
Extending Event Based Programming for Sensor-Driven

Applications in Resource-Constrained Environments

Sean Reilly

A thesis submitted to the University of Dublin, Trinity College

in ful�llment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

September 2011

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any other

university and it is entirely my own work.

I agree to deposit this thesis in the University's open access institutional repository or allow the

library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library

conditions of use and acknowledgement.

Sean Reilly

Dated: 27th September 2011

Acknowledgements

Firstly, I would like to thank my supervisor Dr. Mads Haahr for his guidance and encouragement. I

have learned a great deal from working with him and appreciate the enormous contribution he has

made to my academic development.

I would also like to thank my colleagues and friends in the Distributed Systems Group for making

it a pleasure to be part of this unique research environment.

Thank you to all my friends for their help and encouragement along the way and for making my

time as a student as ful�lling and rewarding as it was.

Finally, I would like to especially thank my parents and family for their constant support for all

of my academic endeavours over the years. Without you this simply would not have been possible.

Sean Reilly

University of Dublin, Trinity College

September 2011

iii

Summary

The ubiquitous computing vision which began with Weiser and its evolution since predicts large

quantities of sensors, actuators and computational devices embedded in our environment enabling

advanced applications which increase the ambient intelligence of the environment. As the prevalence

of these devices increase, this vision is moving closer to reality. The large quantities of sensors have the

potential to enable a range of sensor-rich applications in diverse domains such as healthcare, computer

augmented sports, intelligent homes and smart o�ces. Within this class of sensor-rich applications

are two subsets, sensor monitoring applications and sensor-driven applications. Sensor monitoring

applications are applications that monitor sensors and transmit data to an external sink. The second

sub-set of these sensor-rich applications which we call sensor-driven applications, i.e. applications

that change their behaviour in response to sensor input, will provide the main instantiation of the

ubiquitous computing vision. Sensor driven applications have two de�ning characteristics. Firstly

they have multiple sensors and secondly they need to combine the data from these multiple sensors

in order to drive the behaviour of the application.

There are a large amount of challenges in pervasive computing, ranging from privacy, trust, hetero-

geneous devices and real-time applications to resource usage, routing, reliability and fault tolerance.

In this thesis we focus on programming challenges which must be overcome when developing ubiqui-

tous computing applications. Despite the fact that there are so many di�erent types of applications a

large amount of these applications share a common challenge, which is the need to deal with multiple

sensor streams. Two challenges related to dealing with multiple sensor streams which we address in

this thesis are the complexity of combining multiple sensor streams and the challenge of dealing with

large quantities of continuous data. As the number of sensors in the system increases the developer

must �nd a way to combine the various streams of sensor data in order to perform meaningful multi-

sensor data fusion and drive the behavior of the application. The continuous nature of sensor data

also provides challenges to the developer.

Previous work in this area is split in two main categories, event processing and stream processing.

Event based programming is popular for developing a large range of applications but has been found

to be particularly useful for developing ubiquitous computing applications. The asynchronous nature

of the communication, the decoupled development and the fact that it is relatively easy to map sensed

phenomena to events has led to event based programming being a standard approach to developing

ubiquitous computing applications.

iv

Stream processing is an area that ranges from stream oriented programming languages in which

streams are a �rst class type to large middleware systems devoted to the manipulation of streams.

These large systems are used to perform continuous queries over streams of data in an analogous way

to traditional database queries. Stream processing provides facilities for dealing with large quantities

of sensor data and performing queries and operations across this data. However despite providing

abstractions which could prove bene�cial to developers stream processing has largely not yet been

adopted by ubiquitous computing developers.

Both of these solutions to the challenges of developing applications in the domain of sensor-driven

applications have their own individual merits. Event based programming is a well proven tool of

developers of ubiquitous computing applications while stream processing has specialised abstractions

for combining streams and handling continuous data. In this thesis we propose a novel model that

combines elements from stream processing with event based programming in order to make it more

suitable for developing sensor-driven applications.

This thesis provides a set of abstractions which are used to extend event based programming to

make it more suitable for developing sensor-driven applications. The combined model, Architecture

for fusing events using streams and execution policies (AESOP) makes it easier for programmers

to combine sensor streams by providing multi-event handlers and execution policies. AESOP also

provides event streams which are abstractions that reduce the burden on the developer caused by

programming with continuous data. The large range of ubiquitous computing platforms places ad-

ditional challenges on any abstractions that aim to be applicable in the domain. As a large number

of these platforms are resource-constrained any general solution must also be suitable for resource-

constrained platforms. The AESOP extensions are also designed to be useful with any underlying

event model, be it peer-to-peer, implicit or mediator.

To evaluate the approach, we examine the generality of the abstractions and their suitability for

writing sensor-driven applications. To evaluate our abstractions we have implemented two instanti-

ations of the AESOP model. The �rst, C-AESOP is written in C on the Gumstix platform. It is

implemented on top of the STEAM event model. The second implementation, J-AESOP is written

in Java on the Android platform and uses an event model based on the event listener pattern. The

abstractions are shown to be general across programming languages, event models and applications.

They are also shown to be suitable for solving the challenges of combining sensor streams and deal-

ing with continuous data and also that the abstractions are suitable for use on resource constrained

platforms.

v

Publications Related to this Ph.D.

• Sean Reilly, Mads Haahr, "Extending the event-based programming model to support sensor-

driven ubiquitous computing applications", Pervasive Computing and Communications, IEEE

International Conference on, pp. 1-6, 2009 IEEE International Conference on Pervasive Com-

puting and Communications, 2009.

• Sean Reilly, "Multi-Event Handlers for sensor-driven ubiquitous computing applications", Per-

vasive Computing and Communications, IEEE International Conference on, pp. 1-2, 2009 IEEE

International Conference on Pervasive Computing and Communications, 2009.

• Reilly, S., Barron, P., Cahill, V., Moran, K., and Haahr, M. (2009). A General-Purpose Tax-

onomy of Computer-Augmented Sports Systems. In Nigel K. Ll. Pope, Kerri-Ann L. Kuhn and

John Forster (Eds.), Digital Sport for Performance Enhancement and Competitive Evolution:

Intelligent Gaming Technologies. Hershey, PA: IGI Global.

vi

Contents

Acknowledgements iii

Abstract iii

Publications Related to this Ph.D. vi

List of Tables xi

List of Figures xii

List of Listings xiv

Chapter 1 Introduction 1

1.1 Ubiquitous Computing and Sensor-Driven Applications 1

1.2 Event-Based Programming . 2

1.3 Stream Processing . 3

1.4 This Thesis . 4

1.5 Document Roadmap . 5

Chapter 2 Sensor-Driven Applications 7

2.1 Example Applications . 7

2.1.1 Squash Training Application . 7

2.1.2 Elderly Patient Fall Detection . 8

2.1.3 Car Skid Control Application . 8

2.1.4 User Interface for Smartphone . 9

2.2 Application Characteristics . 10

2.2.1 Multiple Sensors . 10

2.2.2 Combination of Sensor Data . 10

2.2.3 Asynchronicity . 10

2.2.4 Access to Historical Data . 11

2.3 Programming Abstraction Support . 11

2.3.1 Functional Requirements . 12

2.3.2 General Middleware Requirements . 12

vii

2.4 Conclusion . 14

Chapter 3 State of the Art 16

3.1 Review Methodology and Work Selection Criteria . 16

3.2 Simple Event-Based Systems . 17

3.2.1 JavaBeans Event Model . 17

3.2.2 STEAM . 18

3.3 Event Systems with support for Composite Events . 20

3.3.1 Cambridge Event Architecture . 20

3.3.2 Composite Event Detection as a Generic Middleware Extension 22

3.4 Complex Event Processing Systems . 24

3.4.1 SASE . 24

3.4.2 Cayuga . 26

3.5 Stream Processing . 28

3.5.1 Aurora . 29

3.5.2 STREAM . 32

3.6 Stream and Event Processing Systems . 34

3.6.1 MavEStream . 35

3.7 Sensor Database . 38

3.7.1 TinyDB . 38

3.7.2 SINA . 41

3.8 Summary . 43

Chapter 4 The AESOP Model 45

4.1 Requirements . 46

4.2 Overview of the AESOP Architecture . 46

4.2.1 AESOP and the Host Event System . 46

4.2.2 Feature Preservation . 47

4.2.3 Interaction between AESOP and the Application 48

4.2.4 Interaction Between the AESOP Abstractions 48

4.3 Event Streams . 49

4.3.1 Event Stream Windows . 50

4.3.2 Windowing Mechanisms . 50

4.3.3 Window Membership . 52

4.3.4 Instantiation Considerations . 52

4.3.5 Event Streams in Example Application . 53

4.4 Multi-Event Handlers . 53

4.4.1 Instantiation Considerations . 54

4.4.2 Multi-Event Handler in Example Application 55

4.5 Execution Policies . 56

viii

4.5.1 Instantiation Considerations . 57

4.5.2 Execution Policy in Example Application . 57

4.6 Composition of Multi-Event Handlers . 58

4.7 Summary . 59

Chapter 5 Implementation 60

5.1 Implementation Considerations . 60

5.1.1 Choice of Host Event System . 61

5.1.2 Window Mechanisms . 62

5.1.3 Window Membership Expressions . 62

5.1.4 Execution Policy Speci�cation . 63

5.1.5 Programming Language . 63

5.2 Instantiations . 64

5.3 C-AESOP . 64

5.3.1 C-AESOP Requirements . 64

5.3.2 STEAM . 65

5.3.3 C-AESOP Time Model . 65

5.3.4 Programming Language . 66

5.3.5 Event Streams in C-AESOP . 66

5.3.6 Multi-Event Handlers in C-AESOP . 68

5.3.7 Execution Policies in C-AESOP . 69

5.4 J-AESOP . 70

5.4.1 J-AESOP Requirements . 70

5.4.2 J-AESOP Event Model . 71

5.4.3 The J-AESOP Time Model . 72

5.4.4 Programming Language . 72

5.4.5 The AESOP to Java Mapping . 72

5.4.6 The MultiEventHandler Class . 73

5.4.7 Example Multi-Event Handler . 74

5.4.8 Execution Policy . 75

5.4.9 The EventStream Class . 75

5.4.10 Composition . 75

5.5 Summary . 76

Chapter 6 Evaluation 77

6.1 Evaluation Strategy . 77

6.2 Squash Training Application . 79

6.2.1 Squash . 79

6.2.2 Sensor-Augmented Squash Training . 80

6.2.3 The Gumstix Platform . 82

ix

6.2.4 System Design . 84

6.3 Viking Ghost Hunt . 87

6.3.1 Location-Aware Games . 87

6.3.2 The Game . 87

6.3.3 The Android Platform . 88

6.3.4 System Design . 88

6.4 Performance . 92

6.4.1 C-AESOP Resource Usage . 92

6.4.2 J-AESOP Resource Usage . 95

6.5 Functional Support for Sensor-Driven Applications . 97

6.5.1 Sensor-Augmented Squash Training . 97

6.5.2 Viking Ghost Hunt . 99

6.5.3 Discussion . 100

6.6 Generality . 100

6.6.1 Event Models . 100

6.6.2 Programming Languages . 101

6.6.3 Applications . 101

6.6.4 Platform Generality . 102

6.7 Summary . 103

Chapter 7 Conclusion 104

7.1 Achievements . 104

7.2 Perspective . 105

7.3 Future Work . 106

7.3.1 Timing Schemes for Composing Multi-Event Handlers 106

7.3.2 Sharing of Event Streams . 106

Bibliography 107

Appendix A Results of Experiments 117

Appendix B Additional Source Code 120

Appendix C CD of Source Code 126

x

List of Tables

2.1 Requirements of Middleware to Support Sensor-Driven Applications 15

3.1 Summary of State of the Art . 43

6.1 STEAM and C-AESOP RAM Usage . 94

6.2 J-AESOP Resource Usage . 96

A.1 CPU Utilisation C-AESOP . 117

A.2 Steam CPU Utilisation . 118

A.3 Custom Event System Performance . 118

A.4 J-AESOP Performance . 119

xi

List of Figures

2.1 The sensor-driven application platform spectrum . 14

3.1 The Java Beans Event Model [103] . 18

3.2 Composite Event Detection in CEA [16] . 21

3.3 Illustration of distributed composite event detection [114] 22

3.4 Interface with the host event-model [114] . 23

3.5 The SASE architecture [54] . 25

3.6 The CAYUGA system architecture [20] . 27

3.7 Aurora system model [1] . 29

3.8 The Aurora system architecture [1] . 31

3.9 MavEStream Architecture [78] . 35

3.10 MavEStream four-stage integration model [78] . 36

3.11 A query and results propogating through a TinyDB network [95] 39

4.1 Placement of the AESOP Architecture . 47

4.2 AESOP Architecture Overview . 48

4.3 Event Stream Showing Window . 49

4.4 Event Streams and Sliding Windows . 50

4.5 Tumbling Windows . 51

4.6 The AESOP Model, Multiple Events with Execution Policy 54

4.7 Composition of Multi-Event Handlers . 58

6.1 Start of Squash Swing . 81

6.2 Ball Contact . 82

6.3 End of Squash Swing . 83

6.4 Prototype Augmented Squash Racket . 84

6.5 Squash Training Application . 85

6.6 VGH system design . 89

6.7 Viking Ghost Hunt: Ghost View Mode . 90

6.8 C-AESOP v STEAM Performance . 94

6.9 CPU Utilisation Relative to Event Frequency . 95

xii

6.10 CPU Utilisation of Custom Event System and J-AESOP 97

6.11 Relative CPU Utilisation of J-AESOP . 98

xiii

List of Listings

4.1 Pseudo-code for Multi-Event Handler in Fall Detection Application 55

4.2 Pseudo-code for Execution Policy in Fall Detection Application 56

5.1 Example Main Function in C-AESOP . 66

5.2 Example Multi-Event Handler in C-AESOP . 67

5.3 Example Execution Policy in C-AESOP . 68

5.4 The Multi-Event Handler class . 72

5.5 Multi-Event Handler for Fall Detection Application in J-AESOP 73

5.6 Example Execution Policy from Fall Detection Application 74

B.1 The Fall Detection Example Application in C-AESOP 120

B.2 The Fall Detection Example Application in J-AESOP 123

xiv

Chapter 1

Introduction

The ubiquitous computing vision initially proposed by Weiser [136] and developed since is one in which

many sensors, actuators and computational devices are distributed all around us in the environment

in which we live. This vision is becoming ever close to reality with many people possessing multiple

computational consumer devices, e.g., desktop computers, mobile phones [106] and in-car computers

but also with advances in wireless sensor networks and embedded devices [132]. Developing ubiquitous

computing applications for these devices, however, has numerous di�erences to developing traditional

desktop applications. For example, problems of mobility, heterogeneous devices, privacy and sensing

the environment are all much more acute and complex in ubiquitous computing applications. In this

thesis we propose abstractions that are suitable for combining and analysing multiple sensor streams

and in doing so make it easier to develop applications which use multiple sensors. The abstractions

are presented as generic extensions to event based systems. We present two implementations of the

abstractions which we use in our evaluation of the abstractions.

This introductory chapter motivates the body of work presented in the thesis and provides back-

ground information in event-based programming and stream processing which is required to under-

stand the thesis. The chapter also summarises the contribution of the thesis and presents a document

roadmap.

1.1 Ubiquitous Computing and Sensor-Driven Applications

From when it was �rst proposed by Mark Weiser in his seminal 1991 paper, ubiquitous computing has

developed into a research �eld in its own right. Weiser began with a vision of pervasive computing

that was largely o�ce and workspace based. This initial approach has since been expanded upon

by many researchers. There are now a large amount of visions of ubiquitous computing from smart

homes [83], smart dust [96], ambient intelligence [116], pervasive healthcare [84], personal information

auras [48] to people-centric sensing [22]. These visions pay testament to the fact that there is a very

broad spectrum of ubiquitous computing applications from tiny embedded systems performing habitat

monitoring [96] through to large scale systems to support users in their residence [83].

1

Chapter 1. Introduction

Despite the fact that ubiquitous computing now is driven by a large number of di�erent approaches

and is used to describe a broad variety of applications, one characteristic which is common to a large

amount of these applications is that of having one or more sensors and needing to combine the

streams of data from these sensors in order to react and respond to their environment. We use the

term sensor-rich applications to describe the class of applications that have multiple sensors. We

de�ne sensor-driven applications as a sub-class of sensor-rich applications. Sensor-driven applications

have two main de�ning characteristics: they have multiple sensors, and they change their behaviour

primarily in response to their sensor inputs. This in contrast to applications which might perform

some monitoring tasks using sensors without any combination or analysis. An example of a sensor-

driven application would be a pool monitoring system such as Poseidon [75] which uses multiple

sensors to detect incapacitated swimmers and alert lifeguards to their whereabouts. Sensor-driven

applications are a very signi�cant sub-set of all ubiquitous computing applications.

1.2 Event-Based Programming

Event-based programming is a very popular paradigm for building computer systems. It has been used

to build a wide range of systems from graphical user interfaces [121] to massively distributed banking

systems [5] and deployed across the spectrum of platforms from tiny motes [59] to the Grid [80].

Event-based system use events to communicate between individual components of the system. Each

event has an event source and can be delivered to multiple consumers of the event. Events can carry

some relevant information e.g., a timestamp signifying when the event happened. An event model

is a speci�cation of the event and a description of the infrastructure for communicating each event.

The characteristics of the event model are perhaps best thought about in terms of communication.

In the traditional client/server approach one client interacts with one server. The communication is

generally one-to-one. This is in contrast with the event model where there is generally more than

one recipient of the event. Also in the client/server model, the client usually (though not always)

expects a response from the server. In the event model, the communication is usually asynchronous

and often anonymous, i.e., the communicating elements do not necessarily need to know about the

receivers or producers of their events, just that an event has happened. This allows decoupling of

the producer of the events from the consumer. In the event model, all parties are permitted to

initiate communication, i.e., send events and to receive communications, i.e., receive events. This

is in contrast to the client/server model where the client always initiates communication with the

server. The asynchronous one-to-many communication and the ability to decouple and modularise

the components of the application make the event model a tool of choice for developers and designers

of distributed systems. The event-based model is particularly suitable for writing applications that

use sensors, because each individual sensor reading can be modelled directly as an event and sensor

readings can be synchronous or asynchronous, both of which are supported by the event model.

Ubiquitous computing systems also tend to be distributed and signi�cant energy savings can be

gained from using the event model, as the application only reacts to events that have occurred and

2

Chapter 1. Introduction

so can put the processor in idle mode between events. For example, the leading embedded operating

system TinyOS [59] for Berkeley motes uses an event-based model. For these reasons the paradigm

of event-based programming is particularly well suited to, and has been extensively used in, the

development of ubiquitous computing applications [61].

There are a large variety of di�erent event-based systems [112, 52, 103, 129, 99, 101, 110, 92], some

designed for use on one machine and others distributed across many. There are also many types of

event models including peer-to-peer [104], mediator [52] and implicit event models [15, 101]. There

is a history of extending these event models and systems to make them better for dealing with a

particular problem or for working in a particular domain. For example, scalability is a major concern

in distributed systems and several extensions to the event-model have been proposed improve the

scalability of applications that use event-based communication. Propagating events to all nodes in

a large distributed system severely hampers the scalability of the system. To this end work like the

ECO [110] model and Cambridge Event Model [112] introduce mechanisms to limit the distribution

of irrelevant or unneeded events. In the ECO model the mechanisms are called notify constraints and

in the Cambridge Event Model these are referred to as �lters. This is just one example of a group

of extensions to the core event model designed to make it more suitable for dealing with a particular

challenge or application domain.

1.3 Stream Processing

Stream Processing as a research discipline has its origins in stream processing languages such as Lucid

[11] from the late 1970s. In stream processing languages, streams are a �rst order data type. These

languages are usually data�ow languages, i.e., systems in which the movement of data around the

system causes the program to execute. For example, in Lucid the expression a+ b = c will wait until

it has a value for a and for b and then evaluate the value for c. Stream processing languages have

found favour with functional programming researchers because of their strong semantics and formal

underpinnings. They have also been used in hardware design languages and other �elds.

Streams, or more speci�cally data streams are time ordered sequences of data tuples. There is

a strict time ordering on the elements of the data stream. Each individual tuple in a data stream

contains some stream speci�c information, but can also contain additional information such as a

timestamp which can be used in the processing of the stream.

Since the late 1990s focus is returning to stream processing but with a di�erent set of goals. The

large quantities of data available to computers from sources as diverse as stock exchanges, sensors

and RSS feeds and the ubiquity of networking connections mean that computers have access to large

volumes of data that need to be processed in order to extract relevant information and detect inter-

esting trends. The standard approach to designing systems that needed to analyse large quantities

of data (e.g. shop inventory systems) was to store this data in a relational database and then query

the data at a later date. Because these data streams have such large amounts of data it is infeasible

to store all the data and later process it so the data needs to be processed on the �y. Traditional

3

Chapter 1. Introduction

relational databases systems are insu�cient for the task. Attempts have been made to extend rela-

tional databases to make them more suitable, for example by designing in-memory databases where

the entire database resides in main memory to speed up the operations, however these e�orts have

largely failed due to the large volumes of data and it became clear that a new approach was required.

This research has progressed to the development of data stream management systems (DSMS) which

are speci�cally designed to deal with continuous streams of data. These DSMSs usually provide the

facility to answer long running continuous queries (CQs) over some combination of input streams.

Large amount of research in current DSMSs is focused on dealing with bursty, or infrequent streams,

quality of service (QoS), calculating approximate results to queries, windowing mechanisms, load

shedding [82, 14, 98, 91] and scheduling [12, 24, 125].

The data�ow model is ideal for working with streams of data because in essence the arrival of data

is what drives the �ow of the application. This is similar in a large number of respects to event-driven

systems where the arrival of events causes the execution of handlers and drives the execution of the

application.

1.4 This Thesis

The research hypothesis of this work is that there exists abstractions which simplify the design and

implementation of sensor-driven applications and that the abstractions presented in chapter 4 of this

thesis are such abstractions.

It is clear that event-based programming is a useful paradigm for developing ubiquitous computing

applications. However, developing applications with multiple sensor streams is still non-trivial for the

programmer. Combining and analysing continuous streams of sensor data requires data structures

and algorithms that are not common in typical desktop or server applications. Stream processing,

on the other hand, has abstractions for dealing with and combining streams and handling continuous

data. However, it has very low uptake among application developers in general and among ubiquitous

computing application developers in particular. This thesis aims to combine the best of both worlds by

marrying concepts from stream processing with the preferred development techniques for ubiquitous

computing. The approach is to extend the event-based programming model with abstractions from

the domain of stream processing to make it more suitable for developing sensor-driven ubiquitous

computing applications.

The main contributions of this thesis are:

1. Generic extension to event-based programming to support the development of sensor-driven

applications

2. Design and implementation of C-AESOP

3. Design and implementation of J-AESOP

4. Design and implementation of the Squash Training Application

4

Chapter 1. Introduction

5. Design and implementation of the Viking Ghost Hunt Application

The �rst contribution is the AESOP abstractions themselves. These abstractions are presented in

Chapter 3. They are a generic extension to event based programming and the most important of all

the contributions. Contributions 2 and 3 relate to the implementation of the AESOP abstractions.

It is highly illustrative to see how the abstractions can be implemented and to see how a host event

system can be extended with the AESOP abstractions. The fourth and �fth contribution show

applications that have been developed using the AESOP abstractions. These applications show how

the abstractions can be used and are used to evaluate the usefulness of the AESOP abstractions in

the development of sensor-driven applications.

The research questions which motivated the work in this thesis are:

1. Can we devise a set of abstractions that would be useful for developing sensor-driven applica-

tions?

2. How should we implement these abstractions?

3. Do the AESOP abstractions help in the creation of sensor-driven applications?

The research questions are directly related to the contributions of this thesis. The �rst research

question �Can we devise a set of abstractions that would be useful for developing sensor-driven appli-

cations?� is directly addressed by the �rst contribution which is a �Generic extension to event-based

programming to support the development of sensor-driven applications�. The second and third contri-

butions which detail the C-AESOP and J-AESOP design and implementation are directly related to

the second research questions which asks how the abstractions proposed as an answer to question one

might be implemented. Finally the fourth and �fth contributions which provide example applications

developed using the abstractions are used to answer the third research question and to show that

indeed the abstractions are useful for the development of sensor driven applications.

The extension, called Architecture for fusing Events using Streams and Execution Policies (AE-

SOP), provides abstractions for combining sensor data from multiple continuous sensors. The support

provided by these abstractions for developing sensor-driven applications is evaluated. The evaluation

is carried out by creating two instantiations of the AESOP model. These instantiations are then used

to develop two sensor-driven applications. These applications and the two instantiations are then

analysed and the degree of support o�ered by the AESOP model in the development of sensor-driven

applications is evaluated. The resource usage of the instantiations are also quanti�ed and shown to

be acceptable for the development of sensor-driven applications.

1.5 Document Roadmap

The structure of this thesis is as follows.

Chapter 2 de�nes sensor-driven applications and derives requirements for abstractions to support

the development of them.

5

Chapter 1. Introduction

Chapter 3 presents a survey of the state of the art of abstractions used to develop sensor-rich

applications.

Chapter 4 presents the proposed extensions to event-based programming, called AESOP.

Chapter 5 describes two instantiations of the model. C-AESOP is written in C on the Gumstix

platform while J-AESOP is written in Java on the Android platform.

Chapter 6 evaluates the model by examining the generality of the extensions and the suitability

of the model for writing sensor-driven applications.

Chapter 7 presents conclusions and outlines future research directions.

6

Chapter 2

Sensor-Driven Applications

The purpose of this chapter is to derive the requirements for abstractions that support sensor-driven

applications. This chapter presents four example sensor-driven applications from four separate appli-

cation domains within the greater �eld of ubiquitous computing. The qualities of these applications

are analysed to reveal the common characteristics of sensor-driven applications. These characteristics

are then used to synthesise the requirements for middleware to support sensor-driven applications.

There are seven requirements of sensor-driven applications and we divide these requirements into

functional requirements and general middleware requirements.

2.1 Example Applications

In order to focus our discussion of sensor-driven applications, we present here four example application

from di�erent application domains. The applications presented serve as examples when discussing

sensor-driven applications in the remainder of the thesis, and two of the applications are implemented

as demonstrator applications and used as the basis for our evaluation in chapter 6.

2.1.1 Squash Training Application

There is a growing trend towards the augmentation of sports with computational and sensing ability

in order to referee, ensure athlete safety, entertain spectators and train athletes [115]. The sport we

have chosen to computationally augment is the sport of squash rackets. Squash rackets, or as it is

commonly known squash, is a racket sport and so it is typical of a large class of sports where athletes

use some form of artefact to make contact with a ball. Examples of other sports that exhibit this

behaviour are golf, hockey, tennis and cricket. Therefore an application that successfully augments

the sport of squash should be applicable to a wider group of sports. The existence of an artefact in

the sport is also desirable from the point of view of augmenting the sport with computational ability

as embedding sensors and computational devices in an artefact is preferable to attaching them to the

athlete or embedding them in the environment as attaching computational devices to an athlete can

be uncomfortable for the athlete and inconvenient, especially if they need to be precisely attached

7

Chapter 2. Sensor-Driven Applications

by a technician. Squash courts are also situated indoors which aids development and testing of the

application. Furthermore considerable squash expertise and numerous athletes were available locally

by virtue of the author's contacts in the Dublin University Squash Rackets Club.

Squash is a racket sport played between two competing athletes. In the sport of squash the swing

of the athlete is of vital importance. Athletes and trainers are interested in several characteristics

of the swing and the stance of the athlete as they make contact with the ball. Accelerometers and

orientation sensors placed on the athlete's racket could be used to detect the moment of contact with

the ball and the orientation of the racket on impact. They could also be used to detect the start and

end of the athlete's swing. Force sensors in the athlete's shoes could detect the stance of the athlete.

The balance and movement of the athlete is of vital importance as they strike the ball. The proposed

application could analyse the movement and swing of the athlete and could o�er advice to the athlete

and coach on strategies for improving the swing.

2.1.2 Elderly Patient Fall Detection

Much consideration has been given to how ubiquitous computing can help cater for the needs of

sick and elderly people [84, 135, 134, 107, 81]. This research �eld has become known as ubiquitous

healthcare or pervasive healthcare. Assisted living is a domain which has the goals of allowing elderly

and disabled patients to live on their own in their own home. This has several important advantages

such as reducing the need for expensive hospitalisation, reducing the chances that the patient will

contract a secondary infection in hospital and supporting the independence of the patient by allowing

them to be in control of their own condition. The following example ubiquitous computing application

is used to support a patient in their day to day life in and around their own home.

An elderly person lives alone and is concerned that they might fall and be unable to contact

emergency services or friends for help. An automatic fall monitoring system is proposed to detect a

potential fall and alert the relevant people. The system needs to distinguish between resting (such as

sitting and lying down) and a more violent fall. It uses multiple accelerometers distributed around

the patient's body, one on the hip, on the wrist and embedded in the patient's shoe. The system

operates by detecting if the patient's posture has changed from being upright to horizontal, when

this is detected it then performs more complex analysis over the historical accelerometer data from

the three sensors to determine if the change was caused by a fall or the patient making a voluntary

movement. If a fall is detected the application alerts the patient and unless the alert is cancelled,

calls for help.

2.1.3 Car Skid Control Application

New automobiles contain large amounts of computers and sensors. For example, there are over 35

unique electronic features in BMW automobiles which include sensors and computational elements [4].

These include features such as an automatic Lane Departure Warning which analyses video streams

of the oncoming road to detect when the automobile is drifting from its lane on a motorway at

8

Chapter 2. Sensor-Driven Applications

high speed; Dynamic Stability Control which uses a multitude of sensors monitoring wheel rotation,

steering angle, lateral forces, pressure and yaw to detect anomalies in the motion of the car and then

initiates actions to correct these anomalies; and Active Safety system which uses sensors distributed

around the car to detect the direction and force of impacts and uses this information to control airbags,

active headrests and seat belt systems.

We propose an example application that is a skid control and recovery system designed for an

automobile. The system has multiple sensors detecting the rate of turn of each of the cars wheels. It

also has a momentum sensor which is a combination of several other sensors and also an accelerometer

sensor. A skid is detected from analysing the rate of turn of all the wheels. When a skid is detected,

analysis is performed using the momentum of the car, the accelerometer data and wheel turn rate for

the period up to and including the skid and the best corrective action is calculated in order to take

the car out of the skid and regain control of the car.

2.1.4 User Interface for Smartphone

Phones are increasing in capabilities both in terms of additional GPS, accelerometers and other

sensors, as well as processing and graphics power. The iPhone [65], HTC G1 [38] and Nokia N96 [109]

all support accelerometers and increased processing power in comparison to older models. The features

available and the availability of a marketplace and central distribution system has led to a large amount

of applications being developed for these devices. For example, the iPhone app store has had over

two billion applications downloaded as of September 2009 [64] and has over one hundred thousand

applications available as of November 2009 [63]. The largest category of applications available on

the iPhone app store is in the game category. Clearly there is a large interest in developing and

playing games for smartphones, however developing user interfaces with these sensors is not trivial as

developers generally do not have the expertise to deal with sensors and programming in the physical

world. One category of games which are well placed to utilise the advanced sensor functionality of the

smartphones are location-aware games. Location-aware games are games in which the location of the

player is used as an integral part of the game play, implying that the player can move around while

playing the game. With the integration of GPS in most of the new smart phones the scene is set for

location-aware games which allow the phone to be used in a non-traditional manner as the interface

to the game.

