
Distributed Shared Memory Architectures and

Global Performance State Estimation

A Thesis

Submitted to the Office of Graduate Studies

of

The University of Dublin

Trinity College

in Candidacy for the Degree of

Doctor of Philosophy

by

Michael Manzke

June, 2006

c© Michael Manzke

iii

Declaration:

This thesis has not been submitted as an exercise for a degree at this or any other Uni-

versity. Furthermore this thesis is entirely my own work and I agree that the Library may

lend or copy the thesis upon request. This permission covers only single copies made for

study purposes, subject to normal conditions of acknowledgement.

Michael Manzke

Abstract

Invasive and non-invasive methods may be applied to measure and analyse the perfor-

mance of hardware Distributed Shared Memory (DSM) systems. This thesis presents novel

solutions for both methods and discusses the architectural organisation of loosely and tightly

coupled systems. The work begins with a discussion of the design and implementation of

a non-invasive deep-trace instrument for high-speed interconnects and also deals with the

analysis of the trace-data. Analysis results are used to tune interconnect simulations.

This thesis then presents an innovative invasive approach to estimate and predict the

system-wide utilisation of computational resources in real-time. An algorithm that imple-

ments a discrete minimum mean-square error filter is applied to fuse concurrent and se-

quential observations of system event counts into a state-vector. Contemporary computer

components and subsystems make these event counts available through hardware Perfor-

mance Monitoring Counter (PMC) registers. The registers may be accessed by the system’s

software quasi-concurrently but the number of registers in individual components is usually

smaller than the number of events that can be monitored. This approach overcomes the

problem by modelling individual PMC readings as vector random processes and recursively

processes them one PMC set at a time into a common state-vector, thereby making larger

PMC sets observable than would otherwise be possible.

Finally this work looks at loosely and tightly coupled hardware DSM systems as targets

for the estimation algorithm. Particular attention is paid to the conceptual design of a

tightly coupled hybrid reconfigurable DSM graphics cluster.

Acknowledgments

My sincerest thanks and gratitude goes to Dr. Brian Coghlan and Prof. John Byrne. I

thank Brian for taking me on as research assistant and postgraduate student on the SCI

Europe project. At that time, I had spent a decade as an engineer in various positions in

industry, subsequent to the completion of my engineering degree. Brian introduced me to

many aspects of computer architecture and provided guidance for my PhD. He also gave me

the freedom to pursue my own research interest. Prof. Byrne, who was at the time Head of

Department, offered me the opportunity to prove myself as a lecturer. The income arising

from this position allowed me the continue with my PhD. I could not have achieved this

without them.

My children Denis, Rachel and Oscar and my wife Carol deserve a special mention here.

I thank my children for coping with their parent’s very busy life style and Carol for looking

after the family when I was not available. Carol is not only an outstanding researcher; she

also enables me to pursue my academic career. I appreciate very much what Denis, Rachel,

Oscar and Carol have done for me to make this possible and to Carol a special thanks for

the many extra hours and weekends that I could dedicate to the completion of my PhD. I

could not have done this without her support.

I would also like to thank my postgraduate students Ross Brennan, Eoin Creedon and

Muiris Woulfe for all the support with the teaching, particularly the demonstrating and the

marking of assignments.

The reviewers of my PhD-related publications deserve a thank you for their valuable

feedback.

Furthermore I would like to thank the Head of Department Prof. Jane Grimson, the

Head of School, Dr. David Abrahamson, and all my colleagues (there are too many to

mention them all) for making our department such a nice and supportive environment. I

should specifically mention the chief technician Tom Kearney. Tom and his group are an

incredible help with my teaching and research activities.

I should also mention the many organisations I have worked for either directly or indi-

rectly. I have learned so much from my colleagues during my time in the following organ-

isations: Navy, Philips (Germany), Dow Chemical (Germany), Saronix (Ireland), Advance

(USA), Siemens/Nixdorf (Ireland), Schering-Plough (Ireland), Industrial Design Corpora-

ii

tion (Ireland, USA), Intel (Ireland), Motorola (USA). I would like to mention in particular

Detlev Bock and Hilger Walter from Dow Chemical who introduced me to advanced process

control and Kalman filtering during my time at Dow.

Initial funding for my PhD came from the SCI Europe Esprit project 25257. It was during

this project that I developed a collaboration with Dolphin Interconnect Solutions Inc. that

has lasted many years. Dolphin has not only donated hardware but also provided me with

significant engineering support for the graphics cluster nodes. I’d like to thank K̊are Løchsen

, Hugo Kohmann , Nils Jørgen Kjærnet, Tor Undheim, Roy Nordstrøm and Svein Erik

Johansen for their support. I am also grateful to Patrick Lysaght, Phil Roxby and Brendan

Cremen from Xilinx Inc. for their Field Programmeable Gate Array (FPGA) donation and

to Mike Doggett from ATI for his help with the Graphics Processing Unit (GPU) driver

software.

Contents

Abstract iv

Acknowledgments i

Table of Contents vi

List of Figures xi

List of Tables xii

Nomenclature xiv

List of Abbreviations xv

1 Introduction 23

1.1 Non-Invasive SCI Trace Data Acquisition . 23

1.2 Global Real-time Estimation of Incomplete Performance Measurements . . . 24

1.3 Special Purpose High Performance Graphics DSM Cluster 24

1.4 Contributions . 25

1.4.1 Thesis Statement . 26

1.4.2 Directly Relevant Peer Reviewed Publications 26

1.4.3 Indirectly Relevant Peer Reviewed Publications 26

1.5 Thesis Organisation . 27

2 Motivation 29

2.1 Trace Data Acquisition and Analysis . 30

2.1.1 The SCI Non-Intrusive Deep Trace Instrument 30

2.1.2 Tuning and Validation of SCI Network Models 32

2.2 Global State Estimation of Hardware DSM Systems 33

2.3 MMSE Filter Algorithm . 36

2.4 Distributed MMSE Filter Algorithm . 36

2.5 Special-Purpose Graphics Cluster . 37

CONTENTS iv

3 Background and Related Work 39

3.1 The Performance Analysis . 39

3.1.1 Performance Counter . 41

3.1.2 Multiplexed Performance Counter Readings 41

3.1.3 Cluster wide PMC Collection . 41

3.2 Trace Data Acquisition and Analysis Related Work 42

3.3 Kalman Filtering . 42

3.3.1 MMSE Filter Related Work . 43

3.4 Compute Cluster . 43

3.4.1 Interconnect Technologies . 43

3.4.2 Scalable Coherent Interface (SCI) . 44

3.5 Special Purpose Graphics Cluster . 45

4 High Speed Interconnect Trace Data Acquisition and Analysis 47

4.1 SCI Trace Instrument Hardware . 47

4.1.1 Trace Probes . 48

4.1.2 Probe Adapter . 49

4.1.3 Trace Memory Boards . 50

4.1.4 Control Software . 50

4.2 SCI Trace Database . 51

4.2.1 SCI Cable-link Tables . 51

4.2.2 Blink Tables . 51

4.2.3 Trace Database Performance . 53

4.3 SCI Trace Data Presentation and Analysis . 55

4.3.1 Java Trace Database Server . 55

4.3.2 Java Packet Viewer Applet . 55

4.4 Tuning and Verification of Simulation Models 57

4.4.1 SCI Simulation Model . 57

4.4.2 SCI Simulation Model Tuning . 59

4.5 Summary . 61

5 State Estimation of a Single Compute Node 62

5.1 The Estimation Algorithm . 62

5.1.1 The Filter . 63

5.1.2 PMC Process Models . 69

5.1.3 Integrated Gauss-Markov Process Model for n Counter Processes . . . 70

5.2 PMC Acquisition and Offline Analysis . 71

5.2.1 Acquisition of PMC readings . 72

5.2.2 Visual Inspection of sample PMC Readings and their Histograms . . . 73

5.2.3 Visual Inspection of simulated PMC Readings and their Histograms . 73

CONTENTS v

5.2.4 Autocorrelation Calculation for Sampled PMC Readings 73

5.2.5 Autocorrelation Calculation for Simulated PMC Readings 75

5.2.6 Calculation of the Sampled PMC Readings’ Mean Autocorrelation . . 75

5.2.7 Calculation of the Simulated PMC Readings’ Mean Autocorrelation . 77

5.2.8 Estimation of β and σ2 for Sampled PMC Readings 77

5.2.9 Estimation of β and σ2 for Simulated PMC Readings 80

5.2.10 Visual Inspection of Histograms for Sampled PMC Readings 80

5.2.11 Visual Inspection of Histograms for Simulated PMC Readings 82

5.2.12 Autocorrelation Analysis Results . 82

5.3 One Performance Monitoring Counter (PMC) Set-at-a-Time 86

5.4 Implementation of the Estimation Algorithm 87

6 Optimisation and Re-evaluation of the Estimation Algorithm 95

6.1 Sparse Matrix Optimisation . 95

6.1.1 The Kalman Gain . 95

6.1.2 The A Posteriori State Estimate . 99

6.1.3 The A Posteriori Error Covariance . 102

6.1.4 The A Priori State Vector . 104

6.1.5 The A Priori Error Covariance Matrix 105

6.2 Optimisation Analysis . 108

6.3 Uniprocessor Systems Evaluation . 116

6.3.1 Derived Performance Measurements 118

6.4 SMP Systems Evaluation . 120

6.5 Distributed State Estimation . 122

7 Hardware DSM Testbeds 123

7.1 Loosely Coupled Distributed Shared Memory Testbed 124

7.2 Tightly Coupled High Performance Graphics DSM Cluster 126

7.2.1 Cluster Architecture . 127

7.2.2 Interconnect Technology . 130

7.2.3 Commodity and Custom-built GPU/FPGA Cluster Nodes 131

8 Compute Cluster State Estimation Algorithm (C2STATE) 134

8.1 The C2STATE Algorithm . 135

8.2 Shared Memory Clusters . 136

8.3 Work Loads . 141

9 Conclusions and Future Work 142

9.1 Performance Analysis . 142

9.1.1 Hardware DSM Testbeds . 143

CONTENTS vi

9.2 Limitations and Future Work . 144

9.2.1 SCI Trace Acquisition and Analysis 144

9.2.2 C2STATE Algorithm . 145

9.2.3 Interconnect Measurements . 145

9.2.4 Tightly Coupled Scalable Graphics Cluster 146

9.2.5 Implementation of the C2STATE Algorithm on the Graphics Cluster . 146

9.2.6 Contributions . 146

A Appendix:PIII Performance Monitoring Counters (PMC) Description 147

B Appendix: PMC Offline Autocorrelation Analysis 157

B.1 PMC Offline Autocorrelation Analysis Procedure 157

B.1.1 Histogram and Samples for real PMC Readings 157

B.1.2 Histogram and Samples for Simulated Readings 161

B.1.3 Histogram and Autocorrelation for Real PMC Readings 163

B.1.4 Histogram and Autocorrelation for Simulated Readings 166

B.1.5 Histogram of Real PMC Readings with superimposed Gaussian PDF . 168

B.1.6 Histogram of Simulated Readings with superimposed Gaussian PDF . 171

B.2 PIII PMC off-line autocorrelation analysis results. 173

Bibliography 196

Index 199

List of Figures

2.1 Trace data flow overview . 31

2.2 Trace Data Acquisition and analysis framework 33

2.3 Multiplexed sets of performance counter readings 36

2.4 SMP Sample Time . 37

3.1 SMP Desktop Node with 2D SCI-PCI interface card. 45

4.1 SCI Deep Trace Instrument Front . 47

4.2 SCI Deep Trace Instrument Back . 47

4.3 Trace hardware overview including three possible trace targets 48

4.4 Trace probe block diagram . 49

4.5 Probe adapter block diagram . 49

4.6 Trace memory board block diagram . 49

4.7 Trace instrument control GUI . 49

4.8 Trace instrument trigger and filter GUI . 50

4.9 Trace memory viewer . 50

4.10 Trace data flow from Blink into DB-table-files 52

4.11 Packet trace database distribution . 54

4.12 Trace database relations . 55

4.13 Java Packet Viewer . 55

4.14 Trace system software . 56

4.15 SCI node OPNET model including PCI-bridge and Blink 58

4.16 The points of measurement . 60

4.17 Probability density function . 60

4.18 Load definition . 60

4.19 Model output . 60

5.1 Histogram and samples for L2 LINES IN on CPU 1 63

5.2 Histogram and samples for L2 LINES IN on CPU 2 64

5.3 Discrete Kalman Filter Algorithm . 65

5.4 Discrete Kalman Filter Matrix Block Diagram 66

LIST OF FIGURES viii

5.5 Integrated Gauss-Markov Block Diagram . 69

5.6 Histogram and samples for a simulated event 73

5.7 Histogram and autocorrelation for L2 LINES IN on CPU 1 74

5.8 Histogram and autocorrelation for L2 LINES IN on CPU 2 74

5.9 Histogram and autocorrelation for a simulated event 75

5.10 Autocorrelations and mean autocorrelation for L2 LINES IN on CPU 1 . . . 76

5.11 Autocorrelations and mean autocorrelation for L2 LINES IN on CPU 2 . . . 76

5.12 Autocorrelations and mean autocorrelation for simulation 77

5.13 Autocorrelation Function . 78

5.14 Curve Fitted Autocorrelation for L2 LINES IN on CPU 1 79

5.15 Curve Fitted Autocorrelation for L2 LINES IN on CPU 2 79

5.16 Curve Fitted Autocorrelation for simulation 80

5.17 Histogram of L2 LINES IN with superimposed Gaussian PDF for CPU 1 . . 81

5.18 Histogram of L2 LINES IN with superimposed Gaussian PDF for CPU 2 . . 81

5.19 Histogram of simulation with superimposed Gaussian PDF 82

5.20 First set of autocorrelation analysis results with beta error 83

5.21 First set of autocorrelation analysis results with sigma error 83

5.22 Second set of autocorrelation analysis results with beta error 84

5.23 Second set of autocorrelation analysis results with sigma error 84

5.24 Third set of autocorrelation analysis results with beta error 85

5.25 Third set of autocorrelation analysis results with sigma error 85

5.26 A Priori Error Covariance matrix element one of the major diagonal. 87

5.27 A Priori Error Covariance matrix element two of the major diagonal. 88

5.28 Full Kalman Operations on a Intel P4 . 92

5.29 Full Kalman Operations on a 2 way Intel PIII SMP 92

5.30 Full Kalman Operations on a Intel PIII CompactPCI system 93

5.31 Full Kalman Operations on a Intel P4 high resolution 93

5.32 Full Kalman Operations on a 2 way Intel PIII SMP high resolution 94

5.33 Full Kalman Operations on a Intel PIII CompactPCI system high resolution . 94

6.1 Sparse Kalman Operations on a Intel P4 . 110

6.2 Sparse Kalman Operations on a 2 way Intel PIII SMP 110

6.3 Sparse Kalman Operations on a Intel PIII CompactPCI system 111

6.4 Sparse Kalman Operations on a Intel P4 high resolution 111

6.5 Sparse Kalman Operations on a 2 way Intel PIII SMP high resolution 112

6.6 Sparse Kalman Operations on a Intel PIII CompactPCI system high resolution112

6.7 Sparse Full Filter Operations in all Systems 113

6.8 Sparse Full Filter Operations in all Systems high resolution 113

6.9 Sparse Full Filter Operations in all Systems very high resolution 114

LIST OF FIGURES ix

6.10 Sample Time to User System Time Ratio in all Systems 114

6.11 Sample Time to User System Time Ratio in all Systems high resolution . . . 115

6.12 Sample Time to User System Time Ratio in all Systems very high resolution 115

6.13 One-at-time Filter - two state variables . 116

6.14 One-at-time Filter - one state variable - short 117

6.15 One-at-time Filter - one state variable . 117

6.16 Uniprocessor PMC Estimation . 119

6.17 Derived Measurements for a Uniprocessor . 120

7.1 Front view of the Hardware Distributed Shared Memory Cluster 124

7.2 Rear view of the Hardware Distributed Shared Memory Cluster 124

7.3 Hardware Distributed Shared Memory Testbed 125

7.4 One of the Cluster’s PIII SMP Nodes . 125

7.5 CompactPCI System with PMC-SCI Adapter Card 125

7.6 P6 Processor Microarchitecture . 126

7.7 Shared Memory. 127

7.8 Hybrid Parallel Graphic Cluster. 128

7.9 The first prototype of the custom-built graphics cluster node 129

7.10 GPU Cluster Node with commodity graphics card in AGP slot 132

7.11 PCB. 133

8.1 Compute Cluster State Estimation Algorithm (C2STATE) 134

8.2 Cluster PMC Estimation (First 15) . 138

8.3 Cluster PMC Estimation (Last 15) . 139

8.4 Cluster L1 Instruction Fetch Unit Hit Rate 139

8.5 Cluster L1 - L2 Bandwidth and L2 - Memory Bandwidth 140

8.6 L1 - L2 Bandwidth minus Cluster wide Average Bandwidth 140

B.1 Histogram and samples for sample set 1 on CPU 1 157

B.2 Histogram and samples for sample set 1 on CPU 2 157

B.3 Histogram and samples for sample set 2 on CPU 1 158

B.4 Histogram and samples for sample set 2 on CPU 2 158

B.5 Histogram and samples for sample set 3 on CPU 1 158

B.6 Histogram and samples for sample set 3 on CPU 2 158

B.7 Histogram and samples for sample set 4 on CPU 1 159

B.8 Histogram and samples for sample set 4 on CPU 2 159

B.9 Histogram and samples for sample set 5 on CPU 1 159

B.10 Histogram and samples for sample set 5 on CPU 2 159

B.11 Histogram and samples for sample set 6 on CPU 1 159

B.12 Histogram and samples for sample set 6 on CPU 2 159

LIST OF FIGURES x

B.13 Histogram and samples for sample set 7 on CPU 1 160

B.14 Histogram and samples for sample set 7 on CPU 2 160

B.15 Histogram and samples for sample set 8 on CPU 1 160

B.16 Histogram and samples for sample set 8 on CPU 2 160

B.17 Histogram and samples for sample set 9 on CPU 1 160

B.18 Histogram and samples for sample set 9 on CPU 2 160

B.19 Histogram and samples for sample set 10 on CPU 1 161

B.20 Histogram and samples for sample set 10 on CPU 2 161

B.21 Histogram and samples for simulation set 1 161

B.22 Histogram and samples for simulation set 2 161

B.23 Histogram and samples for simulation set 3 161

B.24 Histogram and samples for simulation set 4 161

B.25 Histogram and samples for simulation set 5 162

B.26 Histogram and samples for simulation set 6 162

B.27 Histogram and samples for simulation set 7 162

B.28 Histogram and samples for simulation set 8 162

B.29 Histogram and samples for simulation set 9 162

B.30 Histogram and samples for simulation set 10 162

B.31 Histogram and autocorrelation for sample set 1 on CPU 1 163

B.32 Histogram and autocorrelation for sample set 1 on CPU 2 163

B.33 Histogram and autocorrelation for sample set 2 on CPU 1 163

B.34 Histogram and autocorrelation for sample set 2 on CPU 2 163

B.35 Histogram and autocorrelation for sample set 3 on CPU 1 163

B.36 Histogram and autocorrelation for sample set 3 on CPU 2 163

B.37 Histogram and autocorrelation for sample set 4 on CPU 1 164

B.38 Histogram and autocorrelation for sample set 4 on CPU 2 164

B.39 Histogram and autocorrelation for sample set 5 on CPU 1 164

B.40 Histogram and autocorrelation for sample set 5 on CPU 2 164

B.41 Histogram and autocorrelation for sample set 6 on CPU 1 164

B.42 Histogram and autocorrelation for sample set 6 on CPU 2 164

B.43 Histogram and autocorrelation for sample set 7 on CPU 1 165

B.44 Histogram and autocorrelation for sample set 7 on CPU 2 165

B.45 Histogram and autocorrelation for sample set 8 on CPU 1 165

B.46 Histogram and autocorrelation for sample set 8 on CPU 2 165

B.47 Histogram and autocorrelation for sample set 9 on CPU 1 165

B.48 Histogram and autocorrelation for sample set 9 on CPU 2 165

B.49 Histogram and autocorrelation for sample set 10 on CPU 1 166

B.50 Histogram and autocorrelation for sample set 10 on CPU 2 166

B.51 Histogram and autocorrelation for simulation set 1 166

LIST OF FIGURES xi

B.52 Histogram and autocorrelation for simulation set 2 166

B.53 Histogram and autocorrelation for simulation set 3 166

B.54 Histogram and autocorrelation for simulation set 4 166

B.55 Histogram and autocorrelation for simulation set 5 167

B.56 Histogram and autocorrelation for simulation set 6 167

B.57 Histogram and autocorrelation for simulation set 7 167

B.58 Histogram and autocorrelation for simulation set 8 167

B.59 Histogram and autocorrelation for simulation set 9 167

B.60 Histogram and autocorrelation for simulation set 10 167

B.61 Histogram with superimposed Gaussian PDF for sample set 1 on CPU 1 . . . 168

B.62 Histogram with superimposed Gaussian PDF for sample set 1 on CPU 2 . . . 168

B.63 Histogram with superimposed Gaussian PDF for sample set 2 on CPU 1 . . . 168

B.64 Histogram with superimposed Gaussian PDF for sample set 2 on CPU 2 . . . 168

B.65 Histogram with superimposed Gaussian PDF for sample set 3 on CPU 1 . . . 168

B.66 Histogram with superimposed Gaussian PDF for sample set 3 on CPU 2 . . . 168

B.67 Histogram with superimposed Gaussian PDF for sample set 4 on CPU 1 . . . 169

B.68 Histogram with superimposed Gaussian PDF for sample set 4 on CPU 2 . . . 169

B.69 Histogram with superimposed Gaussian PDF for sample set 5 on CPU 1 . . . 169

B.70 Histogram with superimposed Gaussian PDF for sample set 5 on CPU 2 . . . 169

B.71 Histogram with superimposed Gaussian PDF for sample set 6 on CPU 1 . . . 169

B.72 Histogram with superimposed Gaussian PDF for sample set 6 on CPU 2 . . . 169

B.73 Histogram with superimposed Gaussian PDF for sample set 7 on CPU 1 . . . 170

B.74 Histogram with superimposed Gaussian PDF for sample set 7 on CPU 2 . . . 170

B.75 Histogram with superimposed Gaussian PDF for sample set 8 on CPU 1 . . . 170

B.76 Histogram with superimposed Gaussian PDF for sample set 8 on CPU 2 . . . 170

B.77 Histogram with superimposed Gaussian PDF for sample set 9 on CPU 1 . . . 170

B.78 Histogram with superimposed Gaussian PDF for sample set 9 on CPU 2 . . . 170

B.79 Histogram with superimposed Gaussian PDF for sample set 10 on CPU 1 . . 171

B.80 Histogram with superimposed Gaussian PDF for sample set 10 on CPU 2 . . 171

B.81 Histogram with superimposed Gaussian PDF for simulation set 1 171

B.82 Histogram with superimposed Gaussian PDF for simulation set 2 171

B.83 Histogram with superimposed Gaussian PDF for simulation set 3 171

B.84 Histogram with superimposed Gaussian PDF for simulation set 4 171

B.85 Histogram with superimposed Gaussian PDF for simulation set 5 172

B.86 Histogram with superimposed Gaussian PDF for simulation set 6 172

B.87 Histogram with superimposed Gaussian PDF for simulation set 7 172

B.88 Histogram with superimposed Gaussian PDF for simulation set 8 172

B.89 Histogram with superimposed Gaussian PDF for simulation set 9 172

B.90 Histogram with superimposed Gaussian PDF for simulation set 10 172

List of Tables

5.1 Offline autocorrelation analysis . 78

5.2 Kalman filter Initialisation . 88

5.3 Maximum number of PMC readings . 90

5.4 Kalman filter matrix operations . 91

6.1 Maximum PMC readings for both algorithm versions 109

6.2 Selected PIII PMC Events for Experiment . 118

6.3 Examples of MESI related PMC events . 122

7.1 Testbed Machines for the Kalman Filter Evaluation 123

8.1 Measurement Vector Structure for the C2STATE Algorithm 137

A.1 PIII Performance Monitoring Counters Description 156

B.1 PIII PMC off-line autocorrelation analysis results. 181

Nomenclature

βi Time constant for a particular PMC process, see equation (5.20), page 70

∆t Sample interval, see equation (2.1), page 35

∆tmin Minimum sample interval, see equation (2.1), page 35

1
β

Time constant in exponential autocorrelation function for Gauss-Markov process, see

equation (5.15), page 69

R̂X(τ) Estimated autocorrelation function, see equation (5.25), page 71

R̂X(n∆t) Discrete estimated autocorrelation function, see equation (5.25), page 71

σ2 Variance in exponential autocorrelation function for Gauss-Markov process, see equa-

tion (5.15), page 69

σ2
i Variance for a particular PMC process, see equation (5.20), page 70

τ Autocorrelation time difference variable, see equation (5.25), page 71

e(t) Mean of the counted events e(t) over the sample interval ∆t, see equation (2.1),

page 35

RX(τ) Autocorrelation, see equation (5.15), page 69

T Autocorrelation time interval, see equation (5.25), page 71

tk Sample time, see equation (5.2), page 65

u(t) Unity white noise in continuous state space model, see equation (5.16), page 69

X(t) Stationary Gaussian process, see equation (5.14), page 69

x1 Integrated Gauss-Markov process in continuous state space model, see equation (5.16),

page 69

x2 Gauss-Markov process in continuous state space model, see equation (5.16), page 69

zk Performance Monitoring Counter register readings, see equation (2.1), page 35

Nomenclature xiv

x̂−

k A Priori state vector, see equation (5.14), page 68

x̂k Estimated state vector, see equation (5.2), page 65

φk State transitions matrix, see equation (5.2), page 65

e−

k = Estimation error, see equation (5.5), page 67

H Measurement sensitivity matrix, see equation (5.2), page 65

Kk Kalman Gain, see equation (5.2), page 65

P k A Posteriori error covariance matrix, see equation (5.8), page 67

P−

k A Priori error covariance matrix of the estimated state vector x̂−

k , see equation (5.8),

page 67

Qk Process noise covariants matrix, see equation (5.2), page 65

Rk Measurement noise covariance matrix, see equation (5.5), page 67

vk Measurement noise is described by the covariance matrix Rk, see equation (5.3),

page 66

wk Sequence with a covariance determined by the covariants matrix Qk of the process

noise associated with the system’s state dynamics, see equation (5.2), page 65

xk State vector of the linear dynamic system at sample time tk, see equation (5.2),

page 65

List of Abbreviations

AGP Accelerated Graphics Port

AKF Adaptive Kalman Filter

AMBA Advanced Microcontroller Bus Architecture

API Application Programming Interface

ASIC Application Specific Integrated Circuits

ATM Asynchronous Transfer Mode

Blink Backside Link

C2STATE Compute Cluster State Estimation

CCA Common Component Architecture

ccNUMA cache-coherent None-Uniform Memory Access

CPU Central Processing Unit

DCU Data Cache Unit

DDR Double Data Rate

DIRA Divided-Interval Rectangular Area

DMA Direct Memory Access

DSM Distributed Shared Memory

DSP Digital Signal Processing

DVI Digital Visual Interface

DVS Dynamic Voltage Scaling

EBL External Bus Logic

List of Abbreviations xvi

EISA Extended Industry Standard Architecture

EKF Extended Kalman Filter

ESA European Space Agency

FDDI Fiber Distributed Data Interface

FIFO First In First Out

FPGA Field Programmeable Gate Array

FSB Front-Side Bus

GALS Globally Asynchronous Locally Synchronous

gcc GNU Compiler Collection

GIDS Grid-wide Intrusion Detection System

GNU GNU’s Not Unix

GPS Global Positioning System

GPU Graphics Processing Unit

GUI Graphical User Interface

HDL Hardware Description Languages

I/O Input/Output

IC Integrated Circuits

IEEE Institute of Electrical and Electronics Engineers

IFU Instruction Fetch Unit

IKF Interval Kalman Filter

ILP Instruction Level Parallelism

IPC Instructions Per Cycle

IQ Issue Queue

KVM Keyboard Video Mouse

L1 Level 1 Cache

L2 Level 2 Cache

List of Abbreviations xvii

LC2 Link Controller 2

LC3 Link Controller 3

LC Link Controller

LSQ Load/Store Queue

LVDS Low Voltage Differential Signalling

MCD Multiple Clock Domain

MDL Metric Description Language

MESI Modified Exclusive Shared Invalid

MIT Massachusetts Institute of Technology

MLR Multiple Linear Regression

MMSE Minimum Mean-Square Error

MPI Message Passing Interface

MPP Massively Parallel Processing

NFS Network File System

NUMA Non-Uniform Memory Access

ODBC Open DataBase Connectivity

OS Operating System

PAL Programmable Array Logic

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PCL Performance Counter Library

PC Personal Computer

PDF Probability Density Function

PDT Program Database Toolkit

PIO Programmed Input Output

PI Principal Investigator

List of Abbreviations xviii

PLB Pipeline Balancing

PMC Performance Monitoring Counter

PME Positional Mean Error

PVM Parallel Virtual Machine

ROB Reorder Buffer

SANTA System Area Network Trace Analysis

SCAAT Single-Constraint-At-A-Time

SCI Scalable Coherent Interface

SFI Science Foundation Ireland

SISCI Software Infrastructure for Scalable Coherent Interface

SMP Symmetric Multiprocessor

SQL Structured Query Language

SRAM Static Random Access Memory

TAM Trapezoid-area Method

TCD Trinity College Dublin

TSC Time-Stamp Counter

VHDL (VHSIC) Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VRAM Video Random Access Memory

Chapter 1

Introduction

This thesis is concerned with the architectural organisation, the performance measurement

and the real-time performance estimation of hardware DSM clusters. These machines may

incorporate various subsystems, e.g. Central Processing Unit (CPU)s, GPUs, Chip-sets,

FPGAs and interconnect interfaces. It is the objective of the performance estimation to

provide a global view of the computational state of all these subsystems throughout the

cluster. In order to facilitate real-time performance estimation research and investigations

into novel high performance hybrid graphics cluster architectures, a general-purpose testbed

cluster was built from commodity components and a second special-purpose hybrid system

was designed. Both systems employ the Institute of Electrical and Electronics Engineers

(IEEE) 1596-1992 Scalable Coherent Interface (SCI) [Ins93] as interconnect. This technology

provides DSM in hardware and allows for the configuration of Non-Uniform Memory Access

(NUMA) and cache-coherent None-Uniform Memory Access (ccNUMA) clusters.

1.1 Non-Invasive Trace Data Acquisition of SCI Hardware

DSM Interconnect Traffic

Initial investigations with Dr. Brian Coghlan into the non-intrusive acquisition of SCI inter-

connect traffic [MC99a] provided an understanding of their true communication statistics.

This work required the design and construction of hardware and software for the non-invasive

acquisition of interconnect traffic at real-time and the subsequent off-line trace data analysis.

This infrastructure is shown in Fig. 2.2.

A collaboration with Dr. Brian Coghlan and Stuart Kenny from Trinity College Dublin,

and Dr. Olav Lysne from the University of Oslo, investigated how these trace data statistics

could be used to tune and verify high speed interconnects such as SCI [MKCL01]. The results

of the trace data analysis were used to successfully tune an OPNET [Opn06] simulation model

for SCI interconnect topologies.

Introduction 24

1.2 Global Real-time Estimation of Incomplete Performance

Measurements

Subsequent work focused on a novel approach to estimating and predicting the DSM system-

wide utilisation of computational resources in real-time [MC05a]. An algorithm that imple-

ments a Discrete Minimum Mean-Square Error (MMSE) Filter is applied to fuse concurrent

and sequential observations of system event counts into the filter’s state vector. Contem-

porary computer components and subsystems make these event counts available through

hardware PMC registers. The registers may be accessed by the system’s software quasi-

concurrently 1 but the number of registers in individual components is usually smaller than

the number of events that can be monitored. This approach overcomes this problem by

modelling individual hardware PMC readings as vector random processes and recursively

processes them one (or a group) at a time into a common state vector, thereby making

larger performance counter sets observable than would otherwise be possible.

This algorithm can be applied to fuse various PMCs from a single node or a set of

compute cluster nodes. The memory hierarchy of a hardware DSM cluster is in this context

of particular interest because load and store operations trigger PMC events that indicate

cache and memory activity. Furthermore, a memory reference made to a remote memory

causes counter events on the DSM’s interconnect interface cards. The algorithm allows us to

merge all this information into a common state vector. Consequently this approach allows

us to observe the entire system state at real-time from any node in the system.

1.3 Special Purpose High Performance Graphics DSM Clus-

ter

Work on the non-invasive measurement and analysis of high speed interconnect traffic and

investigations into the global state estimation of compute clusters led to the conceptual de-

sign of a special-purpose high-performance graphics cluster [MBO+06]. Section 7.2 of this

thesis describes the design of this scalable tightly coupled cluster of custom-built boards

that provide an Accelerated Graphics Port (AGP) interface for commodity graphics accel-

erators. These boards are supplied with rendering instructions by a cluster of commodity

Personal Computer (PC)s that execute OpenGL graphics applications. All the commodity

PCs and custom-built boards are interconnected with an implementation of the SCI stan-

dard. This technology provides the system with a high bandwidth, low latency, point to

point interconnect. The design allows for the implementation of a 2D torus topology with

good scalability properties and excellent suitability for parallel rendering. Most importantly

the interconnect implements a DSM architecture in hardware. Figure 7.7 shows how local

1The reading of several PMC registers is considered as a concurrent operation because the amount of time

consumed by this operation is much smaller than the counter sample time ∆t (
∑n

k=1
tload k � ∆tsample).

Introduction 25

memories on the custom-built boards and the PCs become part of the system wide DSM.

Figure 7.7 also depicts FPGAs on the custom-built boards. These reconfigurable components

assist the SCI implementation and provide substantial additional computational resources

that may be used to control the commodity graphics accelerators and to perform operations

associated with a parallel rendering infrastructure, or even ray tracing and physics simula-

tions. These reconfigurable components are an integral part of the scalable shared-memory

graphics cluster and consequently, increase the programmability of the parallel rendering

system just like vertex and pixel shaders increased programmability of graphics pipelines.

The implementation and investigation into the opportunities provided by this design will be

investigated as future work. The global performance estimation algorithm will be integrated

into the graphics cluster to investigate its suitability for load balancing.

1.4 Contributions

The main contribution is this work is the global real-time performance state estimation of

DSM clusters. To the best of my knowledge nobody has investigated the suitability of MMSE

Filters to observe a large number of PMC readings that would otherwise be unobservable.

Further contributions are the non-invasive acquisition and analysis of SCI interconnect traffic

and the application of interconnect traffic statistics to tune network simulations. All this

work was published in international peer reviewed conferences [MC05a, MKCL01, MC99a]

and a list is provided in section 1.4.2.

My conceptual design of the graphics cluster is the predominant part of a successful

Science Foundation Ireland (SFI) Basic Research Grant proposal [OMK04] written in col-

laboration with the Principal Investigator (PI) Dr. Carol O’Sullivan and Dr. Anil Kokaram,

both of Trinity College Dublin (TCD). The following three quotations are from the rigorous

peer review:

A well written and well thought through proposal. The research is very far-

sighted, and considerable ingenuity has been applied to obtain a cost-effective

solution to the graphics speed problem.

If successful, the project outcomes would make an important contribution to the

field.

Overall though this is a very strong, well thought out proposal, based on a very

good and novel idea.

This work was accepted for publication as a SIGGRAPH work in progress sketch [MBO+06].

Some work that is not directly related to this thesis has influenced the design of the

special purpose high performance DSM graphics cluster. This applies mostly to FPGAs and

the SCI technology [MB04, BM03]. These publications are shown in section 1.4.3.

Introduction 26

1.4.1 Thesis Statement

Data fusion of sequential and concurrent Performance Monitoring Counter (PMC) readings

with Minimum Mean-square Error (MMSE) algorithms allows for the estimation of the

computational state of Distributed Shared Memory (DSM) clusters. These PMC readings

could otherwise not be observed with a comparable accuracy.

1.4.2 Directly Relevant Peer Reviewed Publications

[MBO+06] Michael Manzke, Ross Brennan, Keith O’Conor, John Dingliana, and Carol

O’Sullivan. A scalable and reconfigurable shared-memory graphics architecture. In

Proceedings of the SIGGRAPH 2006 Conference on Sketches & Applications, 2006

[MC05a] Michael Manzke and Brian A. Coghlan. Optimal performance state estimation

of compute systems. In the Proceedings of the 13th IEEE International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS 2005), pages 511–516, September 2005

[MKCL01] Michael Manzke, Stuart Kenny, Brian Coghlan, and Olav Lysne. Tuning and

verification of simulation models for high speed interconnection. In PDPTA’2001, June

2001

[MC99a] Michael Manzke and Brian Coghlan. Non-intrusive deep tracing of sci interconnect

traffic. In Wolfgang Karl and Geir Horn, editors, SCI Europe ’99, pages 53–58. SINTEF

Electronics and Cybernetics, September 1999. ISBN 82-14-00014-9

1.4.3 Indirectly Relevant Peer Reviewed Publications

[MB04] Michael Manzke and Ross Brennan. Extending fpga based teaching boards into the

area of distributed memory multiprocessors. In Workshop on Computer Architecture

Education, pages 15–21, June 2004

[BM03] Ross Brennan and Michael Manzke. On the introduction of reconfigurable hard-

ware into computer architecture education. In Workshop on Computer Architecture

Education, pages 96–102, June 2003

Introduction 27

1.5 Thesis Organisation

This thesis is organised as follows:

Chapter 1 Introduction provides a general introduction to the main research questions

that were investigated as part of this thesis. This includes a description of the contribution

in section 1.4, the thesis statement and lists of directly and indirectly relevant publications

in section 1.4.2 and section 1.4.3 respectively.

Chapter 2 Motivation discusses the motivation for the main investigations that were

conducted. In section 2.2 an argument to model PMC readings as random processes and

to apply a discrete MMSE filter to fuse these PMC readings into common state vector is

presented. At the beginning of this chapter in section 2.1 and section 2.1.1 a non-intrusive

SCI trace instrument and its associated analysis software is introduced. Section 2.1.2 then

elaborates on how trace data from the SCI Deep Trace instrument may be used to tune

and validate SCI network models. It is pointed out that the non-intrusive acquisition of

SCI network traffic and the tuning of SCI network models based on these trace data led

to the idea to model PMC readings as random processes. Section 2.3 makes an argument

for the advantages of Kalman filters to fuse many sequential PMC readings. This notion is

expanded in section 2.4 to a distributed implementation that allows for the global observation

throughout the nodes in hardware DSM clusters. The last section 2.5 in the motivation

chapter 2 looks at the design of a special purpose graphics cluster. This design was strongly

influenced by the previously mentioned investigations.

Chapter 3 Background and Related Work provides an introduction to the SCI tech-

nology in section 3.4.2. This is followed by related work descriptions for the main research

questions. Section 3.2 presents related work for the “Trace Data Acquisition”, section 3.3.1

for the “MMSE Filter”, section 3.1.1 for “Performance Monitoring Counters”, section 3.1

for “Performance Analysis” and section 3.5 for the “Special Purpose Graphics Cluster”.

Chapter 4 High Speed Interconnect Trace Data Aquisition and Analysis provide

a detailed discussion of the non-invasive high speed interconnect trace data acquisition and

analysis. Section 4.4 describes how a SCI network model may be tuned and validated with

interconnect statistics acquired with the trace instrument from section 4.1, section 4.2 and

section 4.3.

Chapter 5 State Estimation of a Single Compute Node is dedicated to the main

research topic, the state estimation of compute systems, and deals with all aspects of the

estimation algorithm in section 5.1. The following section 5.2 deals with the acquisition and

analysis of PMC event counts. This is necessary to tune the PMC process models in the

Introduction 28

estimation algorithm. The last two sections of the chapter deal with the fusing of PMC

reading sets into a larger state vector and with the implementation of the algorithm. This

is discussed in section 5.3 and section 5.4 respectively.

Chapter 6 Optimisation and Re-evaluation of the Estimation Algorithm dis-

cusses some of the possible optimisations for the estimation algorithm in section 6.1 and

analyses these in section 6.2. This is followed by an extended evaluation of the estimation

algorithm for a single-node system in section 6.3 and section 6.4.

Chapter 7 Hardware DSM Testbeds provides a detailed description of two multi-node

testbeds. One is a loosely coupled DSM cluster that is the testbed for all the implementations

and evaluations in this thesis. This cluster is discussed in section 7.1. The second cluster is

a conceptual design of a tightly coupled special purpose high performance graphics cluster.

This cluster will eventually take full advantage of the estimation algorithm by using it for

load-balancing. This tightly coupled cluster is described in section 7.2

Chapter 8 Compute Cluster State Estimation Algorithm (C2STATE) finally ap-

plies the estimation algorithm to hardware DSM systems. Section 8.1 describes the necessary

alterations to the single-node estimation algorithm and section 8.2 presents experiments and

evaluation results of the global state estimation algorithm (C2STATE).

