight =0.112 r e l evance . urgency . weight =0.31314 ############# CLASH RESOLUTION #####################1516 # pre f e r en c e s to use when r e s o l v i n g a c t i v i t y c l a sh e s17 # pre f e r en c e va lue s should add up to 118 132

19 c l a sh . proximity . weight =0.320 c l a sh . p r i o r i t y . weight =0.221 c l a sh . mandatory . weight =0.52223 ############# TRAIL GENERATION/RECONFIGURATION #####2425 # pre f e r en c e s f o r t r a i l g ene ra t i on and r e c o n f i g u r a t i o n26 # pre f e r en c e va lue s should add up to 12728 s co r e . a c t i v i t i e s P o s s i b l e . weight =0.729 s co r e . mandatorySupported . weight =0.0030 s co r e . l ength . weight =0.331 s co r e . durat ion . weight =0.0032 s co r e . id leTime . weight =0.00The properties in the normalization.properties �le (introduced in Section 4.5)can also be set. Listing 5.3 illustrates the values of the trail and activity ranges used fornormalisation in the day planner application.Listing 5.3: The normalization.properties �le1 # TRAIL PROPERTY NORMALIZATION PROPERTIES2 ##34 #the d i s tance range f o r proximity i . e . , ze ro to the value5 #sp e c i f i e d below − in metres .6 t r a i l . normal i ze . proximityRange=100078 #the length range f o r a whole t r a i l − in metres .9 t r a i l . normal i ze . lengthRange=32001011 #the range f o r p r i o r i t y − between 1 and 5 , where 5 i s the h ighe s t12 t r a i l . normal i ze . pr io r i tyRange=513 133

14 #the range f o r t r a i l durat ion − in minutes15 t r a i l . normal i ze . durationRange=6001617 #the range o f time with in a day in m i l l i s e c o nd s18 t r a i l . normal i ze . dailyTimeRange=86400000Figure 5.1 shows an annotated screen shot of the default text-based user interface thatis produced by the application framework for the day planner application. A message isdisplayed each time that the trail is recon�gured that includes the time that the recon-�guration occurred. Information about the user's trail is displayed below and includesthe following details:

Figure 5.1: The text-based display produced for the day planner application
• The position of the activity on the trail. The activity either has a number associatedwith it to indicate its position or a `-' character to indicate that it is currentlyunscheduled.
• The activity name. This information is displayed regardless of whether the activityis scheduled or not.
• The estimated start and end time of each activity given its position on the trail.If an activity is currently unscheduled then the word `unscheduled' is displayed inplace of the time information. 134

5.1.1.2 AnalysisReuse level is the standard metric for measuring the amount of software reuse in anapplication [99] and is generally expressed as a percent of the total source lines for theapplication. The metric measures the ratio of external items to total items used in anapplication, where external items are those whose implementation is necessitated due tolack of infrastructure support.Given concrete de�nitions of a mobile user's set of activities and speci�c values fortrail generation, user preference and trail property normalisation properties, 100% ofthe application framework's code base can be reused without extension to provide trailmanagement behaviour for the day planner application. In order to use the applicationframework in this manner, software developers are not required to fully learn the frame-work. This is an advantage to developers as learning an application framework is moredi�cult than learning, for example, a regular class library. Class libraries can be learnedone class at a time whereas frameworks, the classes of which are designed to work to-gether, must be learned all at once [61]. The developer of the day planner and similarapplications is required to understand only the meaning of each property in the properties�les and how the value of each property a�ects the behaviour (in terms of trails produced)of the application framework. The manner in which in the behaviour that produces theresults is implemented does not need to be understood as no subclassing is necessary.Figure 5.1 illustrates the text-based user interface that is produced by default whenthe application framework is used to implement an application. The provision of graph-ical interfaces does not fall within the scope of the framework discussed in this thesis.However, the Hermes framework (discussed in Section 1.3), of which the applicationframework described in this thesis is a component, is investigating map-based user inter-faces for trails application. Therefore, support for trails-based applications with graphicaluser interfaces will be available to developers using the completed Hermes framework. Al-ternatively, developers can implement their own application-speci�c graphical interfacesbased on the trail information produced by the application framework.
135

5.1.2 Music Festival TrailNot all trails applications can be implemented in the same manner as the day plannerapplication i.e., by reusing the application framework without extension. Another wayto use an application framework is to de�ne new concrete subclasses of framework classesand use them to implement an application [61]. The second case study explores how theapplication framework can be extended to cater for applications that require the followingbehaviour:
• The use of a context type not provided by the application framework.
• The use of activities with an attribute not provided by the application framework.These two framework extensions are not interdependent and therefore the case studyalso serves to illustrate how applications that only require one of these extensions can beimplemented.Music festivals present numerous musical performances, usually related by genre ortheme, across multiple stages. Music fans must therefore choose which performances tosee on which stages, inevitably having to resolve clashes between favourite artists. Fansgenerally make a plan from the published running order, but scheduled stage times areoften deviated from. This means that music fans are left waiting for an artist to appearwhile missing an artist they would have liked to see on another stage. The music festivalapplication is required to manage a user's schedule of selected musical performances bygenerating and recon�guring trails based on dynamic stage time information, the user'slocation, the current time and their preferences. In order to implement a trails applicationfor music festival goers the application framework must be extended by adding a stagetime context generator and related logic. A new activity attribute, genre, is also addedto aid activity descriptions.5.1.2.1 ImplementationFigure 5.2 illustrates the classes (and their respective parent classes) that are added tothe application framework in order to implement the music festival application. Theapplication-speci�c classes are annotated with diamond shapes to distinguish them fromframework classes. 136

Figure 5.2: The framework extensions facilitating the music festival application5.1.2.2 Adding a new context sourceThe new stage time change context source is catered for through the addition of a classthat extends the generic context source in the application framework. StageTimeChangeris responsible for acquiring and sending stage time context events to the class coordinat-ing trail recon�guration (a child of ReconfigurationEngine), triggering trail recon�g-uration if necessary. StageTimeChanger extends the abstract ContextGenerator classin the same manner as the application framework's default context sources, location andtime lapse (as discussed in Section 4.1), and includes code to acquire stage time contextinformation from a remote context generation server.ReconfigurationEngine, the class responsible for receiving context events and con-sequently invoking trail recon�guration, is extended to take the new context source intoaccount. The constructor in ReconfigurationEngineExtended adds itself as an ob-137

server of context events generated by the new stage time context source. The update()method, responsible for taking action based on context events, is overridden so that stagetime context changes are handled i.e., the reconfigure() method is invoked and trailrecon�guration occurs as necessary.5.1.2.3 Adding a new activity attributeA new attribute, genre, is added to the default activity description so that musicalperformances can be better described2. This necessitates the extension of the standardactivity speci�cation. Activity is extended by adding the genre attribute and extendingthe constructor, toString() and clone() methods so that they include the new attributein their behaviour. Accessor methods for the new attribute are also added.As a result of the introduction of a new activity attribute, the activity speci�cationstored in the trail.properties �le (illustrated in its default form in Listing 4.9) isextended. Consequently, the behaviour that reads in activity speci�cations from diskand creates the initial trail must be modi�ed to read the new activity attribute as wellas the default ones. TrailRepository is extended, producing TrailRepositoryExtendthat overrides the loadTrail() method from the parent class. The new method createsan instance of the extended activity for each activity listed in the trail.properties �leand returns a trail containing these activities.5.1.2.4 Using the new behaviourTrailGeneration is responsible for both invoking the application framework's trail man-agement behaviour and for making the trail available to the user interface and anyother application logic that developers wish to implement. TrailGeneration invokesthe behaviour that loads an initial trail from disk, starts the context service and in-stantiates the class that coordinates trail recon�guration based on context change. ThegetTrailRepository() and getReconfigurationEngine() methods are rede�ned sothat the framework uses the extended versions of the classes referenced by these meth-ods. The startContextService() method is augmented to initialise the stage timecontext source.2A band's name tends to reveal little about the type of music they perform.138

Finally, as with the day planner application described in Section 5.1.1, user preferencesand application properties can be set in the relevant properties �les.5.1.2.5 User Interface

Figure 5.3: The text-based display produced for the music festival applicationFigure 5.3 contains a screen shot of the default text-based user interface producedby the application framework, without extension, for the music festival application. Theuser interface contains the same type of information about the trail as is illustrated in theannotated day planner user interface in Figure 5.1. The screen shot of the music festivalinterface also contains information regarding the activities that the user has alreadycompleted. Similar information was not shown in relation to the day planner applicationas the user had not completed any activities.5.1.2.6 AnalysisThrough the addition of a source of stage time context and the extension of the activityspeci�cation, the application framework is equipped to support the management of a setof disparately located musical performances. The application is responsive to changes inuser location, performance stage times and current time. 483 lines of code spread across139

4 classes were added to the 5776 lines of code in the base application framework. Thisrepresents a code reuse percentage of 91.6%.Table 5.1 lists the extensions made to the application framework during the imple-mentation of the music festival application and identi�es the reason for each extension.Extension New Context Source New Activity PropertyNew stage time context √Extended recon�guration engine √Extended activity √Extended trail repository √Rede�ned initialisation class √ √Table 5.1: Explanation of extensions necessitated by the music festival applicationBoth of the new behaviours added (the new context source and the new activity at-tribute) required the extension of two framework classes, while the class that invokes theapplication framework's behaviour was rede�ned to consider the framework extensions.The music festival case study illustrates how the use of design patterns in the imple-mentation provides hooks to ease the extension of the application framework in relationto the new context source (Observer pattern as discussed in Section 4.1). However, whilethe framework is designed to facilitate extension, using the application framework in themanner described in this case study is naturally more complicated than using it withoutextension. However, the case study illustrates that, in the hands of a developer witha moderate understanding of the application framework, the framework can be used toexpress a much wider range of applications than those that use location and time lapsecontext only.5.1.3 Theme Park TrailThe music festival case study illustrates how the application framework can be extendedto support applications that require additional context sources and activity attributes.However, it does not represent the situation in which a developer wishes to implement anew context source that the a�ects the behaviour of the trail evaluation function and theactivity comparison techniques in the application framework. The context added in themusic festival case study resulted in changes to the activity opening and closing times.140

These attributes are considered, by default, during both the evaluation of a trail andactivity comparison. The third case study explores how the application framework canbe extended through the addition of a context source that necessitates extension to thedefault activity speci�cation and the consideration of the new activity attribute duringtrail evaluation and activity comparison.Theme parks are notorious for the amount of time that patrons spend queuing forrides. This case study illustrates the manner in which the application framework canbe extended to consider the notion of activity queuing time, and support an applicationfor theme park visitors. The theme park application is required to consider ride queuingtime, along with user location, preferences and the current time, when generating a trailfor a theme park visitor. Implementing the theme park application involves extendingthe default activity speci�cation so that each activity has an associated queuing time,and providing a source of ride queuing time context. The addition of the new contextsource and related activity attribute impacts on the following areas of the framework:
• The trail evaluation function. The evaluation function is required to consider ridequeuing time when scheduling the user's chosen activities.
• The clash resolution mechanism. The queuing time associated with each activitymust be considered when assessing whether any of the user's chosen activities clashwith each other.
• The activity relevance measurement mechanism. Activity queuing time must beconsidered as a value dimension in the calculation of the relevance of each activityas users are likely to consider activities with shorter queuing times to be morerelevant than those with longer queuing times.5.1.3.1 ImplementationFigure 5.4 illustrates the extensions and new behaviours that are necessary in order tosupport the theme park application. Due to space limitations the diagram generallydepicts the subclasses added to the application framework and not the classes that havebeen extended. 141

Figure 5.4: The framework extensions facilitating the theme park application5.1.3.2 Adding a new context sourceThe application framework is extended through the implementation of a class to generatequeuing time context events in the same manner as stage time change context was imple-mented in the music festival application (described in Section 5.1.2.2). QueueTimeChanger,a class that extends the application framework's generic context generation class, is re-sponsible for acquiring and sending ride queuing time context events to observers. Thesole observer of the events generated by QueueTimeChanger is the class coordinating trailgeneration/recon�guration, an extension of ReconfigurationEngine.The constructor in ReconfigurationEngineExtended adds itself as an observer ofcontext events generated by the new queuing time context source. The update() methodfrom the parent class, responsible for taking action based on context events, is overridden142

so that queuing time context events trigger the invocation of the reconfigure() method.5.1.3.3 Adding a new activity attributeA new activity attribute, queuingTime, is added to the default activity speci�cation sothat the queuing time of each theme park activity can be represented. This behaviour iscontained in ExtendedActivity, a subclass of Activity. The extended activity alsoadds accessor methods for the new attribute and overrides the default behaviour ofgetDuration() from Activity so that the activity queuing time is added to the es-timated duration before the estimated duration is returned. Similar to the extension ofthe activity speci�cation in the music festival application (described in Section 5.1.2.3),TrailRepository is extended to initialise a trail composed of extended activities at ap-plication startup.5.1.3.4 Adding new activity comparatorsUnlike the addition of stage time change context in the music festival case study, the ad-dition of queuing time context a�ects an activity attribute that is not already consideredwhen activities are being compared3. Therefore, the behaviour used to compare activitiesduring both clash resolution and relevance sorting must be rede�ned so that it considersthe queuing time of each activity when making activity comparison decisions.Two new comparator classes are implemented by extending java.util.Comparator.MAUTClashResolutionComparatorExtend is used to resolve clashes between two activ-ities and MAUTRelevanceComparatorExtend is used to sort a collection of activities byrelevance. The compare() method in each comparator is augmented so that it now con-siders queuing time as a value dimension. The userPreferences.properties �le isextended to add queuing time weights for clash resolution, activity relevance and trailevaluation (the extended evaluation function is discussed in Section 5.1.3.5) so that devel-opers/users can specify how much of an impact activity queuing time should have on therespective behaviours. UserModel is extended to make the value dimension weights avail-able to the activity and trail comparison behaviour. The normalization.properties3The stage time context in the music festival application a�ects the opening and closing time of eachactivity. These attributes are considered by default during trail evaluation and activity comparison.143

