
Opportunistic service composition in dynamic ad hoc

environments

Christin Groba

A thesis submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

March 2013

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or

any other university and it is entirely my own work.

Christin Groba

Dated: March 26, 2013

Permission to Lend and/or Copy

I agree to deposit this thesis in the University’s open access institutional repository or

allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trin-

ity College Library conditions of use and acknowledgement.

Christin Groba

Dated: March 26, 2013

Acknowledgements

This thesis would not have been possible without the support and encouragement of

many people for which they deserve thanks and recognition. First and foremost, I would

like to thank my supervisor, Prof. Siobhán Clarke, for her guidance and scientific advice,

patience and kind words, as well as for teaching me the beauty of precise and rigorous

research. Thanks also to Lero, the Irish Software Engineering Research Centre, for

giving me the opportunity to conduct research in Ireland among the first students of

the Lero Graduate School. Many thanks goes to Serena Fritsch and Paula Hannon for

their vivid discussions about service composition and to Stephan Weber for his insightful

views on mobile ad hoc networks. I would also like to thank the members of my research

group, DSG, for their support. In particular, thanks to Guoxian Yang, Luca Longo, and

Mithileash Mohan for giving me their perspective on my research and for reminding me

that there is a life besides the PhD. Many thanks also to Killian Levacher and Melanie

Sherlock who are a constant source of inspiration always challenging me to think outside

the box. Thank you to my parents who encouraged me to explore the world while

grounding me in traditions and down-to-earth principles such that I always have a place

to which I can return. Thank you to my sister Claudia who led by example and showed

me that PhD can be done. Finally, Patrick, thank you for your constant support, love,

and patience, and for being there all along.

Christin Groba

University of Dublin, Trinity College

March 2013

vii

Abstract

Mobile and embedded devices capture, process, and exchange sensory data about their

operating environment, making them suitable service providers for ubiquitous comput-

ing. In particular, composing services that are hosted on different devices creates new

value-added functionality and supports context-aware applications e.g., for smart public

spaces. This thesis explores service composition in dynamic ad hoc networks which rep-

resent a very dynamic form of ubiquitous computing environments. Service providers

may join, roam, or leave the network and offer services only as appropriate to their own

objectives and resource capacity.

Mobility and participation autonomy, however, change the network and service topol-

ogy frequently. They impose a high failure probability on composites because network

links are likely to break and service offers may become unavailable. Although network

routes are repairable and service allocations can be re-assigned, failure recovery comes

at the cost of delay and additional communication. Preventive measures such as keeping

backups for service providers and network routes, on the other hand, incur additional

monitoring and maintenance overhead regardless of whether failure occurs or not. Ser-

vice provision through service composites, therefore, faces the challenging question of

how to efficiently adapt to a continuously evolving operating environment.

Research in service-oriented computing has led to dynamic strategies for service

discovery, allocation, and invocation to accommodate for changes at runtime. Common

to these strategies is their reliance on a pre-established service overlay structure or the

allocation of all required services at once. While in advance service registry facilitates

the discovery process, its maintenance overhead increases as more dynamic provider

information needs to be captured and made available. Allocating services all at once

ix

allows for verifying whether the composite will execute to completion. However, by the

time a particular service is invoked, the dynamics of the system may have rendered early

allocation decisions invalid and cause failure. Techniques that finalise the allocation

decision only prior to invoking the service are more flexible, but involve monitoring

overhead and allocate more resources than the composite actually needs.

This thesis presents opportunistic service composition as an alternative to support

the flexible implementation of complex service requests in highly dynamic environments.

The novel composition model bundles and defers all interactions with a service provider

until the required sub-service needs to be invoked. It interleaves service discovery and

composite allocation with provider invocation to minimise the window for change to

negatively impact the composite. The proposed composition protocol supports service

sequences and parallel service flows. The approach lets service providers control their

involvement to support participation autonomy, defines an explicit resource blocking

mechanism to address provider resource-constraints, and devises a cross-layer communi-

cation solution to reduce the communication load on narrow wireless bandwidth.

Evaluation of the protocol has been achieved using model-based verification and sim-

ulation. Verification through automated model checking confirms that a formal speci-

fication of the designed composition protocol does not deadlock, terminates in a valid

end state, and adequately covers all required sub-services in both sequential and parallel

service composites. The verified model has also been implemented and integrated with

a simulator for mobile ad hoc networks. The simulation-based evaluation assesses the

performance of opportunistic service composition in comparison to more conventional

baselines. It quantifies how the interplay of service discovery, allocation, and invocation

affects the failure probability of composites in mobile ad hoc settings. The results of

this study demonstrate that the opportunistic approach generally achieves its design

objective to decrease failure in a communication-aware manner and at the same time

reveal the limits of these benefits with regard to request complexity, network density,

and service demand.

x

Publications Related to this Ph.D.

1. Groba, Christin and Clarke, Siobhán (2012). Towards in-network aggregation for

people-centric sensing, Ninth International Conference on Mobile and Ubiquitous

Systems: Computing, Networking and Services (MobiQuitous).

2. Groba, Christin and Clarke, Siobhán (2012). Synchronising service compositions in

dynamic ad hoc environments, First International Conference on Mobile Services

(MS), IEEE, pp. 56-63.

3. Groba, Christin and Clarke, Siobhán (2012). Towards Opportunistic Service Com-

position in Dynamic Ad Hoc Environments, PhD Symposium at Ninth Inter-

national Conference on Service Oriented Computing (ICSOC PhD Symposium),

Springer, pp. 189–194.

4. Groba, Christin and Clarke, Siobhán (2011). Opportunistic composition of se-

quentially connected services in mobile computing environments, Eighteenth In-

ternational Conference on Web Services (ICWS), IEEE, pp. 17-24. (Best student

paper award)

5. Groba, Christin and Clarke, Siobhán (2010). Web services on embedded systems -

A performance study, Workshop at Eighth International Conference on Pervasive

Computing (PERCOM Workshops), IEEE, pp. 726-731.

6. White, Jules and Clarke, Siobhán and Groba, Christin and Dougherty, Brian and

Thompson, Chris and Schmidt, Douglas C. (2010). R&D challenges and solutions

for mobile cyber-physical applications and supporting Internet services, Journal of

Internet Services and Applications 1(1), pp. 45-56. (invited article)

xi

Contents

Acknowledgements vii

Abstract ix

List of Tables xvii

List of Figures xix

Chapter 1 Introduction 1

1.1 Challenges . 4

1.2 Existing solutions . 6

1.3 Thesis approach . 8

1.4 Thesis contribution . 9

1.5 Thesis scope . 10

1.6 Thesis structure . 11

1.7 Chapter summary . 13

Chapter 2 State of the art 15

2.1 Service discovery . 16

2.1.1 Proactive . 17

2.1.2 Demand-based . 19

2.1.3 Summary . 20

2.2 Service allocation . 20

2.2.1 Schedule-based . 21

2.2.2 Probing . 21

xiii

2.2.3 Group-based . 22

2.2.4 Goal-oriented . 23

2.2.5 Summary . 24

2.3 Service invocation . 24

2.3.1 Broker-based . 25

2.3.2 Static fragmentation . 25

2.3.3 Dynamic activation . 27

2.3.4 Summary . 28

2.4 Service flows . 28

2.4.1 Concurrent data access . 29

2.4.2 Conditional execution paths . 29

2.4.3 Common meeting point . 30

2.4.4 Summary . 33

2.5 Communication . 34

2.5.1 Tuplespaces . 34

2.5.2 Content-based routing . 35

2.5.3 Cross-layer design . 35

2.5.4 Summary . 36

2.6 Chapter summary . 36

Chapter 3 Design 41

3.1 Design objectives . 41

3.2 System model . 44

3.2.1 Service composite . 44

3.2.2 Service provision . 47

3.2.3 Problem statement . 48

3.2.4 Assumptions . 48

3.3 Design decisions . 49

3.3.1 Service discovery . 50

3.3.2 Service allocation and invocation 51

3.3.3 Service flows . 53

xiv

3.3.4 Communication . 54

3.4 Proposed solution . 56

3.4.1 Service sequences . 57

3.4.2 Service flows . 64

3.4.3 Cross-layer communication . 76

3.5 Chapter summary . 78

Chapter 4 Design verification 79

4.1 PROMELA and SPIN . 80

4.2 Service sequences . 81

4.2.1 Protocol abstractions . 81

4.2.2 Modelling service sequences . 81

4.2.3 Modelling communication . 82

4.2.4 Modelling participants . 83

4.2.5 Verification . 86

4.3 Service flows . 87

4.3.1 Protocol abstractions . 88

4.3.2 Modelling service flows . 88

4.3.3 Modelling communication . 89

4.3.4 Modelling participants . 89

4.3.5 Verification . 94

4.4 Chapter summary . 95

Chapter 5 Implementation 97

5.1 Mobile composite participants . 97

5.2 Composition protocol . 99

5.3 Composition messages . 100

5.4 Directed broadcasting . 103

5.5 Cross-layer approach . 104

5.6 Chapter summary . 104

xv

Chapter 6 Evaluation 107

6.1 Experimental setup . 107

6.1.1 General settings . 108

6.1.2 Evaluation scenarios . 110

6.1.3 Failure types . 113

6.1.4 Metrics . 114

6.1.5 Baselines . 115

6.1.6 Threats to validity . 117

6.2 Results and analysis . 118

6.2.1 Impact of service sequence length 119

6.2.2 Impact of service flow structure . 122

6.2.3 Impact of environment using a service sequence 125

6.2.4 Impact of environment using a service flow 131

6.3 Chapter summary . 136

Chapter 7 Conclusion 139

7.1 Thesis summary . 139

7.2 Discussion . 141

7.3 Future work . 143

7.4 Final remark . 144

Appendix A Verification with SPIN 147

Bibliography 151

xvi

List of Tables

6.1 General simulator and composition settings 108

6.2 Scenario-specific settings . 111

6.3 Comparison of baselines and proposed protocol 115

6.4 Result summary . 136

xvii

List of Figures

1.1 Scenario . 3

1.2 Challenges . 4

2.1 Structure of the state of the art review . 16

2.2 Summary of some composition solutions 39

3.1 Design overview . 42

3.2 Composite graph for audio classification 45

3.3 Valid and invalid composites . 46

3.4 Dynamic service provision . 48

3.5 Service allocation and invocation alternatives 52

3.6 Design decisions . 56

3.7 Protocol for service sequences . 58

3.8 Scenario 1 Basic protocol . 60

3.9 Scenario 2 Proactive service announcement 62

3.10 Scenario 3 Lost release . 63

3.11 Protocol for service flows . 65

3.12 Scenario 4 Synchronisation . 67

3.13 Example complex service flow . 70

3.14 Scenario 5 Service routing . 71

3.15 Scenario 6 Reducing a sequence . 74

3.16 Scenario 7 Reducing after a split . 75

3.17 Scenario 8 Reducing a service route . 76

xix

4.1 Abstractions for the sequential PROMELA model 82

4.2 Abstractions for the parallel PROMELA model 88

4.3 Model of service flow . 89

5.1 Implementation overview . 98

5.2 Mobile composite participants . 98

5.3 Composition messages . 101

5.4 Cross-layer approach . 105

6.1 Service flow structures . 112

6.2 Pilot study for CiAN . 117

6.3 Failure ratio in scenario 1 . 119

6.4 Communication effort in scenario 1 . 120

6.5 Response time in scenario 1 . 121

6.6 Failure ratio in scenario 2 . 122

6.7 Communication effort in scenario 2 . 124

6.8 Response time in scenario 2 . 125

6.9 Failure ratio in scenario 3 . 127

6.10 Communication effort in scenario 3 . 129

6.11 Response time in scenario 3 . 130

6.12 Failure ratio in scenario 4 . 132

6.13 Communication effort in scenario 4 . 134

6.14 Response time in scenario 4 . 135

A.1 SPIN output for failed verification . 148

A.2 SPIN output for sequential PROMELA model 149

A.3 SPIN output for parallel PROMELA model 150

xx

Chapter 1

Introduction

Mobile and embedded devices have evolved from special purpose equipment to smart

entities that can sense their environment, process sensory data, and communicate with

nearby peers or servers on the Internet. Pervasive computing builds upon these capa-

bilities to provide context-aware applications that, receptive to the user’s environment,

point to relevant information or trigger necessary actions. In addition, smart device

technology appears to lower the boundary for people to track and share their experi-

ences. Already, millions of users capture pictures, news, comments and even physical

achievements with their mobile phones and post them on social networking platforms.

Novel applications tap this growing potential. People-centric sensing, for example, uses

the sensing capabilities of mobile phones and the movement of their carriers to collect

sensory data and to improve the micro- and macroscopic view of a city (Lane et al.,

2010). Aggregating and classifying data from a variety of sources produces higher level

context, which allows for more robust conclusions and a deeper insight into the situation

of an individual, a group, or an entire community. The opportunities that arise from

mobile sensing and the positive attitude of people towards sharing are not limited to the

World Wide Web, but may also take effect in a user’s immediate surroundings as the

following scenario shows:

Adam uses the recording and processing capabilities of his smartphone to

track his daily exposure to noise. Later, he correlates that with other health

measures to better understand his stress levels. The phone samples, filters,

1

Chapter 1. Introduction

classifies, and geo-tags audio data. However, being in Adam’s pocket, the

phone is unable to record high-quality data and would benefit from cali-

bration with another device. In our scenario, as a field engineer, Adam is

about to meet a new customer. In this unfamiliar environment, his phone’s

classifier software is not properly trained to categorise the noise. To make

matters worse, the phone’s GPS unit malfunctions and fails to determine

Adam’s position. As a result, the phone lacks the fundamental requirements

for noise tracking and denies this service. However, Adam has heard of an

innovative way of solving this issue and configured his phone to collaborate

with nearby mobile phones that share their capabilities (Miluzzo et al., 2010).

Adam’s phone forms an ad hoc network with Joe’s and Mary’s phones, who

are walking next to Adam, and issues the noise tracking task as a request.

By incorporating these other devices Adam’s phone increases the chances of

covering all hardware and software requirements to complete the task.

The collective effort of multiple mobile devices is required if no single device has enough

resources to handle a complex task alone. In particular, a structured approach needs to

be put in place to allocate and execute subtasks. Service-oriented computing provides

for such an structured approach. It is based on the notion of a service that encapsulates

software-based behaviour or an application component to make it discoverable, accessi-

ble, and reusable over the communication network (Papazoglou and Heuvel, 2007). The

composition of services creates new value-added functionality and involves a mechanism

to specify, instantiate, and resolve complex service requests. Typically, the defined order

and functionality of required sub-services guides the discovery, allocation, and invocation

of suitable service providers. These service-oriented principles map to requirements in

pervasive computing environments. Device capabilities like software components, locally

stored data, and hardware resources can be modelled as services while service compos-

ites represent complex sensing tasks that span across multiple data sources (Kalasapur

et al., 2007; Chakraborty et al., 2004; Brønsted et al., 2010). In the scenario (cp. Figure

1.1), Mary’s phone encapsulates its microphone as an audio sampling service and the

GPS unit as a geo-tagging service. Joe’s phone provides access to different functions of

2

Service composition
Discover, allocate, invoke

Geo-tagging service

Feature classifier service

Audio filter service

Audio sampling service

Adam

Noise tracking
request

Joe

Service offer

Mary

Service offer

Fig. 1.1: Scenario Adam wants to track his exposure to noise but does not have the required

capabilities available on his mobile phone. Joe and Mary offer their phones’ hardware and soft-

ware capabilities as services. Service composition discovers, allocates, and invokes these services

to satisfy Adam’s complex request.

its audio software via an audio filtering service and a feature classification service. In

addition, the phone offers an audio sampling service. Adam’s noise tracking task is a

service composite that first requires two audio sampling services, then an audio filter-

ing service, thereafter a feature classification service, and finally a geo-tagging service.

Service composition is the mechanism that discovers Joe and Mary’s phone services,

allocates them to Adam’s composite request, and invokes them to provide Adam with

the result of that new value-added service.

The focus on service composition in dynamic ad hoc networks distinguishes this the-

sis from mashups based on the Web of Things (Guinard, 2010; Pintus et al., 2010) and

service composition in sensor and context cloudlets (Loke, 2012), which rely on dedicated

infrastructure to manage the access to smart entities. Dynamic ad hoc networks evolve

spontaneously and on-demand. The absence of dedicated infrastructure requires poten-

tial composite participants to organise network and service related operations among

themselves. The physical size of mobile devices limits their locally available resources

and communication range. Participants thus exchange messages either directly if they

are in each other’s transmission range or indirectly via intermediaries that relay mes-

3

Chapter 1. Introduction

1. Transient network

2. Lack of composition
infrastructure

Establish network on
demand

Coordination and
synchronisation

Resend, re-connect,
re-allocate

6. Failure recovery

Backup providers,
route maintenance

6. Failure prevention

3. Wireless communication

4. Mobility

5. Participation autonomy

Packet loss

Path loss

Invocation
rejection

Interference and
obstruction

Instable routes and
routing info

Limited resources
and local objectives

Fig. 1.2: Challenges Service compositions in transient networks lack dedicated composition

infrastructure and are likely to fail due to the unreliability of wireless communication and the

instability that mobility and participation autonomy create. Failure prevention and recovery rely

on further communication and expose the composition again to the dynamics of the environment.

sages. Free of any obligations towards a unifying authority, service providers join, roam,

and leave the network at any time. They engage in compositions spontaneously if this

suits their residual load and objectives.

1.1 Challenges

The dynamic nature of mobile ad hoc networks presents a significant challenge for the

composition of complex service requests (Brønsted et al., 2010; Kalasapur et al., 2007).

In particular, service composition faces (cp. Figure 1.2):

• Challenge 1: Transient networks

An ad hoc network may evolve only because a service request was raised and dis-

solves after the request is completed. Pre-established knowledge about the service

and network topology does not exist and a network is established by interaction

(Chlamtac et al., 2003). This means, service providers are initially unaware of

each other’s existence and find out about their neighbourhood only if co-located

providers announce themselves or respond to a request.

• Challenge 2: Lack of composition infrastructure

Free from any managed infrastructure, a dynamic ad hoc network lacks a single

4

1.1. Challenges

entity with global system view. In particular, there is no dedicated entity that

acts as a proxy for service discovery, allocation, and invocation and composite

participants must manage complex requests between themselves in a decentralised

peer-to-peer manner (Gu and Nahrstedt, 2006). Decentralisation, however, implies

additional coordination and synchronisation, especially if composite requests ex-

tend beyond a sequential execution structure and contain parallel execution paths,

so-called service flows1, that must be merged prior to returning the final result

(Yildiz and Godart, 2007).

• Challenge 3: Wireless communication

Service composition, as well as building the service and network topology requires

network and composite participants to communicate. In ad hoc networks, however,

communication is wireless and inherently unreliable (Friedman et al., 2007). The

exchange of messages via the radio medium is prone to interference and obstruction,

which causes packet loss.

• Challenge 4: Mobility

Services are hosted on mobile devices. Network paths are likely to be lost when

mobile service providers move because these frequent changes of the network topol-

ogy are likely to break established routes and invalidate cached routing information

(Chlamtac et al., 2003).

• Challenge 5: Participation autonomy

Service providers are not obliged to a higher authority. They may temporarily

disable service provision and reject service invocation if this conflicts with local

objectives or the availability of resources (Campbell et al., 2008). For example,

although a provider has generally agreed to host a sensing service, it may only

offer the service when in a certain location.

• Challenge 6: Failure prevention versus recovery

In complex service requests each constituent service is prone to packet loss, path

loss, or service rejection and presents a potential source of failure for the entire

1In the following, the terms service flow and parallel service flow will be used interchangeably.

5

Chapter 1. Introduction

composite. This makes it “very difficult to maintain a composed service for ex-

tended periods of time” (Sen et al., 2004). Although routes can be repaired and

services re-allocated (Jiang et al., 2009; Feng et al., 2007), failure recovery comes

at the cost of further communication over error-prone network links and delays the

final composition result. Preventive failure recovery assigns backup providers and

keeps routes updated at all times to reduce the recovery delay (Gu and Nahrstedt,

2006; Prinz et al., 2008). These techniques are based on participants issuing heart

beat messages to signal changes in the topology. For composition messages this

periodic network traffic, however, presents a source for interference and communi-

cation failure. Further, the resource-constraints of mobile service providers limit

the number of composites they can handle simultaneously. If a provider is a backup

for a service in one composite, it may not be available as a primary provider for an-

other composite. Allocating one or more backup providers for each required service

in addition to the primary provider may lead to temporary provider shortage.

Considering the dynamics of mobile ad hoc environments and the complexity of service

requests the question arises: How can composites efficiently adapt to their continuously

evolving operating environments to reduce the likeliness of failure to occur?

1.2 Existing solutions

In service-oriented computing, the need for more flexibility towards changes to the user

requirements and operating environment has led to creating abstract composites during

the design phase and finalising them by assigning service providers at runtime. This

way, service providers can be dynamically selected or replaced based on their current

availability and actual execution properties (Cardellini et al., 2009).

Acquiring dynamic provider information, however, is a challenge. Many composition

solutions (e.g., Park and Shin, 2008; Samimi and McKinley, 2008; Wang et al., 2004)

assume a service overlay structure that monitors all providers and excludes those that

are currently unavailable, incapable, and unwilling to serve a request. Establishing

such a structure in advance and independent from a particular composite request eases

service discovery but at the same time requires effort to build and maintain. A registry,

6

1.2. Existing solutions

for example, that holds both static and dynamic provider information (Schuler et al.,

2004), needs repeated updating to keep up with evolving system dynamics. Alternative

strategies (Gu and Nahrstedt, 2006; Samimi and McKinley, 2008) reduce this overhead

and register only static service descriptions. Once a particular service request is raised,

the potential providers are contacted and examined for their current properties. Based

on an already existing network, these techniques study their solution in isolation from

networking and service discovery aspects. In highly dynamic environments this leads to

increased overhead considering that a network emerges only because of a service request

and dissolves after it has been satisfied.

Decentralised composition management has been proposed for cross-organisational

business processes (Martin et al., 2008; Fernández et al., 2010), peer-to-peer networks

(Gu and Nahrstedt, 2006; Wang et al., 2004), hierarchical device networks (Kalasapur

et al., 2007) as well as for mobile ad hoc networks (Sen et al., 2008). However, the

lack of integration between the composition phases either increases the composite’s fail-

ure probability or involves additional maintenance and monitoring overhead. Generally,

composition solutions decouple service invocation from service discovery and allocation

such that they do not invoke the first service until each required service has been assigned

to a provider. In systems with moderate dynamics this ensures that a composition will

not fail due to missing service providers. However, this benefit is limited if changes

occur more frequently. Static allocations (Sen et al., 2008) are then nonetheless subject

to failure because providers can change their availability after they have been assigned.

Leaving the allocation flexible until the invocation of a service (Schuler et al., 2004; Prinz

et al., 2008), is more sensitive to departing providers or the arrival of better perform-

ing candidates, however, comes at additional maintenance and monitoring cost. The

group of providers that is assigned to a service has to stay updated on the dynamics

within the group and must observe the primary provider to compensate for its disconnec-

tion. In addition, service providers may not have enough resources to engage in another

composition simultaneously. Allocating multiple of these providers per required service

over a longer period of time (i.e., until all the service’s predecessors have been invoked)

decreases the overall availability of services.

7

Chapter 1. Introduction

1.3 Thesis approach

A novel model for service composition, hereafter called opportunistic composition, is

designed to reduce the failure probability of complex service requests in dynamic ad

hoc environments. Based on valuable insights from existing solutions, it explores the

possibility of re-organising the composition process to flexibly adapt to system dynamics.

Assumptions For the environment in which service composite requests are issued,

this thesis makes the following assumptions:

1. The operating environment of service composites is highly dynamic. Mobility and

participation autonomy change operating conditions more quickly than it takes to

fully allocate, verify, and execute a composite request.

2. The network does not rely on dedicated communication infrastructure. Service

providers establish network links in an ad hoc manner and route a message to-

wards its destination. In line with Chakraborty et al. (2005), this work views

infrastructure-based architectures as a special case of infrastructure-less environ-

ments. Stationary, resource-rich entities may relieve service providers from some

of their duties but may not be accessible from all the devices at all times.

Observation One of the key drivers for this research is the observation that the delay

of the traditional composition process is a source for failure. The composition process

contacts a service provider at least three times: first to locate and examine the provider,

then to block its resources, finally to invoke service execution. With growing complexity

of the composite in terms of path length, the delay between these interactions increases.

For example, the invocation of a service provider must wait until all successor services

have been allocated and all predecessor services have executed. Meanwhile, the provider

may move on, disappear completely, or stop offering the service. Unaware of these

changes, the composite believes the provider to be in the same place and state as before

and fails to reach it again. Checking with potential service providers more frequently

than the minimum three times may be a solution to become aware of changes but incurs

more traffic and risks clogging the network that leads to communication failure.

8

1.4. Thesis contribution

Hypothesis This thesis investigates how to reduce the delay between individual com-

position phases in a communication efficient manner. It frames its hypothesis as follows:

The longer the delay between composition phases, the more likely are changes in the

operating environment to occur. The later the operating environment is explored to

compose a complex service request, the less time there is for the system to change and

to render composition decisions invalid.

Basic idea The novel concept of opportunistic service composition bundles the discov-

ery, allocation, and invocation for a required sub-service to decouple it from its position

in the complex request. The model defers all interactions with service providers until

they are indispensable for the composition to make progress. It searches and allocates a

service provider when the corresponding sub-service is executed next. The approach is

opportunistic because it starts executing the composite without having fully allocated

all required services and thus does not know whether there is a provider for each service.

Other approaches verify this up front but once they start, they have to deal with the

same system dynamics in which a service provider present during verification may have

moved or disappeared. It is important to notice that the objective of opportunistic ser-

vice composition is to reduce failure. As it cannot prevent failure entirely, this approach

is complementary to strategies that recover the composite after failure.

1.4 Thesis contribution

This thesis investigates how complex tasks can be coordinated in dynamic ad hoc envi-

ronments using service composition while accommodating for changes in the operating

environment that otherwise would lead to failure. This research contributes to the body

of knowledge by providing:

Extensions to existing composition models Existing approaches to service com-

position tend to decouple service invocation from service discovery and service allocation

which introduces delays and increases the likelihood of composite failure in transient

networks. This thesis describes a novel opportunistic composition approach to align the

complexity of a service composite to its frequently changing operating environment. In-

9

Chapter 1. Introduction

tegrating the composition phases and deferring allocation decisions to the latest possible

moment, as proposed in this thesis, has not been previously investigated. Composing

complex service requests in this manner allows for greater flexibility to adapt to available

services and reduces the failure probability of composites.

Extensions to support parallel service flows With the reorganisation of the com-

position process, the proposed opportunistic approach requires additional means to sup-

port composites with parallel execution paths. This thesis defines algorithms on how

multiple composite participants agree on a common successor. Current solutions require

continuous path updates while the proposed algorithms synchronise once at the end of a

parallel path. Further, the thesis provides detailed information on how to reduce a com-

posite during its execution to avoid resource allocation for redundant or obsolete parts.

These techniques ensure a consistent way of managing service composites and support

the specification and resource-efficient execution of conditional composite behaviour.

Extensions to communication capabilities Currently, service composition is, as

part of the top layer in the communication stack, isolated from the knowledge bases of

lower layers which limits its awareness of the dynamic operating environment and risks

sub-optimal composition choices. This thesis investigates how to utilize the broadcast

nature of wireless radio for service composition and to enable composition actions that

are aware of the surrounding network and service topology. The proposed cross-layer

communication approach has not been previously examined for service composites and

allows for communication-efficient service composition with less failure.

1.5 Thesis scope

The proposed composition model enables mobile entities to fulfil complex tasks by col-

laborating with peers in their vicinity. The model preserves participation autonomy as

it considers only those service providers that actively commit to a request. However,

the incentives for mobile service providers to share their capabilities are not studied.

Different methods to encourage cooperation and the effectiveness of those can be found

in (Li and Shen, 2012) and (Zhao et al., 2011).

10

1.6. Thesis structure

Focusing on a novel way to organise service composition, this work is general in terms

of how services and complex tasks are expressed. It does not assume a specific language

(e.g., WSDL, BPEL, WS-CDL) to describe service offers and requests. Neither does

it include particular concepts (e.g., ontologies) to classify services. The model applies

syntactic matching to task descriptions that define the order and behaviour of required

services but is well aware of more sophisticated approaches that allow for semantic

matching (Nedos et al., 2009) and goal-oriented composition (El Falou et al., 2010).

Locality of service provision is a key criterion for service allocation in mobile ad hoc

networks because the more distant a service provider, the more expensive is communica-

tion (Friedman et al., 2007). The design of the model supports locality needs by acting

on demand and dynamically transferring the composition control. This way the vicin-

ity of the current composition controller is naturally explored first. Provider allocation

may consider further quality of service criteria if such provider information is available.

Balancing multiple constraints, however, is not covered in this work, though has been

studied, for example, by Zeng et al. (2004) and Cardellini et al. (2009).

This work analyses the discovery, allocation, and invocation of composite services

as well as the interfaces between those phases with the goal to reduce the high failure

probability that mobile ad hoc environments entail. Failure recovery, in particular the

cost of it, is considered for building an argument for opportunistic service composition.

Recovery mechanisms themselves are not integrated in this work. However, as the pro-

posed approach does not prevent failure, different recovery methods (e.g., Philips et al.

2010; Jiang et al. 2009; Feng et al. 2007) will need to be analysed to make the approach

more reliable.

1.6 Thesis structure

State of the art Chapter 2 analyses how state of the art composition solutions meet

the challenges of highly dynamic pervasive computing environments. In particular, the

study explores a) how dynamic provider information is discovered and kept up to date,

b) how provider allocation is stabilised against frequent changes, c) how scarce provider

resources are efficiently blocked, consumed, and released, d) how these concepts ex-

11

Chapter 1. Introduction

tend to requests with parallel execution paths, and e) how messages among composite

participants can be delivered efficiently.

Design Chapter 3 returns to the challenges of service composition in highly dynamic

environments outlined in Chapter 1 and describes the design objectives, system model,

and design decisions of this thesis. Thereafter the chapter explains how the proposed

protocol for opportunistic service composition addresses the design decisions in detail.

Design verification Chapter 4 uses model checking to verify the correctness of the

designed protocol with regard to the absence of deadlocks, the termination in a valid

end state, and the correct number of allocated service providers. For this the chapter

first introduces the modelling tools PROMELA and SPIN, then examines basic protocol

features on basis of service sequences, and thereafter turns to the extensions that support

composites with parallel execution paths.

Implementation Chapter 5 describes the Java implementation of the designed and

verified composition protocol. It explains how the integration with the network simulator

Jist/SWANS enables mobility for composite participants. Then, the chapter highlights

implementation details of the protocol and specifies the format of different composition

messages. Details with regard to directed broadcasting and the cross-layered approach

towards topology management complete the chapter.