Chapter 9 Conclusions and Future Work section 9.1 summarises the work presented

in previous chapters and section 9.2 discusses limitations and future work.

Chapter 2

Motivation

Clusters of commodity PCs have become a dominant alternative to Massively Parallel Pro-

cessing (MPP) systems. The Top 500 Supercomputer list included 28 clusters and 346 MPP

systems in November 2000. In November 2005 this had changed to 360 clusters and 104

MPP systems [Sit05]. The majority of these clusters are loosely coupled systems that ex-

hibit reasonably high bandwidth but relatively long latencies. They are not really suitable

for fast real-time applications.

Interconnect technologies enable us to connect uniprocessors or Symmetric Multipro-

cessor (SMP) machines into clusters. This technology determines how tightly or loosely

coupled a cluster is. This thesis focuses on a particular subset of clusters that implement

DSM in hardware. Within this scope, the work investigates hardware DSM systems that

are completely assembled from commodity components as well as systems that employ some

custom-built components, thereby filling the void in the design space between fully custom-

built high performance systems and systems that are entirely constructed from off-the-self

components.

This class of clusters is of particular interest if the computational demands cannot be

meet by a uniprocessors or a SMP machine and fast real-time constraints must be met. A

good example application is a large scale interactive visualisation system e.g. a CAVE. These

systems can have high computational demands. Furthermore the cluster must meet real-time

constraints, typically at the frame-rate, and must also process significant Input/Output (I/O)

within these constraints. The I/O operations may arise from motion detection equipment.

This puts the motion detection, processing and visualisation system into a closed loop be-

tween the user’s motion and the user’s perception of the motion through the visualisation

system. The overall latency through the motion detection and visualisation may not exceed

the human-vision-system’s ability to register changes, otherwise the system loses its ability

to immerse the user and may cause simulation sickness. In comparison to high performance

systems for scientific or engineering computation these immersive CAVE systems tend to

have a modest amount of compute nodes but they are less tolerant to long latencies.

Motivation 30

In this thesis I have chosen the SCI interconnect technology because it allows for the

design of hardware DSM clusters that explicitly reduce latencies. In order the take full

advantage of various computational resources provided by a hardware DSM cluster and to

reduce the power dissipation of these clusters, one can employ various optimisation tech-

niques. All these optimisations require run-time performance measurements.

This thesis describes two novel performance measurement and analysis methodologies

that can be used to exploit any of these optimisations. The first method is concerned

with the non-intrusive acquisition of interconnect traffic, which can assist the design and

the verification of SCI based hardware DSM clusters. It allows the analysis of whether

the interconnect topology can meet bandwidth and real-time constraints. It also helps to

pinpoint bottlenecks in the interconnect topologies. The second method, the global state

estimation of hardware DSMs, can control runtime adaption whether in hardware or software.

The bulk of this thesis concentrates on this second method.

This thesis also discusses the conceptual design of a special-purpose tightly coupled hard-

ware DSM system that can drive large scale interactive visualisation systems. This design is

intended as a future target for the non-intrusive acquisition of SCI interconnect traffic and

execution of the global state estimation algorithm.

2.1 Trace Data Acquisition and Analysis

The observation of high speed interconnect traffic, such as SCI, requires either to take mea-

surements on the interconnect cable or to perform these measurements on the interface-

adapter. Both methods have advantages and disadvantages that will be discussed later.

In section 4.1 and section 4.2 an instrument and the associated software infrastructure is

described that acquires interconnect traces and deposits these time-stamped and decoded

traces into a database for subsequent analysis. Section 4.4 discusses how the instrument and

software infrastructure may be used to tune a SCI fabric simulation model.

2.1.1 The SCI Non-Intrusive Deep Trace Instrument and Analysis Infras-

tructure

The SCI is one of the enabling interconnect technologies for high performance computing

on PC clusters. Between 1997 and 2001, a trace instrument was constructed by Dr. Brian

Coghlan of TCD that allows deep traces of SCI interconnect traffic. I designed and imple-

mented the bulk of its software infrastructure. Such an instrument is essential for a detailed

spatial and temporal analysis of parallel executed algorithms on loosely coupled clusters, as

in the case of the general purpose SCI testbed cluster discussed in section 7.1, and tightly

coupled clusters, as in case of the special-purpose high performance graphics cluster pre-

sented in chapter 7.2. At the time, there were no commercial instruments available to

non-invasively sample and store very deep (�10Mbyte) interconnect traces per target node.

Motivation 31

Figure 2.1: Trace data flow overview

The primary observation of interface traffic is accomplished through snooping on the Back-

side Link (Blink) [Dol96], Dolphin’s implementation of the SCI transfer cloud. Snooping

on SCI cable traffic, via SCILAB’s SCITRAC [SBNW98], is also supported. The tracer’s

configuration consists of three modules, a trace probe, a deep trace memory and a trace

database. The database provides a powerful means for a fine-grained analysis of a large

quantity of trace data.

The instrument provides hardware designers and software developers with a tool that

allows a deeper understanding of the temporal behaviour on any given target system. Unlike

other systems, e.g. see [KL97, KLS99], this trace instrument is targeted to commercially

available interconnect hardware and therefore provides the user with information about the

true temporal behaviour of clusters made up of standard components. Fig. 2.1 shows how

the trace instrument’s hardware and software components are related to each other during

trace data acquisition and subsequent off-line data analysis.

The instrument is designed to fulfil the following main objectives:

• Non-intrusive monitoring of SCI interconnect traffic

• Very deep (� 10Mbyte) interconnect traces per node

• Acquisition of all the interconnect traffic

• Synchronous trace acquisition on multiple nodes through a shared trigger mechanism

Motivation 32

• Allowance for various probes to accommodate SCI cable traffic and Blink traffic

• Straightforward adaptation to various SCI interface implementations.

• Trace data storage in commercial relational database

• Ability to analyse causal relationships in synchronously acquired traces from different

targets

The utilisation of a relational database provides the user with an easy means to extend

and to adapt the predefined database queries to their specific needs.

2.1.2 Tuning and Validation of SCI Network Models through Non-Intrusive

Deep Traces

The non-intrusive acquisition of interconnect trace data and a subsequent data analysis can

be used to accurately tune the definition of interconnect loads and the parameterisation of

interconnect simulation models. High speed interconnects or system area networks are the

principal components of a compute cluster that transform stand alone computers into a clus-

ter. The design of such interconnect fabrics may be assisted through performance prediction.

This prediction is accomplished through simulation if the model’s parameterisation reflects

the physical fabric and realistic load descriptions are provided.

A simulation is only as accurate as its simulation model. A simulation model must be

tuned and verified in order to guarantee that the model reflects the real physical system

behaviour, but this requires information about the true temporal behaviour of the physical

interconnect. This information can be extracted from interconnect trace data. In particular,

the trace data must be acquired non-invasively for it to be accurate.

In section 4.4.1 the parameterised SCI node model developed at the University of Oslo

is presented. This model has been used to evaluate SCI topologies consisting of 20 ringlets,

and up to 96 nodes. The model development was done within the framework provided by the

OPNET Modeler [MIL97]. A standard distribution of OPNET contains models of most stan-

dard communication technologies like Ethernet, Fiber Distributed Data Interface (FDDI),

Asynchronous Transfer Mode (ATM), etc. This facilitates easy integration of our node with

models of other technologies, enabling simulation of heterogeneous systems with very limited

additional development. Section 4.4.2 then presents mechanisms that allow the extraction

of statistical information from a trace-database for the generation of realistic system loads.

These loads are used to tune the simulation model described in section 4.4.1. Fig. 2.2 shows

the framework for this. The individual components of the simulation, measurement and

analysis system are based on work on non-intrusive deep tracing of SCI interconnect traf-

fic [MC99a, SBNW98, SNBW99] and simulation of high-speed-interconnect traffic [RL99]

at the Department of Physics and the Department of Informatics at the University of Oslo

and at TCD.

Motivation 33

Figure 2.2: Trace Data Acquisition and analysis framework

2.2 Global State Estimation of Hardware Distributed Shared

Memory (DSM) Systems

Today’s high performance computers, whether uniprocessor, multiprocessor or hardware

DSM systems, are madeup of concurrently operating subsystems. Run-time knowledge of

the system-wide utilisation state of these subsystems including CPUs and their interconnects

can assist efficient scheduling of tasks onto these resources. E. Duesterwald et al. [DCS03]

argue for a prediction that would allow the system to adapt more efficiently to the time-

varying behaviour of the programs. Their work observes performance metrics that are based

on CPU PMC event readings. An analysis of these observations showed that programs exhibit

strong behaviour variations at PMC sample interval granularity but that the various metrics

shared periodicity. E. Duesterwald et al. [DCS03] exploit this characteristic to perform

resource-aware scheduling.

Looking more specifically at the CPUs, there has been an increase in research activi-

ties concerned with dynamic optimisations of the processors’ operations through hardware

or software adaption. Bahar and Manne [BM01] minimise the power dissipation of a gen-

Motivation 34

eral purpose processor through Pipeline Balancing (PLB). In this case performance mon-

itoring controls the dynamic adaption of resources. Dynamic program phase detection is

applied in Balasubramonian et al. [BABD00] to optimise the memory hierarchy configura-

tion. This leads to a lower power dissipation and improved performance. Balasubramonian

et al. [BDA03] investigate optimisations of clustered micro-architectures [FCJV97, PJS97].

This is accomplished by taking advantage of Instruction Level Parallelism (ILP). For clus-

tered micro-architectures the optimal performance is achieved by finding the best trade-off

between communication and parallelism. Again program phases are detected to adapt the

cluster configuration to the current workload. In Dhodapkar and Smith [DS02] a recon-

figurable instruction set cache is adapted by matching working set signatures with current

program phases. Folegnani and Gonzales [FG01] lower the energy consumption of the CPU’s

issue logic by dynamically reducing the effective size of the instruction queues. Huang et

al. [HRT03] propose an alternative to the temporal approach to adaption. They use subrou-

tines at the granularity of program phases to determine the correct adaption of the system.

Dynamic Voltage Scaling (DVS) is used by Hughes et al. [HSA01] to adapt general-purpose

processors to multimedia workloads that operate on per frame time constraints. Magklis et al.

[MSS+03] investigate DVS techniques in Multiple Clock Domain (MCD) micro-architectures.

These target systems operate with Globally Asynchronous Locally Synchronous (GALS)

clocks that are dynamically scaled relative to queue utilisation. These queues supply clock

domains with data or instructions. Similar to Folegnani and Gonzales [FG01], Ponomarev

et al. [PKG01] adapt the length of the Issue Queue (IQ), the Reorder Buffer (ROB) and the

Load/Store Queue (LSQ) depending on their occupancies. Finally, Wu et al. [WMC+05]

explore a dynamic compilation environment to control DVS.

In addition to the dynamic adaption work, researchers have successfully investigated

PMC events to predict the run-time CPU and memory power consumption [IM03, Bel00,

Mar01, KCK+01, LJ03]. Contreras and Martonosi [CM05b] used a first-order, linear power

estimation model to observe CPU and memory power consumption based on PMC readings.

All these research activities are good examples of the wealth of optimisation opportunities

that are available if dynamic adaption or scheduling is employed. It also illustrates that the

ability to indirectly measure power consumption in parts of the CPUs micro-architecture is

useful if energy is to be saved. Furthermore all the work cited here depends on accurate PMC

event readings. This emphasises the importance of accurate counter readings of a variety of

events.

This thesis is not concerned with the scheduling of resources, the dynamic optimisations

or the measurement of power consumption, but introduces an algorithm that generates a

global view of the system’s utilisation or computational state. It is for other to use these

state information for optimisations. The global view is derived from hardware PMC readings

that count the number of occurrences of a selected event.

The PMC register reading zk in Eq. (2.1) represents the mean of the counted events

Motivation 35

e(t) over the sample interval ∆t. The choice of duration of the sample interval ∆t is a

trade-off between counter accuracy and computational overhead. Reducing ∆t will increase

the accuracy until the computational overhead (caused by instructions that read and pro-

cess the PMC registers) contributes a significant amount of counter events to the reading.

Section 5.4 provides a detailed discussion of this topic. Furthermore if the system’s software

is responsible for the acquisition of counter readings then the Operating System (OS) ability

to schedule such register readings determines the minimum sample interval ∆tmin.

zk =
1

∆t

(k∆t)+∆t
∑

k∆t

e(t) (2.1)

System events, such as the Number of Instruction Fetch Misses, that are counted over a

time period provide a measurement of the degree of availability or utilisation of particular

system resources. These observations are easily obtained through registers that implement

performance counters. In general counter registers can be instructed to count a particular

event by means of a selection register. This selection is required because in most cases the

number of PMC registers does not match the number of events that may be counted. For

example the IntelTMPIII processor has only two registers but each of these may be used to

count any one of more than 100 events ranging from the Number of Bus Transactions to the

Number of Floating-point Operations [Ord01]. Please see Table A.1 for a complete list of all

available PMCs.

This selection approach does not constitute a problem as long as the number of required

PMC readings does not exceed the number of available counter registers. If the number

of distinct event counts exceeds the number of available registers then this approach fails.

One remedy is if the system uses a single register to count different events in a nested

sequence. Fig. 2.3 depicts this multiplexing technique. A set in Fig. 2.3 refers to the number

of PMC registers in a given subsystem. The shaded areas in this figure highlight the intervals

[∆t2, ∆tn] and [∆tn+2, ∆tn+n], with n as the total number of event sets required to observe

the current state of resource utilisation. No events are counted for the first counter set, and

consequently the accuracy decreases for these multiplexed readings [DLM+01].

This thesis proposes to model PMC readings as random processes and to apply a Kalman

filter to fuse PMC readings into a state-vector that holds an optimal estimate of the system-

wide PMC event counts. The inspiration for this approach was developed during the analysis

of SCI interconnect traffic and the subsequent tuning of SCI network models based on statis-

tics derived from SCI trace data.

Motivation 36

∆tn+n∆tn+2∆tn+1∆tn∆t2∆t1

First Set of Counter Samples

Second Set of Counter Samples

Last Set of Counter Sample

Figure 2.3: Multiplexed sets of performance counter readings

2.3 MMSE Filter Algorithm

The discrete MMSE filter was originally formulated by R. Kalman in 1960 [Kal60] and

can process multiple time-variable inputs through the use of state space methods. The

application of stochastic system models for the PMC event readings is not only beneficial

for the optimal estimation of a noise-corrupted and incomplete scalar reading but also for

multiple readings. This thesis demonstrates how the well known Kalman filter algorithm

can be used to make a larger variety of PMC information accessible to the system’s software

than would otherwise be observable with a restricted number of counter registers.

Fundamental to the Kalman filter is the presence of noise. In this particular case, the

noise originates from the non-deterministic execution of the PMC acquisition software. The

histogram in Fig. 2.4 shows how the sample time changes around the mean of 3.9532e+07

clock cycles. The CPU operates at 1 GHz, consequently the mean sample time of 3.9532e+07

clock cycles is equivalent to 39.532 ms. The samples vary with a standard deviation of

σ = 1.1074e + 5 around the mean. Section 5.1.2 shows that the state transition matrix

Φ and the covariance matrix Q of the Kalman filter algorithm both depend on the sample

interval ∆t but the filter operates with a fixed sample time. Therefore the filter will process

randomly too many or too few PMC events. This is seen from the filter’s perspective as

noise. A further contributing factor is the quantisation of the PMC event readings.

2.4 Distributed MMSE Filter Algorithm

The implementation of a MMSE filter algorithm can help to observe more PMC events than

otherwise possible. If the node is a SMP machine it is possible monitor all the CPUs in

the system, but also remember that this thesis is particularly concerned with the design and

performance measurements of hardware DSM clusters, especially those using SCI. In order to

provide a global view, in terms of performance, of such clusters, it is necessary to extend the

scope of the MMSE filter algorithm over the entire cluster or a subset of cluster nodes that

Motivation 37

 0

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 3.88e+07 3.9e+07 3.92e+07 3.94e+07 3.96e+07 3.98e+07 4e+07 4.02e+07

N
um

be
r o

f s
am

pl
es

Sample Time [clock cycles]

Sample Time Histogram with superimposed Gausian PDF
 sigma = 1.1074e+05

mean = 3.952e+07 clock cycles = 0.039532 sec

Histogram
Gaussian PDF

Figure 2.4: Sample Time measured on CPU 1 in one of the two SMP systems specified in
table 7.1

are suitable for a run-time performance analysis. I have named this algorithm the “Compute

Cluster STATE estimation” (C2STATE) algorithm. Every node in the cluster that requires

a global performance view runs a MMSE filter algorithm that fuses local and remote PMC

readings into its state-vector. From the perspective of each node, remote PMC readings are

made available through the shared memory. Consequently all participating nodes hold an

estimate of the cluster wide performance in state space representation. This state-vector

may be used for performance measurements, load balancing and other optimisations.

2.5 Special-Purpose Graphics Cluster

When looking for a good example where advantage could be taken of a global performance

estimation algorithm and the interconnect technology, an interactive parallel graphics system

appeared to be a good match. General purpose OSes, e.g. Linux, can sample PMC readings

at 50Hz. This is approximately the frame rate that one would expect from graphics systems

and it would also be advantageous to make load balancing decisions in a parallel rendering

systems for every new frame. Furthermore, interactive visualisation systems frequently use

Motivation 38

motion tracking and other I/Os to provide feedback to the application. To guarantee a

seamless integration of this information into the interactive application it is necessary to

limit the latencies involved. One advantage of the SCI interconnect is that it operates at

extreme low latencies especially if an I/O bus is avoided.

If the computational demands of an interactive graphics rendering application cannot

be met by a single commodity GPU, multiple graphics accelerators (provided by a cluster

of PCs in conjunction with a software infrastructure) may be employed to provide the re-

quired additional resources. Typically these systems allow the application programmer to

use a standard OpenGL Application Programming Interface (API). This thesis describes a

hardware architecture that accelerates graphics applications with a tightly coupled hybrid

system of parallel commodity GPUs and reconfigurable hardware. The GPUs share a single

address space with a PC cluster, implemented through dedicated commodity high-speed in-

terconnect. Applications may take advantage of resources provided by the shared-memory

GPUs, the reconfigurable hardware and the PC cluster. When complete, this system will be

an explicit tightly-coupled target for the C2STATE algorithm.

Chapter 3

Background and Related Work

This thesis is concerned with the global state estimation of hardware DSM clusters. The

work also presents a novel special purpose hardware DSM architecture that is intended to

employ the global state estimation algorithm to optimise its performance. This chapter

provides the background to this work and discusses related work.

3.1 The Performance Analysis

In general performance analysis comprises the measurement of performance data, the eval-

uation of these data and a subsequent optimisation. The evaluation and optimisation may

be performed off-line or at run-time. Performance analysis can also be divided into: per-

formance measurement, performance modelling and performance simulation. This thesis

focuses on the measurement and estimation of DSM performance but also discusses possible

applications.

There are several commercial and research tools for the performance analysis of paral-

lel applications. They are suitable for message passing and shared memory programming

paradigms. The performance measurements are derived from system event counts. These

may be based on hardware or software event counts. Hardware events are implemented

within PMC registers. Software events require the instrumentation of the source or ob-

ject code. These event counts are then used for profiling or tracing. In the case of profiling,

statistics for several event-counts are generated. Tracing requires the acquisition of the event

history. This approach generates large quantities of trace data that are usually analysed after

the execution of a parallel program.

Some manufacturer of parallel high performance systems provide performance analysis

tools for their systems. IBM’s XProfiler allows for the profiling of serial and parallel applica-

tions [Xpo06]. Similar features are included in SGI’s ProDev WorkShop [Pro06] and Cray’s

PAT [GM98, PAT06].

Pallas’ Vampir and Vampirtrace third party tools are now part of Intel’s Trace Ana-

Background and Related Work 40

lyzer Collector [Tra06]. Other third party tools such as ETNUS’ Totalview include Message

Passing Interface (MPI) [Mes03] and OpenMP [Ope05] debugging tools [Tot06]. As with To-

talview, Crescent Bay Software’s Deep [Dee06] supports the debugging of message passing

and shared memory machines, but this tool also uses PAPI [PAP02] to gain access to PMC

readings. The “European Center for Parallelism of Barcellona” has developed the Paraver

tools with similar functionality [JJLG03, GTAB01, JJL+03, FCL02].

The TAU project [Tau06] provides profiling and tracing for performance analysis of par-

allel programs. Performance measurements are achieved through the instrumentation of

source code and use of a Program Database Toolkit (PDT), see Lindlan et al. [LCM+00].

The framework can also dynamically instrument the binaries by using Paradyn’s DyninstAPI

(see later). The PDT database holds compile-time information for source-level feedback.

Malony et al. [MST+05] discuss the integrated measurement, monitoring, and optimisation

of Common Component Architecture (CCA) component-based applications.

Paradyn [Par06] is suitable for parallel and distributed applications [MCC+95]. The tool

uses dynamic instrumentation for performance measurements. This is achieved by instru-

menting unmodified executable files. The program may be modified during the execution.

Paradyn monitors its overhead during the execution and corrects the instrumentation if

necessary. This tool was subject to research for more than a decade: Hollingworth and Mil-

ller [HM93] demonstrate how the performance analysis of large scale parallel computers can

be made manageable by combining the dynamic selection of performance data with decision

support. Hollingworth et al. [HMC94] argue in their paper for dynamic instrumentation.

Irvin and Miller [IM94] demonstrate the NV model that links system level activities with

the high level abstraction of the source code for debugging purpose. Miller et al. [MCC+95]

report a Paradyn implementation for Parallel Virtual Machine (PVM). Irvin et al. [HM96]

discuss a cost model for perturbation caused by the software instrumentation. Irvin et

al. [IM96b] suggest necessary cooperations between compilers and performance tools. Irvin

et al. [IM96a] are also concerned with the interpretation of low level events from the perspec-

tive of a high level language. The work suggests certain mappings as a solution. Holling-

worth et al. [HMG+97] discuss the Metric Description Language (MDL) and a compiler that

allows a machine independent instrumentation definition. Zhichen et al. [XLM97] demon-

strate how Pardyn exploits a shared-memory systems’ cache coherence protocol to identify

performance bottlenecks. Karavanic et al. [KMLM97] report on the performance data visual-

isation tool that can integrate various performance data including those generated by Pardyn

dynamic instrumentation. Zhichen et al. [XMN99] introduce an extension to Pardyn’s dy-

namic instrumentation for threaded sequential and parallel programs. Cain et al. [CMW00]

discuss the introduction of call-graph-based search strategies into the Pardyn tool. Miller

et al. [MCI+01] discuss how application security vulnerabilities can be exploited through

dynamic instrumentation. Roth and Miller [RM02] present a new performance bottleneck

search strategy that uses stack sampling. Mirgorodskiy and Miller [MM05] report a self pro-

Background and Related Work 41

pelled dynamic instrumentation agent that searches for intermittent performance problems.

Harris and Miller [HM05] present content and structure analysis methods that can deal with

stripped binary code. Collins and Miller [CM05a] discuss a search techniques for fine-grained

program structures in order to efficiently instrument loops. Roth and Miller [RM06] present

a bottleneck detection strategy for systems that run a large number of processes. They

achieve this by applying a novel multicast and data aggregation infrastructure.

The TAU and Paradyn projects are a good examples of very productive long-term re-

search activities.

3.1.1 Performance Counter

Most contemporary CPUs have hardware PMC registers that may be sampled to derive

performance information about the CPU’s micro-architecture. Access to these registers may

be provided through high level APIs, e.g. Performance Counter Library (PCL) [PCL06] and

PAPI [PAP02]. These high level APIs are also used by many of the previously mentioned

performance analysis tools, e.g. TAU. A number of publications relate to the widely used

PAPI API [MDK+04, AM05, DMM+04, DBL, DMM+03, DLM+03, WM03]. These two APIs

use Mikael Pettersson’s Linux 2.x.x kernel patch [Pet02] to access Intel Pentium, Pentium

MMX, PPro, Pentium II, Pentium III, Pentium 4 and AMD Athlon, Duron PMCs in kernel

space.

Ojha [Ojh01] compares hardware PMC measurement with software and hybrid perfor-

mance counters. Moore [Moo02] compares the PMC counting and sampling modes. Cérin

and Fkaier [CFJ03] investigate sorting algorithms by observing the ratio of L1 data cache

misses and retired instructions through PMC readings. This work uses Mikael Pettersson’s

“perfctr” [Pet02].

3.1.2 Multiplexed Performance Counter Readings

Many performance measurement situations require the reading of more PMC events than can

be simultaneously sampled with the number of available PMC registers. One solution is to

multiplex PMC events onto the PMC registers at the expense of accuracy. For example PAPI

uses the MPX [May01] library to implement multiplexing. Mathur and Cook [MC05b] in-

crease the accuracy of multiplexed PMC readings by applying Positional Mean Error (PME),

Multiple Linear Regression (MLR), Trapezoid-area Method (TAM) and Divided-Interval

Rectangular Area (DIRA) estimation methods. Azimi et al.[ASW05] improves multiplexing

accuracy through high frequency PMC sampling. This is possible with the K42 research

OS [SKW+06].

3.1.3 Cluster wide PMC Collection

Cluster wide PMC reading collections are presented in [DBL, WSS+04].

Background and Related Work 42

3.2 Trace Data Acquisition and Analysis Related Work

Hollingsworth et al. [HLM95] discuss various techniques for performance measurement of

parallel systems. The authors distinguish between program instrumentation and hardware

instrumentation. They point out that the instrumentation of executables may perturb the

execution of a parallel program but that hardware instrumentation is non-intrusive. Despite

this obvious advantage the hardware instrumentation makes it difficult to associate hardware

based performance information with the source code of the executed program. The authors

suggest that a hybrid solution can provide a trade-off between the non-intrusion nature of the

hardware instrumentation and the software instrumentation ability to provide performance

data that are easily associated with the source code. They also argue that a hardware

instrumentation must be distributed over all the nodes in the system.

Martonosi et al. [MCM96] presents Princeton’s SHRIMP performance monitor and pro-

vides a detailed discussion of the hardware monitor. An FPGA-based monitor is attached to

each node in the SHRIMP system and accumulates interconnect events. The monitor cards

also support multiplexing.

An alternative solution is provided by Liao et al. [LJI+98]. The authors utilise the

programmable network interface card of a Myrinet-based cluster to implement a performance

measurement mechanism. This approach uses a software solution but implements it on an

independent platform.

Karl et al. [KST00] reports about a hardware monitor similar to Princeton’s SHRIMP

performance monitor. The monitor hardware is attached to SCI interface cards on every

node in the cluster and snoops on the local bus of the interface card. Interconnect events

are stored through a caching mechanism that increases the utilisation of the available event

memory [HJK+00, TGS+01, GST+02, KLS99].

More recently Kenny et al. [KCB+05] investigated Ethernet traffic performance analysis.

The authors used features of the interface card to collect and analyse Ethernet traffic that

is specific to grid operations.

3.3 Kalman Filtering

In 1960, R. E. Kalman published his now well cited journal article [Kal60]. In this article

he describes an alternative to the Wiener filter solution. He proposed to apply state-space

methods for the MMSE filtering problem. This approach makes it possible to process com-

plex time-variable, multi-input/output problems. The filter allows modelling of the random

processes and recursive processing of them in a digital computer. Since Kalman’s origi-

nal article many papers have been published in this area. A search with CiteSeer [cit06]

provides references to approximately 5000 scientific publications and the Compendex and

Inspec [Com06] database hold approximately 30000 papers that are concerned with Kalman

Background and Related Work 43

filtering.

The filter has been applied in many areas: Chen et al. [CWS97] propose an Interval

Kalman Filter (IKF) for the estimation of interval linear systems. Pearson et al. [PGEM97]

investigate the stability of combat aircraft Extended Kalman Filter (EKF)s for high system

integration. Hong et al. [HCC98] use discrete wavelet transforms that are implemented on a

Kalman filter bank to decompose multiresolutional random signals. McMillan et al. [McM94]

compares Kalman filter estimates that are based on Global Positioning System (GPS) re-

ceivers with estimates that are based on inertial equipment. The measurements were con-

ducted during sea tails. Kuo et al. [KHJ+96] propose a block-based motion estimation

method that uses a Kalman filter to assist the compression of video signals. Murty and

Smolinski [MS88] apply a five-state Kalman filter to estimate the fundamental and second

harmonic of a power system in order to implement a digital differential relay for a three

phase power transformer. Sinopoli et al. [SLF+04] use a Kalman filter to model the arrival

of observations as a random process. These observation originate from unreliable commu-

nication channels in large, wireless, multi-hop sensor networks. These example demonstrate

the diversity of applications of the Kalman filter.

3.3.1 MMSE Filter Related Work

In the Computer Science domain there are also many examples of Kalman filtering. Discrete

MMSE filters were investigated for network traffic flow control [Kes91] and motion tracking

applications [Bac00][Gre96] but, to my knowledge, they were not investigated for the acquisi-

tion of PMC readings. Gregory Welsh developed the Single-Constraint-At-A-Time (SCAAT)

solution for motion tracking with an EKF[Gre96].

3.4 Compute Cluster

According to the Top 500 Supercomputer list [Sit05] clusters have became the most used

systems for high performance computations. The list included 28 clusters and 346 MPP

systems in November 2000. In November 2005 this had changed to 360 clusters and 104

MPP systems [Sit05].

3.4.1 Interconnect Technologies

The majority of these clusters are loosely coupled systems that exhibit reasonably high band-

width but relatively long latencies. The main interconnect alternatives are: Myrinet [Myr06],

Gigabit Ethernet [Gig06], Infiniband [Inf06], Quadrics [Qua06] and SCI [SCI06]. Out of this

list SCI is the only technology that allows assembly of hardware DSM clusters.

Background and Related Work 44

3.4.2 Scalable Coherent Interface (SCI)

Defined in 1992, SCI is a well established technology and many high performance cluster im-

plementations employ this interconnect (e.g, PC2 University of Paderborn Germany, Univer-

sity Of Delaware - The Bartol Research Institute USA and National Supercomputer Centre

in Sweden) [Top04]. Subsets of the SCI standards have been implemented and are avail-

able as commodity components. In particular, Dolphin [Dol04] has implemented Peripheral

Component Interconnect (PCI) cards that bridge PCI bus transactions to SCI transactions.

Hellwagner et al. [HR99] cover much of the related hardware and software. Compute nodes

with PCI slots may be interconnected through PCI-SCI bridges together with a suitable SCI

fabric topology, thus bridging their PCI buses. Memory references made by one of these

nodes into its own PCI address space are translated into an SCI transaction and transported

to the correct remote node. The remote node translates this transaction into a memory

access, thus providing a hardware DSM implementation. Programmed Input Output (PIO)

and Direct Memory Access (DMA) may be performed without the need for system calls.

Figure 3.1 illustrates the design of a Symmetric Multiprocessor SMP node with a com-

modity SCI card in one of its PCI slots and also shows the main components on this SCI

card. The PCI-SCI bridge translates between PCI transactions and SCI transactions and

forwards them onto the PCI bus or the Blink bus. The SCI Blink bus interconnects the

PCI-SCI bridge with up to seven SCI Link Controller (LC)s or alternative components. The

SCI cards shown have two SCI LCs attached to the Blink and consequently are suitable for

the construction of a 2-dimensional torus. Systems with more than one LC route packets

between them over the Blink to the corrected LC according to a routing table. This enables

distributed routing of SCI packets between individual SCI rings without an expensive central

SCI switch. Routing is configured during SCI fabric initialisation. Every LC has an input

and output port, and the output port of one is connected via a cable to the input port of

another. These links are 16 bit parallel and unidirectional with a bandwidth of 667Mbytes/s.

SCI and Cache Coherency

The connection of SCI LCs to the I/O bus via a bridge was not intended during initial

specification of the SCI standard but it allows commodity component manufacturers to offer

SCI subsystems that may be attached to a diverse set of computer architectures as long

as they provide a standard I/O bus. This therefore enables the construction of NUMA

machines from commodity components. This approach prohibits the implementation of

cache coherency as defined in the SCI IEEE 1596-1992 standard [Ins93] for the commodity

PC cluster. On the other hand ccNUMA machines can be built if the I/O bus is avoided.

Background and Related Work 45

Intel

SCI Link
Controller
ONE

SCI Link
Controller
TWO

PCI

PCI

SCI Card
Commodity

North
Bridge

Memory
Commodity
SMP PC

Application

Operating System

CPU 2

Graphics
Application

Operating System

CPU 1

Graphics

Bridge

SC
I B

L
in

k

Figure 3.1: SMP Desktop Node with 2D SCI-PCI interface card.

SCI Commodity System Software

SCI driver software and a Software Infrastructure for Scalable Coherent Interface (SISCI)

API for the Dolphin SCI cards force the OS to reserve a particular section of the main

memory for SCI, thus also preventing paging of this set of memory pages [Dol04]. The

software then makes this part of the memory available to other nodes in the SCI cluster.

These nodes’ processes may map this remote memory into their processes’ virtual address

space. Subsequent references to virtual addresses that are located on a remote node will be

executed in hardware without expensive system calls. Although the SCI driver is not really

a driver in the traditional sense, as it does not avail of OS services during SCI transactions,

its definition as such facilitates the system initialisation and set-up.

3.5 Special Purpose Graphics Cluster

This work is mostly motivated by Standford’s research around the WireGL project [HEB+01]

and the Chromium project [HHN+02]. My parallel rendering solution integrates reconfig-

urable hardware in form of FPGAs into the graphics pipeline as a distinct computational

stage between the application stage that executed on the host system’s instruction set pro-

cessor and the geometry stage of the commodity graphics accelerator. Recent work at the

Saarland University demonstrated an implementation of a real-time ray tracer on a single

FPGA that would otherwise require a cluster of commodity PCs [SWW+04]. Other re-

cent work at the University of North Carolina at Chapel Hill implemented an FPGA based

Background and Related Work 46

view-independent graphics rendering architecture [SBM04] and earlier research at the Uni-

versity of Tübinger was concerned with the development of a real-time volume renderer

implemented through Digital Signal Processing (DSP) and FPGA components [MKS98].

These are just three examples that demonstrate the suitability and computational ability

of reconfigurable hardware for graphics applications. My architecture further improves the

performance potential of these components by making them part of the hardware DSM. A

recent commercial shared memory graphics cluster solution, the Onyx4, was evaluated by

the University of Utah [GPH04]. Other investigations at University of Utah were concerned

with the implementation of interactive ray tracing on clusters but they applied software DSM

for their ray tracer [DGBP05, DGP04, DPH+03].

Chapter 4

High Speed Interconnect Trace

Data Acquisition and Analysis

The remainder of this chapter describes an SCI trace instrument created in the Depart-

ment of Computer Science, TCD. It also shows how this instrument is used to validate SCI

simulations. The author contributed significantly to the software infrastructure.

Figure 4.1: SCI Deep Trace Instrument Front Figure 4.2: SCI Deep Trace Instrument Back

4.1 SCI Trace Instrument Hardware

The non-intrusive measurement of interconnect traffic can be achieved with two stages of

trace instrumentation. The following hardware options represent the first stage of instru-

mentation: an SCITRAC [SBNW98] link tracer, an SCIview [SNBW99] field programmable

tracer instrument or an adapter card that observes interface traffic through snooping on the

Blink [Dol96], Dolphin’s implementation of the IEEE standard SCI transfer cloud [Ins93].

The second stage collects trace data from this instrumentation. There are two options

High Speed Interconnect Trace Data Acquisition and Analysis 48

available for this purpose: a standard commercially available logic analyser or a trace in-

strument developed at TCD [MC99a, CMB+98, CM99, MC99b].

The hardware of the latter trace instrument [CMB+98] comprises a portable PC, two

deep trace memory boards, two probe adapters [CM99] and two trace probes (Fig. 4.3). The

latter two are medium complexity 7-layer Printed Circuit Board (PCB)s, but the deep trace

boards are very complex Multiwire PCBs equivalent to > 12 layers.

Figure 4.3: Trace hardware overview including three possible trace targets

4.1.1 Trace Probes

Blink traces from Dolphin’s SCI-PCI bridge can be acquired via a probe card supplied by

Dolphin that attaches to their SCI interface cards via elastomeric connectors. This card

breaks out the Blink signals to a number of connectors that will accept cables for a HP16500

series logic analyser (see Fig. 4.3, Option 1). The same pin-out and connectors are used in

a proprietary avionics SCI-PCI Bridge implementation. Furthermore SCILAB’s SCITRAC

cable tracer provides broadly similar connectivity (see Fig. 4.3, Option 2).

The instrument requires two trace probes [CM99] that attach to the trace target via

High Speed Interconnect Trace Data Acquisition and Analysis 49

Figure 4.4: Trace probe block diagram Figure 4.5: Probe adapter block diagram

HP16500 series compatible cables and are synchronised by an inter-probe cable. Each trace

probe attaches to 48bits of the 96bit-sample data path. A block diagram for a trace probe

is shown in Fig. 4.4. The trace probe multiplexes the trace samples onto Low Voltage

Differential Signalling (LVDS) cables, which connect the probes to the trace instrument’s

adapter cards. They allow a maximum sample rate of 66 MHz, and consequently they

are suitable for Link Controller 2 (LC2) applications. The Mach445 Programmable Array

Logic (PAL) can be used as a test pattern generator, deriving its clock from a local crystal

oscillator. The PAL can further be employed to match input patterns.

4.1.2 Probe Adapter

The probe adapters demultiplex and resynchronise the trace probes’ LVDS signals. Each

adapter attaches to one of the deep trace memory boards and provides the memory board

with 48bits of a 96bit data path. Again the PAL may be used as a test pattern generator.

Figure 4.6: Trace memory board block dia-
gram

Figure 4.7: Trace instrument control GUI

High Speed Interconnect Trace Data Acquisition and Analysis 50

4.1.3 Trace Memory Boards

The deep trace memory boards are inserted into the PC’s Extended Industry Standard Ar-

chitecture (EISA) slots. Each trace board contains 12 Mbytes of dual ported Video Random

Access Memory (VRAM); one port receives trace data from the probe adapter while the

second connects the trace memory to the EISA I/O bus of the trace instrument. The first

trace board inserts absolute time stamps following each packet into the trace memory while

the second board inserts relative time stamps of a finer time resolution.

4.1.4 Control Software

The trace board’s operation is controlled by a suite of driver, API and Graphical User

Interface (GUI) application software through the EISA bus (see Fig. 4.7). The trace tool

API may be employed by the user to adapt the instrument to their specific needs.

The trace boards implement a trigger and filter mechanism via additional Static Random

Access Memory (SRAM) that is used to store associative match patterns (see Fig. 4.6). Both

boards are interconnected to enable triggering over the full 96-bit sample width. Further-

more, it is intended that a number of instruments could be interconnected for a synchronised

trace data acquisition on two or more target nodes. The trigger mechanism provides four-

level triggering. The filter and trigger patterns are configured through the instrument’s

API. A trigger and filter GUI implementation is shown in Fig. 4.8. A view of the trace

board memory contents is provided through the instrument’s control software (see Fig. 4.9).

Fig. 4.1 and Fig. 4.2 show the instrument, which is packaged within a portable (Lunchbox)

PC. Two of these instruments were constructed.

Figure 4.8: Trace instrument trigger and fil-
ter GUI

Figure 4.9: Trace memory viewer

High Speed Interconnect Trace Data Acquisition and Analysis 51

4.2 SCI Trace Database

The trace instrument employs a relational database to store and analyse trace data [CM99].

The trace database is designed to accommodate all SCI packet types encountered on SCI

cable links and Blinks. The following packet classification satisfies the Blink specifica-

tion [Dol96] and the SCI IEEE standard [Ins93]. This categorisation is used for the decoding,

the trace database storage and the retrieval of SCI and Blink packets.

4.2.1 SCI Cable-link Tables

Type 1 Request-send-packet with extended header and 0 byte data

Type 2 Request-send-packet with extended header and 16 byte data

Type 3 Request-send-packet with extended header and 64 byte data

...
Type 17 Response-send-packet with 256 byte data

Type 18 Response-echo-packet

Type 19 Idle Symbols

Type 20 Sync packets

4.2.2 Blink Tables

Type 21 Encapsulated request-send-packet with extended header and 0 byte data

Type 22 Encapsulated request-send-packet with extended header and 16 byte data

Type 23 Encapsulated request-send-packet withextended header and 64 byte data

...
Type 34 Encapsulated response-send-packet with 16 byte data

Type 35 Encapsulated response-send-packet with 64 byte data

Type 36 Encapsulated response-send-packet with 56 byte data

Subsequent to a trace acquisition, the instrument’s control software writes the trace

memory contents into two trace files. A Java decoding application reads the trace-data from

those trace files and reunites the two 48 bit fractions into a full 96 bit-sample.

