
The SMG DSM System

Enabling Shared Memory for the Grid

A thesis submitted for the degree of
Doctor of Philosophy

at

University of Dublin, Trinity College

Title: The SMG DSM System

Enabling Shared Memory for the Grid

Presented by: John Paul Ryan

School: Computer Science and Statistics

Supervisor: Dr. Brian Coghlan

Date: June 2007





Declaration

This thesis has not been submitted as an exercise for a degree at any other University.
Except where otherwise stated, the work described herein has been carried out by the
author alone.
I agree that the Library in Trinity College may lend or copy this thesis upon request.

John P. Ryan
June 2007

i



ii



Acknowledgements

Firstly, I would like to offer my my sincerest gratitude and thanks to my supervisor Dr.
Brian Coghlan, for his support and input to this thesis over the past few years. He was
always willing to offer advice and debate even the minutest detail of this work.
My grateful thanks to Professor John G. Byrne of the Department of Computer Science
for my initial postgraduate funding, and the European Union and Science Foundation
Ireland (SFI) for their funding through the Crossgrid and WebCom-G projects. Also my
thanks to the Trinity Centre for High Performance Computing (TCHPC) [1] and Irish
Centre for High-End Computing (ICHEC) [2] for permission to use their computing
facilities and for the support of their personnel, in particular Jimmy Tang of TCHPC,
in helping to resolve problems.
Within the Dept. of Computer Science, Trinity College Dublin, I would also like to
thank various members (past & present) of the departmental admin staff, the hardware
technicians and systems support staff for their time, that on occasions that was above
and beyond the call of duty.
I would also like to thank all members of the research group of which I am a member -
Computer Architecture & Grid Research Group (CAG). Many people went out of their
way to help with the numerous problems, some in particular spending aeons solving my
problems. My thanks to (in no particular order): Eamonn Kenny and Geoff Quigley who
have been closest (literally) in times of need (apologies for all those annoying questions);
Jonathan Dukes, David O’ Callaghan and Stuart Kenny for help with the myriad of
issues that required your input when I shared an office with you; and under the guise of
Grid-Ireland Help, John Walsh and Stephen Childs for their support with issues arising
from the use of the MPI and Grid software.
Outside the confines of Trinity I would like to thank friends and in particular my house-
mates John and Thomas Conway for tolerating my bad moods, procrastinations, and
highly irregular working hours over the past few years. Lastly I would like to thank
my family for their encouragement and support over the years, these include my sisters:
Natasha, Katie (I think our shared experience in completing a research degree was far
more beneficial to me!), Fiona, Monica, Pamela, and my parents, Mary and Bill.
Again, thank you all (and anyone that I’ve omitted).

iii



iv



Summary

Parallel computing has taken the first steps along its next evolutionary route: com-
putational grids are now a reality. Success, however, depends not only on the tools
available, but allowing the knowledge base that currently exists in constructing parallel
applications to be employed by those same engineers, scientists and other groups that
will make use of this new platform. One basic requirement will be the availability of
familiar programming methods and paradigms. Message passing has a natural affinity
towards wide area network computing and requires little effort, if any, in order to grid
enable. Implementations exist for the most common operating systems and hardware
architectures. The shared memory paradigm is a different question as the necessary
physical memory resources cannot be readily shared among distributed processors.
Distributed Shared Memory (DSM) has being promoted since the 1990s as a method to
execute shared memory programs on distributed machines. In this thesis the barriers
to a successful DSM implementation are highlighted; some of these include: support for
heterogeneous environments, overall application performance, and absence of a standard
programming interface. It will show how the latter problem could be resolved by provid-
ing a source-to-source compiler that takes as input a shared-memory application written
using a standard such as OpenMP, where the target is the DSM API. If implemented,
many applications written for a shared memory setting would require minimal changes
in order to execute in a grid setting.
The approach taken involving DSM is less efficient than message passing, but this is
mitigated by using the DSM to help identify the areas of a program that account for
the most overhead, and in a localised fashion and with minimal effort on behalf of the
programmer convert these areas of shared memory code to the more efficient message
passing code; this process can be done in an incremental fashion, thereby allowing for
the exertion of resources only where necessary. In order to achieve this a hybrid shared-
memory/message passing environment was developed, in addition to tools to direct the
’hybridisation’.
Since grids are coming into the mainstream, it would be most beneficial if the most
natural parallel computing paradigm, shared memory, was supported. At this time the
most obvious way to do this is to construct a DSM run-time system for the grid, that
provides various levels of user configuration and allows user-directed optimisations to
mask the latencies between physically distributed nodes.

v



vi



CONTENTS

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Parallel Computing 7

2.1 A Case for Parallel Processing . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Computing Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Parallel Programming Models . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Parallel Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Other Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Wide-Area Parallel Computing 27

3.1 Wide Area Parallel Computing Platforms . . . . . . . . . . . . . . . . . 28
3.2 Programming Models for Wide Area Parallel Computing . . . . . . . . . 29
3.3 Evaluating Parallelism on the Grid . . . . . . . . . . . . . . . . . . . . . 30
3.4 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 DSM 35

4.1 Shared Memory Access Patterns . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Shared Memory Access modes . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 DSM Data Distribution Algorithms . . . . . . . . . . . . . . . . . . . . . 38
4.4 System Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Memory Consistency Models . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



CONTENTS viii

4.6 Memory Coherence Protocols . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Coherence Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.8 DSM Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Relevant Issues 59
5.1 Distributed Communication . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Information and monitoring systems . . . . . . . . . . . . . . . . . . . . 66
5.3 The User API: Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Shared Memory for Grids (SMG) 75
6.1 DSM Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 SMG DSM architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Internal DSM Engine Operation . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Helloworld using the SMG API . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Engine communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6 SMG Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.7 Run-time execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.8 Other Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 SMG Shared Memory 89
7.1 SMG Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 SMG consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3 Write trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 SMG Coherency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5 Write collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6 User Multi-threading Issues . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.7 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 SMG Synchronisation 119
8.1 Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2 Lock Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.3 SMG Barrier Primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.4 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.5 Summary of decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 Optimising for the Grid Application 131
9.1 Integrating Information & Monitoring Services with SMG . . . . . . . . 132
9.2 Environment Information . . . . . . . . . . . . . . . . . . . . . . . . . . 134



CONTENTS ix

9.3 Monitoring Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.4 Hybridising Parallel applications . . . . . . . . . . . . . . . . . . . . . . 138
9.5 Hybridisation Identification . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.6 Incremental Hybridisation . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.7 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10 Evaluation 147
10.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.2 Performance of SMG versus MPI . . . . . . . . . . . . . . . . . . . . . . 157
10.3 Benefits of Hybridisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.4 Grid Performance of Applications . . . . . . . . . . . . . . . . . . . . . . 174
10.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

11 Review 181
11.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
11.3 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A SMG Results 191

B DSM Reference 215

C DSM APIs 219

D Enabling Technology 223

E SMG Reference Manual 235
E.1 Developing with SMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
E.2 smg.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
E.3 smg ec.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
E.4 SMG Source Manifest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
E.5 Extending SMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

F SMG Applications 287

Glossary 303

References 305

Index 323



CONTENTS x



LIST OF FIGURES

1.1 DSM Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Enabling efficient shared memory on the grid . . . . . . . . . . . . . . . 4

2.1 Parallel decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Potential Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Johnson’s Extension to Flynn’s Taxonomy . . . . . . . . . . . . . . . . . 13
2.4 Basic Machine Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Shared & Distributed Memory Hybrids . . . . . . . . . . . . . . . . . . . 16
2.6 Barrier primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Grid: wide-area distributed computing . . . . . . . . . . . . . . . . . . . 28
3.2 Overhead in hierarchical decomposition . . . . . . . . . . . . . . . . . . 31

4.1 Failure to adhere to Strict Consistency . . . . . . . . . . . . . . . . . . . 42
4.2 Sequential consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 PRAM consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Weak consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Release Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Lazy-Release Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Entry Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 Treadmarks Multi-Writer support . . . . . . . . . . . . . . . . . . . . . . 56
4.9 Programming Burden vs Control Messages . . . . . . . . . . . . . . . . . 58

5.1 Socket Layer Communication . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Grid Monitoring Architecture (GMA) . . . . . . . . . . . . . . . . . . . 67

6.1 SMG Conceptual Architecture . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 DSM Engine Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1 Shared Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 SMG SEGV Handler State Diagram . . . . . . . . . . . . . . . . . . . . 97

xi



LIST OF FIGURES xii

7.3 Twin page on write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4 Twin all on write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5 Twin nothing on write . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.6 Integration of EC Consistency & Update protocol . . . . . . . . . . . . . 102
7.7 Subscription Protocol State Diagram . . . . . . . . . . . . . . . . . . . . 105
7.8 Subscription Protocol Trapping Handler . . . . . . . . . . . . . . . . . . 107
7.9 Application of Subscription Protocol . . . . . . . . . . . . . . . . . . . . 109
7.10 Data transfer under different different protocols . . . . . . . . . . . . . . 110
7.11 Subscription Example State Change Diagram . . . . . . . . . . . . . . . 112
7.12 Dual porting shared memory mapping . . . . . . . . . . . . . . . . . . . 116

8.1 Lock Acquire flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.2 Lock Release flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3 EC-MW Write collection at a barrier . . . . . . . . . . . . . . . . . . . . 126
8.4 SMG Barrier Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.5 Barrier Event Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.1 R-GMA and BrowserServlet . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.2 SMG Information UML Diagram . . . . . . . . . . . . . . . . . . . . . . 135
9.3 SMG Monitoring UML Diagram . . . . . . . . . . . . . . . . . . . . . . 137
9.4 SMG and Hybrid use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.5 Hybridisation GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.6 Hybrid Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.7 General steps involved the Incremental hybridisation . . . . . . . . . . . 144

10.1 Performance of different collective operations . . . . . . . . . . . . . . . 155
10.2 SMG System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 156
10.3 EP Total Data sent (SMG is obscured by SMG-sub) . . . . . . . . . . . 157
10.4 EP Total Messages sent (SMG-sub obscures SMG) . . . . . . . . . . . . 158
10.5 EP Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.6 Matrix Total Data sent . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.7 Matrix Total Messages sent . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.8 Matrix Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.9 DSM pagefault count for Matrix . . . . . . . . . . . . . . . . . . . . . . 161
10.10Laplace Total Data sent . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.11Laplace Total Messages sent . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.12Laplace Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.13Laplace - Pagefault count for different protocols . . . . . . . . . . . . . . 164
10.14SOR - Total Message payload of MPI and SMG consistency protocols . 165
10.15SOR - Total Messages sent . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.16SOR - Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
10.17SOR - Pagefault for different protocols . . . . . . . . . . . . . . . . . . . 167
10.18Matrix - Total messages with MPI/SMG hybrid version . . . . . . . . . 168
10.19Matrix - Total data with MPI/SMG hybrid version . . . . . . . . . . . . 169



LIST OF FIGURES xiii

10.20Matrix - Speedup of MPI/SMG hybrid version . . . . . . . . . . . . . . 169
10.21Laplace - Total Message payload with MPI/SMG hybrid version . . . . 170
10.22Laplace - Total Messages with MPI/SMG hybrid version . . . . . . . . . 171
10.23Laplace - Speedup with MPI/SMG hybrid version . . . . . . . . . . . . 171
10.24SOR - Total Message payload with MPI/SMG hybrid version . . . . . . 172
10.25SOR - Total Messages with MPI/SMG hybrid version . . . . . . . . . . 173
10.26SOR - Speedup with MPI/SMG hybrid version . . . . . . . . . . . . . . 173
10.27Matrix - Total inter-site message count . . . . . . . . . . . . . . . . . . . 175
10.28Nearest Neighbour Problem-Barrier Mapping . . . . . . . . . . . . . . . 178

11.1 Breakdown of Computer Architecture in Top 500 . . . . . . . . . . . . . 190

A.1 EP (with user multi-threads) - Total Data sent . . . . . . . . . . . . . . 196
A.2 EP (with user multi-threads) - Total Messages sent . . . . . . . . . . . . 197
A.3 EP (with user multi-threads) - Speedup . . . . . . . . . . . . . . . . . . 197
A.4 EP - Total inter-site message count . . . . . . . . . . . . . . . . . . . . . 198
A.5 EP - Total intra-site message count . . . . . . . . . . . . . . . . . . . . . 198
A.6 EP - Total inter-site data volumes . . . . . . . . . . . . . . . . . . . . . 199
A.7 EP - Total intra-site data volume . . . . . . . . . . . . . . . . . . . . . . 199
A.8 Matrix (with user multi-threads) - Total Data sent . . . . . . . . . . . . 202
A.9 Matrix (with user multi-threads) - Total Messages sent . . . . . . . . . . 202
A.10 Matrix (with user multi-threads) - Speedup . . . . . . . . . . . . . . . . 203
A.11 Laplace (with user multi-threads) - Total Data sent . . . . . . . . . . . . 205
A.12 Laplace (with user multi-threads) - Total Messages sent . . . . . . . . . 206
A.13 Laplace (with user multi-threads) - Speedup . . . . . . . . . . . . . . . . 206
A.14 Laplace - Total inter-site message count . . . . . . . . . . . . . . . . . . 207
A.15 Laplace - Total intra-site message count . . . . . . . . . . . . . . . . . . 207
A.16 Laplace - Total inter-site data volumes . . . . . . . . . . . . . . . . . . . 208
A.17 Laplace - Total intra-site data volume . . . . . . . . . . . . . . . . . . . 208
A.18 SOR (with user multi-threads) - Total Data sent . . . . . . . . . . . . . 211
A.19 SOR (with user multi-threads) - Total Messages sent . . . . . . . . . . . 211
A.20 SOR (with user multi-threads) - Speedup . . . . . . . . . . . . . . . . . 212
A.21 SOR - Total inter-site message count . . . . . . . . . . . . . . . . . . . . 212
A.22 SOR - Total intra-site message count . . . . . . . . . . . . . . . . . . . . 213
A.23 SOR - Total inter-site data volumes . . . . . . . . . . . . . . . . . . . . 213
A.24 SOR - Total intra-site data volume . . . . . . . . . . . . . . . . . . . . . 214

D.1 MDS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
D.2 Netlogger Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

E.1 Execution of helloworld.c . . . . . . . . . . . . . . . . . . . . . . . . . . 238
E.2 Multiple-Writer support in SMG . . . . . . . . . . . . . . . . . . . . . . 242
E.3 dsm.c source file include graph . . . . . . . . . . . . . . . . . . . . . . . 278



LIST OF FIGURES xiv



LIST OF TABLES

2.1 Workload versus application size for matrix multiplication . . . . . . . . 11

4.1 Parameters for DSM algorithm cost functions . . . . . . . . . . . . . . . 39
4.2 Possible DSM Granularity Sizes . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 Metrics involved for SEGV Write Trapping Schemes. . . . . . . . . . . . 100

10.1 Infrastructure attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
10.2 Simulated Inter-site Communication Bandwidth (MB/s) . . . . . . . . . 153
10.3 Simulated Inter-site Communication Latency (ms) . . . . . . . . . . . . 153
10.4 Basic operation costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.5 Speed-up for EP execution on IITAC . . . . . . . . . . . . . . . . . . . . 158
10.6 Speed-up for Matrix execution on IITAC . . . . . . . . . . . . . . . . . . 160
10.7 Laplace - Message payload (in bytes) . . . . . . . . . . . . . . . . . . . . 162
10.8 SOR - Message payload (in bytes) . . . . . . . . . . . . . . . . . . . . . 165
10.9 Speed-up for Matrix execution on IITAC . . . . . . . . . . . . . . . . . . 168
10.10Message payload (in bytes) for hybrid Laplace . . . . . . . . . . . . . . . 170
10.11Message payload (in bytes) for hybrid SOR . . . . . . . . . . . . . . . . 172
10.12EP - speedup for execution on Grid with S=4 sites . . . . . . . . . . . . 174
10.13Matrix - speedup for execution on Grid with S=4 sites . . . . . . . . . . 174
10.14Laplace - Execution times on simulated Grid with S = 4 sites . . . . . . 175
10.15Laplace - Inter-site messages on simulated Grid with S = 4 sites . . . . 175
10.16SOR - Execution times on simulated Grid with S = 4 sites . . . . . . . . 176
10.17SOR - Inter-site messages on Grid with S = 4 sites . . . . . . . . . . . . 176
10.18Message count with & without info. system . . . . . . . . . . . . . . . . 176

11.1 Architecture Breakdown of top500 (June-2001/June-2006) . . . . . . . . 189

A.1 pingping results for IITAC cluster . . . . . . . . . . . . . . . . . . . . . 192
A.2 pingpong results for IITAC cluster . . . . . . . . . . . . . . . . . . . . . 192
A.3 MPI Sendrecv benchmark for IITAC cluster . . . . . . . . . . . . . . . . 193

xv



LIST OF TABLES xvi

A.4 pingping results for Molch cluster . . . . . . . . . . . . . . . . . . . . . . 193
A.5 pingping results for Molch cluster . . . . . . . . . . . . . . . . . . . . . . 194
A.6 MPI Sendrecv benchmark for Molch cluster . . . . . . . . . . . . . . . . 194
A.7 EP using MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.8 EP SMG update protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.9 EP using SMG with subscription . . . . . . . . . . . . . . . . . . . . . . 195
A.10 EP using SMG with multiple user threads . . . . . . . . . . . . . . . . . 196
A.11 EP using SMG in a simulated Grid with information . . . . . . . . . . . 196
A.12 EP using SMG in a simulated Grid without information . . . . . . . . . 196
A.13 Matrix Multiplication implemented using MPI . . . . . . . . . . . . . . 200
A.14 Matrix SMG update protocol . . . . . . . . . . . . . . . . . . . . . . . . 200
A.15 Matrix using a hybrid of SMG & MPI . . . . . . . . . . . . . . . . . . . 200
A.16 Matrix using SMG with subscription . . . . . . . . . . . . . . . . . . . . 201
A.17 Matrix using SMG with multiple user threads . . . . . . . . . . . . . . . 201
A.18 Matrix using SMG in a simulated Grid with information . . . . . . . . . 201
A.19 Matrix using SMG in a simulated Grid without information . . . . . . . 201
A.20 Laplace implemented using MPI . . . . . . . . . . . . . . . . . . . . . . 203
A.21 Laplace SMG update protocol . . . . . . . . . . . . . . . . . . . . . . . . 204
A.22 Laplace using a hybrid of SMG & MPI . . . . . . . . . . . . . . . . . . . 204
A.23 Laplace using SMG with subscription . . . . . . . . . . . . . . . . . . . 204
A.24 Laplace using SMG with multiple user threads . . . . . . . . . . . . . . 204
A.25 Laplace using SMG in a simulated Grid with information . . . . . . . . 204
A.26 Laplace using SMG in a simulated Grid without information . . . . . . 205
A.27 SOR implemented using MPI . . . . . . . . . . . . . . . . . . . . . . . . 209
A.28 SOR SMG update protocol . . . . . . . . . . . . . . . . . . . . . . . . . 209
A.29 SOR using a hybrid of SMG & MPI . . . . . . . . . . . . . . . . . . . . 209
A.30 SOR using SMG with subscription . . . . . . . . . . . . . . . . . . . . . 210
A.31 SOR using SMG with multiple user threads . . . . . . . . . . . . . . . . 210
A.32 SOR using SMG in a simulated Grid with information . . . . . . . . . . 210
A.33 SOR using SMG in a simulated Grid without information . . . . . . . . 210

B.1 Hardware DSM implementations . . . . . . . . . . . . . . . . . . . . . . 216
B.2 Hybrid DSM implementations . . . . . . . . . . . . . . . . . . . . . . . . 216
B.3 Software DSM implementations . . . . . . . . . . . . . . . . . . . . . . . 217

E.1 SMG DSM Core Engine Code . . . . . . . . . . . . . . . . . . . . . . . . 236
E.2 SMG DSM Core Engine Code . . . . . . . . . . . . . . . . . . . . . . . . 279
E.3 SMG OS independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
E.4 SMG Consistency Implementations . . . . . . . . . . . . . . . . . . . . . 280
E.5 SMG communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
E.6 SMG Information & Monitoring . . . . . . . . . . . . . . . . . . . . . . . 281
E.7 SMG Utility Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281



xvii





CHAPTER 1

Introduction

Parallel computing is an enabling approach that allows the execution of compute in-
tensive applications in a timelier manner. This is ultimately achieved by dividing work
among a number of computer processors. Shared memory is the favoured environment
for constructing these parallel applications, mainly due to its single address space, which
dramatically reduces the programming effort required compared with the use of other
programming models. Due to technical, and by association, financial, reasons with the
underlying shared-memory hardware architectures, the scalability of these applications
have been limited to tens, and rarely hundreds, of tightly-coupled processors.
In the early 1990s cluster computing started to become more prevalent as an alter-
native architecture. Clusters, usually consisting of a group of loosely coupled com-
modity machines, potentially consisting of thousands of nodes interconnected with a
high-bandwidth, low-latency interconnect, provide a means of constructing large scale,
low-cost high performance computers. Similar technical (and financial) reasons have
resulted in only a small proportion of clusters supporting a common shared memory.
With the advent of the Internet and wide area computing, the natural progression was
toward the sharing of resources, and so computational grids evolved. One important
question is how to efficiently exploit this new platform.
A computational grid will consist of a number of physically distributed sites, potentially
consisting of a variety of different hardware architectures. Data intensive (input/out-
put) applications would be particularly suited to a computational grid, while coarsely
grained (see Section 2.5) applications such as seti@home [3] and folding@home have al-
ready demonstrated that wide area computing is feasible. Such applications can execute
in parallel across a number of distributed sites when the application data is co-located.
It is vital to overall performance that these applications produce little inter-site traffic,
while intra-site traffic is of a lesser concern as it impinges less on performance. Sites can
be selected according to the availability of suitable hardware.
The shared memory paradigm natural to multiprocessors and some clusters is not avail-
able on the grid (outside the work of this thesis), yet the apparently more efficient
message passing paradigm introduces excessive programming burdens. In order to em-

1



RESEARCH GOALS 2

ploy a shared memory style on a grid, a virtual implementation of a shared memory
subsystem (and supporting management layer), known as Distributed Shared Memory
(DSM) would be required, allowing a programmer to develop an application in a shared
memory style, yet execute it in a grid environment. This approach would need to be flex-
ible in order to allow dynamic optimisations, especially in the communication patterns
of the application (otherwise performance would be very poor due to the excessive la-
tencies involved on grids). Where an application employing the DSM exhibits excessive
communication in certain locations, then these areas might employ the more efficient
message passing style.
Ideally the DSM would be constructed using only standard libraries, and no special com-
piler would be required for the compilation of the user’s application code. A user’s grid
application could then be constructed using a shared memory API, or where practical
a parallelising compiler could be used to target the DSM API. Optimisations could be
obtained from employing profiling information which can be gathered from a grid infor-
mation system. The important point is that only an optimised, not a naive, approach
has any possibility of being worthwhile in a grid environment.

Figure 1.1: DSM Concept

1.1 Research Goals

The main goal of this thesis is to construct and evaluate the use of a grid-enabled DSM
system, that will allow easy porting of explicit shared memory codes using a familiar
and standard API. Assuming this can be achieved, the application can then be executed
in a distributed environment such as a grid.
The areas of the code that exhibit high communication patterns might be converted,
or ’hybridised’, to the more efficient message passing style, while also allowing multi-
threaded user applications to take advantage of real shared memory where available.
The hybridisation of such an application into the mixed mode form might be done in
an incremental fashion as the law of diminishing returns dictates, i.e. cost benefits will
probably diminish with the level of hybridisation.



RESEARCH GOALS 3

Within this ambitious goal there are a significant number of issues that need to be first
addressed. Some of these include:

• Granularity: What will be the granularity of the grid applications? We know
that fine grain sharing of data is unsuitable for grids, and that very coarse grain
applications can work efficiently. How will medium granularity applications per-
form? Different types of application need to be investigated. Are multi-granular
applications suitable?

• Algorithms: Are there algorithms that can be altered/developed in order to mask
the obvious drawbacks associated with multiple-site parallel computing in grids?
Multi-threaded user applications might be utilised to hide communication latencies,
so that communication and computation is overlapped.

• DSM: What type of DSM system would be most suited to the grid? The choice
of consistency model, coherency protocol, shared data granularity, DSM algorithm
and the overall DSM management are all factors in need of consideration. The
DSM must present the programmer with an intuitive API in order for it to gain
acceptance.

• Heterogeneity: It is highly likely that a Grid will consist of a heterogeneous col-
lection of architectures and platforms. The sharing of application data will prove
problematic as different architectures may have different native data representa-
tions. To make this appear transparent will require a tremendous effort.

• Performance: What will be the performance of grid applications? The performance
may be adversely effected by the use of a DSM, but how significant will this
be? Can the hybridisation process efficiently reduce the performance difference
between an application constructed using a DSM, and the corresponding algorithm
implemented using message passing methods?

• Compiler target: Can the DSM system form the basis of a target for a compiler1, so
that an existing open shared memory programming standard, such as OpenMP [4],
may be supported? Additionally, what are the differences in the requirements for
a DSM that will be used directly by an application developer, and one that can
provide the target for an OpenMP compiler? Will the platform provided by the
DSM be suitable for such a task?

• Programming burden: How will the programming burden be effected in relation to
the increased complexity of a grid environment, and using multiple programming
paradigms in one application? Can the effort expended be offset with an increase
in performance? Programming burden will have to be quantified; the burden is
different for different paradigms; should candidate metrics include the number of
lines of code, programmer man-hours, or a function of both?

1This compiler could take the form of a simple source-to-source translator



RESEARCH GOALS 4

• Feasibility: Is the use of distributed shared memory in a grid environment worth-
while? In order for this to be so the loss in performance relative to the most efficient
message passing version must be acceptable in return for the ease of application
development. This may only occur after some ’hybridisation’ has been performed.

• Incremental Hybridisation: Is a process of incrementally hybridising an applica-
tion realistic? Is the time spent in analysing the application and hybridising it
commensurate with any performance benefits returned? This will be influenced by
the answers to the two previous questions.

As depicted in Figure 1.2, the primary goals of this thesis are as follows:

i. The development of an efficient distributed shared memory system that will allow
distributed computing resources to appear to be a unified computing system, that is
highly portable through the utilisation of portable and non-propriety libraries. No
support should have to be supplied by way of modifications to the operating system.
The system should not need specialised support from memory management or
communication hardware. The DSM should be able to be targeted by a standards
compliant compiler such as an OpenMP compiler.

ii. Integration of the DSM with an information and monitoring system, allowing for
the acquisition of information for directing the hybridisation of the user application.
This information must allow for the targeting of the areas of the application that
influence performance the most [5].

iii. Evaluation of the hybridisation process through the utilisation of test cases to de-
velop proper models of applications that are suitable for execution across multiple
sites on a computational grid. Applications that are not executed across multiple
sites are not of interest. A metric should be derived that illustrates the potential
benefits that will accrue from the incremental hybridisation approach. The user
should be provided with an intuitive interface where the hybridisation process can
be directed and observed.

Figure 1.2: Enabling efficient shared memory on the grid



DOCUMENT STRUCTURE 5

1.2 Document Structure

Chapter 2 gives an overview of the basic theory of parallel computing and current
hardware implementations. An insight is given into the factors that limit the potential
speedup of an application that can be parallelised, with a particular emphasis on the two
programming models relating to this project, namely message passing and distributed
shared memory. The chapter concludes with a synopsis of synchronisation and other
considerations that might be particularly relevant to execution on a computational grid.

Chapter 3 delves into the motivation of this thesis, focusing on the theory explored
in the previous chapter and the extrapolation of parallel computing architectures and
programming models. We explore the extent to which parallel programming is feasible
on the grid, and the justification of going to such parallel computing extremes.

Chapter 4 is devoted entirely to the fundamentals of Distributed Shared Memory
(DSM), which starts by providing an overview of how the principle of shared memory
programming was expanded to support distributed environments. The unit of data
sharing or ’granularity’ is discussed in relation to the effect it causes on performance and
the design of the overall system. The challenge of keeping shared data consistent across
distributed nodes is explored, followed by a description of coherency protocols necessary
to achieve this. Algorithms for the management of the overall DSM system are also
highlighted. A review of previous DSM implementations with particular reference to
the topics above concludes this chapter.

Chapter 5 presents an overview on all the parallel and distributed technologies that
are applicable to this project. The area of message passing is reviewed, and how
an understanding of network protocols is an important consideration. A survey of
the salient issues of current message passing standards is given in addition to a brief
overview of the notable features of current implementations. An introduction to
information and system monitoring requirements is also provided. The issues involved
with using an information and monitoring system are explored. The chapter includes
a broad overview of current systems available, and the reasons for the choice of the
information and monitoring system used within this project.

Chapter 6 is the first of three chapters that deals with the actual implementation of
the author’s DSM, which is called SMG : Shared Memory for Grids. A schema for the
user API is proposed, followed by an examination of case studies of other distributed
shared memory systems in the context of the attributes and design principles employed,
including a review of APIs of other DSM implementations. Potential issues regarding
the use of the DSM in a grid setting are examined in relation to the provision of
end-user functionality through the defined API. Internal DSM engine workings together
with functions that allow the user to alter the internal management of the DSM are
highlighted. Side-effects of these functions are also discussed.



DOCUMENT STRUCTURE 6

Chapter 7 describes the implementation of the aspects relating to the provision of
distributed shared memory. API functions for the allocation and freeing of memory
are described. This is followed by a description of issues that arise and decisions
made. The use of the shared memory allocation functions within user applications
follows, along with a description of access to the shared regions in user space. It
details the principles concerning the governing consistency model together with
the use of synchronisation primitives with respect to shared memory. Consideration
for the additional requirements of multi-threaded user applications conclude the chapter.

Chapter 8 describes the section on the design, implementation, and use of system
synchronisation functions/primitives.

Chapter 9 elicits how support is provided for the DSM operating in a grid environment
and how ’hybridisation’ is supported within the DSM and its execution environment.
The development of the module used to do this is described, where an independent API is
defined in order that in future other information and/or monitoring systems can be used.

Chapter 10 provides a description of the run-time execution of the SMG DSM appli-
cations and deals with the experimental evaluation of the SMG system for a trivial
setup. The applications used to perform the evaluation are discussed with interesting
points/attributes highlighted. A performance metric that the system can be evaluated
against is defined, with reasons given for the choice. A brief overview of the testbed is
given followed by the results obtained from running the test applications with the DSM
system in strict cluster mode (used as a reference). The process of hybridisation of the
test examples is documented and the results of running the applications in grid mode
concludes the chapter.

Chapter 11 focuses on the outcome of the thesis. The initial goals of the thesis are
reviewed. Analysis of results is performed followed by a summary. Finally the thesis
concludes with an examination of prospects for future work.



CHAPTER 2

Parallel Computing

Engineering and scientific research increasingly involves computational applications that
perform simulations in order gain a better understanding in their field of study. They
set out to model natural phenomena in a discrete manner, examples can range from
computational fluid dynamics (CFD), that allow for the modelling of fluid flow about
objects, such as aeronautical components, to the simulation of protein folding in genetic
analysis [6].
A common occurrence in these types of applications are linear algebra operations, such
as the evaluation of matrix determinants, multiplication, etc, which are inherently par-
allel tasks i.e. that contain sub-operations within the overall operation, that can be
performed independently of the other sub-operations since there is no dependency be-
tween the output of one sub-operation to the input of another (i.e. no data dependency).
These sub-jobs can be allocated to multiple processing elements to be performed concur-
rently, thus allowing for a reduction in the execution time for the overall task. Parallel
computing attempts to provide for such circumstances.
Consider a situation as depicted in Figure 2.1(a), where initially there exists an ap-
plication with parallel components interleaved with serial ones. The application when
executed in a serial fashion requires wall clock time of ts + tp, where ts is the time taken
to complete serial components, and tp is the time taken to complete the parallel tasks.
However, if the parallel components can be evenly distributed among among N pro-
cessors, as shown in Figure 2.1(b) (for N = 4), and ignoring other overheads such as
communication, then a reduction in the overall wall clock time results. This reduction in
wall clock time for the execution of the application is governed by a number of factors,
the ratio of tp to ts being the most obvious. The degree of distribution for the work
that can be parallelised (the granularity) is also a prime determinant, as this governs
the number of processors (the maximum value of N) for which work can be assigned.
The minimum possible time to execute the original job with the parallel components
distributed across N processors is:

T (N) = ts + tp/N (2.1)

7



A CASE FOR PARALLEL PROCESSING 8

Figure 2.1: Parallel decomposition

2.1 A Case for Parallel Processing

Obviously for Equation 2.1 with N = 1, the application is executed serially. For N > 1
parallelisation occurs. Equation 2.2 represents the maximum speedup that can achieved
using parallel processing methods for a given task of fixed size. The limiting term, ts,
the time taken to complete the serial component, dictates that as N → ∞, the upper
bound of speedup can never exceed 1

tS
1.

S(N) =
T (1)
T (N)

=
ts + tp

ts + tp/N
(2.2)

This equation is often expressed in a normalised fashion, where ttotal = tp + ts, fs =
ts/ttotal, fp = tp/ttotal yielding fp = 1 − fs. Substituting gives equation 2.3, which
is commonly known as Amdahl’s law. If the serial component of the job is 5%, then
according to this equation, the maximum speedup attainable is 20, no matter how many
processors are available (N → ∞). Given this speedup function the efficiency of the
system, φ, is Sn/n. Thus, by estimating the amount of serial work involved in a task a
decision can be made whether the effort expended to parallelise the task can be offset by
the performance gain, even if there are numerous processing nodes and ideal hardware
is available.

S(N)/N =
1

fs + (1− fs)/N
(2.3)

1In extreme circumstances this may not hold as the aggregate effect of sophisticated hardware resources,
such as processor cache, may allow for minor super-linear speedup



A CASE FOR PARALLEL PROCESSING 9

So, in essence parallel computing may be defined as the simultaneous use of multiple
compute resources to solve a computational problem [7]. Parallel computing can also be
applied to a problem where there are many independent tasks to be accomplished, with
an absence of data-dependence between them. In this sense parallel computing employs
a divide-and-conquer strategy [8].
Although numerous tasks can be parallelised the effectiveness can vary. The classical
levels of job parallelism are:

• Arithmetic-level parallelism This level is usually of concern only to logic and
compiler designers, and is usually invisible to an application developer. Modern
processor instruction sets such as Intel’s x86 MMX and SSE extensions [9], and
PowerPC’s Altivec provide functionality that implements this level of parallelism.

• Instruction-level parallelism Involves techniques such as super-scalar processor
design, and pipelining, allowing multiple instructions to be executed per clock cycle
in a single processor. Again this stage is ofter invisible to a high-level application
developer. The processor logic required to implement this functionality (out-of-
order execution unit) requires a substantial trade-off in the size of other processor
architecture features (e.g. cache).

• Program-level parallelism (The term thread-level parallelism is a common syn-
onym). At this level an application is partitioned into different components that
can be performed in parallel on separate processors. This form of parallelism is
usually found in federated sections of a program and individual iterations of a
code loop. The partitioning algorithm, typically implemented by the user, greatly
affects the effectiveness.

• Job-level parallelism Where one job executes independently of another. They
can run at the same time on different processors or time-share a common one. A
modern computer system operates in this pseudo-parallel manner where many jobs
appear to run concurrently but in effect the operating system (OS) manages the
allocation of scarce processor resources among the running processes.

Clearly if we are interested in constructing parallel programs in a high level language
we are interested in program-level parallelism. One could construct an application to
multiply the two matrices at the arithmetic or instruction level but this would require
implementation in a hardware description language such as VHDL or low-level using
assembly language. In this thesis, however, we are interested in ’generic’ program-level
parallelism techniques for parallel applications.
Again ignoring communications overheads, consider the problem of multiplying two ma-
trices A & B, that are of dimensions n×m & m× p respectively.∣∣∣∣ c11 . . . c1p

cn1 . . . cnp

∣∣∣∣ =
∣∣∣∣ a11 . . . a1m

an1 . . . anm

∣∣∣∣ ∣∣∣∣ b11 . . . b1p

bm1 . . . bmp

∣∣∣∣



A CASE FOR PARALLEL PROCESSING 10

The resultant matrix C, has dimensions n × p. Each element (Cij =
∑m

k=1 ainbnj) will
require m multiplications and m − 1 additions per element. If the cost of an addition
is ta and a multiplication is tm then the time to perform the matrix multiplication in a
serial will be n×p×((ta×m)+(tm×(m−1))). However, there are no data dependencies
in the evaluation of the co-factors of the resultant matrix, so they can be evaluated in
parallel. Co-factor evaluation is dependent on the calculation of partial sums so it is
reasonable to choose to parallelise at the level of the calculation of each co-factor.
If we assume that the incident matrices are of the same dimensions i.e. square (N ×N),
and assuming that distribution of initial data and collection of partial results across
all processors incurs no costs, then a speedup up of timefor1process

timeforNprocesses is possible, i.e. a
speedup of S(N) = N is possible, or speedup is perfect (as depicted in Figure 2.2). The
calculation of each co-factor can be assigned to an individual processor, which is the
finest granularity suitable for high level language implementations.

Figure 2.2: Potential Speedup

However, our assumption that overheads are negligible is generally incorrect. The actual
overhead component, To(N), can be significant, and is usually governed by the type of
hardware platform employed. Typical performance involves sub-linear speedup, and
often severe degradation occurs for a hardware platform beyond a certain point (as
depicted with the ’typical’ curve in Figure 2.2). This defines the scalability of a parallel
system2.
Parallelisation overheads are the overheads associated in distributing the parallel task
data, the collection of results, and any synchronisation costs incurred. This overhead
time To(N) consists of serial and parallel components (Tos & Top) [10]. A more precise
expression for obtainable speedup is now given in equation 2.4.

S(N) =
ts + tp

ts + to(N) + (1− ts)/N
=

1
ts + top + (N × tos) + (1− ts)/N

(2.4)

2system refers to the combination of the parallel algorithm, implementation and execution platform



A CASE FOR PARALLEL PROCESSING 11

It was observed by Gustafson [11], that if the size of the parallel component of a job
is scaled up, while the amount of time required for serial work, fs, remains relatively
constant, then it is possible that fs is no longer such a significant limiting term, i.e.
if a given efficiency is required then this can be achieved by scaling the problem size.
Such scenarios occur frequently where a larger problem is required to be solved in the
same amount of time, but there are additional resources to accomplish this. From this
observation Gustafson developed his fixed-time speedup model Equation 2.5.

S′
n =

Scaled-up sequential time
Scaled-up parallel time

=
fs + (1− fs)N

1
(2.5)

Often the desire to increase the size of a problem is a prime motivation for using parallel
computing. A sub-class of parallel applications known as embarrassingly parallel benefit
from this simply because computation will scale well, while overheads in general do not.
This fact is demonstrated in Table 2.1, which lists the computations required for the
multiplication of two square matrices of size n. The workload is of O(n3), while the
overhead is O(nlogn+ n2) [12].
Other models exist such as Isoeffiency [13], Karp-Flatt scaled speed-up [14], and that
developed by Sun and Ni [15] that generalises for when the speedup of an application
is memory bounded. Ultimately an application should be developed with the largest
problem size determined by the available memory resources.

n elements additions multiplications
1024 1,048,576 1,072,693,248 1,073,741,824
2048 4,194,304 8,585,740,288 8,589,934,592
4096 16,777,216 68,702,699,520 68,719,476,736
8192 67,108,864 549,688,705,024 549,755,813,888

Table 2.1: Workload versus application size for matrix multiplication

According to [16] various factors exist that will limit the overall speedup S(N). Gran-
ularity of the parallel job, for a fixed problem size, is the prime determinant (i.e. the
(1 − fs/N) term of equation 2.4). Granularity is a qualitative measure of the ratio of
computation to communication [8]. Jobs are often defined as being coarse, medium, or
fine grained with the distinction between them being the number of operations that
can be executed in parallel before a data dependence occurs (i.e. a serial section where
communication is required). Fine granularity allows for relatively small amounts of com-
putation to be done between serial sections, while coarse granularity allows for a large
amount of work to be done.
Overhead can also be a significant factor. This overhead can consist of many components
with the most notable being parallelism start-up and termination times, synchronisation,
data communication, and overhead imposed by the parallelising methodology (discussed
below) i.e. operating system, parallel library, compiler, or other tools.



COMPUTING PLATFORMS 12

2.2 Computing Platforms

The benefits of parallel computing were alluded to in the previous section, and also the
associated dependence on the properties of the underlying platforms. Such properties
have a major influence in determining the overhead component, to(N) of equation 2.4.
These properties include such factors as data communication overheads, start-up and
termination time, synchronisation time, and the overhead introduced by the software
system which can include contributions from the operating system and the application
itself. As not all parallel architectures are equal in these respects it is important to
highlight the inefficiencies of the primary architectures so that these drawbacks can be
specifically accounted for.
The most popular general classification for computing platforms is Flynn’s Taxon-
omy [17], which classifies computer architectures according to the number of instruction
and data streams they have, or more precisely whether they have single or multiple
streams. Accordingly there are four distinct classifications:

• SISD (Single Instruction Single Data): classifies a sequential computer system
that can only execute one instruction per unit of processor time, which can only
use one data stream for input. Early commodity uni-processors implementations
are generally categorised under this class (see below).

• SIMD (Single Instruction Multiple Data): more than one functional processor
exists but all units execute the same operation during at any given clock cycle.
However, each unit can operate on different data. This architecture typically con-
sists of an instruction dispatcher and a number of instruction units. This is best
suited to applications that exhibit a high degree of regularity such as multime-
dia processing. This architecture is found in modern processors that implement
arithmetic-level parallelism, processor arrays, and vector pipelines.

• MISD (Multiple Instruction Single Data): this type of architecture, allows mul-
tiple instructions to be performed on the same input data, is unusual and of very
specialised use. Conceivable machines that could be represented by this topology
might serve multiple potential (speculative) operations, e.g. in cryptography.

• MIMD (Multiple Instruction Multiple Data): here multiple execution paths
(threads of execution) potentially operate on different data streams. Execution
can be synchronous or asynchronous. The vast majority of parallel computing
platforms fit into this class.

Although there are machines that exist which cannot be easily classified under this
taxonomy, it is still one of the best general classifications for computing architectures.
Johnson’s Extension of this taxonomy [18], is depicted in Figure 2.3. It further classifies
the MIMD class depending on whether memory is Global (GM) or Distributed (DM),
and how communication is achieved, through Shared Variables (SV) or Message passing
(MP).



COMPUTING PLATFORMS 13

Figure 2.3: Johnson’s Extension to Flynn’s Taxonomy

A computer with one central processor unit (CPU) is often termed a uni-processor. It
has its own private memory space. As only one thread of execution may modify data
at any one time there are no immediately obvious problems associated with data in-
consistency, although in fact the processor-memory pair must obey at least a minimum
level of consistency that preserves the ordering of actions. The inclusion of caching to
hide memory access latency forces the use of cache consistency protocols to maintain
consistency across the processor-cache-memory triplet. This architecture is depicted in
Figure 2.4(a). Only pseudo-concurrency is possible, where independent threads of exe-
cution are interleaved and allocated to the processor in a round-robin fashion. Thus, in
isolation a uni-processor is not suitable for parallel computing, however it will be seen
below (Section 2.2.2) that it can be used as a component in a parallel computing system.
The definition of a uni-processor will possibly need to be redefined with the advent of
multi-core CPUs, where a number of CPU cores are located on the same package. In
truth these are typically MIMD architectures. These developments will further promote
the development of applications with multiple threads of execution (multi-threaded).
Parallel systems come in three flavours: those where memory is shared among all pro-
cessors, those where it is not, and those where limited sharing is possible.

2.2.1 Shared-memory multi-processing

Computing systems that consist of a number of processors (N > 1) that share the same
memory resources are termed Multi-Processors. These MIMD architecture have the
advantage that two or more threads of execution may run concurrently on individual
processors and access the same physical memory space. Hardware cache coherency
protocols exist to ensure that when two (or more) processors are competing for access
to the same memory location then the data remains consistent.
The symmetric multiprocessor (SMP) system depicted in Figure 2.4(b) is one of a num-
ber of possible implementations of a shared memory parallel platform. All accesses to
memory exhibit the same latencies for any processor. These SMPs belong to the uni-
form memory access (UMA) architecture family. The primary disadvantage of these
shared-memory architectures is the lack of scalability that comes from high memory-bus



COMPUTING PLATFORMS 14

Figure 2.4: Architectures: (a) Uni-Processor and (b) SMP UMA

contention due to an insistence on uniformity. Their counter advantage is the simplicity
of a uniform programming model, and the very good price/performance ratio for a small
number (2 to 4) of CPUs.
The rest of the multiprocessor space comprises machines where processors can directly
access the memory of a remote system (without the intervention of a remote operating
system), but with non-uniform latencies. Unsurprisingly, these are called non-uniform
memory access (NUMA) architectures. The scalability of the NUMA architecture is
of the order of thousands, and is the choice for the most powerful supercomputers in
existence, such as the Earth Simulator [19]. This is an expensive option as specialised
interconnect, switch, and memory interface hardware is required. Non-commodity inter-
connects such as SCI [20], Myrinet [21], and Infiniband [22], yielding low latency data
transfers, enable the construction of NUMA machines using commodity hardware. In-
terconnects such as SCI can maintain cache consistency (i.e. ccNUMA), but this feature
is rarely used.
Most NUMA implementations rely on hardware to signal the various processors that
some action is required, but there are some (see table B.2) where the signalling is
performed by messaging in software, creating a hybrid where hardware and software
cooperate to provide NUMA. Alewife was one such implementation [23]. In the ex-
treme, shared memory can be handled entirely in software, in which case it is termed
Distributed Shared Memory (DSM), see Chapter 4.
Most DSM implementations assume the processors are logically separated by distances
that introduce significant latencies (e.g. on an Ethernet network with latencies > 100ms)
but this is not a principal property of DSM (for example, SCI can support DSM with
latencies < 5µs over distances up to about 10 metres).
Terminology has evolved to categorise three variants. Entirely hardware-based NUMA is
called H-DSM. Entirely software-based DSM is called S-DSM, but most interpret DSM
to mean this variant too. Hybrid hardware/software approaches are termed Hybrid-
DSM. In general DSM is notable for latency-hiding mechanisms that have been created
to mitigate the loss of data consistency and/or the performance degradation that would
otherwise occur [7] (Chap. 5, pg.250). All the same, performance is not good except for



PARALLEL PROGRAMMING MODELS 15

the coarsest granularity (embarrassingly parallel) applications.

2.2.2 No shared memory multi-processing

The flavour of a parallel system that does not share memory across the processes gen-
erally is a result of collecting together a number of independent processors. For exam-
ple, multiple uni-processors can be amalgamated into quasi parallel systems commonly
referred to as loosely-coupled clusters. In these systems communications between pro-
cessors is facilitated by the network connection. No facility for remote memory access
(RMA) is available so a process cannot access the private address space of a process
executing on a remote machine. This type of architecture is broadly referred to as a
distributed memory machine, or ensemble, or No Remote Memory Access (NORMA)
architecture. This type of system is inherently more scalable in terms of cost, but at the
cost of increased programming burden, as data sharing must be explicitly facilitated by
the developer by explicitly transferring it from one process’ memory to another.
The extreme case for distributed memory architectures is when geographically dispersed
processors are connected by a wide-area network. For a small number of processors
(typically high-end supercomputers) this is known as meta-computing [24]. When an
infrastructure is created that includes many geographically dispersed sites, this has be-
come known as a Grid (although the exact definition of a Grid is still in dispute). Again,
performance is not good except for the embarrassingly parallel class of applications.

2.2.3 Hybrid multi-processing

Some systems support limited sharing of memory generally exploit locality, such as shar-
ing with the nearest neighbour in the network topology. This is an effective stratagem,
but yields a restrictive programming model.
The future of parallel computing architecture is tending towards hybrid architectures
with systems composed of thousands of processors, termed Massively Parallel Proces-
sors (MPP) or systems composed of clusters of SMPs (constellations) as depicted in
Figure 2.5. Memory can be shared between processors within a node, while no memory
sharing exists between nodes. Again, these clusters can in turn be coupled with those
in other geographically distributed sites to form computational grids.

2.3 Parallel Programming Models

The method of developing parallel applications varies depending on the architecture to
be employed. In the following sections the three main programming models are dis-
cussed, plus some of the implementations. Although many models (in theory) can be
implemented for the underlying hardware, some lend themselves better to some plat-
forms than others. There is no one decisive model for all possible architectures.
The choice of programming model can be influenced by the method in which the ap-
plication is decomposed into tasks that can be performed in parallel. The two general
approaches are:



PARALLEL PROGRAMMING MODELS 16

Figure 2.5: Shared & Distributed Memory Hybrids

• Domain partitioning: the input data is partitioned among the processes which
perform the work on their allotted portion, and the partial results are merged
together to produce the result. This type of job is normally found in single program
multiple data (SPMD) tasks where all the parallel processes execute the same
program. This enables space-data parallelism (Same principal to SIMD parallelism
discussed in Section 2.2).

• Functional partitioning: the application is partitioned according to different tasks
that need to be performed on input data. The output of one task forms the input
for another (a pipe-line approach). Parallelism arises as this task is done repeat-
edly. The multiple program multiple data (MPMD) paradigm is often associated
with distributed memory programming models. This scheme enables task-time
parallelism (Analogous to the MIMD machine taxonomy in Section 2.2).

Some programming models are often preferred over others due to the associated seman-
tics, as one model’s semantics can be more demanding of the programmer than another.
This additional burden can result in increased code volumes/development time, increased
difficulty in algorithm implementation due to increased complexity in testing and de-
bugging of the application.

2.3.1 Loop parallelism model

This type of model has traditionally been found on multiprocessor systems, but in princi-
ple is more generalised. The most popular implementations are High Performance FOR-
TRAN (HPF) [25], Co-Array FORTRAN (CAF) [26], Unified Parallel C (UPC) [27], and
OpenMP [4]. This approach requires minimal effort from the developer with respect to
other models described below, that require the explicit distribution of data. This code is
then compiled by a parallelising compiler that transforms the code into a multi-threaded
application that is most suitable for execution on a shared memory processor. There
have been some efforts to target distributed memory machines by utilising messaging
for intra-process communication, but these have resulted in poor performance due to
excessive communication overheads [28].



PARALLEL PROGRAMMING MODELS 17

This programming model requires the developer to instrument the code with paral-
lel directives, which can be done in an incremental manner, indicating to the com-
piler where parallel functionality is required. An example of a parallel directive is the
#pragma omp for directive in the following OpenMP code snippet. This identifies the
areas of code (that can be performed in parallel) to the compiler. The following code
snippet implements matrix multiplication. The directive indicates that the subsequent
structured for loop can be performed by a number of threads concurrently. This may be
done because there are no data dependencies within the structured loop.

1 #pragma omp for schedu le ( static , chunk )
for ( i = 0 ; i < NRA; k++)

3 for ( k = 0 ; k < NCB; i ++){
c [ i ] [ k ] = 0 ;

5 for ( j =0; j < NCA; j++)
c [ i ] [ k ] = c [ i ] [ k ] + a [ i ] [ j ] ∗ b [ j ] [ k ] ;

7 } /*** End of parallel region ***/

This model places little burden on the programmer as the compiler takes responsibility
for the placement of data, partitioning of work, and thread scheduling (however the user
can override default parameters in OpenMP by specifying scheduling clauses such as
static & chunk). The main burden is the identification of the regions to be parallelised,
and where necessary, to direct the scheduling of the threads. In certain circumstances
the compiler may not produce the most optimised solution when compared to a hand
coded approach where the developer takes responsibility for allocation of work.
The model performs best when the underlying hardware shares memory across the pro-
cessors. It is most applicable to the class of domain partitioning. Irregular computation
is a poor candidate. With the advent of multi-core processors that may share cache
in addition to memory and that are primarily designed for multi-threaded applications,
then such a programming model will undoubtedly become more popular in the future.

2.3.2 Shared Memory Model

This model explicitly assumes that system memory is shared among processors, thus
allowing for application data to be shared transparently among processes executing con-
currently. To provide this facility one of the following must be supported by the operating
system of the multi-processor machine: (a) sharing of memory regions between processes
using shmem routines, or (b) multiple threads of execution per process (multi-threading).
Recently the latter has begun to dominate as the preferred way to program multiproces-
sor systems due to the availability of portable libraries such as pthreads, which remove
the burden on the programmer to explicitly declare & map shared memory regions since
this is now achieved automatically (all threads share the same address space anyway).
The following code implements the same matrix-multiply functionality of the previous
section using a shared-memory multi-threading model. The increased burden placed on



PARALLEL PROGRAMMING MODELS 18

the programmer can be observed, which involves the initial creation of threads, work
provisioning, and the requirement to ensure cleanup of threads.

1 // Initialise a & b matrices
. . .

3 // Create threads, these perform a matrix multiply
for (n = 1 ; n <= NUM THREADS; n++){

5 t i d [ n ] = t h r e a d c r e a t e (&matr ix mult fn ) ;
}

7 . . .
// Body of matrix multiply function

9 my start = NRA/NUM THREADS ∗ ( my tid ) ;
my end = NRA/NUM THREADS ∗ ( my tid + 1 ) ;

11 for ( i = my start ; i < my end ; i++)
for ( k = 0 ; k < NCB; k++){

13 c [ i ] [ k ] = 0 ;
for ( j =0; j < NCA; j++)

15 c [ i ] [ k ] = c [ i ] [ k ] + a [ i ] [ j ] ∗ b [ j ] [ k ] ;
}

17 . . .
// join threads

19 for (n = 0 ; n <= NUM THREADS; n++)
t h r e a d j o i n ( ) ;

The main difference between the previous model and this one is the explicit assumption
of shared memory, consequently the developer is additionally responsible for creating and
administering the parallelism (the compiler performs this work in the loop parallelism
model). This model is suitable for domain or functional decomposition of applications,
whereas loop-parallelism is, in general, most applicable to domain partitioning. The
primary downsides (or maybe benefits) are the need for explicit management of threads,
synchronisation of threads when accessing shared data, and the allocation of work to
each individual thread.
To date the previous model and this one have only been truly used where system memory
can be shared among the processors. Sharing does involve a common view of memory,
and when more processors are involved the physical distances between them increases,
and hence inter-process latency increases, eventually becoming highly visible. Once this
happens, formerly simple actions such as synchronisation become excessively complex.
Hiding the latency requires specialised hardware, and its costs rise sharply as the number
of processors increases. However, at small scales the model is very effective. The tools
required to program in this model can be found on most platforms and architectures, and
as such is the most familiar and the most natural model for developers of parallel appli-
cations. In addition, it offers more flexibility to decompose the task in whatever manner
is best applicable. As discussed previously, the availability of multi-core processors will
greatly increase interest in this area of multi-threaded applications.



PARALLEL PROGRAMMING MODELS 19

2.3.3 Message Passing Model

The message passing model of parallel computing has a natural affinity with distributed
memory machines. Messages are sent between processes via a communication channel
created using a software library. In the traditional mechanism, processes coordinate
themselves into send/receive pairs, so a process will send a message to a named process,
more than likely on a remote node. Current message passing implementations include
additional functionality such as collective communication routines such as a broadcast
operation. Although such extra functionality is helpful, a high level of programmer
burden persists with this model.
Not only does the programmer have the same burden to contend with as with the
previously mentioned models, but additional responsibility rests on the programmer
for managing all communication. This can result in considerable extra effort by the
programmer, often manifested in the greater complexity in the parallelisation of an
algorithm, and hence this becomes a source of errors [7].

MPI Init(&argc , &argv ) ;
2 MPI Comm rank(MPI COMM WORLD, &my rank ) ;

MPI Comm size (MPI COMM WORLD, &s y s s i z e ) ;
4 . . .

// Init a & b matrices, variables my_start & my_end
6 my start = NRA/ s y s s i z e ∗ my rank ) ;

my end = NRA/ s y s s i z e ∗ my rank +1);
8 . . .

MPI Bcast(&a , (DIM ∗ DIM) , MPI INT , 0 , MPI COMM) ;
10 MPI Bcast(&b , (DIM ∗ DIM) , MPI INT , 0 , MPI COMM) ;

. . .
12 for ( i = my start ; i < my end ; i++)

for ( k = 0 ; k < NCB; k++){
14 c [ i ] [ k ] = 0 ;

for ( j =0; j < NCA; j++)
16 c [ i ] [ k ] = c [ i ] [ k ] + a [ i ] [ j ] ∗ b [ j ] [ k ] ;

}
18 . . .

// amalgamate results from all processes at rank 0
20 i f ( my rank == 0){

MPI recv(&c [ my start ] [ 0 ] , (NRA ∗ rows ) , MPI INT , 0 ,
22 Rank , MPI COMM) ;

} else {
24 MPI Send(&c [ my start ] [ 0 ] , ( DIM ∗ rows ) , MPI INT , 0 ,

0 , MPI COMM) ;
26 }

MPI Final ize ( ) ;



PARALLEL SYNCHRONISATION 20

Again, the programming model is demonstrated with the same matrix multiplication
algorithm implemented in previous sections. Not only is there an increase in the lines
of code (LOC), but also the derivation of communication logic can be complicated, even
for a near-trivial task such as that shown above. Transferring the incident matrices’
data (Lines 09-10), and the resultant data (Lines 22-27) requires the sender & receiver
to be explicitly defined. Nevertheless it is exactly this requirement that makes for more
efficient programs than other models. It is potentially more efficient simply because
there is more requirement for the developer’s intelligence to be brought to bear on the
problem.
One benefit that can be gained from message passing is that where blocking calls are used,
synchronisation can be implied. This is a small factor, but is very helpful nonetheless in
providing implicit synchronisation between the competing threads. The message passing
model is amenable to both domain and functional partitioning.

2.4 Parallel Synchronisation

In parallel programming, situations occur where there is a data dependence between
the order of program statement execution. Ensuring such situations (often termed data
races) are absent is vital. In order to achieve this, synchronisation primitives are re-
quired. In addition to these explicit primitives, implicit means are also available. In the
message-passing model discussed above it was seen that there is also the possibility to
implement synchronisation using synchronous messaging routines. However, only those
tasks that are participating in the communication operation are synchronised.
With any shared-memory-style of programming paradigm (or variant) there is a need
for exclusive access to shared memory, i.e. mutually exclusive access, and for the syn-
chronisation of threads of execution in the application. The most common occurring
synchronisation variables are locks and barriers.

2.4.1 Lock Synchronisation

A lock, or a MUTual EXclusion (mutex) device, is used for protecting shared data
structures from conflicting modifications by multiple processes by protecting sections of
code that actually modify them. These code areas are termed critical sections. Locks
are also used for implementation of higher-level abstractions such as monitors. There
are four requirements of a system that provide the use of critical sections through the
use of locks. The first three requirements are the responsibility of the system, while a
developer/algorithm will be responsible for ensuring the last:

i. Mutual exclusion: at most one thread of execution may execute the critical section
at any one time

ii. Eventual Entry: in there are multiple threads trying to access a critical section at
the same time, then one of them must succeed in acquiring the lock



PARALLEL SYNCHRONISATION 21

iii. Absence of Delay: a thread should get access to the critical section if no other
thread is already doing so

iv. Absence of Starvation: lack of deadlock/livelock; a thread that is attempting to
access a critical section will eventually be allowed

In traditional multi-processor settings these primitives consist of a shared memory loca-
tion that can be set to a certain value indicating its state (lock/unlocked). This structure
is often termed a spin-lock and is equivalent to the code fragment below. Mutual exclu-
sion is supported by all modern CPUs through the provision of an atomic test and set
(or equivalent) instruction that can test the lock, and depending on this value set it or
do nothing, without been preempted by another processor. Such a situation could occur
if the (crude) test-and-spin code section below was being concurrently executed by two
separate threads of execution. It must be noted that more efficient solutions exist for
the implementation of critical section on shared memory machines, such as Peterson’s
Algorithm, that results in reduced memory contention [29].

while(lock != SET);
lock = SET;

The implementation of distributed locks has associated with it a number of problems.
Most importantly there is no distributed atomic read-and-modify instruction, and mem-
ory with the required consistency for the above code fragment is not available, and in
particular, defects with the required properties (ii & iii) above are highly exacerbated.
Additional challenges associated with implementing distributed locks are that every lock
primitive must be able to be uniquely identified system-wide, and that asynchronous
techniques used in shared memory locks are not suitable for distributed memory ma-
chines due to scarce inter-machine communication resources.
In general, a lock can be in three main states: exclusive, non-exclusive and free. The
modes that a lock can be held in can be classified in two categories, exclusive or non-
exclusive mode (also termed read & write modes). The number of threads that can
possess a lock in these modes simultaneously will be governed by the shared memory
access modes supported by the system (discussed in Section 4.2).
A lock held in non-exclusive mode can be acquired by multiple nodes simultaneously in
this mode (i.e. rule (i) above does not apply). Once in this state it cannot be promoted
to exclusive mode without first releasing it and reacquiring it. This type of mode can
also be referred to as read access. In order for a thread of execution to acquire a lock
variable in non-exclusive mode it must obtain permission from either the owner, or an-
other thread that has already been granted non-exclusive access. This other thread may
reside within the same process as the requesting thread, or in a process on a remote
node.
Exclusive lock access differs slightly from non-exclusive locks as only one thread, the
owner, can possess the lock and therefore perform write accesses inside the critical sec-
tion. In order for a lock to be granted in exclusive mode, no other process can be in
possession of the lock in exclusive or non-exclusive mode.



PARALLEL SYNCHRONISATION 22

2.4.2 Barrier Synchronisation

A barrier is a mechanism that provides for the synchronisation of a number of processes
in a parallel application. It requires all threads participating in the operation to call
a barrier routine and wait until all other processes have also done so. Once this has
occurred all threads may proceed. The simplest method to implement a barrier in a
shared memory system is to use a memory location as a shared counter. This counter is
incremented (atomically) when a thread arrives at the barrier. The thread subsequently
waits until the required count (quorum) is reached. Such an algorithm results in high
memory contention [30]. A combining tree barrier algorithm reduces contention by intro-
ducing sub-counters that record arrivals of a subset of the threads (Figure 2.6(a)). When
the sub-count is reached the parent count is incremented. When this count reaches its
quorum the thread may proceed. Other (symmetric) algorithms exist that attempt to
reduce the load so that all threads wait for the same amount of time. ‘
Barrier primitive implementations have always been inefficient [31], their use in
distributed-memory applications should be minimised. However, often their presence
is mandatory in applications, particularly in iterative applications. Whenever this oc-
curs the situation can be exploited, as shared state information can be distributed glob-
ally piggybacked in the barrier messages. For distributed systems some notable barrier
implementations have included [32, 30].

Figure 2.6: Barrier primitives. (a)Central server waiting for all threads to arrive. (b) tree-based
barrier all thread proceeding

The simplest distributed barrier implementation, the central server, is similar in method-
ology to the shared counter. It consists of a central barrier administrator that maintains
a count and accepts arrival notices from the processes partaking in the barrier, incre-
menting the count with each new arrival. Once all arrival notices have been received,
including the local notice, proceed notices are issued. Such an implementation suffers
from a lack of scalability as the barrier administrator becomes the bottleneck, with N-1
nodes contacting the master at arrival, and it having to reciprocate N-1 times.



OTHER CONSIDERATIONS 23

A modification of the previous scheme involves the adoption a tree algorithm where
barrier sub-administrators relieve some of the burden from the administrator. A node
partaking in a barrier operation may have antecedents and a consequent. The node can
only issue a barrier arrival notification to its consequent once its local quorum has been
satisfied. This quorum is composed of the local requirements (have all local threads ar-
rived?), and that of the antecedents. Once the requirements have been met the process
can issue an arrival notice to its consequent. At the top of the tree there exists the
barrier administrator. Once the quorum of the administrator has been reached it can
issue proceed notices. Based on the LogP model [33], the minimum wait latency for a
barrier using such an implementation is 2log2N × Average message latency.

2.5 Other Considerations

Constructing parallel applications can involve many, and often conflicting, considera-
tions. Some of these have already been mentioned, such as whether the functional (task)
or domain (data) approach is taken to problem decomposition, which is in turn depen-
dent on the underlying algorithm. Other factors that need consideration are:

• Granularity: which is a qualitative measure of the ratio of computation to commu-
nication and synchronisation, in essence the frequency at which data dependencies
arise. Applications that exhibit a coarse granularity are more suitable for paral-
lelisation on distributed memory architectures. Consider a simple application of
summing an array of N integers. It is possible for the application to be parallelised
where each process in a process pool, of size M, performs the required calculation
of a sub-array of size N/M. If M = N/2, then each process will initially perform
one addition, in which case the communication and/or synchronisation overhead
would result in a significant slowdown, as the time for a modern processors to
execute one addition is negligible with respect to communication cost.

• Data Access Patterns: there have been a number of attempts to classify parallel
applications and their sharing patterns. The developers of the Munin DSM [34]
identified distinct categories of shared data. Data sharing that is responsible for
inter-process communication contributes to lowering the granularity and thus is
responsible for a degradation in performance and/or scalability of parallelisation.
Poor algorithm design can also be a contributing factor, since accessing data in
a non-structured manner will generate more traffic than structured access where
optimisations can be taken advantage of.

• Load balancing: if a distributed memory cluster is very loosely composed, e.g. from
a network of workstations (NOW) [7], then it is likely to be composed of different
architectures and platforms, and so different threads of a parallel application will
have different performance characteristics. Even machines with the same architec-
ture and platform can have different performance metrics. This is an important
fact to consider as in many applications the performance will be governed by that



OTHER CONSIDERATIONS 24

of the slowest processor. Load balancing attempts to match tasks to processors
such that overall performance is maximised. For example, if in the matrix example
of the previous sections, this same job is divided among M processors, where the
performance of one is greater than the other, then as there is a data dependency
between the M sub tasks the performance of the system is determined by the last
thread to finish its task.
On symmetric-memory architectures this is less important so long as the developer
partitions the work evenly among the threads, as each thread will normally get the
same resources at the same performance level. Any asymmetry exacerbates the
problem and so requires load balancing.