The example application proposed is a location-aware game which is based on the genre of ghost

stories, and paranormal investigation. In the game the player uses their phone as a paranormal

investigation device. The player can peer through the phone and see ghosts overlaid on the images

from the phones video feed. The movement of the ghost must match the movement of the phone, i.e.

panning of the phone must allow the phone and imagery to move but the ghost should stay stationary

in the scene.There are several sensors in the phone including magnetometers, accelerometers and

GPS and these are combined and analysed in order to drive the game behaviour and create a novel

interaction technique for the game.

9

Chapter 2. Sensor-Driven Applications

2.2 Application Characteristics

When we consider the sensor-driven applications described in section 2.1 a number of characteristics

related to the use of sensors which are common to all of the applications become apparent.

2.2.1 Multiple Sensors

Of the four applications it is clear that all posses multiple sensors. The squash application has

four distinct sensors: an accelerometer, an orientation sensor and two separate force sensors. The

automatic skid control application has six separate sensors: four wheel turn sensors, one momentum

sensor and an accelerometer. The fall detection system has three separate accelerometer sensors and

the user interface for a smartphone has three separate sensors: a magnetometer, an accelerometer

and a GPS sensor. From this brief analysis of the sensor units in the example applications it is clear

that a common characteristic of sensor-driven applications is the presence of multiple sensors.

2.2.2 Combination of Sensor Data

In section 1.1 we de�ned sensor-driven applications as applications which did not just store or forward

sensor data but used this sensor data to drive the behaviour of the application. As observed in

section 2.1 each sensor-driven application has multiple sensors. Therefore it follows that the sensor

streams from the multiple sensors must be combined or merged in order to drive the behaviour of the

application. By combined, we mean the information must be used together to calculate an output

relevant to the application. Analysing two of the example applications, the automatic skid control

application needs to combine the data from six separate sensors in order to decide what action, if any,

to take to regain control of the automobile. The squash application needs to combine sensor data

from four separate sensors to advise the athlete on how to improve their swing. All of the examples

given in section 2.1 have the characteristic that the behaviour of the application relies on the output

from multiple sensors and that the application must combine this sensor data.

2.2.3 Asynchronicity

All of the applications in section 2.1 interact with the real world and monitor it for events of interest

to the application. The method that they use to monitor the environment is through the sensors

that the application uses and the application generally does some analysis based on the sensor data

from one or more sensor and deduces that an event of interest has occurred in the environment being

sensed. For example, in the fall detection application the main event that the application is used

to detect is the violent fall of the person wearing the sensor. In the user interface application the

movements of the user are monitored and events being detected correspond to particular actions of

the user, e.g., panning movements and automatically switching between user modes.

10

Chapter 2. Sensor-Driven Applications

2.2.4 Access to Historical Data

Each of the applications described in section 2.1 must not just detect some event in the environment,

they must also then analyse the historical data before the event and use this data to drive the behaviour

of the application. This analysis uses the historical data, possibly in conjunction with the present

data, to determine the correct course of action. In the car skid example, the application must �rst

detect that a skid is occurring and once this event has been observed must use the historical data

from sensors, such as the accelerometer, to determine what corrective action must be taken in order

to regain control of the vehicle. In the fall detection example, the system must �rst detect that a

possible fall event has occurred and must then analyse the sensor data from the period leading up to

the possible fall event to detect if it was a violent fall and determine if the patient might be in danger.

2.3 Programming Abstraction Support

Abstractions are a vital part of software development. For example, the abstraction of a function

in the C programming language, while being basic, is very useful. The developer can divide the

application into modules and does not need to worry about the mechanics of how the function is

implemented e.g., the state of the calling program or variable management on the stack. This allows

the developer to use the abstraction of a function to write better more manageable code, which

can be re-used easier. This process of abstraction is evident in many branches of computer science.

Programming languages have numerous abstractions, from types and functions in languages such as C

[118] to objects and interfaces in modern Object-Orientated programming languages such as Java [10].

Abstraction is also prevalent in the operating system community, e.g., inter-process communication

in the form of semaphores and pipes [130], and in the distributed systems community, e.g., Remote

Procedure Call [102] and Distributed Shared Memory [25]. Abstraction is also an important aspect of

middleware. Middlewares provide useful abstractions that reduce the burden on the programmer by

providing a range of functional and/or non-functional features. These abstractions form the core of the

middleware and are the manner in which we access its features. For example, in a broker-based event

middleware the abstractions of an event and a broker are the core concepts that programmers use

when accessing the services of the middleware and good abstractions are among the main reasons for

using the middleware. By using these abstractions, the developer bene�ts from all the non-functional

and functional features associated with the middleware.

Developing sensor-driven applications present additional challenges when compared to developing

applications that are not sensor-driven. The manner in which we aim to address these challenges is

by proposing a set of additional abstractions that extend event-based programming and which can

simplify the task.

In the following sections we propose a number of requirements that programming abstractions to

support sensor-driven applications should posses in order to be suitable abstractions for the domain.

These requirements are synthesised from the characteristics of sensor-driven applications determined in

11

Chapter 2. Sensor-Driven Applications

section 2.2. The requirements are numbered and divided into two categories: functional requirements

(denoted by an F pre�x) and general middleware requirements (denoted by an M pre�x).

2.3.1 Functional Requirements

In section 2.2 we discussed the common characteristics of sensor-driven applications. In this section

we will de�ne requirements for abstractions to support sensor-driven applications that have these

characteristics. Any set of abstractions aimed at supporting sensor-driven applications should satisfy

all of these requirements.

F1: Combination of Sensor Data

The presence of multiple sensors, and the need to combine information from these sensors, were noted

in section 2.2 as two characteristics of sensor-driven applications. Therefore the ability to combine

sensor data from multiple sensors is a requirement of middleware to support sensor-driven applications.

F2: Continuous Sensor Data

In section 2.2 we noted that sensor-driven applications need to analyse historical sensor data at points

of interest to the application. As the sensors used in sensor-driven applications can be continuous

and potentially provide a never ending stream of sensor readings the processing of this historical

data is not trivial. A requirement therefore of middleware to support sensor-driven applications is

abstractions to support the analysis of continuous sensor data.

F3: Analysis of continuous sensor data from multiple sensors

From section 2.2 it is clear that sensor-driven applications need to both analyse continuous sensor

data and combine readings from multiple sensor streams at the same time. The ability to analyse

continuous sensor data from multiple sensors is therefore a requirement of any middleware designed

to support sensor-driven applications.

2.3.2 General Middleware Requirements

When proposing an abstraction as a solution to a range of problems, it is important to know how

widely applicable it is. When discussing the generality of a particular abstraction for developing

sensor-driven applications we are interested in the abstraction's generality in a number of di�erent

dimensions.

M1: Event Model Generality

As discussed in section 1.2 the event-based approach is the de-facto standard approach to building

ubiquitous computing applications. Sensor-driven applications are a sub-set of ubiquitous computing

12

Chapter 2. Sensor-Driven Applications

applications so any abstraction proposed as a general abstraction for developing sensor-driven appli-

cations should be compatible with the event-based approach. It should also be compatible with the

full range of di�erent event systems and event models used in ubiquitous computing applications.

M2: Language Generality

All programming abstractions must map to a speci�c language in order to be implementable. However

it is important that the abstractions are mappable to a large number of di�erent languages in order to

be generally useful. Generally speaking, it is desirable that the abstractions should be implementable

in as wide a range of programming languages as possible. This allows the abstractions to be used

in as many di�erent applications as possible. If the abstraction is not mappable to a wide range of

languages, the choice of programming language restricts what abstractions can be used and vice-versa.

Abstractions intended to be generally applicable in ubiquitous computing applications should map to

all languages used to develop ubiquitous computing applications.

M3: Generality across Application Domains

In section 1.1 we noted that there are a large range of ubiquitous computing applications and in section

2.1 we presented four example sensor-driven applications from four di�erent application domains. Any

abstraction proposed as a general abstraction for use in ubiquitous computing applications must be

general across a range of application domains. When proposing a set of abstractions as a general

solution for use in the development of sensor-driven applications the abstractions must be applicable

in the majority of application domains.

M4: Platform Generality

Sensor-driven applications are implemented on a range of di�erent platforms. This can be seen in

the example applications in section 2.1. The fall-detection system could be implemented on a mote

[133] platform. The motes would provide good support for communication and power e�ciency while

remaining small enough to be worn on the body of the patient for a long period of time. The

squash application could be implemented on the Gumstix [70] platform. This would provide enough

processing power for the analysis of the squash swing, while also remaining small and light enough

to be embedded in the squash racket. The mobile game application could be implemented on the

HTC G1 [38] smartphone platform. The HTC G1 comes has three accelerometers, 3 magnetometers

and a GPS sensor and has the processing capabilities to support a game. The skid-detection and

recovery application could be implemented on an embedded x86 personal computer. The automobile

is large enough to easily carry an embedded personal computer and it could also easily supply enough

electrical power.

Figure 2.1 shows the sensor-driven application platform spectrum running from embedded systems,

through motes and smartphones to applications running on servers. A sensor-driven application can

be running on multiple motes, embedded systems or clusters of servers, e.g., similar to the hardware

13

Chapter 2. Sensor-Driven Applications

Em
be

dd
ed

 P
C

M
ot

es

Gum
sti

x

Em
be

dd
ed

 C
om

pu
te

r

X86
 S

er
ve

r

Sm
ar

tp
ho

ne

Millions of Instructions per Second of Node

75000400 650 3000102

Figure 2.1: The sensor-driven application platform spectrum

con�guration of the HiFi system [37].

Abstractions designed to be useful in the majority of ubiquitous computing systems must be suit-

able for use on the range of platforms on which ubiquitous computing applications are run. Some

abstractions, while being useful and general, incur a signi�cant run time cost and therefore are not

suitable for certain platforms. As we can see from �gure 2.1 a large amount of sensor-driven ap-

plications are implemented on resource-constrained platforms, e.g., mobile phones and embedded

computers. Therefore any abstraction aimed at being a general abstraction for use in ubiquitous

computing applications must be suitable for use on resource-constrained platforms.

2.4 Conclusion

In this chapter we have presented four examples of sensor-driven ubiquitous computing applications.

They use a wide array of di�erent sensors and software techniques to solve complex problems. All of

the applications are sensor-driven applications in the sense that they combine multiple sensors to drive

the behaviour of the application. Each of the applications is in a di�erent application domain. These

applications are used to motivate our description and analysis of sensor-driven applications. We have

analysed these applications and derived from them common characteristics of sensor-driven applica-

tions. These characteristics were used to synthesise the key requirements for middleware intended

to support sensor-driven ubiquitous computing applications. These requirements have been divided

into two categories: Functional Requirements and Middleware Requirements. We have summarised

14

Chapter 2. Sensor-Driven Applications

Functional Requirements

F1: Combination of Sensor Data
F2: Continuous Sensor Data
F3: Analysis of Continuous Sensor Data from Multiple Sensors

General Middleware Requirements
M1: Event Model Generality
M2: Programming Language Generality
M3: Application Generality
M4: Platform Generality

Table 2.1: Requirements of Middleware to Support Sensor-Driven Applications

the requirements in table 2.1. The requirements sub-divide into two discrete groupings functional

requirements and general middleware requirements. The requirements for middleware to support

sensor-driven applications will be used throughout Chapter 3 in order to analyse the state of the art

for sensor-rich applications. They will also be used in the analysis and evaluation of our contribution

in Chapters 5 and 6.

15

Chapter 3

State of the Art

Chapter 1 introduced event-based programming and stream processing as two techniques for building

ubiquitous computing applications and stream-based applications respectively. As stated in section

1.4 we aim to combine the two approaches by taking suitable abstractions from the domain of stream

processing and using them to extend event-based programming. Chapter 2 discussed sensor-driven

applications and derived a set of requirements for abstractions aimed at supporting them. In this

chapter we review the state of the art in abstractions used to develop sensor-rich applications. By

reviewing existing abstractions used to develop sensor-rich applications we aim to analyse these ab-

stractions and using the requirements derived in section 2.3 determine how well they support the

development of sensor-driven ubiquitous computing applications.

3.1 Review Methodology and Work Selection Criteria

In section 2.3 we discussed characteristics of programming abstractions which are desirable for sup-

porting sensor-driven ubiquitous computing applications and derived a set of requirements for such

abstractions. We use these requirements to analyse the state of the art for abstractions used to de-

velop sensor-rich applications. Although the work in question may not have been designed with these

features in mind it is still a worthwhile exercise to review the projects in this manner to understand

how useful the abstractions provided are for implementing sensor-driven applications.

There is a very large body of work that could be selected for this state of the art review. Because

the nature of our work involves extending event-based programming with work from other �elds, there

are a number of di�erent �elds that must be covered. Section 3.2 reviews the traditional event-based

approach to developing applications. Event systems which are designed to support event composition

are also important to the work in this thesis and this work is reviewed in section 3.3. Complex

event processing is a body of work that merges multiple events which may or may not originate from

sensors and is reviewed in section 3.4. Data stream processing is another major research �eld related

to processing streams of data including sensor streams and this research �eld is reviewed in section

3.5. There are a number of other pieces of work which aim to merge event-based systems and stream

16

Chapter 3. State of the Art

processing and we review this work in section 3.6. Finally we discuss the sensor database abstraction,

an alternative approach to combining sensor readings which is popular in wireless sensor networks, in

section 3.7.

There are clearly a large quantity of projects that can be reviewed with this format, far too many

to �t in this thesis. Therefore to reduce the amount of projects to be reviewed we review the two

most in�uential and relevant projects from each �eld.

3.2 Simple Event-Based Systems

Event-based programming is a very large and mature research �eld in computer science, and there

are many signi�cant pieces of work [112, 15, 92, 104, 129, 99, 101, 40, 19, 119, 52, 57]. As stated

in section 1.2 event-based programming is a natural �t for dealing with sensor data as each datum

can be modelled and communicated as an event. Event-based programming is also a very common

programming paradigm in the �eld of ubiquitous computing. In addition to the basic event-based

functionality most event-based systems provide additional functionality to improve their performance

in a particular scenario or to make them more suitable for a particular domain. When analysing simple

event-based systems we limit our discussion to event-based systems that have no explicit mechanism

for creating complex events, i.e., events which are formed from the combination of one or more events.

3.2.1 JavaBeans Event Model

Java is a popular object-oriented programming language developed by Sun Microsystems. JavaBeans

is a component model for Java and de�nes its own event model [103]. The event model is designed for

small centralised systems such as window toolkits but can be used in a distributed fashion by utilising

the Java Remote Method Invocation (RMI) system.

Events are one of the core features of the JavaBeans architecture. They are one of the mechanisms

used to allow components of the architecture communicate with each other. JavaBeans are used in

a wide variety of applications from applets to desktop applications. Figure 3.1 shows an overview of

the JavaBeans event model. In the event model, event noti�cations are communicated from event

sources to event listeners by invocation of methods on the listener objects. Listeners wishing to

register their interest in events must implement the EventListener interface. State associated with

an event noti�cation is encapsulated in an event object that inherits from java.util.EventObject and

is passed as the sole argument to the event method. Event sources must provide methods by which

event listeners can register and de-register themselves as listeners for particular events.

The JavaBeans event model does not explicitly support �lters, however it does support a type

of component called Adaptors. Adaptors are objects that can be placed between event sources and

listeners. They can implement additional functionality in the event system, such as �ltering and event

queueing.

17

Chapter 3. State of the Art

Figure 3.1: The Java Beans Event Model [103]

Discussion

The JavaBeans event model is a simple event model designed for small-scale applications that are

not distributed. The synchronous nature of the event delivery mechanism coupled with the fact that

event sources must call the handler function of all the event listeners in sequence means that even if

RMI is used event sources must wait until the event is delivered before they can proceed with their

own execution and notifying the remaining listeners which incurs signi�cant performance penalties for

event sources with multiple consumers. Anonymity between event source and listener is not provided

by the model. Even when adaptors are used a reference to the adaptor is used as the destination of

the event, and the event listener must still know the identity of the event source and register directly

with it.

The JavaBeans event model provides no means to combine multiple sensor streams. Any combi-

nation of multiple events would need to be done in an ad-hoc manner perhaps by a number of event

listeners updating a shared data structure. There is no in built mechanism in the JavaBeans event

model for dealing with historical events or continuous event streams.

3.2.2 STEAM

Scalable Timed Events and Mobility (STEAM) [99, 100, ?] is an event based middleware from the

Distributed Systems Group in Trinity College Dublin. It is designed for a range of applications

18

Chapter 3. State of the Art

including indoor and outdoor smart environments, augmented reality systems and tra�c management

scenarios [100]. STEAM is designed with the notion that mobile devices are generally more interested

in events which occur in closer proximity to the producer and that certain events can be �ltered in this

manner. It extends the standard event model with the notion of proximity �ltering which restricts

event delivery within a geographical space. STEAM is designed for use in mobile ad-hoc networks

although it can be used with standard infrastructure-based networks also.

Event Model

STEAM uses an implicit event model [101], meaning that event consumers subscribe to event subjects

and not with a mediator or with another node. This is in contrast to peer-to-peer and mediator-based

models. The implicit event model is preferred in this instance because in a mobile ad-hoc network

one cannot always assume the presence of delivery services in the network (e.g., a message broker)

and so each node must be able to receive and deliver its own messages.

Events in STEAM contain a subject and a content. The subject denotes the name of the event

that has occurred, e.g., a door opening event, and the content contains a list of attributes that refer

to properties of the particular instance of the event, e.g., the location of the door and the time of the

event. STEAM producers and consumers must agree a priori on de�nitions of events and schemas for

event attributes. Sensor data can easily be encapsulated in a STEAM event where the event subject

relates to what sensor produced the data and the content carries the sensor data.

Events in STEAM are not timestamped and the STEAM event model does not explicitly deal

with the timing of events. Out of order events are handled when they arrive at the consumer and no

attempt is made to re-transmit events that have not been delivered to a consumer.

Discussion

The STEAM event middleware provides an event system to facilitate event-based programming. It

is speci�cally designed for the mobile ad-hoc domain. A signi�cant subset of ubiquitous applications

have mobility as a main concern and the ad-hoc communication paradigm is suited to addressing these

issues. Therefore STEAM would seem to be suitable to address this subset of ubiquitous computing

applications. STEAM has been implemented on a range of platforms including severely resource

constrained platforms.

STEAM has been implemented in a range of languages including Java and C. While it is designed

for mobile ad-hoc networks STEAM can be used on standard networks so is capable of supporting

a wide range of event-driven applications. STEAM does not provide mechanisms for combining

events, nor does it provide abstractions for dealing with historical sensor data. STEAM is suitable for

implementation on the complete range of platforms in the sensor-driven application platform spectrum

discussed in section 2.3.2.

19

Chapter 3. State of the Art

3.3 Event Systems with support for Composite Events

Composite events are events that are composed from two or more other events. There are many

event systems which support composite events [123, 86, 114, 97, 16, 89, 124]. We have selected

the Cambridge Event Architecture [16] and Composite Event Detection as a Generic Middleware

Extension [114] as the two projects to review from this body of work. We have selected these projects

because they have a representative set of functionality and have similar goals to this thesis in that

they intend to create a generic middleware extension for use with a wide range of host middlewares.

3.3.1 Cambridge Event Architecture

Bacon et al. [16] propose an event architecture called the Cambridge Event Architecture (CEA) which

is intended as an extension to any synchronous object-oriented middleware to support asynchronous

operation. It is intended for a wide range of application domains including healthcare, location-aware

systems and network-monitoring systems. CEA supports asynchronous operation of applications by

using events, event classes and event occurrences as object instances [16]. CEA uses a publish-

register-notify paradigm with event object classes and also supports source-side �ltering based on

parameterisable templates. Event objects publish their interfaces speci�ed in Interface De�nition

Language (IDL) including the events they will notify. CEA also supports access control through the

use of the OASIS service [58].

Event Mediators

CEA contains the abstraction of event mediators. Event mediators are intermediaries between pro-

ducers of events and their consumers. The event source noti�es the mediator which then noti�es the

consumers. They can be used to implement a range of functionality, e.g., providing a higher level

interface to event consumers than might be provided by a more primitive event source. They can also

be used to add event �ltering capabilities or to support disconnected operation of mobile devices.

Event Composition

The CEA also supports a composite event service and provides composition operators and a language

for specifying composite events. Figure 3.2 shows the composite event service in CEA. CEA also

uses stream semantics to model incoming events. Five operators are de�ned for specifying composite

events: WITHOUT, SEQUENCE, OR, AND and FIRST. Unfortunately very little detail about the

composite event system is available, e.g., relating to time model or composition operators.

Historical Events

CEA supports an event persistence mechanism which is a service provided by the event store manager.

The event store manager subscribes to events of interest and stores these events for later retrieval.

The event store can subsequently be queried using a mechanism similar in concept to the process of

de�ning composite events where an event �lter is applied to a collection of events.

20

Chapter 3. State of the Art

Figure 3.2: Composite Event Detection in CEA [16]

Discussion

CEA is an e�ective way of adding asynchronous communication capabilities to an otherwise syn-

chronous system. Event mediators allow additional functionality to be incorporated in the event

services and it is easy to imagine a range of additional services being implemented in this manner

including event �ltering. The system also supports composition of events which should allow it to be

used to develop more sophisticated event-based applications.

Very little information on the composition of events is provided. The time model for the event

system is not available and this would be useful in conjunction with knowledge of the event composition

language in determining how expressive the event composition system is. The composition operators

are limited and no scope is available for implementing additional operators or for custom operators.

Historical data is accessed using a traditional database-style approach. This approach is only

suitable for an event system with a very low event rate. A moderate rate of events would quickly

exhaust the database storage space and the process of storing events and then querying the system

would signi�cantly increase the processing time for applications which relied on this data. This method

of historical data access would be insu�cient for implementing a stream processing style application

in which a stream of events needed to be monitored and analysed.

With respect to sensor-driven applications, the event composition ability of the architecture could

support limited sensor-driven applications, however more sophisticated sensor-driven applications

might prove di�cult to implement because of the lack of expressiveness in the event composition

language. There is limited support for accessing historical events and as noted earlier any more than

a moderate event stream would create di�culties for the application. It does not appear to be possible

to perform custom analysis outside of the limited set of operators provided by the event composition

language. The inclusion of event composition features and access to historical data, however limited,

shows that the authors consider this functionality to be a useful addition to event-based systems.

It is unclear as to the resource requirements of the CEA middleware, however the event store

21

Chapter 3. State of the Art

Figure 3.3: Illustration of distributed composite event detection [114]

capabilities would imply that su�cient storage space is available to store a reasonable number of

events. The object oriented nature of the system does not lend itself it to implementation on severely

resource-constrained platforms at the lower end of the sensor-driven application spectrum.

3.3.2 Composite Event Detection as a Generic Middleware Extension

Pietzuch et al. [114, 113] propose a generic extension that supports composite event detection. The

extension relies on a minimum set of requirements of a distributed event system and provides support

for composite event detection. The work is motivated by the fact that in a large scale distributed event-

based system, event sinks performing composite event detection can quickly become overwhelmed by

primitive events and would bene�t by receiving higher level events. Distributing composite event

detectors in the network near the source of the events would result in a reduction of events being

propagated to the event and would reduce bandwidth congestion in the network around the event

sink node. This is shown in �gure 3.3.

Requirements

The extension relies on a minimum set of requirements from the event system to be extended. The

underlying publish/subscribe system must be able to allow subscriptions to events, publish noti�ca-

tions of events and relay events from event source to the event consumer. The relationship with the

host event system is shown in �gure 3.4. The event system must also support a particular time model

and event model. In the extension each event has an associated timestamp. There is a partial order

on all timestamps in the system. This is extended using a tie-breaker convention so that there is a

total ordering on all events in the system. The prerequisites that the event model relies on are that

each event has a timestamp and that each event can be consistently ordered for each subscriber (e.g.,

by timestamp, source IP address and local event generation count).

Any event system that satis�es these criteria is suitable for extension and the authors have extended

22

Chapter 3. State of the Art

the Java Messaging Service (JMS) [131] and the Hermes event system [112].

Figure 3.4: Interface with the host event-model [114]

Composite Event Language

The extension provides a custom language for specifying event patterns. The evaluation of event

patterns uses �nite state automata extended to deal with the temporal aspect of the events. The core

language supports expressions similar to regular expressions and support operators such as sequence

and iteration. The language also speci�es a timing operator which matches if the corresponding event

combination occurs within the timing interval. The language is designed to be decomposable into

sub-expressions to facilitate distribution throughout the network.

Discussion

Pietzuch et al. propose an interesting extension to event-based systems. Composite event detection

is a feature that is in demand in event systems and there have been several notable composite event

systems. However this work allows existing event systems to be extended which is important for a

number of reasons. Existing event systems that may already be developed and well understood can be

re-used thus saving a large development and retraining e�ort. Many systems desire composite events

but also need characteristics which are already implemented and well understood, e.g., distribution.

This extension allows these systems to be used and extended instead of attempting to add these

features to composite event systems which may prove impossible.

23

Chapter 3. State of the Art

This system is reasonably general and can be used with a large amount of existing event models.

While it makes certain demands of the underlying event model and time model, these demands are

not overly restrictive. The extension does specify a custom composite event detection language for

specifying composite events. This custom language is not very accessible or intuitive to end users or

developers and instead is designed to be e�ciently implemented. The authors have recognised this

shortcoming and have speci�ed providing support in other languages as future work [114].

This system is designed with large scale systems in mind, however there appears to be no reason

why it could not provide composite event detection support for a large range of ubiquitous computing

applications, when coupled with the appropriate event system.

The work supports composite event detection and with appropriately modelled sensor data could be

used to combine multiple sensor streams, and indeed this is speci�ed in a scenario by the authors [113].

The system provides limited support for analysing historical sensor data when detecting composite

events and provides no ability to perform analysis on the sensor stream once a composite event is

detected.

The extension has not been implemented on resource-constrained systems, however it appears likely

that the extension would be suitable for all but the lower end of the spectrum of resource-constrained

platforms used in ubiquitous computing systems.

3.4 Complex Event Processing Systems

The event systems and architectures we have reviewed thus far have been mainly concerned with

the creation of event-based applications and the programming of systems using them. These systems

have been implemented in traditional programming languages and typically take the approach of

allowing events to be used as a programming abstraction. Event processing systems are a class of

event systems designed to analyse large quantities of existing events. They are analogous to databases

in traditional applications. They generally take the approach that there is a large volume of events

which must be processed to extract meaningful higher level events. They provide a system which can

be programmed using a custom declarative language to perform analysis on a collection of events.

Complex event processing systems support a large class of applications usually ones in the business

application space, e.g., warehouse stock monitoring and automated stock trading.

There are a large number of event processing systems available both in research and in industry.

We have chosen two systems SASE and Cayuga as being representative of the feature set available

and analyse them in this review.

3.4.1 SASE

SASE [54] is a complex event processing system which operates on event streams. It provides an

event processing language similar in syntax to SQL and other Stream processing and event processing

languages. This language SASE+ supports kleene closure over event streams. The system is designed

for applications such as �nancial services, RFID-based inventory management, click stream analysis,

24

Chapter 3. State of the Art

Figure 3.5: The SASE architecture [54]

electronic health record systems, etc. [137]. The system architecture is shown in �gure 3.5. The

system is designed for high-performance event stream processing. Two speci�c challenges it addresses

are high volume streams and e�cient extraction of events from large sliding windows.

Data Model

In SASE each event in an input event stream represents an atomic occurrence of interest at an

instant in time. Events have a type which describes the set of attributes that a particular event must

contain. Each event in the system has a timestamp and timestamps are considered to be monotonically

increasing, which gives rise to a total order of events. Input events in SASE are simple events while

output events can be more complicated, however the eventual aim of the authors is to enable input

event streams to support the same range of events as output event streams which would allow queries

to be composable.

Queries

Queries in SASE+ take the form FROM-PATTERN-WHERE-WITHIN-HAVING-RETURN. The

FROM clause speci�es the input stream which defaults to the standard input for the system. The

PATTERN clause declares the structure of the pattern and any variables that will be needed to refer

to the individual events. The WHERE clause, if present, de�nes the events that are relevant to the

pattern using value-based predicates e.g., WHERE stock.price > 10. WITHIN de�nes a time based

window over which the pattern matching must take place and RETURN transforms each pattern

match into an event to be returned.

25

Chapter 3. State of the Art

Sliding Windows

SASE provides time based sliding windows over event streams. These sliding windows allow event

pattern recognition to occur over a �xed time period. This could be used in sensor-driven applications

to detect event patterns in a relevant time period over a sensor stream.

Discussion

SASE provides powerful event pattern detection. The sliding window support allows the event pattern

to be speci�ed over a time period and can be used to detect complex events. Tuple-based sliding win-

dows, i.e.,windows who's membership is de�ned by being a �xed number of tuples, are not supported,

however, and the event patterns are limited to being matched across one time-based sliding window.

This limits the �exibility of the patterns that can be detected, e.g. we cannot store the previous 200

events from a high frequency event source with 5 events from a less frequent source, we can only store

the events that have happened in a �xed time period.

SASE does not provide the extensibility of user-de�ned functions. This means that system is

limited to detecting event patterns and cannot perform any processing on the event streams once it

has detected that a complex event has occurred. This severely limits the usefulness of the system

for implementing sensor-driven applications as performing custom analysis of event data across event

streams is impossible with the system.

In terms of resource usage SASE lies between the more resource-hungry stream processing systems

and the lower level event systems. It has not been designed for or implemented on resource-constrained

platforms and it is di�cult to see how the SASE+ language and the SASE system could be imple-

mented e�ectively on such a platform.

3.4.2 Cayuga

Cayuga [20, 42, 41] is a general purpose event monitoring system from Cornell University. It is

designed to support a large class of applications including supply chain monitoring of RFID tagged

products, real-time stock trading, monitoring of large computer systems to detect malfunctioning or

attacks, and monitoring of sensor networks [20]. The CAYUGA system architecture is shown in �gure

3.6. Event receivers (ERs) receive the events from the event stream, deseriealize them, and place them

in the Priority Queue (PQ) and the Heap. The query engine processes the events and can resubscribe

its results on the PQ or submit them to the client noti�er threads (CNs). The Cayuga system monitors

event streams and detects event patterns over these streams. It uses the presence or absence of these

event patterns to infer some additional knowledge about the system and can publish this as an event.

Cayuga is designed to scale in both numbers of subscriptions and the arrival rate of events. The

authors consider the work to be positioned between traditional publish/subscribe systems and stream

databases systems, o�ering more expressiveness but less scalability than traditional publish/subscribe

and less expressiveness but better scalability than stream databases [41].

26

Chapter 3. State of the Art

Figure 3.6: The CAYUGA system architecture [20]

Event and Time Model

In Cayuga an event stream is a possibly in�nite set of event tuples. These event tuples have a set

of attributes, a start time of the event and an end time of the event. It is assumed that each event

stream has a �xed schema and that events arrive in temporal order. Event streams can contain events

with non-zero duration, overlapping events and simultaneous events.