The software also detects the packet types as categorised above and decodes the pack-

ets. The trace database is broken up into a number of tables to accommodate the various

High Speed Interconnect Trace Data Acquisition and Analysis 52

types of SCI packets. The database design provides space-optimised storage. The decoded

SCI-packets are written into trace-database-table-files according to their packet type specifi-

cation. These trace-database-table-files are used for a subsequent bulk import into the trace

database.

Figure 4.10: Trace data flow from Blink into DB-table-files

Each trace-database-table-file is associated with a table in the trace database. The file

format reflects the database table design to accommodate bulk imports. Fig. 4.10 demon-

strates how trace data flows from a target node’s Blink into the trace-database-table-files.

Fig. 4.11 gives an example of how a specific packet type, in this case a Response-send-packet

with 64 bytes data, Type 16, is distributed into the appropriate trace-database-table-files.

A Trace-ID and a Packet-ID uniquely identify every SCI packet in every trace. Every

trace-data-table contains these two IDs as primary keys. A main table is shared by all

packets and contains a packet-type-ID but all packets occupy only a subset of the available

tables. Fig. 4.12 shows the relations between the trace database tables.

The fields in the trace-database table exhaustively enumerate SCI-packet information,

preserving the maximum level of detail, e.g. targetID, command type, sourceID, etc. This

High Speed Interconnect Trace Data Acquisition and Analysis 53

allows for very detailed queries, e.g. all request-send packets with targetId = X, sourceId =

Y and addressOffset between A and B.

The user may give meaningful interpretation to trace data fields through the implementa-

tion of additional tables and additional one-to-many relations. The design allows the analysis

of subsets of the packet’s data while maintaining a relation to the full packet information

e.g. a query result-set is easily associated with the full packet information.

4.2.3 Trace Database Performance

A preliminary investigation has shown that direct Structured Query Language (SQL) in-

sertions of individual packets subsequent to the packet’s decoding are too expensive. The

estimated execution time exceeds 1 hour for a full trace while a bulk import into the trace

instrument’s MS Access database can be achieved in less than 10 minutes. MS SQL-Server

imports are even less time consuming.

CREATE PROCEDURE [SCI Packet Type 01] AS SELECT

2 SCI Packets . TraceId ,

SCI Packets . PacketId ,

4 SCI Packets . Packet Type Id ,

SCI Packet Type Id . Packet Type Descr ipt ion ,

6

. . . (p lace ho lder 3 3 f i e l d s in 6 t ab l e s)

8

SCI Packets . r e l a t i v e T ime 2 ,

10 SCI Packets . r e l a t i v e T ime 3

FROM SCI Packets

12 INNER JOIN SCI FlowControl ON

SCI Packets . TraceId = SCI FlowControl . TraceId AND

14 SCI Packets . PacketId = SCI FlowControl . PacketId

INNER JOIN SCI Cmd ON

16 SCI Packets . TraceId = SCI Cmd . TraceId AND

SCI Packets . PacketId = SCI Cmd . PacketId

18 INNER JOIN SCI Control ON

SCI Packets . TraceId = SCI Control . TraceId AND

20 SCI Packets . PacketId = SCI Control . PacketId

INNER JOIN SCI AddressOf f set ON

22 SCI Packets . TraceId = SCI AddressOf f set . TraceId AND

SCI Packets . PacketId = SCI AddressOf f set . PacketId

24 INNER JOIN SCI Extended ON

SCI Packets . TraceId = SCI Extended . TraceId AND

26 SCI Packets . PacketId = SCI Extended . PacketId

INNER JOIN SCI Trace Informat ion ON

28 SCI Packets . TraceId = SCI Trace Informat ion . TraceId

INNER JOIN SCI Packet Type Id ON

High Speed Interconnect Trace Data Acquisition and Analysis 54

30 SCI Packets . Packet Type Id = SCI Packet Type Id . Packet Type Id

WHERE (SCI Packets . TraceId = 3) AND

32 (SCI Packets . PacketId = 40200)

Listing 4.1: SQL-query for a Type 1 Request-send-packet with extended header and 0 bytes

data

Figure 4.11: Packet trace database distribution

The SQL-query in Listing 4.1 reconstructs a specific Type 1 Request-send-packet with

extended header and 0 bytes data. The packet has a TraceID = 3 and a PacketID = 40200

and is retrieved from a trace database with 100,000 packets. The query must retrieve 39

fields in 6 tables in order to reassemble this packet and it’s associated trace information.

Even using a Microsoft SQL-Server 7.0 on a 450 MHz Intel Pentium II with 128 MB

memory required less than 1 second. The same query into an MS Access database required

about 15 seconds, so a Microsoft SQL-Server is a preferable database engine.

High Speed Interconnect Trace Data Acquisition and Analysis 55

4.3 SCI Trace Data Presentation and Analysis

The primary trace data acquisition, the decoding and the trace bulk import are associated

with the trace instrument itself. But trace data will in all likelihood be transferred to a remote

node for performance and accessibility reasons. Fig. 4.14 provides a system overview. Trace

data is easily transferred from one trace database to another. A remote node hosts a web

server and a Java trace database server. Client nodes may load trace viewer and analysis

applets into their web browser. The trace instrument can behave as a client in this scenario.

The applet establishes a socket connection to the trace database server.

Figure 4.12: Trace database relations Figure 4.13: Java Packet Viewer

4.3.1 Java Trace Database Server

The Java database server creates a new thread for every connecting client, thereby allowing

concurrent access from multiple clients. The client applet initiates the server to connect

to a particular trace database either on the local node or a remote node. The Java server

establishes the trace database connection through an Open DataBase Connectivity (ODBC)

server. The trace database server holds a set of prepared SQL statements. A client may

invoke a specific prepared SQL statements and forward parameters to the server. The server

then invokes the statement with the inserted client parameters and returns the query result-

set to the applet.

4.3.2 Java Packet Viewer Applet

Fig. 4.13 shows an SCI packet viewer applet. The user provides the applet with a TraceID

and PacketID. The software then initially queries the packet type and adjusts its layout

accordingly. A subsequent type-specific query for the full set of trace-data provides the

applet with the required data.

High Speed Interconnect Trace Data Acquisition and Analysis 56

Figure 4.14: Trace system software

The above software is collectively called System Area Network Trace Analysis (SANTA).

It has been distributed to SCILAB in Norway and the Department of Physics and Informatics

at the University of Oslo. It has also been grid-enabled (as SANTA-G) [BK+05] and deployed

on both the EU CrossGrid (23 sites) [Cro06] and the Irish Grid-Ireland (18 sites) [Gri06]

grid infrastructures within Stuart Kenny’s PhD thesis [Ken06]. SANTA-G includes SCI and

Ethernet tracing, and is also the basis for the Grid-wide Intrusion Detection System (GIDS)

deployed on Grid-Ireland. GIDS [KC04, KC05] will be further developed for active security

within the recently approved int.eu.grid EU project [int06]. In recent times SCI traces tend

to be acquired using SCILAB’s SCITRAC cable tracer and a modern logic analyser (e.g.

Tektronix 7014) rather than the trace instrument described above, and then analysed using

SANTA-G.

High Speed Interconnect Trace Data Acquisition and Analysis 57

4.4 Tuning and Verification of High Speed Interconnect Fab-

ric Simulation Models

SCI trace data acquired and stored as described above can then be used to tune and verify

SCI simulation models, which then may be applied to explore other SCI configurations and

topologies. The framework for this is shown in Fig. 2.2.

4.4.1 SCI Simulation Model

A model of an SCI-node has been implemented in OPNET-modeller. OPNET was originally

developed at Massachusetts Institute of Technology (MIT), and was introduced in 1987 as

the first commercial network simulator. The node model is designed to simulate SCI at the

packet level for increased simulation efficiency. Still, it achieves symbol level accuracy by

exploiting the fact that the time interval between the arrival of the first and the last symbol

of a packet is a function of its length. The model is object oriented in the sense that there

are separate modules (objects) for units like the input and output buffers, the bypass First

In First Out (FIFO), the stripper, the multiplexer at the output end, etc.. It contains a full

implementation of the go-bit based flow control, as well as the A-B ageing scheme of the

retry protocol. The formation of ringlets or bigger topologies consisting of both rings and

switches can, to a large extent, be done through drag and drop functionality.

The usefulness of a simulation model is dependent on the statistics it assumes for the

physical system. This is related to the statistics it is able to generate when it runs. This

SCI model includes a comprehensive set of “points of measurements”. Fig. 4.16 shows where

these points are located in the logical model. The points of measurements are:

1. The number of packets held in the output buffer. A new sample is generated at each

packet insertion or removal from the output buffer.

2. The number of packets held in the active buffer. A new sample is generated at each

packet insertion or removal from the active buffer.

3. Output throughput, which is measured in symbols per clock cycle. The output through-

put is collected when ever a new packet arrives at the output buffer.

4. Bypass throughput, which is measured in symbols per clock cycle. The bypass through-

put is collected whenever a new packet arrives at the output buffer.

5. Node throughput, which is measured in symbols per clock cycle; Node throughput =

Output throughput + Bypass throughput.

6. Idles between arriving packets. The time between packets arriving at the node’s input

link, which indicates the link’s load. The link is run at maximum capacity if there is

only one idle between arriving packets. In this case the load factor equals 1.

High Speed Interconnect Trace Data Acquisition and Analysis 58

7. Number of send packets held in the input buffer. A new sample is generated at each

packet insertion or removal from the input buffer.

Figure 4.15: SCI node OPNET model including PCI-bridge and Blink

The SCI interface simulation generates SCI packets in the packet genmodule. Fig. 4.15

shows the individual simulation components. The packet gen module is shown above the

PCI-bus. The Model assigns the packet type randomly and the inter-arrival time of the

packets is dictated by a Probability Density Function (PDF).

High Speed Interconnect Trace Data Acquisition and Analysis 59

4.4.2 SCI Simulation Model Tuning

The relational trace database stores SCI trace data including time stamps. These time

stamps are associated with individual packets. Timing details are appended to the packet

during the non-intrusive acquisition of trace data. The trace database makes these absolute

timestamps available for further analysis. Consequently trace data provides accurate infor-

mation about the temporal behavior of the system under test. Time stamped packets are

essential for a statistical description of the system’s behavior.

The system provides the means to monitor interconnect traffic by snooping on the link

cable at three different locations SCI IN and/or SCI OUT and/or the Blink. Fig. 4.15 shows

the three snoop targets in an OPNET representation of the SCI interface. Traces acquired

from these three locations complement each other by providing different subsets of the full

set of ringlet and Blink traffic that passes through the LC. The LC receives ringlet packets

on the SCI IN port. These packets may be addressed to this node and routed into the LC

or forwarded to the SCI OUT port if addressed to a different node. The LC processes the

packet further by decoding the packet type and processing it accordingly, e.g. an echo packet

acknowledges a previous transaction and will be absorbed in the LC but send-request or

send-response packets are encapsulated and forwarded onto the Blink because they require

the assistance of the PCI/SCI Bridge. Send-requests or send-responses also require the

generation of echo packets to acknowledge the transaction to the source node. This echo

packet is transmitted on the SCI OUT port.

The LC also receives encapsulated send-requests or send-responses on its Blink port

from the PCI/SCI Bridge and transmits them on the SCI OUT port. This description of LC

transactions is by no means exhaustive but should demonstrate that monitoring on the Blink

is restricted to the subset of send-request and send-response packets whereas snooping on the

link provides information about link-level related transactions. See [Ins93] for full details.

Due to the nature of unidirectional link traffic, monitoring on a single link cable limits the

visibility of node transactions, e.g. snooping on the SCI OUT cable enables the observation

of a send-request packet but will neither see the associated echo packet nor a send-response

packet from the responding node. It will see the echo packet that acknowledges the reception

of a send-response packet and completes the transaction. On the other hand monitoring the

Blink would allow the observation of both the send-request and the send-response packets

but not the echo packets nor any passing traffic.

The above implies that the most comprehensive tracing would require the use of three

trace data acquisition channels and a synchronized trigger mechanism. The trace database

actually allows one to relate 2+n traces that are monitored at different locations whether at

the same node or remote notes in the SCI fabric. Queries for particular trace data attributes,

e.g. transaction ID in conjunction with time constraints, can extract packets related to a

specific transaction.

High Speed Interconnect Trace Data Acquisition and Analysis 60

Figure 4.16: The points of measurement
where the statistic is collected for an SCI
node. For convenience the source and the
destination device for the input and the out-
put buffer are called “TO APPLICATION”
and “FROM APPLICATION”. In a real SCI
node the buffers are physically connected to
a bridge.

Figure 4.17: Probability density function

A trace data analysis can take advantage of the completeness of the information held

within the trace database and the relational operations that can be performed upon it. First

it is necessary to extract specific subsets of trace data in order to generate PDFs that can

be used in the SCI simulation model described in Section 4.4.2.

Figure 4.18: Load definition Figure 4.19: Model output

High Speed Interconnect Trace Data Acquisition and Analysis 61

The SCI interface simulation generates SCI packets in the packet gen module. Fig. 4.15

shows the individual simulation components. The packet gen module is shown above the

PCI-bus. As previously indicated the model assigns the packet type randomly and the inter-

arrival time of the packets is dictated by a PDF. Currently the SCI model uses PDFs provided

by the OPNET package but the software allows the definition of PDFs by the user. For this

purpose, one can extract through an SQL query a relevant subset from the trace database

and compute the PDFs from timestamps that are associated with each packet. The default

model uses a uniform PDF with limits set to 6.0E-7 and 6.0E-6 seconds. The computed

PDF, however, shows a strong deviation from this assumption, see Fig. 4.17. The computed

PDF function represents the probability density of packets generated by real system loads.

When the default PDF is replaced by the computed PDF the model is then stimulated with

realistic system loads. Fig. 4.18 shows the load definition derived from measurements shown

in Fig. 4.17. In a further step the SCI model can then be stimulated with both a realistic

system load and the default uniform PDF. Fig. 4.19 compares the resulting predicted system

throughput. The significance of this has yet to be established.

4.5 Summary

The trace instrument seen in Fig. 4.1 and Fig. 4.2 provides a non-intrusive method of mea-

suring SCI interconnect traffic and consequently will not influence the temporal behaviour

of the system. It enables researchers and developers to analyse the true temporal behaviour

of clusters made up of standard components. The employment of a relational database for

trace-data storage provides the user with well understood and easy-to use tools to extend and

to adapt the predefined database queries to their specific needs. The use of Java and SQL

makes the software platform independent. There is significant potential for enhancement

through the implementation of important methods for the analysis and visualisation of the

dynamic behaviour of parallel processes [KDH+95], and software continues to be developed

by others.

The non-invasive acquisition of interconnect traffic allows analyses of the true temporal

behaviour of compute clusters. The advantage of offline query-based filtering of traces,

as opposed to real-time filtering within the trace acquisition instrument, is the ability to

analyse numerous different aspects of the same traces without the need to re-perform the

trace acquisition. Repeated acquisitions may not lead to similar results, thereby creating

uncertainty about the correctness of the analysis. The method described above generates

realistic system load statistics for the SCI model. Furthermore, it enables the tuning and

the verification of the SCI model’s parameterisation. This framework has the potential to

support similar interconnects, in particular InfiniBand [Inf00a, Inf00b].

Chapter 5

State Estimation of a Single

Compute Node

The tuning of SCI topology simulations requires interconnect event statistics that were gained

from the analysis of SCI trace data. The notion of viewing interconnect events in statistical

terms inspired the idea of modeling PMC readings as random processes. A Kalman filter

could then be used to improve the accuracy of PMC readings and merge multiple readings

into a common state vector. This in turn would allow the calculation of derived (unobserv-

able) measurements across an entire DSM cluster.

Modern CPU and other subsystems provide PMC registers that can be configured to

measure various aspects of the CPU or subsystem behaviour. In this chapter I propose

that an algorithm based on Kalman filtering can implement a discrete MMSE filter to fuse

concurrent and sequential observations of PMC event readings into the filter’s state-vector.

Experimental results then test this hypothesis.

5.1 The Estimation Algorithm

The algorithm can provide a system-wide optimal estimate of the PMC readings that may

be merged into a filter’s state vector as subsets of the total set of counter observations. This

may include all processors and subsystems in the architecture. The algorithm can also use

prediction to compensate for latencies in the counter reading acquisition process.

Fig. 5.1 and Fig. 5.2 are two examples of sampled PMC readings with a sample time

of ∆t = 0.04sec. They show the histograms and samples over time of the Number of lines

allocated in the L2 on a two way SMP machine.

The system software that implements the acquisition and processing of PMC register

readings introduces additional system dynamics and distortions. This software includes

firstly a driver that provides access to the registers, secondly a low-level user-space API

that implements the control of the registers and finally the filter algorithm itself [Pet02].

State Estimation of a Single Compute Node 63

The computer’s architecture and operating system design can result in non-determinism in

the execution time of the above mentioned software; this leads to a noise corruption of the

reading that is otherwise only corrupted by quantisation noise.

5.1.1 The Filter

The filter’s objective is to provide an optimal to sub-optimal estimation and prediction of

n performance counter readings. This estimate or prediction is based on imperfect and

incomplete counter data; imperfect if corrupted by quantisation noise and variations in the

counter acquisition process, and incomplete if counter readings are multiplexed rather than

read in parallel. A Kalman filter uses stochastic models to accommodate these properties.

Stochastic models can overcome problems arising from imperfect system models and noise

that cannot be modeled deterministically.

The filter incorporates the system dynamics into the model. In its fundamental form the

model is assumed to be linear and driven by white Gaussian noise and the PMC readings

that are taken from this process are also assumed to be corrupted by white Gaussian noise.

These measurements are presumed to have a linear relationship with the system model.

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET3 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET3 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure 5.1: Histogram and samples for event number 26 symbol L2 LINES IN on CPU 1

State Estimation of a Single Compute Node 64

Note that an EKF [GA01, BH97] can be used if either the system model is nonlinear or the

measurements are not linearly related with the system model. However, a linear Kalman

Filter proves adequate for the observation of PMC readings.

The filter is a recursive algorithm that processes measurements (in our case PMC read-

ings) of any quality in order to derive an optimal estimate from these data. The algorithm

must be fed with information about the process and measurement dynamics. Furthermore,

statistics about the measurement noise and the process model’s uncertainty must be sup-

plied to the filter algorithm along with an initialisation. Fig. 5.3 demonstrates the recursive

nature of the algorithm. Fig. 5.3 shows also one possible implementation, but there are

algebraically equivalent forms that have computational advantages and disadvantages.

The filter provides an optimal estimate by combining the measurements and the knowl-

edge of the system to minimise the error between the model and the measurements sta-

tistically. To this end the algorithm propagates the conditional probability density of the

system’s state. The probability density is conditioned by the discrete time PMC samples and

represents the uncertainty of the current state of the system.

Consider the Kalman filter algorithm presented in Fig. 5.3. The discrete Kalman Filter

matrix block diagram in Fig. 5.4 will help to discuss the operations of the filter.

 0

 10

 20

 30

 40

 50

 60

 70

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET3 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET3 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure 5.2: Histogram and samples for event number 26 symbol L2 LINES IN on CPU 2

State Estimation of a Single Compute Node 65

Eq.(5.6)

Eq.(5.12)

Eq.(5.13, 6.1.5)

Eq. (5.11)

Correct

Predict

x̂0, x̂1, ...

z0, z1, ...

x̂−

0 , P−

0

P−

k+1 = φkPkφ
T
k + Qk

x̂−

k+1 = φkx̂k

Pk = (1 − KkHk)P
−

k

x̂k = x̂−

k + Kk(zk − Hkx̂
−

k)

Kk =
P

−

k
HT

k

HkP−

k
HT

k
+Rk

Figure 5.3: Discrete Kalman Filter Algorithm

The random processes that represent the current state of activities in measured parts of

a component’s micro-architecture are modeled with Eq.(5.1), where xk is the state vector of

the linear dynamic system at sample time tk, φk−1 is the state transitions matrix and wk is

a sequence with a covariance determined by the covariance matrix Qk of the process noise

associated with the system’s state dynamics. The state transitions matrix φk−1 defines how

the current state vector xk−1 influences the state vector xk at time tk.

xk = φk−1xk−1 + wk (5.1)

x̂k = φk−1x̂k−1 + Kk(zk − x̂kHk) (5.2)

The PMC Random Process section of the discrete matrix block diagram in Fig. 5.4 shows

a graphical representation of Eq. (5.1). That section represents the real physical process,

for example an instruction-set-processor that executes a program and consequently generates

counter events that can be sampled with PMC registers according to Eq. (2.1). This random

State Estimation of a Single Compute Node 66

process is then modeled in the Kalman filter Eq.(5.2). This is also shown in the Kalman

Filter section of Fig. 5.4. The process dynamics terms φk−1xk−1 and φk−1x̂k−1 in Eq.(5.1)

and Eq.(5.2) respectively are equivalent but the Kalman filter substitutes the state vector x

with the estimated state vector x̂. Furthermore the process noise term wk in Eq.(5.1) that

accounts for the uncertainty of the process model is replaced in the Kalman filter Eq.(5.2)

with a blending factor Kk that weights the error between the measurement vector zk (in

this case performance counter readings) and the estimated measurement vector ẑk=x̂−

k Hk

(the super minus− is explained later).

This blend factor matrix Kk is also known as Kalman Gain and its calculation is part

of the recursive Kalman filter algorithm shown in Fig. 5.3. This gain minimises the error in

the estimated state vector x̂.

x−

k

Kk(zk − x̂−

k Hk)

x̂−

k

zk

ẑk

x̂k

x̂k

x̂−

k

delay
unit

delay
unit

∑ ∑

∑

∑

wk

xk−1

xk

x̂k−1

Kk

vk

φk−1

φk−1

Hk

Hk

Hk

Performance
Counter
Acquisition

Process
Ramdom
Counter
Performance

Kalman
Filter

-

Figure 5.4: Discrete Kalman Filter Matrix Block Diagram

zk+1 = Hkxk + vk (5.3)

The discrete measurement model of Eq.(5.3) represents a linear relationship between the

State Estimation of a Single Compute Node 67

state vector xk and the measurement vector zk at the time tk. The measurement sensitivity

matrix H defines this relationship for the noiseless case. The measurement noise vk is added

to this. The covariance of the vector vk is able to be described by the measurement noise

covariance matrix Rk.

Eq.(5.4) and Eq.(5.5) assume that the process noise wk and measurement noise vk are

zero-mean Gaussian processes. A further assumption is that wk and vk are uncorrelated.

p(wk) ∼ N(0, Qk) (5.4)

p(vk) ∼ N(0, Rk) (5.5)

An error covariance matrix P −

k of the estimated state vector x̂−

k must be calculated prior

to blending the performance counter reading into the state vector. P −

k in Eq.(5.7) represents

the expectation of the estimation error e−

k =xk−x̂−

k .The a priori nature (prior to blending

the zk vector) of P−

k and x̂−

k is indicated by the super minus−.

x̂k = x̂−

k + Kk(zk − x̂−

k Hk) (5.6)

P−

k = E[(xk − x̂−

k)(xk − x̂−

k)T] (5.7)

P k = E[(xk − x̂k)(xk − x̂k)
T] (5.8)

The a posteriori state estimate x̂k was defined by Eq.(5.2) and can be rewritten as Eq.

(5.6).

In order to derive a Kalman Gain Kk that minimises the error in x̂k, the a posteriori

error covariance matrix P k must also be defined as in Eq.(5.8). The optimal Kalman gain

Kk minimises the a posteriori error covariance matrix P k. To this end Eq.(5.3) can be

substituted into Eq.(5.6) and the resulting equation for the a posteriori state estimate x̂k

can then substitute for x̂k in Eq.(5.8). Subsequently the expectation of this new expression

for P k can be calculated. This leads to Eq.(5.9), a generic description of the a posteriori

error covariance matrix for any Kalman gain matrix values.

P k = (I − KkHk)P
−

k (I − KkHk)
T KkRkK

T
k (5.9)

If the derivative of the trace of P k in Eq. (5.9) with respect to Kk is set equal to zero,

it becomes possible to solve for the Kalman Gain. This way the trace of P k is minimised

State Estimation of a Single Compute Node 68

Qk =









2σ2

β

[

∆t − 2
β
(1 − e−β∆t) + 1

2β
(1 − e−2β∆t)

]

2σ2

[

1
β
(1 − e−β∆t) + 1

2β
(1 − e−2β∆t)

]

2σ2

[

1
β
(1 − e−β∆t) + 1

2β
(1 − e−2β∆t)

]

2σ2(1 − e−2β∆t)



(5.10)

because the major diagonal of the a posteriori error covariance matrix P k holds the sum of

the mean-square error in the estimate of all the state variables in the state vector x̂k. The

result of the operation is presented in Eq.(5.11) and can also be seen in Fig. 5.3 as part of

recursive Kalman filter algorithm.

Kk =
P −

k HT
k

HkP −
k HT

k + Rk

(5.11)

Eq. (5.11) for the optimal Kalman gain matrix can be used to compute the error co-

variance matrix that is associated with the updated optimal estimate by substituting the

Kalman gain Kk in the generic a posteriori error covariance matrix Eq.(5.9) by the optimal

Kalman gain of Eq. (5.11). Subsequent to this substitution a number of alternative equations

can be derived that have certain computational advantages. Eq. (5.12) presents one of the

possible equations. This equation gives the error covariance for the update state vector x̂k

and is also part of the recursive Kalman filter algorithm shown in Fig. 5.3.

P k = (I − KkHk)P
−
k (5.12)

Eq. (5.6), Eq. (5.11) and Eq. (5.12) in the recursive Kalman filter algorithm of Fig. 5.3

requires either the a priori state vector x̂−
k or the a priori covariance matrix P −

k . These are

calculated in Eq. (5.13) and Eq. (6.1.5) respectively. Both equations use the state transition

matrix φk to propagate or predict x̂−
k+1 and P −

k+1 for the next time step k + 1. The

state transition matrix φk represents the process dynamics but the calculation of the a

priori covariance matrix P −
k requires the addition of uncertainty about the state estimate

represented by the process noise covariance matrix Qk as in Eq.(5.10).

x̂−
k+1 = φkx̂k (5.13)

P −
k+1 = φkP kφT

k + Qk (5.14)

The equations that make up the Kalman filter algorithm as shown in Fig. 5.3 may be

classified as equations that Predict and those that Correct. Eq. (5.13) and Eq. (6.1.5)

State Estimation of a Single Compute Node 69

participate in the prediction process whereas Eq. (5.6), Eq. (5.11) and Eq. (5.12) handle the

correction. This is also shown in Fig. 5.3.

5.1.2 PMC Process Models

The Kalman Filter implementation requires the PMC readings to be modeled as random

processes. Equipped with an understanding of the basic operations of the filter we can

now discuss the PMC process model. Both a Gauss-Markov Process and an Integrated

Gauss-Markov Process have been investigated as a suitable random process model. Limited

investigation indicated that an integrated Gauss-Markov process represents a PMC random

process more accurately.

A stationary Gaussian process X(t) that has an exponential autocorrelation function is

classified as a Gauss-Markov process. Eq.(5.15) defines the autocorrelation function for a

Gauss-Markov process.

RX(τ) = σ2e−β|τ | (5.15)

This autocorrelation function Eq.(5.15) provides the full statistical description of the

random process. The two parameters, time constant 1
β

and variance σ2, can be calculated

from an experimentally determined autocorrelation function. Section 5.2 deals with the de-

termination of these parameters through an offline analysis of performance counter readings.

Fig. 5.5 shows the transfer function for an integrated Gauss-Markov process, with u(t) as

unity white noise, x2 as Gauss-Markov process and x1 as integrated Gauss-Markov process.

Eq.(5.16) then provides a continuous state space model for this random process.

[

ẋ1

ẋ2

]

=

[

0 1

0 −β

] [

x1

x2

]

+

[

0
√

2σ2β

]

u(t) (5.16)

Eq.(5.17) and Eq.(5.10) define the discrete state transition matrix Φ and the discrete

covariance matrix Q respectively. These two equations are derived from the continuous

state space model of Eq.(5.16).

1
s

√
2σ2β

s+β
u(t) x2 x1

Figure 5.5: Integrated Gauss-Markov Block Diagram

State Estimation of a Single Compute Node 70

Φk =



























1 1
β1

(1 − e−β1∆t) 0 0 . . . 0 0

0 e−β1∆t 0 0 . . . 0 0

0 0 1 1
β2

(1 − e−β2∆t) . . . 0 0

0 0 0 e−β2∆t . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
βn

(1 − e−βn∆t)

0 0 0 0 . . . 0 e−βn∆t



























(5.18)

Qk =

























E[x1x1] E[x1x2] 0 0 . . . 0 0
E[x1x2] E[x2x2] 0 0 . . . 0 0

0 0 E[x3x3] E[x3x4] . . . 0 0
0 0 E[x3x4] E[x4x4] . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . E[x2n−1x2n−1] E[x2n−1x2n]
0 0 0 0 . . . E[x2n−1xn] E[x2nx2n]

























=

=

























Eq.(5.21) Eq.(5.22) 0 0 . . . 0 0
Eq.(5.22) Eq.(5.23) 0 0 . . . 0 0

0 0 Eq.(5.21) Eq.(5.22) . . . 0 0
0 0 Eq.(5.22) Eq.(5.23) . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . Eq.(5.21) Eq.(5.22)
0 0 0 0 . . . Eq.(5.22) Eq.(5.23)

























(5.19)

Φk =





1 1
β
(1 − e−β∆t)

0 e−β∆t



 (5.17)

5.1.3 Integrated Gauss-Markov Process Model for n Counter Processes

Assume that every PMC reading is taken from an independent random counter process

i with a specific autocorrelation function Eq.(5.20) below. This allows definition of the

discrete state transition matrix φ and the discrete covariance matrix Q for n counters as in

Eq. (5.19). What remains is the definition of all βi and σi for every counter process in the

state transition matrix φ and covariance matrix Q.

RX(τ) = σ2
i e−βi|τ | (5.20)

Eq.(5.21), Eq.(5.22) and Eq.(5.23) are the elements of Qk. These elements are identical

to those in Eq.(5.10) but they include the index i for the time constant 1/βi and the variance

σ2
i .

State Estimation of a Single Compute Node 71

E[x2i−1x2i−1]=
2σ2

i

βi

[

∆t −
2

βi

(1−e−βi∆t) +
1

2βi

(1−e−2βi∆t)

]

(5.21)

E[x2i−1x2i]=2σ2
i

[

1

βi

(1−e−βi∆t) +
1

2βi

(1−e−2βi∆t)

]

(5.22)

E[x2ix2i]=2σ2
i (1−e−2βi∆t) (5.23)

5.2 PMC Acquisition and Offline Analysis

With the filter algorithm and the process model in place we can now continue to determine

or estimate the time constants 1/βi and the variances σ2
i for all available PMCs. Table A.1

on page 147 in appendix A provides a list of all the PMCs in an Intel PIII processor. Mikael

Pettersson’s [Pet02] Linux x86 Performance-Monitoring Counters Driver is used to sample

PMC readings for a subsequent offline analysis. The same driver is used for the eventual

real-time filter algorithm. If function X(t) is assumed continuous over time T , an estimated

autocorrelation function R̂X(τ) may be calculated according to Eq.(5.24) with 0 ≤ τ � T .

However, the sampled PMC readings are discrete, so the discrete Eq.(5.25) must be applied

to calculate the estimated autocorrelation function R̂X(n∆t) with N as the total number of

samples. Remembering that X(t) has an exponential autocorrelation function, the accuracy

of R̂X(n∆t) may be increased by calculating the mean of n estimated autocorrelation func-

tions and fitting an exponential curve after subtracting the sample mean2 from R̂X(n∆t).

The curve fitting computation provides the time constants 1/βi and the variances σ2
i .

R̂X(τ)=
1

T − τ

∫ T−τ

0
X(t)X(t+τ)dt (5.24)

R̂X(n∆t)=
1

N −n+1

N−n
∑

k=0

X(t)X(k+n) (5.25)

It is now possible to look at the PMC data acquisition and analysis procedure in more

detail by providing a list of steps that are required to estimate the time constants 1/βi and

the variances σ2
i for all available PMCs:

1. Acquisition of PMC readings (see section 5.2.1).

2. Visual inspection of sampled PMC readings and their histograms (see sections 5.2.2).

3. Autocorrelation calculation for sampled PMC readings (see sections 5.2.4).

State Estimation of a Single Compute Node 72

4. Calculation of the mean autocorrelation for sampled PMC readings (see sections 5.2.6).

5. Estimation of 1/βi and σ2
i for sampled PMC readings (see sections 5.2.8).

6. Visual inspection of histograms with superimposed Gaussian PDFs for sampled PMC

readings (see sections 5.2.10).

The estimated time constants 1/βi and variances σ2
i from the six step procedure are used

to run Monte Carlo simulations for these PMC random processes. The output of the PMC

Monte Carlo simulation is processed again with the same six step procedure. Section 5.2.3,

section 5.2.5, section 5.2.7, section 5.2.9 and section 5.2.11 provide figures that show the

output from the six step procedure that processes simulated PMCs. These sections follow

the relevant sections that deal with the processing of sampled PMC readings and therefore

allow for a comparison between simulated and sampled data.

See section 8.3 on page 141 for a description of the work loads.

5.2.1 Acquisition of PMC readings

As mentioned in section 5.2 it is desirable to increase the accuracy of the estimated autocor-

relation function R̂X(n∆t) by calculating the mean of an ensemble of these functions. To

this end it is necessary to collect 10 sets with 3000 samples each and subsequently calculate

10 R̂X(n∆t) from this ensemble. Mikael Pettersson’s [Pet02] Linux x86 Performance-

Monitoring Counters Driver is applied by the PMC acquisition program in global mode

to sample selected PMCs at a sample rate of ∆t = 0.04sec. Global mode means that

the driver continuously samples the PMC readings unrelated to particular processes that

may run. The autocorrelation analysis presented in this thesis is performed on data that

were sampled with ∆t = 0.04sec; more recent kernels allow this to be reduced to less

than ∆t = 0.02sec. The acquisition software writes the readings initially into preallocated

memory and saves these data to disk after the sampling is completed. The two available

PMCs are sampled alongside the Time-Stamp Counter (TSC). In SMP systems the acqui-

sition software samples both CPUs concurrently. This procedure takes a significant amount

of time if it is necessary to sample all available 132 PMCs.

Execution time = Samples * ∆t * Number of Sets * Number of PMCs

Execution time = 3000 * 0.04 sec * 10 * 132 = 44 hours

If both PMC registers are used this execution time can be reduced to 22 hours. The

acquisition software’s procedure is as follows: the program selects the next two PMC events

and samples 3000 readings before writing the data to disk and performs the task 10 times.

Subsequently the software selects the next two events and continues this until all PMC events

have been sampled. The acquisition software is written in C and the analysis software that is

used for the next 6 steps is written in Octave code, a Matlab-like open source implementation.

State Estimation of a Single Compute Node 73

5.2.2 Visual Inspection of sample PMC Readings and their Histograms

This is the first step in the off-line analysis. The octave program opens the previously saved

PMC sample files and calculates histograms for the 10 sets with their 3000 samples. Fig. 5.1

on page 63 and Fig. 5.2 on page 64 provide an example for event number 26 (L2 LINES IN)

set 3 on CPU 1 and CPU 2 respectively. Please see table A.1 on page 147 in appendix A for

a description of the event. Section B.1.1 on page 157 in appendix B shows the histograms for

all 10 sets in both CPUs for this event. A visual inspection guarantees that all sets contain

valid PMC data.

5.2.3 Visual Inspection of simulated PMC Readings and their Histograms

It is possible to compare histograms from section 5.2.2 with histograms in this section that

are based on simulated PMC random processes. These simulations apply 1/βi and σ2
i

parameters that resulted from the analysis of sampled PMCs show in section 5.2.2. A full

list of an ensemble of 10 sets can be found section B.1.2 on page 161 in appendix B.

 0
 2
 4
 6
 8

 10
 12
 14
 16

-40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 3 Counter Set - 3k samples

line 1

-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 3 Counter Set - 3k samples

line 1

Figure 5.6: Histogram and samples for a simulated event based on statistics for event number
26 symbol L2 LINES IN

5.2.4 Autocorrelation Calculation for Sampled PMC Readings

Fig. 5.7 and Fig. 5.8 show the histogram and the estimated autocorrelation functions R̂X(n∆t)

that are calculated with Eq.(5.25) in the Octave analysis program for the same set and event

that was used in the previous sections. Section B.1.3 on page 163 in appendix B provides

figures for the estimated autocorrelation functions of all sets in both CPUs.

State Estimation of a Single Compute Node 74

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 1e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure 5.7: Histogram and autocorrelation for event number 26 symbol L2 LINES IN on
CPU 1

 0

 10

 20

 30

 40

 50

 60

 70

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 4.5e+08
 5e+08

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure 5.8: Histogram and autocorrelation for event number 26 symbol L2 LINES IN on
CPU 2

State Estimation of a Single Compute Node 75

5.2.5 Autocorrelation Calculation for Simulated PMC Readings

Again it is possible to compare the estimated autocorrelation functions R̂X(n∆t) from

section 5.2.4 with autocorrelation functions in this section that are based on simulated PMC

random processes. These simulations apply statistics that resulted from the analysis of

sampled PMCs show in section 5.2.2. Furthermore the estimated autocorrelation functions

for all sets can be found in section B.1.4 on page 166 in appendix B.

 0
 2
 4
 6
 8

 10
 12
 14
 16

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 1e+09
 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure 5.9: Histogram and autocorrelation for a simulated event based on statistics for event
number 26 symbol L2 LINES IN

5.2.6 Calculation of the Sampled PMC Readings’ Mean Autocorrelation

Subsequent to the calculation of the 10 estimated autocorrelation functions R̂X(n∆t) this

step computes the mean of these 10 functions. The result of this operation can be seen in

Fig. 5.10 and Fig. 5.11 for both CPUs. The top graph shows the 10 autocorrelation functions

and the bottom graph depicts the mean of these functions.

State Estimation of a Single Compute Node 76

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1.1e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation Z1, Z2, ... , Z10

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9

Z10

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Mean Autocorrelation of all 10 Sample Sets

Mean Autocorrelation

Figure 5.10: Autocorrelation for all 10 sets and the mean autocorrelation for event number
26 symbol L2 LINES IN on CPU 1

 4.5e+08
 5e+08

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08
 9e+08

 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation Z1, Z2, ... , Z10

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9

Z10

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Mean Autocorrelation of all 10 Sample Sets

Mean Autocorrelation

Figure 5.11: Autocorrelation for all 10 sets and the mean autocorrelation for event number
26 symbol L2 LINES IN on CPU 2

State Estimation of a Single Compute Node 77

5.2.7 Calculation of the Simulated PMC Readings’ Mean Autocorrelation

As in the previous simulation sections the calculations are based on simulated PMC random

processes that apply statistics from sampled PMCs. Fig. 5.12 show the mean estimated

autocorrelation functions R̂X(n∆t) and the 10 autocorrelation functions for the simulated

PMC random processes.

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08
 9e+08

 9.5e+08
 1e+09

 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation Z1, Z2, ... , Z10

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9

Z10

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 1e+09
 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Mean Autocorrelation of all 10 Sample Sets

Mean Autocorrelation

Figure 5.12: Autocorrelation for all 10 sets and the mean autocorrelation for a simulated
event based on statistics for event number 26 symbol L2 LINES IN

5.2.8 Estimation of β and σ2 for Sampled PMC Readings

After calculating the estimated autocorrelation functions R̂X(n∆t) for 10 sets of samples in

section 5.2.4 and then computing the mean autocorrelation function from these ten functions

in section 5.2.6 it is now possible to derive 1/βi and σ2
i from the mean autocorrelation func-

tion. Fig. 5.13 shows the autocorrelation function of the Gauss-Markov process described by

Eq.(5.15). There are two observations to notice. The experimental determination of the au-

tocorrelation function provides only the right side of the function. This has no consequences

since the function is symmetric. Furthermore the R̂X(n∆t) converges in the mean2. There-

fore as a first step the mean2 must be subtracted from R̂X(n∆t). In order to derive 1/β

and σ2 from the result of this operation it is necessary to take the ln(R̂X(n∆t)−mean2).

Linear regression can then be applied to this outcome to determine a and b in y = ax + b

with a = β and b = σ2.