�les and Normalize are also extended to facilitate the comparison of an activity's queuingtime to other activity properties.5.1.3.5 Adding a new evaluation functionThe trail evaluation function must also take the queuing time attribute into account whengenerating trail scores so that the trail produced re�ects the user's preference as regardsqueuing time e.g., the user may want the trail that minimises queuing time. Trailis extended to produce ExtendedTrail, and the getScore() method is overridden toprovide a new implementation of the evaluation function that factors in the total queuingtime for the trail. This behaviour is supported by the implementation of a method in theextended version of TrailAssessor that compares how similar the trail being evaluatedis to the trail activities ordered by least queuing time.5.1.3.6 Using the new behaviourThe new behaviour implemented for the theme park application is used in the same man-ner as the new behaviour implemented for the music festival application (described inSection 5.1.2.4). The getTrailRepository() and getReconfigurationEngine() meth-ods in TrailGeneration are rede�ned to provide access to the extended classes, and themethod that starts the context services is augmented to include the context source addedin the theme park application.Finally, as in the day planner and music festival case studies, user preferences andapplication properties (notably the user-speci�ed weights for queuing time in relationto activity clash resolution, relevance calculation and trail evaluation) can be set in therelevant properties �les.5.1.3.7 User InterfaceFigure 5.5 contains a screen shot of the text-based user interface that is produced withoutframework extension for the theme park application. This display contains the sameinformation as the user interface screen shot discussed in relation to the day planner casestudy (Section 5.1.1.1). 144

Figure 5.5: The text-based display produced for the theme park application5.1.3.8 AnalysisBy extending the application framework so that it can cater for the concept of activityqueuing time, it is possible to implement a trails application to aid theme park visitorsin reducing queuing time. The theme park application is responsive to changes in userlocation, ride queuing time, user preferences and current time. 903 lines of code spreadacross 11 classes were added to the 5776 lines of code in the base application framework.This represents a code reuse percentage of 84.3%.Table 5.2 lists the extensions made to the application framework during the imple-mentation of the theme park application and identi�es the reason for each extension.Comparing Table 5.2 to Table 5.1 on page 140 illustrates that 7 of the 12 extensions(those marked with an asterisk) are exclusive to the theme park case study and supportthe addition of a new concept (queuing time) to the framework as opposed to just acontext source relating to existing activity attributes and a descriptive activity attribute.The di�erence in the code reuse percentage between the two case studies (91.6% in themusic festival case study, 84.3% in the theme park case study) illustrates the impact ofthe extra extensions necessitated by the theme park application.It is clear from this case study that reusing the application framework to implementthe theme park application requires a good understanding of the framework. Extendingthe classes that form the core of the framework is the most di�cult way to reuse a145

Extension New Context Source New Activity PropertyQueuing time context √Extended recon�guration engine √Extended activity √Extended trail repository √Rede�ned initialisation class √ √Extended evaluation function* √ √New relevance measure* √ √New clash resolution measure* √ √Extended trail assessor* √ √Extended trail manipulator* √ √Extended user model* √ √Extended normalize* √ √Table 5.2: Explanation of extensions necessitated by the theme park applicationsoftware framework, however it is also the most powerful [61]. Therefore, by spendingthe time required to learn the application framework, developers will be able to add newconcepts to the default base, greatly altering the default behaviour while retaining ahigh level of code reuse. This case study has illustrated that the application frameworkprovides both structure to encourage extension (in relation to the context and comparatorsuperclasses) and behaviour that can be customised (e.g., the evaluation function) tofoster the development of trails applications that consider an unbounded set of contextsand behaviours.5.1.4 SummaryThe case studies presented in this section illustrate how the application framework caneither be reused without modi�cation to develop speci�c trails applications based on lo-cation and time lapse context, or extended through the addition of new context sources,activity properties and new concepts that a�ect behaviour such as the evaluation func-tion. As the amount of knowledge that developers have about the application frameworkincreases, their ability to reuse and extend the framework to produce applications basedon unforeseen context sources that consider new trail concepts increases in tandem. Thecode reuse level was shown to decrease as application framework usage became more ad-vanced and the amount of extensions increased. However, the code reuse level was above84% in all three case studies. 146

While the case studies are concerned with the details of speci�c applications, theyalso serve to illustrate the scope of the applications that can be developed using theframework. Without extension the framework is capable of being reused to produceapplications based on user location, activity time constraints and user preferences. Ex-amples of such applications include �eld study support applications for school children(similar to those described in relation to the HyCon Framework [17] but with dynamictrail adaptation), trails applications for tourists such as those described in Section 2.1and to-do list/day planner applications similar to those discussed in Section 2.2 but withautomatic context-based schedule reordering. Extending the framework to consider addi-tional context sources greatly widens the scope of the applications that can be developed.By considering contexts that a�ect default activity properties such as time constraintsand activity location, the highly dynamic environment in which mobile delivery couri-ers operate can be modelled. In this situation, activities represent parcel delivery andcollection jobs, and priority can be used to represent the importance of each job. Recon-�guration can be triggered by changes in delivery urgency and collection location. Thescope of the applications produced by the framework can be expanded even further whenextensions are made that facilitate the consideration of new concepts that a�ect boththe de�nition of an activity and the way in which activities and trails are evaluated e.g.,the concept of queuing time that was added in the theme park case study. This opensup a range of possibilities including an application to dynamically schedule activities fordoctors working in hospitals [38], where activities are used to represent both medical andadministrative duties, and context generated by patient monitoring sensors is consideredalongside standard framework contexts such as activity time constraints and user locationwhen evaluating trails and activities.The following section presents the quantitative evaluation of two core aspects of appli-cation framework behaviour - the trail generation and recon�guration point identi�cationmechanisms.5.2 Trail Generation and Recon�gurationThis section presents the results of lab experiments conducted to assess the following:147

• The number of activities that can be scheduled during trail generation while adher-ing to a response time of 12 seconds.
• The number of activities that can be considered (but not scheduled) during trailgeneration. A response time of 2 seconds was imposed on the behaviour beingassessed during this experiment. 2 seconds was considered to be a reasonable pro-portion of the total response time (12 seconds) to dedicate to activity set pruningand activity relevance calculation.
• The accuracy of the trail recon�guration point identi�cation mechanism.The trail generation evaluation had two objectives. The �rst was to quantify the capa-bilities of each of the three concrete trail generation techniques that are included in theapplication framework (brute force, genetic algorithm and simulated annealing). Thisinvolved measuring how many activities each technique can schedule on a trail within12 seconds, where the trail produced is the best �t to the user's preferences for trailgeneration. The speci�cs of how the results were calculated are explained further in Sec-tion 5.2.1. The results of this experiment illustrate that the application framework iscapable of generating trails on a resource-constrained mobile platform within a reason-able response time that contain a non-trivial number of scheduled activities. Therefore,applications developed using the framework are capable of producing trails that are ofhigher quality than non-computer-generated trails (this statement is supported by theresults of the trail quality study discussed in Section 5.3). The results of the trail gen-eration experiment can also be used by framework developers to a) inform their decisionregarding which trail generation approach to use and b) reason about the capabilities oftheir own framework extensions in the area of trail generation strategies. The secondobjective of the trail generation evaluation was to quantify how many activities can beconsidered during trail generation without spending more than 2 seconds on activity setpruning and sorting of the activity set by relevance. This involved measuring the timetaken to prune the activity set and sort activities by relevance following the receipt ofa context event. Details of precisely how the results were calculated are contained inSection 5.2.2. 148

The objective of the recon�guration point identi�cation experiment was to quantifythe accuracy of the technique in determining whether or not trail recon�guration is nec-essary following the occurrence of a context event. This involved assessing the decisionsmade by the recon�guration point identi�cation technique following the receipt of con-text events, where the decision that should be made in each case is known. Full detailsregarding how the results were calculated are provided in Section 5.2.3.All experiments required context events to trigger the execution of the behaviour beingmeasured - either trail generation or recon�guration point identi�cation. These contextevents were simulated in the lab as opposed to generated during real world deployment.The simulation of context data, an active research area within mobile, context-awarecomputing [54, 11, 93, 86], allows researchers to conduct evaluations of context-basedtechnology without undergoing the cost of a full application deployment. The use ofsimulations provides control over environmental parameters, facilitating evaluations thatmay prove di�cult to conduct in the real world, given its volatile nature. While there is nosubstitute for using deployment and subsequent user studies to evaluate the e�ectivenessof a system in terms of criteria such as those proposed by Scholtz [114] (e.g., applicationappeal and command of user attention), simulation is an appropriate technique for certaintypes of evaluation. The experiments discussed in this section do not require user input,nor are the results user-speci�c or subjective. Therefore they are suitable candidates forthe use of simulation.The remainder of this section presents and discusses the results produced during labexperiments that measured the behaviour of the trail generation and recon�guration pointidenti�cation techniques.5.2.1 Trail Generation - Activity SchedulingThe responsiveness of the trail generation mechanism was calculated by recording theduration between the instant before the invocation of the reconfigure() method inReconfigurationEngine and the instant after reconfigure() returns. All three candi-date solution generation techniques were evaluated and the results are discussed through-out the remainder of this subsection. The mobile device used for the experiments was a149

HP iPAQ h6300 series with a Texas Instruments OMAP1510 168 MHz processor and 64MB of RAM.5.2.1.1 Brute ForceFigure 5.6 illustrates the response times of the brute force trail generation algorithm for 5,6 and 7 activities over the course of 100 trail recon�gurations. The average response timeof the trail generation algorithm with a subtrail size of 5 activities is 3.16 seconds, 12.16seconds for 6 activities and 82.5 seconds for 7 seconds. Therefore, the trail generationapproach in the application framework can generate an optimal subtrail of 5 activitieswithin a reasonable response time (or 6 activities by marginally exceeding the responsetime limit) on the mobile device used in the experiment.

Figure 5.6: Brute force trail generation response times5.2.1.2 Genetic AlgorithmThe genetic algorithm proves unable to generate an optimal subtrail of 5 activities withina reasonable response time. Executing the genetic algorithm on the mobile device with a150

subtrail size of 5, and parameters that result in the generation of the optimal trail, takes158.1 seconds on average.5.2.1.3 Simulated AnnealingFigure 5.7 illustrates the response times for four subtrail sizes (5, 6, 7 and 8) usingthe simulated annealing trail generation algorithm over 100 trail recon�gurations. Thealgorithm is supplied with parameters that result in the consistent generation of theoptimal trail. The average response time with a subtrail of 5 activities is 6.9 seconds,8.6 seconds for 6 activities, 11.2 seconds for 7 activities and 12.6 seconds for 8 activities.Using the simulated annealing algorithm therefore facilitates the generation of trails witha subtrail of 7 activities within a reasonable response time on the mobile device used inthe experiment. It is possible to consider 8 activities in the subtrail if the response timeupper limit is marginally exceeded.