Operators

The Cayuga Event Language (CEL) is based on the Cayuga algebra. CEL is a mapping of this

query algebra into a SQL-like syntax. Each query in CEL is in the form of SELECT - FROM -

PUBLISH. The SELECT clause in CEL is similar to the SELECT clause from SQL and is used to

specify the attribute names in the output schema as well as aggregate computation. The PUBLISH

clause allows the output stream to be named. The FROM expression forms the core of the query and

is formed from a combination of one or more from three operators; FILTER, NEXT and FOLD. Each

of these operators produce an output stream from one or two input streams. The FILTER operator

selects those tuples from its input stream that satis�es the supplied predicate and allows these tuples

to proceed. The NEXT operator takes two input streams. It evaluates a predicate based on the

�rst stream, and if it is true combines this tuple with the next tuple from the second stream that

satis�es a second predicate. The FOLD operator is the most complicated of the three, it acts like an

iterative version of NEXT and takes three predicates. The �rst predicate speci�es the condition for

choosing input events in the next iteration, the second predicate speci�es the stopping condition for

the iteration and the third predicate speci�es the aggregate computation between iteration steps.

The Cayuga system allows user-de�ned functions. These functions are not well documented in the

literature, however from examining the source code for the project they appear to be only de�nable

on two arguments and have no access to historical stream data.

27

Chapter 3. State of the Art

The Cayuga system allows resubscription of events allowing queries to view the output of other

queries as their inputs. This allows for complex queries to be built from simple ones and greatly

increases the expressiveness of the system.

Discussion

The Cayuga system uses events which is a highly popular mechanism for developing ubiquitous com-

puting applications. The events in the system are also useful for modelling sensor data. Cayuga

can perform state-full queries over event streams. Cayuga uses a custom query language which is

limited in its expressiveness. Cayuga scales very well to a large volume of concurrent queries and

subscriptions, however the trade o� that is made to support this scalability is limited expressiveness

of the language and a restriction in what can be performed with the system. In terms of application

support the operators in CEL limit the applications to simple event-monitoring applications, where

a pattern of events must be detected. In terms of sensor-driven applications this falls short of what

is required.

Cayuga provides support in CEL for combining multiple event streams and therefore is useful for

combining sensor data. In terms of historical sensor data Cayuga is more limited. The Dur construct

can be used to scope a query for a particular length of time and implements a time-based sliding

window. However as with the SASE system in section 3.4.1 limiting the system to time-based sliding

windows severely restricts the usefulness of the system as does the fact that only one window is

permitted for the entire query, i.e.,you can not specify individual windows for each stream.

Cayuga while being able to detect event patterns in event streams does not support analysis over

these event streams once the event has been detected. This limits the system to once which simply

detects composite events.

The CAYUGA system has not been designed with resource-constrained platforms in mind, and it

is di�cult to see how the system could be implemented on such platforms.

3.5 Stream Processing

Data stream processing is a body of work that has developed from the active database community.

Traditional databases are unsuitable for dealing with continuous streams of data. The main reasons

for this is that traditional databases must �rst store the data in the database and then query it at

some later time. This process is not suitable for an application with a large amount of streaming

data as the database quickly runs out of storage space. A large class of applications need to query

streaming data in almost real-time and be updated with results of these queries as soon as they

are available. Applications such as large-scale military applications, real-time stock control systems,

share monitoring applications, RSS feed monitoring services all require near real-time results from

the combination of multiple streams of incoming data. This is in contrast to the approach of storing

this streaming data in a traditional database and running nightly or weekly queries on the dataset to

extract pertinent information. The data stream management approach is to register continuous queries

28

Chapter 3. State of the Art

Figure 3.7: Aurora system model [1]

with the Data Stream Management System (DSMS). These continuous queries are then evaluated over

some window of incoming streaming data and possibly traditional relational tables and the results are

then presented to the user. A large variety of additional features are also available to the user such

as query optimisation, quality of service guarantees and partial results of queries. There are a large

number of stream processing projects [1, 82, 12, 13, 93, 31, 32, 33, 85]. We have chosen Aurora and

STREAMS as the two projects to review from this body of work as they are highly in�uential and

implement a representative range of the abstractions from the domain.

3.5.1 Aurora

Aurora [1, 2, 120, 23] is a data stream processing system aimed at supporting real-time applications

on data streams, from sensors or other sources. It is speci�cally aimed at applications which monitor

continuous streams of data. The Aurora system model is shown in �gure 3.7. Aurora supports

continuous queries speci�ed by a system administrator using a graphical user interface. The authors of

Aurora have identi�ed �ve features that distinguish it from other DSMS, they are work�ow orientation,

a novel collection of operators, a focus on e�cient scheduling, a focus on maximising quality of service,

and a novel optimization structure [120]. Aurora was extended by combining it with the Medusa [120]

system to create Borealis [6, 17] which is a distributed stream processing system. However the core

abstractions were not signi�cantly changed with this extension so here we review the original Aurora

system.

Aurora is designed as a work�ow system. The application administrator uses a GUI to design an

Aurora system using �boxes� and �arrows� which correspond to streams and operators. Aurora has

sophisticated techniques for optimisation, scheduling and providing quality of service guarantees to

its clients. However, discussion of these features is not relevant to the topic at hand and therefore

excluded from this review.

29

Chapter 3. State of the Art

Stream Model and Operators

Streams in Aurora are modelled as an append-only sequence of tuples with uniform type (schema).

Each tuple has application speci�c data �elds. Each tuple also has a timestamp which speci�es its

time of origin in the Aurora network.

Aurora supports a set of 8 operators; Filter, Map, Union, BSort, Aggregate, Join and Resample.

These operators take one or more streams of data and output a new stream of data, potentially

preserving features of the incoming stream such as timestamp and other attributes or potentially

creating entirely new output tuples.

The Filter operator acts in a similar manner to a case statement in a procedural language such as

C. A number of predicates and output streams are speci�ed in the operator and when an input tuple

arrives in the operator it is outputted on the �rst stream whose predicate it matches in the order

in which it is speci�ed. Output tuples have the same schema and values as input tuples including

timestamp and QoS.

Map is a generalized projection operator whose output tuple values are functions over tuples on the

input streams. It can have a di�erent schema and values to those of the input stream, but timestamps

are preserved in the corresponding output tuples.

Union is used to merge two or more input streams into a single output stream. Union outputs all

the input tuples it processes therefore all output tuples will have the same schema and values as the

input streams.

The remaining operators are order-sensitive and can only be guaranteed to execute in �nite bu�er

space and �nite time if they can assume a particular ordering of their input streams. This is commu-

nicated to the operator using order speci�cation arguments.

BSort is an approximate sort operator that operates on a subset of a datastream. It maintains a

bu�er of the subset and always outputs the smallest value from the bu�er on the output stream.

Join is a binary join operator that combines a sub sequence of two streams using a predicate over

pairs of tuples from the two input streams.

Resample is an operator which can interpolate between tuples using some user-de�ned interpolation

function.

Aggregate applies �window functions� to sliding windows over its input streams. A �window

function� is either a SQL-style aggregate operation e.g., Avg or a Postgres-style user-de�ned function.

The use of custom user-de�ned functions is claimed to allow the operator set to be Turing complete

[1].

Windows

Aurora has support for a number of di�erent windowing mechanisms. It applies a function to a window

and then advances the window using a particular policy. Slide advances the window downstream by

a certain number of tuples, e.g., it could be used to maintain a window over the previous hours worth

of stream data. Tumble is similar to the slide mechanism however unlike Slide no tuples are shared

30

Chapter 3. State of the Art

Figure 3.8: The Aurora system architecture [1]

between adjoining windows. This e�ectively partitions the input stream into disjoint windows. This

could be used for example to calculate daily stock indexes or other calculations over �xed windows.

Latch resembles Tumble but can also maintain internal state between calculations. This feature can

be used for example to maintain a history of maximum or average values. Finally Resample produces

a partially synthetic stream by interpolating between the actual input stream readings [23].

Discussion

The Aurora stream processing system is clearly an advanced data stream management systems which

provides a large number of features for developers of sensor-based systems. The system deals in

tuples and the notion of streams of tuples. The Aurora system is quite general in terms of application

and could conceivably support the full spectrum of applications from wireless senor applications to

augmented home and pervasive healthcare applications. The Aurora system is designed to combine

streams of data and it performs well at this task. It provides several useful operators such as join

operators for combining sensor streams and custom operators which can act on stream data. It

also has several abstractions for dealing with historical sensor data and in particular its windowing

speci�cation ability is very advanced allowing a large range of specialised windows. The functionality

of Aurora can be extended by the developer by writing user-de�ned functions. Through the use of

31

Chapter 3. State of the Art

custom operator extensions Aurora facilitates the analysis of continuous sensor data from multiple

sensors, which essentially allow the developer to extend the Aurora system as much as they desire. In

general Aurora provides good support for programming with sensor streams. It provides a small set

of operators however for applications wishing to do more than basic analysis of stream data custom

operators are required. User-de�ned custom operators greatly increases the expressiveness of the

Aurora system however it is restricted to one language and the developer must not just focus on

writing code in the language of their application but also on extending the Aurora system. Queries in

Aurora may be speci�ed both graphically using the GUI and in XML. Neither of these two options are

congruent with the approaches currently used across the �eld of ubiquitous computing development.

Aurora was not designed to run on resource-constrained devices, and it is di�cult to conceive of

how much of its functionality, such as Scheduler, QoS manager, Overload detection and GUI could

be implemented on resource-constrained platforms typical of the mid to lower end of ubiquitous

computing systems.

As Aurora is not an event-based system, for the purpose of this thesis it is illustrative to consider

how it might map to one. In terms of sensor data in event-based systems the tuples used in Aurora

could be mapped to events, with each tuple being encapsulated as the content of an event and the

type of the event corresponding to the name of the stream. If we were to consider a mapping from

the abstractions provided in Aurora to event-based systems, operators which take one stream would

correspond to event handlers, while operators with more than one stream would correspond to a

di�erent kind of handler, one which took two or more events as parameters. The windowing facilities

could be considered to allow handlers to refer to previous events that had occurred.

The commercial StreamBase project [73] is similar to the Aurora work and has many of the same

technical advisors and features.

3.5.2 STREAM

The Stanford Stream Data Management System (STREAM) [8] is a general purpose DSMS that sup-

ports a large class of declarative continuous queries over continuous streams and traditional data sets

[8, 13]. It aims to support modern applications in domains such as network monitoring, �nancial anal-

ysis, manufacturing and sensor networks [13, 8]. Their design and construction of a new DSMS from

scratch was motivated by two fundamental di�erences they identi�ed between Relational Database

Management Systems (RDMS) and DSMSs. A DSMS must handle multiple continuous, high-volume,

and possibly time-varying data streams in addition to managing traditional stored relations. Also due

to the continuous nature of data streams, a DSMS needs to support long-running continuous queries

producing answers in a continuous and timely fashion [53].

Description

To perform continuous queries over streams a custom declarative language called Continuous Query

Language (CQL) is provided which is an extension to SQL for supporting streams [9]. The design of

32

Chapter 3. State of the Art

CQL is motivated by leveraging existing well-understood relational semantics and relational rewrites

and execution strategies. CQL therefore has a strong relational foundation and takes the approach of

providing additional operators which convert streams into relations and convert relations into streams.

This allows streams to be mapped to relations and then operated on using well understood relational

operators before being optionally converted back into streams. It also allows for easy integration with

traditional relational tables.

Stream Model

STREAM combines relations and streams and must have an internal representation of both that allows

this to be expressed. Streams are modeled as a bag of tuple-timestamp pairs which is represented

as a sequence of timestamped tuple �insertions�. A relation is a time-varying bag of tuples which

can also be represented as a sequence of timestamped tuples except in this case we have �insertion

tuples� and �deletion tuples� which capture how the relation changes over time. STREAM therefore

has a common representation of for streams and relations: sequences of tagged tuples. The tuple

contains the values of the attributes in the schema and the tag contains the timestamp and whether

the tuple is an insertion or a deletion. These tagged-tuple sequences are append-only and are always

in nondecreasing order by timestamp [9].

Stream-to-Relation

There is one stream-to-relation operator implemented in STREAM. seq-window is a sliding-window

operator which creates relations from a portion of the entire stream. It supports tuple-based, time-

based and partitioned window speci�cations [9]. Tuple-based sliding windows provide the last N tuples

as a relation, where N is supplied as a parameter to the operator. Time-based windows create a window

based on the tuples in the amount of time speci�ed as a parameter to the operator. Partition-based

windows take as parameter an integer N and a set of attributes. It is analogous to the Group-By

operator in SQL and creates a number of sub streams based on equality of the attribute list. It then

creates an N sized tuple based window over these individual streams and performs a union of windows

to create the output relation [9].

Relation-to-Stream

STREAM provides three relation-to-stream operators. Istream stands for �insert stream� and is

applied to a relation and outputs a tuple whenever a new tuple is inserted into the relation. Dstream

stands for �delete stream� and outputs a tuple whenever a tuple is deleted from the relation. Rstream

stands for �relation stream� and outputs a tuple for every element in the relation.

Relation-to-Relation

CQL uses SQL constructs to express relation-to-relation operators. This exploits the rich expressive

power of SQL and most of the data manipulation in a CQL query is performed using standard SQL

33

Chapter 3. State of the Art

constructs [8].

Other Functionality

STREAM has several other important pieces of functionality such as Operator Scheduling, Query

Plan Optimisation and Synopsis sharing which are outside the scope of this review.

Discussion

STREAM is a stream processing system which extends the concepts used in traditional database

systems. The ability to combine traditional stored relations with streams is particularly useful. The

system also leverages existing relational semantics allowing the current techniques for optimising

query plans to be used. The system also extends SQL reusing many of the constructs which are

already familiar to programmers which should result in a reduced learning curve for new users of

the system. The data model used in STREAM is not as conducive to modeling using events as

the Aurora model. The tagged tuples used map well to events as do the deletion and insertion of

relational data, however the mapping which follows from the r-stream operator which in this mapping

creates a stream of events from a relation is less clear and does not clearly translate to any current

actions in the event-based model. STREAM provides its own language CQL in which all its queries

must be written. This has additional bene�ts in that creation and optimisation of query plans is made

possible, however it does tie the application developer to a speci�c language. STREAM is designed for

stream-monitoring applications and for answering continuous queries over these streams. STREAM

is designed to answer queries across multiple streams which include sensor streams so it has good

facilities for combining the output from multiple sensors. It provides numerous join, intersection and

union operators for combining streams. STREAM also provides three types of sliding window which

allow the application to handle continuous sensor data. The STREAM system however is limited by

CQL in the expressiveness of the queries which it can answer. It is impossible to specify an arbitrary

query in the manner of user-de�ned operators in the Aurora system. This shortcoming prevents the

STREAM system from being capable of supporting sensor-driven applications. The STREAM system

is resource-conscious and has facilities for load-shedding and query optimisation, however it is hard

to conceive how its current design could be implemented on a resource-constrained device typical of

the mid to lower range of the ubiquitous computing domain.

3.6 Stream and Event Processing Systems

Stream processing and event stream processing have similar ancestry, stream processing with its

roots in database systems and event processing with its roots in event-condition-action rules in active

databases [27, 29, 26, 49, 76, 139], so there is plenty of common ground between the two research

areas. A number of systems exist which claim to perform both event and stream processing. These

include Coral8 [66], StreamBase [73], Esper [67], RuleCore [72], Aleri [62], Amit [3] and MavEstream

34

Chapter 3. State of the Art

[78].

MavEStream was chosen for review as it aims to combine event and stream processing and is a

research project and so is well documented.

3.6.1 MavEStream

MavEstream [78, 28, 47] is a system which aims to synergistically combine event and stream processing.

It proposes to achieve this by combining the MavStream [82, 51] stream processing system with the

Local Event Detector (LED) [27] event processing system. MavEstream performs continuous queries

over streams and uses the results of these queries to raise events which can then be composed into

complex events by the event processing system. It proposes a semantic window which extends the

current window concept for continuous queries to allow developer-de�ned windows based on criteria

other than number of tuples, time etc. The MavEStream architecture is shown in �gure 3.9.

Figure 3.9: MavEStream Architecture [78]

Event Processing and Stream Processing Integration Model

MavEStream aims to integrate event processing and stream processing. Figure 3.10 shows the four

stage integration model used. Stage one is the stream processing stage. The MavStream [51] stream

35

Chapter 3. State of the Art

processing system is used to process incoming stream data. MavStream is a data stream management

system designed for application areas such as security, telecommunications, manufacturing, pervasive

environments, click stream analysis and military applications [51]. MavStream uses a client-server

architecture in which the client accepts input queries from the user and sends the request to the

server. The stream operators in MavStream are designed to produce continuous real-time output.

Figure 3.10: MavEStream four-stage integration model [78]

The stream processing stage accepts stream data as input and evaluates continuous queries over

this stream data producing stream output. The MavStream stream processing system has a number of

operators including Select, Project, Join, Aggregates(sum, count, max, min and average) and Group

By. The output from the stream processing stage is then passed through the event generation stage

to the event processing stage.

Simple events originate in the stream processing and event generation stages and composite events

based on these events are detected in the event processing stage. The LED event processing archi-

tecture is used to detect composite events and propagate these events to the rule processing stage.

The rule processing stage is also part of the LED and it processes rules that are associated with the

simple and composite events detected in the event processing stage. The LED is based on the event-

condition-action (ECA) paradigm. Event Operators are used to construct composite events. Some

of the event operators supported include : OR, AND, Sequence, NOT, Aperiodic, Periodic, Plus and

36

Chapter 3. State of the Art

Cumulative Aperiodic and Periodic. LED supports four event consumption modes: recent, chronicle,

continuous and cumulative [29]. In the recent consumption mode only the most recent initiator of a

composite event is used. In the chronicle consumption mode the oldest initiator is paired with the

oldest terminator. In continuous mode a terminator event can be used with multiple initiators, i.e.,the

terminating event can be consumed in multiple composite events. In the cumulative event mode all

occurrences of an event type used in the detection are accumulated and discarded once a terminator

for that event is detected.

Continuous Query Processing

The bottom layer of MavEStream is composed of a continuous query stage. Streams are used as

inputs and continuous queries are evaluated over them. The output of this stage is an output stream.

Continuous queries are named and the output streams can be used as the input stream to other con-

tinuous queries. Scheduling and QoS concerns are also addressed at the continuous query processing

stage.

Event Processing

Users can specify events based on continuous queries. Event creation takes the form:

CREATE EVENT name

SELECT A1 ,A2 ,..,An

MASK Conditions

FROM Es | En

An event is created with the speci�ed attributes, which satisfy the MASK, on the continuous query Es

or event expression En. The event expression allows an event to be speci�ed on two or more events.

Semantic Window

In standard stream processing systems windows are usually either tuple-based or time-based, with

some systems allowing attribute-based windows. A semantic window is proposed in MavEStream

which allows a computation to be made to decide what elements of the stream should be included in

the window. This computation is executed and decides what tuples to add to the window and what

tuples to remove from the window. This allows greater expression of window membership than what

is traditionally available in data stream managements systems.

3.6.1.1 Discussion

MavEStream combines stream processing with event pattern detection. It supports this by allowing

events to be produced as the output of continuous queries and these events to be combined into

complex events according to a pattern supplied by the user. This model is a reasonably straightforward

juxtaposition of the two paradigms that allows not only stream processing but complex event and

rule processing. The semantic windows proposed are also a potentially useful addition to the �eld.

37

Chapter 3. State of the Art

Apart from semantic windows MavEStream does not provide any new abstractions for combining

sensor data or for analysing sensor streams. Its contribution is based around the realisation that both

stream processing and event processing are needed in a wide array of applications. Because of this

MavEStream su�ers from the same strengths and ailments when it comes to sensor-driven applications

as the event and stream processing e�orts that constitute it. The system supports combining sensor

streams and has abstractions for dealing with historical stream data, however custom analysis of

sensor output from multiple sensors is not possible with MavEStream.

MavEStream is quite a resource hungry application. E�ectively the LED and MavStream frame-

works are running at the same time on the same machine. Therefore MavEStream would only be

usable on platforms at the higher end of the platform spectrum shown in �gure 2.1.

3.7 Sensor Database

The sensor database paradigm is a popular paradigm for building monitoring applications using

wireless sensor networks. Using the approach a network of largely homogeneous sensor nodes is

abstracted as a database that can be queried by the user. This signi�cantly reduces the complexity

that the developer must face and allows non-programmers e.g., biologists, geologists etc. to exploit

wireless sensor networks in their research. There are a number of projects which treat a sensor network

as a database in some manner including [138, 95, 126, 37]. We have chosen to review the TinyDB [95]

and SINA [128] projects here as they are the most relevant and in�uential in the �eld and contain

important abstractions for implementing sensor-based applications.

3.7.1 TinyDB

TinyDB [95] is an acquistional query processing system for sensor networks. It is designed to work

on Berkeley motes and provides a query processing interface to the sensor network allowing users to

specify queries in a similar manner to relational databases. A central design idea is the notion that

signi�cant power savings can be made in a sensor network by controlling the acquisition of data and

that the query plan and processing system can control this process. The system is built on top of the

TinyOS [60] operating system. Figure 3.11 shows a query in a tinyDB network. Users specify queries

at a base-station which is then optimised and disseminated to nodes in the sensor-network. Nodes

in the sensor-network sample the sensors intelligently with power conservation being an over-riding

concern.

3.7.1.1 Query Language

TinyDB uses a SELECT-FROM-WHERE-GROUPBY clause supporting selection, join, projection,

and aggregation [95, 94]. Sensors in the system are viewed as a single table with one column for

each sensor type. The schema of the table is the same throughout the sensor network. The sensor

table is unbounded and therefore may not be used with certain blocking operations such as sort and

38

Chapter 3. State of the Art

Figure 3.11: A query and results propogating through a TinyDB network [95]

symmetric join. A bounded subset of the stream or window must be speci�ed or the sensors table

can be the outer table in a nested inner-loop join.

The FROM clause can refer to stored tables and the sensor table. Stored tables are supported

using materialization points which reside at a particular node. They can be used to support sub-

queries and also for windowed operations, where a portion of a stream is stored at the node and

queried later.

Data aggregation is a popular technique in sensor-networks to reduce the overall energy use by

reducing the amount of data which is transmitted throughout the system. The cost of transmitting

data is expensive in sensor-networks particularly the nodes near the route using a multi-hop com-

munication protocol. Aggregation works by pushing part of the processing into the network and

communication less higher-level data back to the root, rather than raw sensor data. TinyDB supports

aggregation queries which are designed to reduce the amount of information that travels through the

network by pushing the processing into the network. TinyDB also allows users to extend the system

by authoring software modules which implement an aggregate. TinyDB users may extend TinyDB

with user written aggregates by authoring software modules that implement the required functions

[95]. These functions are a merging function, and initiliazer and an evaluator. They operate under

the constraint that the merging function must be commutative and associative. TinyDB supports

temporal aggregates and materialization points, both of which can be used to handle historical data,

by creating structures which are similar to sliding-windows.

TinyOS is event based and TinyDB also uses events. Events can be used as a mechanism for

initiating queries. Events in TinyDB are generated by another query or from the underlying operating

system. This could for example come from a sensor attached to the node. TinyDB events are not

39

Chapter 3. State of the Art

distributed throughout the network, just at the local node. Events in TinyDB allow the node to

be dormant until some external event occurs, and are central to the notion of acquistional query

processing. Events can also be used as stopping conditions for queries. Events can also be outputted

as the result of a query on a node which along with materialization points provide support for a form

of nested queries [95].

3.7.1.2 Discussion

TinyDB is a sensor database application for sensor networks. It is designed to simplify the process

of acquiring sensor readings from sensor networks with the additional design goal of reducing power

consumption. It is well suited to resource-constrained devices and it is aimed at reducing the power

usage in such devices which is generally the most constrained resource in the sensor-network domain.

TinyDB is highly e�ective at retrieving sensor readings and is a massive improvement for the developer

over writing and testing applications in an ad-hoc manner. The declarative language also simpli�es

the process for the developer and removes the chore of rewriting low-level sensor code and allows

the programmer to focus on writing sensor-data acquisition speci�c code. The declarative language

facilitates optimisation and facilitates acquistional queries which result in reduced power consumption.

TinyDB is well suited to sensor monitoring applications, however it is not designed for sensor-driven

applications where the application which is being driven resides in the network? One severe limitation

of the TinyDB approach and the sensor-database approach in general is that it makes an assumption

the the sensor nodes are Homogeneous. This works well for a relatively unsophisticated network, but

as soon as we introduce additional sensors and sensor types it becomes unmanageable.

While TinyDB supports events as the initiator and potential outputs of its queries it is intrinsically

tied to the TinyOS implementation. The events limitation of only being delivered on the local node

underlines how the system is not designed to use events in the traditional sense, but purely as the

communication mechanism available in TinyOS.

TinyDB uses a custom language. This language provides additional bene�ts in the form of query

optimisation and additional constructs for purposes such as specifying sampling rate and data aggre-

gation. It is di�cult to see how this would map to an alternative language.

TinyDB is well suited to applications that require simple monitoring and aggregation of sensor

data in a sensor-network, particularly ones which are under power constraints. However this corre-

sponds to a small section of the application space in ubiquitous computing and neglects sensor-driven

applications which we see as particularly important for the future of sensor-rich ubiquitous computing

applications.

While TinyDB allows programmers to collect sensor data, combining this data is not well supported

in TinyDB. The aggregation function performs a form of sensor fusion on the data but it is limited

to operations on a single sensor, e.g., the average of a particular sensor in the system. Performing

analysis on two sensor streams is not well supported in TinyDB.

TinyDB does support continuous historical data through the use of materialization points, which

allow the programmer to store readings in a table and use this table in subsequent queries. For

40

Chapter 3. State of the Art

example this allows the developer select the max or average of a certain number of readings which

are stored in the table.

TinyDB does not support advanced functionality for combining and analysing sensor readings

from multiple sensors using historical data.

3.7.2 SINA

The Sensor Information Networking Architecture (SINA) [126, 128, 77] is an architecture that facil-

itates querying, monitoring and tasking of sensor networks. It is designed to �t the needs of a wide

range of sensor network applications from military to factory automation. SINA acts as a middleware

layer providing a set of con�guration and communication primitives that enable scalable, energy e�-

cient and robust interactions between sensor nodes [128]. To support scalability in the network SINA

provides a feature called hierarchical clustering. Sensor nodes are aggregated to form clusters based

on power levels and proximity, with a cluster head performing information �ltering and aggregation

of the clusters information. A clustering algorithm is provided to autonomously elect and re-elect

cluster heads. Attribute-based naming is the preferred scheme in SINA. This allows applications to

program the sensor network without referring to individual sensor nodes. For example the name [type

= temperature, location = NoE, temperature =103] describes all the temperature sensors located in

the northeast quadrant with a temperature of 103 [126].

3.7.2.1 Information Abstraction

The SINA information model views a sensor network as a collection of datasheets. A datasheet

contains a collection of attributes of each sensor node. Each attribute in a datasheet is referred to as

a cell and the collection of datasheets in the sensor network make up an associative spreadsheet. On

initialisation of the sensor node a small number of cells exist, however as time progresses more cells

can be created as a result of the operation of the applications in the network. A cell may contain a

single value e.g., battery level or multiple values e.g., temperature changes in the last 30 minutes.

3.7.2.2 Sensor Query and Tasking Language

The sensor query and tasking language (SQTL) provides the programming interface between the sensor

applications and the SINA middleware. It is a procedural scripting language which is designed to be

�exible and compact which also supports simple declarative query statements. SQTL is designed to be

similar to standard procedural languages but also has a lightweight object-oriented features [77]. The

SQTL language includes constructs for arithmetic (+,-,*,/), comparison (==, !=, <, >), and Boolean

(AND, OR, NOT) operators, assignments, conditional construct (if-then-else), loop construct (while),

object instantiation (new), and event handling construct (upon) [77]. Access is provided to the sensor

hardware using primitives such as getTemperature and turnOn. Communication primitives are also

provided e.g., tell and execute. In addition to these primitives SQTL also provides an event handling

construct. Three types (sources) of events are supported by SQTL. These are events generated by the

41

Chapter 3. State of the Art

reception of a message at the sensor node, events generated periodically by a timer and events caused

by the expiration of a timer. These events are de�ned by the SQTL keywords receive,every and expire

respectively. By using the upon construct the application programmer can create an event handling

block. SQTL scripts are intended to be executed by every member of the network however they can

be targeted at speci�c receivers or groups of receivers using an SQTL wrapper which is constructed

using XML.

3.7.2.3 Declarative Query Language

A built-in declarative query language is provided for applications that wish to collect sensor infor-

mation. The query language is adapted from SQL and operates using the cell information model

described above. The query

SELECT avg (getTemperature ())

AS avgTemperature

FROM CLUSTER−MEMBERS

would ask every cell to create a new cell called avgTemperature which maintains the average

temperature among its cluster members.

3.7.2.4 Discussion

SINA provides a number of interesting abstractions that could be used to create sensor-driven appli-

cations. The inclusion of a procedural language allows complex tasks to be speci�ed (as opposed to

the network being queries). The inclusion of the XML wrappers allows the application programmer

to target the script at a particular node in the network, which overcomes the inherent weakness in

other sensor networks, in that the application must be homogeneous across the network. The project

also uses events and this allows the application to respond to messages from other nodes and interface

with timers. Historical sensor readings are supported in the associative spreadsheet abstraction. It

is possible to run a query that stores e.g., the last 30 readings in a cell of the spreadsheet and pre-

sumably query this at a later date. Each query could be considered to be a window over previous

sensor readings, and depending on the windows speci�cation di�erent views over the historical sensor

reading could be maintained.

However the procedural provided by SINA is very simple and may not have the sophistication for

more complex applications. For example no mention is made in the literature of how to create or call

a sub-routine or function in SQTL. Also while events exist in SINA and allow the application to react

to incoming messages from other nodes, it could not be described as a complete event system. The

system doesn't provide any mechanism to combine events although the procedural query language

appears to have at least one construct (avg) for aggregation of sensor readings.

In summary SINA appears to be positioned somewhere between the homogeneity of the nodes

in TinyDB and the con�gurability of programing nodes independently. The inclusion of historical

sensor reading mechanism could help programmer write applications dealing with continuous sensor

42

Chapter 3. State of the Art

Name E
ve

nt
 M

od
el

P
ro

gr
am

m
in

g
L

an
gu

ag
es

P
la

tf
or

m

A
pp

lic
at

io
n

C
om

bi
na

tio
n

of
 S

en
so

r
D

at
a

C
on

tin
uo

us
 S

en
so

r
D

at
a

A
na

ly
si

s
of

 C
on

tin
uo

us
 S

en
so

r
D

at
a

Java Beans Event Model O X O O X X X

STEAM O O O O X X X

Cambridge Event Architecture O O X O O O X

Composite Event Detection as a Generic Middleware
Extension

O O X O O X X

SASE O X X X O O X

Cayuga O X X X O O X

Aurora X X X X O O O

STREAM X X X X O O X

MavEStream O X X X O O X

TinyDB X X O X O O X

SINA X X O X O O X

Table 3.1: Summary of State of the Art

streams. The inclusion of a procedural language for specifying the tasks highlights the inadequacies

of a declarative language for the job. However no abstractions exist in the language that aid the

combination of sensor readings that do not exist for a person writing the applications in a procedural

language such as C and polling the sensors for data.

3.8 Summary

There is a large body of work related to event based systems and stream processing systems. While

to two research �elds are evolving separately there is a large amount of common ground between the

two. Both �elds have their origins in the database community and both have evolved to meet di�erent

needs. With the rapid increase in the number of small cheap sensors and the need to combine this

data in meaningful ways the two �eld's paths are converging again.