State Estimation of a Single Compute Node 78

Table 5.1 provides some example results from the off-line autocorrelation analysis. Fig. 5.14

and Fig. 5.15 shows the mean of 10 estimated autocorrelation functions as Rx and the fitted

curve as (σ2e(−β∆t)) + mean2 for CPU 1 and CPU 2 respectively.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

-1.5 -1 -0.5 0 0.5 1 1.5

Autocorrelation
 with sigma=19200, beta=103, mean=24500 and deltat=0.04

sigma**2

mean**2

Autocorrelation Analysis

(sigma**2)*exp(-beta*abs(deltat*x))+(mean**2)
sigma**2+mean**2

mean**2

Figure 5.13: Autocorrelation Function

Event CPU σi σ2
i βi ∆t Mean

INST RETIRED 1 7.248e+06 5.253e+13 40.02 0.04 8.705e+06
2 6.434e+06 4.139e+13 32.91 0.04 7.038e+06

UOPS RETIRED 1 1.027e+07 1.055e+14 41.93 0.04 1.24e+07
2 9.83e+06 9.664e+13 40.2 0.04 1.161e+07

INST DECODED 1 7.095e+06 5.034e+13 39.41 0.04 8.45e+06
2 7.059e+06 4.983e+13 36.6 0.04 8.149e+06

L2 LINES IN 1 2.023e+04 4.091e+08 112.7 0.04 2.529e+04
2 1.919e+04 3.682e+08 103 0.04 2.445e+04

BR BOGUS 1 1170 1.368e+06 30.66 0.04 1288
2 1170 1.368e+06 29.73 0.04 1275

Table 5.1: Offline autocorrelation analysis

State Estimation of a Single Compute Node 79

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1.1e+09

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
x(

Ta
u)

Lag (sec)

CPU 1 L2_LINES_IN Counter Estimated Autocorrelation

(sigma^2*e^(-beta Dela t))+mean^2
Rx

Figure 5.14: Curve Fitted Autocorrelation for event number 26 symbol L2 LINES IN on
CPU 1

 5e+08

 5.5e+08

 6e+08

 6.5e+08

 7e+08

 7.5e+08

 8e+08

 8.5e+08

 9e+08

 9.5e+08

 1e+09

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
x(

Ta
u)

Lag (sec)

CPU 2 L2_LINES_IN Counter Estimated Autocorrelation

(sigma^2*e^(-beta Dela t))+mean^2
Rx

Figure 5.15: Curve Fitted Autocorrelation for event number 26 symbol L2 LINES IN on
CPU 2

State Estimation of a Single Compute Node 80

5.2.9 Estimation of β and σ2 for Simulated PMC Readings

As in the previous simulation sections the calculations are based on simulated PMC random

processes that apply statistics from sampled PMCs. Fig. 5.16 show the mean of 10 estimated

autocorrelation functions as Rx and the fitted curve as (σ2e(−β∆t)) + mean2 for the

simulated PMC random processes.

 6e+08

 6.5e+08

 7e+08

 7.5e+08

 8e+08

 8.5e+08

 9e+08

 9.5e+08

 1e+09

 1.05e+09

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
x(

Ta
u)

Lag (sec)

Simulated Autocorrelation with:
Sigma = 2e+04 Vx_Sigma = 2.017e+04 - Sigma^2 = 4e+08 Vx_Sigma^2 = 4.07e+08
Beta = 106 Vx_Beta = 89.78 - Delta t = 0.04 - Mean =2.5e+04 Vx_Mean =2.494e+04

(sigma^2*e^(-beta Dela t))+mean^2
Rx

Figure 5.16: Curve Fitted Autocorrelation for a simulated event based on statistics for event
number 26 symbol L2 LINES IN

5.2.10 Visual Inspection of Histograms with Superimposed Gaussian PDFs

for Sampled PMC Readings

The last of the PMC sample analysis steps uses statistics derived in the previous step to

verify some of the findings by overlaying the PDF over the histograms. The figures for all

the 10 sets can be found in section B.1.5 on page 168 in appendix B.

State Estimation of a Single Compute Node 81

 0
 5e-06
 1e-05

 1.5e-05
 2e-05

 2.5e-05
 3e-05

 3.5e-05
 4e-05

 4.5e-05
 5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0
 5e-06
 1e-05

 1.5e-05
 2e-05

 2.5e-05
 3e-05

 3.5e-05
 4e-05

 4.5e-05
 5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 3 - 3k samples

line 1

Figure 5.17: Histogram of Real PMC Readings with superimposed Gaussian PDF for event
number 26 symbol L2 LINES IN on CPU 1

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 3 - 3k samples

line 1

Figure 5.18: Histogram of Real PMC Readings with superimposed Gaussian PDF for event
number 26 symbol L2 LINES IN on CPU 2

State Estimation of a Single Compute Node 82

5.2.11 Visual Inspection of Histograms with Superimposed Gaussian PDFs

for Simulated PMC Readings

Fig. 5.19 overlays a PDF over the histogram for a simulated PMC random process. The full

list of figures for all 10 set is presented in section B.1.6 on page 171 in appendix B.

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 3 - 3k samples

line 1

Figure 5.19: Histogram of Real PMC Readings with superimposed Gaussian PDF for a
simulated event based on statistics for event number 26 symbol L2 LINES IN

5.2.12 Autocorrelation Analysis Results

The section presents the PMC sample analysis results for all the 132 PMC events.

A short list of analysis results is given in Table 5.1 for a comprehensive list please see

table B.1 in appendix B on page 78. Fig. 5.20, Fig. 5.21, Fig. 5.22 Fig. 5.23, Fig. 5.24

and Fig. 5.25 present the same results sorted by their β value and also show the differences

between CPU 1 and CPU 2.

S
ta

te
E
stim

a
tio

n
o
f
a

S
in

g
le

C
o
m

p
u
te

N
o
d
e

8
3

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

SEG_REG_RENAMES_DS

UOPS_RETIRED2

L2_DBUS_BUSY_RD

L2_LD_MESI

L2_RQSTS_MESI

INST_RETIRED

BUS_TRAN_INVAL_SELF

INST_DECODED

ITLB_MISS

DATA_MEM_REFS

L2_IFETCH_MESI

L2_LD_M_STATE

SEGMENT_REG_LOADS

BR_MISS_PRED_TAKEN_RET

L2_RQSTS_M_STATE

BUS_HITM_DRV

BR_MISS_PRE_RETIRED

L2_RQSTS_S_STATE

MISALIGN_MEMREF

IFU_IFETCH_MISS

L2_IFETCH_S_STATE

LD_BLOCKS

L2_ST_M_STATE

L2_LD_E_STATE

BR_BOGUS

L2_RQSTS_E_STATE

BACLEARS

L2_IFETCH_E_STATE

L2_LD_S_STATE

 1 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08
128

90
37

16
30

89
51

91
8

1
11

17
109

102
31

70
100

33
80

7
14

78
22

18
105

32
106

13
19

Beta

Sigma

First S
E

T P
M

C
 A

utocorrelation A
nalysis R

esults S
orted by B

eta V
alues

 w
ith B

eta difference betw
een C

P
U

 1 and C
P

U
 2

P
M

C
 E

vent N
um

ber

B
eta (C

P
U

1)
S

igm
a (C

P
U

1)
D

ifference betw
een C

P
U

 1 and C
P

U
 2

F
igu

re
5.20:

F
irst

set
of

au
to

correlation
an

aly
sis

resu
lts

w
ith

b
eta

error

 20

 25

 30

 35

 40

 45

SEG_REG_RENAMES_DS

UOPS_RETIRED2

L2_DBUS_BUSY_RD

L2_LD_MESI

L2_RQSTS_MESI

INST_RETIRED

BUS_TRAN_INVAL_SELF

INST_DECODED

ITLB_MISS

DATA_MEM_REFS

L2_IFETCH_MESI

L2_LD_M_STATE

SEGMENT_REG_LOADS

BR_MISS_PRED_TAKEN_RET

L2_RQSTS_M_STATE

BUS_HITM_DRV

BR_MISS_PRE_RETIRED

L2_RQSTS_S_STATE

MISALIGN_MEMREF

IFU_IFETCH_MISS

L2_IFETCH_S_STATE

LD_BLOCKS

L2_ST_M_STATE

L2_LD_E_STATE

BR_BOGUS

L2_RQSTS_E_STATE

BACLEARS

L2_IFETCH_E_STATE

L2_LD_S_STATE

 1 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08
128

90
37

16
30

89
51

91
8

1
11

17
109

102
31

70
100

33
80

7
14

78
22

18
105

32
106

13
19

Beta

Sigma

First S
E

T P
M

C
 A

utocorrelation A
nalysis R

esults S
orted by B

eta V
alues

 w
ith B

eta difference betw
een C

P
U

 1 and C
P

U
 2

P
M

C
 E

vent N
um

ber

B
eta (C

P
U

1)
S

igm
a (C

P
U

1)
D

ifference betw
een C

P
U

 1 and C
P

U
 2

F
igu

re
5.21:

F
irst

set
of

au
to

correlation
an

aly
sis

resu
lts

w
ith

sigm
a

error

S
ta

te
E
stim

a
tio

n
o
f
a

S
in

g
le

C
o
m

p
u
te

N
o
d
e

8
4

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

HW_INT_RX

FLOPS

BUS_TRAN_RFO_SELF

BUS_TRANS_WB_SELF

CYCLE_DIV_BUSY

L2_ST_I_STATE

L2_ST_S_STATE

CYCLES_INT_MASKED

FP_COMP_OPS_EXE

RESOURCE_STALLS

BUS_SNOOP_STALL

SEG_REG_RENAMES_FS

CPU_CLK_UNHALTED

ILD_STALL

DCU_M_LINES_IN

L2_ST_E_STATE

IFU_IFETCH

BUS_TRANS_P_SELF

SEG_REG_RENAMES_GS

DCU_M_LINES_OUT

BUS_TRAN_PWR_SELF

L2_ADS

L2_DBUS_BUSY

DCU_LINES_IN

IFU_MEM_STALL

BUS_BNR_DRV

SEG_REG_RENAMES_ALL

SEG_REG_RENAMES_ES

BTB_MISSES

SB_DRAINS

 1 10

 100

 1000

 10000

 100000

 1e+06

 1e+07
96

72
45

47
77

25
24

97
73

107
71

129
110

10
3

23
6

55
130

4
53

35
36

2
9

68
131

127
104

79
Beta

Sigma

S
econd S

E
T P

M
C

 A
utocorrelation A

nalysis R
esults S

orted by B
eta V

alues
 w

ith B
eta difference betw

een C
P

U
 1 and C

P
U

 2

P
M

C
 E

vent N
um

ber

B
eta (C

P
U

1)
S

igm
a (C

P
U

1)
D

ifference betw
een C

P
U

 1 and C
P

U
 2

F
igu

re
5.22:

S
econ

d
set

of
au

to
correlation

an
aly

sis
resu

lts
w

ith
b
eta

error

 40

 45

 50

 55

 60

 65

 70

 75

 80

HW_INT_RX

FLOPS

BUS_TRAN_RFO_SELF

BUS_TRANS_WB_SELF

CYCLE_DIV_BUSY

L2_ST_I_STATE

L2_ST_S_STATE

CYCLES_INT_MASKED

FP_COMP_OPS_EXE

RESOURCE_STALLS

BUS_SNOOP_STALL

SEG_REG_RENAMES_FS

CPU_CLK_UNHALTED

ILD_STALL

DCU_M_LINES_IN

L2_ST_E_STATE

IFU_IFETCH

BUS_TRANS_P_SELF

SEG_REG_RENAMES_GS

DCU_M_LINES_OUT

BUS_TRAN_PWR_SELF

L2_ADS

L2_DBUS_BUSY

DCU_LINES_IN

IFU_MEM_STALL

BUS_BNR_DRV

SEG_REG_RENAMES_ALL

SEG_REG_RENAMES_ES

BTB_MISSES

SB_DRAINS

 1 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08
96

72
45

47
77

25
24

97
73

107
71

129
110

10
3

23
6

55
130

4
53

35
36

2
9

68
131

127
104

79

Beta

Sigma

S
econd S

E
T P

M
C

 A
utocorrelation A

nalysis R
esults S

orted by B
eta V

alues
 w

ith B
eta difference betw

een C
P

U
 1 and C

P
U

 2

P
M

C
 E

vent N
um

ber

B
eta (C

P
U

1)
S

igm
a (C

P
U

1)
D

ifference betw
een C

P
U

 1 and C
P

U
 2

F
igu

re
5.23:

S
econ

d
set

of
au

to
correlation

an
aly

sis
resu

lts
w

ith
sigm

a
error

S
ta

te
E
stim

a
tio

n
o
f
a

S
in

g
le

C
o
m

p
u
te

N
o
d
e

8
5

 60

 80

 100

 120

 140

 160

 180

 200

BUS_TRANS_IO_ANY

CYCLES_INT_PENDING_AND_MASKED

BUS_TRAN_BRD_SELF

L2_LINES_IN

BUS_TRAN_RFO_ANY

BUS_TRAN_MEM_SELF

BUS_TRANS_WB_ANY

BUS_TRAN_IFETCH_ANY

BUS_TRAN_ANY_SELF

L2_M_LINES_INM

L2_LINES_OUT

BUS_TRAN_BURST_ANY

BUS_DRDY_CLOCKS_SELF

L2_M_LINES_OUTM

L2_LD_I_STATE

BUS_DRDY_CLOCKS_ANY

BUS_TRAN_IFETCH_SELF

BUS_DATA_RCV

L2_RQSTS_I_STATE

BUS_TRAN_BURST_SELF

BUS_REQ_OUTSTANDING

BUS_TRAN_BRD_ANY

BUS_TRAN_ANY_ANY

BUS_TRAN_MEM_ANY

BUS_TRANS_IO_SELF

L2_ST_MESI

BUS_HIT_DRV

BUS_TRAN_PWR_ANY

BUS_TRAN_INVAL_ANY

BUS_TRANS_P_ANY

 100

 1000

 10000

 100000

 1e+06

 1e+07
58

98
43

26
46

65
48

50
63

28
27

62
38

29
20

39
49

67
34

61
42

44
64

66
57

21
69

54
52

56
Beta

Sigma

Third S
E

T P
M

C
 A

utocorrelation A
nalysis R

esults S
orted by B

eta V
alues

 w
ith B

eta difference betw
een C

P
U

 1 and C
P

U
 2

P
M

C
 E

vent N
um

ber

B
eta (C

P
U

1)
S

igm
a (C

P
U

1)
D

ifference betw
een C

P
U

 1 and C
P

U
 2

F
igu

re
5.24:

T
h
ird

set
of

au
to

correlation
an

aly
sis

resu
lts

w
ith

b
eta

error

 80

 90

 100

 110

 120

 130

 140

 150

 160

BUS_TRANS_IO_ANY

CYCLES_INT_PENDING_AND_MASKED

BUS_TRAN_BRD_SELF

L2_LINES_IN

BUS_TRAN_RFO_ANY

BUS_TRAN_MEM_SELF

BUS_TRANS_WB_ANY

BUS_TRAN_IFETCH_ANY

BUS_TRAN_ANY_SELF

L2_M_LINES_INM

L2_LINES_OUT

BUS_TRAN_BURST_ANY

BUS_DRDY_CLOCKS_SELF

L2_M_LINES_OUTM

L2_LD_I_STATE

BUS_DRDY_CLOCKS_ANY

BUS_TRAN_IFETCH_SELF

BUS_DATA_RCV

L2_RQSTS_I_STATE

BUS_TRAN_BURST_SELF

BUS_REQ_OUTSTANDING

BUS_TRAN_BRD_ANY

BUS_TRAN_ANY_ANY

BUS_TRAN_MEM_ANY

BUS_TRANS_IO_SELF

L2_ST_MESI

BUS_HIT_DRV

BUS_TRAN_PWR_ANY

BUS_TRAN_INVAL_ANY

BUS_TRANS_P_ANY

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07
58

98
43

26
46

65
48

50
63

28
27

62
38

29
20

39
49

67
34

61
42

44
64

66
57

21
69

54
52

56

Beta

Sigma

Third S
E

T P
M

C
 A

utocorrelation A
nalysis R

esults S
orted by B

eta V
alues

 w
ith B

eta difference betw
een C

P
U

 1 and C
P

U
 2

P
M

C
 E

vent N
um

ber

B
eta (C

P
U

1)
S

igm
a (C

P
U

1)
D

ifference betw
een C

P
U

 1 and C
P

U
 2

F
igu

re
5.25:

T
h
ird

set
of

au
to

correlation
an

aly
sis

resu
lts

w
ith

sigm
a

error

State Estimation of a Single Compute Node 86

5.3 One Performance Monitoring Counter (PMC) Set-at-a-

Time

So far we have developed the notion of a Kalman filter including a process model suitable for

PMC processes and the tuning of the model. This filter algorithm can process n performance

counter readings, but if the number of observed counters exceeds the number of available

PMC registers then we must multiplex sets of counter readings as discussed in section 2.2.

Assuming that, Fig. 2.3 shows us that counter data for a particular set are only available

during certain intervals. If a simple sample-and-hold approach is applied in conjunction with

this multiplexing then counter data will be held until new data becomes available, but the

sampling of these data will cause a discrete step if a counter’s value differs from a previous

sample. No consideration is given to the uncertainty of this data or how it varies during the

interval. The use of a Kalman filter can resolve these issues, as described below.

In order to process sets of PMCs one-at-a-time modifications must be made to the recur-

sive filter algorithm presented in Fig. 5.3 section 5.1.1. The three equations for the Kalman

gain Kk Eq. (5.11), the a posteriori state estimate x̂k Eq. (5.6) and the error covariance

P k Eq. (5.12) are all part of the filter’s correction process. The equations are repeated here

for convenience. In the modified algorithm the equation performs the correction only on

submatrices that are associated with the set of selected performance counters for the current

iteration of the loop. This process allows for the merging of available counter readings into

the state vector x̂k.

Kk =
P −

k Hk

HkP −
k HT

k + Rk

x̂k = x̂−
k + Kk(zk − x̂−

k Hk)

P k = (I − KkHk)P
−
k

The remaining two equations of the filter algorithm, the a priori state vector x̂−
k+1

Eq. (5.13) and the a priori covariance matrix P −
k+1 Eq. (6.1.5) implement the prediction

aspect of the filter. The equations are also repeated below for convenience. This part

of the algorithm remains unchanged. Consequently the entire state vector x̂ for all the

performances counters is propagated according to the state transition matrix φ. This is

an important detail because the state vector x̂ and (through the measurement matrix H)

the estimated measurement ẑ changes over the time intervals without data according to the

system dynamics defined in the state transition matrix φ. Furthermore the a priori covariance

matrix P −
k+1 propagates the uncertainty for counter processes during every iteration of the

algorithm. Therefore the measure of uncertainty for unavailable counters will increase with

every iteration until new data are available. Moreover, an optimal blending operation can be

State Estimation of a Single Compute Node 87

performed once data become available. This is in contrast to a sample-and-hold operation.

Fig. 5.26 and Fig. 5.27 shows how the filter algorithm increases the two a priori error

covariance matrix P − elements on the major diagonal that represent the the algorithm

uncertainty about the current estimate of the two state-variables associated with the PMC

event DATA MEM REFS. These increments to the two P − matrix elements will continue

until a new reading is sampled. In this example the filter take a new sample of the PMC

event DATA MEM REFS every third iteration.

x̂−
k+1 = φkx̂k

P −
k+1 = φkP kφT

k + Qk

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 0 5 10 15 20
Sample Number (n*Delta t)

Priori Error Covariance DATA_MEM_REFS

P(-) 1 on SMP1 CPU1

Figure 5.26: A Priori Error Covariance matrix element one of the major diagonal.

5.4 Implementation of the Estimation Algorithm

The Kalman Filter Algorithm as shown in Fig. 5.3 requires 11 multiplications, 3 additions,

2 subtractions and 1 inversion. These operations are either matrix-matrix or matrix-vector

operations. Table 5.4 provides a list of all the 17 operations including a specification of the

matrices or vectors that receive the result. The table also gives references to equations in this

thesis where the implementation of these individual operation is discussed in more detail.

State Estimation of a Single Compute Node 88

 4.95e+13

 5e+13

 5.05e+13

 5.1e+13

 5.15e+13

 5.2e+13

 5.25e+13

 0 5 10 15 20
Sample Number (n*Delta t)

Priori Error Covariance DATA_MEM_REFS

P(-) 2 on SMP1 CPU1

Figure 5.27: A Priori Error Covariance matrix element two of the major diagonal.

The predominant operation is the multiplication: 11 out of 17 operations are multipli-

cations that are necessary for one iteration of the algorithm. Together with the matrix

inversion these are the more computational expensive calculations. A matrix multiplication

has a complexity of O(n3) [PTVF99]. The Strassen algorithm [Str69] and the Coppersmith-

Winograd algorithm [CW90] can improve this up to a complexity of O(n2.376). This section

demonstrates that despite these potential improvements the algorithm is unsuitable for real

time application with large state vectors and small sample intervals ∆t. Fig. 5.28, Fig. 5.29

and Fig. 5.30 show the execution time of the full Kalman filter algorithm as shown in Ta-

Filter Initialisation

Equation Matrix Description Rows Columns

1 H Measurement sensitivity matrix n 2n

2 HT Transpose H 2n n

3 Eq.(5.18) φ State transitions matrix 2n 2n

4 φT Transpose φ 2n 2n

5 I Identitity matrix 2n 2n

6 Eq.(6.1.5) P − A Priori error covariance matrix 2n 2n

7 R Measurement noise covariance matrix n 2n

8 Eq.(5.19) Q Process noise covariants matrix 2n 2n

Table 5.2: This table presents all the Kalman filter matrix initialisations. The equation
numbers indicate the vicinity of a more detailed discussions of the individual operations.

State Estimation of a Single Compute Node 89

ble 5.4 and Fig. 5.3 on a Hyperthreaded Intel P4, a two way Intel PIII SMP and a Intel

PIII CompactPCI system respectively. These systems are specified in Table 7.1 on page 123.

Execution time of the full Kalman filter algorithm means that all the elements of all matri-

ces and vectors involved must be calculated. Furthermore Fig. 5.31, Fig. 5.32 and Fig. 5.33

provide the same information with a higher execution time resolution.

All three systems employ Linux as the OS, with 2.6.9 or 2.6.10 kernels. The graphs shown

in Fig. 5.28 to Fig. 5.33 are generated with the bash time program. The time program runs

the compiled c program that implements the Kalman filter algorithm. On completion the

time program provides information about:

• Real time (the elapsed real time between invocation and termination)

• User time (CPU time consumed by the program in user mode)

• System time (time consumed by the CPU in system mode)

The Kalman filter algorithm requires a certain start-up time to build all the matrices and

vectors for the algorithm. In order to reduce the measured CPU time that is caused by the

initialisation, the filter algorithm was executed 100 times for every measurement, rendering

the start-up time insignificant in comparison to the 100 filter iterations. The real time, user

time and system time values shown in Fig. 5.28 to Fig. 5.33 are the average execution times

for a single iteration.

For the initial measurement the Kalman filter is configured for a single PMC reading

and then incremented by one PMC after every measurement. Since the PMCs are modeled

as integrated Gauss-Markov processes (see section 5.1.2) the state vector xk has twice the

number of elements. This procedure allows us to plot the execution time in terms of real

time, user time and system time over the number of estimated PMCs.

Fig. 5.28, Fig. 5.29 and Fig. 5.30 depicts the real, user and system execution time over

the number of PMCs estimated or predicted by the Kalman filter for the three machines

specified in Table 7.1. It is obvious from the graphs that the system execution time is

insignificant when compared to the user execution time. When analysing these figures we

should assume that the PMCs are potentially sampled every 20 ms before they are fed into

the filter. This means that if the filter’s execution time exceeds 20 ms then the algorithm

fails. The 20 ms threshold is labelled PMC Sample Time. The filter algorithm was compiled

with and without compiler optimisation using the GNU Compiler Collection (gcc) with the

-O0 option for no optimisation or with the -O3 option to turn on most of the available

optimisations [StGDC05].

The experiments shown in Fig. 5.28, Fig. 5.29 and Fig. 5.30 tell us that the filter execution

time exceeds the sample time ∆t even for a modest number of PMCs. This conclusion can

be observed in more detail by looking at Fig. 5.31, Fig. 5.32 and Fig. 5.33.

State Estimation of a Single Compute Node 90

System Compiler Optimised No Compiler Optimisation

Intel P4 Hyperthreaded 8 6

Intel PIII 2 Way SMP 7 7

Intel PIII CompactPCI System 7 7

Table 5.3: This table shows the maximum number of PMC readings that can be processed
by the Kalman filter algorithm on the various machines with exceeding 1% of the available
CPU execution time (Maximum Time for Filter Algorithm threshold) assuming a sample
time ∆t of 20 ms.

If the algorithm’s execution time exceeds the sample time ∆t this leaves no execution

time for the application. Furthermore, if we allow the filter algorithm to consume a generous

1% of the available CPU execution time then we can define a new threshold, the Maximum

Time for Filter Algorithm = ∆t
100

. Fig. 5.31, Fig. 5.32 and Fig. 5.33 show this threshold

assuming a sample time ∆t of 20 ms. Table 5.3 provides the maximum number of PMCs

for three machines from Table 7.1.

Thus a very limited number of PMCs can be estimated and merged into a state vector.

In the case of the DSM Testbed (see section 7.1) all machines use either the Intel PIII

2 Way SMP or the Intel PIII CompactPCI System from Table 7.1. These PIII systems

provide only 2 PMC registers and on the 2 Way SMP system, assuming only one estimation

algorithm runs, it is not possible to even achieve a twofold improvement without increasing

the Maximum Time for Filter Algorithm threshold because two registers can be sampled on

each of the two CPUs. Clearly this represents a major performance problem.

State Estimation of a Single Compute Node 91

Kalman Gain Eq.(5.11)

Kk = (P −
k HT

k)(HkP −
k HT

k + Rk)
−1

Step Equation Matrix Rows Columns Operation #

1 Eq.(6.1) P −
k HT

k 2n n MUL 1 1

2 Eq.(6.3) HkP −
k n 2n MUL 2 2

3 Eq.(6.5) HkP −
k HT

k n n MUL 3 3

4 Eq.(6.6) HkP −
k HT

k + Rk n n ADD 1 4

5 Eq.(6.8) (HkP −
k HT

k + Rk)
−1 n n INVERSE 5

6 Eq.(6.9) Kk 2n n MUL 4 6

A Posteriori State Estimate Eq.(5.6)

x̂k = x̂−
k + Kk(zk − x̂−

k Hk)

Step Equation Matrix Rows Columns Operation #

1 Eq.(6.10) Hkx̂−
k n 1 MUL 5 7

2 Eq.(6.11) Zk − Hkx̂−
k n 1 SUB 1 8

3 Eq.(6.13) Kk(Zk − Hkx̂−
k) 2n 1 MUL 6 9

4 Eq.(6.15) x̂k 2n 1 ADD 2 10

A Posteriori Error Covariance Eq.(5.12)

P k = (I − KkHk)P
−
k

Step Equation Matrix Rows Columns Operation #

1 Eq.(6.16) KkHK 2n 2n MUL 7 11

2 Eq.(6.17) IKkHk 2n 2n SUB 2 12

3 Eq.(6.19) P k 2n 2n MUL 8 13

A Priori State Estimation Eq.(5.13)

x̂−
k+1 = φkx̂k

Step Equation Matrix Rows Columns Operation #

1 Eq.(6.20) x̂−
k+1 2n 1 MUL 9 14

A Priori Error Covariance Eq.(6.1.5)

P −
k+1 = φkP kφT

k + Qk

Step Equation Matrix Rows Columns Operation #

1 Eq.(6.22) φkP k 2n 2n MUL 10 15

2 Eq.(6.23) φkP kφT
k 2n 2n MUL 11 16

3 Eq.(6.25) P −
k+1 2n 2n ADD 3 17

Table 5.4: This table presents all 17 Kalman filter matrix operations and the associated
matrices for the interim solutions. The equation numbers indicate the vicinity of more
detailed discussions of the individual operations.

State Estimation of a Single Compute Node 92

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20 40 60 80 100 120

se
c

Number of performance counters

Intel P4 (Kalman Filter Algorithm with full matrix operations)

PMC Sample Time

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Maximum Time for Filter Algorithm

PMC Sample Time
Real with compileroptimisation

User with compiler optimisation
System with compiler optimisation

Figure 5.28: Full Kalman Operations on a Intel P4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120

se
c

Number of performance counters

Intel PIII SMP (Kalman Filter Algorithm with full matrix operations)

PMC Sample Time

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Maximum Time for Filter Algorithm

PMC Sample Time
Real with compileroptimisation

User with compiler optimisation
System with compiler optimisation

Figure 5.29: Full Kalman Operations on a 2 way Intel PIII SMP

State Estimation of a Single Compute Node 93

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 20 40 60 80 100 120

se
c

Number of performance counters

Intel PIII CPCI (Kalman Filter Algorithm with full matrix operations)

PMC Sample Time

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Maximum Time for Filter Algorithm

PMC Sample Time
Real with compileroptimisation

User with compiler optimisation
System with compiler optimisation

Figure 5.30: Full Kalman Operations on a Intel PIII CompactPCI system

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 2 4 6 8 10 12 14 16 18 20

se
c

Number of performance counters

Intel P4 (Kalman Filter Algorithm with full matrix operations)

Maximum Time for Filter Algorithm

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Maximum Time for Filter Algorithm

Real with compileroptimisation
User with compiler optimisation

System with compiler optimisation

Figure 5.31: Full Kalman Operations on a Intel P4 high resolution

State Estimation of a Single Compute Node 94

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 2 4 6 8 10 12 14 16 18 20

se
c

Number of performance counters

Intel PIII SMP (Kalman Filter Algorithm with full matrix operations)

Maximum Time for Filter Algorithm

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Maximum Time for Filter Algorithm

Real with compileroptimisation
User with compiler optimisation

System with compiler optimisation

Figure 5.32: Full Kalman Operations on a 2 way Intel PIII SMP high resolution

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 2 4 6 8 10 12 14 16 18 20

se
c

Number of performance counters

Intel PIII CPCI (Kalman Filter Algorithm with full matrix operations)

Maximum Time for Filter Algorithm

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Maximum Time for Filter Algorithm

Real with compileroptimisation
User with compiler optimisation

System with compiler optimisation

Figure 5.33: Full Kalman Operations on a Intel PIII CompactPCI system high resolution

Chapter 6

Optimisation and Re-evaluation of

the Estimation Algorithm

A solution to this performance problem might be obtained by analysing the individual matrix

operations that implement the Kalman filter. An implementation that models individual

PMCs as independent random processes leads to a sparse linear system. Initial optimisation

focused on a reduction in execution time and not on the memory consumed. This chapter

looks at these matrix operations in detail and suggests optimisations that might improve the

performance sufficiently to make it feasible to observe a reasonable number of PMCs in a

DSM system.

6.1 Sparse Matrix Optimisation

Assume that for all the Kalman filter matrix operations in this section that the PMC readings

are modeled as independent integrated Gauss-Markov random processes as described in

section 5.1.2. These models lead to sparse linear systems and this section analyses the

individual matrix operations for opportunities to optimise the execution speed. This should

make the overall algorithm suitable to estimate and predict a reasonable number of PMCs.

All these filter operations are summarised in Table 5.4.

6.1.1 The Kalman Gain

Eq.(5.11) is here shown again for convenience.

Kk =
P −

k HT
k

HkP −
k HT

k + Rk

This equation is implemented in six steps that require ether a matrix multiplication,

addition or inverse.

Optimisation and Re-evaluation of the Estimation Algorithm 96

The first step (see Table 5.4) multiplies the a priori error covariance matrix P −
k Eq.(6.25)

with the transpose of the measurement matrix HT
k Eq.(6.2). The result is a new matrix

P −
k HT

k . Eq.(6.1) shows the elements of the three matrices that are populated and that

are consequently involved in the computation of the P −
k HT

k matrix. All three matrices are

sparse matrices. Advantage can be taken of this sparseness by writing out the equation

explicitly and therefore calculating only the elements of the matrices that require this com-

putation. A slightly more elegant solution is to express this in a loop since it is likely that

this loop is unrolled by a compiler optimisation. This reduces the matrix multiplication to

a single loop.

P −
k HT

k =

































c11 0 . . . 0

c21 0 . . . 0

0 c32 . . . 0

0 c42 . . . 0
...

...
. . .

...

0 0 . . . c(m−1)n

0 0 . . . cmn

































= (6.1)

=

































a11 a12 0 0 . . . 0 0

a21 a22 0 0 . . . 0 0

0 0 a33 a34 . . . 0 0

0 0 a43 a44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . a(m−1)(n−1) a(m−1)n

0 0 0 0 . . . am(n−1) amn

































∗

∗

































1 0 . . . 0

0 0 . . . 0

0 1 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 1

0 0 . . . 0

































(6.2)

The second step (see Table 5.4) multiplies the measurement matrix Hk Eq.(6.4)with

the a priori error covariance matrix P −
k Eq.(6.25). The result is a new matrix HkP −

k .

Eq.(6.3) shows the elements of the three matrices that are populated and that are conse-

quently involved in the computation of the HkP −
k matrix. As in step one all three matrices

are sparse matrices. Again, advantage can be taken of this sparseness by writing out the

Optimisation and Re-evaluation of the Estimation Algorithm 97

equation explicitly and therefore calculating only the elements of the matrices that require

this computation. Again it can be expressed in a loop since it is likely that this loop is

unrolled by a compiler optimisation, and hence reduced to a single loop.

HkP −
k =















c11 c12 0 0 . . . 0 0

0 0 c23 c24 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . cm(n−1) cmn















= (6.3)

=















1 0 0 0 . . . 0 0

0 0 1 0 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . 1 0















∗ (6.4)

∗

































b11 b12 0 0 . . . 0 0

b21 b22 0 0 . . . 0 0

0 0 b33 b34 . . . 0 0

0 0 b43 b44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . b(m−1)(n−1) b(m−1)n

0 0 0 0 . . . bm(n−1) bmn

































The third step (see Table 5.4) multiplies the result from step 2 matrix HkP −
k Eq.(6.3)

with the transpose of the measurement sensitivity matrix HT
k Eq.(6.2). This calculation

results in a new matrix HkP −
k HT

k . Eq.(6.5) shows the elements of the three matrices that

are populated and that are consequently involved in the computation of the HkP −
k HT

k

matrix. As in the previous steps all three matrices are sparse matrices, where the equation

can be written explicitly and expressed as a loop that is likely to be reduced by compiler

optimisation to a single loop.

HkP −
k HT

k =















c11 0 . . . 0

0 c22 . . . 0
...

...
. . .

...

0 0 . . . cmn















= (6.5)

Optimisation and Re-evaluation of the Estimation Algorithm 98

=















a11 a12 0 0 . . . 0 0

0 0 a23 a24 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . am(n−1) amn















































1 0 . . . 0

0 0 . . . 0

0 1 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 1

0 0 . . . 0

































The fourth step (see Table 5.4) adds the measurement noise covariance matrix Rk

Eq.(6.7) to the result from step 3 matrix HkP −
k HT

k Eq.(6.5). The result is a new matrix

HkP −
k HT

k +Rk. Eq.(6.6) shows the elements of the three matrices that are populated and

that are consequently involved in the computation of the HkP −
k HT

k + Rk matrix. As in

the previous steps all three matrices are sparse matrices, where the equation is likely to be

reduced to a single loop.

HkP −
k HT

k + Rk =















c11 0 . . . 0

0 c22 . . . 0
...

...
. . .

...

0 0 . . . cmn















= (6.6)

=















a11 0 . . . 0

0 a22 . . . 0
...

...
. . .

...

0 0 . . . amn















+

+















b11 0 . . . 0

0 b22 . . . 0
...

...
. . .

...

0 0 . . . bmn















(6.7)

The fifth step (see Table 5.4) inverts the result from step 4 matrix HkP −
k HT

k + Rk

Eq.(6.6). This operation results in a new matrix (HkP −
k HT

k + Rk)
−1. Eq.(6.8) shows the

elements of the two matrices that are populated and that are consequently involved in the

computation of the (HkP −
k HT

k + Rk)
−1 matrix. As in the previous steps both matrices

are sparse matrices, where the equation is likely to be reduced to a single loop.

Optimisation and Re-evaluation of the Estimation Algorithm 99

(Hk P −
k HT

k + Rk)
−1 =















c11 0 . . . 0

0 c22 . . . 0
...

...
. . .

...

0 0 . . . cmn















= (6.8)

=















a11 0 . . . 0

0 a22 . . . 0
...

...
. . .

...

0 0 . . . amn















−1

The sixth and last step (see Table 5.4) computes the Kalman gain Kk Eq.(6.9) by

multiplying the result from step 1 matrix P −
k HT

k Eq.(6.1) with the inverse matrix from the

previous step (HkP −
k HT

k + Rk)
−1. Eq.(6.8) shows the elements of the three matrices that

are populated and that are consequently involved in the computation of the (HkP −
k HT

k +

Rk)
−1 matrix. As in the previous steps all three matrices are sparse matrices, where the

equation is likely to be reduced to a single loop.

Kk =

































c11 0 . . . 0

c21 0 . . . 0

0 c32 . . . 0

0 c42 . . . 0
...

...
. . .

...

0 0 . . . c(m−1)n

0 0 . . . cmn

































= (6.9)

=

































a11 0 . . . 0

a21 0 . . . 0

0 a32 . . . 0

0 a42 . . . 0
...

...
. . .

...

0 0 . . . a(m−1)n

0 0 . . . amn

































∗















b11 0 . . . 0

0 b22 . . . 0
...

...
. . .

...

0 0 . . . bmn















6.1.2 The A Posteriori State Estimate

Eq.(5.6) is here shown again for convenience.

x̂k = x̂−
k + Kk(zk − x̂−

k Hk)

Optimisation and Re-evaluation of the Estimation Algorithm 100

This calculation is implemented in four steps that require either a matrix multiplication,

addition or subtraction.

The first step (see Table 5.4) multiplies the measurement sensitivity matrix Hk Eq.(6.4)

with a priori state vector x̂−
k+1 Eq.(5.13). The result is a new vector x̂−

k Hk. Eq.(6.10) shows

the elements of the one matrix that are populated and that are consequently involved in the

computation of the x̂−
k Hk vector. Only one matrix is a sparse matrix; the rest are vectors.

Again, this sparseness can be taken advantage of to reduce the equation towards a single

loop.

Hkx̂−
k =















c1

c2

...

cm















= (6.10)

=















1 0 0 0 . . . 0 0

0 0 1 0 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . 1 0















∗

































b1

b2

b3

b4

b5

...

bm

































In the second step (see Table 5.4) the result is subtracted from the previous calculation

Hkx̂−
k Eq.(6.10) from the measurement vector Zk Eq.(6.12). This calculation results in

a new vector Zk − Hkx̂−
k Eq.(6.11). This subtraction involves only vectors that offer no

optimisation.

Zk − Hkx̂−
k =















c1

c2

...

cm















= (6.11)

=















a1

a2

...

am















− (6.12)

Optimisation and Re-evaluation of the Estimation Algorithm 101

−















b1

b2

...

bm















In the third step (see Table 5.4) the Kalman gain matrix Kk Eq.(6.9) is multiplied with

the result from the previous calculation Zk − Hkx̂−
k Eq.(6.11). This calculation presents

us a new vector Kk(Zk − Hkx̂−
k). Eq.(6.13) shows the elements of the one matrix that are

populated and that are consequently involved in the computation of the Kk(Zk − Hkx̂−
k)

vector. Only one matrix is a sparse matrix; the rest are vectors. This sparseness can be

taken advantage of by calculating only the elements of the matrix and vectors that require

this computation, as before, and expressing this in a loop that is likely to reduce the matrix

vector multiplication to a single loop.

Kk(Zk − Hkx̂−
k) =

































c1

c2

c3

c4

c5

...

cm

































= (6.13)

=

































a11 0 . . . 0

a21 0 . . . 0

0 a32 . . . 0

0 a42 . . . 0
...

...
. . .

...

0 0 . . . a(m−1)n

0 0 . . . amn















































b1

b2

...

bm















(6.14)

The fourth and last step (see Table 5.4) adds the a priori state vector x̂−
k+1 Eq.(5.13)

to the result from the previous calculation Kk(Zk − Hkx̂−
k) Eq.(6.13). This calculation

results in the a posteriori state estimate vector x̂k Eq.(6.15). This addition involves only

vectors that offer no optimisation.

Optimisation and Re-evaluation of the Estimation Algorithm 102

x̂k =

































c1

c2

c3

c4

c5

...

cm

































= (6.15)

=

































a1

a2

a3

a4

a5

...

am

































+

































b1

b2

b3

b4

b5

...

bm

































6.1.3 The A Posteriori Error Covariance

Eq.(5.12) is here shown again for convenience.

P k = (I − KkHk)P
−
k

This calculation is implemented in three steps that require ether a matrix multiplication

or subtraction.

The first step (see Table 5.4) multiplies the Kalman gain matrix Kk Eq.(6.9) with the

measurement sensitivity matrix Hk Eq.(6.4). The result is a new matrix KkHK . Eq.(6.16)

shows the elements of the three matrices that are populated and that are consequently

involved in the computation of the KkHK matrix. All three matrices are sparse matrices.

Again, the matrix multiplication is likely to be reduced to a single loop.

