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Because it is filled with truth, charity can be understood in the abundance of

its values, it can be shared and communicated. Truth, in fact, is lógos, which

creates dia-lógon, and hence communication and communion. Truth, by

enabling men and women to let go of their subjective opinions and

impressions, allows them to move beyond cultural and historical limitations

and to come together in the assessment of the value and substance of things.

Truth opens and unites our minds in the lógos of love: this is the Christian

proclamation and testimony of charity.

—Pope Benedict XVI, Caritas in Veritate

The Christian God acts with Lógos. [. . . ] “In the beginning was the lógos,

and the lógos is God,” says the Evangelist. The marriage of Hebrew scripture

and Greek philosophy that begat Christianity and subsequently Europe is not

mere coincidence, nor is Greek philosophy some adulteration of an otherwise

pure Gospel. Europe means Biblical faith plus Greek thought: Europe is

based on Lógos.

— E. Michael Jones, The Jewish Revolutionary Spirit

History is God’s plan.

— E. Michael Jones





Abstract

In the context of databases, a transaction is a sequence of data operations that are executed atomi-

cally and in isolation: either all operations are executed or none is; and their effects are visible to the

environment only after the transaction commits. Database transactions are well-established abstrac-

tions that simplify concurrent data access in computer programming. Recently Software Transactional

Memory (STM) has been proposed to extend the notion of transactions from databases to concurrent

programming in shared-memory systems. STM has been likened to garbage collection for memory

management in terms of cost and benefits: both of them provide modular abstractions that sepa-

rate the specification of memory operations, which is delegated to the programmer, from its actual

implementation and inherent complexity, which is delegated to an underlying management system.

Few such abstractions currently exist for concurrent programming in distributed systems, where

communication is based on message-passing rather than shared memory. Communicating transac-

tions is one such abstraction that has been recently proposed to model automatic fault recovery in

distributed systems. Dropping the isolation requirement from traditional transactions, communicating

transactions allow groups of concurrent processes to interact and commit after reaching a consensus.

When they fail to reach a consensus for any reason, including deadlock and unforeseen failures, all

interactions are annulled and all side-effects are rolled back.

This thesis focuses on the application of communicating transactions to concurrent programming

languages for distributed systems. We explore the expressivity of communicating transactions in

TCML, a novel transactional concurrent functional language inspired to CML. We review a powerful

proof method based on bisimulations to reason about communicating transactions in the context of a

new transactional calculus, TCCSm, and we present a new, equivalent bisimulation method that allows

bisimulation equivalences between finite-state TCCSm processes to be calculated algorithmically.

We study the performance of a TCML implementation using näıve transaction scheduling policies.

Our study shows that under such policies the creation of consensus groups decreases exponentially

in proportion to the number of participants contending for the same resources. This points to the

need of more sophisticated transaction analysis tools. A promising tool is session types, a recently

proposed mechanism to statically verify the communication protocols employed by concurrent pro-

cesses. We propose the first fully automatic, sound and complete session type inference algorithm

that supports session delegation and recursion. We believe this mechanism to be the foundation for

further development and performance enhancement in the realm of transactions scheduling.
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Chapter 1

Introduction

In the context of databases, a transaction is a sequence of data operations that are executed atom-

ically and in isolation: either all operations are executed or none are; and their effects are visible

to the environment only after the transaction commits. Database transactions are well-established

abstractions that simplify concurrent data access in computer programming. Software Transactional

Memory (STM) has been recently proposed to extend the notion of transactions from databases to

concurrent programming in shared-memory systems. STM has been likened in [Grossman, 2007] to

garbage collection for memory management in terms of cost and benefits: both of them provide

modular abstractions that separate the specification of memory operations, which is delegated to

the programmer, from its actual implementation and inherent complexity, which is delegated to an

underlying management system.

Programming language support for consensus [Kshemkalyani and Singhal, 2008] has been limited

in distributed systems. Achieving consensus between concurrent processes is a ubiquitous problem

in multicore and distributed programming [Herlihy and Shavit, 2008]. Among the classic instances

of consensus is leader election and synchronous multi-process communication. There are well known

algorithms to solve particular consensus problems, such as the Paxos algorithm [Lamport, 2002]. On

the one hand, such solutions can be quite complicated to program in low-level languages, scaling up

to several thousands of lines of C++ code for example [Chandra et al., 2007]. On the other hand,

implementations in high-level languages tend to lack modularity and not to integrate well with the

rest of the language. For example, it is not possible to write a three-way rendezvous as an event in

CML [Reppy, 1999, Ch. 5, pg. 128], as we will explain in more detail in Section 1.3.2.

These shortcomings point to the need for programming language support to address consensus

problems. Borrowing from the traditional concept of transactions, many transactional constructs

have been proposed to address this issue, such as cJoin [Bruni et al., 2015], communicating memory

transactions [Lesani and Palsberg, 2011] and transactional events [Donnelly and Fluet, 2006]. This

thesis focuses on communicating transactions, a construct proposed in [de Vries et al., 2010] to model

automatic system recovery in distributed systems.

Communicating transactions model inter-process communication in distributed system, therefore

they contain concurrency operations, such as send and receive operations over public channels, in-

stead of memory operations on shared memory. Communicating transactions have an all-or-nothing
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behaviour too, meaning that either all concurrent operations succeed or none of them do. However,

transactions are not isolated by design in this setting: transactions can collaborate and form a con-

sensus group. When all parties are ready to commit, then their communications become permanent ;

before that point all communications are tentative. Transactions in this setting can be automatically

aborted by the system at any time. When this happens, all tentative communications are cancelled,

and each communication partner is automatically rolled back.

In order to better illustrate the difficulty of implementing consensus problems, Section 1.1 presents

the Saturday Night Out (SNO) problem, a concrete problem about consensus in a group of friends.

Section 1.2 presents the communicating transactions construct and how the SNO problem can be

easily implemented using it.

The use of communicating transactions is not restricted to consensus problems though. They are

expressive enough to implement general constructs such as guarded commands and external choice

from CSP [Hoare, 1978a], the aforementioned three-way rendezvous, and examples of speculative

programming such as the n-queens problem [Lanese et al., 2013a] or depth-first graph search, which

is shown in Section 1.3. This generality raises significant challenges for the adoption of communicating

transactions in a programming language, both in theory and practice, as explained in Section 1.4.

On the one hand this thesis focuses on the development of formal methods, in particular bisim-

ulation equivalences [Milner, 1982], to reason about transactional programs. On the other hand the

thesis explores practical approaches for efficient transaction scheduling. Näıve scheduling policies

are found to yield unsatisfactory performances in an experimental study exposed in Chapter 5. The

communication patterns of a transaction, however, contain significant information to predict which

consensus groups are more likely to be successful. In order to allow for more sophisticated scheduling

policies using this information, a significant topic is session types [Honda, 1993], a typing discipline

that exposes the communication protocols of a process.

Section 1.5 concludes the chapter by presenting the thesis contributions addressing these challenges,

and the thesis outline.

1.1 The Saturday Night Out problem

Let us consider a hypothetical scenario of generalized consensus, which we will call the Saturday Night

Out (SNO) problem. In this scenario, a number of friends (representing computer processes) are

seeking partners for various activities on Saturday night. Each has a list of desired activities to attend

in a certain order, and will only agree for a night out if there is a partner for each individual activity.

A set S of participants forms a consensus group when, for each participant, all of its partners belong

to S. A solution to the SNO problem is a set of disjoint consensus groups.

Alice, for example, is looking for company to go out for dinner and then a movie (not necessarily

with the same person). To find partners for these events in this order she may attempt to synchronize

on the “handshake” channels dinner and movie:

Alice
def
= sync dinner; sync movie

Here sync is a two-party synchronization operator, similar to CSP synchronization. Bob, on the other
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hand, wants to go for dinner and then for dancing:

Bob
def
= sync dinner; sync dancing

Alice and Bob can agree on dinner but they need partners for a movie and dancing, respectively, to

commit to the night out. Their agreement is tentative.

Let Carol be another friend in this group who is only interested in dancing:

Carol
def
= sync dancing

Once Bob and Carol agree on dancing they are both happy to commit to going out. However, Alice

has no movie partner and she can still cancel her agreement with Bob. Therefore Alice, Bob and Carol

do not form a consensus group, and they are not a valid solution. If Alice cancels her agreement with

Bob, Bob and Carol need to be notified to cancel their agreement and everyone starts over their search

for partners.

An implementation of the SNO scenario between concurrent processes would need to have a spe-

cialized way of reversing failed tentative synchronizations. Suppose David is also a participant in this

set of friends.

David
def
= sync dancing; sync movie

After the partial agreement between Alice, Bob, and Carol is canceled, David together with the first

two can synchronize on dinner, dancing, and movie and agree to go out (leaving Carol at home).

Notice that when Alice raised an objection to the agreement that was forming between her, Bob,

and Carol, all three participants were forced to restart. If, however, Carol was taken out of the

agreement (even after she and Bob were happy to commit their plans), David would have been able to

take Carol’s place and the work of Alice and Bob until the point when Carol joined in would not need

to be repeated.

Programming SNO between an arbitrary number of processes (which can form multiple agreement

groups) in CML is complicated. Especially if we consider that the participants are allowed to perform

arbitrary computations between synchronizations affecting control flow, and can communicate with

other parties not directly involved in the SNO. For example, Bob may want to go dancing only if he

can agree with the babysitter to stay late:

Bob
def
= sync dinner; if babysitter() then sync dancing

In this case Bob’s computation has side-effects outside of the SNO group of processes. To implement

this we would require code for dealing with the SNO protocol to be written in the Babysitter (or any

other) process, breaking any potential modular implementation.

1.2 The communicating transactions construct

In order to make the presentation more concrete, we introduce a simple concurrent functional language

inspired by CML [Reppy, 1999]. The formal semantics of this language, called TCML, is presented

in Chapter 5; for the moment we only give an informal explanation of it in order to give a better

intuition about the semantics of communicating transactions.
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Values v in this language are integers n ∈ {0, 1, 2 . . .}, booleans b ∈ {tt, ff}, the unit value

(). Variables x, y, z range over an infinite set of variables, and channels c, d from an infinite set

of channel names. An expression e comprises the standard sequential constructs of let expressions

(letx = e in e), functions (funf(x) = e) and conditionals (if b then e else e). The expression e1; e2

is syntactic sugar for letx = e1 in e2 when x is not free in e2.

We only consider as concurrent primitives send c v and recv c to exchange values over a channel

c, and newChan to create private channels. A process P or Q is either an expression e, the parallel

composition P |Q and the channel restriction νc.P . Communication is synchronous: a send c v

expression in a process P blocks the evaluation of P until another parallel process Q can evaluate

the complementary recv c expression, and viceversa. Channel restriction νc.P guarantees that the

channel c cannot be used for communications outside the scope of P .

Communicating transactions extend a concurrent language, such as ML with concurrency primi-

tives for example, with two constructs: JP .k QK and co k, where k is a transaction name (or identifier).

In JP .k QK, P is called the default process and Q is the alternative process. Processes in P are free

to execute and communicate with each other in transaction k. For example, if P = send c v | recv c,

the following is a valid transition:

Jsend c v | recv c .k QK→ J() | v .k QK

The alternative Q cannot be run instead; in order to model faults in distributed systems, transaction

k can abort the default process P at any time, and replace P with Q, which is then free to run. In

the previous example, the following are both valid transitions caused by aborts:

Jsend c v | recv c .k QK→ Q

J() | v .k QK→ Q

Since P is replaced by Q, any interaction that happened inside transaction k is cancelled. Interactions

in P are thus tentative. When a transaction contains the commit process co k, the transaction is

ready to be committed:

JP | co k .k QK→ P

Since Q and the transactional construct are discarded, process P cannot be aborted any more, and it

has become permanent. In order for another process R outside of k to interact with P , process R has

to be embedded into k:

JP .k QK |R→ JP |R .k Q |RK

When R is embedded, a copy of R is stored in the alternative, so that in case of abort R is restored

to its original state in parallel with Q, as if no interaction had taken place at all, and k alone was

aborted instead. Process R is therefore effectively rolled-back.

Just like software transactional memory and database transactions in general, communicating
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transactions have an all-or-nothing behaviour. Consider for example the following processes:

• P def
= Jsend c v1; send d v2; co k .k ()K

• Q def
= recv c

In the system P |Q, process Q can be embedded in k and a synchronization over channel c can

take place. However transaction k cannot be committed yet. Therefore its effects are not permanent

yet. In fact, the only transition left available is to abort k:

P | Q→ Jsend c v1; send d v2; co k | Q .k () | QK

= Jsend c v1; send d v2; co k | recv c .k () | QK

→ Jsend d v2; co k | v1 .k () | QK

→() | Q

If process R
def
= recv d is added to the system, then the group composed of P |Q |R can indeed

commit after performing two embeddings:

P | Q | R→ Jsend c v1; send d v2; co k | Q .k () | QK | R

= Jsend c v1; send d v2; co k | recv c .k () | QK | R

→ Jsend d v2; co k | v1 .k () | QK | R

→ Jsend d v2; co k | v1 | recv d .k () | Q | RK

→ Jco k | v1 | v2 .k () | Q | RK

→ v1 | v2

Two transactions can be embedded into each other in order to allow them to communicate. How-

ever embeddings in TCML are not driven by the need of processes to communicate, but they are

performed entirely non-deterministically.

The SNO problem finds a very simple encoding using communicating transactions. We first define

restarting transactions, as a transaction T that has some default process P and transaction T itself

as the alternative:

atomicJP K def
= rec f( )⇒ JP I f()K

A restarting transaction performs the body P until it commits, or it aborts and tries to perform P

again.

The SNO problem is now encoded as follows:

Alice
def
= atomicJsync dinner; sync movie; coK

Bob
def
= atomicJsync dinner; sync dancing; coK

Carol
def
= atomicJsync dinner; coK

David
def
= atomicJsync movie; sync dancing; coK
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where dinner,movie and dancing are synchronous public channels.

The encoding is very intuitive; each participant tries to synchronize with other partners for one

or more activities and then commits. Because of the semantics of communicating transactions, un-

successful groups such as Alice | Carol can never commit and they are automatically aborted. More

importantly, no exception handling is required on the part of the programmer. This is also a modular

implementation, since the implementations of each participant are independent from each other. For

example if we introduced a Babysitter process to the group, the implementation of the four participants

in the SNO is unchanged.

1.3 Expressiveness of communicating transactions

We will now explore the expressiveness of communicating transactions through examples. In order to

better illustrate the behaviour of each system that we are going to present, we informally introduce

a graphical notation for a Labelled Transition System (LTS) over single transactions. The examples

we are going to show do not contain parallel transactions running concurrently, but at most a single

transaction running independently. An LTS is a triple < S,L,Act >, where S is a set of states, which

in our case is a subset of the set of all processes P ; L is a relation over S × Act × S that indicates

labelled transitions from a state to another state; and Act is the set of transition labels.

The set Act comprises labels c!v, c?v, ab k and co k. The first two labels annotate transitions in

which the initial state sends or receives a value v over channel c by evaluating the expression send c v

or recv c. The ab k label indicates that transaction k in the initial state is aborted and replaced by

its alternative process. The co k label indicates that transaction k is committed in the initial state.

Intuitively, these transitions model the interaction of the system with an external agent performing a

complementary receive or send action. Sequences of tentative actions that terminate with a co label

become permanent; intermediate sequences can always be rolled back by an ab abort action.

In all the examples shown in this section, there will only be one active transaction at a time in

a process. When a process is a transaction k, we represent it with an orange state k; all tentative

transitions c!v and c?v are drawn with an orange arrow. All other states are blue, and permanent

transition are black. A transaction JP .k QK can be aborted at any time, therefore all tentative states

derived from k can transition to state Q using an ab k action. In order to keep the LTS visually

simple, we only draw one abort transition from the first state k where transaction k can perform any

actions. Thus each orange node has an implicit abort arrow, that points to same state as the explicit

abort arrow.

For example, process S = send c v1; Jsend c v2; recv c; co k .k ()K gives rise to the following

LTS:

S k S′
c!v2 c?v3

ab k

ab k
ab k

c!v1 co k

where S′ = (). However, we will represent it as follows:
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S
def
= letn = recv c in

if isEven n
then (send evens n)
else (send odds n)

S

E

O

c?v

evens!ve

odds!vo

Fig. 1.1: Even/Odd filter specification and LTS.

S k S′
c!v2 c?v3

ab k

c!v1 co k

This informal LTS definition is sufficient to give a visual aid for the transactional code shown in

this section. A more detailed account can be found in [Spaccasassi, 2013].

1.3.1 Even-Odd filter

The Even-Odd filter describes a system containing three public channels, c, evens and odds. In the

finite case, a single integer number is input into the system system from channel c. Even numbers are

output on channel evens, and odd numbers on channel odds. The technical report in [Spaccasassi, 2013]

discusses the more interesting case with a stream of numbers, rather than a single one. The goal of this

section is to introduce an encoding of external choice using transactions, therefore we limit ourselves

to the case where the system can process exactly one number.

We discuss two versions of the Even-Odd filter: a specification and an implementation. The specifi-

cation describes the expected behaviour of the system without using communicating transactions. The

implementation will use communicating transactions instead, and we will argue that the specification

and implementation describe two systems that cannot be distinguished by an external agents, judging

by the set of permanent actions that the system can perform. Uncommitted tentative actions are

ignored.

Figure 1.1 shows the specification’s code and its resulting LTS. The specification is very simple:

process S receives an integer n from c, tests whether it is even using the isEven function, and then

sends it over the appropriate channel, either evens or odds. State S in the LTS refers to the system in

this initial state. State E is the state of the resulting system when n is an even number (send evens n);

O is the resulting state when n is odd (send odds n).

These are all possible sequences of actions that an external agent can observe when interacting

with the system. If the transactional implementation of the filter can display the behaviour (namely

receving a value on c and sending it either on evens or odds), the transactional system would appear

indistinguishable from the specification to an external observer. In that case, we can say that the

transactional version implements the specification.

Figure 1.2 shows the implementation of the Even-Odd filter. The implementation S′ only features
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S′
def
= J let v = recv c in

if isEven v
then co k; send evens v
else ()

Bk Jlet v = recv c in
if isOdd v

then co l; send odds v
else ()

Bl S′KK

k

F1

S′

l

F2

c?n

c?n

ab k ab l

evens!ve

odds!vo

co k

co l

Fig. 1.2: Second version of transactional Even/Odd consumer implementation. F1 and F2 are un-
committable states.

a single transactional process that combines the three agents in the specification. The body of this

process is transaction k, whose alternative is to start another transaction l, the alternative of which

recursively starts transaction k again. Therefore either transaction k is active or transaction l is.