The event based programming model is the programming model of choice for developers of ubiq-

uitous computing applications. There are a large number of di�erent event systems and we have

reviewed several ones that are important to the thesis in this chapter. Stream processing is also a

large domain and we have analysed two important research projects from this domain. The sensor

43

Chapter 3. State of the Art

database abstraction is popular in sensor networks and provides a mechanism to abstract above the

individual nodes in the network. Both sensor network approaches reviewed used events to some de-

gree and had support for historical data illustrating the requirements for this functionality in sensor

based applications. MavEStream is a very interesting project which has similar goals to this thesis

although with di�erent focuses and attempting to fuse the two models so that the system has both

event composition and stream processing. MavEstream also does not provide abstractions to allow

custom code to access historical sensor data.

It is clear from the analysis of the work that while abstractions to combine streams of data are

commonplace in both event programming and stream processing, allowing this process to execute cus-

tom code is lacking in most projects, with the exception of Aurora which supports custom operators.

The concept of historical event data is lacking in the event literature and this functionality is crucial to

implement more advanced applications as is shown by its inclusion in the complex event applications

and the stream processing literature. Exposing this functionality to the application developer would

allow the programmer to write more complex applications of the type described in chapter 2.

Table 3.1 summarises the projects reviewed in this chapter. It details the requirements of sensor-

driven applications that the applications meet. To e�ectively display the data in a binary format, it

is necessary to approximate the information. Therefore an optimistic approach is taken, if the project

goes any towards meeting the requirement it is considered to have met it. As we can see from the

table the event-based systems meet many of the general middleware requirements of sensor-driven

applications. Also we can see that the stream and event stream systems generally meet two of the

three main functional requirements of sensor-driven applications to some degree. We can see that

Aurora meets all of the functional requirements (analysis of continuous sensor data to a lesser extent)

but fails to meet any of the general middleware requirements of sensor-driven application. We can

clearly see that there is a gap in the state of the art where no system meets all of the requirements,

both general middleware requirements and functional requirements of sensor-driven applications. This

is the gap that the AESOP abstractions presented in this thesis address.

44

Chapter 4

The AESOP Model

This chapter describes the Architecture for Fusing Events using Streams and Execution Policies

(AESOP), an architecture that can be used to add support for analysing continuous event data

and analysing events from multiple sources to any event system that satis�es a minimum set of

requirements. Because AESOP has a minimal set of requirements of the event model it can be used

to extend a large amount of pre-existing event-models. This has two signi�cant advantages. Firstly,

there is a large amount of theoretical work already performed in the creation of event-models and

analysing the characteristics of these event models, e.g. [124, 15, 3, 54, 79, 87, 100, 122, 129]. This work

can be leveraged by extending these event-models using AESOP. Secondly, there is a large number of

event models, e.g., [112, 57, 119, 92, 114, 56, 104, 103, 99] that have already been implemented and

are already developed, tested and being used in the software industry. The AESOP model can be used

to extend these event systems, allowing pre-existing implementations be re-used, saving signi�cant

development time and e�ort.

This chapter describes the design of the AESOP architecture. Chapter 5 presents two instantia-

tions of the architecture, which are used to evaluate the architecture in chapter 6.

In section 4.1 we discuss the set of requirements that must be satis�ed by the host event model

in order for it to be suitable for extension by AESOP. Section 4.2 gives an overview of the AESOP

architecture, discussing its interaction with the host event system and the e�ect AESOP has on the

functional and non-functional characteristics of the host event system. It also discusses the interaction

of the three major abstractions provided by AESOP and the interaction between AESOP and the

application. In section 4.3 the event stream abstraction is introduced along with the windowing

mechanisms that are used in AESOP to support historical event data. Section 4.4 introduces multi-

event handlers which support analysis over multiple event streams. Section 4.5 describes execution

policies which are used to detect event patterns in the event streams in order to determine when to

execute the multi-event handlers. Section 4.6 shows how multi-event handlers can be composed to

build more complex systems and section 6.7 summaries this chapter.

45

Chapter 4. The AESOP Model

4.1 Requirements

AESOP is designed as a generic extension for event models. There are a minimal set of requirements

that an event model must satisfy to be suitable for extension.

1. Events in the event system must be able to be categorised into groups, usually this is achieved

by having an event type or subject.

2. It must be possible to subscribe or register interest in these event groupings.

3. It must be possible to publish events.

Various event models have di�ering time models. Some use a total temporal ordering on events, in

others systems this is not desirable or possible. The AESOP model makes no demands about the

timing model of the underlying system.

In chapter 3 we reviewed a large number of event systems. All of the systems from chapter 3,

which use an event model, meet the set of requirements presented here. The requirements presented

here are very general and are applicable to the overwhelming majority of event systems intended to

be suitable for developing event based applications. Of the event systems which allow programmers

to publish events, and are not therefore just one-way communication mechanisms, the author has yet

to encounter an event system which fails to meet the remainder of the requirements.

Event systems can use di�erent criteria to decide where the boundaries are between di�erent events

and what events to send to each consumer. For example some event systems can be typed, others

are semantic and others content based. All event systems share a common characteristic in that they

do classify events for delivery to consumers. AESOP relies on this categorisation of events and is

agnostic to how it is performed.

4.2 Overview of the AESOP Architecture

The AESOP architecture o�ers three core abstractions: multi-event handlers, event streams and

execution policies. The multi-event handlers are functions that are executed in response to the arrival

of one or more events. The execution policies are expressions that are used to decide what combination

of incoming events trigger the execution of the multi-event handler. The event streams are streams

of data used to supply the multi-event handler with event data and to facilitate analysis of historical

sensor data.

4.2.1 AESOP and the Host Event System

The AESOP architecture as shown in �gure 4.1 is positioned between the host event system and the

application. AESOP is designed to be usable to extend any event-based system. The assumptions it

makes are very general and are simply that the system allows AESOP to publish events, subscribe

to events and be noti�ed when such events happen. Figure 4.2 shows the interface between AESOP

46

Chapter 4. The AESOP Model

Application

AESOP

Host Event System

Event Streams

Execution Policies

Multi-Event
Handlers

Figure 4.1: Placement of the AESOP Architecture

and the host event based system. From the �gure we can see that the AESOP model is separate from

the host event system and communicates with it entirely using the standard interface for subscribing

to, publishing and receiving event noti�cations. The event streams subscribe to and are noti�ed of

events from the host event system and the multi-event handler can publish events with the host event

system.

4.2.2 Feature Preservation

As discussed in section 1.2 and section 3.2 there are a large variety of event systems which have wide

range of functional and non-functional features that are designed to address a range of challenges.

These features - such as distribution, scalability and proximity and content �ltering - are reasons used

to chose a particular event system as they are designed to address shortcomings in event systems or

to solve a particular problem. The AESOP architecture preserves the functional and non-functional

features of the event system that it extends. Therefore a distributed event system which is extended

with AESOP continues to be a distributed event system. AESOP however does not provide distri-

bution to an event system, and a non-distributed event system will remain non-distributed. The

AESOP architecture adds its features and abstractions to the features and abstractions of the host

event system, allowing the programmer to use both in the implementation of their application.

47

Chapter 4. The AESOP Model

Pub NotifySub

Multi-Event
Handler

Pub NotifySub Pub NotifySub

Host Event System

Event
Streams

Execution
Policy

Multi-Event
Handler

Event
Streams

Execution
Policy

Multi-Event
Handler

Event
Streams

Execution
Policy

Application

Causes
execution
of

Action
associated
with an
event.

Figure 4.2: AESOP Architecture Overview

This preservation of features and the design of the AESOP architecture as a generic extension for

event systems allows a large body of work both theoretical and practical to be leveraged.

4.2.3 Interaction between AESOP and the Application

An overview of the AESOP architecture is shown in �gure 4.2. We can see that there is an overlap

between the multi-event handlers and what would be considered the application code of the system.

The code that gets executed in the multi-event handlers contains application-speci�c code. This code

performs some analysis of the events in its event stream windows and can raise new events. It can

also perform standard application functions in the same way that application code in traditional

event handlers, e.g., in STEAM [99] or JavaBeans [103] can be used to implement application logic

in traditional event based programming.

4.2.4 Interaction Between the AESOP Abstractions

Figure 4.2 shows the interaction between the AESOP architecture, the application and the host

event system. It also shows the interactions between the three abstractions in the architecture and

the application and host event system. The event streams are the main interface to the host event

system. They receive events that are published and are of the type speci�ed in the event stream. The

multi-event handlers also interact with the host event system because they can raise events as a result

of their execution.

48

Chapter 4. The AESOP Model

Execution policies and event streams also interact; execution policies evaluate when a new event

arrives in a window of an event-stream of the multi-event handler which it is associated with. This

is shown in �gure 4.2 with the double arrow notation between the event streams and the execution

policy. If the execution policy evaluates to true then the multi-event handler gets executed. This

interaction is also shown using double arrow notation in �gure 4.2. The multi-event handler can read

the values of all the events in the windows of the event streams which are attached to the multi-event

handler, and as stated earlier can then raise events using the host event system.

4.3 Event Streams

An event stream in AESOP is a continuous sequence of individual events of a speci�c type. Event

streams are the abstraction which facilitates all communication between multi-event handlers in the

programming model. They serve as input streams and output streams to multi-event handlers. Event

streams are the basic abstraction for handling continuous sequences of events.

Event streams are ordered by arrival time in AESOP, with events that arrived latest higher in

the sequence. This is independent of any timestamp or other attribute that the event may posses.

Events which arrive simultaneously in the AESOP system are added to the event streams in the order

that they are processed. Because event streams are continuous they can potentially grow to in�nite

length. Event streams are not shared between multi-event handlers and there is no requirement to

synchronise event streams across multiple nodes in a distributed event-based system.

When an event stream is created in AESOP it can be initialised with a sequence of events or

remain empty.

.. . E
n

E
n-1

E
n-w

E
n-w-1

E
n-w+1

Number of Events n

Length of window w

Window

Event

.
Time

Figure 4.3: Event Stream Showing Window

49

Chapter 4. The AESOP Model

4.3.1 Event Stream Windows

Event streams are unbounded streams of event data and can potentially be in�nite. Dealing with this

vast quantity of data is one of the challenges of writing sensor-driven applications. In order to make

relevant data from event streams available to the programmer we introduce the concept of a window

over an event stream, a concept that is commonly used in many streaming systems and complex

event processing systems in order to handle historical data, e.g., [8, 2, 54, 41, 78]. A window allows

a section of the event stream to be retained and viewed by the multi-event handler. The section that

is retained is the part of the event stream which is relevant to the multi-event handler, events can be

excluded from the window, however the window maintains the same ordering as events in the event

stream. Figure 4.3 shows a window over an event stream. Events outside of the window are discarded

and are no longer accessible from this window. Events inside the window are accessible for as long

as they remain in the window. Event stream windows have both window mechanisms and window

membership schemes. Window mechanisms determine the relationship between successive views of

the window and are discussed in section 4.3.2. Windows membership schemes determine which of the

individual events in the event stream are members of the window and are discussed in section 4.3.3.

1.2 2.34 34.32 1.22

12 21 56 100200 6

E40E39E38

S1

S2

S3

MultiEvent Handler

3.4

Figure 4.4: Event Streams and Sliding Windows

4.3.2 Windowing Mechanisms

Associated with each input stream to a multi-event handler is a window. This window is used to

decide what and how many previous events should be stored in order to satisfy later analysis on the

stream. There are two main windowing mechanisms supported by the AESOP model: sliding windows

and tumbling windows.

50

Chapter 4. The AESOP Model

Window 1 Window 2

E3 E4 E5 E6 E7E1 E2

Window 3

Direction of Tumble

Figure 4.5: Tumbling Windows

Sliding Windows

Sliding windows store a �xed number of events de�ned when the window is created. They have a �xed

maximum length and once they are full, the arrival of new events in the window pushes the oldest

event from the window. Sliding windows are a type of window mechanism in which subsequent views

of the windows share events. The di�erence between the nth and the (n + 1)th view of a particular

window would di�er by a maximum of two events, the oldest event that had left the nth view and the

newest event that had just joined the (n + 1)th view. Figure 4.4 shows an example of some sliding

windows on event streams. In this example we have three event streams. The �rst event stream S1

has events with �oat data, S2 has events with integer data and S3 is shown as having events with an

arbitrary type. The lengths of their sliding windows which are speci�ed when initialising the event

streams are 4, 6 and 3 respectively. As new events arrive they join the head of the queue pushing the

last element out of the sliding windows range. In the example we can see an event with data 3.4 is

arriving at the front of S1 pushing the event with value 1.2 out of the sliding window.

Tumbling Windows

Tumbling windows are windows which keep accumulating events on an event stream until a tumbling

condition is evaluated which causes them to discard all their contents and begin accumulating events

again. There are no common events between the window pre-tumble and post-tumble. If for example

the multi-event handler was analysing events on an hourly basis, a tumbling window could be used.

At the beginning of the hour the window would be empty and it would gradually �ll up over the

course of the hour as new events arrived. At the end of the hour, it would �tumble� and empty and

begin �lling up again. The same tumbling mechanism can be used on any attribute of the event. To

do so the developer must specify a condition on which the window should �tumble�. Figure 4.5 shows

a number of consecutive views of a tumbling window on an event stream in AESOP. We can see that

the �rst view of the window contains events E1 and E2 while the second view of the window contains

E3, E4 and E5. The third view of the window contains E6 and E7 and has still not tumbled. The

tumbling condition is not speci�ed here, but in general it can be based on an attribute of the window,

e.g., length of the window or on attributes of the events, e.g., a timestamp.

51

Chapter 4. The AESOP Model

4.3.3 Window Membership

Every window on an event stream needs a window mechanism and a method for determining mem-

bership of the window. Window membership in the AESOP architecture ranges in complexity from

allowing all events in an event stream to be members to arbitrarily complex expressions using the

attributes of the events to determine exactly what events belong in a particular window. We call the

condition that evaluates to determine if an event can have membership of a particular window the

window's window membership expression. The window membership expression is used in combination

with the window mechanism to determine what events are in the most recent view of the window

at any time. Therefore a window membership expression could evaluate to true for a given event,

however if the windowing mechanism is a sliding window with a length of 3, and it is the fourth

oldest event that satis�es the window membership expression for that particular window, it will not

be viewable in the window.

Window membership expressions are evaluated when an event arrives on the event stream of the

window. There are two types of window membership expressions. Arrival window membership ex-

pressions evaluate only for a particular event when that event arrives in the event stream. Updating

window membership expressions evaluate when any new event arrives on the event stream. Arrival

window membership expressions are used when the relative values of the event's attributes remain

constant with time and the execution of the application. Updating window membership expressions

are used when the attribute's relative value is changing and the window membership is changing with

it. The main example of a window particularly suited to being an updating window is when imple-

menting a time-based window. If the events had a timestamp attribute and the window membership

expression was using this timestamp to restrict window membership to a certain number of minutes

in the past, the window membership expression would need to be re-evaluated whenever new event

data arrives in the window to ensure that the window membership remained current.

Not all incoming events on an event stream can cause the execution of the multi-event handler.

It is possible for an event to arrive in an event stream and not meet the membership requirements

for a window. This incoming event would not be added to the window and would not cause the

execution of the multi-event handler. The newest event in an event stream window is passed to the

execution policy on arrival and is used by the execution policy to decide if the multi-event handler

should be executed. The present contents of all the windows associated with a multi-event handler

are available to the multi-event handler when it gets executed. This provides a mechanism by which

the multi-event handler can analyse previous event data and can deal with the continuous nature of

streams of events.

4.3.4 Instantiation Considerations

There are a number of programming abstractions related to event streams that must be mapped in

any concrete instantiation of the AESOP architecture. The structure of the abstractions in the target

programming language depend on the programming language and the programming methodologies

52

Chapter 4. The AESOP Model

it supports. However we can clearly identify the important abstractions and highlight the important

decisions that need to be made when instantiating the architecture. The mechanism for creating event

streams is important. What window mechanisms are supported and how they are speci�ed by the

developer is also very important. The degree of expressiveness of window expressions will determine

how they are used and will signi�cantly in�uence any applications developed using the instantiation.

This is also true of the tumble expressions.

The various windows supported in the model are made available to the developer in the multi-

event handlers and may be available in the execution policies. The manner in which the data structure

is exposed to the developer is a very important consideration. Developers will spend a lot of time

accessing the event stream data through these abstractions so they should be as close as possible to

the standard mechanisms used in the target language.

It would be possible to design a speci�c language which could be used by the application developer

to specify window membership. However, this may negatively impact on the resource usage of the

�nal application and also would create an additional barrier which would make it harder for developers

to begin using the abstractions.

4.3.5 Event Streams in Example Application

In order to facilitate the description of the abstractions we use a simple example application which

will be used for purpose of illustration in the discussion. The example we will use is the patient fall

detection application introduced in section 2.1.2. This application uses multiple accelerometer sensors

to analyse the posture of the patient. If the patient's posture has changed from vertical to horizontal,

the application analysis the accelerometer data and determines if the change was violent and may

be the result of a fall, or if it was characteristic of a sitting or reclining motion. We will use this

example application to illustrate the AESOP abstractions as we describe them in the remainder of

this chapter.

In our example application there are three event streams. Each of the three accelerometers output

events, and these events constitute an event stream for each sensor. The application needs to be

able to analyse the events from the accelerometers once it detects a change in posture of the patient.

Therefore a window must be de�ned over each of the event streams. Sliding windows would be a

suitable window mechanism, and window membership would be de�ned as the n most recent events,

where n is the number of accelerometer readings required to properly recognise a violent fall.

4.4 Multi-Event Handlers

Multi-Event Handlers are code fragments that get executed in response to new events in the windows

of one or more of the event streams associated with them. The multi-event handler has access to these

windows while executing and contains logic to analyse the data in these windows. They can output

new events and/or can perform application speci�c actions.

53

Chapter 4. The AESOP Model

Execution Policy

MultiEvent
Handler

E1

E2

E3
E4

1.12 25.3 14.3

E2
34

E3
40

E3
41

Execution Policy MultiEvent Handler Event

E5

Figure 4.6: The AESOP Model, Multiple Events with Execution Policy

Multi-event handlers can be considered a generalisation of callbacks for traditional events. Figure

4.6 shows a traditional event handler, which executes when one event arrives, and a multiple-event

handler in the same diagram. Multi-event handlers generalise the behavior of the traditional event

handler and execute in response to multiple events. A traditional event handler is identical to a

multi-event handler with a single input event stream that has access to a sliding window of length

one on its input event stream.

The combination of input events that can cause the multi-event handler to execute is determined

by an execution policy which is associated with the multi-event handler. Each multi-event handler

has one or more event stream windows and exactly one execution policy and can output events in one

event stream.

Multi-Event handlers can output the results of their execution as events which can form an event

stream. This output stream can be used as the input to other multi-event handlers.

Multi-Event handlers have access to windows speci�ed over the event streams and can perform

analysis of the historical data in the streams. Because they have access to all the windows over

all of the event streams when they are executed, it is possible to analyse historical event data over

multiple event streams. In section 2.3 we identi�ed this functionality as critical for many sensor-driven

applications.

4.4.1 Instantiation Considerations

Multi-Event handlers like the other AESOP abstractions must be mapped into a concrete instanti-

ation. Multi-Event handlers are the central abstraction in the architecture so their mapping is very

important and signi�cantly in�uences the structure of all applications developed using the architec-

ture. A large amount of application code will be written in the multi-event handlers so it should be

54

Chapter 4. The AESOP Model

clear and easy to understand and should map to the standard abstractions for developing applications

in the chosen language, e.g. a multi-event handler could map to a method in an Object-Oriented

language or to a function in a procedural language.

Listing 4.1: Pseudo-code for Multi-Event Handler in Fall Detection Application

1 meh_detect_fal l {

2 inputs :

3 event_stream_window_a1 , event_stream_window_a2 , event_stream_window_a3 ;

5 // s imple example a l gor i thm i f magnitude o f a c c e l e r a t i o n > 15 the f a l l i s

v i o l e n t

7 for (a c c e l = event_stream_window_a1 . f i r s t ; a c c e l != null ; a c c e l =

event_stream_window_a1 . next) {

8 i f (magnitude (a c c e l) > 15) {

9 call_ambulance () ;

10 return ;

11 }

12 }

13 // repea t f o r o ther event streams

14 }

4.4.2 Multi-Event Handler in Example Application

In the example pervasive healthcare application the multi-event handler would analyse the three

accelerometer event streams and detect if the change in posture of the patient was due to a violent

fall, and if so would proceed to notify the relevant people. The multi-event handler needs to be able

to analyse the event stream windows from the accelerometers and use the analysis of this historical

event data leading up to the change in posture to decide if a violent fall has happened. From a

programming point of view this requires that the multi-event handler has access to a data structure

that represents the historical data in the event stream. The multi-event handler must also have access

to communication facilities so that it can send an alert if a fall is detected. Listing 4.1 shows a pseudo-

code multi-event handler for the example described here. The algorithm used is very simple it checks

the magnitude of the previous accelerometer readings to determine if they exceeded a threshold. In

practise this algorithm would be much more complex taking into account the body position of the

accelerometers and a model of the human body, to properly analyse the movement of the patient.

55

Chapter 4. The AESOP Model

4.5 Execution Policies

Execution policies govern the way in which multi-event handlers decide when to execute given new

event stream window data. In order for a multi-event handler to execute it needs to have valid data

for all of its inputs. This means there must be at least one element in each of the windows of the

input streams. This data can be initial event stream data or real event data. When new data arrives

in one of the streams there is a multi-event handler speci�c decision to be made. We can decide to

execute the multi-event handler using this new event or wait until all streams have new events, or

some combination of the two options. Execution policies are the abstraction used to represent these

decisions in the architecture.

Execution policies are expressions that are used to decide if the arrival of new data in an event

stream window should cause the execution of the multi-event handler it is connected to. They are

evaluated whenever new data appears in a window for the multi-event handler. They have access to

all the windows on the event streams connected to the multi-event handler and can also access the

attributes of the events.

The execution policy allows us to �ne tune the control we have over the in�uence of the arriving

data on the application. In the traditional event model, whenever an event is received the correspond-

ing event handler executes. So, it is equivalent in this respect to having a multi-event handler with

one event stream with an execution policy that executes whenever a new event arrives. As soon as

we add the concept of additional event streams which may trigger the execution of the multi-event

handler to the model we need the abstraction of execution policies to allow the application developer

to specify exactly what combination of events will cause the execution of the multi-event handler.

With execution policies we can use arbitrarily complex expressions which specify exactly when we

want our multi-event handlers to be executed. For example, if S1,S2 andS3 represented the presence

of new events on stream1,stream2 and stream3 respectively, S1 ∧ S2 speci�es that both S1 and S2

must have data in order to execute the multi-event handler. If we only need one of sensor S2 or sensor

S3 to execute the handler, S1 ∧ (S2 ∨ S3) speci�es that when new data arrives for stream1 and we

have new data from stream2 or stream3 we execute the handler. The execution policies have access

to the windows of all the event streams connected to the multi-event handler and all of the events in

these windows can be used to decide if the multi-event handler should be executed. The attributes

of these events may also be used in the execution policy expressions. This can be used for example

to access timestamps and control the execution of the multi-event handler in this fashion. This high

degree of control in the execution of the multi-event handlers allows complicated applications to be

written easily using the abstractions.

Execution policies are used to simplify the multi-event handlers by separating the detection of

relevant events from the performance of the analysis of the historical event data at these events.

Listing 4.2: Pseudo-code for Execution Policy in Fall Detection Application

56

Chapter 4. The AESOP Model

1 acce l_vector= hip_accelerometer_window . la te s t_event () ;

2 upr ight_acce l_vector = {0 ,−9.8 ,0}

3 i f (cross_product (acce l_vector , upr ight_acce l_vector) > thre sho ld) {

4 i f (cross_product (hip_accelerometer_window . previous_event () ,

upr ight_acce l_vector) < thre sho ld) {

5 return true ; // pos ture has changed from v e r t i c a l to h o r i z on t a l

6 }

7 }

8 return fa l se ; // no change in pos ture

4.5.1 Instantiation Considerations

Execution policies contain a number of abstractions that must be mapped to a target language when

creating a concrete instantiation of the AESOP architecture. How the execution policy is speci�ed

in the target language directly in�uences how expressive the execution policy can be. This directly

in�uences the structure of the applications built using the instantiation. For example, valid imple-

mentations of execution policies range from simply specifying event windows which when they get

new data we should execute the handler, to expressions which have the full expressiveness of a pro-

graming language such as C. Having less expressive execution policies should simplify the speci�cation

and testing of the execution policies and may be su�cient for some applications. Alternatively more

complex expressions may be required for more complex applications.

It would be possible to design a language speci�cally for specifying execution policies for the AE-

SOP model. However, as with window membership speci�cation in section 4.3.2, this may negatively

impact on the performance characteristics of the �nal model and would create a barrier that may

prevent developers from using the model.

4.5.2 Execution Policy in Example Application

Returning to the fall detection application, the execution policy must detect a change in posture of

the patient. It can do this by analysing one of the accelerometers, the one situated on the patients

hip, and determining if the direction of the acceleration vector from the indicates that the patient is

standing or horizontal. Listing 4.2 shows pseudo-code for an execution policy to detect a change in

the posture of the patient. It determines the angle between acceleration vector of the patient standing

upright and the present acceleration vector. If this is above a threshold it then checks the previous

reading from the window, to determine if this is a change that has just taken place. If it is it returns

true, causing the multi-event handler to be executed. If not it returns false and the multi-event

handler does not get executed.

57

Chapter 4. The AESOP Model

MultiEvent Handler

Event Stream

M1

M2
M3

M4

S1

S2

S3

S4

S5

S6

S7

S8

Figure 4.7: Composition of Multi-Event Handlers

4.6 Composition of Multi-Event Handlers

The ability to compose multi-event handlers into chains is a very useful and elegant feature of the

AESOP model. The output of multi-event handlers are themselves event streams and can become

the input to a second layer of multi-event handlers and so on. This is demonstrated in �gure 4.7.

Three layers of multi-event handlers are shown. The event data is being combined and analysed,

creating higher level event streams such as S6, S7 and S8 which in turn can be used as inputs to other

multi-event handlers.

The ability to compose multi-event handlers allows more complex systems to be built from simpler

components. This both supports reuse of multi-event handlers, simpli�es design of the system and

simpli�es testing. In order to compose multi-event handlers the host event system is used to distribute

the events and the output from the multi-event handler is published back through the system. This

also allows intermediate results to be known and used throughout the system. In distributed event

based systems it also allows more complicated multi-event handlers to be distributed in the system

and could for example allow a portion of the entire processing that needed to be performed to be

positioned in the network near a particular source of events or on a node that was more resource rich

than its neighbours.

It is possible when composing multi-event handlers, that composite events, which, by virtue of

travelling through a number of multi-event handlers, may be older than newly arriving low level

events. Depending on the application this could have a detrimental impact on the correctness of the

resultant events and the application. There are a number of ways this can be addressed including

waiting for event stability [87] and delaying delivery of the events. The decision on what scheme to

adopt, if any, is heavily dependent on the features of the host event model, e.g., time model and

distribution, and is left to the implementation of the architecture.

58

Chapter 4. The AESOP Model

4.7 Summary

In this chapter we discussed the requirements AESOP makes of the host event system and the inter-

action between the host event system and the AESOP architecture. We described how the AESOP

abstractions interact with the host event system and the demands they place on it. We introduced

the three core abstractions in the AESOP architecture. We described these abstractions in depth and

discussed the instantiation considerations that must be overcome in order to instantiate the AESOP

model. We also described the interaction between the abstractions in the architecture. The three

main abstractions are integrated in a �nal model and interact heavily with each other. We also dis-

cussed possible mappings of the abstractions that would be required in any concrete instantiation of

the architecture.

59

Chapter 5

Implementation

In chapter 4 we described the abstract AESOP architecture. In order for the architecture to be used to

develop applications it needs to be instantiated. Because of the range of possible host event systems

and the large number of implementation decisions that can be made there are a large number of

possible instantiations of the model. This chapter presents two particular instantiations of the AESOP

architecture. We use these instantiations in chapter 6 to evaluate the architecture. We also discuss

the major implementation decisions that need to be addressed when creating a concrete instantiation

of AESOP. We describe how these decisions in�uence the functionality of the �nal extended event

system. The major implementation decisions are presented to enable developers to extend existing

event systems of their choosing with the functionality provided by AESOP.

The two instantiations of AESOP detailed in this chapter demonstrate how to extend an event

system with the AESOP abstractions. They are therefore a sizable portion of the contribution of this

thesis.

This chapter proceeds as follows, section 5.1 discusses the major considerations that any instan-

tiation of AESOP must address. Sections 5.2, 5.3 and 5.4 describe the two instantiations of AESOP,

C-AESOP and J-AESOP, and discuss how the AESOP abstractions map into the target languages.

Finally, section 5.5 summarises the achievements of this chapter.

5.1 Implementation Considerations

Whenever we implement an abstract architecture there are always implementation decisions that need

to be made depending on target environment. The AESOP architecture is no di�erent and the follow-

ing implementation considerations strongly in�uence the characteristics of the �nal implementation.

These considerations are mentioned throughout chapter 4, we list them here and discuss them in the

subsequent sections.

• The choice of host event system in�uences the functionality and behaviour of the subsequent

augmented event system.

60

Chapter 5. Implementation

• The time model of the host event model is also important especially from the point of view of

composition of multi-event handlers.

• The level of expressiveness of the execution policies in the instantiation directly in�uences the

structure of the resulting applications.

• The set of windowing mechanisms that are implemented and the expressiveness of the window

membership expressions in�uences the structure of the applications that can subsequently be

developed using the instantiation.

• The abstractions presented are programming abstractions and there are a number of decisions

to be made in how they map to the programming constructs and styles of the target language.

5.1.1 Choice of Host Event System

The choice of what event system to extend is one of the most important decisions when implementing

the AESOP architecture. The host event system must satisfy the minimal set of requirements outlined

in section 4.1. The functional and non-functional characteristics of the resulting extended event

system will depend on the functional and non-functional characteristics of the host event system and

so the host event system should be chosen carefully. For example, if we wish to create an AESOP

implementation that is distributed, we must �rst decide on a distributed event system to extend.

Similarly if we desire an event system that guarantees delivery of events or provides high scalability

we must chose a suitable host event system.

The time model of the host event system is also important for AESOP. There are two inter-related

points where there is a decision based on timing that must be addressed. Firstly whenever a new event

is created in AESOP based on the combination of two or more events and both of these input events

have a timestamp we must decide what timestamp if any to give the resulting new event. Normally

we would assign the new event the timestamp of the youngest event which caused its creation.

The second timing question that must be answered when implementing the AESOP architecture

is what decisions to make when combining events created as a result of previous events, with events

that are potentially younger. If the event model does not support timestamps then the events can

only be combined as they arrive. However if the event model supports timestamps we can address

this issue. There are a number of techniques used by systems which combine events to tackle this

problem. The Cayuga system reviewed in section 3.4 uses epoch based timing. All events with a

particular timestamp are processed sequentially. Events that are created in this stage will have the

same timestamp as the other events in the present epoch and will be processed before advancing to

the next epoch. This scheme, while it may increase latency for some events, will solve the problem for

a centralised system. In a distributed event-based system, coordinating the epochs across the many

nodes is a non-trivial task. A best-e�ort approach to combining events will provide the simplest and

fastest solution to the problem and is suitable for a system which is tolerant of dropped events.