Evaluation Chapter 6 evaluates how well the novel composition approach achieves

its objective of reducing composite failure. It first describes the experimental setup

of the simulation-based study. The second part of the chapter presents and analyses

the results showing that the proposed composition protocol is a suitable alternative to

existing solutions for service composition in dynamic ad hoc environments.

Conclusion Chapter 7 summarises the thesis and its achievements. It then discusses

important findings with regard to the proposed composition protocol and highlights

failure recovery and people-centric sensing as two potential areas for future work. A

final remark provides a succinct wrap-up of this work.

12

1.7. Chapter summary

1.7 Chapter summary

Mobile and embedded devices accompany people throughout the day and their processing

and sensing capabilities support assisting us with information and actions that suit our

current situation. Collaboration among such smart devices has the potential to achieve

complex application requirements that a single device would fail to provide alone. The

collective effort of multiple mobile peers can be modelled as a composition of services

that mobile devices host and share. This thesis envisions service composition to occur

spontaneously anytime and anywhere without the need for dedicated infrastructure to

be in place. The network among potential service providers emerges on-demand and

may dissolve after the composite request has been satisfied.

The transient nature of these mobile ad hoc networks, however, exposes service com-

posites to three main failure sources: packet loss due to the narrow wireless bandwidth,

path loss due to the mobility of the providers, and service rejection due to dynamic

provider participation. Further, service providers need to manage complex service re-

quests among themselves and balance the cost of failure prevention and recovery. These

challenges raise the question of how composites can efficiently adapt to their evolving

operating environment. Existing approaches have led to dynamic composition strate-

gies to accommodate for change. However, as the next chapter will discuss in detail,

their lack of integration between the main composition phases increases either the failure

probability or the overhead for failure prevention.

This thesis builds on the hypothesis that the later the operating environment is

explored to compose a complex service request, the less time there is for the system

to change and to render composition decisions invalid. The following chapters describe

how the novel model of opportunistic service composition reduces the delay between

the phases of the composition process in a communication efficient manner to lower the

composite failure in highly dynamic pervasive environments.

13

Chapter 2

State of the art

Service composition has been widely used to manage intra- and inter-organisational

processes in enterprise systems and on the Web. With technological advances such as

embedding sensors in everyday objects, the possibility to create new value-added func-

tionality from existing services becomes attractive for pervasive computing environments

(Brønsted et al., 2010). However, in contrast to reliable, wired, and resource-abundant

enterprise networks, pervasive systems face frequent topology changes, error-prone wire-

less communication, and resource-constrained service providers. These differences in-

troduce new challenges for service composition and limit the applicability of existing

solutions. In particular, traditional centralised composition architectures with a single

fixed coordinator suffer from a number of issues that make them inadequate for dynamic

operating environments. As a hot spot for computation and communication (Ye, 2006)

a static coordinator can run only a certain number of compositions concurrently which

limits its scalability (Schuler et al., 2004; Balasooriya et al., 2008). In addition, com-

posites that are distributed by nature and that model cross-organisational collaboration

have to undergo unnecessary changes to map them to a centralised architecture (Martin

et al., 2008; Zaplata et al., 2010). Further, centralised approaches lack the flexibility to

cope with dynamic pervasive environments because they are designed for fixed network

and service topologies (Chakraborty et al., 2004; Mostarda et al., 2010).

The drawbacks of centralised architectures have led to decentralised strategies to han-

dle a continuously evolving network of service providers. The following review analyses

15

Chapter 2. State of the art

2.1
Service discovery

2.2
Service allocation

2.3
Service invocation

2.4
Service flows

2.5
Communication

Schedule-based

Probing

Group-based

Goal-oriented

Concurrent data
access

Conditional execution
paths

Common meeting
point

Broker-based

Static fragmentation

Dynamic activation

Proactive

Demand-based

Tuplespaces

Content-based
routing

Cross-layer design

Fig. 2.1: Structure of state of the art review The review analyses the applicability of

existing service composition solutions for dynamic ad hoc networks from the perspective of service

discovery, allocation, and invocation as well as the support for service flows and the awareness

of wireless ad communication.

the applicability of these strategies for dynamic ad hoc networks. Figure 2.1 illustrates

the structure of the analysis, which starts with service discovery and the question of

how dynamic provider information is discovered and kept up-to-date (cp. Section 2.1).

Next, it explores how service allocation is stabilised against frequent changes in the op-

erating environment (cp. Section 2.2). Then, the analysis examines service invocation

approaches and how scarce provider resources are efficiently blocked, consumed, and

released (cp. Section 2.3). Thereafter, it studies service flow solutions and how they

synchronise parallel execution paths (cp. Section 2.4). Finally, the analysis turns to

wireless communication and how messages among composite participants can be deliv-

ered efficiently (cp. Section 2.5).

2.1 Service discovery

Many composition solutions (e.g., Schuhmann et al., 2013; Park and Shin, 2008; Samimi

and McKinley, 2008; Wang et al., 2004) assume the existence of some kind of service

registry, which locates service providers in the network. Implementing this assump-

tion, however, represents a challenging research field in itself. Service discovery must

enable networked entities to announce local capabilities as services and enquire about

services of other entities despite frequent topology changes and varying communication

characteristics (Ververidis and Polyzos, 2008). While recent surveys (Mian et al., 2009;

16

2.1. Service discovery

Ververidis and Polyzos, 2008) demonstrate the maturity of service discovery in mobile

ad hoc networks, this section adds a new perspective by analysing service composition

solutions and by asking: How is the knowledge about available services kept up to date

if provider information such as connectivity, load, and willingness to participate is dy-

namic? Service discovery solutions fall into two categories when it comes to publishing

service offerings: proactive and demand-based service announcements.

2.1.1 Proactive

When service providers announce themselves proactively, they do so independently of a

particular request and their announcements have to be cached and kept up to date.

OSIRIS (Schuler et al., 2004) is a peer-to-peer infrastructure to support reliable and

scalable process management in dynamic environments. In OSIRIS, a potential com-

posite participant maintains a local cache for information it needs to fulfil a service. As

the participant’s service can be part of a composite, the cache may store information

about providers of a possible successor service. A centralised meta-data repository reg-

isters all dynamic changes in the environment and replicates them by pushing relevant

information to particular participants. OSIRIS is not readily applicable in dynamic ad

hoc environments because these environments do not have dedicated infrastructure to

host a centralised entity for information replication. Alternative approaches, like CiAN

(Sen et al., 2008), group-based service discovery (Chakraborty et al., 2006), and dynamic

service composition Kalasapur et al. (2007), do not require additional infrastructure as

they found other ways to update cached provider information.

CiAN (Sen et al., 2008) is a workflow engine to support modelling collaborative

activities as structured tasks and accomplishing them in mobile ad hoc networks. In

CiAN, participants synchronise locally cached service information as soon as they come

into each other’s communication range (Sen et al., 2004). This way, knowledge about

available services propagates from participant to participant. The initiator of a compos-

ite request, however, must wait until a provider for all required services appears in the

cache before it can continue to allocate the services. This delays the composition result,

in particular, if the network of service providers has just started to emerge.

Group-based service discovery (Chakraborty et al., 2006) is a service discovery ar-

17

Chapter 2. State of the art

chitecture to allow for distributed, scalable, and adaptive service discovery in pervasive

computing environments. Similarly to CiAN, it relies on local caching and participant-

to-participant data dissemination. However, while CiAN needs to wait and see if a

required service eventually appears in the local cache, this approach will actively search

for it. Group-based service discovery selectively forwards a service request and uses the

discovery route backwards to deliver a discovery response. This reduces the message

overhead compared to simply flooding the network with a search request. A similar

approach (Aguilera and López-de Ipiña, 2012) uses selective forwarding based on ser-

vice groups and the time-to-live parameter of the communication protocol to reduce the

overhead of creating a local service graph on each participant.

Dynamic service composition, as proposed by Kalasapur et al. (2007), is a composi-

tion mechanism for pervasive computing environments to provide service-related support

for resource-poor devices and to assign available resources to user needs, even when an

exact match does not exist. Its locality-aware hierarchical caching technique has the

potential to further reduce the search overhead as it defines a parent-child relation over

co-located devices. Resource-rich parent devices cache the announcements of neighbour-

ing resource-poor devices as their children. If a required service is unavailable in the

local cache, the search query travels the hierarchy upward to the parent that has greater

overview. When there is a match, the parent replies with the physically closest option,

otherwise it forwards the request to its own parent.

Notwithstanding the search optimisations, the general issue with proactive service

announcements is that, the more dynamic information the announcements include, the

more maintenance and communication they require. On the other hand, the fewer dy-

namic information they contain, the lower is the system’s ability to sense and adapt to

changes. For example, if the load or objective of a provider changes, it may temporar-

ily disable the provision of a particular service. However, since the service has been

announced, the provider may receive service invocation requests which fail because the

provider refuses processing them. Revoking the announcement may not avoid failure

because of the dissemination delay in the network. Announcing dynamic changes more

frequently incurs higher communication overhead and strains the narrow communication

bandwidth which may lead to increased network failure.

18

2.1. Service discovery

2.1.2 Demand-based

When potential composite participants announce service information on-demand (i.e.,

when there is a particular request), they reveal up-to-date data that do not need caching

or maintenance. However, as demand-based service discovery incurs search delays, ex-

isting solutions nonetheless ask providers to register to minimise the delay.

Spidernet (Gu and Nahrstedt, 2006) is a service composition framework to provide for

high quality and failure resilient service composite in peer-to-peer systems. In Spidernet,

service providers announce only static service information proactively which are stored

in distributed hash tables. Collecting dynamic information is left to the allocation phase

that is triggered when there is a particular composite request. This avoids frequent and

expensive table updates. Static service information is a prerequisite for creating a service

overlay network that links available services based on whether they are connected by a

network link. The overlay is later examined to find a service path that corresponds to

the composite request.

Logical service groups (Prinz et al., 2008) is a concept for dynamic service composi-

tion in peer-to-peer systems to support the adaptation to peer arrivals or variations of

their execution properties. It uses a decentralised publish-subscribe mechanism based

on distributed hash tables to address the drawback of centralised information replication

(cp. OSIRIS in Secion 2.1.1). Providers subscribe based on their service type with the

corresponding administrating peer. They are notified when a request for that service

type is published and may respond by publishing the static and dynamic details of their

offer. The request initiator receives all published replies via the administrating peer.

In contrast to Spidernet (Gu and Nahrstedt, 2006), the distributed hash tables do not

register service descriptions. Rather, they support targeted multicast messaging.

Generally, demand-based service announcement is communication-efficient because

service providers reveal just enough dynamic information as required by a request and

target it to a particular service consumer. In addition, the service consumer learns only

about providers that have enough resources and are willing to execute a required service

because otherwise these providers would not respond. This avoids service invocation

rejections. However, the above solutions rely on a distributed provider registry that needs

19

Chapter 2. State of the art

constant monitoring to replace failed parts. In networks that emerge and dissolve quickly

such a registry needs to be established first and then needs to compensate instability

which neutralises the communication efficiency.

2.1.3 Summary

Dynamic provider information can be announced proactively or revealed on-demand.

Proactive announcements do not need additional infrastructure which makes the ap-

proach suitable for dynamic ad hoc networks. However, the approach requires high

maintenance or risks service invocation rejection when service providers temporarily dis-

able individual services due to changes of their system load or objectives. In solutions

with demand-based announcements only available service providers respond to a ser-

vice request which avoids service invocation rejection and repeated information updates.

However, the solutions surveyed are based on an established peer structure that does

not exist if a network among service providers emerges because a composite request was

raised and dissolves after the request is complete. For dynamic ad hoc environments it

may be more efficient to use demand-based service discovery without any pre-existing

provider registry as the overhead of maintaining a peer structure may outweigh the bene-

fit of information it contains. Instead, investigations on how to recognise service demand

without explicit service requests may further improve demand-based service discovery.

2.2 Service allocation

Service allocation examines ways of finding, for each required service, a suitable provider

such that an abstract request description turns into an executable composite. Compos-

ites in dynamic ad hoc environments face frequent changes in the network and service

topology which may invalidate allocation decisions and cause their failure. This raises

the question: How is the allocation of service providers stabilised against dynamics of

the composite’s operating environment? The approaches reviewed in this section base

their allocation decisions on schedule information, probing, provider groups, and high

level goals to counteract composite failure.

20

2.2. Service allocation

2.2.1 Schedule-based

One way to handle dynamic environments is to incorporate schedule information into

the allocation process (Wang, Wang, Zheng, Xu and Yang, 2009; Sen et al., 2008). In

service-oriented wireless sensor networks, for example, the sensor sleep schedule limits

service availability and recovering from resulting disruptions consumes scarce energy.

An approach to minimise re-allocation and to save energy derives the duration for which

a provider is continuously available from its sleep schedule and services offerings (Wang,

Wang, Zheng, Xu and Yang, 2009). From different feasible sets of providers, that steadily

and collectively provide a composite, the base station chooses the set with minimum

transmission cost and propagates the allocation in the network.

Similarly, in leader-team scenarios (e.g., on a remote construction site) each service

provider has a schedule containing its commitments in time and space. This can be used

to allocate tasks such that team members encounter each other to exchange intermediate

results and trigger the next step in a workflow (Sen et al., 2008). In both approaches,

failure due to service unavailability is unlikely because changes are foreseeable and thus

disruptions avoidable. Further, if service providers are mobile, their obligation towards

their leader (Sen et al., 2007) or organisation (Catarci et al., 2008) steers their movement

towards achieving a task or staying connected.

However, the availability of schedule information and the obligation towards an au-

thority are characteristics that apply only to a subset of dynamic ad hoc environments.

Generally, service providers are autonomous and not obliged to disclose their schedules.

Freely roaming the network, they rather spontaneously participate in a composite.

2.2.2 Probing

Probing-based solutions gather dynamic provider information in a service overlay net-

work to guide their allocation toward a stable composite. A service overlay network is

a representation of available services that creates logical links between services if their

providers are connected by a network route (Park and Shin, 2008).

Multi-path solutions (Gu and Nahrstedt, 2006; Park and Shin, 2008; Samimi and

McKinley, 2008; Wang, Xu, Qian and Lu, 2009) induce probe messages in a service

21

Chapter 2. State of the art

overlay network to trace the characteristics of potential service candidates and identify

multiple high-quality composition paths. Probing with resource-aware routing (Park

and Shin, 2008) estimates, e.g., the residual energy, contention rate, and response time

to avoid exhaustion and overload in the network. Pruning strategies reduce the over-

head of probing that would otherwise span the entire overlay network. Spidernet (Gu

and Nahrstedt, 2006) limits (e.g., based on the priority of the request) the total number

of probe messages that is allowed for a composite and the number of duplicate service

providers that should be probed. Dynamis (Samimi and McKinley, 2008), an algorithm

for efficient probing in service overlays, applies selective forwarding whereby probe re-

cipients forward probe messages only if the contained path is of higher quality (e.g., in

terms of end-to-end delay, load balance, or security) once they add their service.

In contrast, single-path solutions like sFlow (Wang et al., 2004) determine a single

high quality path in the service overlay. sFlow is an allocation algorithm to provide

resource-efficient and agile service composites. While exploring the service overlay, it

allocates the most suitable provider in each hop and avoids the need for pruning strate-

gies. sFlow applies multiple quality objectives, namely latency and bandwidth, and

determines the shortest widest path from an allocated service provider to its successor.

Exploring the service overlay network and constructing the optimal composition path

en route aligns the allocation to dynamic provider properties. However, probing-based

allocation is decoupled from service discovery and implies additional composition delays

and communication overhead.

2.2.3 Group-based

Group-based allocation solutions assign a set of providers to a required service and leave

the allocation decision flexible until service invocation.

OSIRIS (Schuler et al., 2004) notifies composite participants about the arrival or

departure of possible providers for the subsequent service in the composite. Once the

participant receives a service invocation request, it executes the service and only then

allocates the subsequent provider from the set of candidates.

Alternatively, a logical service group (Prinz et al., 2008) represents all available

service providers for a particular service type. The group dynamically re-elects the

22

2.2. Service allocation

group leader, who eventually executes the required service, if the current leader departs

or another member with more suitable execution properties arrives. For a composite,

the requesting peer starts with the last required service, creates a logical service group

and assigns the leader role to the best performing peer in that group. In the same way,

the group leader appoints the leader for its preceding service. A group subscribes to

changes in their successor group to ensure it stays informed about leader re-elections.

Group-based allocation flexibly adapts to dynamic service availability as it inte-

grates better performing providers even if they arrive after the initial allocation. The

proposed techniques, however, group service providers logically without imposing local-

ity restrictions. This is at risk of increased communication cost because group members

or consecutive providers can be scattered over the network.

2.2.4 Goal-oriented

Goal-oriented allocation approaches create composites automatically to cater for un-

predictable and evolving circumstances (Bucchiarone et al., 2012). Instead of abstract

composite descriptions, requesting entities express their needs in terms of available input

and expected output. The composition handles the actual construction of the request.

For this, a service aggregation algorithm (Kalasapur et al., 2007; Wang, Xu, Qian and

Lu, 2009) creates a graph of available services and links those that are semantically and

syntactically compatible. Traversing the graph from input to output (Thomas et al.,

2009) or in reverse (Wang, Xu, Qian and Lu, 2009) creates the actual composite request

with the corresponding service providers.

Other techniques employ an artificially intelligent (AI) planner (Madhusudan and

Uttamsingh, 2006; Bidot et al., 2011; Pinto et al., 2012) and distribute the planning

(El Falou et al., 2010) among multiple service agents to reduce the high number of

possible service combinations. Agents first derive partial plans locally and a central

coordinating agent merges those to a final plan.

Goal-oriented allocation is highly flexible because goals rather than specific tasks are

matched against currently available services. However, it relies on an up-to-date view of

available services to generate a stable execution plan and reinforces the issues related to

proactive service announcements and the need for their frequent updates (cp. Section

23

Chapter 2. State of the art

2.1.1). Further, it is not clear whether mobile devices have sufficient resources to handle

the higher complexity and coordination effort that in particular AI techniques imply.

2.2.5 Summary

Allocation solutions use schedule information, probing, provider groups, or goal-oriented

composite creation to stabilise the allocation against frequent topology changes. Among

these approaches, integrating schedule information in the allocation process is most effec-

tive because changes are foreseeable and their negative impact can be avoided. However,

in dynamic ad hoc environments such information is unlikely to be available because ser-

vice providers are autonomous and not obliged to disclose their schedules. Goal-oriented

automatic composite creation is highly flexible because it matches goals rather than

specific tasks to available services. Its need for an up-to-date view of available services,

however, requires providers to announce themselves proactively and reinforces the asso-

ciated challenges that are discussed in Section 2.1.1. Group-based allocation is also very

flexible towards changes because the final provider of a required service gets allocated

only prior to its execution. However, the reviewed solutions do not impose locality re-

strictions of service groups which increases the communication effort for managing the

group. Probing-based techniques preserve the locality of allocations naturally because

the service overlay network which they explore is based on physical network links. The

drawback of probing is that it is decoupled from service discovery and introduces addi-

tional composition delay and communication effort. With the flexibility of group-based

allocations and the locality of probing techniques the question arises whether the benefits

of both can be integrated in one approach.

2.3 Service invocation

Service invocation ensures that one provider per required service is called for execution.

In contrast to Internet-based service domains, mobile computing environments are at

risk of exhaustion and invocation rejection sooner because mobile devices have fewer

local resources available and depend on the objectives of their (human) carrier. This

motivates the question: How are provider resources efficiently blocked, consumed, and

24

2.3. Service invocation

released to maximise general provider availability and to maintain stable composites?

Broker-based designs, static fragmentation, and dynamic activations are ways to invoke

the required services of a composite and address the question from different perspectives.

2.3.1 Broker-based

Broker-based composition approaches entrust a single entity, i.e., the broker, with the

discovery, allocation, and invocation of required services. Solutions for nomadic networks

place the broker on a reliable fixed node to ensure the composite does not disappear

(Philips et al., 2010). Such a setup, however, implies long expensive routes or failure, if

the fixed broker is not in vicinity of or disconnected from mobile service providers. In

contrast, distributed dynamic brokers (Chakraborty et al., 2005) are part of the mobile

ad hoc network and are dynamically selected. A requesting entity appoints its broker

based on how well the broker connects to required services. The selection considers the

broker’s local services, services in its neighbourhood, load, and energy to increase the

composite’s flexibility towards topology changes.

Brokers reduce the involvement of the service provider in the composition to a mini-

mum. Unaware of whether its invocation context is a composite or basic service request,

the provider does not need to participate in a lengthy allocation process or wait for pre-

decessors to finish. It blocks local resources only for the duration of the service execution

and releases them once it sends the service result back to the broker. However, above

solutions do not explicitly obtain the provider’s commitment. They simply invoke the

provider and assume it has sufficient resources and is willing to participate. Further, bro-

kers are the destination for all intermediate results of the composite and prevent direct,

possibly more localised, interaction among subsequent service providers. Finally, brokers

may not be available in ad hoc networks that emerge and dissolve quickly because none

of the participants has initially a sufficient overview of available services.

2.3.2 Static fragmentation

Static fragmentation partitions a centralised composite description and deploys the com-

posite fragments on previously selected service providers such that the providers can

25

Chapter 2. State of the art

interact directly without a broker. Fragmentation techniques (Balasooriya et al., 2008;

Fernández et al., 2010; Martin et al., 2008; Sen et al., 2008) are manifold but share a sim-

ilar notion about fragment content which includes the service to execute and references

to the input source and output destination of that service.

Bond-Flow (Balasooriya et al., 2008), for example, is a middleware to provide dis-

tributed coordination for collaborative applications. It distributes the complexity of

the centralized composition logic over stateless web services and dynamically generates

coordinator proxy objects to simplify the composite development. These proxies wrap

a service with coordination logic as well as state and dependency information and en-

force dependencies during execution. Composites that apply the chemical programming

paradigm (Fernández et al., 2010; Fernández et al., 2012) use the metaphor of chemi-

cal reaction rules to coordinate complex applications. They follow the same concept as

Bond-Flow but formalise decentralised composite execution in terms of a higher-order

chemical language. Another alternative to formalise the control flow among fragments

are executable workflow networks (Martin et al., 2008) which is a process model to

partition executable BPEL processes.

CiAN (Sen et al., 2008) decouples the input and output dependencies of a fragment

from the actual fragment provider to ease re-allocation. Fragments identify dependencies

on other fragments via task numbers rather than provider addresses such that in case of

a failure a provider can easily be replaced without notifying subsequent providers.

In contrast to fully-decentralised but hard to validate solutions, a hybrid approach

(Mostarda et al., 2010) compiles centralised composite descriptions into choreographed

synchronised finite state machines and a skeleton that is operated by a central leader. A

consensus protocol between the leader, its backups, and the local state machines allows

for consistency among distributed participants and correct execution.

Generally, static fragmentation has three drawbacks: First, all fragments are allo-

cated at once and before the composite starts executing. This makes the composite

insensitive to changes in the operating environment that occur during the allocation or

invocation. Second, fragments block resources for all required services even those that

do not get executed due to conditional paths or premature termination. Third, with the

possibility of dead execution paths, a provider faces the challenge of determining when

26

2.3. Service invocation

it is safe to uninstall a fragment and free up resources. Regarding the first drawback,

group-based allocation approaches (Schuler et al., 2004; Prinz et al., 2008) are more

receptive to the system dynamics as they postpone the final allocation decision to when

the required service needs to be invoked. However, until then they block a number of

service providers and minimise provider availability for other composite requests.

2.3.3 Dynamic activation

The dynamic activation of service providers is an alternative approach to execute a

composite in a decentralised manner and to block resources that are actually needed.

One way to achieve this is to store task files in a centralised repository rather than on

the allocated service provider (Ye, 2006). Service invocation signals activation and the

invoked provider first fetches its task file according to which it then executes the assigned

service and invokes the subsequent service provider. A technique based on dependency

tables (Fdhila et al., 2009) may be used to partition the centralised composite description

and generate task files instead of code fragments.

Continuation-passing (Yu, 2009b) is the fully decentralised alternative that trans-

fers the remainder of a composite along with the composition control from provider to

provider. Continuation objects originate from programming languages and are a viable

solution for composite execution as they reduce the accumulation of control context

(Manolescu, 2002). Self-describing workflows (Atluri et al., 2007) detail how a service

provider derives its execution part from the continuation and how it afterwards creates

a new self-describing workflow for the remainder.

Dynamic activation addresses the shortcomings of static fragmentation and activates

service providers as the composite execution enfolds. However, the way existing ap-

proaches (Ye, 2006; Atluri et al., 2007; Yu, 2009b) are organised, implies that service

providers have been identified in an allocation process but have not yet been notified

to reserve resources. The approaches assume that a service provider is always ready to

serve and ignore the fact that changing load and objectives may negatively affect the

availability of a provider. In addition, these solutions have not evaluated the suitability

of dynamic activation in mobile ad hoc environments.

27

Chapter 2. State of the art

2.3.4 Summary

Solutions to service invocation range from broker-based designs over static composite

fragmentation to dynamic provider activation. Broker-based designs reduce the involve-

ment of a service provider in a composite to a minimum because the broker handles all

composition-related tasks and the provider only executes a required service. However,

brokers prevent direct provider interaction and are unlikely to be available in transient

networks where all participants initially have a limited view of available services. Static

fragmentation provides for direct provider interaction and formalises the control flow

among consecutive service providers. However, deployed prior to composite execution,

static fragments are insensitive to system dynamics and allocate resources for conditional

parts of the composite that do not get executed. Dynamic provider activation is an al-

ternative for decentralised composite execution and blocks resources that are actually

needed. However, none of the reviewed solutions explicitly confirms the availability a

provider to execute a service. One the one hand, they may simply assume the provider

is available for service invocation which increases composite failure because the load and

objectives of a provider changes dynamically. On the other hand, the solutions may

assume providers have been blocked during service discovery which would imply a long

blocking period that minimises the general availability of service providers. Either way,

these assumptions highlight a gap and the need to address it.

2.4 Service flows

Service flows are service composites with parallel execution paths. This section refers

to composites whose parallel execution paths merge in a single thread of control. For

example, in the introductory scenario (cp. Figure 1.1 on page 3) Adam’s noise tracking

composite contains an audio filter service that merges the results of two independent

audio sampling services and then continues with a single feature classifier service. The

filter service is a merge service and represents the common meeting point of the two

parallel execution paths. Service flows may require the synchronisation of concurrent

data access and may contain conditional execution paths. For example, Adam could

have modelled his composite request such that a global variable holds the noise readings

28

2.4. Service flows

and needs to be accessed by the two sampling services concurrently. In addition, he could

have included a conditional path that integrates a third sampling service if it is available.

As the complexity of composites increases, the challenges of managing concurrent data

access, handling conditional execution paths, and identifying common meeting points

arise. This motivates the question: How can service composites efficiently synchronise

parallel execution paths despite frequent topology changes?

2.4.1 Concurrent data access

Similar to multiple threads in a program, parallel paths of a service composite may access

and modify the same global data object. Executing parallel paths without synchronisa-

tion leads to inconsistency (Russell et al., 2005) and could produce wrong or undesired

results (Zaplata et al., 2010). One solution is to reduce concurrent access to shared

data during the design of the composite and otherwise define data classes from which an

appropriate synchronisation strategy can be derived at runtime (Zaplata et al., 2010).

Such a strategy may be based on a unique token for data access that only one path at

a time can hold. The execution paths exchange the token by including it within control

messages to reduce the synchronisation effort (Yu, 2009a). Alternatively, a centralised

leader forwards the token to interleave parallel tasks and to synchronise the composite

state immediately after the execution of each service (Mostarda et al., 2010).

Among these solutions, avoiding concurrent data access seems most desirable as it

does not incur any effort at runtime. Otherwise, passing data access tokens with control

flow messages is more suitable for dynamic ad hoc networks than a centralised synchro-

nisation solution because a central entity prevents from direct provider interaction.

2.4.2 Conditional execution paths

Conditional execution paths allow for flexibility in modelling a composite request as

intermediary results may change how the composite proceeds. However, a composite

reveals only during its execution which parallel paths actually need to be merged into

a single thread of control (Russell et al., 2006). A merge service must be prepared to

receive a message from any possible path (Yu, 2009a).

29

Chapter 2. State of the art

Static fragmentation approaches (cp. Section 2.3.2) pre-allocate all services in a com-

posite and need to send an invalidation message along obsolete paths to release redundant

service providers during composite execution. The concept of pattern replication (Fdhila

and Godart, 2009) reduces this effort by creating composite partitions that, aligned to

the control logic, disable entire successor partitions rather than individual services. For

this solution to become effective, providers for a partition cannot be allocated until the

partition is about to be invoked. However, the approach, as published, does not provide

details on how the allocation and invocation of composite partitions is organised.

Dynamic activation solutions (cp. Section 2.3.3) remove obsolete conditional paths

in the remainder of the composite as the composite enfolds. Continuation passing, as

proposed by Yu (2009a), initialises service providers with potential input dependencies

from preceding services and needs to notify them if their path becomes obsolete. Self-

describing workflows (Atluri et al., 2007) do not require additional notifications. How-

ever, as this solution does not explicitly block resources on allocated service providers,

which potentially leads to service invocation rejections, it is unclear how it would other-

wise release them. Similarly, broker-based designs (cp. Section 2.3.1) also do not obtain

the provider’s commitment prior to its invocation and thus do not specify how to release

them when an execution path becomes obsolete.

Generally, handling conditional execution paths depends on how service providers

are allocated and when they block resources for service invocation. Service invocation

solutions that do not block provider resources, do not need to release them if execution

paths become obsolete but risk failure due to service invocation rejection. On the other

hand, solutions that allocate providers prior to the execution of the composite require ad-

ditional communication effort to release redundant service providers. Dynamic provider

activation can potentially reduce this effort but needs to integrate an efficient way to

block provider resources prior the invocation of a particular service to be applicable for

dynamic ad hoc environments.

2.4.3 Common meeting point

Parallel execution paths, that merge in a single service, need a common meeting point.

Recent work on the dynamic execution of business process (Zaplata et al., 2010) acknowl-

30

2.4. Service flows

edges the need for a defined synchronisation point that can be chosen at runtime. The

following analysis first revisits allocation and invocation techniques and then reviews

election and consensus protocols to investigate how a common provider for a merge

service can be identified dynamically.

2.4.3.1 Service allocation and invocation

In broker-based designs (cp. Section 2.3.1), a broker handles composition logic lo-

cally and represents the common meeting point. It merges parallel service flows nat-

urally without additional synchronisation effort. However, the availability of brokers in

transient networks is unlikely because none of the participants have initially sufficient

overview of available services that would qualify them as brokers.