Figure 5.7: Simulated annealing trail generation response times
151

5.2.1.4 AnalysisThe response time experiments show that the application framework is capable of schedul-ing between 5 and 7 activities within a reasonable response time using brute force andsimulated annealing, while the genetic algorithm proves to be too resource intensive fordeployment on the mobile device used in the experiments.The brute force results in Figure 5.6 illustrate the exponential nature of the algorithmand the infeasibility of its usage as the number of activities in the subtrail is increased.Improvements in mobile device technology will increase the number of activities that canbe considered using brute force within a reasonable response time. For example, thedesktop machine used to develop the application framework4 can generate an optimalsubtrail of 10 activities in 9.3 seconds using the brute force algorithm.The genetic algorithm, which creates many objects during execution to simulate theprocess of biological evolution, proves to be unsuitable for deployment on a resource-constrained mobile device. The response of time 158.1 seconds for a subtrail of 5 activitiesshows that it is infeasible to use this approach on the mobile device used in the experiment.The same algorithm executing on the desktop machine has an average response time of1.25 seconds for 5 activities. Subtrails of 6 and 7 activities respond in 3.5 and 6 secondsrespectively, indicating the linear nature of the algorithm and its potential for use onmore sophisticated mobile devices.Simulated annealing works by modifying a single solution (as opposed to the geneticalgorithm which generates many candidate solutions and evolves them until a singlesolution is chosen). It has been shown previously that genetic algorithms typically take10-24 times longer than simulated annealing to achieve similar results [79]. Additionally,it has also been shown that simulated annealing algorithms perform better than geneticalgorithms when both algorithms are given the same amount of time within which toproduce a result [72]. The simulated annealing algorithm outperforms both the bruteforce algorithm and the genetic algorithm, with the results in Figure 5.7 illustrating thelinear nature of the algorithm and the contrast between the cost of adding an activitywhen using simulated annealing and the cost of the same operation with brute force.4A Dell Optiplex GX260 with an Intel Pentium 4 2.2GHz processor and 512 MB of RAM.152

Simulated annealing can generate an optimal subtrail of 8 activities within 12.6 seconds.This response time, along with that of brute force at 6 activities, is marginally abovewhat is considered to be reasonable for the purpose of this thesis. The reduction of thesubtrail size by one in both cases ensures that the response times adhere to the acceptableboundary.The results of this experiment indicate that simulated annealing is the best algorithmto select when developing an application because it can consider the most activities withina reasonable response time. However, as discussed in Section 3.2.3.5, using this algorithmrequires an understanding of how the parameters in the simulatedAnnealing.properties�le a�ect the behaviour of the algorithm in terms of execution time and solution quality.Brute force is guaranteed to produce the best trail and can consider a signi�cant numberof activities within a reasonable response time. Therefore, brute force it is a better choicein terms of lessening the cognitive burden on the developer.In summary, the results of the trail generation experiments demonstrate that theapplication framework is capable of generating non-trivial trails within a reasonable re-sponse time. The trail quality experiment discussed in Section 5.3 illustrates that activityscheduling problems involving seven activities pose a signi�cant challenge to humans whotypically spend close to two minutes (or more) composing a solution that may not be thebest �t to their preferences given the current context.Finally, it is important to note that the experiments described in this section do notmeasure response time as the end-to-end response time de�ned by Macabee [78]. Inthe words of Macabee, end-to-end response time is: �The time between the start of usersrequest (indicated by depressing a key or a button) and the time when the user can use thedata supplied in response to the request�. The measurements used in the trail generationexperiments do not consider the time required to render the result of the trail generationprocess to the user. The amount of time required for this operation will vary dependingon the user interface employed. The subtrail sizes in both the brute force algorithmand simulated annealing algorithm can, if necessary, be reduced to compensate for theresult rendering overheard, therefore facilitating an end-to-end response time within thereasonable bounds. 153

5.2.2 Trail Generation - Activity ConsiderationPruning the activity set and sorting the activity set by relevance (shortened to `activityset preparation') are the �rst steps in the trail generation process. The amount of taken bythese operations dictates how much time is left for the generation of the best trail for theuser. Therefore, if too many activities are included in an application, the time required foractivity set preparation will have the e�ect of reducing the number of activities that can bescheduled on the trail. This experiment quanti�es how many activities can be included inan application so that the time spent on preparing the activity set for activity schedulingdoes not exceed 2 seconds. The responsiveness of the activity set preparation behaviourwas calculated by executing the day planner application on the same mobile device used inactivity scheduling experiment5 and recording the time taken for activity set preparationi.e., the combined execution time of the pruneTrail() and sortByRelevance() methodsin ReconfigurationEngine. The day planner application was executed with multiplesof 10 activities until the response time limit of 2 seconds was reached. 100 context eventswere generated per execution of the application.5.2.2.1 ResultsFigure 5.8 illustrates the results of the activity consideration experiment. The resultsshow that the process of activity set preparation for an activity set of size 10 took 26.18milliseconds on average. As activities are added to the activity set, the average responsetime for activity set preparation increases in a linear fashion to the point where an activityset size of 110 takes 2140.69 milliseconds (just over 2 seconds).5.2.2.2 AnalysisThe results of the activity consideration experiment illustrate that between 100 and 110activities can be considered during trail generation without spending more than 2 sec-onds on activity set preparation. This contrasts with applications like GUIDE, P-Tourand the DTG (discussed in Section 2.1), where the maximum number of activities thatcan be considered within a reasonable response time are 9, 14 and 16 respectively. The5HP iPAQ h6300 series with a Texas Instruments OMAP1510 168 MHz processor and 64 MB of RAM154

Figure 5.8: Results of the activity consideration experimentnumber of activities that can be considered during trail generation and recon�gurationin applications built using the application framework depends on the capabilities of thedevice executing the application e.g., the desktop machine used to develop the applica-tion framework can consider 1000 activities in 2 seconds. The ability of the applicationframework to include a large number of activities and schedule them as they become rel-evant to the user gives developers the power to design and implement applications suchas RiddleHunt (discussed in Section 3.1.4) in which it is necessary to have a relativelylarge amount of activities to make the game interesting for players.5.2.3 Recon�guration Point Identi�cation AccuracyThe accuracy of the trail recon�guration point identi�cation mechanism was assessed bysimulating context events in each of the case study applications described in Section 5.1and identifying if each context event was correctly handled by the recon�guration pointidenti�cation mechanism. Each application was executed twice, once with no recon�gura-155

tion point identi�cation (recon�guration was triggered each time a context event occurs)and once with the recon�guration point identi�cation mechanism in place. During the�rst execution of the application, a �le was created that noted whether or not each re-con�guration was necessary or unnecessary. This was measured by comparing the trailproduced by the recon�guration to the trail prior to recon�guration - if they were thesame then the recon�guration was unnecessary. During the second execution, in whichsmart recon�guration was used, the decisions made by the recon�guration point identi-�cation mechanism (required or not required) were recorded. The decisions made in the�rst and second trials were then compared.The same one hundred context events were generated during the execution of eachversion of each case study application, and the recon�guration point identi�cation trialswere carried out using two τ values - 0.95 and 0.85. These τ values were chosen because τvalues in and around that region (0.8 - 0.95) were shown to produce good results duringapplication development and testing. When comparing the �ndings of the �rst trial foreach application against the trials with recon�guration point identi�cation there are fourpossible outcomes. Each trail recon�guration is classed as one of the following:1. Unnecessary as Not Required. Recon�guration proven to be unnecessary by the�rst trial is identi�ed as `Not Required' by the recon�guration point identi�cationmechanism. This is a positive result.2. Required as Required. Recon�guration proven to be required is identi�ed as `Re-quired' by the recon�guration point identi�cation mechanism. This is a positiveresult.3. Required as Not Required. Recon�guration proven to be required is identi�ed as`Not Required' by the recon�guration point identi�cation mechanism. This is anegative result.4. Unnecessary as Required. Recon�guration proven to be unnecessary is identi�ed as`Required' by the recon�guration point identi�cation mechanism. This is a negativeresult, although not as detrimental as classi�cation 3 in that it does not result in adiscrepancy between the user's trail and their environment.156

It was expected that the number of instances of classi�cation #3 would be minimisedat the higher τ value, resulting in instances of classi�cation #4 being relatively high bycomparison. This is because the likelihood of recon�guration being deemed necessary in-creases as τ increases. At the lower τ value it was expected that instances of classi�cation#3 would increase and instances of classi�cation #4 would decrease. Therefore, it wasexpected that the higher τ value would result in the trail more accurately re�ecting thecontextual situation, but that achieving this accuracy would require sacri�cing resourcesto unnecessary recon�gurations.5.2.3.1 Day Planner ResultsThe results of processing 100 location change events in the day planner application areillustrated in Figure 5.9. With τ = 0.95, 75 context events out of the 100 that aregenerated are handled correctly. Of the remaining 25 context events, 21 are handled byunnecessarily recon�guring the trail and 4 events that should cause recon�guration do not.This data is illustrated in the top half of Figure 5.9. With τ = 0.85, the number of eventshandled correctly rises to 86. However, of the 14 context events that are mishandled, 3cause unnecessary recon�guration and 11 cause signi�cant context events to be ignored.This data is illustrated in the bottom half of the �gure. The di�erence between the resultsobtained using the two τ values correlates with expectations for the experiment i.e., morecontext events resulted in classi�cation #3 when τ was at the lower value.5.2.3.2 Music Festival ResultsThe results of the recon�guration point identi�cation experiment as conducted by gener-ating 100 stage time context events in the music festival trail application are illustrated inFigure 5.10. With τ = 0.95 (illustrated in the top half of Figure 5.10), 83 context eventsare handled correctly. Of the remaining 17 events, 12 unnecessary recon�gurations arecarried out and 5 necessary recon�gurations do not take place. When the τ value isreduced to 0.85 (illustrated in the bottom half of the �gure), the number of events iden-ti�ed correctly increases to 88. As expected, the remaining 12 events contain more casesin which recon�guration should have taken place (7) than cases in which recon�gurationwas unnecessary (5). 157

Figure 5.9: Day planner results with τ = 0.95 (top) and τ = 0.85 (bottom)
158

Figure 5.10: Music festival results with τ = 0.95 (top) and τ = 0.85 (bottom)
159

Figure 5.11: Theme park results with τ = 0.95 (top) and τ = 0.85 (bottom)
160

5.2.3.3 Theme Park ResultsThe experiment results for the theme park application dealing with 100 queuing timechange events are illustrated in Figure 5.11. With τ = 0.95 (illustrated in the top half ofFigure 5.11), 92 context events are correctly handled. Of the remaining 8 events, therewere 8 unnecessary recon�gurations and 0 incorrectly classi�ed necessary recon�gurations,meaning that the trail was never in a state inconsistent with the context. Moving τ to 0.85(illustrated in the bottom half of the �gure) reduces the number of context events handledcorrectly to 87. The remaining 13 events are composed of 5 unnecessary recon�gurationsand 8 required recon�gurations that were deemed to be not required. These results,along with those generated in the trials involving the day planner and music festivalapplications, correlate with the experiment expectations.5.2.3.4 AnalysisTable 5.3 summarises the results of the recon�guration point identi�cation experiment.

Unnecessa
ryasNot
Required

Requireda
sRequired

Requireda
sNotRequ
ired

Unnecessa
ryasRequ
ired

PositiveR
esult

NegativeR
esult

Day planner τ = 0.95 65 10 4 21 75 25Day planner τ = 0.85 83 3 11 3 86 14Music festival τ = 0.95 25 58 5 12 83 17Music festival τ = 0.85 32 56 7 5 88 12Theme park τ = 0.95 62 30 0 8 92 8Theme park τ = 0.85 67 20 8 5 87 13Table 5.3: Results of the recon�guration point identi�cation experimentThe results illustrate that, on average, the recon�guration point identi�cation techniquehandles 88.6% of context events correctly. Of the remaining context events, 4.3% result161

Recon�gur
ationNece
ssary

Classi�edC
orrectly

Recon�gur
ationUnne
cessary

Classi�edC
orrectly

Day Planner 14 10 86 65Music Festival 64 58 36 25Theme Park 30 30 70 62Total 108 98 192 152Table 5.4: Further investigation of the trials with τ = 0.95in unnecessary recon�gurations and 7.1% result in recon�guration not being invokedwhen it should be. These �gures are calculated by taking the `best' result from eachexperiment i.e., τ = 0.85 in the day planner, 0.85 in the music festival application and0.95 for the theme park application. This assumes that `best' means that as many contextevents as possible are handled correctly. However, if the trials that minimise the amountof miscategorised required recon�gurations (classi�cation #3) are selected as the bestresults i.e., τ = 0.95 in all applications, then 83.3% of the context events are handledcorrectly, 13.7% of the events result in unnecessary recon�gurations and 3% of the eventsthat should cause recon�guration do not. The reduction in miscategorisation of contextevents that necessitate recon�guration relates primarily to the day planner applicationwhich has 4 when τ = 0.95 and 11 at 0.85.Table 5.4 further illustrates the way context events were handled in the experimentsthat produced the best results (where the second de�nition of best is used). Of allthe context events that necessitate recon�guration (108 out of 300), the recon�gurationpoint identi�cation mechanism correctly classi�ed 98 of these events, or 90.7%. Of theremaining context events (192 out of 300) that do not require recon�guration to occur,the mechanism (with τ = 0.95) correctly classi�es 152 of these events, or 79.2%. Thismeans the majority of the context events that are handled incorrectly result in computing162