• Data Distribution: it is often necessary for the programmer to consider data dis-
tribution when developing the algorithm for the application. Employing a data
provisioning strategy will allow for the caching principle of data locality to per-
sist across distributed machines; additionally, a reduction in the potential load
imbalance will occur. Data parallel languages, such as HPF [35], allow for the
programmer to annotate variables, so that a strategy can be followed (or at least
suggested to the compiler) for data distribution that employs one of the traditional
categories, such as: block, cyclic, block-cyclic, replicated, and local [8].

• Fault Tolerance: fault tolerance is the ability of a system to recover from a situation
that would otherwise result in failure, possibly necessitating the complete restart of
an application. In parallel computing one errant resource could be responsible for
the aborting of a job involving thousands of processors. When such an event occurs
the subsequent action is determined by the availability of a fault tolerant recovery
mechanism e.g. re-start from a saved/checkpoint-ed state. Efforts have been made
to address this area such as fault tolerant message passing implementations exist
such as [36] described in Section D.
Applying fault tolerance to parallel programming is another important factor that
is often not considered by the application developer as extra effort is introduced
into the development process, so transparent fault-tolerance is a desirable attribute.
Fault tolerance can be supported in DSM systems, however some direction from
the programmer will still be necessary, as the application would need to be check-
pointed at global synchronisation points.

• Data Divergence: A parallel implementation of an algorithm may obtain a different
result than a comparable serial implementation [37]. Such a situation can arise as
floating-point arithmetic is not associative, or in a situation that may arise from
the rounding accuracy associated with differences in internal representation of
floating point variables, leading to a variance in precision when performing floating
point arithmetic (e.g. Intel processors represent IEEE 754 double precision values
internally as 80-bit values, while PowerPC has a direct 64-bit representation).

• Multi-thread per process support: Section 2.2 identified the likely future direction of
computer architecture. Multi-core processors are now standard and many observers



REVIEW 25

predict that the number of cores will rise sharply in the near future. Support for
multi-threaded systems will be vital in order to leverage this. Even with copy-
on-write and shared code features that are now standard with modern operating
systems it is not feasible to allow many processes with multiple threads of execution
to share the increasingly scarce resource that is memory bandwidth. To maximise
resources one should ensure that there the number of applications threads be at
least equal, if not greater than the number of processing cores, i.e. 1 Process : N
user threads : M cores per processing node (N ≥ M).

2.6 Review

Shared memory and loop-parallel programming are the favoured methods of implement-
ing parallel applications due to the lower burden placed on the programmer. Explicit
data movement does not occur with shared memory models, whereas with message pass-
ing it must.
Message-passing is used extensively on distributed memory machines, allowing the exe-
cution of applications written in this model to execute on almost all current platforms,
including those with shared memory. Often a recompile is all that’s required for this to
be achieved. So why not just use message passing exclusively? It always comes down to
the extra burden placed on the programmer.
The future trends of parallel computer architecture will dictate the need for hybrid
programming models that fully exploit the potential offered by constellations of SMPs
(particularly those with multi-core CPUs). Already research exists in exploring the
use of mixed-mode programming models with combinations of message passing and
loop-parallel/shared memory [38, 39, 40]. Although considered by many to employ a
loop-parallelism model, OpenMP can be viewed very much as a hybrid. Development
involving both OpenMP and message passing applications can be found in the most
powerful supercomputers (such as the Earth Simulator [19]), which are in effect a con-
stellation of SMPs. Message passing is used to communicate between nodes, while shared
memory can be used internally in the SMP.
There are new problems that arise when dealing with a hybrid programming model: the
developer needs to be knowledgeable in two programming models. The readability of
code is significantly reduced, especially for third-parties (those who did not write the
program); this will be an issue with maintenance of such code, and importantly how
easy will it be to debug?



REVIEW 26



CHAPTER 3

Wide-Area Parallel Computing

In the previous chapter the motivations for parallel computing were explored. To recap,
it essentially allows for an application that was compute bound to complete in a timely
manner when executed on a system with increased processing capacity (Amdahl’ Law),
and/or allows for increasing the accuracy of the application results by increasing the
resolution at which the solution is computed (essentially Gustafson’s Observation). In
this chapter we explore what will take parallel computing to a wide-area environment.
Previous parallel computing research focused on the benefits of federating resources from
the point of view of the computational instruction execution rate. The increase of ag-
gregate memory resources was a lesser issue. There are anticipated applications [24],
that will benefit enormously from the increased parallelisation offered by such an in-
creased memory: image rendering, parallel search, speech and visual recognition, ge-
netic sequencing, data synthesis, and data-mining. These applications will not only
have increased computational requirements, but will also have a commensurate memory
resource requirement. The challenge will be to harness both increases in the memory
and computational resources.
To support this new class of parallel application we must be able to effectively pool these
resources into a unified resource. Consider an application where the required memory
resource is greater than the available resources, as the application accesses virtual mem-
ory pages the corresponding physical pages may need to be migrated to the physical
resource. Pages that are deemed less necessary will begin to be swapped out to a swap
space that is usually located on a dedicated partition on the local secondary storage
system. This storage is slow enough [41], that it is feasible to buffer the page in the
memory of an adjacent (in network terms) machine. Increasing the total number of
such machines will increase the total memory pool available for application use. If all
the available machines have similar demands, then this approach is pointless, although
machines might be dedicated to this purpose.
Increased parallelism can most easily be achieved by hiding latency, and the the most
promising way to achieve this will be a weakening in memory consistency [42]. However,
in the context of the claims made in the above paragraph, a latent effect of doing this will

27



WIDE AREA PARALLEL COMPUTING PLATFORMS 28

be a commensurate increase in the memory resource usage. To access the benefits of the
parallelism with grid computing, two principal metrics must be favourable: scalability
and efficiency.

3.1 Wide Area Parallel Computing Platforms

The natural extension of the cluster paradigm described in Section 2.2.2 is to combine
resources at multiple sites into a coupled system as depicted in Figure 3.1, referred
to as a meta-computer, or when many sites are involved in a formal manner, a grid.
Making such disparate entities appear a unified resource to a user requires a middleware
support ’glue’ layer to solve problems involving areas such as administration, security,
etc. The grid middleware aims to abstract the resources to provide standard methods
and interfaces to access the resources at each site. Multiple grid middlewares exist,
each developed by different projects: Legion [43], Unicore [44], and more recently EGEE
(Enabling Grids for E-sciencE) [45].

Figure 3.1: Grid: wide-area distributed computing

Attempting to use such collections of resources will result in the effects of physical laws
governing communication such as bandwidth and latency (see Section 5.1 for more infor-
mation) becoming more apparent. A number of grid projects are examining wide area
computing theory by providing high-bandwidth, low-latency and reasonably determin-
istic connections between sites, e.g. Naregi [46] in Japan and DAS-3 in Holland, both
linking high performance centres to create a giant supercomputer [47]. Naregi is designed
for a maximum latency of 25ms (800 km). DAS-3 reduces this further to 3ms (the la-
tency across Holland, and coincidentally the latency for an access to a hard-disk [41]).



PROGRAMMING MODELS FOR WIDE AREA PARALLEL COMPUTING 29

As in smaller-scale systems, the available parallel computing architectures for such wide-
area environments are still:

• wide-area shared memory: such an architecture is barely feasible unless the
memory consistency is sufficiently weak to hide high latencies. It is conceivable, but
highly impractical to construct a wide area interconnect with hardware support for
shared memory. Shared memory could only be realistically supported by virtually
sharing memory resources while hiding latencies, effectively via a DSM on a grid.
Latencies as low as those for DAS-3 do improve the situation.

• wide-area distributed memory: essentially this a Grid. MPI software imple-
mentations exist, e.g. PAC-X [48], MPICH-G2 [49], and GridMPI [50], that allow
multiple compute elements to appear as a single unified resource, i.e. ’a cluster of
clusters’, by adding a transport mechanism between the native MPI implementa-
tions used on each cluster. For PAC-X there is a gateway process at each site that
proxies all messages for a non-local process to the relevant gateway process in the
remote cluster. Such software is discussed further in Appendix D.

The function of the middleware is to provide the functionality to authenticate the user
and to perform job and data management functions. Using a Grid requires interaction
with this middleware that manages the differences of the underlying architecture and
platforms. For example, if a user possesses appropriate grid credentials they can sign
onto the EGEE gLite grid at a gateway machine and then utilise any EGEE resources
(compute/storage) that are available to them, and perform other operations such as using
the information systems (see Appendix D, page 226). Compute jobs are submitted using
a command gLite-job-submit. Each submitted job will be assigned a unique job identifier
that can be used to check status of the job. Once the job has completed the output may
be retrieved using the command gLite-job-get-output. Similar abstractions are going to
be needed to run parallel jobs. Other commands exist for data management operations.

3.2 Programming Models for Wide Area Parallel Computing

The parallel programming models discussed in Section 2.3 assume an execution target
that is a homogeneous distributed memory machine such as a cluster, not the grid
discussed above. These programming models may not be adequate for the grid.

• wide-area shared memory: Providing a shared memory model in a wide area
environment suffers from the impracticability of hardware support. The only real-
istic solution is to provide virtual sharing of memory.

• wide-area loop parallelism: As loop parallelism is ultimately a higher form of
shared memory programming, providing this programming model on the grid poses
all the same problems associated with shared memory programming. Much of the
parallelising work is performed by the compiler, so these problems can be solved



EVALUATING PARALLELISM ON THE GRID 30

transparently to the user, but the compiler will have to be aware of the impact on
performance, and accordingly must schedule/partition the problem accordingly.

• wide-area message-passing: In the previous section it was seen that multi-site
MPI implementations exist. These allow for grid resources from multiple sites to
appear as a unified execution environment. No alteration to user code is required
in order to run in such an environment. Optimisations to the underlying mes-
saging passing software have been implemented that allow for certain operations,
such as collective operations, to run more efficiently [51, 52]. These packages use
hierarchy information to implement the operations by creating a topology map.
As mentioned above, the implementations already exist for this. The problem is
the added programming burden relative to shared memory models.

According to the seminal book on Grid computing [24], if the shared memory paradigm
could be made available to developers, then grid programming would be reduced to
optimising the assignment and use of threads, and the communication system. It is the
optimisation of the the latter that is of interest in this thesis.
It should be noted at this point that Grids come in forms other than those geared
towards processing the highly-parallel computationally-intensive tasks that have been
discussed so far in this thesis. Another important class are data parallel applications
involving tasks that require significant amounts of CPU time. However this is not
the only alternative use case; in addition one should consider applications requiring
processing large amounts of input data, as I/O latencies are large, and often the only
feasible option is to store the data, and consequently the processing of it, in a distributed
manner. Some of the earliest examples of this approach have been the Seti@Home [3]
and Folding@Home [6] projects, but notable experiments that require a formal grid
infrastructure include the four main experiments involving the Large Hadron Collider
(LHC) at CERN [53]: ALICE, ATLAS, CMS, and LHCb.

3.3 Evaluating Parallelism on the Grid

The vast majority of applications when submitted to the grid will be scheduled to where
the necessary resources are available, hopefully within a single site. There may be
applications that are scheduled across multiple grid sites due to circumstances such as
insufficient compute resources being available at any one site, or the necessary job data
being distributed among a number of sites. In such a scenario it may be impractical to
transfer very large data volumes, or not permissible for ownership or legal reasons to
bring the data from remote sites to the compute resource. All these situations require
parallel solutions. The question is how well they perform? The scalability and efficiency
metrics outlined in Section 2.1 assume homogeneous resources.
A naive approach is to extrapolate the potential scalability of a parallel application in a
grid from Equation 2.4. According to this equation, it was assumed that the overhead
times, topi & tosi, were all uniform, but in a grid platform this is not a valid assumption.
In addition the various compute resources will have differing performance, so the time



EVALUATING PARALLELISM ON THE GRID 31

to compute each parallel component, tpi, needs to be calculated for each resource in
accordance with its capability, i.e. tpi should not necessarily be the same for all i. The
total parallel section can now expressed by the term

∑n
i=0 tpi. Expanding Equation 2.4

to take cognisance of these factors we arrive at Equation 3.1:

S(n) =
ts +

∑n
i=0 tpi

ts +
∑n

i=0 tosi +max(tpi) +
∑n

i=0 topi
(3.1)

By inspection, one can see that it is possible to predict whether a certain application
is suitable for execution in this environment. In order for the application execution to
be feasible the overhead components tosi (serial section overhead) and topi (the parallel
overhead) will need to be reduced so that they are insignificant. The effort required to
make the necessary modifications will have to be justified by an increase in performance.
[54] suggests a method by which this can be quantified. Previous work has shown that
application-specific knowledge can aid in this area [55, 56, 57].
A different approach was taken in [58], which defined a scalability metric for the efficiency
of parallel computing in a multi-site grid. Unsurprisingly it demonstrates that for a
small number of sites adequate speedup is only attainable if the amount of the total
workload of the application, W, attributed to each site is significant enough. The time
for this application to execute in a homogeneous computational grid (HCG) is given
by Equation 3.2. This equation assumes that the parallel application is hierarchically
decomposed. It is assumed that the HCG is composed of C Compute Elements (CE),
where each has the same number of processors (p), which in turn have similar compute
power (∆), as depicted in Figure 3.2.

TC,p(W ) =
Wp

pC∆
+Q1(Wp, C) +Q2(Wp/C, p) (3.2)

Figure 3.2: Overhead in hierarchical decomposition



EXPLORATION 32

The first term represents the workload when it is divided evenly among the CEs, each
having processing power p∆. The components Q1 and Q2 represent the overheads in
decomposing the application. These terms are highly dependent upon the application;
the former term is the overhead in decomposing the application among the CEs, while
the latter is that incurred while decomposing among the processors in each CE. Where
only one CE is available, C = 1, then Q1(W, 1) = 0.
In developing a grid speed-up metric it is necessary to state what the metric actually
means. Typically speedup is calculated with respect to execution on one processor; this
is essentially the case for Equation 2.4, but in this case the base reference needs to be
taken in the context of the performance obtainable from one CE. Equation 3.3 gives the
speedup (SC,p) and efficiency (εC,p) when using C CEs instead of 1. By evaluating the
overheads and the workloads one can determine if it is feasible to run the application
across multiple grid CEs.

SC,p =
T1,p(W )
TC,p(W )

, εC,p =
T1,p(W )
CTC,p(W )

(3.3)

The above equations for speedup (S), and efficiency (ε) make no distinction regarding
the programming model. It can be seen that performance will be degraded unless the
serial overheads (i.e. communication) are surmounted. This can be achieved by using
better communication infrastructure [59, 47], and/or reducing communication.

3.4 Exploration

The question this thesis explores is whether there is a methodology whereby applica-
tions can efficiently share data, transparently to the programmer, and across a number
of distributed sites in a grid environment that exhibits (relatively) large latencies. It is
investigated whether there are applications that can employ latency-hiding techniques,
such as relaxing memory consistency, overlapping communication and computation, and
user-driven multi-threading. To do this a DSM system, SMG (Shared Memory for Grids),
is implemented as a tool for the investigation.
The traditional DSM implementations have to date been focused on the cluster environ-
ment. While garnering lots of research focus in the 1990s, they were not a success, as
the embedded overhead was difficult to amortise over the duration of the application.
Coarser-grained applications that involve processing large amounts of data relative to
the communication demands may be more latency-tolerant and should prove a good fit
for executing in a grid environment.
In addition, it is asked whether grid-enabled applications can benefit from a hybrid ap-
proach that combines two programming models, i.e. message passing and shared memory
(provided by DSM), within a program. The inherent drawbacks of one model might be
leveraged by the benefits of another, thus lowering the programming burden and costs.
Mixed-mode programming models have already been employed successfully in systems
consisting of a large number of multiprocessors [19], where a shared memory approach



EXPLORATION 33

is used locally for each shared-memory multiprocessing node, while message passing is
used for the communication between nodes.
Such a hybrid approach could promote the use of a shared memory paradigm on a grid
where otherwise the inefficiencies would prohibit it. Applications written in a shared
memory style are easier to write, and subsequently they might be ported to the grid
by identifying the shared object and/or code locations responsible for communication
hot-spots and converting these to explicit message passing. Potentially, the process of
changing from one model to another need only be done in a localised fashion, i.e. the only
sections of a program to be converted to message passing would be those that would ex-
hibit a significant performance gain. This might even be done in an incremental fashion
dictated by the laws of diminishing returns.



EXPLORATION 34



CHAPTER 4

DSM

To recap, Distributed Shared Memory (DSM) is a concept that attempts to combine
the advantages of shared memory and distributed memory systems into one parallel pro-
gramming paradigm. It combines the single address space of the shared memory model
into a simplified programming environment with the scalability and cost effectiveness of
multicomputer systems. In essence the goal of any DSM is to extend the shared memory
paradigm into distributed-memory platforms so as to provide the illusion that a shared
variable is physically shared by all threads of execution in a multi-process multi-threaded
application. This illusion comes at the cost of reduced performance compared with a
message-passing implementation due to the computation and communication overhead
associated with the DSM system. This will discussed in detail in Chapter 6. There are,
however, some applications where DSM is more applicable than an equivalent message-
passing version as the algorithm may lend itself to be more efficiently implemented.
Different approaches to solving the problems associated with constructing DSMs in-
volve a trade-off between the hardware and software facilities available. One extreme,
hardware-only DSMs (H-DSM), employ the use of specialised hardware interconnect for
latency hiding and/or data consistency, while software-only DSM (S-DSM) uses only
software techniques. There are hybrid schemes that attempt to mix both. Appendix B
lists previous DSM implementations according to these classifications. As the thesis
relates to grid environments we consider software-only approaches.
The implementation of a software-only DSM (S-DSM)1 system involves many, and poten-
tial conflicting, considerations [42]. This chapter examines such implementation issues.
There are four primary questions to be answered in order to implement DSM. The first
is what underlying protocol will be used to allow access to shared state. Second, how to
ensure that shared state is kept consistent across all nodes when there are competing ac-
cesses to a shared variable. Third, how is the location of a shared data item to be found
when it is required but not available in the local cache. Last, how can communication
between nodes be best minimised in the implementation of the previous issues.

1From here on the terms S-DSM and DSM will be used interchangeably

35



SHARED MEMORY ACCESS PATTERNS 36

4.1 Shared Memory Access Patterns

DSM allows for a variable to be accessed by many threads of execution that may not
reside on the same physical machine, while at the same time these accesses should be
transparent to the application developer. When a read or write occurs memory should
be consistent according to the consistency model (rules) of the system (see Section 4.5).
Providing this functionality is the job of the DSM system. With some applications
this can place a severe burden on the resources (operating system traps, inter-node
communication, DSM system handling). It is important therefore for a developer to
consider data access patterns and related actions such as locality of reference. To ease
the task, shared memory is often allocated in chunks or regions.
Access patterns to shared regions are an important consideration as better performance
will be achieved through optimal use of the available resources. The implementers of the
Munin DSM project found that there are characteristic types of shared data that occur
in a shared memory application [34]:

• Read-only: This type of variable is first initialised, and subsequently only read
accesses occur. The incident matrices in the matrix multiply application of Chap-
ter 2 are such an example.

• Migratory: this type of variable is accessed by one thread, modified, and then
accessed by a different one. This pattern is repeated for other threads in the
system. Caching or replicating copies results in little benefit. This type of variable
is found in the classical travelling salesman problem (TSP) that is examined in
Section 10.1.1.

• Write-shared: multiple writers access the shared area concurrently between syn-
chronisation points, but the individual threads modify different sections. Suc-
cessive Over Relaxation (SOR) (Section 10.1.1) or Jacobi Iteration are classes of
problems where a variable of this type may occur.

• Conventional: there is no discernible access pattern associated with this type of
shared variable. Access is irregular so techniques such as prefetching2 of shared
data are not beneficial. This type of variable occurs in numerical simulation ap-
plications such as the N-Body Water benchmark (Section 10.1.1).

• Synchronisation: these variables related to synchronisation actions that are re-
quired to synchronise threads. Often synchronisation accesses are viewed in isola-
tion to normal shared memory accesses.

The varied nature of these access types indicates the memory-access flexibility required
by the DSM system. The flexibility must be supported by the shared memory modes
that govern the access to the shared data.

2Prefetching is a consumer-initiated technique, as opposed to remote write which is producer initiated,
that moves data close to the process before being actually required.



SHARED MEMORY ACCESS MODES 37

4.2 Shared Memory Access modes

A shared memory access mode specifies the number of threads of execution that can read
or write to a shared variable at a given time for a given coherence unit size. Accessing
a shared memory region is conditional on the consistency model governing the shared
variable. The most general classification of access modes bears a strong relation to
Flynn’s Taxonomy of computer architecture (discussed in Section 2.2). The four types
of mode are:

• SRSW (Single-Reader, Single-Writer): there can be only one reader or writer
accessing a shared area at any one time no matter how large the shared area.

• MRSW (Multiple-Reader, Single-Writer): multiple threads can read access
the shared variable concurrently, but only one can write to it. Replicated data
copies can exist in each of process’ address space, but only one writer can access
the shared region.

• SRMW (Single-Reader, Multiple-Writer):. only a single reader is allowed
access, but multiple writers are allowed to concurrently write to the shared memory
area, providing that no two threads write to the same location in shared space
concurrently, i.e. all writes must be non-conflicting.

• MRMW (Multiple-Reader, Multiple-Writer):. multiple readers and writers
are allowed to access the shared variable concurrently. The non-conflicting write
proviso of the previous mode applies in this case also. This mode is required for
the implementation of generalised parallelism that involves access to the shared
data locations by many processes.

Having an access mode that only allows a single thread to access a shared area results
in a loss of parallelism, although it is possible for processes to buffer computations and
access shared memory serially. If only a single reader is supported, and there are N
potential readers, the read access must be done in a serialised fashion, thereby increas-
ing the duration of the parallel operation. The same situation arises for non-conflicting
parallel write operations. An example where this situation occurs is given in Appendix F
where the resultant data for matrix multiplication is gathered from other processes in a
serial fashion by a single writer that is allowed access.
It will be seen later in the thesis that the provision of a multiple access mode signif-
icantly complicates the design and implementation of a DSM. This is, however, is a
base requirement, as not providing modes that provide concurrent access diminishes the
potential for parallelism [60], especially so in a grid environment. Often the mode is
dictated by the chosen memory consistency model (see Section 4.5) or vice-versa. Some
modes are incompatible with a given consistency model, e.g. a multiple-writer mode is
incompatible with the strict consistency model.
In previous DSM implementations the provision of multiple DSM modes that can adapt
dynamically at run-time were shown to result in significant performance gains [61], but
such a scenario is difficult to implement [62].



DSM DATA DISTRIBUTION ALGORITHMS 38

4.3 DSM Data Distribution Algorithms

The DSM data distribution algorithm coupled with a DSM ownership management al-
gorithm (next section) defines the base functionality required for implementing a dis-
tributed shared memory. These were originally derived from the cache coherency pro-
tocols of early hardware shared memory multiprocessor systems [63]. The ownership
management algorithm specifies how to find the owner of a shared data item, and the
DSM data management algorithm specifies how the shared data is distributed. Each is
an important consideration as it affects the number of control messages that are gener-
ated.
The four basic DSM data distribution algorithms [63] are described below. There are
also modified versions not described here. The algorithms can be categorised by whether
or not they (a) migrate ownership of data, and (b) replicate data. The associated cost
functions for each algorithm consist of two components Cost = a × b, where a is the
probability of the access to remotely located data, and b is the average cost of accessing
the remote data item. The parameters for the following cost functions are defined in Ta-
ble 4.1 below. These basic algorithms have been extended to allow for fault tolerance [64],
with little additional overhead for the central-server & full-replication algorithm.

• Central-server: with this algorithm the owner of shared data never changes.
With every read/write to shared data a request is sent to a central server. The
server responds with the valid data. Thus two messages are required for each
request. The primary problem with this approach is that the server becomes a
bottleneck, having to service requests from all processes. A potential solution is to
statically distribute the shared data among a number of servers, but a requesting
process will then need to know the location of the data. The cost for the central
server algorithms is:

Cc =
(

1− 1
S

)
× 4p (4.1)

• Migration: the ownership of the data is transferred upon receiving a request for
the data item. When a process relinquishes ownership of a shared memory item
the identity of the process that it transfers ownership to is recorded. In this way
it is always possible to ascertain what process is the owner of the item. Data
is transferred among processes in blocks of a defined granularity. This scheme is
most advantageous when a data block is used predominantly accessed by a single
process. If, however, it is accessed by a number of processes then ’thrashing’ of the
block will occur. One additional requirement is that as the ownership of a block
is transient an efficient algorithm is required in order to find the current owner.

Cm = f × (2P + 4p) (4.2)

• Read replication: the main disadvantage with the previous algorithms is that
only one thread of execution may access data at any one time, i.e. they implement



DSM DATA DISTRIBUTION ALGORITHMS 39

SRSW modes. With this algorithm data is replicated at different nodes allow-
ing different threads to read concurrently, eliminating much of the communication
overhead associated with the previous algorithms.
When a read to a shared data item occurs and it cannot be satisfied locally, then
a copy is sent to the requester; at this point ownership may or may not be trans-
ferred. When a write occurs data consistency must be maintained according to
the consistency model (see Section 4.5). This algorithm implements the MRSW
mode. The management of shared data can be distributed across multiple nodes
in order to eliminate any potential bottlenecks.

Crr = f ′ ×
(

2P + 4p+
Sp

r + 1

)
(4.3)

• Full-replication: the full-replication algorithm implements a MRMW mode,
whereby unlike read-replication, full-replication allows for data to be replicated
while written to, with the proviso being that only non-competing writes can oc-
cur. Reads accesses occur in a similar manner to the previous algorithm, while
write accesses are broadcast to other nodes. The order of sequencing writes in
order for data consistency to be maintained is left to the consistency model (see
Section 4.5).
Examining the cost function below shows that there are S + 2 messages for every
write, where S is the number of remote caches of the variable. Instead of per-
forming this action for every write operation an optimisation is for all writes to
be logged, then the shared memory is only updated in a node when a write occurs
locally.

Cfr =
1

r + 1
× (S + 2)p (4.4)

Parameter Definition
p The cost of a zero-size packet event (latency)
P The cost of a large packet event (latency & bandwidth)
S The number of nodes sharing the data
r Read/Write ratio,or access pattern to a granularity unit
f Probability of an access fault on a non-replicated data block
f’ Probability of an access fault on a replicated data block

Table 4.1: Parameters for DSM algorithm cost functions

4.3.1 DSM Ownership Management Algorithm

Depending on whether or not data migrates and/or is replicated, the owner of the shared
data master version, and copies if they exist, must be located when required. The DSM



DSM DATA DISTRIBUTION ALGORITHMS 40

ownership management algorithm is responsible for doing this and is closely related to
the DSM data distribution algorithm. A number of ownership management algorithms
for implementing DSM were identified by Li [65]. The two main classifications arise from
the decision whether to centralise or distribute management. The main approaches are:

• Centralised Manager: A central ownership manager is responsible for synchro-
nising all accesses to shared memory. It must maintain records of the existence of
all replicated copies of data, i.e. a copy-set. When a process requires data it will
direct its request to the manager, who in turn will forward it to the current owner
of the data.

• Improved Centralised Manager: Differs to the previous algorithm in that it
doesn’t synchronise access to the data but maintains only a copy-set and a record
of the current owner. All requests are still directed to the central manager.

• Fixed Distributed Manager: To reduce the potential for a bottleneck that
may arise from centralised management, multiple managers are established, each
with responsibility for a subset of the shared memory address space. A hashing
function is normally used to provide the mapping between processes and shared
memory [66]. When a process requires access to a shared memory area, the request
will be directed towards the appropriate manager.

• Broadcast Distributed Manager: Here each process manages the pages that
it owns. A message is broadcast when access to a shared memory is required,
and the current owner will then respond. A write broadcast results in all nodes
invalidating their copies and ownership being transferred to the requesting process,
while a read broadcast results in a copy of the data being sent to the requester
and the copy-set being updated.

• Dynamic Distributed Manager: Here each process maintains a probable owner
(prob owner) field which is updated upon every transfer of ownership. When a
process requires access to a shared memory area it will direct its request to the
process it believes is the current owner, i.e. to the prob owner. The copy-set only
exists on the process that owns the shared location. When ownership is transferred
the copy-set is also transferred.

These ownership management functions are interdependent with the DSM data distribu-
tion algorithms. If the ownership of a shared block does not change, as occurs with the
central server algorithm, then the management function is trivial, and the owner can be
identified immediately when required. However if migration occurs, then there is a pos-
sibility of a bottleneck at the ownership manager, as is the case with the full-replicated
DSM data distribution algorithm, then a distributed ownership manager is required.
Fixed ownership is an expensive solution (communication occurs on every write) and
due to this fact it is a constraint on parallel computation, so much that it renders it an
unattractive solution [65] for DSM.



SYSTEM ORDERING 41

4.4 System Ordering

According to [67], a distributed system is any set of processes that communicate by
message passing and carry out desired actions over time. The notion of time is a funda-
mental concept for any sort of distributed system. In a DSM certain events need to be
ordered so some concept of a sequencing relationship is necessary, i.e. a lock can only
be acquired after it has been released, or an update to a shared memory location cannot
be propagated to remote caches before the updating write access occurs.
However, discrepancies can occur between the local clocks of a distributed system for a
multitude of reasons [68], as clocks cannot be synchronised perfectly across a distributed
system [69]. Hence it cannot be assumed that events are ordered uniquely by time by ref-
erence to the local clocks. A solution was proposed by Lamport [70], the happened-before
relation, whereby:

If a process pi, observes two events then the order in which they occurred
will be the order in which they were observed to occur.
An event must occur before the event can be responded to, i.e. a message
must be sent before it can be received.

Distributed locks and shared memory require ’Lamort’ logical clocks to identify that
an event has occurred. In some of the DSM implementations described below a shared
memory object, or page, have an associated logical time-stamp that was incremented
when a certain type of event occurs.

4.5 Memory Consistency Models

The memory consistency model used by the developer is effectively a contract between
the application and the DSM system, whereby the DSM guarantees that if the software
conforms to the agreement then the shared memory is correct, or consistent, in the event
of parallel accesses [71]. In other words the consistency model specifies when the shared
memory is valid, and the application and DSM agree to adhere to that.
There are two main categories of memory consistency model, namely those that utilise
synchronisation points/operations to specify when shared data becomes consistent (re-
laxed) and those that don’t (strict). There are a number of formally defined consistency
models across the memory consistency spectrum between the strict and relaxed con-
sistency extremes. As consistency is relaxed the elapsed time between resolution of
potential inconsistencies between copies of the shared data is extended. By permitting
these temporary inconsistencies the more relaxed methods increase performance due to
a reduction in inter process communication [72]. There are weaker consistency protocols
available than those covered here, namely Sections 4.5.6 & 4.5.7. These models (where
consistency is guaranteed for a bounded period) are unsuitable for use with distributed
memory, but are used extensively maintaining consistency in file and web servers [73].
The following sections describe a number of the formally defined consistency models that
have been defined in previous research.



MEMORY CONSISTENCY MODELS 42

4.5.1 Strict Consistency

The most rigorous of all consistency models is strict consistency. It is the model assumed
by serial programs for the trivial case of uniprocessor systems. In a multiprocessor all
write operations must be immediately visible to all processes. The formal definition of
strict consistency is:

Any read to a memory location x returns the value stored by the most recent
write operation to that same variable

The implementation of strict consistency is all but impossible in a distributed system
as the notion of Newtonian global time applies [74], where an access at any process is
required to be seen instantaneously by all other processes. When a read operation occurs
the correct value at that exact point in time must be returned no matter how quickly a
write may be subsequently performed.
This is illustrated in Figure 4.1. The variable x is initially located at process 1 (P1),
which initialises it, W(x), with the value 1, then subsequently updates the value to 2.
Process 0 (P0) initiates a read operation on x, R(x), and a request is directed to P1. In
order for strict consistency to be maintained P0 must be returned the value 2. Due to
the high latencies of communication between the processes this may not be and possible
the read access may return the value 1.

Figure 4.1: Failure to adhere to Strict Consistency due to communication delays

4.5.2 Sequential Consistency

Sequential consistency is a weaker model that does not assume Newtonian global time,
and mostly provides enough consistency for general usage. Programmers, if properly
trained in parallel application development, can easily adapt to a situation whereby



MEMORY CONSISTENCY MODELS 43

statement execution order is irrelevant. However, it is still in the category of strict
models. First defined by Lamport [70], a system is sequentially consistent if:

The result of any operation is the same as if the operations of all processes
were executed in some sequential order, and the operations of each individual
process appear in the order specified by its program.

A system is defined as sequentially consistent if the result of any execution is the same
as if the operations were interleaved so long as all processes see the same sequence of
memory accesses [74]. A sequentially consistent system does not guarantee to return a
value consistent with its state conforming to Newtonian global time, but guarantees to
process memory accesses in a sequential order. An example is shown in Figure 4.2.

Figure 4.2: Sequential consistency

4.5.3 PRAM and Processor Consistency

PRAM (Pipelined RAM) and processor consistency models are similar enough that
they are often regarded as equivalent [74]. These consistency models allow concurrent
writes from different processors to be seen in different orders by different processes.
Time-dependent accesses can also be seen in a different order by different processes.
Writes from the same process must be identically and correctly ordered (pipelined) by
all processes. These models are also categorised as strict models. The formal definition
of PRAM consistency is [75]:

The write operations performed by a single process are observed by other
processes in the order that they were performed, but the order in which write
operations from multiple processes occur can be seen differently

In effect a writer does not have to wait for all modification to reach other processes before
it initiates another write operation. In Figure 4.3 it can be seen that writes observed at



MEMORY CONSISTENCY MODELS 44

Figure 4.3: PRAM consistency

Process 2 (P2) may be inconsistent with stricter models when compared with what is
observed at other processes at the same time, but all writes from the same process are
observed in the order that they occur.

4.5.4 Weak Consistency

The previously mentioned consistency models are quiet restrictive in that they require all
writes from a single process to be ordered and viewable by other processes [74], resulting
in excess communication. Weak consistency3 assumes that if all writes can be propa-
gated to all remote processes at a certain synchronisation point then this restriction may
be diminished. Weak consistency is categorised as a relaxed model. Relaxed consistency
models require the programmer to access shared data in a more structured fashion, thus
reducing the volume of network traffic generated, and increasing performance [66].
With weak consistency the task of making memory globally consistent is tied to the
use of synchronisation primitives. When a synchronisation operation occurs all writes
performed by a process are propagated to remote processes, and all remote writes are
applied locally. Hence, there is a clear distinction between ordinary memory accesses
and synchronisation accesses. Weak consistency has the following formally defined prop-
erties [76]:

1. Accesses to synchronisation variables must be sequentially consistent.

2. No accesses to a synchronisation variable is allowed to be performed
until all previous writes have completed everywhere.

3. No data accesses are allowed to be performed until all previous accesses
to synchronisation variables have been performed.

3Weak consistency has also been used to refer to any consistency weaker than strict consistency



MEMORY CONSISTENCY MODELS 45

As depicted in Figure 4.4 all processes see synchronisation accesses in the same order.
When a process is accessing a synchronisation variable then no other process can access
it. Before a process is allowed access to the synchronisation variable all preceding writes
must have completed, so by the time access is granted all the writes are guaranteed
to have been completed. The final condition means that before an ordinary access is
allowed to occur then the preceding synchronisation accesses must have been completed.
Shared memory is only brought up to date when a synchronisation variable is accessed.

Figure 4.4: Weak consistency

4.5.5 Release Consistency

The main drawback with weak consistency is that there is uncertainty concerning the
status of shared memory when a synchronisation access occurs. Is it about to be written
to, or has it just occurred? Due to this uncertainty all actions must occur: all local
writes must be flushed to remote processes if they exist, and all external writes must
be applied locally. Thus the synchronisation operation has a global effect for all shared
variables.
With release consistency (RC) this problem is removed by identifying synchronisation
operations as being either the entrance or exit of critical sections, within which shared
data is accessed, although the operations still have a global effect. These actions were
termed acquire and release by the first implementers of release consistency [77]. Acquire
actions define the entering of critical sections, while release actions specify the leaving
of a critical section. It is the job of the programmer to instrument the application code
with these synchronisation operations, be it ordinary operations on special variables or
as special operations [74]. The formal definition of release consistency is:

1. Before an ordinary access to a shared variable is performed, all previous
acquires done by the process must have completed successfully.



MEMORY CONSISTENCY MODELS 46

2. Before a release is allowed to be performed, all previous reads and writes
performed by the process must have been completed.

3. The acquire and release accesses must be processor consistent.

In effect accesses to shared data are batched, with acquire signalling the start of the
batching, and release its end. Figure 4.5 shows the sequence of events that demonstrates
the action of a release-consistent system. A typical release consistent DSM system would
be constructed using shared distributed locks, where the locking process is equivalent to
acquire, and unlocking to release. Global barrier primitives may also be used whereby
arrival at the barrier is equivalent to a release operation, and the departure from the
barrier to an acquire.

Figure 4.5: Release Consistency

4.5.6 Lazy-Release Consistency

A negative aspect of Release Consistency is that upon calling a release all updates are
sent to all processes with a cached copy of any modified shared data. However, not all
of these processes may require the invalidate/update notice (they may not be actively
reading the data), thus there is potentially superfluous overhead. Lazy-Release (LRC)
extends the principles of release consistency by delaying the pushing of invalidate/up-
date information until it is actually required. When a release occurs no communication
is generated. At a subsequent acquire the modifications necessary are directed to the
acquiring process [78]. The conditions that must be met to guarantee lazy release con-
sistency [79] are as follows:

1. Before an ordinary access to a shared variable is performed with re-
spect to another process, all previous acquires by the process must have
completed successfully with respect to that process.



MEMORY CONSISTENCY MODELS 47

2. Before a release is allowed to be performed, all previous reads and writes
performed by the process must have been completed.

3. All synchronisation operations must be sequentially consistent with re-
spect to one another.

Figure 4.6 illustrates the difference between the two types of release consistency. When
the release operation occurs no communication occurs until the subsequent acquire, in
contrast to the previous model where it does.
Some inefficiencies are introduced as an acquiring process with an out-of-date copy of
the data must fetch the data from the current owner. This introduces a stall before
computation can begin. Prefetching has been used to attempt to overcome this [80],
this is instigated by an operation programmed into the application. Such actions must
be application driven, as prefetching and lazy release are opposites, so any attempt
to automate the prefetching is likely to cancel much of the benefit accruing from lazy
release. A possible solution is for the system to adapt to the data usage pattern and so
only actively used data will be prefetched.

Figure 4.6: Lazy-Release Consistency

4.5.7 Entry Consistency

Even an efficient model such as LRC still generates a large volume of individual messages,
much of this is due to the global effect of the synchronisation operations. Since an acquire
intended to enforce consistency on one variable will also have the latent effect of enforcing
consistency on all other variables that have been modified, even if that is not necessary.
This is a result of having, in effect, only one global synchronisation variable.
Entry Consistency (EC) is one attempt at reducing this problem by closely binding a
shared memory region/block to a specific synchronisation variable, i.e. by allowing more
than one synchronisation variable, each covering a subset of the shared variables. In



MEMORY CONSISTENCY MODELS 48

a similar fashion to the previous models, that render shared memory consistent when
synchronisation operations occur, EC will do likewise, however, only shared memory
bound to the synchronisation variable is made consistent. The numbers of messages are
also reduced as the update data can be piggybacked upon synchronisation messages.
Stalling of the application, due to waiting for memory consistency to be enforced, is
reduced as well. The explicit association of shared data with synchronisation variables
creates extra burden for the programmer. This is the downside for the reduction in
coherence message generated.
A memory system is Entry Consistent if the following conditions can be met [81]:

1. Before an acquire access to a synchronisation variable s is allowed to
perform with respect to any process pi all updates to shared variables
guarded by s must be performed with respect to that process.

2. Before an exclusive access to a synchronisation variable s by a process
pi, then no other processor may hold s in non-exclusive mode.

3. After an exclusive access to s has been performed, any processor’s next
nonexclusive mode access to that synchronisation variable may not be
performed until it has been performed with respect to the current owner
of the synchronisation variable s.

Entry Consistency only guarantees that when an acquire operation on a synchronisation
variable occurs, the data bound to that variable is made consistent. Figure 4.7 demon-
strates this, where a synchronisation variable, z, is acquired and released by process P1.
The data variable x that is bound to z is updated upon an acquire of z at a remote
process, while the modifications to a variable that is not bound, y, but modified in the
same interval as x, is not (under RC or LRC it would be).

Figure 4.7: Entry Consistency



MEMORY COHERENCE PROTOCOLS 49

4.6 Memory Coherence Protocols

When a read occurs, a copy of the shared region may be sent to the requester without
affecting the status of the data at the responder. However a write results in potentially
inconsistent data being resident at remote processes. Thus a data consistency enforce-
ment method to maintain consistency is required, whereby after a write any subsequent
accesses act on consistent data. A memory coherence protocol defines how this is done
(it does not say when or why it is done). With distributed shared memory there are two
main classifications of coherence protocols [82, 66]:

• Write invalidate When shared memory copies located in remote processes are no
longer valid, they are invalidated by the regions’ owner, i.e. their status is changed
to ’invalid’. This requires one invalidation message to be sent to all processes that
hold the relevant data. When a remote process subsequently accesses the data an
access fault occurs, and a valid copy of the data must be fetched from the current
owner.

• Write update In contrast, the update protocol propagates the writes to all remote
copies of the data. Potentially fewer messages result, but the message payload will
be greater. This protocol is best suited to situations where the granularity of a
shared variable is small (typically equal to the MTU of the underlying transport
system), or where the probability of access by a remote node is high. When a
remote process accesses its copy of the data, it finds that the variable is valid and
no access fault occurs.

Although both memory coherence protocols may be utilised, in certain circumstances
one may be more suitable than the other. The decision on which to employ depends on
a number of factors: memory access pattern, latency and bandwidth of the interconnect
(see Section 5.1, in general low-latency small messages favour the invalidate protocol,
while high-latency large messages favour update); required consistency model, and appli-
cation demands. Some of memory consistency models, described previously, may have
a greater affinity to one coherence protocol and this is often a mitigating factor, e.g.
Entry Consistency is more suited to an update coherence protocol, with the caveat that
when the shared memory mode is MRMW this may not be the case.

4.6.1 Home/Home-less Coherence

There can be slight variations of the above protocols, such as delayed-write update [83],
but the most accepted classification of the coherence protocols mentioned above is based
upon whether or not each shared unit (see Section 4.7) of the shared memory has an
assigned home[84]. In the latter case, termed home-less, and is only really applicable to
the invalidate protocol; there is no fixed home process (the protocols as described above
are examples of this case). In the home-based approach, each unit (in page-based systems
this will be on a per-page basis) has a predefined home, where modifications are always
flushed on the shared region’s consistency-related release event. Unless the home is



COHERENCE GRANULARITY 50

chosen carefully, or dynamic in nature, poor performance will result, since modifications
are always propagated. Of the advantages of home-based protocols enumerated in [85]
only one is beneficial when compared to an update protocol, i.e. home nodes are not
required to make write notices (diffs). The AllCache System [86] posed another: that it
is helpful to have a home of last refuge that a block may be flushed to in order to free
memory for more urgent use.
Certainly there are situations where this approach will perform better than another [87,
88], but the challenge is to find the one that best fits the general case. Any home based
flavour of one of the above protocols really just imposes a fixed ownership scheme (see
Section 4.3.1) where all coherence actions are always directed towards the home location
of the memory block. Efficient schemes exist for lock synchronisation primitives using
home based consistency models [89].

4.7 Coherence Granularity

All storage is usually perceived to be in a hierarchy, ranging from very fast but small
CPU cache storage to very slow but enormous bulk storage. DSM is a more general
form of storage than CPU cache, but the design of a DSM system echoes that of a
CPU cache. In a DSM, when an access occurs to a shared memory variable (location)
that the process does not have a copy of, then the variable must be fetched from its
current location. In traditional CPUs, when a read occurs and a cache miss occurs, the
data must be fetched from its current location. Due to the phenomenon of locality of
reference a block of memory locations (a cache-line) are treated as a unit, and are read
in at the same time (cache line size size varies depending the CPU architecture). DSM
granularity, similar to cache-line size, specifies how much data is treated as a unit, and
involves a complex trade-off between locality and coherence overhead [65].
The quantum of this data sharing unit (Granularity) is a major determinant on the
overall system. Small granularity may result in smaller message payloads, but the volume
of messages may increase, and more overhead occurs in order to witness and respond
to an access. The granularity is also the minimum level at which an access can be
registered. There will be one DSM access event for every accessed unit of granularity
within the shared area.
The granularity units that have been implemented in previous hardware and software
DSM implementations are given in Table 4.2 below.

In general one of the first two granularities have been chosen for hardware DSMs where
the interconnect efficiently provides for large volumes of small coherence transactions,
while software implementations have used the latter three with less specialised inter-
connects. Tables B.1, B.2, B.3 in Appendix B effectively illustrate this point. Some
of the important issues involved that have a significant effect on DSM computation
overhead [83], and so influence the decision on the granularity size are:

• False sharing: Having a large granularity can result in false sharing, where more
than one process writes to the same unit of granularity concurrently (even with the



DSM CASE STUDIES 51

System-Word A 32-bit or 64-bit architecture-dependant system word.
Cache-Line A multiple of the system-word size. (64 bytes with current

CPU architectures)
Page The size of the native operating system’s virtual memory

page, normally 4KB or 8KB
Variable A user defined size that can be in the range from a byte to

whatever maximum size the system resources/operating
system can support

Object Again this user defined, but with semantic meaning de-
termined through use (data structures) [90].

Table 4.2: Possible DSM Granularity Sizes

writes are non-conflicting) there is a ping-pong effect with exchange of ownership
between the writers, reducing the potential concurrency. The solution is to support
a multi-writer protocol and/or to have a smaller granularity unit, thereby reducing
the probable number of writers per unit.

• Access detection: Detecting accesses to shared memory locations can be a
tremendous overhead on operating system resources, as in most cases page faults
are used to detect accesses in S-DSMs, so if the unit of granularity is larger, fewer
access events occur. Write Trapping is the term given to detecting writes, for every
individual unit of granularity where writes occur there will be a detection event.

• Write collection: When writes have been detected, remote processes with a copy
must be notified according to the consistency model and coherence protocol.

• Communication: As is the case with access detection the smaller the granular
unit level the greater the usage of system resources, in this case larger volumes
of individual communication transfers. Ultimately there is a trade-off between
message payload size and message volumes.

Chapter 7 lists some metrics that can be used to determine the best fit for the granularity
level. Some of these costs are: page-fault handling; DSM system access latency; commu-
nication metrics such as latency and bandwidth; system page size (in a heterogeneous
environment this may be a problem as not all platforms share the same page size). The
choice of granularity may not be present as it may be dictated by other criteria. It is
worth noting that a coarser grained unit such as a page offers a model which is similar
to physical shared memory with the downside of a performance penalty [82].

4.8 DSM Case Studies

Systems composed of stricter consistency models tend to impose less burden on the ap-
plication developer, as the programming semantics are less convoluted. The trade-off,



DSM CASE STUDIES 52

however, is that there is a significant increase in the volume of control messages and a
greater amount of operating system resources are consumed. Stricter consistency mod-
els also tend to reduce potential concurrency as only single writer protocols have been
implemented. Multiple writer protocols can be utilised to offset this [56, 61].
In this section some previous DSM implementations will be briefly explored with regard
to the various approaches taken to the topics discussed in the previous sections, partic-
ularly in relation to weak consistency models. A summary of the features of other DSM
implementations is given in Appendix B. The salient DSM design decisions are given. A
description of the APIs for some of the DSMs are also given in Appendix C. Although
there are some DSM implementation that are more recent, it can be argued that those
outlined below are still the seminal works in the field.

4.8.1 Munin

The primary goal of the Munin DSM project was to allow applications written for a mul-
tiprocessor system to execute efficiently in a distributed memory system with minimal
modifications to the source code [34]. Additionally the programming interface should
have similar semantics to that used when using true shared memory multiprocessors,
while at the same time not restricting the programming language.
Munin was one of the first DSMs to implement Release Consistency [91] (discussed in
Section 4.5.5). The developers of Munin implemented eight tunable parameters that
govern the nature of the consistency protocol. (i)Invalidate or update, (ii)Replicas al-
lowed, (iii)Delayed operations allowed, (iv) fixed ownership, (v) writable, (vi) multiple
concurrent writers, (vii) stable sharing patterns, and (viii) changes flushed to owner.
The main Munin DSM components consist of: the run-time engine which handles syn-
chronisation and consistency events such as page faults, the object directory which man-
aged the shared data that is in use locally, and the Delayed Update Queue (DUQ) which
is responsible for maintaining consistency, in this case release consistency.
Munin was written in C, and although one of the primary design goals was to avoid using
language, hardware or OS features not readily available on a wide variety of systems [92],
in addition to a custom compiler, an OS with custom Munin extensions is also a require-
ment. The extensions made to the default development System V platform included the
ability to handle segmentation (SEGV) faults and other protection violations in user
rather than kernel space, the ability for a user process to manipulate arbitrary virtual
memory mappings, and the ability to create and destroy processes on remote nodes so
that a cloned image of the calling process (initialised data etc.) can be replicated in
the new process. Additionally System V’s IPC mechanisms are heavily relied upon. All
communication in the prototype system occurred over Ethernet.
The main modification necessary in order to port an application to use the Munin DSM
is the annotation of the declaration of shared variables using the shared keyword, and
additionally the type of coherence required should be specified (one of the typical shared
memory access patterns discussed in Section 4.1: write-shared, conventional, migratory
and read-only). Preprocessor support is required to process these user annotations to
produce an auxiliary file that lists all shared memory regions in an application. At link



DSM CASE STUDIES 53

time the variables can be identified from this auxiliary file and are placed on individual
system pages, or on pages with the same anticipated access pattern. During run-time
when a variable is accessed the system can examine the variable type and determine the
coherence action to take. For a write-shared item a delayed update protocol is employed,
while for the conventional and migratory sharing schemes an invalidate approach is used.
Only statically allocated variables are supported. No routines similar to a global malloc
exists as with many other DSM implementations. Only variables of the same type may
be placed on the same page as decisions taken by the fault handler mechanism are closely
related to the consistency model, which is checked at each memory fault. In a similar
manner to hardware DSM implementations Munin used directory tables to locate the
variable meta-data when an access fault at a particular location occurs. This meta-data
comprises information such as variable size, type, locally present, and probable owner.
The programming model that is presented to the programmer is similar to that when
writing multi-threaded applications for shared memory machines. API calls exist for the
creation and deletion of these extra-process threads. Synchronisation accesses are dis-
tinguished from variable accesses through the use of library routines, e.g. global barrier
and lock/unlock functions are available to access these special primitives.

4.8.2 Midway

The Midway DSM tried to achieve a similar goal to Munin, to ease porting a multipro-
cessor application to a distributed memory system with minimal changes [74].
The Midway DSM was the first to implement Entry Consistency [81]. Midway included
support for multiple consistency models to be employed concurrently (basic support for
release and processor consistency models is also mentioned). Parallel applications were
developed using a threads model, whereby all threads shared the same address space.
The duties of the run-time system included the maintenance of consistency. The Mid-
way API is given in Appendix C. EC requires that all shared data must be declared and
explicitly associated with at least one synchronisation object [42]. Binding functions
were provided to achieve this (midway bind synch object), and also functions to rebind
shared memory areas to other synchronisation primitives (midway rebind synch object).
For a lock synchronisation primitive, Midway distinguishes between two modes in which
it could be held: non-exclusive and exclusive. The former allows multiple threads of
execution to concurrently hold the lock, while in the latter case only one is permitted. A
lock held in non-exclusive access can only be promoted to exclusive access if only the re-
questing thread holds the lock. However, a lock can always be demoted to non-exclusive
mode. Midway allowed a significant optimisation whereby once a thread holds a lock in
non-exclusive mode, it can then delegate non-exclusive access to other threads without
being the owner of the lock.
Midway could use one of two approaches to detect access to shared regions: the first
was to use a compiler that identified a modification to the shared memory region and
recorded such an event in an auxiliary table that had an entry for all shared variables.
If this first approach was not available, say the compiler didn’t support the data-type,
or the special Midway compiler was itself not available/supported, then the second ap-



DSM CASE STUDIES 54

proach was to use the MMU to detect accesses to shared data. The former approach
could result in increased performance by reducing the DSM run-time overhead as ac-
cess to shared memory was detected without the need of a page fault, however, each
shared memory type needed to be explicitly supported [93]. The Midway compiler only
supported EC, so the other stated consistency models supported (PC and RC) used
the MMU method. When the time arose to enforce consistency the auxiliary table was
checked for the presence of ’dirty’ data. The update coherence protocol was employed as
it has a natural affinity with the default Entry Consistency model. One serious deficit
with the Midway DSM was its lack of any real support for multiple concurrent writers,
thus Midway suffered tremendously from the effects of false sharing.
Midway used a special optimisation to reduce the amount of coherence data transferred
at consistency points. Only the modifications performed on a shared variable in the time
interval {ta, tb} were sent to the acquiring process (which had a copy with a modification
date of ta) from the process with the most recent copy (mod date tb). Midway employed
a form of garbage collection, whereby once a shared variable was no longer being accessed
locally (indicated by the lack of ownership of the associated synchronisation primitive),
it could be discarded. Upon being referenced again the shared data could be refreshed
from a remote process.

4.8.3 CRL

The C Region Library (CRL) [94] was an attempt to construct a DSM system that
would be highly portable, language and system independent, while at the same time
being efficient though minimising the depth of the DSM layer.
The programming model allows the programmer to define an arbitrarily sized contiguous
memory region. Following this the region must be mapped into the local process ad-
dress space using a rgn map routine. CRL will make no guarantee where in the process’
address space a shared region will be allocated, so a region may be located in different
locations in different processes. The granularity of writes is whatever size of region that
is created. The CRL API is given in Appendix C. It has functions to clearly delineate the
beginning (rgn start op) and end (rgn end op) actions for shared memory regions. No
explicit synchronisation operations are used by the programmer to enforce consistency,
but in essence the Entry Consistency model is employed.
The coherence granularity is that of the allocated region’s size. CRL borrows many of
the approaches that a hardware DSM would employ (for a comparison see Table B.1),
such as fixed-home invalidate protocol, resulting in high communication costs (poten-
tially three sets of messages per access). A typical hardware DSM directory mechanism
is used to locate shared memory home. Support is included for explicit flushing of the
local cached copy back to the home process using the rgn flush call.
CRL requires an underlying messaging system implementation for communication. The
CM-5 [95] and MIT Alewife machines were supported by making use of Active Messages
implementations and in these implementations proprietary features were also used. A
message passing implementation, PVM (described in Section D) is used for start-up of
system, with CRL’s custom messaging API used thereafter.



DSM CASE STUDIES 55

The programming model offered by CRL is very arduous to develop with, particularly
when the applications tend to have multiple shared regions accessed concurrently. In
addition concurrency is reduced as there is a lack of support for concurrent writes. It
is efficient in regard to OS overhead in write detection as the programmer has to do
this. CRL was the first DSM to run on a relatively large number of processes (128).
Conversely, it demonstrated the limitations of DSM scalability for some types of appli-
cation. However, the actual implementation cannot be said to be a software-only DSM
as reliance is made upon specialised coherent interconnects.

4.8.4 Treadmarks

The Treadmarks DSM [96] was the first DSM to implement Lazy-Release consistency.
Its designers chose this model for their implementation as they considered that this
model resided in the ’sweet-spot’ of the consistency-model/control-message trade-off,
and would still offer an intuitive programming model with good performance.
The Treadmarks system requires no special kernel or compilers, and as such has been
ported to a myriad of platforms, and is itself still in limited use. The Treadmarks API
is simple and efficient and has been the basis for many other projects. The API is given
in Appendix C(page 221). Shared memory is declared using the Tmk alloc call, which
allocates memory from a reserved pool of memory. This memory pool is allocated at
run-time and is located at the same memory location in the address space across all
Treadmarks processes, which is difficult to achieve in a hetrogenous system. A pointer
to a unstructured byte array is returned. The Tmk distribute is subsequently used to
broadcast the appropriate data to the other processes in the application.
In Treadmarks synchronisation is implemented using barriers, locks, and condition vari-
ables. The barrier primitive is global in nature, and the actual algorithm implemented
is the central barrier algorithm. Barrier managers are assigned in a round-robin fash-
ion. As stated above Treadmarks employs an invalidate approach to coherence so the
workload is much reduced. The locking routines only provide exclusive access modes.
Condition variables are implemented on top of the lock variable. An acquire operation
on a synchronisation variable signals the start of an ’interval’. Modifications to shared
data for the duration of this interval, the end of which is designated by a release opera-
tion, are valid.
A write notice, if required by the coherence mechanism, is sent to other processes upon
release consisting of a list of shared data items modified in the interval, and a diff is
generated (a write collection method, see Section 4.7) that only encodes the modifica-
tions to a shared unit by comparing the run-length of the original and modified versions
of a coherence unit (a page in Treadmarks’ case). Diffs are only merged upon demand,
and it is necessary that this is performed in the proper causal order (by interval vector
timestamp).
Treadmarks LRC implementation supports Multiple-Writer protocols [97], allowing mul-
tiple threads of execution to concurrently modify data in a shared unit, thereby solving
the problem of false sharing. This is supported so long as the modifications are distin-
guishable from one another, i.e. each memory location (4 bytes in Treadmarks) within



DSM CASE STUDIES 56

the sharing unit can have only one writer (writes are non-conflicting). As can be seen
in Figure 4.8, where multiple writers are in use, modifications to variables within the
same shared page are identified at the synchronisation point using write notices. Po-
tential conflicts are determined when the diffs from all writers are merged following a
subsequent acquire. Any conflicts result in an access violation.
Treadmarks uses a number of novel features to optimise the DSM run-time. Use of
adaptive coherence protocols [98] is one such approach, whereby coherence protocols
can dynamically adapt between single and multiple writers, thus allowing for a reduc-
tion in coherence information whenever possible. Treadmarks also allows for a lazy-diff
creation scheme, which allows the process to be delayed until the time the diff is required
at a remote node. This has the effect that superfluous diffs are not generated, reducing
overhead on the DSM run-time [62].
Communication between Treadmarks processes is achieved using sockets. At start-up
of a N process application, the root process will first spawn the remaining N-1 child
tasks via a remote shell on remote nodes specified in a machine file. Each Treadmarks
DSM process creates N sockets. The maximum number of processes that is allowed in a
Treadmarks is fixed at 32, and the total shared memory is also limited to 16384 virtual
memory pages (this limit can be modified by recompiling the DSM distribution) that
must be located at the same virtual address in all processes. Treadmarks can allocate
multiple shared variables on a single page, while offering potential memory space savings
the consistency model can be broken unbeknown to the user. The Intel C/C++ compiler
has been coupled with the Treadmarks DSM system to provide distributed execution of
OpenMP applications [99], see Section 5.3.2.

Figure 4.8: Treadmarks Multi-Writer support



DSM CASE STUDIES 57

4.8.5 CVM

With previous DSM implementations the choice of coherence protocol/consistency model
was built into the DSM with no variation possible without modifications to the DSM
core. The Coherent Virtual Machine or CVM was developed with the intention of being
a platform for protocol development and experimentation [100]. CVM was developed
by Pete Keleher, one of those responsible for Treadmarks, and is written as a user-
level library that supports most UNIX style systems. It is written in C++ and defines
interfaces for which different protocols and consistency models can be implemented.
With CVM no further modifications to the DSM core is required for the extension and
implementation of new protocols, allowing for rapid development and deployment of new
protocol implementations. This is achieved by deriving new classes from the Page and
Protocol base classes. Implementations exist for sequential and lazy release consistencies,
and the home and homeless variants of the invalidate coherence protocol.
CVM employs many of the same approaches that were taken in the more recent projects
that utilised Treadmarks, such as the underlying end-to-end communication protocol
built upon UDP sockets, start-up of remote processes by a remote shell process, and the
same limit of 32 processes. However, new communication layers can be implemented by
implementing the Msg interface. The programmer’s API is given in Appendix C, and is
also practically identical to that of Treadmarks.
Dynamic CVM (D-CVM) [101] is an extension that allows for the dynamic migration of
threads from one process to another, allowing for better load balancing of applications.

4.8.6 Brazos

The Brazos DSM system [102] implemented Scope consistency. Although not described
in this thesis, this is a hybrid of release and entry consistencies [103]. This consistency
model aims to provide the latter’s potential performance advantages with the superior
usability of the former, allowing for the reduction in false sharing.
The Brazos DSM was implemented to take advantage of the proliferation of cost effective
networks of multiprocessors. The DSM was developed for the Windows NT operating
system, and sought to leverage some of its features. The DSM had native support
for multi-threading, which is facilitated in the OS with support for preemptive multi-
threading, something that had been lacking at that time in the Linux OS. The DSM
allowed dynamic run-time performance tuning by reducing the shared memory pages’
copy-set sizes by selecting the most appropriate coherence protocol.
Communication between processes was enabled through the use of the WinSock API,
and the Brazos DSM made use of novel features such as selective multi-cast sockets for
communication, resulting in a reduction of the number of consistency-related messages.
The Brazos DSM was used as the target for an OpenMP compiler, which enabled ap-
plications developed with the increasingly popular OpenMP standards to execute on a
group of distributed shared memory machines [104]. This project also offered a combined
’common’ programming model composed of OpenMP and MPI.



REVIEW 58

4.9 Review

Chapter 2 developed the rationale (or why) of DSM. This chapter dealt with issues sur-
rounding the trade-off in the when and how it is actually achieved. The SMG DSM is a
fresh approach at implementing a DSM, by learning from the inherent defects of previ-
ous DSM implementations that have prevented their use in a grid environment (which
is reasonable considering most were implemented before the Grid paradigm). Many of
the seminal works in the field mentioned in the case studies suffer from trivial design
deficits such as support for a (relatively) small global memory space, small process pool
sizes, or an awkward API.
When: writes become globally visible as dictated by the consistency model. According
to [105, 106] aggressive implementations of the weaker consistency models are capable of
delivering higher performance because they better tolerate network delays and limited
bandwidth. Figure 4.9 attempts to illustrate that the choice of consistency model is a
trade-off in the volume of resulting control messages versus the programming effort. The
main protagonists that emerge, LRC and EC, have their drawbacks - LRC: the critical
section times are increased as all local caches require the remote modifications (caused
by a cache invalidate), EC: the potentially significant and superfluous communication
generated.
How: via coherence protocols. The invalidate protocol is best used where a shared
object is very large, and where sharing per granular unit is small so the probability of
a remote access is small, or the sharing access pattern cannot be established. This pro-
tocol is normally employed when the consistency protocol is stricter and a low latency
interconnect is present. The protocol has been utilised in a number of DSM implemen-
tations that have demonstrated that it is adequate in certain circumstances [66]. Home
based protocols are an attempt to solve the inherent lack of scalability of the invalidate
protocol.

Figure 4.9: Programming Burden vs Control Messages



CHAPTER 5

Relevant Issues

The implementation of a shared memory management system that operates in a dis-
tributed environment requires the provision of essential services, notably a facility for
inter-process communication, as illustrated in Figure 1. Additional issues arise when a
distributed application operates in a wide-area-network environment such as a grid. The
additional latencies encountered will further exacerbate the overheads, so it is a necessity
to have additional services, such as information & monitoring, to aid their reduction.
In this chapter an overview of the enabling distributed technologies and principles are
presented. The main topics for discussion are the communication mechanism used be-
tween the system threads within the DSM, the method by which environmental informa-
tion is accessed, and how monitoring data may be efficiently produced. This is followed
by an overview of the main alternatives for a parallel programming API that employs
shared memory.

59



DISTRIBUTED COMMUNICATION 60

5.1 Distributed Communication

The characteristics of the underlying communication mechanism are of prime impor-
tance. In order to implement a DSM system, serious consideration needs to be given
to the performance of the communication channels between the DSM system threads.
There are many factors that need to be taken into account, but the the two primary
metrics that characterise communication are bandwidth and latency. They govern the
overall scalability of the DSM system:

1. Latency is the fixed cost to transfer data, and is independent of the volume of
message data being transferred. It is the time taken to transfer a zero byte payload
between endpoints (in reality with all interconnects there will be a minimum trans-
fer unit). It is composed of hardware and software delays. The unit of bandwidth
is the time taken to perform the transfer, in seconds.

2. Bandwidth is the rate of transfer of data. It governs the upper-bound on the
total amount of data that may be transferred between two nodes per unit time.
The unit of bandwidth is bits or bytes per second.

The values for Latency and Bandwidth will determine the best approach to take for
message transfer: a higher message count with a smaller payload versus a lower message
count and a larger payload. The nominal time to transfer a message with a payload of
n bytes can be derived from:

TransitT ime = Latency + (n/Bandwidth)

Bandwidth, and more significantly latency, will affect the scalability that is attainable by
a DSM system. As the number of processes (that an application executes on) scales up, so
will the amount of communication, thereby reducing the computation to communication
ratio. As was mentioned previously in Section 2.1, if the job is scaled up this effect
can be mitigated [11]. When choosing the communication mechanism, some factors to
consider are:

• Overlap: The ability of a system to overlap communication and computation
where possible. This allows user computation to proceed while communication is
occurring by allowing a thread to initiate communication while not having to wait
for notice of delivery. This functionality is mainly provided to the user through the
availability of non-blocking communication calls and autonomous communications.

• Message/Buffer copy count: The number of times the message payload is
copied between buffers during the overall transfer. In a typical inter-process data
transfer, a message has to be copied into communication buffers before it can be
transmitted over the wire, with a similar sequence at the receiving side.