In static fragmentation solutions (cp. Section 2.3.2), the composite initiator finalises

provider allocation. In particular, it selects the provider for the merge service and in-

cludes the decision in the fragments for the predecessors of the merge service. While this

avoids negotiation during execution, topology changes may render such early decisions

less optimal by the time the merge service is invoked. Existing solutions for dynamic

provider activation (Yu, 2009b; Atluri et al., 2007) allocate a merge service prior to

composite execution and are similarly prone to changes. Group-based allocation is more

flexible towards system changes as it finalises provider allocation during composite ex-

ecution. However, among the existing solutions, only OSIRIS (Schuler et al., 2004)

addresses service flows and requires a reliable and globally available synchronisation

node, which may not exist in dynamic ad hoc networks.

Among probing techniques, multi-path solutions (cp. Section 2.2.2) find, based on

quality criteria, the optimal allocation for the composite which includes the optimal path

between the merge service and its successors. However, confirming the final allocation

decision with the selected service providers (Gu and Nahrstedt, 2006), introduces delays

that may invalidate the optimum. A single-path solution (Wang et al., 2004) may con-

firm the allocation in each hop, except from the merge service which is selected by the

composite initiator when it assembles the allocated parallel paths. While this reduces

the allocation delay, it compromises the allocation optimum because the initiator, due

to its limited system view, does not know how well a merge candidate connects to all

31

Chapter 2. State of the art

predecessors. Solutions in which the provider of a split service allocates the provider of

the corresponding merge service (Yildiz and Godart, 2007) face the same issue. The split

provider cannot foresee which yet-to-be-allocated service providers will actually interact

with the merge service and how well they connect to their successor.

The composition solutions reviewed up to this point are limited in their applicability

for dynamic ad hoc networks. They either assume that a reliable or well-informed com-

posite participant exists to represent the common meeting point. Or, they compromise

the flexibility or locality of the merge allocation. A way to increase the allocation flexi-

bility and locality is to enable the predecessors of the merge service to allocate a common

provider during execution. This, however, involves two challenges (Yildiz and Godart,

2007). First, multiple service providers have to agree on the same merge provider at

runtime. Second, these synchronisation partners are mutually unknown as they, too,

are bound only prior to their invocation. The synchronisation algorithm, proposed by

Yildiz and Godart (2007), addresses these challenges with continuous path updates.

Parallel paths update each other about their next allocation decision such that final

synchronisation partners are mutually known to run an agreement protocol. However,

as the algorithm has not been evaluated in dynamic ad hoc networks, its communication

overhead and suitability for mobile service providers is unclear.

2.4.3.2 Election and consensus protocols

Election and consensus protocols for distributed systems relate to some extent to the

problem of finding a common merge provider. Election protocols have to ensure that all

participants in the network refer to the same new coordinator after the current one has

disconnected (Park et al., 2009; Singh and Sharma, 2011). An election is led by a single

decision maker who needs a global view of the system to consider the logical distance

between each participant and the new coordinator (Higashi et al., 2011). Maintaining

such a view is expensive and infeasible in true peer-to-peer networks (Gu and Nahrstedt,

2006). Further, identifying a common provider for a merge service involves only a subset

of participants which can communicate in a more targeted way than through controlled

network flooding (Park et al., 2009; Singh and Sharma, 2011). Consensus protocols

achieve an agreement among agents if the opinion of all agents stabilises. Stochastic

32

2.4. Service flows

consensus models (Roy et al., 2006) assume that agents are connected to each other

and aware of all possible opinions. This thesis explores a communication-efficient way to

establish such knowledge by mutually introducing synchronisation partners and revealing

possible merge candidates.

2.4.4 Summary

Service flows introduce the challenge of managing concurrent data access, conditional

execution paths, and common meeting points. Avoiding concurrent data access in the

design is desirable because it does not require synchronisation during execution. If this

is not possible, exchanging data access token (Yu, 2009a) is a viable solution for dynamic

ad hoc environments because these tokens can be integrated with composition control

flow messages.

For handling conditional execution paths, dynamic provider activation is a promising

approach. It removes obsolete parts from the composite as it enfolds during execution

and activates only required providers. However, existing solutions (Yu, 2009b; Atluri

et al., 2007) do not specify when they confirm the commitment of the provider, block its

resources for service invocation, and release provider resources in case a path becomes

obsolete. Without such a strategy, the composite is prone to failure as the load and

objectives change the provider availability dynamically.

Solutions for finding a common meeting point tend to be of limited applicability

for dynamic ad hoc networks. The reviewed techniques either assume reliable and well-

informed entities or compromise on the flexibility and locality when allocating it dynam-

ically. Among the existing solutions, the synchronisation algorithm, proposed by Yildiz

and Godart (2007), is promising because it increases flexibility and locality. Parallel ex-

ecution paths continuously exchange updates about their allocation decisions such that

the final providers can run an agreement protocol about a common successor. However,

as this algorithm has not been evaluated for dynamic ad hoc networks, its impact on

mobile service providers and service composites is unclear.

33

Chapter 2. State of the art

2.5 Communication

In dynamic ad hoc environments composite participants cannot rely on managed com-

munication infrastructure and have to self-organise a network to collectively achieve a

complex task. Their mobility and the nature of the wireless medium, however, make

service composition challenging as network routes may change frequently and bandwidth

is limited. This raises the question: How can service composition and ad hoc commu-

nication be aligned to deliver messages among composite participants efficiently? The

reviewed approaches address this question with tuplespaces, content-based routing, and

cross-layer designs.

2.5.1 Tuplespaces

Service invocation via tuplespaces (Martin et al., 2008; Fernández et al., 2010) enables

composite participants to exchange messages while they may not be present in the net-

work at the same time. They use a shared remotely-accessible container (i.e., a tu-

plespace) to hold service allocations and control flow messages. If a control flow message

arrives in a tuplespace and matches a service allocation, execution of the corresponding

service provider is triggered. While allowing for timely decoupling, tuplespaces imply

a strong spatial dependency because a service provider and a service consumer must

refer to the same tuplespace to communicate. This is challenging in networks that lack

dedicated infrastructure. LIME (Murphy et al., 2001), is a middleware to coordinate

applications that are distributed among mobile hosts. It breaks a tuplespace in multiple

tuplespaces and deploys them on mobile hosts. When two hosts come in each other’s

communication range, their tuplespaces merge to one virtual space and increases the

possibility for service allocations to meet and match control flow messages. However,

the source and destination of a control flow message may never meet. CRUST (Artail

et al., 2009), is an extension to LIME and offers clustering and routing capabilities for

tuplespaces. It forwards tuples across tuplespaces to ensure that service allocations and

control messages eventually meet. From the communication perspective, this approach

converges with routing protocols for direct messaging in mobile ad hoc networks.

34

2.5. Communication

2.5.2 Content-based routing

CiAN (Sen et al., 2008) presents a content-based publish-subscribe routing scheme to

provide for interaction among composite participants despite a dynamic and fragmented

network. It assigns a unique totally-ordered service id to each required service which

service providers use to deliver their service result to their successor or to subscribe for

service data from their predecessor. These messages are then relayed by intermediaries

based on their service id. For example, an intermediary forwards a subscription if its

own service id is between the id of the source and destination of the message and smaller

than the last intermediary’s id. A message containing a service result is routed the same

way, only in increasing manner. Eventually a subscription and a service result meet

on one intermediary who dispatches the service result directly to its destination. The

protocol is robust to topology changes because intermediaries store messages until they

encounter a suitable router to forward the message. However, as service ids do not reflect

location, a message may take a detour to reach its destination and requires more time

and communication effort to be delivered.

2.5.3 Cross-layer design

Cross-layer approaches combine service discovery with underlying routing mechanisms

to exploit routing traffic (Ververidis and Polyzos, 2008). For example, a modified route

request carries a service discovery request while periodic messages for route mainte-

nance contain service announcements (Varshavsky et al., 2005). This is to reduce the

communication overhead of otherwise separately operating layers. Group-based service

discovery (Chakraborty et al., 2006), on the other hand, uses the backward route of a

service request to deliver a service discovery response. This way, a new route and the

associated overhead for route discovery is only necessary if the original route breaks.

While these approaches show a benefit in terms of communication overhead they are

limited to service discovery and do not investigate how the need for interaction during

service allocation and invocation could be integrated with routing protocols.

35

Chapter 2. State of the art

2.5.4 Summary

Communication approaches based on tuplespaces, content-based routing, and cross-layer

designs all provide means to adapt to the dynamics and bandwidth constraints of dy-

namic ad hoc networks. They differ, however, in their awareness of a message being sent

as part of a service composition process. Tuplespaces support the interaction between

composite participants that are not present at the same time. Their extensions for dy-

namic networks, however, dispatch messages similarly to conventional routing protocols

and regardless of their composition context. Content-based routing, as proposed by Sen

et al. (2008), uses the order of required services in a composite to relay messages. While

robust to topology changes, this approach may incur more overhead than address-based

routing schemes as the content of the message may not correlate with the location of its

recipient. Cross-layer designs send routing and composition content in one message and

use routes established during service discovery to reduce the network traffic. Current

cross-layer designs are, however, limited to service discovery and unaware of the poten-

tial of service allocation and invocation to further reduce the communication overhead of

a composite. This thesis addresses this gap and examines how participants may derive

actions (e.g., announcing a service or releasing resources) by following the progress of

composites in their communication range rather than by expecting an explicit message

that triggers them. This line of thought ties in with the need for “new search techniques

that exploit [radio] broadcast to become aware of network services by simply listening

(eavesdropping) to the traffic other nodes generate” (Mian et al., 2009).

2.6 Chapter summary

This chapter reviewed service composition solutions for their applicability in dynamic ad

hoc networks and based on the main building blocks service discovery, allocation, and

invocation as well as service flows and communication.

Service discovery investigated how dynamic provider information is maintained and

kept up-to-date. The analysis showed the trade-off between proactively announcing ser-

vices and revealing service information on demand. While proactive solutions do not

36

2.6. Chapter summary

rely on additional infrastructure, they require high maintenance and periodic commu-

nication. Demand-based solutions do not need frequent updates but rely on a pre-

established peer-to-peer structure for information replication. Periodic communication

and pre-established structures do not map well to the characteristics of dynamic ad hoc

networks. This motivates research on optimising demand-based service discovery that

builds on the co-location of composite participants rather than pre-established structures

and recognises demand without explicit service discovery requests.

Service allocation studied how the provider choice for composites is stabilised against

the dynamics of the operating environment. Among the reviewed solutions, group-

based and probing-based approaches are most applicable for dynamic ad hoc networks.

Group-based solutions are flexible towards changes because they defer the final allocation

decision to when a service needs to be invoked. However, they require additional effort for

group management. Probing-based solutions explore the physical network of potential

service providers and preserve the locality of the allocation. However, isolated from

the service discovery phase, probing incurs additional communication and delays. A

solution that efficiently preserves the locality and the flexibility of the provider allocation

is desirable for dynamic ad hoc environments, however, does currently not exist.

Service invocation examined how provider resources can be efficiently blocked, con-

sumed, and released. Distributed invocation approaches allow for direct interaction

between composite participants and cater for the fact that in ad hoc environments

the view of available services is limited for all participants. Among the decentralised

approaches, dynamic provider activation is more suitable than static composite frag-

mentation because it consumes resources as the composite enfolds. However, existing

activation solutions do not confirm the provider availability after allocation. This can

lead to composite failure as a service provider may reject the service invocation due to

limited resources or conflicting objectives. It remains to be investigated, how dynamic

activation can block and release provider resources such that it stabilises the execution of

a composite and at the same time maximises the general availability of service providers.

37

Chapter 2. State of the art

Service flows analysed how parallel execution paths can efficiently synchronise their

access to concurrent data, conditional execution paths, and the allocation of a common

meeting point. Avoiding concurrent data access during the composite design is most

efficient because it does not require synchronisation at runtime. Otherwise, passing a

data access token is a viable option for dynamic ad hoc environments because it can be

integrated with control flow message during composite execution. For conditional exe-

cution paths, dynamic provider activation is desirable because it removes obsolete parts

as the composite is executed and activates providers that are actually needed. However,

without a strategy of when to confirm the provider availability, existing solutions are not

readily applicable. For a common meeting point that merges parallel execution paths

into a single thread of control, existing solutions tend to compromise the locality or the

flexibility of the allocation. Allocating the meeting point immediately prior to its invo-

cation allows for high flexibility and locality. In an existing solution, parallel execution

paths synchronise their allocation decision for each service toward the common meeting

point. The implications of such an approach in dynamic ad hoc networks have not been

evaluated and motivate further investigations.

Communication examined how composite messages can be efficiently delivered in ad

hoc networks. Cross-layer designs show high potential to reduce network traffic because

they integrate networking and composition aspects in their techniques for message deliv-

ery. However, current solutions are limited to service discovery. This raises the question

of how service allocation and invocation can be integrated with lower communication

layers to reduce the message overhead for service composition.

Wrap-up Few approaches integrate all aspects of service composition and the KIVIAT

diagram in Figure 2.2 illustrates those solutions that address most of them. The diagram

has seven dimensions representing the criteria that were used throughout the chapter to

compare different solutions. Each dimension has three levels which, outgoing from the

centre, increase in their applicability for dynamic ad hoc networks. The coloured lines

depict for the composition solutions how they address each dimension. The diagram

highlights three important findings of the state of the art review:

38

2.6. Chapter summary

On demand
Proactive partly on demand
Proactive

Service
announcement

Local cache
Peer structure
Central repository

Required
infrastructure

Loop
Flow
Sequence

Request
complexity

Dynamic activation
Group-based allocation
Probing, Static fragment.

Allocation
flexibility

Probing
Multiple allocators
Single allocator

Locality of
allocation

Alloc. single
Alloc. multiple
Alloc. multiple long

Resource
awareness

Confirmed

Assumed

Provider
availability

CiAN (Sen et al., 2008)

Dynamic Broker
(Chakraborty et al., 2005 and 2006)

Dynamic service composition
(Kalasapur et al., 2007)

OSIRIS
(Schuler et al., 2004)

Logical service group
(Prinz et al., 2008)

Spidernet
(Gu et al., 2006)

Fig. 2.2: The KIVIAT diagram shows how solutions, that cover most aspects of service compo-

sition, address seven reference criteria. Each criterion has three levels which increase in appli-

cability for dynamic ad hoc networks, the further they are away from the centre. Among other

things, the diagram highlights that allocation flexibility based on dynamic allocation has not been

adequately addressed.

• The availability of a provider for service invocation tends to be assumed rather

than confirmed (cp. provider availability), in particular, by solutions that apply

local caching (cp. required infrastructure).

• Solutions that allocate a single provider per required service are resource-aware

(cp. resource awareness), however, tend to compromise allocation flexibility (cp.

allocation flexibility).

• Dynamic activation (cp. allocation flexibility), i.e., blocking, consuming, and re-

leasing provider resources that are actually required by a composite, has not been

adequately addressed.

39

Chapter 2. State of the art

As an aside, the diagram shows that loops of repetitive execution paths (cp. request com-

plexity) have not been covered, however, this was outside the scope of the analysis and

is not further addressed. This thesis draws inspiration from deferring the final provider

allocation to when a required service needs to be invoked and activating providers that

are actually needed. These concepts are proposed by group-based allocation and dy-

namic activation techniques. In contrast to existing solutions, the approach, described

in this thesis, lets a service provider search for its successor after it executed its allo-

cated service. This way, the approach aims to obtain the locality, resource-awareness,

and provider availability of the composite without pre-existing structures for service

discovery and information replication.

40

Chapter 3

Design

This chapter returns to the characteristics of mobile ad hoc networks and corresponding

composition challenges to frame the problem and solution that are addressed in this

thesis. Figure 3.1 outlines the structure of this chapter: First, the chapter introduces

the design objectives for a novel service composition protocol (cp. Section 3.1). Then

the system model defines service composites and service provision to formalise service

composition as a graph-mapping problem and to specify the assumptions that scope the

contribution of this thesis (cp. Section 3.2). The subsequent section on design decisions

discusses alternatives related to service discovery, allocation, and invocation as well as

service flows and communication aspects to motivate the choices for the novel protocol

(cp. Section 3.3). The section thereafter explains how the proposed solution integrates

the design decisions (cp. Section 3.4). It is subdivided in three parts: The first part

shows the basic protocol and how it handles sequential service requests. The second

part describes the protocol extensions to support parallel service flows. The third part

provides details on the cross-layered communication approach. The chapter concludes

with a summary of the key design aspects (cp. Section 3.5).

3.1 Design objectives

Chapter 1 introduces opportunities and challenges for service composition in mobile ad

hoc networks. In the scenario, Adam’s noise tracking task incorporates other mobile

devices to produce an audio snapshot of his surroundings. In open environments, com-

41

Chapter 3. Design

3.1
Design objectives

3.2
System model

3.3
Design decisions

3.4
Proposed solution

3.5
Chapter summary

Service composite

Service provision

Problem statement

Assumptions

Service sequences

Service flows

Cross-layer
communication

Service discovery

Service flows

Communication

Service allocation and
invocation

Fig. 3.1: Design overview The sections design objectives and system model define the problem

space that is addressed in this thesis. The sections design decisions and proposed solution describe

the novel opportunistic composition protocol. The summary highlights the key design aspects.

plex tasks are likely to rely on multiple data sources to compensate uncertainty and

to improve the quality of the final result. The data sources first work in parallel, each

sampling and pre-processing data, and then merge their parallel execution paths into

one for further processing. In Adam’s case, three or four audio sampling services may

merge their results to increase the quality of the final audio snapshot. The collaborating

devices, however, are autonomous, communicate wirelessly, and are part of a transient

network which lacks dedicated composition infrastructure and is likely to fail completing

a complex request. These system characteristics correspond to the challenges identified

in chapter 1 on page 4 and introduce new design objectives for service composition in

highly dynamic environments. To address the challenges a service composition must:

• Design objective 1: Proactively gather information

In transient networks that evolve and dissolve based on demand (challenge 1),

composite participants must be prepared to gather service information on their

own initiative because a decentralised management of cached service provider data

may not be established.

• Design objective 2: Self-organise service composition

The lack of dedicated composition infrastructure (challenge 2) requires composite

participants to organise the discovery, allocation, and invocation of services among

themselves because an entity that manages these tasks and has global view of

available services does not exist.

42

3.1. Design objectives

• Design objective 3: Support parallel service flows

The absence of composition infrastructure (challenge 2) also implies that compos-

ite participants must coordinate the synchronisation of parallel execution paths

themselves because there is no dedicated entity that can reliably handle this task.

• Design objective 4: Reduce communication

Because of the narrow bandwidth of wireless communication links (challenge 3),

composite participants must limit the exchange of messages to lower the potential

for radio interference.

• Design objective 5: Enable short and localised interaction

Service composites should reduce the impact of mobility (challenge 4) by com-

pleting service discovery and invocation before the service provider moves and by

allocating providers that are close-by.

• Design objective 6: Obtain provider commitment

Due to the participation autonomy of service providers (challenge 5), service com-

posites require the providers’ explicit commitment to engage in a particular com-

posite. Each commitment indicates that the provider blocks enough resources to

handle part of the composite request.

Collectively, these design objectives target the failure potential of service composites

(challenge 6). Strategies for additional failure prevention and recovery are outside the

scope of this thesis which examines the composition procedure itself to reduce failure.

Further, while the first three design objectives address the implementation of the ser-

vice composition in mobile ad hoc environments, the last three aim at reducing the

composite’s exposure to the inherent unreliability of these environments. Combined the

objectives highlight the tension between resource-intensive composition tasks on the one

hand and the resource-constrained operating environment on the other hand. The sys-

tem model in the next section formalises this tension and introduces the terminology

and assumptions to design a possible solution.

43

Chapter 3. Design

3.2 System model

The applications under consideration in this thesis reside in dynamic ad hoc environ-

ments. They build on components that provide and require services. Complex applica-

tion requirements are modelled by a composite description that defines the behaviour

and order of required services. At runtime a composition algorithm processes the de-

scription. It incrementally allocates and invokes service providers to return in the end

either a valid composition result or a failure notification. The system model first defines

service composite (cp. Section 3.2.1) which represents a composite description. It then

defines service provision which represents available services in an ad hoc network (cp.

Section 3.2.2). These are the prerequisites to formally describe the problem (cp. Sec-

tion 3.2.3) and to define the assumptions (cp. Section 3.2.4) for the design of the novel

composition protocol.

3.2.1 Service composite

A service composite specifies required services and the data and control flow between

them. A service composite can be represented as a directed graph in which the vertices

correspond to the required services and the directed edges to the control and data flow.

This thesis focuses on composites that do not contain repetitive parts and models a

service composite as a directed acyclic graph Gc:

Definition 1 A service composite is a directed acyclic graph Gc = (Vc, Ec, sid, pid,

src, dst, eval) with a set of vertices Vc for required services and a set of labelled edges Ec

for the conditional data and control flow between the services. The functions sid : Vc →

N and pid : Vc → N return the unique service and provider id of a required service. The

functions src : Ec → Vc and dst : Ec → Vc return the unique source and destination of

an edge. The function eval : Ec → {0, 1} returns whether the condition to enable the

edge is true.

An example for a service composite graph is depicted in Figure 3.2. The graph handles

the complex task of classifying audio data. It builds on services that sample raw audio

data, extract features, aggregate output from different sources, and classify features.

44

3.2. System model

s1

s2

s3

s5

s6 s8 s9

e1,2

e1,3

Audio
Sampling

s10 s11e9,10

Feature
extraction

Feature
Aggregation

Feature
Classification

e9,11

s4 s7

e1,4

Composite
source

Composite
destination

e1,2 mandatory
e1,3 if available
e1,4 if available
e9,10 if prob ≤ probref

e9,11 if prob > probref

Fig. 3.2: Composite graph for audio classification The composite graph extracts and

aggregates features of raw audio data to classify them with a certain probability e.g., as traffic

or music. The composite retains the services of multiple audio sampling services if available and

commissions a second classifier if the probability of the first classification is insufficient.

The data and control flow splits in parallel execution paths if multiple independent

audio sources are available and continues in two possible ways depending on the output

quality of the first classifier. A service s in the composite graph Gc has a defined set of

predecessors, successors, and synchronisation partners:

Definition 2 The predecessors of a service s is the set of services, pred(s) = {v ∈

Vc|∃e ∈ Ec, src(e) = v ∧ dst(e) = s}, for which s must wait to finish until it can execute.

Definition 3 The successors of a service s is the set of services, succ(s) = {v ∈ Vc|∃e ∈

Ec, src(e) = s ∧ dst(e) = v}, which s needs to notify to trigger their execution.

Definition 4 The synchronisation partners of a service s is the set of services, partner(s) =

{v ∈ Vc|∃m ∈ Vc, v ∈ pred(m) ∧ s ∈ pred(m) ∧ (v 6= s)}, which s must synchronise with

to find a common provider for a merge service m.

For example in Figure 3.2, the predecessors, successors, and synchronisation partners

of service s8 are pred(s8) = {s5, s6, s7}, succ(s8) = {s9}, and partner(s8) = ∅. A

composite graph Gc has a unique start service sstart ∈ Vc which does not have any

predecessors pred(sstart) = ∅ and a unique end service send ∈ Vc without any successors

succ(send) = ∅. In Figure 3.2, the composite graph specifies sstart = s1 and send = s11.

45

Chapter 3. Design

s1

s2

s5

s3

s4

s6

s7

s1

s2

s3

s1

s2

s5

s3

s4

s6

Composite 1 Composite 2 Composite 3

Fig. 3.3: Valid and invalid composites This thesis focuses on acyclic well-structured com-

posites (composite 1). It does not address composites that are unstructured (composite 2) or

contain repetitive parts (composite 3).

The structure of a composite graph that is studied in this thesis complies with the

following Extended Backus-Naur Form in which each service si ∈ Vc occurs only once:

< c > ::= s1|...|sn|

< c > seq < c > |

< c > split(< c >, [< c >])merge < c >

According to this definition, a composite graph may be a sequence of services or a ser-

vice flow that splits and merges multiple execution paths. In case of a service flow, the

composite graph must be well-structured i.e., all parallel paths that originate from one

split service must terminate in one corresponding merge service and all parallel paths

that terminate in one merge service must originate from one corresponding split service

(Polyvyanyy et al., 2010). For example in Figure 3.3, composite 1 is well-structured,

while composite 2 is not because the paths that terminate in the merge service s6 orig-

inate from two different split services s2 and s1. Inspired by the work of Atluri et al.

(2007), the control logic for split and merge services is modelled implicitly by the number

of edges in Ec that evaluate to true during the execution of the composite. Initially, these

edges have OR or XOR semantics depending on whether their conditions are mutually

exclusive. For example in Figure 3.2, edge e1,3 or e1,4 or both may evaluate to true

whereas either e9,10 or e9,11 will be true. Service s1 represents an AND-splitting service,

if edge e1,2, e1,3 and e1,4 are true. Service s8, on the other hand, is an OR-merging service

and must be prepared to handle any subset of predecessors until it is actually invoked.

46

3.2. System model

3.2.2 Service provision

A service provider grants access to locally hosted services and executes the control logic

that combines basic services to complex composites. The provider communicates with

other composite participants wirelessly, either directly if they are in its direct commu-

nication range, or indirectly via intermediaries that relay messages. Service providers

are mobile and autonomous which implies a frequently changing network and service

topology. Service provision depends on whether a service is currently offered and on

whether there is a network link to its provider. This thesis uses the concept of time-

varying graphs (Casteigts et al., 2011; Santoro et al., 2011) to model the dynamics of

service provision. A time-varying graph defines, in addition to the collection of vertices

and edges, a presence function that indicates whether a given edge is available at a given

time. In such a graph, a vertex represents a service that is offered by a particular service

provider. An edge between two vertices represents the network link between the two

service providers. At times this link may be disabled indicating that the two providers

are disconnected. Service provision can be formally defined as follows:

Definition 5 Service provision is a network of provided services and represented as

an undirected time-varying graph Gp = (Vp, Ep, Tp, ρ) over a graph lifetime Tp. The

set of vertices Vp corresponds to services offered by particular providers. The set of

edges Ep represents the network links between service providers. The presence function

ρ : Ep × Tp → {0, 1} returns for a given edge and given date whether the edge is enabled

and two service providers are connected.

The evolution of service provision can be modelled as a sequence of static sub-graphs.

Each sub-graph represents the interval in which all enabled edges remain enabled.

Changes occur from one sub-graph to the next. The edges in Ep evolve over time and

get disabled in two cases: First, the service provider temporarily disables the provision

of a service. Second, the network link between two service providers breaks because one

of them or an intermediary has moved, failed, or powered-off. Figure 3.4 illustrates an

example for the evolution of the service provision graph Gp.

47

Chapter 3. Design

s2

p2

s1

p1

s3

p3

Sub-graph 1

s2

p2

s1

p1

s3

p3

Sub-graph 2

s2

p2

s1

p1

s3

p3

Sub-graph 3

Legend: vertex in Gp edge in Gp pj offers si pm connected to pn

Fig. 3.4: Dynamic service provision In sub-graph 1 the services s1, s2, and s3 are connected.

In sub-graph 2 provider p1 disables its support for s1 but remains as an intermediary for the

network link between p2 and p3 such that s2 and s3 stay connected. In sub-graph 3 provider p3

disconnects from p1 and disables the edge between s2 and s3. Hence, there is only limited time

to compose a service sequence of s1, s2, and s3.

3.2.3 Problem statement

Service composition in dynamic ad hoc networks can be modelled as the problem of

finding a mapping between the sequence of service provision graphsGp and the composite

graph Gc such that the edges between two provided services are enabled for the time

they interact.

3.2.4 Assumptions

The system model makes the following assumptions to scope the design of the novel

composition protocol:

• Network links between service providers are bi-directional and allow for symmetric

connectivity. If provider i is connected to provider j, then provider j is connected

to provider i.

• The network among service providers evolves over time as the providers appear

and disappear in each other’s communication range. These dynamics are modelled

by enabling and disabling network links. When a provider disconnects from the

network it is considered to have left.

48

3.3. Design decisions

• From the communication perspective, all service providers are cooperative and

attend to their routing responsibilities. They share their resources if they can and

are not malicious.

• Service providers are resource-constrained and engage in a limited number of com-

positions simultaneously. If this number is exceeded the service provider ignores

any further composite requests.

• Once a service provider agrees to participate in a particular composite, it does

not revoke its commitment. Unanticipated failure is not considered as this would

require additional recovery strategies that are outside the scope of this thesis.

• A composite request is a well-structured acyclic directed graph that represents a

template of required services. Graphs with unstructured parallel service flows or

repetitive parts are not considered.

• Composite participants use a common language and rely on a global ontology to

specify offered and required services.

The assumptions complete the description of the system model which together with the

design objectives (cp. Section 3.1) cover the problem space of this thesis. The next

section turns to the solution space and examines different alternatives to motivate the

design decisions for an opportunistic composition protocol.

3.3 Design decisions

For service composition in mobile ad hoc environments there are different ways to or-

ganise the service discovery, allocation, and invocation, handle parallel service flows, and

manage the communication between service providers. The following discussion takes

these activities to structure the design decisions and to show how these decisions address

the design objectives that were identified in Section 3.1.

49

Chapter 3. Design

3.3.1 Service discovery

For the discovery of available services, service providers may announce their capabili-

ties through proactive unsolicited advertisements or by responding to service discovery

requests. The former approach eases service discovery once the network is established

but needs to keep cached provider information up to date. The latter solution does not

incur such maintenance overhead but delays the composition because service providers

first need to be identified. With regard to service discovery the first two design decisions

are as follows:

Design decision 1: Demand-based service announcement

The proposed protocol combines both discovery approaches. Service provi-

ders respond to service discovery requests and proactively announce a service

if they observe its necessity in a particular composite. This demand-based

strategy limits the information exchange to provider data that a composite

actually needs and reduces communication. This addresses design objective

4. Further, the strategy targets design objective 1 as it is independent from

a distributed service registry that may not exist in transient networks.

Design decision 2: Resource-blocking service announcement

In conjunction with design decision 1, the issuer of a service announcement

already blocks sufficient resources because the announcement is targeted at

the next required service of an actual composite and the allocation decision

is anticipated soon. This avoids additional communication to confirm the

participation commitment and contributes to design objective 6. At the

same time, however, this strategy requires the release of redundant service

providers after the allocation is complete. For reducing this overhead the

approach followed in this work is to limit proactive service announcements

and efficiently disseminate multicast messages.

The next section discusses different ways of organising the allocation and invocation of

required services.

50

3.3. Design decisions

3.3.2 Service allocation and invocation

Service allocation and invocation distinguishes three approaches: First, broker-based

designs, as in dynamic brokers (Chakraborty et al., 2005), appoint a single entity that

handles both tasks in a centralised manner. Second, semi-centralised solutions, as in

CiAN (Sen et al., 2008), rely on a single entity to allocate all service providers and there-

after distribute service invocation among the allocated providers. Third, decentralised

approaches, as in logical service groups (Prinz et al., 2008), distribute the responsibility

for service allocation and invocation within the network of service providers.

The existence of composition brokers is unlikely in transient environments because

a network is established based on a request and none of the participants has initially

sufficient overview of available service providers. In addition, centralised service invo-

cation prevents direct interaction between consecutive service providers and increases

communication. Semi-centralised and decentralised solutions manage provider interac-

tion without a mediator, however, come with their own trade-offs.