Aborting k will activate l, and viceversa. The behaviour of the system alternates between that of

transaction k and that of transaction l.

The default process of k receives a number v on public channel c and tests whether v is even.

If it is, then it sends v on channel evens. Otherwise the system enters the “failed” state F1 =

J() .k J. . . .l S′KK, where it can only abort k and activate transaction l. When transaction l is active,

its default process receives a value from v from c, and tests whether it is odd. If it is, v is sent over

the odds channel. Otherwise the system enters in the “failed” state F2 = J() .l S′K, where it can only

abort l and therefore effectively restart system S′.

If we only consider these kind of paths and ignore the paths that lead to an abort, since they are

not definitive and whatever effect was performed on the system is rolled-back, we can easily verify that

the system will output even numbers on the evens channel and odd numbers on the odds channel,

after having received it from channel c. The failed states F1 and F2 never lead to a commit, therefore

they never become permanent and are invisible to an external agent. It is also possible to abort

transaction k and l for an indefinite number of times. However these transitions do not bear any

permanent action c!v or c?v, therefore they are not visible to an external agent and can be ignored

for now.

The alternating behaviour of this system is quite interesting. It is reminiscent of guarded commands

from [Dijkstra, 1975], which is a vector of guards of the form (bi → ei). All boolean conditions bi are

evaluated, and all guarded commands are discarded except for the first command j with bj = true;

expression ej is then executed. The case with just two guarded commands can be implemented as

follows using transactions:

gCommand b1 b2 e1 e2
def
= J if b1 then co k; e1 else ()

Bk J if b2 then co l; e2 else ()

Bl gCommand b1 b2 e1 e2KK
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Guards in guarded commands will be tried until one of them can be committed; any eventual effects

resulting from the evaluation of b1 or b2 is always rolled back.

Similarly, it is possible to exploit the alternating behaviour of the same construct to have external

choice (CSP’s deterministic choice from [Hoare, 1978b]). If expression e1 is chosen only after com-

municating on channel c1, and expression e2 is chosen only after communicating on channel c2, then

external choice can be encoded as:

eChoice (c1, e1) (c2, e2)
def
= J let v1 = recv c1 in co k; (e1 v1)

Bk J let v2 = recv c2 in co l; (e2 v2)

Bl eChoice (c1, e1) (c2, e2)KK

If a matching communication is available on one of the two branches of the external choice, the

construct can abort its transactions until the matching branch is activated.

1.3.2 Three-way rendezvous

In the following section we will demonstrate that TransCCS is expressive enough to define the three-way

rendezvous (TWR), a construct that synchronizes three processes simultaneously (from an external

point of view). Just like two processes can simultaneously exchange some values through a swap

channel, three processes swap values by synchronizing on a public three-way rendezvous channel. The

solution presented in this section is inspired by the implementation of TWR in Transactional Events

from [Donnelly and Fluet, 2006].

Theorem 6.1 from [Reppy, 1999] implies that the three-way rendezvous cannot be implemented

modularly in CML:

Theorem 6.1 Given the standard CML event combinators and an n-way rendezvous base-event

constructor, one cannot implement an (n+1)-way rendezvous operation abstractly (i.e. as an event

value).

CML offers two 2-way rendezvous event constructors, namely sendEvt and recvEvt, which are

primitives to send and receive values over typed channels. When provided with appropriate arguments,

both constructs have type event, which is a special type reserved for values that have a concurrent

effect when applied to the sync primitive.

This theorem does not state that no implementation of an (n+1)-way rendezvous exists in CML,

but that there is no such implementation of type event. It is in fact possible to implement a three-way

rendezvous that does not have type event. The interested reader can find a discussion about such

a CML implementation of TWR in [Spaccasassi, 2013]. The problem with such ad-hoc solutions is

that they do not compose well with other primitives. For example, the primitive choose combines two

events into a single event that behaves as the external choice of the two events. Because of Theorem

6.1, the external choice of two three-way rendezvous functions cannot be constructed natively using

choose, but it must be implemented manually, potentially from scratch if the ad-hoc implementation
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rendezvous(c, v1)
def
=

let lead = fun l() =
let c2 = recv c

c3 = recv c
v2 = recv c2
v3 = recv c3

in send c2 (v1, v3);
send c3 (v1, v2);
(v2, v3)

let flw = fun f() =
let c1 = newChan () in
send c c1; send c1 v1; recv c1

in

atomickJ(let v2,3 = lead v1 in commit; v2,3)
⊕ (let v2,3 = flw v1 in commit; v2,3)K

k

c?c2

c?c3

c2?v2

c3?v3

c2!(v1, v3)

c3!(v1, v3)

c!c1

c1!v1

c1?(v2, v3)

ab k

coco

Fig. 1.3: Three-way rendezvous code and LTS. The “⊕” operator stands for internal choice.

of a single rendezvous is not general enough.

Figure 1.3 provides a modular implementation of the three-way rendezvous using communicating

transactions, together with its LTS. Using the rendezvous function, a participant can exchange his

own value v1 for the other participants’ values v2 and v3 over public channel c. A participant can play

one of two roles in the exchange, the follower (encoded by the flw function) or the leader (encoded by

the lead function). A follower creates a private channel c1 and sends it over public channel c, where

the leader will be listening. The follower then sends its own value v1 over the private channel, and

receives back the values of the other participants from the leader. Conversely, the leader first receives

two private channels over c, one for each follower synchronizing with the leader. The leader then

receives the follower’s values and exchanges them to all parties accordingly.

There is an obvious complementarity between follower and leader: each action performed by the

former is matched by the latter. When the follower sends its own private channel over c, the leader

receives it; then when the follower can send its own value, the leader can receive it, and so on. The

leader interleaves and coordinates the requests of the two followers in order to complete the rendezvous.

The code responsible for assigning a role to a participant is in the restarting transaction at the

bottom of the rendezvous program. The internal choice operator e1 ⊕ e2 evaluates randomly to

either e1 or e2
1. By using the internal choice operator, the participant chooses its own role completely

randomly, and independently from the choices that the other participants make. Figure 1.4 lists all

the combination of rendezvous roles. At the start, the three participants have not decided which

role to fulfill in the rendezvous. A process in the “undecided” state, drawn as a black dot, can

non-deterministically decide to become either a follower (blue dot) or a leader (red dot).

In light of the complementarity of leader and follower, it should be clear that the rendezvous can

only succeed if two participants happen to be followers, and one leader. All other combinations result

in the participants becoming stuck (for example, if two participants are leaders and one is a follower,

the follower will start the rendezvous with one leader, but the other leader will be unable to join them).

1It can be encoded as if randomBool() then e1 else e2, where randomBool() is a function that returns non-
deterministically either tt (true) or ff (false). It can also be encoded using concurrency primitives by
send c () | recv c; e1 | recv c; e2, where c is a private channel.
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C0

C1

C2 C3

: leader
: follower
: undecided

commit

Fig. 1.4: Possible consensus groups of three participants in the three-way rendezvous.

However, since the lead and flw functions are enclosed in restarting transactions, stuck configurations

can be aborted and a new configuration can be tried out.

Notice that it is not necessary to abort the whole rendezvous in case of an erroneous configuration.

For example, if all the processes become followers, aborting a single transaction might be sufficient

to have a successful rendezvous. The aborted process has a second chance to become leader next,

and the rendezvous might succeed. Note also the transactional TWR scales well with the number of

participants, because if there are four or more agents engaging in a rendezvous, any stuck configu-

ration they might get into will be aborted, and the participants will synchronize in groups of three.

These considerations should be taken into account in the practical implementation of communicat-

ing transactions, where we are interested in maximizing the number of committing transactions, and

minimizing the number of aborts due to stuck configurations.

1.3.3 Graph search

We will now examine a simple form of transaction nesting and a similarity we have found with the

Prolog programming language and its backtracking capabilities.

A classical example in Prolog is graph searching. Given an acyclic directed graph, such as the one

shown in Figure 1.5, the problem is to find a path between a starting node and an ending node in the

graph, if such a path exists. For example, we might want to find a path between node a and node c,

drawn in green and red colour respectively.

One standard solution in Prolog is to perform a depth-first search on the graph, as described in

the following Prolog code:

gs(X, X, [X]).

gs(X, Y, [X|T]) :-

link(X, Z),

gs(Z, Y, T).

The first argument in the gs clause is the current node being evaluated in the graph. The second

argument is the final node that needs to be reached, and the third one is the list of traversed nodes.

The link predicate is true if an only if an edge exists between the nodes passed to it as arguments.

According to the Prolog implementation, there exists a path between the starting and ending node

either if they are the same node (first clause), or if there exists a path from a node to which the

11



a b c

e

d
f

g
h

Fig. 1.5: An example graph. The start node ’a’ is green, the end node ’c’ is red.

starting node is linked to, and the ending node (second clause). This intermediate node becomes the

new starting node, and the gs clause is invoked recursively on it.

At execution time, there might be many edges departing from the starting node. A Prolog machine

will pick any edge satisfying the link clause and will try to find a path from there to the ending node,

using the gs clause recursively. After each recursive step, the Prolog machine will pick edge after edge

until the ending node is found; because of this, this style of searching is called depth-first. If at some

point a node is not connected to any other node, the Prolog machine will stop and it will try to revert

the last decision it made when picking edges, and try another link; this step is called backtracking.

No edge is tried twice, so the algorithm is guaranteed to terminate after having examined all possible

paths in the graph.

A Prolog machine would find the following solutions:

X = [a,e,f,c]

X = [a,b,f,c]

X = [a,b,c]

Communicating transactions can display the same backtracking behaviour using restarting trans-

actions, as shown by the graphSearch program in Fig. 1.6. Let us also model each edge from node n

to node n′ in Fig. 1.5 as a process that is trying to send channel name n′ on channel n. Given the

channel name relative to a node, we can non-deterministically retrieve one of the nodes that is directly

connected to it. We will use the term node and channel interchangeably in the following discussion.

The gs function in the TCML code will verify whether starting node x and ending node e are the

same. If they are, then it will output node x on channel result and commit the transaction, as in the

first Prolog clause. Otherwise, it will receive one of the nodes y connected to node x first, send x to

the result channel and invoke gs on the new node, as in the second clause.

First of all, note that the whole gs function is inside a restarting transaction, thus all communica-

tions are tentative until a path to the end node is found. If the depth-first search performed by the

gs function encounters a node that is not connected to any other node, then the transaction can be

aborted and another path can be tried.

From the resulting LTS in Figure 1.6, we can recognize three sequences of actions that lead to

a commit point: [path!a, path!e, path!f, path!c], [path!a, path!b, path!f, path!c] and [path!a, path!b,

path!c]. These sequences represent the same set of answers as the Prolog program. There are a couple

of points to keep in mind though. Even though the set of answers is the same, a Prolog machine would
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graphSearch(x, end)
def
=

atomickJ rec gs(x, end)⇒
ifx = end
then send path x; co k
else send path x; gs (recv x, end)K

k

F

path!a

path!b

path!e

path!f

path!c

path!c

path!f

path!d

ab k co k

co k

Fig. 1.6: Transactional graph search algorithm and its LTS.

exhaustively test all possible paths in the graph, in depth-first order. In particular, no two equivalent

paths are ever tried twice. Even though the TCML example follows the depth-first style to explore

the graph, nodes connected to the current node are chosen non-deterministically. Thus the same path

may be tried several times. Note also that a Prolog machine has the ability to say that there are no

more paths after finding the first three paths. On the contrary, a TCML program is wrapped into

a restarting transaction, which can be aborted indefinitely. Thus a restarting transaction will run

indefinitely if no solution exists.

With the TCML version transactions can be aborted at any time, even if a correct solution was

being found; it could even just abort indefinitely. In a practical environment, an implementation of

TCML would have to be particularly smart to achieve both efficiency and faithfulness to the reduction

semantics, maybe exploiting knowledge on the behaviour of the system accrued over time, such as

which transactions aborted most often, or on the currently active processes in the system, and wisely

orchestrate all running transactions.

1.4 Challenges

Communicating transactions provide a modular and intuitive abstraction to easily implement con-

sensus problems, such as the SNO problem and the three-way rendezvous, which can be viewed as a

leader election problem. It is also a very expressive construct that allows us to build more complicated

abstractions, from external choice to examples of speculative computing, such as graph search. It is

also possible to encode the n-queens problem, as shown in [Lanese et al., 2013b], and complicated

flight booking scenarios in [Bruni et al., 2015].

There are two main challenges for the fruitful introduction of transactions in a programming

language: one is theoretical and the other is practical. The first challenge that we need to address is

to provide a solid theoretical foundation for communicating transactions. First of all we need formal

methods to be able to establish that, for example, the implementation of the Even-Odd filter from Sec.

1.3.1 is correct w.r.t its specification. This can only be established by a formal behavioural theory for

communication. Ideally an algorithm would verify whether implementation and specification coincide

automatically.

The second challenge is providing an efficient implementation for communicating transactions. As

hinted in the discussion about graph search in Sec. 1.3.3, communicating transactions are very power-
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ful constructs that can encode hard problems such as the n-queens problem; [Donnelly and Fluet, 2006]

shows how to encode 3-SAT problems into transactions, which means that the programmer might en-

code an NP-complete problem and require a communicating transaction scheduler to solve it. It is

therefore virtually impossible to have an efficient implementation of transactions in general, but it

might still be possible to achieve good performances in more standard scenarios such as in the SNO

problem using some heuristics.

It is unclear what heuristics would work best in practice. As discussed in Sec. 1.1, there is only one

grouping of partners in the SNO problem that can succeed, which is Alice, Bob and David. For all

practical purposes, Carol can be considered as non-existent; any group that includes Carol is doomed

to abort. Because of this, no consensus group can include Carol, and therefore any solution to the SNO

problem has to prevent Carol from joining any group. An efficient implementation of communicating

transactions should ideally take advantage of this fact and avoid uncommmittable groups, because

any computation performed in such groups is ultimately rolled back, and therefore a waste of time

and a performance penalty.

1.5 Contributions and thesis outline

This thesis provides the following contributions:

1. a new mechanism that replaces embedding (see Sec. 1.2) with a simpler construct based on

transaction name merging, presented in [Koutavas et al., 2014]. The process calculus that in-

cludes this new mechanism is called TCCSm. This innovation greatly simplifies the technical

treatment of the language and permits a much easier definition of bisimulation, called history

bisimulation;

2. a new bisimulation method for TCCSm that permits the definition of an algorithm to decide

bisimulation equivalence between finite-state TCCSm processes. Taking history bisimulations

as a starting point, a new proof method called historyless bisimulations is presented and proved

to have the same distinguishing power as history bisimulations;

3. the identification of a sub-language of TCCSm which only includes finite-state programs. Bisim-

ulation equivalence is decidable for this sub-language;

4. the definition of a new concurrent functional language with transactions, called TCML;

5. an empirical study of scheduling policies for transactions in TCML;

6. a session type discipline that guarantees progress under specific conditions;

7. to our knowledge, the first sound and complete, fully automatic inference algorithm for session

types with delegation in a concurrent functional language à la ML. Session type inference forms

the foundation for efficient scheduling of communicating transactions.

The thesis is organized as follows. Chapter 2 introduces the history bisimulations and the new

transaction name merging mechanism presented in [Koutavas et al., 2014]. The renaming mechanism

is my personal main contribution to that publication. In the history bisimulation setup, each process
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is attached with a history, an ordered list that records all the actions that the process has performed.

As explained in Chapter 3, histories create infinite state LTSs out of any TCCSm process by design.

Bisimulation algorithms terminate only in the presence of finite-state LTS, therefore we introduce

historyless bisimulations, a new proof method that replaces histories with dependency sets. In Chapter

4 we show that historyless bisimulations are finite for a certain class of TCCSm processes. We describe

a bisimulation algorithm, which has also been implemented and for which a sample output is provided.

Regarding the use of transactions in a practical setting, Chapter 5 presents TCML, an ML-like

concurrent functional language that incorporates concurrent transactions. Through experimentation,

we have discovered in [Spaccasassi and Koutavas, 2013] that contention of shared channels drastically

penalizes performance: the number of committing groups decreases exponentially as the number

of participants in consensus groups increases. The generality and expressiveness of communicating

transactions, as exposed in Sec. 1.3, are accountable for this. Given this negative result, we concluded

that a promising approach to improve performance is through more refined code analysis tools, by

statically predicting the transactional and concurrent behaviour of a program.

A promising approach to formally specify and verify the communication protocols of a system is

session types, as mentioned earlier. Session types are a typing discipline recently proposed to model

protocol interactions in [Honda, 1993]. For example, consider the following process P :

P
def
= send c (); if recv c then send c 1 else send c 2

Process P first sends the unit value over channel c, then it receives a boolean value, and finally it

either sends the integer 1 or 2.

Regardless of what action is taken in the conditional expression and of the actual values exchanged

over c, we can describe abstractly the protocol that P implements with the following sequence of typed

actions:

η =!Unit . ?Bool . !Int

Protocol η is called a session type; the session type codifies the exchange of typed values that P has

with the external environment over c (P sends a unit value, receives a boolean and sends an integer).

Consider now the three way rendezvous from Section 1.3.2. We have already argued that there

exists an obvious complementarity between the protocol followed by the leader and the followers.

Session types can give an explicit and formal description of such protocol. By analyzing the protocol,

it is possible to establish that a consensus group can only be formed by a leader and two followers.

Through static analysis means, it is therefore possible to equip a transaction scheduler with session

types information and enhance its ability to predict which group is more likely to reach a consensus.

Chapter 6 introduces MLS, a concurrent functional language equipped with session type primitives,

polymorphism and higher-order session communications. A peculiar property of our typing discipline

is that, in the absence of divergent processes and in the presence of enough participants to each

communication protocol, any system is guaranteed to terminate. Chapter 7 introduces the type

inference algorithm for MLS, together with proofs of termination, soundness and completeness.
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Chapter 9 summarizes the topics presented in the thesis. We introduce a number of languages

in this thesis: TCCSm , TCML and MLS. We envision a version of TCML that uses transaction

renaming instead of embeddings, and session types. Future directions of work are discussed, such as

bisimulation methods for nested transactions and how session types and transactions can be combined

to improve transaction scheduling performances, as outlined for the three-way rendezvous example.
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Chapter 2

Bisimulations for communicating

transactions

A central notion in the formal analysis of concurrent systems is the study of observable behaviour,

which is the kind of interactions that a program is capable of with its environment. Of particular

interest is proving that two systems have the same extensional behaviour, meaning that it is impossible

for an external agent to find a difference in the communication patterns of the two systems only by

interacting with them. This notion of equivalence would justify the claim that, for example, the

transactional implementation of the three-way rendezvous in Section 1.3.2 is indeed indistinguishable

from its non-transactional specification.