DISTRIBUTED COMMUNICATION 61

• Multiplex: The ability for multiple threads to send/receive messages concur-
rently. This is achieved by multiple threads interleaving fragments of their mes-
sages ’over the wire’.

• Data formatting: message data may need to be typed by marshalling the data
with its corresponding type map before it can be sent/received over the communi-
cation channel, since different data representations occur on different architectures.

• Usability in a Grid: The ease of enabling the use of the communication library
for a grid environment. The use of the DSM should not overly inconvenience the
user in having to establish communication channels for every environment.

• Robustness: Some communication systems will not guarantee message delivery.
If such a scenario occurs, it must be noticed. Extra communication buffer space is
required for the data to be re-transmittal if the initial attempt was not successful.

The following sections describe various communication libraries. Although not directly
comparative, they illustrate the trade-offs associated with the underlying principles that
can be applied to the DSM communication layer.

5.1.1 Sockets

A socket is an abstraction of one end-point of a two-way communication link between
two programs potentially running over a network. A socket is normally identified by
a small integer which may be called the socket descriptor. The socket mechanism was
first introduced in the 4.2 BSD Unix system in 1983 in conjunction with the TCP/IP
protocols that first appeared in the 4.1 BSD Unix system in late 1981.
If communication is between two processes located on the same machine then UNIX
sockets are one mechanism by which they can communicate. As depicted in Figure 5.1,
where communication is required to take place between two processes on distributed
machines, then Internet (INET) sockets will be provide a communication channel using
a network protocol such as TCP (which in turn is provided by the hardware protocol).
TCP provides a reliable service in contrast to the potentially unreliable UDP. However a
performance penalty is incurred by TCP in order to guarantee reliable delivery as each
packet must be acknowledged by the receiver. Even though there is an arrangement
where such acknowledgements can be ’piggybacked’ in the same transfer as user data,
there are still latency overheads associated with the initial setup of the transfer when
compared to the ’fire-and-forget’ principle of UDP. If interconnect latency is high but of a
lesser importance, such as for file transfer in a grid [107], then bandwidth can sometimes
be used to compensate. With TCP, messages must be cached on the sender side until
they are acknowledged by the receiver. An extra burden arises from the need to check
for delivery.
The advantages of composing the messaging layer from sockets are:



DISTRIBUTED COMMUNICATION 62

• The flexibility of being able to specify the underlying transport protocol, increasing
the potential for local optimisations.

• At this layer native support for multi-cast is provided, thus multiple instances of
the same message (one for each destination) need not be generated.

• Platform independence. The Socket API is architecture neutral, and there are
implementations for all major platforms.

The disadvantages of composing the messaging layer from sockets are:

• There is a significant amount of extra work involved in the implementation of a
socket communication library, e.g. management of socket handles, buffers, and
security.

• Connections have to be explicitly established, so implementing communication,
this way, may not be as easy as with other messaging layers.

• Support is not provided for sharing multi-byte values across different architec-
tures. Unless a facility for data typing and marshaling exists, or the user explicitly
performs conversion, the system is limited to homogeneous nodes.

Socket programming is a primitive method for the construction of a messaging layer, but
implementations exist for the majority of interconnects and platforms, and it is viewed
as (and is) a building block of the higher level communication methods described below.
For a Grid environment additional security implications arise, however there are socket
implementations, such as Grid Security Infrastructure (GSI) sockets [108]1, that attempt
to overcome these issues.

Figure 5.1: Socket Layer Communication

1The Grid Security Infrastructure (GSI) is based on IETF standard TLS (formerly SSL, the Secure Sockets
Layer.



DISTRIBUTED COMMUNICATION 63

5.1.2 Message Passing

Message passing is a higher level communication paradigm allowing for two processes
located on two distributed nodes to communicate at defined instances using simple nam-
ing semantics. Communication is usually two-sided, where the sender and receiver(s)
must participate in a specified operation, such as the sending of a unit of data from a
transmit buffer defined in one process to a receive buffer of another. The underlying
transport protocol is often provided by a lower level communication mechanism such
as sockets. The goal of a message passing implementation is to offer the developer a
simpler communications API by the obfuscation of the difficulties imposed by a lower
level communication library. Where previously a machine address and socket pair were
required, message passing semantics usually only require a numerical process identifier.
Problems arise if the message passing implementation is to be used between heteroge-
neous architectures and multi-byte primitives are transferred. Such a situation does not
arise in clusters of homogeneous units, however it may arise in a Grid where the pool of
available processors may be composed of different architectures. In such cases the user
must strictly ’type’ the data to be sent.
Advantages of composing the communication layer using message passing include:

• Generic functionality is provided that need not be reinvented for every application,
for example the initialisation and finalisation routines provided by the message
passing implementation.

• Increased usability over a lower level communication implementation such as sock-
ets. Routines are provided for collective tasks such as global synchronisation bar-
riers.

• There is a vibrant ecosystem surrounding some the most popular message passing
implementations. This can include user support and a myriad of tools such for
debugging, profiling, and visualisation.

• There are well defined standards and APIs, implemented for a myriad of platforms,
architectures, and interconnects

• Applications utilising message passing libraries will experience an increase in per-
formance due to current and ongoing work in the optimisation of these libraries.

The disadvantages of composing the communication layer using message passing include:

• The lack of support for transparent fault-tolerance. Often when a problem occurs
on one node then the whole application fails. However, there are ongoing efforts
to provide a solution to this problem [109, 36, 110, 111].

• Little support currently exists for multiple user threads calling message passing
functions simultaneously.

• Dynamic process creation is not implemented (there are specifications in place).



DISTRIBUTED COMMUNICATION 64

Many different message-passing implementations exist. In the past high performance
computing (HPC) hardware vendors had their own proprietary implementation, so an
application would often have to be completely rewritten in order to be ported to a new
platform. This led to a standardisation process within the HPC community to develop
a cross platform message passing standard. The result of this effort was the Message
Passing Interface (MPI) standard, which is explored below.
The Parallel Virtual Machine (PVM) library was a popular, yet non-standards-based
alternative message passing implementation that preceded the MPI standards. The
main advantages of PVM compared to earlier MPI implementations [112] were advanced
techniques such as support for fault management and dynamic process creation. Later
MPI standards rectified this and is now considered to be a better option, but PVM
still remains in use among a minority of the academic community [113]. The current
implementation of the PVM pseudo-standard is described in Appendix D.

The Message Passing Interface Standard: MPI

The Message Passing Interface (MPI) is the de-facto standard for message passing im-
plementations. According to [114] some of its primary advantages over other message
passing implementations include: MPI has more than one freely available, quality im-
plementation; other proprietary implementations also exist; MPI defines an interface
for a third party profiling mechanism, thus allowing for external tools to access pro-
filing information; MPI has full asynchronous communication, thus allowing overlap of
communication and computation; MPI efficiently manages message buffers; MPI syn-
chronisation protects 3rd party software; MPI can efficiently program clusters, MPP,
and Grids [48, 49]. Some of the current MPI implementations are given in Appendix D.
MPI is also formally specified [115], it has evolved through a number of standards.

MPI-1 defined the basic message passing principles and function call definitions, such as
send/receive, collective operations, and input-output routines. MPI-2 adds to previous
standards with new features, most noticeably support for one sided communications,
dynamic processes creation, and process management.
MPI is intended to be totally portable. Language bindings currently exist for C, C++,
and FORTRAN. The MPI API, which is considerable, can be divided into logical sec-
tions: environmental(initialisation & finalisation), point-to-point (send/receive), and col-
lective operations (barrier & broadcast). The six routines in Listing 5.1 are the most
basic, and are required for any message passing application:

MPI Init // Initialisation of the MPI run-time system
MPI Final ize // Finalisation of the MPI run-time system
MPI size // Return the total number of processes
MPI rank // Return the identifier of this process
MPI send // Send a message to a specified process
MPI recv // Receive a message from another process

Listing 5.1: Basic MPI routines



DISTRIBUTED COMMUNICATION 65

5.1.3 Remote Procedure Call

Remote Procedure Call (RPC) is a methodology for constructing distributed applica-
tions. Unlike message passing, RPC provides a client/server model where the program-
ming model is one-sided. It provides a means for a client process to invoke a function
call on a remote (server) node by transparently sending a message encapsulating the
function name and the required parameters to the remote node where the function is
implemented. The function can either be blocking or non-blocking, in the latter case
allowing for a situation where multiple calls may be executed in parallel. The result of
the function invocation is subsequently transferred to the client machine.
RPC requires that a strict definition of the required functionality (in the form of a
method interface, or stubs and skeletons in RPC terminology) must exist. The imple-
mentation of this functionality is provided by the ’server’ process. Better heterogeneity
support results, including transparent data typing and marshaling between processes
participating in the system.
The advantages of composing the communication layer using RPC are:

• This one-sided programming model makes it easier to develop parallel applica-
tions, where the data and the associated function to operate on it are specified
by the programmer. The principal benefit of this approach is that a simple user
programming perspective is provided.

• Support exists for different architectures through the use of stubs and skeletons,
allowing a developer to implement the mechanism by which data is correctly mar-
shalled between processes.

Some of the disadvantages of composing the communication layer using RPC are:

• The increased programmer burden associated with the generation of defined in-
terfaces. This is exacerbated by the the lack of a coherent or a formally defined
standard, hence lack of portability in comparison to sockets or message passing.

• The RPC library can introduce significant latency (100s microseconds).

• The developer is responsible for implementing security on the server side

• Unless the process address space is kept consistent between the client and server by
the programmer, global variables cannot be used, and pointers cannot be passed
as function parameters or returned.

Like sockets, RPC can use either UDP or TCP as the underlying communication trans-
port layer. When UDP is used then the implementation must deal with any reliability
issues. Examples of RPC are Sun RPC, used in the implementation of the Network
File System (NFS), Java RMI, and Corba (two of the more recent implementations of
RPC style, distributed programming). The latter two relieve the programmer of the
responsibility for marshaling/unmarshalling of data, while a RPC mechanism has been
implemented for the Grid [116]. The main drawback with this technology is that a great
deal of software infrastructure is required.



INFORMATION AND MONITORING SYSTEMS 66

5.2 Information and monitoring systems

With the emergence of grid-based computing through the use of wide area networks it
is becoming increasingly important that there are mechanisms in place to (a) obtain re-
liable information on the state of the grid environment [117], and (b) have the ability to
monitor applications executing within it. This can involve access to dynamic information
such as processor load, disk storage space, network availability [118], node availability,
and (relatively) static data such as system configuration and topology. Clearly this infor-
mation is important to grid operations staff, but also it may be the key to optimisation
algorithms within services and applications.
A grid scheduler needs such information to correctly identify the best available resources
to execute a grid job [117]. Subsequently the ability of a developer to access this infor-
mation, such as the physical topology of the scheduled parallel application execution,
can result in increased performance. For these reasons, grid information and monitoring
architectures have been intensively examined by the Global Grid Forum (GGF) [119].
There are three primary components in the GGF grid monitoring architecture (GMA):
producers, consumers, and directory services [119] 2. Producers announce to the grid
that they have information to publish; this is done by registering the type of data to
be published with the directory. Consumers can query the directory for the location of
producers that can meet their demand. Requests from consumers can then be directed
towards the relevant producers. This interaction between the components is depicted in
Figure 5.2. The two main actions that may be performed by the application are:

• Producing information: Applications may produce vast quantities of monitor-
ing/logging information. There needs to be an efficient infrastructure for publishing
system monitoring and user logging information from multi-process applications.

• Consuming information: If the DSM system wishes to generate a topology
tree then environmental information must be present, and easily accessible. The
monitoring information generated by the application also needs to be accessible
for (i) the application as a feedback mechanism for the DSM system, and (ii) for
run-time analysis of the application by the application developer. Also, the process
of consuming information should be flexible.

Standard information schemas, such as the framework-independent Grid Laboratory
Uniform Environment (GLUE) Schema3, define a common conceptual data model to
be used for monitoring and discovery of grid resources [120]. Information published
compliant with the GLUE schema include physical machine status, storage element
information, and network information. SMG defined schemas are required where the
GLUE schema is deficient (does not contain the variables of interest), so the systems
used will need to support this demand.

2Currently the GGF INFOD-WG working group are preparing the document ’Information Dissemination
in the Grid Environment - Base Specifications’., which is intended as the template for next-generation
grid information & monitoring systems, much as GMA did for the present generation

3Currently Version 1.2, with Version 2 currently under deliberations



INFORMATION AND MONITORING SYSTEMS 67

Other implementations, such as MDS (part of the Globus toolkit [108]), are outlined
in Appendix D. Both MDS and R-GMA adhere to the GLUE schema [120]. Either
(or both) are a good basis for fulfilling the requirements of SMG. The following section
illustrates the GMA-compliant approach, R-GMA, to an information and monitoring
system.

5.2.1 R-GMA

The Relational Grid Monitoring Architecture (R-GMA) is a relational implementation
of the GGF GMA [121]. As is the case with the GMA, information is published via
producers and accessed by consumers as shown in Figure 5.2 below.
R-GMA is currently built using Java servlet technology (future implementations will be
based on web services). Java, C, C++, Perl, and Python APIs exist for the use of R-
GMA, allowing ease of creation of highly portable applications. R-GMA has successfully
been used to enable the monitoring of MPI applications in a grid environment [122]. R-
GMA adheres to the GLUE schema, and applications have been developed to republish
data held in other systems (MDS).
The interaction of all its components are illustrated in Figure 9.1 (page 133). When a
producer is instantiated it registers itself with the directory service, termed a registry in
R-GMA, specifying the view/type of information to be published by declaring a predi-
cate. This defines the schema which specifies the structure of the relational table that
the producer will be publishing to. The schema definitions are maintained by a schema
servlet (an extension of the GMA architecture). The producer is accessed via one of the
defined producer APIs. This can be either a primary or secondary producer, depending
on the type of data being published. The producer will in turn publish via a producer
servlet. The registry is responsible for maintaining information about all producers in
the system, such as the location and the type of data being published, i.e. the predicate.
A consumer will request access to the data via a consumer servlet, which will contact
the registry to obtain the locations of data providers (producers). The registry mediates
between the producers (if present), and the consumer is then directed towards the rel-
evant producer. Information regarding the consumer request will also be stored in the
registry, enabling optimisation where multiple consumers issue identical requests.

Figure 5.2: Grid Monitoring Architecture (GMA)



THE USER API: CASE STUDIES 68

5.3 The User API: Case Studies

A DSM developer needs to take cognisance of an often quoted reason, aside from poor
performance, why DSM failed to gain acceptance among the parallel programming com-
munity, i.e. programability. All DSMs implemented their own non-standard Application
Programming Interface (API), an API might be simple and intuitive, such as that pre-
sented by Treadmarks, but it is still (another) non-standard. Educating a group of
application developers for a new API could prove costly for something that could fall
out of fashion. It should be noted that another recent effort exists, UPC [27], that define
a shared memory programming model that makes provides for architectures with differ-
ent levels of memory consistency, but as it has yet to gain acceptance it is not covered
here. Another, Global Arrays(GA [123]), offers functionality for accessing shared arrays,
assume a NUMA-like platform, but has been constructed on top of a message-passing
library. It has similar semantics to the put/get operations in MPI-2 outlined below.
The philosophy that will govern the API design of the SMG DSM will ultimately be to
support a standard either directly or indirectly. In this section we examine some of the
standards that provide some direction. Each programming model imposes a certain level
of burden. This is highlighted in the examination of the OpenMP programming API,
the MPI-2 one-sided communication routines, and also an implementation of OpenMP
for distributed memory machines. An API such as pthreads is not considered due to a
lack of a defined memory model.

5.3.1 OpenMP

The (OpenMP) standard [4] has as its main focus the parallelisation of structured loops in
application code. It employs a fork-join model of parallel execution which is particularly
suited to applications involving large iterative operations on array-based structures. This
is achieved through the annotation of parallel code areas through the use of compiler
directives. In the C version of the specification (C++ and FORTRAN also exist) an
OpenMP directive has the following form:

#pragma omp directive [clause,...] newline

An important motivation for using OpenMP is its ability to simultaneously support both
serial and parallel variants of programs through the use of these #pragma omp compiler
directives (that define when parallelisation is required), and so can be turned on/off at
compile time, but can also be introduced throughout the appliaction in an incremental
fashion. Directives can be parallel, work-sharing, or synchronisation in nature and are
discussed in the following sections. Also explored are the APIs and memory consistency
required by OpenMP. A more substantive definition of the API is given in Appendix D.
Profiling libraries may be implemented using the profiling interface definition, POMP,
and other work has been done on combining the data obtained using this interface
for static analysis to obtain speedups [124], and in a dynamic context for run-time
optimisation [125, 126].



THE USER API: CASE STUDIES 69

Work-Sharing Directives

The parallel directive essentially directs the initial user thread to create a team of
threads. The parallel directive can also be paired with a for directive, that simultane-
ously creates the team of threads and apportions each a portion of the associated loop
workload (See Listing 5.2 below: each thread in the team, of size N, will get allocated
approximately X/N iterations of the for workload). Allocation strategies may be in-
stigated by specifying a SCHEDULING clause (Appendix D). The sections directive
complements the for directive, allowing parallelism to be functionally decomposed, and
thereby enabling a number of further discrete section constructs to be divided among
the threads and executed concurrently.
In the C programming language the for loop is parallelised, by dividing the work among
the team of threads of execution according to some function (specified by the clause).
In the default case each thread is assigned a static chunk (determined by the number of
iterations to be performed and the number of threads in the team). Barriers are used
implicitly at the start and end of the snippet, where any thread will wait at the end
of the structured code block until all threads have arrived, except, for example, where
a nowait clause has been declared. In order for concurrency to be allowed inside this
parallel section, the shared memory regions must be concurrently writable by multiple
writers, i.e. a multiple writer protocol must be supported.

#pragma omp p a r a l l e l for /* Begin parallel section */
for ( k = 0 ; k < X; k++){

s u b t o t a l += a [ k ] ;
} /* End parallel section */

#pragma omp p a r a l l e l s e c t i o n s /* Begin parallel section */
{

#pragma omp s e c t i o n /* Methods foo & bar
{ foo(); } executed concurrently by

different threads */
#pragma omp s e c t i o n
{ bar ( ) ; }

} /* End parallel section */

Listing 5.2: OpenMP Work Sharing Directives

API calls & Environment variables

The OpenMP specification also includes API calls to enable the programmer to query
and set the value of OpenMP environment variables, to use lock synchronisation routines,
and timer routines. The most notable of the environmental routines enable the dynamic
setting of the default number of threads in a OpenMP team (this value can be specified
by a clause to the parallel directive).



THE USER API: CASE STUDIES 70

Mutual Exclusion Directives

Mutual Exclusion is supported through the use of synchronisation directives (highlighted
in Listing 5.3), and additionally though primitives with associated API routines (see next
section). The barrier and flush operations, referred to above, have explicit directives.
The other mutual exclusion directives that ensure structured access to shared data are
as follows.

/* Only the master thread will execute code */
#pragma omp master
{ . . . }

/* Only one thread will execute the code */
#pragma omp s i n g l e
{ . . . }

/* All threads will execute the
code, but only one at a time */

#pragma omp c r i t i c a l
{ . . . }

/* Atomic update to a shared variable */
#pragma omp atomic
<statement>

Listing 5.3: Format of OMP Mutual Exclusion directives

These directives must be nested within a parallel (or variant) directive. The first two
are functionally equivalent, and allow only one thread to execute a block of code. In the
omp case the master thread will always execute the block, while in general with single
the first thread to reach the block will execute it. The critical directive allows the
code block to be executed by all the threads in the team, but ensures that only one will
do so at a time. The atomic directive is a restricted version of critical, allowing a
single statement, such as a variable increment e.g. i++, to be executed atomically.

OpenMP Memory consistency model

In the early OpenMP standards no reference was made to the memory consistency
model that was needed in order that an OpenMP application would be correct. Version
2.5 of the OpenMP standard somewhat rectified this by specifying that the memory
consistency model required is a relaxed consistency model, similar to weak ordering as
described in [127]. Various data scoping attribute clauses can also be supplied (see
Appendix D, page 230). All shared memory references must be performed with respect
to OpenMP flush directives. While an explicit flush exists they are also implicit



THE USER API: CASE STUDIES 71

with regard to the work-sharing directives. The following requirements need to be met
with respect to flush operations [128]:

• If the intersection of the flush-sets of two flushes performed by two different threads
is non-empty then the two flushes must be completed as if in some sequential order,
seen by all threads.

• if the intersection of the two flushes performed by one thread is non-empty, then
the two flushes must appear to be completed in that thread’s program order.

• If the intersection of the flush-sets of two flushes is empty, the threads can observe
these flushes in any order.

In relation to this thesis, the specification of a relaxed consistency model was very
encouraging, as it strengthened the case for SMG to be designed as a potential target
for an OpenMP compiler.

5.3.2 Cluster OpenMP

Cluster OpenMP is a recent optional module of the Intel compiler family (C, C++ &
FORTRAN) [129] that allows applications written using the OpenMP interface to exe-
cute transparently across distributed memory machines. Although previous efforts strove
to provide such functionality, this is the first to be provided commercially, and is fully
supported in terms of commercial-grade documentation and support tools (compiler,
thread checker, thread profiler). This distributed OpenMP is built upon a modified ver-
sion of the Treadmarks DSM (see Section 4.8.4), rectifying many of the inherent deficits
listed, i.e. larger number of user processes, multiple threads per process, larger quanti-
ties of sharable data, and increased support for modern interconnects.
In addition to additional functionality, some deviations from the OpenMP standard have
been made. The most noticeable departure is from the memory model, whereby by de-
fault, all variables are not not shared among all threads of execution. Shared variables
are explicitly declared shared using a new sharable directive which is an Intel extension
to OpenMP standard. Some compiler support exists (the -clomp-sharable-propagation
compiler directive) for identifying variables that need to be declared using this direc-
tive [130]. The minimum granularity at which memory consistency is guaranteed is four
bytes.
As the mmap system call is used internally by Cluster OpenMP, use of this function
by user code should be treated with caution; alternative functions are provided for use.
OpenMP lock variables omp lock t must be also explicitly allocated, and dynamic
memory must be allocated/freed using API calls instead of using the standard library
functions (malloc/free). Nested parallelism, i.e. a parallel directive within the scope
of another, is not supported.
Like Treadmarks, remote process start-up is done using the basic remote shell (rsh),
or the secure variant ssh. Communication is still via sockets, but the DSM has in-
creased user thread-ability where the number of DSM system threads (termed bottom-
half threads) is proportional to the number of user application threads.



THE USER API: CASE STUDIES 72

5.3.3 MPI-2 Shared Memory

The remote memory access functions included in version 2 of the MPI interface enable
one sided communication, while at the same time not requiring a uniform shared address
space. This remote memory access, although somewhat removing the communicating
pair requirement, is still explicit in nature. MPI-2 functions MPI Get, MPI Put, and
MPI Accumulate allow respectively for the initiation of one-sided remote memory read
and writing. However, before these can be used, constructions known as ’memory win-
dows’ need to be established, using the MPI Win create, that specify a contiguous
address range (memory address and size) where those memory operations are mapped
into the local address space.
The above one-sided operations are non-blocking, so the point at which these remote
memory actions initiate and ultimately become visible are denoted using synchronisa-
tion operations specified using the active (i.e. a collective operation, so all processes
are involved) ’Fence’ mechanism MPI Win fence, which is analogous to a barrier. If
multiple processes perform a put to the same window location the the result is unde-
fined. The passive routines (i.e. where only one caller is involved), MPI Win lock and
MPI Win unlock, are available to provide multiple-reader/single-writer functionality,
but have yet to be implemented in open-source MPI-2 implementations.
The data being transferred is well defined using the MPI type routines, so when com-
pletely implemented, this functionality will allow for data access in heterogeneous sys-
tems. The main drawbacks with the MPI-2 RMA operations are the requirement for the
user to explicitly specify the read and write routine and to synchronise access. Other
work has concluded that MPI-2 does not provide an adequate compilation target for
global address space languages [131] or parallelising compilers [85]. Additionally there is
a lack of support for fault tolerance, since the error handlers only allow for the cleanup
of the process and not adaption to the loss of a process. Where some implementations
include such support they do not totally adhere to the MPI standards.

MPI Win create // Create a memory access window
MPI Win free // Free a window
MPI Put // Write operation on remote memory
MPI Get // Read operation on remote memory
MPI Accumulate // Perform operation while performing put
MPI Win fence // Collective, barrier-like operation
MPI Win lock // Lock (r/w) the memory access window
MPI Win unlock // Unlock (read/write) the window
MPI Win start // Start an interval to the memory window
MPI Win complete // Complete a memory access interval
MPI Win post // Start an interval locally
MPI Win wait // Signal completion of interval locally

Listing 5.4: MPI one-sided communication



THE USER API: CASE STUDIES 73

The code example given in Listing 5.5 demonstrates the one-sided communication abil-
ities as provided by the MPI-2 standard.

MPI Alloc mem ( s izeof ( int )∗ s i z e , MPI INFO NULL, &a ) ;
MPI Alloc mem ( s izeof ( int )∗ s i z e , MPI INFO NULL, &b ) ;
MPI Win create ( a , s i z e , s izeof ( int ) , MPI INFO NULL,

MPI COMM WORLD, &win ) ;
for ( i = 0 ; i < s i z e ; i ++){

a [ i ] = rank ∗ 100 + i ;
}

p r i n t f ( ” Process %d has the f o l l o w i n g : ” , rank ) ;
for ( i = 0 ; i < s i z e ; i ++){

p r i n t f ( ” %d” , a [ i ] ) ;
}
p r i n t f ( ”\n” ) ;

MPI Win fence ( (MPI MODE NOPUT | MPI MODE NOPRECEDE) , win ) ;

i f ( op == GET){
for ( i = 0 ; i < s i z e ; i ++){

MPI Get(&b [ i ] , 1 , MPI INT , i , rank , 1 , MPI INT , win ) ;
}

} else {
for ( i = 0 ; i < s i z e ; i ++){

MPI Put(&a [ i ] , 1 , MPI INT , i , rank , 1 , MPI INT , win ) ;
}

}

MPI Win fence (MPI MODE NOSUCCEED, win ) ;

p r i n t f ( ” Process %d obtained the f o l l o w i n g : ” , rank ) ;
for ( i = 0 ; i < s i z e ; i ++){

p r i n t f ( ” %d” , b [ i ] ) ;
}
p r i n t f ( ”\n” ) ;

MPI Win free(&win ) ;
MPI Free mem ( a ) ;
MPI Free mem (b ) ;

Listing 5.5: Use of MPI one-sided communication



THE USER API: CASE STUDIES 74



CHAPTER 6

Shared Memory for Grids (SMG)

The explorations of this thesis were conducted by implementing a DSM called
SMG (Shared Memory for Grids). One of the primary goals of this thesis is the explo-
ration of facilities to allow existing parallel applications to execute efficiently on a grid
with little, if any modifications required. To achieve this proper attention need to be
paid to the requirements of existing parallel programming standards. As OpenMP is the
current de facto standard for parallel application development on shared memory archi-
tectures it is appropriate to ultimately design the DSM to be a target of an OpenMP
source-to-source compiler. Some of the OpenMP parallel constructs, covered briefly in
Section 5.3.1), will be further examined in order to ascertain such requirements. This
will form the starting point for the implementation of DSM topics that were discussed
in Chapter 4.
This chapter presents an overview of the internals of the base SMG system such as how
the DSM interacts with user application threads, how communication between processes
is effectively managed, and the start-up and shutdown stages of a SMG DSM applica-
tion. This permits both application-level performance optimisation as well as algorithm
implementation and problem tracing, and is crucial to facilitating higher performance
on a Grid. Chapters 7 and 8 will deal with the relevant aspects of integrating memory
management and synchronisation. SMG allows applications to be monitored either by
the application itself, by another process, or by the user. Chapter 9 deals with the im-
plementation of the libraries to access information and monitoring systems.
The steps involved in the compilation and execution of a simple Helloworld SMG ap-
plication are also covered. The chapter concludes by describing some of the system
implementation issues that were encountered.

75



DSM REQUIREMENTS 76

6.1 DSM Requirements

The system must present the programmer with an easy-to-use and intuitive Application
Programming Interface (API) in order that the additional burden in the construction of
a DSM application is minimal. This requires that the semantics must be as close to that
of normal shared memory programming as possible. The SMG project aims to borrow
from the successes and learn from the mistakes of previous DSM implementations.
When designing a DSM system, the main decision is to what extent the user will be re-
sponsible for maintaining the shared memory consistent. In general, less burden on the
programmer results in more work to be performed at the DSM management layer. Ulti-
mately this may result in performance deterioration that will limit the overall scalability
of the system. This is further exacerbated when there is little or no hardware support
available to the DSM. There are successful implementations of hardware-support using
off the shelf components for distributed shared memory, employing interconnects such
as SCI [20] and Myrinet [21], but one of the aims of this research was to avoid the need
for specialised hardware support.
Apart from a being a popular research topic, DSM has otherwise been a failure, a num-
ber of reasons have been suggested [92], but one significant factor is the poor take-up
outside research labs due to the lack of any open standards in the area. Any new DSM
implementation is usually accompanied by a new programmers API (some are given in
Appendix C), and involves a developer learning a new set of programming semantics,
with an additional drawback in the lack of portability of the application. Therefore
parallel application developers are loathe to adopt any new non-standardised API.
For a DSM to gain acceptance, compliance with an open standard is necessary to en-
courage use, so it is with this in mind that the DSM must be designed to be potentially a
target of a parallelising compiler, such as OpenMP, thereby allowing the use of existing
parallel code with support for future application development. In Section 5.3.1 some
OpenMP directives were examined. One can identify some of the design requirements
of the DSM if it is to form the target of a parallelising compiler.
To implement these directives, a compiler targeting a DSM system only requires a con-
sistency model that ensures shared memory areas are consistent after a synchronisation
operation has occurred. In the parallelised for example, shared memory sections are
required to be consistent at the entrance and exit of the section. This allows any of the
more relaxed consistency models to be used, as there is a close affinity with synchro-
nisation primitives and the fact that shared memory can be explicitly declared as such
using the OpenMP shared clause.
Where a developer targets the DSM, its primary functions are then used to act as proxy
between SMG processes and provide the developer with a transparent method of access-
ing shared memory and performing synchronisation routines. For a Grid DSM the DSM
engine at local level should not have to overly contend with the characteristics of remote
nodes, e.g. different architectures or platforms that may have different page-sizes, ex-
cept in cases where this is unavoidable, e.g. to transfer of data between nodes caused
by invalid data.



SMG DSM ARCHITECTURE 77

Useful statistics should be gathered (if required) while the DSM system is running and
used to detect variable use & code areas that result in poor performance, the most per-
tinent being page faults, memory allocations and releases, and DSM specific statistics.
The user should have access to this information if desired.

6.2 SMG DSM architecture

The overall function of the DSM engine is to provide and manage transparent access by
the application developer to shared memory areas. This involves keeping track of the lo-
cation and state of shared memory areas and synchronisation primitives. The SMG DSM
has additional duties such as enabling topology support by processing information about
the execution environment to generate a topology tree (in order to create tree-structured
barriers). This facilitates taking advantage of topology in order to provide efficient mes-
saging, and utilising the monitoring system to enable a feedback mechanism to allow
run-time optimisation of the DSM.
The various components are represented in Figure 6.1. There are clearly defined APIs
for most of the relevant decisions in the DSM implementation (these will be discussed
in the following chapters).

Figure 6.1: SMG Conceptual Architecture

The following is a summary of the decisions made in the area of the system architecture:

• Initially, MPI is used for the communication between DSM system threads. Hence
the initial communication (comms) API implements a wrapper around the MPI
communications infrastructure, but can also be used to support hybrid program-
ming.

• When a user application thread requests a resource, the DSM system will be re-
sponsible for satisfying it. This choice, while adding extra latency, is justified from



INTERNAL DSM ENGINE OPERATION 78

the desire to efficiently support multi-threaded user applications by ensuring that
duplicate requests that involve external communication can be eliminated.

• Initialisation and finalisation routines are required. This deviates from OpenMP
standards where no such provision exists, but could be remedied by a compiler.

• In order to support user multi-threaded applications a wrapper around the thread
creation routine of the thread library is provided.

All API function calls belong to one of the three following groups.

1. DSM Management (Initialisation/finalization/Environment) will be dealt with
in the remainder of this chapter.

2. Shared Memory Management such as allocation in Chapter 7, and support
for hybridisation in Chapter 9).

3. Synchronisation operations are covered in Chapter 8

6.3 Internal DSM Engine Operation

The operation of the DSM system requires that it be initialised and finalised in a
structured manner as there are initial tasks required to be performed such as the
initialisation of internal data structures and synchronisation primitives, and the starting
of the DSM engine thread(s). All DSM threads in participating processes must be
started and coordinated before DSM services can be provided to user application
threads.
When the system has been started the user application threads make requests of the
DSM system through the defined API, or through events generated by the memory
management system. Support for user multi-threaded programs are required so any
such requests must be passed to the DSM system thread through an internal queue
structure as depicted in Figure 6.2. When a user thread places a request on the queue it
currently blocks pending a response from the DSM system. A possible future refinement
here is to add support for non-blocking calls, analogous to the fashion in which MPI
provides complimentary non-blocking and blocking calls.
The DSM communication sub-system must concurrently probe for requests from remote
nodes. When a request is received (it may be coherence, synchronisation, or system
related) it is added to the DSM queue to be processed by a DSM system thread. A
system thread will also process the request and depending on the request type it can be
handled if it can be satisfied, forwarded to another process, or in certain circumstances
ignored. While a solution such as this, introduces additional latency to the DSM, it is
necessary for supporting both user and DSM system multi-threading.



HELLOWORLD USING THE SMG API 79

Figure 6.2: DSM Engine Structure

6.4 Helloworld using the SMG API

In the distributed shared memory programming model, the level at which the user is
responsible for consistency dictates the semantics and style of the user API (currently
only a C interface is provided). The API consists of a number of functions that allow
the user to exploit the facilities provided by the system, such as locks and barriers. One
of the most successful implementations of software-only DSM is Treadmarks, its API
is simple and elegant (listed in Appendix C, page 221). The design of the SMG API
follows a similar style to this API, and is given in full in Appendix E (page 243).
In the Treadmarks model a thread is responsible for ensuring that it has correct access
privileges to a variable through the use of synchronisation primitives. This principle
applies even if a thread only requires read access. The SMG DSM introduces the same
constraints; in order for a thread to ensure that it is using a consistent shared memory
then the appropriate synchronising operation must be performed. A developer will
construct an application specifying the control of a thread using flow control statements
with reference to their identifiers.
All function calls in the SMG API return error codes indicating the return status of
the function call. Typical values returned are SMG SUCCESS or SMG FAILURE.
These return codes should be examined when returned to ensure that an application is
correctly executing or that the action that was requested has taken place. Input and
output parameters are specified as the arguments to the function.

6.4.1 DSM Initialise

The local actions essentially consist of the initialisation of the internal storage, DSM
handles and queues. This SMG routine must be invoked before any other API call. The



HELLOWORLD USING THE SMG API 80

API initialisation function is given below. The first two arguments, argc and argv, are
the arguments passed to the user application at run-time, which are in turn passed to the
MPI initialisation routine. The flags argument specifies the environmental requirements
such as information & monitoring services. The last argument type defaults defines
what the requirements of the application developer are, and to specify what the default
memory consistency models and coherence protocols are; this allows internal DSM engine
optimisations.

int SMG init ( int ∗argc , char ∗∗∗ argv , int f l a g s ,
int t y p e d e f a u l t s ) ;

At the start-up sequence of the SMG DSM engine a number of tasks are performed:

• initialisation of the local internal DSM structures

• the start-up of the DSM system handler thread(s)

• establish the underlying communication channels between all processes. In the MPI
implementation, this acts as a wrapper around the underlying initialisation call (i.e.
MPI Init/MPI thread Init in the single and multi threaded versions respectively).

• the installation of the shared memory write trapping mechanisms, currently this
is a system page-fault handler, which is described in detail in Section 7.3.1.

• If the information and/or monitoring system is required, then the application must
register with it during the initialisation routine. If registration fails because the
information and monitoring system is not available then the system will exit.

• The initialisation routine also acts as a global barrier that ensures that all threads
of execution, wherever they be, perform such tasks before DSM requests can be
invoked by remote processes.

The error code returned will indicate successful initialisation or failure. Sources of fail-
ure can include the unavailability of requested information & monitoring services, and
failure by the underlying communication system. Upon successful completion the value
SMG SUCCESS is returned. At this point the global variables, such as SMG proc rank
and SMG proc size, are valid, and, if specified, the application has been registered with
the information system.

6.4.2 DSM System Environment

Although the global variables that specify the process pool size and a process’s rank
are provided (SMG proc rank and SMG proc size respectively) for use by the developer
after the initialisation call has returned, supplementary functions are provided that will
dynamically return these values when required. The SMG prototypes for these functions
are:



HELLOWORLD USING THE SMG API 81

int SMG process s ize ( ) ;
int SMG process rank ( ) ;

The first function will return the number of processes in the system, which will be less
than or equal to the total number of user threads. Currently, this value is fixed at
run-time due to the present lack of support for dynamic processes in MPI. The latter
function will return the numerical rank of the calling process, in the range [0..N-1], where
N is the total number of processes in the system.
A function to display internal DSM engine information (SMG print state) is provided.
Additional functions are provided for the getting and setting of system attributes, e.g.
these functions provided user access to the topology information if originally enabled. An
API call (SMG module load) is also provided for the loading of additional modules that
allow for the extension of the DSM, e.g. in areas such as shared memory management.

void SMG print state ( int stream ) ;
int SMG internal get ( int key , void ∗ value ) ;
int SMG interna l set ( int key , int value ) ;
int SMG module load ( int MODULE TYPE, char ∗ l o c a t i o n ) ;

6.4.3 DSM Finalise

In order for the system to exit cleanly the finalisation function call must be invoked.
This ensures that all processes synchronise on exit, and guarantees that only when all
processes are ready to finish they will actually do so, thereby preventing shared memory
regions from being freed while they might still be required at a remote node. When all
processes have reached this point all remaining shared memory regions are freed. Once
all local cleanup routines have been called the information & monitoring systems can
be signalled. Finally the underlying communication environment can be finalised. This
function may act as a wrapper around the relevant communication function; with the
MPI communications implementation, MPI Finalize called by the DSM system.
The SMG API finalisation call, called at the end of all SMG applications is:

int SMG fina l i se ( )

This function will block until it has completed successfully. Once this is done no further
DSM services can be availed of. This function should only be called once, usually by the
master user thread, otherwise the behaviour is unspecified.

6.4.4 DSM Abort

In certain circumstances it is desirable for an application to abort during execution
for some reason local to one of the processes. An abort call is provided to allow the
application as a whole to degrade gracefully, and perform housekeeping functions such as



HELLOWORLD USING THE SMG API 82

the closure of files, deregistering from the information system, and the reporting of errors
to the developer. This call may form a wrapper around the underlying communication
call (MPI Abort), so once it has been called no further interprocess communication is
possible. This call will terminate all processes involved in the DSM application. In all
cases the user specifies the error code, error code, to return to the invoking environment.
The SMG API call to abort an application is:

int SMG Abort ( int e r r o r c o d e )

6.4.5 User Multi-threading

Enabling multi-threaded user applications can result in significant performance
gains [132]. Support will leverage hardware advances, such as multi-core processors,
to better employ multiple user threads per node, allowing the DSM to fully exploit the
available resources (say extreme exploitation of overlapping of computation and com-
munication).
When creating user threads it is important that they are registered with the DSM run-
time management system. This allows for setting of a thread signal mask in order
to catch accesses to shared memory regions. Thread creation is requested using the
SMG thread create API call, essentially a wrapper around the underlying thread library
call. Only threads created using the SMG API call will be visible to the DSM system.
If the API call is bypassed when the user thread is created and if a shared region is
accessed an unintended SEGV fault will occur. More of the latent effects related to this
decision are mentioned in Section 8.1.
At thread initialisation the appropriate cleanup handler functions are registered using
the pthread cleanup push call, and so system routines that are required to be called be-
fore the user thread exits are registered, thereby avoiding the developer having to do
so manually in the application. An option that is allowed is to verify that the exiting
thread does not hold any locks; if there is a lock held, then the appropriate measures
may be taken. Currently, the event to logged to the monitoring system.
As the SMG API function for the creation of user threads is a wrapper around the the
underlying pthread library call, it presents the same familiar argument list to the devel-
oper. The function parameter tid is a thread identifier for the newly created thread; attr
are the required thread attributes; start routine is the entrance function for the newly
created thread; and arg is a reference to any input parameters that the user may wish
to pass to the thread. The error codes returned by the function are the same as those
returned by the underlying thread creation call.

int SMG thread create ( pthread t ∗ t id , p t h r e a d a t t r t ∗ attr ,
void ∗ s t a r t r o u t i n e , void ∗ arg ) ;

int SMG thread count ( ) ;
int SMG thread count atrank ( int p r o c e s s i d ) ;
int SMG thread systemwide ( ) ;



ENGINE COMMUNICATION 83

The number of threads that are active in a given process can be obtained using the
SMG thread count atrank call. The number of current ’alive’ user application threads
within the local process, created using the SMG thread create function, can be ob-
tained using the SMG thread count function1. The total number of system threads
that are active across all processes at a point in time can be obtained using the
SMG thread systemwide function. Changes in the number of user threads in the sys-
tem only becomes visible upon a system-wide barrier, so between initialisation and the
first global barrier this function will return a value equal to SMG proc size.

6.5 Engine communication

Nearly all current software DSM systems either only include support for standard UNIX
sockets (see Section 5.1.1), or are targeted towards a specific network technology [], and
are thus not suitable to porting to a grid environment. The SMG DSM system requires
a means to transfer messages between the system threads. Naturally since MPI is being
widely integrated into grid infrastructures, then MPI communications could be used.
However, so as to not tie the implementation of SMG to a particular communication
ideology the decision was taken that the external messaging functionality will be accessed
via a well defined API. This decision allows for the use of different messaging transport
implementations once an implementation of the SMG communications (comm) library
has been provided. A subset of the API is given below in Listing 6.1.
A standard message envelope (header) was defined, comprising fields such as type, mes-
sage size, timestamp, origin. All DSM messages are filtered upon the type field by the
incoming message handler. The message size field will often duplicate what is present in
the meta-info of the underlying communication system, but allows multiple individual
messages to be multiplexed into a single transaction. The timestamp field is present
to enable discarding of duplicate messages, while the origin field is present to allow
messages, under certain circumstances, to be redirected to other processes. If the re-
quest cannot be fulfilled by a process, eventually a process that can fulfill the request
will respond directly to the requesting process. An incoming message is placed on the
incoming list (specified at initialisation), and the DSM is notified using the smg notify
function.
Unlike other components of the DSM, such as consistency & coherency modules, cur-
rently only one active communication implementation is allowed from start-up. While
priority queueing schemes for DSM messaging have been shown to result in increased
performance [133], no such scheme has been implemented at this time, primarily due to
the need to support both a single and a multi-threaded DSM.

1(equivalent to SMG thread count atrank(SMG proc rank))



ENGINE COMMUNICATION 84

int SMG comm init ( int ∗argc , char ∗∗ argv [ ] , int f l a g s ,
H a n d l e l i s t ∗ incoming , H a n d l e l i s t ∗ f r e e h a n d l e s ,
dsmMessageCallBack smg not i fy ,
dsmMessageBufferMalloc SMGMallocFunct ,
dsmMessageBufferFree SMGbufferFreeFunc ) ;

int SMG comm init ial ised ( ) ;
int SMG comm send( void ∗ bu f f e r , int s i z e , int de s t ina t i on ,

int FREE BUFF, int ∗ s t a t u s ) ;
int SMG comm send many( void ∗ bu f f e r , int s i z e , int ∗ dests ,

int num dest inat ions , int FREE BUFF, int ∗ s t a t u s ) ;
int SMG comm bcast ( int o r i g i n , void ∗data , int d a t a s i z e ) ;
int SMG comm finalise ( ) ;

Listing 6.1: SMG communication interface

6.5.1 MPI Communication Implementation

The initial SMG communication library uses MPI. It was chosen mainly due to its
ubiquitous nature (there are multiple implementations available, proprietary and open-
source) and increasing support in a grid environment. The model assumes that a separate
MPI communicator is created for the exclusive use of the DSM communication sub-
system. This ensures that conflicting calls cannot be issued by the DSM and a user
application thread.
The implementation of the SMG comm interface specified above greatly depends on
the MPI implementation. The most salient question is whether multi-thread support
is required. In the early versions of the MPI standard there was no specification for
multi-threading support. With the evolution of CPU architectures, it became apparent
that this would need to be rectified. With MPI implementations supporting the version
2 standard, a user application has the MPI Init thread function available to ascertain
the level of thread support (various levels are described in Section D). It must be noted
that currently multi-threaded MPI is not pervasive across Grid sites, and therefore two
MPI flavours of the comm API have been developed (supporting single-threaded and
multi-threaded implementations).

Single-threaded MPI

If only a single user thread is permitted to call the library then use of blocking calls is
forbidden. The side effects include that the scope for multi-threading within the DSM
engine is greatly reduced, and that hybrid DSM/MPI programming is not permissible.
Incoming and outgoing DSM requests are polled for by the DSM communication thread,
which is the only thread permitted to access the MPI library. Incoming requests are
checked using the MPI Probe call, while outgoing requests must be dispatched via the
internal communication queue as depicted in Figure 6.2. Apart from the disadvantages



SMG COMPILATION 85

just mentioned, this single threaded communication channel usurps system CPU re-
sources as requests must be continually polled for. A communication timeout may be
specified to alleviate this, but at the expense of increased message latencies.

Multi-threaded MPI

If multi-threaded MPI support is available, indicated by the value
MPI THREAD MULTIPLE being returned by the call to MPI Init thread, then
a far superior DSM experience is obtainable. The DSM engine & communication
systems can be highly multi-threaded, and additionally user application code can use
the underlying message-passing infrastructure. The DSM system thread can send
messages directly without using the communication thread, decreasing the latency
for sending a DSM request. Incoming messages are handled by a dedicated thread(s)
that blocks on the MPI Probe call. There are additional concerns, primarily with
management and shutdown of the system (i.e. the message receiving thread is blocked;
to prevent this, extra latency is introduced for communication shutdown).

6.6 SMG Compilation

In order to build a SMG application it is necessary that at least one implementation, or
such number as required by the user, of the core modules (Information, Monitoring, and
Communication) must exist for a successful build. The required modules are depicted
in Figure 10.2, page 156. The default module used for a particular class will be the one
that is specified at link time. Unlike extension modules no other core module implemen-
tations can be loaded dynamically.
The code sample below in Listing 6.2 shows a simple hello-world program that demon-
strates the use of the initialisation and finalisation routines. This code snippet also
demonstrates how to turn on the use of the information and monitoring systems by set-
ting of the appropriate flags in the initialisation routine. Although the consistency level
is specified as ENTRY CONSISTENCY, as it happens that this is the only consistency
level currently supported. The information and monitoring system, if required (specified
in the flags field of SMG Init), will be the one linked to the user application at compile
time. This is discussed in more detail in Chapter 9.

6.6.1 SMG extension Modules

In the next chapter it will be seen that the various aspects of the shared memory man-
agement run-time system (consistency, coherence, write collection) can be augmented
using different extension modules (created by implementing defined interfaces). These
modules can be loaded dynamically at run-time (using the SMG module load function
specified in Section 6.4.2), so no recompilation of user code is required to utilise a new
module. The module should be available as a dynamic library to the system.



RUN-TIME EXECUTION 86

int main ( int argc , char ∗argv [ ] ) {
2 int e r ror , f l a g s , default ;

4 f l a g s = (INFORMATION FLAG | MONITORING FLAG) ;
d e f a u l t s = ENTRY CONSISTENCY;

6 e r r o r = SMG init(&argc , &argv , f l a g s , d e f a u l t s ) ;
i f ( e r r o r != SMG SUCCESS)

8 return −1;

10 p r i n t f ( ’ ’ He l lowor ld I am proce s s # %d of %d\n ’ ’ ,
SMG rank , SMG size ) ;

12 e r r o r = SMG fina l i se ( ) ;

14 return e r r o r ;
}

Listing 6.2: helloworld using SMG

6.7 Run-time execution

A SMG application must be executed within an environment support by the underly-
ing communication implementation. An application developed with the SMG DSM and
compiled using the MPI implementation of the communication API will present itself as
a regular MPI job, thus easily runnable on any system (standard cluster or grid with a
suitable MPI implementation installed). This is achieved by using the appropriate MPI
start-up mechanism (mpirun/mpiexec), together with its associated options and param-
eters, i.e. shown below the stanadard -np is used to specify the number of processes
to start. However, a simple script smgexec which is generated during the compilation
process. Any arguments specified will be passed to the underlying execution mechanism.
The code in Listing 6.2 is executed from the command line in the following manner:

> mpiexec −np 2 −m a c h i n e f i l e machines he l lowor ld smg
I am proce s s #0 o f 2
I am proce s s #1 o f 2

Once the system initialisation routine has been called the global variables SMG proc size
and SMG proc rank are initialised by the DSM run-time. The former gives the number
of processes participating in the DSM system pool (the initialisation routine does not
register the number of user threads in use, which is currently fixed at initialisation). The
latter variable gives the unique identifier of the process participating in the ensemble.
These values will be determined by the number of processes a user requests, which can
be specified as an argument passed to the MPI execution environment, and the order in



OTHER ISSUES 87

which the processes will be started.
To execute the application in a grid setting the same procedure that would be used
to execute a similar program is followed. For a SMG application with an underlying
message passing execution setting the procedure will be the same as MPI. In an EGEE
Grid, with glite middleware, a job description language (jdl) file is required. A jdl file
is shown below for a SMG job.
A supplementary script to execute the application (basically calling smgexec as above)
is required. Listing 6.3 gives a simple jdl file for a MPI type job. The required files are
the SMG program executable itself and the execution script.

1 Type = ”Job” ;
JobType = ”MPICH” ;

3 NodeNumber = 4 ;
Executable = ” he l lowor ld smg . sh” ;

5 Arguments = ” he l lowor ld smg − i $EDG WL JOBID” ;
StdOutput = ” he l lowor ld smg . out ” ;

7 StdError = ” he l lowor ld smg . e r r ” ;
InputSandbox = {” he l lowor ld smg . sh” , ” he l lowor ld smg ” } ;

9 OutputSandbox = {”mpiexec . out ” , ” he l lowor ld smg . out ” ,
” lap lace smg . e r r ” } ;

Listing 6.3: Simple SMG helloworld jdl file

6.8 Other Issues

Important issues that arose were multi-threading in Linux, provision of multi-threading
in MPI implementations, DSM system messaging, and how information and monitoring
hooks into the overall execution.

• Development Cost: what is the overall cost that the grid introduces to the DSM
itself? Intrinsic factors have already been mentioned in Chapter 4. Ideally the
application developer will be oblivious to the fact that the application is executing
on a grid, but exposing the information API to the developer may have benefits,
both to the developer and to the application at run-time.

• Ease of Use: as the DSM is currently built on top of MPI, the ease of use of
SMG will be determined by the ease of use the MPI execution environment. For
example as the submission of MPI jobs to the grid becomes more trivial, so too
will that of a SMG job.

• Start-up Cost: the time for SMG to start and initialise will be (relatively) long, but
should be small relative to the total job execution length. Start-up of information
& monitoring will introduce additional overheads, however it is hoped that this
will be compensated for by performance gains.



OTHER ISSUES 88

• Scalability of Performance: the scalability of any parallel application is dependent
on many factors, hardware, middleware, application algorithm, etc. The scalability
of the SMG DSM is likely to be somewhat comparable with the MPI implementa-
tions that it is constructed upon. Additional demands such as DSM management
scalability will reduce scalability relative to MPI.

• Fault Tolerance: as the grid is non-deterministic, fault tolerance becomes a thorny
issue. Fault-tolerant implementations of MPI are currently under development [36,
110], so it follows that a fault-tolerant SMG could be a likely byproduct. Some
work has been done on making DSMs fault tolerant [64, 134, 135, 136]. The current
approach taken with SMG is to enable the DSM to recover by simply check-pointing
the shared memory objects. The most suitable mechanism for a checkpoint (and
only one supported in SMG) is a global barrier as this ensures that a consistent
shared memory state is check-pointed. Upon restart the user application can re-
read the checkpoint files and resume computation. For this strategy to be effective
the user application code must also be able to recover, but with respect to the
DSM. Currently no support is provided for the user to achieve this.



CHAPTER 7

SMG Shared Memory

The conventional style for shared memory programming uses processes to implement
parallelism; locks and barriers are used to synchronise the processes. A software-only
DSM consists of a number of processes that can interact via a low level messaging system.
One design issue is how shared memory is managed overall in the distributed system.
Additional issues include when consistency is actually enforced, how coherence is im-
plemented, the efficient location of a consistent shared memory region and the efficient
replication/caching of shared data.
Most of the earlier DSM implementations supported sequential consistency, but it im-
pacts negatively on the performance of distributed systems because of the strict re-
quirements on system wide access to shared memory [79] with support only for memory
transactions that are not required to be atomic. Implementation of more efficient relaxed
consistency models require a close binding between the shared memory system and the
management of synchronisation primitives.
The development of applications using the DSM is required to be as similar to traditional
shared memory programming as possible. Shared memory allocation should be trivial,
resulting in transparent access by all processes to the shared memory region. This task
is made difficult for SMG as use of specialised compilers and non standard libraries is not
permitted. Nonetheless, the application developer should be oblivious to how memory
is actually allocated.
This chapter identifies the approaches used for implementing the management of global
shared memory areas. This includes topics such as: the global creation of shared mem-
ory; the normal use of such in SMG applications, with descriptions how memory is
viewed across a set of distributed processes; the releasing (freeing) of shared data; and
the techniques employed to minimise the volume of data transferred in order to keep
memory copies consistent.
Other issues that are explored are the support to be provided for multiple user threads of
execution per process, and the benefits that can be gained for the DSM from integrating
information & monitoring services with the DSM. The chapter concludes with a review
of the design choices and highlights some issues that arose from the implementation.

89



SMG MEMORY MANAGEMENT 90

7.1 SMG Memory Management

Shared memory areas are referenced in application code using a globally unique identi-
fier, which serves as an opaque reference to a local DSM handle (described in Listing 7.1).
This handle is used by the developer to refer to a specific shared memory section through-
out the execution of a SMG application. A shared memory area is allocated/freed using
the appropriate functions detailed in the subsequent sections. When these are used the
memory must be somehow managed locally. Internal data structures are responsible for
keeping records of where the shared memory section is mapped into the local process’
address space, storing information about the shared region such as its state, current
location, maintenance information, and useful statistical information. The structure be-
low depicts a handle that holds the associated information for a shared memory area.
When an allocation function is called, an entry is added to the local collection of shared
memory handles. There are two separate collections, one that holds handles that the
local process is responsible for managing, and another for which remote processes are
responsible. The handle is removed when the free function is called on a shared memory
region.

struct hand l e t {
int i d e n t i f i e r ;
int t y p e i n f o ;
int timestamp ;
int owner ;
int s i z e ;
int bound to ;
void ∗ bound to ptr ;
void ∗ data pt r ;
void ∗ tw in pt r ;
int ∗ c o h e r e n c e i n f o ;
s t a t t ∗ s t a t i s t i c s } ;

Listing 7.1: SMG Handle

As alluded to in previous chapters a DSM algorithm that allows multiple writers to
concurrently access shared locations is required. The management of shared data regions
takes a similar approach to the dynamic distributed manager algorithm as first proposed
by Li [65]. At any given time, all shared memory objects have both a manager and an
owner, although a single process may perform both roles. The manager of a shared
object is fixed and determined by some hashing function e.g. manager = (process rank
% memory identifier). The owner of the object is dynamic and it is this process that has
the most authoritative copy of the data. As mentioned previously in Section 4.3.1, the
manager of a shared memory section is responsible for keeping track of the current owner
of the shared variable. This enables faster look-up of the current owner by a requesting
process.



SMG MEMORY MANAGEMENT 91

7.1.1 DSM Engine Memory allocation

A shared memory region must be allocated locally by all processes wishing to access it.
Shared memory areas are referenced by an application-unique numeric identifier. The
shared memory region is mapped into the local address space by the DSM, and once
this has completed it can be utilised. All unique shared memory areas must begin on a
virtual page boundary.
A shared memory object is explicitly allocated using the call below. Entry Consistency
(EC) is assumed, and as such use of shared memory is closely associated with the use
of synchronisation primitives. Currently only shared regions bound to lock primitives
may be rebound to another primitive during the execution of an application, and only
to another lock.

int SMG shmem malloc ( int id , int s i z e , void ∗∗ pointer ,
int type , int l o c k b i n d t o } ) ;

The parameters to the allocation function under EC are: id the unique identifier of the
shared object; size the size (in bytes) of the region to be allocated; pointer address of
the start of the object; type type information associated with the object; sync bind to
the synchronisation primitive to bind to.
When a process allocates a shared memory region, it in effect maps the global virtual
shared object into its own address space. When two processes allocate the same shared
object it might not be allocated at the same location in both virtual memory address
spaces; this occurrence is depicted in Figure 7.1. To help alleviate the issues that may
arise for the developer in such situations where references to shared locations are passed
between processes, function calls are provided that allow for the generation of global
pointers from local memory pointers and vice-versa. These are discussed in more detail
in Section 7.1.3.
The following is an outline of the sequence that occurs when a shared memory allocation
is requested. If the synchronisation primitive to be bound to is a lock then it must be
owned by the calling process.

• A handle is allocated for the object. The handle depicted in the previous section
includes management information.

• If the item is to be bound to a synchronisation primitive such as a lock then the
process that owns the lock issues the notification to the manager of the object and
subsequently binds to the shared area.

• A call to allocate the local shared memory takes place. The mmap call is used as
it allows the placement of the object to begin on a virtual memory page boundary.
This is important for the reasons discussed in Section 7.3.

• If the allocation is successful the protection levels on the shared object is set so
that access to the shared region will be trapped.



SMG MEMORY MANAGEMENT 92

• Meta-information such as associated coherence dirty flags and timestamps can be
allocated and initialised.

The allocated shared memory object only becomes globally visible after the next syn-
chronisation point. If the amount of local memory is insufficient to satisfy an allocation
request then some housekeeping tasks are preformed (e.g. the DSM system will expire
any variables where it does not have access to the associated synchronisation variable,
or twin regions may be released if not in use).
It is intended that the DSM operate in a grid composed of a heterogeneous mix of archi-
tectures with potentially different representations of data. This introduces the biggest
obstacle to developing grid applications as the user must be mindful of this problem in
data exchange. In a SMG application the user is not responsible for data exchange but
the DSM system is; this requires that the DSM know the exact format of data that is
been transferred. The problems in implementing such a facility are described at the end
of this chapter.

Figure 7.1: Shared Memory Mapping

7.1.2 Global memory mmap

To map an existing piece of shared memory into the system one can use the available
function for mapping in data. The main proviso of using this function is that the memory
has been allocated using the mmap function, ensuring that the page is aligned upon a
page boundary, thus another shared memory region cannot be allocated on the remainder
of a virtual page.

int SMG shmem mmap( int id , int s i z e , void ∗ pointer ,
int type , int l o c k b i n d t o } ) ;



SMG MEMORY MANAGEMENT 93

7.1.3 Global memory pointers

As a shared memory area may be mapped into the address spaces of processes at different
locations a facility is required that allows for passing of a reference to a shared area
between processes. SMG provides functions to accomplish this. These functions are
also implemented with a view to supporting heterogeneous environments, where the
conversion work will be provided by the DSM, as offsets within shared regions may be
different on different platforms.
The first function generates a global reference when provided with a pointer to a shared
area mapped into the local address space. The second function provides the reverse
operation converting a global reference to a pointer to a local memory address.

smg ptr SMG loca l tog loba l ( void ∗ l o c a l p t r )
void ∗ SMG globa l to loca l ( smg ptr ∗ g l o b a l )

7.1.4 DSM Engine Memory free

The process of freeing a shared memory region results in the freeing of resources used
in the maintenance of the region. This can produce substantial benefits as the local
memory resources used by the DSM can be more than twice the size of the actual shared
memory area. This is mainly due to the memory occupied by the twin space for a shared
object. Like the memory allocation call(s) the freeing of shared memory regions only
becomes globally valid following a synchronisation operation. The API call to free the
memory region locally is:

int SMG shmem free ( int id )

When a process calls this function to free the node the action that results depends on
whether the calling process is the owner of the region/bound synchronisation object:

• If the calling process is not the owner or manager then all data is expunged and
local resources are released. The handle of the object will be marked for releasing,
which is done at the next synchronisation point, and it will have its timestamp is
set to zero.

• If the calling process is the owner of the region or binding synchronisation primitive,
the manager of the region is first notified of the pending action. All resources
can then be released including the object handle. The actual shared region will
be released using the appropriate system call, currently munmap. At the next
synchronisation operation the appropriate notification can be distributed to other
processes in the system.

By ensuring that the above protocols are followed it is guaranteed that no process holding
the valid version of the shared object region can deallocate it locally while any other
process might be (or might begin to be) using it before the next synchronisation point.



SMG CONSISTENCY 94

7.2 SMG consistency

As shown in the discussion on DSM consistency models (Section 4.5) it is evident that
only relaxed consistency models are suitable for software-only DSM implementations.
The best choices for a DSM that may potentially be used in a grid environment are the
LAZY-Release and Entry consistency. These have been implemented and have demon-
strated modest potential in the Treadmarks [96] and Midway [81] DSMs, while the Brazos
DSM has been used as the target of an OpenMP compiler [102].
In order that SMG can be easily extended it was important to ensure that clear interfaces
are defined for new consistency models and coherency protocols to be implemented. The
defined consistency interface (specified in Listing 7.2). All shared variables must declare
the consistency model required at time of allocation. This allows for the shared memory
region to be registered with the consistency protocol. With a relaxed consistency model
there is an explicit association with synchronisation operations. With this in mind,
mappings for acquire (consis sync acquire) and release (consis sync release) operation
are present that map as prescribed in Section 2.4 onto synchronisation operations (more
detail in Chapter 8).

typedef struct c o n s i s t e n c y b l k {
int i d e n t i f i e r ; char code [ 8 ] ;
char d e s c r i p t i o n [ c o n s i s t e n c y d e s c s i z e ] ;
int (∗ c o n s i s i n i t ) ( ) ;
int (∗ c o n s i s f i n a l i s e ) ( ) ;
int (∗ cons i s mem at t r ibute s ) ( int parameter , Handle ∗ obj ) ;
int (∗ c o n s i s m e m a t t r i b u t e s f r e e ) ( Handle ∗ obj ) ;
int (∗ c o n s i s s y n c a c q u i r e ) ( Handle ∗ b a r r i e r p t r ) ;
int (∗ c o n s i s s y n c r e l e a s e ) ( Handle ∗ b a r r i e r p t r ) ;
void (∗ c o n s i s r e m o t e r e s p o n s e ) ( int tag , int src , void ∗msg ) ;
void (∗ c o n s i s r e m o t e r e q u e s t ) ( int tag , int src , void ∗msg ) ;
void (∗ c o n s i s w r i t e t r a p ) ( Handle ∗handle , char ∗ f a u l t ) ;
void (∗ c o n s i s c o h e r e n c e a l e r t ) ( Handle ∗ obj ) ;
int (∗ c o n s i s r e g i s t e r o b j e c t ) ( int type , int id , Handle ∗ obj ) ;
void ∗handle ;
void ∗ s t a t s ;

} c o n s i s t e n c y b l o c k ;

Listing 7.2: Consistency model interface

It has been shown in studies that entry and lazy-release consistencies perform compara-
bly [137]. However, the same studies show that lazy consistency can generate an order
of magnitude greater number of messages than entry consistency. This is the primary
reason why EC is the superior consistency model for a grid DSM. Multi-writer Entry
Consistency will thus be required in SMG; this is achievable when a shared region’s
binding object is a barrier.



SMG CONSISTENCY 95

7.2.1 SMG Entry Consistency

The previously mentioned drawback of increased programmer burden with EC is coun-
tered by the fact that this DSM will be primarily used as the target for a parallelising
compiler such as OpenMP, where the user will be oblivious to the need to binding
shared memory regions to synchronisation primitives. However as previous attempts
have shown some deviation from the standard OpenMP is required1. Additionally, for
synchronisation access entry consistency requires thread consistency while release con-
sistency requires processor consistency [81]. This allows multiple threads of execution
to be placed in a single node.
In EC, an explicit link is required between the shared region and a synchronisation vari-
able2. This link is achieved at allocation by invoking the consis mem attributes function
of the consistency API (in SMG an object can be bound to all barrier synchronisation
primitives).
Upon a write trap event (i.e. a pagefault), the consis segv handler handler is invoked
to notify the bound synchronisation primitive that a bound object has been modified.
On the first write to a shared variable under EC, the consis coherence alert function is
called to record that coherence for the object will be required at a release operation (this
improves the performance for the release action). On a release event, coherence actions
are taken for all shared objects bound to the synchronisation primitive with a coherence
alert in place.

7.2.2 SMG granularity

One of the most important decisions in designing a DSM system is the choice of what
is the minimum unit of address space that may be shared. Factors in this decision have
been mentioned in previous chapters such as the available inter-node bandwidth and
latency. The main priority in a DSM that may ultimately be used in a Grid setting is
to reduce the number of messages generated; doing so involves the selection of a relaxed
consistency model [75].
Other factors involved include the underlying hardware and user requirements expecta-
tions. If the grid is a heterogeneous environment, then there may still be a problem as
not all platforms share the same page size (for write trapping), so techniques used by
Treadmarks where the size of the coherence unit is a system page are not applicable in
the case of a grid DSM. As EC has been deemed an appropriate choice for the primary
consistency model, the granularity of sharing is not a factor that could be influenced
in any great way, as the EC sharing granularity is whatever size the user allocates a
shared object to be. In the case of the DSM being used as an OpenMP target then this
gives rise to an additional benefit as the granularity implied by the shared clause is
dependent on the size of the shared memory item, which can be varied.