In semi-centralised solutions the composite initiator allocates all required services.

Its limited view of how consecutive service providers actually connect, increases the

allocation’s potential for long routes and network failure as each intermediary may move

out of transmission range. For example, in Figure 3.5a step 2, sstart allocates the close-

by provider p2 for service s2. However, from the perspective of provider p1 who has to

invoke s2 in step 4, provider p4 would have been closer.

In decentralised designs one provider allocates the next by examining its surroundings

first and keeping the routes short. However, the interaction between consecutive service

providers stretches over an extend period of time in which even short routes may break.

For example, in Figure 3.5b, the route between provider p3 and p4 may be short but

must remain intact from when s3 allocates s2 (step 2) to when s2 invokes s3 (step 5).

From the analysis of the semi-centralised and decentralised approach emerges another

alternative, namely decentralised interleaved composition (cp. Figure 3.5c), which is the

approach followed in this work and represents the third design decision:

Design decision 3: Decentralised interleaved composition

The proposed protocol distributes and interleaves the allocation and invoca-

51

Chapter 3. Design

Time

1. sstart alloc s3

2. sstart alloc s2

3. sstart alloc+invoke s1

4. s1 invoke s2

5. s2 invoke s3

6. s3 return to sstart

s1|p1

sstart|p0 s3|p3

s2|p2

s2|p4

1.

3.

2.

Locality

4.5.

6.

(a) Semi-centralised

Time

1. sstart alloc s3

2. s3 alloc s2

3. s2 alloc+invoke s1

4. s1 invoke s2

5. s2 invoke s3

6. s3 return to sstart

s1|p1

sstart|p0

s3|p3

s2|p2

s2|p4

1.

3.

2.

Locality

4.

5.

6.

(b) Decentralised

Time

1. sstart alloc+invoke s1

2. s1 alloc+invoke s2

3. s2 alloc+invoke s3

4. s3 return to sstart

s1|p1

sstart|p0

s3|p3

s2|p2

s2|p4 1.

2.

3.

Locality

4.

(c) Decentralised interleaved

Fig. 3.5: Service allocation and invocation alternatives for a sequential request s1 to s3.

Perpendicular braces show for Time how many routes are used twice and must stay intact for

an extended period of time (the fewer and shorter, the better). For Locality the braces show the

distance between consecutive service providers (the shorter, the better).

52

3.3. Design decisions

tion of required services. The composite travels hop-by-hop from one provider

to the next to assign and execute a required service. Once a provider has

been allocated, it is immediately invoked. This addresses design objective 5

and allows for short and localised interactions between consecutive providers.

Collectively, the first three design decisions aim at realising design objective 2 because

they do not require dedicated composition infrastructure and allow for self-organisation

among the composite participants. Further, they build the basis for design decisions

related to service flows which are discussed next.

3.3.3 Service flows

For the support of parallel flows the design needs to decide who identifies a common

provider for a merge service: a single entity (the composite initiator or corresponding

split provider) or the immediate predecessors of the merge service. While a single entity

is limited in its system view and may not choose the candidate that is close-by to all

synchronisation partners, it requires no additional synchronisation effort. On the other

hand, immediate predecessors of a merge service better assess their connectivity to a

merge candidate but need to be aware of each other’s identity to run an agreement

protocol. Once a service provider is ready to synchronise, it may only know the partner

service but not the partner’s provider id. The discovery of that provider would incur some

form of controlled network flooding. Alternatively, a parallel path may stepwise update

its partner paths about each allocation decision towards the synchronisation partners.

Both approaches increase the communication overhead since the partner identification

is separate from running an agreement protocol afterwards. For the novel composition

protocol to support service flows the design decisions are as follows:

Design decision 4: Late merge allocation

The predecessors of a merge service are in the best position to allocate a

provider that is close-by for all synchronisation partners and to support par-

allel service flows as outlined by design objective 3. In line with the decision

for decentralised hop-by-hop service composition, a merge service is treated

as any other service and allocated by its predecessors. The protocol allocates

53

Chapter 3. Design

parallel paths in isolation to avoid repeated allocation updates until synchro-

nisation partners are reached and to reduce communication as required by

design objective 4. The protocol uses the composite structure to deliver syn-

chronisation messages to initially unknown synchronisation partners. This

way the identification process already carries the possible merge candidates

as basis for an agreement.

Design decision 5: Composite reduction

The decision to interleave service allocation and invocation comes with the

benefit of immediately evaluating the conditions that decide whether a re-

quest splits into parallel execution paths or not. If the condition of an edge

in the composite description evaluates to false, the edge gets disabled and

the composite is reduced accordingly. This avoids allocating resources for

obsolete paths and reduces communication as outlined in design objective 4.

Having covered design decisions with regard to the basic composition procedure and

parallel service flows, the next part attends to design decisions that address the commu-

nication aspect of a service composition.

3.3.4 Communication

In highly dynamic networks there is the notion of end-to-end and opportunistic message

delivery. End-to-end communication assumes the source and destination of a message

are available at the same time and connected via a network path. Opportunistic commu-

nication relaxes this requirement. This means if a composite allocated a service provider

that is currently not available, the networks stores and carries any messages for that

provider until it is available again. The two alternatives lead to the next design decision:

Design decision 6: End-to-end communication

The protocol uses end-to-end message delivery because its design is based on

the idea of tapping the potential of those service providers that are available

when the next allocation decision is to be made. In other words, the com-

posite is not aware of providers that may become available at a later stage.

54

3.3. Design decisions

This design decision corresponds to design objective 5 and allows for short

and localised interaction.

Service composition can be regarded as part of the application layer which typically has

an interface to the networking layer to send and receive messages but lacks access to

cached topology information. Responsible for communication and routing related tasks,

the network layer shields the application layer from any messages that are not destined

for it and drops them silently. In wireless communication, a participant’s physical layer

receives all messages that are issued in its transmission range. However, the rigorous

distinction between network and application layer keeps potential service providers from

following the progress of composites around them. The design of the proposed protocol

changes this as follows:

Design decision 7: Observable composition messages

The protocol declares composition messages to be observable such that the

network layer delivers them to the application layer regardless of whether

a participant is a primary recipient or not. This strategy risks flooding

the application layer with unnecessary messages and is avoided by standard

communication stacks. However, in this case it is useful because service

providers can announce services proactively or release blocked resources by

observing a composition instead of exchanging dedicated messages which

reduces communication as outlined by design objective 4.

Design decision 8: Multicast messaging

The release of redundant service providers requires the same message to be

delivered to multiple destinations. Instead of handling each recipient sepa-

rately, all destinations are included in one message. Based on the broadcast

nature of the radio medium, this message is posted only once per hop for the

part of the route that is the same for all destinations and reduces communi-

cation as outlined by design objective 4.

Figure 3.6 summarises the design decisions that constitute the novel opportunistic com-

position protocol and maps them to the design objectives mentioned earlier in this

55

Chapter 3. Design

1. Proactively gather information

2. Self-organise service composition

3. Support parallel service flows

4. Reduce communication

5. Enable short and localised interaction

6. Obtain provider commitment

Design objectiveDesign decision

1. Demand-based service announcement

2. Resource-blocking service announcements

3. Decentralised interleaved composition

6. End-to-end communication

7. Observable composition messages

8. Multicast messaging

4. Late merge allocation

5. Composite reduction

Fig. 3.6: Design decisions Eight design decisions constitute the novel opportunistic composi-

tion protocol and address the six design objectives of this thesis.

chapter. The next section continues to provide details about the proposed solution and

explains how the design decisions materialize in the protocol.

3.4 Proposed solution

This thesis describes a protocol for opportunistic service composition that runs on mo-

bile service providers. A finite state machine models the protocol and describes the

decentralised interaction among composite participants who receive composition mes-

sages and derive state transitions accordingly. For ease of presentation, the description

of the protocol distinguishes between a composite initiator that issues a complex service

request but does not provide any services and service providers that have only enough

resources to cover one service at a time. Note, that the protocol itself is free of such

restrictions. The protocol description involves three parts. The first two parts cover

56

3.4. Proposed solution

the details of the finite state machine by means of scenarios, first with focus on service

discovery, allocation, and invocation for service sequences (cp. Section 3.4.1), then with

focus on extensions for parallel service flows (cp. Section 3.4.2). The third part explains

the cross-layered communication approach (cp. Section 3.4.3).

3.4.1 Service sequences

In the proposed protocol for service sequences (cp. Figure 3.7) service providers start

and end in the listening state while a composite initiator starts in the searching state

and ends in the listening state. The arrival of a composition message triggers the tran-

sition between the protocol states. A composition message contains a unique composite

identifier to distinguish messages that concern different composites. Three types of com-

position messages are relevant for the composition of service sequences:

• Composite request (req) represents a complex service request. It contains the

composite graph and a pointer to the service that is required next.

• Token (tok) represents an allocation decision. It holds the service to execute, its

corresponding provider, and service input data.

• Service announcement (ad) represents the participation commitment of a ser-

vice provider. It encloses the service for which the commitment is made.

Generally, a potential composite participant updates its local version of the composite

graph and its knowledge about the network topology when it receives a composition

message, regardless of whether the message is destined for it or just passes by. In

addition to the above message types, the protocol uses the following notation:

cid(msg) Composite identifier of message msg

cid(self) Composite identifier to which the participant commits

pid(s) Provider identifier for provider of service s

offerNxt Participant offers next required service

offerRemaining Participant offers a remaining service

adObsolete Participant’s service announcement is obsolete

57

Chapter 3. Design

(req Ʌ A)

(req Ʌ B)

(tok Ʌ E)

(tok Ʌ C)∨
(req Ʌ A)

(tok Ʌ G1)∨
(req Ʌ G2)

(tok Ʌ F1)

(tok Ʌ G1)

(tok Ʌ H1)

(tok Ʌ H1)∨(req Ʌ H2)

(tok Ʌ D1)∨
(req Ʌ D2)

founddone

¬foundtimeout

(tok Ʌ E)

listening applying

observing

executing selecting

searching

handover

(tok Ʌ F1)∨
(req Ʌ F2)

(a)

A offerNxt

B ¬offerNxt ∧ offerRemaining

C cid(self)==cid(tok) ∧ offerNxt ∧ inRange

D1 cid(self)==cid(tok) ∧ ¬offerNxt ∧ ¬offerRemaining

D2 cid(self)==cid(req) ∧ ¬offerNxt ∧ ¬offerRemaining

E cid(self)==cid(tok) ∧ allocated

F1 cid(self)==cid(tok) ∧ ¬allocated ∧ offerNxt ∧ inRange

G1 cid(self)==cid(tok) ∧ ¬allocated ∧ ¬[offerNxt ∧ inRange] ∧ offerRemaining

H1 cid(self)==cid(tok) ∧ ¬allocated ∧ ¬[offerNxt ∧ inRange] ∧ ¬offerRemaining

F2 cid(self)==cid(req) ∧ adObsolete ∧ offerNxt

G2 cid(self)==cid(req) ∧ adObsolete ∧ ¬offerNxt ∧ offerRemaining

H2 cid(self)==cid(req) ∧ adObsolete ∧ ¬offerNxt ∧ ¬offerRemaining

(b)

Fig. 3.7: Protocol for service sequences. The state diagram (a) shows how composite

participants change their system state based on the labelled transitions (b). Service providers

start and end in the listening state. A composite initiator starts in the searching state and ends

in the listening state.

58

3.4. Proposed solution

allocated Participant is allocated as the next composite controller

inRange Participant is in transmission range of the next controller

done Service execution finished

timeout Search for a service provider timed out

found Provider for next required service was found

Next, three scenarios explain how the finite state machine integrates the first three design

decisions, namely demand-based service announcement (design decision 1), resource-

blocking service announcements (design decision 2), and decentralised interleaved com-

position (design decision 3). Each scenario refers to the same composite request which

starts and ends with the composite initiator and contains a sequence of two services, s1

and s2. Further, each scenario depicts a network graph to show how the corresponding

composite participants connect, a composite graph to show how the request evolves, and

a sequence diagram to show how the participants interact.

3.4.1.1 Scenario 1: Basic protocol

In the basic protocol (cp. Figure 3.8) the initiator starts in the searching state and issues

its composite request. Once service provider p1 responds and the search times out, the

initiator allocates p1 as the provider for s1 and hands over the composition control by

sending a token. Based on this token, the initiator infers that it is not allocated for the

next service and does not offer any required services such that it transitions to listening

and waits for the composite result:

H1: cid(self)==cid(tok) ∧ ¬allocated ∧ ¬[offerNxt ∧ inRange] ∧

¬offerRemaining

Provider p1 demonstrates a typical sequence of state changes for service providers. First,

p1 listens for a composite request and applies if it offers the next required service:

A: offerNxt

then executes the services if it receives a token that indicates that p1 is the allocated

provider and thus the next composite controller:

E: cid(self)==cid(tok) ∧ allocated

59

Chapter 3. Design

Initiator p0
Provider p1

(s1)
Provider p2

(s2)

req
apply [A]

ad

tok
execute [E]

select

select

search listen listen

handover

handover

listen [H1]

Composite graph

Network graph

p0 p1 p2

req

search

apply [A]
ad

tok

Composition protocol

p0

sstart s1 s2 send

p0

p0

sstart s1 s2 send

p0p1

p0

sstart s1 s2 send

p0p1 p2

select

listen [H1]

execute [E]

handover

select

result

listen [H1]

timeout

timeout

Fig. 3.8: Scenario 1 Basic protocol The network graph and initial composite graph define

the scenario setting. The composition protocol illustrates the interaction between composite par-

ticipants. Its annotations in square brackets refer to the conditions stated in Figure 3.7b. The

initiator allocates provider p1 to the required service s1. After executing service s1, provider p1

assigns provider p2 to cover service s2. Provider p2 returns the final result to the initiator.

60

3.4. Proposed solution

Thereafter, provider p1 alternates between selecting and searching until it finds a provider

for the next required service. Finally, provider p1 hands over the composition control by

sending a token to its successor and goes back to the listening state if it is not allocated for

the next service and cannot further contribute to the composite. Provider p2 continues

with executing s2 and hands the result over to the initiator without searching because

the initiator’s provider id was part of the composite graph that p1 send in its request.

The scenario demonstrates decentralised interleaved service composition (design de-

cision 3) as each service provider assigns its successor (decentralised) after it executed

its own service (interleaved). Further, with the announcement of a service, the provider

blocks local resources (design decision 2). The announcement is directed to the con-

troller of a particular composite and only valid for the enclosed composite id. It cannot

be reused for other composites. This way the protocol supports explicit resource alloca-

tion and avoids composite failure due to provider overload.

3.4.1.2 Scenario 2: Proactive service announcement

The setup in Figure 3.9 differs from the previous scenario in that p2 is now in range

of the initiator and receives the initial service request. While the initiator and p1 act

as before, p2 starts observing the composite because it does not provide the currently

required service but the one thereafter:

B: ¬offerNxt ∧ offerRemaining

When the initiator sends the token to p1, p2 overhears that because composition messages

are observable by anyone in the sender’s transmission range (design decision 7). From

the token p2 derives that s2 is required next and proactively announces itself (design

decision 1) since it is in the range of the new controller p1:

C: cid(self)==cid(tok) ∧ offerNxt ∧ inRange

After p1 is done executing s1 it does not have to search for a successor due to the proactive

announcement of p2 and hands over to p2. The protocol restricts the number of unso-

licited service announcements by the inRange condition. Otherwise, if a request must

be sent multiple times each time with a bigger search radius to find a service provider,

61

Chapter 3. Design

Initiator p0
Provider p1

(s1)
Provider p2

(s2)

req

p0

...

tok

execute

select

sstart s1 s2 send

p0

p0

sstart s1 s2 send

p0p1

search listen listen

...

handover

Composite graph

Network graph

p0 p1 p2

tok ...

Composition protocol

req
observe [B]

apply
proactively
[C]

ad

p0

sstart s1 s2 send

p0p1 p2

Fig. 3.9: Scenario 2 Proactive service announcement Provider p2 is in transmission

range of the composite initiator, receives the initial request and observes until it infers from

the overheard token (perpendicular arrow) that its service s2 is required. Then p2 proactively

announces itself and spares p1 the search for a suitable provider for s2.

the subsequent token must travel multiple hops to the new controller. All participants en

route to the new controller could potentially announce themselves proactively. The new

controller, however, only needs one successor and must release redundant advertisers.

This overhead would outweigh the benefit of announcing services proactively.

Generally, potential applicants have the choice to ignore a composition message.

The protocol models the check of local objectives and available resources implicitly and

defines state transitions on the basis of a positive attitude towards participating in the

composite. This means, when a participant is an observer or in the position to (re-)apply,

it may also transition to the initial listening state and not participate at all.

3.4.1.3 Scenario 3: Lost release

The scenario in Figure 3.10 has the same setup as the previous one, except that provider

p2 offers two services s1 and s2 and along with p1 responds to the initiator’s request.

The initiator allocates p1 as its successor. The particular selection algorithm is out of

scope of this thesis. For simplicity, the provider with the lowest provider id is chosen.

62

3.4. Proposed solution

Initiator p0
Provider p1

(s1)
Provider p2

(s1,s2)

req

p0

apply [F2]

sstart s1 s2 send

p0

p0

sstart s1 s2 send

p0p2

search listen listen
Composite graph

Network graph

p0 p1 p2

Composition protocol

req
apply

req:s2

ad: s1

apply
ad:s1

...
tok:pid(s1)=p1

...

ad:s2

...

Fig. 3.10: Scenario 3: Lost release Provider p2 applies for covering service s2, however,

does not get the releasing token from the initiator. It stays blocked until it receives a request from

p1 indicating that the composition has made progress and announcements for s1 are obsolete.

This unblocks p2 and enables it to apply for s2.

The initiator sends a token to p1 to transfer the composition control and the same

token to p2 to release its resources. However, p2 does not receive the token as it has

moved out of the initiator’s transmission range and stays blocked. In such a situation

a timeout is the last resort to unblock redundant resources. The protocol allows for

a complementary solution by analysing by-passing traffic and unblocking resources if

service announcements have become obsolete. In case of p2, it is still in range of p1

and receives a request for s2. The request indicates that an allocation decision for s1

has been made and that all announcements for s1 are obsolete. Generally, a service

announcement is obsolete if the participant receives a request for a service that follows

at some stage in the path of the advertised service. Provider p2 unblocks its resources

and applies for executing the next required service s2:

F2: cid(self)==cid(req) ∧ adObsolete ∧ offerNxt

Other participants whose announcements are obsolete may transfer to observing if they

can still contribute to the composite:

G2: cid(self)==cid(req) ∧ adObsolete ∧ ¬offerNxt ∧ offerRemaining

63

Chapter 3. Design

Otherwise they transfer to listening:

H2: cid(self)==cid(req) ∧ adObsolete ∧ ¬offerNxt ∧ ¬offerRemaining

The previous three scenarios illustrate the main aspects of the composition protocol

for service sequences. They build the basis for extending the protocol to support the

composition of parallel service flows which are discussed next.

3.4.2 Service flows

Figure 3.11 illustrates the extensions of the protocol to support the composition of par-

allel service flows. Synchronisation messages are an important part of these extensions

and another type of composition messages. Synchronisation partners exchange synchro-

nisation messages to agree on a provider for their common successor, the so-called merge

service. With service flows, a composite participant may receive token and synchronisa-

tion messages from multiple sources and relies on additional information to distinguish

them. In particular, token and synchronisation messages include the last service which

the source of a message executed along with the source’s provider id. For composite re-

duction, these two message types further include a placeholder for edges in the composite

graph that have become obsolete during the composite execution:

• Synchronisation message (sync) represents a suggestion for a merge service

provider from a synchronisation partner. The synchronisation partner includes its

own provider id and last executed service along with the provider id of its suggested

merge provider and the synchronisation partner service to which the message is

addressed. In addition, a placeholder contains those edges that got disabled in the

composite graph.

• Token (tok) represents an allocation decision. In addition to the service to exe-

cute, its corresponding provider, and service input data, it contains the provider id

and the last executed service of the message source and a placeholder for disabled

edges in the composite graph.

The following syntax extends the notation introduced for service sequences to specify

the protocol for service flows and its corresponding algorithms:

64

3.4. Proposed solution

(req Ʌ A)

(req Ʌ B)

(tok Ʌ E)

(tok Ʌ C)∨
(req Ʌ A)

(tok Ʌ G1)∨
(req Ʌ G2)

(tok Ʌ F1 Ʌ¬O)

(tok Ʌ G1 Ʌ¬O)

(tok Ʌ H1 Ʌ¬O)

(tok Ʌ H1)∨(req Ʌ H2)

(tok Ʌ D1)∨
(req Ʌ D2)

(found

 Ʌ¬K)
done

(¬found Ʌ¬K)timeout

(tok Ʌ E)

listening applying

observing

executing selecting

searching

handover

(tok Ʌ F1)∨
(req Ʌ F2)

syncing

service-
routing

K
(sync,M)

(sync, N)

O

(¬O)

(a)

K partner(self) 6= ∅

M cid(self)==cid(sync) ∧ allSyncRec ∧ found

N cid(self)==cid(sync) ∧ allSyncRec ∧ ¬found

O SRR(self) 6= ∅

(b)

Fig. 3.11: Protocol for service flows The green states and transitions in the state diagram

(a) illustrate the protocol extensions to support the opportunistic composition of parallel service

flows. The conditions (b) extend those specified in Figure 3.7.

65

Chapter 3. Design

partner(self) Participant’s synchronisation partner services

allSyncRec Participant received a synchronisation message

from all its partners

SRR(self) Participant’s service routing responsibilities

SRR(s) Service routing responsibilities of a service s

pred(s) Predecessor services of service s

succ(s) Successor services of service s

src(msg) Service of the message’s source

dst(msg) Service of the message’s destination

lastSR(msg) Service of the message’s last service router

eval(e) Evaluate the conditional edge e

disable(e) Reduce the composite graph by disabling edge e

The next two scenarios describe how the protocol supports the late allocation of a com-

mon merge service provider without updating the parallel paths along the way (design

decision 4). Thereafter, three scenarios discuss how the protocol reduces a composite

at runtime (design decision 5) to avoid the resource allocation for services that have

become obsolete.

3.4.2.1 Scenario 4: Synchronisation

In the scenario of Figure 3.12 all service providers are in transmission range of provider

p0 and get activated by its request for the two parallel services s1 and s2. While p1

and p2 apply for covering them, p3 and p4 start observing the composite. When p0

issues its allocation decision, it sends one token to both of its successors p1 and p2

who start executing. As p3 and p4 receive the token, too, they apply proactively for

service s3 with the successor that is in their transmission range. That is, p4 sends its

service announcement to p1 while p3 sends its announcement to p2. These protocol steps

have been covered in previous scenarios. This scenarios shows that p1 and p2 need to

synchronise their allocation as they would otherwise hand over the composition control to

different successors, p2 to p3 and p1 to p4. Provider p1 and p2, therefore, determine their

set of synchronisation partner services (cp. Definition 4 in Section 3.2.1) and transition

to synchronising as this set is not empty:

66

3.4. Proposed solution

Provider
p0 (s0)

Provider
p1(s1)

Provider
p2(s2)

Composite graph

Network graph

p4 p1 p2

Composition protocol

p0

s0 s1 s3

s2

Provider
p3(s3)

Provider
p4(s3)

ad: s2

ad:s1

tok: pid(s1)=p1,

pid(s2)=p2

ad:s3

ad:s3

p0

p3

req
req

req
req

applyapplyexecuteexecutelisten

sync:
pid(s3)=p4

sync:
pid(s3)=p3

select select

sync [K] sync [K]

handover
[M]

handover
[M]

tok:
pid(s3)=p3

tok: pid(s3)=p3

execute
listen
[H1]

listen
[H1 Ʌ¬O]

listen
[H1 Ʌ¬O]

search listen listen listen listen

p0

s0 s1 s3

s2

p1

p2

p0

s0 s1 s3

p3

s2

p1

p2

apply
apply

observe
observe

Fig. 3.12: Scenario 4: Synchronisation Provider p1 and p2 have to synchronise their alloca-

tion for a common successor as they would otherwise transfer the composition control to different

providers, i.e., p1 to p4 and p2 to p3. Instead, p1 and p2 exchange synchronisation messages with

their candidate and run the same selection algorithm on the same set of candidates to determine

p3 as the common provider for s3.

67

Chapter 3. Design

K: partner(self) 6= ∅

Entering the synchronising state, p1 and p2 exchange sync messages that contain their

candidate for the merge service s3. Once each provider received the synchronisation

message from its partner, it runs the same selection algorithm on the same set of can-

didates and individually determines the same merge provider. As mentioned before,

this thesis does not focus on advanced selection criteria and rather lets synchronisation

partners agree on the candidate that has the most proponents. As p3 and p4 each have

one proponent, the one with the lowest provider id is chosen, which is p3. Then, p1 and

p2 hand over composition control as they agreed and found a common successor:

M : cid(self)==cid(sync)∧ allSyncRec ∧ found

Provider p1 sends its token also to p4 which has become redundant and can release its

resources. Thereafter, p1 and p2 return to the listening state as they do not provide

any services that contribute to the composite (H1) and do not have any service routing

responsibilities:

¬O: SRR(self)==∅

Service routing responsibilities SRR(s) represent the set of services for which the

provider of service s must be prepared to forward synchronisation messages. Algorithm

1 takes service s as input and traverses the composition graph from s onwards. As soon

as it finds a merge service for which it has not encountered a split service previously,

it checks whether s is among the predecessors of that open merge service and thus a

synchronisation partner. If not, it adds those predecessors of the open merge service

to SRR(s) that do not reside in the same path as s. For example in Figure 3.12, p1

runs the algorithm with s = s1 and discovers that s3 is an open merge. However, since

s1 is among the predecessors of s3, no service routing responsibilities are added. The

algorithm terminates the graph traversal early (Line 20) if service s is not part of the

service route, i.e., the shortest path between the open merge service and its corresponding

split service. This is to limit the number of service routers to one path in case multiple

paths between two partner services exist. Consider, for example, the complex composite

in Figure 3.13. For s = s4 the algorithm detects s12 as the first open merge service and

68

3.4. Proposed solution

Algorithm 1 Determine set of service routing responsibilities SRR(s)

Input: Service s

Output: Set SRR(s)

1: Queue queue, visited

2: split← merge← openmerge← 0

3: if |succ(s)| > 1 then // count first split

4: split← 1

5: end if

6: visited.add(s), visited.add(succ(s)), queue.add(succ(s))

7: while queue not empty do // traverse composite graph breadth-first

8: n← queue.dequeue()

9: if |pred(n)| > 1 then // count merge

10: merge++

11: end if

12: if merge > split then // no corresponding split

13: openmerge++

14: merge← split← 0

15: if s not in pred(n) then

16: for all i in pred(n) do // add predecessors of open merge that do not reside in s path

17: if i not in visited then SRR(s).add(i) endif

18: end for

19: end if

20: if openmerge == 1 and s not in shortestPath(getSplitFor(n), n) then // stop if s not in

shortest path between open merge and corresponding split

21: break

22: end if

23: end if

24: if |succ(n)| > 1 then // count split

25: split++

26: end if

27: for all o in succ(n) do

28: if o not in visited then visited.add(o), queue.add(o) endif

29: end for

30: end while

31: return SRR(s)

69

Chapter 3. Design

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10
s13

s11

s12

Fig. 3.13: Example complex service flow Synchronisation messages between the synchroni-

sation partners s6 and s12 are routed along the shortest path which includes the section s5, s8,

and s10 and releases the parallel path starting with s4 from their routing responsibilities for s6.

adds s10 to SRR(s4). Then it checks whether s4 is part of the shortest path between

the open merge service s12 and its corresponding split service s2. This is not the case

because the path via s5, s8, and s10 is shorter. This means, s4 is not responsible for any

service after s12 and thus can stop traversing the graph. In contrast, SRR(s5) contains

s11 and s6 as s5 is part of the shortest path between s2 and s12 and responsible for the

second open merge service s13.

3.4.2.2 Scenario 5: Service routing

Initially, a service provider may not be aware of the provider id that corresponds to a

synchronisation partner service and relies on service routers to deliver its synchronisation

message. This is the case for provider p3 and p4 in Figure 3.14. The scenario differs

from the previous one in that the required composite extends its parallel execution paths

by two services such that p1 and p2 assign their successors p4 and p3 independently.

However, when p4 and p3 have to synchronise, they do not know each other’s provider id

as their local view on the composite illustrates. They send their synchronisation message

to the provider, they know in the partner path, i.e., p3 to p1 and p4 to p2. The providers

p1 and p2 have determined their service routing responsibilities earlier:

O: SRR(self) 6= ∅

and are prepared to forward the synchronisation messages toward the final destinations

using service layer routing. After p3 and p4 received each other’s initial synchronisation

70

3.4. Proposed solution

Provider
p0 (s0)

Provider
p1(s1)

Provider
p2(s2)

Composite graph

Network graph

p4 p1 p2

Composition protocol

p0

s0 s1 s4

s2

Provider
p3(s3)

Provider
p4(s4)

tok: pid(s1)=p1,

pid(s2)=p2

ad:s4

ad:s3

p0

p3

applyapplyexecuteexecutelisten

select select

sync [K] sync [K]

listen
[¬O]

p1

p2

s3

s5

tok:
pid(s4)=p4

tok:
pid(s3)=p3

execute

execute

service-
routing
[O]

service-
routing
[O]

p0

s0 s1 s4

s2

p1

p2

s3

s5

p4

Local view of p4

p0

s0 s1 s4

s2

p1

p2

s3

s5

p3

Local view of p3

sync: src=p3

sync: src=p3

sync: src=p4

sync: src=p4

listen
[¬O]

search
[N]

search
[N]

p0

s0 s1 s4

s2

p1

p2

s3

s5

p3

Local view of p3 and p4

p4

Fig. 3.14: Scenario 5 Service routing The providers p3 and p4 have to synchronise their

allocation decision for the merge service s5. However, initially they are not aware of each others

identity as their local view of the composite graph illustrates. They rely on service routing from

p1 and p2 to dispatch their synchronisation messages. Once they have received their partner’s

initial synchronisation message they update their local view and from there on interact directly

without any service routers.

71

Chapter 3. Design

message, they interact directly and do not rely on the service routers p1 and p2 because

the synchronisation message includes the provider id of the message source. Before

the providers p3 and p4 synchronise again, they have to search because their previous

synchronisation messages did not contain a candidate for the merge provider:

N : cid(self)==cid(sync)∧ allSyncRec ∧ ¬found

Service layer routing determines the next recipient of a synchronisation message. This

is used by synchronisation partners and participants with service routing responsibilities,

so-called service routers. Algorithm 2 implements service layer routing and returns a

list of recipients based on the service s that was executed last by the synchronisation

partner or service router. The algorithm distinguishes three cases based on the position

of service s in the composite:

1. The source of the synchronisation message (Line 1-13) traverses the compos-

ite graph from the destination, i.e., the partner service, backwards until it finds a

known provider id. It stops at latest at the first service of the destination path be-

cause as seen in the scenario, the split provider includes all successors in one token.