Such behavioural theories are usually expressed in terms of some form of environment or context.

A context might be a hole in the abstract syntax tree of a system [Sangiorgi and Walker, 2001], or a

concurrent system to be run in parallel with one of the systems under test [Honda and Yoshida, 1995].

In general two systems are defined extensionally equivalent if there is no observable difference in the

behaviour between the two systems when put in a context, for any context. Since contexts can be

arbitrarily complex, direct proofs of equivalence are generally hard to find.

Bisimulations [Milner, 1982] provide an elegant and effective proof technique for proving contex-

tual equivalences between processes. A bisimulation can be considered as a challenger/defender game

played by two opponents, where the challenger tries to discover a difference in the extensional be-

haviour of two processes, while the defender tries to refute these attempts [Stirling, 1998].

For example, consider the following processes from Milner’s Calculus of Communicating Systems

(CCS):

P
def
= a.(b.0 + c.0) Q

def
= a.b.0 + a.c.0

where P performs an action a and then chooses to perform either b or c; and Q chooses one of

two sequences of actions to play (namely a.b.0 and a.c.0), and then proceeds to play them. In a

bisimulation game the challenger can show that P and Q have indeed a different observable behaviour.

The challenger can first play play a from P . This forces the opponent to play a matching action from

Q, which entails choosing one of the two sequences of actions a.b.0 or a.c.0 in order to play action
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a. In case the defender chooses the branch a.b.0, the challenger can play c from P ′ = b.0 + c.0. The

defender cannot reply to this attack, since it can only play b, and therefore loses the bisimulation

game. Viceversa, if Q chooses the other branch, then the challenger can play c and win the game.

There is no winning strategy for the defender, and therefore the two processes are said to be not

bisimilar, and therefore not equivalent.

This chapter focuses on the development of a behavioural theory of CCS extended with commu-

nicating transactions, called TCCSm, for the sake of simplicity. The development of a theory for a

functional programming language is left for future work. Before elaborating further, we must note

that embeddings introduce several technical difficulties in the development of a behavioural theory.

Consider the following two CCS processes enclosed in communicating transactions:

P
def
= Ja.co k .k 0K Q

def
= Jā.co l .l 0K

and consider P and Q to be in parallel. Clearly P and Q can synchronize on a and commit. However,

in order for this to happen, a double embedding has to take place. Either k is embedded into l, and

the default process of l is

P |Q→→ JJa.co k | ā.co l .k 0 | ā.co kK .l P | 0K

or the opposite happens, namely that l is embedded into k first, and then the default of k is embedded

in l:

P |Q→→ JJa.co k | ā.co l .l a.co k | 0K .k 0 | QK

First of all, this example shows that there are multiple ways of embedding transactions into each

other, however it is unclear whether the order of embedding makes any difference. In this case it

does not, and ideally it should not, since the purpose of embedding is just to allow communication

to happen between two partners. It is unclear whether the order of embeddings makes a difference

in general. Secondly, notice that transaction names are binders in TransCCS. After an embedding

takes place, the commit point co k of a transaction k is copied in the alternatives of some other

transaction, and it becomes hard to track the process that can commit k. Thirdly, embeddings are

not communication driven. A process can be embedded in a transaction unnecessarily, which further

complicates reasoning about transactions.

Because of these reasons, Section 2.1 introduces TCCSm, a transactional version of CCS where

embeddings are replaced by a new mechanism called transaction merging. We only consider flat

transactions, i.e. transactions that do not contain nested transactions in their default processes.

We believe that the theory presented in this chapter can be extended to the nested case as well.

Section 2.2 discusses reduction barbed equivalence, a natural notion of contextual equivalence from

[Honda and Yoshida, 1995] with some adaptations to the transactional world. Finally Section 2.3

discusses history bisimulations, a proof technique based on the notion of bisimilarity [Milner, 1982].

History bisimulations are sound and complete with regards to reduction barbed equivalence. We do

not present the proof of these results, which are outside the scope of the thesis. The material presented
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in this chapter has been published in [Koutavas et al., 2014], where the interested reader is referred

to for more technical details about the soundness and completeness proofs.

2.1 The language TCCSm

The syntax for terms of TCCSm is given in Fig. 2.1 where µ ∈ Actτ ]Ω and X ranges over a collection

of recursion variables. Here Ω is a special set of actions which will be used to define contextual

equivalence while ( · ) : Act → Act is a total bijection over Act, used in the standard manner to

formalise CCS synchronisation between processes.

The language TCCSm is essentially obtained from CCS [Milner, 1982] by introducing three new

constructs: JP .k QK and JP I QK for communicating transactions, and a new command co for

committing them. The construct JP .k QK is called an active transactions, that is a transaction is

ready to interact with its environment. Transaction has name k, which we assume to belong to an

infinite set of names. The construct JP I QK is called a dormant transactions, which can become

active after it is allocated a fresh transaction name k. Before that time, a dormant transaction cannot

interact with its environment.

We assume the standard notion of free and bound occurrence of recursion variables, and only

consider closed terms, those which contain no free occurrences of variables. We use the standard

abbreviations associated with CCS, and write s ] s′ when the transaction names of the syntax object

s are fresh from those in s′; ftn(s) denotes the transaction names in s. Note that unlike previous work

in TransCCS [de Vries et al., 2010, De Vries et al., 2010], transaction names are never bound and we

do not require that all transaction names used in a term are distinct. Thus, we allow terms of the

form JP1 .k P2K |R | JQ1 .k Q2K . Here k should be looked upon as a distributed transaction whose

behaviour will be approximately the same as the centralised JP1 |Q1 .k P2 |Q2K . The use of these

distributed transactions will simplify considerably the exposition of the reduction semantics.

Definition 2.1.1 (Well-formed terms). A closed term is called well-formed if in every occurrence of

JP .k QK, JP I QK, and recX.P , the subterms P and Q do not contain named transactions of the

form J− .− −K. We refer to well-formed terms as processes.

Dormant transactions can appear within other transactions and under recursion, but the semantics

of TCCSm will allow them to be activated only when they end up at top-level. In the sequel we only

consider well-formed terms.

The reduction semantics of the language is given as a binary relation between processes P → Q.

However this is defined indirectly in terms of three auxiliary relations, which will also be used in the

formulation of bisimulations:

P → Q when P
τ−→σ Q or P

k(τ)−−−→σ Q or P
β−→ Q

The first, P
τ−→ Q, is essentially synchronisation between pure CCS processes. The second, P

k(τ)−−−→σ Q,

is synchronization between a transaction and another TCCSm process. More generally, we write

P
k(µ)−−−→σ Q where µ ∈ Act ∪ {τ} for the tentative interaction of P with an environment. The third,
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TCCSm Syntax

P,Q,R ::=
∑
µi.Pi

∣∣ P |Q
∣∣ νa.P

∣∣ X
∣∣ recX.P∣∣ JP .k QK

∣∣ co.P
∣∣ JP I QK

CCS Transitions

CCSsum

Σµi.Pi
µi−→ε Pi

CCSsync

P
a−→ε P

′ Q
a−→ε Q

′

P |Q τ−→ε P
′ |Q′

CCSrec

µX.P
τ−→ε P [µX.P/X]

Transactional Transitions

TrTau

P
τ−→ε P

′

JP .k QK τ−→ε JP ′ .k QK

TrSum

Σµi.Pi
k(a)−−−→ε 7→k JPj | co .k Σµi.PiK

µj = a

TrAct

P
a−→ε P

′

JP .l QK
k(a)−−−→l 7→k JP ′ .k QK

k ] l

TrSync

P
k(a)−−−→σ1

P ′ Q
k(a)−−−→σ2

Q′

P |Q k(τ)−−−→(l̃1,l̃2) 7→k P
′σ2 |Q′σ1

σ1 = l̃1 7→ k

σ2 = l̃2 7→ k

Propagation Transitions

Restr

P
α−→σ P

′

νa.P
α−→σ νa.P

′ a ] α

ParL

P
α−→σ P

′

P |Q α−→σ P
′ |Qσ

range(σ) ] Q

Fig. 2.1: Communication and internal transitions (omitting symmetric rules)

P
β−→ Q, where β ranges over co k, ab k and new k, encode commit/abort transitions which eliminate

transactions and the creation of new named transactions. These need to be broadcast actions, i.e.

actions performed synchronously by each single process in P , because of the presence of distributed

transactions: for example, a transaction can be committed only if all its distributed parts are ready

to commit.

We first concentrate on the second relation. Action P
k(a)−−−→σ Q should be viewed as the syn-

chronisation between P and some transaction named k in the environment which can perform the

complementary a. Because this transaction is external we will always assume that the name k is

fresh. Also, the effect of this synchronisation is that the future behaviour of P , or at least any trans-

actions involved in the execution of a, is dependent on the eventual committing of k. This dependency

is implemented by σ, a substitution renaming the responsible transaction in P to k. The essential

rule in the generation of these judgements is TrAct in Fig. 2.1. For example, this rule ensures that

we can derive: Ja.P1 .l1 Q1K
k(a)−−−→l1 7→k JP1 .k Q1K for any fresh k. The substitution recorded in the

action is propagated by ParL into contexts. Note that by TrSum, even pure CCS processes with no

transactions can perform a k(a) action; e.g., a.P
k(a)−−−→ε 7→k JP | co .k a.P K . This encloses P into

the k-transaction; the distributed part of the k-transaction surrounding P is always ready to commit

(hence the introduction of co). Note that this is a communication-driven embedding, which reduces

the nondeterminism of embeddings.

The conjoining of transactions is implemented in TrSync. Using it we infer:

Ja.P1 .l1 Q1K | Ja.P2 .l2 Q2K
k(τ)−−−→(l1,l2)7→k JP1 .k Q1K | JP2 .k Q2K
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TrNew

JP I QK new k−−−→ JP .k QK

TrAb

JP .k QK abk−−→ Q

TrCo
P  co P

′

JP .k QK cok−−→ P ′

TrBroadcast

P
β−→ P ′ Q

β−→ Q′

P |Q β−→ P ′ |Q′
β ∈ {cok, abk}

TrIgn

P
β−→ P ′

P |Q β−→ P ′ |Q
β ] Q

TrRestr

P
β−→ P ′

νa.P
β−→ νa.P ′

Fig. 2.2: Transactional reconfiguration transitions

for any fresh k. Here the previously independent transactions l1, l2 have been merged into the trans-

action k (recorded in the substitution (l1, l2) 7→ k). Note that this new transaction is distributed, in

that its activity is divided in two. In order for it to commit the rules in Fig. 2.2 ensure that both

components commit.

Consider for example the process P = νp. Ja.p.co.R .l1 0K | Jb.p.co.S .l2 0K. Two applications of

TrAct followed by rule Restr gives the reduction:

P →∗ νp. Jp.co.R .k1 0K | Jp.co.S .k2 0K = P ′

where k1 and k2 are fresh names. Now an application of the synchronisation rule TrSync and the

structural rule gives

P ′ → νp. Jco.R .k 0K | Jco.S .k 0K

where k is an arbitrary fresh name. Here the residual is a single transaction named k, albeit dis-

tributed. For it to commit both components have to commit: using TrBroadcast this leads to the

process R |S.

Broadcast actions P
β−→ Q are described in Fig. 2.2; we first explain the effect of commits on a

single active transaction k. An active transaction can initiate a commit when it contains a top level

co keyword. In this case the alternative process and the transactional construct itself are removed

as per Rule TrCo. Additionally, this operation removes all occurrences of the co keyword from the

body of the k-transaction, referring to the transaction. Any co inside an inner dormant transaction

are retained, since they refer to that transaction.

The definition of local commits is defined by structural induction as follows:

co.P  co P
′{|τ\co|}

P  co P
′

νa.P  co νa.P
′

P  co P
′ Q co Q

′

P |Q P ′ |Q′
P  co P

′

P |Q P ′ |Q{|τ\co|}
@Q′.Q 6 co Q

′

where the term Q {|τ\co|} substitutes all occurrences of co in Q with τ -prefixes, except for those

inside dormant transactions. The obvious symmetric rules are omitted.

Commits are propagated by Rule TrBroadcast and Rule TrIgn. In order for a distributed

transaction k to commit, all its distributed parts must be able to commit locally (Rule TrBroadcast).

Otherwise Rule TrIgn guarantees that a process can broadcast a co k action only when transaction k
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does not occur in it. For example transaction Jco .k 0K | J0 .k 0K cannot commit, because the second

distributed part cannot commit locally; Rule TrIgn cannot be applied on the right-hand side of the

parallel construct.

When a transaction JP .k QK is aborted by Rule TrAb, its default process P is removed and its

alternative Q is released. In order to ensure that a distributed transaction k is not aborted partially,

abort actions ab k is broadcast in the same manner as commits by Rule TrBroadcast and Rule TrIgn.

Dormant transactions JP I QK are activated by Rule TrNew into the active transaction JP .k QK,

for some name k. The side condition of Rule TrIgn guarantees that a transaction is activated (with

action new k) only if the name k is fresh with respect to other parallel processes. All broadcast actions

are propagated through restrictions by Rule TrRestr.

The semantics has a number of properties: it preserves well-formedness, generates only fresh

transaction names and is equivariant. The properties about transaction names are important because

they give us the liberty to pick fresh enough transaction names in proofs. To state these properties we

use renamings, ranged over by r, which are bijective substitutions of the form [l1 7→ k1], . . . , [ln 7→ kn].

The following lemma states that names generated by either a transaction merging or from a new k

broadcast action are always fresh:

Lemma 2.1.2 (Freshness of generated names). Let P and Q be well-formed TCCSm terms. If

P
α−→ σQ, then α, rg(σ) ] P . If P

new k−−−→ Q, then k ] P .

Proof. By rule induction.

We conclude this section by showing a minor property of the LTS, namely that the shape of a

substitution σ depends on the kind of action (τ, k(τ) or k(a)) that a process performs. This property

will be useful for the technical development of later chapters:

Lemma 2.1.3 (Substitution inversion). Let P and Q be well-formed TCCSm terms. If P
α−→ σQ,

then:

• σ = ε when α = τ

• σ = [l, l′ 7→ k] when α = k(τ)

• σ = [ε 7→ k] or σ = [l 7→ k] when α = k(a)

Proof. By rule induction.

2.2 Reduction barbed equivalence

Based on this semantics we give a natural contextual equivalence, based on the notion of reduction

barbed equivalence [Honda and Yoshida, 1995]. We write ⇒ for the reflexive transitive closure of →.

We define a barb, which are the actions externally observable by the context:

Definition 2.2.1 (Barb). P⇓ω if there exist Q, Q′ such that P ⇒ Q
ω−→ε Q

′.

Notice that barbs are never tentative, but must be played by a top-level process, i.e. one that is

not inside a transaction. Reduction barbed equivalence is defined as follows:
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Definition 2.2.2 (Reduction Barbed Equivalence (∼=rbe)). (∼=rbe) ⊆ LAct]Ω × LAct]Ω is the largest

relation for which P ∼=rbe Q when:

1. P⇓ω iff Q⇓ω,

2. if P → P ′ then there exists Q′ such that Q⇒ Q′ and P ′ ∼=rbe Q
′,

3. if Q→ Q′ then there exists P ′ such that P ⇒ P ′ and P ′ ∼=rbe Q
′,

4. P |R ∼=rbe Q |R for any R ∈ LAct]Ω with R ] P,Q.

Here we consider contexts with fresh transaction names to enforce that observer transactions are

distinct from processes transactions before communication occurs. If this was not the case then

transaction names would be observable: JP .k QK would not be equivalent to JP .l QK because by

introducing the context R = J0 .k 0K the k-transaction can no longer commit (whereas l still can).

To see why in the above definition we use barbs from a distinct Ω consider:

P = Ja.co .k 0K Q = a.0 + τ.0

Intuitively, we would expect P to have exactly the same behaviour as Q, eventually executing the

single action a, or failing with a τ step. But if we allowed the barb ⇓a in Def. 2.2.2 then they would

not be equivalent because P 6⇓a and Q⇓a.

While it is hard to prove directly from Def. 2.2.2 that P ∼=rbe Q holds for some arbitrary P and

Q, the proof of the contrary is sometimes viable. Consider for example the following:

P = Ja.b.co + a.c.co .k 0K Q = Ja.(b.co + c.co) .l 0K

and take C1 = ā as a context. Then we have:

P |C1
l(τ)−−→ Jb.co .l 0K | Jco .l C1K = P ′ and thus P |C1 −→ P ′

where P ′ is the residual of P after choosing its left-hand side branch. Transaction l in P ′ can commit

only if its context can synchronize on b.

If P ∼=rbe Q was true, then either Q |C1 or one of its successors (namely Q′ = Jb.co + c.co .m 0K |

J0 .m C1K after a synchronization, or Q′′ = 0 |C1 after aborting l) would be reduction barbed equiv-

alent to P ′. However this is not the case, because for each successor of Q |C1 there exists a context

C2 that distinguishes it from P ′. If we take C2 = c̄.ω, it is easy to see that Q |C1 |C2⇓ω holds (after

Q synchronizes with C1 first and then C2), but this is not possible for P ′, which cannot communicate

over c. The same reasoning applies in the case of Q′. Conversely, if we take C ′2 = b.ω, then P ′ |C ′2⇓ω

holds but Q′′ |C ′2 cannot perform the same barb, because transaction l has been aborted.

2.3 History bisimulations

The standard bisimulation game outlined in the introduction to this chapter cannot be easily extended

to TCCSm. When a process inside a transaction k performs an action a, the resulting action k(a) is
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tentative and can be aborted at any time by transaction k. If k never commits, all its tentative action

k(µ) are never going to become permanent, and therefore they will never be observable to an external

observer.

To underline this consider the processes:

P1 = Ja.(b.co + c.0) .k 0K Q1 = Ja.b.co .l 0K (2.1)

Here P1 commits only after performing a and b. It would be unreasonable for the challenger, after the

a action, to demand a response to c. Not only is this action tentative on the completion of transaction

k but also if c is performed then k will never commit; so the defender should be able to ignore this

challenge.

The definition of bisimulation game is based on configurations, of the form C = (H B P ) where P

is a system and H a history of all the tentative actions taken so far in the game by P . These are of

the form k(a), where k is the name of a transaction which needs to commit before the action becomes

a permanent a. When playing bisimulation moves, the histories of both systems being scrutinized

must remain consistent, in that permanent actions in the respective histories must match exactly.

The crucial aspect of this new game is that when a system commits a transaction k, and only then,

all tentative actions in its history dependent on k are made permanent. This consistency requirement

then forces a response in which the corresponding actions match exactly.