1this long standing presumption [138] was reaffirmed when Intel released Cluster OpenMP in May 2006,
deviating from the standard in the process

2The terminology xεy, will be used to denote the association for EC objects with synchronisation primi-
tives, i.e. an object x, bound to the use of the synchronisation primitive z.



WRITE TRAPPING 96

7.3 Write trapping

The use of relaxed consistency models results in a substantial reduction in the number
of messages generated between processes. Nonetheless, the best DSM implementation of
an application will never have a lower message count than a comparable message passing
implementation, mainly due to the associated overhead of DSM control messages. There
is scope, however, for reduction in the payload of individual messages by only sending
the shared memory sections that get modified. The process of detecting the areas that
get written to is called write trapping. It is vitally important that efficient methods be
used to detect the locations at which write operations to shared memory occur.
Previous DSM implementations used compiler instrumentation to set a dirty bit per
unit of the shared object that was modified [42]3, but for SMG no specialised compiler
is permitted. The SMG implementation of write trapping therefore uses the virtual
memory management system to detect writes at a system page granularity. This is
achieved by making use of the virtual memory protection mechanisms provided by the
Linux Operating System (other flavours of Unix provide the same base functionality
using a similar methodology)4. Techniques that evaluate the dynamic sharing state on
a per page basis have been explored in depth [139].
As previously mentioned shared memory objects in the SMG lie on separate virtual
memory pages, the size of which is not a primary consideration, but does determine the
granularity at which write trapping occurs, and hence impacts on write collection (see
Section 7.5). For small shared regions the above write trapping technique proves to be
inefficient. Anything less than a page would require an alternative detection method,
i.e. a specialised compiler, or a modified kernel segv trap handler that would increment
the program counter (PC).

7.3.1 Detecting Writes Using SEGV Faults

The mechanism is based on the software write detection methods described in [140].
The underlying virtual memory management facilities provided by the operating system
allow for the identification of an access to shared memory (writes being of most interest)
through the setting of virtual page protection flags. The subsequent generation of a
page fault results in the execution of the DSM page fault handler. When this occurs
certain actions can be performed that allow for the accessed area to be identified at a
later point, allowing for the write collection (record of modifications) to be generated to
represent the changes to the shared object within the given time duration.
The shared memory page fault handler is registered with the operating system at ini-
tialisation through the use of the sigaction system function call. This function allows
the association of a user defined fault handler with a specific signal (in this case SEGV).
When a page fault occurs the appropriate signal is generated as indicated by a SEGV
value in the si signo field in the siginfo t structure (outlined in Appendix D) that is
passed to the declared signal handler. The memory address at which the fault occurs is

3this approach is borrowed from Hardware-DSM
4one of the goals was that no OS-specific operation was permitted



WRITE TRAPPING 97

given in the si addr field.
This faulting location is resolved to the local record of shared memory regions by search-
ing the local data structures that hold the shared memory handles. If the memory ad-
dress is found then the appropriate memory coherence action may be performed that
enables write collection at a later stage. If a record is not found then it is assumed that
a local memory access violation has occurred and the appropriate actions can occur;
usually the application will exit.
The actions taken by the SMG SEGV (pagefault) implementation of the write trapping
handler are depicted in Figure 7.2. Currently there are three variants for multiple page
objects that can be employed by SMG in response to the SEGV fault; each one is de-
scribed below. For all three methods on the first fault access to the object a per-object
dirty bit is set. The first two incorporate twinning, which involves making a copy of the
shared location before the first write can complete. The first and third strategies will
incur concurrent faults for every other page modified, with each one setting a per-page
dirty bit.
The decision of which strategy to use can be made on a per shared memory object basis,
and may be adapted to the run-time characteristics of the application. The cost equa-
tions for each are given for a scenario where an application has a shared object consisting
of N pages, and modifies M of them, (N ≥ M) in a given interval. The definitions of
the component costs are given in Table 7.1.

Figure 7.2: SMG SEGV Handler State Diagram



WRITE TRAPPING 98

Twin-per-page

With this strategy, only the page to which the write occurs gets twinned, as depicted
in Figure 7.3(b). As the page-protection settings remain unchanged for the rest of the
object, when a write occurs to a location on another page, then that will be twinned too,
see Figure 7.3(c). A record of this event is made in the list of pages, termed dirty page
list, that has been modified, and a flag for the object as a whole will be set upon the
first modification to any page in the object. With this approach it is assumed that the
writes issued by the process are very localised, thus memory copying and the amount of
memory to generate the write collection against will both be minimised. If writes are not
localised there will be more overhead incurred with more page faults being generated.
The cost for this strategy is given by Equation 7.1.

Toverhead,tp = N × (Tcp + Twc + Tpf + Tpp) (7.1)

Figure 7.3: Twin page on write

Twin-all-on-write

In this scenario the whole object is twinned upon the first page fault. The page protec-
tions for all constituent pages of the shared memory object are write-enabled as shown in
Figure 7.4 (b). This has the effect of eliminating subsequent page-faults for the duration
of the write interval. The downside of this approach is that at the end of the interval
the whole object must be examined for write collection. The benefits will accrue where
the writes issued by the process to the shared region are non-continuous throughout the
object. The overhead for this strategy can be calculated as:

Toverhead,ta = N × (Tcp + Twc) + Tpf + Tpp (7.2)



WRITE TRAPPING 99

Figure 7.4: Twin all on write

Twin None

The above write trapping variations usurp precious memory resources to make a copy of
the shared memory page, all in order to support multiple writer shared memory access
modes. With this scheme no twin is created; this means that a multi-writer protocol
is not supported. The overhead (see Equation 7.3) is then clearly lighter (i.e. there
is no Tcp), however, this results in the overhead being offloaded to the write collection
mechanism. Whether this is acceptable depends on the behaviour of the application.
This strategy could be further developed in a similar manner to twin-all, where just one
’shared object’ dirty bit is set by the only fault for the given interval. Upon release the
whole shared region is transferred in the coherence mechanism.

Toverhead,tn = N × (Twc + Tpf + Tpp) (7.3)

Figure 7.5: Twin nothing on write



SMG COHERENCY 100

Tcp Time to make a copy of a page
Twc Time to generate a write collection across a page
Tpf Time for a page fault
Tpp Time so set page protection for a page used by object.

Table 7.1: Metrics involved for SEGV Write Trapping Schemes.

7.4 SMG Coherency

From its inception, it was considered highly desirable that the DSM should enable effi-
cient execution in a multi-site Grid environment. As mentioned in Section 4.6, the main
influence (from the DSM engine’s viewpoint) is the coherence protocol. As outlined in
Section 4.6 there are two broad classes of coherence protocol: invalidate and update.
[141] demonstrated the benefits of having support for multiple protocols within a DSM.
The home-based class of protocols that were discussed in Section 4.6.1 are not considered
as their use are patently unsuitable for a Grid DSM.
Weak consistency models are only of interest in this project, this implies that consis-
tency is enforced at appropriate synchronisation acquire and release operations. How
SMG supports coherence protocols in relation to this, and how this actually works is
discussed in Chapter 8. The default consistency model implemented in SMG, EC, some-
what forces the choice regarding the coherency protocol. As shared memory objects have
an associated synchronisation primitive, update coherency has previously been implic-
itly used (because accessing a sync primitive implies the use of the bound regions, thus
signalling the required modifications, so it would be sensible that these are implicitly
prefetched; data that may not be required is sent regardless).

typedef struct p r o t o b l k {
int i d e n t i f i e r ; char code [ 8 ] ;
char d e s c r i p t i o n [ c o h e r e n c e d e s c s i z e ] ;
int (∗ c o h e r e n c e i n i t ) ( ) ;
int (∗ c o h e r e n c e f i n a l i s e ) ( ) ;
int (∗ coherence mem att r s c r ea te ) ( Handle ∗ obj ) ;
int (∗ cohe r ence mem at t r s f r e e ) ( Handle ∗ obj ) ;
int (∗ c o h e r e n c e p r e d i c t ) ( Handle ∗obj , Handle ∗ sync prim ) ;
int (∗ coherence a larm ) ( Handle ∗ obj ) ;
void (∗ c o h e r e n c e w r i t e t r a p ) ( Handle ∗ obj handle ,

char ∗ f a u l t a t ) ;
update part ∗(∗ cohe r enc e ac t i on ) ( Handle ∗obj ,

update part ∗ b a r r i e r u p d a t e ) ;
} cohe r ence b lock ;

Listing 7.3: Coherence protocol interface



SMG COHERENCY 101

In a similar manner to consistency, a general API for coherence is defined (enabling
new protocols to be easily added!), a subset of which is given in Listing 7.3. The more
interesting functions, such as that which is called in response to the a write trap event,
coherence write trap, are expanded upon in the implementation descriptions below.
In SMG, an update protocol was first implemented, as it is the most natural protocol
for the chosen consistency model, EC. An invalidate scheme was initially rejected due to
reasons outlined in Section 4.6. However, it became apparent that an update protocol
alone was insufficient to cope with all sharing patterns, so the dynamic-subscription
protocol was developed to address the deficits, see Section 7.4.2.

7.4.1 Update-based Coherency Protocol

Upon a release event the write collection process will start, and under the update proto-
col the modifications to shared memory regions that (i) occurred during the preceding
interval5, and (ii) dictated by the consistency protocol, will be sent to the DSM engine
of appropriate remote processes.
Update coherence requires that modifications be detected; the actual methods were dis-
cussed in Section 7.3. Figure 7.6 expands further on the SEGV method depicted in
Figure 7.2 to illustrate how the EC consistency model and Update coherence protocol
are integrated. The update protocol can use the output of either of the write collection
mechanisms outlined in Section 7.5 without any further processing.
In SMG, every shared memory object has an associated logical clock that is incremented
at every release if a modification has occurred. When a process wants access to a con-
sistent shared location it must perform the synchronisation action that is required of it
(the particulars are discussed in chapter 8). The circumstances in which this arises are
different for barriers and locks.
When a process issues a lock synchronisation request it includes its logical time-stamp
for the object in the message to the probable owner. When the true owner of the lock
responds to the request it will compare the requester’s version of the logical time-stamp
with its own (valid) version. If both are the same then no coherence action is required.
If they are different then the correct coherence information can be generated. (Section
7.3.1 describes how this is done). With EC and lock synchronisation, if superfluous data
is being transferred then the granularity of the shared region should be reviewed (i.e.
one should break the shared object into smaller objects).
For a barrier all processes advance the logical clock of an object if there are modifications.
Because of this all processes must receive all modifications by all other processes. It is
conventional practice to piggyback these modifications on the barrier release/acquire
messages. During the release phase all modifications are gathered by one process, the
coordinator, and checked for potential concurrent writes to the same location. These can
be all sent during the acquire phase. This situation is depicted in Figure 8.3 page 126,
where an object a is bound to a barrier synchronisation primitive z (aεz), and the
modifications from all writers to a are dispersed during the barrier process.

5The interval is delineated to be the time period between the previous release and the next acquire.



F
ig

u
re

7.
6:

In
te

gr
at

io
n

of
E

C
C

on
si

st
en

cy
&

U
pd

at
e

pr
ot

oc
ol

102



SMG COHERENCY 103

7.4.2 Subscription based Coherency Protocol

The main motivation for developing a new protocol was to address the inherent defects
of the invalidate and update protocols:

i. an invalidate protocol will generate a significant number of small messages pro-
portional to the degree of sharing of the object, where a latent effect can be the
significant delay in processing while the process waits for its request for write col-
lections (a complete valid copy) for an invalidated object; but this can result in a
different type of communication efficiency as only requested data is transferred.

ii. an update protocol is the converse: minimal coherence messages that are piggy-
backed upon a synchronisation message, minimal stall in the application occurs as
required data is implicitly prefetched; but if the object exhibits a fractured view of
sharing, then there is considerable potential for superfluous data to be transferred.

The Dynamic Subscription (DySub) protocol aims to find the middle ground between
them in terms of the balancing act between volume of messages and coherence message
payload. All sections of a shared memory object that are accessed by a particular process
will have update characteristics attributed to them, i.e. the process subscribes to regions;
other locations not accessed, or less likely to, will have the attributes of the invalidate
scheme, i.e. the process will not receive updates for those regions. This protocol is
dynamic in nature as locations can switch between the two, allowing transient accesses
to be supported. If a region is not subscribed to, then upon an access to this invalid
region a fault occurs and a valid copy of the region must be obtained, which can be from
any process that does already subscribe.
The essence of the DySub protocol is that for a process responding to a request for
write collection, the parent decides what is forwarded to the requester by maintaining
a subscription of the anticipated requested data. There are downsides of this approach,
it involves extra ’filtering’ overhead as each coherence message must be examined for
non-subscription coherence data. For shared memory with transient access patterns
(described as migratory under Section 4.1) the DySub protocol begins to exhibit the
characteristics of update protocols.

SMG Subscription Protocol Implementation

Similar concepts have been explored in other projects: such as the simulation variant of
this solution at the cache line level for hardware shared memory protocols [142], while
other work demonstrated that the filtering approach when applied to a home-based pro-
tocol may perform very well for data parallel decomposed (iterative) applications, where
a regular steady-state sharing pattern is present [85]. Where the SMG implementation of
such a coherence protocol differs is in its dynamic, distributed, and scalable nature and
(implicit) support for a hierarchical topology suitable for multi-site grid applications.
All protocols need to provide information for the write collection mechanism to identify
what areas have been modified. In the update protocol described above this was a single



SMG COHERENCY 104

’dirty’ bit per local unit of consistency granularity6. The subscription protocol provides
the same ’dirty’ data, allowing for the same write collection implementations (see Sec-
tion 7.4.2) to be re-used. However, additional information is required as some blocks
of the shared object could be invalid, and a mechanism is also required to identify if
a block is subscribed to (hence the term subscription list). This means that there are
three sets of information required for every block: invalid, subscription, and dirty. A
state transition diagram is given for this protocol in 7.4.2.
The implementation of the subscription protocol for use with weak consistency models
requires the use of extra synchronisation meta information. For an EC object bound to
a barrier synchronisation primitive, the subscription requirements of the process’ parent
and children (if relevant) are met by maintaining a local subscription list for each, i.e.
the local process is aware of their requirements, and can thus filter any write collections
according to these lists. The bulk of the benefits of the subscription protocol stem from
this ability of processes being able to filter out coherence data that is not required by
its parent or antecedents in the barrier tree. However it does require that some sections
of coherence data be kept temporarily that could otherwise be disposed of (under the
update protocol).
For lock synchronisation primitives a subscription protocol should be unnecessary with
EC (the problems of superfluous data transfer should not occur, otherwise the granular-
ity level of the object should be reduced). However, where it is required the maintenance
of a subscription list for all other processes may be impractical due to memory resource
requirements. If the process size is small then this is feasible, otherwise a record is
only maintained for the process that last requested the object and for the process that
transferred ownership of the primitive (similar to the lock owner resolution method, see
Section 8.2.2). As the benefits only really occur for barriers the rest of this protocol
description will be devoted to their use.

Subscription write trapping

A shared object that operates under the subscription protocol has slightly different write
trapping requirements than for the update protocol. The principal difference arises when
a block is accessed, but is invalid. This requires a valid copy of the block be fetched
from an available source. When a response is received any coherence data can be applied
(possibly including subscription information). At this stage only read protections need
to be applied to the page. If the original fault was a write then the fault needs to be
repeated and then the write permission will be applied. This is the main source of extra
overhead in the DSM engine when compared with the update protocol.
When an access fault occurs occurs to a block that is invalid, the DSM must identify a
suitable process to direct the request to. The location of a source may not be known
directly, but there are hints available in the subscription lists of family members of the
node. It must be noted that these will only indicate the best direction in which to is-
sue the request. If a process receives a request for a page and it does not have a valid

6throughout this protocol description the local consistency unit will be referred to as a block



SMG COHERENCY 105

Figure 7.7: Subscription Protocol State Diagram



SMG COHERENCY 106

copy then it can forward the request based on its own subscription lists. The maximum
number of hops that a request may take before reaching a process with a valid block
will be a function of the barrier implementation. For the current SMG (binary) barrier
implementation (see Section 8.3) this will be 2(log2(n))− 2.
Section 4.6 highlighted the difficulty that invalidation-based protocols have when op-
erating in a heterogeneous environment where processes may have different page sizes.
The Subscription protocols also has this problem. This is solved in the implementation
by enabling block size translation7, allowing for a block request of a different size to be
translated into the local equivalent. Issues around the fragmentation of blocks can arise
where a process may only be able to transfer a partial request. Currently this situation
would be handled by another block request.
In (user) multi-threaded applications the access race issue described in Section 7.6 may
arise if not provided for in the manner prescribed.

Subscription Cold start

When an object is first accessed (logical timestamp = 0) the subscription lists for an
object, for the node itself, its children, and importantly the parent, may not exist. An
effective solution is that on the first release, all modifications are sent to the parent at
the first event, i.e. that the parent subscribes to all modifications.
The consequences of this decision to ’cold start’ the protocol in this way is that the
coherence behaves like an update protocol until a steady state sharing pattern can be
established. This also highlights one of the flaws in the protocol: an inability to deal with
highly irregular sharing patterns. This demonstrates that benefits are only obtainable
in iterative-style applications where other processes can learn the access behaviour of a
particular process (and thus know required modifications to send) for previous intervals.
However, many parallel applications would have such a discernible access pattern. The
situation whereby a transient access can be ’pruned’ is discussed in Section 7.5.

Subscription write collection

The write collection process is similar to the update protocol, i.e. all blocks with their
dirty bit set are write collected. However, before the same write collection implemen-
tation can be used with the subscription protocol the dirty bit-set must be cleaned of
references to any stale block that may be present, i.e. blocks where the invalid bit is
also set. This pre-release clean operation on the dirty information is a simple matter of
applying the operation specified in Equation 7.4.
A possible optimisation would be to delay the time for write collection due to the coher-
ence’s release operation, thus allowing only blocks that were required to be processed by
the write collection mechanism. However, this would introduce additional latencies into
the system, and is not provided for at present.

Dirty list = (Invalid List ⊕ Dirty list) & Dirty list. (7.4)
7The proviso is that block sizes must be multiples of each other 4kB/8kB



SMG COHERENCY 107

F
ig

u
re

7.
8:

Su
bs

cr
ip

ti
on

P
ro

to
co

l
T

ra
pp

in
g

H
an

dl
er



SMG COHERENCY 108

Subscription Release-Acquire

Upon a release event a process will take its own write collection for the shared memory
region, and together with those of its antecedents will generate a suitable coherence
message for the parent based on the available subscription list.
If the subscription list has changed in the preceding interval then this is signalled to
the barrier parent at the release stage (notification is packaged in the eventual message
generated by the release stage of the protocol), and to the antecedents in the acquire
stage. In addition, periodically the process’ subscription list can be flushed after a re-
lease and before the acquire stages of a barrier. A similar feature demonstrated benefits
by reducing the volume of invalidation messages when implemented in shared memory
machines [143]. This feature enables the pruning from the subscription list of pages that
possibly were ’transient’ accesses. These mechanisms provide the degree of dynamism
in the subscription protocol.
During the acquire stage the process of filtering the coherence messages must be re-
peated for all antecedents (based on their subscription). At this stage a number of write
collections must be filtered: that contained in ’parent’ acquire coherence message, the
local write collection, and that of any other antecedents. The latter two stages can
potentially be done during the wait period between the sending of the release and the
receiving of acquire messages.

Subscription Protocol - Scenario

In this worked example a four-process application performs a computation for a number
or iterations, similar to that of the Laplace application described on page 150. All
processes are allocated an equal share of the total workload to compute. The data set
to compute on is six virtual pages in size, so each process will compute 1.5 pages each as
shown in Figure 7.9(a) below. At the end of every iteration each process will then require
the boundary elements of its neighbour(s). In the example depicted in Figure 7.9(b),
Process 1 (P1) requires 0.5 pages from processes P0 & P2), as will those neighbouring
processes will require of it.
Given the above scenario, for each process the update coherence protocol would receive
all modifications from all other processes for all iterations of the application. Figure 7.10
below depicts the difference in data transfers that occur between processes at different
stages of the barrier operation for the application operating at steady state (from it-
erations 1 onwards) under both update and subscription protocols. The SMG barrier
algorithm arranges the binary-tree so that Process 1 is the root (barrier coordinator).

Figure 7.11 shows the state diagram of the subscription protocol meta-data (invalidate,
dirty, and subscription bits - I, D, & S) for the shared memory region during the initial-
isation and the first two iterations of the application described above.



SMG COHERENCY 109

Figure 7.9: (a) Virtual memory pages modified per process, (b) and the pages subscribed to by
Process 1 (P1)



SMG COHERENCY 110

Figure 7.10: Data transfer under different different protocols



111



F
ig

u
re

7.
11

:
Su

bs
cr

ip
ti

on
E

xa
m

pl
e

St
at

e
C

ha
ng

e
D

ia
gr

am

112



WRITE COLLECTION 113

This example demonstrates the advantage that the subscription protocol has over the
update protocol in terms of aggregate data transfers between processes during a barrier
operation. The data transfers illustrated in Figure 7.10 would be greatly increased in
this application if the number of processes was increased (anf the application data-set
size increased commensurately) due to the ’multiplier’ effect associated with the update
protocol.

7.5 Write collection

The process of collecting all modifications to a shared memory object, A, in the pre-
ceding interval x → y (i.e. since the last synchronisation operation), is known as write
collection. It is in effect the construction of a patch (A’) that can be applied to the orig-
inal object Atx, such that the resulting shared region Aty is consistent: Atx +A′ → Aty.
The method differs depending on the required type of access mode to the shared object
and on the strategy taken for write trapping. If in single-writer mode then the whole
shared object object can be considered as the write collection. This has the benefit that
there is no memory resources are given over to computing the collection. However, if
little of the object has been modified then excess communication overhead results from
transferring the unmodified data.
There is no method currently available to examine the state of the page protection bits
in user space, i.e. there is no complimentary call to the mprotect function. Still, if
such a function was available it would only provide a method to examine the shared
region for modifications at a coarse granularity. To overcome this problem, the DSM
provides all shared objects with this information. Section 7.3 explained that when a page
is modified the associated coherence ’dirty’ bit is set by the DSM page fault handler.
This allows the write collection process to avoid processing pages that have not been
modified. When write collection is performed with the use of the Twin-per-page write
trapping, the amount of the shared memory region involved in the computation of the
write collection may be significantly reduced.
When is write collection performed? This is dictated by the coherence protocol, usually
triggered during the release phase. Some coherence protocols can take a ’lazy’ approach
and defer write collection until the region is actually requested [96], but this will intro-
duce extra latency. If a diff is created at a release point, and the same region is accessed
immediately afterwards by the local node, then the diff must be recomputed which in-
volves superfluous computation overhead. In SMG, this could potentially be performed
during the wait period for an acquire operation (latency hiding). If merging of two write
collections for a given interval gives rise to a conflict (i.e. concurrent writes clashing to
the same location) then a user-specifiable fault handle is executed. The default user-
specified fault handler simply exits.
A different write collection mechanism can be utilised by implementing the write collec-
tion interface (Listing 7.4). The salient methods allow for creation (collection generate),
merging (collection merge), and application of write collections (collection apply). The
two implementations for SMG described below balance the processing overhead and the



WRITE COLLECTION 114

eventual write collection size differently.

typedef struct c o l l e c t i o n b l k {
void ∗ l i b r a r y ; int i d e n t i f i e r ;
char code [ 8 ] ; char d e s c r i p t i o n [ d e s c s i z e ] ;
int (∗ c o l l e c t i o n i n i t ) ( ) ;
int (∗ c o l l e c t i o n f i n a l i s e ) ( ) ;
void (∗ c o l l e c t i o n s e t a t t r i b ) ( Handle ∗ o b j p t r ) ;
void ∗(∗ c o l l e c t i o n g e n e r s i m ) ( Handle ∗ ob j pt r , int f l a g s ) ;
void ∗(∗ c o l l e c t i o n g e n e r ) ( Handle ∗ o b j e c t p t r , int f l a g s ) ;
void (∗ c o l l e c t i o n a p p l y ) ( int memory size , int ∗memory ,

c o l l e c t i o n h e a d e r ∗ d i f f ) ;
void ∗(∗ c o l l e c t i o n m e r g e ) ( c o l l e c t i o n h e a d e r ∗wco l l a ,

c o l l e c t i o n h e a d e r ∗wcol l b , int ∗ e r r o r ) ;
void ∗(∗ c o l l e c t i o n m e r g e h e r e ) ( c o l l e c t i o n h e a d e r ∗wco l l a ,

c o l l e c t i o n h e a d e r ∗wcol l b ,
c o l l e c t i o n h e a d e r ∗wcol l merge , int ∗ e r r o r ) ;

void (∗ d e s c r i b e c o l l e c t i o n ) ( c o l l e c t i o n h e a d e r ∗wco l l ) ;
} c o l l e c t i o n b l o c k ;

Listing 7.4: SMG write collection interface

7.5.1 Diff write collection

The diff method generates a run-length encoding of the modifications to the shared mem-
ory region. This is achieved by comparing the modified page with the twinned version of
the original (so it can only be used when the twinning variants of write trapping methods
are used). Therefore when consistency is required only modifications are transferred by
the coherence protocol. This approach has been used in Treadmarks [96].
This method supports multi-writer protocols as conflicting writes, that may occur during
an interval, x-y, can be easily detected. This will be done by the (merge) of two distinct
diff write collections. There is significant overhead in the processing of diff write collec-
tions, but this is the trade-off that occurs to minimise communication usage. There is
the potential for problems with this approach, as each contiguous region that is modi-
fied (termed a patch in SMG ) requires a patch header specifying offset. If writes are
interlaced at small frequencies, then the patch header requirements become significant,
hence the benefits are reduced. Section 9.4.2 highlights such a scenario.

7.5.2 RAW write collection

The raw write collection technique dispenses with the creation (thus the overhead) of
the run-length modification encoding of the diff approach outlined above by transferring
modified blocks (a block will be the size of a local page as outlined in the section on write
trapping). This can be a better solution when the subscription protocol is employed



USER MULTI-THREADING ISSUES 115

for an object as less resources are required to process the coherence messages from
the antecedents or the ultimate root. Another scenario where it is useful is where the
writes to the object are highly interleaved from different writers (a problem with the diff
approach).
At the time of write collection the object dirty information is examined. Where a
block is dirty then it is added in its entirety to the write collection, so processing for
potential write conflicts is only done when required. At the merging of two raw write
collections, blocks relating to the same shared memory region will be compared to an
original (twinned) copy; if all three are different at a given offset then a clash has
occurred, and the appropriate merge-clash handler is executed.

7.6 User Multi-threading Issues

As support for multi-threaded user applications is required, additional consideration
needs to be given to how this will effect the overall operation of the DSM.

• Access Race Condition: Consider a scenario where two user threads within the
same process modify locations within the same shared object8 at the same time. A
race may arise if both locations are in the same page. The DSM may be updating
the page in performing coherence events for the first thread, and to achieve this the
DSM must have write access to the shared region. While the DSM is performing
the coherence event the second user thread may make modifications unbeknown
to the DSM (as no write trap event is generated).
The solution is depicted in Figure 7.12, and requires that at object allocation the
DSM maps the physical memory for the shared object to two different virtual
locations (this is termed dual-porting). This allows the DSM to modify the data
according to its own access protections, independently of the mapping for the user
threads.

• Signal Delivery: As mentioned previously the Linux Virtual Memory (VM) sys-
tem delivers signals on a per-process basis. However, as there may be multiple
threads of control it is important that the SEGV write trapping mechanism be
aware of this; it is important that mutual exclusion be maintained to the data
structures responsible for management of the shared area.
For Linux 2.6 kernels and later, native threads are now supported, so threads are
scheduled rather than processes. The recommended method of handling signals in
multi-threaded applications is to mask all signals in all the threads and to create
a single thread with the responsibility to handle signals delivered to the process.
This can be achieved using the sigwait call. However, currently the SEGV signal
cannot be blocked on a per thread basis.

8the object is covered by an invalidation protocol, or variant like Subscription



IMPLEMENTATION ISSUES 116

Figure 7.12: Dual porting shared memory mapping

7.7 Implementation issues

There are numerous issues that arose then implementing the shared memory manage-
ment of the DSM. A subset of these are:

• Kernel support: One of the issues that arose while developing the shared memory
functionality of the DSM is that a SEGV access is unrecognisable, due to lack of
support for MAP ANONYMOUS flag to the mmap system call in kernels prior to
version 2.4.1. This is also related to the lack of a complementary call to mprotect.

• (Physical Memory Use: To provide transparent shared memory the DSM in-
curs tremendous overhead in physical memory usage for write trapping & write
collection (three times the actual size of the region [data, twin, write collection]).
This will only be removed if different write trapping & collection techniques are
used such as compiler instrumentation. Home-based coherence protocols can only
eliminate the resources required for a twin/diffing on the page’s home node.

• Virtual Address Space: While not requiring significant system resources, the
dual-porting of the shared memory region (see Section 7.6) is achieved at the
expense of virtual memory usage. In 32-bit architectures the virtual address space
is 4GiB, and when typical OS considerations are factored this is 3GiB. This implies
that the maximum shared memory region that can be allocated will be 30% of
the remainder9. This problem should not be so significant with the large virtual
address space provided by 64-bit systems.

• Heterogeneity: As computational grids are composed of machines with poten-
tially different architectures this involves differences in the native representation
of data on those architectures (big/little-endian). This is a concern when trans-
ferring shared data between nodes. Message passing programs overcome this by

9In practice this will be much lower due to other requirements e.g. communication



DISCUSSION 117

’typing’ the data when it is sent between processes for every send/receive call, for
example MPICH-G2 takes explicit actions in this regard.
SMG currently has no support for heterogeneous systems. Memory is viewed as a
linear array of bytes. While desirable the lack is somewhat justified from a number
of aspects: (i) (Increased burden) this would require the application developer to
strongly type the shared data so that the underlying system would have a type
map when transferring shared data. This would give rise to excessive processing
and extra messages. These requirements would add a considerable burden on the
programmer [144], and on the DSM system. (ii) the overhead involved would be
unfavourable (iii) the vast majority of grid compute resources use the Intel x86 (or
64 bit versions) architecture.

• Fault Tolerance: Some fault tolerant schemes are impractical [136] due to the
massive overheads involved, others require a holistic approach approach that are
difficult to maintain and port, while some use check-pointing and restart. For
SMG it was decided that all that would be provided would be to allow persistence
of objects at a given point in time (on a global barrier). Further work can easily
expand this to the DSM engine.

7.8 Discussion

In the SMG system it was important not to hard-wire defaults such as page sizes as this
would reduce future portability potential. These are variables that can be obtained at
run-time [28]. This has the effect of increasing slightly the DSM overhead.
The implementation of write-trapping and write collection follows a similar approach
to that adopted in Treadmarks [96] with some small modifications. Write-trapping
is achieved by setting the protection level of the shared object, where the minimum
granularity is at the virtual page level up to the total size of the object if it occupies
more than one page. The default behaviour is that a twin is generated upon the first
write to a variable in a shared region.
When the synchronisation object that the shared memory object is bound to performs a
release a diff is generated by comparing the twin and the current state. This is used to
minimise the message traffic for coherence updates. If topology information is available
then hierarchy awareness can be applied in barrier operations, i.e. as arrival notifications
are received the diffs can be merged at intermediate nodes (as depicted in Figure 8.3),
thus reducing the processing bottleneck at the root node level. Otherwise, a traditional
tree-structured barrier is employed.
Multi-writer entry consistency can be easily supported for barrier primitives and this
enables support for OpenMP parallel for constructs. Basic user-specified alteration to
write trapping and write collection methods are allowed, and when more integration with
the information system occurs, this user control will assist application-level optimisations
where access patterns to shared data are irregular [98].



DISCUSSION 118



CHAPTER 8

SMG Synchronisation

This chapter will describe the implementation in the SMG DSM system of the two core
concepts used in the synchronisation of parallel applications that were discussed in Sec-
tion 2.4. SMG is a DSM implementation that uses relaxed consistency protocols, and so
it is required that the implementation of the synchronisation primitives support this. It
is necessary that coherence actions occur at the synchronisation points when required.
As EC is the chosen consistency protocol it is necessary to explicitly associate, or bind,
shared memory objects with a synchronisation primitive. This increases the burden on
a developer, and this has been a source of problems in previous DSM implementations
that employed this consistency protocol [137]
In distributed shared memory, accessing shared memory is tightly coupled to any syn-
chronisation variables whose implicit role is to enforce the consistency of that memory.
The access mechanisms were discussed in Chapter 7. The API functions that provide
access to distributed locks that provide different levels of access to the guarded critical
sections, are discussed below. The barrier synchronisation primitive differs in its use in a
DSM application as it allows the use of multi-writer protocols. Frequently an object was
bound to the incorrect synchronisation object resulting in a degradation in performance;
when this occurs the problem must be identified to the developer.
Problems that may occur in normal parallel programming tasks that are difficult to di-
agnose, such as deadlock and live-lock, mainly arise from poor or inaccurate algorithm
implementation by the developer, or a high lock contention rate. If such occurrences can
be highlighted to the developer, then that allows the situation to be remedied.
The problems encountered in the implementation are discussed at the end of the chapter.

119



SYNCHRONISATION 120

8.1 Synchronisation

In the discussion on weak consistency models it was seen that weak consistency oper-
ations (Acquire & Release) map onto the operations required for synchronisation. The
synchronisation API requirements can be summarised as:

• Scalability & Efficiency: Synchronisation is an integral part of parallel comput-
ing and should be as efficient as possible, so it should incur minimal communication
costs. Any scalability issues that are evident from cluster use will be magnified if
used in a grid.

• User Multi-threading: support for multi-threaded applications is required, so
the synchronisation primitives themselves must be capable of supporting access to
multiple user threads.

• API Generic: Section 5.3 highlighted the desire to support the implementation
of higher level APIs, such as OpenMP, and this dictates that the characteristics
be as generic as possible.

• Consistency & coherence agnostic: As previously stated the initial consistency
implementation will be EC. Ultimately to support extensions to the DSM (in the
form of new consistency models, coherence protocols etc.) it is necessary that
the DSM engine, and hence synchronisation functions, should be agnostic in this
respect, so the prototype cannot be ’bound’ to EC.

8.2 Lock Primitives

The SMG implementation of a lock primitive aims to meet the general requirements of
a mutex device that were outlined in Section 2.4.1, and the extra requirements imposed
above. In SMG a lock primitive is referenced using a global numerical identifier, that acts
as an opaque reference to a local DSM engine structure similar to the shared memory
handle structure (see Listing 7.1), allowing for the transparent use across the system.
The lock variable may be held exclusively by one thread of execution (termed write
mode), or non-exclusively by a number of threads concurrently (read mode).
All locking routines are required to be thread-safe with respect to the local process.
Where a lock is in exclusive mode it must be able to distinguish between user threads on
the local node. This is achieved by the thread identifier being recorded in the internal
lock structure when a lock is acquired.
A lock is initialised with the following declaration. The lock identifier field specifies the
global lock identifier, while the flags field is used to specify required attributes for the
lock. In a similar manner to other projects [89], flags specify if shared memory is to be
associated with the lock, or the behaviour permitted for multi-threaded environments,
and if the locking protocol can be optimised to the consistency/coherence protocol.

int SMG lock declare(int lock identifier, int flags);



LOCK PRIMITIVES 121

8.2.1 Lock acquisition

When a lock needs to be acquired by a thread it must wait for the request to be satisfied.
A process that can grant the required access level is found and it grants the requested
access. The conditions by which a process can grant the requested access are outlined
below for each relevant mode.
A lock acquire operation can be mapped to the acquire operation in weak consistency
models. Upon the lock being acquired all relevant associated consistency model informa-
tion will be included in the grant notification by the grantee, and the lock acquisition will
apply coherence information received, thus when the operation has completed all (rele-
vant) shared memory is consistent. For this reason non-blocking lock acquire operations
are not supported.

Non-exclusive (read) lock acquisition

In respect of the DSM where the EC model is used, all shared memory associated with
the acquired lock is guaranteed to be consistent until the lock is released. This data
cannot be modified as the lock is non-exclusive mode, so the thread has only acquired
read permissions. If another thread within the same process incorporating the requesting
thread has been granted access, then lock acquisition is a relatively straightforward task
involving updating a local counter; otherwise a remote lock granter must be found.
The first location to be found is the probable owner process, although there are other
variations as discussed in below on Section 8.2.2. The API call to acquire a lock with
the global identifier lock identifier is:

int SMG read lock acquire(int lock identifier);

The return code specifies the status of the operation. SMG SUCCESS indicates that
the lock has been successfully acquired in non-exclusive mode; otherwise an error such
as the the general error code SMG FAILURE is returned.

Exclusive (write) lock acquisition

The exclusive acquire call has potential for high latency as only the actual owner can
grant the request for access. In addition the requester must wait for the current owner
to finish using it. Furthermore, there may be prior requests for access that are ahead in
the request queue.
As shown in Figure 8.1, the owner of the lock is the only process able to grant exclusive
access by transferring ownership to the requesting node. The following is the API call
for issuing a request for a lock when the global identifier lock identifier is in exclusive
mode:

int SMG write lock acquire(int lock identifier);

Again, the return code SMG SUCCESS indicates that the lock has been successfully
acquired in required mode; otherwise an error such as the the general error code
SMG FAILURE is returned.



F
ig

u
re

8.
1:

Lo
ck

A
cq

ui
re

flo
w

di
ag

ra
m

122



LOCK PRIMITIVES 123

8.2.2 Finding the lock owner

When a user thread requests access to a lock primitive in exclusive mode the current
owner must be found. With a non-exclusive request any thread holding non-exclusive
access will suffice, but the same principle applies. It is important that this is achieved
in the most efficient manner, avoiding delays occurring in the subsequent computation
to be performed by the user thread in the critical section. If the current owner of a
lock cannot be found efficiently, extra latency results, with degradation in performance
proportional to the lock contention.
As memory is bound to synchronisation objects the access patterns to locks will be
similar to the shared memory access pattern. For this reason the distributed memory
management algorithms developed by Li [65], as discussed in Section 4, are highly appli-
cable in the development of a distributed lock management protocol for a DSM. When
a lock request is made and it cannot be satisfied locally, then finding the owner of the
lock can introduce severe performance penalties into the system. What is required is an
efficient procedure so that the requesting thread is not blocked for too long. There is
always a route to the owner through a chain of probable owners.
The SMG system employs a N degrees of separation approach, where all locks have a
static manager that knows the current owner through a chain of probable owners of the
lock. This chain of probable owners is composed of the previous owners of a lock. When
a lock is first requested the manager will record the identifier of the requester. When
this requester passes ownership to another node the identifier is recorded. This trail will
always lead to the current owner of a lock. When a process receives a lock request that
cannot be satisfied locally it will pass the request to the process it believes is the current
owner. If the chain of probable owners is larger than N then a purge message may be
sent.
In a grid environment with information available it is possible for the owner chain to be
shortened by creating proxy lock managers at sites where the actual lock manager is not
located. When a process receives lock ownership from a process in a remote site then
the site proxy lock manager is informed that the lock is located on the local site. Any
requests that originate from a site can be first directed to the local proxy rather than
initiating a high latency request to an probable owner located off-site. If a request is
received by a proxy, and the lock is not located on the local site then the request can be
forwarded to the probable owner. Messages of this type need only be generated when a
lock arrives or leaves a site.

8.2.3 Queueing lock requests

When a request for lock access is received by a thread, and where the lock is still in use
(in exclusive mode) and thus conflicts with the status, the request must be queued until
it is no longer needed. Where multiple requests are outstanding a request queue must
be formed.
The method of queueing the lock request is an important factor. Poor queueing disci-
pline can result in lock starvation and poor performance. The simplest approach is based



LOCK PRIMITIVES 124

on a first come first served principle. This approach works well on a multiprocessor as
it guarantees lock fairness and thus avoids lock-starvation. In a distributed machine or
grid setting this method can result in poor performance if the lock contention is high,
and/or involves requesters from multiple sites ’trashing’ the lock among them.
Distributed lock implementations have been proposed where a weighted balancing ap-
proach is used [145, 146]. Here queueing discipline is governed on the location of the
requester per process, per node, per site or other, whereby ’preferred’ access is granted
to threads nearer the current owner. By following this approach better performance is
achieved as local user thread requests can be satisfied first, lessening of the ping-pong
effect where a lock is passed between processes. This algorithm mitigates the potential
problem of lock starvation.
The SMG DSM implements this approach by assigning each lock a site quantum, where
queueing discipline ensures a fairness approach where one node or site cannot have con-
tinual access to the lock. If grid hierarchy information is available then requests can
be directed to the local proxy for the site. If there are other requests outstanding at
the same time, then the request can be queued locally (not implemented in SMG yet).
The factors that influence the lock queueing mechanism include the process identifier,
timestamp, and the request type (exclusive or non-exclusive).

8.2.4 Lock release

Upon the release of a lock the action that occurs depends on the mode in which the lock
is held. This process is depicted in Figure 8.2. The API call to perform a release of a
lock that is held under any access mode is:

int SMG lock unlock(int lock identifier);

On the release of a lock held in non-exclusive mode, the owner field is first examined. If
the releasing node is not the current owner of the lock then it will notify the probable
owner. It can only do this immediately if it has not delegated equivalent ownership to
another process, or no other local thread has.
If the lock was held in exclusive-mode then the process checks if there are requests
pending. If so the first in the queue can be satisfied. When a lock held in exclusive
mode is released all bound objects must be examined to check for modifications. If
bound objects are modified the next owner of the lock must be given the update notices.
All locks operating in EC mode have a ’dirty’ bit that indicates if any bound object
has been modified. This bit is examined upon delegation of lock ownership although a
difference in lock logical time-stamp can also indicate this. More information follows in
Section 8.3.3.
Where another thread within the process of the releasing thread requires exclusive access,
then no release action is performed with respect to the consistency protocol (memory is
already guaranteed to be processor consistent in this case). The benefit of this is that
no coherence action results, so by association no write collection handler is invoked, and
so the handover is immediate.



F
ig

u
re

8.
2:

Lo
ck

R
el

ea
se

flo
w

di
ag

ra
m

125



SMG BARRIER PRIMITIVE 126

8.3 SMG Barrier Primitive

In a similar manner to the lock devices described above, all barrier operations of the
SMG API reference a global numerical identifier. This in turn is used by the DSM to
reference the local (to each process) internal structure representing the barrier primi-
tive. The issues of distributed barrier implementation were discussed in Section 2.4.2. In
essence there are two stages: barrier arrival and barrier departure. In the former stage
all threads of execution must declare arrival at the barrier, which must be coordinated in
some manner dictated by the barrier algorithm. When this has been achieved the latter
stage takes place and all processes may depart by being informed to proceed in a similar
manner. The algorithms and functions implementing the actions described in Chapter 7
(consistency, coherence functions, etc.) that occur during the internal between arrival
and departure phases of the barrier are discussed in Section 8.3.2.
In a DSM, extra work is involved as coherence events dictated by an active consistency
model, described in Section 7.2, need to be performed when all local conditions have
been met. Figure 8.3 demonstrates the actions for a shared memory region under an
EC model and Update protocol. The coherence information from a particular process
is piggybacked on the BARRIER ARRIVE notification. All coherence information is dis-
tributed (if applicable) on the BARRIER PROCEED notification. From a weak consistency
point of view, the BARRIER ARRIVE stage is synonymous with the release operation,
while the acquire operation is synonymous with the BARRIER PROCEED action (this can
be seen in Figure 8.3).

Figure 8.3: EC-MW Write collection at a barrier



SMG BARRIER PRIMITIVE 127

8.3.1 SMG Barrier API

The default mode of operation of a barrier can be specified by declaring the barrier
and its default flags before the barrier is first used. This can be achieved using the
SMG barrier declare function. There are a number of modes that can apply when each
process contains multiple user threads. Consider the use of a barrier in a possibly
multi-threaded user application. As threads can only be visible at the process level it is
important to consider what action is to be taken when a barrier is reached. Should the
barrier fire when the first thread reaches it or should it wait until all threads reach it?
Currently SMG barriers require all threads to have reached the barrier so that memory
can be made properly coherent. If this was not the case a thread could be waiting for
barrier proceed notification while another local thread modifies a shared memory section
bound to the primitive.
The invocation of the global barrier itself is pretty intuitive. All processes satisfy their
local requirements by the user threads, dictated by the mode, invoking the SMG barrier
function. These relevant local threads of execution of the process will block until notified
by the DSM system of the arrival of the BARRIER PROCEED event. The internal DSM
actions performed between the arrival and proceed are described in Section 8.3.3.
Additionally there is a barrier function available to synchronise a subset of the processes
partaking in the application. However, currently shared memory objects cannot be
bound to such a barrier as coherence updates to a process not partaking in the operation
could not be well defined, potentially leading to data races conditions.

int SMG barrier declare(int barrier id, int type, int param);
int SMG barrier(int barrier id, int flags);
int SMG sub barrier(int barrier id, int who, int flags);

8.3.2 Barrier algorithms

There are numerous barrier algorithms available, the appropriate choice depends on
the overall requirements. We require a flexible hierarchical distributed barrier. The
central server implementation of the MPI barrier primitive in MPICH1 & MPICH2 is
not suitable for the DSM 8.4(a).
Previous DSMs have adopted hierarchical implementations of barriers [146] which aim to
minimise the amount of high-latency inter-site communication. Treadmarks implements
the central server algorithm, while other work [147] implements a more efficient algorithm
using a Binomial Spanning Tree (BST) 8.4(b).
The approach taken for barrier implementation in SMG is to use a combination of the
above. It was shown that significant performance increases can be achieved where multi-
site grid applications with collective operations, like barriers, are made topology-aware
[52]. An optimal tree for the physical execution environment, Hierarchy Optimised Tree
(HOT), can be constructed if topology support is available. A binary tree system is
used within a site, while a normal tree is used between per-site managers and the barrier
manager itself. Currently all barrier primitives rely on the same HOT structure that is
constructed at run-time. The maximum depth of such a tree is log2(n+ 1).



SMG BARRIER PRIMITIVE 128

Figure 8.4: SMG Barrier Algorithm

8.3.3 Action taken at a Barrier

When a process encounters a barrier the tasks that are performed depend on whether
there are shared memory objects associated with that particular barrier. First the local
update queue is examined for any pending updates that need to be performed, such as
notifications of change of the shared object bound. The most obvious, with respect to
the DSM, are the coherence actions that must occur at this point. Any objects that were
modified in the preceding interval are updated. The consistency protocol as described
in Section 7.5.
The interval between the barrier arrival and barrier proceed is a suitable time to log
events to the monitoring system, including resource usage (computation & communica-
tion), system statistics such as number of page-faults, the statistics on shared memory
that are bound to the barrier, etc. The implementation of this functionality and the
actual format of the logged data is discussed in Chapter 9.
The ownership of an object and management of the barrier should transfer dynamically
to the process, or a process within the site that performs the most writes. The infor-
mation & monitoring system could be used for this purpose. The manager will see the
updates coming in at the barrier point, and so can make the decision and apply it during
the next barrier period.
Binding shared memory with barriers provides the ideal opportunity to allow multiple-
writer protocols. During a barrier interval multiple writers are allowed to perform non-
conflicting writes to the same shared memory region. When the barrier is reached, the
modifications done by all processes are merged by the barrier administrator, and then
sent to all processes in the system. Employing multiple-writer protocols allows some fur-
ther optimisation, such as write collection aggregation. As barrier proceed notices occur
the write collections can be merged at this point. This results in reduced inter-process
communication as less write collection data needs to be transferred, and the workload of
the barrier administrator is reduced, but the computational overhead will be increased.
This process is depicted in Figure 8.5.



F
ig

u
re

8.
5:

B
ar

ri
er

E
ve

nt
D

ia
gr

am

129



IMPLEMENTATION ISSUES 130

8.4 Implementation issues

Most of the issues arising from the implementing synchronisation primitives relate to
the conflict with the shared memory management requirements.

• Lock Handover: The lock queueing mechanism aims to ensure that all lock requests
are eventually serviced. It cannot be proved conclusively that the SMG implemen-
tation for lock queueing mechanism is totally fair as the primary desire was to
minimise communication, so under certain circumstances the locking mechanism
may perform poorly.

• Lock Ownership resolution: When an exclusive lock is required the current owner
must be located. This process may require the request to take a number of hops.
This, plus the need for eliminating the potential for the lock ownership never to
be transferred, introduces extra communication into the system.

• Barrier Tree Dependent Size: It is more efficient to implement an K-ary scheme
rather than a binary one, i.e a process will have a maximum of K children as
compared to the current implementation of two (k = 2). This would reduce the
depth of the tree, but the potentially significant workload and memory demands
required by coherence events mitigates against a larger size k. A low value (k = 2)
was chosen due to these unknown requirements. A more efficient implementation
would set this value dynamically based on the run-time conditions.

8.5 Summary of decisions

The following summarises decisions made in the area of SMG synchronisation:

• Lock primitives employ a queueing discipline that is mindful of the source of re-
quests, and will discriminate in order to minimise inter-process data transfers. If
topology information is available then this can be further optimised to take account
of the existence of higher latency inter-site transfers.

• Multi-threaded user applications should be supported where necessary, e.g. lock
primitives are thread-aware and optimised for this situation.

• All user threads in a local SMG process should arrive at the barrier to allow
that process to signal its arrival. This and the implementation of barrier groups
(opposed to global barriers) are future work.

• Multiple-writer protocol only allowed when the shared memory object is associated
with a barrier synchronisation primitive.

• The period between a barrier arrival and barrier proceed is a suitable time to log
application monitoring information if it is required. This is done so as to utilise
communication and computation resources that are available at this time.



CHAPTER 9

Optimising for the Grid Application

Chapter 2 briefly mentioned the effects that latency within a parallel computing system
composed of distributed processing nodes can have on the overall performance of a par-
allel application. As the trend indicates that such use is set to increase as computational
grids gain acceptance, these problems will become even more apparent. Thus any efforts
that mitigate against this are very valuable. One method is to make an application
aware of the environment in which it executes. To achieve this, topology information
needs to be made available to the DSM system.
As previously described, it is possible that some locations or shared memory regions
may be responsible for excessive DSM communication. This may be due to poor algo-
rithm design or implementation, or it may just be an inherent feature of the application.
Where excessive communication occurs it may pay for the application developer to use
message passing techniques instead of shared memory to implement the functionality.
To do this a method where the parallel application can log information, and potentially
accessible by the developer at run-time is required.
In this chapter the integration of the SMG DSM with an information and monitoring
system is discussed. The methods by which environmental information is used by the
DSM, and how application monitoring information is published are also described. In
addition some of the data in the system can be used by the application, and can be used
by an application developer to monitor parallel applications at run-time. Features such
as debugging and deadlock detection would be of benefit to an application developer.
A more interesting use of monitoring data is to harness it to assist a developer to in-
crementally and selectively add performance-enhancing message passing. In theory this
will allow an application written in shared memory style to be incrementally modified so
that sections of the application that execute inefficiently are converted to more efficient
message passing. If this can done in an directed fashion then resources can be targeted
to where the greatest benefit will accrue, and can stop where diminishing returns dictate
that further hybridisation is not economical.

131



INTEGRATING INFORMATION & MONITORING SERVICES WITH SMG 132

9.1 Integrating Information & Monitoring Services with SMG

For the integration of the DSM with the information & monitoring systems, it was de-
cided to define two separate APIs, one each for information (Listing 9.1) and monitoring
(Listing 9.2), as a way (i) to insulate the DSM from the actual implementation details,
and (ii) to prevent these independent tasks from being conjoined to the same system.
By doing this new systems could be easily supported by re-implementing the API.
One system, R-GMA, was previously discussed in Section 5.2.1. Some of the other
prevalent grid information & monitoring systems are described in Appendix 5.2. The
decision to use R-GMA was based on the ease of querying and inserting data. Although
the performance of the R-GMA is currently slightly less than that of MDS for query
operations [148], it was chosen due to its flexible nature and querying ability. To enable
further choice, an off-line file information system was created that reads a user-configured
file containing the required information for the information provider source. In a similar
manner, off-line monitoring can achieved through logging of data to normal files, and is
used in situations where the overhead (memory resources) of using a monitoring system
becomes too significant.
Separating both tasks into two separate APIs allowed different system implementations
to be used concurrently. For example the R-GMA information source can use R-GMA
and monitoring can use the file logging mechanism. The R-GMA monitoring imple-
mentation uses SMG defined schemes to publish information, while the SMG informa-
tion library relies on the standard GLUE Schema [120] for information sources and a
SMG schema for any SMG defined information. At compile time an application de-
veloper can link to the required implementations, allowing for exploration of different
aspects of an implementation.

9.1.1 Using the R-GMA Information & Monitoring system

The integration of the DSM with R-GMA involves implementing the SMG info API.
The resulting system is depicted in Figure 9.1. All data is accessible using the consumer
API, and can be viewed on-line via the R-GMA BrowserServlet. Although consumers
are shown in all SMG processes, which are to be used to implement a feedback loop
into the DSM, this functionality has yet to be exploited by the DSM. Other work has
demonstrated the benefits of providing such a feedback loop [149].
A R-GMA table is defined to register a SMG application instance. Another is used
to record all the process information for participants in the application. The R-GMA
consumer is used to query which sites the processes belong to (the information is available
via GLUE Schema information producers). When this is done, topology information can
be distributed to the DSM system threads. The file device will return whatever topology
information the user has defined; the simplest case is where all functions return a view
of a one-dimensional cluster.



INTEGRATING INFORMATION & MONITORING SERVICES WITH SMG 133

Figure 9.1: Integrating SMG and R-GMA, and use of BrowserServlet



ENVIRONMENT INFORMATION 134

9.2 Environment Information

When an application is run and use of an information system is required, all the SMG pro-
cesses must first register and all application processes must block until this is done. When
all have done so, it is possible for the administrative process to generate a topology tree
by obtaining site locations for all processes. For this implementation a two level hierar-
chy is assumed (site – cluster). Other efforts such as [52] have support for a hierarchy
of greater depth.
The API that must be implemented to enable the SMG DSM engine to access the infor-
mation service is given in Listing 9.1. The initialisation/cleanup routines are INFO init
and INFO finalise. INFO getNumSites will return the number of distinct sites partic-
ipating in the current job execution. INFO getSiteNum returns the site for the given
process specified by the process rank node rank. INFO getSiteSize will return the num-
ber of processes at a particular site that are involved in the job. INFO getSiteNodeList
will return a list of nodes at the site specified by the site rank argument. The size of
the array is that as returned by INFO getSiteSize, and INFO getDefaultSiteMasterList
will return the per-site process that assumes some management responsibility if the
administrative process is not local.

int INFO init ( int my rank , int my size , char ∗ proces sor ,
char ∗ j i d , char ∗program name , char ∗ type ,
char ∗user name ) ;

int INFO f ina l i s e ( int e x i t c o d e )

int INFO getNumSites ( )

int INFO getSiteNum ( int node rank )

int INFO getSiteS ize ( int s i t e r a n k )

int ∗ INFO getSiteNodeList ( int s i t e r a n k )

int ∗ INFO getDefau l tS i teMasterLis t ( )

Listing 9.1: SMG Information interface

9.2.1 Alternative Information Usage

The topology tree is used to minimise inter-site communication as all processes will be
aware of the other processes in their local site. This occurs for lock, barrier, and shared
memory usage. Lock synchronisation primitives requests can be queued and proxied on
a per-site basis, so where multiple requests occur within a site one request originates
from the site. Barriers have a per-site manager and only these managers communi-



ENVIRONMENT INFORMATION 135

cate among each other. MPI collective operations implemented in such a manner have
demonstrated significant increases in performance when topology information is available
[51, 150]. Shared memory coherence operations generate the majority of communica-
tion in a DSM. Topology awareness allows minimising the volume of inter-site coherence
messages through the maintenance of per-site caches.
There are potentially many uses of the information system. In a similar manner to
the benefits of two-tier fabric strategies used to keep the processors’ cache memories
synchronised in modern SMP systems [151], data placement efforts, such as libnuma,
memory affinity and autonomic workload distribution, use dynamic data obtained from
the information system. In SMG better load-balancing can be achieved by using the
SMG work distribution function that allows to partition a given range from – to ac-
cording to a given strategy which can be supported by the information system, e.g.
load-balancing according to CPU power (only sites where the compute resource is ho-
mogeneous are currently supported).

int SMG work distr ibution ( int TYPE, void ∗ from , void ∗ to ,
int how , void ∗my from , void ∗my to , void ∗param ) ;

Although topology information is not currently exposed to the application developer it
may be useful to allow an application access to it. The user has the ability to browse all
monitoring and job meta-information produced by a job using the R-GMA browser (with
appropriate credentials installed in the browser). This is demonstrated in Figure 9.1.

Figure 9.2: SMG Information UML Diagram



MONITORING DATA 136

9.3 Monitoring Data

The monitoring system allows for the distributed logging of DSM and application run-
time information. This occurs at appropriate times such as synchronisation points.
Macros are used to specify the data logged within the application code as it occurs. Using
the C FILE and LINE preprocessed macros the code location can be identified.
The API for the monitoring consists only of initialisation, cleanup, and the following
simple calls to log information.

int l o g I n i t l ( int my rank , int my size , int j o b i d e n t i f i e r ,
char ∗ j o b s t r i n g , FILE ∗debug , int f l a g s ) ;

void l o g F i n a l i s e ( ) ;

void log Event4 (char ∗Type , int param\ 1 , int param\ 2 ,
char ∗param\ 3 ) ;

void log Event9 (char ∗Type , int param\ 1 , int param\ 2 ,
int param\ 3 , int param\ 4 , int param\ 5 ,
int param\ 6 , int param\ 7 , int param\ 8 ,
char ∗param\ 9 ) ;

void u s e r a p p l i c a t i o n l o g ( int type , char ∗ event , int param 1 ,
char ∗param 2 ) ;

Listing 9.2: SMG Monitoring interface

The generic format of a logging message is given below. An example of usage is also
shown. The definition of the logging message is independent and is defined on a per
message type basis. In the R-GMA implementation a SMG monitoring schema/table
was defined. All processes in the application produce information according to this
definition via the producer API, using continuous producers on the back end.

TYPE, Argument 0,..., Argument N, Code Line, Source File
BARRIER, 1, 2, -1, -1, 0, 0, 0, 0, 23, basic.c

The monitoring information produced in the R-GMA implementation is accessible
through the consumer API. The overhead in accessing the monitoring system results
in a performance penalty when logging data. The R-GMA implementation can use a
separate thread to perform all logging operations; a log method will pass the parameters
to the logging thread thereby ensuring the user/DSM-system threads are not I/O bound.
The file device will log information to per process files.



MONITORING DATA 137

Figure 9.3: SMG Monitoring UML Diagram

9.3.1 Alternative Monitoring Usage

The file monitoring implementation will log monitoring information into a per-process
file. The information is logged at suitable intervals, and no provision exists for access to
these files. The user will need to interpret the data. When the R-GMA implementation
is used, the user is only able to query events/data that is of interest, since vast quantities
of monitoring data can be produced. SQL SELECT queries are generated against the
available information as a data filter.
A front-end viewer is available to present the information to a developer in a categorised
fashion. Screen-shots of this viewer appear in Section 10.3. The viewer includes the
ability to highlight the relevant sections of user-application code, and so one can view
system information relating to an instance of a global barrier and view the corresponding
code.
Similar work has been reported in the literature that uses monitoring information to ob-
tain optimisations such as: speculative parallelisation of loops [125]; dynamic scheduling
of nested parallel loops [126]; and traditional OpenMP/MPI hybrid code [152]. Devel-
opment tools such as Marmot [153] have also been used to verify MPI applications and
to identify situations such as deadlock. Other work enabled the monitoring of MPI ap-
plications using R-GMA [122].
The ability for user code to access monitoring events in an application is not usually
available (logging to a file may not be possible due to access restrictions on the direc-
tory). This can be a frustrating experience in a user application that may execute for a
long duration. The function SMG user event can be used within application code. To
access the information during application execution a corresponding querying mecha-
nism is required, e.g. with the R-GMA approach the monitoring data can be accessed
via a R-GMA Consumer, however, a general API call is supplied (SMG get events).

int SMG user event(char *user tag, int lineno, char *filename);
int SMG get events(char *job identifier, int flags, int param);



HYBRIDISING PARALLEL APPLICATIONS 138

9.4 Hybridising Parallel applications

In Chapter 4 it was seen that a DSM will, in general, transmit more data than is required
in the course of a job execution than a similar job implemented in a message passing
style due to DSM engine overhead. This additional communication has the potential
for significantly reducing performance if the DSM is unable to effectively share data due
to the excessive communication use. The main source of this problem was discussed in
Section 4.6, i.e. coherence protocols are developed for the general case and can react
very differently when dealing with unanticipated sharing patterns.
However, the code responsible for this poor performance is very localised and derives its
impact from the DSM’s lack of ability to adapt to the sharing pattern of the application.
If the application developer can dictate the communication usage by implementing the
data sharing functionality with message passing, then superfluous data will no longer be
transformed. As this modification only needs to be done in a localised fashion the two
programming models can coexist in a hybrid fashion, hence the term hybridisation.
Many applications need to be scaled to new levels, some of these involve simple commu-
nication patterns at global barriers, but as an application scales the coherence commu-
nication in particular may grow commensurately, and may saturate the communication
link. This may occur in the barrier usage scenario depicted in Figure 8.3, the appli-
cation with a problem set at a given scale may show good performance, but the same
application at a larger scale may not as the additional coherence data may exceed the
available bandwidth, and superfluous data transfer may occur.
Problems with EC memory and lock usage should not occur, otherwise the resolution
of sharing and lock binding needs to be investigated. For the vast majority of parallel
applications the candidate code fragments suitable for hybridisation are relatively few
in number. The hybrid programming concept is not new. Shared memory and MPI
hybrids have shown that good potential exists [40, 5] (in most situations MPI is used
for simple data transfer), while Version 2 of the HPF language provides the Extrinsic
directive [35] specifically to enable hybrid programming.
However what is new in this thesis is that the application of the message passing style is
now the exception, since the DSM is now responsible for all but these few hybridised code
fragments. It is desirable to reduce the DSM overhead associated with the fundamental
DSM concepts, namely write trapping, write collection, consistency, and coherence. In
general the consistency/coherence combination is a best effort; implementing more com-
binations will support a greater range of data sharing patterns.
There are efforts elsewhere that take a similar approach: profiling parallel applications,
analysing the resultant data, providing feedback to the user. These systems [154, 155],
take a more holistic view compared to the restricted view that SMG takes. They provide
probes for different parallel programming models (OpenMP, Message-passing). The most
substantial of these systems, TAU, provides tools for managing experiments (PerfDMP),
a component for enabling artificial intelligence (PerfExplorer) to identify code regions,
and a sophisticated user interface (ParaProf) to aid the developer. Tau has its own
logging format which currently prevents it from analysing SMG monitoring data.



HYBRIDISING PARALLEL APPLICATIONS 139

9.4.1 Performing Hybridisation

For this thesis hybridisation is performed by the developer; it is possible that this process
will be performed by a compiler, however, given the difficultly in generating message
passing code from automatic parallel compilers [156], this may prove difficult. The basic
process is depicted in Figure 9.4. First the candidate (actual shared memory region
and code location) responsible for the poor performance is somehow identified to the
developer, see Section 9.5.
The methodology in implementing the hybridisation will require the developer to write a
valid message passing sequencing. This requires that the destination of send, and source
of receive, operations be known. In this respect, the hybridising engine can only make a
best guess as these variables are based on the usage pattern of data.
The developer will begin by disabling the implicit sharing of the shared memory. Next,
the shared data locations may be modified using the required message passing calls, with
the source and/or destination buffers of messaging primitives possibly being the shared
memory regions. Once the modifications/message passing are complete the modified
regions must be explicitly validated/invalidated before sharing can recommence. This
allows for the different local changes to be resolved globally before the next relevant
coherence event is demanded by the consistency model, i.e. the shared regions must be
made globally consistent after message passing is used.
The actual candidates for hybridisation are determined by processing monitoring data
information streams, which can either be done on-line or off-line, depending on the
monitoring system used. The user criteria will also determine what recommendations
are presented to the user, but in the majority of cases the criteria will be to maximise
performance through the minimisation of coherence communication and to a small extent
DSM overhead.
Appendix E shows a benchmark application, in both the original SMG (page 292) and
hybrid (page 296) versions.