Subsequent service requests carry this information in their composite graph.

2. The first or any router thereafter in the destination path (Line 15-21)

forwards the synchronisation message towards its destination. If a service router

receives a synchronisation message before it allocates the next service, it stores the

message and dispatches it once the provider for the next service is found.

3. The first or any previous router in the destination path (Line 22-28) relays

the synchronisation message backwards in the destination path to release those

service routers that have been skipped.

After a service router has forwarded a synchronisation message, it removes the message’s

source from its SRR such that it eventually becomes empty and the service router can

return to listening.

The scenarios described up to this point assume that all edges in the composite graph

are valid. The next three scenarios show how the composite graph can be reduced at

72

3.4. Proposed solution

Algorithm 2 Service layer routing of synchronisation messages

Input: Service s locally last executed, Synchronisation message sync

Output: Set recipients

1: if s == src(sync) then // source of the sync message

2: queue.add(dst(sync))

3: while queue not empty do // traverse composite graph backwards

4: n← queue.dequeue

5: if pid(n) known then // stop if provider id in partner path is known

6: recipients.add(pid(n)), break

7: else // check previous service routers

8: for all i in pred(n) do

9: if src(sync) in SRR(i) then queue.add(i), break endif

10: end for

11: end if

12: end while

13: else

14: if s 6= dst(sync) then

15: if s in succ(lastSR(sync)) or lastSR(sync) == src(sync) then // 1st or any subsequent

router in dest path

16: for all o in succ(s) do // route toward destination

17: if src(sync) in SRR(o) or o == dst(sync) then

18: recipients.add(pid(o)), break

19: end if

20: end for

21: end if

22: if s in pred(lastSR(sync)) or lastSR(sync) == src(sync) then // 1st or any previous router

in dest path

23: for all i in pred(s) do // route backward to release skipped routers

24: if src(sync) in SRR(i) then

25: recipients.add(pid(i)), break

26: end if

27: end for

28: end if

29: end if

30: end if

31: return recipients

73

Chapter 3. Design

Initiator p0
Provider p1

(s1)
Provider p2

(s2)

...
tok: pid(s1)=p1

execute

select,
eval(e1,2)=false

p0

sstart s1 s2 send

p0p1

...

handover

Composite graph

p0 p1 p2

tok:disable(e1,2)

apply
proactively

ad

p0

sstart s1 send

p0p1

tok:disable(e1,2)

listen

...

listenlisten

Network graph Composition protocol

After disabling e1,2

e1,2

Fig. 3.15: Scenario 6 Reducing a sequence Provider p1 discovers that the edge e1,2 evaluates

to false and releases proactive service announcements for the obsolete service s2 before it returns

the composition result to the composite initiator.

runtime (design decision 5) if a controller discovers that an edge has become obsolete,

i.e., its edge condition evaluates to false.

3.4.2.3 Scenario 6: Reducing a sequence

In the scenario illustrated in Figure 3.15 provider p1 and p2 receive the allocation decision

of the initiator. While p1 starts executing s1, p2 proactively applies for covering s2.

However, in the selecting state p1 discovers that the control edge e1,2 is invalid. Provider

p1 updates its composite graph by disabling e1,2 and sends a a token to the initiator to

deliver the composite result as well as to p2 to release it. The token contains the disabled

edge such that each token recipient can update their local view of the composite graph.

3.4.2.4 Scenario 7: Reducing after a split

The scenario in Figure 3.16 differs from the previous one in that p1 executes a split

service and the edge e1,3 evaluates to false while the edge e1,2 remains true. Provider p1

allocates the valid successor s2 to p2 and releases the obsolete provider p3. Both token

74

3.4. Proposed solution

Provider p1

(s1)
Provider p2

(s2)
Provider p3

(s3)

...tok:
pid(s1)=p1

execute

select,
eval(e1,3)=false

...

handover

Composite graph

p1 p2 p3

apply
proactively

ad:s2

tok:
pid(s2)=p2

disable(e1,3)

listen

...

executelisten

Network graph Composition protocol

p1

s1 s2 s4

s3 ad:s3

e1,3

After disabling e1,3

p1

s1 s2 s4

p2

apply
proactively

e1,2

Fig. 3.16: Scenario 7 Reducing after a split When provider p1 discovers that the edge e1,3

evaluates to false, it releases the proactive advertiser p3 as service s3 is obsolete and hands over

the composition control to the p2 to execute the valid successor service s2.

recipients receive the allocation decision and the disabled edge to update their composite

graph and determine their next system state.

3.4.2.5 Scenario 8: Reducing a service route

The scenario in Figure 3.17 focuses on s4 in the complex service flow. When its assigned

provider p4 discovers that the edge e4,6 evaluates to false, it takes over all responsibility of

the last service in this parallel path, which is s6. This is necessary because the composite

view will not be updated in all participants. Provider p4 synchronises on behalf of s6

with the synchronisation partner s8 to find a common merge provider for s9 and adds

the service routing responsibilities of s6 to its own. With the token from p4, the merge

service s9 updates its composite graph and integrates the disabled edge as well as the

intermediate result from s4 in its service logic. Provider p4 transitions to the service-

routing state because s4 and s6 have routing responsibility for s3. Generally, recipients

of a message with a disabled edge, include this edge in their subsequent tokens to spread

75

Chapter 3. Design

Provider p4

(s4)
Provider p8

(s8)
Provider p9

(s9)

...

execute

select,
eval(e4,6)=false

...

Composite graph

tok:
disable(e4,6)

listen

...

execute
service-
routing

Composition protocol

e4,6

s2

s4

s5

s3

s6

s7

s9

s1 s10

p4

s8

sync:
disable(e4,6)

p8

sync:
pid(s9)=p9

tok

After disabling e4,6

s2

s5

s3

s7

s9

s1 s10

p4

s8

p8

s4, s6

Fig. 3.17: Scenario 8 Reducing a service route Provider p4 takes on the synchronisation

and service routing responsibilities of the last service in its path, namely s6, when it discovers

that edge e4,6 evaluates to false.

the update among proactive applicants and silent observers. Once they issue a composite

request, this is no longer necessary because the request contains the up-to-date version

of the composite graph.

The previous eight scenarios for service sequences and parallel service flows build on

the idea that a service provider can observe network traffic related to a service compo-

sition that is issued in its transmission range. The next part explains how the protocol

realises observable composition messages (design decision 7) and multicast messaging

(design decision 8) in a cross-layer communication approach.

3.4.3 Cross-layer communication

A composition message, regardless of its final destination contains valuable information

for a potential composite participant. For example, the participant that forwarded the

message last is in direct communication range and also the first hop towards the mes-

sage’s original sender. The service provider uses this information to update its local

76

3.4. Proposed solution

network graph and to extend its topology knowledge. Similarly, composite requests,

synchronisation messages, and token messages reveal current and previous allocation

decisions which the provider uses to update its local view of the composite graph. To-

gether the network and composite graph enable a service provider to better understand

its neighbourhood and to derive composition-related actions such as when to apply

proactively, observe silently, or release blocked resources. In the protocol, the service

provider has access to both graphs when it engages in a composition.

3.4.3.1 Observable composition messages

For the service provider to receive any composition message that is issued in its trans-

mission range, the underlying network layer must pass it on to the composition layer.

Generally, a message can be marked as a broadcast or a unicast. Broadcast messages

are put through all the way up to the composition layer but are not acknowledged and

do not get recovered if they are lost. Unicast messages, on the other hand, get acknowl-

edged but enter the composition layer only if the participant is a designated addressee.

The protocol combines broadcast and unicast and sends a message as an directed broad-

cast which is observable by anyone in transmission range and gets acknowledged by its

designated recipients. Sent as an ordinary broadcast, an intermediate hop acknowledges

the receipt of a directed broadcast such that the previous hop can detect and recover a

possible loss.

3.4.3.2 Multicast messaging

Token and synchronisation messages have multiple recipients as they, amongst other

things, signal redundant providers to release blocked resources. For these messages

all primary recipients are included in one directed broadcast message. The directed

broadcast gets multicasted because it contains a list of final destinations. The sender of

the message assigns for each final destination, the next hop based on its local topology

knowledge. If the next hop is unknown or has expired, the sender initiates a route

discovery process. Once all next hops are identified, the sender forwards the message.

77

Chapter 3. Design

3.5 Chapter summary

The design objectives for service composition in mobile ad hoc networks highlight the

tension between resource-intensive composition tasks and the resource-constrained op-

erating environment. On the one hand, a composite must support parallel service flows,

self-organise the composition process, proactively gather service information, and obtain

the provider commitment. On the other hand, it needs to reduce communication and

enable short and localised interaction. Formally, service composition in dynamic net-

works corresponds to the problem of finding a mapping between the composite graph of

required services and the time-varying graph of provided services such that the commu-

nication link between two services is active whenever these two services interact. The

proposed protocol for opportunistic service composition addresses this problem with

demand-based resource-blocking service announcements, decentralised interleaved com-

position, composite reduction at runtime, and observable end-to-end multicasting. These

design decisions come with a number of implications: Service announcements already

confirm the provider commitment without further communication but require the re-

lease of redundant provider resources once a service is allocated. Interleaving service

allocation with service invocation reduces the composite at runtime to those parts that

will actually be executed but with regard to parallel service flows requires the agreement

of multiple initially unknown service providers. Allocating parallel execution paths in

isolation avoids the frequent communication between parallel paths but introduces the

need for service layer routers which prolongs resource blocking.

78

Chapter 4

Design verification

This chapter verifies the correctness of the designed protocol and checks whether the

following properties hold:

1. The protocol does not deadlock and at least one composite participant moves

forward in the composition.

2. Once the composition is complete, each composite participant has returned to

listening which is the end state of the protocol.

3. At the end of a successful composition all required services executed once.

This thesis uses model checking to verify the properties because this method automat-

ically decides if a communication protocol modelled as a finite-state program satisfies

its specification (Clarke et al., 1994). A model checker requires the formal description

of the protocol and the properties. Then, it resolves the non-determinism that stems

from random choices and concurrent actions in the protocol and creates a finite state

automaton. Afterwards, the model checker negates the property that is being checked

and searches the automaton exhaustively for a path where the negated property is true.

If such a path exists, the model checker found a counter example that falsifies the cor-

rectness of the specification. Otherwise, the property is correct. This chapter contains

three parts: The first part introduces the specification language PROMELA and its

interpreter SPIN that are used for the design verification (cp. Section 4.1). The second

part focuses on the verification of service sequences and the basic protocol features (cp.

79

Chapter 4. Design verification

Section 4.2). The third part verifies the protocol extensions for parallel service flows

(cp. Section 4.3). The second and the third part follow the same structure and describe

protocol abstractions and modelling details first before they state the verification result.

4.1 PROMELA and SPIN

This thesis uses PROMELA and SPIN (Holzmann, 2003) for checking the correctness of

the protocol properties. Both tools are designed for the analysis of communication pro-

tocols and are used in academia and industry. PROMELA is a process-meta language to

model distributed and concurrent software systems. It focuses on process synchronisation

and message passing rather than process-internal computation. Processes represent pro-

tocol entities and are identifiable via their process id. They implement protocol-specific

behaviour using statements and can communicate by sending and receiving messages via

channels. The PROMELA interpreter executes a protocol by randomly interleaving the

statements of different processes. These statements may be guarded and a process blocks

until one of its guarded options becomes true. If more than one guard is enabled, the

PROMELA interpreter randomly selects one possible option. Among the different means

of specifying properties, this thesis uses PROMELA’s built-in support for assertions and

meta labels. The formal protocol specification adopts the following PROMELA syntax:

proctype Protocol entity modelled as a process

_pid Id of a process

chan c Message channel c

c ! m Sending a message m via a channel c

c ? m Receiving a message m via a channel c

d_step or atomic Indivisible statement

:: guard -> statement Guarded option

end Meta label for valid end state

assert() Assertion

SPIN is a PROMELA interpreter. It generates a verifier from the PROMELA code that

checks the model with regard to the specified property. When a counter example exists,

SPIN simulates and examines the failed run.

80

4.2. Service sequences

4.2 Service sequences

Service sequences represent the basic behaviour of opportunistic composite participants.

The following description first details how the sequential PROMELA model abstracts

from the original protocol. Then, it explains how service sequences, communication, and

participants are modelled. Thereafter, it shows how the correctness properties mentioned

at the beginning of the chapter are specified and verified.

4.2.1 Protocol abstractions

The sequential PROMELA model abstracts from the original protocol (cp. Figure 3.7

on page 58) and focuses on the communication part because the properties to check

refer to the interaction of service providers rather than their internal computations.

This means, the executing and selecting state are not explicitly modelled as they do

not involve communication. In the model all required services are available and can be

allocated to a service provider. Otherwise, the current composite controller would reduce

the composite and return the final result early not testing the full service sequence (cp.

Scenario 6 on page 74). For simplicity but without loss of generality, the model assumes

a service provider offers all required services but requires that consecutive services are

allocated to different providers. For the transition conditions this implies that offerNxt

is always true. Further, the model focuses on the composition layer. It masks routing

layer details and fully connects the service providers such that inRange is always true.

Under these conditions the observing state is redundant. Finally, the model examines

a single composite such that cid(self)==cid(msg) is always true. Figure 4.1 depicts the

protocol after it applied the abstractions.

4.2.2 Modelling service sequences

The variable local_sid and the constant MAX_SERVICES model a sequential composite.

Each participant has a local_sid that represents what the participant beliefs is the

current position in the sequence. A service provider that receives the composition control

increments this value and includes it in all its messages. Recipients of these messages

update their local_sid and derive their further actions. For example, a new controller

81

Chapter 4. Design verification

req
tok Ʌ
allocated

tok Ʌ ¬allocated

tok Ʌ ¬allocated

(tok Ʌ ¬allocated)∨
(req Ʌ adObsolete)

timeout Ʌ
found

listening applying searching handover

(tok Ʌ ¬allocated)∨
(req Ʌ adObsolete)

timeout Ʌ ¬foundreq

Fig. 4.1: Abstractions for the sequential PROMELA model focus on the communication

among composite participants. They eliminate the executing, selecting, and observing state and

simplify the remaining transition conditions without loss of generality. The listening, applying,

and handover state have two outgoing transitions with the same condition but different destination

states to explicitly model participation autonomy.

returns to listening if it detects that all services have been covered and the end of the

service sequence has been reached. Otherwise, it starts searching for a successor:

l o c a l s i d = l o c a l s i d +1;

i f

: : l o c a l s i d==MAX SERVICES −> s t a t e=l i s t e n i n g ; // a l l s e r v i c e s covered

: : e l s e −> s t a t e=sea r ch ing ;

f i ;

4.2.3 Modelling communication

The global array channels stores the communication channel to each composite partic-

ipant and allows for the retrieval of a particular channel based on the recipient’s process

id. A message sent to all channels in the array models broadcasting. For example,

broadcasting a request is modelled as:

f o r (i in channe l s) {

i f

: : i==(pid −1) −> sk ip ; // sk ip my channel

: : e l s e −> send (req , channe l s [i] , l o c a l s i d , pid , 0) ;

f i ;

}

82

4.2. Service sequences

The send macro requires a message type, a destination channel, a service id, a sender

id, and an id for the next controller (zero means unspecified). Apart from requests req

other message types are service announcements ad, allocation decisions that are modelled

separately as tokens tok and release rel, and acknowledgements ack. The send macro

models unreliable communication as it randomly chooses whether to actually dispatch

or drop a message:

i n l i n e send (msg type , dst channe l , s e r v i c e i d , s ender id , nx t id) {

i f

: : d s t channe l ! msg type , s e r v i c e i d , s ender id , nx t id ; // d i spatch

: : t rue ; // drop

f i ;

}

Both options in the if statement are true and the PROMELA interpreter randomly

decides which to execute. The model recovers from message loss by resending a message

after a timeout which reflects the basic recovery strategy of the medium access control

(MAC) layer in wireless networks. The model uses PROMELA’s built-in timeout which

becomes executable if no other statement can execute. This is sufficient because the

protocol does not specify detailed real-time behaviour and rather resends a message

after some time of idleness.

4.2.4 Modelling participants

The participant process models the behaviour of controllers, listeners, and applicants

who repeatedly check their state and act accordingly.

proctype p a r t i c i p a n t (mtype s t a t e) {

do

: : s t a t e == c o n t r o l l i n g −> . . . // a n c i l l a r y f o r i n i t i a l i s a t i o n

: : s t a t e == sea r ch ing −> . . .

: : s t a t e == handover −> . . .

: : s t a t e == l i s t e n i n g −> . . .

: : s t a t e == apply ing −> . . .

od ;

}

The next paragraphs explain how the model reflects the main aspects of each such state.

83

Chapter 4. Design verification

Searching Initially, a controller switches to searching, blocks until it receives a service

announcement and broadcasts a request when it times out. Once the controller receives

the first service announcement for the service that corresponds to its local_sid, it

selects the sender as the new controller and hands off control by sending a token:

: : msg type==ad && msg sid==l o c a l s i d −>

d step {

l o c a l n x t c t r l = msg src ; // s e l e c t s u c c e s s o r

s t a t e = handover ; // wait f o r ack in handover

}

send (tok , channe l s [(l o c a l n x t c t r l −1)] , l o c a l s i d , pid , l o c a l n x t c t r l) ;

Handover Then, in the handover state the controller listens for an acknowledgement

from the token recipient or requests for subsequent services that confirm that the suc-

cessor has picked up the composition control. When the controller receives a service

announcement, it releases the sender as a redundant advertiser and includes the new

controller:

do

: : channe l s [(pid −1)] ? msg type , msg sid , msg src , msg nxt −>

i f

: : (msg s id==l o c a l s i d && msg type == ack) | |

(msg s id > l o c a l s i d && msg type == req) −>

l o c a l s i d = l o c a l s i d +1; // s u c c e s s o r has picked up c o n t r o l

. . . // choose to l i s t e n or apply

: : msg s id == l o c a l s i d && msg type == ad && msg src != l o c a l n x t c t r l −>

send (r e l , channe l s [(msg src−1)] , l o c a l s i d , pid , l o c a l n x t c t r l) ;

: : e l s e −> sk ip ;

f i ;

: : t imeout −> . . . // resend token

od ;

Listening In the listening state when a service provider receives a request, it randomly

chooses whether to apply. This participation autonomy is modelled using PROMELA’s

ability to randomly choose between multiple enabled guards and other model segments

will refer to it as ’// choose to listen or apply’:

84

4.2. Service sequences

. . . // r e c e i v e message from mgs src

i f

: : sk ip −> s t a t e=l i s t e n i n g ; // enabled guard 1

: : sk ip −> // enabled guard 2

i f

: : l o c a l s i d==MAX SERVICES −>

s t a t e = l i s t e n i n g ; // end o f request , do not apply

: : e l s e −>

d step {

s t a t e=apply ing ; // apply with source o f message

l o c a l n x t c t r l=msg src ; // that t r i g g e r e d t h i s d e c i s i o n

}

send (ad , channe l s [(l o c a l n x t c t r l −1)] , l o c a l s i d , pid , 0) ;

f i ;

f i ;

A listener compensates potential message loss and responds to announcements from

redundant applicants or confirms tokens after it has dismissed its controller role. Further,

the listener specifies two references, the labels end and L0, that the verifier will use to

check the correctness properties. The model represents a listener as follows:

end :

L0 :

do

: : channe l s [(pid −1)] ? msg type , msg sid , msg src , −>

i f

: : msg type==req && msg sid>=l o c a l s i d −>

l o c a l s i d = msg sid ; // update which s e r v i c e i s r equ i r ed next

. . . // choose to l i s t e n or apply

: : msg type==ad && msg sid< l o c a l s i d −> send (r e l , . . .) ;

: : msg type==tok && msg sid< l o c a l s i d −> send (ack , . . .) ;

: : e l s e −> sk ip ;

f i ;

od ;

Applying In the applying state, when an applicant receives a token, it picks up the

composition control and marks that for the verifier in the global controllerPerService

85

Chapter 4. Design verification

array which counts the number of controllers per required service:

: : msg s id==l o c a l s i d && msg type==tok −>

send (ack , . .) ; // I am the new c o n t r o l l e r

d s t ep {

s t a t e=c o n t r o l l i n g ;

c o n t r o l l e r P e r S e r v i c e [l o c a l s i d] = // s e t f o r v e r i f i c a t i o n

c o n t r o l l e r P e r S e r v i c e [l o c a l s i d] + 1 ;

}

break ;

When an applicant receives a release, it increments its local_sid to indicate that the

next service in the sequence is required. Then it chooses whether to listen or apply. If

the applicant applies again, it does so proactively without having received an explicit

request for the next service. It uses the new controller id that was enclosed in the release

message to dispatch its proactive service announcement:

: : msg s id==l o c a l s i d && msg type==r e l −>

l o c a l s i d=msg sid +1; // move to next r equ i r ed s e r v i c e

. . . // choose to l i s t e n or apply (p r o a c t i v e l y)

With a request for a subsequent service the applicant knows its service announcement

is obsolete and can choose whether to apply for the next service:

: : msg sid> l o c a l s i d && msg type==req −>

l o c a l s i d = msg sid ; // ad obso l e t e , move to next r equ i r ed s e r v i c e

. . . // choose to l i s t e n or apply

4.2.5 Verification

For the verification SPIN activates three instances of the participant process (one as

the controller and two as listeners) and a monitor process. The participants run the

composition protocol for a sequence of four services:

MAX SERVICES 4

i n i t {

atomic{

run p a r t i c i p a n t (c o n t r o l l i n g) ; // handle f i r s t s e r v i c e

run p a r t i c i p a n t (l i s t e n i n g) ; // wait f o r r eque s t

run p a r t i c i p a n t (l i s t e n i n g) ; // wait f o r r eque s t

86

4.3. Service flows

run monitor () ; // watch p a r t i c i p a n t s

}

}

The monitor asserts that when all participants have reached label L0 in the listening

state each required service has been covered once in the controllerPerService array:

do

: : (p a r t i c i p a n t [1] @L0 && p a r t i c i p a n t [2] @L0 && p a r t i c i p a n t [3] @L0) −>

a s s e r t (

c o n t r o l l e r P e r S e r v i c e [0]==1 && c o n t r o l l e r P e r S e r v i c e [1]==1 &&

c o n t r o l l e r P e r S e r v i c e [2]==1 && c o n t r o l l e r P e r S e r v i c e [3]==1) ;

break ;

od ;

Using SPIN the correctness of the properties are verified as follows:

• Property 1 is correct if the verifier checks for deadlocks and completes without any

errors.

• Property 2 is correct if the verifier completes without any participant process being

in an invalid end state. The participant processes are non-terminating and require

the insertion of the meta label end at the beginning of the listening state to inform

SPIN that the listening state is actually a valid end state.

• Property 3 is correct if the verifier completes and the monitor process has reached

the valid end state. This is only possible if the assertion is true and the loop

terminates.

Running SPIN with this PROMELA model does not produce any errors and shows the

correctness of all three properties for the sequential model. Figure A.2 in Appendix A

shows the corresponding output of the model checker. In comparison, note Figure A.1

which illustrates the output if the verification of the model fails.

4.3 Service flows

The parallel PROMELA model extends and modifies the previous model to support the

verification of parallel service flows. The following description centres on the changes that

87

Chapter 4. Design verification

req
tok Ʌ
allocated

tok Ʌ ¬allocated Ʌ ¬O

(tok Ʌ ¬allocated)∨
(req Ʌ adObsolete)

timeout Ʌ found

 Ʌ ¬K
listening applying searching handover

timeout Ʌ ¬found
Ʌ ¬K

syncing

K

(sync Ʌ N)
(sync Ʌ M)

service-
routing

O

(¬O)

Legend
K partner(self)≠ ∅
M allSyncRec Ʌ found
N allSyncRec Ʌ ¬found
O SRR(self) ≠ ∅

Fig. 4.2: Abstractions for the parallel PROMELA model focus on service routing and

synchronisation (depicted in green). Proactive service announcement and participation autonomy

are omitted because these features have been tested in the sequential model.

have been made and keeps the same structure as the previous section. It first explains

the protocol abstractions and modelling details before it turns to the verification results.

4.3.1 Protocol abstractions

Figure 4.2 illustrates the abstractions from the original protocol for service flows (cp.

Figure 3.11 on page 65). Focusing on synchronisation and service routing, the model

omits proactive service announcements and participation autonomy as this has already

been verified in the sequential model. This means, while listening service providers

always apply when receiving a request, providers in other states return to listening when

they get released and start a new application from there.

4.3.2 Modelling service flows

As in the sequential model, the variable local_sid indicates which service is required

next. In addition, the Boolean variables s_split, s_sync, and s_merge determine the

type of the required service, i.e., whether it is a split service, a service with synchronising

partners, or a merge service. The controllers set these variables during the course of

interaction. In the model the service flow starts with a split service, continues with two

88

4.3. Service flows

Model

s_split: true false false false
s_sync: false true false false
s_merge: false false true false

Service flow

Fig. 4.3: Model of service flow The variables s split, s sync, and s merge model the service

flow that is used for verification by changing their Boolean value as the composition progresses.

synchronisation partners, then joins the parallel execution paths in a merge service, and

finishes with a final service (cp. Figure 4.3). This is sufficient to verify the properties

for the split, synchronisation, and merge behaviour of the protocol.

Further each participant has two placeholders cp1 and cp2 to store information

about its counterparts. Depending on the type of service the participant controls, the

counterparts represent successors (of the split service), predecessors (of a merge service),

or the successor candidate and the partner (of a synchronisation partner).

4.3.3 Modelling communication

For service synchronisation, the model introduces two additional message types: syn-

chronisation messages sync and their acknowledgments syncAck. The model changes

the send macro to include a partner id, candidate id, synchronisation id in a message:

i n l i n e send (msg type , dst channe l , s e r v i c e i d , s ender id ,

pa r tne r id , cand idate id , sync id)

The loss of messages in the parallel model centres on the newly introduced sync and

syncAck because unreliable communication for the other message types has already been

tested in the sequential model.

4.3.4 Modelling participants

In addition to the existing states, the participant process integrates the states synching

and service routing to verify the procedure of finding a common merge service provider:

89

Chapter 4. Design verification

proctype p a r t i c i p a n t (mtype s t a t e) {

do

: : s t a t e == c o n t r o l l i n g −> . . . // a n c i l l a r y f o r i n i t i a l i s a t i o n

: : s t a t e == sea r ch ing −> . . .

: : s t a t e == handover −> . . .

: : s t a t e == l i s t e n i n g −> . . .

: : s t a t e == apply ing −> . . .

: : s t a t e == synching −> . . .

: : s t a t e == s e r v i c e r o u t i n g −> . . .

od ;

}

The details of this procedure will be explained based on the modelled service flow, namely

in terms of a split service, a service with synchronisation partners, and a merge service.

4.3.4.1 Split service

Searching and handover A controller of the split service waits in the searching state

for two service announcements. It selects and stores the first two applicants in cp1 and

cp2 as its successors, advances the service flow to indicate that the subsequent service

providers are synchronisation partners, and sends them its allocation decision in a token:

: : msg type==ad && msg sid==l o c a l s i d && s s p l i t==true −>

i f

: : c p 1 . i d==0 −> c p 1 . i d=msg src ; // f i r s t s u c c e s s o r

: : cp1 . id >0 && msg src != c p 1 . i d −>

d step {

s t a t e = handover ;

c p 2 . i d = msg src ; // second s u c c e s s o r

s s p l i t = f a l s e ; // s p l i t s e r v i c e has been covered

s sync = true ; // s u c c e s s o r s are sync par tne r s

}

send (tok , channe l s [(cp1 . id −1)] , l o c a l s i d , pid , 0 , 0 , −1) ;

send (tok , channe l s [(cp2 . id −1)] , l o c a l s i d , pid , 0 , 0 , −1) ;

break ;

: : e l s e −> sk ip ;

f i ;

90

4.3. Service flows

Thereafter the controller waits in the handover state for acknowledgements that its

successors have picked up the composition control. In the original protocol, the split

controller includes all successor ids in the token. In the model this is omitted to create the

need for service routing while keeping the service flow simple. The split controller moves

to the service routing state after the handover state and the meaning of its successors

in cp1 and cp2 changes to service responsibilities. In contrast to the original protocol,

the model masks how a participant determines its service responsibilities as this process-

internal computation cannot be expressed with PROMELA. Instead, it focuses on the

required interactions that result from having service responsibilities.

Service routing In the service routing state, when the participant receives a sync

message from one of its service responsibilities, it first sends a syncAck back to the

message source and then forwards the sync to its destination, if the destination has not

yet acknowledged the receipt of that message:

: : msg type==sync −>

send (syncAck , channe l s [(msg src−1)] , . . . , msg syncid) ;

i f

: : msg src==c p 1 . i d −> // cp1 sent sync

i f

: : cp2.syncAckRecv == f a l s e −> // cp2 has not r e c e i v e d cp1 ’ s sync

send (sync , channe l s [(cp2 . id −1)] , msg sid , pid , cp1 . id ,

cp1 . cand ida t e id , c p 1 . s y n c i d)

: : e l s e −> sk ip ;

f i ;

. . . // v i c e ver sa i f cp2 sent sync

f i ;

Similarly to a syncAck, a request for a subsequent service signals the service router that

the sender of the message has received all required synchronisation messages and that

the sender interacts with its partner directly. If all its routing responsibilities have been

covered this way, the service router returns to listening:

: : msg type==syncAck | | msg type==req −>

d step {

i f

91

Chapter 4. Design verification

: : msg src==c p 1 . i d −> cp1.syncAckRecv = true ; // cp1 got sync from cp2

: : msg src==c p 2 . i d −> cp2.syncAckRecv = true ; // cp2 got sync from cp1

: : l o c a l s i d < msg sid −> // req f o r next s e r v i c e

cp1.syncAckRecv = true ; // cp1 and cp2 i n t e r a c t d i r e c t l y

cp2.syncAckRecv = true ;

f i ;

}

i f

: : cp1.syncAckRecv==true && cp2.syncAckRecv==true −>

s t a t e = l i s t e n i n g ; // cp1 and cp2 i n t e r a c t d i r e c t l y

break ; // s e r v i c e rout ing no longe r r equ i r ed

: : e l s e −> sk ip ;

f i ;

4.3.4.2 Service with synchronisation partner

Applying and searching A service provider applies for a service with synchronisa-

tion partner and stores its predecessor in cp2 as any other applicant. Once it receives

the token it switches to searching to issue a request for the next required service. In

contrast to applicants without a synchronisation partner, the provider switches there-

after immediately to the synching state and waits there for service announcements. The

searching state models this as follows:

: : t imeout −>

. . . // broadcast r eque s t

i f

: : s sync == true −> s t a t e = synching ; break ; // await ads in synching

: : e l s e −> sk ip ;

f i ;

Synchronising In the syncing state, the participant selects the first applicant as its

candidate and stores it in cp1. When the discovery time is up, the participant sends a

synchronisation message with its merge candidate id (cp1.id) to the participant stored

in cp2:

: : msg type==ad && msg sid==l o c a l s i d && c p 1 . i d==0 && meSyncSend==f a l s e −>

c p 1 . i d = msg src ; // my merge candidate

92

4.3. Service flows

: : t imeout −> // d i s cove ry time i s up

i f

: : cp2.syncAckRecv == f a l s e −> // my sync has not been r e c e i v e d

send (sync , channe l s [(cp2 . id −1)] , . . . , p id , cp1 . id , l o c a l s y n c i d) ;

: : e l s e −> sk ip ;

f i ;

In the model, cp2 is the participant’s predecessor who changed its role from being a split

service to a service router. The original protocol uses a service routing algorithm to de-

termine the next hop for a synchronisation message. The PROMELA model masks such

process-internal computation and focuses on the message exchange between synchroni-

sation partner regardless of how their service routers are determined. As long as service

routing itself is part of the property verification for service flows, it is sufficient that

both synchronisation partners use the same service router (which is their predecessor

and former split service provider).