For example consider the following variation on processes P
def
= a.(b.0 + c.0) and Q

def
= a.b.0 + a.c.0

from the introduction, using transactions:

P2 = Ja.b.co + a.c.co .k 0K Q2 = Ja.(b.co + c.co) .l 0K (2.2)

Replaying the game from the introduction, where the challenger first chooses a from P and then c

from Q with the same responses, we reach the configurations:

C2 = (k(a), k(c) B Jco .k 0K) D2 = (l(a), l(b) B Jco .l 0K)

At this stage the two histories are still consistent as they contain no permanent actions. However, now

there is no possible response when the challenger chooses the commit move: C2 → C′2 = (a, c B 0).

This is a silent move from C2 in which transaction k commits, making the two actions in the history

permanent. There are various ways in which D2 can try to respond but all lead to an inconsistent

history. Thus, with our version of bisimulations P2 and Q2 are not bisimilar.

Note that such a successful attack by the challenger cannot be mounted for (2.1) above. After one

round in the game we have the configurations:

C1 = (k(a) B Jb.co + c.0 .k 0K) D1 = (l(a) B Jb.co .l 0K)

and since D1 has no possible c actions the challenger might request a response to the action: C1 →

C′1 = (k(a), k(c) B J0 .k 0K). However the tentative k(c) recorded in the history will never become

permanent and thus the defender can successfully respond with any tentative action of D1 which will
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also never become permanent. To ensure that such responses can always be made, our bisimulations

will allow any configuration to make the degenerate silent move: (H B P ) → (H, k(?) B P ), where

? is a reserved symbol. So the move above by C1 can be successfully matched by D1 playing this

degenerate move followed by the abort of the transaction. Later we prove that P1 and Q1 are indeed

bisimilar.

Using recursion we can write restarting transactions as recX.JP I XK. Here JP I XK is an

uninitiated transaction which has yet to be allocated a name. These transactions can abort and re-

run internal steps, thus branching differences in initial silent actions can be hidden from the challenger.

Consider a compiler that performs common subexpression elimination, transforming P3 to Q3:

P3 = recX.Jτ.b.co + τ.c.co I XK Q3 = recX.Jτ.(b.co + c.co) I XK (2.3)

As we will show, all moves of the challenger can be matched by the defender in the bisimulation game.

The interesting scenario is when (after initiating the transactions) the challenger picks the right τ

action from P3 and the defender responds with the τ action from Q3. We then get the configurations:

C3 = (ε B Jc.co .k P3K) D3 = (ε B Jb.co + c.co .l Q3K)

The challenger then picks the b action from D3. The defender responds with a silent abort of C3 which

will reinstate P3, re-initialize the transaction, and select the left τ action in P3 followed by the b action.

This would lead to the configurations: C′3 = (k′(b) B Jco .k′ P3K) and D′3 = (l(b) B Jco .l Q3K). We

will in fact prove that this optimisation is sound in our setting, although it is not sound in the case

of P4, Q4, even if we used restarting transactions.

We now give a formal account of history bisimulations. Our bisimulations will be over configura-

tions (H B P ) with a process P and a history H of the tentative interactions of P with its environment.

An element of such a history can be a k(a), a, ab, k(?), or ?. A past tentative action k(a) that has

not been committed or aborted is recorded as is in the history. If the k-transaction that performed

this action has committed, the action is recorded as a; if the transaction has aborted, the action is

recorded as ab. Histories also record the trivial actions k(?) which can be performed by any process.

If these actions have been committed, they are recorded as ?; if they have been aborted they are

recorded again as ab. For technical convenience elements in a history are uniquely indexed.

Definition 2.3.1 (History). A history H is a partial function from objects i of a countable set I to

the set {a, ?, k(a), k(?), ab | a ∈ Act}.

We can think of a history as a sequence of the aforementioned actions indexed by the set I. We

often write histories as lists, omitting the indices of their elements. History composition, written as

H1, H2, is defined when dom(H1) ∩ dom(H2) = ∅. We also let â and b̂ range over Act ∪ {?} and µ̂

range over Act ∪ Ω ∪ {τ, ?}. To express the effect of commits and aborts to histories we define the

following operations.
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Definition 2.3.2. H \co k and H \ab k are the lifting to lists of the operations:

(i 7→ k(â)) \co k = (i 7→ â) (i 7→ k(â)) \ab k = (i 7→ ab)

(i 7→ l(â)) \co k = (i 7→ l(â)) (i 7→ l(â)) \ab k = (i 7→ l(â)) when k ] l

(i 7→ â) \co k = (i 7→ â) (i 7→ â) \ab k = (i 7→ â)

(i 7→ ab) \co k = (i 7→ ab) (i 7→ ab) \ab k = (i 7→ ab)

For the reasons we explained in the Introduction, weak bisimulations for TCCSm require configu-

rations to agree on the committed actions in their histories, and only those actions. Soundness of our

technique will establish this as a sufficient requirement for contextual equivalence between processes.

Definition 2.3.3 (Well-formed configurations). A configuration (H B P ) is well-formed when P is

a process.

Definition 2.3.4 (Consistency). H1 and H2 are consistent when they have the same domain and for

all i ∈ I, a ∈ Act: H1(i) = a iff H2(i) = a.

History consistency is one of the two main requirements for weakly bisimilar configurations; the

other is to have the same barbs. Thus the weak bisimulation game for TCCSm will be over transitions

with three simple labels: ζ ::= τ
∣∣ k ∣∣ ω annotating internal (τ), tentative synchronization (k) and

barbs (ω).

Definition 2.3.5 (Bisimulation Transitions). C ζ−→ C′ is derived by the rules:

(H B P )
τ−→ (σ(H) B Q) if P

τ−→σ Q (LTSτ)

(H B P )
τ−→ (σ(H) B Q) if P

k(τ)−−−→σ Q and k ] H (LTSk(τ))

(H B P )
τ−→ (H B Q) if P

new k−−−→ Q and k ] H (LTSnew)

(H B P )
τ−→ (H \co k B Q) if P

co k−−→ Q (LTSco)

(H B P )
τ−→ (H \ab k B Q) if P

ab k−−→ Q (LTSab)

(H B P )
k−→ (σ(H), i 7→ k(a) B Q) if P

k(a)−−−→σ Q, k ] H and i ] dom(H) (LTSk(a))

(H B P )
k−→ (H, i 7→ k(?) B P ) if k ] H, P and i ] dom(H) (LTS?)

(H B P )
ω−→ (σ(H) B Q) if P

ω−→σ Q (LTSω)

We define
ζ

=⇒ to be
τ−→∗ when ζ = τ , and

τ
=⇒ ζ−→ τ

=⇒ otherwise.

The first five rules encode the TCCSm reduction semantics P → Q presented in Section 2.1,

updating the history of the configurations accordingly. LTSk(a) encodes the synchronization between

a transaction in the process and its environment, yielding a fresh transaction k; this tentative action

is recorded in the history using a fresh index i. LTSω encodes top-level barbs and LTS? records a

trivial defender synchronization move on a fresh index i. Weak τ - and k-transitions can always be

performed by the defender in the bisimulation game. Moreover, there are no top-level a-transitions

because they can always be simulated by a k(a)-transition followed by the commit of k.

The challenger of this bisimulation game performs all-but-? transitions.

Definition 2.3.6. C1
ζ−→C2 is a challenger move if it is derived without using LTS?.
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We now give the definition for a weak bisimulation over the above transitions.

Definition 2.3.7 (Weak Bisimulation). A binary relation R ⊆ ConfAct]Ω × ConfAct]Ω is a weak

bisimulation when for all C1 R C2:

1. hist(C1) and hist(C2) are consistent,

2. if C1
ζ−→ C′1 is a challenger move and ζ ] C2 then ∃ C′2: C2

ζ
=⇒ C′2 and C′1 R C′2,

3. the converse of the preceding condition.

We define weak bisimilarity (≈) as the largest weak bisimulation, and extend it to processes by

letting P ≈ Q if (∅ B P ) ≈ (∅ B Q). Similarly to process transitions in Sec. 2.1, bisimulation

transitions and weak bisimulations are unaffected by fresh renaming. Thus, the name selected in

a challenger move is unimportant, and we can consider only one convenient fresh name for each

transition.

We now explain how to prove bisimilarity between two TCCSm processes by example. Recall P1

and Q1 from (2.1). In order to show that P1 ≈ Q1 (i.e., (∅ B P1) ≈ (∅ B Q1)), it suffices to check

that R1 in Fig. 2.3 is a weak bisimulation.

Related histories in R1 are consistent. The interesting case is when (k(a) B Jb.co + c.0 .k 0K) k′−→

(k′(a), k′(c) B J0 .k′ 0K). The defender responds with:

(k(a) B Jb.co .k 0K) k′−→LTS? (k′(a), k′(?) B Jb.co .k 0K)
τ−→LTSab (ab, ab B 0)

and gets:

(k′(a), k′(c) B J0 .k′ 0K) R1 (ab, ab B 0)

The rest is trivial, thus the defender always wins, therefore R1 is a weak bisimulation and P1 ≈ Q1.

Let us show P3 ≈ Q3 from (2.3) by constructing relation R3 in Fig. 2.3. In this construction, H

is a history with zero or more aborted actions; we add this to our configurations because restarting

transactions can nondeterministically abort and restart. The proof that R3 is a weak bisimulation

is again by an easy inspection of the moves of the challenger. The important move is when from

the pair ((H B Jb.co .k P3K), (H B J(b.co + c.co) .l Q3K)) the challenger picks the transition (H B

J(b.co + c.co) .l Q3K))
l′−→ (H, l′(c) B Jco .l′ Q3K)) and the defender plays:

(H B Jb.co .k P3K)
τ−→(LTSab) (H B P3)
τ−→(LTSτ ) (H B Jτ.b.co + τ.c.co I P3K)
τ−→(LTSnew) (H B Jτ.b.co + τ.c.co .k P3K)
τ−→(LTSk(τ)) (H B Jc.co .k′ P3K)
l′−→(LTSk(a)) (H, l′(c) B Jco .l′ P3K)

and gets:

(H, l′(c) B Jco .l′ Q3K)) R3 (H, l′(c) B Jco .l′ P3K)

which concludes the proof.

27



R1
def
= { ((ε B P1), (ε B Q1)), ((k(a) B Jb.co + c.0 .k 0K), (k(a) B Jb.co .k 0K)),

((k(a), k(b) B Jco .k 0K), (k(a), k(b) B Jco .k 0K)), ((a, b B 0), (a, b B 0)),
((k(a), k(c) B J0 .k 0K), (ab, ab B 0)), ((ab, . . . B 0), (ab, . . . B 0)) | any k}

R3
def
= { ((H B P3), (H B Q3)), ((H,x B 0), (H,x B 0))

((H B Jτ.b.co + τ.c.co I P3K), (H B Jτ.(b.co + c.co) I Q3K)),
((H B Jτ.b.co + τ.c.co .k P3K), (H B Jτ.(b.co + c.co) .l Q3K)),
((H B Jb.co .k P3K), (H B J(b.co + c.co) .l Q3K)),
((H B Jc.co .k P3K), (H B J(b.co + c.co) .l Q3K)),
((H, k(x) B Jco .k P3K), (H, k(x) B Jco .k Q3K)),
| any k, l,H = (ab, . . .), and x = a or b }

R4
def
= { ((ε B P4), (ε B Q4)), ((ab, . . . B 0), (ab, . . . B 0)),

(k1(a) B νp. Jp.co.R .k1 0K | Jb.p.co.S .k2 0K), (k1(a) B Jb.co.(R |S) .k1 0K)),
(k2(b) B νp. Ja.p.co.R .k1 0K | Jp.co.S .k2 0K), (k2(b) B Ja.co.(R |S) .k2 0K)),
((k1(a),k2(b) B νp. Jp.co.R .k1 0K | Jp.co.S .k2 0K),

(k2(a), k2(b) B Jco.(R |S) .k2 0K)),
((k2(b),k1(a) B νp. Jp.co.R .k1 0K | Jp.co.S .k2 0K),

(k1(b), k1(a) B Jco.(R |S) .k1 0K)),
((k(x),k(y) B νp. Jco.R .k 0K | Jco.S .k 0K), (k(x), k(y) B Jco.(R |S) .k 0K))
((x, y,H B νp. R |S), (x, y,H B R |S))

| any k, k1, k2, R, S,H and (x, y) = (a, b) or (b, a) }

Fig. 2.3: Relations used to prove the equivalences P1 ≈ Q1, P3 ≈ Q3 and P4 ≈ Q4 presented in
Section 2.3.

In our final example we prove a transactional variant of the parallel expansion law of CCS. In CCS,

it holds true that a.P | b.Q is bisimilar to a.b.(P |Q) + b.a.(P |Q). Consider the following TCCSm

processes:

P4
def
= νp. Ja.p.co.R .k 0K | Jb.p.co.S .l 0K

Q4
def
= Ja.b.co.(R |S) + b.a.co.(R |S) .m 0K

We can prove that in TCCSm P4 ≈ Q4 holds by constructing the relation R4 in Fig. 2.3.

It is easy to verify that all histories related in R4 are consistent and all challenger moves can be

matched by the defender. Here it is noteworthy that the two tentative actions a and b are recorded

in the left-hand history under different transaction names (k1 and k2, respectively) until the synchro-

nization on p merges the two transactions; these history annotations are highlighted in bold typeface.

We conclude the chapter with the definition of committable action, committable transaction,

and with some properties of the History LTS that will be used for the technical development of

later chapters. A transition k(a) is committable when there exists a series of transitions after which

transaction k is committed:

Definition 2.3.8 (Commitable Transition). C ζ−→ C′ with ζ ∈ {τ, ω} is committable; C k(µ)−−−→ (H1 B P1)

is committable when there exists (H1 B P1)
ζ1−→ . . .

ζ(n+1)−−−−→ (Hn B Pn) such that for any a and

appropriate i:

(H1, (i 7→ k(a)) B P1)
ζ1−→ . . .

ζ(n+1)−−−−→ (Hn, (i 7→ a) B Pn)

Notice that the item i→ k(a) is added on top of H1. Its role is to act as a probe for when transaction
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k is committed, regardless of the renamings that might change the actual name of transaction k.

Similarly, a transaction k is committable when there exists a series of transitions such that k is

committed:

Definition 2.3.9 (Commitable Transaction). A transaction k is committable in a configuration

C = (H0 B P0) when there exists a sequence of transitions C ζ1−→ (H1 B P1) . . .
ζn−→ (Hn B Pn), where

n > 0, and an index i such that H0(i) = k(â) and Hn(i) = â.

The only transaction names that can be merged, committed or aborted, are only those that occur

in a configuration:

Lemma 2.3.10. For any configuration C = (H B P ) and C′, it holds that:

1. C k−→l̃ 7→k C′ only if l̃ ∈ ftn(P )

2. P
co k−−→ P ′ only if k ∈ ftn(P ).

3. P
ab k−−→ P ′ only if k ∈ ftn(P ).

Proof. By inversion on the LTS rules.

Finally, the following lemma shows that LTS transitions do not change action names in the history.

For example, if C = (H, i 7→ k(a) B P ) and C ζ−→ (H ′ B P ′) holds for some H ′ and P ′, then H ′(i) can

never replace action a with another action b 6= a; H ′(i) can only range over the set {l(a), a, ab} for

some transaction name l.

Lemma 2.3.11. For any configuration C = (H B P ) and C′ = (H ′ B P ′) such that C ζ−→ C′:

1. if H(i) = a, then H ′(i) = a.

2. if H(i) = k(a), then H ′(i) ∈ {l(a), a, ab} for some transaction name l.

3. if H(i) = ab, then H ′(i) = ab.

Proof. By rule induction.
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Chapter 3

From history to historyless

bisimulations

As shown in the previous chapter, History bisimulation is a proof technique to establish reduction

barbed equivalence between flat TrancCCS processes. Having defined a proof method, we would like to

have an algorithm to calculate the bisimulation relation automatically. However, it is not immediately

clear how such an algorithm can be achieved.

The first and most obvious problem is that histories can grow indefinitely. The indefinite length

of histories can cause even simple processes to generate an infinite state space in the History LTS.

Therefore an algorithm based on histories seems unfeasible from the very start. Consider in fact the

following example in standard CCS:

P = rec X.a.X + b

Process P performs a string of a actions, terminated by a b action. Figure 3.1.a shows the LTS

generated by P , which is clearly finite. Consider now the following transactional version of P :

Q = rec X.Ja.X + b.co I bK

Processes P and Q generate the same traces, the only difference being that Q’s actions are tentative

up to commitment. Figure 3.1.b shows the state space generated by Q, which is infinite because of its

history. In fact, whenever Process Q performs an a action, a new item is added to the history. Since

Q can perform recursively many a actions, there are infinitely many items that can be added, and

therefore infinitely many states.

There is also another reason why Q’s state space is infinite. At each transition, process Q picks

a fresh transaction name. There are infinitely many fresh names available to Q, other than k1, k2

and k3. Therefore a transition in Q can generate infinitely many different k(a) items, one for each

fresh name available. Chapter 4 presents a discipline for fresh names generation, that obviates this

problem. The present chapter focuses on eliminating the first source of infinity, namely the indefinite

length of histories, through a series of simplifications to the notion of history bisimulation. Since we
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a)

P 0

a

b b)
Q k1(a) BQ k2(a)k2(a) BQ

. . .
k1 k2 k3

P = rec X.(a.X + b) Q = JrecX.(a.X + b.co) .k nilK

Fig. 3.1: Process P yields a finite state LTS; Q has an infinite state LTS.

are not interested in results of contextual equivalence, we will ignore ω labels and Rule LTSω from

Def. 2.3.5 for the rest of the chapter.

A naive first approach might be the following. By definition, the history bisimulation game can

be played as long as the participants’ histories are consistent: at the beginning of each round, all

permanent actions in the participants’ histories must match. Pairs of permanent actions remain

consistent throughout a bisimulation game, because the LTS does not allow a configuration to modify

permanent actions in the history. This observation suggests that the consistency check becomes

redundant after the first time it is performed, and therefore we might be tempted to simply remove

consistent permanent actions at each bisimulation round.

It is indeed the case that permanent actions can be safely removed. However this is not sufficient

to obtain finite histories, because a transaction might never commit, and therefore its associated

history might grow indefinitely with tentative actions. Instead of following this approach, a series of

observations shows that there is no need for histories to store action names in the first place.

The first observation regards ? actions. By definition of Rule LTS?, a configuration (H B P )

introduces a k(?) action in the history only when k is fresh from H and P . By definition of the

History LTS, process P can only abort, commit or rename tentative actions l(â) in H only if l occurs

in P . Since k is fresh from P by construction, the tentative k(?) cannot be modified anymore by P

once it is introduced.