Figure 9.4: SMG and Hybrid use



HYBRIDISING PARALLEL APPLICATIONS 140

9.4.2 Required SMG API enhancements

Allowing the user to introduce hybrid constructs at various locations requires support
in the DSM. The DSM must be made aware that the user is modifying shared data,
so the DSM system’s control must be temporarily suspended. When finished the DSM
control must be re-enabled. This is achieved using the API commands listed below.
SMG shmem disable will turn off DSM control on a particular shared memory region,
and SMG shmem enable will in turn on DSM control for a given shared memory region.

int SMG shmem disable ( )
int SMG shmem enable ( )

When control is disabled, subsequent DSM actions should be minimal. The disable action
will disable the DSM page faulting, turn off the visibility at consistency points, and make
a complete twin of the object for write collection when the DSM is re-enabled. Before
control can be returned to the DSM the shared memory must be re-qualified globally by
validating or invalidating. This ensures that no two process spaces have modifications
to the same locations in the shared memory region. If this was not the case then a
write clash would occur upon the following coherence action. The SMG commands to
achieve this are SMG shmem validate to validate a section of the shared memory region,
and SMG shmem invalidate is a complementary function that invalidates (undo) any
modifications to parts of the shared memory region.

int SMG shmem validate ( )
int SMG shmem invalidate ( )

To enable the developer to construct hybrid applications a message passing infrastruc-
ture needs to be available. Rather than requiring the developer to establish this, it is
sensible to allow the use of the (message passing) communication infrastructure already
created by the DSM. A SMG API call is provided, SMG get comm handle, to enable
the developer to gain this access to the message passing layer. This will return a handle
enabling the developer to use the underlying message passing system. Obviously this
handle definition will be dependent on the communication layer itself. In the case of the
SMG MPI communication module this would provide a MPI communicator. The user is
not permitted to use the default MPI COMM WORLD handle, as the process identifiers
used by the DSM and the user’s message-passing code should correspond. The request
for a communicator must be through the DSM. The user’s hybrid message passing code
cannot use the same MPI communicator as the DSM communication implementation
(the DSM communication thread currently filters processes all incoming messages on
this communicator) so a duplicate of the DSM’s communicator is made.

int SMG get comm handle ( void ∗comm t ) ;



HYBRIDISATION IDENTIFICATION 141

9.5 Hybridisation Identification

Ultimately the motivation for hybridising an application will be to increase performance
of a parallel application by decreasing the overhead components in Amdahl’s equation
(Equation 2.4), and thus (hopefully) decrease the execution time. Hence a baseline exe-
cution performance profile is required to compare the performance against. This may be
a serial, MPI, or an execution of a DSM version of the application, but at a lesser scale.
Alternatively the developer may choose just to eliminate the potential areas of code
responsible for poor performance. All parallel applications will exhibit some potential
candidates for hybridisation. These areas/shared-memory regions that are responsible
must be mapped to the locations in the application code.
The pertinent question for the developer is whether it is worthwhile to justify hybridisa-
tion The hybridisation engine seeks to identify these regions. It works by processing the
monitoring events generated; the format of these events were highlighted in Section 9.3.
The methodology is that all the monitoring data is viewed as a virtual database and the
engine runs queries on the data based on the requirements. The hybridisation engine is
built to process the events in an agnostic manner, no matter where the source, so an
on-line monitoring system (such as R-GMA) or offline source (such as the flat-file ap-
proach) can be used, but the user must specify whether the source is off-line or on-line.
User-denoted events can be specified using the call SMG user tag, to aid the developer in
establishing the performance of the system. Obviously this requires monitoring system
to be enabled in the application.

int SMG user tag(char *user tag, int lineno, char *filename);

9.5.1 Rating Hybridisation Candidates

The policy of the hybridisation engine is currently to seek to identify those regions
that contribute to the majority of inter-node communication. Use of a DSM results in
message generation. This is the source of problems that hybridisation will try to remedy.
Depending on the DSM characteristics this can mean minimising the volume of messages
or the message payload size. The candidates for identification are based primarily on
the interval release-acquire pairs (i.e. synchronisation variables). As synchronisation
variables can be used repeatedly throughout the application the use of variables must be
mapped to the locations of code where they were used. These areas can be a particular
line in the application source code, a function, or a region of code that is delineated
by the acquire and release phase of synchronisation operations (that were described in
Sections 2.4). A barrier interval is uniquely identifiable via two barrier events. Each
barrier event is uniquely recognisable using the file and the source code line number
where the barrier is called and the barrier timestamp.
The candidate metric can be a function of message transfer per (LOC), per object, per
synchronisation primitive, or the interval duration. At present there is no automatic
or user-defined ranking policy. Instead, the candidate metric is presented visually as a
pie-chart, see Figure 9.5.



HYBRIDISATION IDENTIFICATION 142

Figure 9.5: Hybridisation GUI

9.5.2 Hybridisation GUI

The hybridisation GUI works by directing the user to the source code locations where the
majority of communication occurs, and also to the shared variables that are responsible
for the communication. The code browser illustrates the ’hot-spots’ in the application
and the objects responsible. This allows for incremental and localised optimisations.
The participating processes are also identified.
The developer can examine the interval between synchronisation operations, such as
between barriers, and view the volume of data transfers generated between processes.
From other information gathered during the interval they can identify the memory ob-
jects causing the communication. The amount of communication between barriers in a
matrix multiplication example is clearly illustrated in the monitoring interface in Fig-
ure 9.5, and the the actual application code that is responsible can be identified as in
Figure 9.6. From other information gathered during the interval we can identify the
memory objects causing the communication. The hybridised code resulting from the
identification process is given in Appendix F, page 296.
Other features include the highlighting of fragmented shared memory use which may
be the result of poor algorithm design or implementation. This can be identified when
a shared memory region is repeatedly modified by multiple processes in a fragmented
fashion. Such a scenario may occur when a developer, unaware of the potential differences
between C and FORTRAN languages (row and column ordering), transposes a matrix
multiplication algorithm.



INCREMENTAL HYBRIDISATION 143

Figure 9.6: Hybrid Identification

9.6 Incremental Hybridisation

Incremental hybridisation is an extension of the hybridisation process that allows for
incremental optimisations in an application through the use of incrementally adding
hybrid programming measures. The hybridisation process described in Section 9.1 can
be repeated until a given tolerance is reached, dictated by the law of diminishing returns,
where it is no longer sensible to optimise further as no significant (worthwhile) benefits
are obtainable.

9.6.1 Version control system

Incremental hybridisation implicitly demands a facility to compare the different versions
of application code, and the resulting data. The hybridisation engine makes use of a
Version Control System (VCS) to maintain different versions of an application that has
undergone hybridisation, thus allowing for backtracking as needed. In addition, it stores
the execution data of the applications between executions and a condensed form the
the monitoring data (it may be unsuitable/unsustainable in many cases to keep large
amounts of monitoring data). Currently SMG does not allow developers to maintain
separate VCS repositories for application and monitoring data.
Future incremental hybridisation may benefit from the ending working in tandem with
the source code control framework as illustrated in Figure 9.7, so that it could allow semi-
automatic hybridisation perhaps guided by predicate logic. All previous application runs
could be analysed calculating the benefits of hybridisation.



F
ig

u
re

9.
7:

G
en

er
al

st
ep

s
in

vo
lv

ed
th

e
In

cr
em

en
ta

l
hy

br
id

is
at

io
n

144



IMPLEMENTATION ISSUES 145

9.7 Implementation Issues

R-GMA was chosen for the information & monitoring system as it offers greater flexibility
in the accessing of information, however, many issues arose from features of this system.

• The run-time monitoring system (enabled by R-GMA) can only handle a limited
amount of events (8̃0,000) events at any given time. To enable more events within
a given period then an offline monitoring system is required, with logging to files
during the execution of the application.

• Additionally, R-GMA imposes a limit of 256 characters on the length of a string
variable. While this is not a problem in the majority of cases it does restrict the
length of the file paths and the developer’s ability in the ’tagging’ of applications.

• All processes must register with the information system. The master process will
poll the system waiting for this to occur. Start-up messages are sent to all processes
once notification has been received and the topology map has been generated. This
results in very poor start-up times.

• The use of the R-GMA information system required the use on non-GLUE-
compliant tables.

• Currently the R-GMA C APIs are in a state of flux so the most recent releases
have not been used.

• The impact of logging system information necessitated the use of a thread to
perform this task (it takes a relatively long time to insert data into R-GMA). As
a separate thread is required for the DSM system an additional thread will steal
resources, so it must be run at a lower priority.

• The front-end ’hybridisation’ tool is limited in its functionality. It can only perform
set queries on the monitoring data it obtains.

• The hybridisation tool is also restricted in its ability to identify potential areas,
or the interval, of code for hybridisation to within one file. It should be noted
that this is a typical case of OpenMP applications where parallel regions must be
self-contained in a single lexical context.

• The hybridisation tool will have problems resolving the correct code locations to
the developer where a translator has converted OpenMP code to SMG DSM code.



IMPLEMENTATION ISSUES 146



CHAPTER 10

Evaluation

The primary goal for this thesis was to explore the use of the shared memory program-
ming model with grids. To achieve this successfully, communications must be efficiently
and sparingly used. The mechanisms developed in the course of this thesis are primar-
ily concerned with achieving this while contributing little additional overhead. Below
some analysis and evaluation is performed. Three main contributions are evaluated: the
subscription protocol, hybridisation, and providing topology information to enable effi-
cient synchronisation operations while operating in a grid environment. The evaluation
objectives can be categorised under four main headings:

1. Evaluation of the SMG DSM as an execution model compared with MPI.

2. Evaluation of the hybridisation approach, where more efficient message-passing
mechanisms can incrementally replace DSM actions when circumstances dictate
that performance improvements can be obtained. The process of incremental hy-
bridisation is also explored.

3. Evaluation of the SMG DSM with and without a grid information system.

4. The evaluation of SMG on a grid with emulation of the overhead of inter-site
latencies versus SMG on a cluster of identical compute resources.

A number of applications have been used. While some have been unsuitable for one
feature they have proven suitable to evaluate another. The metrics employed are overall
performance and scalability (through efficient use of communication resources).

Note: All graphs that feature the number of processors in an application are presented
in a logarithmic scale, Log2(No. Processes), see Figure 10.1.

147



EXPERIMENTAL METHODOLOGY 148

10.1 Experimental Methodology

The DSM components are represented in Figure 10.2. The DSM communication uses
the same message-passing libraries as the MPI version of the test applications. An
assortment of applications has been taken and versions constructed for all the features
that needed to be tested. In this section the applications used are described and why
they were chosen. The execution environment is described. As cross-site multi-threaded
MPI is not available at present, the grid is simulated. The interesting aspects like page-
faulting, page protection, write trapping/ write collection strategies, etc., are all validly
tested by the simulations.

10.1.1 Test applications

Test applications were chosen that range from those that have no real basis in parallel
computing to those that are embarrassingly parallel. Marinov et al [157] list character-
istics of DSM applications. The test applications are routines of real value themselves
but are examples that exhibit the temporal/spatial memory sharing patterns of ’real’
applications [158].
While this chapter adopts a light touch regarding presentation of results, these are the
distillation from approximately 8700 (cumulative) wall-clock hours of high performance
computing experiments. The applications used to evaluate SMG are: Embarrassingly
Parallel (EP), Conjugate Gradient (CG), Fast Fourier Transform (FFT), and Integer
Sort (IS) from the NAS benchmarks [159, 160]; Barnes-Hut from the Splash Bench-
marks [161]; and the common Matrix, SOR, Laplace, TSP, and Gauss benchmarks that
implement well known routines. EP and Matrix were used to benchmark the overhead of
the SMG DSM engine, while nearest neighbour applications like SOR and Laplace were
used to evaluate the sharing performance and communication efficiency of the DSM. IS,
Gauss, and Barnes-Hut demonstrate the use of different synchronisation primitives. FFT
demonstrates the ability to construct an application with irregular access patterns that
SMG finds difficult to handle. Other applications have been ported to SMG and MPI
but were eventually deemed unsuitable for further evaluation for a number of reasons,
mostly that their results were too similar to the chosen applications to be relevant, e.g.
Jacobi is in the class of nearest neighbour applications.
A number of versions of each application were required for evaluating different compar-
isons. These versions included MPI, SMG using the update protocol, SMG using the
Subscription protocol, SMG using multiple user threads, SMG-MPI hybrid, and SMG for
a Grid with/without access to an information system.
The various characteristic types of shared memory accesses that occur, described by [34],
are discussed in Section 4.1. The SPLASH benchmarks have some technical considera-
tions [161] when ported to non-shared memory platforms. Lu’s Thesis [162] identifies the
problems with comparing a message passing version (PVM) of some of the implementa-
tion of the SPLASH benchmarks against a shared-memory style (Treadmarks DSM), i.e.
some of them are just not suitable to DSM because of the excessive communication to
computation ratio. Other work has demonstrated the difficulties in running NPB over



EXPERIMENTAL METHODOLOGY 149

DSM (Scash, OdinMP)[163]. Unfortunately there are no credible benchmarks that have
been explicitly developed for benchmarking the use of computational grids. There are
grid applications that portend to do this [164], but really don’t (e.g. work-flow using
NAS benchmarks). Where the MPI programs were developed for this thesis, they were
constrained to use the same algorithm employed by the DSM versions, so they might
not be the most efficient implementation for the available resources.
Only the results for EP, Matrix, Laplace and SOR are presented here, as the others
simply confirm the same salient results for these four applications. For these four appli-
cations, the term P used below refers to the number of processes, and N refers to the
dimension of the application. Where MPI collective operations are required the effective
message count is taken to be equal to 2 × (P −1) in the calculation of the total amount
of messages generated.

Embarrassingly Parallel

The Embarrassingly Parallel (EP) benchmark is part of the NAS suite and generates
pairs of Gaussian random deviates. This benchmark is representative of many Monte-
Carlo style simulation applications in that it is heavily computation-intensive with little
communication/synchronisation. This application was chosen as it is useful in establish-
ing a base reference for the computational capacity of the system.
It can be readily seen that the parallel processes can be independently generated. The
program generates nπ/4 Gaussian pairs per process. The only communication is the
gathering of an array of results from the processes that is done at the end by the root
process. This only point of communication is between the root process and all other
processes and only involves (P-1) messages in total.
The SMG implementation allocates a small shared array where the resultant data is
deposited by each process. The MPI implementation uses a gather operation to sum the
partial results of all processes. The total data communicated with both is approximately
(P -1) * N. For all test scenarios it was assumed the value N = 36 (the maximum for
the NAS application).

Matrix

It is only natural that the matrix multiplication example that was used in Section 2.1
to demonstrate the benefits of parallel computing be used as one of the evaluation ap-
plications. The application multiplies two dense matrices A and B, with dimensions
N × M and M × P , to produce a resultant matrix C = AB with dimensions N × P .
As previously discussed this is an easily parallelised application, where each thread of
execution computes a subset of the resultant matrix.
Like the EP benchmark, matrix multiplication is of the embarrassingly parallel class. It
has been seen already that a naive implementation of Equation 10.1, matrix multipli-
cation of two square matrices with dimension N, has computation that is O(N3), while
communication is O(N2), so for relatively large values of N this is an ideal application
for parallelisation.



EXPERIMENTAL METHODOLOGY 150

In the DSM version all of the matrices are allocated as a single shared region. There
are two communication regions where both MPI and DSM versions have a root process
that initialises the incident matrices A and B, and distributes them to other processes
for computation. When computation is finished all computed portions of C are gathered
by the root process. Square matrices are assumed with dimension 6144. For the integer
matrix multiply version the storage requirement for the three matrices is 432MiB, al-
though a floating-point version is also available (given the same dimensions the storage
requirement becomes 860MiB).

Cij =
m∑

n=1

ainbnj (10.1)

Laplace

Laplace is a simple iterative stencil application that implements an algorithm for a
stripped-down version of the Jacobi transformation method of matrix diagonalization
for approximating the solution to a linear system of equations. During each iteration
each element is updated based on the values of its nearest neighbours (usually the av-
erage, i.e. Equation 10.2), with the boundary values remaining fixed. The Laplace
application, although fundamentally solving the same problem as SOR, uses a different
algorithm resulting in half the number global barrier calls and a commensurate number
of messages. As Laplace converges more slowly than SOR, with each grid point changing
slowly with each iteration, extremely large volumes of data are transmitted. Iterative
schemes of this type require time to achieve sufficient accuracy and are reserved for large
systems of equations where there are a majority of zero elements in the matrix. The
implementation of the algorithm assumes the contrary, with many of the elements being
initialised to non-zero values.
The computation complexity is O(N2) with communication O(N) for an efficient imple-
mentation (such as the MPI implementation). However the DSM versions can generate
traffic of O(N2). [58] derives a metric from the equations expressed in Section 3.3 for
obtaining the potential speedup for this class of stencil operations in a Grid environment.
For computation involving processors distributed across grid sites the dimensions would
need to be very substantial; this magnitude is not supported in SMG at present due to
the limitations with the virtual address space size.
The DSM application is implemented using barrier synchronisation primitives with a
bound shared memory region for the grid. Like the SOR application below, the dimen-
sions for the problem size are 6144 X 6144, with each element being a double-precision
floating point value, giving a shared region requirement of 288MiB when the application
is implemented using a naive approach with a single shared memory region for the whole
application grid. This involves all modifications to the whole shared array being trans-
ferred among among all processes at the end of each iteration. For the MPI version only
the region to be processed and the neighbouring strips need to be transferred between
the processes.



EXPERIMENTAL METHODOLOGY 151

NewA[i][j] = (A[i− 1][j] +A[i+ 1][j] +A[i][j − 1] +A[i][j + 1]) / 4 (10.2)

SOR

Successive-Over-Relaxation (SOR) is a simple iterative relaxation algorithm. It is one
of the numerical methods for solving partial differential equations. The equations are
represented discretely using a two dimensional array. During each iteration each element
of the array is updated as a function of its nearest neighbours and a given relaxation
parameter, omega, typically as defined by Equation 10.3. The implementation for this
thesis uses the standard red-black approach to prevent a node overwriting a value before
it is accessed by a neighbour. Each iteration is divided in two, with alternate elements
updated in each half, i.e. there are two synchronisations per iteration. The number of
iterations can be fixed or variable, dependent upon a stopping condition that is usually
specified by the user.
Like the Laplace application (which is from the same preconditioner class of applica-
tions) the complexity of the algorithm for a system of size N is a fairly modest O(N2),
so it makes a poor candidate for parallelisation as there is considerable overhead (no
matter what the implementation) in distributing the initial matrix and communicating
partial results. The communication requirement is O(N2), as with every iteration all
neighbouring values must be exchanged between processes.
In the DSM versions barriers are used to synchronise the processes, while the MPI ver-
sions use blocking send/receive pairs. The input data for the application is a square
matrix with dimensions 6144 X 6144, giving a shared memory region of 288MiB (larger
sizes are possible, but the value of N = 6144 was chosen to be consistent with other
applications). For the SMG version all processes allocate the shared region locally. For
the MPI version only the region to be processed and the neighbouring strips need to be
transferred between the processes. SMG allocates a single shared memory region of size
(X * Y * sizeof(value)).

NewA[i][j] = ((A[i− 1][j] + A[i+ 1][j] + A[i][j − 1] + A[i][j + 1]) (10.3)
∗ omega ∗ 0.25) + (1− omega) ∗ A[i][j]

10.1.2 Testbed Description

The basic characteristics of the machines used are given in Table 10.1. Basic machine
metrics were obtained using lmbench [165]. The systems were the Moloch and IITAC
clusters from the Trinity Centre for High-Performance Computing (TCHPC) [1], and
the Walton cluster from the Irish Centre for High-End Computing (ICHEC) [2]. As of
writing, the latter two occupy positions No.345 and No.367 respectively of the Top 500
List [166]. Walton is not relevant to the the four applications discussed here, so will
not be mentioned further. All machines run a version of Linux that is compatible with



EXPERIMENTAL METHODOLOGY 152

the needs of SMG, i.e. kernel version 2.4.5 or later. The salient attributes regarding OS
operations (i.e. system calls used extensively in SMG like memory mapping/protection)
and pthread functions for each system are given in Appendix A, while the physical
specifications are given in Table 10.1.
The SMG applications use the exact same message passing library as that used for the
MPI applications, i.e. MPICH2-1.0.4, using the ch3:sock communication device. It must
be noted that while the more efficient Infiniband Interconnect is available on the IITAC
cluster, it was not used as the MPI distribution MVAPICH2 [167] (which is based on the
MPICH2 distribution) has until recently not supported multi-threaded MPI applications;
the eventual support came too late for the use of this interconnect to be considered. As
the Gigabit Ethernet is only intended for management of the cluster, the bandwidth and
latency figures (see Appendix A, page 191) are much lower that what one would expect
from this interconnect.

Attribute Moloch IITAC
Num. Nodes 65 346
Node Type IBM x335 IBM e326
Num. CPU 2 2
CPU Model Intel Xeon 3.06 Ghz AMD Opteron 250 2.4 Ghz
L1 Cache 16Kb I, 16Kb D 64Kb I, 64K D
L2 Cache 512Kb 1024Kb
Memory 2GB 400Mhz DDR 4GB DDR PC3200
Interconnect 2 X Gbit Ethernet 2 X Gbit Ethernet +

10Gbit InfiniBand (IB)

Table 10.1: Infrastructure attributes

The latency and bandwidth metrics for communications between nodes in the systems
are given in Appendix A. These messaging costs are inclusive of the overhead associated
with the MPI implementation.

Grid Simulation

There is no grid-enabled MPI implementation that currently supports multi-threaded
applications (a requirement of SMG). All the testing therefore employed a non-grid
flavour of MPI. The SMG DSM was tested in a virtual grid environment, with the
number of sites configurable at run-time through file-based information (the systems
used do not have the required software for use with the R-GMA information system).

• Single-Site: for single site MPI configuration, where there are no benefits from
the information component, jobs could nonetheless be submitted that access the
information & monitoring system. Applications were able to make use of the file
based monitoring component for logging information.



EXPERIMENTAL METHODOLOGY 153

• Multi-Site: as the available grid infrastructure did not support cross-site multi-
threaded MPI, it was simulated using the same systems outlined above. This
was achieved through the simulation of the characteristics (i.e. latency and band-
width) of the inter-site communication links for a hypothetical grid consisting of
four sites. It would have been better to have obtained valid data from the grid in-
formation system, but alas there was no grid information system in the simulation,
so the latencies between sites were simulated using data obtained using the tools
at www.hea.net. The figures for bandwidth (Table 10.2) were taken from the
MRTG tool, while latencies (given in Table 10.3) were obtained using the Looking
glass tool. The actual figure for estimated bandwidth was derived from the differ-
ences between the stated figures for the maximum bandwidth obtainable and the
maximum bandwidth utilised in a month. The bandwidth between two sites was
determined to be the minimum of the estimated bandwidths of the two sites.
These values were fed into the information system implementation, and this in
turn supplied these values to a modified version of the MPI implementation of the
SMG communications API (see Listing 6.1) that provided the simulation of delays
between grid sites.
For multi-site grid simulations the file-backed approach was used to provide user-
specified information such as site topology (this allowed logical partitioning of one
of the systems described above into different sites), site information (memory, CPU
power) and the site interconnect network information.

The information was accessed in any of these scenarios using the same defined SMG API
(see Listing 9.1).
The system performance measurements are not representative, since the DSM commu-
nication was unable to avail of blocking receive MPI calls. However, the significant
memory overhead associated with the DSM (update coherence) persists, as well as the
substantial processing and memory requirements for consistency actions (twinning/diff-
ing). This can be overcome at the expense of increased coherence message volumes.

TCD UCC UL UCG

TCD - 6.03 11.65 11.65
UCC - 6.03 6.03
UL - 13.66
UCG -

Table 10.2: Simulated Inter-site Communication Bandwidth (MB/s)

TCD UCC UL UCG

TCD - 8.200 4.000 7.400
UCC - 10.701 13.025
UL - 9.600
UCG -

Table 10.3: Simulated Inter-site Communication Latency (ms)

www.hea.net


EXPERIMENTAL METHODOLOGY 154

10.1.3 SMG Metrics

The DSM components for evaluation are depicted in Figure 10.2. The attributes of the
DSM that are of most interest are the consistency and coherence combinations and to
a lesser degree the DSM response times and the time to perform write collection on an
object. For this thesis only one consistency model is available, entry (EC), while there
are two choices for the coherency model, update (UP) and subscription (SUBsc).

DSM invocation

Table 10.4 gives the response times for a range of rudimentary DSM operations (obtained
using lmbench) such as the local DSM and remote DSM requests (the value stated for
the remote request time is that between two machines for the given cluster) that measure
the time for the DSM engine to respond to a user generated request. The times for the
remote operations are a reflection of the interconnect latency for both clusters.

DSM write collection

The time for write collection when the diff creation method is used is that indicated
in Table 10.4 as Diff Creation, assuming a 4KiB page with a four integers modified;
the alternative ’raw’ write-collection method only takes the time to copy a complete
memory page (i.e. 0.46µs). The time to apply the resulting diff collection is stated as
the Diff Application time. The stated time for a pagefault is the time between the fault
occurring and the DSM system first responding, i.e. minimum overhead, and not the
time for the SMG pagefault handler to execute as this time will vary depending on the
shared memory object’s consistency, coherency, and write detection method.

SMG barrier synchronisation primitive

The performance of the SMG Barrier compared to some MPI collective routines is il-
lustrated in Figure 10.1. These results were obtained using a simple benchmark which
measures the time to perform a given number of collective operations. The opera-
tions for MPI are the MPI Barrier and MPI Alltoall operations. On first inspection
it would appear the performance of the SMG is significantly worse; this is mislead-
ing as the SMG barrier implements a specific algorithm to support memory coherence
(as mentioned in Chapter 8 latencies are propagated along the barrier tree), while the
MPI implementation can use an algorithm such as Butterfly or Combining Tree that
doesn’t have to support situations where no data is distributed among processes. The
MPI Alltoall function may for some implementations enable better performance at the
expense of scalability.



EXPERIMENTAL METHODOLOGY 155

Operation Moloch IITAC
Pagefault 7us 6us
Page Protection (none) 0.9764us 0.613900
Page Protection (r/w) 6.053900 1.948600
Twin Copy (page) 0.46us 0.46us
Diff Creation (page) 12us 19us
Diff Application 1us 2us
Local DSM Request 26us 25us
Remote DSM Request 413us 228us
Simple syscall 0.3838us 0.0748us
Simple read 0.6469us 0.2126us
Simple write 0.5782us 0.2120us
Signal handler installation 0.8627us 0.1719us
Signal handler overhead 2.4455us 1.3465us
Protection fault 0.7772us 0.1915us
Process fork+exit 216.5385us 135.3us
Mmap read bandwidth (4KB) 11,264.92MB/s 19,947.68MB/s
Memory bzero (4KB) 11,419.04MB/s 30,515.50MB/s
Select (100 fd) 19.3194us 10.3446us

Table 10.4: Basic operation costs

Figure 10.1: Performance of different collective operations



F
ig

u
re

10
.2

:
SM

G
Sy

st
em

B
lo

ck
D

ia
gr

am

156



PERFORMANCE OF SMG VERSUS MPI 157

10.2 Performance of SMG versus MPI

For all the applications, an MPI version of the application was executed, and also the
SMG variants that included the update protocol, the subscription protocol, and multi-
threading. In all cases, for the same application, the tests were executed on the same
cluster. The nearest neighbour class of applications are not considered in this section
as they are beset by excessive coherence communication overheads, and simply are not
competitive for applications with low computation to communication ratios.

EP

EP has a very large computation to communication ratio, and this enables the perfor-
mance of SMG to be very competitive with MPI, see Figures 10.3 to 10.5, and Table 10.5
(SMG-sub refers to the use of the subscription protocol). This is hardly surprising as
little work is required of the DSM. This does demonstrate that the DSM engine imposes
little if any overhead, and demonstrates the effectiveness of having a communication
module with a separate thread. Note that in this application, the performance is inde-
pendent of the subscription protocol (as indicated by similar plots in the graphs below)
as the DSM engine is employed very little throughout the execution.
The EP application itself results in little communication, with the bulk of any com-
munication usage for the SMG variants resulting from the control messages for the
initialisation and finalisation of the system.

Figure 10.3: EP Total Data sent (SMG is obscured by SMG-sub)



PERFORMANCE OF SMG VERSUS MPI 158

Figure 10.4: EP Total Messages sent (SMG-sub obscures SMG)

No. Procs 2 4 8 16 32 64 128
MPI 2 4.02 8.04 14.5 28 53.9 86.19
SMG 2 3.99 7.99 15.87 31.15 58.56 87.51
SMG-sub 2 3.98 7.49 15.8 29.05 54.69 80.15
SMG (threaded) 3.77 7.54 15.91 28.25 55.77 87.02

Table 10.5: Speed-up for EP execution on IITAC

Figure 10.5: EP Speedup



PERFORMANCE OF SMG VERSUS MPI 159

Matrix

The communication behaviour of the Matrix application (Figures 10.6 to 10.8) high-
lights that SMG imposes no major overhead for applications with high computation
to communication ratios, and so good speedup is obtainable as shown in Table 10.6.
The volume of data transferred is greater than for MPI as once the resultant matrix is
gathered through the release phase of the barrier process at the coordinator it will be
distributed to all other processes during the acquire phase. Coherence traffic could be
minimised at the acquire phase of the initial barrier if the barrier coordinator performed
the initialisation of the incident matrices, i.e. no coherence data would be seen during
the arrival phase. The addition of a simple function to the SMG API can easily provide
this:

SMG barrier iam coordinator(int id).

The subscription protocol variant of the SMG application can offer no advantage as
the sharing pattern cannot be established until after the first barrier. The protocol
introduces small amounts of additional coherence overhead to initialise the subscription
lists.

Figure 10.6: Matrix Total Data sent

The number of messages generated with the MPI versions is also lower than for SMG for
the Matrix application, see Figure 10.7, but these values are inclusive of initialisation
messages for the DSM engine. In general SMG will be competitive in terms of numbers
of messages generated, but not for the cumulative payload of those messages.



PERFORMANCE OF SMG VERSUS MPI 160

Figure 10.7: Matrix Total Messages sent

There is no discernible difference in the execution times between the SMG variants
apart from that the update protocol variant does suffer a degradation compared to the
other variants for processor counts of 128; this may be due to intermittent effects. The
seemingly unusual speed-up figures given in Table 10.6 ( 2.01, 4.17, and 8.06), for the
MPI variant of the application with processor numbers of 2, 4, and 8, would seem to
stem from the ability for a processor to maintain a larger amount of the application’s
working set within the processor’s cache, which results in a higher cache hit-rate, thus
super-linear performance with respect to a single processor run.

No. Procs 2 4 8 16 32 64 128
MPI 2.01 4.17 8.06 15.76 30.96 66.96 114.54
SMG 2 3.99 7.97 15.24 29.76 56.09 104.17
SMG-sub 1.98 3.98 7.89 15.66 30.11 56.03 107.76
SMG (threaded) 4 8.44 16.5 32.2 58.54 107.93

Table 10.6: Speed-up for Matrix execution on IITAC

At this point, it is important to highlight the increase in the number of DSM page-
faults, as illustrated in Figure 10.9, when the subscription protocol is used rather than
the update protocol. This ’feature’ was expected, see Section 7.4.2.



PERFORMANCE OF SMG VERSUS MPI 161

Figure 10.8: Matrix Speedup

Figure 10.9: DSM pagefault count for Matrix



PERFORMANCE OF SMG VERSUS MPI 162

Laplace

The major deficit of the update protocol is evident in the message payload figures for
the Laplace application, see Figure 10.10. The ’avalanche’ effect associated with the
update protocol is self-evident when the process size increases beyond 16, resulting in
the parallel application being communication bound for a significant amount of time
as the interconnect becomes saturated with traffic, see the difference in Table 10.7 for
the total data transferred between SMG and MPI for applications with 128 processes
(This is the scenario described in Section 7.4.1). The SMG message payloads are orders
of magnitude greater than for message passing versions. The numbers of messages are
relatively similar for all cases, see Figure 10.11. The benefits of the subscription protocol
are further evidenced by the reduction in the data volume transferred, but there is still
significant overhead associated with the protocol implementation.
The subscription protocol does offer some respite in terms of speedup at low processor
numbers (Figure 10.12), but as the number of processors are scaled up the overhead
associated with the protocol implementation becomes detrimental to the performance of
the application. This figure also demonstrates the terrible performance of SMG using
the update coherence protocol i..e no speedup occurs for this application, due to being
communication bound.
It must be noted that the MPI version of the application also performs poorly when the
number of processors are scaled into double digits, and performs very badly thereafter.
The computation-communication ratio is not high enough to deliver good scalability.
Larger application dimensions are possible, say 8192 × 8192, but for the purpose of this
thesis, i.e. the performance of the SMG DSM, are inconsequential.
As indicated by Figure 10.13, the subscription variant of the application does incur extra
DSM overhead. The most visible manifestation of this is the number of extra page-faults
that are generated.

No. Procs 4 8 16 32 64 128
MPI 9.36E+8 1.32E+9 2.55E+9 4.97E+9 9.81E+09 3.96E+10
SMG 9.65E+9 1.71E+10 3.99E+10 7E+10 2.98E+12 5.88E+12
SMG (Sub) 9.46E+8 2.28E+9 5.17E+9 1.19E+10 2.87E+10 7.65E+10

Table 10.7: Laplace - Message payload (in bytes)



PERFORMANCE OF SMG VERSUS MPI 163

Figure 10.10: Laplace Total Data sent

Figure 10.11: Laplace Total Messages sent



PERFORMANCE OF SMG VERSUS MPI 164

Figure 10.12: Laplace Speedup

Figure 10.13: Laplace - Pagefault count for different protocols



PERFORMANCE OF SMG VERSUS MPI 165

SOR

Again, the major deficit of the update protocol is evident in the message payload figures,
see in this case in Table 10.8, or in graphical form in Figure 10.14. The SMG message
payloads are significantly greater than for message passing versions. The numbers of
messages are relatively similar for all cases (Figure 10.15). The benefits of the sub-
scription protocol can be seen in the dramatic reduction in the data volume transferred
compared to the SMG update protocol version, but it is still significantly higher than
for MPI. Like the Laplace application there is little speed-up from either SMG version,
but as shown in Figure 10.16 for larger numbers of processors all variants performance
deteriorates as the computation-to-communication ratio is too small to maintain scala-
bility.
Figure 10.17 illustrates the DSM overhead associated with the use of the subscription
protocol with respect to the update protocol. This difference may be reduced if the rate
at which the subscription performs flushing of the local process’ own subscription list
(see Section 7.4.2) is increased.

No. Procs 4 8 16 32 64 128

MPI 3.607E+8 4.391E+8 5.960E+8 9.098E+8 1.537E+9 2.793E+9
SMG 1.894E+9 4.056E+9 8.035E+9 1.562E+10 3.038E+10 5.949E+10
SMG (Sub) 5.398E+8 6.396E+8 1.179E+9 3.336E+9 7.708E+9 1.628E+10

Table 10.8: SOR - Message payload (in bytes)

Figure 10.14: SOR - Total Message payload of MPI and SMG consistency protocols



PERFORMANCE OF SMG VERSUS MPI 166

Figure 10.15: SOR - Total Messages sent

Figure 10.16: SOR - Speedup



BENEFITS OF HYBRIDISATION 167

Figure 10.17: SOR - Pagefault for different protocols

10.3 Benefits of Hybridisation

Identification for hybridisation was confined to the those locations identified with exe-
cutions for small processor runs. All test applications are relatively small in size, and so
only one/two worthwhile candidates were identified for each.

EP

There is no identifiable scope for hybridisation with the EP application, as there is little
communication. Thus the application can be equally well implemented using either
shared memory or message passing. Hybridisation with message passing would have
no benefit, and might even degrade performance if only in a trace amount due to the
overhead with invoking the hybridisation support routines.

Matrix

Again, there is little identifiable scope for hybridisation with the Matrix application and
hence the application can be implemented using either the shared memory or message
passing style. The incident matrices of the application are initialised by one process
and these are propagated to the rest, as is typical for the read type of shared variable
described in Section 4.1.
Hybridisation can ensure that the gathering of results is restricted to only the root



BENEFITS OF HYBRIDISATION 168

process, which is the case implemented using the MPI version, but not the DSM version
where by default the whole result-set is distributed to all processes. The effect of this can
be seen in the reduction in the volume of data transferred (Figure 10.18), accompanied
by a slight increase in speed-up (Figure 10.20).

Figure 10.18: Matrix - Total messages with MPI/SMG hybrid version

No. Procs 2 4 8 16 32 64 128
MPI 2.01 4.17 8.06 15.76 30.96 66.96 114.54
SMG 2 3.99 7.97 15.24 29.76 56.09 104.17
Hyb 2 4 7.98 15.87 31.09 56.76 108.63

Table 10.9: Speed-up for Matrix execution on IITAC



BENEFITS OF HYBRIDISATION 169

Figure 10.19: Matrix - Total data with MPI/SMG hybrid version

Figure 10.20: Matrix - Speedup of MPI/SMG hybrid version



BENEFITS OF HYBRIDISATION 170

Laplace

Like the other iterative application in the test suite, SOR, the hybridisation process
identified the main iterative loop as the prime candidate for hybridisation. Disabling
DSM controls and replacing the barrier with message passing calls results in a dramatic
reduction in the volumes of data transferred as shown in Table 10.10, while the number
of individual messages being transferred remaining unaffected.
Some minor speedup results when the application is run with small numbers of pro-
cessors. Again the computation to communication ratio is a barrier that is unable to
be overcome given the stated application problem dimensions and the volume of data
transferred as a result of DSM activity during the initialisation and finalisation stages
of the application.

Figure 10.21: Laplace - Total Message payload with MPI/SMG hybrid version

No. Procs 4 8 16 32 64 128
MPI 9.36E+8 1.32E+9 2.55E+9 4.97E+9 9.81E+09 3.96E+10
SMG 9.65E+9 1.71E+10 3.99E+10 7E+10 2.98E+12 5.88E+12
Hybrid 2.44E+09 5.39E+9 1.08E+10 2.11E+10 4.12E+10 8.04E+10

Table 10.10: Message payload (in bytes) for hybrid Laplace



BENEFITS OF HYBRIDISATION 171

Figure 10.22: Laplace - Total Messages with MPI/SMG hybrid version

Figure 10.23: Laplace - Speedup with MPI/SMG hybrid version



BENEFITS OF HYBRIDISATION 172

SOR

The hybridisation engine identified some potential candidates for hybridisation in the
SOR application, most notably in the main iterative loop. The hybridised application
results in a significant decrease in the volume of data transferred by the application as
enumerated in Table 10.11, with no change in the number of messages generated.
Like the Laplace application a small increase in speedup results, see Figure 10.26 when
the application is executed with a low processor count, as the effects associated with the
increase in coherence communication, as shown in Figure 10.24, become dominant result-
ing in performance decreases dramatically in all cases (computation-to-communication
ratio doesn’t support execution across a large number of processes).

Figure 10.24: SOR - Total Message payload with MPI/SMG hybrid version

No. Procs 4 8 16 32 64 128
MPI 3.61E+8 4.39E+8 5.96E+8 9.10E+8 1.54E+9 2.79E+9
SMG 1.89E+9 4.06E+9 8.03E+9 1.56E+10 3.04E+10 5.95E+10
Hybrid 7.43E+8 1.59E+9 3.14E+9 6.11E+9 1.18E+10 2.29E+10

Table 10.11: Message payload (in bytes) for hybrid SOR



BENEFITS OF HYBRIDISATION 173

Figure 10.25: SOR - Total Messages with MPI/SMG hybrid version

Figure 10.26: SOR - Speedup with MPI/SMG hybrid version



GRID PERFORMANCE OF APPLICATIONS 174

10.4 Grid Performance of Applications

For the grid simulations there are S (= 4) sites, with N/S processors per site. The
initial processor count is taken to be N = 16, as the benefits of the information &
monitoring system are only demonstrable at this scale. Note that because the grid
environment is simulated, it does not exhibit many of the real properties of grids, such
as non-determinism, or errors and failures of nodes, processes or communications.

EP

When executed on the simulated Grid, EP does not exhibit any slowdown compared with
execution on a cluster with a similar configuration (apart from the simulated latencies),
assuming the same update coherence protocol, see Table 10.12. This is only to be
expected for an embarrassingly parallel application.

No. Procs (N) 16 32 64 128
SMG Grid-aware 14.94 27.77 52.71 84.13
SMG Grid-not aware 14.07 27.6 51.21 77.72

Table 10.12: EP - speedup for execution on Grid with S=4 sites

Matrix

The matrix application experiences some slow-down (Table 10.13), but this is not too
significant as the hierarchy awareness is able to ensure that only the minimum num-
ber of messages required are sent between sites no matter how many processes in the
application, see Figure 10.27.

No. Procs (N) 16 32 64 128
SMG Grid-aware 15.78 30.91 57.46 103.78
SMG Grid-not aware 14.87 29.63 55.04 93.14

Table 10.13: Matrix - speedup for execution on Grid with S=4 sites

Laplace

Laplace, when executed on a grid, experiences even greater slowdown than the cluster
version due to the latencies associated with transferring large quantities of data over
the simulated inter-site interconnect, see Table 10.14. This slowdown is made worse
still without the presence of topology information that allows for the reduction in the



GRID PERFORMANCE OF APPLICATIONS 175

Figure 10.27: Matrix - Total inter-site message count

number of inter-site messages (see Table 10.15). It must be noted that the relevance
of the number of inter-site messages reduces with respect to the number of intra-site
messages as the processor count increases.

No. Procs (N) 16 32 64 128
SMG Grid-aware 3847.09 5415.66 6021.69 6922.78
SMG Grid-not aware 3921.83 5539.42 6204.94 7111.77

Table 10.14: Laplace - Execution times on simulated Grid with S = 4 sites

No. Procs (N) 16 32 64 128
SMG Grid-aware 618 618 618 618
SMG Grid-not aware 824 824 824 824

Table 10.15: Laplace - Inter-site messages on simulated Grid with S = 4 sites



GRID PERFORMANCE OF APPLICATIONS 176

SOR

The SOR application demonstrates the advantages of using knowledge of the grid topol-
ogy to reduce the number of inter-site messages. The benefit of this approach is eroded
for systems composed of large numbers of processors as the ratio of inter- to intra-site
messages becomes less favourable. The choice of grid application parameters obfuscates
the potential advantages as the distribution of processes across the S sites is evenly
balanced. If this were not the case the values for the execution time with no awareness
would be further increased as shown in Table 10.16. See Table 10.17 for the values of
inter-site message counts when the number of processors are not so evenly distributed.

No. Procs (N) 16 32 64 128
SMG Grid-aware 104.84 115.96 119.47 151.20
SMG Grid-not aware 109.66 123.19 142.86 166.38

Table 10.16: SOR - Execution times on simulated Grid with S = 4 sites

No. Procs (N) 16 32 64 128
SMG Grid-aware 1272 1272 1272 1272
SMG Grid-not aware 1696 1696 1696 1696

Table 10.17: SOR - Inter-site messages on Grid with S = 4 sites

The table below shows the difference in inter-site messages for the SOR application with
& without an information system available to provide data for it to generate a topology
tree (thus enabling a more efficient barrier implementation). These values demonstrate
the potential increase when the distribution of processes is not uniform across sites.

No. Procs (N) Grid-aware Grid-not aware
Messages 16 procs (3/4/5/4) 1272 1272
Messages 16 procs (3/3/5/5) 1272 2120
Messages 32 procs (6/6/10/10) 1272 2968
Messages 64 procs (8/8/24/24) 1272 2968
Messages 128 procs (25/25/39/39) 1272 4664

Table 10.18: Difference in Inter-site Messages for SOR using SMG in a simulated Grid, with
& without the information system



ANALYSIS 177

10.5 Analysis

The mechanisms developed in the course of this thesis have demonstrated their potential
to reduce the communication overheads imposed by the use of a DSM. Overall the
SMG DSM engine incurs small amounts of overhead: initialisation and termination times
are reasonably comparative to MPI. Slight overhead results in the termination phase due
to the issues regarding shutdown of the multi-threaded communication implementation
(discussed in Section 6.4.3); for an application composed of P processes this can be
approximated to 5log2P seconds.

10.5.1 SMG overheads

The overhead caused by the DSM is substantial, but for the right type of application
with a large computation to communication ratio then this overhead becomes negligible.
The largest component, by far, is ultimately due to communication, either waiting for a
blocking request or the time to actually send request/response messages over the wire
(although the latter is reduced where the DSM engine is multi-threaded, even more
so if the communication subsystem is itself multi-threaded). The SMG startup and
shutdown times will vary depending upon both the communication implementation and
the information & monitoring system.

10.5.2 SMG vs MPI

The SMG DSM tries to compete with message passing versions as best it can, however
the coherence update model results in many simple and trivial applications becoming
communication bound. Clearly the update protocol is only suitable for data that is
infrequently modified, and in those situations all modifications are required by all other
processors. The most apparent situation is where data belongs to the read category of
shared memory that was discussed in Section 4.1. The most common scenario is where
data is initialised at the start of an application and is only ever read for the duration of
the application; this happens in the matrix benchmark.
The subscription protocol improves dramatically on the update protocol but still cannot
match the efficient use of the communication system by MPI. The scenarios where this
can occur are illustrated by the nearest neighbour class of applications (SOR, Laplace)
where the reduction is not as great due to the process mapping between the application
and the barrier algorithm. For efficient performance the subscription protocol relies on
the filtering effect of coherence data in the barrier tree. If a neighbour in the SOR
algorithm is not a parent or child then any coherence data cannot be filtered as it
is required by the parent. This situation is illustrated in Figure 10.28, where for the
default barrier layout the neighbour pairs 2-3 and 3-4 communicate application data via
intermediaries 1 and 5 respectively. A solution to this problem would be non-trivial as
it would require a different barrier algorithm implementation that would take account of
the sharing patterns of the application. This is difficult as a number of shared memory
regions may require the barrier to maintain consistency, and each may have differing



ANALYSIS 178

requirements.
The current SMG subscription protocol implementation imposes extra communication
overhead as coherence data sent by a child process in the release phase will be returned
in the acquire phase of the barrier. This occurs in the current implementation at the
cost of consuming less memory resources for maintaining separate coherence messages
(extra processing time is also consumed filtering these events). If memory resources were
less of a concern then this overhead component could be eliminated.

Figure 10.28: Nearest Neighbour Problem-Barrier Mapping

10.5.3 DSM variants

Although many variations can be applied to the SMG DSM, nonetheless the write trap-
ping (Section 7.3.1) and write collection mechanisms (Section 7.5), and the barriers (Sec-
tion 8.3.2), locating lock owners (Section 8.2.2) and lock queueing (Section 8.2.3) syn-
chronisation variants are effectually inconsequential. It is clear that the only important
variation is the combination of consistency model and coherence protocol, summarised
anecdotically by Equation 10.4.

Communication = Consistency × Coherence (or C = C2) (10.4)

10.5.4 Effects of Incremental hybridiation

We have seen the approaches used to enable DSM to execute efficiently, but in the best of
cases the subscription protocol struggles. The best option is to hybridise the application
by replacing the areas responsible with message passing. In some circumstances this is
trivial as the communication pattern is regular and not too much extra burden is placed
on the programmer. In the cases, where the communication pattern is irregular then the
hybridisation process can prove irksome. In some cases the inefficiencies caused by the
DSM are insurmountable.



ANALYSIS 179

In all cases where hybridisation is employed candidates will be identified, whether or
not they truly are of relevance. The developer must further evaluate whether MPI code
will indeed result in performance gains. The only metrics identified in the course of this
thesis that could discriminate the effects were communication (latency & bandwidth)
and DSM engine overhead (number of page-faults being the easiest for a user); these
enable the developer to ascertain if it is potentially profitable to perform hybridisation.

10.5.5 SMG on Grid

The benefits of providing topology information are far less than originally expected. If
the subscription protocol is employed then additional efficiencies are obtainable due to
its multiplier effect in the reduction in the volume of data.
With the use of the information system the performance of synchronisation operations
is improved. All barrier operations use only the minimum possible number of inter-site
messages, i.e. for an application executing across S sites, then this number is 2×(S−1).
The chosen simulated grid parameters, (i.e. evenly distributing the processors among
all sites thus creating an efficient barrier even with no topology support) were used
to gauge the benefits of topology awareness against the most efficient case where no
topology information was present. This is evident in that the message volumes for the
SOR application in Table 10.18 can be remarkably different even for small differences in
the processor allocation where different numbers of processors are available at the four
sites. In all cases the use of topology information results in the minimum of inter-site
messages.
However, it must also be noted that the influence in the reduction of inter-site messages,
in this way, reduces significantly as the processor count is increased. This is highlighted
in the case of the Laplace and SOR applications by reference to Figures A.14 to A.15
and A.21 to A.22 respectively.



ANALYSIS 180



CHAPTER 11

Review

The premise of grid computing is that distributed sites make resources available for use
by remote users. A grid job may be run on one or more sites and each site may consist
of a heterogeneous group of machines. Grids are composed of geographically distributed
sites, and traditional shared memory programs may not execute on processors located
at different sites. DSM offers a potential solution, but numerous hurdles must be over-
come before there will be an efficient implementation on the Grid. According to [24],
if the paradigm could be made available, then grid programming would be reduced to
optimising the assignment and use of threads, and the communication system.
Software distributed shared memory (DSM) aims to provide the illusion of a shared
memory environment when physical resources do not allow for it. This thesis explored
a possible realisation of this execution model for the grid. Typically a DSM run-time
incurs substantial overheads that result in severe degradation in performance of an ap-
plication with respect to a more efficient message passing implementation. This thesis
examined mechanisms that have the potential to increase DSM performance by min-
imising high-latency inter-process messages and data transfers. Relaxed consistency
models are investigated, as well as the use of a grid information system to ascertain
topology information. The latter allows for hierarchy-aware management of shared data
and synchronisation variables. The process of incremental hybridisation, where more
efficient message-passing mechanisms can incrementally replace those DSM actions that
adversely effect performance, is also explored.
Many obstacles were present, the foremost being the perception that grid-based DSM
was a flawed concept. The SMG DSM was conceived as a tool to explore whether
shared memory programming for grid application development was (a) feasible and (b)
worthwhile. The initial objectives were stated in Chapter 1; this thesis has succeeded in
achieving most of them.
The primogenial goal that the DSM system should be constructed in a way that it is highly
portable by ensuring the DSM uses only standard open libraries has been achieved. The
DSM is able to execute in a Grid environment as a result as a standard message-passing
library, MPI, can be used for communication. Wherever the message passing library is

181



CONTRIBUTIONS 182

available then so too can the SMG DSM be. One difficulty is that SMG execution across
multiple grid sites require a MPI library that is both multi-threaded and grid-enabled;
currently existing libraries are one or the other, but not both. SMG offers a flexible API
that enables it to be target-able by a future OpenMP source-to-source compiler. The
SMG DSM goes further by supporting user multi-threaded applications.
The objective that for efficient application execution the DSM should make use of infor-
mation/monitoring systems where available to allow for the optimisation of user appli-
cation code is achieved, as SMG makes use of topology information that is accessible to
the DSM at run-time. Communication should thereby be minimised, with a lowering of
message count being preferable to total data transfer. Additionally, SMG implements a
novel coherence protocol allowing further efficiencies to be obtained.
The stipulation in the third set of goals: that a metric should be derived that illustrates
the potential benefits. The user should be provided with an intuitive interface where the
hybridisation process can be directed has been partially achieved. Hybridisation was eval-
uated and demonstrated some promising results. The formal definition of a metric that
defines the benefits of hybridisation has been achieved in a somewhat trivial manner,
i.e. hybridisation can be rated in the reduction in DSM messages and/or the volume of
data that would be transferred as these have a direct effect on the overall performance.

11.1 Contributions

A number of contributions were made during the work of this thesis:

1. Extensible DSM: the primary motivation for employing a DSM was the need for
a tool that would assist exploration of the shared memory paradigm on the Grid.
The many and varied disadvantages of previous DSMs prompted the development
of a new DSM, SMG. Although yet another DSM implementation, it does pro-
vide for flexible extension via new coherence protocols, consistency models, and
different communication mechanisms. SMG supports large numbers of processes;
use of 128 processes has been demonstrated in this thesis, and 256 has also been
attained. Other DSMs are limited to only 32 processes, or 64 in the case of the
modified Treadmarks DSM used to implement Intel’s Cluster OpenMP (described
in Section 5.3.2).

2. Grid-aware DSM: SMG is the first grid-aware DSM. The DSM was designed to
enable optimisations in the DSM engine by being hierarchy aware. Although mes-
sage passing systems employ such techniques, this was the first DSM to integrate
an information and monitoring system to enable the use of environmental infor-
mation in this manner. The synchronisation primitives benefit from this approach
as less inter site communication (messages and/or payload) results.

3. Dynamic Subscription Protocol: was developed to redress the deficits of the
traditional protocols. This protocol performs very well for its intended audience



CONTRIBUTIONS 183

of iterative applications where multiple writers modify shared memory regions and
where global barriers are used for synchronisation between iterations.

4. Shared Memory Size: the SMG DSM supports very large addressable shared
memory regions. Previous DSMs were limited in the amount of data that could
be shared (32MiB in the case of Treadmarks), and in most cases a shared memory
region could take up this valuable space even if not required at a particular process.
The maximum shared memory supported by SMG will be dictated by the limits
of the virtual address space and the physical resources available. The former limit
will be resolved with the move to a platform supporting a larger virtual address
space (32 → 64-bit), while a possible solution to the latter can be solved with
further work (once the move to 64-bit has been made).

5. Communication: SMG was the first DSM to use a multi-threaded flavour of MPI
to provide communication. Other DSMs that use MPI for communication are still
confined to using single-threaded MPI [168].

6. Real Hybridisation: the SMG DSM was the first to support true hybrid pro-
gramming, enabling interleaving of DSM shared memory code with message passing
schemes. Previous hybrid schemes just used different programming models in dif-
ferent phases, e.g. MPI for the regular data transfers, and when this was complete
then the shared memory model for data accesses.

7. Incremental Hybridisation: the process of incrementally hybridising an appli-
cation was explored. From these initial explorations it can be concluded that such
a process places far too much burden on the developer. New burdens augment the
normal burdens associated with message-passing model. These additional duties
are required in order to maintain consistency of the shared memory region by val-
idating the region’s use once finished. However, it is possible that, in the future,
it will be feasible for this task to be performed by a compiler.

8. Identification of Application Suitability for the Grid-enabled DSM: al-
though seemingly obvious, this work has demonstrated, although through simula-
tion, that an application with a high computation to communication ratio, such
as those found in linear algebra applications, can be effectively executed in a grid
environment using a DSM.

9. Target for OpenMP translator: SMG was designed mindful of the fact that
another DSM API is not desirable. To this end cognisance was made of the growing
acceptance of the OpenMP model for parallel programming. With little further
development, support could be provided for enabling the DSM to form the target
of a source-to-source translator.



FURTHER WORK 184

11.2 Further Work

There are numerous topics for further work in the area covered by this thesis. In the
area of the SMG DSM itself these include:

SMG Development

• Non-blocking sync calls: in a similar manner to the non-blocking routines
provided by MPI, a similar provision by SMG could prove a valuable addition in
certain circumstances.

• General API Development: support for the group-barrier implementation with
shared memory functionality. Shared memory might only be allocated on processes
that will be involved in the barrier operation, or maybe just at the local site, or
just as a caveat in the use of this primitive.

• Engine Optimisation: while it is easy to observe that the DSM engine could
be further optimised, results in the previous chapter illustrate that there is much
scope for optimisation of the DSM engine in terms of support for multi-threaded
applications. The root of these problems stems from the requirement for synchro-
nised access to the internal DSM shared data structures.

• Synchronisation: it would be useful to implement a tree like structure such that
when an all-to-one receive occurs then the root (receiver) can receive qualified
votes from the child nodes, so that if the grid comprises a number of clusters then
one node can be elected on each cluster to respond to the root with a head count
of votes; otherwise there would possibly be n (n = nodes in cluster) messages
traversing the network.
Dynamic construction of Hierarchy Optimised Trees (HOT) for barrier use that
adapt during the job execution to a (possibly) changing environment (i.e. the
communication link attributes change) would be useful in grid environments. A
variation on this theme would provide for the dynamic variation of the number
of children a process has in the barrier primitive, i.e. a solution that changes
these values (e.g. initial worst case scenario of N=2, that can increase based on
workload/memory requirements).
Support for alternate user lock queueing algorithms would allow various contention
situations to be handled.

• Memory views: many of the current DSM implementations, SMG included, are
implemented as a monolithic user level library, and as such are deficient in the
provision of large memory configurations [169]. By porting the DSM to systems
with a larger virtual address space, it would be possible with some optimisation for
the DSM to support shared memory regions on a massive scale, i.e. disjoint sections
of a large shared memory regions may be present as required. The subscription
protocol will therefore facilitate scaling across large numbers of processors as the



FURTHER WORK 185

impact caused by the bottleneck at the communication interconnect would be
reduced.

• Write trapping: support of other consistency models will require modification
to the page fault handler. With LRC, data is not guarded by a particular syn-
chronisation primitive as is the case with EC. For this reason the page protection
mechanisms employed are insufficient, as the possibility exists that while a page is
being modified by the DSM system, a user thread may try to access the page. The
method employed by previous DSMs was to have a user mapping and a system
mapping to the same physical memory page, therefore having two sets of page
protections, allowing for the system to update the page while maintaining page
access protections by the user. Other approaches are described in [28].

• OpenMP compiler: one of the most valuable future objectives would be to target
an OpenMP compiler1 at SMG. This could entail constructing it from scratch, but
a better option would be modifying one of the existing (open-source) source-to-
source translators: Omni [170], OMPi [171], and OdinMP [172].

• Hybridisation: the current SMG hybridisation tool is basic. It was constructed
to perform the simple task of identifying candidates for hybridisation. Construct-
ing a component for a system such as Tau [155], would allow the exploitation
of the other tools currently available from this (open-source) project (probes for
OpenMP and MPI). Incremental hybridisation could be made easier to the user
as tools are supplied to manage applications, and the strong focus of this system
towards performance evaluation and tuning would be extremely beneficial to the
hybridisation process.

General DSM

• Coherence models: the benefits of the per-site optimised home-less update pro-
tocols has been demonstrated t, but there are also advantages to the home-based
approach [85].Per-site home based protocols should be explored. Dynamic adapta-
tion between the update and subscription protocol is also an interesting possibility,
e.g. some scientific applications can be composed of different phases: initially a
preconditioner phase (like the nearest neighbour problem), followed by a compute
intensive phase. Shared memory that is classified under the enumerated conven-
tional type of Section 4.1 does not fit well in SMG, so additional coherence protocols
such as one of the invalidate variants should be developed to aid in this area.

• Subscription protocol: further work is necessary on the optimisation of the
subscription protocol implementation for supporting transient memory access pat-
terns. When a fault occurs to a page that is invalid a process with a valid copy
must be found. The current method of resolving a suitable location may generate

1It must be reiterated that in reality this would be a source-to-source translator rather than a full-blown
compiler



FURTHER WORK 186

a number of messages, resulting in higher latency, i.e. diametrically opposed to
the goal of hiding latency.

• New Consistency Models: entry consistency is currently implemented with
the option that a synchronisation object can be bound to the use of all barrier
implementations (this is easy). If this was extended to all locks (not so easy),
and then all synchronisation primitives (easy if the former two are present), then
the result is release consistency. When coupled with the currently implemented
update protocol this becomes Eager-Release Consistency. Upon development of an
invalidate protocol (which would involve substantial work) lazy-release consistency
could be supported for shared memory regions. Coupled with the subscription
based protocol this will then be a very interesting prospect.

• Write Trapping: It was noted long ago that the page-fault access times are
getting slower relative to processor clock rates [81] (Section 4.4). The page location
mechanism for an invalid page in the subscription protocol is largely responsible. It
is possible to direct the request at the barrier root, but this may create a bottleneck
as there is currently a static barrier, so a dynamic distributed barrier management
algorithm may need to be developed to overcome this.

• Prior Application Use: A case-based reasoner solves new problems by adapting
solutions that were used to solve old problems [173]. As there are a number of
applications with different memory access patterns, a case base could be built, and
this could be used to evaluate and suggest possible candidates for hybridisation.
This is an example of an adaptive strategy. Research has been performed on a
similar theme involving the use of generic application skeletons for constructing
efficient parallel applications [174]. This approach has previously been performed
at compilation, i.e. hidden from the view of the developer.

• Write Collection interoperability: Currently all processes must use the same
write collection protocol for a given shared object. This may not be an optimal
strategy as in certain circumstances the write collection strategy should be differ-
ent, i.e. one raw, one diff. This would require write collection interoperability,
which itself is an admirable objective.

Supporting DSM in a Grid

• Evaluation in a real grid: with non-deterministic errors and failures not exhib-
ited by the grid simulations of this thesis.

• Communication: Currently SMG will, by default, send inter-site messages be-
fore the local intra-site ones. Priority queueing for DSM messaging, as described
in [133], would help. A possible further enhancement would be to make use of
network link information, obtained dynamically from the information system, in
this process.



FURTHER WORK 187

• Network Information Assisted: the availability of network information would
allow the optimal memory management strategy (i.e. coherence) to be chosen.

• Fault tolerance: the availability of fault tolerance will be a major influence [136,
135, 64]. Although fault tolerance is not supported by the SMG system, all the
communication is through the MPI layer, so there is a basis for a fault tolerant
DSM. Applications could be check-pointed at a user-specified global barrier.

• Load balancing: Grids will in the future be a heterogeneous mix of machines with
varying performance characteristics. This is an important consideration, and so
there is a need for run-time performance analysis methods so that load imbalances
may be corrected. SMG offers a basic approach, however the burden is placed on
the developer to utilise the functions; this job should ultimately be included in the
tasks performed by any future compiler.

• Heterogeneity support: with SMG, the user does not instigate data transfers
directly, so the problem of data transfers between differing architectures is made
more difficult. As previously mentioned, the solution requires the developer to
’type’ the data when allocating it. There are some DSM projects built using
object-orientated technologies that use object reflection mechanisms provided by
the language to do this work when transferring shared data [175]. This becomes
very difficult when SMG is used as a target for OpenMP. The user would need to
declare the type ’map’, using a function for example:

int SMG shmem malloc map ( int num structs , int num types ,
type 1 , type 2 , . . )

Future support for heterogeneity is a noble objective. This problem is non-trivial,
as shared data would need to be strongly typed, and tremendous issues abound
with developing the write collection mechanism. This is one area where compiler
support would prove beneficial, however this problem may be intractable.

• Support for tightly coupled architectures: for the most tightly coupled archi-
tectures, CPUs, the numbers of processing cores per processor package is expected
to increase significantly in the near future. The memory bus will become even
more of a bottleneck that will prevent further scaling up of multi-processor sys-
tems. The only way of effectively overcoming this will be to partition the system,
so ending up with a distributed memory system. The other extreme of tightly-
coupled architectures, low-latency grids (such as DAS-3 [47]), are by their nature
distributed memory systems. DSM could provide an effective programming model
for both cases.

• Latency hiding: ultimately DSM (with relaxed consistency models) tries to hide
the latencies resulting from sharing memory among many distributed processes.
Virtually sharing memory in this way despite the latencies between grid sites makes
the task more difficult. Even weaker consistency models may be required.



REVIEW 188

11.3 Review

The seminal DSM implementations such as Treadmarks, Munin, and Midway were writ-
ten for compute clusters, and not for Grid computing. Previous research has explored
hierarchy-aware DSM consistency protocols [176], as well as OpenMP on distributed
memory machines [177]. There have been other attempts at providing a shared memory
model for wide area computing [178], and efforts are underway to implement the MPI-2
standard (which includes specifications for remote memory access and one sided com-
munication) for grid computing.
This thesis presents an approach to supporting shared memory applications in a Grid
environment. A new DSM implementation was required, as previous implementations
had inherent deficits in terms of scalability, and their monolithic and constrained nature
allowed little room for extension in terms of development of new protocols. Treadmarks,
the exception to the constraints, was, and is, not publicly available. Implementing a new
DSM and enabling integration with a grid information & monitoring system allowed for
grid-optimised synchronisation primitives.
Open and mature standards such as MPI and OpenMP will eventually become the
preferred foundation of parallel programming, and increasingly they will become more
integrated to provide an optimal solution for developing applications for the grid. While
an OpenMP compiler targeting the Grid has not yet been developed, DSM, and SMG in
particular, will allow this to happen (when a source-to-source OpenMP to SMG trans-
lator has been developed). The SMG DSM attempts to demonstrate the potential ad-
vantages when message-passing and DSM programming paradigms are combined in the
grid environment. The goal is to reduce the programming burden, and allow it to be
followed by incremental optimisation. If this is achieved, it will promote the use of grids
by allowing the exploitation of the very large collection of existing shared memory codes,
and allow for easier parallelisation/grid-enabling of serial codes through the use of the
OpenMP standard. The SMG coherence overheads are comparable with other DSM im-
plementations but this will be improved when environmental awareness techniques and
alterable write trapping/collection techniques are further improved.
This thesis has presented the concept of Incremental hybridisation, a method by which
the regions of a shared memory application responsible for relatively poor performance
could be targeted for conversion to a more efficient message passing style. It has proven
to be interesting but not feasible for use by the application developer; the burden be-
comes overwhelming at times.
This thesis has also sought to highlight that an OpenMP compiler could make use of
the hybrid scheme for implementing some particular areas of the OpenMP standard
where it would be beneficial to the DSM, notably for some of the data scoping clauses,
see Appendix D page 230, and in particular the reduction operations that occur at the
conclusion of a parallelised region. MPI has such routines, potentially optimised, that
can be used to achieve this more efficiently than can be achieved through DSM.
One of the most notable features of this exploratory thesis is that the potentially huge
addressable memory space created by a DSM such as SMG is possibly its most valuable



REVIEW 189

attribute; it will enable scientists to scale up their problems to an extent that is otherwise
impossible, i.e. it will raise the bar for tractability. This has been made more possible
by the Dynamic Subscription protocol, which was developed in the course of this work.
A second discovery of some interest is that, for some applications, the DSM performs
well in comparison to a real SMP, which could point to good performance when execut-
ing on multi-core CPUs. In this case a unified programming model would be presented
to the developer. A third discovery, although obvious, is that the DSM performs well
on a Grid (albeit simulated) for applications with high computation to communication
ratios (i.e. high temporal locality), like the matrix multiply and other linear algebra
routines, which are a very important component of many scientific applications.
Grids are starting to impact on mainstream parallel computing. If this trend is set to
continue then improved tools and development environments must be implemented. On
the occasions where applications execute in a grid environment, and especially so in
a multi-site context, they will require better support for monitoring and analysis; this
thesis has made a small contribution in this regard. It is anticipated that there will be
numerous approaches to constructing grid applications, be it message passing, shared
memory, or DSM. Clearly none of these in isolation will provide the perfect fit, but
rather an ensemble. Cluster computing has existed for a number of years but in the past
decade its popularity has grown considerably, as illustrated in Figure 11.1 (or Table 11.1
for breakrown for June ’01 & June ’06).
Computer architecture is evolving towards processors with multi-cores that will exploit
multi-threaded applications and these are already becoming the predominant processor
architecture for cluster computing nodes. Clearly software design will have to adapt
to exploit this new technology. Developing efficient applications for this three layer
hierarchy ([grid]-[cluster]-[multi-core-processor]) will be a considerable challenge. The
imminent inclusion of graphics processing units (GPUs) together with traditional CPU
core(s) will further complicate things [179], this is evidenced by the difficulties in utilising
the Cell Processor for general purpose scientific applications [180]. Presenting a unified
programming model to a developer will be one way to achieve this. If an application
could be developed using one programming model and could execute transparently in
any manner on this three layer hierarchy then that would be a big step forward. One
must believe that some of the first steps have been taken in this thesis.