When the participant receives a sync from its partner, it overrides cp2 with the

details of the partner. This indicates that the participant starts interacting with its

partner and no longer relies on further service routing. Once the participant received

the sync from its partner and syncAck from the service router that indicates its own

sync is en route to the partner, the participant selects the common provider. Depending

on the selection outcome it either needs to search and synchronise again, or hands over

the composition control:

i f

: : (c p 2 . c a n d i d a t e i d==0 && c p 1 . i d==0) −>

s t a t e = sea r ch ing ; // no partner found a candidate

: : e l s e −>

i f

: : cp2 . cand ida t e id >0 && cp1 . id >0 && pid>c p 2 . i d −>

send (r e l , channe l s [(cp1 . id −1)] , . . .) ; // r e l e a s e my candidate

c p 1 . i d = c p 2 . c a n d i d a t e i d ; // s e l e c t partner ’ s candidate

: : c p 2 . c a n d i d a t e i d > 0 && c p 1 . i d==0 −>

c p 1 . i d=c p 2 . c a n d i d a t e i d ; // s e l e c t partner ’ s candidate

: : e l s e −> sk ip ; // s e l e c t my candidate

f i ;

s merge = true ; // s u c c e s s o r i s a merge s e r v i c e

93

Chapter 4. Design verification

s t a t e = handover ; // wait f o r ack in handover

send (tok , channe l s [(cp1 . id −1)] , l o c a l s i d , pid , 0 , 0 , l o c a l s y n c i d) ;

f i ;

4.3.4.3 Merge service

Applying For a merge service the behaviour in the applying state changes because it

needs to wait for tokens from two predecessors. The model represents this as follows:

: : msg s id == l o c a l s i d && msg type == tok −>

send (ack , . . .) ; // ack token r e c e i v e d

i f

: : s merge == true −>

i f

: : msg src == c p 1 . i d −> cp1.tokRecv = true ; // f i r s t p r edec e s so r

: : msg src == c p 2 . i d −> cp2.tokRecv = true ; // second pr edec e s so r

f i ;

i f

: : cp1.tokRecv && cp2.tokRecv −>

s sync = f a l s e ; // sync covered

s merge = f a l s e ; // merge covered

s t a t e=c o n t r o l l i n g ;

c o n t r o l l e r P e r S e r v i c e [l o c a l s i d] = // s e t f o r v e r i f i c a t i o n

c o n t r o l l e r P e r S e r v i c e [l o c a l s i d] + 1 ;

break ;

: : e l s e −> sk ip ;

f i ;

: : e l s e −> . . . //no merge s e r v i c e , same as in s e q u e n t i a l model

f i ;

Apart from these changes, a merge service works the same way as a service in a service

sequence.

4.3.5 Verification

The verification uses the modelled service flow that starts with a split service, continues

with two services who are each other’s synchronisation partners, merges in a merge

service, and finishes with a final sequential service. SPIN activates four participant

94

4.4. Chapter summary

processes: One acts initially as the controller of a split service and the other three as

listeners. The split provider then becomes a service router and two of the listeners

become synchronisation partners. Depending on how SPIN interleaves the processes,

the service router may return to listening before the synchronisation partners found a

merge candidate. In this case, two listeners apply for covering the merge service.

As in the sequential model, SPIN also activates a process monitor to assert the correct

number of controllers per service. Given the way the service flow is modelled and that

the initial controller is already set, the two services with synchronisation partners both

increment the first field in the controllerPerService array and the field’s value must

be two. The two fields thereafter should contain one provider as they represent the

merge service and the final service. Property 3 is correct if the following loop in the

monitor process terminates:

do

: : (p a r t i c i p a n t [1] @L0 && p a r t i c i p a n t [2] @L0 && p a r t i c i p a n t [3] @L0 &&

p a r t i c i p a n t [4] @L0) −>

a s s e r t (c o n t r o l l e r P e r S e r v i c e [0]==2 && c o n t r o l l e r P e r S e r v i c e [1]==1 &&

c o n t r o l l e r P e r S e r v i c e [2]==1) ;

break ;

od ;

The verification setting for Property 1 and Property 2 remains unchanged. Running

SPIN with the parallel PROMELA model does not produce any errors and confirms the

correctness of the three properties for synchronising parallel service flows. Figure A.3 in

Appendix A shows the corresponding output of the model checker.

4.4 Chapter summary

This chapter applied model checking based on PROMELA and SPIN to verify the cor-

rectness of the composition protocol design. The first part of the verification focused

on the composition of service sequences under unreliable communication and featured

proactive service announcements, and participation autonomy. The second part verified

that the extensions for parallel service flows, namely service synchronisation and service

routing, are correct. For both parts, the verification results confirm that the protocol

95

Chapter 4. Design verification

does not deadlock, terminates in a valid end state, and allocates one service provider

per required sub-service. The model created to formally specify the protocol builds the

basis for the prototype implementation that is described in the next chapter.

96

Chapter 5

Implementation

This chapter describes the implementation of the opportunistic service composition

protocol. The implementation is written in Java, integrates the network simulator

Jist/SWANS, and builds on the PROMELA specification that was introduced in the

previous chapter. Figure 5.1 illustrates the main classes of the protocol implementa-

tion and overlays them with the chapter outline for further reference. Focusing on the

key concepts of the protocol, the chapter contains five sections: Section 5.1 explains how

composite participants become mobile entities by linking the protocol implementation to

the simulator. Section 5.2 presents the implementation of those process-internal details

that the PROMELA model does not adequately cover e.g., the selection and execution of

services. Section 5.3 motivates and specifies the format of different composition messages

that composite participants exchange during their interaction. Section 5.4 describes how

directed broadcasting is realised with the network simulator. Section 5.5 shows the im-

plementation of the cross-layered approach that integrates the service composition layer

with the networking layer.

5.1 Mobile composite participants

For the development of mobile composite participants this thesis uses Jist/SWANS (Barr

and Kargl, 2005), a discrete event simulator in Java that manages the movement and

wireless communication of participants in a mobile ad hoc network (cp. Figure 5.2).

Service composition for these participants is enabled by extending the simulator class

97

Chapter 5. Implementation

5.4 Directed
broadcasting

5.3 Composition
messages

5.5 Cross-layer
approach

5.2 Composition
protocol

5.1 Mobile composite participants

GenericNode

OppInitiator

OppProvider

OppParticipant

OppComposite

OppTopology

DbcManager

OppInitiatorNode

OppProviderNode

CompositionMessage

Fig. 5.1: Implementation overview The class diagram shows the main components of the

protocol implementation for opportunistic service composition and refers to the particular section

for further explanations.

Composition protocol

Service & Composition
management

Jist/SWANS simulator

Mobility & Communication
management

Configuration file

Simulation &
Composition settings

set

set

set

GenericNode

OppProviderNode

OppInitiator

OppProvider

OppInitiatorNode

Fig. 5.2: Mobile composite participants rest upon the integration of the proposed compo-

sition protocol with the Jist/SWANS simulator that manages the mobility and communication

of participants in an mobile ad hoc network. OppInitiatorNode and OppProviderNode link the

simulator, the composition protocol, and the configuration management.

98

5.2. Composition protocol

GenericNode which assembles the network stack for a mobile participant, links protocol

handlers, and places the participants on the simulation field. Classes that extend Gener-

icNode implement addApplication() to specify an application layer protocol, in this case,

the proposed service composition protocol. In addition, the simulator supports external

configuration files to set simulation and composition-related parameters.

The classes OppInitiatorNode and OppProviderNode link the simulator, the compo-

sition protocol, and the configuration management. They extend GenericNode to de-

fine the participant’s composition-specific behaviour, apply configuration settings, and

activate logging for later performance studies. OppInitiatorNode instantiates a par-

ticipant with a complex service request and as a composite initiator (OppInitiator).

OppProviderNode instantiates a participant with a repository of hosted services and

the ability to act as a service provider (OppProvider). This way the protocol entities

OppInitiator and OppProvider represent two types of mobile composite participants and

are set to run the proposed composition protocol.

5.2 Composition protocol

The composition protocol defines how composite participants interact to achieve a com-

plex service request. On behalf of the OppInitiator and the OppProvider, the class

OppParticipant implements the state transitions and corresponding actions that an in-

coming composition message triggers (cp. Figure 5.1). For this, OppParticipant contains

the attribute state, the methods send() and receive(), and methods to handle a particular

type of composition message. In addition, OppParticipant implements:

• Bounded search: The search for a required service is confined to a configurable

search radius to provide a stop criterion for otherwise impractical search results. A

request message reflects the radius in its TTL (time to live) attribute that indicates

whether the recipient should spread the message further.

• Contact-aware selection: A participant selects the provider for the subsequent

service among a set of applicants based on when it was last in contact with the

applicant to increase the probability that the link between them is still intact. If

99

Chapter 5. Implementation

the same contact time holds for multiple candidates, the applicant with the lowest

provider id is selected. This allows for a deterministic choice that is required to

find a common merge service provider among multiple synchronisation partners.

Optimisations may implement more advanced selection algorithms with multiple

selection criteria including the number of the candidate’s proponents or the can-

didate’s proximity to all partners.

• Service execution A complex service request requires a set of different sub-

services. For simplicity, services differ in their name and execution time which is

configured in the service repository of the OppProvider. The service implementa-

tion is the same across all services and returns the increment of a given number.

An assigned service provider executes the service, waits for the duration of the

execution time, and thereafter proceeds with the next protocol state.

• Service layer routing: The participant routes synchronisation messages as de-

fined in Algorithm 2 on page 73. It relies on the class OppComposite to determine

its service routing responsibilities.

The class OppComposite represents a locally observed composite and the progress it

makes. It stores the composite’s structure, a reference to the current position in the

composite, and service input data. This is the basis for retrieve methods that return the

next required service, a list of all remaining services, or a list of partner services. Further,

OppComposite determines service routing responsibilities as defined in Algorithm 1 on

page 69 and updates the composite after a composition message was received. The next

section describes the format of different composition messages whose content is relevant

for OppComposite and other components.

5.3 Composition messages

The protocol relies on the exchange of composite requests, service announcements, to-

kens, and synchronisation messages to compose a complex service. These messages are

embedded in directed broadcasts to allow for their observability and multicast delivery.

Figure 5.3 illustrates the different message types and their fields. All fields are manda-

100

5.3. Composition messages

Broadcast

<id>

Destination

[<id>, ...]

Next hop

[<id>, ...]

Hops

<int>

Payload

Directed Broadcast

Composite

<id>

Source
provider

<id>

Source
service

<id>

Source
service since

<long>

Message

Composite
graph

<string>

TTL

<int>

Composite request

Service

[<id>, ...]

Expiry

<long>

Service announcement

Service

[<id>, ...]

Input

[<data>, ...]

Token

Sync id

<id>

Merge
service

<id>

Synchronisation Message

Candidate
provider

<id>

Candidate
criterion

<data>

Partner
service

[<id>, ...]

Last router
service

[<id>, ...]

Payload

Disabled
edge

[<id>, ...]

Disabled
edge

[<id>, ...]

Fig. 5.3: Composition messages The proposed protocol defines four types of composition

messages: requests, service announcements, tokens, and synchronisation messages. Each mes-

sage is part of the payload of a directed broadcast message. The description of a message field

contains a field name and below its data type which may be a list of items [< type >, ...].

101

Chapter 5. Implementation

tory, however, optimisations may consider making some fields optional that are not used

in every transmission (e.g., ’Disabled edge’ in token and synchronisation messages).

Directed broadcasts contain a unique broadcast id to detect message duplicates, a

list of destinations, a list for next hops, the number of hops the message has already

travelled, and the actual payload. These fields support message routing in the network.

Each destination has a corresponding next hop. The list index maps a destination and

its next hop.

Payload subsumes the fields that are part of every composition message, namely the

unique composite id to distinguish different composites, the provider and service id of

the message source that correlate messages with service dependencies, the date when the

source was allocated the service, and the actual message. These fields contain service-

related data about the message sender and help the receiver to update its service topology

and locally observed composite. With the field ’Source service since’ the receiver decides

whether to update its composite graph. The receiver refrains from doing so if it received

a message from the source with a more recent allocation.

Composite requests contain the string representation of the composite graph and a

time to live (TTL) that indicates whether the request should be spread further. With

a request, a receiver determines the next required service which is the successor of the

message source service in the composition graph.

Service announcements contain a list of services for which the message source ap-

plies and an expiry date of the announcement to indicate when the message source will,

at the latest, release blocked resources. This is a timeout strategy in case dedicated

release messages cannot be dispatched due to a broken network link.

Tokens carry a list of services, their corresponding inputs, and a list of disabled edges

that inform the receiver where to reduce its local composite graph. A service and its input

are correlated via the list index. Similarly, the list index identifies the allocated service

provider from the list of destinations (cp. field in directed broadcast). Destinations that

102

5.4. Directed broadcasting

do not have a corresponding entry in the list of services are redundant and the token

signals them to release blocked resources.

Synchronisation messages enclose a synchronisation id to distinguish subsequent

synchronisation iterations, the merge service id, and the candidate and its selection

criterion. The candidate criterion is used during the allocation of a common merge

service provider to find an agreement among multiple synchronisation partners and their

candidates. In addition, the message contains a list of partner services, for each partner

the last router service, and a list of edges that got disabled during the composition. The

list of partner services maps to list of destination ids (cp. field in directed broadcast)

via the list index. The destination/provider of a partner service may first contain the

provider id of a service router and en route change to the actual partner provider id. The

field ’Last router service’ is essential for service layer routing as a recipient determines

with that and the local composite graph whether to relay a synchronisation message

forward or backward in the service path (cp. Algorithm 2 on page 73). The final

destination of a synchronisation message extracts partner information from the payload

fields ’Source provider’ and ’Source service’.

5.4 Directed broadcasting

Directed broadcasts are part of ordinary broadcast messages. They are sent from the

application layer directly to the IP network layer, surpassing the transport layer and

omitting any details regarding TCP or UDP. The class DbcManager wraps composi-

tion messages into a directed broadcast and determines, for each destination address, its

next hop on the network route. If the next hop is unknown, the DbcManager performs

a route discovery. In addition, it relays messages toward their destination, acknowledges

the receipt of messages, and resends unacknowledged messages after a timeout. In this

respect the DbcManager is similar to an AODV (Perkins et al., 2003) routing entity that

represents a common routing protocol for mobile ad hoc networks. It differs from an

AODV entity in that it handles messages that contain a set of destinations. The Dbc-

Manager organises its knowledge about the network topology in the class OppTopology

103

Chapter 5. Implementation

which is central to the cross-layer approach and described in the next section.

5.5 Cross-layer approach

The class OppTopology represents a cross-layer data repository that provides access

to both the OppParticipant as a composition layer entity and the DbcManager as a

network layer entity. It holds information about the service and network topology which

get updated with each incoming and outgoing message. The stored data refers to the

fields of a directed broadcast and include, for example, the sender’s allocated service

and provider id, the last direct contact with a participant, or the next hop toward a

destination. OppTopology extends a standard routing table with service-related data

and provides methods for service composition that are aware of the mobile operating

environment. Such methods decide whether a controller is communication range to

support proactive service announcements, retrieve a list of advertisers sorted by the

most recent neighbour to support contact-aware selection, and determine whether the

provider id of a synchronisation partner is known to support service layer routing.

The sequence diagrams in Figure 5.4 show the interplay of the OppTopology with

other classes and illustrate the cross-layer approach as well as directed broadcasting for

sending and receiving a token message.

5.6 Chapter summary

The description of the implementation focused on the key aspects of opportunistic service

composition, namely mobile composite participants, the composition protocol, types of

composition messages, directed broadcasting, and cross-layer management of topology

data. The integration with the Jist/SWANS network simulator allows for the mobility

and configuration of composite participants and builds the basis for evaluating the pro-

tocol’s performance. The main concern of this implementation is to provide an initial

prototype for the experimentation and comparative study with other approaches that is

described in the next chapter.

104

5.6. Chapter summary

OppParticipant DbcManager OppTopology

embed token
in directed
broadcast

OppComposite

send token

send as broadcast

get list of advertisers, most recent first

select

get successor input

get next hop
for all advertisers

update allocation

update next required service

(a) Send token message

OppParticipant DbcManager OppTopology

embed ack in
directed
broadcast

OppComposite

handle directed
broadcast update network

topology

send as broadcast

update service topology

update composite

handle token
according to
state

receive
token

(b) Receive token message

Fig. 5.4: Cross-layer approach The composition layer entity OppParticipant and the network

layer entity DbcManager manage their topology information in one repository, the OppTopology.

The sequence diagrams illustrate the interplay of the main components of the protocol implemen-

tation to send (a) and receive (b) a token message.

105

Chapter 6

Evaluation

This chapter evaluates how well the protocol for opportunistic service composition ad-

dresses the overall objective of reducing the failure probability of service composites in

dynamic ad hoc environments. The evaluation tests the hypothesis (cp. Section 1.3

on page 9) that the later the operating environment is explored to compose a complex

service request, the less time there is for the system to change and to render composi-

tion decisions invalid. The proposed protocol has been designed to address the design

objectives that are associated with that hypothesis and has been verified with regard to

correctness properties. The benefit of the protocol over existing solutions remains to be

assessed. This chapter evaluates the protocol in comparison to other solutions and for a

variety of settings. In particular, it examines the impact of the composite structure and

operating environment on the protocol’s performance. For this, the chapter is organised

in two parts: In the first part the experimental setup (cp. Section 6.1) describes the

general settings, evaluation scenarios, failure types, metrics, and baselines used in the

experiments as well as threats to the study’s validity. The second part presents and

analyses the results of the experiments (cp. Section 6.2).

6.1 Experimental setup

The evaluation of the proposed protocol is based on simulations because they allow for

controllable, repeatable, and scalable experiments. Despite being established and widely

used in research on mobile ad hoc networks (Kiess and Mauve, 2007), simulations limit

107

Chapter 6. Evaluation

Table 6.1: General simulator and composition settings

Parameter Configuration

Simulator Jist/SWANS Ulm edition

Simulation time (sec) 1300

Initial placement Uniformly distributed

Mobility model Random Waypoint

Pause (s) 0

Initial network and service cache Empty

Communication protocol IEEE 802.11

Communication range (m) 100

Services hosted per provider all required

Service execution time (ms) 10-100

Composite source and destination Composite initiator

Composite allocation policy Unique providers

Composite per provider 1

Maximum search radius 6-hop neighbourhood

Participants in total 150

Sample size 100

the validity of the results as Section 6.1.6 will outline in more detail. The discrete event

simulator Jist/SWANS is used to simulate node movement, wireless communication, and

different composition protocols. The following description explains the general settings

and the specifics of the evaluation scenarios. It then outlines potential failure types,

performance metrics, and baseline implementations to run the experiments.

6.1.1 General settings

The general simulator and composition settings are summarised in Table 6.1 and can be

described as follows:

Mobility and communication In the simulation, the potential composite partic-

ipants are initially distributed uniformly over the simulation field. When they start

moving they do so according to the Random Waypoint mobility model which is com-

monly used in simulations for mobile ad hoc networks (Kurkowski et al., 2005). The

108

6.1. Experimental setup

simulator uses a warm-up time of 1000 seconds because in many simulations the mobility

model converges towards a steady state during this time (Navidi and Camp, 2004). In

addition, participants move at minimum speed greater than zero because Yoon et al.

(2003) showed that this achieves steady state even for small minimum speeds. Varying

participant speeds are set in the scenarios. Initially, the participant’s cache holding in-

formation about the network and service topology is empty. This reflects environments

without dedicated infrastructure and pre-existing network links. The network evolves

when a service request is raised. Participants then communicate wirelessly using IEEE

802.11. Their transmission range is 100 metres, which is similar to the maximum range

of Bluetooth technology that is present in today’s smartphones (West, n.d.).

Service provision Each composite participant that is initialised as a service provider

hosts all required services to shift the focus from service discovery to the overall process of

service composition. In turn, a complex service request requires the allocation of unique

providers for its sub-services to test the most dynamic behaviour of the composition. The

execution time of a particular service in a composite is uniformly distributed between 10

and 100 milliseconds and is the same on each provider. A service provider commits only

to one composite at a time and does not respond to any other composites until it has

been released. This simulates local resource-constraints and creates sufficient dynamics

in the service provision such that a random variation of the provider’s willingness to

participate is omitted.

Operating environment The simulator places in total 150 potential composite par-

ticipants on the simulation field. The ratio between service providers and composite

initiators is scenario-specific. If multiple initiators exist, they issue the same compos-

ite request and stress test the protocol in terms of service demand. The size of the

simulation field also depends on the scenario. Different sizes at a constant number of

participants control the network density and the number of one hop neighbours. Gener-

ally, the simulator configuration ensures that participants are on average within a three

hop reach and that the average degree of network partitioning is zero. This is to reduce

the impact of the underlying routing protocol and gives messages the opportunity to get

109

Chapter 6. Evaluation

delivered. The settings for the simulation field in combination with the communication

range and number of participants base on the suggestions of Kurkowski et al. (2006).

Simulation The simulation starts all composite initiators at the same time and runs

until each initiator has received the final result or a failure notification. After the warm-

up time of 1000 seconds, the simulator runs for additional 300 seconds to allow for

each initiator to issue a request and receive the response. The total simulation time

amounts to 1300 seconds. The simulation of one experimental setup is repeated 100

times (unless stated otherwise), each time with a different initialisation of the pseudo-

random generator to vary the simulated mobility and communication model. This sample

size ensures high confidence in the outcome of the experiment because the resulting 95

percent confidence interval is for all metrics sufficiently narrow.

6.1.2 Evaluation scenarios

The following four scenarios present, based on their evaluation objective, the details of

the simulation setup. They differ in terms of the service demand which represents the

percentage of composite initiators in the network, the network density which is controlled

by the field size, the participant speed, and the structure of the tested composite. Table

6.2 shows which parameters apply to a particular scenario in addition to the general

settings in Table 6.1.

Scenario 1: Impact of service sequence length The sequential order of required

services is the basic structure of a composite. The objective of this scenario is to explore

how the length of a service sequence affects the performance of the composition protocol.

For this, a single composite initiator varies, in different experiments, the number of

required sub-services and issues the request in a medium-dense network of slow moving

service providers. If the proposed protocol does not show any improvement over its

baselines under such ideal operating conditions it is not worth evaluating the protocol

any further because the other scenarios will challenge the protocols even more.

110

6.1. Experimental setup

Table 6.2: Scenario-specific settings

Parameter Configuration Scenario

1 2 3 4

Service demand/ single initiator • •

Percentage of initiators (%) 1 low • •

5 medium • •

10 high • •

Network density/ 300x300 dense • •

Field size(m x m) 500x500 medium • • • •

820x820 sparse • •

Participant speed (m/s) 1-2 slow • • • •

2-8 medium • •

8-13 fast • •

Service sequence length 4 •

5 • •

6 •

7 •

Service flow type 2 • •

3 •

4 •

5 •

6 •

7 •

Sample size 100 • • •

1000 •

111

Chapter 6. Evaluation

s1 s3 s5

s2 s4 s6

s7

Type 2:

init init

s1

s3

s5s2

s4

s6

s7

Type 3:

init init

s1

s3

s5

s2

s4

s6

s7

Type 4:

init init

s1

s3

s5

s2

s4

s6

s7

Type 5:

init init

s1

s3

s5

s2

s4

s6

s7

Type 6:

init init

s1 s3 s5

s2

s4 s6

s7

Type 7:

init init

Fig. 6.1: Service flow structures vary in number and length of parallel execution paths.

Scenario 2 uses them to assess the performance of the proposed service layer routing algorithm.

The type names are for ease of reference and start with 2 as type 1 refers to the service sequence.

Scenario 2: Impact of service flow structure Composites contain parallel execu-

tion paths e.g., to improve the quality of the final result. The objective of this scenario

is to investigate how the performance of the composition protocol changes if service se-

quences get replaced with service flows that merge into a common service before reaching

the composite’s final destination. Adopting the methodology described by Atluri et al.

(2007), the scenario tests, in multiple experiments, different types of flow structures that

contain seven sub-services and vary in number and length of parallel paths (cp. Fig-

ure 6.1). During the composition, all directed edges between services remain enabled,

representing composites with AND split and AND merge services. This is to test the per-

formance of the service layer routing algorithm for different numbers of synchronisation

partners. Further, the sample size increases to 1000 data points per experiment because

pilot studies prior to this evaluation showed that then a sufficiently narrow confidence

interval of 95 percent can be maintained.

112

6.1. Experimental setup

Scenario 3: Impact of environment using a service sequence The operat-

ing conditions for composite requests may not always be as ideal as in single-initiator

and medium-dense environments. The objective of this scenario is to explore how the

composition performance for a service sequence changes under different settings in the

operating environment. This includes the variation of three impact factors: First, the

variation of the network density between sparse, medium-dense, and dense. Second, the

variation of the participant speed between slow (walking), medium (cruising), and fast

(driving). Third, the variation of the service demand between low, medium, and high.

The network density depends on the field size which controls the number of neighbours

in direct transmission range. The different field sizes are chosen to keep the impact of the

routing protocol low and still challenge the composition protocol with sparse and dense

networks. The service demand depends on the percentage of initiators in the network.

Already a small number of initiators stress tests the protocol because the initiators issue

the exact same request at the exact same time. Combining the three impact factors each

with three levels of variation supports a detailed analysis of the protocol.

Scenario 4: Impact of environment using a service flow This scenario runs the

same set of experiments as in scenario 3, except that it uses the service flow type 2 as

the test composite. The objective of this scenario is to assess the performance of the

protocol’s synchronisation features in different operating environments.

6.1.3 Failure types

In the simulation, a composite may fail due to network failure, service discovery failure,

or provider overload. The associated failure types are defined as follows:

Network failure Wireless communication is unreliable because the composite partic-

ipants move in and out of each other’s range losing messages due to signal collision or

broken network links. This is recovered by resending undelivered messages. However,

once the maximum number of retries is exceeded, the recovery does not continue (i.e.,

route recovery is omitted) and the composite fails.

113

Chapter 6. Evaluation

Discovery failure Bound search is common practise in the design of network proto-

cols. In the simulation it constrains the allocation of service providers. If a composite

request has reached the 6-hop neighbourhood without finding a service provider, the

composition fails.

Overload failure The provider’s commitment to one composite at a time implies that

if it receives service allocations from two different composites, it handles the first and

silently drops the second. The second composite fails because the service layer recovery

is out of scope of this thesis and omitted.

6.1.4 Metrics

Three metrics, namely the failure ratio, communication overhead, and response time,

assess the performance of a composition protocol in the different scenarios. The failure

ratio is measured to assess whether the overall objective of reducing the failure probabil-

ity of a composite is achieved. Measuring the communication effort follows from design

objective 4 (cp. Section 3.1 on page 43), which reasons that less communication is a

way to achieve the overall objective. Recording the response time allows for studying

possible trade-offs in the protocol. The three metrics are defined as follows:

Failure ratio A composite request has failed if the initiator does not receive a valid

composition result from the last required service in the composite. The failure ratio is

the number of failed composites relative to the total number of composite requests that

have been issued. For a single initiator, the total number of requests is equal to the

sample size as the initiator issues one request per run of the experiment. In experiments

with multiple initiators, one run involves multiple requests, one for each initiator. The

total number of requests over all runs is then equal to the sample size multiplied by the

number of initiators. A high failure ratio means poor protocol performance.

Communication effort The communication effort in this evaluation comprises the

messages sent from the composition and network layer and is recorded on the MAC

layer. This includes composition messages as well as messages for route discovery and

114

6.1. Experimental setup

Table 6.3: Comparison of baselines CiAN* and Yil with proposed protocol Opp

CiAN* Yil Opp

Service announcement Proactive On demand

Service selection Most recent neighbour first

Service allocation by Initiator Predecessor

Synchronisation inapplicable Continuous path

updates

Service layer

routing

Service invocation Decentralised

Communication Non-observable

AODV unicast

Observable directed broadcast

Message format Non-standard

acknowledgements. It excludes any other network layer messages e.g., those for route

maintenance. Counting only the sent messages and not the received messages reduces

the impact of the network density that is not specific to the tested composition protocol.

The communication effort counts all sent messages regardless of whether the composition

was successful or has failed to reflect the strain of service composition on the network.

A high communication effort means poor protocol performance.

Response time The response time is the delay from the composite initiator sending

the composite request to its receiving the final result. The response time is measured

for composite requests that complete successfully without failure. A high response time

indicates poor protocol performance.

6.1.5 Baselines

The evaluation uses two baselines, in the following referred to as CiAN* and Yil, to

compare the performance of the proposed protocol. Similarly to the proposed protocol,

the baselines are implemented as part of the application layer in the simulator and run

the same set of evaluation scenarios. The next two paragraphs motivate the choice of the

baselines and present their implementation details. Table 6.3 summarises the comparison

of the baselines with the proposed approach, hereafter referred to as Opp.

115

Chapter 6. Evaluation

CiAN* Although the research community has invested substantial effort into decen-

tralising service composition, solutions for mobile ad hoc networks are only emerging.