resources being needlessly consumed as opposed to the trail becoming out of sync withthe world that it represents.The analysis of the experiment results illustrates that the recon�guration point iden-ti�cation in the application framework can categorise context events correctly in the ma-jority of cases. Developers can customise the τ value as appropriate on a per-applicationbasis to achieve a suitable balance between unnecessary recon�guration and miscategori-sation of required context events. The importance of the con�icting goals of maintainingtrail relevance and conserving system resources will dictate the τ value used. As expected,a higher τ value was shown to increase the amount of time that the trail accurately rep-resents the user's context. Therefore, a higher τ value is appropriate for use in trailsapplications where accuracy is critical e.g., in the healthcare application described inSection 5.1.4. However, a higher τ value means there is a greater chance of incurring un-necessary recon�gurations. Lowering the τ value has the e�ect of reducing unnecessaryrecon�guration and increasing the number of required recon�gurations that are miscat-egorised. The use of a lower τ value is appropriate in trails applications where constantaccuracy is not paramount e.g., in a tourist guide application.Finally, the average execution time of the recon�guration point identi�cation be-haviour following the receipt of a context event is 777 milliseconds6. Therefore, it ispreferable to incur this cost for each context event rather than risk a high number ofunnecessary trail recon�gurations that are far more costly in terms of response time e.g.,between 12-13 seconds for 6 activities using brute force or 8 activities using simulatedannealing.5.3 Trail QualityThe application framework provides a reusable and extensible way to produce context-aware trails for mobile users. While the case studies in Section 5.1 and lab experiments inSection 5.2 evaluate technical aspects, they do not provide any information regarding howhumans perceive the decisions made by the framework. Consequently, the trail quality6This �gure was calculated by averaging the time taken to execute the recon�guration point identi-�cation behaviour in the day planner application (running on the iPAQ) 100 times with a subtrail of 8activities. 163

experiment was conceived to evaluate this aspect. The objectives of the trail qualityexperiment were to determine human opinion on the quality of the trails generated,and to investigate if the application framework provides an advantage over manual trailordering. Three hypotheses were tested:1. If the trail generation mechanism in the application adequately models the keyfactors involved in making activity scheduling decisions in a given situation, thensubjects, when in that same situation, will be satis�ed with the trails produced bythe application framework.2. If subjects are presented with a trails solution to a context-based activity schedulingproblem they will spend less time validating the solution (even when they have noreason to trust it) than they would spend devising their own solution to a similarproblem.3. If presented with a context-based activity scheduling problem to solve, subjectsmay not make the best use of their resources, primarily their time. Subjects, whenshown the computationally generated trails solution to the problem, may be moresatis�ed with it than with their own solution.Forty subjects participated in the experiment (29 male and 11 female). Ages rangedfrom 22 to 56, although the majority of subjects were aged between 24 and 32. Balanc-ing gender and achieving a balance across several age categories were not considered asimportant as ensuring that all subjects were familiar with the geographic area in whichthe activity scheduling problems used in the experiment were based. For this reason,all subjects were selected based on their knowledge of the Trinity College campus. Theactivities in the scheduling problems were located on campus, and all subjects involvedin the experiment had a good understanding of the layout of the campus, the majoritybeing either Trinity students or employees. Subjects could therefore use their knowledgeof the campus to make informed estimates about distances and related traversal timesbetween activity locations. Additionally, subjects were familiar with the idea of havingto carry out several activities at di�erent locations around the campus.Subjects were �rst asked to read an information sheet (presented in Appendix C.1)that explained the concept of a trail and described what the experiment would entail.164

Figure 5.12: An activity scheduling problem given to trails experiment subjectsNext, a simple activity scheduling problem and solution validation problem (shown inAppendix C.2.2 and C.2.3) were worked through to familiarise subjects with the tasksinvolved in the experiment. Subjects were then asked to manually solve an activityscheduling problem involving seven activities and re-solve it following the introductionof new context7. Finally, subjects were also asked to validate that computer-generatedsolutions to similar problems were `reasonable', where reasonable is intentionally subjec-tive and measured on a Likert scale [75] (the questionnaire is included in Appendix C.3).The subjects were divided equally into two groups. Group 1 solved problems �rst andvalidated computer-generated solutions second. Group 2 did the tasks in reverse order.This facilitated the observation of potential learning e�ects. All tasks were timed. Figure5.12 illustrates the �rst activity ordering problem that subjects in Group 1 were asked7Appendix C.2 contains all of the activity scheduling problems and solutions used in the experiment.165

to solve. Each activity has the following information associated with it: description,location, estimated duration, opening hours, priority, obligation and location. Subjectswere required to identify impossible activities, resolve clashes and order the remainingactivities (�ve activities remained for users to schedule after they had pruned the activityset).5.3.1 Trail Quality Experiment ResultsThe trail quality experiment produced three types of result for each group of subjects:1. Timing. These results relate to the amount of time subjects spent a) solving activ-ity scheduling problems and b) validating computer-generated solutions to similarproblems.2. Solution validation. These results represent the extent to which subjects agreed thatsolutions to activity scheduling problems produced by the application frameworkare reasonable.3. Solution quality. These results represent the quality of the activity schedulingsolutions produced by subjects.Table 5.5 contains the results of the timed element of the experiment. The median timetaken to solve a problem in Group 1 was 108 seconds, with 58 seconds being the mediantime for validating a computer-generated solution. The results of the solution valida-tion element of the experiment are contained in Table 5.6. When shown the computer-generated solution to a problem similar to that which they had solved, 95% of Group1 totally agreed that the computer-generated trail was reasonable, 5% partially agreed.100% agreed that the recon�guration decision made by the computer was reasonable. Theresults of the experiment in relation to the quality of the solutions produced by subjects,and their view of how they compare with the computer-generated solutions to the sameproblems, are summarised in Table 5.7. 55% of subjects in Group 1 solved the trail gener-ation problem in the same manner as the application framework. All subjects who solvedthe problem incorrectly agreed that the computer-generated solution was better than theone they had composed. 45% of subjects in Group 1 solved the recon�guration problem166

in the same manner as the application framework. All subjects who did not solve the re-con�guration problem correctly indicated preference for the computer-generated solutionover their solution. Group 1 Group 2Solve problem (median time) 108 seconds 161 secondsValidate solution (median time) 58 seconds 65 secondsTable 5.5: Trail quality experiment timing resultsThe median time taken for solving a problem in Group 2 was 161 seconds, with 65seconds being the median time for validating a solution. 95% of Group 2 totally agreedthat the computer-generated trail for a similar problem was reasonable, 5% partiallyagreed. 85% of Group 2 totally agreed that the recon�guration decision was reasonable,15% partially agreed. 65% of subjects in Group 2 solved the trail generation problem inthe same manner as the computer, while 45% percent of subjects composed a solution tothe recon�guration problem that was identical to that produced by the computer. As withGroup 1, all subjects, when shown the computer-generated solution to both problems,indicated a preference for it over their own solution.5.3.2 AnalysisIn relation to the �rst hypothesis, which states that subjects will agree that trails pro-duced by the application framework are reasonable if the framework adequately modelshow subjects make trail decisions, the results, illustrated in Table 5.6, show an averageof 93.75% total agreement. This result validates hypothesis 1. The reasons for non-totalagreement were collected via questionnaire. The main issue was the lack of leeway inthe estimated activity durations used for trail generation. This lack of �exibility causedcertain activities to be marked as impossible because the application framework calcu-lated that undertaking them would involve overrunning the activity closing time. In caseswhere the overrun was only a few minutes, subjects felt that in reality they would still dothe activity but not spend as long doing it. The concepts of estimated activity durationleeway and closing time leeway (discussed in Section 4.2.1) were added to the frameworkto address this. 167

TotallyAg
ree

PartiallyA
gree

Neither PartiallyD
isagree

TotallyDis
agree

Group 1Solution reasonable? 95% 5% 0% 0% 0%Recon�guration solution reasonable? 100% 0% 0% 0% 0%Group 2Solution reasonable? 95% 5% 0% 0% 0%Recon�guration solution reasonable? 85% 15% 0% 0% 0%Table 5.6: Trail quality experiment solution validation resultsIt took subjects just over twice as long on average to manually solve an activityscheduling problem themselves than to validate a computer-generated solution to a similarproblem. Subjects in Group 2 spent a signi�cantly longer time solving problems thansubjects in Group 1. It is thought that the increase in the median time taken by subjectsin Group 2 to generate a solution is a result of being exposed to a solved activity schedulingproblem before having to attempt to solve a problem themselves. As a result of having agreater understanding of how to solve activity scheduling problems, a higher percentageof subjects in Group 2 solved the activity scheduling problem in the same manner as thecomputer. The results of the timed aspect of the experiment, illustrated in Table 5.5,validate the second hypothesis, which states that users will spend less time validatingcomputer-generated solutions than devising solutions to similar problems.The results presented in Table 5.7 illustrate that, on average, 52.5% of subjects solvedactivity scheduling problems in the same manner as the application framework. 100% ofthe subjects that did not solve their activity scheduling problems in the same manneras the application framework agreed that the computer-generated solutions to the prob-lems they attempted were better than those they had produced themselves. The reasonsubjects preferred the computer-generated solutions was because the computer-generatedsolutions made better use of the time available. This result validates hypothesis 3, whichstates that subjects may be more satis�ed with the computer-generated solution to anactivity scheduling problem than their own solution.168

SolvedCor
rectly

SolvedInc
orrectly

PreferFra
meworkSo
lution

Group 1Solution generation problem 55% 45% 100%Recon�guration problem 45% 55% 100%Group 2Solution generation problem 65% 35% 100%Recon�guration problem 45% 55% 100%Table 5.7: Trail quality experiment solution quality resultsIn summary, the results of the trail experiment support the thesis that the trailsgenerated by the application framework are reasonable, and are often superior to thesolutions generated by humans. The results also indicate that presenting the user witha trail will signi�cantly reduce the amount of time they spend scheduling activities, evenin the case where they have no trust in the computer. It is expected that trust in thecomputer-generated trails will increase through positive experience, reducing the mediantime for solution validation and increasing time savings.5.4 Chapter SummaryThis chapter has described the evaluation of various aspects of the application framework.The case studies illustrate that the application framework ful�lls its requirements inrelation to supporting both reusability and extensibility, with the extent to which theframework can be extended depending on the developer's knowledge of the framework.The evaluation of the trail generation behaviour illustrates that the application frame-work is capable of considering just under 110 activities and scheduling between 5-7 of themost relevant activities within a reasonable response time on a resource-constrained mo-169

bile device. The recon�guration point identi�cation mechanism was shown to correctlyclassify just over 83% of context events, with the majority of the incorrectly classi�edevents not a�ecting the accuracy of the trail in relation to the user's contextual situation.The trail quality study revealed that subjects typically spent almost 2 minutes solvingan activity scheduling problem involving seven activities, and that 60% of subjects solvedthe problem correctly. The vast majority of subjects agreed that solutions to similaractivity scheduling problems produced by the application framework were reasonable.The following chapter summarises the most signi�cant contributions of this thesisand its contributions to the state of the art. Related research issues that remain openfor future work are also discussed.

170

Chapter 6
Conclusions and Future Work
The research presented in this thesis has investigated the development of an applicationframework for mobile, context-aware trails-based applications. More speci�cally, theresearch has focused on providing solutions to the challenges of trail generation and trailrecon�guration point identi�cation that can be reused and extended by developers whowish to implement trails applications for deployment on mobile platforms. This chaptersummarises the signi�cant achievements of the work and its contributions to the stateof the art, places them in a greater context, and outlines potential areas for future workrelating to this thesis.6.1 AchievementsThe motivation for the work presented in this thesis arose from two observations onthe state of the art research into context-aware activity scheduling for the mobile user.First, the approaches to trail generation and recon�guration point identi�cation used inexisting applications are constrained by the number of activities they can consider andthe number and types of contexts used to trigger recon�guration respectively. Recon�g-uration point identi�cation techniques based on reasoning about speci�c context typese.g., location, are not scalable because they cannot consider di�erent context types e.g.,changes in activity availability, if/when they become available. Second, as a result ofhaving research aims unrelated to providing generic support for mobile, context-awareactivity scheduling, the research projects generally focus on the development of speci�c171

applications as opposed to generic software to support the implementation of a rangeof similarly themed applications. While the existing application frameworks for mobile,context-aware application development discussed in Chapter 2 can be used to developvarious types of applications e.g., mediascapes and museum guides, with partial activityscheduling support, none of them fully support trails application development.To address these issues, this thesis presented an application framework composedof reusable and extensible trail generation and recon�guration point identi�cation be-haviour. Chapter 3 describes how the behaviour in the application framework was de-signed to address the issues with the state of the art in relation to trail generation andrecon�guration point identi�cation. An iterative, application-led design methodology wasused to design generic, extensible approaches to trail generation and recon�guration pointidenti�cation. The trail generation mechanism uses context-based activity set pruningto reduce the number of activities considered during trail generation, and calculates acontext-based relevance value for each activity. In cases where all activities cannot bescheduled due to response time requirements, the generated trail contains both sched-uled and unscheduled activities, where the scheduled activities are those that are mostrelevant to the user based on the current context. This facilitates the implementation ofapplications that include a large number of activities. The recon�guration point identi-�cation technique is based on the observation of di�erences between the set of activitiesscheduled on the current trail and the state of the activity set as a whole, ranked by rel-evance, following a context event. This generic approach facilitates the consideration ofan extensible range of context types during recon�guration point identi�cation. The be-haviour of the trail generation and recon�guration point identi�cation techniques can becustomised by the developer or the user through the speci�cation of preference values ex-ternal to the application framework source code. The combination of the trail generationand recon�guration point identi�cation mechanisms proposed in this thesis has removedthe restrictions associated with existing context-aware activity scheduling applicationsi.e., constrictive activity limits and context-speci�c recon�guration point identi�cationmechanisms, facilitating the development of trails applications that can consider a largenumber of activities and contexts during trail generation and recon�guration point iden-ti�cation and can be deployed on mobile devices.172