KkHk =

































c11 0 0 0 . . . 0 0

c21 0 0 0 . . . 0 0

0 0 c33 0 . . . 0 0

0 0 c43 0 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . c(m−1)(n−1) 0

0 0 0 0 . . . cm(n−1) 0

































= (6.16)

Optimisation and Re-evaluation of the Estimation Algorithm 103

=

































a11 0 . . . 0

a21 0 . . . 0

0 a32 . . . 0

0 a42 . . . 0
...

...
. . .

...

0 0 . . . a(m−1)n

0 0 . . . amn

































∗















1 0 0 0 . . . 0 0

0 0 1 0 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . 1 0















The second step (see Table 5.4) subtracts the result from the previous calculation

KkHK Eq.(6.16) from the identity matrix I Eq.(6.18). This calculation results in a new

matrix I − KkHk. Eq.(6.17) shows the elements of the three matrices that are populated

and that are consequently involved in the computation of the I − KkHk matrix. As in the

previous steps all three matrices are sparse matrices. Again, the matrix subtraction is likely

to be reduced to a single loop.

I − KkHk =

































c11 0 0 0 . . . 0 0

c21 1 0 0 . . . 0 0

0 0 c33 0 . . . 0 0

0 0 c43 1 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . c(m−1)(n−1) 0

0 0 0 0 . . . cm(n−1) 1

































= (6.17)

=

































1 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 1

































− (6.18)

−

































b11 0 0 0 . . . 0 0

b21 0 0 0 . . . 0 0

0 0 b33 0 . . . 0 0

0 0 b43 0 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . b(m−1)(n−1) 0

0 0 0 0 . . . bm(n−1) 0

































Optimisation and Re-evaluation of the Estimation Algorithm 104

In the third and last step (see Table 5.4) the result from the previous step I −KkHk

Eq.(6.17) is multiplied with the P −
k Eq.(6.25). The result is the a posteriori error covariance

matrix P k. Eq.(6.19) shows the elements of the three matrices that are populated and that

are consequently involved in the computation of the P k matrix. As in the previous steps all

three matrices are sparse matrices. Again, the matrix multiplication is likely to be reduced

to a single loop.

P k =

































c11 c12 0 0 . . . 0 0

c21 c22 0 0 . . . 0 0

0 0 c33 c34 . . . 0 0

0 0 c43 c44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . c(m−1)(n−1) c(m−1)n

0 0 0 0 . . . cm(n−1) cmn

































= (6.19)

=

































a11 0 0 0 . . . 0 0

a21 1 0 0 . . . 0 0

0 0 a33 0 . . . 0 0

0 0 a43 1 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . a(m−1)(n−1) 0

0 0 0 0 . . . am(n−1) 1

































∗

∗

































b11 b12 0 0 . . . 0 0

b21 b22 0 0 . . . 0 0

0 0 b33 b34 . . . 0 0

0 0 b43 b44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . b(m−1)(n−1) b(m−1)n

0 0 0 0 . . . bm(n−1) bmn

































6.1.4 The A Priori State Vector

Eq.(5.13) is here shown again for convenience.

x̂−
k+1 = φkx̂k

This calculation is implemented in one step and requires one multiplication only.

In the first step and only step (see Table 5.4) the discrete state transition matrix φk

Eq.(5.18) is multiplied with the a posteriori state vector x̂k Eq.(6.15). The result is the a

Optimisation and Re-evaluation of the Estimation Algorithm 105

priori state vector x̂−
k+1. Eq.(6.20) shows the elements of the one matrix that are populated

and that are consequently involved in the computation of the x̂−
k+1 vector. Only one matrix

is a sparse matrix the rest are vectors. Again, the matrix vector multiplication is likely to

be reduced to a single loop.

x̂−
k+1 =

































c1

c2

c3

c4

c5

...

cm

































= (6.20)

=

































1 a12 0 0 . . . 0 0

0 a22 0 0 . . . 0 0

0 0 1 a34 . . . 0 0

0 0 0 a44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . 1 a(m−1)n

0 0 0 0 . . . 0 amn

































∗

∗

































b1

b2

b3

b4

b5

...

bm

































(6.21)

6.1.5 The A Priori Error Covariance Matrix

Eq.(6.1.5) is here shown again for convenience.

P −
k+1 = φkP kφT

k + Qk

This calculation is implemented in three steps that require two matrix multiplications

and one subtraction.

The first step (see Table 5.4) multiplies the discrete state transition matrix φk Eq.(5.18)

with the a posteriori error covariance matrix P k Eq.(6.19). The result is a new matrix

Optimisation and Re-evaluation of the Estimation Algorithm 106

φkP k. Eq.(6.22) shows the elements of the three matrices that are populated and that are

consequently involved in the computation of the φkP k matrix. All three matrices are sparse

matrices. Again, the matrix multiplication is likely to be reduced to a single loop.

φkP k =

































c11 c12 0 0 . . . 0 0

c21 c22 0 0 . . . 0 0

0 0 c33 c34 . . . 0 0

0 0 c43 c44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . c(m−1)(n−1) c(m−1)n

0 0 0 0 . . . cm(n−1) cmn

































= (6.22)

=

































1 a12 0 0 . . . 0 0

0 a22 0 0 . . . 0 0

0 0 1 a34 . . . 0 0

0 0 0 a44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . 1 a(m−1)n

0 0 0 0 . . . 0 amn

































∗

∗

































c11 c12 0 0 . . . 0 0

c21 c22 0 0 . . . 0 0

0 0 c33 c34 . . . 0 0

0 0 c43 c44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . c(m−1)(n−1) c(m−1)n

0 0 0 0 . . . cm(n−1) cmn

































In the second step (see Table 5.4) the result from the previous step φkP k Eq.(6.22) is

multiplied with the transposed discrete state transition matrix φT
k Eq.(6.24). The result is a

new matrix φkP kφT
k . Eq.(6.23) shows the elements of the three matrices that are populated

and that are consequently involved in the computation of the φkP kφT
k matrix. As in step

one all three matrices are sparse matrices. Again, the matrix multiplication is likely to be

reduced to a single loop.

Optimisation and Re-evaluation of the Estimation Algorithm 107

φkP kφT
k =

































c11 c12 0 0 . . . 0 0

c21 c22 0 0 . . . 0 0

0 0 c33 c34 . . . 0 0

0 0 c43 c44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . c(m−1)(n−1) c(m−1)n

0 0 0 0 . . . cm(n−1) cmn

































= (6.23)

=

































a11 a12 0 0 . . . 0 0

a21 a22 0 0 . . . 0 0

0 0 a33 a34 . . . 0 0

0 0 a43 a44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . a(m−1)(n−1) a(m−1)n

0 0 0 0 . . . am(n−1) amn

































∗

∗

































1 0 0 0 . . . 0 0

b21 b22 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 b43 b44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . 1 b(m−1)n

0 0 0 0 . . . bm(n−1) amn

































(6.24)

The third and last step (see Table 5.4) adds the result from the previous calculation

φkP kφT
k Eq.(6.23) to the process noise covariance matrix Qk Eq.(5.10) and Eq.(5.16). This

calculation yields the a posteriori state estimate vector P −
k+1. Eq.(6.25) shows the elements

of the three matrices that are populated and that are consequently involved in the compu-

tation of the P −
k+1 matrix. As in the previous steps all three matrices are sparse matrices.

Again, the matrix addition is likely to be reduced to a single loop.

P −
k+1 =

































c11 c12 0 0 . . . 0 0

c21 c22 0 0 . . . 0 0

0 0 c33 c34 . . . 0 0

0 0 c43 c44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . c(m−1)(n−1) c(m−1)n

0 0 0 0 . . . cm(n−1) cmn

































= (6.25)

Optimisation and Re-evaluation of the Estimation Algorithm 108

=

































a11 a12 0 0 . . . 0 0

a21 a22 0 0 . . . 0 0

0 0 a33 a34 . . . 0 0

0 0 a43 a44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . a(m−1)(n−1) a(m−1)n

0 0 0 0 . . . am(n−1) amn

































+

+

































b11 b12 0 0 . . . 0 0

b21 b22 0 0 . . . 0 0

0 0 b33 b34 . . . 0 0

0 0 b43 b44 . . . 0 0
...

...
... 0

. . .
...

...

0 0 0 0 . . . b(m−1)(n−1) b(m−1)n

0 0 0 0 . . . bm(n−1) bmn

































6.2 Optimisation Analysis

Fig. 6.1, Fig. 6.2 and Fig. 6.3 show the real, user and system execution time over the number

of PMCs estimated or predicted by the Kalman filter for the three machines specified in

Table 7.1. This is identical to graphs seen in Fig. 5.28, Fig. 5.29 and Fig. 5.30 but with all

the amendments to the filter algorithm that were suggested in section 6.1. The modified

algorithm now exploits the sparseness of the matrices involved in the algorithm’s execution.

The execution time is reduced to such an extent that even the Maximum Time for Filter

Algorithm threshold = ∆t
100

is no longer exceeded for most measurements. For consistency

Fig. 6.4, Fig. 6.5 and Fig. 6.6 depict the same information with a higher execution time

resolution. Unlike in the case of the full matrix operations the Maximum Time for Filter

Algorithm is now off-scale.

These are promising results that show that it is feasible to run the sparse version of

the algorithm for up to 120 and more PMCs while sampling these PMC readings at 20

ms without consuming more than 1% of the available CPU time. A comparison for both

algorithm versions is given in Table 6.1. The maximum number of 120 PMCs for these

experiments was chosen because this is approximately the number of counter events on a

PIII system.

Furthermore Fig. 6.7, Fig. 6.8 and Fig. 6.9 allow us to compare the three systems. The

figures show the user execution time over the number of PMCs estimated by the algorithm

for both the full matrix operations and the sparse operation. Fig. 6.8 is particular interesting

because it shows how quickly the algorithm with the full matrix operation reaches the sam-

pling time (20 ms). Also Fig. 6.9 depicts when the full matrix operation exceeds 1% of the

Optimisation and Re-evaluation of the Estimation Algorithm 109

sample time (0.0002 sec). User execution time was measured for a gcc compiler-optimised

(-O3) algorithm.

An alternative view is provided by Fig. 6.10, Fig. 6.11 and Fig. 6.12. These three figures

show the ratio between the sample time (assuming sampling at 20 ms) and the User plus

System execution time. Particularly Fig. 6.11 demonstrates how the sparse algorithm is 1
100

of the sampling time for the CompactPCI system and 1
250

of the sampling time for the P4

system while estimating 120 PMCs.

See section 8.3 on page 141 for a description of the work loads.

Full Algorithm

System Compiler Optimised No Compiler Optimisation

Intel P4 Hyperthreaded 8 6

Intel PIII 2 Way SMP 7 7

Intel PIII CompactPCI System 7 7

Sparse Algorithm

System Compiler Optimised No Compiler Optimisation

Intel P4 Hyperthreaded � 120 � 120

Intel PIII 2 Way SMP > 120 ≈ 120

Intel PIII CompactPCI System ≈ 120 ≈ 100

Table 6.1: This table shows the maximum number of PMC readings that can be processed
by the Kalman filter algorithm on the various machines with exceeding 1% of the available
CPU execution time (Maximum Time for Filter Algorithm threshold) assuming a sample
time ∆t of 20 ms. The maximum number of PMC readings is provided for the algorithm
that implements the full matrix operations and the algorithm the exploits the sparseness of
the matrices.

Optimisation and Re-evaluation of the Estimation Algorithm 110

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 20 40 60 80 100 120

se
c

Number of performance counters

Intel P4 (Kalman Filter Algorithm with sparse matrix operations)

Maximum Time for Filter Algorithm

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Maximum Time for Filter Algorithm

Real with compileroptimisation
User with compiler optimisation

System with compiler optimisation

Figure 6.1: Sparse Kalman Operations on a Intel P4

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 20 40 60 80 100 120

se
c

Number of performance counters

Intel PIII SMP (Kalman Filter Algorithm with sparse matrix operations)

Maximum Time for Filter Algorithm

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Maximum Time for Filter Algorithm

Real with compileroptimisation
User with compiler optimisation

System with compiler optimisation

Figure 6.2: Sparse Kalman Operations on a 2 way Intel PIII SMP

Optimisation and Re-evaluation of the Estimation Algorithm 111

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 20 40 60 80 100 120

se
c

Number of performance counters

Intel PIII CPCI (Kalman Filter Algorithm with sparse matrix operations)

Maximum Time for Filter Algorithm

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Maximum Time for Filter Algorithm

Real with compileroptimisation
User with compiler optimisation

System with compiler optimisation

Figure 6.3: Sparse Kalman Operations on a Intel PIII CompactPCI system

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 0 5 10 15 20

se
c

Number of performance counters

Intel P4 (Kalman Filter Algorithm with sparse matrix operations)

Maximum Time for Filter Algorithm

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Real with compileroptimisation

User with compiler optimisation
System with compiler optimisation

Figure 6.4: Sparse Kalman Operations on a Intel P4 high resolution

Optimisation and Re-evaluation of the Estimation Algorithm 112

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 0 5 10 15 20

se
c

Number of performance counters

Intel PIII SMP (Kalman Filter Algorithm with sparse matrix operations)

Maximum Time for Filter Algorithm

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Real with compileroptimisation

User with compiler optimisation
System with compiler optimisation

Figure 6.5: Sparse Kalman Operations on a 2 way Intel PIII SMP high resolution

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 0 5 10 15 20

se
c

Number of performance counters

Intel PIII CPCI (Kalman Filter Algorithm with sparse matrix operations)

Maximum Time for Filter Algorithm

Real without compiler optimisation
User without compiler optimisation

System without compiler optimisation
Real with compileroptimisation

User with compiler optimisation
System with compiler optimisation

Figure 6.6: Sparse Kalman Operations on a Intel PIII CompactPCI system high resolution

Optimisation and Re-evaluation of the Estimation Algorithm 113

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 20 40 60 80 100 120

se
c

Number of performance counters

Intel P4, PIII SMP & CPCI (Kalman Filter Algorithm with full and sparse matrix operations)

P4 - Full - User with compiler optimisation
SMP PIII - Full - User with compiler optimisation
CPCI PIII - Full - User with compiler optimisation

P4 - Sparse - User with compiler optimisation
SMP PIII - Sparse - User with compiler optimisation
CPCI PIII - Sparse - User with compiler optimisation

Figure 6.7: User Time Sparse and Full Filter Operations on Intel P4, 2 way Intel PIII SMP
and Intel PIII CompactPCI system. User execution time was measured for a gcc compiler
optimised (-O3) algorithm.

 0

 0.005

 0.01

 0.015

 0.02

 20 40 60 80 100 120

se
c

Number of performance counters

Intel P4, PIII SMP & CPCI (Kalman Filter Algorithm with full and sparse matrix operations)

P4 - Full - User with compiler optimisation
SMP PIII - Full - User with compiler optimisation
CPCI PIII - Full - User with compiler optimisation

P4 - Sparse - User with compiler optimisation
SMP PIII - Sparse - User with compiler optimisation
CPCI PIII - Sparse - User with compiler optimisation

Figure 6.8: User Time Sparse and Full Filter Operations on Intel P4, 2 way Intel PIII SMP
and Intel PIII CompactPCI system at high resolution. User execution time was measured
for a gcc compiler optimised (-O3) algorithm.

Optimisation and Re-evaluation of the Estimation Algorithm 114

 0

 5e-05

 0.0001

 0.00015

 0.0002

 20 40 60 80 100 120

se
c

Number of performance counters

Intel P4, PIII SMP & CPCI (Kalman Filter Algorithm with full and sparse matrix operations)

P4 - Full - User with compiler optimisation
SMP PIII - Full - User with compiler optimisation
CPCI PIII - Full - User with compiler optimisation

P4 - Sparse - User with compiler optimisation
SMP PIII - Sparse - User with compiler optimisation
CPCI PIII - Sparse - User with compiler optimisation

Figure 6.9: User Time Sparse and Full Filter Operations on Intel P4, 2 way Intel PIII
SMP and Intel PIII CompactPCI system at very high resolution. User execution time was
measured for a gcc compiler optimised (-O3) algorithm.

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

S
am

pl
e

Ti
m

e
/ (

U
se

r T
im

e
+

S
ys

te
m

 T
im

e)

Number of performance counters

Intel P4, PIII SMP & CPCI (Kalman Filter Algorithm with full and sparse matrix operations)

P4 - Full - With compiler optimisation
SMP PIII - Full - With compiler optimisation
CPCI PIII - Full - With compiler optimisation

P4 - Sparse - With compiler optimisation
SMP PIII - Sparse - With compiler optimisation
CPCI PIII - Sparse - With compiler optimisation

Figure 6.10: Sample time to user and system time ratio on Intel P4, 2 way Intel PIII SMP
and Intel PIII CompactPCI system. User execution time was measured for a gcc compiler
optimised (-O3) algorithm.

Optimisation and Re-evaluation of the Estimation Algorithm 115

 0

 200

 400

 600

 800

 1000

 20 40 60 80 100 120

S
am

pl
e

Ti
m

e
/ (

U
se

r T
im

e
+

S
ys

te
m

 T
im

e)

Number of performance counters

Intel P4, PIII SMP & CPCI (Kalman Filter Algorithm with full and sparse matrix operations)

P4 - Full - User with compiler optimisation
SMP PIII - Full - User with compiler optimisation
CPCI PIII - Full - User with compiler optimisation

P4 - Sparse - User with compiler optimisation
SMP PIII - Sparse - User with compiler optimisation
CPCI PIII - Sparse - User with compiler optimisation

Figure 6.11: Sample time to user and system time ratio on Intel P4, 2 way Intel PIII SMP
and Intel PIII CompactPCI system at high resolution. User execution time was measured
for a gcc compiler optimised (-O3) algorithm.

-1

 0

 1

 2

 3

 4

 5

 20 40 60 80 100 120

S
am

pl
e

Ti
m

e
/ (

U
se

r T
im

e
+

S
ys

te
m

 T
im

e)

Number of performance counters

Intel P4, PIII SMP & CPCI (Kalman Filter Algorithm with full and sparse matrix operations)

P4 - Full - User with compiler optimisation
CPCI PIII - Full - User with compiler optimisation
SMP PIII - Full - User with compiler optimisation

P4 - Sparse - User with compiler optimisation
SMP PIII - Sparse - User with compiler optimisation
CPCI PIII - Sparse - User with compiler optimisation

Figure 6.12: Sample time to user and system time ratio on Intel P4, 2 way Intel PIII SMP and
Intel PIII CompactPCI system at very high resolution. User execution time was measured
for a gcc compiler optimised (-O3) algorithm.

Optimisation and Re-evaluation of the Estimation Algorithm 116

6.3 Memory Hierarchy Performance Measurements Evalua-

tion for Uniprocessor Systems

It is now feasible to extend the evaluation of the filter. Fig. 6.13, Fig. 6.14 and Fig. 6.15

demonstrate the performance of the one-at-a-time filter solution. The algorithm fuses three

sets of performance counters into the state vector. The three figures show only one counter

and the associated state variables. In Fig. 6.13 the state variable x1 estimates the events/sec

from the noisy counter readings despite the fact that only every third sample interval provides

data for the filter’s blending operation. It is obvious that the filter does not trust the counter

readings entirely hence the difference between state variable x1 and the counter readings.

The two graphs Fig. 6.14 and Fig. 6.15 demonstrate the algorithm’s ability to follow rapid

changes.

-6e+06

-4e+06

-2e+06

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Integrated Gauss-Markov Process Model - One At A Time
 Standard Kalman Filter

X1 [Events/sec] Z1 INST_RETIRED
X2 [Events/sec^2] Z1 INST_RETIRED

Z1 INST_RETIRED [Events/sec] mean = 7.826e+06

Figure 6.13: One-at-time Filter with integrated Gauss-Markov process model shows two
state variables and a performance counter reading.

In order to demonstrate the one-at-a-time filter with a larger number of counters, for

example with six PMC events, selected events are presented in Table 6.2. These events

and their associated process model parameters are fed into the filter that was introduced in

section 5.1 on page 62. Table 6.2 holds the selected PMC events and parameters. This table

is a subset of table B.2. The parameters for these PMC events were measured and calculated

with techniques described in section 5.2 on page 71.

Optimisation and Re-evaluation of the Estimation Algorithm 117

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 0 0.5 1 1.5 2 2.5 3 3.5 4

Integrated Gauss-Markov Process Model - One At A Time
 Standard Kalman Filter

Performance Counter [Events/sec] Z1 INST_RETIRED
State Vector Element X1 [Events/sec] Z1 INST_RETIRED

Figure 6.14: One-at-time Filter with integrated Gauss-Markov process model shows one
state variable and a performance counter reading over a longer time.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 5 10 15 20 25 30 35 40

Integrated Gauss-Markov Process Model - One At A Time
 Standard Kalman Filter

Performance Counter [Events/sec] Z1 INST_RETIRED
State Vector Element X1 [Events/sec] Z1 INST_RETIRED

Figure 6.15: One-at-time Filter with integrated Gauss-Markov process model shows one
state variable and a performance counter reading over an even longer time.

Optimisation and Re-evaluation of the Estimation Algorithm 118

Symbol CPU σi βi Mean

1 DATA MEM REFS 1 5.26e+06 38.8 6.19e+06

2 5.03e+06 35.7 5.73e+06

2 DCU LINES IN 1 5.83e+04 49.2 7.40e+04

2 5.92e+04 46.5 7.40e+04

6 IFU IFETCH 1 6.65e+06 55.3 8.40e+06

2 6.59e+06 51.5 8.13e+06

7 IFU IFETCH MISS 1 2.41e+04 34.3 2.77e+04

2 2.48e+04 34.5 2.86e+04

26 L2 LINES IN 1 2.02e+04 112.7 2.53e+04

2 1.92e+04 103.0 2.45e+04

89 INST RETIRED 1 7.25e+06 40.0 8.71e+06

2 6.43e+06 32.9 7.04e+06

Table 6.2: Selected PIII Performance Monitoring Counter (PMC) events for Memory Hier-

archy Experiment

The uniprocessor filter implementation estimates the six selected PMC events counts by

fusing the readings into its state-vector. Fig. 6.16 shows graphs for the six estimated event

counts. Remember that only two of these events are sampled at any sample interval. The

remaining four are estimated. The PMC count estimates actually displayed are computed

from the state variables associated with a particular counter. This is a very simple use of

the filter, but nicely demonstrates how the information from the state vector can be used to

observe variables that could not be measured with the available PMC registers.

6.3.1 Derived Performance Measurements

For some variables, measurements require the simultaneous use of multiple PMC events.

L1 Instructions Fetch Unit (IFU) Hit Rate Eq.(6.26), L2 Cache Hit Rate Eq.(6.27), L1

to L2 Bandwidth MB/s Eq.(6.28) and L2 to Memory Bandwidth MB/s Eq.(6.29) are four

simple examples of performance measurements that cannot be directly read. These variables

must be calculated from sampled PMC readings. For example Eq.(6.27) requires three

PMC readings L2 LINES IN, DCU LINES IN and IFU IFETCH MISS. These readings need

to be sampled at three different sample intervals because of the one PMC set-at-a-time

approach. The calculation may use the state variables that relate to the three PMC readings

to calculate the Level 2 Cache (L2) Cache Hit Rate base on the current estimate of all three

PMCs. Fig. 6.17 presents the four derived measurements Eq.(6.26), Eq.(6.27), Eq.(6.28) and

Eq.(6.29). The calculation has computed these performance measurements based on state

vector information. Again this is a nice example of the utility of the estimation algorithm.

Optimisation and Re-evaluation of the Estimation Algorithm 119

Uniprocessor PMC Estimation

PMC Estimate

 50
 60

 70
 80

 90
 100

Sample Number (n*Delta t) INST_RETIRED

L2_LINES_IN

IFU_IFETCH_MISS

IFU_IFETCH

DCU_LINES_IN

DATA_MEM_REFS 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

Number of PMC Events/Delta t

Figure 6.16: Uniprocessor PMC Estimation

L1 IFC Hit Rate = 1 −
L1 Instruction Misses

Loads
= 1 −

IFU IFETCH MISS

IFU IFETCH
(6.26)

L2 Cache Hit Rate = 1 −
L2 Misses

L1 Misses
= 1 −

L2 LINES IN

DCU LINES IN + IFU IFETCH MISS
(6.27)

L1 to L2 Bandwidth MB/s =
L1 Misses * L1 Line size bytes * Clock MHz

Cyles
(6.28)

=
(DCU LINES IN + IFU IFETCH MISS) * 32 * Clock

TSC

L2 to MEM Bandwidth MB/s =
L2 Misses * L2 Line size bytes * Clock MHz

Cyles
(6.29)

=
(L2 LINES IN * 32 * Clock

TSC

Optimisation and Re-evaluation of the Estimation Algorithm 120

Uniprocessor Derived Measurements

 50 60 70
 80 90 100Sample Number (n*Delta t)

L2-Memory

L1-L2

L2 Hit Rate

L1 IFU Hit Rate

 0.1

 1

 10

 100

 1000

 10000

 100000

MB/sec

Figure 6.17: Derived Measurements for a Uniprocessor

6.4 Memory Hierarchy Performance Measurements Evalua-

tion for SMP Systems

Similar measurements can be performed on a SMP system. The same algorithm may be

applied to sample and estimate PMC readings from all the CPUs in the system. Table 6.3

provides a list of Modified Exclusive Shared Invalid (MESI) related PMC events. This table is

a subset of table B.1. These events are of particular interest in the context of SMP machines

because MESI or alternative protocols are used to maintain cache coherency throughout the

system. The filter’s state-vector holds the state variables for all the CPU’s PMCs.

Symbol CPU σi βi Mean

11 L2 IFETCH MESI 1 9.37e+04 38.5 1.09e+05

2 8.70e+04 35.3 9.85e+04

12 L2 IFETCH M STATE 1 No Data

2

13 L2 IFETCH E STATE 1 1.73 26.6 0.2438

2 1.24 43.9 0.2646

14 L2 IFETCH S STATE 1 8.49e+04 33.5 9.31e+04

∆t = 0.04sec for every PMC reading. continued on next page

Optimisation and Re-evaluation of the Estimation Algorithm 121

∆t = 0.04sec for every PMC reading. Continued from previous page

Symbol CPU σi βi Mean

2 9.35e+04 37.8 1.06e+05

15 L2 IFETCH I STATE 1 No Data

2 2524 112.6 3372

16 L2 LD MESI 1 4.09e+04 41.6 4.81e+04

2 4.13e+04 41.7 4.89e+04

17 L2 LD M STATE 1 1.50e+04 38.3 1.71e+04

2 1.50e+04 38.3 1.71e+04

18 L2 LD E STATE 1 1.679e+04 31.7 1.779e+04

2 1.785e+04 35.5 1.983e+04

19 L2 LD S STATE 1 7232.0 21.2 5382.0

2 6393.0 28.1 5471.0

20 L2 LD I STATE 1 8063 102.4 1.04e+04

2 8159 103.6 1.04e+04

21 L2 ST MESI 1 1.36e+04 88.3 1.76e+04

2 1.38e+04 88.2 1.79e+04

22 L2 ST M STATE 1 6934.0 32.3 7447.0

1 7637.0 39.4 8838.0

23 L2 ST E STATE 1 201.5 57.5 143.4

2 203.4 57.9 145.4

24 L2 ST S STATE 1 1518.0 66.6 2049.0

2 1442.0 64.5 1934.0

25 L2 ST I STATE 1 7734.0 70.2 8568.0

2 9144.0 77.4 1.00e+04

28 L2 M LINES INM 1 1.08e+04 105.7 1.37e+04

2 1.12e+04 107.3 1.38e+04

29 L2 M LINES OUTM 1 1.08e+04 102.6 1.38e+04

2 1.06e+04 101.7 1.37e+04

30 L2 RQSTS MESI 1 1.42e+05 40.2 1.67e+05

2 1.46e+05 41.0 1.72e+05

31 L2 RQSTS M STATE 1 2.22e+04 36.9 2.53e+04

2 2.23e+04 34.7 2.51e+04

32 L2 RQSTS E STATE 1 1.76e+04 29.1 1.83e+04

2 1.81e+04 33.0 1.95e+04

33 L2 RQSTS S STATE 1 9.60e+04 35.1 1.08e+05

∆t = 0.04sec for every PMC reading. continued on next page

Optimisation and Re-evaluation of the Estimation Algorithm 122

∆t = 0.04sec for every PMC reading. Continued from previous page

Symbol CPU σi βi Mean

2 9.56e+04 35.9 1.07e+05

34 L2 RQSTS I STATE 1 1.88e+04 100.0 2.32e+04

2 1.88e+04 100.5 2.33e+04

Table 6.3: Examples of MESI related PMC events specified in table 7.1.

6.5 Distributed State Estimation

Conceivably the single node state estimation algorithm could be extended to multiple nodes,

i.e. to a cluster. All the available PMC and TSC registers in a cluster could be sampled

and processed at discrete time steps ∆t. Accurate sample intervals would obviously be

essential for the correctness of the algorithm. The single node algorithm would be executed

on every node to fuse PMC event readings into an state vector that provides state variables

for all the monitored PMC events in the system. Every node would compute a cluster-wide

state estimate. The sampling would require synchronisation. Consequently, all sampled

PMC readings must be made available to all the nodes, and must represent the same sample

interval. The synchronisation and PMC data communication must be implemented with

hard-real-time capable interconnect technology. A high speed interconnect with hardware

DSM support, such as SCI, ideally fits these requirements. Before this hypotheses can

be tested, it is necessary to assemble and conceptually design experimental hardware DSM

platforms. This is discussed in the next chapter before returning to the subject of distributed

state estimation in chapter 8.

Chapter 7

Hardware DSM Testbeds

Ideally experimental measurements of the distributed state estimation algorithm, discussed

in section 8.1, should be conducted on both a loosely and tightly coupled hardware DSM

cluster. This chapter describes an example of each. Unfortunately the implementation of my

conceptual design of the tightly coupled special purpose graphics cluster is incomplete, and is

also the subject of another PhD, for which I am the supervisor. Therefore the experimental

measurements, which are described in section 5.2 on page 71, section 6.2 on page 108,

section 6.3 on page 116, section 6.4 on page 120, section 8.2 on page 136, and appendix B

PMC Offline Autocorrelation Analysis on page 157 are only conducted on the loosely coupled

cluster. Equivalent experiments will take place on the graphics cluster once it is completed. It

is also intended to use the distributed state estimation algorithm to load-balance the graphics

cluster. Note that the terms “loosely coupled” and “tightly coupled” are relative, since many

people would consider any hardware DSM system to be tightly coupled. Section 7.1 discusses

the configuration of the loosely coupled DSM testbed and section 7.2 provides information

concerning the conceptual design of the tightly coupled special purpose graphics cluster.

Intel P4 Hyperthreaded

Model CPU Hz Cache Size Manufacturer Chipset Memory
Intel Pentium 4 3 GHz 1024 KB Dell Intel 1 GByte

Intel PIII 2 Way SMP

Model CPU Hz Cache Size Manufacturer Chipset Memory
Intel Pentium III
(Coppermine)

1 GHz 256 KB Super Micro ServerWorks
HE-SL

500 MByte

Intel PIII CompactPCI System

Model CPU Hz Cache Size Manufacturer Chipset Memory
Intel Pentium III
(Coppermine)

700 MHz 256 KB Force ServerWorks
LE-III

500 MByte

Table 7.1: Testbed machines for the Kalman filter evaluation. The Intel P4 system is not
part of the Testbed cluster but was used to evaluate the filter algorithm.

Hardware DSM Testbeds 124

7.1 Loosely Coupled Distributed Shared Memory Testbed

Figure 7.1: Front view of the Hardware Dis-
tributed Shared Memory Cluster

Figure 7.2: Rear view of the Hardware Dis-
tributed Shared Memory Cluster

The implementation of a distributed version of the Kalman filter required the construction

of a general purpose hardware DSM cluster from commodity components. Pictures of a small

testbed cluster are shown in Fig. 7.1 and Fig. 7.2. The system includes a CompactPCI node,

two SMP nodes and a file-server. In addition to these compute nodes the system incorporates

a Keyboard Video Mouse (KVM) switch and an Ethernet switch. The Ethernet switch is

required by the two SMP nodes and the CompactPCI node to access a common Network

File System (NFS) on the file-server. The CompactPCI system can be seen at the top of the

cluster in Fig. 7.1 and in Fig. 7.2, right under the Ethernet switch. The two SMP systems

are below the the CompactPCI node (one chassis is empty). The file-server is mounted

underneath the black KVM switch. The two SMP nodes and the CompactPCI system are

interconnected through SCI. This interconnect transforms the three systems into a hardware

DSM system.

Fig. 7.5 shows the CompactPCI system’s CPU board including a PMC-SCI adapter card

that is inserted into the CPU board’s 64 bit/66 MHz PMC interface. The CompactPCI

CPU is a Force PENT/CPCI-735 board [For01] and the two SMP systems are assembled

with Super Micro P3TDE6 main boards [Sup01], see Fig. 7.4. These boards also provide

Hardware DSM Testbeds 125

Pentium III
CPU 2

Pentium III
CPU 1

Pentium III
CPU 1

Pentium III
CPU 2

Pentium III
CPU 1

MEM Host (North) Bridge CIOB20 SCI LC3PCI Bridge

MEM Host (North) Bridge SCI LC3PCI Bridge

MEM Host (North) Bridge SCI LC3PCI Bridge

CompactPCI

Two−way SMP 1

Two−way SMP 2

PCI

PCI

PCI

64/66

64/66

64/66

BLink

BLink

BLink
PMC 1

CIOB20

D331 PCI−SCI Adapter Card

D331 PCI−SCI Adapter Card

PMC−64/66−SCI Adapter Card

Figure 7.3: Hardware Distributed Shared Memory Testbed

a 64 bit/66 MHz PCI interface. More details on these systems can be found in table 7.1

on page 123. At the time of the design of the cluster in 2001 it was difficult to source

main boards with a 64 bit/66 MHz PCI interface. This fast PCI was required by the SCI

technology from Dolphin.

Figure 7.4: One of the Cluster’s PIII SMP
Nodes

Figure 7.5: CompactPCI System with PMC-
SCI Adapter Card

Fig. 7.3 provides a schematic view of the three SCI interconnected systems. The local

memories that are attached to the Host (North) bridges become part of the global address

space. This may be mapped into an application’s virtual address space through a SISCI low-

Hardware DSM Testbeds 126

level API [GAB+99]. The SISCI API can be used to write shared memory applications and

it plays a vital role in the implementation of the distributed Kalman filter that is discussed

in section 8.1. Fig. 7.6 provides an outline of the Intel PIII micro-architecture. These CPUs

are used in all the cluster nodes. An understanding of the processor’s micro-architecture will

help with the PMC event descriptions in table A.1 on page 147 [Ord01].

System Bus

2nd Level Cache

Instruction

Microcode

Execution

Cache

ROM

Bus Unit

On−die, 8−way

Fetch

Decoder

Front End

BTSs/Branch Prediction

Execution

Core

Branch History Update

1st Level Cache
4−way, low latency

Out−of−Order Retirement

Figure 7.6: P6 Processor Microarchitecture

7.2 Tightly Coupled Special Purpose High Performance Graph-

ics DSM Cluster

As stated before, the conceptional design of this tightly coupled graphics DSM cluster is

intended to investigate novel architectural organisations that are suitable for interactive

scalable high performance visualisation systems. The detailed design is implemented by

my PhD student. When it is complete, performance improvements will be investigated by

applying the distributed state estimation algorithm to load-balancing.

Current scalable high-performance graphics systems are either constructed using special

purpose graphics acceleration hardware or built as a cluster of commodity components with

a software infrastructure that exploits multiple graphics cards [HEB+01] [HHN+02]. Both

these solutions are used in application domains where the computational demand cannot be

met by a single commodity graphics card, e.g. large-scale scientific visualisation. The for-

mer approach tends to provide the highest performance but is expensive because it requires

Hardware DSM Testbeds 127

frequent redesign of the special purpose graphics acceleration hardware in order to maintain

a performance advantage over the commodity graphics hardware used in the latter cluster

approach. The latter approach, while more affordable and scalable, has intrinsic performance

drawbacks due to computationally expensive communication between the individual graph-

ics pipelines. The hybrid solution described here aims to bridge the gap between both of

these solutions, offering a minimal custom-built hardware component together with a novel

and efficient shared memory infrastructure that exploits cutting-edge consumer graphics

hardware.

Board n

FPGAs GPU Card

Local Shared Memory

Board 1

FPGAs GPU Card

Local Shared Memory

Distributed Shared Memory
Single Address Space

Implemented through a High Speed Interconnect

PC Board n

Local Shared Memory

CPU
PC Board 1

Local Shared Memory

CPU Scalable

Scalable

Figure 7.7: Shared Memory.

7.2.1 Cluster Architecture

The scalable and reconfigurable shared-memory graphics cluster is predominantly designed

with commodity, off-the-shelf, components with a limited amount of custom-built hardware.

The boards allow graphics accelerator cards to interface distributed shared memory that is

also shared by a number of PCs in the graphics cluster. Figure 7.7 and 7.8 show the overall

design of the architecture. One of the main design objectives is to keep the custom-built

hardware part of the system as small and simple as possible while still enabling high perfor-

mance computations. Adaptability to the latest generation of desktop graphics acceleration

hardware was a further important issue, as the highly competitive nature of this market

ensures that the performance of these cards increases dramatically with each new version.

Also an ability to change parts of the hardware design after the PCB for the GPU/FPGA

nodes are manufactured and populated with Integrated Circuits (IC) is very desirable in or-

der to conduct research into different implementation alternatives. Reconfigurable hardware

in the form of FPGAs is an ideal solution to meet all these design objectives, with the added

advantage of providing substantial additional compute resources for the application stages

of the parallel graphics pipelines. These additional resources can be used to implement al-

Hardware DSM Testbeds 128

PCs to PCs
GPUs to GPUs

PCs to GPUs

CPU 1 CPU 2

Commodity
SMP PC

SCI
SCI Card
Commodity

Memory

SCI

Bridge
North

Bridge
PCI

CPU 1 CPU 2

Commodity
SMP PC

SCI
SCI Card
Commodity

Memory

SCI

Bridge
North

Bridge
PCI

FPGA

FPGASCI

SCI
Memory

Commodity GPU

North
Bridge

FPGA

FPGASCI

SCI
Memory

Commodity GPU

North
Bridge

FPGA

FPGASCI

SCI
Memory

Commodity GPU

North
Bridge

PC node 1

PC node n

Custom−build FPGA/GPU node 1

Custom−build FPGA/GPU node 2

Custom−build FPGA/GPU node n

Commodity PC Cluster SCI Fabric GPU/FPGA Cluster

Figure 7.8: Hybrid Parallel Graphic Cluster.

gorithms usually executed on the CPU or GPU of a desktop machine. These algorithms

may be defined at compile time by the application developer and loaded into reconfigurable

hardware just as a traditional graphics application is loaded into the main memory.

Parallel Rendering and Sorting

The hybrid scalable DSM system of PCs, GPUs and Reconfigurable Hardware is a par-

allel rendering architecture and as such can be classified according to Molnar et al’s tax-

onomy [MCEF94]. This classification defines parallel rendering as a sorting problem and

divides the graphics pipelines into two main pipeline stages: geometry and rasterisation.

The geometry processing stage is concerned with transformation, clipping and lighting and

is parallelised by distributing subsets of the primitives in the scene over the available con-

current geometry stages. The rasterisation deals with scan-conversion, shading and visibility

determination and may take advantage of parallel rasterisation stages by assigning each stage

a share of the pixel calculations. The rasterisation is followed by image composition. In order

to increase the utilisation of the different parallel pipeline stages, a sorting or redistribution

of data between the main stages may be performed. Molnar et al’s taxonomy specifies

redistribution during the geometry processing as “sort-first”, sorting between the geome-

Hardware DSM Testbeds 129

Figure 7.9: The first prototype of the custom-built high-performance graphics cluster node.
The figure shows how a commodity graphics card interfaces the cluster node. It also depicts
the four SCI cables that should interconnect the custom-built GPU interface boards and the
PC cluster via a 2D torus topology. Detailed design by Ross Brennan.

try processing and rasterisation as “sort-middle” and a distribution during rasterisation as

“sort-last”.

Some compute clusters utilise a software infrastructure such as Stanford’s Chromium

[HHN+02] to convert a cluster of commodity, off-the-shelf desktop machines with graphics

acceleration cards into a parallel rendering system. Such systems can implement sort-first

and sort-last alternatives but sort-last mechanisms can only be achieved through expensive

read-backs of colour and depth buffers since this is the only form of access to data in the

graphics pipeline of a commodity GPU card. The sorting of data before it enters the differ-

ent stages of the parallel graphics pipelines allows load-balancing and therefore increases the

utilisation of the overall system. An efficient solution for load-balancing, a sort-first algo-

rithm, is provided through pre-transformation in order to determine the most suitable data

distribution over the GPUs [HEB+01]. These pre-transformations are part of the geometry

processing stage and calculate the screen space position of primitives in order to allocate

them to screen regions that are served by a particular GPU. This computation is one of

the overheads that must be carried by a scalable parallel rendering system in order to most

efficiently exploit parallelism.