Architecture Count Share % Processor Totals
Constellations 118/38 23.60/7.60 20,590/46,534
MPP 319/98 63.80/19.60 116,220/414,962
Cluster 32/364 6.40/72.80 14,351/412,367
SMP 31/0 6.20/0 2,906/0
Totals 500 100 152863/873,863

Table 11.1: Architecture Breakdown of top500 (June-2001/June-2006)



CONCLUSIONS 190 REVIEW

Figure 11.1: Breakdown of Top 500 computer architecture, c©TOP500.org [166]

11.4 Conclusions

With the arrival of multi-core processors and the increased performance of machine in-
terconnects the combination of OpenMP and MPI will become irresistible. The scale
of applications will expand to take advantage of these new developments, and in conse-
quence it is probable that accessing memory will become more of a bottleneck than it
currently is. This thesis has highlighted some of the numerous flaws with DSM and has
explored various methods whereby they could be eliminated. For the future of parallel
computing it is realistic to conclude that DSM will not prove suitable, but not for the
reasons previously published in the literature. In many of these cases either it was in-
appropriate to attempt parallel computing or unsuitable benchmarks were employed.
It is a contention from the work of this thesis to reaffirm that use of DSM will not become
significant in mainstream parallel computing because the classes of suitable applications
are too scarce, and those that are are relatively easily ported to message passing, i.e. they
have simple sharing patterns. The overheads arising from maintaining consistency can
be (relatively) considerable, but not prohibitively so. Additionally the communication
overheads with DSM are a factor, but increasingly the memory requirement to support
virtual sharing is the real prohibitive factor. The demands for a memory region will be
at least three times the actual shared region size. Unfortunately these are not some-
thing that can be overcome by using superior coherence protocols like the Subscription
protocol, or by employing hybrid programming models in a localised fashion.



APPENDIX A

SMG Results

The following tables are presented: Table A.1 to A.3 present various benchmarks for
obtaining effective bandwidth and latency information under different conditions for the
IITAC cluster. Basic benchmarks for fundamental operations that effect the perfor-
mance of the DSM are given in Table 10.4. After that the performance results are given
for the EP, Matrix, Laplace and SOR test applications.
Tests of SMG applications employing user multi-threading (2 threads per process) and
involving two processors, which results in each user thread having a dedicated processor,
were not performed as this would result in the running of a single SMG process executing
on one dual-processor compute node. No communication would result, so experiments
of this type were of no interest.

Point-to-point Communication Benchmarks

This section presents three sets of communication benchmarks for the two systems em-
ployed for running the experiments in this thesis. The three benchmarks: pingping,
pingpong, and MPI Sendrecv measure different aspects of a point-to-point communica-
tion system and are based based on the Intel MPI suite of benchmarks [181]. Collective
operations are not of express interest as many MPI libraries compose these operations
from point-to-point calls.
pingping measures startup and throughput of single messages, with the crucial difference
that messages are obstructed by oncoming messages. For this, two processes commu-
nicate (MPI Isend/MPI Recv/MPI Wait) with each other, with the MPI Isend’s issued
simultaneously.
pingpong is the classical pattern used for measuring startup and throughput of a single
message sent between two processes.
MPI Sendrecv based on MPI Sendrecv, the processes form a periodic communication
chain. Each process sends to the right and receives from the left neighbour in the chain.

191



SMG RESULTS 192 APPENDIX A

Message Size (Bytes) Bandwidth (MB/s) Latency (us)
8 2.5 3.2
16 5.0 3.2
32 8.7 3.7
64 11.6 5.5
128 13.8 9.2
256 15.3 16.7
512 16.2 31.6
1,024 16.8 61.1
2,048 17.1 119.9
4,096 17.2 238.7
8,192 17.3 473.1
16,384 17.3 948.5
32,768 17.3 1,897.7
65,536 17.3 3,797.0
131,072 17.3 7,591.0
262,144 17.1 15,364.6
524,288 17.1 30,613.5
1048,576 17.2 61,135.7
2097,152 17.2 122,265.2
4194,304 17.2 244,480.3
8,388,608 17.2 488,749.0
16,777,216 17.2 977,995.2
33,554,432 17.1 1,957,098.5
67,108,864 17.2 3,912,441.5
134,217,728 16.7 8,013,714.7

Table A.1: pingping results for IITAC cluster

Message Size (Bytes) Bandwidth (MB/s) Latency (us)
8 0.1 56.3
16 0.3 57.0
32 0.6 56.8
64 1.1 57.6
128 2.1 62.0
256 3.9 66.5
512 6.3 81.6
1,024 10.3 99.8
2,048 16.6 123.3
4,096 19.6 208.5
8,192 25.4 322.0
16,384 27.1 604.7
32,768 28.0 1,171.0
65,536 29.1 2,253.7
131,072 29.7 4,413.1
262,144 29.2 8,977.9
524,288 29.6 17,739.5
1,048,576 29.8 35,178.1
2,097,152 29.9 70,189.1
4,194,304 29.9 140,306.9
8,388,608 29.9 280,547.4
16,777,216 29.7 563,985.3
33,554,432 29.9 1,121,106.0
67,108,864 29.8 2,249,938.0
134,217,728 29.9 4,485,807.9

Table A.2: pingpong results for IITAC cluster



APPENDIX A SMG RESULTS 193

Message Size (Bytes) Bandwidth (MB/s) Latency (us)
4 0.1 32.1
8 0.2 32.4
16 0.5 32.6
32 1.0 32.8
64 1.9 33.1
128 3.8 34.0
256 6.9 36.8
512 12.1 42.4
1,024 18.8 54.3
2,048 33.1 61.9
4,096 32.6 125.5
8,192 34.1 240.2
16,384 33.2 493.7
32,768 31.7 1,032.7
65,536 31.4 2,084.4
131,072 31.9 4,103.5
262,144 32.0 8,194.0
524,288 32.1 16,321.6
1,048,576 32.4 32,398.3
2,097,152 32.4 64,731.7
4,194,304 32.5 129,060.3
8,388,608 32.5 258,196.0
16,777,216 32.3 520,100.1
33,554,432 32.4 1,034,866.8
67,108,864 32.4 2,073,620.3
134,217,728 32.3 4,152,477.4

Table A.3: MPI Sendrecv benchmark for IITAC cluster

Message Size (Bytes) Bandwidth (MB/s) Latency (us)
8 0.6 13.1
16 3.6 4.5
32 6.3 5.1
64 13.9 4.6
128 20.9 6.1
256 33.3 7.7
512 41.3 12.4
1024 43.1 23.8
2,048 45.1 45.4
4,096 47.8 85.7
8,192 45.5 180.0
16,384 46.6 351.7
32,768 45.2 725.7
65,536 47.6 1,376.3
131,072 43.0 3,045.2
262,144 44.0 5,959.9
524,288 44.0 11,906.4
1,048,576 44.5 23,548.4
2,097,152 50.1 41,873.3
4,194,304 43.4 96,611.4
8,388,608 44.8 187,207.8
16,777,216 46.0 364,866.7
33,554,432 45.5 737,815.0
67,108,864 53.6 1,252,040.5
134,217,728 56.7 2,366,012.0

Table A.4: pingping results for Molch cluster



SMG RESULTS 194 APPENDIX A

Message Size (Bytes) Bandwidth (MB/s) Latency (us)
8 0.1 86.4
16 0.2 81.1
32 0.4 84.9
64 0.8 85.2
128 1.4 88.3
256 2.6 97.2
512 5.1 100.9
1,024 7.8 130.6
2,048 13.1 156.2
4,096 19.9 205.6
8,192 29.4 278.6
16,384 35.5 462.1
32,768 40.8 802.5
65,536 47.8 1,370.8
131,072 49.8 2,633.2
262,144 45.5 5,761.8
524,288 47.3 11,093.9
1,048,576 43.5 24,128.5
2,097,152 50.0 41,949.5
4,194,304 61.8 67,921.6
8,388,608 64.4 130,311.3
16,777,216 47.1 355,886.3
33,554,432 47.6 704,317.8
67,108,864 50.5 1,328,461.9
134,217,728 90.8 1,477,681.6

Table A.5: pingping results for Molch cluster

Message Size (Bytes) Bandwidth (MB/s) Latency (us)
8 0.2 35.2
16 0.5 35.3
32 1.0 33.6
64 1.6 38.8
128 3.5 36.2
256 7.0 36.5
512 10.5 48.8
1,024 17.4 58.7
2,048 25.8 79.3
4,096 44.9 91.3
8,192 70.4 116.3
16,384 96.5 169.7
32,768 107.8 304.0
65,536 82.5 794.2
131,072 89.6 1,462.3
262,144 112.6 2,327.4
524,288 116.8 4,489.9
1,048,576 98.2 10,676.7
2,097,152 100.3 20,913.0
4,194,304 116.1 36,134.4
8,388,608 109.7 76,456.9
16,777,216 87.3 192,232.5
33,554,432 87.1 385,124.6
67,108,864 91.2 735,545.4
134,217,728 88.2 1,522,441.8

Table A.6: MPI Sendrecv benchmark for Molch cluster



APPENDIX A SMG RESULTS 195

EP

No experiment has been performed for the threaded variant of the EP application for a
processor count = 2, as this would result in the two processors being allocated to just one
process, no inter-process communication, and so not of interest. So suitable candidates
were identified where hybridisation would be beneficial.

No. Procs 2 4 8 16 32 64 128

Time (s) 7719.5 3839.48 1919.69 1064.56 551.36 286.44 179.13
Messages 1 3 7 15 31 63 127
Data (bytes) 96 288 672 1440 2976 6048 12192

Table A.7: EP using MPI

No. Procs 2 4 8 16 32 64 128

Time (s) 8182.69 4099.77 2048.77 1031.17 525.41 279.48 176.43
Messages 2 18 42 90 186 378 762
Data (bytes) 64 2624 9052 31520 112756 420212 1598276
DSM pagefaults 2 4 8 16 32 64 128

Table A.8: EP SMG update protocol

No. Procs 2 4 8 16 32 64 128

Time (s) 8210.49 4116.82 2186.22 1036.08 563.37 299.22 204.18
Messages 2 18 42 90 186 378 762
Data (bytes) 144 2784 9372 32128 114036 422708 1603396
DSM pagefaults 4 8 16 32 64 128 256

Table A.9: EP using SMG with subscription



SMG RESULTS 196 APPENDIX A

No. Procs 2 4 8 16 32 64 128

Time (s) X 4092.95 2046.49 1028.76 546.51 276.81 177.42
Messages X 2 18 42 90 186 378
Data (bytes) X 64 2624 9050 31520 112756 420210

Table A.10: EP using SMG with multiple user threads

No. Procs 16 32 64 128

Time (s) 1033.13 555.97 292.88 183.51
Messages - Intra 72 168 360 744
Messages - Inter 18 18 18 18
Data - Intra (bytes) 2.385E+4 9.803E+4 3.910E+5 1.540E+6
Data - Inter (bytes) 7.092E+3 1.295E+4 2.477E+4 4.808E+4

Table A.11: EP using SMG in a simulated Grid with information

No. Procs 16 32 64 128

Time (s) 1097.47 559.41 301.51 198.64
Messages - Intra 66 162 354 738
Messages - Inter 24 24 24 24
Data - Intra (bytes) 2.20E+4 9.518E+4 3.864E+5 1.532E+6
Data - Inter (bytes) 9.524E+3 1.758E+4 3.383E+4 6.589E+4

Table A.12: EP using SMG in a simulated Grid without information

Figure A.1: EP (with user multi-threads) - Total Data sent



APPENDIX A SMG RESULTS 197

Figure A.2: EP (with user multi-threads) - Total Messages sent

Figure A.3: EP (with user multi-threads) - Speedup



SMG RESULTS 198 APPENDIX A

Figure A.4: EP - Total inter-site message count

Figure A.5: EP - Total intra-site message count



APPENDIX A SMG RESULTS 199

Figure A.6: EP - Total inter-site data volumes

Figure A.7: EP - Total intra-site data volume



SMG RESULTS 200 APPENDIX A

Matrix

No experiment has been performed for the threaded variant of the Matrix application
for a processor count = 2, as this would result in one process, and so not of interest.

No. Procs 2 4 8 16 32 64 128

Time (s) 17547.41 8475.97 4383.68 2241.89 1141.10 527.51 308.39
Messages 3 9 21 45 93 189 379
Data (bytes) 3.2E+8 6.79E+8 1.32E+9 2.55E+9 4.97E+9 9.81E+9 1.95E+10

Table A.13: Matrix Multiplication implemented using MPI

No. Procs 2 4 8 16 32 64 128

Time (s) 17661.98 8849.21 4429.98 2048.77 1031.17 629.82 339.10
Messages 8 24 56 120 248 504 1016
Data (bytes) 5.28E+8 1.51E+9 3.41E+9 7.15E+9 1.45E+10 3.06E+10 5.79E+10
DSM pagefaults 110580 110568 110544 110496 110400 110208 109824

Table A.14: Matrix SMG update protocol

No. Procs 2 4 8 16 32 64 128

Time (s) 17661.71 8841.66 4426.36 2226.44 1136.03 622.30 325.18
Messages 7 21 49 105 217 252 889
Data (bytes) 3.02E+8 9.81E+8 2.25E+9 4.67E+9 9.51E+9 1.92E+10 3.85E+10

Table A.15: Matrix using a hybrid of SMG & MPI



APPENDIX A SMG RESULTS 201

No. Procs 2 4 8 16 32 64 128

Time (s) 17804.56 8868.76 4479.36 2255.27 1173.20 630.44 327.80
Messages 8 24 56 120 248 504 1016
Data (bytes) 5.28E+8 1.51E+9 3.41E+9 7.15E+9 1.45E+10 3.06E+10 5.79E+10
DSM pagefaults 184320 313344 599055 1184286 2361662 4719864 9438013

Table A.16: Matrix using SMG with subscription

No. Procs 2 4 8 16 32 64 128

Time (s) X 8825.33 4187.52 2140.74 1097.02 603.42 327.80
Messages X 8 24 56 120 248 500
Data (bytes) X 5.28E+8 1.51E+9 3.41E+9 7.14E+9 1.45E+10 2.89E+10

Table A.17: Matrix using SMG with multiple user threads

No. Procs 16 32 64 128

Time (s) 2238.52 1142.93 614.80 340.37
Messages - Intra 96 224 480 992
Messages - Inter 24 24 24 24
Data - Intra (bytes) 5.582E+9 1.291E+10 2.744E+10 5.626E+10
Data - Inter (bytes) 1.508E+9 1.507E+09 1.504E+09 1.497E+09

Table A.18: Matrix using SMG in a simulated Grid with information

No. Procs 16 32 64 128

Time (s) 2374.99 1192.24 641.77 379.25
Messages - Intra 88 216 472 984
Messages - Inter 32 32 32 32
Data - Intra (bytes) 5.129E+9 1.248E+10 2.703E+10 5.586E+10
Data - Inter (bytes) 2.017E+9 2.025E+9 2.025E+9 2.019E+9

Table A.19: Matrix using SMG in a simulated Grid without information



SMG RESULTS 202 APPENDIX A

Figure A.8: Matrix (with user multi-threads) - Total Data sent

Figure A.9: Matrix (with user multi-threads) - Total Messages sent



APPENDIX A SMG RESULTS 203

Figure A.10: Matrix (with user multi-threads) - Speedup

Laplace

No. Procs 2 4 8 16 32 64 128

Time (s) 86.55 53.58 35.48 25.92 19.85 18.82 25.28
Messages 203 609 1421 3045 6293 12789 25781
Data (bytes) 3.12E+8 9.36E+8 1.32E+9 2.55E+9 4.97E+9 9.81E+09 3.96E+10

Table A.20: Laplace implemented using MPI



SMG RESULTS 204 APPENDIX A

No. Procs 2 4 8 16 32 64 128

Time (s) 1099.56 1833.80 2775.02 3650.29 4471.79 5638.20 6045.73
Messages 206 618 1442 3090 6386 12978 26162
Data (bytes) 6.63E+10 9.65E+9 1.71E+10 3.99E+10 7E+10 2.98E+12 5.88E+12
DSM pagefaults 7518034 7518236 7518640 7519448 7521064 7524296 7530760

Table A.21: Laplace SMG update protocol

No. Procs 2 4 8 16 32 64 128

Time (s) 90.65 55.72 60.44 70.47 86.77 109.95 137.27
Messages 208 624 1456 3120 6448 13104 26416
Data (bytes) 7.64E+8 2.44E+09 5.39E+9 1.08E+10 2.11E+10 4.12E+10 8.04E+10

Table A.22: Laplace using a hybrid of SMG & MPI

No. Procs 2 4 8 16 32 64 128

Time (s) 96.01 70.26 46.76 46.53 66.46 90.07 101.77
Messages 206 618 1442 3090 6386 12978 26162
Data (bytes) 3.19E+8 9.46E+8 2.28E+9 5.17E+9 1.19E+10 2.87E+10 7.65E+10
DSM pagefaults 9095369 9095611 9096096 9097066 9099005 9102883 9110640

Table A.23: Laplace using SMG with subscription

No. Procs 2 4 8 16 32 64 128

Time (s) X 1498.71 2249.61 2789.54 3716.10 4339.80 5264.85
Data (bytes) X 6.63E+10 1.64E+11 3.23E+11 6.4E+11 1.32E+12 2.66E+12
Messages X 206 618 1442 3090 6386 12978

Table A.24: Laplace using SMG with multiple user threads

No. Procs 16 32 64 128

Time (s) 3847.09 5415.66 6021.69 6922.78
Messages - Intra 2472 5768 12360 25544
Messages - Inter 618 618 618 618
Data - Total (bytes) 7.53E+11 1.49E+12 2.95E+12 5.84E+12
Data - Intra (bytes) 5.761E+11 1.314E+12 2.769E+12 5.661E+12
Data - Inter (bytes) 1.772E+11 1.773E+11 1.775E+11 1.780E+11

Table A.25: Laplace using SMG in a simulated Grid with information



APPENDIX A SMG RESULTS 205

No. Procs 16 32 64 128

Time (s) 3921.83 5539.42 6204.94 7111.77
Messages - Intra 2266 5562 12154 25338
Messages - Inter 824 824 824 824
Data - Total (bytes) 7.70E+11 1.52E+12 2.98E+12 5.88E+12
Data - Intra (bytes) 5.320E+11 1.276E+12 2.737E+12 5.633E+12
Data - Inter (bytes) 2.381E+11 2.410E+11 2.426E+11 2.439E+11

Table A.26: Laplace using SMG in a simulated Grid without information

Figure A.11: Laplace (with user multi-threads) - Total Data sent



SMG RESULTS 206 APPENDIX A

Figure A.12: Laplace (with user multi-threads) - Total Messages sent

Figure A.13: Laplace (with user multi-threads) - Speedup



APPENDIX A SMG RESULTS 207

Figure A.14: Laplace - Total inter-site message count

Figure A.15: Laplace - Total intra-site message count



SMG RESULTS 208 APPENDIX A

Figure A.16: Laplace - Total inter-site data volumes

Figure A.17: Laplace - Total intra-site data volume



APPENDIX A SMG RESULTS 209

SOR

No experiment has been performed for the threaded variant of the Matrix application
for a processor count = 2, as this would result in one process, and so not of interest.

No. Procs 2 4 8 16 32 64 128

Time (s) 63.19 34.35 23.18 17.51 18.35 28.14 54.85
Messages 602 1604 3608 7616 15632 31664 63728
Data (bytes) 3.21E+8 3.61E+8 4.39E+8 5.96E+8 9.10E+8 1.54E+9 2.79E+9

Table A.27: SOR implemented using MPI

No. Procs 2 4 8 16 32 64 128

Time (s) 235.49 146.40 111.84 95.83 106.83 117.54 138.34
Messages 424 1272 2968 6360 13144 26712 53848
Data (bytes) 6.54E+8 1.89E+09 4.06E+9 8.03E+9 1.56E+10 3.04E+10 5.95E+10
DSM pagefaults 15478480 15478880 15479680 15481280 15484480 15490880 15503680

Table A.28: SOR SMG update protocol

No. Procs 2 4 8 16 32 64 128

Time (s) 68.78 55.75 54.54 52.92 61.46 65.50 101.35
Messages 424 1272 2968 6360 13144 26712 53848
Data (bytes) 3.62E+8 7.43E+8 1.59E+9 3.14E+9 6.11E+9 1.18E+10 2.29E+10

Table A.29: SOR using a hybrid of SMG & MPI



SMG RESULTS 210 APPENDIX A

No. Procs 2 4 8 16 32 64 128

Time (s) 62.74 41.21 42.45 44.32 61.11 74.31 99.76
Messages 424 1272 2968 6360 13144 26712 53848
Data (bytes) 4.09E+7 5.40E+8 6.40E+08 1.18E+09 3.34E+09 7.71E+09 1.63E+10
DSM pagefaults 18721632 18722112 18723072 18651264 18728832 18736512 18751872

Table A.30: SOR using SMG with subscription

No. Procs 2 4 8 16 32 64 128

Time (s) X 211.99 144.12 116.01 126.50 125.59 175.48
Messages X 466 1398 3262 6990 14446 29358
Data (bytes) X 8.32E+8 2.19E+9 4.58E+9 9.32E+9 1.98E+10 3.93E+10

Table A.31: SOR using SMG with multiple user threads

No. Procs 16 32 64 128

Time (s) 104.84 115.96 119.47 151.20
Messages - Total 6360 13144 26712 53848
Messages - Intra 5088 11872 25440 52576
Messages - Inter 1272 1272 1272 1272
Data - Intra (bytes) 5.925E+9 1.346E+10 2.819E+10 5.728E+10
Data - Inter (bytes) 1.894E+9 1.894E+9 1.894E+9 1.895E+9

Table A.32: SOR using SMG in a simulated Grid with information

No. Procs 16 32 64 128

Time (s) 109.66 123.19 142.86 166.38
Messages Total 6360 13144 26712 53848
Messages - Intra 4664 11448 25016 52152
Messages - Inter 1696 1696 1696 1696
Data - Intra (bytes) 5.615E+9 1.318E+10 2.794E+10 5.705E+10
Data - Inter (bytes) 2.419E+9 2.432E+9 2.439E+9 2.443E+9

Table A.33: SOR using SMG in a simulated Grid without information



APPENDIX A SMG RESULTS 211

Figure A.18: SOR (with user multi-threads) - Total Data sent

Figure A.19: SOR (with user multi-threads) - Total Messages sent



SMG RESULTS 212 APPENDIX A

Figure A.20: SOR (with user multi-threads) - Speedup

Figure A.21: SOR - Total inter-site message count



APPENDIX A SMG RESULTS 213

Figure A.22: SOR - Total intra-site message count

Figure A.23: SOR - Total inter-site data volumes



SMG RESULTS 214 APPENDIX A

Figure A.24: SOR - Total intra-site data volume



APPENDIX B

DSM Reference

This Appendix gives a synopsis of the characteristics of various DSM implementations.

215



N
am

e
T

yp
e

of
A

lg
or

it
hm

C
on

si
st

en
cy

M
od

el
G

ra
nu

la
ri

ty
U

ni
t

C
oh

er
en

ce
P

ol
ic

y
D

as
h

M
R

SW
re

le
as

e
16

by
te

s
in

va
lid

at
e

D
D

M
M

R
SW

se
qu

en
t1

6
by

te
s

in
va

lid
at

e
K

SR
1

M
R

SW
se

qu
en

ti
al

12
8

by
te

s
in

va
lid

at
e

M
em

ne
t

M
R

SW
se

qu
en

ti
al

32
by

te
s

in
va

lid
at

e
M

er
lin

M
R

M
W

pr
oc

es
so

r
8

by
te

s
up

da
te

R
M

S
M

R
M

W
pr

oc
es

so
r

4
by

te
s

up
da

te
SC

I
M

R
SW

se
qu

en
ti

al
16

by
te

s
in

va
lid

at
e

T
ab

le
B

.1
:

H
ar

dw
ar

e
D

SM
im

pl
em

en
ta

ti
on

s

N
am

e
T

yp
e

of
A

lg
or

it
hm

C
on

si
st

en
cy

M
od

el
G

ra
nu

la
ri

ty
U

ni
t

C
oh

er
en

ce
P

ol
ic

y
A

le
w

ife
M

R
SW

se
qu

en
ti

al
16

by
te

s
in

va
lid

at
e

F
L

A
SH

M
R

SW
re

le
as

e
12

8
by

te
s

in
va

lid
at

e
G

al
ac

ti
ca

N
et

M
R

M
W

m
ul

ti
pl

e
8K

by
te

s
up

da
te

/i
nv

al
id

at
e

H
yb

ri
d

D
SM

M
R

SW
re

le
as

e
va

ri
ab

le
in

va
lid

at
e

P
L

U
S

M
R

M
W

pr
oc

es
so

r
4K

by
te

s
up

da
te

SH
R

IM
P

M
R

M
W

A
U

R
C

,s
co

pe
4K

by
te

s
up

da
te

/i
nv

al
id

at
e

T
yp

ho
on

M
R

SW
cu

st
om

32
by

te
s

in
va

lid
at

e
cu

st
om

T
ab

le
B

.2
:

H
yb

ri
d

D
SM

im
pl

em
en

ta
ti

on
s

216



N
am

e
T

yp
e

of
A

lg
or

it
hm

C
on

si
st

en
cy

M
od

el
G

ra
nu

la
ri

ty
U

ni
t

C
oh

er
en

ce
P

ol
ic

y
B

liz
za

rd
M

R
SW

se
qu

en
ti

al
32

-1
28

by
te

in
va

lid
at

e
C

as
hm

er
e-

2L
M

R
M

W
,

L
R

C
va

ri
an

t
in

va
lid

at
e

pa
ge

C
lo

ud
s

M
R

SW
in

co
ns

is
te

nt
,

se
qu

en
ti

al
8K

by
te

in
va

l
w

he
n

un
lo

ck
ed

IV
Y

M
R

SW
Se

qu
en

ti
al

1K
by

te
in

va
lid

at
e

Ji
aj

ia
M

R
M

W
L

R
C

P
ag

e
H

om
e-

ba
se

d
In

va
lid

at
e

L
in

da
M

R
SW

se
qu

en
ti

al
va

ri
ab

le
(t

up
le

si
ze

)
im

pl
.

de
pe

nd
en

t
M

er
m

ai
d

M
R

SW
Se

qu
en

ti
al

1K
by

te
,

8K
by

te
in

va
lid

at
e

M
id

w
ay

M
R

M
W

en
tr

y,
re

le
as

e,
pr

oc
es

so
r

4K
by

te
up

da
te

M
ir

ag
e

M
R

SW
se

qu
en

ti
al

51
2

by
te

in
va

lid
at

e
M

un
in

SR
SW

,M
R

SW
re

le
as

e
V

ar
ia

bl
e

de
la

ye
d

up
da

te
,

in
va

lid
at

e
O

rc
a

M
R

SW
sy

nc
de

pe
nd

en
t

sh
ar

ed
ob

je
ct

si
ze

up
da

te
T

re
ad

M
ar

ks
M

R
M

W
la

zy
re

le
as

e
4K

by
te

up
da

te
,

in
va

lid
at

e

T
ab

le
B

.3
:

So
ft

w
ar

e
D

SM
im

pl
em

en
ta

ti
on

s

217



DSM REFERENCE 218 APPENDIX B



APPENDIX C

DSM APIs

The various APIs of DSMs referred to in this thesis are listed in this Appendix.

Midway API
/* initialize, acquire, and release a lock primitive */
extern midway lock t midway lock a l l oc ( )
extern void midway lock acq ( midway lock t lockn ,

midway acquire t mode ) ;
extern void midway lock re l ( midway lock t lockn )

/* Barrier synchronisation routines */
extern midway barr i e r t m i dw ay b a r r i e r a l l o c ( )
extern void midway cro s s ba r r i e r ( midway barr i e r t bname , int num)
extern void midway f lu sh bar r i e r ( midway barr i e r t bname , int num)

/* bind shared memory to sync objects*/
extern void midway bind synch object ( midway lock t obj , void ∗addr ,

u long l en )
extern void midway reb ind synch object ( midway lock t obj )
extern void midway create thread ( void (∗ func ) ( ) , u long arg )
extern void midway wait for end ( u long n)

/* Memory management */
extern shared char ∗ shmal loc (unsigned n , unsigned l i n e s z )
extern void s h f r e e ( shared char ∗mem)

/* DSM system routines */
extern int m i d w a y s t a r t p r o f i l e ( void ) ;
extern int midway s top pro f i l e ( void ) ;
extern void midway exit ( int rc ) ;

219



DSM APIS 220 APPENDIX C

Munin API

/* Initialisation & finalisation*/
u s e r i n i t ( ) // User implements these functions if required
user done ( )

/* Synchronisation routines */
AcquireLock ( )
ReleaseLock ( )
CreateBar r i e r ( )
WaitAtBarrier ( )
WaitCondition ( )
S igna lCond i t ion ( )
BroadcastCondit ion ( )

/* Shared memory operations */
AssociateDataAndSynch ( )
PhaseChange ( )
ChangeAnnotation ( )
PreAcquire ( )
I n v a l i d a t e ( )
S ing l eObjec t ( )

CRL API

/* Initialisation & finalisation*/
extern void} c r l i n i t (char ∗ ) ;
extern void} c r l e x i t ( void ) ;

/* Memory management */
extern r i d t r g n c r e a t e (unsigned ) ;
extern void rgn de s t roy ( r i d t ) ;
extern void ∗rgn map ( r i d t ) ;
extern void rgn unmap ( void ∗ ) ;
extern r i d t r g n r i d ( void ∗ ) ;
extern unsigned r g n s i z e ( void ∗ ) ;

/* Memory access operations */
extern void r g n s t a r t r e a d ( void ∗ ) ;
extern void rgn end read ( void ∗ ) ;
extern void r g n s t a r t w r i t e ( void ∗ ) ;
extern void rgn end wr i t e ( void ∗ ) ;
extern void r g n f l u s h ( void ∗ ) ;

/* Collective operations */
extern void r g n b a r r i e r ( void ) ;
extern void rgn bca s t s end ( int , void ∗ ) ;
extern void r g n b c a s t r e c v ( int , void ∗ ) ;
extern double rgn reduce dadd (double ) ;
extern double rgn reduce dmin (double ) ;
extern double rgn reduce dmax (double ) ;



APPENDIX C DSM APIS 221

Treadmarks API
/* Application variables */
extern unsigned Tmk nprocs
extern unsigned Tmk proc id

/* Initialisation & finalisation*/
void Tmk startup ( int argc , char ∗∗ argv )
void Tmk exit ( int atatus )

/* Synchronisation routines */
void Tmk barrier (unsigned id )
void Tmk lock acquire (unsigned id )
void Tmk lock re l ease (unsigned id )
void Tmk lock cond broadcast ( unsigned l o c k i d , unsigned cond id ) ;
void Tmk lock cond s igna l ( unsigned l o c k i d , unsigned cond id ) ;
void Tmk lock cond wait ( unsigned l o c k i d , unsigned cond id ) ;

/* Memory management */
char ∗Tmk malloc (unsigned s i z e )
void Tmk free (char ∗ptr )

CVM API
/* Initialisation & finalisation*/
void cvm startup ( ) ;
void cvm create proc s ( void ∗ func ( ) ) ;
void cvm exit (char ∗ , . . . ) ;
void cvm f in i sh ( ) ;

/* Environment */
int cvm pid ( ) ;
int cvm tid ( ) ;

/* Memory management */
void ∗ cvm al loc ( int sz ) ;
void ∗ cvm a l l o c char ( int sz ) ;
void ∗ c v m a l l o c s h o r t ( int sz ) ;
void ∗ c v m a l l o c i n t ( int sz ) ;
void ∗ c v m a l l o c f l o a t ( int sz ) ;
void ∗ cvm al l oc doub l e ( int sz ) ;
void ∗ cvm typed a l l oc ( int sz , . . . ) ;

/* Synchronisation routines */
void cvm lock ( int id ) ;
void cvm unlock ( int id ) ;
void cvm barr i e r ( int id ) ;
void cvm probe ( ) ;

/* Shared memory environment */
extern void cvm ass ign ownersh ip ( int pid , char ∗ from , int sz ) ;
extern void cvm di s t r ibute owner sh ip (char ∗ from , int sz , int how ) ;



DSM APIS 222 APPENDIX C



APPENDIX D

Enabling Technology

This Appendix briefly summarises technologies relevant to this thesis.

Message Passing Interface (MPI) Implementations

There are many MPI version 1 implementations, plus varying levels of completeness
amongst a number of implementations of MPI version 2. There are many proprietary and
commercial implementations. All the main HPC providers (IBM, HP, Sun, Intel, SGI, to
name but a few) have their own implementation, as well as those offered by commercial
software providers (MPI/Pro, WMPI-II, Scali). However, there are some robust publicly
available implementations; the most prevalent are MPICH and LAM/MPI (although the
latter is currently being replaced by the more recent OpenMPI). There are two distinct
versions of MPICH: MPICH-1.2 and MPICH2. The latter is now the actively developed
project, while the former remains maintained due to its large installed base.

MPICH Version-1.X

MPICH is an open-source implementation of MPI [182]. Currently the MPI 1.2 standard
is supported, while some sections of MPI-2 are also implemented. The overall design
is built around the concept of an abstract device, whereby in order to port MPICH to
new communications hardware all that needs to be done is to implement a new abstract
device interface (ADI). For example, there are implementations for the MPICH ADI for
the following devices:

• ch p4 This device allows communication across networks using sockets and the
TCP/IP suite of protocols. A typical cluster with a commodity Ethernet network
will utilise this device for the underlying communications layer.

• shmem allows for processes to communicate using physical shared memory, thus
largely removing the overhead of communication. The shmem device is used in
MPI processes running on the same SMP system, so processes can communicate

223



ENABLING TECHNOLOGY 224 APPENDIX D

simply by performing a memory copy without having to incur the latencies of the
protocol stack associated with the ch p4 device.

• Globus is a communications device for a grid environment. It’s difference to the
ch p4 device is its integration with the ubiquitous Globus toolkit [183, 49]. There
are also optimisations that allow for a significant performance increase with the
use of collective calls by making use of topology information [52].

• SCI & Myrinet devices allow for the exploitation of these low-latency and high-
bandwidth communication interconnects. These interconnects can then be used to
enable the construction of a high performance and cost effective compute cluster.

Exploring the use of MPICH [184] for the communication between processes executing on
distributed nodes allows for the exploitation of an optimised and stable message passing
library, and leveraging of useful MPI resources such as profiling tools and debuggers. Its
use also use insulates the system from platform dependencies and will ease porting to
other architectures and platforms in the future.
Unfortunately the current Grid enabled version of MPICH, MPICH-G2 [49], is based on
a MPICH distribution (currently version 1.2.5) that has no support for multi-threaded
applications. This makes optimising applications hard, as a DSM system thread requires
a MPI communication channel, and so can only be used in MPI THREAD FUNNELLED
mode. MPI implementations exist that provide thread safety, however they are not grid-
enabled. Future MPI implementations can be expected to support both multi-threading
and grid.

MPICH-2

MPICH2 is an implementation of the MPI-2 standard that evolved and extends the ef-
forts of MPICH-1.2.x described above. Although currently there is no communication
device implemented that supports multi-site grid applications, importantly for this the-
sis there is robust support provided for multi-threaded applications.
The main difference between MPICH2 and the previous MPICH-1.X, apart from sup-
porting implementing the MPI-2 standard, is that the former separates the actual man-
agement of application processes (i.e. start-up) from the applications that use MPI. This
allows for different job managers to be developed and used without affecting the MPI
applications themselves. Different types of process manager exist depending upon the
execution environment: gforker for starting process locally on a machine (for testing),
mpd for non-dedicated clusters, and spmd for Microsoft Windows platforms. Also third
party managers are easily supported, e.g. support is available [185] for managed clusters
such as those managed by systems like PBS [186] and Torque[187].

LAM/MPI

LAM/MPI provides a complete implementation of the MPI 1.2 standard, and provides
significant portions of the MPI-2 standard [114]. It is constructed on top of LAM



APPENDIX D ENABLING TECHNOLOGY 225

which is a programming environment and development system for a message passing
multicomputer [188]. The use of clusters of SMPs is supported, with optimisations to
take advantage of the hardware to perform the messaging between two processes located
on the same node. Such optimisations can occur with little on no modifications to the
user application code. LAM/MPI also includes support for grid environments with close
integration with the Globus toolkit.
LAM/MPI provides the ability to checkpoint an application, therefore allowing for the
restart of an application at a later stage if problems arise. Check-pointing support
in LAM/MPI requires the use of an external third party support such as [189]. Like
the MPICH implementation, LAM/MPI currently has no support for multi-threaded
applications.

PAC-X

PAC-X is a MPI implementation that enables MPI in a metacomputing environment;
applications can execute across a number of distributed sites without a change in source
code [48]. To the developer the system appears to be a single resource. Within each of
the sites different vendor MPI implementations may be employed to take advantage of
increased performance offered by the local interconnect.
External communication between the resources can be achieved via any supported pro-
tocol, such as TCP/IP using the socket library, see Section 5.1.1. At each site in the
meta-computer a proxy node is used to transport messages between sites (this node re-
quires a routable IP address, while the rest may have non-routable private addresses).
When a message from a process on one site needs to be sent to a process on another it
will be directed to the local proxy, which will deliver the message to the proxy on the
remote site, which will in turn deliver it to the correct destination node. This approach
will introduce extra latency due to the proxy-ing approach.

FT-MPI

Fault Tolerant MPI (FT-MPI) is a relatively new MPI implementation. It is imple-
mented with a view to solving one of the principle deficiencies of current MPI standards,
namely lack of proper support for fault tolerance [36]. Current standards only allow for
the graceful exit of MPI applications once a fault has occurred. To achieve fault-tolerance
the implementers of this project had to deviate slightly from the MPI standards. The
application developer must attach fault handlers at the initialisation stage. If an error
occurs the fault handler is called, thus allowing files to be closed and other basic actions
to occur. FT-MPI overcomes this by allowing the user application to periodically check-
point its progress and also through the usage of naming and notification services. Once
a communication has an error state it can recover by rebuilding it.



ENABLING TECHNOLOGY 226 APPENDIX D

OpenMPI

OpenMPI is an amalgamation of the previous three implementations, aiming to combine
beneficial technologies and resources from these projects [190]. Currently this implemen-
tation is not suitable for production environments. Due to the limited multi-threaded
support in the implementation (it is still in development) it could not be considered for
use in this thesis.

The Parallel Virtual Machine (PVM)

PVM is more than just a message passing implementation [191]. It is a complete system
that combines multiple machines to form a virtual machine that is available to users to
run parallel message passing applications on. Each machine can be different.
A PVM daemon (pvmd) will run on each node of the virtual machine. A user connects
to a PVM console where the applications can be created and managed from. The PVM
console in turn interacts with the pvmd daemons.
A small subset of the PVM API is given in Listing D.1. Many of its novel features
also appear in later MPI versions. PVM has started to show its age, no support for
user multi-threaded applications is available because the API doesn’t support them.
While still popular in academic institutions it is quickly being phased out by the ever
increasingly ubiquitous nature of MPI.

pvm mytid ( ) // Returns the task identifier of the process
pvm gsize ( ) // Get the number of precesses in the group
pvm parent ( ) // Obtain the identifier of the parent
pvm spawn ( . . ) // Spawn a new PVM process
pvm exit ( id ) // kill a PVM process
pvm send ( . . ) // send a message to another process
pvm recv ( . . ) // receive a message from a remote process
pvm barr ier ( . . ) // synchronise with other processes

Listing D.1: Subset of the PVM API

Monitoring Implementations

R-GMA is described in Section 5.2.1, and so will not be covered here.

MDS

The Monitoring and Discovery Service (MDS) component of the Globus Toolkit [108]
provides a grid information service accessible through a single interface. It is highly
scalable and can handle static and dynamic data. It was constructed in order to provide
a standard mechanism where the status of resources and configuration information could



APPENDIX D ENABLING TECHNOLOGY 227

be easily accessed by a user. It also integrates the Globus Grid Security Infrastructure
(GSI) allowing for restricting access to data [148].
MDS is built upon the hierarchical Lightweight Directory Access Protocol (LDAP). It
consists of three components i) the Grid Index Information Service (GIIS) is a directory
allowing for the aggregation of data sources lower down in the hierarchy, ii) Grid Re-
source Information Service (GRIS) acts as the content portal for the resource, and iii)
Information Providers (IPs) provide the interface between the source of data and the
GRIS. As depicted in Figure D.1 a GRIS will register with its associated GIIS. Caching
of data is used extensively to minimise the communication overhead. IPs exist that can
publish data according to the GLUE schema and also to a MDS core schema.
It has been shown that when MDS is integrated with a MPI implementation to derive
a topology map, dramatic improvements are obtainable in the performance of a number
of MPI collective operations through the usage of hierarchy awareness [51, 52].

Figure D.1: MDS Architecture

Netlogger

Netlogger is a system that provides for the monitoring of the entire system at the host,
networking, and application levels [192]. Its primary application domain is in the per-
formance analysis of distributed applications. A special feature is the ability to correlate
application performance with network information, e.g. the number of dropped packets,
allowing for the identification of intermittent poor communication performance.
The primary concern is the requirement for the provision of global time so that all pro-
cesses are synchronised. This requires that all nodes be synchronised using a network
time protocol (NTP) server, or have access to a time source such as a GPS device.
Netlogger output logging data conforms to the IETF Universal Logger Message (ULM)
format. These logging messages can be directed to user/system files (using syslogd),
to memory buffers, and across networks to remote netlogd servers. A netlogging dae-
mon (netlogd) is located at a central host and is used to collect logging data from all
application processes, Figure D.2 illustrates the potential downside of this approach as
a bottleneck may arise at the netlogd daemon. The Netlogger API consists of only 6
functions:



ENABLING TECHNOLOGY 228 APPENDIX D

NetLoggerOpen ( ) // Create a netlogger connection
NetLoggerClose ( ) // Close the netlogger connection
NetLoggerWrite ( ) // Send a netlogger message
NetLoggerGTWrite ( ) // Send a message, timestamped (gettimeofday)
NetLoggerFlush ( ) // Flush the buffer of any messages
NetLoggerSetLevel ( ) // Set the verbosity level of ULM messages

Listing D.2: Netlogger API

Netlogger provides a front-end tool for the viewing of logging data, however it is not
suitable for monitoring many concurrent events (with a frequency < 20ms). Netlogger
is not suitable for analysing MPI programs as the resolution of potential events is too
low. In addition there is no support for an application to query the logging data, such
as might be required when a topology graph is required. If the information requirement
is not present then it is feasible to implement the monitoring system using this library.
Future Netlogger releases aim to provide support for a publish & subscribe model, akin
to that provided by R-GMA (described in Section 5.2.1).

Figure D.2: Netlogger Architecture

OpenMP

The complete specifications for all OpenMP versions is available at [4].

OpenMP Compiler Directives

An OpenMP directive consists of compulsory terms and optional terms. No other com-
ments may appear on the same line of the directive. First there is the declaration that
identifies to the compiler that it is an OpenMP directive. In the C version of the stan-
dard this is #pragma omp. A valid OpenMP directive (or combination of) will follow
next, and optional clauses to the directive can then be specified. In C, an OpenMP
directive has the following form.



APPENDIX D ENABLING TECHNOLOGY 229

#pragma omp name-of-directive(s) [clauses,..]

Parallelisation

Parallelisation in OpenMP is achieved via the use of the parallel directive signals. This
signals the start of a code segment that is capable of being executed concurrently by a
number of threads. The implementation will fork the number of threads that is specified
either by the specified API function (omp set num threads() (page 232), an envi-
ronment variable (OMP NUM THREADS), or by a clause (NUM THREADS).
For SMG, a thread count in excess of the number of processes that the SMG job was
started with could result in the surplus threads being allotted in a round robin fash-
ion per process. Current OpenMP implementations implement the parallel directive by
encapsulating all code within its scope as a distinct function.

Work-sharing

The three directives below provide for sharing work among the team of threads that were
created using the parallel directive (i.e. they must be enclosed in the parallel region). It
is important to note that they must be encountered by all members of the thread team
or none at all [193]. The first two work-sharing directives may be combined with the
parallel directive, enabling a shorthand version in the following manner:

#pragma omp parallel for.

• for divides the iterations of a for loop among the the team of threads (akin to
data decomposition described in Section 2.3). The method by which the number
of iterations can be apportioned to each thread can be specified using one of the
scheduling clauses listed on page 231.

• sections allocates different sections of work to the members of the thread team
(i.e. functional decomposition described in Section 2.3)

• single allows for a region of parallel code to be serialised thus allowing only one
thread to execute it. This allows for regions of code within the parallel region that
may not be suitable for all threads to execute, i.e. not thread safe

The scheduling clause in the for directive can be accommodated using the SMG work
division call described in Section 9.2.1. The latter two directives are easily provided for
using simple flow-control statements.

Synchronisation

There are a number of directives that are available that enable different thread synchro-
nisation operations for a team.



ENABLING TECHNOLOGY 230 APPENDIX D

• master allows only the master thread to execute the code region. All other mem-
bers of the thread team will skip it. It can be trivially implemented by SMG using
a simple if-then-else structure to ensure that only one thread executes the code
block.

• critical allows all threads to execute a given code region, but only one at a time.
The functionality may be provided by guarding the region with an exclusive lock
(see Section 2.4.1) that is accessible to all threads in the team.

• barrier ensures that all threads in the team become synchronised in the same
manner described in Section 2.4.2.

• atomic allows the single statement following the directive to be executed in an
atomic fashion, i.e. similar to the critical directive, but allowing implementation
optimisations.

• flush identifies a synchronisation point in code that requires that a consistent
view of memory, so this directive has a particular resonance with the memory
consistency model provided by the SMG system.

• ordered requires that the code block is executed in the same order as it would
execute in a sequential process.

Data Environment

The threadprivate directive is the only directive providing data scope control. It
provides for the scoping of data during execution of the application, i.e. it allows for
each thread to have a private copy of any global variables. This directive may be specified
outside the range of a parallel directive.

OpenMP Data Scoping

In OpenMP all variables are shared by default. This may not be suitable in all cases,
so data scoping directives are provided to change the scope of a variable if it should be
different from the norm.

• private is similar to the threadprivate directive, allowing for each thread to have a
private copy of a variable, but only if specified by the clause, i.e. it has a dynamic
nature, but is non-persistent between scopes.

• firstprivate is a derivation of the private clause but specifies that each thread’s
variable is initialised from the original variable.

• lastprivate specifies that the last thread to leave the scoped region will copy their
version of the variable to the global version.

• shared specifies that the variable is shared (only relevant if the default sharing
policy is no sharing).



APPENDIX D ENABLING TECHNOLOGY 231

• default specifies that the variable will have the default sharing scope.

• reduction allows the (implicit) private copies of variables for all threads to be
combined in a specified reduction operation e.g. +, -, *, /.

• copyin applies only to variables declared using the threadprivate directive. All
threads have their private copy of the variable initialised from the original at the
beginning of the scoped region.

• copyprivate allows for a private variable to be shared among other members of
the team.

OpenMP Scheduling Clauses

• STATIC scheduling divides up the iterations among the threads in a chunk of a
given size.

• DYNAMIC assigns each thread a chunk of work, the size of which is set dynam-
ically. Once the thread is finished it may request another chunk. This allows for
load-balancing of the work to be performed.

• GUIDED is similar to DYNAMIC, but allows for the chunk size to be reduced.

• RUNTIME allows for the scheduling to be delayed until run-time.

OpenMP Environment Variables

There are four OpenMP environment variables:

• OMP SCHEDULE is used to declare the default run-time scheduling parameter.
It specifies the type (a scheduling clause) and a parameter, e.g. for static scheduling
a chunk size can be specified, such as ’static 10’.

• OMP NUM THREADS declares the default number of threads to use during
a parallel region. If unset, the default value is equal to the number of processes *
1. This can be overwritten throughout the execution of the application (it can be
higher or lower).

• OMP DYNAMIC specifies if dynamic adjustment in the number of threads is
allowed, i.e. allows the previous variable to be overridden.

• OMP NESTED specifies if nested parallelism is allowed (or provided for by the
implementation).



ENABLING TECHNOLOGY 232 APPENDIX D

OpenMP Library Functions

The APIs calls are mostly self explanatory. Most enable the dynamic setting of the
behaviour of the OpenMP application like the clauses and environmental variables
described above. For a complete definition see the OpenMP specification [128].

Thread data

void omp set num threads ( int num threads )
int omp get num threads ( void )
int omp get max threads ( void )
int omp get thread num ( void )
int omp get num procs ( void )

Environment querying

int o m p i n p a r a l l e l ( void )
void omp set dynamic ( int threads )
int omp get dynamic ( void )
void omp set nested ( int nested )
int omp get nested ( void )

Lock functions

void o mp i n i t l o c k ( omp lock t ∗ l o ck )
void omp destroy lock ( omp lock t ∗ l o ck )
void omp set lock ( omp lock t ∗ l o ck )
void omp unset lock ( omp lock t ∗ l o ck )
void omp te s t l o ck ( omp lock t ∗ l o ck )

Timing routines

double omp get wtime ( void )
double omp get wtick ( void )



APPENDIX D ENABLING TECHNOLOGY 233

Linux information

SEGV Pagefault Structure: the structure presented to the signal handler on the
generation of a SEGV access fault, and therefore passed to the SMG fault handler is:

s i g i n f o t {
int s i s i g n o ; /* Signal number */
int s i e r r n o ; /* An errno value */
int s i c o d e ; /* Signal code */
p i d t s i p i d ; /* Sending process ID */
u i d t s i u i d ; /* Real user ID of sending proc. */
int s i s t a t u s ; /* Exit value or signal */
c l o c k t s i u t i m e ; /* User time consumed */
c l o c k t s i s t i m e ; /* System time consumed */
s i g v a l t s i v a l u e ; /* Signal value */
int s i i n t ; /* POSIX.1b signal */
void ∗ s i p t r ; /* POSIX.1b signal */
void ∗ s i a d d r ; /* Mem location which caused fault */
int s i band ; /* Band event */
int s i f d ; /* File descriptor */

}

Listing D.3: Structure Passed to Handler on SEGV



ENABLING TECHNOLOGY 234 APPENDIX D



APPENDIX E

SMG Reference Manual

The SMG DSM was developed to be a user-friendly system that would require minimum
preparatory work in order to get the uninitiated developer creating shared memory ap-
plication, and with little effort. This reference will give a quick introduction to building
and configuring the SMG DSM.
This Appendix gives a brief introduction to developing with the SMG API, Appendix F
(page 287) gives more comprehensive examples with code for locks, barriers, and hy-
bridised SMG/MPI application. A detailed SMG API reference and related documen-
tation is also included, see page 252.

235



SMG REFERENCE MANUAL 236 APPENDIX E

Prerequisites

To build the SMG DSM library from source, there are a number of requirements for
applications to be installed on the build machine:

autotools autotools package (which provides autoconf, automake) is required
for the build process, although SMG can be (painstakingly) build by hand
if the tool-chain is not available.

MPI SMG requires an underlying communication system, the default is to make
use of MPI, with a suggested feature that it support multi-threaded calls in
the MPI THREAD MULTIPLE.

pthreads The pthreads threading package is also frequently used in SMG , al-
though many modern operating systems provide this package as standard,
or is readily available.

R-GMA If the R-GMA information & monitoring system modules are required
to be build for SMG , then it is a requirement that it is installed. The
current implementation that comes as standard with the gLite Version 3.0
middleware distribution is supported.

Building SMG

Building SMG is a relatively trivial matter when using the supplied configure scripts.
Once the source code has been unpacked into a suitable location, then the autogen.sh
script should be run. This script invokes the standard autoconf tools which generates
a configure script configure which will be used to generate makefiles. This script has
a number of options, some of the salient one are listed in table E.1.
Once the configure script has completed successfully, then SMG can be built by running
the make command within the top-level source directory. Subsequently make install
can be invoked, if required, to install the SMG libraries, header files, and helper scripts
into the the default location, or as specified by the –prefix option to the configure script.

Option Description

–prefix=<path> Location where to install SMG
–comm-type=<type> The default communications system to use (Default: MPI)
–with-mpi=<path> This specifies the path to the MPI installation to use
–mpi-threaded=<yes/no> Specifies if the MPI library supports multi-threaded calls
–with-cc=<mpi compiler> The command name to invoke compiler (Default: mpicc)
–with-rgma=<path> Path to the R-GMA library installation
–with-smginfo=<path> Path to a prebuild SMG information system module
–with-smginfotype=<type> The default information module type to use
–with-smgmon=<path> Path to a prebuild SMG monitoring system module
–with-smgmontype=<type> The default monitoring module type to use

Table E.1: SMG DSM Core Engine Code



APPENDIX E SMG REFERENCE MANUAL 237

Compiling a SMG application

A SMG application is compiled in the same manner as one would when compiling similar
applications using the underlying system services, e.g. if MPI is to be used for commu-
nication, then the application should be compiled with the same compiler and link to
the same libraries as required by the underlying MPI distribution. The only additional
requirement is for the SMG libraries to be specified. Consider a simple ’helloworld’
application below:

/* Include the SMG API definitions with no consistency support. */
2 #include ”smg . h”

4 int main ( int argc , char ∗argv [ ] ) {
int e r ror , f l a g = (NO INFORMATION | NO MONITORING) ;

6

/* Initialise the SMG environment application without support for
8 information and monitoring services. */

e r r o r = SMG init(&argc , &argv , f l a g , NO CONSISTENCY) ;
10 i f ( e r r o r != SMG SUCCESS){

p r i n t f ( ”Cannot i n i t i a l i s e SMG! e x i t i n g \n” ) ;
12 e x i t (−1);

}
14

p r i n t f ( ” Hel lowor ld ! I ’m proce s s %d o f %d” , SMG rank , SMG size ) ;
16

e r r o r = SMG fina l i se ( ) ;
18

return e r r o r ;
20 }

Listing E.1: Hello World with SMG

When the configure script is executed it creates a smgcc script that facilitates the
development process with SMG by acting as a wrapper around the underlying compiler.
When the developer makes use of this script, the paths of SMG header files and libraries
are automatically included for the developer. However, the developer may also directly
specify alternative modules, if others than the default are required, this allows different
communication/information/monitoring modules to be easily specified at the linkage
time of the application. The helloworld.c application above can be compiled in either
manner below using the commands:

> smgcc −Wall −c −o he l l owor ld . o he l l owor ld . c
> smgcc −Wall −o he l l owor ld he l l owor ld . o

∗∗ or ∗∗
> mpicc −Wall −I$SMG HOME/ inc lude −c −o he l l owor ld . o he l l owor ld . c
> mpicc −o he l l owor ld he l l owor ld . o −L$SMG HOME/ l i b −lsmg \

−L$SMG HOME/modules/comm/ l i b −lcomm mpi t \
−L$SMG HOME/modules/ i n f o / l i b −l in foSMG nul l \
−L$SMG HOME/modules/mon/ l i b − l l o g g B a s i c \
−L$SMG HOME/modules/ u t i l / l i b − l s m g u t i l \
−lm −l p thread − l d l



SMG REFERENCE MANUAL 238 APPENDIX E

Running SMG applications

The manner of executing a SMG application is dependent on the system services that
the application was compiled with, so if MPI is used for the DSM communication, then
the application should be executed in a similar manner that a regular MPI using the
same MPI distribution would be.
The helloworld application created in the previous section, which was compiled to use
MPI for DSM engine communication, can be executed using the relevant command,
mpiexec, and MPI options such as the number of processes to start the application
with -np 4, for MPI communication the command is demonstrated below in Figure E.1,
together with the output from the execution the application.

Figure E.1: Execution of helloworld.c

Command-line options

The amount of command line options is limited at present to just three, but is expected
to expand in the future. The three options:

• -i <identifier> to specify the job identifier

• -o <identifier> the output directory for system files

• -s is the option to gather more detailed statistics than is available with the output
of SMG print state

The identifier option, -i is obligatory when the application uses a R-GMA based infor-
mation and/or monitoring system, when a SMG application is submitted as a grid job
then middleware job identifier (given by the $EDG WL JOBID environment variable for
gLite middleware) has been used successfully in this field, see page 87 for an example of
this use.



APPENDIX E DEVELOPING WITH SMG 239

E.1 Developing with SMG

The majority of SMG API definitions are located in the smg.h header file which is
detailed below on page 243. Additional definitions which are required for the use of
entry consistency (EC) are given in the smg ec.h header file described on page 276.
When developing SMG application it is sufficient to include the latter if EC is required.
The API can be broadly classified under four sections System management, shared-
memory management, synchronisation, and utility functions.

E.1.1 SMG API Quick-Reference

Listed below are the SMG API commands provided for quick-reference, more compre-
hensive API documentation is provided on page 243.

System Operations

int SMG init ( int ∗argc , char ∗∗ argv [ ] , int f l a g s , int t y p e c o n s i s t ) ;
int SMG fina l i se ( ) ;
int SMG get rank ( int ∗ rank ) ;
int SMG get size ( int ∗ s i z e ) ;

Synchronisation Operations

int SMG lock declare ( int l o c k i d , int f l a g s ) ;
int SMG read lock acquire ( int l o c k i d ) ;
int SMG write lock acqui re ( int l o c k i d ) ;
int SMG lock unlock ( int l o c k i d ) ;
int SMG barr i e r dec lare ( int b a r r i e r i d , int type ) ;
int SMG barrier ( int b a r r i e r i d , int f l a g s ) ;

Shared Memory Management

int SMG shmem malloc ( int id , int s i z e , void ∗∗ pointer , int type ,
int l o c k b i n d t o ) ;

int SMG shmem make( int id , int s i z e , void ∗∗ pointer , int type ,
int l o c k b i n d t o ) ;

int SMG shmem free ( int id ) ;
int SMG shmem map( int id , void ∗∗ po in t e r ) ;
int SMG memory get start ( int i d e n t i f i e r , void ∗∗ s t a r t ) ;
int SMG reserve ( void ∗ po inter f rom , void ∗ p o i n t e r t o ) ;
int SMG loca l 2 g loba lpt r ( void ∗ pointer , int ∗ g l o b a l ) ;
int SMG globa l 2 loca lpt r ( void ∗∗ pointer , int ∗ g l o b a l ) ;

Hybridisation Routines

int SMG shmem share ( int o b j e c t i d ) ;
int SMG shmem noshare ( int o b j e c t i d ) ;
int SMG shmem valid ( int o b j e c t i d , void ∗ s t a r t , int s i z e ) ;
int SMG shmem invalid ( int o b j e c t i d , void ∗ s ta r t , int s i z e ) ;



DEVELOPING WITH SMG 240 APPENDIX E

User Multi-threading

int SMG thread create ( pthread t ∗ t id , p t h r e a d a t t r t ∗ att r ,
void ∗ s t a r t r o u t i n e , void ∗ arg ) ;

int SMG thread join ( int t id , void ∗∗ e x i t v a l ) ;
int SMG thread count ( ) ;
int SMG thread exit ( int return code ) ;

Utility Functions

int SMG print state ( ) ;
int SMG user tag (char ∗ user tag , int l ineno , char ∗ f i l ename ) ;
int SMG work distr ibution ( int TYPE, void ∗ from , void ∗ to , int how ,

void ∗my from , void ∗my to , void ∗param ) ;
int SMG module load ( int MODULE TYPE, char ∗ l o c a t i o n ) ;
int SMG internal get ( int key , void ∗ value ) ;
int SMG interna l set ( int key , int value ) ;
int SMG get comm handle ( void ∗comm t ) ;

E.1.2 Developing with SMG - An Extended Example

This example is a simple demonstration of the multi-writer support provided in SMG .
Figure E.2 below shows the output of the application when executed with a given number
of processes. All processes initialise the SMG environment (Line 21) and the allocate
a shared memory region (Line 28). Some of the applications modify the shared region
with a value synonymous with their process rank. The barrier that the shared memory
region is bound to is subsequently invoked which results with all modifications from all
processes becoming visible at all other processes. All process terminate, but all must first
call the finalise routine (Line 81) to clean up the SMG environment and the underlying
communication system(s).

/* Include the SMG API definitions with entry consistency
2 * (extensions).

*/
4 #include ” smg ec . h”

6 #define N 2000
#define A GRID ID 3

8 #define GRID BARRIER 5

10

int main ( int argc , char ∗argv [ ] ) {
12 int ∗ a g r i d ;

int i , f l a g , e r r o r ;
14

f l a g = (NO INFORMATION | NO MONITORING) ;
16



APPENDIX E DEVELOPING WITH SMG 241

18 /* Initialise the SMG environment application without support for

* information and monitoring services. Specify EC is required.
20 */

e r r o r = SMG init(&argc , &argv , f l a g , ENTRY CONSISTENCY) ;
22

24 /* Allocate a shared memory region, size = N integers, of type EC

* that employs the barrier with identifier = GRID_BARRIER for
26 * consistency operations

*/
28 e r r o r = SMG shmem malloc (A GRID ID , (N ∗ s izeof ( int ) ) ,

( void∗∗)& a gr id , (ENTRY | NAMED BARRIER) ,
30 GRID BARRIER ) ;

32 /* Invoke a barrier to sync all processes

*/
34 e r r o r = SMG barrier (GRID BARRIER+1 ,0) ;

36

/* All processes, except rank 0, perform non-conflicting writes, with
38 * value = (100 + process_rank), to the shared memory region A.

*/
40 i f ( SMG proc rank == 0){

p r i n t f ( ”(%2d) Other p r o c e s s e s wr i t e to the memory reg i on \
42 ( Local cache :%p)\n” , SMG proc rank , a g r i d ) ;

} else {
44 for ( i =0; i < 2 ; i ++){

a g r i d [ ( SMG proc rank ∗ 3) + i ] = 100 + SMG proc rank ;
46 }

48 /* The process that modify the shared region print out a portion

* of their version of it.
50 */

p r i n t f ( ”(%2d) Write ’A ’ ” , SMG proc rank ) ;
52 for ( i =0; i < 17 ; i ++){

p r i n t f ( ”%3d ” , a g r i d [ i ] ) ;
54 }

p r i n t f ( ”\n” ) ;
56 }

58

/* Invoke the barrier which causes coherence events to be generated
60 * for any modified shared memory regions

*/
62 e r r o r = SMG barrier (GRID BARRIER, 0 ) ;

64 i f ( SMG proc rank == 0){
p r i n t f ( ”\ nBarr i e r !\n\n” ) ;

66 }

68

/* All processes again print out the same portion of the shared
70 * region



DEVELOPING WITH SMG 242 APPENDIX E

*/
72 p r i n t f ( ”(%2d) Read ’A ’ ” , SMG proc rank ) ;

for ( i =0; i < 17 ; i ++){
74 p r i n t f ( ”%3d ” , a g r i d [ i ] ) ;

}
76 p r i n t f ( ”\n” ) ;

78

/* Clean-up the SMG environment and exit.
80 */

e r r o r = SMG fina l i se ( ) ;
82

return e r r o r ;
84 }

Listing E.2: A more advanced SMG application

This application can be compiled using the same procedure as outlined on page 237.
When executed with 8 processes the output that is produced is shown below in Fig-
ure E.2. All processes except process with rank = 0, modify the shared memory region
with a specified value. Once all processes have reached the barrier, which the shared
memory region was bound to, then a portion of the shared region is printed by all
processes, all printing the same values.

Figure E.2: Multiple-Writer support in SMG



APPENDIX E SMG.H FILE REFERENCE 243

smg.h

smg_ec.h

dsm.h

E.2 smg.h File Reference

This file contains the main function prototypes for SMG DSM System.
#include <pthread.h>
#include <string.h>
#include <stdio.h>

Defines

• #define SMG FAILURE 0

Error status code signifying failure of a SMG function.

• #define SMG SUCCESS 1

Error status code returned by most of the SMG API calls signalling successful comple-
tion of the routine.

• #define INFORMATION FLAG 0x00000001

The definition of the flag that sets the system to use the information system.

• #define MONITORING FLAG 0x00000002

A definition of the flag that sets the system to use the monitoring system.

• #define ABORT FLAG 0x00000004

If requested system services such as information and/or monitoring functionality cannot
be initialised, or not available, then the SMG application will abort.

• #define NO CONSISTENCY 0x00000000

No consistency specified.

• #define SEQ CONSISTENCY 0x00000001

Sequential consistency requested.



SMG.H FILE REFERENCE 244 APPENDIX E

• #define LAZY CONSISTENCY 0x00000002

Lazy-release consistency.

• #define ENTRY CONSISTENCY 0x00000004

Entry consistency (EC) support required.

• #define COHERENCE NONE 0x00000000

No coherence option that can be specified when allocating shared memory, do the default
coherence protocol will be employed.

• #define COHERENCE UPDATE 0x00000100

Update coherence option that can be specified when allocating shared memory.