Tentative actions are irrelevant when checking if two histories are consistent; since k(?) actions

are unmodifiable, they can be replaced by ab actions without losing distinguishing power in the

bisimulation. Moreover, there is no need to introduce k(?) in the first place. Section 3.1 shows

that Rule LTS? can safely introduce ab instead of a k(?) action, therefore making ? actions entirely

redundant. This modification greatly simplifies the technical development of this chapter, because it

will allows us to assume that an history contains a tentative action k(a) if and only if there exists a

transaction k in P .

A second observation is that bisimilar processes must always play the same k(a) action when

k is committable, but they can play any action when k is uncommittable. Consider the following

non-bisimilar for example:

P = Ja.co .k 0K Q = Jb.co .k 0K

In this example, transaction k and l are both committable. If P challenges Q with a tentative k′(a)

action and commits, there is no response that Q can play without rendering the histories inconsistent.

Process Q can avoid losing the bisimulation game only responding if it can store a committable k′(a)

in its history. There would be no loss of generality if we forced Q to respond by storing either a k′(a)
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or ab action in this case, instead of allowing Q to storing a committable k′(b) action.

Consider now another example:

P = Ja.b.c .k 0K Q = Jd.e.f .l 0K

Processes P and Q are bisimilar because transaction k and l cannot commit. Even though they

perform entirely different tentative actions, such actions never become permanent, and therefore they

are never checked for consistency. Therefore, if P challenges Q with action k′(a), it does not matter

what action Q responds with. It is possible to deny Q the option to respond by storing tentative

action k′(d), and to force Q to store ab instead in this case too. There is no loss of generality, because

k′ is uncommittable.

These two considerations suggest that history bisimulation can actually restrict the range of action

names allowed in a bisimulation game without loss of generality. When the attacker stores a k(a)

action, the defender can be forced to respond with either the same action k(a) or with ab, since playing

other actions do not produce tangible differences. It can also be shown that, when the attacker plays

a k move and the defender responds with ab, the two players are bisimilar only if transaction k is

uncommitable.

In order to prove this result, we show that aborting uncommittable transactions does not produce

any observable difference in the behaviour of a configuration from the point of view of bisimulation.

When a transaction k is uncommittable in a configuration C, the defender can also transition into the

abort-k configuration C \ab k, which is the resulting configuration after aborting k in C. We prove in

Section 3.2 that C and C \ab k are bisimilar.

Notice that the histories produced by this version of bisimulation are now very uniform. For any

index i, if one history stores k(a) at index i, the other history either stores l(a) or ab. Action names

are therefore redundant now, because any two histories will contain either the same action name, or

a ab label for any given index. Section 3.3 introduces uniform bisimulation, the bisimulation with

the aforementioned restrictions on the moves allowed in a bisimulation game, and where histories of

bisimilar participants are action consistent, that is, action names of both permanent and tentative

actions always match in the participants’ histories.

Even though action names are redundant, we cannot eliminate histories yet. Consider the following

example:

P = Ja.b.co + b.a.co .k 0K Q = Ja.co .l1 0K ‖ Jb.co .l2 0K

Process Q resembles the parallel expansion of process P , like the familiar parallel expansion law from

CCS. Processes equivalent under the parallel expansion law are bisimilar in CCS. Therefore it is

tempting to think that their transactional counterparts P and Q are bisimilar too. However, notice

that the two transactions in Q are indendent from each other, since the first transaction is annotated

by l1 and the second one by l2. This difference is sufficient to distinguish the two processes under

bisimulation: process Q can perform a single permanent action a by committing l1, but process P

cannot do so, because it performs both actions a and b permanently, or none at all.
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This discussion highlights that, even though action names can be dispensed with, histories keep

track of dependencies among transactions, by matching transaction names occurring at the same

index of attacker’s and defender’s history. Section 3.5 introduces the notion of Historyless bisimulation,

which has an explicit parameter to track dependencies between attacker’s and defender’s transactions.

The chapter is concluded by showing that Historyless bisimulation relates the same processes as

Extended bisimulation, and therefore as History bisimulation.

3.1 Starless bisimulation

The first simplification to history bisimulation regards k(?) actions in the history. Once added to

an history, k(?) elements cannot be aborted, committed or modified anymore. Consider in fact Rule

LTS?:

(H B P )
k−→ (H, k(?) B P ) if k ] H, P (LTS?)

According to Lem. 2.3.10, a transaction name k must occur in process P in order to be modified.

Since k is fresh from P by definition of Rule LTS?, no configuration C can modify k(?) elements in

the history. This section shows that such actions can be substituted with the ab element without

losing distinguishing power in the bisimulation, and therefore we can avoid introducing them in the

first place in Rule LTS?.

The previous observation about the unmodifiable nature of k(?) actions is formalized as follows:

Lemma 3.1.1. Let C = (H, i 7→ k(â) B P ) and k ] P . For any configuration (H ′ B P ′) such that

C ζ−→ (H ′ B P ′), H ′(i) = k(â) and k ] P ′.

Proof. By case analysis on the transition C ζ−→ C′. Let C = (H B P ). By Lem. 2.3.10, if P aborts

or commits a transaction, that transaction name must occur in the free transaction names of P .

Therefore the abort and commit operators will not modify k in the history. If a new transaction l is

activated by Rule LTSnew, l is fresh from the history H by definition of the rule. Since H contains

k(?), l is fresh from k as well, and therefore k is still fresh from P . If P performs any action involving

a substitution σ, the domain of σ must be in P , and therefore it does not contain k, which remains

unchanged. Since the range of σ is always a fresh variable from C, k will also be fresh from P ′. As

already mentioned in the introduction, we do not consider ω transitions from Rule LTSω.

Applied repeatedly, this lemma shows that k(?) elements in a history H are always fresh from

the process P for any configuration (H B P ). Because of Lem. 2.3.10, k can never be committed or

aborted. Moreover, since k has to be fresh from H as well, all k(?) elements are unique in H. These

properties are summarized in the following well-formedness condition:

Definition 3.1.2 (Star well-formedness). Let C be a configuration (H B P ) , where P is well-formed.

A configuration C is ?-well formed when, for any index i and j such that i 6= j, if H(i) = k(?) then

k ] P and H(j) 6= k(?).

The History LTS in Fig. 2.3.5 preserves ?-well formedness by Lem. 3.1.1. Because of this, and

since two TCCSm processes P and Q are bisimilar only when they are history bisimilar starting from
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(H B P )
τ−→sl (σ(H) B Q) if P

τ−→σ Q (SLτ)

(H B P )
τ−→sl (σ(H) B Q) if P

k(τ)−−−→σ Q and k ] H (SLk(τ))

(H B P )
τ−→sl (H B Q) if P

new k−−−→ Q and k ] H (SLnew)

(H B P )
τ−→sl (H \co k B Q) if P

co k−−→ Q (SLco)

(H B P )
τ−→sl (H \ab k B Q) if P

ab k−−→ Q (SLab)

(H B P )
k−→sl (σ(H), k(a) B Q) if P

k(a)−−−→σ Q and k ] H (SLk(a))

(H B P )
k−→sl (H, ab B P ) if k ] H, P (SL?)

Fig. 3.2: Starless LTS.

the empty history, we assume that ?-well formedness holds for any configuration we consider in the

remainder of this section.

Being uncommittable, a k(?) action never becomes the permanent action ? in a bisimulation game,

and therefore it plays the same role as ab as far as history consistency is concerned. The following

lemma shows that, when a configuration has a k(?) element at a specific index i, it is bisimilar to

itself after replacing k(?) with ab:

Lemma 3.1.3. If C1 = (H, i 7→ k(?) B P ) and C2 = (H, i 7→ ab B P ) be ?-well formed configurations,

then C1 ≈ C2.

Proof. Let R be the relation between ?-well formed configurations defined as follows:

R = {((H1 B P ), (H2 B P )) | H1(i) = k(?) ∧H2(i) = ab ∧ ∀j 6= i.H1(i) = H2(i)}

The lemma is proved by showing that R is a history bisimulation. Condition 1 of history bisimulation

holds when H1 and H2 are consistent. Since H1 and H2 are identical for any index except i, where

the fact H1(i) = k(?) and H2(i) = ab. Since k(?) and ab are not permanent actions, H1 and H2 are

consistent and Condition 1 is satisfied.

Condition 2 is satisfied too, because the challenger’s configuration is identical to the defender’s,

except for their histories at index i. Since both configuration contain the same process P , if (H1 B

P )
ζ−→ (H ′1 B P

′) is a challenger move, then (H2 B P ) can perform the same transition to (H ′2 B P
′).

Since H ′1(i) = k(?) by Lem. 3.1.1 and H ′2(i) = ab by Lem. 2.3.11, then (H ′1 B P ′)R(H ′2 B P ′) holds

and the lemma is proved.

Condition 3 is proved similarly.

Since k(?) elements are indistinguishable from ab ones, this lemma suggests that the History LTS

can avoid introducing k(?) elements in the histories altogether. Therefore we first define the Starless

LTS in Fig. 3.2, which is identical to the History LTS in Fig. 2.3.5, except for Rule LTS?, which is

replaced by the following one:

(H B P )
k−→ (H, ab B P ) if k ] H, P (SL?)

Instead of adding a fresh k(?) element to the history, the Starless LTS adds an ab element in its

place. We define a challenger move in the Starless LTS to be any transition not produce by Rule SL?.
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The definition of starless history bisimulation is identical to the definition of history bisimulation,

except for the use of the Starless LTS. Although repetitive, we spell out these definitions for the sake

of completeness. The starless history bisimulation is defined as follows:

Definition 3.1.4 (Starless history bisimulation). A binary relation R ⊆ ConfAct×ConfAct is a starless

history bisimulation when for all C1 R C2:

1. hist(C1) and hist(C2) are consistent,

2. if C1
ζ−→sl C′1 is a challenger move and ζ ] C2 then ∃ C′2: C2

ζ
=⇒sl C′2 and C′1 R C′2,

3. the converse of the preceding condition.

We let ≈sl be the largest starless history bisimulation, and say that two TCCSm processes P and

Q are starless bisimilar, or P ≈sl Q, when (∅ B P ) ≈sl (∅ B Q) holds. From the definitions, it is easy

to see that the result in Lemma 3.1.3 can be extended to starless bisimilar configurations:

Corollary 3.1.5. If C1 = (H, i 7→ k(?) B P ) and C2 = (H, i 7→ ab B P ) be ?-well formed configura-

tions, then C1 ≈sl C2.

Proof. Similar to Lemma 3.1.3’s proof.

We can now show that history and starless bisimulation relate the same processes:

Theorem 3.1.6 (Starless and History bisimulation correspondence). Let C1 and C2 be ?-well formed

configurations. If C1 ≈ C2, then C1 ≈sl C2, and vice versa.

Proof. In order to prove that C1 ≈ C2 implies C1 ≈sl C2, we first show that ≈ is a starless history bisim-

ulation. This implies that ≈ is included in ≈sl because it is the largest starless history bisimulation.

The reverse direction can be proved similarly to the forward direction and is therefore omitted.

Condition 1 in Def. 3.1.4 holds by hypothesis, since the histories of C1 and C2 are consistent by

definition of history bisimulation.

Let us prove Condition 2 of starless history bisimulation. Suppose now that C1
ζ−→sl C′1 is a

challenger move, and that ζ ] C2. This transition can be translated into the History LTS as C1
ζ−→ C′1,

because the history and the starless LTS are identical except for Rule SL?, and it is obviously also a

challenger move. By History bisimulation it holds that C2
ζ

=⇒ C′2 and C′1 ≈ C′2.

If ζ = τ , transition C2
ζ

=⇒ C′2 can be directly translated into the Starless LTS as C2
ζ

=⇒sl C′2, which

proves the theorem immediately.

If ζ = k, the move C2
ζ

=⇒ C′2 is equivalent to C2
τ
=⇒ C1

2
k−→ C2

2
τ
=⇒ C′2 by definition. We need to consider

two cases: the case where C1
2
k−→ C2

2 is derived by Rule LTSk(a), and when it is derived by Rule LTS?.

If Rule LTSk(a) has been used, the theorem is proved as in the case ζ = τ . If Rule LTS? we cannot

translate C2
ζ

=⇒ C′2 into the Starless LTS, because Rule LTS? is different from Rule SL?. In this case

the theorem is proved by constructing a weak transition C2
ζ

=⇒sl C′′2 such that C1 ≈ C′′2 .

Let C1
2 = (H B P ) for some H and P ; by inversion on Rule LTS?, let C2

2 = (H, k(?) B P ). By

Rule SL? C2
1

k−→sl C2
2
′

= (H, ab B P ) holds. Configuration C2
2
′

is history bisimilar to C2
2 by Lem.

3.1.3. Because they are bisimilar, and since C2
2 can perform transition C2

2
τ
=⇒ C′2, configuration C2

2
′

can

perform the transition C2
2
′ τ

=⇒ C′′2 such that C′2 ≈ C′′2 . As in the case for ζ = τ , transition C2
2
′ τ

=⇒ C′′2
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can be translated straightforwardly into the Starless LTS. Since C′1 ≈ C′2 and C′2 ≈ C′′2 , by transitivity

C′1 ≈ C′′2 holds as well, which proves the theorem.

Condition 3 is proved similarly to Condition 2, by using Cor. 3.1.5 instead of Lem. 3.1.3.

We conclude this section by remarking that, given a configuration (H B P ), the Starless LTS never

introduces transaction names fresh from P in H . Thanks to this property, we can assume that for

any configuration (H B P ), the set of free variables of H is a subset of the set of free variables of P .

This well-formedness property is defined as follows:

Definition 3.1.7 (Configuration well-formedness). A configuration C = (H B P ) is well-formed when

P is well-formed, and when ftn(H) ⊆ ftn(P ).

3.2 Abort configurations

In order to further simplify the starless history bisimulation, we first need to develop some technical

devices to deal with uncommittable transactions. In particular, the goal of this section is to prove that

uncommittable transactions do not produce any observable behaviour in a bisimulation game, and

therefore they can be safely aborted without altering the distinguishing power over a configuration.

To this end, we introduce abort configurations. The abort configuration C \ab k is the resulting

configuration after aborting transaction k in C, if such a transaction exists. :

Definition 3.2.1 (Abort configuration). Let C be a well-formed configuration (H B P ). The abort

configuration C \ab k is (H \ab k B P ′) when P
ab k−−−→ P ′ is defined.

We now state some useful properties of TCCSm processes to reason about abort configurations.

If Q is the process obtained by aborting k in P , then Q can simulate any α transition in P :

Lemma 3.2.2. Let P
α−→σ P

′ and P
ab k−−−→ Q. Then:

1. If σ = [k 7→ l], then P ′
ab l−−→ Q.

2. If σ = [k, k′ 7→ l], then Q
ab k′−−−→ Q′ and P ′

ab l−−→ Q′.

3. If k 6∈ dom(σ), then Q
α−→σ Q

′ and P ′
ab k−−−→ Q′.

Proof. By rule induction on P
α−→σ P

′.

When P performs a β action, process Q can simulate it only if β does not involve k, because

obviously transaction k has been aborted:

Lemma 3.2.3. Let P
β−→ P ′, k ] β and P

ab k−−−→ Q. Then Q
β−→ Q′ and P ′

ab k−−−→ Q′.

Proof. By rule induction on P
β−→ P ′.

Substitutions distribute over the history abort operator \ab k as follows:

Lemma 3.2.4. For any history H and substitution σ such that rg(σ) ] H:

1. if σ = [k, k′ 7→ l] then H \ab k \ab k′ = σ(H) \ab l.
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2. if σ = [k 7→ l], then H \ab k = σ(H) \ab l.

Proof. We only prove the Property 1; the second property is proved similarly. Take an index i such that

H(i) is defined. There are two cases to consider: either k, k′ ] H(i), or either k or k′ occurs in H(i). If

k, k′ ] H(i), then l ] σ(H(i)). By definition, H(i) \ab k \ab k′ = H(i) and σ(H) \ab l = H \ab l = H,

and therefore the lemma is proved. If either k or k′ occurs in H(i), then H(i) = k(a) or H(i) = k′(â).

In either case, H \ab k \ab k′ = ab and σ(H(i)) \ab l = l(â) \ab l = ab, and the lemma is proved.

These lemmas enable us to prove that, for any ζ fresh from k, a configuration C and its abort

configuration C \ab k are bisimilar. In order to do this, we must show that the abort configuration can

simulate its source configuration. This property is a direct consequence of the more general lemma:

Lemma 3.2.5. Let k occur in a well-formed configuration C. If C ζ−→sl C′ is not derived by Rule SLco

committing k, then either C′ = C \ab k, or there exists a transaction name l such that l occurs in C′

and C \ab k
ζ−→sl C′ \ab l.

Proof. The proof is by rule induction on C ζ−→sl C′. In each case, we will assume that P
ab k−−−→ Q is

defined, since k occurs in C and C is well-formed.

Suppose that Rule SLτ has been applied:

(H B P )
τ−→sl (σ(H) B P ′) if P

τ−→σ P
′ (SLτ)

and let (H B P ) \ab k = (H \ab k B Q). Then the following derivations hold:

1. P
τ−→σ P

′ by hypothesis

2. σ = ε by inversion on the LTS

3. Q
τ−→σ Q

′ by Prop. 3 of Lem. 3.2.2 on (1)

4. P ′
ab k−−−→ Q′ ”

5. (H \ab k B Q)
τ−→sl (σ(H \ab k) B Q′) by Rule SLτ on (3)

6. (σ(H \ab k) B Q′) = (σ(H) \ab k B Q′) because σ = ε by (1)

7. (σ(H) \ab k B Q′) = (σ(H) B P ′) \ab k by def. of abort configuration

By inversion on transition P
τ−→σ P ′ in the LTS from Fig. 2.1 (1), substitution σ can only be

the empty substitution ε when a TCCSm process performs a τ action (2). By Property 3 of Lemma

3.2.2, the abort configuration (H \ab k B Q) can transition to (σ(H \ab k) B Q′) by Rule SLτ via a

τ action (3, 5). Since Q′ is the result of aborting k from P ′ and σ is ε, the final abort configuration

(H \ab k B Q′) is equivalent to (σ(H) B P ′) \ab k. Therefore the lemma is proved by taking l = k

and by the transition (H B P ) \ab k
τ−→ (H B P ′) \ab k.