Hardware DSM Testbeds 130

Sorting Acceleration

Clusters that provide parallel rendering facilities through a software infrastructure must

perform these pre-transformations with the assistance of the system’s CPUs as part of the

graphics pipeline’s application stages. In contrast, the architecture described here provides

the application stages with reconfigurable hardware resources on every GPU/FPGA node.

These FPGAs interface to the distributed shared memory in the same way as the GPUs and

CPUs are connected to the shared address space. This allows individual FPGAs to communi-

cate with each other at extremely low latencies and high bandwidth (>500Mbytes/s). This

additional infrastructure has the potential to implement complex sort-first load-balancing

mechanisms without any additional computational overhead for the CPUs and at superior

performance. Furthermore, a sort-last implementation on the tightly coupled cluster of

GPU/FPGA nodes will also be feasible. It is intended that these operations will be imple-

mented with limited or no CPU involvement.

Additional Features

In addition, the architecture provides features heretofore only available with high perfor-

mance, special purpose graphics acceleration hardware such as those in the Pomegranate

hardware [EIH00], which provides low-latency, high-bandwidth shared texture memory.

The commodity graphics cards have access to textures through the AGP aperture that is

implemented in the DSM and accessible to all GPUs and PCs in the cluster. Furthermore,

copying the GPUs’ frame buffer contents via the Digital Visual Interface (DVI) ports into

the DSM can be used to provide a shared distributed frame buffer. Alternatively, a copy

can be generated with frame buffer read-backs through the AGP interface. In cases where

a single display is driven by the hybrid graphics cluster, the final tile reassembly can be

implemented by composing the frame buffer copies from the DSM. Tile reassembly is in

this configuration required because every graphics pipelines’ frame buffer holds a particular

screen region or tile. This aproach provide functions similar to those provided by Stanford’s

Lightning-2 system [SEP+01] that reassembles multiple graphics card DVI outputs’ from

commodity rendering clusters in order to generate one or more outputs.

7.2.2 Interconnect Technology

The interconnect, in conjunction with the reconfigurable hardware, fulfils a vital function

in the design. The distributed FPGAs allow the pipeline’s application stages to migrate

subsets of their computations from the CPUs onto the FPGAs, while an SCI interconnect

implements the DSM in hardware with some additional logic in the FPGAs. The SCI

standard defines a high bandwidth and low latency interconnect and is scalable to a large

number of nodes while providing bus-like services and flexible fabric configuration, i.e., nodes

may be interconnected using a variety of configurations such as two and three dimensional

Hardware DSM Testbeds 131

torii or as rings. Furthermore, crossbar switches, which allow various switch ports to be

directly connected, are also a possible solution and all of these configuration options are

available as commodity hardware. The SCI fabric flexibility guarantees the scalability of the

parallel rendering architecture.

SCI and Real-Time Constraints

Concurrent graphics operations require synchronisations that must meet real time con-

straints. Furthermore, interactive immersive scientific visualisation frequently involves com-

plex user input such as the tracking of the users’ motions. This motion-tracking data must be

processed rapidly to influence the animation in real time, as large latencies between motion

detection and animation can cause simulator sickness [PCC92]. SCI technology is already

being used in mission critical real-time applications. For example, Thales Airborne System

employs SCI for backplane communication in their EMTI unit (Data Processing Modular

Equipment). This scalable unit is integrated into the Mirage F1, 2000 and Rafale combat

aircraft, NH-90 helicopters, Leclerc tanks, sub-marines, the Charles de Gaulle aircraft carrier

and strategic missiles [New00]. The author, with colleagues, previously conducted research

on SCI fabric’s suitability for real-time application [MC99a, MKCL01].

7.2.3 Commodity and Custom-built GPU/FPGA Cluster Nodes

Figure 7.8 shows how a PC cluster is interconnected with commodity SCI cards. The SCI

fabric then connects the Commodity PC cluster to the custom-built GPU/FPGA cluster

nodes.

Cluster’s Commodity Desktop Machines

This part of the scalable parallel rendering cluster is completely assembled from commodity

components and provides the services of a non-cache-coherent hardware DSM. Increasing

the number of nodes and possibly changing the SCI fabric topology allows scalability to be

achieved. These nodes execute that part of the graphics pipeline’s application stages that

are not migrated onto the FPGAs on the GPU/FPGA nodes shown in Figure 7.10.

Cluster’s Custom-built GPU/FPGA Boards

The GPU/FPGA cluster nodes are custom-built boards that provide an AGP slot for com-

modity graphics accelerator cards (See Figure 7.10). Two SCI LCs interface to a Xilinx

XC2V2000-5FF896C FPGA (Bridge-FPGA) via the 64 bit Blink-bus at 800 Mbytes/s. These

LCs can be purchased from the manufacturer of the SCI cards [Dol05] as Application Spe-

cific Integrated Circuits (ASIC)s and solve many of the SCI link-level implementation chal-

lenges. The Bridge-FPGA is connected to a second Xilinx XC2V1000-4FF896C FPGA

(Control-FPGA) via an Advanced Microcontroller Bus Architecture (AMBA) bus at 400

Hardware DSM Testbeds 132

Reconfigurable
Graphics Algorithm

FPGA

Shared Memory

Control Logic

Management Unit

AGP 8X

North
Bridge

Intel

Memory
1 GB

Memory GPUD
V

I

SCI Link
Controller
TWO

SCI Link
Controller
ONE

Custom−build
GPU Interface

DVI IN

Commodity Graphics Accelerator Card

Display

System Control
FPGA

Sparc Soft CPU
including OS or

Figure 7.10: GPU Cluster Node with commodity graphics card in AGP slot

Mbytes/s [Lim99], and to an Intel i865G chip (Northbridge). The Front-Side Bus (FSB)

between the Bridge-FPGA and the Northbridge operates at 3.2 Gbytes/s. The Northbridge

then provides a 2.7 Gbyte/s interface to 1 Gbyte of Double Data Rate (DDR) memory and

a 2.1 Gbytes/s link to the AGP slot. The DDR memory forms part of the global address

space. It is the Bridge-FPGA’s task to translate global address space memory references into

SCI transactions and vice versa. Figure 7.11 shows the layout of the printed circuit board

(Detailed design by Ross Brennan). This PCB has 10 layers and 5908 pins and vias in order

to mount 1277 components. Ten prototype PCBs have been manufactured and two have

been assembeled at a cost of EUR3000 per board. The boards are currently been debugged

and outstanding problems are being corrected for the next revision. It can be expected that

this price will be significantly lower if manufactured in larger quantities.

Some of the services provided by a commodity SCI card must also be implemented in

the Bridge-FPGA in order to allow the PCs to function with the GPU/FPGA cluster nodes.

The shared memory management is one of the main functions of this Bridge-FPGA. The

second and equally important objective is to execute application-specific graphics algorithms

as outlined previously. In this design the memory and the graphics subsystem are directly

connected via the Northbridge and the Bridge-FPGA is connected to the SCI Blink bus.

This approach avoids bandwidth restrictions and additional latencies that are introduced in

commodity SCI cards by the I/O bus.

The direct SCI connection of the GPU/FPGA nodes classifies these nodes as tightly cou-

pled, relative to the less tightly coupled commodity SCI cards. Nevertheless, the commod-

Hardware DSM Testbeds 133

Figure 7.11: PCB.

ity SCI cards achieve approximately 300 Mbytes/s with 1.46 µs application-to-application

latency. The maximum bandwidth of the commodity SCI cards is dependent on the mother-

board’s chipset [Dol04]. Measurements on two-node and four-node fabrics have demonstrated

that FPGAs directly connected to the Blink may exchange data at more than 500 Mbytes/s

over the SCI fabric [NT01]. Latency measurements for this configuration are not available

but it is reasonable to assume that transactions that do not have to pass through the PCI

bus will exhibit a low latency (� 1.5 µs).

Control of the Cluster’s Custom-built GPU/FPGA Boards

The second “Control-FPGA” on the GPU/FPGA cluster nodes implements the control of

the board through logic or holds a LEON soft CPU [AGE05]. This SPARC compatible

processor may be clocked at 100MHz. The LEON core was developed by the European

Space Agency (ESA) for space missions and is available as open source Hardware Description

Languages (HDL). The soft CPU is intended to execute RTEMS, an open source hard real-

time OS for embedded systems [RTE05]. It is not intended that the control logic or the soft

CPU and its real-time OS to participate in computation of the graphics rendering pipeline.

It should merely function as a control processor that provides services that are required for

the operation of the parallel rendering cluster.

Chapter 8

Compute Cluster State Estimation

Algorithm (C2STATE)

Section 2.1 “Trace Data Acquisition and Analysis” on page 30, section 6.2 “Optimisation

Analysis” on page 108, section 6.3 “Uniprocessor Systems Evaluation” on page 116 and

section 6.4 “SMP Systems Evaluation” on page 120 provide extensive experimental results

and a discussion of the results for single-node systems. Furthermore some of the experimental

results are provided an appendix B “PMC Offline Autocorrelation Analysis” on page 157.

This chapter extends the filter to a hardware DSM cluster implementation. I have named

the resulting global DSM state estimation algorithm the “Compute Cluster State Estimation

Algorithm (C2STATE)”.

Node 2 (SMP)Node 1 Node n

PMC 1 PMC 2 TSC

Local Memory

State

Estimation

Algorithm

Shared
Memory

Local Memory Local Memory

State

Estimation

Algorithm

PMC 1 PMC 2 TSC

State

Estimation

Algorithm

CPU 1

CPU 2

PMC 1 PMC 2 TSC

PMC 1 PMC 2 TSC

PMC

PMC
Estimation

Acquisition

Sy
nc

ro
ni

sa
tio

n

Figure 8.1: Compute Cluster State Estimation Algorithm (C2STATE)

Compute Cluster State Estimation Algorithm (C2STATE) 135

8.1 The C2STATE Algorithm

As with the single node state estimation implementations, whether dealing with a uniproces-

sor or a SMP system, all the available PMC and TSC registers in a cluster can be sampled

and processed at discrete time steps ∆t. Accurate sample intervals are esential for the

correctness of the estimation algorithm.

In a hardware DSM implementation, a single node algorithm, as introduced in section 5.1,

can be executed on every node to fuse PMC readings from all the nodes into its state

vector x̂k. Therefore every node computes a state estimate of the PMCs registers from all

the systems that participate in this algorithm. The sampling of PMC readings at discrete

time steps ∆t and subsequent processing in all the systems requires a synchronisation.

Furthermore the sampled PMC readings must be made available to the other nodes and

must represent the same time interval. The synchronisation and PMC data communication

can be implemented through a hardware DSM system, if available. In this case, the testbed

described in section 7.1 is able, via the SISCI low-level API [GAB+99], to read and write

remote and local memory locations that hold PMC readings and is also able to synchronise

the state estimation algorithms through remote SCI interrupts.

Fig. 8.1 shows how this compute cluster state estimation algorithm (C2STATE) is dis-

tributed over n nodes. It depicts how local PMC readings are written into shared memory

and read by the single node algorithms in all the nodes. It also indicates the synchronisation

of all the PMC acquisitions and subsequent processing in the Kalman filters.

Once the number of monitored PMC events exceeds the number of available PMC regis-

ters it becomes necessary to employ the one performance monitoring counter (PMC) set-at-

a-time solution that was discussed in section 5.3. As a consequence the measurement vector

zk increases in size. Table 8.1 provides an example that uses the testbed configuration de-

scribed in section 7.1. For the first sample in this table, the algorithm selects two PMC

events (DATA MEM REFS and DCU LINES IN) in all of the CPUs. Since every local esti-

mation algorithm fuses all of the PMC registers in all nodes the measurement vector zk must

allocate elements for these readings. For the second sample, the PMC acquisition selects the

next two PMC events (DATA MEM REFS and DCU LINES IN) and processes the readings

accordingly. Again the measurement vector zk must be adjusted. The number of elements

in the measurement vector zk also determines the size of the vectors and matrices in the

Kalman filters (see table 5.4 on page 91).

This procedure continues until the last two PMC events (FP COMP OPS EXE and

FP ASSIST) have been selected. During the next discrete time step ∆t the algorithm again

selects the two PMC events (DATA MEM REFS and DCU LINES IN) from the first sample

in order to fuse the readings in the state vectors x̂k. This round-robin scheduling of PMC

events and their fusion into the state vectors x̂k continues until the algorithm is stopped. A

coarse outline of the C2STATE algorithm is as follows:

Compute Cluster State Estimation Algorithm (C2STATE) 136

1. Start the C2STATE algorithm on all nodes

2. Initialise the SISCI library and map remote memories from all the nodes into the

application virtual memory.

3. Setup SCI remote interrupts for synchronisation.

4. Allocate memory for vectors and matrices listed in:

• Table 5.2 on page 88.

• Table 5.4 on page 91.

5. Load parameters for the selected PMC events:

• For the integrated Gauss-Markov process models β, σ2 and t

• For the elements of the measurement noise covariance matrix Rk

6. Initialise the state transition matrix φk Eq.(5.18) on page 70 with parameters for the

selected PMC events from step 4.

7. Initialise the process noise covariance matrix Qk Eq.(5.19) on page 70 with parameters

for the selected PMC events from step 4.

8. Select two PMC events on every CPU from the range of selected PMC events.

9. Sample the PMC and TSC register at sample time t.

10. All nodes copy PMC and TSC readings into shared memory.

11. All nodes read data into the correct location in the measurement vector zk

12. Execute Kalman filter algorithm Fig. 5.3 on page 65 with one performance monitoring

counter PMC set at a time modification that was discussed in section 5.3.

13. Return to step 8 if the algorithm is not stopped.

14. Stop the execution.

8.2 Memory Hierarchy Performance Measurements on Shared

Memory Clusters

The proposition that a valid global hardware DSM state estimation is possible (the hypoth-

esis) can be tested in the same fashion as was done in the single-node case. This section

provides some acquisition and estimation examples using the C2STATE algorithm. The

Compute Cluster State Estimation Algorithm (C2STATE) 137

Zk PMC CPU Node Sample PMC Event PMC #

z1k PMC 1 CPU 1 SMP1 1 DATA MEM REFS 1
z2k PMC 2 DCU LINES IN 2
z3k PMC 1 CPU 2 DATA MEM REFS 1
z4k PMC 2 DCU LINES IN 2
z5k PMC 1 CPU 1 SMP2 DATA MEM REFS 1
z6k PMC 2 DCU LINES IN 2
z7k PMC 1 CPU 2 DATA MEM REFS 1
z8k PMC 2 DCU LINES IN 2
z9k PMC 1 CPU 1 CPCI1 DATA MEM REFS 1
z10k PMC 2 DCU LINES IN 2

z11(k+1) PMC 1 CPU 1 SMP1 2 L2 DBUS BUSY 36
z12(k+1) PMC 2 L2 DBUS BUSY RD 37
z13(k+1) PMC 1 CPU 2 L2 DBUS BUSY 36
z14(k+1) PMC 2 L2 DBUS BUSY RD 37
z15(k+1) PMC 1 CPU 1 SMP2 L2 DBUS BUSY 36
z16(k+1) PMC 2 L2 DBUS BUSY RD 37
z17(k+1) PMC 1 CPU 2 L2 DBUS BUSY 36
z18(k+1) PMC 2 L2 DBUS BUSY RD 37
z19(k+1) PMC 1 CPU 1 CPCI1 L2 DBUS BUSY 36
z20(k+1) PMC 2 L2 DBUS BUSY RD 37

...
...

...
... 3 to m-1

...
...

z(n−9)(k+m)
PMC 1 CPU 1 SMP1 m FP COMP OPS EXE 73

z(n−8)(k+m)
PMC 2 FP ASSIST 74

z(n−7)(k+m)
PMC 1 CPU 2 FP COMP OPS EXE 73

z(n−6)(k+m)
PMC 2 FP ASSIST 74

z(n−5)(k+m)
PMC 1 CPU 1 SMP2 FP COMP OPS EXE 73

z(n−4)(k+m)
PMC 2 FP ASSIST 74

z(n−3)(k+m)
PMC 1 CPU 2 FP COMP OPS EXE 73

z(n−2)(k+m)
PMC 2 FP ASSIST 74

z(n−1)(k+m)
PMC 1 CPU 1 CPCI1 FP COMP OPS EXE 73

zn(k+m) PMC 2 FP ASSIST 74

Table 8.1: The Kalman Filter’s Measurement Vector Structure for the C2STATE Algorithm.
Please see table A.1 for more details on the selected PMC events.

algorithm was implemented on the testbed cluster described in section 7.1 on page 124.

Furthermore the filter was configured with same list of PMC events as used in section 6.3

(please see table 6.2 for details). Consequently every CPU in the cluster must sample the

six specified PMC events. The layout of the measurement vector zk can be determined from

table 8.1 on page 137 in conjunction with the list of selected PMC events. With the 5 CPUs

in the system (two SMPs and the CompactPCI uniprocessor) the total number of sampled

Compute Cluster State Estimation Algorithm (C2STATE) 138

PMC events comes to 30. Fig. 8.2 and Fig. 8.3 show the first and the last 15 estimated PMC

event counts respectively. It should be pointed out that every node in the system can have

a global view of the system’s state in real-time at a granularity of 20ms for Linux systems.

This is a considerable feat in itself.

Cluster PMC Estimation (First 15)

PMC Estimate

 50
 60

 70
 80

 90
 100

Sample Number (n*Delta t) IFU_IFETCH_MI-CPU2-SMP1
IFU_IFETCH-CPU2-SMP1

IFU_IFETCH_MI-CPU1-SMP1
IFU_IFETCH-CPU1-SMP1

DCU_LINES_IN-CPU1-CPCI1
DATA_MEM_REFS-CPU1-CPCI1

DCU_LINES_IN-CPU2-SMP2
DATA_MEM_REFS-CPU2-SMP2

DCU_LINES_IN-CPU1-SMP2
DATA_MEM_REFS-CPU1-SMP2

DCU_LINES_IN-CPU2-SMP1
DATA_MEM_REFS-CPU2-SMP1

DCU_LINES_IN-CPU1-SMP1
DATA_MEM_REFS-CPU1-SMP1 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

Number of PMC Events/Delta t

Figure 8.2: Cluster PMC Estimation (First 15)

As in the case of the uniprocessor it is interesting to look at derived performance mea-

surements since these cannot be measured without the data fusion provided by the filter.

Again the PMC events specified in table 6.2 are used. Fig. 8.4 shows how the filter applies

Eq.(6.26) to calculate the L1 Instructions Fetch Unit (IFU) Hit Rate, and very clearly shows

the caching behaviour. Similarly Fig. 8.5 presents the L1 to L2 Bandwidth in MB/s for

every CPU in the cluster. The Filter achieves this by using Eq.(6.28) to compute the L1 to

L2 Bandwidth for information provided in the state vector.

Fig. 8.4 and Fig. 8.5 demonstrate how the C2STATE algorithm may be applied to monitor

parallel applications at runtime. Fig. 8.6 is another example that shows for every CPU in

the cluster their L1-L2 bandwidth minus the average L1-L2 bandwidth. Again the global

view of the system’s performance allows observation of this information from every node in

the system. The global DSM state estimation algorithm works, and has clear potential use

for cluster optimisations.

Compute Cluster State Estimation Algorithm (C2STATE) 139

Cluster PMC Estimation (Last 15)

PMC Estimate

 50
 60

 70
 80

 90
 100

Sample Number (n*Delta t) L2_LINES_IN-CPU1-CPCI1
INST_RETIRED-CPU2-SMP2

L2_LINES_IN-CPU2-SMP2
INST_RETIRED-CPU1-SMP2

L2_LINES_IN-CPU1-SMP2
INST_RETIRED-CPU2-SMP1

L2_LINES_IN-CPU2-SMP1
INST_RETIRED-CPU1-SMP1

L2_LINES_IN-CPU1-SMP1
IFU_IFETCH_MI-CPU1-CPCI1

IFU_IFETCH-CPU1-CPCI1
IFU_IFETCH_MI-CPU2-SMP2

IFU_IFETCH-CPU2-SMP2
IFU_IFETCH_MI-CPU1-SMP2 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

Number of PMC Events/Delta t

Figure 8.3: Cluster PMC Estimation (Last 15)

L1 Instruction Fetch Unit Hit Rate

HitRates

 50
 60

 70
 80

 90
 100

Sample Number (n*Delta t) CPU1 CPCI1

CPU2 SMP2

CPU1 SMP2

CPU2 SMP1

CPU1 SMP1 0.945
 0.95

 0.955
 0.96

 0.965
 0.97

 0.975
 0.98

 0.985
 0.99

 0.995

Hit Rate

Figure 8.4: Cluster L1 Instruction Fetch Unit Hit Rate

Compute Cluster State Estimation Algorithm (C2STATE) 140

Cluster L1 - L2 Bandwidth and L2 - Memory Bandwidth

 2.5e+04
 2e+04
 1.5e+04
 1e+04
 5e+03

 50
 60

 70
 80

 90
 100

Sample Number (n*Delta t) CPU1 CPCI1 L2 - Memory
CPU1 CPCI1 L1 - L2

CPU2 SMP2 L2 - Memory
CPU2 SMP2 L1 - L2

CPU1 SMP2 L2 - Memory
CPU1 SMP2 L1 - L2

CPU2 SMP1 L2 - Memory
CPU2 SMP1 L1 - L2

CPU1 SMP1 L2 - Memory
CPU1 SMP1 L1 - L2 0

 5000

 10000

 15000

 20000

 25000

 30000

Bandwidth MB/sec

Figure 8.5: Cluster L1 - L2 Bandwidth and L2 - Memory Bandwidth

L1 - L2 Bandwidth minus Cluster wide Average Bandwidth

 2e+03
 0

 -2e+03

 50
 60

 70
 80

 90
 100

Sample Number (n*Delta t) CPU1 CPCI1

CPU2 SMP2

CPU1 SMP2

CPU2 SMP1

CPU1 SMP1-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

Bandwidth MB/sec

Figure 8.6: L1 - L2 Bandwidth minus Cluster wide Average Bandwidth

Compute Cluster State Estimation Algorithm (C2STATE) 141

8.3 Work Loads

As a final note, all examples presented in this chapter, chapter 5 and chapter 6 were generated

while either a BYTEmark [BYT06] benchmark program or Celestia [Cel06] application was

executed. According to the Linux “top” utility the benchmark consumed almost 99% of

the CPU and the Celestia application consumed around 50% of the CPU depending on the

configuration. It is interesting to note that the C2STATE algorithm consumed only 1%

of the CPU and sampled at a very high accuracy. The histogram in Fig. 2.4 on page 37

shows how the sample time changes around the mean of 3.9532e+07 clock cycles. The CPU

operates at 1 GHz, consequently the mean ∆t of 3.9532e+07 clock cycles is equivalent to

39.532 ms. The samples have a standard deviation of σ = 1.1074e + 5.

Fig. 6.13, Fig. 6.14 and Fig. 6.15 were plotted based on PMC readings that were caused

by a Celestia application. The PMC acquisition in chapter 5 took place while the same

application generated PMC events.

The BYTEmark Assignment algorithm is associated with Fig. 6.16 and Fig. 6.17 and data

for Fig. 8.2, Fig. 8.3, Fig. 8.4, Fig. 8.5 and Fig. 8.6 were generated while the BYTEmark

String sort benchmark was executed.

The following is a description from the BYTEmark web page:

“Assignment algorithm - A well-known task allocation algorithm. The test

moves through large integer arrays in both row-wise and column-wise fashion.

Cache/memory with good sequential performance should see a boost (memory

is altered in place – no moving as in a sort operation). Processing is done in

32-bit chunks – no advantage given to 64-bit processors. String sort - Sorts an

array of strings of arbitrary length. Tests memory-move performance. Should

exercise non-sequential performance of cache, with added burden that moves are

byte-wide and can occur on odd address boundaries. May tax the performance of

cell-based processors that must perform additional shift operations to deal with

bytes” [BYT06].

Chapter 9

Conclusions and Future Work

All aspects of this thesis are either concerned with the architectural organisation or the

performance analysis of hardware DSM clusters. The target systems utilise implementations

of the IEEE SCI interconnect standard to make loosely or tightly coupled NUMA services

available to the OSs and the applications that may run on them. It is this SCI technology

that can transform a collection of uniprocessor and SMP machines into a system that allows

individual CPUs to access remote memories in hardware without OS intervention.

9.1 Performance Analysis

Two aspects of performance analysis were covered in this thesis. Firstly this work looked

at the non-invasive acquisition of real-time SCI interconnect traffic. To this end a SCI deep

trace acquisition instrument was designed and built. It was also necessary to develop a

software infrastructure that enabled the conduct of detailed off-line analyses of SCI traces.

At the time of the instrument design and assembly no technology was available to perform

deep tracing. This has since changed. The analysis software infrastructure is built around

a relational database that accepts decoded and time-stamped SCI packets and allows for a

detailed spatial and temporal analysis at SCI packet granularity. SCI packets hold encoded

routing and flow-control information in addition to their payload. This enables sophisticated

queries into a relational database of these SCI packet fields.

The tuning of a SCI topology simulation directly applied the deep trace instrument and

its associated software infrastructure. SCI database queries were executed to filter relevant

packets for a subsequent statistical analysis. The packet’s routing and flow-control database

fields allow for this filter process. The simulation requires statistics about packet producers

and consumers, in the form of PDFs, to stimulate interconnect traffic in the simulation.

Tuned simulation results for particular SCI interconnect topologies were compared against

real systems and demonstrated that the method is able to predict the performance of a

proposed topology. It should also be pointed out that the non-invasive and time-stamped

Conclusions and Future Work 143

acquisition of interconnect traffic captures the true behaviour of the system. This is some-

thing that cannot be achieved with invasive methods such as software instrumentation.

Secondly the implementation of the C2STATE algorithm demonstrates that a discrete

minimum mean-square error filter may be successfully applied to fuse concurrent and se-

quential observations of system event counts into a state vector. This technique allows the

observation of an increased variety of PMC events without sacrificing accuracy. The optimal

estimate of large sets of performance counter processes provides us with the means to observe

complex systems by combining the elements of the state vector to infer system metrics that

are unobservable with a restricted number of counter readings.

Fundamental to this approach is the modelling of PMC readings as random processes.

This idea was conceived while analysing SCI interconnect traffic in order to infer PDFs

for the parameterisation of the SCI interconnect model. Similarly a Kalman filter requires

parameters for the random process models. This requires the repeated acquisition of long

sample series for subsequent autocorrelation analyses. Every available PMC event must be

processed in this fashion in order to derive process model parameters for the Kalman filter.

This is a time consuming undertaking and is further discussed in section 9.2 Limitation and

Future Work.

An important observation is that if the filter has to perform the full matrix and vector

operations then it is not feasible to fuse a larger number of PMC readings into the state

vector. As the filter quickly consumes a large percentage of the available CPU time. If

we further increase the number of PMC events then it will not be able to schedule PMC

samples at appropriate sample intervals. Fortunately the assumption that all of the PMC

random processes are independent leads to sparsely populated matrices that can be far more

efficiently executed. This is also further discussed in section 9.2 Limitation and Future Work.

9.1.1 Hardware DSM Testbeds

A loosely coupled SCI based cluster had to be assembled. This general-purpose cluster was

entirely constructed with commodity components and was used to implement the C2STATE

algorithm.

A tightly coupled SCI cluster was also designed and is currently being implemented. The

design of this scalable graphics cluster was motivated by the desire to take full advantage of

the hardware DSM functionality. This special-purpose cluster could incorporate features that

would provide room for novel research. One design objective was to allow for the integration

of the C2STATE algorithm into the cluster to investigate its suitability for load balancing of

interactive parallel graphics applications. Unlike scientific high performance computations

that ideally require load balancing at a granularity � 20ms, parallel hardware-accelerated

polygonal renderers could take advantage of a load balancing algorithm that operates at

frame rates. On Linux systems it is the OS’s ability to schedule tasks that determines the

PMC-register sampling rate, currently at 20ms. Consequently a load balancing algorithm

Conclusions and Future Work 144

that is assisted by feedback from the C2STATE PMC state estimation algorithm could

operate at 50 frames/second.

Very loosely coupled graphics clusters of commodity PCs that exploit multiple GPUs

have been investigated. In these systems the graphics processor are distributed over the

cluster nodes and the cluster uses a software infrastructure to schedule graphics instructions

onto the various GPUs in the system. Typically the interconnect limits the performance of

these systems.

The tightly coupled SCI cluster design aims to provide superior performance for interac-

tive graphics applications. The design is novel in that all computational units such as the

CPUs and the GPUs interface to the same DSM and also connect the FPGAs on every GPU-

node to this DSM. Logic in these reconfigurable units can control the GPU and allows them

to communicate directly with each other. The FPGA could also perform graphics related

computation such as implementing specific physics operations. The design requires a limited

amount of custom-built hardware and provides a tightly coupled scalable NUMA architec-

ture of distributed FPGAs, GPUs and local memory. It is expected that this hardware DSM

will communicate data at 500Mbytes/s with low latencies (� 1.5 µs). This hard real-time

capable parallel rendering cluster also interfaces with the same high speed interconnect, to

a commodity PÇ cluster that execute the graphics application. Based on the arguments

presented, this solution is expected to outperform pure commodity implementations without

increased hardware cost and yet maintain its adaptability to the most recent generation of

commodity graphics accelerators and target applications. The next prototype version will

incorporate a PCI-Express interface to be compatible with the latest commodity graphics

accelerators. The conceptual design is part of this thesis but the detailed design and its

implementation is my PhD student’s work.

9.2 Limitations and Future Work

There are of course limitations to the research presented in this thesis, and it is appropriate

to discuss potential research that could build on the work presented here.

9.2.1 SCI Trace Acquisition and Analysis

The current acquisition of trace-data at a single point in the SCI fabric (Blink or cable)

has certain restrictions e.g. it is not possible to analyse latencies between two or more

measurement points in the interconnect. Consequently it would be advantageous to extend

the software and hardware infrastructure to allow for a synchronised collection of trace-data

with two or more instruments that deposit their trace-data in a common trace database for

a subsequent analysis.

Conclusions and Future Work 145

9.2.2 C2STATE Algorithm

The determination of the process model’s parameters through the acquisition of several long

PMC sample series and a subsequent autocorrelation analysis is very time consuming and

provides only a suboptimal process model because parameters change with the system load.

The parameters represent an approximation. An alternative solution would be to investi-

gate Adaptive Kalman Filter (AKF)s that estimate the process model’s parameters at run

time. A substantial amount of research has been conducted in this area for various applica-

tion [YWA05, MZ02, TK92, SW87, AW06]. This would be the most important improvement

and would allow the C2STATE algorithm to run on various systems without the need to

tune the filter.

It would also be desirable to identify dependencies between various PMC events in order

to formalise new random process models that reflect these dependencies. These more complex

process models could sustain longer unsampled periods of their contributing PMC events if

individual PMC events lower the uncertainty in the estimation by providing sample readings

to the filter. This would result in less sparse matrix operations, which are computationally

more expensive. Therefore one has to investigate the extent to which this would be feasible.

A number of researchers successfully investigated PMC events to predict the run-time

CPU and memory power consumption [IM03, Bel00, Mar01, KCK+01, LJ03]. Contreras and

Martonosi [CM05b] used a first-order, linear power estimation model to observe CPU and

memory power consumption based on PMC readings. The C2STATE algorithm has the po-

tential to estimate a DSM system-wide power consumption of the CPU’s micro-architectures

and other subsystems observable.

Duesterwald et al. [DCS03] investigated the time-varying behaviour of a number of bench-

mark programs through the observation of metrics that were derived from PMC event read-

ings. They pointed out that the behaviour across metrics, such as Instructions Per Cy-

cle (IPC) and Level 1 Cache (L1) misses, differs, but that the periodicity in the behaviour is

shared across metrics. Duesterwald et al. proposed to exploit this correlation for the predic-

tion of computational phases in order to optimise adaptive micro-architectures or OSs. The

C2STATE algorithms could incorporate the correlation between the metrics in its process

model in order to more accurately predict the further behaviour (one sample interval ahead)

of the system and therefore identify computational phases.

As previously mentioned the estimation algorithm could provide feedback for run-time

load balancing of the tightly coupled scalable graphics cluster at frame rate granularity.

9.2.3 Interconnect Measurements

The SCI interconnect cards also provide PMC register. In order to monitor parallel ap-

plications on these hardware DSM system it would be interesting to merge interconnect

performance information into the state-vector. This must be left for future work.

Conclusions and Future Work 146

9.2.4 Tightly Coupled Scalable Graphics Cluster

Beyond the design and implementation of the hardware architecture, the main thrust of

this research is to design a software infrastructure that best exploits the performance poten-

tial of this scalable tightly-coupled cluster of commodity graphics cards and FPGAs. From

the programmer’s perspective, the architecture provides programmability of the concurrent

graphics rendering pipelines at multiple stages: The commodity PCs and the distributed

FPGAs may be programmed. The programming of the reconfigurable hardware could either

be achieved through HDL such as (VHSIC) Hardware Description Language (VHDL) or high

level languages such SystemC. Depending on the target application the programmability of

the different pipeline stages must be exploited with a specific approach. Interactive real time

immersive scientific visualisation may require the reconfigurable hardware to implement effi-

cient sort-first and sort-last mechanisms. For interactive graphics applications, it is intended

to implement Chromium-like services by providing a full abstraction of the underlying par-

allel graphics architecture. A sequential or parallel OpenGL application may be executed on

one or more of the cluster’s commodity PCs and the resulting OpenGL commands may be

distributed over the available resources. As much as possible of the Chromium [HEB+01]

infrastructure should be migrated onto the distributed FPGAs.

9.2.5 Implementation of the C2STATE Algorithm on the Graphics Cluster

Clearly the C2STATE algorithm can be executed on the loosely coupled hardware DSM

cluster. The challenge will be to execute the algorithm in conjunction with the custom-built

GPU/FPGA nodes, but this is future work.

9.2.6 Contributions

The following enumerated list encapsulates the contributions of this thesis:

1. Collaboration in the design of a SCI interconnect trace instrument and the full design

and implementation of the associated software infrastructure.

2. The application of the SCI interconnect trace instrument to the tuning of SCI inter-

connect topology simulations.

3. Design, implementation and evaluation on a loosely coupled cluster of a performance

state estimation algorithm, C2STATE, that provides a global view of hardware DSM

systems.

4. The design of the tightly coupled scalable graphics cluster as an explicit tightly coupled

target for the C2STATE algorithm.

Appendix A

Appendix:PIII Performance

Monitoring Counters (PMC)

Description

The following provides information about the Intel PIII PMCs.