• #define COHERENCE INVAL 0x00000200

Invalidation coherence option that can be specified when allocating shared memory.

• #define COHERENCE SUBSCRIBE 0x00000800

Subscription coherence option that can be specified when allocating shared memory.

• #define LOCK UNLOCKED 0x0

The unlocked status mode for the SMG lock synchronisation primitive.

• #define LOCK READ LOCK RO

The read, or non-exclusive, status mode for the SMG lock synchronisation primitive.

• #define LOCK WRITE LOCK RW

The write, or exclusive, status mode for the SMG lock synchronisation primitive.

• #define LOCK UNKNOWN 0x4

The status mode for the SMG lock synchronisation primitive when the status is un-
known, usually because lock is at a remote process.

• #define SMG NULL -1

The SMG definition for a null memory reference.

Typedefs

• typedef long long SMG ptr

A type definition for SMG DSM shared-memory pointer.



APPENDIX E SMG.H FILE REFERENCE 245

Functions

• int SMG init (int ∗argc, char ∗∗argv[ ], int flags, int type consist)

Initialise SMG DSM System.

• int SMG finalise ()

Terminate the SMG DSM environment.

• int SMG get rank (int ∗rank)

Get the rank of the process within the SMG job.

• int SMG get size (int ∗size)

Get the total number of SMG processes in the application.

• int SMG user tag (char ∗user tag, int lineno, char ∗filename)

Allow the user to create a tag for a specified line of user code.

• int SMG barrier declare (int barrier id, int type)

Declare the use of a barrier for future use.

• int SMG barrier (int barrier id, int flags)

Invocation of a barrier operation for a specified barrier.

• int SMG sub barrier (int barrier id, int who, int flags)

Synchronise a subset of the processes in the application.

• int SMG barrier coordinator (int barrier id)

Obtain the processor rank of the coordinator for the specified barrier.

• int SMG lock declare (int lock id, int flags)

Declare the future use of a lock object with identifier lock id.

• int SMG read lock acquire (int lock id)

Acquire SMG lock in read (non-exclusive) mode.

• int SMG write lock acquire (int lock id)

Acquire the specified SMG lock primitive in write (exclusive) mode.

• int SMG lock acquire (int lock id, int mode)

Generic lock acquisition function.



SMG.H FILE REFERENCE 246 APPENDIX E

• int SMG lock unlock (int lock id)
Release a lock variable that was previously acquired.

• int SMG lock status (int lock id, int ∗status)
Obtain the local status of a lock primitive.

• int SMG shmem malloc (int id, int size, void ∗∗pointer, int type, int sync -
bind to)

Allocate a block of shared memory.

• int SMG shmem make (int id, int size, void ∗∗pointer, int type, int sync bind -
to)

Make an existing memory region sharable.

• int SMG shmem free (int id)
free (locally) all the resources of a shared memory with the global identifier id.

• int SMG shmem noshare (int object id)
Disable the active sharing of a shared memory region.

• int SMG shmem share (int object id)
Enable the active sharing of a shared memory region.

• int SMG shmem valid (int object id, void ∗start, int size)
Validate a given section of a shared memory area.

• int SMG shmem invalid (int object id, void ∗start, int size)
Invalidate a given section of a shared memory area.

• int SMG shmem flush (int object id)
Flush modification to a shared memory region.

• int SMG memory get identifier (void ∗∗ptr, int ∗identifier)
Find the shared object identifier of a given memory location.

• int SMG memory get consistency (int identifier, int ∗type)
Get the consistency type for a specific shared memory region.

• int SMG memory get size (int identifier, int ∗size)
Obtain the size (bytes) of a shared memory region.



APPENDIX E SMG.H FILE REFERENCE 247

• int SMG memory get start (int identifier, void ∗∗start)
Get the start of the local cached version of the specified shared memory region.

• int SMG memory get owner (int identifier, int ∗owner)
Get the owner of a shared memory region.

• int SMG memory set granularity (int identifier, int granularity)
Set the granularity (in bytes) for the sharing of a shared memory region.

• int SMG memory get granularity (int identifier, int ∗granularity)
Get the sharing granularity for a given shared memory region.

• int SMG local 2 globalptr (void ∗pointer, int ∗global)
Convert a local memory reference to a global reference for passing between processes.

• int SMG global 2 localptr (void ∗∗pointer, int ∗global)
Convert a global memory reference to a local reference for passing references between
processes.

• int SMG thread create (pthread t ∗tid, pthread attr t ∗attr, void ∗start -
routine, void ∗arg)

Wrapper call around underlying thread creation routine.

• int SMG thread count ()
Return the number of user threads currently alive.

• int SMG thread exit (int code)
User thread exit routine.

• int SMG thread join (int tid, void ∗∗exit val)
SMG wrapper to underlying join (pthread join) call.

• void SMG print state ()
Print the current internal status of DSM engine.

• int SMG module load (int MODULE TYPE, char ∗location)
Load a SMG module that provides extra DSM functionality.

• int SMG set default consistency (int consistency)
Set the default consistency to be used with any memory allocation.



SMG.H FILE REFERENCE 248 APPENDIX E

• int SMG get default consistency ()

Get the default memory consistency.

• int SMG have consistency (int consistency)

Query the system to see if the specified consistency code is supported.

• void SMG local response time ()

Simple test to return the time for a local DSM system call.

• void SMG remote response time (int remote)

Simple test to return the time for a remote DSM system call.

• int SMG consistency supported (int type, int ∗supported)

Test to see if a given consistency level is supported.

• int SMG internal get (int key, int ∗value)

Get the value of an internal DSM attribute.

• int SMG internal set (int key, int value)

Set the value of an internal DSM attribute.

• int SMG get comm handle (int ∗handle)

Set a communication handle, handle, to the underlying communication infrastructure.

• int SMG work distribution (int TYPE, void ∗from, void ∗to, int how, void
∗my from, void ∗my to, void ∗param)

Divide workload among processes according to given criteria.

Variables

• int SMG proc size

This specifies the number of processes that in the application.

• int SMG proc rank

The rank of the process in the pool of processes.



APPENDIX E SMG.H FILE REFERENCE 249

E.2.1 Detailed Description

This file contains the main function prototypes for SMG DSM System.
The SMG library is a DSM implementation that allows for the development of appli-
cations in a shared memory programming style. This file smg.h ( p. 243) specifies the
API used to develop applications with the SMG DSM.

E.2.2 Define Documentation

#define SMG FAILURE 0

Error status code signifying failure of a SMG function.

See also:

SMG SUCCESS (p. 249)

Most SMG functions return an error status code signifying the success or failure of a
given SMG function invocation. This error status code as its name suggests indicates
an unsuccessful invocation of a SMG function.

#define SMG SUCCESS 1

Error status code returned by most of the SMG API calls signalling successful completion
of the routine.

See also:

SMG FAILURE (p. 249)

Most SMG functions return an error status code signifying the success or failure of a
given SMG function invocation. This error status code as its name suggests indicates
successful invocation of the SMG function.

#define INFORMATION FLAG 0x00000001

The definition of the flag that sets the system to use the information system.

Warning:

If the underlying system cannot initialise correctly, then the application will not
abort, unless requested to do so.

This flag is used in the bit-field of operations provided to the flags parameter of the
SMG init routine results in the use of information system by the DSM being enabled,
otherwise it is not used to devise a topology tree for DSM engine and communication
optimisation. The information system used by SMG will be whatever is compiled with
the application. A corresponding NO INFORMATION flag also exists for requesting
that no information system be used.



SMG.H FILE REFERENCE 250 APPENDIX E

#define MONITORING FLAG 0x00000002

A definition of the flag that sets the system to use the monitoring system.

Warning:

If the underlying monitoring system cannot initialise correctly, then the application
will not abort, unless requested to do so.

The monitoring system allows for the system logging of monitoring data. This flag is
specified in the bit-field of operations provided to the flags parameter of the SMG init
routine results in the use of monitoring system by the DSM being enabled, otherwise
it is not used. The monitoring system employed will be whatever is compiled with
the application. A corresponding NO MONITORING flag also exists for requesting no
monitoring system use.

#define ABORT FLAG 0x00000004

If requested system services such as information and/or monitoring functionality cannot
be initialised, or not available, then the SMG application will abort.
The system will abort if information monitoring is requested, and not available, otherwise
the system will continue using a topology-unaware approach if the complementary NO -
ABORT flag is used.

#define NO CONSISTENCY 0x00000000

No consistency specified.
As consistences are specified in a bit-field, this is defined mainly for testing of DSM.

#define SEQ CONSISTENCY 0x00000001

Sequential consistency requested.

Warning:

Although not supported in SMG, it is defined for future use.

#define LAZY CONSISTENCY 0x00000002

Lazy-release consistency.

Warning:

Although not supported in SMG, it is defined for future use.



APPENDIX E SMG.H FILE REFERENCE 251

#define ENTRY CONSISTENCY 0x00000004

Entry consistency (EC) support required.
Entry Consistency (EC) is default consistency model supported in SMG.

#define COHERENCE NONE 0x00000000

No coherence option that can be specified when allocating shared memory, do the default
coherence protocol will be employed.
This flag is specified in the bit-field of options to the flags field of SMG init .

#define COHERENCE UPDATE 0x00000100

Update coherence option that can be specified when allocating shared memory.
This flag is specified in the bit-field of options to the flags field of SMG init .

#define COHERENCE INVAL 0x00000200

Invalidation coherence option that can be specified when allocating shared memory.

Warning:

This option is still in development, and may produce errors!

This flag is specified in the bit-field of options to the flags field of SMG init .

#define COHERENCE SUBSCRIBE 0x00000800

Subscription coherence option that can be specified when allocating shared memory.
This flag is specified in the bit-field of options to the flags field of SMG init .

#define LOCK UNLOCKED 0x0

The unlocked status mode for the SMG lock synchronisation primitive.

#define LOCK READ LOCK RO

The read, or non-exclusive, status mode for the SMG lock synchronisation primitive.

#define LOCK WRITE LOCK RW

The write, or exclusive, status mode for the SMG lock synchronisation primitive.

#define LOCK UNKNOWN 0x4

The status mode for the SMG lock synchronisation primitive when the status is unknown,
usually because lock is at a remote process.



SMG.H FILE REFERENCE 252 APPENDIX E

#define SMG NULL -1

The SMG definition for a null memory reference.

E.2.3 Typedef Documentation

typedef long long SMG ptr

A type definition for SMG DSM shared-memory pointer.
A DSM pointer has two components, an object id, & offset, that are required to be
passed between two processes to correctly resolve potential conflicts that may arise with
differences in location of shared memory regions at different processes. This primitive is
used to encode both into a single primitive.

Warning:

Problems will arise with the use of the typedef in 64-bit environments

E.2.4 Function Documentation

int SMG init (int ∗ argc, char ∗∗ argv[ ], int flags, int type consist)

Initialise SMG DSM System.

Parameters:

argc pointer to the argument count.
argv pointer to the list of arguments that were passed to main.
flags flags the set the default behaviour
type consist the memory consistences required by the developer.

See also:

SMG system finalise()

Returns:

The SMG error status code
Warning:

This call should be called only once, repeated calls will produce undefined results.

Initialise the DSM system infrastructure, command line parameters are passed to this
function. This function must be called before any other SMG call is invoked. The
underlying communication infrastructure will be initialised through this function. The
call will fail if the requested consistency type(s), or system services, are not available.
The argv and argc are the arguments, and number of, that were passed into the main
function of the application. The flags field allows the developer to specify a selection of
default characteristics e.g. default coherence mechanism – COHERENCE UPDATE . If
a given flag can be passed in the flags field of this call, then this will expressly specified
in that flag’s documentation in this manual.



APPENDIX E SMG.H FILE REFERENCE 253

SMG finalise ()

Terminate the SMG DSM environment.

Returns:

The SMG error status code

See also:

SMG system init()

Cleanly terminate the DSM environment in preparation for exiting of the process, this
includes de-allocation of internal data structures and closing/removing internal files used
by the DSM engine are closed. All processes must call this routine before exiting. The
underlying communication mechanism(s) are also closed, so subsequently no further calls
to communication handles may be performed that were obtained using SMG get comm -
handle. This functions acts as an implicit barrier that ensures all processes have called
this function before returning.

SMG get rank (int ∗ rank)

Get the rank of the process within the SMG job.

Parameters:

rank pointer to location to store the process’ rank

Returns:

The SMG error status code

See also:

SMG get size(int ∗size) (p. 253);

Warning:

No further SMG routines may be invoked subsequently to this routine.

This function will return the unique process identifier, or rank, of the calling process
which will be in the range of 0..(N-1), where N is the total number of processes as
returned by the call SMG get size() ( p. 253).

SMG get size (int ∗ size)

Get the total number of SMG processes in the application.

Parameters:

size pointer to location to store the number of SMG processes.in the application.



SMG.H FILE REFERENCE 254 APPENDIX E

Returns:

The SMG error status code

See also:

SMG get rank(int ∗rank) (p. 253)

Return the number of SMG processes participating in the application. This value is
determined at run-time and should equal the number of processes the application is
started with.

// This code snippet demonstrates the use of four basic SMG routines.

// Include the header file with SMG API definitions.
#include "smg.h"

int main (int argc, char *argv[]){
int flag, error, i, j;

// The request for information and monitoring systems are specified as
// a bit-field in the flags field of the initialisation routine.
flag = (INFORMATION_FLAG | MONITORING_FLAG);

// Initialise the DSM, with no consistency model implementation.
error = SMG_init(&argc, &argv, flag, NO_CONSISTENCY);
if (error != SMG_SUCCESS){

printf("SMG_init Unsuccessful!\n");
exit(-1);

}

SMG_get_rank(&i);
SMG_get_size(&j);
printf("I am process %d of %d\n", i, j);

error = SMG_finalise();
if (error != SMG_SUCCESS){

printf("Error while calling SMG_finalise!\n");
}

return error;
}

SMG user tag (char ∗ user tag, int lineno, char ∗ filename)

Allow the user to create a tag for a specified line of user code.

Parameters:

user tag String containing the user tag

lineno line number within the code file



APPENDIX E SMG.H FILE REFERENCE 255

filename Name for the file

Returns:

The SMG error status code

This function allows the user to specify a descriptive tag for a given line of code, then
this tag can be referenced for instrumentation of code and by other components of the
DSM such as the monitoring system. A C macro exists that wraps this call that uses
the standard LINE and FILE macros.

SMG barrier declare (int barrier id, int type)

Declare the use of a barrier for future use.

Parameters:

barrier id the numerical identifier of the barrier
type the default characteristics of the barrier

Returns:

The SMG error status code

This function to initialise a barrier primitive is primarily used to change the default
behaviour of a barrier primitive where the default is not appropriate, where this call
is not performed then default behaviour will result. An important characteristic is
the algorithm used to implement the barrier, possible choices include the BINARY -
TOPAWARE BARRIER or simpler CENTRAL SERVER BARRIER algorithms one of
which can be passed in the type field.

SMG barrier (int barrier id, int flags)

Invocation of a barrier operation for a specified barrier.

Parameters:

barrier id the numerical identifier of the barrier
flags Field specifies the local operation of the barrier within the local process.

Returns:

The SMG error status code

This function invokes a barrier synchronisation operation on the primitive specified by
the barrier id identifier. By default, a process in the SMG application will wait at this
location until all process have reached the barrier. The default behaviour may be altered
by specifying appropriate flags such as FIRST T FIRE , or ALL T FIRE that specify
when the local barrier event may fire. For shared memory regions that employ a relaxed
consistency model their related memory coherence events may occur in conjunction with
this synchronisation call.



SMG.H FILE REFERENCE 256 APPENDIX E

int SMG sub barrier (int barrier id, int who, int flags)

Synchronise a subset of the processes in the application.

Parameters:

barrier id the numerical identifier of the barrier

flags Specifies the local operation of the barrier within the

who Specifies what processes to take part in the operation local process.

Todo

Further development work to optimise this routine needs to be performed.

Warning:

No coherence operation occur with this variant of the barrier sync. primitive

Returns:

The SMG error status code

This function synchronises a subset of the processes in the SMG application, the pro-
cesses take part in the ’waiting’ section of operation are governed by the who parameter.
Like the SMG barrier call, the default behaviour may be altered by specifying appropri-
ate flags such as FIRST T FIRE , or ALL T FIRE that specify when the local barrier
event may fire. Memory coherence operations do not occur on a ’sub’ barrier due to the
potential for inconsistencies with shared memory region(s) to unintentionally arise.

SMG barrier coordinator (int barrier id)

Obtain the processor rank of the coordinator for the specified barrier.

Parameters:

barrier id the numerical identifier of the barrier

Returns:

The process rank of the barrier coordinator.

This function returns the rank of the process that coordinates the operation of barrier
primitive, specified by the identifier barrier id . This function can ultimately prove useful
for barrier operations that will involve memory coherence operations allowing developers
to more efficiently employ such mechanisms.



APPENDIX E SMG.H FILE REFERENCE 257

SMG lock declare (int lock id, int flags)

Declare the future use of a lock object with identifier lock id .

Parameters:

lock id The numerical identifier of the lock

flags specifying the default behaviour of the lock

Returns:

The SMG error status code

Warning:

Repeated calls to this primitive after the lock has been utilised with the other lock
routines may result in undefined behaviour.

SMG lock declare allows the user to predeclare the use of a lock and modify its default
behaviour by specifying the flags field. If this function is to be used, then all process
should invoke the call for a given lock before use of the other lock routines on the
primitive.

SMG read lock acquire (int lock id)

Acquire SMG lock in read (non-exclusive) mode.

Parameters:

lock id Identifier of the lock to acquire

See also:

SMG write lock acquire(int lock id) (p. 258)

Returns:

The SMG error status code

This function will acquire a lock primitive in read (non-exclusive) mode, this is a syn-
chronous call and will return with status SMG SUCCESS if the operation has succeeded,
while any number of processes may concurrently hold a lock primitive in non-exclusive
mode. A function will succeed if the primitive is not already in exclusive mode. Re-
peated invocations of the same primitive i.e. using the same lock id will result in un-
defined behaviour. Consistency related operations for shared memory regions allocated
with SMG shmem malloc may be performed in conjunction with this call.



SMG.H FILE REFERENCE 258 APPENDIX E

SMG write lock acquire (int lock id)

Acquire the specified SMG lock primitive in write (exclusive) mode.

Parameters:

lock id Identifier of the lock to acquire

See also:

SMG read lock acquire(int lock id) (p. 257)

Returns:

The SMG error status code

This function is similar in operation to SMG write lock acquire, and is used to acquire
a SMG lock in exclusive mode. This is a synchronous call and will return with status
SMG SUCCESS if the operation has succeeded. Only one process may hold a lock
primitive in exclusive mode, the function will succeed if the primitive is not already
acquired in either exclusive or non-exclusive mode. Repeated invocations of the same
primitive i.e. using the same lock id will result in undefined behaviour. Consistency
related operations for shared memory regions allocated with SMG shmem malloc may
be performed in conjunction with this call. If the lock is held in write mode it enjoys all
the privileges accorded to read mode.

int SMG lock acquire (int lock id, int mode)

Generic lock acquisition function.

Parameters:

lock id Identifier of the lock to acquire in the specified mode.

mode the mode to acquire the lock in: read or write.

See also:

SMG read lock acquire(int lock id) (p. 257)
SMG write lock acquire(int lock id) (p. 258)

This function is provided as a utility function and is essentially serves as a wrapper
around the primary lock acquisition functions: SMG write lock acquire and SMG read -
lock acquire. The mode in which the lock is acquired is specified via the mode field and
is either LOCK WRITE or LOCK READ .

SMG lock unlock (int lock id)

Release a lock variable that was previously acquired.



APPENDIX E SMG.H FILE REFERENCE 259

Parameters:

lock id Identifier of the lock to release.

Returns:

The SMG error status code

This function will perform a release of a lock synchronisation primitive so that the
status of the lock will be either: LOCK READ , LOCK UNLOCKED or LOCK -
UNKNOWN . The lock will remain in LOCK READ mode if the local process had
delegated non-exclusive mode access to another process in the previous interval, while
LOCK UNLOCKED signifies that the lock is owned locally but is not held acquired in
either exclusive or non-exclusive mode.

// This code snippet demonstrates the use of SMG synchronisation routines.
#include "smg_ec.h"

// Define the identifiers for the lock & barrier
#define FOO_LOCK 1
#define BAR_BARRIER 2
#define SHMEM_ID 1

int main (int argc, char *argv[]){
int flag, error, my_rank;
int *temp_int;

// Request for information and monitoring systems
flag = (INFORMATION_FLAG | MONITORING_FLAG);

// Initialise the DSM, with no consistency model implementation.
error = SMG_init(&argc, &argv, flag, NO_CONSISTENCY);
if (error != SMG_SUCCESS){

printf("SMG_init Unsuccessful!\n");
exit(-1);

}
SMG_get_rank(&my_rank);

// Allocate a small shared memory region, bind it to use with FOO_LOCK
error = SMG_shmem_malloc(SHMEM_ID, (2 * sizeof(int)),

(void**)&temp_int, (ENTRY | BIND_LOCK), FOO_LOCK);

// Acquire the lock, print out a message, and release
SMG_write_lock_acquire(FOO_LOCK);

*temp_int = my_rank;
SMG_lock_unlock(FOO_LOCK);

// All process then wait for all others to print out the message
SMG_barrier(BAR_BARRIER, 0);

// Processes find out which of them was last to acquire the lock!
SMG_read_lock_acquire(FOO_LOCK);
printf("Last process to write to shared variable: %d\n", *temp_int);



SMG.H FILE REFERENCE 260 APPENDIX E

SMG_lock_unlock(FOO_LOCK);

error = SMG_finalise();
if (error != SMG_SUCCESS){

printf("Error while calling SMG_finalise!\n");
}

return error;
}

SMG lock status (int lock id, int ∗ status)

Obtain the local status of a lock primitive.

Parameters:

lock id Identifier of the lock to obtain the status of.

status Pointer to location where to return status of a lock

Returns:

The SMG error status code

This utility function will return the local status of the specified lock primitive in the
location pointed to by the status field. The value will either be LOCK WRITE , LOCK -
READ , LOCK UNLOCKED or LOCK UNKNOWN . The LOCK UNKNOWN signifies
that the local process is unaware of the status of a primitive as the owner is a remote
process.

int SMG shmem malloc (int id, int size, void ∗∗ pointer, int type, int sync bind to)

Allocate a block of shared memory.

Parameters:

id the numerical reference for the block of shared memory to allocate

size the size of the shared memory area (bytes).

pointer location to store the reference of the shared region

type the characteristics of the shared memory region

sync bind to Is a parameter ultimately passed to the memory sharing mechanism

Warning:

This function should not be called repeatedly for the same shared memory identifier
within the same synchronisation interval without the corresponding use of the free
function SMG shmem free() ( p. 261) to release the resources



APPENDIX E SMG.H FILE REFERENCE 261

Returns:

The SMG error status code

This function allocates a block of shared memory of size bytes with a globally unique
identifier id , and maps it into the local process address space at the location referenced
by the pointer field. The type field is a bit-field that allows the developer to specify the
characteristics of the shared memory region is to created with, these include consistency,
and the write-collection technique that should be employed. Not all processes partic-
ipating in the application are required to call the function, but all processes that call
the routine with the same shared memory identifier should specify the same arguments.
However, in the case there a process does not call the routine, the shared memory region
will not be mapped into the local address space i.e. no local ’cache’ exists.
The sync bind to parameter is type-specific and is ultimately passed to the collection
of sharing mechanisms specified by the type field. For example, with entry consistency
(EC), this specifies the identifier of the synchronisation primitive to bind to the use of
the newly shared memory region.

SMG shmem make (int id, int size, void ∗∗ pointer, int type, int sync bind to)

Make an existing memory region sharable.

Parameters:

id the identifier of the shared region

size the size of the shared location

pointer reference to a pointer to the memory region to share

type the characteristics of the shared memory region

sync bind to Is a parameter ultimately passed to the memory sharing mechanism

Returns:

The SMG error status code

Warning:

the existing location must of been allocated using mmap() routine

This function is used to make a preallocated local memory region sharable. The memory
region must be allocated on a page boundary, so it is highly advisable that the region
was allocated using the mmap system call to ensure no further memory allocations use
any part of its constituent virtual memory page(s).

SMG shmem free (int id)

free (locally) all the resources of a shared memory with the global identifier id .



SMG.H FILE REFERENCE 262 APPENDIX E

Parameters:

id Identifier of the shared memory area to free.

Returns:

The SMG error status code

This function will free all resources consumed (twin area, diffs, internal handles) by the
local process in the local cache of the shared memory area globally identified by id . The
data may not be removed under certain circumstances such as when the local process is
the memory region’s owner and remote processes may require the use of the region in
the future.

SMG shmem noshare (int object id)

Disable the active sharing of a shared memory region.

Parameters:

object id Identifier of region to share

Returns:

The SMG error status code

See also:

SMG shmem share(int object id) (p. 262)

At certain stages in the execution of an application it may be desirable to turn off the
global sharing (DSM management) for a given shared memory region. This functionality
can be achieved using the SMG shmem noshare routine. The shared memory region to
disable sharing on is specified in the object id field. Once this call has successfully
returned no further DSM consistency/coherence actions will result until active sharing
of the region is re-enabled using the complementary function SMG shmem share. Once
this function returns, the local cache can be modified as the developer sees fit.
This routine instructs the DSM engine to make a copy of the shared area for future
comparison to be performed when DSM control of the area is re-enabled.

SMG shmem share (int object id)

Enable the active sharing of a shared memory region.

Parameters:

object id Identifier of region to share

Returns:

The SMG error status code



APPENDIX E SMG.H FILE REFERENCE 263

See also:

SMG shmem noshare(int object id) (p. 262)

This routine is used to re-enable the active sharing of a given shared memory region.
Any consistency related operations that need to take place will take place at the next
appropriate point e.g. in the case of an entry consistent shared region this will be the
next relevant synchronisation operation for that region. Before the routine is called the
shared memory region needs to be properly validated using the provided routines SMG -
shmem valid or SMG shmem invalid to ensure that no conflicts arise with the cached
copies of the shared memory region across all processes.
The current status of a shared area is compared with the copy that was created with
the invocation of the SMG shmem noshare routine. Any differences that arise will be
signalled to the DSM engine in order to take consistency related actions at the next
appropriate point.

SMG shmem valid (int object id, void ∗ start, int size)

Validate a given section of a shared memory area.

Parameters:

object id Identifier of region to share

start pointer to start of section to validate

size the size (bytes) to validate

Returns:

The SMG error status code

See also:

SMG shmem invalid(int object id, void ∗start, int size) (p. 263)

The SMG shmem valid routine is used to ensure that no conflicts arise with the local
cache of a shared memory region that may have arose intentionally/unintentionally when
DSM sharing of the area was disabled. With this function these conflicts are removed
by copying the specified section from the copy made of the original that was made when
SMG shmem noshare was invoked. All other sections of the shared memory will be
refreshed from the original copy made at the call to SMG shmem noshare.

SMG shmem invalid (int object id, void ∗ start, int size)

Invalidate a given section of a shared memory area.

Parameters:

object id Identifier of region to share.



SMG.H FILE REFERENCE 264 APPENDIX E

start Pointer to the beginning of the region to invalidate
size Number of bytes to invalidate

Returns:

The SMG error status code
See also:

SMG shmem valid(int object id, void ∗start, int size) (p. 263)

This function is a complementary function to SMG shmem valid ,

SMG shmem flush (int object id)

Flush modification to a shared memory region.

Parameters:

object id Identifier of region to share

Returns:

The SMG error status code
Warning:

Results of this function are non-deterministic where multiple processes call this
function concurrently.

This function results in the local modifications to a specified shared memory region
been flushed to all other processes without the use of error checking or event-ordering
that would be available through normal use with relaxed-consistency mechanisms. The
shared memory region may be left in an inconsistent state across all local caches if more
than one process executes this routine concurrently.

int SMG memory get identifier (void ∗∗ ptr, int ∗ identifier)

Find the shared object identifier of a given memory location.

Parameters:

ptr memory location to query
identifier pointer where to store id, if it exists, -1 if no object maps to the specified

location
Returns:

SMG error code

This utility function is provided to ascertain if a given memory location is within a SMG
shared memory region. If the memory location specified by ptr , is within the shared
memory region that was allocated using a routine like SMG shmem malloc, then that
region’s identifier will be stored to the location pointed to by identifier .



APPENDIX E SMG.H FILE REFERENCE 265

SMG memory get consistency (int identifier, int ∗ type)

Get the consistency type for a specific shared memory region.

Parameters:

identifier Numerical identifier of region to get consistency of.
type The memory region’s consistency

Returns:

The SMG error status code

This routine will return the consistency type for a shared memory region specified by
identifier . If the identifier maps to a valid shared memory region then the type field
will correctly identify the consistency. If the shared memory region does not exist, or no
local cache of the object is present then consistency type NO CONSISTENCY will be
set.

SMG memory get size (int identifier, int ∗ size)

Obtain the size (bytes) of a shared memory region.

Parameters:

identifier Identifier of shared memory region to obtain the size of.
size Location to store the size of the shared memory region.

Returns:

The SMG error status code

This utility function is provided to obtain the size of the shared memory region, if the
region doesn’t exist then the size will be set to 0.

SMG memory get start (int identifier, void ∗∗ start)

Get the start of the local cached version of the specified shared memory region.

Parameters:

identifier Identifier of region to share
start A pointer to a reference giving the start of the shared memory area.

Returns:

The SMG error status code

This routine is provided to enable user code to obtain the start in the local address space
for a shared memory region. Different processes within the same SMG application may
return different values as a given shared memory region may be mapped at different
locations in the virtual address spaces for different processes.



SMG.H FILE REFERENCE 266 APPENDIX E

SMG memory get owner (int identifier, int ∗ owner)

Get the owner of a shared memory region.

Parameters:

identifier Numerical identifier of region to get the owner of

owner Location which to store the process rank of the region’s owner

Returns:

The SMG error status code

All shared memory regions have an owner, which is responsible for the region’s global
management, this routine is provided to enable a user application to obtain this process
identifier.

SMG memory set granularity (int identifier, int granularity)

Set the granularity (in bytes) for the sharing of a shared memory region.

Parameters:

identifier Identifier of the shared region

granularity Granularity to set shared region to (in bytes)

Returns:

The SMG error status code

Warning:

Experimental code!

This routine enables the setting of the default granularity for the sharing of an object
i.e. the smallest region at which write conflicts may be detected, the default is 4 bytes.
It may prove highly beneficial in terms of write-collection performance, if the sharing
granularity can be set to a value that better suits the application, as the default value
may prove too small especially in circumstances where the default primitive used in the
application is larger.

int SMG memory get granularity (int identifier, int ∗ granularity)

Get the sharing granularity for a given shared memory region.

Parameters:

identifier Identifier of region to get granularity of

granularity location where to store the requested item’s granularity.



APPENDIX E SMG.H FILE REFERENCE 267

Returns:

The SMG error status code

See also:

SMG memory set granularity (p. 266)

Complementary function to SMG memory set granularity to get the granularity of a
shared memory region specified by identifier .

SMG local 2 globalptr (void ∗ pointer, int ∗ global)

Convert a local memory reference to a global reference for passing between processes.

Parameters:

pointer local reference to transform into a global reference

global the resulting global reference to a shared memory location

Returns:

The SMG error status code

See also:

SMG global 2 localptr (p. 267)

It may be desirable to pass references to shared memory regions between processes of
an application. Two main barriers to passing references directly are (i) shared memory
regions may be mapped at different locations in the virtual address space of the two
different processes, and (ii) memory references may be of incompatible sizes at different
processes i.e. one process is 32-bit while the other has 64-bit addressing. This function
solves this problem solves this by allowing the user to convert a local memory reference
to a global shared memory reference.

SMG global 2 localptr (void ∗∗ pointer, int ∗ global)

Convert a global memory reference to a local reference for passing references between
processes.

Parameters:

pointer pointer to local reference that the global reference is transformed to.

global the global reference to obtain the local reference of.

Returns:

The SMG error status code



SMG.H FILE REFERENCE 268 APPENDIX E

See also:

SMG local 2 globalptr (p. 267)

This is the complementary function that transforms a global shared memory reference
created using SMG local 2 globalptr , possibly at a remote process, to a pointer that is a
valid local reference to a shared memory region.

SMG thread create (pthread t ∗ tid, pthread attr t ∗ attr, void ∗ start routine, void ∗ arg)

Wrapper call around underlying thread creation routine.

Parameters:

tid the thread identifier returned by the underlying pthread creation routine.

attr attributes passed to the thread creation

start routine Function pointer to entry function for the new thread

arg Argument to the function, if required, to entry function of new thread.

Returns:

The error code code returned by the underlying thread package

This routine is a wrapper around the thread creation routine of the underlying threads
packages (only pthreads currently supported). It is important for the DSM engine to
be aware of thread creation/finalisation as certain functionality, namely SMG barriers,
requires the DSM to know the count of user threads in the application. By wrapping
the underlying threading package in this way this count can be achieved. The prototype
of this function mimics that of the pthread thread creation call. If the user thread is not
created using this call then it is invisible to the DSM engine.

SMG thread count ()

Return the number of user threads currently alive.

Returns:

The number of user threads alive in the local process.

This routine returns the number of threads created using SMG thread create, and that
have not yet exited.

SMG thread exit (int code)

User thread exit routine.

Parameters:

code Exit code of the user thread



APPENDIX E SMG.H FILE REFERENCE 269

Returns:

The SMG error status code

This routine is user to return the number of user threads, created using SMG thread -
create, and that are running in the local process. If the user thread was not created
using this call, then it is not visible and is not in the count returned.

SMG thread join (int tid, void ∗∗ exit val)

SMG wrapper to underlying join (pthread join) call.

Parameters:

tid Thread identifier

exit val pointer to a reference where the exit code of the thread is set

Returns:

The SMG error status code

This routine is used to join a thread created using the SMG thread create routine. The
exit value of the thread, with identifier tid , will be stored at the location pointed to by
the reference exit val . It forms a wrapper around the underlying thread package’s join
call.

// This code snippet demonstrates the use of SMG threading routines.

// Include the header file with SMG API definitions.
#include "smg.h"

int some_function(void *ptr){
printf("I am thread #%d of SMG process %d",

(int)pthread_self(), SMG_rank);
return 0;

}

int main (int argc, char *argv[]){
int flag, error, i, j;

// The request for information and monitoring systems are specified as
// a bit-field in the flags field of the initialisation routine.
flag = (INFORMATION_FLAG | MONITORING_FLAG);

// Initialise the DSM, with no consistency model implementation.
error = SMG_init(&argc, &argv, flag, NO_CONSISTENCY);
if (error != SMG_SUCCESS){

printf("SMG_init Unsuccessful!\n");
exit(-1);

}



SMG.H FILE REFERENCE 270 APPENDIX E

// Create a user thread that will be visible to the DSM, it
// will execute some_function
SMG_thread_create(&tid, &attr, &some_function, NULL)

// Main user thread also calls the function
some_function(NULL);

// Wait for created thread to finish
SMG_thread_join(tid, &exit_val);

error = SMG_finalise();
if (error != SMG_SUCCESS){

printf("Error while calling SMG_finalise!\n");
}

return error;
}

void SMG print state ()

Print the current internal status of DSM engine.

Returns:

The SMG error status code

This routine will print to stdout a description of the internal state of the DSM en-
gine which includes a count of all DSM resources used, and their status, by the user
application - locks, barriers, threads, and shared memory regions.

SMG module load (int MODULE TYPE, char ∗ location)

Load a SMG module that provides extra DSM functionality.

Parameters:

MODULE TYPE The type of DSM module to load

location Path to location of the object file with the required functionality

Returns:

The SMG error status code

The SMG DSM engine can be easily extended by developing extra functionality that im-
plements the type of interface specified by MODULE TYPE . Possible values for the mod-
ule type are: SMG MOD CONSIST, SMG MOD COHEREN, SMG MOD COLLECT.



APPENDIX E SMG.H FILE REFERENCE 271

SMG set default consistency (int consistency)

Set the default consistency to be used with any memory allocation.

Parameters:

consistency The default consistency type.

Returns:

The SMG error status code

This routine sets the default memory consistency type for any memory allocation not
specifying a memory consistency type.

SMG get default consistency ()

Get the default memory consistency.

Returns:

The default code for the default shared memory consistency.

SMG have consistency (int consistency)

Query the system to see if the specified consistency code is supported.

Parameters:

consistency The consistency to check to see if supported.

Returns:

The SMG error status code

SMG local response time ()

Simple test to return the time for a local DSM system call.

Returns:

The time in milliseconds

Simple test that calculates the minimum response time to invoke a DSM operation in
the local process (more/less the response time of the DSM engine). This utility function
is again provided as a means for the user to perform simple benchmarking of the system.



SMG.H FILE REFERENCE 272 APPENDIX E

SMG remote response time (int remote)

Simple test to return the time for a remote DSM system call.

Parameters:

remote the remote process to take part in the call

Returns:

The time in milliseconds

Simple test that calculates the minimum response time to invoke an operation at a
remote process with the identifier specified by remote. This utility function is provided
as a means for the user to perform simple benchmarking of the system.

SMG consistency supported (int type, int ∗ supported)

Test to see if a given consistency level is supported.

Parameters:

type

supported

Returns:

The SMG error status code

SMG internal get (int key, int ∗ value)

Get the value of an internal DSM attribute.

Parameters:

key the internal item to obtain the value of

value location where to store the value of the specified item

Returns:

The SMG error status code

See also:

SMG internal set (p. 273)

This function is used to get the value of an internal DSM attribute specified by the key
attribute. The internal attributes that can be queried govern the internal operation of
the DSM engine, while really only use by for DSM protocol implementers, it is provided
here for completeness.



APPENDIX E SMG.H FILE REFERENCE 273

SMG internal set (int key, int value)

Set the value of an internal DSM attribute.

Parameters:

key the internal item to obtain the value of

value the internal value to set the internal attribute to.

Returns:

The SMG error status code

Warning:

Use of this function with values unknown to the DSM system may have adverse
side-effects.

See also:

SMG internal get (p. 272)

This routine together with its complementary function is used to query and set internal
DSM engine attributes. Theses attributes or environment variables can change the
default behaviour of DSM functionality where the default ’best case’ does not prove
adequate. This function while only for experienced developers and DSM implementers,
is provided for completeness. E.g. this function can be used to alter the default number
of internal DSM threads created by the engine.

SMG get comm handle (int ∗ handle)

Set a communication handle, handle, to the underlying communication infrastructure.

Parameters:

handle a pointer to the location where the communication handle is to initialised.

Returns:

The SMG error status code

Warning:

The underlying communication system should support multiple independent threads
utilising the communication system concurrently, otherwise behaviour is undefined.
Any handle returned by SMG get comm handle ceases to valid once SMG finalise
is called by the application.

The function returns a communication handle for use with the underlying communication
infrastructure that was initialised with the SMG init call, and used internally by SMG
DSM engine. This handle can be availed of in user code for accessing the communication
system directly.



SMG.H FILE REFERENCE 274 APPENDIX E

// This code snippet demonstrates use of the underlying communications

// Include the header file with SMG API definitions.
#include "smg_ec.h"

// Also include the
#include "mpi.h"

int main (int argc, char *argv[]){
int flag, error, i, j, comm_handle;

// The request for no information and monitoring systems are specified
// as a bit-field in the flags field of the initialisation routine.
flag = (NO_INFORMATION | NO_MONITORING);

// Initialise the DSM, with entry consistency requested.
error = SMG_init(&argc, &argv, flag, NO_CONSISTENCY);
if (error != SMG_SUCCESS){

printf("SMG_init Unsuccessful!\n");
exit(-1);

}

error= SMG_get_comm_handle(&mpi_handle);
if (error != SMG_SUCCESS){

printf("Error obtaining communication handle!\n");
exit(-1);

}

// Use the handle to access the underlying communication system.
MPI_Barrier(comm_handle);

error = SMG_finalise();
if (error != SMG_SUCCESS){

printf("Error while calling SMG_finalise!\n");
}

return error;
}

SMG work distribution (int TYPE, void ∗ from, void ∗ to, int how, void ∗ my from, void ∗ my to,
void ∗ param)

Divide workload among processes according to given criteria.

Parameters:

TYPE The primitive that the values from and to represent

from The start of the work distribution to divide among processes

to the end of the range of work to divide among processes

how the method of decomposing work among all processes



APPENDIX E SMG.H FILE REFERENCE 275

my from The resulting start of the work distribution for the local process

my to The end of the work distribution assigned to the local process

param Optional parameter to the work distribution function.

Returns:

The SMG error status code

Warning:

Due to rounding errors there may be some rounding errors associated with some
implementations where the TYPE is a floating point number.

This routine is used to divide up the workload among all processes in the contiguous
range from to to according to a specified strategy (specified using how , and can be one
of the work distribution functions such as SMG BLOCK or SMG CYCLIC), and the
support provided by the information system, if it was instantiated.

E.2.5 Variable Documentation

int SMG proc size

This specifies the number of processes that in the application.
This variable states the number of processes in the SMG DSM application, although the
function SMG get size also exists, this variable is constant throughout the application
i.e. this variable will specify the number of processes the application was started with.
This will prove useful if dynamic process creation capabilities are added in the future.

int SMG proc rank

The rank of the process in the pool of processes.
This variable states the rank of the process in the SMG DSM application, although the
function SMG get rank also exists, this variable is constant throughout the application
i.e. this variable will specify the processes rank when the application was started with.
This will prove beneficial if dynamic process creation capabilities are added in the future.



SMG EC.H FILE REFERENCE 276 APPENDIX E

smg_ec.h ec_shmem.h

consistency.c

ec_shmem.c

ut il.c

E.3 smg ec.h File Reference

Additional definitions for use of Entry Consistency (EC) with SMG DSM System. This
file also ’includes’ the definitions in smg.h (p. 243).
#include "smg.h"

Defines

• #define BIND LOCK 0x0000010
A definition of the flag specified in a SMG malloc invocation that sets the system to
bind memory to a lock synchronisation primitive.

• #define ALL BARRIER 0x0000020
A definition of the flag that sets the system to bind memory to all barriers.

• #define NAMED BARRIER 0x0000040
The flag that sets the system to bind memory to a given barrier.

• #define DYNAMIC BARRIER 0x0000080
The flag that sets the system to bind memory to any barrier at run-time.

Functions

• int SMG memory get sync (int identifier, int ∗type, int ∗prim id)
Get the bound synchronisation primitive for an EC shared memory region.

E.3.1 Detailed Description

Additional definitions for use of Entry Consistency (EC) with SMG DSM System. This
file also ’includes’ the definitions in smg.h (p. 243).
The SMG library is a DSM implementation that allows for the development of applica-
tions in a shared memory programming style. This file specifies extra flags necessary to
develop shared-memory applications involving entry consistency. These extra definitions



APPENDIX E SMG EC.H FILE REFERENCE 277

specify what synchronisation primitive to bind to the use at the allocation of a shared
memory region.

E.3.2 Define Documentation

#define BIND LOCK 0x0000010

A definition of the flag specified in a SMG malloc invocation that sets the system to
bind memory to a lock synchronisation primitive.
Memory type allocation variables EC only

#define ALL BARRIER 0x0000020

A definition of the flag that sets the system to bind memory to all barriers.

#define NAMED BARRIER 0x0000040

The flag that sets the system to bind memory to a given barrier.

#define DYNAMIC BARRIER 0x0000080

The flag that sets the system to bind memory to any barrier at run-time.

E.3.3 Function Documentation

int SMG memory get sync (int identifier, int ∗ type, int ∗ prim id)

Get the bound synchronisation primitive for an EC shared memory region.

Parameters:

identifier Numerical identifier of region to get information on.

type Type of synchronisation primitive that shared region bound to.

prim id Primitive identifier of type specified by type.

Returns:

The SMG error status code

Warning:

The value obtained may be inconclusive if the process is not the owner of the lock
when this function is invoked.

This routine obtains the identifier of the synchronisation primitive that the shared mem-
ory region is bound to. The type of the synchronisation primitive is specified by type
field and could be one of BIND LOCK , ALL BARRIER etc.



SMG SOURCE MANIFEST 278 APPENDIX E

E.4 SMG Source Manifest

The tables below (Tables E.2-E.7) give a brief synopsis of the source code files for the
implementation of the SMG DSM, also given is a line count for each file. This manifest
only includes SMG engine code from ’.c’ files, many of the files have corresponding ’.h’
header files (but are referred to in the include graphs below), but are omitted.
Figure E.3 below gives a pictorial representation of the include graph for dsm.h, the
code for the main DSM engine core. Code graphs for other sections of the code are given
below on page 282.

dsm.c

dsm.h

comm.h

internal.h

memory_management.h

shmem.h

barrier.h

lock.h

ut il.h

smg_info.h

pthread.h

handle.h

smg_ut ils.h

smg_mon.h

smg.h

string.h

stdio.h

stdlib.h

comm_smg.h

unistd.h

sys/t ime.h

Figure E.3: dsm.c source file include graph



APPENDIX E SMG SOURCE MANIFEST 279

File Name Description Lines

abort.c API Function implementations for DSM System abort rou-
tines

190

barrier.c API Function implementations for DSM System barrier rou-
tines

1,430

coherence.c Implementation for core DSM coherence operations 247
collection.c Implementation for core DSM write-collection operations 225
comm.c Communication management logic for the DSM engine 518
consistency.c Implementation for core DSM consistency operations 220
dsm.c Function implementations for DSM System engine entry exit 929
finalise.c Implementation of finalisation API, plus cleanup routines for

SMG
405

flush.c Implementation of flush operation of shared memory 576
ft.c Initial support for fault tolerance in SMG 160
info.c Implementation of core information-system operations for

SMG
466

init.c Implementation of initialisation API, plus start-up routines
for SMG

640

internal.c Internal API implementation and functionality for DSM en-
gine code

432

lock.c Implementation of SMG lock API 1966
memory management.c Implementation of functions required for internal memory

management performed by the DSM System engine
1003

pointer.c Implementation of pointer/reference routines in the SMG
API

194

shmem.c Implementation of memory management routines of the
SMG API

1759

thread.c User multi-threading support in the SMG API 427
updates.c Core DSM logic to process updates within the DSM engine 577
util.c Generic routines utilised by many sections of the DSM im-

plementation
929

Table E.2: SMG DSM Core Engine Code



SMG SOURCE MANIFEST 280 APPENDIX E

File Name Description Lines

linux-2 6.c Operating system abstraction layer implementation for
Linux 2.4 and 2.6 kernels

458

Table E.3: SMG OS independence

File Name Description Lines

coher inval.c Implementation for invalidation coherence protocol 778
coher subscr.c Implementation of subscription protocol for SMG DSM Sys-

tem
1801

coher update.c Implementation of update coherence protocol for SMG DSM
System

423

collect raw.c Implementation of ’raw’ write-collection strategy in the SMG
DSM System

594

diff.c Implementation of ’diff’ write-collection strategy in the SMG
DSM System

1100

ec shmem.c Extra memory management routines providing the EC sup-
port in SMG

902

Table E.4: SMG Consistency Implementations

File Name Description Lines

comm smg Basic.c Generic routines used by all communication implementations 202
comm smg mpi.c Single-threaded MPI communication system implementation

for DSM engine
826

comm smg mpi t.c Multi-threaded MPI communication system implementation
for DSM engine

894

comm smg mpi sim t.c Multi-threaded MPI communication system implementation
with latency simulation for DSM engine

1087

comm smg pvm.c Single-threaded PVM communication system implementa-
tion for DSM engine

720

Table E.5: SMG communication



APPENDIX E SMG SOURCE MANIFEST 281

File Name Description Lines

info-rgma-2.4.c Information system implementation using R-GMA API from
LCG-2.4

823

info-rgma-2.6.c Information system implementation using R-GMA API from
LCG-2.6

1174

info-rgma-2.7.c Information system implementation using R-GMA API from
LCG-2.7/gLite-3.0

1282

info-rgma-share.c Shared generic routines used across R-GMA implementa-
tions

138

info-file.c File-based information system implementation 974
info-null.c A NULL back-end implementation for the information sys-

tem
317

mon-rgma-2.4.c Monitoring system implementation using R-GMA API from
LCG-2.4

201

mon-rgma-2.6.c Monitoring system implementation using R-GMA API from
LCG-2.6

254

mon-rgma-2.7.c Monitoring system implementation using R-GMA API from
LCG-2.7/gLite-3.0

196

mon-file t.c Monitoring system implementation using log-files directly 210
mon-null.c A NULL back-end implementation for the monitoring system 164
rgma tools Common utility code for R-GMA based services 978

Table E.6: SMG Information & Monitoring

File Name Description Lines

bitarray.c Bit-field/array utility functions for manipulating these struc-
tures

328

data init.c Routines for verifying integrity of shared memory (debug-
ging)

196

handle.c Generic structure used with the DSM engine and related
support

576

proc status.c Routines for accessing process information(debug support 147
smg utils.c Timing routines used internally by the DSM (for debugging) 175

Table E.7: SMG Utility Code



SMG SOURCE MANIFEST 282 APPENDIX E

init .c

getopt .h

t ime.h

sys/resource.h

comm_smg.h

dsm.h

internal.h

lock.h

shmem.h

barrier.h

thread.h

info.h

ut il.h

ft .h

memory_management.h

pthread.h

handle.h

smg_ut ils.h

comm.h

smg_mon.h

smg.h
string.h

stdio.h

stdlib.h

unistd.h

sys/t ime.h

Figure E.4: Initialisation code include graph



APPENDIX E SMG SOURCE MANIFEST 283

memory_management.c

fcnt l.h

signal.h

stdio.h

string.h

sys/mman.h

sys/stat .h

sys/types.h

dsm.h

ut il.h

internal.h

memory_management.h

lock.hupdates.h

shmem.h

consistency.h

coherence.h

pthread.h

handle.h

smg_ut ils.h

comm.h

smg_mon.h

smg.h

unistd.h

sys/t ime.h

stdlib.h

comm_smg.h

Figure E.5: Memory management code include graph



SMG SOURCE MANIFEST 284 APPENDIX E

finalise.c

dsm.h

comm.h

internal.h

lock.h

shmem.h

barrier.h

info.h

thread.h

memory_management.h

ut il.h

ft .h

collect ion.h

pthread.h

handle.h

smg_ut ils.h

smg_mon.h

smg.h

string.h

stdio.h

stdlib.h

comm_smg.h

unistd.h

sys/t ime.h

Figure E.6: finalise.c code include graph



APPENDIX E EXTENDING SMG 285

E.5 Extending SMG

SMG can be extended in many areas, most noticeably in the areas of consistency models,
coherence protocols, write-collection strategies, new communication sub-systems, infor-
mation, and monitoring services by implementing the required interface as defined by the
files - consistency.h, coherence.h, collection.h, comm.h, info.h, and mon.h respectively.
The additional modules can be compiled as shared object, ’.so’, files and loaded at run-
time either (a) explicitly using the SMG module load API call, or (b) by specifying the
path to the shared object file and module type (as specified in ) pairing in the .smgrc
user configuration file that is located in the user’s home directory.
It must be noted that extending the SMG DSM can be demanding at best and requires
a deep understanding of its internal workings, this fact is demonstrated by the include
graph for the entry consistency implementation shown in Figure E.7.

ec_shmem.c

fcnt l.h

signal.h

stdio.h

string.h

sys/mman.h

sys/stat .h

sys/types.h

dsm.h

internal.h

ut il.h

lock.h

barrier.h

memory_management.h

shmem.h

info.h

updates.h

consistency.h

coherence.h

collect ion.h

ec_shmem.h pthread.h

handle.h

smg_ut ils.h

comm.h

smg_mon.h

smg.h

stdlib.h

comm_smg.h

unistd.h

sys/t ime.h

smg_ec.h

Figure E.7: ec shmem.c code include graph



EXTENDING SMG 286 APPENDIX E



APPENDIX F

SMG Applications

This Appendix lists some SMG sample applications that were developed using the
SMG API. These three applications solve similar computation tasks such as matrix-
multiply and Laplace, but each uses different constructs of the SMG API to imple-
ment the problem. For the sake of brevity error checking of SMG function invocations
are not performed.

287



SMG APPLICATIONS 288 APPENDIX F

SMG Example Code (Locks)

The following code listing implements a MRSW approach to matrix multiplication using
SMG locks. This implementation will perform poorly compared to the other versions
below as only one process may access the shared region to store that processes part of
the result data at any given time. It is primarily provided to demonstrate the MRSW
functionality offered by SMG .

Synopsis: The application, once initialisation has taken place (Line 30), allocates three
shared memory regions to store the two matrices to be multiplied, A and B, and the
resultant matrix C. The former two are initialised to defined values and are bound to the
use of one particular lock which will later be acquired in read (non-exclusive) mode by all
processes concurrently, while the resultant matrix is bound to a different lock primitive.
Once a process has acquired the lock used to guard access to the incident matrices they
proceed to perform the matrix multiplication for their portion of the resultant matrix.
The output is temporarily buffered as all processes cannot concurrently hold the lock
guarding the result matrix C. Each process will acquire this lock in turn and update
their portion of the shared memory result matrix from the buffer. All processes will
subsequently wait at a barrier until all processes have completed this task.

#include <s t d i o . h>
2

/* Include the SMG API definitions with entry consistency (extensions).
4 */

#include ” smg ec . h”
6

#define DIM 512
8 #define A ID 1

#define B ID 2
10 #define OFFSETS 3

#define C ID 4
12 #define CALCS 5

#define AB LOCK 1
14 #define C LOCK 2

16 int main ( int argc , char ∗∗ argv ){
int i , j , k , count , e r r o r ;

18 int b u f f e r [DIM ] [ DIM ] ;
int ∗∗a , ∗∗b , ∗∗ c ;

20 int ∗temp , ∗ o f f s e t s ;

22 long long t e s t l o n g ;
int my f i r s t , my last , num rows , rem ;

24 int rows , dest , c a l c s = 0 ;

26

/* Initialise the SMG environment application with support for
28 * information but not monitoring services. Specify EC is required.

*/



APPENDIX F SMG APPLICATIONS 289

30 SMG init(&argc , &argv , INFORMATION FLAG, ENTRY CONSISTENCY) ;

32 i f ( SMG proc rank == 0){
SMG write lock acqui re (AB LOCK) ;

34 SMG write lock acqui re (C LOCK) ;
}

36

a = ( int ∗∗) mal loc (DIM ∗ s izeof ( int ∗ ) ) ;
38 b = ( int ∗∗) mal loc (DIM ∗ s izeof ( int ∗ ) ) ;

c = ( int ∗∗) mal loc (DIM ∗ s izeof ( int ∗ ) ) ;
40

42 /* Allocate shared memory for the two incident matrices A & B,

* and create 2-dimensional arrays using this space.
44 */

SMG shmem malloc (A ID , (DIM ∗ DIM ∗ s izeof ( int ) ) ,
46 ( void ∗)&temp , 0 , AB LOCK) ;

a [ 0 ] = temp ;
48 for ( i = 1 ; i < DIM; i++) {

a [ i ] = a [ i −1] + DIM;
50 }

SMG shmem malloc ( B ID , (DIM ∗ DIM ∗ s izeof ( int ) ) ,
52 ( void ∗)&temp , 0 , AB LOCK) ;

b [ 0 ] = temp ;
54 for ( i = 1 ; i < DIM; i++) {

b [ i ] = b [ i −1] + DIM;
56 }

58 /* Allocate a buffer to store values for the work distribution

* among processes.
60 */

SMG shmem malloc (OFFSETS, ( ( SMG proc size + 1) ∗ s izeof ( int ) ) ,
62 ( void ∗)& o f f s e t s , 0 , AB LOCK) ;

64

/* Allocate the shared memory ho hold the resultant matrix C, bind
66 * it to the use of synchronisation primitive C_LOCK.

*/
68 SMG shmem malloc (C ID , (DIM ∗ DIM ∗ s izeof ( int ) ) ,

( void ∗)&temp , 0 , C LOCK) ;
70 c [ 0 ] = temp ;

for ( i = 1 ; i < DIM; i++) {
72 c [ i ] = c [ i −1] + DIM;

}
74

76 /* Let the master process initialise the incident matrices A & B.

*/
78 i f ( SMG proc rank == 0){

// Init the grid
80 for ( i =0; i<DIM; i ++){

for ( j =0; j<DIM; j++){
82 a [ i ] [ j ]= i + j ;



SMG APPLICATIONS 290 APPENDIX F

b [ i ] [ j ]= i ∗ j ;
84 }

}
86

num rows = ( int ) (DIM / SMG proc size ) ;
88 rem = DIM % SMG proc size ;

o f f s e t s [ 0 ] = 0 ;
90

/* Distribute the work fairly among all processes
92 */

for ( des t = 1 ; des t < SMG proc size ; des t++){
94 i f ( rem != 0){

rows = num rows + 1 ;
96 rem−−;

} else {
98 rows = num rows ;

}
100 o f f s e t s [ des t ] = o f f s e t s [ dest −1] + rows ;

}
102 o f f s e t s [ SMG proc size ] = DIM;

104 SMG lock unlock (AB LOCK) ;
SMG lock unlock (C LOCK) ;

106 }

108

/* Synchronise all processes at this point
110 */

SMG barrier (0 , SMG DEFAULT TYPE) ;
112

SMG read lock acquire (AB LOCK) ;
114 m y f i r s t = o f f s e t s [ SMG proc rank ] ;

my last = ( o f f s e t s [ SMG proc rank + 1])−1;
116

118 /* Then begin the computation

*/
120 for ( i = 0 ; i < DIM; i ++){

for ( j = m y f i r s t ; j < my last ; j++){
122 b u f f e r [ j ] [ i ] = 0 ;

for ( k = 0 ; k < DIM; i ++){
124 b u f f e r [ i ] [ k ] += a [ i ] [ j ] ∗ b [ j ] [ k ] ;

}
126 }

}
128

130 /* Each process will now acquire the lock guarding the resultant matrix

*/
132 SMG write lock acqui re (C LOCK) ;

for ( i = 0 ; i < DIM; i ++){
134 for ( j = m y f i r s t ; j < my last ; j++){

c [ j ] [ i ] = b u f f e r [ j ] [ i ] ;



APPENDIX F SMG APPLICATIONS 291

136 }
}

138

140 /* Release lock and hand over to another process.

*/
142 SMG lock unlock (C LOCK) ;

SMG lock unlock (AB LOCK) ;
144

146 /* All processes synchronise at this point

*/
148 SMG barrier ( 1 , 0 ) ;

150

/* The master process will then acquire the lock to ensure it has
152 * a complete and consistent result-set.

*/
154 i f ( SMG proc rank == 0){

SMG read lock acquire (C LOCK) ;
156 SMG lock unlock (C LOCK) ;

}
158

/* Clean-up the SMG environment and exit.
160 */

SMG fina l i se ( ) ;
162

return 0 ;
164 }



SMG APPLICATIONS 292 APPENDIX F

SMG Example Code (Barriers)

The following code listing demonstrates the MRMW capabilities of SMG by performing
Laplace using barriers for synchronisation.

Synopsis: The application first initialises the SMG environment with a call to SMG init.
The use of the underlying information and monitoring system is requested, and will be
used if available. The shared memory space for the 2-d matrix used for the computation
is allocated and bound to the use of the specified barrier primitive. The master process
then initialises the grid to its initial state which to perform the Laplace operation on.
The barrier is invoked which results in coherence operations distributing the initial grid
among all processes in the application. Next, all processes proceed to solve their section
of the grid, at the barrier all partial results performed by a given process will be dis-
tributed to all others, this operation will be repeated for a given number of iterations
(MAXITER iterations, unless specified by user on command line).

#include <s t d i o . h>
2

/* Include the SMG API definitions with entry consistency (extensions).
4 */

#include ” smg ec . h”
6

#define XSIZE 1024
8 #define YSIZE XSIZE

#define MAX(x , y ) ( ( ( x ) > ( y ) ) ? x : y )
10

#define PI 3.1415927
12 #define NITER 10

#define MAXITER 101
14 #define t o l e r a n c e 0 .1E−3

#define U GRID ID 3
16 #define GRID BARRIER 4

18 int lap main ( ) ;

20 double temp matrix [ XSIZE ] [ YSIZE ] ;
double ∗ u gr id ;

22 double ∗∗u ;
double time1 , time2 ;

24 double sum , dt ;
int f i r s t , l a s t , n i t e r , checksum ;

26

int main ( int argc , char ∗∗ argv ){
28 int x , y , i , e r ro r , f l a g ;

30 checksum = 0 ;
f l a g = (INFORMATION FLAG | MONITORING FLAG) ;

32

/* Initialise the SMG environment application with support for both
34 * information and monitoring services. Specify EC is required.



APPENDIX F SMG APPLICATIONS 293

*/
36 e r r o r = SMG init(&argc , &argv , f l a g , ENTRY CONSISTENCY) ;

38 time1 = time (NULL) ;

40 i f ( argc > 1){
n i t e r = a t o i ( argv [ 1 ] ) ;

42 } else {
n i t e r = MAXITER;

44 }

46 f i r s t = SMG proc rank ∗ (XSIZE / SMG proc size ) ;
l a s t = ( ( SMG proc rank+1) ∗ (XSIZE / SMG proc size ) ) − 1 ;

48 i f ( f i r s t == 0){
f i r s t ++;

50 }
i f ( l a s t == (XSIZE−1)){

52 l a s t −−;;
}

54

// malloc u, barrier (ID = barrier_id), named,
56 e r r o r = SMG shmem malloc (U GRID ID , (XSIZE ∗ YSIZE ∗ s izeof (double ) ) ,

( void∗∗)& u gr id , (ENTRY | NAMED BARRIER) ,
58 GRID BARRIER) ;

60 /* Map shared memory area, u_grid, into the 2-dimensional array, u.

*/
62 u = (double∗∗) mal loc (XSIZE ∗ s izeof (double ∗ ) ) ;

u [ 0 ] = u gr id ;
64 for ( i = 1 ; i < YSIZE ; i++) {

u [ i ] = u [ i −1] + YSIZE ;
66 }

68 /* The master process will initialise the grid to a specified state

*/
70 i f ( SMG proc rank == 0){

72 for ( x = 1 ; x < (XSIZE − 1 ) ; x++){
for ( y = 1 ; y < (YSIZE − 1 ) ; y++){

74 u [ x ] [ y ] = s i n ( ( double ) ( x−1)/XSIZE∗PI )
+ cos ( ( double ) ( y−1)/YSIZE∗PI ) ;

76 }
}

78

for ( x = 0 ; x < (XSIZE ) ; x++){
80 u [ x ] [ 0 ] = 0 . 0 ;

u [ x ] [ YSIZE−1] = 0 . 0 ;
82 }

84 for ( y = 0 ; y < (YSIZE ) ; y++){
u [ 0 ] [ y ] = 0 . 0 ;

86 u [ XSIZE−1] [ y ] = 0 . 0 ;
}



SMG APPLICATIONS 294 APPENDIX F

88 }

90 /* Synchronise the initial grid across all processes in the application

*/
92 SMG barrier (GRID BARRIER, 0 ) ;

94 SMG print state ( ) ;

96 p r i n t f ( ”(%2d) s t a r t : %4d , end : %4d\n” ,
SMG proc rank , f i r s t , l a s t ) ;

98

for ( x = 0 ; x < (XSIZE ) ; x++){
100 for ( y = 0 ; y < (YSIZE ) ; y++){

temp matrix [ x ] [ y ] = u [ x ] [ y ] ;
102 }

}
104

/* Enter the main Laplace routine
106 */

lap main ( ) ;
108

time2 = time (NULL) ;
110 p r i n t f ( ” time=%g\n” , d i f f t i m e ( time2 , time1 ) ) ;

112 SMG print state ( ) ;

114

/* Clean-up the SMG environment and exit.
116 */

SMG fina l i se ( ) ;
118

return 0 ;
120 }

122

int lap main ( ){
124 int x , y , k ;

126 for ( k = 0 ; k < n i t e r ; k++){
/* Perform the allotted portion of the work to this process.

128 */
for ( x = f i r s t ; x <= l a s t ; x++){

130 for ( y = 1 ; y < YSIZE ; y++){
u [ x ] [ y ] = ( temp matrix [ x−1] [ y ] + temp matrix [ x +1] [ y ] +

132 temp matrix [ x ] [ y−1] + temp matrix [ x ] [ y+1]) / 4 . 0 ;
}

134 }

136 /* Synchronise partial results across all processes

*/
138 SMG barrier (GRID BARRIER, 0 ) ;

140 /* Perform a quick check-sum to check for convergence



APPENDIX F SMG APPLICATIONS 295

*/
142 dt = 0 . 0 ;

sum = 0 . 0 ;
144

for ( x = 1 ; x < (XSIZE − 1 ) ; x++){
146 for ( y = 1 ; y < (YSIZE ) ; y++){

sum += ( temp matrix [ x ] [ y]− u [ x ] [ y ] ) ;
148 dt = MAX( fabs (u [ x ] [ y ] − temp matrix [ x ] [ y ] ) , dt ) ;

temp matrix [ x ] [ y ] = u [ x ] [ y ] ;
150 }

}
152

i f ( ( k% NITER) == 0 && SMG proc rank == 0) {
154 p r i n t f ( ”(%2d) [%4d ] sum = %3.6 f , dt = %3.6 f \n” ,

SMG proc rank , k , sum , dt ) ;
156 }

}
158

i f ( dt > t o l e r a n c e && SMG proc rank == 0){
160 p r i n t f ( ”\nEnd [%4d ] sum = %3.6 f , dt = %3.6 f \n” ,

k , sum , dt ) ;
162 }

164 return 0 ;
}



SMG APPLICATIONS 296 APPENDIX F

SMG Example Hybrid Code

The following code listing implements a hybridised version of the Laplace application
with the main communication overhead caused by the DSM system now removed
and replaced with MPI routines (see Lines 173-205). The same functionality as that
given on page 292. However, this (rather contrived) version aims to demonstrate the
hybridisation features of SMG that enables MPI code to be inserted where the DSM
overhead dictates that it should, as the MPI code modifies the shared region DSM
sharing must be turned off before MPI calls access it (see Line 156), and turned on
when no more MPI code is required (Line 225).