The notion of event stability proposed in [16] can be extended to deal with delays due to the

61

Chapter 5. Implementation

execution of multi-event handlers. Event stability is a scheme used to deal with out of order events in

distributed composite event detection. The composite event detection waits for the next event on an

event stream before processing the previous one, to ensure that the correct event is being processed.

This scheme could be modi�ed such that multi-event handlers only process events older than events

in a timing stream. Events which arrive on the other streams in the multi-event handler that are

younger than the timing stream are not delivered to the event stream until a younger event arrives

in the timing stream.

5.1.2 Window Mechanisms

There are two windowing mechanisms provided in the AESOP architecture. Not all implementations

of AESOP will require both of these mechanisms. Which mechanism to support depends largely on

the applications that the implementation is intended to support and what their requirements are.

Some applications may require tumbling windows others may require sliding windows and others may

require both. Applications which need to reason about all events that occur between two other events

e.g. hourly or daily windows would bene�t from using tumbling windows. Applications which need

to reason about the last n number of events, where n is known when the application is developed,

would be more suited to using sliding windows.

5.1.3 Window Membership Expressions

Related to the question of what mechanisms to implement is the question of how to specify windows.

Window membership is determined by a window membership expression, but how that expression

is speci�ed is an implementation issue that must be tackled. Options for the implementation of

this window membership expression depend on the programming language exposed to the developer

and range from using di�erent window objects in an object-orientated programming language like

Java to using a window membership function in C. The second issue concerning window membership

expressions is how powerful the expressions will be. A number of implementation decisions must

be made about the level of expressiveness including whether the expression can access attributes of

the event whose membership of a window it is deciding, whether the expression can access other

members of the window and if the expression can access other members of the event stream to which

the window belongs. These are just three examples of the decisions that must be made regarding

how expressive the window membership expression is. There is a trade-o� in implementing these

expressions. This trade-o� is between making the speci�cation of the expression as simple and easy to

program, understand, test and debug as possible and between allowing su�cient levels of complexity

in the expressions in order to make it powerful enough to implement the range of window membership

functions that might be required in an application.

62

Chapter 5. Implementation

5.1.4 Execution Policy Speci�cation

Deciding how expressive the execution policies should be is an important implementation decision.

Similarly to window membership expressions, there is a trade-o� between having highly expressive

execution policies and simpler ones which are easier to program, understand, test and debug. Simple

execution policies may not be able to represent the full range of possible situations that may warrant

the execution of a multi-event handler, however they may be more than su�cient for the application

that will use the implementation of the AESOP architecture. On the other end of the scale we can

implement execution policies with all the expressiveness available, and allow arbitrary code to be

executed in the execution policy. There is a also a decision to be made about the access available

in the execution policy to attributes of the events. The execution policy could for example access

timestamps and other attributes of the events, but of course this too increases the complexity of the

execution policy. A decision must also be made as to whether or not the execution policies should

have access to other events in the event stream. Execution policies are executed for every incoming

event on any event stream of the multi-event handler. Therefore small increases in the execution time

of the execution policy will have a detrimental e�ect on the performance of the application if the rate

of incoming events is high. Expensive operations such as accessing the attributes of other events in

the event stream windows should therefore be the exception rather than the rule in execution policies.

5.1.5 Programming Language

When deciding what language to implement AESOP in, a number of issues must be considered. The

choice of declarative, functional or procedural programming language is a very important one and

signi�cantly in�uences the implementation of AESOP. As shown in chapter 3 declarative languages

are extremely popular for specifying event composition. There are a number of reasons for this.

Many event and stream processing systems have their roots in databases and declarative languages

such as SQL are commonplace in specifying queries. Automatic query optimisation is another factor

which is important to a number of these systems and declarative languages are well suited to query

optimisation. Research is also quite advanced on optimisation of query plans in relational databases

and this knowledge translates somewhat to the world of stream processing. STREAM [8] for example

explicitly states that exploiting well-understood relational semantics as one of its design goals.

The full range of programming language styles including declarative languages may be used as

the implementation language for AESOP. In fact two di�erent languages could be used, one for the

speci�cation of execution policies and one for the implementation of the handler code. It might

be considered advantageous, for example, to use a declarative SQL style language with suitable

expressiveness to specify execution policy code while using a functional or procedural language to

implement the handler code. This approach might be bene�cial but could also prove confusing and

overly complicated for the application developer.

63

Chapter 5. Implementation

5.2 Instantiations

To date we have two separate instantiations of the AESOP architecture. The two instantiations have

been implemented on di�erent platforms with varying requirements from the applications which use

them. The �rst C-AESOP is implemented using the C language on the Gumstix platform while the

second J-AESOP is implemented in Java on the Android smart-phone platform. In this section we

describe both instantiations. For each, we �rst give an overview of the host event system which is

extended and then discuss the mapping of the AESOP abstractions into the target language. Both

instantiations are available on the CD accompanying this thesis.

5.3 C-AESOP

C-AESOP is an instantiation of the AESOP architecture intended for implementing computer-augmented

sports systems, i.e., applications which augment sports artefacts with sensors and computational de-

vices. With reference to the taxonomy presented in [115] the intended applications have application

scope of training, refereeing and safety, but not sports entertainment. The intended environment for

C-AESOP applications is up to and including bounded outdoor environments, but not unbounded

outdoor environments. The intended sports are those with more than one artefact and any number

of participants.

5.3.1 C-AESOP Requirements

There are a number of application characteristics that C-AESOP must support in order to be useful

for implementing the types of applications it is designed for.

Distributed Communication

The multiple augmented artefacts in the application must be augmented with sensors and computa-

tional devices. These separate augmented-artefacts must communicate in some fashion. This calls for

distributed communication in C-AESOP.

Distributed Over a Relatively Small Area

The sports that C-AESOP is intended to support have a �xed area and in general the maximum area

of the sport will be in the order of 100 m2, there are very few sports that operate within a bounded

area that exceed this area.

Resource-Constrained

The devices used to augment these sports, if they are to be attached to artefacts used in the sport,

must in general be light weight and with low power usage. This implies that resource-constrained

devices will be the prevalent devices on which these applications will be implemented.

64

Chapter 5. Implementation

Relatively Small Number of Event Subscribers and Publishers

The number of participants and artefacts used in a sport are relatively low, below the order of hundreds

of producers and consumers. A large-scale event system may have thousands of event producers and

consumers, and speci�c event systems are designed to be able to support such activity. C-AESOP

does not require support for high scalability with respect to number of subscribers and publishers.

High Frequency of Events

Applications that require tracking and analysis of human movement may produce a large quantity of

events. Accelerometers are commonly used to analyse human movement, they usually produce from

50 to 200 readings a second, and any �ne grained analysis of human movement will become more

accurate the more readings are used in the analysis.

Near Real-Time Performance Required

Refereeing, safety and training where the three application scopes which C-AESOP is intended to

support. All of these application scopes require prompt responses and results, in order to referee the

sport, ensure the safety of the participants or provide advice on how to improve the activity being

trained. The only exception is in-vitro training, where the athlete is training in a lab environment. It

might be su�cient for the application to return results at a later period in time in such an application.

5.3.2 STEAM

As discussed in section 3.2.2, STEAM [99] is a distributed event based system designed for mobile

ad-hoc networks. It uses an implicit event model, which means that consumers do not register with

a mediator but instead subscribe to an event type and receive events from the STEAM system. The

implementation of STEAM used in C-AESOP is written in C for the Linux platform. It uses multicast

communication to deliver event noti�cations to all interested parties. Library functions are provided

by the STEAM system to manage the subscription and noti�cation of events. The STEAM event

system does not retransmit lost events or reorder out of sequence events.

5.3.3 C-AESOP Time Model

C-AESOP has a best e�ort approach to timing. The events are not timestamped by the event system

nor is global time maintained across the various nodes. Incoming events are not synchronised or

delayed in any manner. This choice of time model is suitable for a range of applications in which the

performance of the system as a whole is more important than the synchronisation of the events. This

could happen for example in a system which needs to respond quickly to sensor data which is arriving

at a high rate and is not tolerant of any delays in the processing of the sensor data.

65

Chapter 5. Implementation

5.3.4 Programming Language

The C language was chosen as the implementation language for C-AESOP for a number of reasons.

The Gumstix platform is reasonably resource-constrained and C is a very e�cient language and so

uses fewer resources than most other languages. C is also well suited to implementations on the Linux

platform and the STEAM middleware used as the host event system is also written in the C language.

Listing 5.1: Example Main Function in C-AESOP

1 int main () {

2 setup_steam () ;

3 stream∗ output = (stream ∗) create_swing_output_stream (EMERGENCY_SUBJECT) ;

4 fa l l_detect ion_meh =create_multi_event_handler (3 , inputs , output , handler ,

execut ion_pol i cy) ;

5 inputs [0] = (stream ∗) create_accel_vector_input_stream (10 ,ACCELEROMETER_HIP,

fa l l_detect ion_meh) ;

6 inputs [1] = (stream ∗) create_accel_vector_input_stream (10 ,ACCELEROMETER_WRIST

, fa l l_detect ion_meh) ;

7 inputs [2] = (stream ∗) create_accel_vector_input_stream (10 ,ACCELEROMETER_SHOE,

fal l_detect ion_meh) ;

9 while (1)

10 s l e e p (1000) ;

11 }

5.3.5 Event Streams in C-AESOP

In section 4.3 we described the event stream abstraction in AESOP. In the C-AESOP implementation

we have two types of event stream input streams and output streams. We distinguish between input

and output streams because input streams receive events and maintain event stream windows which

are accessed in multi-event handlers, while output streams send the event onwards in the host event

system. Input streams must therefore subscribe to events and create and maintain event stream

windows, while output event streams must publish events and notify the host event system of new

events. In the STEAM middleware consumers of events register their interest by subscribing to event

subjects. They then receive all subsequent events which match this event subject. In C-AESOP

event streams are identi�ed using globally unique identi�ers, which correspond to the STEAM event

subject. These identi�ers allow us to bind the input and output streams to our event streams. Input

and output streams are used exclusively by individual multi-event handlers. This is in contrast to

the event streams in the abstract model which are shared among the entire system. Event streams

correspond to streams of STEAM events in C-AESOP. Therefore multiple input streams can bind to

66

Chapter 5. Implementation

a single event stream, by way of the event subject and multiple output streams can also bind to a

single event stream by way of an event subject.

The sliding window mechanism is implemented in C-AESOP and is de�ned over input streams

as these are unique to individual multi-event handlers. Tumbling windows are not supported in C-

AESOP. Window membership in C-AESOP is based on window length, sliding windows are created

with a length parameter and once the length of the window exceeds this length older events are

discarded. There is no support for more advanced window membership expressions in C-AESOP.

Listing 5.1 shows how we declare and initialise event streams in C-AESOP. On line 3 we create

the output stream that the multi-event handler will send events. We need only specify the subject

used for the output events. On lines 5, 6 and 7 input streams are created. Sliding windows are the

only windowing mechanism provided by C-AESOP so the input stream automatically creates a sliding

window to handle events in the input stream. The �rst parameter of the create function is the length

of the sliding window, in this case all the windows are created with a size of 10. This segment also

shows the creation function for the multi-event handler. Among the parameters to this function are

the function pointers to the execution policy and the handler function.

The data contents of the stream events in C-AESOP are typed. This allows us to send data

encapsulated in any arbitrary C struct or basic type as content in an event stream of the same type.

Listing 5.2: Example Multi-Event Handler in C-AESOP

1 void meh_handler (acce l_vector ∗ hip , acce l_vector ∗ wrist , acce l_vector ∗ shoe ,

emergency∗ r e s u l t) {

3 s t r u c t accel_vector_stream_entry ∗np ;

4 s t r u c t acce l_vec to r_l i s thead ∗head = ((accel_vector_stream ∗) inputs [0]) −>

head ;

5 for (np = head−>tqh_f i r s t ; np != NULL; np = np−>en t r i e s . tqe_next) {

6 i f (magnitude (&(np−>value) ,3) > 15 . 0) {

7 t = time (NULL) ;

8 l o c a l = l o c a l t ime (&t) ;

9 s t r cpy (r e s u l t −> time , asct ime (l o c a l)) ; // a s s i gn s the curren t time to

the emergency

10 return ;

11 }

12 }

13 head = ((accel_vector_stream ∗) inputs [1]) −> head ;

14 for (np = head−>tqh_f i r s t ; np != NULL; np = np−>en t r i e s . tqe_next) {

15 i f (magnitude (&(np−>value) ,3) > 15 . 0) {

16 t = time (NULL) ;

17 l o c a l = l o c a l t ime (&t) ;

67

Chapter 5. Implementation

18 s t r cpy (r e s u l t −> time , asct ime (l o c a l)) ;

19 return ;

20 }

21 }

22 head = ((accel_vector_stream ∗) inputs [2]) −> head ;

23 for (np = head−>tqh_f i r s t ; np != NULL; np = np−>en t r i e s . tqe_next) {

24 i f (magnitude (&(np−>value) ,3) > 15 . 0) {

25 t = time (NULL) ;

26 l o c a l = l o c a l t ime (&t) ;

27 s t r cpy (r e s u l t −> time , asct ime (l o c a l)) ;

28 return ;

29 }

30 }

31 }

5.3.6 Multi-Event Handlers in C-AESOP

The creation function for multi-event handlers takes as parameters an array of input streams, an

output stream, an execution policy and a function pointer. The function pointed to in the function

pointer has as many parameters as input streams with an additional parameter which is used for the

result. The types of the parameters to the function are pointers to the corresponding type in the

input and output streams. This allows the developer to write the logic for what to do each time the

multi-event handler is called using the types as if they were writing a traditional C function. The

C-AESOP middleware then manages the arrival of events, and supplies values to the appropriate

parameters to the function. Any results of the multi-event handler by convention is assigned to the

last parameter. When the middleware has executed the function it checks for a return value. If any

value has been assigned to the result it then sends this value out on the output event stream. This

allows for the instances where no value is returned by the multi-event handler - and so no onwards

event is sent - and provides a clean and easy programming interface to the application developer.

Listing 5.2 shows the multi-event handler for the fall detection example application implemented

in C-AESOP. The algorithm for the application checks the ten latest accelerometer readings stored

in the sliding windows to see if the magnitude of the vector exceeds a threshold that might indicate

that the change in posture of the patient is due to a violent fall. If the fall is deemed to be violent

an emergency event is raised. C-AESOP uses UNIX tail queue lists as the data structure in which

the events in the sliding window are stored. The lists are exposed to the developer as members of the

relevant stream structure and they can traverse the list and access the events using standard UNIX

mechanisms for accessing tail queue lists documented in the UNIX man pages [35]. This allows the

developer to access all the events in the sliding window and access any attributes of those events.

68

Chapter 5. Implementation

Listing 5.3: Example Execution Policy in C-AESOP

1 // checks the h ip acce l e rometer output to see i f the p a t i e n t has changed pos ture

2 int execut ion_pol i cy () {

3 s t r u c t accel_vector_stream_entry ∗ l a t e s t ;

4 s t r u c t accel_vector_stream_entry ∗ prev ious ;

5 f loat th r e sho ld = 1 ; // radian va lue f o r t h r e s h o l d f o r when we dec ide the

person i s l y i n g down

6 acce l_vector upr ight = {0 ,−9.8 ,0} ;

7 i f (! inputs [0] −> sta tu s)

8 return 0 ; // i f the h ip acce l e rometer has not go t a new read ing

10 s t r u c t acce l_vec to r_l i s thead ∗head = ((accel_vector_stream ∗) inputs [0]) −>

head ;

11 l a t e s t = head−>tqh_f i r s t ;

12 prev ious = l a t e s t −>en t r i e s . tqe_next ;

13 i f (prev ious == NULL) // only one value , don ' t execu te

14 return 0 ;

16 i f (angle_between ((l a t e s t −> value) , upr ight , 3) > thre sho ld &&

17 angle_between ((prev ious −> value) , upr ight , 3) < thre sho ld) {

18 return 1 ; // change in pos ture d e t e c t e d

19 }

20 }

5.3.7 Execution Policies in C-AESOP

In C-AESOP an execution policy is a function that is called by the system when new data arrives on

a stream belonging to the multi-event handler. The function decides whether or not to call the multi-

event handler based on the arrival of this event data on an input event stream. Execution policies

in C-AESOP are written as normal C functions. They take no parameters and return true or false

depending on the outcome of the expression. A pointer to this function is passed to the create method

when creating the multi-event handler. Execution policies in C-AESOP can access the full event

stream windows and can access event data within these windows. Execution policies in C-AESOP

are therefore extremely powerful, they have access to the full expressiveness of C when specifying

when to execute the multi-event handler. Execution policies can also access the complete event data

available to the multi-event handler including historical event data and can access the attributes of

these events. Execution policies in C-AESOP should be kept relatively short and e�cient. Because C-

AESOP is designed for applications with a high frequency of events the code in the execution policies

will be executed a large number of times, equal to the sum of the number of events that arrive for the

69

Chapter 5. Implementation

particular multi-event handler. Therefore having large or poorly written execution policies may have

a very negative e�ect on the performance of the application.

Listing 5.3 shows the execution policy for the fall detection application implemented in C-AESOP.

The execution policy checks the reading for the hip accelerometer. If the reading shows that the

patient is reclining and the previous reading from the hip accelerometer shows the patient in an

upright position, it is deduced that the patent's posture has changed from vertical to horizontal. The

multi-event handler is called to determine if this change in posture was violent. The execution policy

is written carefully to ensure that its execution will be e�cient. If the event which caused its execution

is not from the hip accelerometer it immediately returns, as this can not cause the execution of the

multi-event handler.

5.4 J-AESOP

The second of our two instantiations of the AESOP architecture is called J-AESOP. It is implemented

in Java on the Android platform. Android is a mobile smart-phone platform which has support for

a rich array of sensors. J-AESOP was implemented on top of a custom event system based on the

mediator event model [101].

J-AESOP is an implementation of AESOP that is intended for developing sensor-driven applica-

tions on a smartphone platform, in particular using the sensors in the phone to drive the behaviour

of the user interface. There is a rapid rise in sensors on mobile devices and J-AESOP is intended to

simplify the process of developing applications that take advantage of these features.

5.4.1 J-AESOP Requirements

Centralised Event System

In smartphone platforms sensors are integrated in the device. Therefore there is no need to have a

distributed event system, a centralised event system is su�cient.

Handle High Frequency Events

The sensors in smartphones are types of sensors that produce a high rate of sensor readings. Ac-

celerometers and magnetometers update at a relatively high rate, in the order of hundreds of readings

per second. This high rate of events must be handled by J-AESOP.

Time Model

J-AESOP is intended to drive user-interfaces using the sensors on smartphones. The timing of these

events is important for determining the actions that should be taken in the user interface. As the

event model is centralised timestamps can be implemented easier than in a distributed model.

70

Chapter 5. Implementation

Execution Policy Expressiveness

J-AESOP is intended to be used to allow multiple sensors to drive the user-interface of a phone. The

combination of multiple events should be as powerful as possible

Rapid Prototyping of Multi-Event Handlers J-AESOP is designed to support emerging ap-

plications that use sensors in smartphones. The entire application space is quite new and application

developers are discovering how to program with sensors and create interesting applications using them.

Therefore it should be easy and fast to explore new ideas using the sensors. Therefore there should

be a minimum of programming e�ort required in specifying and testing new multi-event handlers.

5.4.2 J-AESOP Event Model

The host event system for J-AESOP is a custom event system developed by the author which follows

the observer design pattern [46]. The event system uses a mediator event model [101] and is similar

to the standard way event systems are constructed in Java, e.g., in JavaBeans [103]. A custom event

system was developed for a number of reasons. The Android sensor manager implements an event

like interface however this was not extended with AESOP. The SensorManager class in Android does

not provide an interface for application developers to raise events, and so does not meet AESOP's

requirements for a host event system. The Android source tree was under development and subject

to change. Modifying the Android source code to allow application developers to notify events was

considered unwise because of the di�culty in maintaining the code and the fact that any user of the

subsequent application would need to install the modi�ed operating system source code, which was

not an option. Using a pre-existing event system was not possible when development was initiated on

the application. At the time development began, in September 2008, there was only one event system

which claimed to support Android [74], and their licensing fee was prohibitive.

In the custom event system event sources create events and notify a mediator of the new event.

Other parties, interested in receiving events register their interest with the mediator. The event

model that J-AESOP extends is not distributed so the mediator directly calls the callback for all the

registered event listeners. The process for interacting with the host event system is quite straight

forward. The functionality of the event system is encapsulated in an EventManager class. There are

several methods which can be called on this class. Only one instance of the EventManager class is

permitted at any one time. The singleton design pattern is used to guarantee this and the developer

calls the static method EventManager.getInstance() to receive the reference to the event manager.

The method registerEventListener() is used by event consumers to subscribe to a particular event

type and unregisterEventListener() is used by consumers to unsubscribe from an event type. Lastly

eventOccured(Event m) is used by event producers to communicate to the event manager that an

event has occurred. The EventManager instance then checks the list of all registered listeners and

noti�es the consumers who are interested in an event of this type.

71

Chapter 5. Implementation

5.4.3 The J-AESOP Time Model

In J-AESOP each event is timestamped on creation. When an event is created in a multi-event

handler the oldest timestamp from the incoming events which caused the execution of the handler

is applied to the event as its timestamp. When composing multiple multi-event handlers we do not

want to combine the results of multi-event handlers with events that are younger than they are. This

situation can occur because movement of the event through a sequence of multi-event handlers can

take a period of time, and if this time is greater than the time between two events in a stream which

is to be combined at a later stage with the composite of that event, then we could end up combining

an incoming newer event with a composite event which happened before it existed. This behaviour

can be undesirable in an application. As a solution to this problem a multi-event handler can specify

a timing stream. This is one of the multi-event handlers input event streams and is the stream with

the youngest events in the multi-event handler. Events arriving on other event streams which are

younger than the youngest event on the timing event stream are ignored until an event younger than

them arrives on the timing stream.

5.4.4 Programming Language

The choice of Java as the language to implement J-AESOP in was constrained by the choice of

platform. The Android platform has no support exposed to the application developer for other

languages apart from Java/Dalvik. This limits the choices available for the implementation language

of J-AESOP. Using the same language as the application programmer writes the core application

in, is however advantageous as it reduces the training period for the programmer as they must just

learn new abstractions as opposed to learning a new language and new abstractions. J-AESOP was

designed for the Android platform, however, it will run on any platform which supports Java.

5.4.5 The AESOP to Java Mapping

J-AESOP is implemented in a manner which is true to Java's object-orientated nature. A base multi-

event handler class is provided which must be extended to implement multi-event handlers, event

streams and execution policies. When creating a new multi-event handler the developer extends

the multi-event handler class, implements the handler method and the execution-policy method and

instantiates the characteristics of the event stream class. In the following section we will discuss the

AESOP to Java mapping in details.

Listing 5.4: The Multi-Event Handler class

1 package i e . ndrc . vgh .AESOP;

3 public abstract class MultiEventHandler {

72

Chapter 5. Implementation

5 public MultiEventHandler () {

6 }

8 public abstract boolean execu t i onPo l i cy () ;

9 public abstract void handler () ;

10 }

5.4.6 The MultiEventHandler Class

The most important class from the point of view of the developer is the MultiEventHandler class

shown in listing 5.4. This class encapsulates the entire multi-event handler. The base class has two

abstract methods, handler() and executionPolicy(), which must be implemented by the application

developer. The handler method has a void return type and the programmer can raise as many or as

few output events in the handler using the underlying event model. The executionPolicy() method is

called every time an event arrives in one of this multi-event handlers event streams. This execution

policy decides if the handler should be called. Because the execution policy method is implemented

in Java it has access to the full expressive power of Java. It also has access to all the attributes

of the events in the windows of the event streams. This combination of a very expressive language

and the information in the event streams allows very complex and powerful execution policies to be

constructed.

Listing 5.5: Multi-Event Handler for Fall Detection Application in J-AESOP

1 public void handler () {

2 I t e r a t o r <Event> acce l e ra t i on_1 = s1 . getWindow () . i t e r a t o r () ;

3 I t e r a t o r <Event> acce l e ra t i on_2 = s2 . getWindow () . i t e r a t o r () ;

4 I t e r a t o r <Event> acce l e ra t i on_3 = s3 . getWindow () . i t e r a t o r () ;

6 while (acce l e ra t i on_1 . hasNext ()) {

7 i f (vectorMagnitude (acce l e ra t i on_1 . next ()) > 15) {

8 call_ambulance () ;

9 return ;

10 }

11 }

12 while (acce l e ra t i on_2 . hasNext ()) {

13 i f (vectorMagnitude (acce l e ra t i on_2 . next ()) > 15) {

14 call_ambulance () ;

15 return ;

16 }

17 }

73

Chapter 5. Implementation

18 while (acce l e ra t i on_3 . hasNext ()) {

19 i f (vectorMagnitude (acce l e ra t i on_3 . next ()) > 15) {

20 call_ambulance () ;

21 return ;

22 }

23 }

27 }

5.4.7 Example Multi-Event Handler

To give an example of the MultiEventHandler class in use we return to the example application, the

patient fall detection application. The multi-event handler for this application is shown in listing 5.5.

In the handler we retrieve the events in the window. These events are exposed using the iterator

interface which is a common technique for accessing Java collections. We then iterate through the

events calculating the magnitude of the acceleration vectors to determine if they exceed a threshold

which in this example is hard coded to 15. If any of the acceleration vectors in the events exceed this

threshold an ambulance is called.

Listing 5.6: Example Execution Policy from Fall Detection Application

2 public boolean execu t i onPo l i cy () {

3 I t e r a t o r <Event> acce l e ra t i on_1 = s1 . getWindow () . i t e r a t o r () ;

4 MathVector upr ight_acce l_vector = new MathVector (0 ,−9.8 ,0) ;

5 i f (MathVector . angleBetween (acce l e ra t i on_1 . next () , upr ight_acce l_vector) >

thre sho ld) {

6 i f (acce l e ra t i on_1 . hasNext () && MathVector . angleBetween (acce l e ra t i on_1 .

next () , upr ight_acce l_vector) < thre sho ld) {

7 return true ; // pos ture has changed from v e r t i c a l to h o r i z on t a l

8 }

9 }

10 return fa l se ; // no change in pos ture

12 }

74

Chapter 5. Implementation

5.4.8 Execution Policy

Execution policies in J-AESOP are speci�ed in the Multi-Event Handler class. When the application

developer extends the MultiEventHandler class they must implement the abstract method execution-

Policy(). This method takes no parameters and returns a Boolean to indicate whether the handler

should be called or not. The execution policy can access the event windows over the streams by calling

the standard event stream functions. Any Java syntax is permitted and any methods can be called

from the execution policy, although it is advisable for performance reasons to keep code executed in

execution policies reasonably fast as they get executed for every incoming event. Listing 5.6 shows

the execution policy from the fall detection example application. In it the last two events are checked

to see if there is a change in posture of the patient using the readings from the hip accelerometer. If

one is detected the system calls the multi-event handler.

5.4.9 The EventStream Class

The EventStream class is the class that implements event streams in J-AESOP. Any event streams

for the multi-event handler should be declared as instantiations of this class. The EventStream class

supports length-based sliding windows, and can be accessed by calling the getWindow() method on

an event stream class. This returns a List object which can be accessed using the standard Java

iterator interface. The EventStream class must be instantiated with the type of the event in the event

stream and the length of the window. The class then uses the underlying event model to subscribe to

the relevant event. When a new event arrives, window membership is re-evaluated and the execution

policy of the parent MultiEventHandler is invoked. If the execution policy returns true the handler

for the parent MultiEventHandler is then executed.

J-AESOP supports length-based sliding windows. When an event stream is initialised one of the

parameters passed to the method is the length of the sliding window. A list is then created of the

corresponding length and when the list reaches the length speci�ed the oldest event is discarded

as every new event arrives, this maintains a length based sliding window over the stream. Each

multi-event handler is self-contained and there is no sharing of event stream windows across multiple

multi-event handlers. Window membership is determined on the basis of arrival with the last n events

being members of the window, where n is the length of the sliding window.

5.4.10 Composition

J-AESOP allows multi-event handlers to be composed by allowing handlers to raise events using the

underlying event model. Multi-Event handlers are allowed subscribe to these events in the exact same

way as other simpler events which may originate outside the system. Care must be taken in the

speci�cation of the timing stream by the developer. Some algorithms are sensitive to situations where

younger events are combined with composite events that are older than they are. This situation could

arise if the length of time to create the composite event is larger than the arrival rate of a primitive

event. To avoid this situation in J-AESOP the developer can specify a timing stream. The J-AESOP

75

Chapter 5. Implementation

system then guarantees that the youngest event in the timing stream will be the youngest event in

the multi-event handler. All other events in the other event streams that are younger than this event

are not delivered to the multi-event handler until a younger event arrives in the timing stream.

5.5 Summary

In this chapter we have discussed how to instantiate AESOP in a concrete architecture. We have

discussed the major implementation issues that need to be addressed and the impact that these issues

have on the resulting architecture. We have also presented two separate instantiations of the AESOP

architecture C-AESOP and J-AESOP and showed how an example sensor-driven application would be

implemented using both concrete architectures. The two implementations are quite di�erent. These

di�erences are caused by the di�erent design decisions that each implementation must adhere to. Both

implementations are very much in�uenced by the choice of host event system. C-AESOP is much less

�exibile than J-AESOP in a number of dimensions and this is a result of the design pressure from

being implemented on a resource constrained device as opposed to the relatively device rich Android.

This chapter documents the �rst part of the main contributions of this thesis. The implementations

presented here are important as pieces of engineering in their own right and are usable to implement

applications. However they are also useful as a guide to developers aiming to replicate the process of

extending an event system with the AESOP model. The discussion of the implementation decisions

that were made gives guidance to someone extending an event model and allows them to use our

experiences extending two event models to their advantage.

76

Chapter 6

Evaluation

In this chapter we evaluate the AESOP architecture and its support for developing sensor driven

ubiquitous computing applications.

Section 6.1 describes the strategy used to evaluate the AESOP abstractions. Sections 6.2 and

6.3 describe the two applications used to evaluate the support provided by AESOP for sensor-driven

applications. Section 6.4 quanti�es the cost of extending an event system with AESOP by measuring

the overhead of the two AESOP instantiations described in chapter 5. Section 6.5 analyses the two

applications presented in sections 6.2 and 6.3 and evaluates the functional support provided by AESOP

for implementing sensor-driven applications. Section 6.6 analyses the generality of the abstractions.

Finally section 6.7 summarises the achievements of the chapter.

6.1 Evaluation Strategy

In chapter 2 we derived a set of requirements which applications must satisfy in order to be suitable

for supporting sensor-driven applications. These requirements were summarised in table 2.1. The

requirements divide into two sections: support for developing sensor-driven applications and more

general middleware requirements. In chapter 2, three requirements for abstractions to support the

functional requirements of sensor-driven applications were derived. These were support for combina-

tion of sensor data, support for continuous data, and support for the combination of sensor data from

multiple sources. In order to evaluate AESOP we must show that it supports these three functions.

In terms of generality, four key areas were highlighted for sensor-driven applications. These were

language generality, event model generality, application generality and platform generality. In order

to show that AESOP is suitable for use in developing sensor-driven applications we must show that

it is a general solution in these four dimensions.