Description Symbol

Data Cache Unit (DCU)

1 All loads from any memory Type DATA MEM REFS

2 Total lines allowed in the DCU DCU LINES IN

3 Number of M state lines allowed

in the DCU

DCU M LINES IN

4 Number of M state lines evicted

from the DCU

DCU M LINES OUT

5 Weighted number of cycles while

a DCU miss is outstanding

DCU MISS OUTSTANDING

Instruction Fetch Unit (IFU)

6 Number of instruction fetches,

both cacheable and noncacheable

IFU IFETCH

7 Number of instruction fetch

misses

IFU IFETCH MISS

8 Number of ITLB misses ITLB MISS

9 Number of cycles instruction

fetch is stalled, for any reason

IFU MEM STALL

continued on next page

Appendix:PIII Performance Monitoring Counters (PMC) Description 148

continued from previous page

Description Symbol

10 Number of cycles that the In-

struction Length Decoder (ILD)

is stalled

ILD STALL

L2 Cache

11 Number of L2 instruction fetches

(MESI)

L2 IFETCH MESI

12 Number of L2 instruction fetches

(M STATE)

L2 IFETCH M STATE

13 Number of L2 instruction fetches

(E STATE)

L2 IFETCH E STATE

14 Number of L2 instruction fetches

(S STATE)

L2 IFETCH S STATE

15 Number of L2 instruction fetches

(I STATE)

L2 IFETCH I STATE

16 Number of L2 data loads (MESI) L2 LD MESI

17 Number of L2 data loads (M

STATE)

L2 LD M STATE

18 Number of L2 data loads (E

STATE)

L2 LD E STATE

19 Number of L2 data loads (S

STATE)

L2 LD S STATE

20 Number of L2 data loads (I

STATE)

L2 LD I STATE

21 Number of L2 data stores

(MESI)

L2 ST MESI

22 Number of L2 data stores (M

STATE)

L2 ST M STATE

23 Number of L2 data stores (E

STATE)

L2 ST E STATE

24 Number of L2 data stores (S

STATE)

L2 ST S STATE

25 Number of L2 data stores (I

STATE)

L2 ST I STATE

26 Number of lines allocated in the

L2

L2 LINES IN

continued on next page

Appendix:PIII Performance Monitoring Counters (PMC) Description 149

continued from previous page

Description Symbol

27 Number of lines removed from

the L2 for any reason

L2 LINES OUT

28 Number of modified lines allo-

cated in the L2

L2 M LINES INM

29 Number of modified lines re-

moved from the L2 for any rea-

son

L2 M LINES OUTM

30 Total number of L2 requests

(MESI)

L2 RQSTS MESI

31 Total number of L2 requests (M

STATE)

L2 RQSTS M STATE

32 Total number of L2 requests (E

STATE)

L2 RQSTS E STATE

33 Total number of L2 requests (S

STATE)

L2 RQSTS S STATE

34 Total number of L2 requests (I

STATE)

L2 RQSTS I STATE

35 Number of L2 address strobes L2 ADS

36 Number of cycles during which

the L2 caches data bus was busy

L2 DBUS BUSY

37 Number of cycles during which

the data bus was busy transfer-

ring read data from L2 to the

processor

L2 DBUS BUSY RD

External Bus Logic (EBL)

38 Number of clocks during which

DRDY is asserted (SELF)

BUS DRDY CLOCKS SELF

39 Number of clocks during which

DRDY is asserted (ANY)

BUS DRDY CLOCKS ANY

40 Number of clocks during which

LOCK is asserted on the exter-

nal system bus (SELF)

BUS LOCK CLOCKS SELF

41 Number of clocks during which

LOCK is asserted on the exter-

nal system bus (ANY)

BUS LOCK CLOCKS ANY

continued on next page

Appendix:PIII Performance Monitoring Counters (PMC) Description 150

continued from previous page

Description Symbol

42 Number of bus request outstand-

ing

BUS REQ OUTSTANDING

43 Number of burst read transac-

tions (SELF)

BUS TRAN BRD SELF

44 Number of burst read transac-

tions (ANY)

BUS TRAN BRD ANY

45 Number of completed read for

ownership transactions (SELF)

BUS TRAN RFO SELF

46 Number of completed read for

ownership transactions (ANY)

BUS TRAN RFO ANY

47 Number of completed write back

transactions (SELF)

BUS TRANS WB SELF

48 Number of completed write back

transactions (ANY)

BUS TRANS WB ANY

49 Number of completed instruction

fetch transactions (SELF)

BUS TRAN IFETCH SELF

50 Number of completed instruction

fetch transactions (ANY)

BUS TRAN IFETCH ANY

51 Number of completed invalidate

transactions (SELF)

BUS TRAN INVAL SELF

52 Number of completed invalidate

transactions (ANYY)

BUS TRAN INVAL ANY

53 Number of completed partial

write transactions (SELF)

BUS TRAN PWR SELF

54 Number of completed partial

write transactions (ANY)

BUS TRAN PWR ANY

55 Number of completed partial

transactions (SELF)

BUS TRANS P SELF

56 Number of completed partial

transactions (ANY)

BUS TRANS P ANY

57 Number of completed I/O trans-

actions (SELF)

BUS TRANS IO SELF

58 Number of completed I/O trans-

actions (ANY)

BUS TRANS IO ANY

59 Number of completed deferred

transactions (SELF)

BUS TRAN DEF SELF

continued on next page

Appendix:PIII Performance Monitoring Counters (PMC) Description 151

continued from previous page

Description Symbol

60 Number of completed deferred

transactions (ANY)

BUS TRAN DEF ANY

61 Number of completed burst

transactions (SELF)

BUS TRAN BURST SELF

62 Number of completed burst

transactions (ANY)

BUS TRAN BURST ANY

63 Number of all completed bus

transactions (SELF)

BUS TRAN ANY SELF

64 Number of all completed bus

transactions (ANY)

BUS TRAN ANY ANY

65 Number of completed memory

transactions (SELF)

BUS TRAN MEM SELF

66 Number of completed memory

transactions (ANY)

BUS TRAN MEM ANY

67 Number of bus clock cycles dur-

ing which this processor is receiv-

ing data

BUS DATA RCV

68 Number of bus clock cycles dur-

ing which this processor is driv-

ing the BNR pin

BUS BNR DRV

69 Number of bus clock cycles dur-

ing which this prcessor is driving

the HIT pin

BUS HIT DRV

70 Number of bus clock cycles dur-

ing which this processor is driv-

ing the HITM pin

BUS HITM DRV

71 Number of clock cycles during

which the bus is snoop stalled

BUS SNOOP STALL

Floting Point Unit

72 Number of computational

floating-point operations retired

FLOPS

73 Number of computetional

floating-point operations exe-

cuted

FP COMP OPS EXE

continued on next page

Appendix:PIII Performance Monitoring Counters (PMC) Description 152

continued from previous page

Description Symbol

74 Number of floating-point excep-

tion cases handled by microcode

FP ASSIST

75 Number of multiplies MUL

76 Number of divides DVI

77 Number of cycles during which

the divider is busy, and cannot

accept new divides

CYCLE DIV BUSY

Memory Ordering

78 Number of load operations de-

layed due to store buffer blocks

LD BLOCKS

79 Number of store buffer drain cy-

cles

SB DRAINS

80 Number of misaligned data mem-

ory references

MISALIGN MEMREF

81 Number of streaming SIMD ex-

tensions prefetch/weakly ordered

instruction dispached (prefetch

NTA)

EMON KNI PREF DISPATCHED NTA

82 Number of streaming SIMD ex-

tensions prefetch/weakly ordered

instruction dispached (prefetch

T1)

EMON KNI PREF DISPATCHED T1

83 Number of streaming SIMD ex-

tensions prefetch/weakly ordered

instruction dispached (prefetch

T2)

EMON KNI PREF DISPATCHED T2

84 Number of streaming SIMD ex-

tensions prefetch/weakly ordered

instruction dispached (weakly or-

dered stores)

EMON KNI PREF DISPATCHED WEAKLY

85 Number of prefetch/weakly or-

dered instruction that miss all

caches (prefetch NTA)

EMON KNI PREF MISS NTA

continued on next page

Appendix:PIII Performance Monitoring Counters (PMC) Description 153

continued from previous page

Description Symbol

86 Number of prefetch/weakly or-

dered instruction that miss all

caches (prefetch T1)

EMON KNI PREF MISS T1

87 Number of prefetch/weakly or-

dered instruction that miss all

caches (prefetch T2)

EMON KNI PREF MISS T2

88 Number of prefetch/weakly or-

dered instruction that miss all

caches (weakly ordered stores)

EMON KNI PREF MISS WEAKLY

Instruction Decoding and Retirement

89 Number of instructions retired INST RETIRED

90 Number of micro-ops retired UOPS RETIRED

91 Number of instructions decoded INST DECODED

92 Number of streaming SIMD

extentions retired (packed &

scalar)

EMON KNI INST RETIRED PACK SCA

93 Number of streaming SIMD ex-

tentions retired (scalar)

EMON KNI INST RETIRED SCA

94 Number of streaming SIMD ex-

tensions computation instruc-

tions retired (packed & scalar)

EMON KNI COMP INST RET PACK SCA

95 Number of streaming SIMD ex-

tensions computation instruc-

tions retired (scalar)

EMON KNI COMP INST RET SCA

Interrupts

96 Number of hardware interrupts

received

HW INT RX

97 Number of processor cycles for

which interrupts are disabled

CYCLES INT MASKED

98 Number of processor cycles for

which interrupts are disabled and

interrupt are pending

CYCLES INT PENDING AND MASKED

Branches

99 Number of branch instructions

retired

BR INST RETIRED

continued on next page

Appendix:PIII Performance Monitoring Counters (PMC) Description 154

continued from previous page

Description Symbol

100 Number of mispredicted

branches retired

BR MISS PRE RETIRED

101 Number of taken branches re-

tired

BR TAKEN RETIRED

102 Number of taken mispredicted

branches retired

BR MISS PRED TAKEN RET

103 Number of branch instructions

decoded

BR INST DECODED

104 Number of branches for which

the BTB did not produce a pre-

diction

BTB MISSES

105 Number of bogus branches BR BOGUS

106 Number of times BACLEAR is

asserted

BACLEARS

Stalls

107 Incremented by 1 during every

cycle for which there is a resource

related stall

RESOURCE STALLS

108 Number of cycles or events for

partial stalls

PARTIAL RAT STALLS

Segment Register Loads

109 Number of segment register loads SEGMENT REG LOADS

Clocks

110 Number of cycles during which

the processor is not halted

CPU CLK UNHALTED

MMX UNIT

111 Number of MMX saturating in-

structions executed

MMX SAT INSTR EXEC

112 Number of MMX micro-ops exe-

cuted

MMX UOPS EXEC

113 MMX instructions executed

(packed multiply)

MMX INSTR TYPE EXEC MULTIPLY

114 MMX instructions executed

(packed shift)

MMX INSTR TYPE EXEC SHIFT

115 MMX instructions executed

(pack operation)

MMX INSTR TYPE EXEC PACK

continued on next page

Appendix:PIII Performance Monitoring Counters (PMC) Description 155

continued from previous page

Description Symbol

116 MMX instructions executed (un-

pack operation)

MMX INSTR TYPE EXEC UNPACK

117 MMX instructions executed

(packed logical)

MMX INSTR TYPE EXEC LOGICAL

118 MMX instructions executed

(packed arithmetic)

MMX INSTR TYPE EXEC ARITHMETIC

119 Transition between floating-

point and MMX instructions

(MMX instruction to floting-

point)

FP MMX TRANS MMX TO FP

120 Transition between floating-

point and MMX instructions

(floting-point instruction to

MMX)

FP MMX TRANS FP TO MMX

121 Number of MMX assits (number

of EMMS instruction executed)

MMX ASSIST

Segment Register Renaming

122 Number of segment register re-

naming stalls (Segment Register

ES)

SEG RENAME STALLS ES

123 Number of segment register re-

naming stalls (Segment Register

DS)

SEG RENAME STALLS DS

124 Number of segment register re-

naming stalls (Segment Register

FS)

SEG RENAME STALLS FS

125 Number of segment register re-

naming stalls (Segment Register

GS)

SEG RENAME STALLS GS

126 Number of segment register re-

naming stalls (Segment Register

ALL)

SEG RENAME STALLS ALL

127 Number of segment register re-

names (Segment Register ES)

SEG REG RENAMES ES

128 Number of segment register re-

names (Segment Register DS)

SEG REG RENAMES DS

continued on next page

Appendix:PIII Performance Monitoring Counters (PMC) Description 156

continued from previous page

Description Symbol

129 Number of segment register re-

names (Segment Register FS)

SEG REG RENAMES FS

130 Number of segment register re-

names (Segment Register GS)

SEG REG RENAMES GS

131 Number of segment register re-

names (Segment Register ALL)

SEG REG RENAMES ALL

132 Number of segment register re-

name events retired

RET SEG RENAMES

Table A.1: PIII Performance Monitoring Counters Description

Appendix B

Appendix: PMC Offline

Autocorrelation Analysis

B.1 PMC Offline Autocorrelation Analysis Procedure

This section presents the full details for the offline autocorrelation analysis procedure de-

scribed in section 5.2 on page 71.

B.1.1 Histogram and Samples for real PMC Readings

 0
 5

 10
 15
 20
 25
 30
 35
 40

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET1 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000

 0

 20000

 40000

 60000

 80000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET1 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure B.1: Histogram and samples for sam-
ple set 1 on CPU 1

 0
 10
 20
 30
 40
 50
 60
 70
 80

-20000 -10000 0 10000 20000 30000 40000 50000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET1 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000

 0

 20000

 40000

 60000

 80000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET1 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure B.2: Histogram and samples for sam-
ple set 1 on CPU 2

Appendix: PMC Offline Autocorrelation Analysis 158

 0

 10

 20

 30

 40

 50

 60

 70

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET2 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET2 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure B.3: Histogram and samples for sam-
ple set 2 on CPU 1

 0

 10

 20

 30

 40

 50

 60

 70

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET2 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET2 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure B.4: Histogram and samples for sam-
ple set 2 on CPU 2

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET3 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET3 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure B.5: Histogram and samples for sam-
ple set 3 on CPU 1

 0

 10

 20

 30

 40

 50

 60

 70

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET3 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET3 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure B.6: Histogram and samples for sam-
ple set 3 on CPU 2

Appendix: PMC Offline Autocorrelation Analysis 159

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET4 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET4 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure B.7: Histogram and samples for sam-
ple set 4 on CPU 1

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET4 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET4 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure B.8: Histogram and samples for sam-
ple set 4 on CPU 2

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET5 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET5 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure B.9: Histogram and samples for sam-
ple set 5 on CPU 1

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET5 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET5 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure B.10: Histogram and samples for sam-
ple set 5 on CPU 2

 0

 5

 10

 15

 20

 25

 30

 35

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET6 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000

 0

 20000

 40000

 60000

 80000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET6 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure B.11: Histogram and samples for sam-
ple set 6 on CPU 1

 0

 10

 20

 30

 40

 50

 60

 70

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET6 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000

 0

 20000

 40000

 60000

 80000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET6 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure B.12: Histogram and samples for sam-
ple set 6 on CPU 2

Appendix: PMC Offline Autocorrelation Analysis 160

 0

 10

 20

 30

 40

 50

 60

 70

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET7 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET7 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure B.13: Histogram and samples for sam-
ple set 7 on CPU 1

 0

 10

 20

 30

 40

 50

 60

 70

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET7 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET7 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure B.14: Histogram and samples for sam-
ple set 7 on CPU 2

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET8 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET8 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure B.15: Histogram and samples for sam-
ple set 8 on CPU 1

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET8 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000

 0

 20000

 40000

 60000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET8 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure B.16: Histogram and samples for sam-
ple set 8 on CPU 2

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET9 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000
-10000

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET9 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure B.17: Histogram and samples for sam-
ple set 9 on CPU 1

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET9 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000
-10000

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET9 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure B.18: Histogram and samples for sam-
ple set 9 on CPU 2

Appendix: PMC Offline Autocorrelation Analysis 161

 0

 5

 10

 15

 20

 25

 30

 35

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_IN Counter on CPU 1

line 1

-20000

 0

 20000

 40000

 60000

 80000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET10 Event: L2_LINES_IN Counter on CPU 1

line 1

Figure B.19: Histogram and samples for sam-
ple set 10 on CPU 1

 0
 10
 20
 30
 40
 50
 60
 70
 80

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_IN Counter on CPU 2

line 1

-20000

 0

 20000

 40000

 60000

 80000

 0 500 1000 1500 2000 2500 3000

A
m

pl
itu

de

Sample Index

Samples of: SET10 Event: L2_LINES_IN Counter on CPU 2

line 1

Figure B.20: Histogram and samples for sam-
ple set 10 on CPU 2

B.1.2 Histogram and Samples for Simulated Readings

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 1 Counter Set - 3k samples

line 1

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 1 Counter Set - 3k samples

line 1

Figure B.21: Histogram and samples for sim-
ulation set 1

 0
 2
 4
 6
 8

 10
 12
 14
 16

-60000 -40000 -20000 0 20000 40000 60000 80000 100000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 2 Counter Set - 3k samples

line 1

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 2 Counter Set - 3k samples

line 1

Figure B.22: Histogram and samples for sim-
ulation set 2

 0
 2
 4
 6
 8

 10
 12
 14
 16

-40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 3 Counter Set - 3k samples

line 1

-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 3 Counter Set - 3k samples

line 1

Figure B.23: Histogram and samples for sim-
ulation set 3

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

-40000 -20000 0 20000 40000 60000 80000 100000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 4 Counter Set - 3k samples

line 1

-40000

-20000

 0

 20000

 40000

 60000

 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 4 Counter Set - 3k samples

line 1

Figure B.24: Histogram and samples for sim-
ulation set 4

Appendix: PMC Offline Autocorrelation Analysis 162

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 5 Counter Set - 3k samples

line 1

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 5 Counter Set - 3k samples

line 1

Figure B.25: Histogram and samples for sim-
ulation set 5

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

-60000 -40000 -20000 0 20000 40000 60000 80000 100000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 6 Counter Set - 3k samples

line 1

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 6 Counter Set - 3k samples

line 1

Figure B.26: Histogram and samples for sim-
ulation set 6

 0
 2
 4
 6
 8

 10
 12
 14
 16

-60000 -40000 -20000 0 20000 40000 60000 80000 100000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 7 Counter Set - 3k samples

line 1

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 7 Counter Set - 3k samples

line 1

Figure B.27: Histogram and samples for sim-
ulation set 7

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 8 Counter Set - 3k samples

line 1

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 8 Counter Set - 3k samples

line 1

Figure B.28: Histogram and samples for sim-
ulation set 8

 0
 2
 4
 6
 8

 10
 12
 14
 16

-40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 9 Counter Set - 3k samples

line 1

-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 9 Counter Set - 3k samples

line 1

Figure B.29: Histogram and samples for sim-
ulation set 9

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

-60000 -40000 -20000 0 20000 40000 60000 80000 100000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: 10 Counter Set - 3k samples

line 1

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of: 10 Counter Set - 3k samples

line 1

Figure B.30: Histogram and samples for sim-
ulation set 10

Appendix: PMC Offline Autocorrelation Analysis 163

B.1.3 Histogram and Autocorrelation for Real PMC Readings

 0
 5

 10
 15
 20
 25
 30
 35
 40

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08
 9e+08

 9.5e+08
 1e+09

 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.31: Histogram and autocorrelation
for sample set 1 on CPU 1

 0
 10
 20
 30
 40
 50
 60
 70
 80

-20000 -10000 0 10000 20000 30000 40000 50000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 4.5e+08

 5e+08

 5.5e+08

 6e+08

 6.5e+08

 7e+08

 7.5e+08

 8e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.32: Histogram and autocorrelation
for sample set 1 on CPU 2

 0

 10

 20

 30

 40

 50

 60

 70

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.33: Histogram and autocorrelation
for sample set 2 on CPU 1

 0

 10

 20

 30

 40

 50

 60

 70

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.34: Histogram and autocorrelation
for sample set 2 on CPU 2

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 1e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.35: Histogram and autocorrelation
for sample set 3 on CPU 1

 0

 10

 20

 30

 40

 50

 60

 70

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 4.5e+08
 5e+08

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.36: Histogram and autocorrelation
for sample set 3 on CPU 2

Appendix: PMC Offline Autocorrelation Analysis 164

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.37: Histogram and autocorrelation
for sample set 4 on CPU 1

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.38: Histogram and autocorrelation
for sample set 4 on CPU 2

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.39: Histogram and autocorrelation
for sample set 5 on CPU 1

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.40: Histogram and autocorrelation
for sample set 5 on CPU 2

 0

 5

 10

 15

 20

 25

 30

 35

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08
 9e+08

 9.5e+08
 1e+09

 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.41: Histogram and autocorrelation
for sample set 6 on CPU 1

 0

 10

 20

 30

 40

 50

 60

 70

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 4.5e+08
 5e+08

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.42: Histogram and autocorrelation
for sample set 6 on CPU 2

Appendix: PMC Offline Autocorrelation Analysis 165

 0

 10

 20

 30

 40

 50

 60

 70

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.43: Histogram and autocorrelation
for sample set 7 on CPU 1

 0

 10

 20

 30

 40

 50

 60

 70

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.44: Histogram and autocorrelation
for sample set 7 on CPU 2

 0

 10

 20

 30

 40

 50

 60

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.45: Histogram and autocorrelation
for sample set 8 on CPU 1

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.46: Histogram and autocorrelation
for sample set 8 on CPU 2

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.47: Histogram and autocorrelation
for sample set 9 on CPU 1

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

-20000 0 20000 40000 60000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 5e+08
 5.5e+08

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.48: Histogram and autocorrelation
for sample set 9 on CPU 2

Appendix: PMC Offline Autocorrelation Analysis 166

 0

 5

 10

 15

 20

 25

 30

 35

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 1

line 1

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08
 9e+08

 9.5e+08
 1e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.49: Histogram and autocorrelation
for sample set 10 on CPU 1

 0
 10
 20
 30
 40
 50
 60
 70
 80

-20000 -10000 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: L2_LINES_INCounter on CPU 2

line 1

 4.5e+08
 5e+08

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.50: Histogram and autocorrelation
for sample set 10 on CPU 2

B.1.4 Histogram and Autocorrelation for Simulated Readings

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 1e+09
 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.51: Histogram and autocorrelation
for simulation set 1

 0
 2
 4
 6
 8

 10
 12
 14
 16

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 1e+09
 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.52: Histogram and autocorrelation
for simulation set 2

 0
 2
 4
 6
 8

 10
 12
 14
 16

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 1e+09
 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.53: Histogram and autocorrelation
for simulation set 3

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08
 9e+08

 9.5e+08
 1e+09

 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.54: Histogram and autocorrelation
for simulation set 4

Appendix: PMC Offline Autocorrelation Analysis 167

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08
 9e+08

 9.5e+08
 1e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.55: Histogram and autocorrelation
for simulation set 5

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08
 9e+08

 9.5e+08
 1e+09

 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.56: Histogram and autocorrelation
for simulation set 6

 0
 2
 4
 6
 8

 10
 12
 14
 16

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 5.5e+08
 6e+08

 6.5e+08
 7e+08

 7.5e+08
 8e+08

 8.5e+08
 9e+08

 9.5e+08
 1e+09

 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.57: Histogram and autocorrelation
for simulation set 7

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 1e+09
 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.58: Histogram and autocorrelation
for simulation set 8

 0
 2
 4
 6
 8

 10
 12
 14
 16

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 1e+09
 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.59: Histogram and autocorrelation
for simulation set 9

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

-20000 0 20000 40000 60000 80000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of: SET10 Event: Simulated Counter

line 1

 6e+08
 6.5e+08

 7e+08
 7.5e+08

 8e+08
 8.5e+08

 9e+08
 9.5e+08

 1e+09
 1.05e+09

 0 0.5 1 1.5 2 2.5 3 3.5 4

V
x(

Ta
u)

Lag (sec)

Autocorrelation

Autocorrelation

Figure B.60: Histogram and autocorrelation
for simulation set 10

Appendix: PMC Offline Autocorrelation Analysis 168

B.1.5 Histogram of Real PMC Readings with superimposed Gaussian

PDF

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 1 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 1 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 1 - 3k samples

line 1

Figure B.61: Histogram with superimposed
Gaussian PDF for sample set 1 on CPU 1

 0
 1e-05
 2e-05
 3e-05
 4e-05
 5e-05
 6e-05
 7e-05
 8e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 1 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0
 1e-05
 2e-05
 3e-05
 4e-05
 5e-05
 6e-05
 7e-05
 8e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 1 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 1 - 3k samples

line 1

Figure B.62: Histogram with superimposed
Gaussian PDF for sample set 1 on CPU 2

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 2 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 2 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 2 - 3k samples

line 1

Figure B.63: Histogram with superimposed
Gaussian PDF for sample set 2 on CPU 1

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 2 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 2 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 2 - 3k samples

line 1

Figure B.64: Histogram with superimposed
Gaussian PDF for sample set 2 on CPU 2

 0
 5e-06
 1e-05

 1.5e-05
 2e-05

 2.5e-05
 3e-05

 3.5e-05
 4e-05

 4.5e-05
 5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0
 5e-06
 1e-05

 1.5e-05
 2e-05

 2.5e-05
 3e-05

 3.5e-05
 4e-05

 4.5e-05
 5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 3 - 3k samples

line 1

Figure B.65: Histogram with superimposed
Gaussian PDF for sample set 3 on CPU 1

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 3 - 3k samples

line 1

Figure B.66: Histogram with superimposed
Gaussian PDF for sample set 3 on CPU 2

Appendix: PMC Offline Autocorrelation Analysis 169

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 4 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 4 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 4 - 3k samples

line 1

Figure B.67: Histogram with superimposed
Gaussian PDF for sample set 4 on CPU 1

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 4 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 4 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 4 - 3k samples

line 1

Figure B.68: Histogram with superimposed
Gaussian PDF for sample set 4 on CPU 2

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 5 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 5 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 5 - 3k samples

line 1

Figure B.69: Histogram with superimposed
Gaussian PDF for sample set 5 on CPU 1

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 5 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 5 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 5 - 3k samples

line 1

Figure B.70: Histogram with superimposed
Gaussian PDF for sample set 5 on CPU 2

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 6 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 6 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 6 - 3k samples

line 1

Figure B.71: Histogram with superimposed
Gaussian PDF for sample set 6 on CPU 1

 0
 1e-05
 2e-05
 3e-05
 4e-05
 5e-05
 6e-05
 7e-05
 8e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 6 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0
 1e-05
 2e-05
 3e-05
 4e-05
 5e-05
 6e-05
 7e-05
 8e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 6 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 6 - 3k samples

line 1

Figure B.72: Histogram with superimposed
Gaussian PDF for sample set 6 on CPU 2

Appendix: PMC Offline Autocorrelation Analysis 170

 0
 5e-06
 1e-05

 1.5e-05
 2e-05

 2.5e-05
 3e-05

 3.5e-05
 4e-05

 4.5e-05
 5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 7 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0
 5e-06
 1e-05

 1.5e-05
 2e-05

 2.5e-05
 3e-05

 3.5e-05
 4e-05

 4.5e-05
 5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 7 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 7 - 3k samples

line 1

Figure B.73: Histogram with superimposed
Gaussian PDF for sample set 7 on CPU 1

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 7 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 7 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 7 - 3k samples

line 1

Figure B.74: Histogram with superimposed
Gaussian PDF for sample set 7 on CPU 2

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 8 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 8 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 8 - 3k samples

line 1

Figure B.75: Histogram with superimposed
Gaussian PDF for sample set 8 on CPU 1

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 8 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 8 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 8 - 3k samples

line 1

Figure B.76: Histogram with superimposed
Gaussian PDF for sample set 8 on CPU 2

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 9 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 9 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 9 - 3k samples

line 1

Figure B.77: Histogram with superimposed
Gaussian PDF for sample set 9 on CPU 1

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 9 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 9 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 9 - 3k samples

line 1

Figure B.78: Histogram with superimposed
Gaussian PDF for sample set 9 on CPU 2

Appendix: PMC Offline Autocorrelation Analysis 171

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 10 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 10 and superimposed Gaussian PDF
 with mean= 2.529e+04 and sigma = 2.023e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 10 - 3k samples

line 1

Figure B.79: Histogram with superimposed
Gaussian PDF for sample set 10 on CPU 1

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 10 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 10 and superimposed Gaussian PDF
 with mean= 2.445e+04 and sigma = 1.919e+04

Histogram
Gaussian PDF

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 10 - 3k samples

line 1

Figure B.80: Histogram with superimposed
Gaussian PDF for sample set 10 on CPU 2

B.1.6 Histogram of Simulated Readings with superimposed Gaussian PDF

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 1 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-80000 -60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 1 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 1 - 3k samples

line 1

Figure B.81: Histogram with superimposed
Gaussian PDF for simulation set 1

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 2 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-80000 -60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 2 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 2 - 3k samples

line 1

Figure B.82: Histogram with superimposed
Gaussian PDF for simulation set 2

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 3 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 3 - 3k samples

line 1

Figure B.83: Histogram with superimposed
Gaussian PDF for simulation set 3

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 4 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 4 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-40000

-20000

 0

 20000

 40000

 60000

 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 4 - 3k samples

line 1

Figure B.84: Histogram with superimposed
Gaussian PDF for simulation set 4

Appendix: PMC Offline Autocorrelation Analysis 172

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 5 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-80000 -60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000 140000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 5 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 5 - 3k samples

line 1

Figure B.85: Histogram with superimposed
Gaussian PDF for simulation set 5

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 6 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 6 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 6 - 3k samples

line 1

Figure B.86: Histogram with superimposed
Gaussian PDF for simulation set 6

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 7 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 7 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 7 - 3k samples

line 1

Figure B.87: Histogram with superimposed
Gaussian PDF for simulation set 7

 0
 2e-06
 4e-06
 6e-06
 8e-06
 1e-05

 1.2e-05
 1.4e-05
 1.6e-05
 1.8e-05

 2e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 8 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0
 2e-06
 4e-06
 6e-06
 8e-06
 1e-05

 1.2e-05
 1.4e-05
 1.6e-05
 1.8e-05

 2e-05

-80000 -60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 8 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 8 - 3k samples

line 1

Figure B.88: Histogram with superimposed
Gaussian PDF for simulation set 8

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 9 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-80000 -60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 9 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 9 - 3k samples

line 1

Figure B.89: Histogram with superimposed
Gaussian PDF for simulation set 9

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 10 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

-60000 -40000 -20000 0 20000 40000 60000 80000 100000 120000

N
um

be
r o

f R
ea

di
ng

s

Amplitude

Histogram of Counter Set: 10 and superimposed Gaussian PDF
 with mean= 2.494e+04 and sigma = 2.017e+04

Histogram
Gaussian PDF

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500

S
am

pl
e

In
de

x

Amplitude

Samples of Counter Set: 10 - 3k samples

line 1

Figure B.90: Histogram with superimposed
Gaussian PDF for simulation set 10

Appendix: PMC Offline Autocorrelation Analysis 173

B.2 PIII Performance Monitoring Counter (PMC) off-line

autocorrelation analysis results.

The section presents the PMC sample analysis results for all the 132 PMC events as described

in section 5.2.12 on page 82.

Symbol CPU σi βi Mean

Data Cache Unit (DCU)

1 DATA MEM REFS 1 5.26e+06 38.8 6.19e+06

2 5.03e+06 35.7 5.73e+06

2 DCU LINES IN 1 5.83e+04 49.2 7.40e+04

2 5.92e+04 46.5 7.40e+04

3 DCU M LINES IN 1 2.20e+04 58.4 2.88e+04

2 1.91e+04 56.1 2.39e+04

4 DCU M LINES OUT 1 2.55e+04 52.1 3.249e+04

2 2.36e+04 52.0 2.98e+04

5 DCU MISS OUTSTANDING 1 No Data

2 1.66e+06 146.1 2.23e+06

Instruction Fetch Unit (IFU)

6 IFU IFETCH 1 6.65e+06 55.3 8.40e+06

2 6.59e+06 51.5 8.13e+06

7 IFU IFETCH MISS 1 2.41e+04 34.3 2.77e+04

2 2.48e+04 34.5 2.86e+04

8 ITLB MISS 1 539.4 39.2 613.8

2 495.0 36.1 518.3

9 IFU MEM STALL 1 7.99e+05 47.4 1.01e+06

2 8.26e+05 48.0 1.05e+06

10 ILD STALL 1 2.70e+04 58.6 2.29e+04

2 2.90e+04 59.6 2.457e+04

L2 Cache

11 L2 IFETCH MESI 1 9.37e+04 38.5 1.09e+05

2 8.70e+04 35.3 9.85e+04

12 L2 IFETCH M STATE 1 No Data

2

13 L2 IFETCH E STATE 1 1.73 26.6 0.2438

∆t = 0.04sec for every PMC reading. continued on next page

Appendix: PMC Offline Autocorrelation Analysis 174

∆t = 0.04sec for every PMC reading. Continued from previous page

Symbol CPU σi βi Mean

2 1.24 43.9 0.2646

14 L2 IFETCH S STATE 1 8.49e+04 33.5 9.31e+04

2 9.35e+04 37.8 1.06e+05

15 L2 IFETCH I STATE 1 No Data

2 2524 112.6 3372

16 L2 LD MESI 1 4.09e+04 41.6 4.81e+04

2 4.13e+04 41.7 4.89e+04

17 L2 LD M STATE 1 1.50e+04 38.3 1.71e+04

2 1.50e+04 38.3 1.71e+04

18 L2 LD E STATE 1 1.679e+04 31.7 1.779e+04

2 1.785e+04 35.5 1.983e+04

19 L2 LD S STATE 1 7232.0 21.2 5382.0

2 6393.0 28.1 5471.0

20 L2 LD I STATE 1 8063 102.4 1.04e+04

2 8159 103.6 1.04e+04

21 L2 ST MESI 1 1.36e+04 88.3 1.76e+04

2 1.38e+04 88.2 1.79e+04

22 L2 ST M STATE 1 6934.0 32.3 7447.0

1 7637.0 39.4 8838.0

23 L2 ST E STATE 1 201.5 57.5 143.4

2 203.4 57.9 145.4

24 L2 ST S STATE 1 1518.0 66.6 2049.0

2 1442.0 64.5 1934.0

25 L2 ST I STATE 1 7734.0 70.2 8568.0

2 9144.0 77.4 1.00e+04

26 L2 LINES IN 1 2.02e+04 112.7 2.53e+04

2 1.92e+04 103.0 2.45e+04

27 L2 LINES OUT 1 1.97e+04 104.8 2.49e+04

2 1.96e+04 106.1 2.49e+04

28 L2 M LINES INM 1 1.08e+04 105.7 1.37e+04

2 1.12e+04 107.3 1.38e+04

29 L2 M LINES OUTM 1 1.08e+04 102.6 1.38e+04

2 1.06e+04 101.7 1.37e+04

30 L2 RQSTS MESI 1 1.42e+05 40.2 1.67e+05

∆t = 0.04sec for every PMC reading. continued on next page

Appendix: PMC Offline Autocorrelation Analysis 175

∆t = 0.04sec for every PMC reading. Continued from previous page

Symbol CPU σi βi Mean

2 1.46e+05 41.0 1.72e+05

31 L2 RQSTS M STATE 1 2.22e+04 36.9 2.53e+04

2 2.23e+04 34.7 2.51e+04

32 L2 RQSTS E STATE 1 1.76e+04 29.1 1.83e+04

2 1.81e+04 33.0 1.95e+04

33 L2 RQSTS S STATE 1 9.60e+04 35.1 1.08e+05

2 9.56e+04 35.9 1.07e+05

34 L2 RQSTS I STATE 1 1.88e+04 100.0 2.32e+04

2 1.88e+04 100.5 2.33e+04

35 L2 ADS 1 2.48e+05 50.0 3.07e+05

2 2.54e+05 51.0 3.22e+05

36 L2 DBUS BUSY 1 2.03e+05 49.7 2.54e+05

2 1.80e+05 41.7 2.14e+05

37 L2 DBUS BUSY RD 1 1.62e+05 41.8 1.99e+05

2 1.56e+05 44.2 1.88e+05

External Bus Logic (EBL)

38 BUS DRDY CLOCKS SELF 1 4.34e+04 103.3 5.60e+04

2 4.26e+04 107.0 5.54e+04

39 BUS DRDY CLOCKS ANY 1 1.58e+06 101.8 2.09e+06

2 1.57e+06 101.7 2.09e+06

40 BUS LOCK CLOCKS SELF 1 No Data

2

41 BUS LOCK CLOCKS ANY 1 No Data

2

42 BUS REQ OUTSTANDING 1 1.68e+06 97.9 2.14e+06

2 1.65e+06 89.3 2.11e+06

43 BUS TRAN BRD SELF 1 1.05e+04 120.7 1.38e+04

2 1.05e+04 113.3 1.38e+04

44 BUS TRAN BRD ANY 1 2.02e+04 95.0 2.77e+04

2 2.02e+04 95.0 2.77e+04

45 BUS TRAN RFO SELF 1 8572 77.0 9759

2 9004 80.4 1.02e+04

46 BUS TRAN RFO ANY 1 1.52e+04 112.0 1.92e+04

2 1.52e+04 112.0 1.92e+04

∆t = 0.04sec for every PMC reading. continued on next page

Appendix: PMC Offline Autocorrelation Analysis 176

∆t = 0.04sec for every PMC reading. Continued from previous page

Symbol CPU σi βi Mean

47 BUS TRANS WB SELF 1 8276 73.9 9399

2 8246 70.6 9290

48 BUS TRANS WB ANY 1 1.39e+04 110.7 1.76e+04

2 1.39e+04 110.7 1.76e+04

49 BUS TRAN IFETCH SELF 1 2544 101.0 3374

2 2528 121.1 3354

50 BUS TRAN IFETCH ANY 1 4645 108.6 6645

2 4644 108.7 6645

51 BUS TRAN INVAL SELF 1 3553 39.8 4095

2 3542 37.0 4052

52 BUS TRAN INVAL ANY 1 5657 81.2 7838

2 5657 81.2 7838

53 BUS TRAN PWR SELF 1 153.0 50.9 197.4

2 151.5 46.6 194.2

54 BUS TRAN PWR ANY 1 268.1 82.7 375.8

2 268.1 82.8 375.8

55 BUS TRANS P SELF 1 1287 53.4 1679

2 1176 49.5 1548

56 BUS TRANS P ANY 1 7301 81.0 1.03e+04

2 7301 81.0 1.03e+04

57 BUS TRANS IO SELF 1 1404 91.07 299.7

2 2054 90.24 318.8

58 BUS TRANS IO ANY 1 1468 153.4 376.2

2 1488 115.0 375.1

59 BUS TRAN DEF SELF 1 No Data

2

60 BUS TRAN DEF ANY 1 nan nan nan

2 nan nan nan

61 BUS TRAN BURST SELF 1 2.80e+04 98.8 3.39e+04

2 2.58e+04 95.0 3.16e+04

62 BUS TRAN BURST ANY 1 4.93e+04 104.5 6.45e+04

2 4.93e+04 104.5 6.45e+04

63 BUS TRAN ANY SELF 1 3.00e+04 106.5 3.81e+04

2 2.95e+04 102.2 3.76e+04

∆t = 0.04sec for every PMC reading. continued on next page

Appendix: PMC Offline Autocorrelation Analysis 177

∆t = 0.04sec for every PMC reading. Continued from previous page

Symbol CPU σi βi Mean

64 BUS TRAN ANY ANY 1 6.13e+04 94.9 8.31e+04

2 6.13e+04 94.9 8.31e+04

65 BUS TRAN MEM SELF 1 3.10e+04 110.8 3.87e+04

2 2.82e+04 97.9 3.63e+04

66 BUS TRAN MEM ANY 1 6.14e+04 94.5 8.24e+04

2 6.14e+04 94.5 8.24e+04

67 BUS DATA RCV 1 7.29e+04 100.8 9.17e+04

2 7.84e+04 111.3 9.72e+04

68 BUS BNR DRV 1 1196 46.0 1377

2 1185 45.2 1356

69 BUS HIT DRV 1 1599 87.9 2157

2 1713 97.1 2297

70 BUS HITM DRV 1 6277 36.6 7167

2 6545 41.1 7759

71 BUS SNOOP STALL 1 63.45 62.92 65.33

2 62.56 65.85 64.39

Floating Point Unit

72 FLOPS 1 1.24e+05 78.6 8.07e+04

2 1.27e+05 77.0 8.25e+04

73 FP COMP OPS EXE 1 1.40e+05 65.5 1.09e+05

2 1.39e+05 66.0 1.08e+05

74 FP ASSIST 1 No Data

2

75 MUL 1 No Data

2

76 DVI 1 No Data

2

77 CYCLE DIV BUSY 1 9.18e+05 71.8 1.04e+06

2 9.52e+05 84.2 1.17e+06

Memory Ordering

78 LD BLOCKS 1 1.22e+06 32.4 1.29e+06

2 1.42e+06 39.7 1.64e+06

79 SB DRAINS 1 414.5 43.4 482.9

2 426.6 44.9 500.0

∆t = 0.04sec for every PMC reading. continued on next page

Appendix: PMC Offline Autocorrelation Analysis 178

∆t = 0.04sec for every PMC reading. Continued from previous page

Symbol CPU σi βi Mean

80 MISALIGN MEMREF 1 7382 34.4 8216

2 7142 34.9 7973

81 EMON KNI PREF DISPATCHED NTA 1 No Data

2

82 EMON KNI PREF DISPATCHED T1 1 No Data

2

83 EMON KNI PREF DISPATCHED T2 1 No Data

2

84 EMON KNI PREF DISPATCHED WEAKLY 1 No Data

2

85 EMON KNI PREF MISS NTA 1 No Data

2

86 EMON KNI PREF MISS T1 1 No Data

2

87 EMON KNI PREF MISS T2 1 No Data

2

88 EMON KNI PREF MISS WEAKLY 1 No Data

2

Instruction Decoding and Retirement

89 INST RETIRED 1 7.25e+06 40.0 8.71e+06

2 6.43e+06 32.9 7.04e+06

90 UOPS RETIRED 1 1.03e+07 41.9 1.24e+07

2 9.83e+06 40.2 1.16e+07

91 INST DECODED 1 7.10e+06 39.4 8.45e+06

2 7.06e+06 36.6 8.15e+06

92 EMON KNI INST RETIRED PACK SCA 1 1.503 17.98 1.862

2 1.527 20.18 2.01

93 EMON KNI INST RETIRED SCA 1 No Data

2

94 EMON KNI COMP INST RET PACK SCA 1 No Data

2

95 EMON KNI COMP INST RET SCA 1 No Data

2

Interrupts

∆t = 0.04sec for every PMC reading. continued on next page

Appendix: PMC Offline Autocorrelation Analysis 179

∆t = 0.04sec for every PMC reading. Continued from previous page

Symbol CPU σi βi Mean

96 HW INT RX 1 40.96 79.7 66.3

2 40.89 79.9 66.25

97 CYCLES INT MASKED 1 2.88e+05 65.5 4.09e+05

2 2.69e+05 60.6 3.88e+05

98 CYCLES INT PENDING AND MASKED 1 2.09e+04 141.7 4609

2 2.22e+04 141.3 3959

Branches

99 BR INST RETIRED 1 No Data

2

100 BR MISS PRE RETIRED 1 1.89e+04 35.9 2.20e+04

2 1.90e+04 36.1 2.22e+04

101 BR TAKEN RETIRED 1 No Data

2

102 BR MISS PRED TAKEN RET 1 1.53e+04 37.2 1.80e+04

2 1.55e+04 38.1 1.86e+04

103 BR INST DECODED 1 nan inf 3.103e+05

2 nan inf 3.096e+05

104 BTB MISSES 1 8.64e+04 44.2 1.08e+05

2 7.65e+04 39.6 9.18e+04

105 BR BOGUS 1 1170 30.66 1288

2 1170 29.73 1275

106 BACLEARS 1 2.84e+04 28.9 2.98e+04

2 3.13e+04 33.6 3.57e+04

Stalls

107 RESOURCE STALLS 1 2.767e+06 64.45 3.569e+06

2 2.791e+06 66.99 3.671e+06

108 PARTIAL RAT STALLS 1 No Data

2

Segment Register Loads

109 SEGMENT REG LOADS 1 2433 37.26 2964

2 2387 37.74 2937

Clocks

110 CPU CLK UNHALTED 1 7.45e+06 59.9 9.85e+06

2 8.17e+06 59.4 1.10e+07

∆t = 0.04sec for every PMC reading. continued on next page

Appendix: PMC Offline Autocorrelation Analysis 180

∆t = 0.04sec for every PMC reading. Continued from previous page

Symbol CPU σi βi Mean

MMX UNIT

111 MMX SAT INSTR EXEC 1 No Data

2

112 MMX UOPS EXEC 1 No Data

2

113 MMX INSTR TYPE EXEC MULTIPLY 1 No Data

2

114 MMX INSTR TYPE EXEC SHIFT 1 No Data

2

115 MMX INSTR TYPE EXEC PACK 1 No Data

2

116 MMX INSTR TYPE EXEC UNPACK 1 No Data

2

117 MMX INSTR TYPE EXEC LOGICAL 1 No Data

2

118 MMX INSTR TYPE EXEC ARITHMETIC 1 No Data

2

119 FP MMX TRANS MMX TO FP 1 No Data

2

120 FP MMX TRANS FP TO MMX 1 No Data

2

121 MMX ASSIST 1 No Data

2

Segment Register Renaming

122 SEG RENAME STALLS ES 1 No Data

2

123 SEG RENAME STALLS DS 1 No Data

2

124 SEG RENAME STALLS FS 1 No Data

2

125 SEG RENAME STALLS GS 1 No Data

2

126 SEG RENAME STALLS ALL 1 No Data

2

∆t = 0.04sec for every PMC reading. continued on next page

Appendix: PMC Offline Autocorrelation Analysis 181

∆t = 0.04sec for every PMC reading. Continued from previous page

Symbol CPU σi βi Mean

127 SEG REG RENAMES ES 1 265.3 44.7 351.9

2 274.8 46.8 368.9

128 SEG REG RENAMES DS 1 271 42.8 354.6

2 275 45.1 363.4

129 SEG REG RENAMES FS 1 9.516 60.3 13.72

2 8.712 55.8 12.59

130 SEG REG RENAMES GS 1 8.826 52.93 12.41

2 9.641 52.41 13.32

131 SEG REG RENAMES ALL 1 564.2 44.7 744.4

2 563.4 43.7 739.5

132 RET SEG RENAMES 1 No Data

2

Table B.1: PIII Performance Monitoring Counter (PMC) off-line autocorrelation analysis

results. These measurements were taken on the SMP system specified in table 7.1. Some

of the PMC off-line autocorrelation results are labeled as NO Data this may have one of

the following reasons: 1. The application that run during PMC acquisition did not generate

event for the selected event. For example SIMD and MMX related events. 2. The event

was not read on the correct counter. For example, floating point unit multiply events (event

MUL) can only be counted with the second counter. 3. The autocorrelation results were

not suitable for the automatic analysis (Octave script). 4. Event data were not taken for a

specific event during the automated data acquisition process.