CiAN (Sen et al., 2008) is a composition engine for such networks, which allows for a

broad range of comparison because it differs in many aspects from the proposed pro-

tocol. In particular, CiAN is a semi-centralised approach in which service providers

announce themselves proactively and the initiator allocates all required services at once

before decentralised service invocation starts. The comparison with this state-of-the-art

composition solution allows for valuable insights on the different approaches to service

composition in dynamic ad hoc networks. CiAN offers also a distributed planning mode

(Sen et al., 2007), however, this mode is less suitable because it assumes that service

providers, once they complete a service, move towards an priori chosen service alloca-

tor to collect the next service request. In other words, the distributed planning mode

assumes a leader-team relationship that does not reflect autonomous composite partic-

ipation. The evaluation uses our adaptation of CiAN, in the following referred to as

CiAN*, which is modified in two ways: First, CiAN* delivers allocation decisions over

multiple hops because original CiAN fails if a service provider does not come into the

initiator’s direct transmission range to collect its allocation decision. The failure ra-

tio in Figure 6.2 highlights the impact of this change as CiAN* fails 30 percent points

less than CiAN. Second, despite our best effort to preserve the original content-based

publish-subscribe mechanism to deliver messages, we found that AODV (Perkins et al.,

2003), a common routing protocol in mobile ad hoc networks, incurred less communi-

cation overhead and used it instead. The communication effort in Figure 6.2 shows the

difference between dispatching messages directly with AODV in CiAN* and gossiping

messages based on their content to multiple intermediaries in original CiAN. CiAN*’s

improvement with regard to the failure ratio and communication effort, outweighs its

slightly increased response time over original CiAN (cp. Figure 6.2) and supports its

choice as baseline.

Yil The late allocation of a merge service by its predecessors, as proposed in this the-

sis, is not widely used. Most composition solutions, like CiAN, assign a provider in

advance and avoid the need of multiple parties to synchronise their allocation decision.

116

6.1. Experimental setup

Sequence length

Fa
ilu

re
 r

at
io

 (
%

)

0

10

20

30

40

4
Sequence length

R
es

po
ns

e
tim

e
(s

)

0.0

0.5

1.0

1.5

2.0

2.5

4
Sequence length

S
en

t m
es

sa
ge

s

0

500

1000

1500

2000

4

CiAN*

CiAN+

CiAN

Fig. 6.2: Pilot study for CiAN The study runs scenario 1 with a sequence of 4 for services

(cp. Table 6.2) to assess the performance of the original CiAN, CiAN with multihop allocation

delivery (CiAN+), and CiAN with multihop allocation delivery and AODV routing (CiAN*).

CiAN* achieves a significantly lower failure ratio at lower communication effort than the other

two versions and motivates its use as a baseline.

Yildiz and Godart (2007), however, approached this topic and suggest a synchronisation

algorithm that relies on continuous path updates to introduce synchronisation partners.

This algorithm is used to compare the performance of the proposed service layer routing

algorithm. The corresponding baseline Yil implements the same underlying composi-

tion protocol as the proposed opportunistic approach, exchanges messages via directed

broadcasts, and composes services in a decentralised interleaved manner. As Yil differs

only in the way partners synchronise their allocation decision, it is used in experiments

with parallel service flows and omitted for service sequences.

6.1.6 Threats to validity

The following aspects of the experimental setup potentially limit the conclusions that

can be drawn from the simulation study in comparison to a realistic test environment.

Simulation Although simulation is an established and widely used evaluation method

for protocols in mobile ad hoc networks, its simplification of the real-world may lead to

results that do not reflect the actual protocol behaviour in the real world (Kiess and

117

Chapter 6. Evaluation

Mauve, 2007). In particular, using a model for mobility and radio propagation may

produce different results in the simulation than in a realistic deployment. However, as

the simulation setup is the same for all tested composition protocols, the simulation

allows for comparing their performance trends.

Provider participation Under the premise that the service provider has sufficient

resources, the study assumes the provider’s willingness to participate in a composite is

always positive. In reality, mobile device users may carefully weigh the cost and benefit

of sharing the resources of their devices. They may not participate at all if the right

incentives are missing. From this perspective, the study is rather idealistic as it limits

the number of available service providers only by the network density and the restriction

that each provider handles one composite at a time.

Network partitioning A low degree of network partitioning, as used in the study,

allows for the delivery of messages to their destination and is desired when evaluating the

performance of a protocol in mobile ad hoc networks (Kurkowski et al., 2007). In realistic

test environments, however, the degree of network partitioning may vary depending

on the network density and the willingness of mobile devices to relay messages. In

addition to signal collision and stale routing information, network partitioning presents

an additional source for composite failure on the network layer.

6.2 Results and analysis

This section presents the results and analysis of the simulation study. Its structure

follows the evaluation scenarios: The first two subsections examine the impact of the

composition structure, namely the length of service sequences (scenario 1) and the struc-

ture of service flows (scenario 2). The two subsections thereafter study the impact of the

operating environment using a service sequence (scenario 3) and a service flow (scenario

4). Each subsection first presents and analyses the outcome of the evaluation metrics

and then summarises how the results address the evaluation objective. The error bars

in the figures represent the 95 percent confidence interval for the results.

118

6.2. Results and analysis

Sequence length

Fa
ilu

re
 r

at
io

 (
%

)

0

1

2

3

4

5

6

4 5 6 7

CiAN*

Opp

Fig. 6.3: Failure ratio in scenario 1 For different lengths of a service sequence, the oppor-

tunistic protocol fails less than CiAN* because it is less prone to the unreliable network.

6.2.1 Impact of service sequence length

The first set of results corresponds to evaluation scenario 1 (cp. Table 6.2) and studies

how the length of a service sequence affects the performance of the composition protocol.

6.2.1.1 Failure ratio

The failure ratio in Figure 6.3 shows that the proposed opportunistic protocol fails less

composite requests than CiAN*. The improvement of 6 percent points is highest for

a sequence with 7 sub-services. Generally, the sequence length affects the proposed

approach less than CiAN* for which the failure ratio increases by almost 1 percent point

per additional service. The difference between both composition protocols is statistically

significant as their confidence intervals do not overlap. With regard to the source of

failure, the opportunistic protocol fails mostly due to signal collisions. CiAN* is more

prone to stale routes, in particular when the last service provider returns the final result

to the initiator.

119

Chapter 6. Evaluation

Sequence length

S
en

t m
es

sa
ge

s

0

100

200

300

400

CiAN*

4 5 6 7

Opp

4 5 6 7

discovery

allocation

routing

ack

Fig. 6.4: Communication effort in scenario 1 For different lengths of a service sequence,

the opportunistic protocol sends fewer messages than CiAN*. It benefits from a localised demand-

based service discovery which establishes network links without additional routing layer messages.

6.2.1.2 Communication effort

The graphs in Figure 6.4 show the communication effort for the proposed opportunis-

tic protocol and CiAN* itemised by different message types. The proposed approach

exchanges fewer messages and its communication effort grows less with increasing com-

position length than for CiAN*. The opportunistic protocol sends almost no routing

requests and responses because its on-demand service discovery is localised and estab-

lishes routing information which service providers later use to hand over the composition

control. In CiAN*, on the other hand, the number of routing related messages is sub-

stantial because first the initiator establishes routes to deliver its allocation decisions

and then each allocated service provider needs to establish a route to its successor.

6.2.1.3 Response time

The response time in Figure 6.5 shows that across all lengths, the proposed protocol

responds more quickly than CiAN*. While CiAN*’s response time increases roughly by

1 second per additional service, the proposed approach’s response time remains with

about 1 second almost constant. Only the service execution time of each additional

120

6.2. Results and analysis

Sequence length

R
es

po
ns

e
tim

e
(s

)

0

1

2

3

4

5

4 5 6 7

CiAN*

Opp

Fig. 6.5: Response time in scenario 1 For different lengths of a service sequence, the

opportunistic protocol responds more quickly than CiAN* because it does not have to acquire

additional routing information.

service causes a small increase. In this and all following experiments, CiAN*’s response

time excludes the discovery phase and starts when the composite initiator sends its

allocation decisions. Nonetheless, CiAN* experiences longer delays for two possible

reasons: First, routing requests cannot be satisfied by the neighbourhood and must

wait for a timeout before they can be resent with a bigger search radius. Second,

resending lost messages also needs to wait for a timeout as this distinguishes lost from

delayed messages. With regard to the communication effort, the primary reason why the

proposed protocol responds more quickly is because it does not have to acquire routing

information separately.

6.2.1.4 Summary

For service sequences, the novel opportunistic composition protocol outperforms CiAN*

in all three metrics: Failing less composite requests, it responds more quickly, and it

requires less communication. The length of a service sequence has a smaller effect on the

proposed protocol than on CiAN*. The results further show that the protocol’s demand-

based service discovery in combination with interleaved service invocation establishes

knowledge about the network topology without additional routing layer messages, which

121

Chapter 6. Evaluation

Flow type

Fa
ilu

re
 r

at
io

 (
%

)

0

5

10

15

20

25

2 3 4 5 6 7

CiAN*

Opp

Yil

Fig. 6.6: Failure ratio in scenario 2 For different flow types, the opportunistic protocol

maintains its advantage over CiAN* if requests contain few and long parallel paths (flow type 2

and 7). Compared to Yil, the protocol fails less across all flow types.

keeps the communication effort low and the response time short. These benefits of the

novel protocol motivate further investigations of more challenging scenarios.

6.2.2 Impact of service flow structure

For evaluation scenario 2 (cp. Table 6.2) and the next set of results, the request changes

from service sequences to parallel service flows to explore the effect of different flow types

(cp. Figure 6.1) on the protocol’s performance. The analysis focuses on two questions:

First, does the proposed protocol maintain its advantage over CiAN*? Second, does the

proposed service layer routing outperform the synchronisation algorithm with continuous

path updates, which is represented by Yil?

6.2.2.1 Failure ratio

The failure ratio in Figure 6.6 shows that the opportunistic protocol is more affected

by the parallel than the sequential composite structure. The protocol’s failure ratio

increases with the increase of parallelism from flow type 2 to flow type 6. Compared to

CiAN*, the proposed protocol maintains its advantage if requests contain few and long

122

6.2. Results and analysis

parallel paths as in flow type 2 and flow type 7. If parallelism is high, as in flow type

6, the protocol performs worse than CiAN*. Compared to Yil, the proposed protocol

achieves a lower failure ratio across all flow types. Its improvement ranges from 3 percent

points for flow type 2 to 19 percent points for flow type 5.

There are two reasons of why the proposed protocol fails more often for service flows

than for service sequences: First, after synchronisation partners are agreed, they hand

over the composition control at about the same time. The higher the parallelism, the

more partners, and the more likely is the collision of signals at the common successor.

Second, the protocol fails due to stale routes. The protocol should reduce the risk of stale

routes as its interleaved approach establishes connections immediately before they are

used. However, finding an agreement among multiple parties introduces delays during

which already established routes may expire. Combining the opportunistic protocol with

continuous path updates, as in the Yil baseline, increases this effect: Routes that have

been established during demand-based service discovery grow stale because the topology

changes while a service provider waits for updates from other paths before it hands over

the composition control to its successor.

6.2.2.2 Communication effort

The communication effort in Figure 6.7 shows that the opportunistic protocol sends

fewer messages across all flow types than CiAN*, despite additional synchronisation

messages. Synchronisation messages increase the number of acknowledgements and in-

troduce the need for routing layer messages. The benefit of on-demand service discovery

already establishing routing information applies only to consecutive service providers and

not to synchronisation partners. For partners the network links have to be established

separately. However, the protocol has another advantage: With increasing parallelism,

the number of discovery messages decreases because a request contains all required ser-

vices and a provider can apply for multiple services at once. Compared to Yil, the

proposed protocol exchanges slightly less messages because Yil uses the same communi-

cation means as the proposed protocol but interacts more often between parallel paths,

which requires more routing effort.

123

Chapter 6. Evaluation

Flow type

S
en

t m
es

sa
ge

s

0

100

200

300

400

500

CiAN*

2 3 4 5 6 7

Opp

2 3 4 5 6 7

Yil

2 3 4 5 6 7

discovery

allocation

routing

ack

Fig. 6.7: Communication effort in scenario 2 For different flow types, the opportunistic

protocol sends fewer massages than CiAN* because it requires less routing and discovery effort.

Compared to Yil, the proposed protocol sends fewer messages because it establishes fewer routes

between parallel paths.

6.2.2.3 Response time

The response time in Figure 6.8 shows that the proposed protocol outperforms CiAN*

clearly and Yil slightly. CiAN* returns the final composition result after 5 seconds.

Similarly to service sequences, several attempts to discover routing information produce

such a delay. The response time for the proposed approach increases with increasing

parallelism from 1 to 2 seconds because finding an agreement among synchronisation

partners introduces delays. The protocol’s low response time despite the need for ded-

icated routing messages indicates that routing information is already available in the

immediate neighbourhood. This demonstrates the benefit of observable composition

messages and cross-layer management of topology information.

6.2.2.4 Summary

For service flows, the opportunistic protocol maintains a better failure ratio than CiAN*

if parallel paths are few and long. Otherwise, the high number of synchronisation part-

ners delays agreement and causes more signal collision and stale routes. Using service

124

6.2. Results and analysis

Flow type

R
es

po
ns

e
tim

e
(s

)

0

1

2

3

4

5

2 3 4 5 6 7

CiAN*

Opp

Yil

Fig. 6.8: Response time in scenario 2 For different flow types, the opportunistic protocol

maintains a shorter response time than CiAN* because required routing information is already

available in its immediate neighbourhood.

layer routing for synchronisation, the proposed protocol fails significantly less than with

continuous path updates as proposed by Yil because fewer interactions between parallel

paths reduce the risk of stale routes. In terms of communication, the proposed proto-

col maintains its advantage over CiAN* although synchronisation introduces additional

message overhead. In particular, the benefit of demand-based service discovery estab-

lishing routes applies only to consecutive service providers and not to synchronisation

partners for which the routes have to be established separately. However, the required

routing information is available in the immediate neighbourhood and enables the pro-

tocol to respond significantly more quickly than CiAN*. Overall, the proposed protocol

maintains its benefits over the baselines if service flows are of moderate parallelism.

6.2.3 Impact of environment using a service sequence

Having evaluated the impact of the composite structure, the next results demonstrate

the impact of the operating environment. In particular, this subsection corresponds

to scenario 3 (cp. Table 6.2) and investigates how the performance of the proposed

protocol changes if it composes a sequence of 5 sub-services in an environment that varies

125

Chapter 6. Evaluation

in service demand, network density, and participant speed. For ease of comparison, a

3-by-3 result matrix presents how a metric evolves for these impact factors.

6.2.3.1 Failure ratio

The failure ratio illustrated in Figure 6.9a shows that across all fields of the matrix

the proposed protocol fails less than CiAN*. Compared to the results in scenario 1

(cp. Figure 6.3), the benefit of the proposed protocol over CiAN* has increased: In

scenario 1 the difference between the protocols amounted to about 2.5 percent points for

5 sub-services. Now in this scenario, it varies between 70 percent points in sparse high-

demand environments (bottom left graph) and 20 percent points in dense high-demand

environments (bottom right graph).

The proposed protocol performs very well with a maximum of 5 percent failure if

the service demand is low (top row). It remains under 10 percent failure in sparse net-

works (left column) and in medium-dense networks with medium service demand (centre

graph). Among the impact factors, service demand and network density dominate the

failure ratio while the participant speed has the least effect.

In terms of failure sources, both protocols are prone to network failure. In addi-

tion, CiAN* is prone to provider overload whereas the proposed protocol suffers from

discovery failure. Figure 6.9b illustrates the number of failures per failure type for high

service demand. It shows that discovery failure for the proposed protocol is substantial

in dense networks while overload failure for CiAN* occurs even in less dense environ-

ments. The proposed protocol avoids overload failure because it allocates only free

service providers. In dense environments, however, multiple composite requests interfere

with each other and compete for the same set of service providers up to the point where

all service providers in the search radius are blocked and a provider for the next re-

quired service cannot be found. CiAN* does not incur discovery failure because it waits

on proactive service announcements which are eventually disseminated in the network.

However, unaware of who else uses the announcement, CiAN* risks overloading its ser-

vice providers. The increasing network density promotes the dissemination of proactive

service announcements and increases the number of composites that have access to the

same set of providers.

126

6.2. Results and analysis

Fa
ilu

re
 r

at
io

 (
%

)

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

density: sparse

slow medium fast

density: medium

slow medium fast

density: dense

slow medium fast

dem
and: low

dem
and: m

edium
dem

and: high

CiAN*

Opp

(a) Failure ratio

Fa
il

co
un

t

0

200

400

600

800

1000

1200

sparse
CiAN*

slow fast

medium
CiAN*

slow fast

dense
CiAN*

slow fast

sparse
Opp

slow fast

medium
Opp

slow fast

dense
Opp

slow fast

Failure type

network

discovery

overload

(b) Failure types for high service demand

Fig. 6.9: Failure ratio in scenario 3 For a service sequence and varying operating environ-

ment, the opportunistic protocol fails less than CiAN* (a). Its exposure to discovery failure is

substantial for dense networks while CiAN* overloads providers already in sparse networks (b).

127

Chapter 6. Evaluation

6.2.3.2 Communication effort

The communication effort illustrated in Figure 6.10a shows that in sparse environments

(left column), the proposed protocol sends fewer messages than CiAN*. With increasing

network density and service demand (towards bottom right graph) its communication

effort, however, increases until it exceeds CiAN*. There are two reasons for this: First,

the proposed protocol is still operating to complete a composite, while CiAN* has already

failed and has stopped sending messages. Second, the shortage of free providers in the

immediate neighbourhood forces the proposed protocol to broaden its search and send

more composite requests. Figure 6.10b illustrates that by breaking service discovery

messages down into composite requests and service announcements (service ad), CiAN*

exchanges mainly routing messages that are unaffected by the network density. The

participant speed has no effect on the communication overhead.

6.2.3.3 Response time

The response time in Figure 6.11 shows that the proposed protocol responds on average

3.3 seconds faster than CiAN* if the network is sparse (left column) or the service demand

low (top row). In these cases, it finds free service providers and corresponding routing

information in its immediate neighbourhood. As demand and density increase, the

response times of both protocols converge until the proposed protocol exceeds CiAN*

by 2.2 seconds in dense high demand environments (bottom right graph). However,

completing on average 20 percent more compositions in such a setting justifies the delay.

With regard to the impact factors, service demand and network density are equally

dominant while the participant speed has no effect on the response time. In addition,

the lower the network density, the more quickly the proposed protocol responds. For

CiAN* the opposite is true.

6.2.3.4 Summary

The proposed protocol continues to show reduced composite failure compared to CiAN*.

The improvements regarding the failure ratio reach up to 70 percent points in sparse high-

demand networks. This fulfils the protocol’s overall objective of reducing the composites’

128

6.2. Results and analysis

S
en

t m
es

sa
ge

s

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

density: sparse

slow medium fast

density: medium

slow medium fast

density: dense

slow medium fast

dem
and: low

dem
and: m

edium
dem

and: high

CiAN*

Opp

(a) Total communication effort

S
en

t m
es

sa
ge

s

0

1000

2000

3000

4000

5000

6000

sparse
CiAN*

slow fast

medium
CiAN*

slow fast

dense
CiAN*

slow fast

sparse
Opp

slow fast

medium
Opp

slow fast

dense
Opp

slow fast

composite req

service ad

allocation

routing

ack

(b) Communication effort for high service demand

Fig. 6.10: Communication effort in scenario 3 For a service sequence and varying op-

erating environment, the opportunistic protocol maintains its advantage over CiAN* in sparse

networks (a). With increasing network density it issues more composite requests to find free

service providers (b).

129

Chapter 6. Evaluation

R
es

po
ns

e
tim

e
(s

)

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

density: sparse

slow medium fast

density: medium

slow medium fast

density: dense

slow medium fast

dem
and: low

dem
and: m

edium
dem

and: high

CiAN*

Opp

Fig. 6.11: Response time in scenario 3 For a service sequence and varying operating envi-

ronment, the opportunistic protocol responds in dense or low-demand settings more quickly than

CiAN* as free service providers and routing information are available in the neighbourhood.

failure probability. In most cases, the proposed protocol achieves a lower failure ratio

at lower or similar communication effort and shorter response times. The proposed

protocol suffers from discovery failure if network density and service demand increase at

the same time. Then, multiple composite requests interfere with each other and compete

for the same set of service providers, which gradually leads to more communication,

longer delays, and finally to more failure. Among the impact factors, network density

and service demand dominate the outcome of all three metrics while the participant

speed has only an effect on the failure ratio. The faster the participants move, the

sooner routes become stale, and the more likely is the composite to fail. While slow

providers communicate to complete a composite request, fast providers incur the same

communication effort but to recover lost messages. The response time is measured only

for successful composites and its independence of the participant speed is expected.

130

6.2. Results and analysis

6.2.4 Impact of environment using a service flow

The analysis of previous scenarios showed among other things that the proposed pro-

tocol outperforms its baselines for composites with moderate parallelism and that the

variations of the operating environment reinforce the protocol’s benefits for service se-

quences. This subsection corresponds to scenario 4 (cp. Table 6.2) and examines whether

the protocol maintains its benefit for a moderate flow type 2 and different levels of service

demand, network density, and participant speed.

6.2.4.1 Failure ratio

The graphs in Figure 6.12a show that the proposed protocol fails less often than CiAN*

in all settings except for high-demand dense networks, where both protocols incur a

similar failure ratio. The improvement of the proposed protocol ranges from a minimum

of 9 percent points to a maximum of 59 percent points (both in top left graph). With

regard to the synchronisation algorithms, the proposed protocol outperforms Yil in some

cases, most notably in medium-dense medium-demand networks (centre graph) with an

improvement of 53 percent points. In other cases, both algorithms perform similarly and

the proposed protocol does not fail significantly more often than Yil.

Compared to the failure ratio in scenario 3 (cp. Figure 6.9a), network density and

service demand have a higher impact as the protocol’s failure ratio is higher across all

graphs in the matrix for service flows.

The source of failure has not changed for the protocols; only its impact has increased.

Compared to scenario 3 (cp. Figure 6.9b), the main difference for service flows is that

the proposed protocol is prone to discovery failure in less dense networks (cp. Figure

6.12b). The reason is that the two parallel paths in flow type 2 originate from the

same composite and compete for service providers in the same search area. Figure 6.12b

omits Yil because its behaviour for high service demand is similar to that of the proposed

protocol. If the service demand and network density is medium (not depicted), Yil is

more prone to network failure than the proposed approach because it requires more

interaction between parallel paths.

131

Chapter 6. Evaluation

Fa
ilu

re
 r

at
io

 (
%

)

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

density: sparse

slow medium fast

density: medium

slow medium fast

density: dense

slow medium fast

dem
and: low

dem
and: m

edium
dem

and: high

CiAN*

Opp

Yil

(a) Failure ratio

Fa
il

co
un

t

0

200

400

600

800

1000

1200

1400

sparse
CiAN*

slow fast

medium
CiAN*

slow fast

dense
CiAN*

slow fast

sparse
Opp

slow fast

medium
Opp

slow fast

dense
Opp

slow fast

Failure type

network

discovery

overload

(b) Failure type for high demand

Fig. 6.12: Failure ratio in scenario 4 For a service flow and varying operating environment,

the proposed protocol fails less often than CiAN*, except for dense high-demand networks. Its

improvement over Yil is most notably in medium-demand medium-dense networks (a). The

proposed protocol is exposed to discovery failure in sparse networks because the parallel paths of

a composite compete for the same set of providers (b).

132

6.2. Results and analysis

6.2.4.2 Communication effort

The communication effort illustrated in Figure 6.13a shows that in most cases, the

proposed protocol’s communication effort is similar or higher than that of CiAN* or

Yil. However, the protocol’s lower failure ratio means it completes more composites

successfully, which justifies this overhead. With increasing service demand and network

density, its communication effort increases substantially. Figure 6.13b shows for high

service demand that the proposed protocol issues a high number of composite requests

to find free service providers. CiAN*, on the other hand, spends most of its messages

to establish routes between consecutive service providers. Figure 6.13b omits Yil as it

similarly to the proposed protocol encounters service discovery issues.

6.2.4.3 Response time

The response time illustrated in Figure 6.14 shows that the proposed protocol responds

on average 4 seconds faster than CiAN* if the network is sparse (left column), service

demand is low (top row), and in medium-dense medium demand networks (centre graph).

Compared to scenario 3 (cp. Figure 6.11) the response time for these cases increases

by a maximum of 2.5 seconds due to the need for synchronisation and the increased

challenge of finding free service providers. The difference to Yil is negligible.

6.2.4.4 Summary

Generally, the proposed protocol reduces the composition failure for a moderate service

flow in varying operating environments. Except for high-demand dense networks, it

fails less often than CiAN* and reaches an improvement of up to 59 percent points.

Using service layer routing shows the greatest improvement of 53 percent points over

Yil with continuous path updates, for medium service demand and network density. In

some cases, the proposed protocol achieves a lower failure ratio with fewer messages

overhead. The protocol responds more quickly than CiAN* if the network is sparse or

service demand low. Compared to service sequences, the impact of service demand and

network density has increased for all composition protocols because the parallel paths

of the service flow operate in the same area and compete for the same set of providers

133

Chapter 6. Evaluation

S
en

t m
es

sa
ge

s

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

10000

density: sparse

slow medium fast

density: medium

slow medium fast

density: dense

slow medium fast

dem
and: low

dem
and: m

edium
dem

and: high

CiAN*

Opp

Yil

(a) Communication effort

S
en

t m
es

sa
ge

s

0

2000

4000

6000

8000

10000

sparse
CiAN*

slow fast

medium
CiAN*

slow fast

dense
CiAN*

slow fast

sparse
Opp

slow fast

medium
Opp

slow fast

dense
Opp

slow fast

composite req

service ad

allocation

routing

ack

(b) Communication effort for high service demand

Fig. 6.13: Communication effort in scenario 4 For a service flow and varying operat-

ing environment, the opportunistic protocol sends in most cases similar or more messages than

CiAN* and Yil (a). With increasing service demand and network density the proposed protocol

requires a high number of composite requests to find free service providers (b).

134

6.2. Results and analysis

R
es

po
ns

e
tim

e
(s

)

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

density: sparse

slow medium fast

density: medium

slow medium fast

density: dense

slow medium fast

dem
and: low

dem
and: m

edium
dem

and: high

CiAN*

Opp

Yil

Fig. 6.14: Response time in scenario 4 For a service flow and varying operating envi-

ronment, the opportunistic protocol responds on average 4 seconds faster than CiAN* in sparse

networks, if service demand is low, and if demand and density is at a medium level. The differ-

ence to Yil is negligible.

135

Chapter 6. Evaluation

Table 6.4: Result summary For the tested scenarios and compared to the baselines CiAN*

and Yil, the performance of the proposed protocol is similar , sometimes better sometimes worse

, better or similar never worse , always better as follows:

CiAN* Yil

F
a
il
u
re

ra
ti

o

C
o
m

m
u
n
ic

a
ti

o
n

R
es

p
o
n
se

ti
m

e

F
a
il
u
re

ra
ti

o

C
o
m

m
u
n
ic

a
ti

o
n

R
es

p
o
n
se

ti
m

e

Impact of service sequence length inapplicable

Impact of service flow structure

Impact of environment using a service sequence inapplicable

Impact of environment using a service flow

which leads to more discovery or overload failure. The impact of the participant speed on

the failure ratio has also slightly increased because with multiple composite controllers

in service flows, more routes are created that are likely to break if participants move

fast. Altogether, the proposed protocol maintains its benefit over the baselines for the

moderate flow type 2 under various operating conditions. It is intuitive that a lower

failure ratio may come at the expense of higher communication effort and longer delays.

6.3 Chapter summary

This chapter presented a simulation-based study to evaluate how well the novel oppor-

tunistic composition protocol achieves its objective to reduce the failure probability of

service composites in dynamic ad hoc environments. The study uses four evaluation

scenarios and two baselines to assess the protocol’s performance with regard to its fail-

ure ratio, communication effort, and response time. Table 6.4 gives an overview of the

results that can be summarised as follows:

• For service sequences, the proposed protocol lowers the failure ratio by 20 to 70

percent points compared to CiAN* and depending on the particular setting of the

operating environment. There are two reasons for this: First, the length of a service

136

6.3. Chapter summary

sequence has less impact on the protocol’s performance than on CiAN* as it is less

prone to stale routing information. Second, the protocol’s observable demand-

based interaction reduces the communication effort and composition delays.

• For different service flows types, the protocol’s performance is more diverse. Com-

pared to CiAN*, the proposed protocol maintains a lower failure ratio for com-

posites with moderate parallelism. If parallelism is high, synchronisation for an

allocation decision delays the composition process and increases the probability

of network failure. With regard to the synchronisation algorithm, the proposed

service layer routing algorithm lowers the failure ratio across all tested flow types.

Its improvement ranges from 3 and 19 percent points compared to Yil, which uses

continuous path updates. The proposed algorithm synchronises once at the end of

parallel paths and exposes the composite less often to the unreliable network.

• For a moderate service flow in different operating environments, the proposed

protocol improves the failure ratio between 9 and 59 percent points compared to

CiAN*. When service demand is high and the network dense, both protocols fail

similarly often. Compared to Yil, the proposed synchronisation algorithm fails

similarly often in some cases and in other cases achieves an improvement of a

failure ratio of up to 53 percent points. In particular, for medium service demand

the proposed algorithm can leverage the benefit of less communication between

parallel paths before it suffers similarly to Yil from service discovery issues when

service demand is high.

• With regard to the operating environment, service demand and network density

dominate the impact on the protocol’s performance. If both increase, multiple

composites interfere with each other and compete for the same set of providers,

which gradually leads to more communication, longer delays, and eventually more

failure. The participant speed affects the failure ratio because the faster the service

providers move, the more likely is routing information to grow stale.

The results show that the proposed protocol generally achieves its objective and reduces

the failure probability of composites in dynamic ad hoc environments. The protocol suits

137

Chapter 6. Evaluation

service sequences well because it reduces the composition delay. The improvements for

service flows are smaller because synchronisation further delays the composition process

and increases the probability for network failure. This supports the hypothesis that

shorter delays imply lower composite failure.

138

Chapter 7

Conclusion

This chapter summarises the thesis and its achievements. It discusses the trade-offs of

the designed protocol and highlights potential areas for future work.

7.1 Thesis summary

This thesis described a novel model for service composition that addresses a number of

issues that occur if components in a complex application are distributed in dynamic ad

hoc environments.

Introduction Chapter 1 motivated this work and argued that pervasive computing en-

vironments rely on the composition of services from several mobile devices to leverage the

opportunities of mobile sensing in the immediate surroundings of a user. However, ser-

vice composition in such environments faces transient networks, the lack of composition

infrastructure, unreliable communication, participation autonomy, and mobility. These

dynamic operating conditions together with the delay introduced by the composition

process itself lead to potential failure of service composites. The chapter hypothesised

that a novel composition protocol could lower the failure probability of composites by

reorganising the composition process and thus reducing the delay between the compo-

sition phases in a communication efficient manner. The hypothesis was that: The later

the operating environment is explored to compose a complex service request, the less

time there is for the system to change and to render composition decisions invalid.

139

Chapter 7. Conclusion

State of the art Chapter 2 reviewed the service-oriented computing domain in more

detail. It examined how different approaches establish and maintain their service topol-

ogy, stabilise the composite against changes, block and release resources, and apply these

principles to parallel service flows. The analysis highlighted the gap for an opportunistic

composition protocol as existing solutions do not study the possibility of integrating the

composition phases to reduce composite failure.