Evaluation of programming abstractions is no easy task. Since, in essence, an abstraction's goal

is to simplify the process of developing an application, quantifying how much simpler it is to write an

application using the abstraction is di�cult to do in an objective manner. There are many variables

to consider and human experience is so wide that it may be impossible to come to a consensus on

77

Chapter 6. Evaluation

what constitutes a good abstraction for a particular task. In fact it is not until after an abstraction

has gained widespread adoption that we can say that it is a good abstraction, and even then there

are bound to be dissenting voices. With a su�cient number of programmers it may be possible to

implement the same application numerous times, some using the abstractions to be tested and some

not, and measure some metric of the program, e.g., development time, number of bugs, lines of code

or executable size. This exercise would be prohibitively expensive and the results would still be

heavily in�uenced by the prior experiences and abilities of the programmers who implemented the

applications. Factors such as programming skill, prior experience with similar abstractions or with

similar applications would have a serious e�ect on the results of the experiment. These factors are

also extremely di�cult to control against. Also none of these metrics are particularly satisfying in

determining how good an abstraction is. Therefore, it is both very di�cult to reach a consensus

on what a good abstraction is and it is also extremely di�cult to measure objectively how good an

abstraction is.

There are two main parts to the evaluation of AESOP. Firstly we analyse the functional support

provided by AESOP for developing sensor-driven applications. We analyse how the AESOP abstrac-

tions can be used when developing applications to support the common characteristics of sensor-driven

applications as discussed in section 2.3.1. In order to perform this analysis we need to analyse the

AESOP abstractions in use in applications. Therefore, we present two case-studies of applications

implemented using instantiations of AESOP. The level of functional support provided by AESOP

for sensor-driven applications is evaluated by analysing the design and implementation of these two

applications. The second part of the evaluation is the evaluation of the generality of the abstractions.

We evaluate the generality of AESOP under the four dimensions presented in section 2.3.2. These are

application generality, event model generality, programming language generality and platform gener-

ality. The two instantiations of AESOP presented in chapter 5 provide the basis for our evaluation of

event model, programming language and platform generality and the two case-study applications are

used in the evaluation of the application generality of AESOP.

In order to evaluate the AESOP abstractions we must use the abstractions in an application. To

this end we have implemented two applications using the abstractions. These applications stemmed

from two separate research projects in Trinity College Dublin. The �rst came from the SISTER project

[55] which aimed to develop middleware for sensor-augmented sports. The application is a sensor-

augmented squash racket which aims to aid the training of a squash player. The second application

is from the Viking Ghost Hunt project [108], a collaboration between Trinity College Dublin and the

National Digital Research Centre. It is a location aware game developed on a smartphone which aims

to present a novel location based narrative to the user. The game takes advantage of the many sensors

available in a modern smartphone and uses these to create a series of novel interface techniques using

the handset.

The applications were chosen for this evaluation because they were part of ongoing research projects

which the author was involved with. Both applications exist independently of the project one is a

research project and the other is used in a location-aware game that is commercially released. We

78

Chapter 6. Evaluation

can be reasonably con�dent therefore that they address users needs. In section 2.2 we derived the

characteristics of sensor-driven applications. The two applications used in the evaluation posses these

characteristics. Both of the applications have multiple sensors which they need to combine. They also

both analyse historical sensor data and deal with asynchronous events of interest in the real world.

The applications are therefore representative examples of sensor-driven applications.

The applications are presented as two case studies. We use these case studies in two separate

parts of the evaluation. They are used initially when analysing the functional support the AESOP

abstractions provide for developing sensor-driven applications. In this section of the evaluation we

analyse the usage of the AESOP abstractions in the development of the applications and discuss

the bene�ts gained from using the abstractions. The case studies are used the second time when

evaluating the application generality of the abstractions. The implementations of AESOP, C-AESOP

and J-AESOP as described in chapter 5 are each used to implement one of the applications. We also

analyse the instantiations when we evaluate the generality of the abstractions with respect to event

model, programming language and platform.

6.2 Squash Training Application

The use of technology in sport has a range of applications, including training, refereeing and injury

prevention [115]. While the tradition of using technology for sport is long-standing (e.g., electric

scoring systems for fencing have been in use since the 1930's [36]), recent advances in mobile com-

puting and sensor technologies have given rise to a considerable range of sports systems that use the

new technologies in interesting ways. Examples include indoor golf simulators [68], refereeing and

entertainment systems for cricket and tennis [90], interactive climbing walls [88], sensor-augmented

Taekwondo [34], and golf swing analysers [71, 117, 111, 39, 127]. The domain of technology-augmented

sport systems has therefore increased considerably in complexity, not only with regards to the form

of the solutions but also in respect to their functions and scope.

In the following section we will brie�y describe the sport of Squash and discuss an application

that was developed in Trinity College Dublin which aims to help squash players improve their tech-

nique. The application was developed using the C-AESOP instantiation of AESOP and we present

an overview of the system design and its implementation.

The aim of this section of the evaluation is to demonstrate how AESOP supports sensor-driven

applications and meets the requirements set out in chapter 2. In this section we will be demonstrat-

ing functional support for sensor-driven applications and go some way towards demonstrating the

generality of the abstractions.

6.2.1 Squash

Squash is racket sport played in an indoor court between two competing athletes. Each athlete takes

turns hitting a ball against the front wall of the court until either the ball is hit out of bounds or

either athlete fails to hit the ball before it bounces for a second time. The sport is characterised by

79

Chapter 6. Evaluation

extremely fast movement of both players and ball. In general the shots available to the player are

either �drives�, where the ball is hit o� the front wall with the hope that it will bounce towards the

back of the court in one of the corners, the �drop�, where the ball is played to bounce in one of the

front corners, or the �boast� where the ball is played from the back of the court into a side wall so

that it will hit the front wall on the opposite side and bounce in the front corner.

6.2.2 Sensor-Augmented Squash Training

The application presented here is a training application which aids the squash player as they perform

a drill using their squash racket. The shot which the application is aimed at is the �drive� shot. The

aim of the application is to determine statistics that are interesting to the athlete about their stroke

and provide useful feedback based on this information. The angle of contact between the squash

ball and the racket head when performing a drive has a very strong in�uence on the quality of the

resulting shot. It determines the spin of the ball which in�uences how quickly it �dies� after it bounces.

If the racket is tilted towards the ceiling as it connects with the ball, the ball will tend to bounce

lower and hit the ground faster on its second bounce than if the racket was facing straight at the

front wall or towards the �oor. Making the ball bounce lower and have its second bounce faster is

generally desirable as it forces the opponent to react quicker and gives them less time in which to act.

Advanced squash players tend to hit the majority of their shots with downward spin, while beginner

and improving players usually hit their shots with no spin or only slight downward spin. The aim of

the application presented in this section is to measure the angle that the player's swing makes when

it comes into contact with the ball and to provide this information to the player. It is expected that

this feedback could help train a player to hit the ball at the correct angle, but also could remind the

player if their old habits reappear in subsequent training sessions.

The second major part of the application is the analysis of the weight distribution of the athlete

as they make contact with the ball. Squash is a very fast energetic game with very little time to pause

during play. Dominance of the centre of the court is key to controlling and winning a game. Each

player therefore plays a shot and immediately attempts to recover to the centre of the court. This

shot and recovery process is so crucial that it is generally attempted as one �uid motion with the

player striking the ball as they are pushing back with their leading foot. In general the athlete also

intends to transfer as much momentum as possible from their motion into the ball, which reduces the

amount of power that needs to be generated from the arm and therefore helps the athlete conceal the

shot. All of this focus on the stroke means that the motion of the athlete and their momentum at the

point of contact with the ball is extremely important for the squash player and for the quality of the

subsequent shot. This application aims to analyse the weight distribution of the player as they play

the shot. We then aim to categorise the weight distribution and advise the player based upon this

categorisation.

Sensed Phenomena In the �eld of sports bio-mechanics when analysing the motion of an athlete

the concept of a key point is sometimes used. A key point is a particular moment of signi�cance in

80

Chapter 6. Evaluation

Figure 6.1: Start of Squash Swing

a motion. Key points are used to segment the motion into discrete moments that can be analysed

separately. For example someone interested in analysing golf swings might consider four key points:

addressing the golf ball, end of back stroke, contact with the ball and �nal position. By analysing

these key points and the characteristics of the swing at these points (e.g., club head angle, head speed,

hip position) the overall swing can be characterised and analysed. In this squash training application

we are interested in three key points of the athlete's swing which are similar to the golf key points.

They are:

• beginning of swing

• contact with ball

• end of swing

Figure 6.1 shows a squash player preparing to strike the ball. In the photograph the racket is being

swung down and forward with the racket head above the players wrist while the players weight has

been transferred onto the leading leg, i.e., the leg nearest the ball. Figure 6.2 shows a squash player

at the moment of contact with the ball. As we can see from the photograph the racket is angled

towards the roof of the court as it makes contact with the ball. The players weight is mostly on the

leading leg, but on contact he will push back towards the centre of the court. Figure 6.3 shows the

squash player after completing the swing. We can see that the squash racket has completed its follow

through and the players weight has been transferred back towards the centre of the court.

There are a number of phenomena we must sense in order to implement this application. Firstly

we must be able to detect all of these key points, and secondly we must be able to detect the angle at

which the racket connects with the ball at the moment of impact. In order to detect the orientation

of the racket we use a number of sensors attached to the racket. These sensors include accelerometers

and orientation sensors. In order to detect the stance and weight distribution of the athlete when

81

Chapter 6. Evaluation

Figure 6.2: Ball Contact

they make contact with the ball, we use pressure sensors embedded in the athlete's shoes.

Form Factor The form factor of the racket augmentation is very important. The rackets used to

play squash are usually constructed of light weight materials such as graphite and must conform to

strict guidelines as to minimum and maximum dimensions. Squash players are very sensitive to the

weight and balance of their racket. Any changes to the weight and balance of the racket are felt by

the athlete and may in�uence their performance while performing the swing. Design decisions were

made to reduce the weight of various components, e.g., by opting for a smaller battery in order to

reduce the weight of the device. In addition to the weight the placement of the device on the racket

is also signi�cant. To reduce the amount of the device that was on the outside of the racket a racket

was modi�ed to allow the computational unit and the battery pack to be embedded in the handle,

leaving only the orientation sensor on the outside of the racket. This reduces the potential for the

device to get damaged and by placing inside the racket reduces the e�ect the weight of the device

would have on unbalancing the racket in the players hand when swinging and when contact is made

with the ball.

6.2.3 The Gumstix Platform

The system is designed not to rely on infrastructure in the environment. This is so that the system

can be used in di�erent squash courts by the user and so that the system does not require any

modi�cations to the court in which it operates. To make this as seamless as possible it was decided that

the computational module should be embedded in the squash racket. The platform needs su�cient

processing capability to perform analysis while remaining small enough to �t on the racket. The

platform chosen to run the system is the Gumstix platform.

82

Chapter 6. Evaluation

Figure 6.3: End of Squash Swing

The Gumstix platform is a small Linux-based embedded computer platform. It has support for a

number of additional modules such as sensors and wireless communication. The platform comes with

cross compiler support using the GNU Compiler Collection (gcc). The Gumstix platform was chosen

as the platform for our squash training application as the processor is powerful enough to perform

analysis of sensor data yet the form factor of the device is suitable for augmenting a squash artifact.

The Gumstix chip used in this application is the connex 400xm-bt [70]. It contains a 400MHz

XScale processor with 64MB of RAM and 16MB of �ash storage. It supports on-board bluetooth and

provides several methods of connecting with external devices including I2C and USB.

Operating System

The Gumstix platform comes with a cut down version of Linux which uses the 2.6.27 Linux kernel and

higher. It provides a cross-compilation environment which can compile both the operating system and

any applications which can then be transferred to the device. Support for Linux allows application to

be developed using standard Linux development tools on a desktop machine. The applications need

only be cross-compiled and run on the Gumstix platform when developing platform speci�c function-

ality such the sensor interface at testing time. This �exibility greatly decreases the development time

of the application.

Form Factor

The main processing board in the Gumstix measures 20mm x 80mm. An additional sensor interface

board is required which is roughly the same dimensions. Batteries and sensors are also required and

these signi�cantly increase the size of the overall unit. The battery is potentially the largest of these

additional components and the type of battery, the length of time the unit is to run and the types

83

Chapter 6. Evaluation

Figure 6.4: Prototype Augmented Squash Racket

and number of sensors it is to power are the main factors in determining how big the battery should

be. A lithium ion battery was chosen for the unit, because of its high power to weight ratio.

I/O and Sensor Support

The Gumstix boards combined with breakout expansion boards support a large amount of input/out-

put that can be used to access sensors. This includes I2C, USB and serial connections. In this

application we use an MTx sensor manufactured by Xsens [21]. It is connected by serial link to the

Gumstix module. The MTx module contains a 3-axis accelerometer, a 3-axis magnetometer and an

orientation sensor.

Figure 6.4 shows a photograph of an early prototype of the augmented squash racket with the

Gumstix module attached to the outside of the squash racket. The module attached to the squash

racket contains a 910 mAh battery, a Gumstix processing board with an attached breakout board, an

MTx sensor unit and a voltage regulator.

6.2.4 System Design

The system design of the squash training application is shown in �gure 6.5. As we can see there are a

number of di�erent components in the system. We describe here the role of each multi-event handler,

the execution policy that controls it and the windows that are active on the input to each handler.

84

Chapter 6. Evaluation

Swing Start

Acceleration
Sensor

Orientation
Sensor

Swing End

Ball Contact

Orientation on
Contact

Stance on
Contact
Stance on
Contact

Load
Sensor

Load
Sensor

Event
Movement

Event
Source

Multi-Event
Handler and
Execution Policy

Figure 6.5: Squash Training Application

Swing Start Detection The swing start detection multi-event handler detects the start of a swing

by the athlete. The handler combines the output from two sensors to detect this occurrence. In C-

AESOP this is achieved by specifying two input event streams, the �rst for the accelerometer events

and the second for the orientation events. The algorithm involves analysing the orientation of the

racket and the subsequent changes to the acceleration to determine if a movement characteristic of

the start of a squash swing is taking place. If such a movement occurs, a SWING event with content

START is raised by the multi-event handler.

The execution policy for the swing start detection executes the multi-event handler whenever

accelerometer data arrives on an input stream. This takes advantage of the fact that the orientation

data will always be older than the accelerometer data. This makes sense from an implementation

perspective as we are interested in the orientation of the racket before the swing has started.

End of Swing Detection The end of swing detection multi-event handler operates in a similar

fashion to the swing start detection. The two multi-event handlers di�er in that the end of swing

detection is detecting the deceleration of the racket instead of the acceleration of the racket. The

multi-event handler takes two input event streams, accelerometer events and orientation events. The

execution policy executes the multi-event handler whenever acceleration events arrive on the input

stream. The multi-event handler detects if the deceleration of the racket is similar to deceleration

characteristic of the end of a swing and if the �nal orientation of the racket is similar to the end of a

swing. If it is, a SWING event with content END is raised.

Ball Contact Detection of when a ball contact occurs is important as it is one of the key points at

which we are interested in analysing the characteristics of the athlete's swing. We can detect contact

85

Chapter 6. Evaluation

with a squash ball by examining the acceleration output of the accelerometer attached to the squash

racket. A sudden reversal in the acceleration of the racket combined with a return to the previous

values is characteristic of a ball contact. However any impact by the racket creates a characteristic

spike in the accelerometer readings for example if the athlete were to drop the racket. We can reduce

the amount of false positives we detect and reduce the computational e�ort required by only analysing

the accelerometer data when we know a swing is in progress. This helps us distinguish between real

ball impacts and other sudden changes in acceleration of the racket.

We can see from �gure 6.5 that the ball contact multi-event handler takes two input streams, the

swing event stream and the accelerometer event stream. In order to detect the ball contact correctly

the multi-event handler must analyse the three latest historical sensor readings from the accelerometer

and so the sliding window on the ACCELERATION event stream has length three. The execution

policy executes the multi-event handler whenever an accelerometer event arrives and the latest SWING

event indicates that a swing is in progress. If a ball contact is detected a BALL_CONTACT event is

raised by the multi-event handler.

Orientation on Impact One of the main aims of the squash training application is to determine

the orientation of the squash racket at the moment when it makes contact with the ball. The ball

contact multi-event handler detects the moment that the racket comes in contact with the ball. This

multi-event handler raises an event to signify this event occurring. The orientation on impact multi-

event handler reacts to this event and to using the output of the orientation sensor determines the

orientation of the racket at this moment. The orientation of the racket is measured in quaternions

and the ball contact event contains a quaternion that represents this orientation.

The multi-event handler takes two input event streams, the BALL_CONTACT event stream and

the ORIENTATION event stream. The execution policy for the multi-event handler states that when

a BALL_CONTACT event occurs the handler should be executed. The multi-event handler takes

the orientation input from the event stream and copies it to the event representing the orientation on

impact. This event is then outputted in an ORIENTATION_ON_IMPACT event.

Stance on Impact The stance on impact multi-event handler implements the �nal stage of the

second aim of this application which was to analyse the stance of the athlete as they connected

with the ball. This multi-event handler takes three input event streams, the ball contact event and

two events streams from the two load sensors in the athlete's shoes. The execution policy for the

event states that when a ball contact event occurs, the handler should be executed. The multi-event

handler needs to analyse the historical sensor readings from the load sensors in order to determine

the stance of the athlete as they take the shot and so sliding windows of ten readings are used across

both load sensor event streams. The multi-event handler analyses this historical data and raises a

STANCE_ON_IMPACT event with a measure of the quality of the stance as its content.

Due to time constraints the functionality in the stance on impact multi-event handler was never

tested with real-world data. The load sensors were not integrated with the Gumstix hardware so real

86

Chapter 6. Evaluation

world load data of the athlete was not available to the application. However the modular nature of

the multi-event handlers did allow us to test with simulated load sensor data.

6.3 Viking Ghost Hunt

The second case study we present is in the mobile gaming domain. The application is implemented on

a smartphone platform. AESOP is used to combine events from the various sensors in the phone and

to combine these events at higher levels to support the game logic. The game was developed for the

Android platform and so uses the Java language. The implementation of AESOP used is J-AESOP

which is described in section 5.4.

In the last section we demonstrated the functional support provided by AESOP for sensor-driven

applications, in this section we also demonstrate this support. This section also provides additional

evidence of the middleware generality of AESOP in terms of platform, event model, language and

application.

6.3.1 Location-Aware Games

With the advent of Global Positioning Systems (GPS) and other forms of location sensing (e.g., wi�

triangulation and mobile cell tower detection) and the prevalence of mobile computing platforms,

games which adapt to the physical location of the player have become possible, if not exactly main-

stream. Games such as Pirates [45], Treasure [30] and Can You See Me Now? [18] are examples

of games which use location combined with a mobile device. As devices mature and o�er additional

features such as motion sensors, cameras and enhanced displays the user experience can become more

complex while the complexity of implementing the games also increases. Of the location-based services

listed above, GPS provides global coverage with the highest accuracy outside of small scale localised

wi� triangulation. In the past GPS devices have not been widespread and have been used primarily

in stand alone navigation devices. This has severely limited the amount of potential players for the

location-aware games mentioned above. With the release of advanced smartphones such as the iPhone

[65], HTC G1 [38], and Nokia N96 [109], GPS is now available to a wide range of consumers already

integrated in a device capable of supporting a location-aware game.

6.3.2 The Game

Viking Ghost Hunt is a location-aware game set in Dublin city. The central premise of the game

is that the player's phone is transformed into a paranormal detection device, which can be used to

interact with ghosts from Dublin's Viking era. In the game, the motion of the phone is very important

for a number of purposes. Augmented reality using images overlaid on the phone's camera feed is

used to display ghostly imagery to the player, however knowledge of the orientation and motion of the

phone is crucial to the illusion of the spectral scene. If the user was pointing the phone's camera at

the ground and the ghost appeared upright, this would destroy the immersion in the game, similarly if

87

Chapter 6. Evaluation

the user was moving the phone and the ghost appeared stationery, this too might destroy the player's

immersion in the game.

6.3.3 The Android Platform

Programming Language

The Android platform [7] uses a modi�ed version of Java called Dalvik. The language used is the

same as the standard Java language however it compiles to Dalvik bytecode which is speci�c to the

Android platform. The libraries supplied with the Android platform are di�erent to the standard

Java libraries, however the process of developing code is very similar to standard Java development

and a plug-in is provided for Eclipse which simpli�es the process of developing to and deploying the

application to the phone. Several libraries are provided for Dalvik which allow the developer to access

the hardware devices on the phone, most notably the accelerometers, magnetometers, camera and

touchscreen.

Platform

The HTC G1 was the �rst phone to support Android. As the name suggests it is produced by the

phone maker HTC. It has a 528 MHz processor, 192 MB ram, GPS, integrated 3-axis accelerometers

and 3-axis magnetometers, touchscreen and qwerty keyboard. It was chosen as the development

platform for the game as the open-source nature of Android was projected to signi�cantly reduced

the development e�ort and time and the open nature of the platform implied that the application

would be easily modi�ed to run on other Android phones that were yet to be released. The integrated

3-axis magnetometer was also seen as a major advantage over the iPhone 3G as directional audio was

being investigated as an interface mechanism.

6.3.4 System Design

The Viking Ghost Hunt game interface is composed of several multi-event handlers. The overall

system design is shown in �gure 6.6. The multi-event handlers re�ne the raw sensor data into higher

level sensors. The output from these sensors is then combined using more multi-event handlers. In

this section we discuss the multi-event handlers in the system and the way in which the AESOP

abstractions are used to simplify the development of the application.

Horizontal Detection The horizontal detection multi-event handler is designed to determine if

the user is holding the handset horizontally in their hand in a manner that might suggest they were

trying to look through it. As we can see from �gure 6.6 this multi-event handler takes one input

event, the handset's orientation. The execution policy executes the multi-event handler whenever a

new event appears on the input stream. The algorithm for detecting if the handset is in a horizontal

position checks the orientation of the handset to see if it is within certain thresholds that were

determined experimentally. If the orientation of the handset is determined to be within these bounds

88

Chapter 6. Evaluation

Acceleration Orientation

Motion
Detection

Horizontal
Detection

Vertical
Detection

Horizontal
Viewing

Vertical
Viewing

Panning
Measurement

Event
Movement

Event
Source

Multi-Event
Handler and
Execution Policy

Timing Stream

Figure 6.6: VGH system design

a horizontal event is raised. This multi-event handler raises events of type HORIZONTAL when

horizontal orientation is detected.

Motion Detection The purpose of the motion detection multi-event handler is to determine how

much movement of the handset is taking place. The multi-event handler's interaction in the overall

system design is shown in �gure 6.6. The algorithm used in the multi-event handler calculates the

magnitude of the acceleration vector and checks it against pre-determined thresholds. This multi-event

handler outputs NOT_STILL events when the handset is deemed to be moving. This multi-event

handler is useful when implementing the user-interface, as determining if the handset is in motion is

important for a lot of the user-interface functions. For example, if the handset is in motion above

a certain threshold it is reasonable to assume that the user is not looking at the screen. Therefore

important information, e.g., some animation advancing the plot of the game, should not be displayed

at this time.

Horizontal Viewing Mode The purpose of horizontal viewing mode is to detect if the user is

holding the handset in a manner that would suggest they are operating it as a camera. Horizontal

viewing mode is used to drive ghost-view mode which is an augmented reality gameplay mechanism

where the player can view ghostly happenings through their handset. Ghost view mode is shown in

�gure 6.7. Here we can see the user viewing a ghostly object, the spectral image of person being hung,

through the camera. Several criteria must be satis�ed to distinguish between situations where it is

highly likely that the user is attempting to use ghost-view mode and situations where the user may

be simply moving the handset. The �rst criteria that must be satis�ed is that the orientation of the

handset must be within certain bounds in the two axis that need to be restricted. This is performed

89

Chapter 6. Evaluation

Figure 6.7: Viking Ghost Hunt: Ghost View Mode

by the horizontal detection multi-event handler and a HORIZONTAL event is raised when it occurs.

The second criteria is that the handset must be stationary for a particular amount of time. This

guards against situations where the handset brie�y moves through a horizontal viewing position. The

motion-detection multi-event handler outputs NOT_STILL events when the handset is not still.

In order to determine if the handset is in a horizontal viewing position for a speci�ed amount of

time the multi-event handler needs to combine the HORIZONTAL events and NOT_STILL events.

Therefore the multi-event handler has two input event streams, one of type HORIZONTAL and one

of type NOT_STILL. The multi-event handler does not need to refer to historical sensor data so

the windows for the event streams are one event long in both cases. The execution policy for this

multi-event handler speci�es that when a new HORIZONTAL event arrives the multi-event handler

should be executed.

As the events in J-AESOP are timestamped the handler needs only check the time of the last

NOT_STILL event. This is automatically stored in the NOT_STILL event stream. If the event is

older than a pre-speci�ed amount, in this case two seconds, then the handset is determined to be in

horizontal viewing mode and a HORIZONTAL_VIEWING_MODE event is raised.

We use the acceleration of the handset as an indicator of the handset's movement in this multi-

event handler. It may be possible that the handset and user are accelerating at the same rate, e.g. if

the user were in a car, and that the user may still be able to view the handset. However the Viking

ghost hunt game is designed to be used by a player on foot and it would be highly unlikely, and

probably unsafe, for a user to be able to maintain an acceleration above the threshold while playing

the game.

Horizontal Panning Detection and Measurement This multi-event handler is used to detect

and quantify panning of the handset when the user is viewing the handset horizontally. The panning

90

Chapter 6. Evaluation

of the handset is used to make ghostly imagery that may be displayed on the handset appear to move

relative to the background in a realistic manner, i.e., if the player moves the handset the imagery does

not stay �xed to the centre of the screen and instead moves in the opposite direction to the motion

of the handset. For this to be implemented we need to determine �rst what direction the handset

is moving in and secondly we need some measurement of the magnitude of the movement in that

direction.

Horizontal panning is only relevant when the handset is being held horizontally, therefore we only

wish to execute the handler when the handset is in a horizontal position and we use the output from

the horizontal viewing multi-event handler to determine this. We use the last horizontal viewing mode

event as a ground truth of a point where the handset was held in a still position without accelerating.

We then analyse the accelerometer readings since this horizontal viewing event and determine the

direction of acceleration and the magnitude of the horizontal component of the vector. We output a

panning event containing the direction and magnitude of the acceleration.

In order to analyse the accelerometer readings since the last horizontal view mode event we must

store su�cient readings in a sliding window. The window on the accelerometer readings in this case

is �fteen events long, and this is su�cient in this case. The windows on the horizontal viewing and

horizontal detection event streams are one reading long as we do not analyse past the most recent

event. The execution policy for this multi-event handler states that when a horizontal viewing event

arrives and an accelerometer event arrives we execute the handler.

While acceleration and velocity are obviously not the same thing and a more accurate system

would determine the velocity of the handset relative to the objects around it, in practise for small

movements we can use acceleration to determine what direction the handset is moving in and give an

approximation for the amount of movement taking place.

Panning detection is used when the handset is in horizontal viewing mode, so this implies that

the algorithm can rely on at least one event which can be timestamped and act as a ground truth.

We then compare the subsequent accelerometer vectors along the horizontal access of the handset

summing them and determine what the acceleration of the handset is and what direction it is in.

This gives us a measure of the movement of the handset which should be su�cient for detecting and

measuring panning for the user interface. When a panning motion is detected a HORIZONTAL_-

PANNING event is raised which contains a value which corresponds to the direction and magnitude

of the movement.

Other multi-event handlers A large amount of other multi-event handlers have been developed

in the prototyping stage of this application but did not make it to the �nal product. These include a

vertical panning multi-event handler analogous to the horizontal panning one, a multi-event handler

to distinguish between a yes gesture and a no gesture and a multi-event handler to recognise a cast-out

gesture performed by the player.

91

Chapter 6. Evaluation

6.4 Performance

In this section we analyse the performance of the two instantiations of AESOP. We measure the

resource usage of the host event system and of the AESOP instantiations, and quantify the cost in

terms of runtime resources of extending the two host event systems with AESOP. The purpose of this

analysis is to quantify the overhead incurred as a result of extending an event system with AESOP.

To measure the performance of each instantiation of AESOP we use the same application, a simpli�ed

version of the fall detection application from section 2.1.2. We use the same application so that there

is consistency in our approach and because it allows us to simplify the experiment so that we can

focus the on the performance of AESOP as opposed to the performance of the application.

This section is used to evaluate the platform generality of AESOP. We analyse the resource usage

of AESOP and provide evidence to support the fact that AESOP has good platform generalit

6.4.1 C-AESOP Resource Usage

We analysed the resource usage of C-AESOP on the Gumstix platform. The resources that we

measured are CPU utilisation, RAM use and disk storage.

Experimental Setup In order to perform the experiments we required an application written using

the AESOP abstractions. The application used to conduct the experiments was the fall detection

application introduced in section 2.1.2 and discussed throughout Chapters 4 and 5. The full source

code for the multi-event handler is available in appendix B.1. The execution policy for the multi-event

handler is complete however the multi-event handler code itself was removed. This was to prevent

measurement of application code, and to focus on measuring the resource usage of the C-AESOP

abstractions. To simplify the experiment and to ensure that we are measuring the performance of C-

AESOP we replaced the sensors in the application with simulated acceleration sensors. The simulated

sensors output an acceleration event with an appropriate event subject and pause for a con�gurable

period of time.

To provide a measurement of the underlying resource usage of the STEAM middleware we also

measure a simple STEAM application. The STEAM application subscribes to the same accelerometer

events as the fall detection application. It is an event sink i.e., it receives the events and calls an

empty event handler. Shell scripts were also developed to facilitate the experiments and to increase

the accuracy of the timing of the execution of the applications. The full source code for the fall

detection application, simulated accelerometer sensors, event sink and shell scripts are available on

the CD that accompanies this thesis as appendix C.

The Gumstix connex platform was used, which is the platform used in the squash application

discussed in section 6.2.1. The system was compiled using subversion version 1445 of the Gumstix

buildroot. The Linux kernel was a modi�ed version of 2.6.21 with multicast enabled, compiled using

the buildroot environment. The version of uClibc which was used was version 0.9.29.

92

Chapter 6. Evaluation

Experimental Technique The frequency of the accelerometer events was varied and the fall de-

tection application was run three times for each frequency. Shell scripts were developed to accurately

measure the execution time of the experiments and to repeat the experiments a large number of times

with di�erent parameters. The length of each run needed to be timed as it frequently exceeded the

�ve minutes that was allotted to it in the shell script particularly at higher event frequencies. The

application was timed using the time command from the Linux shell. The shell scripts reduced human

error when timing the length of each run. The entire process was repeated replacing the event sink

application for the fall detection application.

The number of events sent by the simulated sensors was also recorded. This �gure was divided by

the time the application was running in order to get a correct measurement for the event frequency

of the accelerometer sensor.

To analyse the CPU utilisation of the applications we analysed the output from the /proc/PID/stat

�le. For each of the processes associated with the application we added the time that the process was

in user mode and kernel mode. We divided this �gure by the real time the application was running

as determined using the time command in the shell script. The result of this calculation allowed us

to calculate the percentage of time that the application was running that it was using the CPU, i.e.

the CPU utilisation. The frequency of the sensors was calculated by dividing the number of events

sent by the time the application was running. To measure the memory usage we used the process

information available through /proc/PID/smaps. Finally to measure the size of the application in the

�le system we used the du -h command.