The implementation of the generic approaches to trail generation and recon�gurationpoint identi�cation designed in Chapter 3 was described in Chapter 4, which illustratedhow the application framework was implemented in a manner that facilitates both reuse ofthe base framework behaviour and the development of extensions to a number of areas ofthe framework. By implementing the trail generation and recon�guration point behaviourin a reusable, extensible manner, the lack of generic support for mobile, context-awareactivity scheduling application development in the state of the art research has beenaddressed. This supports developers in implementing trails applications without havingto repeatedly address the common challenges associated with such applications.The evaluation of the application framework was described in Chapter 5. The evalu-ation showed that the application framework is suitable for use as the basis to a range ofmobile, context-aware applications that can generate and recon�gure trails in a mannerthat humans �nd reasonable. The evaluation also illustrated that the applications pro-duced by the framework have the potential to save users a signi�cant amount of time byrelieving them of the burden of activity scheduling.In summary, the research presented in this thesis has focused on investigating theprovision of reusable and extensible techniques for trail generation and recon�gurationpoint identi�cation to aid developers in implementing mobile, context-aware trails-basedapplications. The main contributions of this thesis can be summarised as follows:
• An overview of mobile, context-aware tourist guides, context-aware to-do lists andapplication frameworks for mobile, context-aware computing with respect to theprovision of generic support for developing mobile, context-aware trails-based ap-plications for deployment on mobile platforms.
• A user-preference driven approach to trail generation that uses context-based ac-tivity pruning and the notion of activity relevance to allow trails applications toconsider a relatively large number of activities (between 100 and 110 when deployedon a HP iPAQ h6300 series PDA), with activities being selected for scheduling basedon how relevant they are to the current contextual situation.
• A customisable approach to trail recon�guration point identi�cation that identi�essigni�cant context events that necessitate trail recon�guration as they occur. The173

evaluation of this technique illustrated that it correctly identi�es just over 83% ofcontext events, with the majority of the incorrectly classi�ed events resulting inunnecessary recon�guration and therefore not a�ecting the accuracy of the trail theuser is following.
• An application framework that provides reusable, extensible implementations ofthe approaches to trail generation and recon�guration point identi�cation. Theevaluation illustrated that the framework can used in numerous ways, ranging fromdirect reuse to major extension. Each of the application development case studiesdiscussed had a code reuse level of over 84%.
• A demonstration of the application framework's ability to serve as the basis to arange of mobile, context-aware trails-based applications that are capable of gener-ating and recon�guring trails in a reasonable manner. 93.75% of the subjects thattook part in the trail quality experiment agreed that the trails generated by theapplication framework were reasonable.6.2 PerspectiveMark Weiser, often referred to as the father of ubiquitous computing1, envisioned a worldin which computing technology would weave itself into the fabric of everyday life until itbecame indistinguishable from it [131]. He proposed that computing technology would gothrough a similar process to that of writing, which he calls the �rst form of informationtechnology. The constant presence of the written word does not require active attentionfrom humans, but the information to be conveyed is ready for use at a glance. This isa result of people learning to read to a standard that allows them to cease to be awarethat they are doing it. Weiser believed that the way to achieve a similar e�ect in relationto computing technology was to integrate computing technology into the world at largeby making it available to people at all times. This would allow people to become morefamiliar with using computers of all types e.g., mobile devices and communal digital1Ubiquitous computing integrates computation into the environment in the hope that this will enablepeople to interact with information-processing devices more naturally and casually than they currentlydo, and in ways that suit the context they �nd themselves in.174

whiteboards, and to get on with achieving what they want to do.Over the period in which the research described in this thesis has been conducted,Weiser's vision of the `disappearing computer' has moved closer to becoming a reality.When the Hermes project began it was thought that trails applications would execute onPDAs, and therefore the relevance of the application framework discussed in this thesiswas somewhat dependent on the widespread adoption of PDA-type mobile devices. Ittranspired that the general public did not adopt the PDA to the extent that the associatedindustry had hoped. However, while the PDA was failing to become ubiquitous, themobile phone was becoming increasingly popular. The Irish mobile penetration rate2 iscurrently 106% [42] and the average European penetration rate is over 100% [92]. Thesepenetration rates illustrate that people are comfortable carrying and using mobile devicesthat, while perceived to be telephones, o�er both telephonic and non-telephonic servicessuch text messaging and games. The rise in popularity of the mobile phone has resultedin mobile handsets becoming more and more technically sophisticated, to the point wherethey now have the capabilities of PDAs. For example, Apple Inc. have recently announcedthe iPhone [56], a powerful smart phone with a large graphical display, integrated wirelessnetworking (including WiFi and Bluetooth) and support for Java applications and GoogleMaps3. Additionally, it is predicted that over the next two years, GPS will becomea common feature in mobile phones, with eighty three million GPS-enabled handsetsshipped in the last year alone [104]. The widespread adoption of mobile phones naturallyprovides an ideal environment for the development and deployment of context-awareapplications.Despite the progress towards Weiser's vision in terms of hardware, building context-aware applications for mobile users remains a signi�cant undertaking. This is evidencedby the amount of research into framework support for such applications e.g., the workdescribed in this thesis and the related work discussed in Section 2.3. A bird's eyeview of the work described in this thesis is therefore that it has the potential to helpsoftware developers take advantage of the opportunities presented by the emergence ofsophisticated mobile devices that provide wireless networking, positioning and mapping2The mobile penetration rate is calculated based on the number of mobile subscribers and the popu-lation size. It must be noted that some subscribers may have more than one active SIM card.3http://maps.google.com 175

in a format that people have already adopted. It is expected that access to an applicationframework for developing trails applications will help developers to prototype, test anddeploy trails applications in a reasonable amount of time, facilitating further explorationof the potential of context-aware activity scheduling for mobile users.The widespread applicability of trail-based applications is evidenced by the existenceof many commonly assumed business-related roles in which activity scheduling in a dy-namic environment is an inherent requirement. Context-based activity scheduling is anaspect of the work conducted by individuals in workplaces such as hospitals (schedul-ing patient rounds and administrative tasks), warehouses (managing the order in whichrequests for items are ful�lled), hotels (managing the order in which rooms are serviced/-cleaned) and prisons (managing the order in which inmates are monitored by guards).Those working in professions that involve greater mobility e.g., mobile salespeople andtradespeople (plumbers, electricians, o�ce equipment technicians), on call care givers(doctors, veterinarians), taxi drivers and mobile delivery personnel (parcel/food/�owerdelivery couriers) also manage their working lives by using relevant context to scheduletheir pending and emergent activities. Away from the business world, context-based ac-tivity scheduling is used informally by many. At the simplest level, people use contextto manage their day-to-day activities. Context-based activity scheduling is also used bypeople in more speci�c leisure-related situations such as when sightseeing, attending amusic festival, playing treasure hunt-type games, visiting a theme park or going shop-ping at a particularly busy time e.g., Christmas time. The pervasiveness of the mobilephone and its recent technical advancement, combined with the trails-based applicationdevelopment support presented in this thesis, creates an environment in which computersupport for context-based activity scheduling can be realised to support users in bothbusiness and leisure scenarios.6.3 Future WorkThroughout the process of designing, implementing and evaluating the application frame-work presented in this thesis, a number of issues worthy of further investigation wereidenti�ed. This work relates to distributed trail generation, trail robustness and activity176

dependencies and constraints.6.3.1 Distributed Trail GenerationThe application framework is designed to execute on mobile devices so that the trailsservice is not a�ected by wireless network disconnection. However, in situations wherewireless network connectivity is available, it would be interesting to investigate the possi-bility of taking advantage of the increased processing power of remote servers. The trailgeneration algorithm is designed in a scalable manner, making it suitable for executionon a resource-rich platform without modi�cation. This behaviour could be deployed asfollows. The trail generation algorithm would reside on a remote server, with the subtrailsize increased to take advantage of the server's processing power. The recon�gurationpoint identi�cation mechanism would execute on the mobile device and trigger the up-load of the activity set to the remote server when recon�guration is deemed necessary.The remote server would generate a trail from the activities received and return it to themobile device.While the completion of this work would be relatively straightforward from a technicalperspective, it raises the issue of data privacy. Privacy has long been noted as one ofthe major issues in mobile, context-aware computing [132, 111], and remains a popularresearch area e.g., [137, 21, 6, 108, 27, 102, 49]. As sending the activity set to a remoteserver involves sending details of what the user plans to do in the future, as well as otherinformation about the user such as their current location, the privacy issue would needto be suitably addressed in order for distributed trail generation to be e�ective.6.3.2 Trail RobustnessThe robustness of a solution to any problem based on dynamic variables refers to howsensitive the solution is to minor environmental �uctuations. The concept of route robust-ness has been studied in mobile, ad hoc networking [126] and vehicle route generation[48, 62] in order to extend the lifetime of an individual route, therefore increasing itsutility. Robustness is a desirable trail characteristic as it reduces the frequency of trailrecon�guration triggered by what users may perceive to be trivial context events. For177

example, it is likely that a trail would not be considered robust if it recon�gured secondsafter it had been generated because the user had not proceeded as expected. During thetrail quality experiment it emerged that subjects in Group 2 were dissatis�ed with thefragile nature of the computer generated solution they were shown (Section 5.3.2). Thiswas addressed in the application framework with the addition of two activity attributes -estimated duration leeway and closing time leeway. This solution is satisfactory becauseapplication framework activities are subject to temporal constraints only. It would beinteresting to further explore the issue of trail robustness and investigate a robustnessmechanism that considers non-temporal as well as temporal activity constraints. An ex-ample of an activity with a non-temporal constraint is going to see a movie. The activitywill eventually become impossible when the theatre reaches capacity attendance.6.3.3 Activity Dependencies and ConstraintsAn activity constraint is a restriction set on the start and/or �nish date of an activity. Theactivity model in the application framework uses activity opening and closing hours tomodel activity constraints. Therefore, by setting appropriate activity opening and closingtimes the framework can model common in�exible constraints such as `Must Start On',`Must Finish On', `Finish No Earlier Than', `Finish No Later Than', `Start No EarlierThan' and `Start No Later Than' [101]. However, the application framework does notsupport the speci�cation of �exible activity constraints such as `As Soon As Possible' and`As Late As Possible'.A dependency between two activities exists when the start or end date of one activityis constrained by the start or end date of another activity. The activity model in theapplication framework does not explicitly cater for dependency relationships such as`Activity B can start only after Activity A has been completed' and `Activity B muststart directly after Activity A has been completed'. Dependency relations can be looselymodelled using activity priority, which can represent relative importance relationshipsbetween activities. Activity obligation (the designation of activities as either mandatoryor optional) can also be used to loosely model activity dependency. However, neither ofthese approaches is guaranteed to enforce dependency relationships.178

The activity model in the application framework could be extended to provide fullsupport for activity constraints and dependencies. Such an extension would give de-velopers the capability to de�ne activity sets with more complex relationships betweenconstituent activities. It would also provide more control over the trail generation pro-cess i.e., developers/users could specify partial trail orderings that would be maintainedregardless of the context.6.4 Chapter SummaryThis chapter summarised both the motivations for and most signi�cant achievements ofthe work presented in this thesis. In particular, it outlined how this work has contributedreusable and extensible approaches to trail generation and trail recon�guration pointidenti�cation that aid developers of mobile, context-aware trails-based applications. Thechapter also placed the contributions of this thesis in a greater context and made sug-gestions for possible future work arising from the research undertaken in relation to thisthesis.

179

Appendix A
User Study Results
A.1 Oisín goes to Trinity - User Study ResultsThe results of the trail generation and recon�guration questions from the `Oisín goes toTrinity' user study questionnaire are listed below.Q1: Did you notice the order of the activities change while you were using the applica-tion?