Synopsis: This application starts by first initialising the system with the invocation
of SMG init requesting for the information and monitoring features to be employed.
Once this has completed a handle to the underlying communication system is obtained
using the SMG get comm handle routine, this handle will be used subsequently for
inserting hybrid-MPI code into the application. The shared memory storing the 2-
dimensional grid for the application is allocated and bound to the use of the barrier
primitive GRID BARRIER.
The master process initialises the grid to a defined state and all barriers then call a
barrier routine on the primitive which syncs the application’s grid, thus the initialised
grid is consistent across all processes. At the entry of the Laplace function the DSM-
managed sharing of the grid is disabled using the SMG shmem noshare API call, and
the application proceeds to modify the grid, and then share border rows of the grid
with adjacent processes using MPI routines. When the application has performed the
specified number of iterations, by niter, then the shared grid is validated with a call to
SMG shmem valid to ensure there is no transient conflicts between local cached versions
of the shared grid between different processes, then DSM sharing of the grid is re-enabled
using the SMG shmem share routine. Finally the DSM finalisation routine is called to
clean-up the DSM environment and the underlying communication system, after this
point MPI call may no longer be invoked.

1 /* Include the SMG API definitions with entry consistency (extensions),

* also include MPI as this is a hybrid code.
3 */

#include ” smg ec . h”
5 #include ”mpi . h”

7 #define XSIZE 1024
#define YSIZE XSIZE

9 #define MAX(x , y ) ( ( ( x ) > ( y ) ) ? x : y )

11 #define PI 3.1415927
#define NITER 10

13 #define MAXITER 1
#define t o l e r a n c e 0 .1E−3

15 #define U GRID ID 3
#define GRID BARRIER 4



APPENDIX F SMG APPLICATIONS 297

17

19 int lap main ( ) ;

21

double uu [ XSIZE ] [ YSIZE ] ;
23 double ∗ u gr id ;

double ∗∗u ;
25 double time1 , time2 ;

double sum , dt ;
27

int comm handle ;
29 MPI Status s t a t u s ;

31 int f i r s t , l a s t , n i t e r , checksum ;
int messages sent , data sent , temp data , temp mess ;

33

35 int main ( int argc , char ∗∗ argv ){
int x , y , i , e r ro r , f l a g ;

37

messages sent = data sent = 0 ;
39 checksum = 0 ;

f l a g = (INFORMATION FLAG | MONITORING FLAG) ;
41

/* Initialise the SMG environment application with support for both
43 * information and monitoring services. Specify EC is required.

*/
45 e r r o r = SMG init(&argc , &argv , f l a g , ENTRY CONSISTENCY) ;

time1 = time (NULL) ;
47

49 /* Get a handle to the underlying communication system, in this case

* that is provided by an MPI implementation.
51 */

e r r o r = SMG get comm handle(&comm handle ) ;
53

i f ( argc > 1){
55 n i t e r = a t o i ( argv [ 1 ] ) ;

} else {
57 n i t e r = MAXITER;

}
59

61 /* Devise this processes share of the work to be done

*/
63 f i r s t = SMG proc rank ∗ (XSIZE / SMG proc size ) ;

l a s t = ( ( SMG proc rank+1) ∗ (XSIZE / SMG proc size ) ) − 1 ;
65 i f ( f i r s t == 0){

f i r s t ++;
67 }

i f ( l a s t == (XSIZE−1)){
69 l a s t −−;;



SMG APPLICATIONS 298 APPENDIX F

}
71

73 /* Allocate the shared memory for the application’s grid, bind the

* grid to the use of the barrier primitive with id = GRID_BARRIER.
75 */

e r r o r = SMG shmem malloc (U GRID ID , ( XSIZE∗YSIZE ∗ s izeof (double ) ) ,
77 ( void∗∗)& u gr id , (ENTRY | NAMED BARRIER) ,

GRID BARRIER) ;
79

/* Map the allocated shared memory into a nice 2-d array format
81 */

u = (double∗∗) mal loc (XSIZE ∗ s izeof (double ∗ ) ) ;
83 u [ 0 ] = u gr id ;

for ( i = 1 ; i < YSIZE ; i++) {
85 u [ i ] = u [ i −1] + YSIZE ;

}
87

89 /* Let the master process initialise the grid

*/
91 i f ( SMG proc rank == 0){

93 for ( x = 1 ; x < (XSIZE − 1 ) ; x++){
for ( y = 1 ; y < (YSIZE − 1 ) ; y++){

95 u [ x ] [ y ] = s i n ( ( double ) ( x−1)/XSIZE∗PI ) +
cos ( ( double ) ( y−1)/YSIZE∗PI ) ;

97 }
}

99

for ( x = 0 ; x < (XSIZE ) ; x++){
101 u [ x ] [ 0 ] = 0 . 0 ;

u [ x ] [ YSIZE−1] = 0 . 0 ;
103 }

105 for ( y = 0 ; y < (YSIZE ) ; y++){
u [ 0 ] [ y ] = 0 . 0 ;

107 u [ XSIZE−1] [ y ] = 0 . 0 ;
}

109 }

111 /* Synchronise the grid across all processes.

*/
113 SMG barrier (GRID BARRIER, 0 ) ;

115 for ( x = 0 ; x < (XSIZE ) ; x++){
for ( y = 0 ; y < (YSIZE ) ; y++){

117 uu [ x ] [ y ] = u [ x ] [ y ] ;
}

119 }

121 SMG print state ( ) ;



APPENDIX F SMG APPLICATIONS 299

123 /* Perform the Laplace operation

*/
125 lap main ( ) ;

127 time2 = time (NULL) ;
p r i n t f ( ” time=%g\n” , d i f f t i m e ( time2 , time1 ) ) ;

129

SMG print state ( ) ;
131

MPI Allreduce ( &data sent , &temp data , 1 ,
133 MPI INT , MPI SUM, comm handle ) ;

MPI Allreduce ( &messages sent , &temp mess , 1 ,
135 MPI INT , MPI SUM, comm handle ) ;

i f ( SMG proc rank == 0){
137 p r i n t f ( ” Total data sent :%d (%d)\n” , temp data , data sent ) ;

p r i n t f ( ” Total messages sent :%d\n” , temp mess ) ;
139 }

141 /* Clean-up the SMG environment and exit.

*/
143 SMG fina l i se ( ) ;

145 return 0 ;
}

147

149 int lap main ( ){
int x , y , k ;

151 double temp sum , temp dt ;

153 /* Turn off DSM managed sharing of the shared region holding the

* grid to perform the Laplace operation on
155 */

SMG shmem noshare (U GRID ID ) ;
157

159 /* For the specified number of iterations perform the relaxation

*/
161 for ( k = 0 ; k < n i t e r ; k++){

163 for ( x = f i r s t ; x <= l a s t ; x++){
for ( y = 1 ; y < YSIZE ; y++){

165 u [ x ] [ y ] = (uu [ x−1] [ y ] + uu [ x +1] [ y ] + uu [ x ] [ y−1]
+ uu [ x ] [ y+1]) / 4 . 0 ;

167 }
}

169

/* Share my locally modified perimeter cells with neighbouring
171 * processes (where applicable) using MPI routines.

*/
173

i f ( SMG proc rank > 0){
175 MPI Recv ( u [ f i r s t −1] , XSIZE , MPI DOUBLE,



SMG APPLICATIONS 300 APPENDIX F

( SMG proc rank − 1) , 0 , comm handle , &s t a t u s ) ;
177 MPI Send ( u [ f i r s t ] , XSIZE , MPI DOUBLE,

( SMG proc rank − 1) , 1 , comm handle ) ;
179 data sent += (XSIZE ∗ s izeof (double ) ) ;

messages sent++;
181 }

183 i f ( SMG proc rank < SMG proc size − 1){
MPI Send ( u [ l a s t ] , XSIZE , MPI DOUBLE,

185 ( SMG proc rank + 1) , 0 , comm handle ) ;
MPI Recv ( u [ l a s t +1] , XSIZE , MPI DOUBLE,

187 ( SMG proc rank + 1) , 1 , comm handle , &s t a t u s ) ;
da ta s ent += (XSIZE ∗ s izeof (double ) ) ;

189 messages sent++;
}

191

for ( x = f i r s t ; x <= l a s t ; x++){
193 // for(x = 1; x < (XSIZE - 1); x++){

for ( y = 1 ; y < (YSIZE ) ; y++){
195 sum += (uu [ x ] [ y]− u [ x ] [ y ] ) ;

dt = MAX( fabs (u [ x ] [ y ] − uu [ x ] [ y ] ) , dt ) ;
197 uu [ x ] [ y ] = u [ x ] [ y ] ;

}
199 }

201 MPI Allreduce ( &sum , &temp sum , 1 , MPI DOUBLE, MPI SUM,
comm handle ) ;

203 MPI Allreduce ( &dt , &temp dt , 1 , MPI DOUBLE, MPI MAX,
comm handle ) ;

205

207 i f ( ( k% NITER) == 0 && SMG proc rank == 0){
p r i n t f ( ”(%2d) [%4d ] sum = %3.8 f , dt = %3.8 f \n” ,

209 SMG proc rank , k , sum , dt ) ;
}

211 } // for

213 SMG print state ( ) ;
p r i n t f ( ”(%2d) Out o f MPI hybrid loop \n” , SMG proc rank ) ;

215

/* Validate the shared region to remove potential inconsistencies
217 * between processes.

*/
219 SMG shmem valid (U GRID ID , u [ f i r s t ] ,

( s izeof (double ) ∗ YSIZE ∗ ( ( l a s t − f i r s t )+1) ) ) ;
221 p r i n t f ( ”(%2d) U Val idated \n” , SMG proc rank ) ;

223 /* Re-enable DSM-managed sharing of the shared memory region

*/
225 SMG shmem share (U GRID ID ) ;

p r i n t f ( ”(%2d) U shared again \n” , SMG proc rank ) ;
227

/* Synchronise the shared region using the barrier



APPENDIX F SMG APPLICATIONS 301

229 */
SMG barrier (GRID BARRIER, 0 ) ;

231

p r i n t f ( ”(%2d) Shared + b a r r i e r ( ) = U c o n s i s t e n t \n” ,
233 SMG proc rank ) ;

235 i f ( dt > t o l e r a n c e ){
i f ( SMG proc rank == 0){

237 p r i n t f ( ”\nEnd [%4d ] sum = %3.8 f , dt = %3.8 f \n” ,
k , sum , dt ) ;

239 }
}

241 return 0 ;
}



SMG APPLICATIONS 302 APPENDIX F



GLOSSARY

ADI Abstract Device Interface, 223
API Application Programming Interface, 2

BST Binomial Spanning Tree, 127

CAF Co-Array FORTRAN, 17
CE Compute Element, 28
CPU Central Processing Unit, 13

DSM Distributed Shared Memory, 2

EC Entry Consistency, 48
EGEE Enabling Grids for E-sciencE, 28

FT-MPI Fault Tolerant MPI, 225

GGF Global Grid Forum, 66
GMA Grid Monitoring Architecture , 66
GSI Grid Security Infrastructure, 62

HCG Homogeneous Computational Grid, 31
HOT Hierarchical Optimised Tree, 127
HPC High Performance Computing, 64
HPF High Performance FORTRAN, 17, 24

jdl job description language, 87

LDAP Lightweight Directory Access Protocol, 227
LRC Lazy Release Consistency, 46

303



Glossary 304

MDS Monitoring and Discovery Service, 227
MIMD Multiple Instruction Multiple Data, 12
MISD Multiple Instruction Single Data, 12
MPI Message Passing Interface, 64
MPMD Multiple Program Multiple Data, 16
MPP Massively Parallel Processor, 15
MRMW Multiple-Reader, Multiple-Writer, 37
MRSW Multiple-Reader, Single-Writer, 37
MTU Maximum Transfer Unit, 49

NFS Network File System, 65
NORMA No Real Remote Memory Access, 15
NOW Network of Workstations, 24
NUMA Non-Uniform Memory Access, 14

OpenMP Open Multi Processor, 68

PVM Parallel Virtual Machine, 64

R-GMA Relational Grid Monitoring Architecture, 67
RC Release Consistency, 45
RMA Remote Memory Access, 15
RPC Remote Procedure Call, 65
rsh remote shell, 71

SCI Scalable Coherent Interconnect, 224
SE Storage Element, 28
SIMD Single Instruction Multiple Data, 12
SISD Single Instruction Single Data, 12
SMG Shared Memory for Grids, 32
SMP Symmetric Multi Processor, 14
SPMD Single Program Multiple Data, 16
SRMW Single-Reader, Multiple-Writer, 37
SRSW Single-Reader,Single-Writer, 37

TCP Transmission Control Protocol, 61

UDP Unreliable Delivery Protocol, 61
UMA Uniform Memory Access, 14
UPC Unified Parallel C, 17

VCS Version Control System, 143



REFERENCES

[1] Trinity Centre for High Performance Computing (TCHPC). http://www.
tchpc.tcd.ie.

[2] Irish Center for High-End Computing (ICHEC). http://www.ichec.ie.

[3] SETI@home. http://setiathome.ssl.berkeley.edu.

[4] Homepage of OpenMP initiative. http://www.openmp.org.

[5] Lorna Smith and Mark Bull. Development of Mixed Mode MPI / OpenMP Ap-
plications. Scientific Programming, 9:83–98, 2000. Presented at Workshop on
OpenMP Applications and Tools (WOMPAT 2000), San Diego, Calif., July 6-7,
2000.

[6] Folding@Home. http://www.stanford.edu/group/pandegroup/
folding. (Website).

[7] K. Hwang and Z. Xu. Scalable Parallel Computing: Technology, Architecture,
Programming. McGraw-Hill, 1997.

[8] Introduction to Parallel Computing (Tutorial). http://www.llnl.gov/
computing/tutorials/parallel_comp.

[9] Intel Pentium 4 Architecture. http://www.intel.com/design/pentium4/
manuals/index_new.htm.

[10] Robert G. Brown. Maximizing Beowulf Performance. In 4th Annual Linux Show-
case & Conference, pages 329–340, 2000. citeseer.ist.psu.edu/422752.
html.

[11] J.L. Gustafson, G. Montry, and R. Benner. Development of Parallel Methods for a
1024-Processor Hypercube. SIAM Journal of Scientific and Statistical Computing,
9(4):532–533, July 1988.

305

http://www.tchpc.tcd.ie
http://www.tchpc.tcd.ie
http://www.ichec.ie
http://setiathome.ssl.berkeley.edu
http://www.openmp.org
http://www.stanford.edu/group/pandegroup/folding
http://www.stanford.edu/group/pandegroup/folding
http://www.llnl.gov/computing/tutorials/parallel_comp
http://www.llnl.gov/computing/tutorials/parallel_comp
http://www.intel.com/design/pentium4/manuals/index_new.htm
http://www.intel.com/design/pentium4/manuals/index_new.htm
citeseer.ist.psu.edu/422752.html
citeseer.ist.psu.edu/422752.html


REFERENCES 306

[12] Boyko Kakaradov. Ultra-Fast Matrix Multiplication: An Empirical Analysis of
Highly Optimized Vector Algorithms. Technical report, Stanford University, 2004.

[13] A.Y. Grama, A. Gupta, and V. Kumar. Isoefficiency: Measuring the Scalability of
Parallel Algorithms and Architectures. IEEE Parallel and Distributed Technology:
Systems and Applications, 1(3):12–21, August 1993.

[14] Alan H. Karp and Horace P. Flatt. Measuring Parallel Processor Performance.
Communications of the ACM, 33(5):539–543, 1990.

[15] Xian-He H. Sun and Lionel M. Ni. Scalable Problems and Memory-Bounded
Speedup. Journal of Parallel and Distributed Computing, 19(1):27–37, 1993.

[16] M.R. Zargham. Computer Architecture: Single and Parallel Systems. Prentice
Hall, 1996.

[17] M. J. Flynn. Some Computer Organizations and Their Effectiveness. In IEEE
Transactions on Computing C-21, volume 9, pages 948–960, Sept 1972.

[18] Eric E. Johnson. Completing an MIMD Multiprocessor Taxonomy. SIGARCH
Computing Architecture News, 16(3):44–47, 1988.

[19] Programming Model Employed In The Earth Simulator. http://www.es.
jamstec.go.jp/esc/eng/Programming/programming.html.

[20] IEEE standard for Scalable Coherent Interface (SCI), August 1992. E-ISBN: 0-
7381-1204-6.

[21] Myrinet. http://www.myri.com/.

[22] Infiniband Trade Assocaition. Website. http://www.infinibandta.org.

[23] A. Agarwal, R. Bianchini, D. Chaiken, F. T. Chong, K. L. Johnson, D. Kranz, J. D.
Kubiatowicz, B-H. Lim, K. Mackenzie, and D. Yeung. The MIT Alewife Machine.
Proc. of the IEEE, Special Issue on Distributed Shared Memory, 87(3):430–444,
1999.

[24] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan-Kaufmann Publishers, 1999.

[25] High Performance Fortran Forum. High Performance Fortran language specication,
version 1.0. Technical Report CRPC-TR92225, Houston, Texas.

[26] Robert W. Numrich and John Reid. Co-array Fortran for Parallel Programming.
SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[27] W Carlson, J.M Draper, D.E Culler, K Yelick, E Brooks, and K Warren. Intro-
duction to UPC and Language Specification. Technical Report CCS-TR-99-157,
George Washington University, 1999.

http://www.es.jamstec.go.jp/esc/eng/Programming/programming.html
http://www.es.jamstec.go.jp/esc/eng/Programming/programming.html
http://www.myri.com/
http://www.infinibandta.org


REFERENCES 307

[28] Yang-Suk Kee, Jin-Soo Kim, and Soonhoi Ha. ParADE: An OpenMP Program-
ming Environment for SMP Cluster Systems. In Proceedings of ACM/IEEE Su-
percomputing (SC’03), Nov 2003.

[29] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers, 2007.

[30] T. Hoefler, L. Cerquetti, T. Mehlan, F. Mietke, and W. Rehm. A Practical Ap-
proach to the Rating of Barrier Algorithms Using the LogP Model and OpenMPI.
In Proceedings of the 2005 International Conference on Parallel Processing Work-
shops, pages 562–569, 06 2005.

[31] Shun Yan Cheung and Vaidy S. Sunderam. Performance of Barrier Synchronization
Methods in a Multi-Access Network. In International Conference on Computing
and Information, pages 175–179, 1993.

[32] F. Mueller. Decentralized Synchronization for Multi-Threaded DSMs. In Proc. of
Workshop on Software Distributed Shared Memory, May 2000.

[33] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus E.
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP:
Towards a Realistic Model of Parallel Computation. In Principles Practice of
Parallel Programming, pages 1–12, 1993.

[34] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed Shared Mem-
ory Based on Type-Specific Memory Coherence. In Proc. of the Second ACM SIG-
PLAN Symp. on Principles and Practice of Parallel Programming (PPOPP’90),
pages 168–177, 1990.

[35] High Performance Fortran Forum. High Performance Fortran Language Specifica-
tion, 2.0 edition, February 1997.

[36] G. Fagg and J. Dongarra. FT-MPI:Fault Tolerant MPI, Supporting Dynamic Ap-
plications in a Dynamic World. In EuroPVM/MPI 2000, pages 346–353. Springer-
Verilag, 2000.

[37] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C. Whaley, and Jack J.
Dongarra. ScaLAPACK User’s Guide. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 1997.

[38] David Kranz, Kirk L. Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong
Lim. Integrating Message-Passing and Shared-Memory: Early Experience. In In
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 54–63, May 1993.



REFERENCES 308

[39] J. Carreira, L.M. Silva, J.G. Silva, and S. Chapple. Implementing Virtual Shared
Memories on MPI. In MPI Developers Conference, University of Notre Dame,
June 1995.

[40] J. Cordsen and W. Schroder-Preikschat. On the Coexistence of Shared-Memory
and Message Passing in the Programming of Parallel Applications. In Proc. of the
High Performance Computer Networks Europe’97, pages 718–727, 1997.

[41] Johan De Gelas. Server Guide part 2: Affordable and Manageable Storage. http:
//www.anandtech.com/IT/showdoc.aspx?i=2859, October 2006. Section
on Disk performance.

[42] Jelica Protic and Veljko Milutinovic. Entry Consistency versus Lazy Release Con-
sistency in DSM Systems: Analytical Comparison and a New Hybrid Solution. In
IEEE Workshop on Future Trends of Distributed Computing Systems, pages 78–83,
Oct 1997.

[43] Andrew Grimshaw, Wm. A. Wulf, and the Legion team. The Legion Vision of a
Worldwide Virtual Computer. Communications of the ACM, 40(1):39–45, January
1997.

[44] Jim Almond and Dave Snelling. Unicore: uniform access to supercomputing as
an element of electronic commerce. Future Generation Computer Systems, 15(5-
6):539–548, 1999.

[45] Enabling Grids for E-sciencE (EGEE). http://www.eu-egee.org/.

[46] M.Matsuda, T.Kudoh, Y.Kodama, R.Takano, and Y.Ishikawa. Efficient MPI Col-
lective Operations for Clusters in Long-and-Fast Networks. In Cluster 2006, 2006.

[47] Distributed ASCI Supercomputer: DAS-3, The next generation Grid infrastructure
in the Netherlands. http://www.starplane.org/das3.

[48] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed Computing in a Het-
erogeneous Computing Environment. In Proc. of 5th European PVM/MPI Users’
Group Meeting, pages 180–187, 1998.

[49] N. Karonis, B. Toohen, and I. Foster. MPICH-G2: A Grid-Enabled Implementa-
tion of the Message Passing Interface. Journal of Parallel and Distributed Com-
puting, 63(5):551–563, May 2003.

[50] Motohiko Matsuda, Tomohiro Kudoh, Yuetsu Kodama, Ryousei Takano, and Yu-
taka Ishikawa. TCP Adaptation for MPI on Long-and-Fat Networks. In Cluster
2005, 2005.

[51] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and Raoul A. F.
Bhoedjang. MagPIe: MPI’s Collective Communication Operations for Clustered
Wide-area Systems. ACM SIGPLAN Notices, 34(8):131–140, 1999.

http://www.anandtech.com/IT/showdoc.aspx?i=2859
http://www.anandtech.com/IT/showdoc.aspx?i=2859
http://www.eu-egee.org/
http://www.starplane.org/das3


REFERENCES 309

[52] N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresna-
han. Exploiting Hierarchy in Parallel Computer Networks to Optimize Collective
Operation Performance. In Proc. of the 14th Int’l Conference on Parallel and
Distributed Processing Symposium (IPDPS-00), pages 377–386, 2000.

[53] Large Hadron Collider (LHC) at CERN. http://lhc.web.cern.ch/lhc/.

[54] Andreas Rodman and Mats Brorsson. Programming Effort vs. Performance with
a Hybrid Programming Model for Distributed Memory Parallel Architectures. In
Euro-Par ’99: Proceedings of the 5th International Euro-Par Conference on Par-
allel Processing, pages 888–898, London, UK, 1999. Springer-Verlag.

[55] Satish Chandra, James R. Larus, and Anne Rogers. Where is Time Spent in
Message-Passing and Shared-Memory Programs. In Proceedings of the Sixth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, pages 61–73, San Jose, California, 1994.

[56] Miguel Castro, Manuel Sequeira, Manuel Costa, and Paulo Guedes. Efficient and
Flexible Object Sharing. In ICPP, Vol. 1, pages 128–137, 1996.

[57] Rudolf Eigenmann, Jay Hoeflinger, Robert H. Kuhn, David Padua, Ayon Ba-
sumallik, Seung-Jai Min, and Jiajing Zhuand. Is OpenMP for Grids ? In Interna-
tional Parallel and Distributed Processing Symposium: IPDPS 2002 Workshops,
2002.

[58] Alfons G. Hoekstra and Peter M.A. Sloot. Introducing Grid Speedup Γ : A Scala-
bility Metric for Parallel Applications on the Grid. In Lecture Notes in Computer
Science, volume 3470, pages 245–254, Jun 2005.

[59] National Research Grid Initiative (NAREGI). The NAREGI Phase 1 Testbed is
a heterogeneous environment composed of the computing resources of universities
and research institutions linked together by the Super SINET network. http:
//www.naregi.org/index_e.html.

[60] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Adaptive Software Cache Manage-
ment for Distributed Shared Memory Architectures. In Proc. of the 17th Annual
Int’l Symp. on Computer Architecture (ISCA’90), pages 125–135, 1990.

[61] H. S. Sandhu, T. Brecht, and D. Moscoso. Multiple Writers Entry Consistency.
In Proc. of the Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA’98), volume I, pages 355–362, 1998.

[62] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks of Work-
stations. IEEE Computer, 29(2):18–28, Feb 1996.

[63] M. Stumm and S. Zhou. Algorithms Implementing Distributed Shared Memory.
In IEEE Computer, vol. 23, no. 5, pages 54–64, 1990.

http://lhc.web.cern.ch/lhc/
http://www.naregi.org/index_e.html
http://www.naregi.org/index_e.html


REFERENCES 310

[64] M. Stumm and S. Zhou. Fault Tolerant Distributed Shared Memory Algorithms.
In In Proc. of the 2nd IEEE Symposium on Parallel and Distributed Processing,
pages 719–724, December 1990.

[65] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems. In
ACM Trans. on Computer Systems, 7(4), pages 321–359, November 1989.

[66] Jackie Silcock. Distributed Shared Memory: A Survey. Technical Report TR
C95/22, Deakin University, Geelong, Victoria, Australia, June 1995.

[67] Kenneth P. Birman. Building Secure and Reliable Network Applications. In
WWCA, pages 15–28, 1997.

[68] John P. Ryan and Brian A. Coghlan. Grid Timestamps, The Leapsecond Problem.
In Proc. of the Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA’02), June 2002.

[69] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Con-
cepts and Design, chapter 10. Morgan Kaufmann, 3rd edition, 2001.

[70] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Trans. Computers, 28(9):690–691, 1979.

[71] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In Proc. of the
17th Annual Int’l Symp. on Computer Architecture (ISCA’90), pages 2–14, 1990.

[72] A. Judge, P.A. Nixon, V.J. Cahill, B. Tangney, and S. Weber. Overview of Dis-
tributed Shared Memory. Technical Report TCD-CS-1998-24, Department of Com-
puter Science, Trinity College, Dublin, Ireland, October 1998.

[73] John Dilley, Martin Arlitt, Stephane Perret, and Tai Jin. The Distributed Ob-
ject Consistency Protocol. Version 1.0. Technical Report HPL-1999-109, Hewlett-
Packard (HP), Sep 1999.

[74] Andrew S. Tanenbaum. Distributed Operating Systems. Prentice-Hall International
(UK), 1995. ISBN-13: 978-0132199087.

[75] David Mosberger. Memory Consistency Models. SIGOPS Operating Systems Re-
view, 27(1):18–26, 1993.

[76] Michel Dubois and Christoph Scheurich and Faye A. Briggs. Memory Access
Buffering in Multiprocessors. In (ISCA 1986), pages 434–442, 1986.

[77] K. Gharachorloo, D. Lenoski, J. Laudon, P.B. Gibbons, A. Gupta, and J.L. Hen-
nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory Mul-
tiprocessors. In 25 Years ISCA: Retrospectives and Reprints, pages 376–387, 1998.



REFERENCES 311

[78] P. Keleher, A.L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software
Distributed Shared Memory. In Proc. of the 19th Annual Int’l Symp. on Computer
Architecture (ISCA’92), pages 13–21, 1992.

[79] P. Keleher. Lazy Release Consistency for Distributed Shared Memory. PhD thesis,
Rice University, 1995.

[80] D. E. Lenoski, J. Ludon, K. Gharachorloo W.-D. Weber, A. Gupta, J. L. Hen-
nessy, M. Horowitz, and M. S. Lam. The Stanford DASH Multiprocessor. IEEE
Computer, 25(3):63–79, March 1992.

[81] B.N. Bershad and M.J. Zekauskas. Midway: Shared Memory Parallel Programming
with Entry Consistency for Distributed Memory Multiprocessors. Technical Report
CMU-CS-91-170, Carnegie Mellon University, Pittsburgh, PA (USA), 1991.

[82] Bill Nitzberg and Virginia Lo. Distributed Shared Memory: A Survey of Issues
and Algorithms. IEEE Computer, 24(8):52–60, 1991.

[83] Mark Swanson, Leigh Stoller, and John Carter. Making Distributed Shared Mem-
ory Simple, Yet Efficient. In Proc. on High-Level Parallel Programming Models
and Supportive Environments (HIPS), pages 2–13, 1998.

[84] Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of Two Home-Based
Lazy Release Consistency Protocols for Shared Memory Virtual Memory Sys-
tems. In Proc. of the 2nd Symp. on Operating Systems Design and Implementation
(OSDI’96), pages 75–88, 1996.

[85] Pete Keleher. Update Protocols and Cluster-based Shared Memory. Computer
Communications, 22:1045–1055, July 1999.

[86] Steven Frank. KRS1: High Performance and Ease of Programming, No Longer
an Oxymoron. In Proceedings of the Fifth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’93), page 335, New York, NY, USA, 1993.
ACM Press.

[87] Y. Zhou, L. Iftode, K. Li, J. P. Singh, B. R. Toonen, I. Schoinas, M. D. Hill,
and D. A. Wood. Relaxed Consistency and Coherence Granularity in DSM Sys-
tems: A Performance Evaluation. In Proc. of the Sixth ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming (PPOPP’97), pages 193–205,
1997.

[88] L. Iftode and J. P. Singh. Shared Virtual Memory: Progress and Challenges. Proc.
of the IEEE, Special Issue on Distributed Shared Memory, 87(3):498–507, March
1999.

[89] Hee-Chul Yun, Sang-Kwon Lee, Joonwon Lee, and Seungryoul Maeng. An Efficient
Lock Protocol for Home-Based Lazy Release Consistency. In Proceedings of the



REFERENCES 312

1st International Symposium on Cluster Computing and the Grid (CCGRID ’01),
page 527, Washington, DC, USA, 2001. IEEE Computer Society.

[90] V. Milutinovic and P. Stenstrom. Scanning the Issue, Special Issue on Distributed
Shared Memory Systems. In Proc. of the IEEE, volume 87, pages 399–404, March
1999.

[91] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance
of Munin. In Proc. of the 13th ACM Symp. on Operating Systems Principles
(SOSP-13), pages 152–164, 1991.

[92] J. B. Carter, D. Khandekar, and L. Kamb. Distributed Shared Memory: Where
We Are and Where We Should Be Headed? In Fifth Workshop on Hot Topics in
Operating Systems, pages 119–122, 1995.

[93] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway Distributed Shared
Memory System. In Procs. of COMPCON. The 38th Annual IEEE Computer
Society International Computer Conference, pages 528–537, Feb 1993.

[94] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-
Performance All-Software Distributed Shared Memory. ACM Operating Systems
Review, SIGOPS, 29(5):213–226, 1995.

[95] W. Daniel Hillis and Lewis W. Tucker. The CM-5 Connection Machine: A Scalable
Supercomputer. Communications of the ACM, 36(11):31–40, 1993.

[96] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. TreadMarks: Dis-
tributed Shared Memory on Standard Workstations and Operating Systems. In
Proc. of the Winter 1994 USENIX Conference, pages 115–131, 1994.

[97] C. Amza, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel. Software DSM Protocols
that Adapt between Single Writer and Multiple Writer. In Proc. of the 3rd IEEE
Symp. on High-Performance Computer Architecture (HPCA-3), pages 261–271,
Feburary 1997.

[98] Christina Amza, A.L. Cox, Sandhya Dwarkadas, Li-Jie Jin, Karthick Rajamani,
and Willy Zwaenepoel. Adaptive Protocols for Software Distributed Shared Mem-
ory. Journal of the IEEE, Special Issue on Distributed Shared Memory, pages
467–475, Mar 1999.

[99] Intel C/C++ Compiler Version 9.0 Reference. http://www.intel.com/cd/
software/products/asmo-na/eng/compilers/clin/277618.htm.

[100] Pete Keleher. CVM documentation. Version 0.9, Aug 1998.

[101] Kritchalach Thitikamol and Pete Keleher. Thread Migration and Communica-
tion Minimization in DSM Systems. Proceedings of the IEEE, Special Issue on
Distributed Shared Memory Systems, 87(3):487–497, March 1999.

http://www.intel.com/cd/software/products/asmo-na/eng/compilers/clin/277618.htm
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/clin/277618.htm


REFERENCES 313

[102] W. E. Speight and J. K. Bennett. Brazos: A Third Generation DSM System. In
Proc. of the USENIX Windows NT Workshop, 1997.

[103] L. Iftode, J. P. Singh, and K. Li. Scope Consistency: A Bridge between Release
Consistency and Entry Consistency. In Proc. of the 8th ACM Annual Symp. on
Parallel Algorithms and Architectures, pages 277–287, 1996.

[104] E. Speight, H. Abdel-Shafi, and J.K. Bennett. An Integrated Shared-
Memory/Message Passing API for Cluster-Based Multicomputing. In Procs. of
the Second International Conference on Parallel and Distributed Computing and
Networks (PDCN), Brisbane, Australia, 1998.

[105] K. Gharachorloo, A. Gupta, and J. L. Hennessy. Two Techniques to Enhance the
Performance of Memory Consistency Models. In Proc. of the 1991 Int’l Conf. on
Parallel Processing (ICPP’91), volume I, pages 355–364, August 1991.

[106] R.N. Zucker. Relaxed Consistency and Synchronization in Parallel Processors.
PhD thesis, University of Washington, Houston, Texas, December 1992.

[107] Distributed European Infrastructure for Supercomputing Applications (DEISA).
http://www.fz-juelich.de/zam/grid/DEISA. A Collaboration with US
counterpart TeraGrid.

[108] The Globus Toolkit. http://www.globus.org/toolkit.

[109] W. Gropp and E. Lusk. Fault Tolerance in MPI Programs. In Proc. of the Cluster
Computing and Grid Systems Conference, 2002.

[110] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak,
Cedile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic
Magniette, Vencent Neri, and Anton Selikhov. MPICH-V: Toward a Scalable Fault
Tolerant MPI for volatile Nodes. In In Proceedings of SC 2002. IEEE, 2002.

[111] C. Huang, O. Lawlor, and L. Kale. Adaptive MPI. In 16th International Workshop
on Languages and Compilers for Parallel Computing (LCPC), LNCS 2958, pages
306–322, October 2003.

[112] William Gropp and Ewing Lusk. Goals Guiding Design: PVM and MPI. In Proc.
of the IEEE International Conference on Cluster Computing (CLUSTER ’02),
page 257, 2002.

[113] V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Con-
currency, Practice and Experience, 2(4):315–340, 1990.

[114] Ohio Supercomputer Center, Ohio State University. MPI Primer/Developing with
LAM (Tutorial). http://www.lam-mpi.org/.

[115] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Technical Report UT-CS-94-230, Message Passing Interface Forum, 1994.

http://www.fz-juelich.de/zam/grid/DEISA
http://www.globus.org/toolkit
http://www.lam-mpi.org/


REFERENCES 314

[116] Mitsuhisa Sato, Taisuke Boku, and Daisuke Takahashi. OmniRPC: A Grid RPC
ystem for Parallel Programming in Cluster and Grid Environment. 3rd Interna-
tional Symposium on Cluster Computing and the Grid (CCGRID), 00:206, 2003.

[117] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information
Services for Distributed Resource Sharing. In Proc. 10th IEEE Symp. On High
Performance Distributed Computing, 2001., 2001.

[118] Tiziana Ferrari and Francesco Giacomini. Network monitoring for GRID perfor-
mance optimization. Computer Communications, 27(14):1357–1363, 2004.

[119] Ruth Aydt, Dan Gunter, Warren Smith, Martin Swany, Valerie Taylor, Brian
Tierney, and Rich Wolski. A Grid Monitoring Architecture. Technical Report
gwd-perf-16-1, GGF, Jul 2001.

[120] The GLUE Schema Specification (Version 1.3). http://glueschema.forge.
cnaf.infn.it.

[121] S. Fisher et al. R-GMA: A Relational Grid Information and Monitoring System.
Technical Report WP3-2003-01-14, 2nd Cracow Grid Workshop, DATAGRID, Jan
2003.

[122] N. Podhorszki and P. Kacsuk. Monitoring Message Passing Applications in the
Grid with GRM and R-GMA. Recent Advances in Parallel Virtual Machine and
Message Passing Interface (PVM/MPI), pages 603–610, 2003.

[123] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global Ar-
rays: A Nonuniform Memory Access Programming Model for High-Performance
Computers. The Journal of Supercomputing, 10(2):169–189, 1996.

[124] W. Chen, R. Bringmann, S. Mahlke, S. Anik, T. Kiyohara, N. Warter, D. Lavery,
W.-M. Hwu, R. Hank, and J. Gyllenhaal. Using Profile Information to Assist
Advanced Compiler Optimization and Scheduling. Lecture Notes in Computer
Science, 757:31–49, 1993.

[125] Francis H. Dang and Lawrence Rauchwerger. Speculative Parallelization of Par-
tially Parallel Loops. In Languages, Compilers, and Run-Time Systems for Scalable
Computers, pages 285–299, 2000.

[126] D. J. Hancock, J. Mark Bull, Rupert W. Ford, and T. L. Freeman. An Investigation
of Feedback Guided Dynamic Scheduling of Nested Loops. In ICPP Workshop,
page 315, 2000.

[127] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.
IEEE Computer, 29(12):66–76, December 1996.

[128] OpenMP Version 2.5 Specification, May 2005. http://www.openmp.org/
drupal/mp-documents/spec25.pdf.

http://glueschema.forge.cnaf.infn.it
http://glueschema.forge.cnaf.infn.it
http://www.openmp.org/drupal/mp-documents/spec25.pdf
http://www.openmp.org/drupal/mp-documents/spec25.pdf


REFERENCES 315

[129] Jay P. Hoeflinger. Extending OpenMP* to Clusters. Technical Report 312568-001,
Intel, 2006.

[130] Cluster OpenMP, User’s Guide. http://www.intel.com/cd/software/
products/asmo-na/eng/compilers/clin/285865.htm. Version 9.1.

[131] Dan Bonachea and Jason Duell. Problems with using MPI 1.1 and 2.0 as compi-
lation targets for parallel language implementations. In 2nd Workshop on Hard-
ware/Software Support for High Performance Scientific and Engineering Comput-
ing (SHPSEC-03), 2003.

[132] Kritchalach Thitikamol and Peter J. Keleher. Multi-threading and Remote La-
tency in Software DSMs. In Proc. of 14th International Conference on Distributed
Computing Systems, pages 296–304, 1997.

[133] Sven Karlsson and Mats Brorsson. Priority Based Messaging for Software Dis-
tributed Shared Memory. Cluster Computing, 6(2):161–169, 2003.

[134] Nuno Neves, Miguel Castro, and Paulo Guedes. A Checkpoint Protocol for an En-
try Consistent Shared Memory System. In Symposium on Principles of Distributed
Computing, pages 121–129, 1994.

[135] Jai-Hoon Kim and Nitin H. Vaidya. Recoverable Distributed Shared Memory
Using the Competitive Update Protocol. In Pacific Rim International Symposium
on Fault-Tolerant Systems, pages 152–157, December 1995.

[136] Brett D. Fleisch, Heiko Michel, Sachin K. Shah, and Oliver E. Theel. Fault Toler-
ance and Configurability in DSM Coherence Protocols. IEEE Concurrency, 8(2):2–
13, /2000.

[137] S. Adve, A.L. Cox, S. Dwarkadas, R. Rajamony, and W. Zwaenepoel. A Com-
parison of Entry Consistency and Lazy Release Consistency Implementations. In
Proceedings of the Second High Performance Computer Architecture Conference,
pages 26–37, Feb 1996.

[138] John P Ryan and Brian A Coghlan. Distributed Shared Memory in a Grid Envi-
ronment. In In Proc. of International Conference on Parallel Computing (ParCo
2005), volume 33, 2005.

[139] Maria Clicia Stelling de Castro and Claudio L. Amorim. Efficient Categorization of
Memory Sharing Patterns in Software DSM systems. In International Parallel and
Distributed Processing Symposium, San Francisco, California, USA, April 2001.
ACM & IEEE.

[140] M. J. Zekauskas, W. A. Sawdon, and B. N. Bershad. Software Write Detection for
a Distributed Shared Memory. In Proc. of the 1st Symp. on Operating Systems
Design and Implementation (OSDI’94), pages 87–100, 1994.

http://www.intel.com/cd/software/products/asmo-na/eng/compilers/clin/285865.htm
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/clin/285865.htm


REFERENCES 316

[141] J. B. Carter. Efficient Distributed Shared Memory Based on Multi-Protocol Release
Consistency. PhD thesis, Rice University, Houston, Texas, 1993.

[142] Takeshi Yamazaki, Naoki Yonezawa, Pusit Kulkasem, Shinichi Yamagiwa, Masaaki
Ono, Ayman. N. M. Al-Khoury, and Koichi Wada. SVCP: A Cache Coherency
Protocol with Explicit Update Subscription. In Proceedings of the 1998 Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applica-
tion (PDPTA98), pages 899–906, July 1998.

[143] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation: Reducing Coherence
Overhead in Shared-Memory Multiprocessors. In Proc. of the 22nd Annual Int’l
Symp. on Computer Architecture (ISCA’95), pages 48–59, 1995.

[144] S. Zhou, M. Stumm, and T. McInerney. Extending Distributed Shared Memory
to Heterogeneous Environments. In Proc. 10th International Conf. Distributed
Computing Systems, Los Alamitos, Calif, May–June 1990. CS Press.

[145] Zoran Radović and Erik Hagersten. Efficient Synchronization for Nonuniform
Communication Architectures. In Proceedings of Supercomputing 2002, Baltimore,
Maryland, USA, November 2002.

[146] Zoran Radović and Erik Hagersten. Hierarchical Backoff Locks for Nonuniform
Communication Architectures. In Proceedings of the Ninth International Sym-
posium on High Performance Computer Architecture (HPCA-9), pages 241–252,
Anaheim, California, USA, February 2003.

[147] Nian-Feng Tzeng and Angkul Kongmunvattana. Distributed Shared Memory Sys-
tems with Improved Barrier Synchronization and Data Transfer. In Proc. of In-
ternational Conference on Supercomputing 1997, pages 148–155, 1997.

[148] Xuehai Zhang, Jeffrey L. Freschl, and Jennifer M. Schopf. A Performance Study
of Monitoring and Information Services for Distributed Systems. In 12th Inter-
national Symposium on High-Performance Distributed Computing (HPDC 2003),
pages 270–282. IEEE Computer Society, June 2003.

[149] Pedro C. Diniz and Martin C. Rinard. Dynamic feedback: an effective technique
for adaptive computing. In PLDI ’97: Proceedings of the ACM SIGPLAN 1997
conference on Programming language design and implementation, pages 71–84,
New York, NY, USA, 1997. ACM Press.

[150] Rajeev Thakur and William Gropp. Improving the Performance of Collective
Operations in MPICH. In Jack Dongarra, Domenico Laforenza, and Salvatore
Orlando, editors, Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, number LNCS2840 in Lecture Notes in Computer Science, pages
257–267. Springer Verlag, 2003. 10th European PVM/MPI User’s Group Meeting.

[151] IBM POWER Architecture. http://www-03.ibm.com/chips/power.

http://www-03.ibm.com/chips/power


REFERENCES 317

[152] Oscar Hernandez, Fengguang Song, Barbara Chapman, Jack Dongarra, Bernd
Mohr, Shirley Moore, and Felix Wolf. Performance Instrumentation and Compiler
Optimizations for MPI/OpenMP Applications, 2006.

[153] Rainer Keller, Bettina Krammer, Matthias S. Mueller, Michael M. Resch, and
Edgar Gabriel. Towards Efficient Execution of MPI Applications on the Grid:
Porting and Optimization Issues. Journal of Grid Computing, 1(2):133–149, 2003.

[154] Bernd Mohr and Felix Wolf. KOJAK - A Tool Set for Automatic Performance
Analysis of Parallel Programs. In In Proceedings of Euro-Par 2003, pages 1301–
1304, 2003.

[155] Sameer S. Shende and Allen D. Malony. The Tau Parallel Performance System.
Int. Journal High Performance Computing Applications, 20(2):287–311, 2006.

[156] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amaras-
inghe, Jennifer-Ann M. Anderson, Steven W. K. Tjiang, Shih-Wei Liao, Chau-Wen
Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy. SUIF: An Infrastruc-
ture for Research on Parallelizing and Optimizing Compilers. SIGPLAN Notices,
29(12):31–37, 1994.

[157] Darko Marinov, Davor Magdic, Aleksandar Milenkovic, Jelica Protic, Igor Tartalja,
and Veljko Milutinovic. An Approach to Characterization of Parallel Applications
for DSM Systems. In HICSS ’98: Proceedings of the Thirty-First Annual Hawaii
International Conference on System Sciences-Volume 7, page 782, Washington,
DC, USA, 1998. IEEE Computer Society.

[158] Mehmet F. Su, Ihab El-Kady, David A. Bader, and Shawn-Yu Lin. A Novel FDTD
Application Featuring OpenMP-MPI Hybrid Parallelization. In Proc of the 2004
International Conference on Parallel Processing (ICPP’04), pages 373–379, 2004.

[159] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.

[160] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow.
The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center, December 1995.

[161] Steven Cameron Woo, M. Ohara, E. Torrie, J.P. Singh, and Anoop Gupta. The
SPLASH-2 Programs: Characterization and Methodological Considerations. In In
Proceedings of the 22nd Annual International Symposium on Computer Architec-
ture, pages 24–36, June 1995.



REFERENCES 318

[162] Honghui Lu, Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel. Message
passing versus distributed shared memory on networks of workstations. In Super-
computing ’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing
(CDROM), page 37, New York, NY, USA, 1995. ACM Press.

[163] M. Hess, G. Jost, M. Müller, and R. Rühle. Experiences using OpenMP based on
Compiler Directed Software DSM on a PC Cluster. In WOMPAT2002., 2002.

[164] Michael Frumkin and Rob F. Van der Wijngaart. NAS Grid Benchmarks: A Tool
for Grid Space Exploration. hpdc, 00:0315, 2001.

[165] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance analysis.
In Proceedings USENIX 1996 Winter Conference, pages 279–294, January 1996.

[166] TOP500 Supercomputer Sites. http://www.top500.org.

[167] MPI over InfiniBand Project. http://nowlab.cse.ohio-state.edu/
projects/mpi-iba.

[168] Tyng-Yeu Liang, Chun-Yi Wu, Jyh-Biau Chang, and Ce-Kuen Shieh. Teamster-G:
A Grid-enabled Software DSM System. In Proc. of CCGRID 2005, pages 905–9122,
2005.

[169] T.S. Trevisan. Distributed Shared Memory in Kernel Mode. In In Proceedings of
the 14th Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD.02), 2002.

[170] OMNI OpenMP Compiler Project. http://phase.hpcc.jp/Omni/home.
html.

[171] OMPi OpenMP C Compiler. http://www.cs.uoi.gr/˜ompi/index.html.

[172] OdinMP - The Open source OpenMP Compiler for C, C++, and Fortran. http:
//www.odinmp.com.

[173] C. K. Riesbeck and R. C. Schank. Inside Case-Based Reasoning. Lawrence Erl-
baum Associates, Hillsdale, NJ, USA, 1989.

[174] L. Lorena, M. Narciso, and J. Beasley. A Constructive Genetic Algorithm for the
Generalized Assignment Problem, 1999.

[175] Thomas Seidmann. Distributed Shared Memory Using The .NET Framework. In
Proceedings of the 3rd IEEE/ACM International Symposium on Cluser Computing
and the Grid (CCGRID’03), pages 457–462, 2003.

[176] Gabriel Antoniu, Luc Boug, and Sbastien Lacour. Making a DSM Consistency
Protocol Hierarchy-Aware: an Efficient Synchronization Scheme. In Proc. Work-
shop on Distributed Shared Memory on Clusters (DSM’03), pages 516–523, May
2003.

http://www.top500.org
http://nowlab.cse.ohio-state.edu/ projects/mpi-iba
http://nowlab.cse.ohio-state.edu/ projects/mpi-iba
http://phase.hpcc.jp/Omni/home.html
http://phase.hpcc.jp/Omni/home.html
http://www.cs.uoi.gr/~ompi/index.html
http://www.odinmp.com
http://www.odinmp.com


REFERENCES 319

[177] H. Lu, Y. C. Hu, and W. Zwaenepoel. OpenMP on Network of Workstations. In
Proc. of Supercomputing’98, 1998.

[178] DeQing Chen, Chunqiang Tang, Xiangchuan Chen, Sandhya Dwarkadas, and
Michael L. Scott. Multi-level Shared State for Distributed Systems. In Procs.
of 31st Int. Conference on Parallel Processing (ICPP’02), August 2002.

[179] Mark Harris. GPGPU: Beyond Graphics. Technical report, NVIDIA, 2004. http:
//developer.nvidia.com/object/gpgpu_beyond_graphics.html.

[180] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and
Katherine Yelick. The Potential of the CELL Processor for Scientific Computing.
In CF ’06: Proceedings of the 3rd Conference on Computing Frontiers, pages 9–20,
New York, NY, USA, 2006. ACM Press.

[181] Intel MPI Benchmarks. http://www.intel.com/software/products/
cluster/mpi/mpi_benchmarks_lic.htm.

[182] William Gropp and Ewing Lusk. User’s Guide for MPICH: A Portable Implemen-
tation of MPI, 1996.

[183] I. Foster and N. Karonis. A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems. In Proceedings of SC’98. ACM Press, 1998.

[184] Webpage for MPICH MPI Distribution. http://www-unix.mcs.anl.gov/
mpi/mpich.

[185] Mpiexec - MPI parallel job launcher for PBS. http://www.osc.edu/˜pw/
mpiexec/index.php.

[186] Altair PBS Professional. http://www.altair.com/software/pbspro.
html.

[187] Torque (OpenPBS) Resource Manager. http://www.openpbs.org/main.
html.

[188] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environment
for MPI. In Proceedings of Supercomputing Symposium, pages 379–386, 1994.
http://www.lam-mpi.org/download/files/lam-papers.tar.gz.

[189] The Berkeley Lab Checkpoint-Restart (BLCR) system. http://ftg.lbl.gov/
checkpoint.

[190] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and
Timothy S. Woodall. OpenMPI: Goals, Concept, and Design of a Next Genera-
tion MPI Implementation. In Proceedings, 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary, September 2004.

http://developer.nvidia.com/object/gpgpu_beyond_graphics.html
http://developer.nvidia.com/object/gpgpu_beyond_graphics.html
http://www.intel.com/software/products/cluster/mpi/mpi_benchmarks_lic.htm
http://www.intel.com/software/products/cluster/mpi/mpi_benchmarks_lic.htm
http://www-unix.mcs.anl.gov/mpi/mpich
http://www-unix.mcs.anl.gov/mpi/mpich
http://www.osc.edu/~pw/mpiexec/index.php
http://www.osc.edu/~pw/mpiexec/index.php
http://www.altair.com/software/pbspro.html
http://www.altair.com/software/pbspro.html
http://www.openpbs.org/main.html
http://www.openpbs.org/main.html
http://www.lam-mpi.org/download/files/lam-papers.tar.gz
http://ftg.lbl.gov/checkpoint
http://ftg.lbl.gov/checkpoint


REFERENCES 320

[191] Homepage for Parallel Virtual Machine (PVM). http://www.epm.ornl.gov/
pvm/pvm_home.html.

[192] Brian Tierney, William E. Johnston, Brian Crowley, Gary Hoo, Chris Brooks, and
Dan Gunter. The NetLogger Methodology for High Performance Distributed Sys-
tems Performance Analysis. In Proceeding of IEEE High Performance Distributed
Computing conference (HPDC-7), pages 260–267, July 1998.

[193] Lawrence Livermore National Laboratory (LLNL) OpenMP Tutorial. http://
www.llnl.gov/computing/tutorials/openMP.

http://www.epm.ornl.gov/pvm/pvm_home.html
http://www.epm.ornl.gov/pvm/pvm_home.html
http://www.llnl.gov/computing/tutorials/openMP
http://www.llnl.gov/computing/tutorials/openMP


Co-Authored Papers

Cooke, A.W., Gray, A.J.G., Nutt, W., Magowan, J., Oevers, M., Taylor, P., Cordenonsi,
R., Byrom, R., Cornwall, L., Djaoui, A., Field, L., Fisher, S.M., Hicks, S., Leake,
J., Middleton, R., Wilson, A., Zhu, X., Podhorszki, N., Coghlan, B., Kenny, S.,
O’Callaghan, D., and Ryan, J. (2005) ”The Relational Grid Monitoring Architecture:
Mediating Information about the Grid” Grid Journal, 2005.

Byrom, R., Coghlan, B., Cooke, A., Cordenonsi, R., Cornwall, L., Datta, A., Djaoui,
A., Field, L., Fisher, S., Hicks, S., Kenny, S., Magowan, J., Nutt, W., O’Callaghan,
D., Oever, M., Podhorszki, N., Ryan, J., Soni, M., Taylor, P., Wilson, A.., and Zhu,
X. (2005) ”The Canonical Producer: an instrument monitoring component of the
Relational Grid Monitoring Architecture (R-GMA)” Scientific Programming, Special
Issue, ISSN 1058-9244, Vol.13, No.2, pp151-158, 2005.

Maad, S., Coghlan, B., Quigley, G., Ryan, J., Kenny, E., O.Callaghan, D. (2006)
”Towards a Complete Grid Filesystem Functionality” Future Generation Computer
Systems, 2006.

Maads, S., Coghlan, B., Quigley, G., Ryan, J., Kenny, E., Pierantoni, G. (2006) ”A
Grid Filesystem: A Key Component For Managing the Data Centre in the Enterprise”
Journal Scalable Computing: Practice and Experience (SCPE), special issue on Grid
Computing For Enterprise, 2006.

Ryan, J.P., and Coghlan, B.A. (2002) ”Grid Timestamps, the Leapsecond Problem”
Proc.PDPTA’2002, Las Vegas, June, 2002.

Coghlan, B., Cooke, A.W., Datta, A., Djaoui, A., Field, L., Fisher, S., Magowan, J.,
Nutt, W., Oevers, M., Soni, M., Podhorszki, N., Ryan, J., Wilson, A.J., and Zhu,
X. (2002) ”R-GMA: A Grid Information and Monitoring System” Allhands Meeting,
Sheffield, September, 2002.

321



REFERENCES 322

Cooke, A., Nutt, W., Magowan, J., Taylor, P., Leake, J., Byrom, R., Field, L., Hicks, S.,
Soni, M., Wilson, A., Cordenonsi, R., Cornwall, L., Djaoui, A., Fisher, S., Podhorszki,
N., Coghlan, B., Kenny, S., O.Callaghan, D., and Ryan, J. (2003) ”Relational Grid
Monitoring Architecture (R-GMA)” Allhands Meeting, Sheffield, September, 2003.

Ryan, J.P. and Coghlan, B.A. (2004) ”SMG: Shared Memory for Grids” PDCS’04,
Boston, November, 2004

Ryan, J.P. and Coghlan, B.A. (2005) ”Distributed Shared Memory in a Grid Environ-
ment” Proc.International Conference on Parallel Computing (PARCO 2005), Malaga,
Spain, September, 2005.

Maad, S., Coghlan, B., Ryan, J., Kenny, E., Watson, R., and Pierantoni, G. (2005)
”The Horizon of the Grid For E-Government” Proc.e-Government Workshop (eGOV05),
Brunel, UK, September, 2005, (ISBN 1-902316-46-0), 2005.

Maad, S., Coghlan, B., Pierantoni, G., Kenny, E., Ryan, J., and Watson, R. (2005)
”Adapting the Development Model of the Grid Anatomy to meet the needs of various
Application Domains” Proc. Cracow Grid Workshop (CGW05), Crakow, Poland,
November, 2005.

Coghlan, B., Quigley, G., Maad, S., Ryan, J., Kenny, E., O.Callaghan, D. (2006) ”A
Transparent Grid Filesystem” Proc.Workshop on State-of-the-Art in Scientific and
Parallel Computing (PARA06), Umea, Sweden, June 18-21, 2006.

Maad, S., Coghlan, B., Pierantoni, G., Kenny, E., Ryan, J. (2006) ”New frontiers
for grid applications” Proc.European and Mediterranean Conference on Information
Systems 2006 (EMCIS06), Alicante, Spain, July 6-7, 2006.

Maad, S., Coghlan, B., Quigley, G., Ryan, J., and Kenny, E. (2006) ”Universal Acces-
sibility to the Grid via Metagrid Infrastructure” EGEE Forum, CERN, Switzerland,
March, 2006.

Ryan, J.P., Coghlan, B.A. (2002) ”Timestamps” European DataGrid WP3 Workshop,
Rutherford Appleton Labs, 16th January, 2002.

Ryan, J.P., Coghlan, B.A. (2002) ”Timestamps” European DataGrid Conference, Paris,
4th March, 2002.

Ryan, J.P., and Coghlan, B.A. (2002) ”EDG Timestamping” European DataGrid Con-
ference, Budapest, September, 2002.



INDEX

ABORT FLAG
smg.h, 250

ALL BARRIER
smg ec.h, 277

Amdahl, 8

BIND LOCK
smg ec.h, 277

Coherence
Home-based, 49
Invalidate, 49
Subscription, 103
Update, 49

COHERENCE INVAL
smg.h, 251

COHERENCE NONE
smg.h, 251

COHERENCE SUBSCRIBE
smg.h, 251

COHERENCE UPDATE
smg.h, 251

Consistency
Entry, 47
Lazy-Release, 46
Processor, 43
Release, 45
Sequential, 42
Strict, 42
Weak, 44

Distributed Shared Memory

Sharing Patterns, 36
Access modes, 37
Distribution Algorithms, 38
Granularity, 50

Distributed Shared Memory, 35
Brazos, 57
Coherence, 49
Consistency, 41
CRL, 54
CVM, 57
Midway, 53
Munin, 52
Treadmarks, 55

DSM
Case Studies, 51

DYNAMIC BARRIER
smg ec.h, 277

ENTRY CONSISTENCY
smg.h, 250

Flynn’s Taxonomy, 12

GMA, 66

Information Monitoring
Consumer, 66
Producer, 66

INFORMATION FLAG
smg.h, 249

LAZY CONSISTENCY
smg.h, 250

323



INDEX 324

LOCK READ
smg.h, 251

LOCK UNKNOWN
smg.h, 251

LOCK UNLOCKED
smg.h, 251

LOCK WRITE
smg.h, 251

MDS, 226
MPI, 64
Message Passing, 63

MPI, 72
MONITORING FLAG

smg.h, 249
MPI

LAM, 224
MPICH, 223
MPICH2, 224
OpenMPI, 226
PACX, 225

NAMED BARRIER
smg ec.h, 277

Netlogger, 227
NO CONSISTENCY

smg.h, 250

OpenMP, 68
Cluster OpenMP, 71

Parallel Computing, 15
PVM, 64

R-GMA, 67

SEQ CONSISTENCY
smg.h, 250

smg.h, 243
ABORT FLAG, 250
COHERENCE INVAL, 251
COHERENCE NONE, 251
COHERENCE SUBSCRIBE, 251
COHERENCE UPDATE, 251
ENTRY CONSISTENCY, 250

INFORMATION FLAG, 249
LAZY CONSISTENCY, 250
LOCK READ, 251
LOCK UNKNOWN, 251
LOCK UNLOCKED, 251
LOCK WRITE, 251
MONITORING FLAG, 249
NO CONSISTENCY, 250
SEQ CONSISTENCY, 250
SMG barrier, 255
SMG barrier coordinator, 256
SMG barrier declare, 255
SMG consistency supported, 272
SMG FAILURE, 249
SMG finalise, 252
SMG get comm handle, 273
SMG get default consistency, 271
SMG get rank, 253
SMG get size, 253
SMG global 2 localptr, 267
SMG have consistency, 271
SMG init, 252
SMG internal get, 272
SMG internal set, 272
SMG local 2 globalptr, 267
SMG local response time, 271
SMG lock acquire, 258
SMG lock declare, 256
SMG lock status, 260
SMG lock unlock, 258
SMG memory get consistency, 264
SMG memory get granularity, 266
SMG memory get identifier, 264
SMG memory get owner, 265
SMG memory get size, 265
SMG memory get start, 265
SMG memory set granularity, 266
SMG module load, 270
SMG NULL, 251
SMG print state, 270
SMG proc rank, 275
SMG proc size, 275
SMG ptr, 252



INDEX 325

SMG read lock acquire, 257
SMG remote response time, 271
SMG set default consistency, 270
SMG shmem flush, 264
SMG shmem free, 261
SMG shmem invalid, 263
SMG shmem make, 261
SMG shmem malloc, 260
SMG shmem noshare, 262
SMG shmem share, 262
SMG shmem valid, 263
SMG sub barrier, 255
SMG SUCCESS, 249
SMG thread count, 268
SMG thread create, 268
SMG thread exit, 268
SMG thread join, 269
SMG user tag, 254
SMG work distribution, 274
SMG write lock acquire, 257

SMG barrier
smg.h, 255

SMG barrier coordinator
smg.h, 256

SMG barrier declare
smg.h, 255

SMG consistency supported
smg.h, 272

smg ec.h, 276
ALL BARRIER, 277
BIND LOCK, 277
DYNAMIC BARRIER, 277
NAMED BARRIER, 277
SMG memory get sync, 277

SMG FAILURE
smg.h, 249

SMG finalise
smg.h, 252

SMG get comm handle
smg.h, 273

SMG get default consistency
smg.h, 271

SMG get rank

smg.h, 253
SMG get size

smg.h, 253
SMG global 2 localptr

smg.h, 267
SMG have consistency

smg.h, 271
SMG init

smg.h, 252
SMG internal get

smg.h, 272
SMG internal set

smg.h, 272
SMG local 2 globalptr

smg.h, 267
SMG local response time

smg.h, 271
SMG lock acquire

smg.h, 258
SMG lock declare

smg.h, 256
SMG lock status

smg.h, 260
SMG lock unlock

smg.h, 258
SMG memory get consistency

smg.h, 264
SMG memory get granularity

smg.h, 266
SMG memory get identifier

smg.h, 264
SMG memory get owner

smg.h, 265
SMG memory get size

smg.h, 265
SMG memory get start

smg.h, 265
SMG memory get sync

smg ec.h, 277
SMG memory set granularity

smg.h, 266
SMG module load

smg.h, 270



INDEX 326

SMG NULL
smg.h, 251

SMG print state
smg.h, 270

SMG proc rank
smg.h, 275

SMG proc size
smg.h, 275

SMG ptr
smg.h, 252

SMG read lock acquire
smg.h, 257

SMG remote response time
smg.h, 271

SMG set default consistency
smg.h, 270

SMG shmem flush
smg.h, 264

SMG shmem free
smg.h, 261

SMG shmem invalid
smg.h, 263

SMG shmem make
smg.h, 261

SMG shmem malloc
smg.h, 260

SMG shmem noshare
smg.h, 262

SMG shmem share
smg.h, 262

SMG shmem valid
smg.h, 263

SMG sub barrier
smg.h, 255

SMG SUCCESS
smg.h, 249

SMG thread count
smg.h, 268

SMG thread create
smg.h, 268

SMG thread exit
smg.h, 268

SMG thread join

smg.h, 269
SMG user tag

smg.h, 254
SMG work distribution

smg.h, 274
SMG write lock acquire

smg.h, 257



Cŕıoch


	List of Figures
	List of Tables
	Introduction
	Research Goals
	Document Structure

	Parallel Computing
	A Case for Parallel Processing
	Computing Platforms
	Parallel Programming Models
	Parallel Synchronisation
	Other Considerations
	Review

	Wide-Area Parallel Computing
	Wide Area Parallel Computing Platforms
	Programming Models for Wide Area Parallel Computing
	Evaluating Parallelism on the Grid
	Exploration

	DSM
	Shared Memory Access Patterns
	Shared Memory Access modes
	DSM Data Distribution Algorithms
	System Ordering
	Memory Consistency Models
	Memory Coherence Protocols
	Coherence Granularity
	DSM Case Studies
	Review

	Relevant Issues
	Distributed Communication
	Information and monitoring systems
	The User API: Case Studies

	Shared Memory for Grids (SMG)
	DSM Requirements
	SMG DSM architecture
	Internal DSM Engine Operation
	Helloworld using the SMG API
	Engine communication
	SMG Compilation
	Run-time execution
	Other Issues

	SMG Shared Memory
	SMG Memory Management
	SMG consistency
	Write trapping
	SMG Coherency
	Write collection
	User Multi-threading Issues
	Implementation issues
	Discussion

	SMG Synchronisation
	Synchronisation
	Lock Primitives
	SMG Barrier Primitive
	Implementation issues
	Summary of decisions

	Optimising for the Grid Application
	Integrating Information & Monitoring Services with SMG 
	Environment Information
	Monitoring Data
	Hybridising Parallel applications
	Hybridisation Identification
	Incremental Hybridisation
	Implementation Issues

	Evaluation
	Experimental Methodology
	Performance of SMG versus MPI 
	Benefits of Hybridisation
	Grid Performance of Applications
	Analysis

	Review
	Contributions
	Further Work
	Review
	Conclusions

	SMG Results
	DSM Reference
	DSM APIs
	Enabling Technology
	SMG Reference Manual
	Developing with SMG 
	smg.h File Reference
	smg_ec.h File Reference
	SMG Source Manifest
	Extending SMG 

	SMG Applications
	Glossary
	References
	Index