CPU usage Figure 6.8 shows a graph of CPU utilisation versus event frequency for C-AESOP. The

full results of the experiment are available in table A.1. The event frequency column shows the total

event frequency for the application. The total CPU time is measured in ji�es in the /proc/PID/stat

�le. Ji�es on the Gumstix platform are 10ms in length, this �gure was converted to seconds by

multiplying by .01. As we can see from the graph CPU utilisation is directly proportional to event

frequency.

Figure 6.8 also shows the results of the experiment using the event sink in place of the fall detection

application. The complete results of the experiment are available in table A.2. Each run was repeated

three times and the event frequency and time of run were measured in the same manner as with the

fall detection application. Again the CPU utilisation is directly proportional to the event frequency.

As we can see from �gure 6.8 STEAM processes slightly more events than C-AESOP for each

increase in CPU utilisation. This is to be expected as C-AESOP uses STEAM as its host event

system and all the processing that is performed by STEAM must also be repeated in C-AESOP.

Figure 6.9 shows the CPU utilisation per event per second. We can see from the graph that it

costs approximately .01% more CPU utilisation to process an event using C-AESOP then it does

using just STEAM. This overhead remains constant as the event frequency increases.

93

Chapter 6. Evaluation

Figure 6.8: C-AESOP v STEAM Performance

Total Available STEAM C-AESOP Increase Overhead %

RAM 109.5MB 124KB 144KB 20KB 16.13
Executable Size 14.8MB 34KB 31KB 3KB 9.68%

Table 6.1: STEAM and C-AESOP RAM Usage

RAM Usage The total memory of the process which is displayed using the top command also

includes any shared libraries that the application may be using. We want to exclude these libraries

from our calculations as we are interested in measuring the memory usage of the AESOP abstractions

and C-AESOP is not implemented at this time as a shared library. To do this with some degree

of accuracy we analysed the output from the result of issuing the /proc/PROCESS_ID/smaps for

each of the processes attributed to the fall detection multi-event handler. The memory marked

Private_Dirty and Private_Clean corresponds to memory that the process has used in memory,

as opposed to memory which has been reserved and not used or that is shared with other processes.

Table 6.1 summarises the RAM usage of STEAM and C-AESOP. All runs of the application were

found to be using 144 KB of private memory. From analysis of the event sink application all runs

of the application used 124 KB of private memory. Therefore the fall detection application uses 20

KB more than the STEAM only application. Within this 20KB is the program code of AESOP and

also sliding windows of acceleration readings and code for the execution policies. Also, the page size

94

Chapter 6. Evaluation

Figure 6.9: CPU Utilisation Relative to Event Frequency

is 4KB on the Gumstix platform so the resolution of this measurement is in 4KB increments, which

restricts us from getting a more accurate measurement of the memory usage of the two applications.

Memory pro�lers such as valgrind [43] are not available on the Gumstix platform.

Executable Size The size of the fall detection executable was measured at 34.0 KB. The STEAM

event sink application was measured at 31.0 KB. The di�erence between the two applications is 3KB.

This 3KB is the overhead for using the C-AESOP abstractions. The �le system has 14.8MB total

storage.

6.4.2 J-AESOP Resource Usage

The process of analysing the resource usage of the AESOP abstractions in J-AESOP on the Android

smartphone proceeded in a similar manner to the analysis of C-AESOP on the Gumstix. We compare

the Fall Detection application to an event sink application which consumes the same types and

quantities of events.

Experimental Setup The Fall Detection example application introduced initially in section 2.1.2

was also used to analyse the performance of the J-AESOP abstractions. The initial fall detection

application was implemented using the phone's accelerometer sensor. However to reduce the in�uence

the phone's hardware might have on the performance of the application a dummy sensor was developed

which outputted accelerometer sensor data at a con�gurable rate. This is so we can have a more

accurate view of the resource usage of the abstractions as opposed to the hardware interface or the

system calls that support them. Version 1.1 of the Android SDK libraries and Android Development

95

Chapter 6. Evaluation

Total Available Custom Event System J-AESOP Increase Overhead %

RAM 192MB 2.087MB 2.09MB .003MB .14%
Executable Size 256MB 28KB 32KB 4KB 14.28%

Table 6.2: J-AESOP Resource Usage

Tools (ADT) were used with version 3.4.2 of the Eclipse IDE to compile and deploy the application.

Version 1.1 of the Android operating system was also used. The smartphone used to perform the tests

was an Android developer phone version 1.1 [69].

Experimental Technique The Fall Detection application was deployed on the smartphone using

the ADT. There is no easy way to measure CPU utilisation on the Android platform, e.g., the time

utility used on the Gumstix platform to measure the CPU utilisation is not available in the shell. In

order to get a rough metric for the amount of CPU used by the application, we used the debugging

tools provided in Eclipse with the ADT plugin. The plugin allows us to periodically get an update

of the amount of CPU time, in ji�es, that the individual threads of the process have been scheduled

in user mode and in kernel mode. By summing together the user time and kernel time for each

thread in the process we can calculate a �gure for the amount of time the process has spent using

the CPU. We measure the amount of time the application was running using log statements which

are timestamped and output when the application starts and periodically throughout the execution

of the application. By dividing the amount of time the application has spent using the CPU by the

total time the application has been running we can calculate the CPU utilisation of the process. This

�gure provides us with a rough estimate of the CPU usage of the process which is su�cient for our

use. In order to investigate the relationship between the frequency of the incoming events and the

CPU usage of the application we varied the frequency of the incoming events. The amount of time

the dummy sensor paused for is con�gurable and this was varied in �ve increments between a 250

millisecond delay and a 10 millisecond delay. The frequency of the sensor was calculated by recording

the number of events and dividing this by the amount of time the application was running. The

application was executed three times for each delay.

To measure the memory usage of the application the Eclipse ADT debugger was used. Heap

updates were enabled on the application and the total allocated heap was read from the display.

The total size of the deployed application was determined by accessing the information on installed

applications from the settings menu on the handset.

CPU usage Figure 6.10 shows the results of the experiments for both J-AESOP and the custom

event system. The full data from both experiments are available in tables ?? and A.3. Figure 6.11

shows the increase in CPU utilisation for each additional event per second.

RAM footprint Table 6.2 summarises the RAM usage of J-AESOP. The size of the allocated heap

was 2.09 MB for the fall detection application implemented using J-AESOP. When only the custom

event system was used 2.087 MB of memory was allocated on the heap. Therefore the J-AESOP

96

Chapter 6. Evaluation

Figure 6.10: CPU Utilisation of Custom Event System and J-AESOP

abstractions consumed .003 MB of RAM. The total installed RAM available on the device is 192 MB.

Executable Size Table 6.2 also summarises the disk storage used by J-AESOP. The total size of

the installed fall detection application was 32.0 KB. The application which only used the custom

event model was 28KB in total. Therefore the J-AESOP abstractions used 4KB of storage. The total

available storage on the device excluding the SD expansion card is 256 MB.

6.5 Functional Support for Sensor-Driven Applications

In this section we analyse the applications presented in sections 6.2 and 6.3. We discuss the support

provided by the AESOP abstractions for developing the applications.

6.5.1 Sensor-Augmented Squash Training

Swing Start and Swing End The swing start and swing end multi-event handlers detect the

start and end of the swing respectively. They both combine orientation and acceleration sensor data

to determine if a swing has just begun or ended. These two multi-event handlers are relatively simple

however they still bene�t from using the AESOP abstractions. If the AESOP abstractions were not

being used in this application, the developer would need to implement the functionality that receives

and combines the sensor data and develop custom functionality to periodically evaluate the state of

the racket and its movement.

Ball Contact The ball contact multi-event handler detects the impact of the squash racket with

the ball. It does this by analysing historical data from the accelerometer sensor. To reduce both

97

Chapter 6. Evaluation

Figure 6.11: Relative CPU Utilisation of J-AESOP

the number of false positives and the amount of processing performed by the application, the multi-

event handler only analyses the accelerometer data when a swing is in progress, as determined by the

results of the swing start and swing end multi-event handlers. Implementation of this portion of the

application bene�ts from using the AESOP abstractions. The execution policy allows us to separate

the conditions under which we want to analyse the sensor data from the process of performing this

analysis. This simpli�es the design of the application. The second major bene�t of the abstractions

is in the use of the sliding window over the accelerometer event stream. The algorithm requires that

the last three accelerometer sensor readings be analysed. Without the sliding window abstraction the

developer would have to implement a very similar storage mechanism for historical event data. Use

of AESOP in this case reduces the amount of time the developer would need to spend implementing

and testing this feature. Using the event stream abstractions provided by AESOP also increases the

readability of the code, once the reader understands the abstraction, and therefore decreases the cost

of future maintenance. The process of combining the swing events and the accelerometer data is

simpli�ed and performed in a manner that is easy to understand.

Orientation on Impact The orientation on impact multi-event handler detects the orientation of

the player's racket as they make contact with the squash ball. This multi-event handler combines

two separate event streams. It combines the ball impact on the racket with the orientation of the

racket at this point. If the AESOP abstractions were not being used the developer would have to

write alternative C code to combine these two events. This would in e�ect recreate the function of

this multi-event handler but in a more ad-hoc manner.

98

Chapter 6. Evaluation

Stance on Impact The stance on impact multi-event handler analyses the weight distribution of

the player as they make contact with the ball. It combines the data from the two load sensors with

the output from the ball contact multi-event handler. It analyses the historical load sensor data to

categorise the stance of the player as they perform their shot.

Without having access to the AESOP abstractions the functionality that this multi-event handler

implements would be quite di�cult to develop. There are a large amount of sensor streams that

are combined to be able to analyse the stance of the athlete on impact with the ball, however when

using the AESOP abstractions the multi-event handler code itself is relatively simple. The execution

policy remains simple and the multi-event handler simply needs to specify the speci�c algorithm that

is used to analyse the load sensor data. The storage of the historical load sensor data is also made

signi�cantly easier by the AESOP abstractions and is automatically available to the developer once

they specify the event stream and the length of the sliding window.

6.5.2 Viking Ghost Hunt

Horizontal Detection,Vertical Detection and Motion Detection Both the horizontal detec-

tion, vertical detection and motion detect ion multi-event handlers are relatively simple multi-event

handlers. They have simple execution policies, executing whenever there is an incoming event. The

horizontal detection and vertical detection multi-event handlers analyse the orientation data raising

the relevant events to represent horizontal or vertical orientation of the phone. The motion detection

multi-event handler analyses the accelerometer events events whenever the smartphone is in motion.

The motion detection multi-event handler is also a relatively simple multi-event handler. It anal-

yses the accelerometer data to

Horizontal Viewing Mode The horizontal viewing mode multi-event handler detects situations

where the smartphone is being held in a manner that would suggest the user is operating it as a

camera. The multi-event handler combines events from the horizontal detection and motion detection

multi-event handlers in order to detect such a situation. Without the use of the AESOP abstractions

the detection of horizontal viewing mode would be considerably more cumbersome. The two simpler

multi-event handlers that detect if the handset is horizontal and if it is moving make the speci�cation

of this multi-event handler much easier. Both of these multi-event handlers could be incorporated

into this multi-event handler, however the output from the motion detected multi-event handler

is used elsewhere in the application. Using the AESOP abstractions in this instance reduces the

amount of duplication in the application. This multi-event handler also demonstrates how the AESOP

abstractions can be used to divide a problem into easy to solve pieces and compose these pieces to

solve the original problem.

Horizontal Panning and Measurement The horizontal panning and measurement multi-event

handler analyses the movement of the smartphone to determine the amount of horizontal panning

that is taking place. Without the use of the AESOP abstractions the functionality in this multi-

99

Chapter 6. Evaluation

event handler would be quite cumbersome to implement. This multi-event handler combines events

from multiple higher-level sensors. It also analyses historical sensor data to determine the movement

of the handset. Infrastructure to support these two elements of the functionality would need to

be implemented by the developer. AESOP abstracts this functionality into a set of middleware

components that the application developer can reuse in a structured and standard manner.

6.5.3 Discussion

AESOP simpli�es the e�ort required to develop sensor-driven applications by providing abstractions

to combine multiple sensor streams, analyse historical sensor data and perform both these functions

at the same time by analysing multiple streams of historical sensor data. Composition of multi-event

handlers is also a very powerful feature which allows application developers divide the functionality

of the application into modules that are easier to implement and easier to re-use in other parts of the

application. The AESOP abstractions allow the application developer to focus on the speci�c algo-

rithms required to perform the analysis of the sensor data, rather than be concerned with developing

the infrastructure required to combine or store the data.

6.6 Generality

Our description of the two applications shows that the AESOP model is useful for writing sensor-

driven applications and supports the characteristics of those applications. However when designing

middleware we are interested also in how general a solution the design is. In section 2.3.2 we discussed

the notion of generality in middleware and discussed four dimensions of generality which are particu-

larly relevant to middleware for sensor-driven applications. These dimensions are language generality,

event model generality, application generality and platform generality. In this section we evaluate the

generality of AESOP in these four dimensions.

6.6.1 Event Models

Section 2.3.2 discussed event model generality. Event model generality is particularly important for

middleware which aims to be usable with a wide range of event models. Therefore it is important to

show that the AESOP abstractions are usable with a wide range of event models.

In our discussion of the two instantiations of AESOP we have shown how the AESOP architecture

maps to two very di�erent event models. The STEAM event model is a distributed event system

with an implicit event model, designed for ad-hoc networks using multi-cast delivery of events with

no explicit time model. The J-AESOP host event model on the other hand is a localised event model

which uses a mediator which handles event subscription and distribution and uses timestamped events.

The AESOP model has been shown to successfully extend both of these event systems and the fact

that the AESOP architecture makes few demands of the underlying event system ensures it will map

to the majority of event systems. Therefore we conclude that the AESOP architecture has strong

100

Chapter 6. Evaluation

support for event model generality.

6.6.2 Programming Languages

In section 2.3.2 we discussed programming language generality. As AESOP provides programming

language abstractions it is important to know if these abstractions are implementable in the range

of programming languages used for applications in the domain, or if it is limited to being used in a

sub-set of the languages.

To show AESOP is general with respect to programming languages we must show that AESOP

is mappable in the range of languages used in the domain. In a survey of frameworks for building

ubiquitous computing applications [44], from 21 projects which speci�ed support for a particular

language or languages, 14 supported C/C++ and 12 supported Java. The next most popular language

speci�ed was Python with three projects supporting it, none exclusively. In embedded systems the C

language is the most popular language, and its extension nesC [50], is by far the most popular language

for writing wireless sensor network applications on the Mote platform. Java is also popular with

resource constrained devices, e.g., on the Sun developed Sun Spot [105] and on the Android platform

[7]. In this evaluation we have shown how the AESOP architecture maps to both the C and Java

programming languages and as these two languages are used in the majority of ubiquitous computing

applications, and sensor-driven applications are a sub-set of ubiquitous computing applications, we

can conclude that the AESOP architecture is highly suitable as a general solution with respect to

programming languages used for sensor-driven applications.

6.6.3 Applications

Section 2.3.2 discussed application generality and how it relates to middleware for sensor-driven appli-

cations. However, there are a large amount of possible applications which could be written and a large

amount of application domains. Developing applications in all of the possible application domains

would be prohibitively expensive and so doing an exhaustive evaluation of application generality is

not possible.

In order to evaluate the generality of the AESOP abstractions with respect to application domain

we return to the case studies presented in sections 6.2 and 6.3. The squash training application is a

sensor-augmented sports training application. We have shown how the AESOP abstractions are useful

for implementing this application and it can be reasonably assumed to be relevant to other similar

applications in this domain. The Viking Ghost Hunt application is an example of an interactive

media application on a mobile device. The AESOP abstractions are used to develop an innovative

user interface which is driven by the smartphone's sensors. The AESOP abstractions have proved

useful in this application also and it follows that other applications that use the phones sensors in a

similar manner would be supported by AESOP. The two applications are very di�erent sensor-driven

applications and the AESOP abstractions are useful in both cases. While, two applications constitute

less than exhaustive evidence we can be reasonably con�dent that the AESOP abstractions will be

101

Chapter 6. Evaluation

useful for a wide range of sensor-driven applications.

6.6.4 Platform Generality

Section 2.3.2 discussed the notion of platform generality and why it was a desirable characteristic of

middleware. In order to show that AESOP is a general solution with respect to platform we must show

that the AESOP abstractions are suitable for use on the range of platforms which the middleware

aims to support. In section 6.4 we analysed the performance of the two AESOP instantiations C-

AESOP and J-AESOP. We compared the performance of the instantiations to the performance of the

underlying host event system. By measuring the di�erence between the instantiations and their host

event system we can quantify the overhead incurred by augmenting an event system with the AESOP

abstractions. We compared the resource usage both to the resource usage of the host event system

and to the available resources on the platform. This allowed us to quantify the amount of resources

that the instantiation consumed and quantify how signi�cant this amount is when compared to the

available resources on the platform.

Figure 6.8 showed the CPU utilisation of C-AESOP compared to the CPU utilisation of the

underlying STEAM event system. As we can see from the graph at a total event frequency of 250 Hz

approximately 2.5% additional CPU utilisation is consumed. Figure 6.9 shows the relative di�erence

in CPU utilisation between STEAM and C-AESOP. We can see from the graph that C-AESOP

requires an additional .01% CPU utilisation per additional event per second. Figure 6.10 compared

J-AESOP with its host event system. We can see from the graph that there is approximately a 2%

increase in CPU utilisation for a total event frequency of 500 Hz. Figure 6.11 shows the increase in

CPU utilisation of J-AESOP relative to the custom event system. We can see from the graph that

the percentage overhead in CPU utilisation is less than .005% per event per second. We consider both

this overhead and the C-AESOP overhead to be very modest increases in CPU utilisation.

When we consider the additional RAM consumed by both the C-AESOP and J-AESOP instantia-

tions it is constant with respect to event frequency. C-AESOP consumes an additional 20Kb of RAM

which is a 16.66% of the RAM used by the host event system, or less than .003% of the total available

RAM on the platform. When we analyse the J-AESOP RAM usage it uses an additional .003 MB or

less than .001% of the available RAM on the system. Both of these �gures are tiny amounts of memory

even on these resource-constrained platforms. The RAM usage also has the desirable characteristic

that it remains constant despite increased event throughput.

Analysing the storage usage of the two instantiations, the C-AESOP instantiation uses an ad-

ditional 3KB of storage which is 9.6% of the STEAM implementation or .2% of the total available

storage. The J-AESOP instantiation uses an additional 4KB of storage which is 14.2% of the host

event system or .0015% of the total available storage.

When compared to the resources available on the devices it is clear that the overheads incurred

from using the AESOP abstractions are reasonable and a tiny fraction of the resources available on

the platforms. We have analysed two instantiations of AESOP from the lower end of the devices on

102

Chapter 6. Evaluation

which sensor-driven applications are developed. We would expect the results to hold across platforms

with more resources than the platforms analysed. We have not analysed platforms at the extreme

lower end of the resource spectrum, e.g. embedded micro-controllers and motes. However we would

expect any platform that has the resources to support an event system, to be able to support the

AESOP abstractions. On this basis we conclude that the AESOP abstractions are a suitable solution

for platforms with similar or more resources than the Android and Gumstix platforms. Furthermore,

we expect that any platform which supports an event system could be extended with an AESOP

instantiation with similar overheads to the instantiations presented in this thesis.

6.7 Summary

In this chapter we have evaluated the AESOP model and its support for sensor-driven ubiquitous

computing applications. We have evaluated the degree of support provided by AESOP for the re-

quirements of sensor-driven applications as discussed in chapter 2. We have shown that AESOP meets

the functional requirements of sensor-driven applications as described in section 2.3.1 by analysing

two applications developed using two di�erent instantiations of AESOP. The support for combination

of sensor data in AESOP is demonstrated in both the squash and gaming applications. The usage of

historical data is also demonstrated in both. The support for the analysis of historical sensor data is

also demonstrated in the two applications. We can conclude therefore that AESOP provides abstrac-

tions to support historical sensor data, the combination of sensor data and the analysis of historical

sensor-data from multiple sensors.

These applications are from di�erent application domains demonstrating the application generality

of AESOP. The instantiations used extend two very di�erent event models which shows the event

model generality of AESOP. Each application is written in a di�erent programming language, Java

and C respectively, which have been shown to be overwhelmingly the most used languages in the

�eld of ubiquitous computing. This demonstrates the language generality of AESOP. Finally we have

performed an in-depth analysis of the resource-usage of the AESOP abstraction. We have analysed

the two instantiations running a cut down demonstrator application using simulated sensors in order

to get consistent and comparable results. We have analysed the memory usage, the storage footprint

and the CPU usage of the application for each instantiation. We have compared this to the underlying

event model. Both instantiations of AESOP perform extremely well with a very low overhead and so

we can we conclude that the AESOP abstractions are general with respect to platform.

103

Chapter 7

Conclusion

This chapter summarises the achievements of this thesis, places them in a greater context and outlines

promising directions for future work.

7.1 Achievements

This thesis addressed the area of abstractions to support the development of sensor-driven applica-

tions. Motivation for this work came from the fact that event based programming is the predominant

development technique for building ubiquitous computing applications however it is ill-equipped for

meeting the requirements of sensor-driven applications. Stream processing systems have useful ab-

stractions for building sensor-driven applications however they are not generally suitable for building

ubiquitous computing applications. They also generally lack the ability to perform custom analysis

of historical stream data from multiple sensors, which is a feature of the more advanced sensor-driven

applications.

The thesis introduced the concept of sensor-driven applications to describe a subset of ubiqui-

tous computing applications that modify their behaviour in response to readings from their sensors.

Four example applications were presented and these were analysed and the characteristics of sensor-

driven applications examined. Requirements for middleware to support sensor-driven applications

were synthesised from these characteristics.

The thesis reviewed the state of the art in abstractions that support sensor-based applications.

There were a number of di�erent sub-categories in the state of the art review, re�ecting the di�erent

approaches available for di�erent systems. Two representative event-based models STEAM and Jav-

aBeans were chosen for review and these were shown to have no support for the combination of sensor

data from multiple sensors and no support for dealing with the continuous nature of sensor data.

Two traditional event systems which had been extended with the abstraction of composite events,

Cambridge Event Architecture and a generic extension to event based systems supporting composite

events were also reviewed. These system were found to have more support for the combination of sen-

sor streams but limited support for historical sensor streams. Two complex event processing systems,

104

Chapter 7. Conclusion

SASE and Cayuga were also reviewed and shown to support combination of sensor streams and sup-

port for historical sensor data, however lacking the complex analysis that is required in sensor-driven

applications. Two stream processing systems Aurora and STREAMS were also reviewed and shown

to support a large number of the requirements of sensor-driven applications with limited support in

Aurora for custom analysis of historical sensor data from multiple sensors. TinyDB and SINA, two

sensor database implementations were also reviewed to give an additional insight into sensor-based

applications and were shown to have some support for historical sensor data and multiple sensors,

but to be unsuitable for sensor-driven applications.

The main contribution of this thesis is an extension for event based systems designed to add support

for sensor-driven applications. This extension called AESOP, has a minimal set of requirements and

would be suitable for extending the majority of event systems. AESOP has three main abstractions

which extend event-based programming in order to support sensor-driven applications. These are

event streams, multi-event handlers and execution policies. Two instantiations of the extended model,

C-AESOP and J-AESOP were presented in chapter 5. The instantiations and the description of their

implementation are also signi�cant pieces of the contribution. They show how the abstractions can

be implemented and the design pressures and trade-o�s that need to be made when implementing the

abstractions.

The two applications analysed in chapter 6 serve to verify the applicability and usability of AE-

SOP in the design and implementation of sensor-driven applications. Speci�cally, we analysed the

support provided by AESOP for the functional requirements of sensor-driven applications as outlined

in chapter 2. By analysing the two instantiations of AESOP we showed that the model is general with

respect to programming language and event model. By examining the two case study applications

we showed that the AESOP model was a general solution with regards to application. Finally by

measuring the resource usage of both instantiations of AESOP we calculated the overhead incurred

by extending an event system with AESOP and showed that it was within reasonable bounds.

7.2 Perspective

Over the course of the �ve years that the author has been working with sensor-driven applications

many signi�cant changes have taken place. Cheap sensors such as accelerometers, magnetometers,

RFIDs, light sensors and gyroscopes have become prevalent and made sensor-driven applications with

a large number of sensors a�ordable. The Wii console revolutionised game interfaces by integrating

accelerometers and cameras in the game controller. Meanwhile accelerometers have become common-

place in many consumer appliances including phones, laptops and media players. Shock detectors

are used in laptop hard drives, and accelerometers are used in phones to automatically adjust the

display based on the orientation of the phone. Additional sensors are also becoming commonplace

including magnetometers, GPS, and gyroscopes (as seen by the extension to the Wii console with the

Wii motion+). Sensors have also been installed in athlete's shoes and linked to media devices in the

Nike+ e�ort between Nike and Apple.

105

Chapter 7. Conclusion

The upward trend in the number of sensors incorporated into everyday objects is taking the

ubiquitous computing vision closer to reality. However despite the large number of sensors avail-

able, applications which combine data from two or more sensors are still relatively rare. Hopefully

the AESOP model will go some way towards simplifying the development process for sensor-driven

applications and help make the ubiquitous computing vision a reality.

7.3 Future Work

With every piece of work brought to completion new questions arise and new challenges are identi�ed.

Timing schemes for composition of muti-event handlers and sharing streams in instantiations are two

such issues.

7.3.1 Timing Schemes for Composing Multi-Event Handlers

In section 4.7 we discussed timing issues which can potentially arise when combining multi-event

handlers. In section 5.4.10 we discussed one particular timing scheme which solves this problem in

the J-AESOP model. However, there are a large amount of possible schemes that could be developed

with di�erent design considerations. The use of a timing scheme depends heavily on the time model

of the host event system as well as the requirements of the applications. Further work is needed to

develop and characterise these possible timing schemes.

7.3.2 Sharing of Event Streams

At present the two instantiations make no attempt to share the storage of event streams between

multiple multi-event handlers on the same device which may be interested in events of the same type.

Obviously for larger streams storing the same data multiple times is not e�cient. The problem is

not entirely straight-forward as di�erent multi-event handlers can have a di�erent view of the stream,

i.e. what events have been consumed and what window over the event stream is meaningful to the

multi-event handler. In fact if two multi-event handlers had radically di�erent windows e.g. one

sliding window of the last 100 events and one window based on an attribute of the event there may

be little or no duplication of events in the windows of each multi-event handler. However, in a large

amount of instances where an event stream is in use multiple times on the same node some sharing

of the event stream would prove bene�cial.

106

Bibliography

[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Hatoun,

J. h. Hwang, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and

S. Zdonik. Aurora: A data stream management system. In In ACM SIGMOD Conference, page

666, 2003.

[2] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon

Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new model and archi-

tecture for data stream management, 2003.

[3] Asaf Adi and Opher Etzion. Amit - the situation manager. The VLDB Journal, 13(2):177�203,

May 2004.

[4] BMW AG. http://www.bmw.com/com/en/insights/technology/technology_guide/start.html,

Nov. 2009.

[5] Information Age. The main event. http://www.information-age.com/channels/development-

and-integration/it-case-studies/441926/the-main-event.thtml, June 2008.

[6] Yanif Ahmad, Bradley Berg, Ugur Cetintemel, Mark Humphrey, Jeong-Hyon Hwang, Anjali

Jhingran, Anurag Maskey, Olga Papaemmanouil, Alexander Rasin, Nesime Tatbul, Wenjuan

Xing, Ying Xing, and Stan Zdonik. Distributed operation in the borealis stream processing

engine. In SIGMOD '05: Proceedings of the 2005 ACM SIGMOD international conference on

Management of data, pages 882�884, New York, NY, USA, 2005. ACM.

[7] Android. http://www.android.com/, Oct. 2009.

[8] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Keith Ito, Rajeev Motwani,

Utkarsh Srivastava, and Jennifer Widom. Stream: The stanford data stream management

system. Springer, 2004.

[9] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql continuous query language: se-

mantic foundations and query execution. The VLDB Journal, 15(2):121�142, 2006.

[10] Ken Arnold and James Gosling. The Java programming language (2nd ed.). ACM

Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

107

Bibliography

[11] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural language with iteration. Commun.

ACM, 20(7):519�526, 1977.

[12] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Dilys Thomas. Operator

scheduling in data stream systems. The VLDB Journal, 13:2004, 2003.

[13] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models

and issues in data stream systems. In PODS '02: Proceedings of the twenty-�rst ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, pages 1�16, New York, NY,

USA, 2002. ACM Press.

[14] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding for aggregation queries over

data streams. In In ICDE, pages 350�361, 2004.

[15] J. Bacon, J. Bates, R. Hayton, and K. Moody. Using events to build distributed applications.

pages 148�155, Jun 1995.

[16] Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma, Andrew McNeil, Oliver

Seidel, and Mark Spiteri. Generic support for distributed applications. Computer, 33(3):68�76,

2000.

[17] Magdalena Balazinska, Hari Balakrishnan, Samuel R. Madden, and Michael Stonebraker. Fault-

tolerance in the borealis distributed stream processing system. ACM Trans. Database Syst.,

33(1):1�44, 2008.

[18] Steve Benford, Andy Crabtree, Martin Flintham, Adam Drozd, Rob Anastasi, Mark Paxton,

Nick Tandavanitj, Matt Adams, and Ju Row-Farr. Can you see me now? ACM Trans. Comput.-

Hum. Interact., 13(1):100�133, 2006.

[19] Sumeer Bhola, Robert Strom, Saurabh Bagchi, Yuanyuan Zhao, and Joshua Auerbach. Exactly-

once delivery in a content-based publish-subscribe system. Dependable Systems and Networks,

International Conference on, 0:7, 2002.

[20] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher, Biswanath Panda,

Mirek Riedewald, Mohit Thatte, and Walker White. Cayuga: a high-performance event process-

ing engine. In SIGMOD '07: Proceedings of the 2007 ACM SIGMOD international conference

on Management of data, pages 1100�1102, New York, NY, USA, 2007. ACM.

[21] Xsens Technologies B.V. 3d motion tracking - xsens. http://www.xsens.com/, Jan. 2010.

[22] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson, Hong Lu, Xiao Zheng,

M. Musolesi, K. Fodor, and Gahng-Seop Ahn. The rise of people-centric sensing. Internet

Computing, IEEE, 12(4):12�21, 2008.

[23] Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg Seidman,

Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring streams: A new class of

108

Bibliography

data management applications. In VLDB '02: Proceedings of the 28th international conference

on Very Large Data Bases, pages 215�226. VLDB Endowment, 2002.

[24] Don Carney, Ugur Cetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and Mike Stone-

braker. Operator scheduling in a data stream manager. In In VLDB, pages 838�849, 2003.

[25] J. B. Carter, D. Khandekar, and L. Lamb. Distributed Shared Memory: Where We Are and

Where We Should Be Headed? In Fifth Workshop on Hot Topics in Operating Systems (HotOS-

V), May 1995.

[26] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. k. Kim. Composite events for active

databases: Semantics, contexts, and detection. In In Proc. of the VLDB Conference, pages

606�617, 1994.

[27] S. Chakravarthy and S. Varkala. Dynamic programming environment for active rules. pages

3�16, 0-0 2006.