• Yes - 76%
• No - 5%
• Not Sure - 19%Q2: Were you anticipating that the trail would be automatically reordered when it was?
• Yes, all of the time - 21%
• Yes, most of the time - 42%
• Some of the time - 16%
• No, not really - 11%
• No, not at all - 11% 180

Q3: Did you agree with the reordering decisions made by the application?
• Yes, all of the time - 55%
• Yes, most of the time - 28%
• Some of the time - 6%
• No, not really - 11%Q4: The trail reordering decisions were better than those you could have made yourself?
• Totally agree - 28%
• Partially agree - 17%
• Neither agree or disagree - 44%
• Partially disagree - 0%
• Totally disagree - 11%Q5: How did you feel about the amount of control the application had when reorderingyour trail?
• Far too much - 6%
• A bit too much - 11%
• OK - 60%
• A bit too little - 17%
• Far too little - 6%

181

Appendix B
Further Implementation Detail
B.1 GPS Location ContextFigure B.1 illustrates the classes used to the implement the GPS version of LocationGenerator.The ContextGenerator, LocationGenerator and Subject classes are the same as thosediscussed in Section 4.1. The remaining classes in Figure B.1 form part of the GIS worldmodel component of the Hermes framework. These classes have been made available tothe application framework so that it can be used in isolation from the Hermes frameworkif desired.The doLocationChange() method is illustrated in Listing B.1. Line 2 creates aConnection object and lines 3-11 use this object to establish a BufferedReader objectthat is used to read GPS data from the mobile device's COM port. Line 18 sees thebu�ered reader instance (gpsReader) reading a line of GPS data. A check occurs toassess if the line contains latitude and longitude information, as GPS devices can delivera range of information e.g., the current time and the direction the user is heading.GPSConversion contains a String parsing method to evaluate lines of GPS data.If the current line contains the desired location data, the convertToXY() method ofGPSConversion is used to convert the GPS coordinates to X, Y coordinates on the map-based interface used by the application.Listing B.1: The doLocationChange() method in the LocationGenerator class1 public void doLocationChange () {182

Figure B.1: GPS location context class diagram2 Connection connect ion = new Connection () ;3 try {4 St r ing [] [] parameters = {{"baudrate " , (new I n t e g e r (9600)) .5 toSt r ing () }} ;6 connect ion . setParameters ("1" , parameters , 3 , true) ;7 InputStream inputStream = connect ion . openInputStream () ;8 InputStreamReader inputStreamReader = new InputStreamReader9 (inputStream) ;10 BufferedReader gpsReader = new BufferedReader11 (inputStreamReader) ;12 183

13 St r ing sentence = new St r ing () ;14 boolean noMoreGPSData = fa l se ;15 while (! noMoreGPSData) {16 i f (! paused) {17 try {18 sentence = gpsReader . readLine () ;19 i f (sentence != null) {20 i f (GPSConversion . g e t In s tance () . containsLatLon21 (sentence)) {22 int [] xy = GPSConversion . g e t In s tance () .23 convertToXY(sentence ,Xmin ,Ymin , Xmax,24 Ymax, screenX , screenY) ;25 i f (x != xy [0] && y != xy [1]) {26 x = xy [0] ;27 y = xy [1] ;28 setXandY(x , y) ;29 }30 }31 }32 } catch (IOException e) { . . . }33 }34 } catch (Exception e) { . . . }35 }The convertToXY() method of GPSConversion is illustrated in Listing B.2. The methodtakes the following arguments:
• GPSSentence - a GPS sentence containing latitude and longitude information.
• Xmin - the longitude reading at the real-world position represented by the top left-hand corner of the map being used.
• Ymin - the latitude reading at the real-world position represented by the top left-hand corner of the map being used. 184

• Xmax - the latitude reading at the real-world position represented by the bottomright-hand corner of the map being used.
• Ymax - the latitude reading at the real-world position represented by the bottomright-hand corner of the map being used.
• screenX - the width of the screen on the device the application is being deployedon.
• screenY - the height of the screen on the device the application is being deployedon.Lines 4-7 generate two �oat variables from the GPS sentence using the getNMEALatLong()method from GPSConversion. This method extracts latitude and longitude informationfrom a GPS sentence and converts it to decimal format. The worldToPixel() methodfrom FastScreenProjection is then used (line 12) to convert the GPS data to X, Ycoordinates. This method takes the screen dimensions and the map extents as parameters.The worldToPixel() method uses linear regression convert the GPS coordinates to X,Y screen coordinates. An int array of size 2 containing the X, Y values is returned online 13.Line 25 in Listing B.1 contains a check on the new X, Y values. If they are thesame as the X, Y values already held by LocationGenerator then the new informa-tion is ignored. If either the X or Y value di�ers from the X or Y value already heldthen the x and y attributes in LocationGenerator are updated using the setXandY()method (line 28). This method invokes the notifyObservers() method that informsReconfigurationEngine of the user's new real-world position.Listing B.2: The convertToXY() method in the GPSConversion class1 public int [] convertToXY(St r ing GPSSentence , double Xmin , double2 Ymin , double Xmax, double Ymax, int screenX , int screenY) {34 double north = getNMEALatLong(GPSSentence . s ub s t r i n g (7 , 16) ,5 GPSSentence . s ub s t r i n g (18 , 19)) ;185

6 double west = getNMEALatLong(GPSSentence . s ub s t r i n g (19 , 39) ,7 GPSSentence . s ub s t r i n g (32 , 33)) ;89 Dimension d = new Dimension (X, Y) ;10 double [] gps = new double [] { Xmin , Ymin , Xmax, Ymax } ;11 Fas tSc r e enPro j e c t i on f sp = new Fas tSc r e enPro j e c t i on (d , gps) ;12 int [] xy = f sp . worldToPixel (north , west) ;13 return xy ;14 }

186

Appendix C
Trail Quality Experiment Materials
C.1 Information SheetsC.1.1 Group 1Thank you for taking part in this experiment. It will take approximately 15 minutes. Ifyou have any questions please feel free to ask.A trail is an ordered collection of activities. Activities are ordered based on theirvarious properties e.g., priority, opening hours, whether they are mandatory or optional,and their relationship to the person undertaking the activities e.g., proximity. A trailordering aims to make the maximum number of activities possible while reducing thetotal distance the user must cover, and the time the user must spend, to complete thetrail activities.The experiment consists of two parts. In part one you will be presented with a mapof the Trinity College Dublin campus annotated with a number of activities. You arerequired to:1. Identify the relevant activities based on their properties. The relevant activities arethose that are currently possible to complete, regardless of ordering. An activity isimpossible if its opening hours have passed (or will pass before the activity can becompleted) or it clashes with a more important activity.2. Order the activities. The aim is to maximise the number of activities possible while187

minimising the cost in terms of time and distance required.You will then be shown another version of the map in which some activities have beencompleted. An unexpected event has occurred which may a�ect your ordering. You arerequired to:
• Reorder the activities with respect to the unexpected event.In part two you will be shown a map of the Trinity College Dublin campus annotatedwith a computer-generated trail consisting of a number of activities (di�erent to those inpart one). You are required to:
• Validate that the computer-generated trail is reasonable. The impossible activitiesare identi�ed and marked as impossible. Each possible activity is marked witha sequence number. Collectively these numbers indicate the order in which theactivities will be completed. Estimated start and end times are shown, as well aspaths between the activities.You will then be shown another version of the map in which the some activities havebeen completed and an unexpected event has occurred. The trail has been reorderedwith respect to this event. You are required to:
• Validate that the reordered trail is reasonable.You will be asked to �ll out a short questionnaire following the completion of part two.All tasks will be timed.C.1.2 Group 2Thank you for taking part in this experiment. It will take approximately 15 minutes. Ifyou have any questions please feel free to ask.A trail is an ordered collection of activities. Activities are ordered based on theirvarious properties e.g., priority, opening hours, whether they are mandatory or optional,and their relationship to the person undertaking the activities e.g., proximity. A trailordering aims to make the maximum number of activities possible while reducing the188

total distance the user must cover, and the time the user must spend, to complete thetrail activities.The experiment consists of two parts. In part one you will be shown a map of theTrinity College Dublin campus annotated with a computer-generated trail consisting ofa number of activities. You are required to:
• Validate that the computer-generated trail is reasonable. The impossible activitiesare identi�ed and marked as impossible. Each possible activity is marked witha sequence number. Collectively these numbers indicate the order in which theactivities will be completed. Estimated start and end times are shown, as well aspaths between the activities.You will then be shown another version of the map in which some activities have beencompleted. An unexpected event has occurred. The trail has been reordered with respectto this event. You are required to:
• Validate that the reordered trail is reasonable.You will be asked to �ll out a short questionnaire following the completion of part one.In part two you will be presented with a map of the Trinity College Dublin campusannotated with just activities (di�erent to those used in part one), no trail. You arerequired to:1. Identify the relevant activities based on their properties. The relevant activities arethose that are currently possible to complete, regardless of ordering. An activity isimpossible if its opening hours have passed (or will pass before the activity can becompleted) or it clashes with a more important activity.2. Order the activities. The aim is to maximise the number of activities possible whileminimising the cost in terms of time and distance required.You will then be shown another version of the map in which some activities have beencompleted. An unexpected event has occurred which may a�ect your ordering. You arerequired to:
• Reorder the activities with respect to the unexpected event.All tasks will be timed. 189

C.2 Activity Scheduling ProblemsC.2.1 Activity Scheduling Problem Legend

Figure C.1: Activity scheduling problem legend

190

C.2.2 Example Problem

Figure C.2: Example activity scheduling problem

191

C.2.3 Example Solution

Figure C.3: Example activity scheduling problem solution

192

C.2.4 Group 1: Problem 1

Figure C.4: Group 1: Activity scheduling problem 1

193

C.2.5 Group 1: Problem 2

Figure C.5: Group 1: Activity scheduling problem 2

194

C.2.6 Group 1: Solution 1

Figure C.6: Group 1: Activity scheduling problem solution 1

195

C.2.7 Group 1: Solution 2

Figure C.7: Group 1: Activity scheduling problem solution 2

196

C.2.8 Group 2: Solution 1

Figure C.8: Group 2: Activity scheduling problem solution 1

197

C.2.9 Group 2: Solution 2

Figure C.9: Group 2: Activity scheduling problem problem 2

198

C.2.10 Group 2: Problem 1

Figure C.10: Group 2: Activity scheduling problem 1

199

C.2.11 Group 2: Problem 2

Figure C.11: Group 1: Activity scheduling problem 2

200

C.3 Questionnaire

Figure C.12: The activity scheduling problem solution validation questionnaire201

Bibliography
[1] 37signals. Ta-da Lists. Online; accessed 11-September-2006. http://www.tadalist.com/.[2] Robert P. Abelson and Ariel Levi. The Handbook of Social Psychology, Vol. 1,pages 231�309. Random House, 1985.[3] Gregory Abowd, Christopher Atkeson, Jason Hon, Sue Long, Rob Kooper, andMike Pinkerton. Cyberguide: A Mobile Context-Aware Tour Guide. ACM WirelessNetworks, 3:421�433, 1997.[4] Anand Agarawala, Saul Greenberg, and Geo�rey Ho. The Context-Aware PillBottle and Medication Monitor. Technical Report 2004-752-17, Department ofComputer Science, University of Calgary, 2004.[5] AKS-Labs. Outlook Task. Online; accessed 11-September-2006. http://www.outlook-task.com/.[6] Jalal Al-Muhtadi, Raquel Hill, Roy Campbell, and M. Dennis Mickunas. Con-text and Location-Aware Encryption for Pervasive Computing Environments. InProceedings of the 4th Annual IEEE International Conference on Pervasive Com-puting and Communications Workshops (PerComW '06), page 283, Washington,DC, USA, 2006. IEEE Computer Society.[7] Sahin Albayrak and Ralf Sesseler. Serviceware Framework for Developing 3G Mo-bile Devices. In Proceedings of the 16th International Symposium on Computer andInformation Sciences (ISCIS 2001). Isik University Publications, 2001.202