Design Chapter 3 first derived a set of design objectives and argued that the novel com-

position protocol must proactively gather information, self-organise service composition,

and support parallel service flows. In addition, the protocol must reduce communication,

enable short and localised interaction, and obtain the providers’ commitment. There-

after, the system model framed service composition in dynamic ad hoc environments

as a mapping problem between the composite graph and the sequence of time-varying

graphs of provided services. In addition, the system model formally defined the scope

of this thesis. The discussion of design alternatives then led to the design decisions that

constitute the main contribution of this thesis, the proposed opportunistic composition

protocol. The protocol relies on demand-based and resource-blocking service announce-

ments to exchange only provider data that is relevant for a composite and to confirm

the commitment of a service provider. The protocol decentralises and interleaves the

composition phases such that a service provider first executes its assigned service and

then allocates its successor. This allows for short localised interactions between con-

secutive service providers and the opportunity to reduce a composite during execution,

i.e., by removing parts of the composite that have become obsolete. The concept ap-

plies to all required services, including those that synchronise parallel execution paths.

For the end-to-end communication between composite participants the protocol employs

observable multicasting to allow for proactive yet demand-based service announcements

and an efficient way to release redundant resources. Collectively, these design decisions

support self-organisation of service composition in an ad hoc network of mobile devices.

Design verification Chapter 4 applied model checking as a formal method to verify

the correctness of protocol properties that target the interaction of multiple composite

140

7.2. Discussion

participants. For service sequences and parallel service flows, the verification results

confirmed that the proposed composition protocol does not deadlock and terminates in

a valid end state after having allocated the correct number of service providers for all

required sub-services.

Implementation Chapter 5 presented details on the prototype implementation that

allows for simulating mobile composite participants and their collective effort to achieve

a complex task. The prototype serves a basis for evaluating the protocol’s performance.

Evaluation Chapter 6 evaluated how well the proposed protocol achieves the overall

objective of reducing the failure probability of service composites in dynamic ad hoc

networks. It simulated various scenarios to expose the protocol to different composite

structures, levels of service demand, network densities, and speeds of composite partic-

ipants. The results showed that the protocol presents a suitable composition model for

dynamic ad hoc environments because it generally fails less than the baselines CiAN*

and Yil. For sequential composites the protocol reduces the failure ratio by 20 to 70

percent points, compared to the baselines and depending on the level of the service de-

mand and network density. For service flows with few and long parallel execution paths,

the improvement of the failure ratio ranges between 9 and 59 percent points, depending

on the different operating conditions. However, the results also showed that increasing

parallelism introduces synchronisation delays and increases the probability of network

failure. The protocol performs best when multiple composite requests are least likely to

interfere with each other, which is when service demand or network density stay at a

low or medium level.

7.2 Discussion

The proposed protocol generally reduces the failure probability of service composites in

dynamic ad hoc environments, which suggests that the novel opportunistic composition

model is a suitable alternative to existing techniques. However, an important finding of

this thesis is that an optimisation in one part of the composition process often implied

a cutback in another part, as the following design details show:

141

Chapter 7. Conclusion

• Service announcements are designed to block provider resources immediately to

avoid additional confirmation about the provider’s commitment and to prevent

failure due to provider overload. However, these resource-blocking announcements

block more providers than needed and require extra communication to release re-

dundant providers. In addition, service discovery failure may increase due to tem-

porary provider shortage: A composite may fail to allocate a free service provider

because another composite has blocked all relevant providers and not yet released

them. A way to address this issue, is to introduce cooperation among composites

such that they release redundant providers as soon as they become aware of co-

located composites and their service discovery requests. The observability of the

composition process raises this awareness without additional communication cost.

• Service announcements are issued if there is demand for that service. This re-

duces the use of bandwidth for provider data that is immediately applicable. The

simulation study showed that this also creates network links between consecutive

providers without additional route discovery. However, this benefit does not apply

to synchronisation partners and the protocol relies on route discovery nonethe-

less. The cross-layered communication approach may provide for a way to increase

the efficiency of route discovery. With observable composition processes, route

requests may be sent more directed towards the synchronisation partner, rather

than flooded concentrically from the message source into the network.

• Interleaving the composition phases localises the provider allocation and reduces

the composition delay such that the protocol improves the failure probability of

service sequences. Service flows, however, require the synchronisation of allocation

decisions which introduces delays and makes locality an issue: Multiple synchro-

nisation partners try to address the same successor at about the same time which

increases the demand for bandwidth and network failure. The wireless communica-

tion standard IEEE 802.11 supports RTS/CTS (Request to Send / Clear to Send),

a mechanism to avoid signal collision and typically used for unicast messages that

exceed a certain packet size. Applying RTS/CTS to directed broadcasting may

improve the protocol’s performance for parallel service flows.

142

7.3. Future work

• Decentralised composition allows for direct and localised interaction between con-

secutive service providers. This, however, implies that the composite initiator loses

control over the composite until it receives the final result or a failure notification.

It cannot intervene in intermediate service results. The protocol eases this lim-

itation by supporting composites with conditional execution paths. At runtime,

the protocol reduces the composite and allocates resources to paths that are still

valid. Alternatively, the composite may specify checkpoints which require service

providers to transfer intermediate results and the composition control back to the

initiator who then can adapt the composite to its needs.

The protocol builds on two underlying assumptions: First, users are generally willing to

share the capabilities of their mobile devices with their immediate surroundings. Sec-

ond, the disclosure of composite-related data is not an issue. The concept of exchanging

messages as directed broadcasts benefits from these assumptions and allows for observ-

ing composition traffic, tracking the evolution of the service and network topology, and

initiating proactive yet demand-based actions at lower communication effort. For ap-

plications like mobile sensing, where physical phenomena can be experienced by anyone

in the same area, consuming and providing services does not disclose sensitive data.

However, if applications require a higher level of privacy the proposed protocol would

require additional means to protect the content of messages.

7.3 Future work

This thesis examined a new research direction for how service composition can be or-

ganised to adapt to dynamic operating environments. Notwithstanding its contribution

to knowledge, the thesis may serve as a starting point for further investigations in areas

such as failure recovery and people-centric sensing.

Failure recovery Failure recovery is an important challenge for service composition in

transient networks but while the proposed protocol reduces composition failure, it cannot

prevent it. Recovery strategies may be most effective if they start in lower layers (Jiang

et al., 2009) e.g., by avoiding signal collision or repairing broken network links. However,

143

Chapter 7. Conclusion

composition-related failure sources require suitable means of recovery at the service com-

position layer. For example, the simulation study showed that dense networks with high

demand for services are a challenge for any of the tested composition protocols due to

the temporary shortage of unblocked service providers. A possible solution may build on

the observability of composition messages and introduce cooperation among composite

controllers such that they release redundant providers once other composite controllers

signal service discovery issues. The challenge of this undertaking is to strike the right

balance between cooperation and communication effort as each additional message is a

potential source for network failure.

People-centric sensing Complex sensing tasks can be initiated by mobile users as

well as distant cloud services that require sensor data to provide higher level context

information. People-centric sensing, for example, relies on citizens to collect and up-

load sensor data to improve the micro- and macroscopic view of a city (Lane et al.,

2010). However, increasing the number of contributors and the demand for context

information strains the device-to-cloud connections and challenges the system’s scala-

bility. Opportunistic service composition may be a way to balance the load for data

processing. Co-located mobile devices could collaborate to aggregate their sensor read-

ings and upload one big data packet from one device instead of transmitting multiple

small data packets via individual connections. Future work will have to investigate how

the composition effort in an ad hoc network compares to the overhead of uploading sen-

sor data individually. Each device may experience delays, losses, and energy costs when

communicating either with the distant cloud or consecutive service providers.

7.4 Final remark

This thesis investigated how to reduce the failure probability of service composites in

dynamic ad hoc environments. Based on the observation that the composition delay

is a major failure source, a novel opportunistic composition protocol was designed to

allow for short, localised, and demand-based interactions between mobile and initially

unknown service providers. As the first of its kind, the protocol examined the impact of

144

7.4. Final remark

reorganising the composition phases and making the composition process observable to

potential service providers. The thesis showed that the proposed protocol is a suitable

alternative to conventional composition solutions as it reduces the composite’s exposure

to its unreliable operating environment and generally achieves a lower failure probabil-

ity. The protocol is designed for applications that run in highly dynamic environments,

require multiple participants, and allocate components in an ad hoc manner. These char-

acteristics apply to data collection and in-network processing tasks for which pervasive

computing and the collection of context information is a prominent example. Context-

aware applications require insight into the current situation of their users to assist them

with relevant information and targeted services. In contrast, the protocol does not suit

applications that run in stable environments in which task allocation can be planned

and verified. For example, business process and e-commerce applications require trans-

actional behaviour which the protocol does not provide. It is hoped that the findings of

this thesis offer a new perspective on the use of ad hoc networks and encourage further

research on composition-based collaboration in emerging areas such as people-centric

sensing.

145

Appendix A

Verification with SPIN

The following screenshots illustrate the output of the model checker SPIN (version 6.2.2)

for the verification of the proposed opportunistic service composition protocol. Figure

A.1 demonstrates the output of SPIN if the assertion of a correctness property fails.

Figure A.2 shows the output for the sequential PROMELA model and that it terminates

without any errors. Figure A.3 shows the correctness of the parallel PROMELA model.

147

Appendix A. Verification with SPIN

1
2
3
4
5

6

7
8

11
12
13

17
18
19

24
25

22
23

9
10

14
15
16

20
21

26
27

Fig. A.1: SPIN output for failed verification The model checker runs with a modified se-

quential PROMELA model (Line 1) in which a controller assigns multiple providers to a required

service. This leads to a violation of the correctness property (Line 5). The model checker stops

and does not continue searching the finite state machine (Line 8). It found a counter example

after 316 steps that produced an error (Line 14).

148

1
2
3
4
5

6

7
8
9

12
13
14

18
19
20

25
26

23
24

10
11

15
16
17

21
22

Fig. A.2: SPIN output for sequential PROMELA model The model checker runs the

sequential PROMELA model for the proposed opportunistic composition protocol (Line 1) and

does not produce any errors (Line 12). This means no assertion violations (Line 9) or invalid end

states (Line 11) have occurred and the protocol is correct for its defined correctness properties.

149

Appendix A. Verification with SPIN

1
2
3
4
5

6

11
12

25
26

23
24

8
9
10

13
14
15

21
22

27
28

7

16
17
18

19
20

Fig. A.3: SPIN output for parallel PROMELA model The model checker runs the parallel

PROMELA model for the proposed opportunistic composition protocol (Line 1) and does not

produce any errors (Line 13). This means no assertion violations (Line 10) or invalid end states

(Line 12) have occurred and the protocol is correct for its defined correctness properties.

150

Bibliography

Aguilera, U. and López-de Ipiña, D. (2012). Service composition for mobile ad hoc

networks using distributed matching, Ubiquitous Computing and Ambient Intelligence,

Vol. 7656 of LNCS, Springer, pp. 290–297.

Artail, H., Antoun, R. and Fawaz, K. (2009). CRUST: Implementation of clustering

and routing functions for mobile ad hoc networks using reactive tuple-spaces, Ad Hoc

Networks 7(6): 1064 – 1081.

Atluri, V., Chun, S. A., Mukkamala, R. and Mazzoleni, P. (2007). A decentralized

execution model for inter-organizational workflows, Distributed and Parallel Databases

22(1): 55–83.

Balasooriya, J., Prasad, S. and Navathe, S. (2008). A middleware architecture for en-

hancing web services infrastructure for distributed coordination of workflows, Inter-

national Conference on Services Computing (SCC), Vol. 1, IEEE, pp. 370 –377.

Barr, R. and Kargl, F. (2005). JiST/SWANS Edition of Ulm University.

URL: http://vanet.info/jist-swans/download.html

Bidot, J., Goumopoulos, C. and Calemis, I. (2011). Using ai planning and late binding

for managing service workflows in intelligent environments, International Conference

on Pervasive Computing and Communications (PerCom), pp. 156 –163.

Brønsted, J., Hansen, K. and Ingstrup, M. (2010). Service composition issues in pervasive

computing, Pervasive Computing 9(1): 62–70.

Bucchiarone, A., Marconi, A., Pistore, M. and Raik, H. (2012). Dynamic Adaptation of

151

BIBLIOGRAPHY

Fragment-Based and Context-Aware Business Processes, International Conference on

Web Services (ICWS), IEEE, pp. 33–41.

Campbell, A. T., Eisenman, S. B., Lane, N. D., Miluzzo, E., Peterson, R. a., Lu, H.,

Zheng, X., Musolesi, M., Fodor, K. and Ahn, G.-S. (2008). The Rise of People-Centric

Sensing, IEEE Internet Computing 12(4): 12–21.

Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F. and Mirandola, R. (2009).

QoS-driven runtime adaptation of service oriented architectures, European Software

Engineering Conference and The Foundations of Software Engineering (ESEC/FSE),

ACM, pp. 131–140.

Casteigts, A., Flocchini, P., Quattrociocchi, W. and Santoro, N. (2011). Time-varying

graphs and dynamic networks, International conference on Ad-hoc, mobile, and wire-

less networks (ADHOC-NOW), Springer-Verlag, pp. 346–359.

Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Salvatore, B., Vetere, G., Dustdar,

S., Juszczyk, L., Manzoor, A. and Truong, H.-L. (2008). Pervasive software environ-

ments for supporting disaster responses, Internet Computing, IEEE 12(1): 26 –37.

Chakraborty, D., Joshi, A., Finin, T. and Yesha, Y. (2005). Service composition for

mobile environments, Mobile Networks and Applications 10: 435–451.

Chakraborty, D., Joshi, A., Yesha, Y. and Finin, T. (2006). Toward distributed ser-

vice discovery in pervasive computing environments, IEEE Transactions on Mobile

Computing 5(2): 97 – 112.

Chakraborty, D., Yesha, Y. and Joshi, A. (2004). A distributed service composition

protocol for pervasive environments, Wireless Communications and Networking Con-

ference (WCNC), Vol. 4, IEEE, pp. 2575–2580.

Chlamtac, I., Conti, M. and Liu, J. J.-N. (2003). Mobile ad hoc networking: imperatives

and challenges, Ad Hoc Networks 1(1): 13 – 64.

Clarke, E. M., Grumberg, O. and Long, D. E. (1994). Model checking and abstraction,

ACM Transactions on Programming Languages and Systems 16(5): 1512–1542.

152

BIBLIOGRAPHY

El Falou, M., Bouzid, M., Mouaddib, A.-I. and Vidal, T. (2010). A distributed planning

approach for web services composition, International Conference on Web Services

(ICWS), IEEE, pp. 337 –344.

Fdhila, W. and Godart, C. (2009). Toward synchronization between decentralized orches-

trations of composite web services, International Conference on Collaborative Com-

puting: Networking, Applications and Worksharing (CollaborateCom), IEEE, pp. 1

–10.

Fdhila, W., Yildiz, U. and Godart, C. (2009). A flexible approach for automatic process

decentralization using dependency tables, International Conference on Web Services

(ICWS), IEEE, pp. 847 –855.

Feng, X., Wang, H., Wu, Q. and Zhou, B. (2007). An adaptive algorithm for failure

recovery during dynamic service composition, Pattern Recognition and Machine In-

telligence, Vol. 4815 of Lecture Notes in Computer Science, Springer, pp. 41–48.

Fernández, H., Priol, T. and Tedeschi, C. (2010). Decentralized approach for execution

of composite web services using the chemical paradigm, International Conference on

Web Services (ICWS), IEEE, pp. 139 –146.

Fernández, H., Tedeschi, C. and Priol, T. (2012). Decentralized workflow coordination

through molecular composition, Service-Oriented Computing - ICSOC 2011 Work-

shops, Vol. 7221 of LNCS, Springer Berlin Heidelberg, pp. 22–32.

Friedman, R., Gavidia, D., Rodrigues, L., Viana, A. C. and Voulgaris, S. (2007). Gos-

siping on MANETs: The beauty and the beast, ACM SIGOPS Operating Systems

Review 41(5): 67–74.

Gu, X. and Nahrstedt, K. (2006). Distributed multimedia service composition with

statistical qos assurances, IEEE Transactions on Multimedia 8(1): 141–151.

Guinard, D. (2010). Mashing up your web-enabled home, in F. Daniel and F. Facca

(eds), Current Trends in Web Engineering, Vol. 6385 of LNCS, Springer Berlin /

Heidelberg, pp. 442–446.

153

BIBLIOGRAPHY

Higashi, S., Ata, S., Nakao, A. and Oka, I. (2011). Server selection for equalizing of per-

formance in distributed cooperative system, International Conference on Information

Networking (ICOIN), IEEE, pp. 519 –524.

Holzmann, G. J. (2003). The Spin Model Checker, Primer and Reference Manual,

Addison-Wesley.

Jiang, S., Xue, Y. and Schmidt, D. C. (2009). Minimum disruption service composition

and recovery in mobile ad hoc networks, Computer Networks 53: 1649–1665.

Kalasapur, S., Kumar, M. and Shirazi, B. (2007). Dynamic service composition in

pervasive computing, Transactions on Parallel and Distributed Systems 18(7): 907–

918.

Kiess, W. and Mauve, M. (2007). A survey on real-world implementations of mobile

ad-hoc networks, Ad Hoc Networks 5(3): 324–339.

Kurkowski, S., Camp, T. and Colagrosso, M. (2005). MANET simulation studies: the

incredibles, Mobile Computing and Communications Review 9(4): 50–61.

Kurkowski, S., Camp, T. and Navidi, W. (2006). Two standards for rigorous manet

routing protocol evaluation, International Conference on Mobile Adhoc and Sensor

Systems (MASS), IEEE, pp. 256–266.

Kurkowski, S., Navidi, W. and Camp, T. (2007). Constructing manet simulation scenar-

ios that meet standards, IEEE International Conference on Mobile Adhoc and Sensor

Systems Conference 0: 1–9.

Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T. and Campbell, A. (2010). A

survey of mobile phone sensing, Communications Magazine, IEEE 48(9): 140 –150.

Li, Z. and Shen, H. (2012). Game-theoretic analysis of cooperation incentive strategies in

mobile ad hoc networks, IEEE Transactions on Mobile Computing 11(8): 1287 –1303.

Loke, S. W. (2012). Supporting ubiquitous sensor-cloudlets and context-cloudlets: Pro-

gramming compositions of context-aware systems for mobile users, Future Generation

Computer Systems 28(4): 619–632.

154

BIBLIOGRAPHY

Madhusudan, T. and Uttamsingh, N. (2006). A declarative approach to composing web

services in dynamic environments, Decis. Support Syst. 41: 325–357.

Manolescu, D. A. (2002). Workflow enactment with continuation and future objects,

ACM SIGPLAN conference on object-oriented programming, systems, languages, and

applications (OOPSLA), ACM, pp. 40–51.

Martin, D., Wutke, D. and Leymann, F. (2008). A novel approach to decentralized

workflow enactment, International Enterprise Distributed Object Computing Confer-

ence (EDOC), IEEE, pp. 127–136.

Mian, A., Baldoni, R. and Beraldi, R. (2009). A survey of service discovery protocols in

multihop mobile ad hoc networks, IEEE Pervasive Computing 8(1): 66 –74.

Miluzzo, E., Cornelius, C. T., Ramaswamy, A., Choudhury, T., Liu, Z. and Campbell,

A. T. (2010). Darwin phones: The evolution of sensing and inference on mobile phones,

International Conference on Mobile systems, applications, and services (MobiSys),

ACM, pp. 5–20.

Mostarda, L., Marinovic, S. and Dulay, N. (2010). Distributed orchestration of per-

vasive services, International Conference on Advanced Information Networking and

Applications (AINA), IEEE, pp. 166 –173.

Murphy, A. L., Box, P. O., Picco, G. P., Milano, P., Leonard, P. and Roman, G.-c. (2001).

LIME : A Middleware for Physical and Logical Mobility, International Conference on

Distributed Computing Systems, IEEE, pp. 524–533.

Navidi, W. and Camp, T. (2004). Stationary distributions for the random waypoint

mobility model, IEEE Transactions on Mobile Computing 3(1): 99 – 108.

Nedos, A., Singh, K., Cunningham, R. and Clarke, S. (2009). Probabilistic discovery

of semantically diverse content in manets, IEEE Transactions on Mobile Computing

8(4): 544 –557.

Papazoglou, M. P. and Heuvel, W.-J. (2007). Service oriented architectures: Approaches,

technologies and research issues, The VLDB Journal 16(3): 389–415.

155

BIBLIOGRAPHY

Park, E. and Shin, H. (2008). Reconfigurable service composition and categorization

for power-aware mobile computing, Transactions on Parallel and Distributed Systems

19(11): 1553–1564.

Park, S.-H., Lee, T.-G., Seo, H.-S., Kwon, S.-J. and Han, J.-H. (2009). An election pro-

tocol in mobile ad hoc distributed systems, International Conference on Information

Technology: New Generations (ITNG), IEEE, pp. 628 –633.

Perkins, C. E., Belding-Royer, E. M. and Das, S. (2003). Ad hoc on-demand distance

vector (aodv) routing.

URL: http://www.ietf.org/rfc/rfc3561.txt

Philips, E., Van Der Straeten, R. and Jonckers, V. (2010). NOW: A workflow language

for orchestration in nomadic networks, in D. Clarke and G. Agha (eds), Coordination

Models and Languages, Vol. 6116 of LNCS, Springer, pp. 31–45.

Pinto, L. S., Cugola, G. and Ghezzi, C. (2012). Dealing with changes in service orches-

trations, Symposium on Applied Computing (SAC), ACM, pp. 1961–1967.

Pintus, A., Carboni, D., Piras, A. and Giordano, A. (2010). Connecting smart things

through web services orchestrations, in F. Daniel and F. Facca (eds), Current Trends

in Web Engineering, Vol. 6385 of LNCS, Springer Berlin / Heidelberg, pp. 431–441.

Polyvyanyy, A., Garca-Bauelos, L. and Dumas, M. (2010). Structuring acyclic process

models, in R. Hull, J. Mendling and S. Tai (eds), Business Process Management

(BPM), Vol. 6336 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,

pp. 276–293.

Prinz, V., Fuchs, F., Ruppel, P., Gerdes, C. and Southall, A. (2008). Adaptive and

fault-tolerant service composition in peer-to-peer systems, International Conference

on Distributed Applications and Interoperable Systems (DAIS), Springer, pp. 30–43.

Roy, S., Herlugson, K. and Saberi, A. (2006). A control-theoretic approach to distributed

discrete-valued decision-making in networks of sensing agents, IEEE Transactions on

Mobile Computing 5(8): 945–957.

156

BIBLIOGRAPHY

Russell, N., Arthur, van der Aalst, W. M. P. and Mulyar, N. (2006). Workflow control-

flow patterns: A revised view, Technical Report BPM-06-22, BPM Center.

Russell, N., ter Hofstede, A., Edmond, D. and van der Aalst, W. (2005). Workflow data

patterns: Identification, representation and tool support, in L. Delcambre, C. Kop,

H. Mayr, J. Mylopoulos and O. Pastor (eds), Conceptual Modeling ER 2005, Vol. 3716

of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 353–368.

Samimi, F. A. and McKinley, P. K. (2008). Dynamis: Dynamic overlay service compo-

sition for distributed stream processing, International Conference on Software Engi-

neering and Knowledge Engineering (SEKE), pp. 881–886.

Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A. and Amblard, F. (2011).

Time-varying graphs and social network analysis: Temporal indicators and metrics,

Convention on Artificial Intelligence and Simulation of Behaviour (AISB), pp. 33–38.

Schuhmann, S., Herrmann, K. and Rothermel, K. (2013). Adaptive composition of

distributed pervasive applications in heterogeneous environments, ACM Transactions

on Autonomous and Adaptive Systems . (to appear).

Schuler, C., Weber, R., Schuldt, H. and Schek, H.-J. (2004). Scalable peer-to-peer pro-

cess management - The OSIRIS approach, International Conference on Web Services

(ICWS), IEEE, pp. 26 – 34.

Sen, R., Handorean, R., Roman, G.-C. and Hackmann, G. (2004). Knowledge-driven

interactions with services across ad hoc networks, International conference on Service

oriented computing (ICSOC), ACM Press, p. 222.

Sen, R., Roman, G.-C. and Gill, C. (2007). Distributed allocation of workflow tasks in

manets, Technical Report 2007-41, Department of Computer Science & Engineering -

Washington University in St. Louis.

Sen, R., Roman, G.-C. and Gill, C. (2008). CiAN: A workflow engine for manets, in

D. Lea and G. Zavattaro (eds), Coordination Models and Languages, Vol. 5052 of

LNCS, Springer, pp. 280–295.

157

BIBLIOGRAPHY

Singh, A. and Sharma, S. (2011). Message efficient leader finding algorithm for mobile ad

hoc networks, Conference on Communication Systems and Networks (COMSNETS),

IEEE, pp. 1–6.

Thomas, L., Wilson, J., Roman, G.-C. and Gill, C. (2009). Achieving coordination

through dynamic construction of open workflows, in J. Bacon and B. Cooper (eds),

Middleware 2009, Vol. 5896 of Lecture Notes in Computer Science, Springer Berlin /

Heidelberg, pp. 268–287.

Varshavsky, A., Reid, B. and de Lara, E. (2005). A cross-layer approach to service

discovery and selection in manets, IEEE International Conference on Mobile Adhoc

and Sensor Systems Conference, IEEE, pp. 459–466.

Ververidis, C. and Polyzos, G. (2008). Service discovery for mobile ad hoc networks: A

survey of issues and techniques, Communications Surveys Tutorials, IEEE 10(3): 30

–45.

Wang, M., Li, B. and Li, Z. (2004). sFlow: Towards resource-efficient and agile ser-

vice federation in service overlay networks, International Conference on Distributed

Computing Systems (ICDCS), IEEE, pp. 628–635.

Wang, X., Wang, J., Zheng, Z., Xu, Y. and Yang, M. (2009). Service composition in

service-oriented wireless sensor networks with persistent queries, Consumer Commu-

nications and Networking Conference (CCNC), IEEE, pp. 1–5.

Wang, Z., Xu, T., Qian, Z. and Lu, S. (2009). A parameter-based scheme for service com-

position in pervasive computing environment, International Conference on Complex,

Intelligent and Software Intensive Systems (CISIS), IEEE, pp. 543–548.

West, A. (n.d.). Smartphone, the key for bluetooth low energy technology.

URL: http://www.bluetooth.com/Pages/Smartphones.aspx

Ye, X. (2006). Towards a reliable distributed web service execution engine, International

Conference on Web Services (ICWS), IEEE, pp. 595–602.

158

BIBLIOGRAPHY

Yildiz, U. and Godart, C. (2007). Synchronization solutions for decentralized service or-

chestrations, International Conference on Internet and Web Applications and Services

(ICIW), IEEE, pp. 39 –39.

Yoon, J., Liu, M. and Noble, B. (2003). Random waypoint considered harmful, An-

nual Joint Conference of the IEEE Computer and Communications. IEEE Societies

(INFOCOM), Vol. 2, IEEE, pp. 1312–1321.

Yu, W. (2009a). Decentralized orchestration of BPEL processes with execution consis-

tency, Joint International Conferences on Advances in Data and Web Management

APWeb/WAIM, Vol. 5446 of LNCS, Springer, pp. 665–670.

Yu, W. (2009b). Scalable services orchestration with continuation-passing messaging, In-

ternational Conference on Intensive Applications and Services (INTENSIVE), IEEE,

pp. 59–64.

Zaplata, S., Hamann, K., Kottke, K. and Lamersdorf, W. (2010). Flexible execution of

distributed business processes based on process instance migration, Journal of Systems

Integration 1(3): 3–16.

Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J. and Chang, H. (2004).

Qos-aware middleware for web services composition, IEEE Transactions on Software

Engineering 30(5): 311 – 327.

Zhao, D., Qu, Z., Yang, Y. and Feng, X. (2011). A service negotiation mechanism

in mobile ad hoc network, International Conference on Wireless Communications,

Networking and Mobile Computing (WiCOM), pp. 1 –4.

159

	Title
	Acknowledgements
	Abstract
	Publications
	Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Challenges
	1.2 Existing solutions
	1.3 Thesis approach
	1.4 Thesis contribution
	1.5 Thesis scope
	1.6 Thesis structure
	1.7 Chapter summary

	Chapter 2 State of the art
	2.1 Service discovery
	2.1.1 Proactive
	2.1.2 Demand-based
	2.1.3 Summary

	2.2 Service allocation
	2.2.1 Schedule-based
	2.2.2 Probing
	2.2.3 Group-based
	2.2.4 Goal-oriented
	2.2.5 Summary

	2.3 Service invocation
	2.3.1 Broker-based
	2.3.2 Static fragmentation
	2.3.3 Dynamic activation
	2.3.4 Summary

	2.4 Service flows
	2.4.1 Concurrent data access
	2.4.2 Conditional execution paths
	2.4.3 Common meeting point
	2.4.4 Summary

	2.5 Communication
	2.5.1 Tuplespaces
	2.5.2 Content-based routing
	2.5.3 Cross-layer design
	2.5.4 Summary

	2.6 Chapter summary

	Chapter 3 Design
	3.1 Design objectives
	3.2 System model
	3.2.1 Service composite
	3.2.2 Service provision
	3.2.3 Problem statement
	3.2.4 Assumptions

	3.3 Design decisions
	3.3.1 Service discovery
	3.3.2 Service allocation and invocation
	3.3.3 Service flows
	3.3.4 Communication

	3.4 Proposed solution
	3.4.1 Service sequences
	3.4.2 Service flows
	3.4.3 Cross-layer communication

	3.5 Chapter summary

	Chapter 4 Design verification
	4.1 PROMELA and SPIN
	4.2 Service sequences
	4.2.1 Protocol abstractions
	4.2.2 Modelling service sequences
	4.2.3 Modelling communication
	4.2.4 Modelling participants
	4.2.5 Verification

	4.3 Service flows
	4.3.1 Protocol abstractions
	4.3.2 Modelling service flows
	4.3.3 Modelling communication
	4.3.4 Modelling participants
	4.3.5 Verification

	4.4 Chapter summary

	Chapter 5 Implementation
	5.1 Mobile composite participants
	5.2 Composition protocol
	5.3 Composition messages
	5.4 Directed broadcasting
	5.5 Cross-layer approach
	5.6 Chapter summary

	Chapter 6 Evaluation
	6.1 Experimental setup
	6.1.1 General settings
	6.1.2 Evaluation scenarios
	6.1.3 Failure types
	6.1.4 Metrics
	6.1.5 Baselines
	6.1.6 Threats to validity

	6.2 Results and analysis
	6.2.1 Impact of service sequence length
	6.2.2 Impact of service flow structure
	6.2.3 Impact of environment using a service sequence
	6.2.4 Impact of environment using a service flow

	6.3 Chapter summary

	Chapter 7 Conclusion
	7.1 Thesis summary
	7.2 Discussion
	7.3 Future work
	7.4 Final remark

	Appendix A Verification with SPIN
	Bibliography