[28] Sharma Chakravarthy and Raman Adaikkalavan. Events and streams: harnessing and un-

leashing their synergy! In DEBS '08: Proceedings of the second international conference on

Distributed event-based systems, pages 1�12, New York, NY, USA, 2008. ACM.

[29] Sharma Chakravarthy and Deepak Mishra. Snoop: An expressive event speci�cation language

for active databases, 1993.

[30] Matthew Chalmers, Marek Bell, Barry Brown, Malcolm Hall, Scott Sherwood, and Paul Ten-

nent. Gaming on the edge: using seams in ubicomp games. In ACE '05: Proceedings of the

2005 ACM SIGCHI International Conference on Advances in computer entertainment technol-

ogy, pages 306�309, New York, NY, USA, 2005. ACM.

[31] Sirish Chandrasekaran, Sirish Ch, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Sam Madden, Vijayshankar Raman,

Fred Reiss, and Mehul Shah. Telegraphcq: Continuous data�ow processing for an uncertan

world, 2003.

[32] Jianjun Chen, David J. Dewitt, Feng Tian, and Yuan Wang. Niagaracq: A scalable continuous

query system for internet databases. In In SIGMOD, pages 379�390, 2000.

[33] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: a scalable continuous

query system for internet databases. SIGMOD Rec., 29(2):379�390, 2000.

[34] Ed Chi. Pervasive computing in sports technologies: Guest editor's introduction. IEEE Perva-

sive Computing, 4(3):22�25, 2005.

[35] Unix Community. Queue. http://linuxmanpages.com/man3/queue.3.php, Jan. 2010.

[36] Wikipedia Contributors. Fencing. http://en.wikipedia.org/wiki/Fencing, Mar. 2010.

109

Bibliography

[37] Owen Cooper, Anil Edakkunni, Michael J. Franklin, Wei Hong, Shawn R. Je�ery, Sailesh Kr-

ishnamurthy, Fredrick Reiss, Shariq Rizvi, and Eugene Wu. Hi�: a uni�ed architecture for high

fan-in systems. In VLDB '04: Proceedings of the Thirtieth international conference on Very

large data bases, pages 1357�1360. VLDB Endowment, 2004.

[38] HTC Corporation. http://www.htc.com/www/product/g1/overview.html, Oct. 2009.

[39] cSwing. cswing. Last accessed 14 October, 2010.

[40] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The jedi event-based infrastruc-

ture and its application to the development of the opss wfms. IEEE Transactions on Software

Engineering, 27(9):827�850, 2001.

[41] A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. White. Cayuga: A general

purpose event monitoring system. In Proc. CIDR, pages 412�422, 2007.

[42] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker White. To-

wards expressive publish/subscribe systems. In In Proc. EDBT, pages 627�644, 2006.

[43] Valgrind Developers. Valgrind. http://valgrind.org/, Feb. 2010.

[44] Christoph Endres, Andreas Butz, and Asa MacWilliams. A survey of software infrastructures

and frameworks for ubiquitous computing. Mob. Inf. Syst., 1(1):41�80, 2005.

[45] Jennica Falk, Peter Ljungstrand, Sta�an Björk, and Rebecca Hansson. Pirates: proximity-

triggered interaction in a multi-player game. In CHI '01: CHI '01 extended abstracts on Human

factors in computing systems, pages 119�120, New York, NY, USA, 2001. ACM.

[46] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1995.

[47] Vihang Garg, Raman Adaikkalavan, and Sharma Chakravarthy. chapter Extensions to Stream

Processing Architecture for Supporting Event Processing, pages 945�955. 2006.

[48] D. Garlan, D. P. Siewiorek, A. Smailagic, and P. Steenkiste. Project aura: toward distraction-

free pervasive computing. Pervasive Computing, IEEE, 1(2):22�31, 2002.

[49] Stella Gatziu and Klaus R. Dittrich. Events in an active object-oriented database system, 1993.

[50] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. The

nesc language: A holistic approach to networked embedded systems. In PLDI '03: Proceedings

of the ACM SIGPLAN 2003 conference on Programming language design and implementation,

pages 1�11, New York, NY, USA, 2003. ACM.

[51] Altaf Gilani, Satyajeet Sonune, Balakumar Kendai, and Sharma Chakravarthy. chapter The

Anatomy of a Stream Processing System, pages 232�239. 2006.

110

Bibliography

[52] Object Managment Group. The Common Object Request Broker: Architecture and Speci�cation,

V2.1. Object Management Group, 1995.

[53] The STREAM Group. Stream: The stanford stream data manager. Technical Report 2003-21,

Stanford InfoLab, 2003.

[54] Daniel Gyllstrom, Eugene Wu 0002, Hee-Jin Chae, Yanlei Diao, Patrick Stahlberg, and Gordon

Anderson. Sase: Complex event processing over streams. CoRR, abs/cs/0612128, 2006.

[55] Mads Haahr and Vinny Cahill. Sister project proposal. January 2004.

[56] Mads Haahr, René Meier, Paddy Nixon, and Vinny Cahill. Filtering and scalability in the

eco distributed event model. In Proc. of the 5th Int. Symposium on Software Engineering for

Parallel and Distributed Systems (ICSE/PDSE2000, pages 83�95, 2000.

[57] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The design and performance

of a real-time corba event service. In OOPSLA '97: Proceedings of the 12th ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and applications, pages 184�

200, New York, NY, USA, 1997. ACM.

[58] R.J. Hayton, J.M. Bacon, and K. Moody. Access control in an open distributed environment.

Security and Privacy, IEEE Symposium on, 0:0003, 1998.

[59] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister. System

architecture directions for networked sensors. In In Architectural Support for Programming

Languages and Operating Systems, pages 93�104.

[60] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister. System

architecture directions for networked sensors. SIGPLAN Not., 35(11):93�104, 2000.

[61] Annika Hinze, Kai Sachs, and Alejandro Buchmann. Event-based applications and enabling

technologies. In DEBS '09: Proceedings of the Third ACM International Conference on Dis-

tributed Event-Based Systems, pages 1�15, New York, NY, USA, 2009. ACM.

[62] Aleri Inc. http://www.aleri.com/, Oct. 2009.

[63] Apple Inc. Apple announces over 100,000 apps now available on the app store.

http://www.apple.com/pr/library/2009/11/04appstore.html, Nov. 2009.

[64] Apple Inc. Apple's app store downloads top two billion.

http://www.apple.com/pr/library/2009/09/28appstore.html, Sep. 2009.

[65] Apple Inc. http://www.apple.com/iphone/, Oct. 2009.

[66] Coral8 Inc. Coral8. http://www.coral8.com/, Oct. 2009.

[67] EsperTech Inc. Esper - compex event processing. http://esper.codehaus.org/, Oct. 2009.

111

Bibliography

[68] GolfTek Inc. Golftek indoor golf simulator and swing analyzer products.

http://www.golftek.com/, Jan. 2010.

[69] Google Inc. Developing on a device | android developers.

http://developer.android.com/guide/developing/device.html, Feb. 2010.

[70] Gumstix inc. Gumstix connex - feature overview. Last Accesed 23/09/09.

[71] Innovative Sports Training Inc. Swingtrainer. http://www.innsport.com/Sport, Jan. 2010.

[72] RuleCore Inc. Rulecore. http://www.rulecore.com/, Oct. 2009.

[73] StreamBase Systems Inc. http://www.streambase.com/, Oct. 2009.

[74] ZeroC Inc. Ice for android. http://www.zeroc.com/labs/android/index.html, Dec 2009.

[75] Vision IQ. http://poseidon-tech.com/us/index.html. Last accessed, 13/05/2008.

[76] Gehani Jagadish, N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event speci�cation in an

active object-oriented database. In In Proc. of the ACM SIGMOD International Conference on

Management of Data, pages 81�90, 1992.

[77] Chaiporn Jaikaeo, Chavalit Srisathapornphat, and Chien-Chung Shen. Querying and tasking in

sensor networks. Digitization of the Battlespace V and Battle�eld Biomedical Technologies II,

4037(1):184�194, 2000.

[78] Qingchun Jiang, R. Adaikkalavan, and S. Chakravarthy. Mavestream: Synergistic integration

of stream and event processing. pages 29�29, July 2007.

[79] Qingchun Jiang, Raman Adaikkalavan, Qingchun Jiang, Raman Adaikkalavan, and Sharma

Chakravarthy. Estreams: Towards an integrated model for event and stream processing, 2004.

Technical report, 2004.

[80] D. J. Johnston, M. Fleury, and A. C. Downton. An event-based execution model for e�cient

image processing on workstation clusters and the grid. Pattern Recognition, International Con-

ference on, 1:732�735, 2004.

[81] Jens Jorgensen and Soren Christensen. chapter Executable Design Models for a Pervasive

Healthcare Middleware System, pages 25�40. 2002.

[82] Balakumar Kendai and Sharma Chakravarthy. Load shedding in mavstream: Analysis, imple-

mentation, and evaluation. In BNCOD '08: Proceedings of the 25th British national conference

on Databases, pages 100�112, Berlin, Heidelberg, 2008. Springer-Verlag.

[83] Cory D. Kidd, Robert Orr, Gregory D. Abowd, Christopher G. Atkeson, Irfan A. Essa, Blair

Macintyre, Elizabeth D. Mynatt, Thad Starner, and Wendy Newstetter. The aware home: A

living laboratory for ubiquitous computing research. In CoBuild '99: Proceedings of the Second

112

Bibliography

International Workshop on Cooperative Buildings, Integrating Information, Organization, and

Architecture, pages 191�198, London, UK, 1999. Springer-Verlag.

[84] I. Korhonen and J.E. Bardram. Guest editorial introduction to the special section on pervasive

healthcare. Information Technology in Biomedicine, IEEE Transactions on, 8(3):229�234, Sept.

2004.

[85] Jürgen Krämer and Bernhard Seeger. Pipes: a public infrastructure for processing and exploring

streams. In SIGMOD '04: Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, pages 925�926, New York, NY, USA, 2004. ACM.

[86] Guoli Li and Hans arno Jacobsen. Composite subscriptions in content-based publish/subscribe

systems. In In ACM/IFIP/USENIX 6th International Middleware Conference, pages 249�269,

2005.

[87] C. Liebig, M. Cilia, and A. Buchmann. Event composition in time-dependent distributed sys-

tems. In In CoopIS, pages 70�78. IEEE Computer Press, 1999.

[88] M. Liljedahl., S. Lindberg, and J. Berg. Digiwall - an interactive climbing wall. In International

Conference on Advances in Computer Entertainment Technology (ACE 2005), 2005.

[89] G. Liu, A.K. Mok, and E.J. Yang. Composite events for network event correlation. In In-

tegrated Network Management, 1999. Distributed Management for the Networked Millennium.

Proceedings of the Sixth IFIP/IEEE International Symposium on, pages 247�260, 1999.

[90] Hawk-Eye Innovations Ltd. Hawk-eye innovations. http://www.hawkeyeinnovations.co.uk/,

Jan. 2010.

[91] Kun lung Wu, Philip S. Yu, and Ling Liu. Adaptive load shedding for windowed stream joins. In

In Proc. Int. Conf. on Information and Knowledge Management (CIKM, pages 171�178, 2005.

[92] Chaoying Ma and Jean Bacon. Cobea: A corba-based event architecture. In in Proceedings

of the 4 rd Conference on Object-Oriented Technologies and Systems, USENIX, pages 117�131,

1998.

[93] Samuel Madden and Michael J. Franklin. Fjording the stream: An architecture for queries over

streaming sensor data, 2001.

[94] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. The design of an

acquisitional query processor for sensor networks. In SIGMOD '03: Proceedings of the 2003

ACM SIGMOD international conference on Management of data, pages 491�502, New York,

NY, USA, 2003. ACM.

[95] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tinydb: an ac-

quisitional query processing system for sensor networks. ACM Trans. Database Syst., 30(1):122�

173, 2005.

113

Bibliography

[96] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Anderson. Wire-

less sensor networks for habitat monitoring. In WSNA '02: Proceedings of the 1st ACM inter-

national workshop on Wireless sensor networks and applications, pages 88�97, New York, NY,

USA, 2002. ACM.

[97] Masoud Mansouri-Samani and Morris Sloman. Gem: a generalized event monitoring language

for distributed systems. Distributed Systems Engineering, 4(2):96�108, 1997.

[98] Brian Babcock Mayur, Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding

techniques for data stream systems. In In Proc. of the 2003 Workshop on Management and

Processing of Data Streams (MPDS, 2003.

[99] René Meier and Vinny Cahill. Steam: Event-based middleware for wireless ad hoc network.

In ICDCSW '02: Proceedings of the 22nd International Conference on Distributed Computing

Systems, pages 639�644, Washington, DC, USA, 2002. IEEE Computer Society.

[100] Rene Meier and Vinny Cahill. Exploiting proximity in event-based middleware for collabora-

tive mobile applications. In In Proceedings of the 4th IFIP International Conference on Dis-

tributed Applications and Interoperable Systems (DAISâ��03). Springer-Verlag, pages 285�296.

Springer-Verlag, 2003.

[101] Rene Meier and Vinny Cahill. Taxonomy of distributed event-based programming systems.

Comput. J., 48(5):602�626, 2005.

[102] Sun Microsystems. Rpc: Remote procedure call protocol speci�cation, 1988.

[103] Sun Microsystems. Javabeans api sepci�cation, version 1.01, July 1997.

[104] Sun Microsystems. Java Distributed Event Speci�cation, 1998.

[105] Sun Microsystems. Sunspotworld. http://www.sunspotworld.com/, Oct. 2009.

[106] Robert Munro. Smartphone sales are holding up. http://www.theinquirer.net/inquirer/news/1561143/smartphone-

sales-holding, Nov. 2009.

[107] Joanna Alicja Muras, Vinny Cahill, and Emma Katherine Stokes. A taxonomy of pervasive

healthcare systems. In Pervasive Health Conference and Workshops, 2006, pages 1�10, 29 2006-

Dec. 1 2006.

[108] ndrc. Viking ghost hunt. www.ndrc.ie/portfolio/entertainment/viking-ghost-hunt, Sep. 2010.

[109] Nokia. N96. http://europe.nokia.com/�nd-products/devices/nokia-n96/main/landing, Oct.

2009.

[110] Karl O'Connell, Tom Dinneen, Steven Collins, Brendan Tangney, Neville Harris, and Vinny

Cahill. Techniques for handling scale and distribution in virtual worlds. In EW 7: Proceedings

of the 7th workshop on ACM SIGOPS European workshop, pages 17�24, New York, NY, USA,

1996. ACM.

114

Bibliography

[111] P3ProSwing. P3proswing. Last accessed 29 June 2005.

[112] Peter R. Pietzuch and Jean M. Bacon. Hermes: A distributed event-based middleware archi-

tecture. Distributed Computing Systems Workshops, International Conference on, 0:611, 2002.

[113] Peter R. Pietzuch, Brian Shand, and Jean Bacon. A framework for event composition in dis-

tributed systems. In Middleware '03: Proceedings of the ACM/IFIP/USENIX 2003 Interna-

tional Conference on Middleware, pages 62�82, New York, NY, USA, 2003. Springer-Verlag New

York, Inc.

[114] P.R. Pietzuch, B. Shand, and J. Bacon. Composite event detection as a generic middleware

extension. Network, IEEE, 18(1):44�55, Jan/Feb 2004.

[115] S. Reilly, P. Barron, V. Cahill, K. Moran, and M. Haahr. Digital Sport for Performance Enhance-

ment and Competitive Evolution: Intelligent Gaming Technologies, chapter A General-Purpose

Taxonomy of Computer-Augmented Sports Systems. IGI Global, Hershey, PA, 2009.

[116] P. Remagnino and G. L. Foresti. Ambient intelligence: A new multidisciplinary paradigm.

Systems, Man and Cybernetics, Part A, IEEE Transactions on, 35(1):1�6, 2005.

[117] Swing Revolution. Swing revolution. Last accessed 1st July 2005.

[118] D M Ritchie, S C Johnson, M E Lesk, and B W Kernighan. The c programming language.

pages 85�113, 1986.

[119] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel. Scribe:

The design of a large-scale event noti�cation infrastructure. In NGC '01: Proceedings of the

Third International COST264 Workshop on Networked Group Communication, pages 30�43,

London, UK, 2001. Springer-Verlag.

[120] Stan Zdonik Sbz, Stan Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur Ceintemel, Mag-

dalena Balazinska, and Hari Balakrishnan. The aurora and medusa projects. IEEE Data

Engineering Bulletin, 26, 2003.

[121] Robert W. Schei�er and James Gettys. X Window system: core and extension protocols. Digital

Equipment Corp., Acton, MA, USA, 1997.

[122] Scarlet Schwiderski-Grosche. Context-dependent event detection in sensor networks. Fast ab-

stract on DEBS'08, 2008.

[123] Scarlet Schwiderski-Grosche. Spatio-temporal reasoning with composite events in mobile sys-

tems. Fast abstract on DEBS'08, 2008.

[124] Scarlet Schwiderski-Grosche and Ken Moody. The spatec composite event language for spatio-

temporal reasoning in mobile systems. In DEBS '09: Proceedings of the Third ACM Interna-

tional Conference on Distributed Event-Based Systems, pages 1�12, New York, NY, USA, 2009.

ACM.

115

Bibliography

[125] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and Kirk Pruhs. E�cient

scheduling of heterogeneous continuous queries. In In The International Journal on Very Large

Data Bases (VLDB J, 2006.

[126] Chien-Chung Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information networking archi-

tecture and applications. Personal Communications, IEEE, 8(4):52�59, Aug 2001.

[127] Andrew W. B. Smith and Brian C Lovell. Autonomous sports training from visual cues. In

Australian and New Zealand Intelligent Information Systems, 2003.

[128] Chavalit Srisathapornphat, Chaiporn Jaikaeo, and Chien-Chung Shen. Sensor information net-

working architecture. Parallel Processing Workshops, International Conference on, 0:23, 2000.

[129] Gradimir Starovic, Vinny Cahill, and Brendan Tangney. An event based object model for

distributed programming. In Dublin City University, pages 72�86. Springer-Verlag, 1995.

[130] Richard W. Stevens. Unix Network Programming. Prentice Hall PTR, January 1990.

[131] Sun. Java messaging service. http://java.sun.com/products/jms/.

[132] Information Society Technologies. Embedded systems - facts and �gures.

http://cordis.europa.eu/ist/embedded/facts_�gures.htm, Dec. 2006.

[133] Crossbow Technology. Crossbow technology. http://www.xbow.com/, Sep. 2009.

[134] Monica Tentori and Jesus Favela. Activity-aware computing for healthcare. IEEE Pervasive

Computing, 7(2):51�57, 2008.

[135] Upkar Varshney. Pervasive healthcare and wireless health monitoring. Mobile Networks and

Applications, 12(2):113�127, Jun 2007.

[136] Mark Weiser. The computer for the 21st century. Scienti�c American, 265(3):94�104, sep 1991.

http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html.

[137] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing over

streams. In SIGMOD '06: Proceedings of the 2006 ACM SIGMOD international conference on

Management of data, pages 407�418, New York, NY, USA, 2006. ACM.

[138] Yong Yao and Johannes Gehrke. The cougar approach to in-network query processing in sensor

networks. SIGMOD Rec., 31(3):9�18, 2002.

[139] Detlef Zimmer, Axel Meckenstock, and Rainer Unland. A general model for event speci�cation

in active database management systems. In In Proceeding 5th DOOD, pages 419�420, 1997.

116

Appendix A

Results of Experiments

Event Frequency (Hz) Total CPU Time (s) Total Time(s) CPU Utilisation(%)

2.96 100 300.36 0.33
2.96 103 300.34 0.34
2.96 100 300.32 0.33
11.89 392 300.34 1.31
11.89 388 300.33 1.29
11.85 394 300.32 1.31
29.37 977 300.35 3.25
29.37 975 300.33 3.25
29.37 981 300.33 3.27
71.41 2383 300.39 7.93
71.37 2375 300.39 7.91
71.54 2376 300.38 7.91
136.29 4522 300.47 15.05
136.25 4529 300.47 15.07
136.42 4512 300.46 15.02
249.48 8207 300.78 27.29
249.44 8207 301.79 27.28
246.2 8205 300.87 26.91

Table A.1: CPU Utilisation C-AESOP

117

Appendix A. Results of Experiments

Event Frequency Total CPU Time (s) Total Time (s) CPU Utilisation

2.94 .88 300.37 .29
2.94 .89 300.38 .3
2.94 .90 300.37 .3
11.88 3.57 300.36 1.19
11.88 3.56 300.38 1.18
11.88 3.58 300.37 1.19
29.37 8.82 300.37 2.93
29.4 8.80 300.39 2.93
29.4 8.80 300.39 2.92
71.37 20.98 300.48 6.98
71.4 21.30 300.44 7.09
71.4 21.40 300.44 7.12
136.26 40.84 300.54 13.59
136.26 40.60 300.54 13.51
136.26 40.61 300.54 13.51
249.6 74.67 300.82 24.82
249.57 74.57 300.85 24.781
249.54 74.77 300.91 24.85

Table A.2: Steam CPU Utilisation

Event Frequency (Hz) Total Time CPU time CPU Utilisation RAM

3.96 565 149 .26 2.087
3.69 314 89 .28 2.087
3.96 313 97 .31 2.087
9.74 347 262 .76 2.087
9.72 288 223 .77 2.087
9.77 267 207 .76 2.087
23.37 537 783 1.45 2.087
23.36 488 717 1.46 2.087
23.36 317 469 1.47 2.087
48.21 381 936 2.46 2.087
48.15 401 942 2.35 2.087
48.04 260 656 2.52 2.087
92.7 266 1194 4.48 2.087
92.91 319 1407 4.41 2.087
93.07 302 1339 4.43 2.087
174.46 260 2143 8.24 2.087
172.55 255 2213 8.68 2.087
174.16 221 1811 8.19 2.087

Table A.3: Custom Event System Performance

118

Appendix A. Results of Experiments

Event Frequency (Hz) Total Time CPU time CPU Utilisation RAM

3.99 303 108 .36 2.09
3.98 265 92 .35 2.09
3.98 330 118 .36 2.09
9.74 270 233 .86 2.09
9.74 310 263 .85 2.09
9.74 280 222 .85 2.09
23.42 302 558 1.85 2.09
23.47 479 883 1.84 2.09
23.45 313 588 1.88 2.09
47.79 457 1350 2.954 2.09
47.62 267 790 2.96 2.09
47.81 281 826 2.94 2.09
92.15 237 1347 5.68 2.09
92.04 256 1451 5.67 2.09
92.01 314 1777 5.66 2.09
170.92 380 3950 10.39 2.09
172.142 126 1312 10.41 2.09
171.96 321 3335 10.39 2.09

Table A.4: J-AESOP Performance

119

Appendix B

Additional Source Code

Listing B.1: The Fall Detection Example Application in C-AESOP

1 #inc lude " steam_inter face . h"

2 #inc lude " libmeh . h"

3 #inc lude " vec to r . c"

4 #inc lude " a c c e l e r a t i o n . h"

5 #inc lude "emergency . h"

6 #de f i n e ACCELEROMETER_HIP "ACCELEROMETER_HIP"

7 #de f i n e ACCELEROMETER_WRIST "ACCELEROMETER_WRIST"

8 #de f i n e ACCELEROMETER_SHOE "ACCELEROMETER_SHOE"

9 #inc lude <time . h>

10 #inc lude <s td i o . h>

12 void parse_event_1 (event ∗) ; // t h i s i s my c a l l b a c k func t i on f o r STEAM need one

f o r each input stream

13 void parse_event_2 (event ∗) ;

14 void parse_event_3 (event ∗) ;

16 int execut ion_pol i cy () ;

17 stream∗ inputs [3] ;

18 s t r u c t tm ∗ l o c a l ;

19 time_t t ;

20 void handler (acce l_vector ∗ hip , acce l_vector ∗ wrist , acce l_vector ∗ shoe ,

emergency∗ r e s u l t) {

22 s t r u c t accel_vector_stream_entry ∗np ;

23 s t r u c t acce l_vec to r_l i s thead ∗head = ((accel_vector_stream ∗) inputs [0]) −>

head ;

120

Appendix B. Additional Source Code

24 for (np = head−>tqh_f i r s t ; np != NULL; np = np−>en t r i e s . tqe_next) {

25 i f (magnitude (&(np−>value) ,3) > 15 . 0) {

26 t = time (NULL) ;

27 l o c a l = l o c a l t ime (&t) ;

28 s t r cpy (r e s u l t −> time , asct ime (l o c a l)) ; // a s s i gn s the curren t time to

the emergency

29 return ;

30 }

31 }

32 head = ((accel_vector_stream ∗) inputs [1]) −> head ;

33 for (np = head−>tqh_f i r s t ; np != NULL; np = np−>en t r i e s . tqe_next) {

34 i f (magnitude (&(np−>value) ,3) > 15 . 0) {

35 t = time (NULL) ;

36 l o c a l = l o c a l t ime (&t) ;

37 s t r cpy (r e s u l t −> time , asct ime (l o c a l)) ; // a s s i gn s the curren t time to

the emergency

38 return ;

39 }

40 }

41 head = ((accel_vector_stream ∗) inputs [2]) −> head ;

42 for (np = head−>tqh_f i r s t ; np != NULL; np = np−>en t r i e s . tqe_next) {

43 i f (magnitude (&(np−>value) ,3) > 15 . 0) {

44 t = time (NULL) ;

45 l o c a l = l o c a l t ime (&t) ;

46 s t r cpy (r e s u l t −> time , asct ime (l o c a l)) ; // a s s i gn s the curren t time to

the emergency

47 return ;

48 }

49 }

50 }

52 multi_event_handler∗ fa l l_detect ion_meh ;

54 int main () {

56 setup_steam () ;

57 stream∗ output = (stream ∗) create_swing_output_stream (1 ,EMERGENCY_SUBJECT) ;

58 fa l l_detect ion_meh =create_multi_event_handler (3 , inputs , output , handler ,

execut ion_pol i cy) ;

59 inputs [0] = (stream ∗) create_accel_vector_input_stream (10 ,ACCELEROMETER_HIP,

parse_event_1 , fa l l_detect ion_meh) ;

60 inputs [1] = (stream ∗) create_accel_vector_input_stream (10 ,ACCELEROMETER_WRIST

121

Appendix B. Additional Source Code

, parse_event_2 , fa l l_detect ion_meh) ;

61 inputs [2] = (stream ∗) create_accel_vector_input_stream (10 ,ACCELEROMETER_SHOE,

parse_event_3 , fa l l_detect ion_meh) ;

63 while (1) {

64 s l e e p (1000) ;

65 }

66 }

68 // checks the h ip acce l e rometer output to see i f the p a t i e n t has changed pos ture

69 int execut ion_pol i cy () {

70 p r i n t f (" Ca l l EP \n") ;

71 s t r u c t accel_vector_stream_entry ∗ l a t e s t ;

72 s t r u c t accel_vector_stream_entry ∗ prev ious ;

73 f loat th r e sho ld = 1 ; // radian va lue f o r t h r e s h o l d f o r when we dec ide the

person i s l y i n g down

74 acce l_vector upr ight = {0 ,−9.8 ,0} ;

75 i f (! inputs [0] −> sta tu s)

76 return 0 ; // i f the h ip acce l e rometer has not go t a new read ing

78 s t r u c t acce l_vec to r_l i s thead ∗head = ((accel_vector_stream ∗) inputs [0]) −>

head ;

79 l a t e s t = head−>tqh_f i r s t ;

80 prev ious = l a t e s t −>en t r i e s . tqe_next ;

81 i f (prev ious == NULL) {

82 // only one value , no change in pos ture

83 return 0 ;

84 }

85 i f (angle_between (&(l a t e s t −> value) , &upr ight , 3) > thre sho ld &&

86 angle_between (&(prev ious −> value) , &upr ight , 3) < thre sho ld) {

87 p r i n t f (" F i re Multi−Event Handler \n") ;

88 return 1 ; // change in pos ture d e t e c t e d

89 }

90 }

93 void parse_event_1 (event ∗ev) {

95 parse_accel_vector_event (ev , inputs [0]) ;

97 }

122

Appendix B. Additional Source Code

99 void parse_event_2 (event ∗ev) {

100 parse_accel_vector_event (ev , inputs [1]) ;

101 }

102 void parse_event_3 (event ∗ev) {

103 parse_accel_vector_event (ev , inputs [2]) ;

104 }

Listing B.2: The Fall Detection Example Application in J-AESOP

1 package i e . ndrc . vgh .AESOP;

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l . L i s t ;

6 public class Fa l lDe t e c t i on extends MultiEventHandler {

8 EventStream s1 ;

9 EventStream s2 ;

10 EventStream s3 ;

11 EventManager manager = EventManager . g e t In s tance () ;

12 double th r e sho ld = 60 ;

14 public Fa l lDe t e c t i on () {

15 Event e1 = new Event ("ACCEL_HIP") ;

16 Event e2 = new Event ("ACCEL_ANKLE") ;

17 Event e3 = new Event ("ACCEL_WRIST") ;

18 s1 = new EventStream (10 , e1 . type , this) ;

19 s2 = new EventStream (10 , e2 . type , this) ;

20 s3 = new EventStream (10 , e2 . type , this) ;

21 }

23 public boolean execu t i onPo l i cy () {

24 I t e r a t o r <Event> acce l e ra t i on_1 = s1 . getWindow () . i t e r a t o r () ;

25 MathVector upr ight_acce l_vector = new MathVector (0 , −9.8 , 0) ;

26 i f (MathVector . angleBetween (acce l e ra t i on_1 . next () ,

upr ight_acce l_vector) > thre sho ld) {

27 i f (acce l e ra t i on_1 . hasNext ()

28 && MathVector . angleBetween (

acce l e ra t i on_1 . next () ,

29 upr ight_acce l_vector) <

thre sho ld) {

123

Appendix B. Additional Source Code

30 return true ; // pos ture has changed from

v e r t i c a l to h o r i z on t a l

31 }

32 }

33 return fa l se ; // no change in pos ture

35 }

37 public void handler () {

38 I t e r a t o r <Event> acce l e ra t i on_1 = s1 . getWindow () . i t e r a t o r () ;

39 I t e r a t o r <Event> acce l e ra t i on_2 = s2 . getWindow () . i t e r a t o r () ;

40 I t e r a t o r <Event> acce l e ra t i on_3 = s3 . getWindow () . i t e r a t o r () ;

42 while (acce l e ra t i on_1 . hasNext ()) {

43 i f (vectorMagnitude (acce l e ra t i on_1 . next ()) > 15) {

44 call_ambulance () ;

45 return ;

46 }

47 }

48 while (acce l e ra t i on_2 . hasNext ()) {

49 i f (vectorMagnitude (acce l e ra t i on_2 . next ()) > 15) {

50 call_ambulance () ;

51 return ;

52 }

53 }

54 while (acce l e ra t i on_3 . hasNext ()) {

55 i f (vectorMagnitude (acce l e ra t i on_3 . next ()) > 15) {

56 call_ambulance () ;

57 return ;

58 }

59 }

61 }

63 private void call_ambulance () {

64 // TODO Auto−genera ted method s tub

66 }

68 private int vectorMagnitude (Event next) {

69 // TODO Auto−genera ted method s tub

70 return 0 ;

124

Appendix B. Additional Source Code

71 }

73 }

125

Appendix C

CD of Source Code

126