[8] Hermann Anegg, Harald Kunczier, Elke Michlmayr, Günther Pospischil, and Mar-tina Umlauft. LoL@: designing a location based UMTS application. e&i - elek-trotechnik & informationstechnik, 119(2), February 2002.[9] Mathias Baldauf and Schahram Dustdar Florian Rosenberg. A Survey on Context-Aware Systems. International Journal of Ad Hoc and Ubiquitous Computing, 2006.[10] Jakob E. Bardram. The Java Context Awareness Framework (JCAF) - A ServiceInfrastructure and Programming Framework for Context-Aware Applications. InProceedings of the 3rd International Conference on Pervasive Computing (PERVA-SIVE 2005). Springer-Verlag, 2005.[11] John Barton and Vikram Vijayaraghavan. UBIWISE: A Ubiquitous Wireless In-frastructure Simulation Environment. Technical Report HPL-2002-303, HP Labs,Palo Alto, CA, USA, 2002.[12] Francesco Bellotti, Riccardo Berta, Alessandro De Gloria, and Massimiliano Mar-garone. User Testing a Hypermedia Tour Guide. IEEE Pervasive Computing, 1(2):33�41, 2002.[13] Arnold Bennett. How to Live on 24 Hours a Day. George H. Doran, New York,1910.[14] Gregory Biegel and Vinny Cahill. A Framework for Developing Mobile, Context-aware Applications. In Proceedings of the 2nd Annual IEEE International Confer-ence on Pervasive Computing and Communications (PerCom '04), page 361, LosAlamitos, CA, USA, 2004. IEEE Computer Society.[15] Soranna-Daniela Bolboaca and Lorentz Jantschi. Pearson versus Spearman,Kendall's Tau Correlation Analysis on Structure-Activity Relationships of BiologicActive Compounds. Leonardo Journal of Sciences, 9:179�200, 2006.[16] Craig Boutilier, Ronen Brafman, Christopher Geib, and David Poole. A Constraint-Based Approach to Preference Elicitation and Decision Making. In Jon Doyle andRichmond H. Thomason, editors, Working Papers of the AAAI Spring Symposium203

on Qualitative Preferences in Deliberation and Practical Reasoning, pages 19�28,Menlo Park, California, 1997. American Association for Arti�cial Intelligence.[17] Niels Olof Bouvin, Bent G. Christensen, Kaj Grønbæk, and Frank Allan Hansen.HyCon: a framework for context-aware mobile hypermedia. Hypermedia, 9(1):59�88, 2003. ISSN 0955-8543.[18] Peter J. Brown. The Stick-E Document: A Framework for Creating Context-AwareApplications. In Proceedings of the 6th International Conference on Electronic Doc-uments, Document Manipulation, and Document Dissemination (EP '96), pages259�272. John Wiley & Sons, 1996.[19] T. W. Butler. Computer response time and user performance. In Proceedings ofthe SIGCHI conference on Human Factors in Computing Systems (CHI '83), pages58�62, New York, NY, USA, 1983. ACM Press.[20] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. The InformationVisualizer, an Information Workspace. In Proceedings of the SIGCHI conferenceon Human factors in computing systems (CHI '91), pages 181�186, New York, NY,USA, 1991. ACM Press.[21] Roberto Speicys Cardoso and Valerie Issarny. Architecting Pervasive ComputingSystems for Privacy: A Survey. In The Working IEEE/IFIP Conference on SoftwareArchitecture (WICSA'07), 2007.[22] Guanling Chen, Ming Li, and David Kotz. Design and Implementation of a Large-Scale Context Fusion Network. In Proceedings of the 1st Annual International Con-ference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous'04), volume 00, pages 246�255, Los Alamitos, CA, USA, 2004. IEEE ComputerSociety.[23] Peter Y. Chen and Paula M. Popovich. Correlation: Parametric and NonparametricMeasures. Sage Publications Inc, 2002.[24] Keith Cheverst, Nigel Davies, Keith Mitchell, and Adrian Friday. Experiences ofDeveloping and Deploying a Context-Aware Tourist Guide: The GUIDE Project.204

In Proceedings of the 6th Annual International Conference on Mobile Computingand Networking (MobiCom '00), pages 20�31, New York, NY, USA, 2000. ACMPress.[25] Keith Cheverst, Nigel Davies, Keith Mitchell, and Adrian Friday. Using and Deter-mining Location in a Context-Sensitive Tour Guide. IEEE Computer, 34(8):35�41,August 2001.[26] Keith Cheverst, Nigel Davies, and Keith Mitchell. A Re�ective Study of the GUIDESystem. In Barbara Schmidt-Belz and Keith Cheverst, editors, Proceedings of the1st Workshop on Mobile Tourism Support, pages 17�23, 2002.[27] John A. Clark, Richard F. Paige, Fiona A.C. Polack, and Phillip J. Brooke, editors.Security in Pervasive Computing: Third International Conference, 2006. Springer.[28] Siobhán Clarke and Cormac Driver. Context-Aware Trails. IEEE Computer, 37(8):97�99, August 2004.[29] Jon A. Cockle. Orchestrate. Online; accessed 11-September-2006. http://www.orchestratehq.com/.[30] Bristol Ferry Boat Company. Online; accessed 14-November-2006. http://www.bristolferryboat.co.uk.[31] Marshall J. Cook. Time Management: Proven Techniques for Making the Most ofYour Valueable Time. Adams Media Corporation, 1998.[32] William J. Cook, William H. Cunningham, William R. Pulleyblank, and AlexanderSchrijver. Combinatorial Optimization. John Wiley & Sons, 1997.[33] Nigel Davies, Keith Cheverst, Keith Mitchell, and Adrian Friday. Caches in theAir: Disseminating Tourist Information in the GUIDE System. In Proceedings ofthe 2nd IEEE Workshop on Mobile Computing Systems and Applications. IEEEComputer Society Press, 1999.[34] Dextronet. Daily To-Do List. Online; accessed 11-September-2006. http://www.dextronet.com/daily-to-do-list.php.205

[35] Anind K. Dey and Gregory D. Abowd. CybreMinder: A Context-Aware Systemfor Supporting Reminders. In Proceedings of the 2nd international symposium onHandheld and Ubiquitous Computing (HUC '00), pages 172�186, London, UK, 2000.Springer-Verlag.[36] Anind K. Dey and Gregory D. Abowd. Towards a Better Understanding of Con-text and Context-Awareness. Technical Report TR2000-381, Georgia Institute ofTechnology, College of Computing, 1999.[37] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. iCAP: InteractivePrototyping of Context-Aware Applications. In Proceedings of the 4th InternationalConference on Pervasive Computing (PERVASIVE 2006). Springer, 2006.[38] Cormac Driver, Éamonn Linehan, Mike Spence, Shiu Lun Tsang, Laura Chan, andSiobhán Clarke. Facilitating Dynamic Schedules for Healthcare Professionals. InProceeding of 1st International Conference on Pervasive Computing Technologiesfor Healthcare. IEEE, 2006.[39] Keith Edwards, Victoria Bellott, Anind K. Dey, and Mark Newman. Stuck in theMiddle: The Challenges of User-Centered Design and Evaluation for Middleware. InGilbert Cockton and Panu Korhonen, editors, Proceedings of the SIGCHI conferenceon Human Factors in Computing Systems (CHI '03). ACM Press, 2003.[40] Mohamed Fayed and Douglas C. Schmidt. Object-Oriented Application Frame-works. Communications of the ACM: Special Issue on Object-Oriented Frameworks,40:32�38, 1997.[41] Bent Flyvbjerg. Five Misunderstandings About Case Study Research. QualitativeInquiry, 12(2):219�245, 2006.[42] Commision for Communications Regulation (ComReg). Irish CommunicationsMarket: Key Data Report, December 2006. Online; accessed 24-January-2007.http://www.comreg.ie/_fileupload/publications/ComReg0668.pdf.[43] UMTS Forum. UMTS Forum website. Online; accessed 16-September-2006. http://www.umts-forum.org/. 206

[44] Dennis F. Galletta, Raymond Henry, Scott McCoy, and Peter Polak. Web SiteDelays: How Tolerant are Users? Journal of the Association for InformationSystems, 5(1):1�28, January 2004.[45] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.[46] David Gri�ths. A Pragmatic Approach to Spearman's Rank Correlation Coe�-cient. Teaching Statistics, 2:10�13, 1980.[47] Geo�rey Grosenbach. Rough Underbelly. Online; accessed 11-September-2006.http://www.roughunderbelly.com/.[48] Hisashi Handa, Lee Chapman, and Xin Yao. Robust Route Optimization for Grit-ting/Salting Trucks: A CERCIA Experience. IEEE Computational IntelligenceMagazine, 1(1):6�9, 2006.[49] Urs Hengartner and Peter Steenkiste. Avoiding Privacy Violations Caused byContext-Sensitive Services. In Proceedings of the 4th Annual IEEE InternationalConference on Pervasive Computing and Communications (PerCom '06), pages222�233, Washington, DC, USA, 2006. IEEE Computer Society.[50] Thomas Hill and Pawel Lewicki. Statistics: Methods and Applications. StarSoft,2006.[51] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger, JosefAltmann, and Werner Retschitzegger. Context-Awareness on Mobile Devices -the Hydrogen Approach. In Proceedings of the 36th Annual Hawaii InternationalConference on System Sciences (HICSS'03), page 292.1, Washington, DC, USA,2003. IEEE Computer Society.[52] Jason I. Hong and James A. Landay. An architecture for privacy-sensitive ubiq-uitous computing. In Proceedings of the 2nd International Conference on MobileSystems, Applications, and Services (MobiSys '04), pages 177�189, New York, NY,USA, 2004. ACM Press. 207

[53] John A. Hoxmeier and Chris DiCesare. System Response Time and User Satis-faction: An Experimental Study of Browser-based Applications. In Proceedings ofAssociation of Information Systems Americas Conference (AMCIS 2000), 2000.[54] Markus C. Huebscher and Julie A. McCann. Simulation Model for Self-AdaptiveApplications in Pervasive Computing. In Proceedings of the 15th InternationalWorkshop on Database and Expert Systems Applications (DEXA '04), pages 694�698. IEEE Computer Society, 2004.[55] IBM. Lotus Notes Email. Online; accessed 11-September-2006. http://www.ibm.com/software/lotus/.[56] Apple Computer Inc. iPhone. Online; accessed 24-January-2007. http://www.apple.com/iphone/.[57] Novell Incorporated. Novell Evolution. Online; accessed 11-September-2006. http://www.gnome.org/projects/evolution/.[58] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse: Architecture,Process and Organization for Business Success. ACM Press Books, 1997.[59] Martin Jansson. Context Shadow: An Infrastructure for Context Aware Comput-ing. In Third workshop on Arti�cial Intelligence in Mobile Systems (AIMS), 2002.[60] Eric J. Johnson and John W. Payne. E�ort and Accuracy in Choice. ManagementScience, 31:394�414, 1985.[61] Ralph E. Johnson. Components, Frameworks, Patterns. In Proceedings of the 1997Symposium on Software Reusability (SSR '97), pages 10�17. ACM Press, 1997.[62] Arun Jotshi and Rajan Batta. Finding Robust Paths for Routing Ambulances ina Dynamic Disaster Environment. In Proceedings of the 13th Annual InternationalEngineering Research Conference (IERC 2004), 2004.[63] A. Kamar. Mobile Tourist Guide (m-ToGuide). Deliverable 1.4, Project FinalReport IST-2001-36004, Mobile Tourist Guide Consortium, 2003.208

[64] Maurice G. Kendall. Rank Correlation Methods. Hafner Publishing Company, NewYork, 1955.[65] Angela Kessell and Christopher Chan. Castaway: a context-aware task managementsystem. In Extended extended abstracts of the 2006 Conference on Human Factorsin Computing Systems (CHI '06), pages 941�946, New York, NY, USA, 2006. ACMPress.[66] Emily Boydand Omar Kilani. Remember The Milk. Online; accessed 11-September-2006. http://www.rememberthemilk.com/.[67] Barbara Kitchenham, Lesley Pickard, and Shari Lawrence P�eeger. Case Studies forMethod and Tool Evaluation. IEEE Software, 12(4):52�62, 1995. ISSN 0740-7459.[68] Panu Korpipaa, Esko-Juhani Malm, Ilkka Salminen, Tapani Rantakokko, VesaKyllonen, and Ilkka Kansala. Context management for end user development ofcontext-aware applications. In Proceedings of the 6th International Conference onMobile Data Management (MDM '05), pages 304�308, New York, NY, USA, 2005.ACM Press.[69] Ronny Kramer, Marko Modsching, Joerg Schulze, Marcel Hermkes, and Klaus tenHagen. Context driven, adaptive tour computation and information presentation.In 1st International Workshop on Managing Context Information in Mobile andPervasive Environments (MCMP '05), 2005.[70] Ronny Kramer, Marko Modsching, and Klaus ten Hagen. Development and Evalua-tion of a Context-driven, Mobile Tourist Guide. International Journal of PervasiveComputing and Communication, 1(1), March 2005.[71] Tsvi Ku�ik, Adriano Albertini, Paolo Busetta, Cesare Rocchi, Oliviero Stock, andMassimo Zancanaro. An Agent-Based Architecture for Museum Visitors' GuideSystems. In Proceedings of the 13th International Conference on Information Tech-nology and Travel and Tourism (ENTER 2006). The International Federation forIT and Travel & Tourism, January 2006.209

[72] Jussi Lahtinen, Petri Myllymaki, Tomi Silander, and Henry Tirri. EmpiricalComparison of Stochastic Algorithms. In J. Alander, editor, Proceedings of the2nd Nordic Workshop on Genetic Algorithms and their Applications, pages 45�59.Vaasa, 1996.[73] Brian M. Landry, Rahul Nair, Zach Pousman, and Manas Tungare. TaskMinder:A Context- and User-Aware To-do List Management System. Technical report,Georgia Institute of Technology, GVU Center, 2003.[74] Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, and David B.Shmoys. The Traveling Salesman Problem: A Guided Tour of Combinatorial Op-timization. John Wiley & Sons, 1985.[75] Rensis A. Likert. A Technique for the Measurement of Attitudes. Archives ofPsychology, 21(140):5�54, 1932.[76] Wikipedia. Task list. Online; accessed 10-September-2006. http://en.wikipedia.org/wiki/Task_list.[77] Pamela J. Ludford, Dan Frankowski, Ken Reily, Kurt Wilms, and Loren Terveen.Because I carry my cell phone anyway: functional location-based reminder appli-cations. In Proceedings of the SIGCHI conference on Human Factors in computingsystems (CHI '06), pages 889�898, New York, NY, USA, 2006. ACM Press.[78] Mark M. Maccabee. Client/Server End-to-End Response Time: Real Life Ex-perience. In Proceeding of the 22nd International Computer Measurement GroupConference. Computer Measurement Group, 1996.[79] Jason W. Mann and George D. Smith. Modern Heuristic Search Methods, chap-ter 14, pages 235�253. John Wiley & Sons, 1996.[80] Natalia Marmasse and Chris Schmandt. Location-Aware Information Delivery withComMotion. In Proceedings of the 2nd international symposium on Handheld andUbiquitous Computing (HUC '00), pages 157�171, London, UK, 2000. Springer-Verlag. 210