Suppose that Rule SLk(τ) has been applied:

(H B P )
τ−→sl (σ(H) B P ′) if P

l(τ)−−→σ P
′ and l ] H (SLk(τ))

and let (H B P ) \ab k = (H \ab k B Q). If k 6∈ dom(σ), the lemma is proved using Property 3 of

Lem. 3.2.2 as in the first case. If k ∈ dom(σ), then by inversion on the transition P
l(τ)−−→σ P

′, σ is
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the substitution [k, k′ 7→ l] for some k′. By Property 2 of Lem. 3.2.2, P ′
ab l−−→ Q′ and Q

ab k′−−−→ Q′.

both hold. This case is proved as in the first case, using Lem. 3.2.4 to show that H \ab k \ab k \ab
k′ = σ(H) \ab l.

Suppose that Rule SLk(a) is used:

(H B P )
l−→sl (σ(H), l(a) B P ′) if P

l(a)−−→σ P
′ and l ] H (SLk(a))

and let (H B P ) \ab k = (H \ab k B Q). If k 6∈ dom(σ), then the lemma is proved by Property 3 of

Lem. 3.2.2 as in the first case.

If k ∈ dom(σ), then the following derivations hold:

1. σ = [k 7→ l] by inversion on the LTS

2. P ′
ab l−−→ Q by Property 1 of Lem. 3.2.2

3. (σ(H), l(a) \ab l B P ′)
τ−→ (σ(H) \ab l, ab B Q) by Rule SLab on (2)

4. (H \ab k B Q)
l−→sl (H \ab k, ab B Q) by Rule SL?

5. H \ab k = σ(H) \ab l by Prop. 2 of Lem. 3.2.4

6. (H \ab k B Q)
l−→sl (σ(H)l(a) \ab l B Q) by (4) and (6)

7. C \ab k
l−→sl C′ \ab l by def. of abort configuration

By inversion on the premises of Rule SLk(a), and since k is in the domain of σ, then σ must be

[k 7→ l] (1). On the one hand, configuration (σ(H), l(a) \ab l B P ′) can abort l and transition to
τ−→ (σ(H) \ab l, ab B Q) (3), where Q is the same process that P transitions to after aborting k by Lem.

3.2.2 (2). On the other hand the abort configuration cannot produce an l(a) action, but it can store an

ab action in its history by Rule SL? (4) without modifying process Q. By Lemma 3.2.4 the resulting

history H \ab k is equivalent to σ(H) \ab l (5). Since ab = l(a) \ab l holds by definition of abort

operator \ab l, the previous transition can be rewritten as (H \ab k B Q)
l−→sl (σ(H)l(a) \ab l, ab B Q),

which proves the lemma (7).

When Rule SL? is used, the lemma is proved by transition (H B P ) \ab k
τ−→ (Hab B P ) \ab k by

Rule SL?, and by taking l = k.

If Rule SLnew is used, then the lemma is proved as in the first case by Lem. 3.2.3, because the

premise l ] C implies k ] new l. If Rule SLab is used, then either k or another transaction l 6= k is

aborted. In the first case the initial configuration C transitions to its abort configuration C \ab k,

which proves the lemma immediately. In the second case the lemma follows by Lem. 3.2.3. If Rule

SLco is used, the lemma follows by Lem. 3.2.3, because k is not committed by hypothesis.

Corollary 3.2.6. Let k be uncommittable in C. If C ζ−→sl C′, then either C′ = C \ab k and ζ = τ , or

there exists a transaction name l such that l is uncommittable in C′ and C \ab k
ζ−→sl C′ \ab l.

Proof. The lemma follows by Lem. 3.2.5, because k remains uncommittable in any successive config-

uration C′ by definition.
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We conclude this section by showing that a configuration is starless history bisimilar to its abort

k configuration, when k is uncommittable:

Proposition 3.2.7. Let C be well-formed. If k is uncommittable in C, then C ≈sl C \ab k.

Proof. By coinduction. Consider the following relation R:

R = {(C1, C2) | ∃k.k is uncommittable in C1 and C2 = C1 \ab k} ∪ Id

where Id is the identity relation over configurations. The lemma is proved if we show that R is a

starless history bisimulation, i.e. if the the three conditions of Def. 3.1.4 hold for R.

WhenR relates two identical configurations because Id, the proof is trivial. Suppose thatR relates

a configuration C and its abort configuration C \ab k, with k uncommittable in C. Let C = (H B P )

and let C \ab k = (H \ab k B Q). Since the \ab k operator does not modify permanent actions, the

two histories H and H \ab k share the same permanent actions at the same indexes, and therefore

Condition 1 holds.

Let C1
ζ−→ C′1 be a challenger move and let ζ ] C1. By Cor. 3.2.6, either C1 = C1 \ab k and ζ = τ ,

or C1 \ab k
ζ−→sl C′1 \ab l and l is uncommittable in C′1. In the former case, the reflexive transition

C1 \ab k
ζ

=⇒sl C1 \ab k proves the lemma, because C′1 and C1 \ab k are identical, and therefore related by

R because of Id. In the latter case, R relates C′1 and C′1 \ab l by definition, because l is uncommittable

in C′1. Therefore Condition 2 holds.

In order to prove Condition 3, suppose that C2
ζ−→ C′2 is a challenger move. Since C2 = C1 \ab k,

C1 can abort k, become the same configuration as C1 and perform the same transition from C2 to C′2.

Relation R relates C′1 and C′2 because the two configuration are identical, and therefore Condition 3

holds.

3.3 Uniform history bisimulation

After dispensing with k(?) elements, this section presents an LTS and a notion of bisimulation that

relates configurations with a stronger notion than history consistency, called action consistency, that

is histories that match not only in their permanent actions, but also in their tentative ones.

Recall the example from the introduction, whereby configuration C1 = (∅ B Ja.P .k 0K) is the

challenger in a starless history bisimulation game, and configuration C2 = (∅ B Jb.Q .l 0K) is the

defender. If the challenger attacks by firing a tentative action k′(a), the defender can respond by either

firing k′(b), by storing a dummy ab action by Rule SL? or by aborting l and then storing a dummy ab

action. The resulting configurations will be C′1 = (k′(a) B P ) and either C′2 = (k′(b) B Q), (ab B b.Q)

or (ab B 0). The defender loses regardless of the option it selects, because the challenger can commit

k′ and their history become inconsistent in all three cases.

This observation suggests that bisimilar configurations must have matching tentative actions k(a)

in their histories, as long as k can be committed:

Lemma 3.3.1. Let C1 = (H1, i 7→ k(a) B P ) and C2 = (H2, i 7→ l(b) B Q) for some index i, and let

C1 ≈ C2. If k is committable in C1, then a = b.
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Proof. A transaction k is committable in a configuration C if there exists a sequence of transitions

C ζ1−→ . . .
ζn−→ C′ such that, for some index i and action a, hist(C)(i) = k(â), and hist(C′)(i) = â. Let

us take one such sequence of transitions from C1 to a configuration C′1. Since C1 and C2 are bisimilar,

there exists another sequence of weak transitions C2
ζ1
=⇒ . . .

ζn
=⇒ C′2 such that C′1 ≈ C′2. By definition

of history bisimulation, the histories of the two final configurations C′1 and C′2 are consistent. Since

configuration C′1 has permanent action a at index i by hypothesis, C′2 must have the same permanent

action a at index i by definition of consistency. Thus the action b at index i in the history of C′2 must

be equal to a, i.e. b = a, which proves the lemma.

Conversely, if two configurations are bisimilar but their histories do not match for some k(a) action,

then k must be uncommittable:

Corollary 3.3.2. Let C1 = (H1, i 7→ k(a) B P ) and C2 = (H2, i 7→ l(b) B Q) for some index i, and

let C1 ≈ C2. If a 6= b, then k is uncommittable in C1.

Proof. This result follows immediately by negating the logical implication in Lemma 3.3.1.

The first result suggests that if the challenger attacks with a committable k action, then the

defender must respond by storing the same k(a) as the attacker in order to win the game. The second

result suggest that if the defender can respond with a k(b) action and win the game, then k must be

uncommittable. However, when a transaction k is uncommittable, tentative actions are never checked

for consistency in the histories, because they never become permanent. As shown in Section 3.2, there

is no observable difference between an uncommittable transaction and an aborted one, therefore there

is no harm in forcing the responder to use Rule SLab when it cannot produce the same action k(a)

These considerations suggest the notion of uniform bisimulation, where the defender’s range of

responses is restricted to either firing the same action k(a) as the attacker, or to fire a dummy ab

action without loss of generality. By construction, the histories in a uniform history bisimulation

game cannot differ by action names. Such histories enjoy a stronger property than consistency, called

action consistency :

Definition 3.3.3 (Action consistency). H1 and H2 are action consistent when they have the same

domain and for all i ∈ I, a ∈ Act:

• H1(i) = a iff H2(i) = a.

• if H1(i) = k(a) and H2(i) = l(b), then a = b

In summary, this definition implies that whenever two action consistent histories H1 and H2 contain

an action at the same index i, they both contain the same action name a up to transaction names k

and l.

The Uniform History LTS is presented in Fig. 3.3. Transitions have the form C ξ−→u
σ C′, where

ξ ::= τ
∣∣ k(a). Therefore action names are now exposed, unlike the k labels in the history and starless

History LTS. We define
ζ

=⇒u to be
τ−→u
∗

when ζ = τ , and
τ
=⇒u ζ−→u τ=⇒u otherwise. A challenger move is

any transition not produced by Rule Un-?.

Apart from extending ζ labels, the LTS rules are very similar to the starless History LTS rules

from Fig. 3.2. However, note that the freshness condition k ] H has been dropped in Rules Un-k(τ),
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(H B P )
τ−→u (σ(H) B Q) if P

τ−→σ Q (Un-τ)

(H B P )
τ−→u (σ(H) B Q) if P

k(τ)−−−→σ Q (Un-k(τ))

(H B P )
τ−→u (H B Q) if P

new k−−−→ Q (Un-new)

(H B P )
τ−→u (H \co k B Q) if P

co k−−→ Q (Un-co)

(H B P )
τ−→u (H \ab k B Q) if P

ab k−−→ Q (Un-ab)

(H B P )
k(a)−−−→u (σ(H), k(a) B Q) if P

k(a)−−−→σ Q (Un-k(a))

(H B P )
k(a)−−−→u (H, ab B P ) if k ] P (Un-?)

Fig. 3.3: Uniform History LTS.

Un-new, Un-k(a) and Un-?. Thanks to configuration well-formedness, this check is now unnecessary.

In fact, TCCSm transitions P
α−→σ Q and P

β−→ Q always generate names fresh from P . Since the set

of transaction names in a history H is a subset of the transaction names in a process P by Def. 3.1.7,

if k ] P for some k in a well-formed configuration (H B P ), then k ] H as well.

Therefore we can establish the following correspondence between transitions in the uniform and

Starless LTSs:

Lemma 3.3.4. Let C be a well-formed configuration. Then:

1. C τ−→ C′ if and only if C τ−→u C′.

2. (H B P )
k−→ (H, k(a) B Q) if and only if (H B P )

k(a)−−−→u (H, k(a) B Q).

3. (H B P )
k−→ (H, ab B P ′) if and only if (H B P )

k(a)−−−→u (H, ab B Q).

Proof. By rule induction. Except for Rule SL? and Rule Un-?, the inductive hypothesis provides a

transition in the TCCSm LTS of the form P
α−→ σQ or P

β−→ Q. This transition alone is sufficient

to prove the lemma in both directions when a transaction is aborted, committed, or a τ action is

performed; it is also sufficient in the remaining cases when translating Starless LTS transitions into

the Uniform History LTS. In the opposite direction, the Starless LTS requires some extra freshness

conditions of the kind k ] H. Since ftn(H) ⊆ ftn(P ) by definition of well-formed configuration. these

conditions hold by Lemma 2.1.2: namely that for any transition P
α−→σ Q it holds that α, rg(σ) ] P ;

and for any transition P
new k−−−→ Q, k ] P holds. When translating Rule Un-? into Rule SL?, the

condition k ] H is direct consequence of configuration well-formedness as well.

Uniform history bisimulation is defined as follows:

Definition 3.3.5 (Uniform history bisimulation). A binary relation R ⊆ ConfAct × ConfAct is a

uniform history bisimulation when for all C1 R C2:

1. hist(C1) and hist(C2) are action consistent,

2. if C1
ζ−→u C′1 is a challenger move and ζ ] C2, then there exists C′2 such that C2

ζ
=⇒u C′2 and

C′1 R C′2,

3. the converse of the preceding condition.
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We write ≈un for the largest uniform history bisimulation. Two TCCSm processes are uniform history

bisimilar, or P ≈un Q, when (∅ B P ) ≈un (∅ B Q) holds.

By definition, participants in a uniform history bisimulation game must play matching k(a) actions.

By definition of Uniform History LTS and of challenger move, this means that if the challenger stores

a k(a) action, then the defender either stores k(a) by Rule Un-k(a) or ab by Rule Un-ab. Because of

this, participants in a uniform history bisimulation game preserve action consistency across histories

by construction.

Starless bisimulation and uniform history bisimulation relate the same processes. In order to prove

this, we must show that one bisimulation implies the other, and viceversa. Before proving this, we

need a preliminary lemma to show that, for any challenger k move from C to C′ in the History LTS, the

same configuration can always transition to the abort configuration C′ \ab k in the extended History

LTS.

Lemma 3.3.6. Let C be a configuration. If C k−→ C′, then C k(a)
==⇒u C′ \ab k.

Proof. The lemma is proved by constructing a weak transition C k(a)
==⇒u C′′ that satisfies the lemma.

Assuming that configurations are well-formed, the lemma follows by aborting k and by performing a

k(a) action by Rule Un-?.

We can now show that history bisimulation implies extended history bisimulation:

Lemma 3.3.7. Let R ⊆ ConfAct × ConfAct be a relation defined as follows:

R= { ((H1 B P1), (H2 B P2)) |H1 and H2 are action consistent, and (H1 B P1) ≈sl (H2 B P2) }

Relation R is a uniform history bisimulation.

Proof. A relation R over history configurations is an extended weak bisimulation when it satisfies

the Condition 1 to 3 from Def. 3.3.5. Therefore we need to show that starless bisimulation satisfies

these conditions. Condition 1 holds by definition of R. In order to verify Condition 2, suppose that

C1
ξ−→u C′1 is a challenger move. We must show that C2

ξ
=⇒u C′2 and C′1 R C′2. The proof follows by case

analysis on label ξ

(ξ = τ): By Lemma 3.3.4 C1
τ−→sl C′1 is challenger move in the Starless LTS too. Since C1 ≈sl C2 holds by

definition of R, there exists a configuration C′2 such that C2
τ
=⇒sl C′2 and C′1 ≈sl C′2. By repeated

application of Lemma 3.3.4, configuration C2 can transition to C′2 in the uniform LTS as well

(i.e. C2
τ
=⇒u C′2). Since the Uniform History LTS does not modify existing actions in an history,

the histories in C′1 and C′2 are action consistent, and therefore C′1 R C′2 holds, which proves the

lemma.

(ξ = k(a)): By Lemma 3.3.4, C1
k−→sl C′1 is a challenger move too, with C′1 = (σ1(H1)k(a) B P ′) for some

process P ′ and substitution σ1. Since C1 and C2 are starless history bisimilar by hypothesis, it

follows that C2
k

=⇒sl C′2 and C′1 ≈ C′2 both hold. By definition of weak transition, C2
k

=⇒sl C′2 can

be written as C2
τ
=⇒sl C1

2
k−→sl C2

2
τ
=⇒sl C′2. Let C1

2 = (H1
2 B P 1

2 ). Transition C1
2
k−→sl C2

2 can only

be derived in one of the following three cases:
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1. C2
2 = (σ2(H1

2 )k(a) B P 2
2 ) by rule SLk(a)

2. C2
2 = (σ2(H1

2 ), i 7→ k(b) B P 2
2 ), with a 6= b, by rule SLk(a)

3. C2
2 = (σ2(H1

2 )ab B P 2
2 ) by rule SL?

In the first and third case, transition C2
k(a)
==⇒u C′2 can be derived by repeated application of

Lemma 3.3.4. Since the Uniform History LTS preserves actions in the history, and since either

k(a) or ab are added to the history of C2
2 , the histories of C′2 and C′1 are action consistent.

Therefore C′1 R C′2 holds and the lemma is proved.

In the second case, configuration C1
2 can perform the transition C1

2
τ−→sl C1

2 \ab k by aborting k.

Notice that no transition in C2
2

τ
=⇒sl C′2 can commit k, because C′1 ≈sl C′2 implies that H ′1 and

H ′2 are consistent: since H ′1(i) = k(a) by hypothesis, either H ′2 = ab or H ′2(i) = l(b) for some

l hold, since the Uniform History LTS perserves actions in the history. Therefore, by repeated

application of Lem. 3.2.5, either C1
2 \ab k

k
=⇒sl C′2 or C1

2 \ab k
k

=⇒sl C2
2 \ab l for some l hold. The

first transition proves the lemma directly, since H ′2(i) = ab and the histories of C′1 and C′2 are

action consistent. In the case of the second transition, H1(i) = k(a) and H ′2(i) = l(b) imply

that l is uncommittable in C′2 by Cor. 3.3.2. Since l is uncommittable in C′2, C′2 \ab l is starless

bisimilar with C′2 by Prop. 3.2.7, and therefore the transition C2
k

=⇒sl C′2 \ab l proves the lemma.

The proof that Condition 3 of uniform history bisimulation holds for R is similar to the proof for

Condition 2.

The proof that extended bisimulation implies history bisimulation is more immediate. Since starless

history bisimulation is more permissive than uniform history bisimulation, transitions in the uniform

LTS can be mimicked straightforwardly in the Starless LTS.

Lemma 3.3.8. Uniform history bisimulation ≈un is a starless history bisimulation.

Proof. We must show that, if C1 ≈un C2 ), then the three conditions from Definition 2.3.7 are satisfied.

Condition 1, namely that the histories of the two configurations are consistent, is implied by the

definition of action consistency. According to Condition 2, assume that C1
ζ−→sl C2 is a challenger

move. If ζ = τ , the lemma is proved by repeated application of Lem. 3.3.4. If ζ = k, then an element

k(a) is added to the history of C′1. By Lem. 3.3.4, C1
k(a)−−−→u C′1 holds, and therefore C2

k(a)
==⇒u C′2 holds

too by uniform bisimulation; moreover the histories of C′1 and C′2 are uniform. The lemma is proved

by repeated application of Lem. 3.3.4. Condition 3 is proved similarly.

We conclude this section by showing that starless and uniform history bisimulation relate the same

TCCSm processes.

Theorem 3.3.9. If P and Q are two TCCSm processes, then P ≈sl Q if and only if P ≈un Q.