Bibliography

[AGE05] EUROPEAN SPACE AGENCY. //www.estec.esa.nl/wsmwww/leon/, 2005.

[AM05] Ulf Andersson and Philip Mucci. Analysis and optimization of yee bench using

hardware performance counters. In Proceedings of Parallel Computing 2005

(ParCo), September 2005.

[ASW05] Reza Azimi, Michael Stumm, and Robert W. Wisniewski. Online performance

analysis by statistical sampling of microprocessor performance counters. In ICS,

pages 101–110, 2005.

[AW06] Hyo-Sung Ahn and Chang-Hee Won. Fast alignment using rotation vector and

adaptive kalman filter. IEEE Transactions on Aerospace and Electronic Systems,

42(1):70–83, January 2006.

[BABD00] Rajeev Balasubramonian, David H. Albonesi, Alper Buyuktosunoglu, and Sand-

hya Dwarkadas. Memory hierarchy reconfiguration for energy and performance

in general-purpose processor architectures. In MICRO, pages 245–257, 2000.

[Bac00] Eric Robert Bachmann. Inertial and Magnetic Tracking of Limb Segment Ori-

entation for Inserting Humans into Synthetic Environments. PhD thesis, Naval

Postgraduate School, Monterrey, California, dec 2000.

[BDA03] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H. Albonesi. Dy-

namically managing the communication-parallelism trade-off in future clustered

processors. In ISCA, pages 275–286, 2003.

[Bel00] Frank Bellosa. The benefits of event-driven energy accounting in power-sensitive

systems. In Proceedings of the 9th ACM SIGOPS European Workshop, Kolding,

Denmark, September 17–20 2000.

[BH97] Robert Grover Brown and Patrick Y. C. Hwang. Introduction to Random Signals

and Applied Kalman Filtering, Third Edition. John Wiley Sons, 1997. ISBN

0-471-12839-2.

BIBLIOGRAPHY 183

[BK+05] Rob Byrom, Stuart Kenny, et al. SANTA-G: and instrument monitoring frame-

work using the Relational Grid Monitoring Architecture (R-GMA), chapter

CrossGrid. LNCS. 2005.

[BM01] R. Iris Bahar and Srilatha Manne. Power and energy reduction via pipeline

balancing. In ISCA, pages 218–229, 2001.

[BM03] Ross Brennan and Michael Manzke. On the introduction of reconfigurable hard-

ware into computer architecture education. In Workshop on Computer Archi-

tecture Education, pages 96–102, June 2003.

[BYT06] BYTE. Bytemark. //www.byte.com/bmark/bdoc.htm, 2006.

[Cel06] Celestia. //www.shatters.net/celestia/, 2006.

[CFJ03] Christophe Cérin, Hazem Fkaier, and Mohamed Jemni. Accessing hardware per-

formance counters in order to measure the influence of cache on the performance

of integer sorting. In IPDPS, page 274, 2003.

[cit06] Citeseer. //citeseer.ist.psu.edu/cs, 2006.

[CM99] Brian Coghlan and Michael Manzke. Prototype trace probe and probe adapter.

Technical Manual TCD-CS-2000-32, Trinity College Dublin, Department of

Computer Science, O’Reilly Institude, Trinty College, Dublin 2, Ireland, apr

1999. http://www.cs.tcd.ie/Brian.Coghlan/scieuro.htm.

[CM05a] Eli D. Collins and Barton P. Miller. A loop-aware search strategy for automated

performance analysis. In HPCC, pages 573–584, 2005.

[CM05b] G. Contreras and M. Martonosi. Power prediction for intel xscale processors

using performance monitoring unit events. In ISLPED ’05. Proceedings of the

2005 International Symposium on Low Power Electronics and Design, pages

221–226. IEEE, August 2005.

[CMB+98] Brian Coghlan, Michael Manzke, Erich Barnstedt, Ronon Cunniffe, and

Jonathan Dukes. Deep trace dt200.1, prototype tracer. Technical Man-

ual TCD-CS-2000-34, Trinity College Dublin, Department of Computer

Science, O’Reilly Institude, Trinty College, Dublin 2, Ireland, oct 1998.

http://www.cs.tcd.ie/Brian.Coghlan/scieuro.htm.

[CMW00] Harold W. Cain, Barton P. Miller, and Brian J. N. Wylie. A callgraph-based

search strategy for automated performance diagnosis (distinguished paper). In

Euro-Par, pages 108–122, 2000.

BIBLIOGRAPHY 184

[Com06] Compendex and inspec database. //www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchdatabase=1,

2006.

[Cro06] Crossgrid. //www.eu-crossgrid.org, 2006.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetric

progressions. Journal of Symbolic Computation, 9:251–280, 1990.

[CWS97] Guanrong Chen, Jianrong Wang, and Leang S.Shieh. Interval kalman filter-

ing. IEEE Transactions on Aerospace and Electronic Systems, 33(1):250–259,

January 1997.

[DBL]

[DCS03] E. Duesterwald, C. Cascaval, and D. Sandhya. Characterizing and predicting

program behavior and its variability. In Proceedings 12th International Confer-

ence on Parallel Architectures and Compilation Techniques - PACT 2003, pages

220–231. IEEE Comput. Soc, 2003.

[Dee06] Crescent bay software’s deep. //www.crescentbaysoftware.com/deep.html, 2006.

[DGBP05] David E. DeMarle, Chistiaan Gribble, Solomon Boulos, and Steven Parker.

Memory sharing for interactive ray tracing on clusters. Journal of Parallel and

Distributed Computing, 2005. to appear.

[DGP04] David E. DeMarle, Christiaan Gribble, and Steven Parker. Memory-savvy dis-

tributed interactive ray tracing. In Eurographics Symposium on Parallel Graph-

ics and Vsualization, 2004.

[DLM+01] Jack Dongarra, Kevin London, Shirley Moore, Phil Mucci, and Dan Terpstra.

Using papi for hardware performance monitoring on linux systems. In Confer-

ence Proceedings of Linux Clusters: The HPC Revolution, Urbana, Illinois, jun

2001.

[DLM+03] Jack Dongarra, Kevin S. London, Shirley Moore, Philip Mucci, Daniel Terpstra,

Haihang You, and Min Zhou. Experiences and lessons learned with a portable

interface to hardware performance counters. In IPDPS, page 289, 2003.

[DMM+03] Jack Dongarra, Allen D. Malony, Shirley Moore, Philip Mucci, and Sameer

Shende. Performance instrumentation and measurement for terascale systems.

In International Conference on Computational Science, pages 53–62, 2003.

[DMM+04] Jack Dongarra, Shirley Moore, Philip Mucci, Keith Seymour, and Haihang You.

Accurate cache and tlb characterization using hardware counters. In Interna-

tional Conference on Computational Science, pages 432–439, 2004.

BIBLIOGRAPHY 185

[Dol96] Dolphin Interconnect Solutions AS, Olaf Helsets vei 6, Bogerud, N-0621 Oslo,

Norway. A Backside Link (Blink) for Scalable Coherent Interface (SCI) nodes,

draft 2.41 edition, may 1996.

[Dol04] Dolphin. //www.dolphinics.com, 2004.

[Dol05] Dolphin. //www.dolphinics.com/products/hardware/lc3.html, 2005.

[DPH+03] David E. DeMarle, Steven Parker, Mark Hartner, Christiaan Gribble, and

Charles D. Hansen. Distributed interactive ray tracing for large volume vi-

sualization. In IEEE Symposium on Parallel and Large-Data Visualization and

Graphics, pages 87–94, 2003.

[DS02] Ashutosh Dhodapkar and James E. Smith. Managing multi-configuration hard-

ware via dynamic working set analysis. In ISCA, pages 233–, 2002.

[EIH00] Matthew Eldridge, Homan Igehy, and Pat Hanrahan. Pomegranate: a fully

scalable graphics architecture. In SIGGRAPH, pages 443–454, 2000.

[FCJV97] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko G. Vranesic. The

multicluster architecture: Reducing cycle time through partitioning. In MICRO,

pages 149–159, 1997.

[FCL02] Felix Freitag, Jordi Caubet, and Jesús Labarta. On the scalability of tracing

mechanisms. In Euro-Par, pages 97–104, 2002.

[FG01] Daniele Folegnani and Antonio González. Energy-effective issue logic. In ISCA,

pages 230–239, 2001.

[For01] Force Computers. PENT/CPCI-735/736 Family Installation Guide, p/n 215889

revission aa edition, October 2001.

[GA01] Mohinder S. Grewal and Angus P. Andrews. Kalman Filterring Theory and

Proctice using MATLAB. John Wiley Sons, second edition edition, 2001. ISBN

0-471-39254-5.

[GAB+99] F. Giacomini, T. Amundsen, A. Bogaerts, R. Hauser, B.D. Johnsen,

H. Kohmann, R. Nordstrom, and P. Werner. Low-level SCI software functional

specification. Esprit Project 23174, version 2.1.1 edition, March 1999.

[Gig06] Gigabit ethernet. //www.gigabit-ethernet.org/, 2006.

[GM98] Jim Galarowicz and Bernd Mohr. Analyzing message passing programs on the

cray t3e with pat and vampir, 1998.

BIBLIOGRAPHY 186

[GPH04] Chistiaan Gribble, Steven Parker, and Charles Hansen. A preliminary evalua-

tion of the silicon graphics onyx4 ultimatevision visualization system for large-

scale parallel volmue rendering. Technical report, University of Utah, School of

Computing, January 2004.

[Gre96] Welch Gregory, Francis. SCAAT: Incremental Tracking with Incomplete Infor-

mation. PhD thesis, Department of Computer Science, CB 3175, Sitterson Hall,

UNC-Chapel Hill, oct 1996.

[Gri06] Grid-ireland. //www.grid.ie, 2006.

[GST+02] G. Torralbaand V. Gonzlez, E. Sanchis, J. Tao, M. Schulz, and W. Karl. Data

monitoring in high-performance clusters for computing applications. IEEE

Transactions on Nuclear Science, 49(2), April 2002.

[GTAB01] Jordi Guitart, Jordi Torres, Eduard Ayguadé, and J. Mark Bull. Performance

analysis tools for parallel java applications on shared-memory systems. In ICPP,

pages 357–364, 2001.

[HCC98] L. Hong, G. Cheng, and C. K. Chui. A filter-bank-based kalman filtering

technique for wavelet estimation and decomposition of random signals. IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

45(2):237–241, February 1998.

[HEB+01] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordon Stoll, Matthew Ev-

erett, and Pat Hanrahan. Wiregl: a scalable graphics system for clusters. In

SIGGRAPH, pages 129–140, 2001.

[HHN+02] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D.

Kirchner, and James T. Klosowski. Chromium: a stream-processing framework

for interactive rendering on clusters. In SIGGRAPH, pages 693–702, 2002.

[HJK+00] J. Hockauf, J. Jeitner, W. Karl, R. Lindhof, M. Schulz, V. Gonzales, E. Sanquis,

and G. Torralba. Design and implementation aspects for the smile hardware

monitor. In Scalable Coherent Interface - Conference Proceedings of SCI Eu-

rope 2000 3rd International Conference on SCI-based Technology and Research.

SINTEF Electronics and Cybernetics, August 2000.

[HLM95] J. K. Hollingsworth, J. E. Lumpp, and B. P. Miller. Techniques for performance

measurement of parallel programs. arallel Computers: Theory and Practice,

pages 225–240, 1995.

[HM93] Jeffrey K. Hollingsworth and Barton P. Miller. Dynamic control of performance

monitoring on large scale parallel systems. In International Conference on Su-

percomputing, pages 185–194, 1993.

BIBLIOGRAPHY 187

[HM96] Jeffrey K. Hollingsworth and Barton P. Miller. An adaptive cost system for

parallel program instrumentation. In Euro-Par, Vol. I, pages 88–97, 1996.

[HM05] Laune C. Harris and Barton P. Miller. Practical analysis of stripped binary

code. In Workshop on Binary Instrumentation and Applications (WBIA-05),

September 2005.

[HMC94] Jeffrey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dynamic program

instrumentation for scalable performance tools. In Scalable High-performance

Conputing Conference (SHPCC), May 1994.

[HMG+97] Jeffrey K. Hollingsworth, Barton P. Miller, M. J. R. Goncalves, Oscar Naim,

Zhichen Xu, and Ling Zheng. Mdl: A language and compiler for dynamic

program instrumentation. In IEEE PACT, pages 201–, 1997.

[HR99] Hermann Hellwagner and Alexander Reinefeld, editors. SCI: Scalable Coherent

Interface, Architecture and Software for High-Performance Compute Clusters,

volume 1734 of Lecture Notes in Computer Science. Springer, 1999.

[HRT03] Michael C. Huang, Jose Renau, and Josep Torrellas. Positional adaptation of

processors: Application to energy reduction. In ISCA, pages 157–168, 2003.

[HSA01] Christopher J. Hughes, Jayanth Srinivasan, and Sarita V. Adve. Saving energy

with architectural and frequency adaptations for multimedia applications. In

MICRO, pages 250–261, 2001.

[IM94] R. Bruce Irvin and Barton P. Miller. A performance tool for high-level parallel

programming languages. In IFIP WG10.3 Working Conference on Programming

Environments for Massively Parallel Distributed Systems, April 1994.

[IM96a] R. Bruce Irvin and Barton P. Miller. Mapping performance data for high-level

and data views of parallel program performance. In International Conference

on Supercomputing, pages 69–77, 1996.

[IM96b] R. Bruce Irvin and Barton P. Miller. Mechanisms for mapping high-level parallel

performance data. In ICPP Workshop, pages 10–19, 1996.

[IM03] C. Isci and M. Martonosi. Runtime power monitoring in high-end processors:

methodology and empirical data. In 6th International Symposium on Microar-

chitecture, pages 93–104. IEEE Comput. Soc, December 2003.

[Inf00a] InfiniBand Trade Association. InfiniBand TMArchitecture Specification - Gen-

eral Specification, oct 2000. Volume 1.

BIBLIOGRAPHY 188

[Inf00b] InfiniBand Trade Association. InfiniBandTMArchitecture Specification - Physical

Specification, oct 2000. Volume 2.

[Inf06] Infiniband. //www.infinibandta.org/home, 2006.

[Ins93] The Institude of Electrical and Electronics Engineers, Inc. IEEE Standard for

Scalable Coherent Interface (SCI) 1596-1992, 345 east 47th street, new york, ny

10017-2394, usa edition, 1993. ISBN 1-55937-222-2.

[int06] int.eu.grid. //grid.ifca.unican.es/int.eu.grid, 2006.

[JJL+03] Gabriele Jost, Haoqiang Jin, Jesús Labarta, Judit Gimenez, and Jordi Caubet.

Performance analysis of multilevel parallel applications on shared memory ar-

chitectures. In IPDPS, page 80, 2003.

[JJLG03] Gabriele Jost, Haoqiang Jin, Jesús Labarta, and Judit Gimenez. Interfacing

computer aided parallelization and performance analysis. In International Con-

ference on Computational Science, pages 181–190, 2003.

[Kal60] Emil Kalman, Rudolph. A new approach to linear filtering and prediction prob-

lems. Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–

45, 1960.

[KC04] Stuart Kenny and Brian A. Coghlan. Grid-wide intrusion detection system. In

Marian Bubak, Michal Turala, and Kazimierz Wiatr, editors, Proc. Cracow Grid

Workshop (CGW04), Cracow, Poland, December 2004. Academic Computer

Centre CYFRONET AGH.

[KC05] S. Kenny and B.A. Coghlan. Towards a grid-wide intrusion detection system. In

Peter M.A. Sloot, Alfons G. Hoekstra, Thierry Priol, Alexander Reinefeld, and

Marian Bubak, editors, Advances in Grid Computing - EGC 2005, LNCS3470,

Amsterdam, The Netherlands, February 2005. Springer.

[KCB+05] Stuart Kenny, Brian Coghlan, Rob Byrom, Andrew Cooke, Roney Cordensoni,

Linda Cornwall, Ari Datta, Abdeslem Djaoui, Laurence Field, Steve Fisher, Stu-

art Kenny, James Magowan, Werner Nutt, Manfred Oevers, David O’Callaghan,

Norbert Podhorski, John Ryan, Manish Soni, Paul Taylor, Antony Wilson,

and Xiaomei Zhu. The CanonicalProducer: an instrument monitoring compo-

nent of the Relational Grid Monitoring Architecture. Scientific Programming,

13(2):151–158, 2005.

[KCK+01] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, and

A. Sivasubramaniam. vec: Virtual energy counters. In 2001 ACM SIGPLAN -

BIBLIOGRAPHY 189

SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,

pages 28–31. ACM, June 2001.

[KDH+95] Rainer Klar, Peter Dauphin, Franz Hartleb, Richard Hofmann, Bernd Mohr,

Andreas Quick, and Markus Siegle. Messung und Modellierung paraller und

verteilter Rechnersysteme. B.G Teubner Stuttgard, 1995. ISBN 3-519-02144-7.

[Ken06] Stuart Kenny. A Framework for Instrument Monitoring on the Grid. PhD

thesis, Department of Computer Science, Tinity College Dublin, Ireland, 2006.

[Kes91] Srinivasan Keshav. A control-theoretic approach to flow control. In SIGCOMM,

pages 3–15, 1991.

[KHJ+96] Chung-Ming Kuo, Chaur-Heh Hsieh, Yue-Dar Jou, Hsieh-Cheng Lin, and Po-

Chiang Lu. Motion estimation for video compression using kalman filtering.

IEEE Transactions on Broadcasting, 42(2):110–116, June 1996.

[KL97] W. Karl and M. Leberecht. Ein monitorkonzept fr systeme mit verteiltem

gemeinsamen speichern. In ARCS’97: Architektur von Rechensystemen, sep

1997.

[KLS99] Wolfgang Karl, Markus Leberecht, and Martin Schulz. Optimizing data locality

for sci-based pc-clusters with the smile monitoring approach. In IEEE PACT,

pages 169–176, 1999.

[KMLM97] Karen L. Karavanic, Jussi Myllymaki, Miron Livny, and Barton P. Miller. Inte-

grated visualization of parallel program performance data. Parallel Computing,

23(1-2):181–198, 1997.

[KST00] Wolfgang Karl, Martin Schulz, and Jörg Trinitis. Multilayer online-monitoring

for hybrid dsm systems on top of pc clusters with a smile. In Computer Perfor-

mance Evaluation / TOOLS, pages 294–308, 2000.

[LCM+00] Kathleen A. Lindlan, Janice E. Cuny, Allen D. Malony, Sameer Shende, Bernd

Mohr, Reid Rivenburgh, and Craig Edward Rasmussen. A tool framework for

static and dynamic analysis of object-oriented software with templates. In SC,

2000.

[Lim99] ARM Limited. AMBA Specification, Rev. 2.0, May 1999.

[LJ03] T. Li and L.K. John. Run-time modeling and estimation of operating system

power consumption. In International Conference on Measurement and Modeling

of Computer Systems ACM SIGMETRICS 2003, pages 160–171. ACM, June

2003.

BIBLIOGRAPHY 190

[LJI+98] Cheng Liao, Dongming Jiang, Liviu Iftode, Margaret Martonosi, and Dou-

glas W. Clark. Monitoring shared virtual memory performance on a myrinet-

based pc cluster. In International Conference on Supercomputing, pages 251–

258, 1998.

[Mar01] R. Josephand M. Martonosi. Run-time power estimation in high performance

microprocessors. In Proceedings of the International Symposium on Low Power

Electronics and Design, Digest of Technical Papers, pages 135–140, August 2001.

[May01] John M. May. Mpx: Software for multiplexing hardware performance counters

in multithreaded programs. In IPDPS, page 22, 2001.

[MB04] Michael Manzke and Ross Brennan. Extending fpga based teaching boards into

the area of distributed memory multiprocessors. In Workshop on Computer

Architecture Education, pages 15–21, June 2004.

[MBO+06] Michael Manzke, Ross Brennan, Keith O’Conor, John Dingliana, and Carol

O’Sullivan. A scalable and reconfigurable shared-memory graphics architecture.

In Proceedings of the SIGGRAPH 2006 Conference on Sketches & Applications,

2006.

[MC99a] Michael Manzke and Brian Coghlan. Non-intrusive deep tracing of sci intercon-

nect traffic. In Wolfgang Karl and Geir Horn, editors, SCI Europe ’99, pages

53–58. SINTEF Electronics and Cybernetics, September 1999. ISBN 82-14-

00014-9.

[MC99b] Michael Manzke and Brian Coghlan. Prototype trace software. Techni-

cal Manual TCD-CS-2000-28, Trinity College Dublin, Department of Com-

puter Science, O’Reilly Institude, Trinty College, Dublin 2, Ireland, apr 1999.

http://www.cs.tcd.ie/Brian.Coghlan/scieuro.htm.

[MC05a] Michael Manzke and Brian A. Coghlan. Optimal performance state estimation of

compute systems. In the Proceedings of the 13th IEEE International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS 2005), pages 511–516, September 2005.

[MC05b] Wiplove Mathur and Jeanine Cook. Improved estimation for software multiplex-

ing of performance counters. In the Proceedings of the 13th IEEE International

Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-

munication Systems (MASCOTS 2005), pages 23–34, 2005.

[MCC+95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.

Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,

BIBLIOGRAPHY 191

and Tia Newhall. The paradyn parallel performance measurement tool. IEEE

Computer, 28(11):37–46, 1995.

[MCEF94] Steven Molner, Michael Cox, David Ellsworth, and Henry Fuchs. A sorting

classification of parallel rendering. Computer Graphics and Applications, IEEE,

14(4):23–32, July 1994.

[MCI+01] Barton P. Miller, Mihai Christodorescu, Robert Iverson, Tevfik Kosar, Alexan-

der Mirgorodskii, and Florentina I. Popovici. Playing inside the black box: Using

dynamic instrumentation to create security holes. Parallel Processing Letters,

11(2/3):267–280, 2001.

[McM94] J.Chris McMillan. A gps attitude error model for kalman filtering. In IEEE

1994 Position Location and Navigation Symposium, pages 329–336, 1994.

[MCM96] M. Martonosi, D. Clark, and M. Mesarina. The shrimp performance monitor:

Design and applications. In ACM SIGMETRICS Symposium on Parallel and

Distributed Tools, May 1996.

[MDK+04] P. Mucci, J. Dongarra, R. Kufrin, S. Moore, F. Song, and F. Wolf. Automating

the large-scale collection and analysis of performance. In Proceedings of the 5th

LCI International Conference on Linux Clusters: The HPC Revolution, May

2004.

[Mes03] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing

Interfacean, November 2003.

[MIL97] MIL3,Inc.3400 International Drive NW,Washington DC20008 USA. OPNET

Modeler, 1997.

[MKCL01] Michael Manzke, Stuart Kenny, Brian Coghlan, and Olav Lysne. Tuning

and verification of simulation models for high speed interconnection. In

PDPTA’2001, June 2001.

[MKS98] M. Meïsner, U. Kanus, and W. Stras̈er. A pci-card for real-time volmue render-

ing. In Eurographics Workshop on Graphics Hardware,, pages 61–67, 1998.

[MM05] Alexander V. Mirgorodskiy and Barton P. Miller. Autonomous analysis of in-

teractive systems with self-propelled instrumentation. In 12th Multimedia Com-

puting and Networking (MMCN 2005), January 2005.

[Moo02] Shirley V. Moore. A comparison of counting and sampling modes of using per-

formance monitoring hardware. In International Conference on Computational

Science (2), pages 904–912, 2002.

BIBLIOGRAPHY 192

[MS88] Y. V. V. S. Murty and W. J. Smolinski. Design and implementation of a digi-

tal differential relay for a 3-phase power transformer based on kalman filtering

theory. IEEE Transactions on Power Delivery, 3(2):525–533, April 1988.

[MSS+03] Grigorios Magklis, Michael L. Scott, Greg Semeraro, David H. Albonesi, and

Steve Dropsho. Profile-based dynamic voltage and frequency scaling for a mul-

tiple clock domain microprocessor. In ISCA, pages 14–25, 2003.

[MST+05] Allen D. Malony, Sameer Shende, N. Trebon, Jaideep Ray, Robert C. Arm-

strong, Craig Edward Rasmussen, and Matthew J. Sottile. Performance tech-

nology for parallel and distributed component software. Concurrency - Practice

and Experience, 17(2-4):117–141, 2005.

[Myr06] //www.myri.com/. , 2006.

[MZ02] Ruiping Ma and Minglian Zhang. A new adaptive kalman filter for gps/ins in-

tegrated system. In Proceedings of Asian Simulation Conference; System Sim-

ulation and Scientific Computing (Shanghai), pages 197–201, November 2002.

[New00] Dolphin New. //www.dolphinics.com/news/2000/june020-2000.html, 2000.

[NT01] Jorgen Norendal and Kurt Tjemsland. Tle version 2 description and test report.

Deliverable 25257, SINTEF, March 2001. Work package: WP2.

[Ojh01] A.K. Ojha. Techniques in least-intrusive computer system performance moni-

toring. In SoutheastCon 2001., pages 150 – 154. IEEE, April 2001.

[OMK04] Carol O’Sullivan, Michael Manzke, and Anil Kokaram. A shared-memory hybrid

graphics cluster for visualisation and video processing, July 2004.

[Ope05] OpenMP Architecture Review Board. OpenMP Application Program Interface,

May 2005.

[Opn06] Opnet. //www.opnet.com/, 2006.

[Ord01] Intel. IA-32 Intel Architecture Software Developer’s Manual, 2001.

[PAP02] PAPI. Papi performance application programming interface.

//icl.cs.utk.edu/papi/, 2002.

[Par06] Paradyn. //www.paradyn.org/, 2006.

[PAT06] Cray’s pat. //www.cray.com/index.html, 2006.

[PCC92] Randy Pausch, Thomas Crea, and Matthew Conway. A literature survey for vir-

tual environments: military flight simulator visual systems and simulator sick-

ness. Presence: Teleoperators and Virtual Environments, 1(3):344–363, 1992.

BIBLIOGRAPHY 193

[PCL06] Performance counter library (pcl). //www.fz-juelich.de/zam/PCL/, 2006.

[Pet02] Mikael Pettersson. Linux x86 performance-monitoring counters driver.

//www.csd.uu.se/ mikpe/linux/perfctr/, jan 2002.

[PGEM97] J. Pearson, R. Goodall, M. Eastham, and C. MacLeod. Investigation of kalman

filter divergence using robust stability techniques. In Proceedings of the 36th

IEEE Conference on Decision and Control, volume 5, pages 4892–4893, 1997.

[PJS97] Subbarao Palacharla, Norman P. Jouppi, and James E. Smith. Complexity-

effective superscalar processors. In ISCA, pages 206–218, 1997.

[PKG01] Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose. Reducing power re-

quirements of instruction scheduling through dynamic allocation of multiple

datapath resources. In MICRO, pages 90–101, 2001.

[Pro06] Sgi’s prodev workshop. //www.sgi.com/products/software/irix/tools/prodev.html,

2006.

[PTVF99] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical Recipes in C, chapter 2. Solution of Linear Algebraic Equations.

Cambrige University Press, second edition edition, 1999.

[Qua06] Quadrics. //www.quadrics.com/Quadrics/QuadricsHome.nsf/DisplayPages/Homepage,

2006.

[RL99] G. Rnneberg and O. Lysne. An opnet-based simulation model of sci-nodes. In

Conference Proceedings of SCI Europe’99, pages 101–112, Toulouse (France),,

1999.

[RM02] Philip C. Roth and Barton P. Miller. Deep start: A hybrid strategy for auto-

mated performance problem searches. In Euro-Par, pages 86–96, 2002.

[RM06] Philip C. Roth and Barton P. Miller. On-line automated performance diagnosis

on thousands of processes. In 2006 ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP’06), March 2006.

[RTE05] RTEMS. //www.rtems.com/, 2005.

[SBM04] J. Stewart, E.P. Bennett, and L. McMillen. Pixelview: A view-independet

graphics rendering architecture. In M. McCool T. Akenine-Möller, editor,

Graphics Hardware 2004, 2004.

BIBLIOGRAPHY 194

[SBNW98] Bernhard Skaali, Inge Birkeli, Baard Nossum, and David Wormald. Scitrac -

an lsa preprocessor for sci link tracing. In Hermann Hellwagner and Alexan-

der Reinefeld, editors, Scaleble Coherent Interface: Technology and Applica-

tion, pages 131–136. SINTEF Electronics and Cybernetics and ESPRIT Work-

ing Group ’SCIWG’ (EP22582), Cheshire Henbury, September 1998. ISBN

1-901864-02-2.

[SCI06] Sci. //www.dolphinics.com/, 2006.

[SEP+01] Gordon Stoll, Matthew Eldridge, Dan Patterson, Art Webb, Steven Berman,

Richard Levy, Chris Caywood, Milton Taveira, Stephen Hunt, and Pat Han-

rahan. Lightning-2: a high-performance display subsystem for pc clusters. In

SIGGRAPH, pages 141–148, 2001.

[Sit05] Top500 Supercomputer Sites. //www.top500.org/, 2005.

[SKW+06] Dilma Da Silva, Orran Krieger, Robert W. Wisniewski, Amos Waterland, David

Tam, and Andrew Baumann. K42: an infrastructure for operating system re-

search. ACM SIGOPS Operating Systems Review, Volume 40(Issue 2):34 – 42,

2006.

[SLF+04] Bruno Sinopoli, LucaSchenato, Massimo Franceschetti, Kameshwar Poolla,

Michael I. Jordan, and Shankar S. Sastry. Kalman filtering with intermit-

tent observations. IEEE Transactions on Automatic Control, 49(9):1453–1464,

Septembe 2004.

[SNBW99] Bernhard Skaali, Baard Nossum, Inge Birkeli, and David Wormald. Sciview-

sci test, verification and monitoring instrument. In Wolfgang Karl and Geir

Horn, editors, Conference Proceedings of SCI Europe ’99, pages 47–52. ES-

PRIT Project ’SCI-Europe’ (EP25257) and ESPRIT Working Group ’SCI-

WG’(EP22582), SINTEF Electronics and Cybernetics, sep 1999. ISBN 82-14-

00014-9.

[StGDC05] Richard M. Stallman and the GCC Developer Community. Using the GNU

Compiler Collection. Free Software Foundation, 51 Franklin Street, Fifth Floor

Boston, MA 02110-1301 USA, 2005.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

13:354–356, 1969.

[Sup01] Super Micro Computer Inc. Super P3TDE6 User’s Manual, revision 1.0 edition,

2001.

BIBLIOGRAPHY 195

[SW87] Jerzy Z. Sasiadek and Piotr J. Wojcik. On the application of an adaptive kalman

filter for sensor signals. In Proceedings of the 1987 American Control Confer-

ence., pages 859–1864, 1987.

[SWW+04] Jörgen Schmittler, Sven Woop, Daniel Wagner, Wolfgang Paul, and Philipp

Slusallek. Realtime ray tracing of dynamic scence on an fpga chip. In M. McCool

T. Akenine-Möller, editor, Graphics Hardware 2004, 2004.

[Tau06] University of oregon, los alamos national laboratory, and research centre jlich,

zam’s tau. //www.cs.uoregon.edu/research/tau/home.php, 2006.

[TGS+01] G. Torralba, V. Gonzles, E. Sanchis, J. Tao, M. Schulz, and W. Karl. Data

monitoring in high performance clusters. In Proceedings of the 12th IEEE Inter-

national Congress on Real Time for Nuclear and Plama Sciences, pages 90–95,

June 2001.

[TK92] Edison T.S. Tse and Kenichiro Kataoka. Adaptive kalman filter approach to

identifying the weights of a multi-layer neural network. In Proceedings of the

1992 Artificial Neural Networks in Engineering, ANNIE’92, volume 2, pages

325–330. ASME, Fairfield, NJ, USA, November 1992.

[Top04] Top500. //clusters.top500.org, 2004.

[Tot06] Etnus’ totalview. //www.etnus.com/TotalView/MPI.html, 2006.

[Tra06] Intel’s trace analyzer collector formaly pallas’ vampir and

vampirtrace. //www.intel.com/cd/software/products/asmo-

na/eng/cluster/clustertoolkit/index.htm, 2006.

[WM03] Felix Wolf and Bernd Mohr. Hardware-counter based automatic performance

analysis of parallel programs. In PARCO, pages 753–760, 2003.

[WMC+05] Qiang Wu, Margaret Martonosi, Douglas W. Clark, V. J. Reddi, Dan Connors,

Youfeng Wu, Jin Lee, and David Brooks. A dynamic compilation framework for

controlling microprocessor energy and performance. In MICRO, pages 271–282,

2005.

[WSS+04] Robert W. Wisniewski, Peter F. Sweeney, Kartik Sudeep, Matthias Hauswirth,

Evelyn Duesterwald, Calin Cascaval, and Reza Azimi. Performance and environ-

ment monitoring for whole-system characterization and optimization. In PAC2

(Conference on Power/Performance interaction with Architecture, Circuits, and

Compilers), October 2004.

[XLM97] Zhichen Xu, James R. Larus, and Barton P. Miller. Shared memory performance

profiling. In PPOPP, pages 240–251, 1997.

BIBLIOGRAPHY 196

[XMN99] Zhichen Xu, Barton P. Miller, and Oscar Naim. Dynamic instrumentation of

threaded applications. In PPOPP, pages 49–59, 1999.

[Xpo06] Ibm’s xpofiler. //www.research.ibm.com/actc/projects/xprofiler.shtml, 2006.

[YWA05] Kent K.C. Yu, N.R. Watson, and J. Arrillaga. An adaptive kalman filter for

dynamic harmonic state estimation and harmonic injection tracking. IEEE

Transactions on Power Delivery, 20(2 II):1577–1584, April 2005.

Index

acquisition process, 62

counter events, 35

Kalman filter, 35, 63, 64, 66, 68, 86, 88,

89, 91

PMC Random Process, 65

conditional probability density, 64

Correct, 68

discrete matrix block diagram, 65

Discrete measurement model, 66

Estimated state vector, 66

Estimation error, 67

Exponential autocorrelation function,

69

Extended Kalman Filter (EKF), 64

Gauss-Markov process, 69

Integrated Gauss-Markov process, 69

Kalman gain, 66

Measurement noise, 67

Measurement noise covariance matrix

, 67

Measurement sensitivity matrix, 67

optimal estimate, 64

posteriori error covariance matrix, 67

Predict, 68

process noise covariants matrix, 65

Random process model, 69

recursive algorithm, 64

state transitions matrix, 65

sub-optimal estimation, 63

system dynamics, 63

unity white noise, 69

white Gaussian noise, 63

Linux, 89

bash, 89

kernel, 89

time, 89

Real, 89

System, 89

User, 89

MMSE, 36

multiplexing, 35

noise corruption, 63

performance counters, 147

Branches, 153

Clocks, 154, 179

Data Cache Unit (DCU), 147

External Bus Logic (EBL), 149

Floting Point Unit, 151

Instruction Decoding and Retirement,

153

Instruction Fetch Unit (IFU), 147

Interrupts, 153

L2 Cache, 148

Memory Ordering, 152

MMX UNIT, 154

Segment Register Loads, 154

Segment Register Renaming, 155

Stalls, 154

Performance Monitoring Counter(PMC), 34

PMC acquisition, 71

Estimated autocorrelation function, 71

INDEX 198

Offline analysis, 71

PMC autocorrelation analysis

Branches, 179

Data Cache Unit (DCU), 173

External Bus Logic (EBL), 175

Floating Point Unit, 177

Instruction Decoding and Retirement,

178

Instruction Fetch Unit (IFU), 173

Interrupts, 178

L2 Cache, 173

Memory Ordering, 177

MMX UNIT, 180

Segment Register Loads, 179

Segment Register Renaming, 180

Stalls, 179

PMC register, 34

quantisation noise, 63

random processes, 35

sample interval, 35

SCI trace instrument

interconnect traffic, 31

Non-intrusive monitoring, 31

off-line data analysis, 31

probe adapters, 48

SCITRAC cable tracer, 48

trace data acquisition, 31

trace memory boards, 48

trace probes, 48

state space methods, 36

state vector, 65

stochastic models, 63

stochastic system models, 36

c© Michael Manzke

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	List of Abbreviations
	Introduction
	Non-Invasive SCI Trace Data Acquisition
	Global Real-time Estimation of Incomplete Performance Measurements
	Special Purpose High Performance Graphics DSM Cluster
	Contributions
	Thesis Statement
	Directly Relevant Peer Reviewed Publications
	Indirectly Relevant Peer Reviewed Publications

	Thesis Organisation

	Motivation
	Trace Data Acquisition and Analysis
	The SCI Non-Intrusive Deep Trace Instrument
	Tuning and Validation of SCI Network Models

	Global State Estimation of Hardware DSM Systems
	MMSE Filter Algorithm
	Distributed MMSE Filter Algorithm
	Special-Purpose Graphics Cluster

	Background and Related Work
	The Performance Analysis
	Performance Counter
	Multiplexed Performance Counter Readings
	Cluster wide PMC Collection

	Trace Data Acquisition and Analysis Related Work
	Kalman Filtering
	MMSE Filter Related Work

	Compute Cluster
	Interconnect Technologies
	Scalable Coherent Interface (SCI)

	Special Purpose Graphics Cluster

	High Speed Interconnect Trace Data Acquisition and Analysis
	SCI Trace Instrument Hardware
	Trace Probes
	Probe Adapter
	Trace Memory Boards
	Control Software

	SCI Trace Database
	SCI Cable-link Tables
	Blink Tables
	Trace Database Performance

	SCI Trace Data Presentation and Analysis
	Java Trace Database Server
	Java Packet Viewer Applet

	Tuning and Verification of Simulation Models
	SCI Simulation Model
	SCI Simulation Model Tuning

	Summary

	State Estimation of a Single Compute Node
	The Estimation Algorithm
	The Filter
	PMC Process Models
	Integrated Gauss-Markov Process Model for n Counter Processes

	PMC Acquisition and Offline Analysis
	Acquisition of PMC readings
	Visual Inspection of sample PMC Readings and their Histograms
	Visual Inspection of simulated PMC Readings and their Histograms
	Autocorrelation Calculation for Sampled PMC Readings
	Autocorrelation Calculation for Simulated PMC Readings
	Calculation of the Sampled PMC Readings' Mean Autocorrelation
	Calculation of the Simulated PMC Readings' Mean Autocorrelation
	Estimation of and 2 for Sampled PMC Readings
	Estimation of and 2 for Simulated PMC Readings
	Visual Inspection of Histograms for Sampled PMC Readings
	Visual Inspection of Histograms for Simulated PMC Readings
	Autocorrelation Analysis Results

	One Performance Monitoring Counter (PMC) Set-at-a-Time
	Implementation of the Estimation Algorithm

	Optimisation and Re-evaluation of the Estimation Algorithm
	Sparse Matrix Optimisation
	The Kalman Gain
	The A Posteriori State Estimate
	The A Posteriori Error Covariance
	The A Priori State Vector
	The A Priori Error Covariance Matrix

	Optimisation Analysis
	Uniprocessor Systems Evaluation
	Derived Performance Measurements

	SMP Systems Evaluation
	Distributed State Estimation

	Hardware DSM Testbeds
	Loosely Coupled Distributed Shared Memory Testbed
	Tightly Coupled High Performance Graphics DSM Cluster
	Cluster Architecture
	Interconnect Technology
	Commodity and Custom-built GPU/FPGA Cluster Nodes

	Compute Cluster State Estimation Algorithm (C2STATE)
	The C2STATE Algorithm
	Shared Memory Clusters
	Work Loads

	Conclusions and Future Work
	Performance Analysis
	Hardware DSM Testbeds

	Limitations and Future Work
	SCI Trace Acquisition and Analysis
	C2STATE Algorithm
	Interconnect Measurements
	Tightly Coupled Scalable Graphics Cluster
	Implementation of the C2STATE Algorithm on the Graphics Cluster
	Contributions

	Appendix:PIII Performance Monitoring Counters (PMC) Description
	Appendix: PMC Offline Autocorrelation Analysis
	PMC Offline Autocorrelation Analysis Procedure
	Histogram and Samples for real PMC Readings
	Histogram and Samples for Simulated Readings
	Histogram and Autocorrelation for Real PMC Readings
	Histogram and Autocorrelation for Simulated Readings
	Histogram of Real PMC Readings with superimposed Gaussian PDF
	Histogram of Simulated Readings with superimposed Gaussian PDF

	PIII PMC off-line autocorrelation analysis results.

	Bibliography
	Index