[81] A. Maruyama, Naoki Shibata, Yoshihiro Murata, Keiichi Yasumoto, and MinoruIto. P-Tour: A Personal Navigation System for Tourism. In Proceedings of the 11thWorld Congress on Intelligent Transport Systems, volume 2, pages 18�21, 2004.[82] Tara Matthews, Hans-Werner Gellersen, Kristof Van Laerhoven, and Anind K. Dey.Augmenting Collections of Everyday Objects: A Case Study of Clothes Hangersas an Information Display. In Proceedings of the 2n International Conference onPervasive Computing (PERVASIVE 2004), 2004.[83] Je�rey Mayer. If You Haven't Got the Time to Do It Right, When Will You FindTime to Do It Over? Simon and Schuster, New York, 1990.[84] Sun Microsystems. Java Micro Edition: Personal Basis Pro�le. Online; accessed26-September-2006. http://java.sun.com/products/personalprofile/.[85] Robert B. Miller. Response Time in Man-Computer Conversational Transactions.In Fall Joint Computer Conference 33 (part 1), pages 267�277. AFIPS Press, 1968.[86] Ricardo Morla and Nigel Davies. Evaluating a Location-Based Application: AHybrid Test and Simulation Environment. IEEE Pervasive Computing, 3(3):48�56, 2004. ISSN 1536-1268.[87] Brad A. Myers. The importance of percent-done progress indicators for computer-human interfaces. In Proceedings of the SIGCHI conference on Human factors incomputing systems (CHI '85), pages 11�17, New York, NY, USA, 1985. ACM Press.[88] Fui Hoon Nah and Kihyun Kim. Managing Web-enabled Technologies in Organi-zations: a global perspective, chapter 7, pages 146�161. Idea Group Publishing,Hershey, PA, USA, 2000.[89] Jakob Nielsen. Usability Engineering. Academic Press Inc., 1993.[90] Jakob Nielsen. Response Times: The Three Important Limits. Online; accessed02-October-2006. http://www.useit.com/papers/responsetime.html.[91] Gottfried E. Noether. The Best of Teaching Statistics, chapter 4, pages 41�43. TheTeaching Statistics Trust, Nottingham, England, UK, 1986.211

[92] Wikipedia. List of mobile network operators of Europe. Online; accessed 25-January-2007. http://en.wikipedia.org/wiki/List_of_mobile_network_operators_of_Europe.[93] Eleanor O'Neill, Martin Klepal, David Lewis, Tony O'Donnell, Declan O'Sullivan,and Dirk Pesch. A Testbed for Evaluating Human Interaction with UbiquitousComputing Environments. In Proceedings of the 1st International Conference onTestbeds and Research Infrastructures for the DEvelopment of NeTworks and COM-munities (TRIDENTCOM'05), pages 60�69. IEEE Computer Society, 2005.[94] Microsoft Corporation. Microsoft Outlook. Online; accessed 11-September-2006.http://www.microsoft.com/outlook/.[95] Steven J. Parrillo and Fred G. Wenger. Time Management for the Academic Emer-gency Physician. eMedicine Clinical Knowledge Database, 2006. Online; accessed11-September-2006. http://www.emedicine.com/EMERG/topic673.htm.[96] John W. Payne, James R. Bettman, and Eric J. Johnson. The Adaptive DecisionMaker. Cambridge University Press, 1993.[97] PocketGear.com. Tree ToDo List. Online; accessed 11-September-2006. http://www.pocketgear.com/.[98] Stefan Poslad, Heimo Laamanen, Rainer Malaka, Achim Nick, Phil Buckle, andAlexander Zipf. CRUMPET: creation of user-friendly mobile services personalisedfor tourism. In Proceedings of the 2nd International Conference on 3G MobileCommunication Technologies (3G 2001), pages 28�32, 2001.[99] Je�rey S. Poulin. Measuring Software Reuse: Principles, Practices, and EconomicModels. Addison-Wesley Professional, 1996.[100] Wolfgang Pree. Meta Patterns - A Means For Capturing the Essentials of ReusableObject-Oriented Design. In Proceedings of the 8th European Conference on Object-Oriented Programming (ECOOP '94), pages 150�162, London, UK, 1994. Springer-Verlag. 212

[101] Microsoft. Microsoft O�ce Project. Online; accessed 23-January-2007. http://www.microsoft.com/project.[102] Mika Raento and Antti Oulasvirta. Privacy Management for Social AwarenessApplications. In Proceedings of the workshop on Context Awareness for ProactiveSystems (CAPS 2005), pages 105�114. Helsinki University Press, 2005.[103] Mika Raento, Antti Oulasvirta, Renaud Petit, and Hannu Toivonen. ContextPhone:A Prototyping Platform for Context-Aware Mobile Applications. IEEE PervasiveComputing, 04(2):51�59, 2005. ISSN 1536-1268.[104] IMS Research. GPS Positioned for Mass Cellular Uptake. IMS Research, October2006.[105] Ben Clayton Richard Hull and Tom Melamed. Rapid Authoring of Mediascapes.In UbiComp 2004: Ubiquitous Computing: 6th International Conference, LectureNotes in Computer Science, pages 125�142. Springer, 2004.[106] Don Roberts and Ralph Johnson. ACM Pattern Languages of Program Design 3,chapter Evolving Frameworks: A Pattern Language for Developing Object-OrientedFrameworks, pages 471�486. Addison-Wesley Longman Publishing Co., Inc., 1996.[107] Manuel Román, Christopher K. Hes, Renato Cerqueira, Anand Ranganathan,Roy H. Campbell, and Klara Nahrstedt. Gaia: A Middleware Infrastructure toEnable Active Spaces. IEEE Pervasive Computing, 1(4):74�83, Oct�Dec 2002.[108] Peter Ruppel, Georg Treu, Axel Küpper, and Claudia Linnho�-Popien. AnonymousUser Tracking for Location-based Community Services. In Proceedings of the 2ndInternational Workshop on Location and Context-Awareness (LoCa 2006), pages116�133. Springer-Verlag, 2006.[109] Stuart J. Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach.Prentice Hall, second international edition edition, 2003.[110] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit: Aidingthe Development of Context-Enabled Applications. In CHI '99: Proceedings of the213

SIGCHI conference on Human factors in computing systems, pages 434�441. ACMPress, 1999.[111] Mahadev Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEEPersonal Communications, 8(4):10�17, 2001.[112] Bill Schilit, Norman Adams, and Roy Want. Context-Aware Computing Applica-tions. In Proceedings of the Workshop on Mobile Computing Systems and Applica-tions, pages 85�90, Santa Cruz, CA, US, 1994. IEEE Computer Society.[113] Barbara Schmidt-Belz, Heimo Laamanen, Stefan Posland, and Alexander Zipf.Location-based Mobile Tourist Services � First User Interaction. In Proceedingsof 10th International Conference on Information and Communication Technologyin Tourism (ENTER 2003). Springer Computer Science, 2003.[114] Jean Scholtz and Sunny Consolvo. Toward a Framework for Evaluating UbiquitousComputing Applications. IEEE Pervasive Computing, 3(2):82�88, 2004.[115] Wieland Schwinger, Christoph Grün, Birgit Pröll, Werner Retschitzegger, and An-drea Schauerhuber. Context-awareness in Mobile Tourism Guides - A Comprehen-sive Survey. Technical report, Vienna University of Technology, 2005.[116] Learning Commons Fast Facts Series. Making a Task List. The Learning Com-mons, University of Guelph, Canada, 2004. Online; accessed 11-September-2006.http://www.learningcommons.uoguelph.ca/ByFormat/OnlineResources/OnlineFastfacts/OnlineLearningFastfacts/Fastfacts-MakingTaskList.html.[117] Takayuki Shiraishi, Munenobu Nagata, Naoki Shibata, Yoshihiro Murata, KeiichiYasumoto, and Minoru Ito. A Personal Navigation System with a Schedule PlanningFacility Based on Multi-Objective Criteria. In Second International Conference onMobile Computing and Ubiquitous Networking. Information Processing Society ofJapan, 2005.[118] Daniel Siewiorek, Asim Smailagic, Junichi Furukawa, Andreas Krause, NeemaMoraveji, Kathryn Reiger, Jeremy Sha�er, and Fei Lung Wong. SenSay: A Context-214

Aware Mobile Phone. In Proceedings of the 7th IEEE International Symposium onWearable Computers (ISWC '03), page 248, Washington, DC, USA, 2003. IEEEComputer Society.[119] Pollen Software. Task-O-Matic. Online; accessed 11-September-2006. http://www.pollensoftware.com/task-o-matic/index.html.[120] Timothy Sohn, Kevin A. Li, Gunny Lee, Ian E. Smith, James Scott, and WilliamG.Griswold. Place-Its: A Study of Location-Based Reminders on Mobile Phones.In Proceedings of the 7th International Conference on Ubiquitous Computing (Ubi-Comp 2005), Lecture Notes in Computer Science, pages 232�250. Springer, Septem-ber 2005.[121] Charles Spearman. The Proof and Measurement of Association Between TwoThings. American Journal of Psychology, 15:72�101, 1904.[122] Wikipedia. Kendall tau rank correlation coe�cient. Online; accessed 20-October-2006. http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient.[123] Klaus ten Hagen, Ronny Kramer, Marcel Hermkes, Björn Schumann, and PatrickMüller. Semantic Matching and Heuristic Search for a Dynamic Tour Guide. InProceedings of the 12th International Conference on Information and Communica-tion Technology in Tourism (ENTER 2005). Springer-Verlag, 2005.[124] Klaus ten Hagen, Marko Modsching, and Ronnie Krammer. A Location AwareMobile Tourist Guide Selecting and Interpreting Sights and Services by ContextMatching. In Proceeding of the 2nd International conference on Mobile and Ubiq-uitous Systems (MobiQuitous '05), pages 293�304. IEEE Computer Society, 2005.[125] Mozilla Corporation. Mozilla Thunderbird. Online; accessed 11-September-2006.http://www.mozilla.com/thunderbird.[126] Omesh Tickoo, Satish Raghunath, and Shivkumar Kalyanaraman. Route Fragility:A Novel Metric for Route Selection in Mobile Ad Hoc Networks. In Proceedings of215

the 11th IEEE International Conference on Networks (ICON 2003), pages 537�542.IEEE, 2003.[127] Edward P.K Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.[128] Detlov von Winterfeld and Ward Edwards. Decision Analysis and Behavioral Re-search. Cambridge University Press, 1986.[129] Wallnote. Wallnote. Online; accessed 11-September-2006. http://www.wallnote.com/.[130] Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The ActiveBadge System. ACM Transactions on Information Systems (TOIS), 10(1):91�102,1992. ISSN 1046-8188.[131] Mark Weiser. The Computer for the 21st Century. SIGMOBILE Mobile Computingand Communications Review, 3(3):3�11, 1999. ISSN 1559-1662.[132] Mark Weiser. Some Computer Science Issues in Ubiquitous Computing. Commu-nications of the ACM, 36(7):75�84, 1993. ISSN 0001-0782.[133] Morris Williams, Constance Fleuriot, John Reid, Richard Hull, Keri Facer, andOwain Jones. Mobile Bristol: A New Sense Of Place. In Peter Ljungstrandandand Lars Erik Holmquist, editors, Adjunct Proceedings of the 4th InternationalConference on Ubiquitous Computing (UBICOMP 2002), pages 27�28. ViktoriaInstitute, Goteborg, Sweden, September 2002.[134] Jens Wohltorf, Richard Cissée, Andreas Rieger, and Heiko Scheunemann. Berlin-Tainment - An Agent-Based Serviceware Framework for Context-Aware Services.In Proceedings of the 1st International Symposium on Wireless CommunicationSystems (ISWCS 2004). IEEE, September 2004.[135] Jens Wohltorf, Richard Cissée, and Andreas Rieger. BerlinTainment: an agent-based context-aware entertainment planning system. Communications Magazine,43(6):102�109, June 2005. 216

[136] Jiyong Zhang and Pearl Pu. Survey of Solving Multi-Attribute Decision Problems.Technical Report IC/2004/54, Swiss Federal Institute of Technology, Lausanne,Switzerland, June 2004.[137] Feng Zhu, Matt W. Mutka, and Lionel M. Ni. The Master Key: A Private Authen-tication Approach for Pervasive Computing Environments. In Proceedings of the 4thAnnual IEEE International Conference on Pervasive Computing and Communica-tions (PerCom '06), pages 212�221, Washington, DC, USA, 2006. IEEE ComputerSociety.

217