Proof. Let P ≈sl Q; by definition, this case holds when (∅ B P ) ≈sl (∅ B Q). Since the empty histories

are uniform, (∅ B P ) ≈un (∅ B Q) by Lem. 3.3.7. The opposite direction is a direct consequence of

Lem. 3.3.8.
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3.4 Renaming bisimulation

All the definitions of bisimulations so far considered require the defender to respond with the same

action ζ as the attacker’s. If ζ is a tentative action k(a), then the defender must contain a transaction

with exactly the same name k to fire the k(a) action. This restriction on transaction names is

unnecessary, and it generates technical problems in the later developments of this chapter. This

section presents a new bisimulation, called renaming bisimulation, where the defender is free to pick

any transaction name l when responding.

We first introduce the notion of (transaction) renaming. A transaction renaming π is a partial

injective function over T with the property that { k ∈ T |π(k) 6= k } is finite. We use dom(π) to

denote this finite set, with range(π) = {π(k) | k ∈ dom(π) }. For any syntactic object O, such

as a process, history or configuration, we let π(O) be the result of replacing every occurrence of a

transaction name k with π(k) when k ∈ dom(π); no replacing is performed when k 6∈ dom(π). If

σ is the substitution [k̃ 7→ l], we let σπ denote the substitution [π̃(ki) 7→ l]; this last notion will be

primarily used when π(k) is k itself. If k̃ is a set of names k1, . . . kn, we write ˜[k 7→ π(k)] for the

renaming [k1 7→ π(k1)] · . . . · [kn 7→ π(kn)]. We write π|A for the restriction of the domain of π to the

set A.

The composition of two renamings π1 and π2 is the partial function π1 · π2 defined point-wise as

follows:

π1 · π2(k) =

π2(k) if k ∈ dom(π2)

π1(k) if k ∈ dom(π1)

Notice that, for any k in the domain of both π1 and π2, the renaming π2 takes precedence over π1

in π1 · π2.

Any renaming π can always be split into two sub-renamings π1 and π2:

Lemma 3.4.1. For any renaming π and set k̃ such that k̃ ⊆ dom(π), there exists a renaming π′ such

that π = π′ · ˜[k 7→ π(k)].

Proof. We prove the lemma by taking π′ = π|dom(π)\k̃. Function π′ is a renaming because the

restriction of an injective function is an injective function. To show that π = π′ · ˜[k 7→ π(k)], we

prove that for any x ∈ dom(π), π(x) = π′ · ˜[k 7→ π(k)](x). Notice that dom(π) = dom(π′) ] k̃ holds

by construction. If x ∈ dom(π′), then π′ · ˜[k 7→ π(k)](x) = π′(x) by definition of composition, and

π(x) = π′(x) by construction proves the lemma. If x ∈ dom( ˜[k 7→ π(k)]), then π′ · ˜[k 7→ π(k)](x) = π(x)

by composition, which immediately proves the lemma.

The following are simple properties of transaction renamings:

Lemma 3.4.2 (Actions under Renamings). Let π be a transaction renaming. If l ] range(π) and

P
l(µ)−−→[k̃ 7→l] Q, then there exist a renaming π′ and k̃1 ⊆ k̃ such that π = π′ · ˜[k1 7→ π(k1)] and

π(P )
l(a)−−→

[π̃(k)7→l] π
′(Q).

Proof. By taking k̃1 = dom(π) ∩ k̃ and π′ = π|
dom(π)\k̃1 (which is a renaming by Lem. 3.4.1), and by

rule induction.
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If Rule CCSsum, CCSsync or CCSrec is used, no renaming takes place and the lemma follows

trivially because π′ = π. Suppose that Rule TrAct has been used:

P
a−→ε P

′

JP .k QK
l(a)−−→k 7→l JP ′ .l QK

l ] k

By inductive hypothesis, π(P )
a−→ε π

′(P ′). If k ∈ dom(π), then π(JP .k QK) =
q
π(P ) .π(k) π(Q)

y
. By

application of Rule TrAct
q
π(P ) .π(k) π(Q)

y k(a)−−−→π(k)7→l Jπ′(P ′) .l π(Q)K. Since Q does not contain

active transactions by well-formedness, π(Q) = π′(Q). By Lem. 3.4.1 π = π′ · [k 7→ π(k)], and

therefore
q
π(P ) .π(k) π(Q)

y k(a)−−−→π(k) 7→l π
′(JP ′ .l QK) proves the lemma. If k 6∈ dom(π), then we can

pick π′ = π and k̃1 = ∅. Since k1 is the empty set, ˜[∅ 7→ π(k)] is the empty substitution, and the

lemma holds trivially by applying Rule TrAct on π′(JP .k QK).

Suppose that Rule TrSync has been used:

P
l(a)−−→σ1 P

′ Q
l(a)−−→σ2 Q

′

P |Q l(τ)−−→(k̃1,k̃2) 7→l P
′σ2 |Q′σ1

σ1 = k̃1 7→ l

σ2 = k̃2 7→ l

By inductive hypothesis on both premises, there exist renamings π1 and π2 such that π = π1 ·
˜[k1 7→ π(k1)] and π = π2 · ˜[k2 7→ π(k2)]. By Lem. 3.4.1 we can take π′ such that π = π′ · ˜[ki 7→ π(ki)]

with i ∈ {1, 2}, π1 = π′ · ˜[k2 7→ π(k2)] and π2 = π′ · ˜[k1 7→ π(k1)]. Therefore by inductive hypothesis

π(P )
l(a)−−→

π(k̃1) 7→l P
′′ with P ′′ = π′ · ˜[k2 7→ π(k2)](P ′) holds; similarly π(Q)

l(a)−−→
π(k̃2)7→l Q

′′ with

Q′′ = π′ · ˜[k1 7→ π(k1)](Q′). By applying Rule TrSync we have π(P |Q)
k(τ)−−−→π(k̃1,k̃2)7→l P

′′σ2 |Q′′σ1,

with σ1 = [π(k̃1) 7→ l] and σ2 = [π(k̃2) 7→ l]. By definition, P ′′σ2 = (π′ · ˜[k2 7→ π(k2)](P ′))[π(k̃2) 7→

l] = π′(P ′′[k̃1 7→ l]), and Q′′σ1 = (π′ · ˜[k1 7→ π(k1)](Q′))[π(k̃1) 7→ l] = π′(Q′′[k̃l 7→ l]). Therefore

P ′′σ2 |Q′′σ1 = π′(P ′[k̃1 7→ l] |Q′[k̃2 7→ l]), which proves the lemma.

The proof for Rule TrSum is similar to the proof of Rule TrAct. The remaining cases follow by

inductive hypothesis

Lemma 3.4.3 (Broadcasts under Renamings). Let π be a renaming satisfying range(π) ] P .

1. If P
ab k−−−→ Q, then there exist renaming π′ and k′ such that π = π′·[k 7→ k′] and π(P )

ab k′−−−→ π′(Q)

2. If P
co k−−−→ Q, then there exist renaming π′ and k′ such that π = π′·[k 7→ k′] and π(P )

co k′−−−→ π′(Q)

3. If P
new k−−−→ Q, then there exist renaming π′ and k′ such that π′ = π · [k 7→ k′] and π(P )

new k′−−−−→

π′(Q)

Proof. By structural induction on P , by taking k′ = π(k) if k ∈ dom(π), or by taking k′ = k if

k 6∈ dom(π).

Lemma 3.4.4 (Histories under renamings). If l ] range(π), then π(H[k̃ 7→ l]) = π(H)[π̃(k) 7→ l] for

any history H

Proof. By definition of renamings.

Under the condition that range(π) ] P , these properties allow us to show that renamings do not

introduce observable differences in a configuration. When the condition does not hold, transactions
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might be accidentally merged and the observable behaviour of a configuration might change substan-

tially. For example, consider configuration C = (∅ B Ja.co .k 0K ‖ J0 .l 0K). Transaction k is obviously

committable in C, and l is uncommittable. However, if π = [l 7→ k], k is not committable anymore in

π(C), and therefore it is not true that C ≈un π(C) in this case.

We first introduce a stronger notion of uniform history bisimulation than the weak one in Def.

3.3.5:

Definition 3.4.5 (Strong uniform history bisimulation). A binary relation R ⊆ ConfAct × ConfAct is

a strong uniform history bisimulation when for all C1 R C2:

1. hist(C1) and hist(C2) are action consistent,

2. if C1
ζ−→u C′1 is a challenger move and ζ ] C2, then there exists C′2 such that C2

ζ−→u C′2 and

C′1 R C′2,

3. the converse of the preceding condition.

The largest strong uniform history bisimulation is denoted by ∼u. We now prove that a transaction

renaming π in a configuration C is unobservable, when π does not introduce names already present in

C (and therefore possibly merging some transaction names):

Proposition 3.4.6. Let π be a transaction renaming. If range(π) ] C, then C ∼u π(C).

Proof. Let R= { C, π(C) | range(π) ] C, dom(π) ⊆ ftn(C) };

We need to show that the three condition of uniform history bisimulation from Def. 3.3.5 hold

for any configuration C = (H B P ) such that . Condition 1 holds trivially, because renamings do not

modify action names in the history.

To prove Condition 2, let C ζ−→u C′ be a challenger move, with ζ ] π(C). We need to show that

there is configuration C2 such that π(C) ζ−→u C′′ and C′′ = π′(C′) for some π′. We proceed by case

analysis on the challenger move.

If Rule Un-τ has been used, then P
τ−→u
ε P

′ holds by Lem. 2.1.3, and the lemma is proved by

taking π′ = π, since no names are modified by the empty substitution ε.

If Rule Un-k(τ) has been used, then (H B P )
τ−→u (σ(H) B P ′) and P

k(τ)−−−→σ P ′ hold, with

σ = [l1, l2 7→ k] by Lem. 2.1.3, k fresh from P and l1, l2 fresh from P ′. By hypothesis, ζ is fresh

from π(C), which implies k ] range(π). By Lem. 3.4.2 there exists π′ such that π = π′ · ˜[li 7→ k]

for i ∈ {1, 2} and π(P )
k(τ)−−−→[π(l1,l2) 7→k] π

′(P ′) hold. By applying Rule Un-k(τ), we have (π(H) B

π(P ))
τ−→u ((π(H))[π(l1, l2) 7→ k] B π′(P ′)). By Lem. 3.4.4 (π(H))[π(l1, l2) 7→ k] = π(H[l1, l2 7→ k]),

which is equal to π′(H[l1, l2 7→ k]) because l1 and l2 are fresh from H[l1, l2 7→ k]. Therefore we

can rewrite the previous transition (π(H) B π(P ))
τ−→u ((π(H))[π(l1, l2) 7→ k] B π′(P ′)) as (π(H) B

π(P ))
τ−→u (π′(H[l1, l2 7→ k]) B π′(P ′)), which proves the lemma. The case for Rule Un-k(a) is proved

similarly; the case for Rule Un-new uses Property 3 of Lem. 3.4.3.

If Rule Un-co has been used, then (H B P )
τ−→u (H \co k B P ′) and P

co k−−−→ P ′ hold. By Lem.

3.4.3 there exists π′ such that π = π′ · [k 7→ k′] and π(P )
co k′−−−→ π′(P ′) hold. By applying Rule Un-co

we have (π(H) B π(P ))
τ−→u (π(H) \co k′ B π′(P ′)). By definition of π and of the history commit
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operation π(H) \co k′ = π′ ·[k 7→ k′](H) \co k′ = π′(H \co k). Therefore (π(H) B π(P ))
τ−→u (π′(H \co

k) B π′(P ′)) holds, and the lemma is proved. The case for Rule Un-ab is proved similarly.

Condition 3 is proved similarly to Condition 2, using the fact that the inverse renaming π−1 is

injective because π is injective, and that P = π−1(π(P )).

We now introduce the notion of label similarity, which matches labels up to transaction names k,

and the renaming bisimulation:

Definition 3.4.7 (Label similarity). A label ζ is action similar to ζ ′, or ζ ∼ ζ ′, when ζ = ζ ′ = τ or

ζ = k(a) and ζ ′ = l(a) for some k and l.

Definition 3.4.8. A relation R⊆ ConfAct×ConfAct is a renaming history bisimulation when, for any

C1 R C2:

• hist(C1) and hist(C2) are action consistent

• if C1
ζ1−→u C′1 is a challenger move, then there exist C′2 and ζ2 such that C2

ζ2
=⇒u C′2, ζ1 ∼ ζ2 and

C′1 R C′2,

• the converse of the preceding condition.

The greatest renaming bisimulation is denoted by ≈r. Two TCCSm processes P and Q are

renaming bisimilar, or P ≈r Q, when (∅ B P ) ≈r (∅ B Q).

We conclude this section by showing that renaming and uniform history bisimulation relate the

same processes. As usual, this is proved by showing that the two bisimulation relations are included

in each other. The first inclusion, namely that the uniform history bisimulation ≈un is also a renaming

bisimulation, is trivial, because the moves played during the uniform history bisimulation game are

allowed to be replicated directly in the renaming bisimulation game:

Lemma 3.4.9. The uniform history bisimulation ≈un is a renaming bisimulation.

Proof. The three conditions of renaming bisimulation follow directly by the definition of uniform

bisimulation. In particular, if C1 ≈un C2 and C1
ζ−→u C′1 is a challenger move, C2

ζ
=⇒u C′2 holds by

uniform bisimulation, and Condition 2 is proved directly by taking ζ ′ = ζ

The proof of the opposite inclusion is complicated by the fact that, when the attacker plays a

k(a) move, the defender must play the same k(a) action. Let C1
k(a)−−−→u C′1 be the challenger’s move,

and let C2 = (∅ B J0 .b.a.P l1K ‖
q
0 .b̄.Q l2

y
) be the defender. Before playing action a, transactions

l1 and l2 must synchronize on b first, and therefore l1 and l2 must be merged. The definition of

renaming bisimulation allows the defender to respond with the weak transition C2
τ−→u (∅ B J0 .a.P kK ‖

q
0 .b̄.Q k

y
)
l(a)−−→ u (∅ B J0 .P lK ‖

q
0 .b̄.Q l

y
), whereby l1 and l2 are merged into k. The problem is that

the intermediate configuration (∅ B J0 .a.P kK ‖
q
0 .b̄.Q k

y
) cannot perform a k(a) action, because k

is not fresh.

In order to resolve this problem, notice that k is fresh in the initial configuration C2; in general

k has to be fresh in C2 by definition of uniform history bisimulation. The solution is to construct

an alternative weak response that renames k with another fresh name k′, whenever k is introduced.
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By Proposition 3.4.6 the alternative response is strongly bisimilar to the original one. The following

lemma shows that it is always possible to build such an alternative:

Lemma 3.4.10. Let C τ−→ C′.

1. If k ] C, then there exists π such that C τ−→ π(C′) and k ] π(C′);

2. If k ] π(C) for some π, then there exists π′ such that π(C) τ−→ π′(C′) and k ] π′(C′).

Proof. By rule induction, by respectively picking π = [k 7→ k′] for Property 1 and π′ = π · [k 7→ k′]

for Property 2, when Rule Un-new or Rule Un-k(a) is applied and k is chosen as the fresh name.

We can now prove the reverse inclusion:

Lemma 3.4.11. Bisimulation ≈r is a uniform history bisimulation.

Proof. We need to show that, for any C1 and C2 such that C1 ≈r C2, the three conditions in Def. 3.3.5

are satisfied.

Condition 1 follows immediately by definition of renaming bisimulation.

To prove Condition 2, let C1
ζ−→u C′1 be a challenger move, with ζ ] C2. We need to show that there

exists C′2 such that C2
ζ

=⇒u C′2 and C′1 ≈r C′2. By definition of renaming bisimulation, C2
ζ2
=⇒u C′2, ζ ∼ ζ2

and C′1 R C′2 hold.

If ζ = τ , then by renaming bisimulation there exists ζ2 and C2
ζ2
=⇒u C′2 and C′1 ≈un C′2. By definition

of action similarity ζ2 = τ , and therefore C2
τ
=⇒u C′2 holds, which proves the lemma together with

C′1 ≈r C′2.

If ζ = k(a), the definition of action similarity implies that ζ2 = l(a), where l might be different

from k. Because of this, ζ might be different from ζ2, and therefore we cannot use transition C2
ζ2
=⇒u C′2

to prove the lemma as in the previous case. Instead, we construct a transition C2
k(a)
==⇒u C′′2 such that

C′′2 ≈r C′2. The lemma is then proved by transitivity of ≈r, since C1 ≈r C′2 and C′2 ≈r C′′2 imply that

C′1 ≈r C′′2 .

By definition, C2
ζ2
=⇒u C′2 stands for transition C2

τ
=⇒u C1

2

l(a)−−→ u C2
2

τ
=⇒u C′2. Configuration C1

2 can

perform a k(a) action only if k is fresh from its history. Therefore we first have to construct a transition

C2
τ
=⇒u π1(C1

2) such that k ] π(C1
2). This is repeated application of Lem. 3.4.10 and by Prop. 3.4.6.

If C1
2

l(a)−−→u C2
2 is derived by Rule Un-?, then the same rule can be applied to infer π(C1

2)
k(a)−−−→u

π(C2
2), since k ] π(C1

2) holds and Rule Un-? does not rename transaction. The lemma is then proved

by repeated application of Lem. 3.4.10 and by Prop. 3.4.6 on π(C2
2).

If C1
2

l(a)−−→ u C2
2 is derived by Rule Un-k(a), then the same Rule can be applied to infer π(C1

2)
k(a)−−−→u

π′(C2
2) with π′ = π|dom(π)\dom(σ) for some σ, since k ] π(C1

2) π(C1
2)

k(a)−−−→u C2
2 . The lemma is then

proved by repeated application of Lem. 3.4.10 and by Prop. 3.4.6 on π(C2
2).

We conclude this section by showing that the uniform history and renaming bisimulations related

the same processes:

Theorem 3.4.12. For any TCCSm process P and Q, P ≈un Q if and only if P ≈r Q.

Proof. By Lem. 3.4.9 and Lem. 3.4.11.
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3.5 Historyless bisimulation

Participants in the uniform history bisimulation game produce very closely related histories. Perma-

nent and tentative elements of their histories always store matching action names, unless a transaction

has been aborted. It would be tempting to eliminate elements with matching actions. However, such

elements might have different transaction names, and this information is crucial to determine which

tentative actions become permanent after a commit.

For example, consider the following processes:

P = Ja.b.co + b.a.co .k 0K Q = Ja.co .l1 0K | Jb.co .l2 0K

Processes P and Q are an example of the familiar rule of parallel decomposition from CCS, in the

transactional world. However, notice that process Q contains two distinct transactions l1 and l2,

whereas process P is a single transaction k. This difference is sufficient to distingiush the two processes

under bisimulation.

The initial configurations start with the empty history. During the first two rounds, process P

attacks twice, by performing actions a and b tentatively:

∅ B P k1(a)−−−→u k1(a) B Jb.co .k1 0K
k2(b)−−−→u k2(a)k2(b) B Jco .k1 0K

∅ B Q k1(a)
===⇒u k1(a) B Jco .k1 0K | Jb.co .l2 0K

k2(b)
===⇒u k1(a)k2(b) B Jco .k1 0K | Jb.co .l2 0K

Notice that the tentative elements in P ’s history are tagged by the same transaction name k2: since

there is only a single transaction in P , transaction name k1 is renamed to k2. Process Q responds by

performing the same tentative actions, but without renaming k1 to k2, because the two transaction

are distinct in Q.

At this point, Q attacks by committing only one of the two transactions it contains, namely k2:

k2(a)k2(b) B Jco .k1 0K 6 τ=⇒u

k1(a)k2(b) B Jco .k1 0K | Jb.co .l2 0K τ−→u k1(a)b B Jco .k1 0K | 0

Process P cannot produce an history consistent with Q’s. It can commit k2 and produce history

H2 \co k2 = a, b or abort k2 and produce history H2 \ab k2 = abab. However neither history is action

consistent with k1(a)b.

On the contrary, it is possible to show that P and Q are bisimilar, when l1 = l2 in Q (i.e.

Ja.b.co + b.a.co .k 0K ≈un Ja.co .l 0K | Jb.co .l 0K). Therefore this example shows that, even though

action names are now irrelevant, the histories must still record transaction names. Transaction names

in the history allow the bisimulation to distinguish whether a single transaction is simulated by

multiple logically equivalent transactions, as in the example. More generally, transaction names in

the histories track the inter-dependencies between groups of transactions across two configurations.

Action names are redundant, but transaction names are not.

Capitalizing on this intuition, we can define the historyless bisimulation, a bisimulation that re-

places histories with a single environment ∆, called the dependency set, that keeps track of depen-

dencies across transactions during a bisimulation game. Let D be the set T ∪ {ab, co}, which is

the set of transaction names T plus the ground terms ab and co. A term d ∈ D is called a depen-

cency element. The dependency set ∆ is a binary relation over D. The set of left transaction names
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P
τ−→hl
σ Q if P

τ−→σ Q (HL-τ)

P
τ−→hl
σ Q if P

k(τ)−−−→σ Q (HL-k(τ))

P
τ−→hl
ε Q if P

new k−−−→ Q (HL-New)

P
τ−→hl

[k 7→co] Q if P
co k−−−→ Q (HL-Co)

P
τ−→hl

[k 7→ab] Q if P
ab k−−−→ Q (HL-Ab)

P
k(a)−−−→hl

σ Q if P
k(a)−−−→σ Q (HL-k(a))

P
ab(a)−−−→ hl

ε P if k ] P (HL-k?)

Fig. 3.4: Historyless LTS.

of ∆ is the set ftnL(∆) = { k | k∆d for any d }; the set of right transaction names of ∆ is the set

ftnR(∆) = { k | d∆k for any d }.

When a transaction is aborted or committed, the abort and commit operations \ab k and \co k

update the history of a configuration C accordingly. Instead of introducing similar operators for ∆,

we generalize history substitutions to historyless substitutions. A historyless substitution is defined

as a total function σhl :: D → D of the form ˜[k 7→ d] such that σhl(ab) = ab, σhl(co) = co and

∀l 6∈ k̃. σhl(l) = l. The domain of a historyless substitution σhl = ˜[k 7→ d] is dom(σhl) = k̃, and its

range is range(σhl) = { l | l ∈ d̃ }. For ease of notation, we drop the superscript hl from σhl when it is

clear from the context that σ denotes a historyless substitution.

Historyless substitutions generalize over history substitutions because they can replace transaction

names with the ab or co term, in addition to renaming them. The composition of two historyless

substitutions σ1 and σ2 is written σ1 ◦ σ2, which is defined as the standard function composition

σ2(σ1(d)) for any d. The application of a substitutions σ to the left-hand side of a dependency set

∆ is defined as σ∆ = { (σ(k), l) | (k, l) ∈ ∆ }; its application to the right-hand side of ∆ is defined as

∆σ = { (k, σ(l)) | (k, l) ∈ ∆ }. We abbreviate (σ1∆)σ2 with σ1∆σ2.

Figure 3.4 shows the Historyless LTS. A transitions in the Historyless LTs has the form P
ξ−→hl
σ Q,

with label ξ ::= τ
∣∣ d(a). Labels in the Historyless LTS are therefore a generalization of labels ζ

from the Uniform History LTS from Fig. 3.3. The weak τ transition
τ
=⇒hl

σ is defined as
τ−→hl
σ1
. . .

τ−→hl
σn

where σ stands for the composition σ1 ◦ . . . ◦ σ1. The weak k(a) transition
d(a)
==⇒hl

σ is defined as
τ
=⇒hl

σ1

d′(a)−−−→hl
σ2

τ
=⇒hl

σ3
with σ = σ1 ◦ σ2 ◦ σ3 and d = σ3(d′). Rules HL-τ , HL-k(τ) and HL-k(a) simply lift

TCCSm transitions to historyless transitions. Rule HL-New is the same as in the History LTS. Rules

HL-Ab and HL-Co produce a τ as in the History LTS too; operations \ab k and \co k are respectively

replaced by substitutions [k 7→ ab] and [k 7→ co]. Finally, Rule HL-k? lets a process P perform any

action a, where a is paired by the abort dependency ab in ab(a).

As already mentioned, the set ∆ keeps track of the dependencies between transactions in a process

P and transactions in another process Q. It is reasonable to require that ∆ only contains transaction

names occurring in P and Q, just as ftn(H) ⊆ ftn(P ) holds for well-formed configurations (H B P ).

Therefore, we say that a triple (P,∆, Q) is well-formed only when the transaction names in ∆ are a

subset of the transaction names in P and Q:

Definition 3.5.1 (Dependency set well-formedness). Let P and Q be well-formed terms, and let ∆
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be a dependency set. Processes P and Q are well-formed in ∆, or alternatively the triple (P,∆, Q) is

well-formed, when ftnL(∆) ⊆ ftn(P ) and ftnR(∆) ⊆ ftn(Q).

Historyless transitions preserve well-formedness:

Lemma 3.5.2 (Preservation of well-formedness). For any well-formed triple (P,∆, Q):

1. if P
ξ−→hl
σ1
P ′, P ′ and Q are well-formed in σ1∆.

2. if Q
ξ−→hl
σ2
Q′, P and Q′ are well-formed in ∆σ2.

Proof. Both properties are proved by rule induction; we only discuss the proof of Property 1, because

the proof of Property 2 is very similar to it. Except for Rule HL-k?, transition in the Historyless LTS

do not introduce fresh names unless a TCCSm transition P
α−→ σP ′ or P

β−→ P ′ does so. In such cases

the fresh name is in P ′ by Lem. 2.1.2, which proves the lemma. Rule HL-k? is the only rule that

generates fresh names. In particular, it allows the transition P
k(a)−−−→hl

[k 7→ab] P with k ] P . Since k is

fresh from P , the substitution [k 7→ ab] has no effect on any ∆ from a well-formed triple (P,∆, Q),

i.e. [k 7→ ab]∆ = ∆. Since P ′ = P and [k 7→ ab]∆ = ∆, the lemma holds trivially.

Instead of recording action names a and k(a), a dependency set records the element co in place of

permanent actions a, and k in place of tentative actions k(a). Consistent dependency sets therefore

only relate the co element with the co element itself, and transaction names k with either another

transaction name l or the ab element:

Definition 3.5.3 (Dependency set consistency). A dependency set ∆ is consistent when, for all pairs

(x, y) ∈ ∆, x = co if and only if y = co.

A challenger move in historyless bisimulation is any transition not produced by Rule HL-k?. We

are now ready to define historyless bisimulation:

Definition 3.5.4 (Historyless bisimulation). A ternary relation R :: P × D × P is a historyless

bisimulation when, for well-formed triple (P,∆, Q):

1. ∆ is consistent

2. if P
k(a)−−−→hl

σ1
P ′, then Q

d(a)
==⇒hl

σ2
Q′ and (P ′,∆′, Q′) ∈ R, where ∆′ = σ1∆σ2 ∪ (k, d).

3. if P
τ−→hl
σ1
P ′, then Q

τ
=⇒hl

σ2
Q′ and (P ′,∆′, Q′) ∈ R, where ∆′ = σ1∆σ2.

4. the converse of Conditions 2 and 3.

Instead of adding actions in the histories, historyless bisimulation adds a dependency pair (k, k)

to ∆ whenever the challenger plays a k(a) action. Transaction renamings, aborts and commits are

recorded by historyless substitutions, which are respectively applied to the left and right-hand side of

relation ∆. We say that two TCCSm processes P and Q are historyless bisimilar, or P ≈hl Q, when

there exists a relation R such that R is a historyless bisimulation and (P, ∅, Q) ∈R.

In order to show that historyless and uniform history bisimulation coincide, some technical defini-

tions are required to relate histories and dependency sets on the one hand, and to relate the Historyless

and the Uniform History LTS on the other hand. The history join operator (H1 on H2) translates two

histories H1 and H2 into a dependency set ∆ as follows:
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Definition 3.5.5 (History join). The history join operation (− on −) :: H × H → D is the partial

function from histories H1, H2 of the same length to dependency sets defined as follows:

(H1 on H2) = { (d1, d2) | ∃i. d1 = JH1(i)K ∧ d2 = JH2(i)K }

where J−K is the total function from history elements to dependency elements defined as follows:

Jk(a)K = k JaK = co JabK = ab

Historyless substitutions need to be translated into substitutions and \ab k and \co k operations

on histories as well:

Definition 3.5.6 (Application of a historyless substitution to a history). Let σhl be a historyless

substitution, and H be a history. The application of σhl to H is the lifting to lists of the operations:

σhl(a) = a σhl(k(a)) = a if σhl(k) = co

σhl(k(a)) = l(a) if σhl(k) = l σhl(k(a)) = k(a) if k 6∈ dom(σhl)

σhl(k(a)) = ab if σhl(k) = ab σhl(ab) = ab

Notice that the application of a historyless substitution σ to a history H is always defined, and that

action names a are never changed. A straightforward consequence of this definition is that historyless

substitutions [k 7→ co] and [k 7→ ab] have the same effect as operations \co k and as \ab k, respectively,

on any history H:

Observation 3.5.7. For any history H, H[k 7→ ab] = H \ab k and H[k 7→ co] = H \co k.

Historyless substitutions distribute over the translation function J−K of history elements:

Lemma 3.5.8. For any history H and historyless substitution σ, σ(JH1(i)K) = Jσ(H(i))K.

Proof. By case analysis.

As a corollary of the previous lemma, historyless substitutions distribute over history joins:

Proposition 3.5.9 (Distributivity of historyless substitutions over history joins). For any history

H1, H2 and historyless substitution σ1, σ2: σ1(H1 on H2)σ2 = (σ1(H1) on σ2(H2)).

Proof. By Lem. 3.5.8 and by definition of history join (Def. 3.5.5).

With the aid of these translation functions, Uniform History LTS transitions can be translated

into Historyless LTS transitions, and viceversa:

Proposition 3.5.10 (Translation between Uniform history and Historyless LTSs). For any well-

formed configurations (H B P ):

1. if (H B P )
τ−→u (H ′ B Q), then ∃σ.P τ−→hl

σ Q and H ′ = σ(H).

2. if P
τ−→hl
σ Q and H ′ = σ(H), then (H B P )

τ−→u (H ′ B Q).

3. if (H B P )
k(a)−−−→u (σ(H), k(a) B Q) and σ = [l̃ 7→ k], then P

k(a)−−−→hl
σ Q.
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4. if P
k(a)−−−→hl

σ Q and σ = [l̃ 7→ k], then (H B P )
k(a)−−−→u (σ(H), k(a) B Q).

5. if (H B P )
k(a)−−−→u (Hab B P ), then P

k(a)−−−→hl
[k 7→ab] P .

6. if P
k(a)−−−→hl

[k 7→ab] P , then (H B P )
k(a)−−−→u (Hab B P ).

Proof. Each property is proved by rule induction. Notice that each rule in one LTS has a corresponding

rule in the other LTS with exactly the same premise, and vice versa. For example, Rule HL-τ in the

Historyless LTS corresponds to Rule Un-τ in the Uniform History LTS, and both rules have the same

premise P
τ−→σ Q.

In order to prove Property 1, the only difficulty here is relating the history H with the historyless

substitution. When a transaction k is aborted or committed, the lemma follows by Observation 3.5.7.

In the other cases, the substitution σ from the premise P
τ−→σ Q has either the form ε or [k, k′ 7→ l] by

inversion on σ (Lemma 2.1.3). In either case, H ′ = σ(H) follows by definition of applying a historyless

substitution to a history (Def. 3.5.6), and therefore the lemma is proved.

Property 2 follows by inversion on the transition P
k(a)−−−→σ Q, because such transition is only

possible when σ = [k 7→ l] by Lem. 2.1.3. Property 3 follows straightforwardly by inversion.

A similar result holds for weak actions:

Corollary 3.5.11. For any well-formed configuration (H B P ):

1. if (H B P )
τ
=⇒u (H ′ B P ′), then ∃σ.P τ

=⇒hl
σ P ′ and H ′ = σ(H)

2. if P
τ
=⇒hl

σ P ′ and H ′ = σ(H), then (H B P )
τ
=⇒u (H ′ B P ′)

3. if (H B P )
k(a)
==⇒u (H ′ B P ′), then ∃σ, σ′, k′.P (σ′(k′))(a)

======⇒hl
σ P ′ and H ′ = σ(H), σ′(k(a))

4. if P
(σ′(k))(a)
======⇒hl

σ P ′ and H ′ = σ(H), σ′(k(a)), then ∃k.(H B P )
k(a)
==⇒u (H ′ B P ′)

Proof. Property 1 and 2 are consequences of Lem. 3.5.10 (1) and (2) respectively. Property 3 follows

from Prop. 3 and 5 of the same lemma; and Property 4 from Prop. 4 and 6.

Finally, as it can be easily expected, the history join of two action consistent histories produces a

consistent dependency set. The converse is not true however: a consistent history join can be generated

from two inconsistent histories. For example, when H1 = a and H2 = b, (H1 on H2) = {(co, co)}, but

obviously H1 and H2 are not action consistent. Because of this issue, special care has to be taken

when proving that a historyless bisimulation is an uniform history bisimulation.

We now have sufficient technical equipment to prove that historyless and uniform history bisimu-

lation coincide. We start with the forward direction, namely that a historyless bisimulation is also a

uniform history bisimulation:

Lemma 3.5.12. Consider the following relation:

R = { ((H1 B P1), (H2 B P2)) | H1 and H2 are action consistent, P1 ≈hl
(H1onH2) P2}.

R is a renaming bisimulation.

53



Proof. Let C1 = (H1 B P1) and C2 = (H2 B P2) be related by R, and let ∆ = (H1 on H2). By

definition of R, the histories H1 and H2 are action consistent and P1 ≈∆
hl P2 holds. We have to show

that Condition 1, 2, and 3 of renaming bisimulation from Def. 3.4.8 hold for any (C1, C2) in R.

Condition 1, namely that histories H1 and H2 are action consistent, holds trivially by hypothesis.

In order to prove Condition 2, let C1
ζ1−→u C′1 be a challenger move. We have to find a transition

C2
ζ2
=⇒u C′2 in the Uniform History LTS such that ζ1 ∼ ζ2 (i.e. if ζ1 = τ then ζ2 = τ , and if ζ1 = k(a)

then ζ2 = d(a) for some dependency element d) and C′1RC′2. We prove the lemma by taking cases on

ζ1.

1. When ζ1 = τ , the following derivations hold:

1. (H1 B P1)
τ−→u (H ′1 B P

′
1) by hypothesis

2. P1
τ−→hl
σ1
P ′1 and H ′1 = H1σ1 by Prop. 3.5.10

3. P2
τ
=⇒hl

σ2
P ′2 by ≈hl and 1

4. P ′1 ≈∆′

hl P
′
2 by ≈hl, where ∆′ = σ1∆σ2

5. C2
τ
=⇒u (H ′2 B P

′
2) and H ′2 = H2σ2 by Cor. 3.5.11

6. ∆′ = σ1(H1 on H2)σ2 because ∆ = (H1 on H2)

7. = (H1σ1 on H2σ2) by Prop. 3.5.9

8. = (H ′1 on H ′2) by 3 and 7

9. H ′1 and H ′2 are action consistent because H1, H2 are act. cons. and ∆′ is cons.

10. (H ′1 B P
′
1)R(H ′2 B P

′
2) by 4 and 9

Assuming that (H1 B P1)
τ−→u (H ′1 B P ′1) is a challenger move (1), this transition can be

replicated in the historyless LTS by Prop. 3.5.10 (2), and it is also a challenger move. Since

P1 and P2 are historyless bisimilar under ∆, P2 can match P1’s transition in the bisimulation

game (3,4). P2’s move can be translated back in the History LTS (5) by Lem. 3.5.11. The final

dependency set σ1(H1 on H2)σ2 can be rewritten as the join of histories H ′1 and H ′2 (8-10) by

Prop. 3.5.9, since H ′1 = H1σ1 (2) and H ′2 = H2σ2 (5). Since H1 and H2 are action consistent

by hypothesis; historyless substitutions do not change action names; and substitutions σ1 and

σ2 produce a consistent dependency set ∆′, then H ′1 and H ′2 are action consistent too (9).

Derivations (4) and (9) prove the lemma (10).

2. When ζ = k(a), the following derivations hold:
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1. (H1 B P1)
k(a)−−−→u (H ′1 B P

′
1) by hypothesis

2. P1
k(a)−−−→hl

σ1
P ′1 and H ′1 = σ1(H1), k(a) by Prop. 3.5.10

3. P2
d(a)
==⇒hl

σ2
P ′2 by ≈hl

4. P ′1 ≈∆′

hl P2 with ∆′ = σ1(H1 on H2)σ2 ∪ {σ1(k), d}

5. C2
k′(a)
===⇒u (H ′2 B P

′
2) and d = σ′2(k′) by Prop. 3.5.10 for some k′

6. H ′2 = σ2(H2), σ′2(k′(a)) ”

7. ∆′ = (σ(H1), k(a) on σ2(H2), σ′2(k′(a))) by Def. 3.5.5 and Prop 3.5.9

8. H ′1 and H ′2 are action consistent because H1, H2 are act. cons. and ∆′ is cons.

9. (H ′1 B P
′
1)R(H ′2 B P

′
2) by 4 and 8

The proof for the case ζ = k(a) is similar to the proof for the case ζ = τ .

Extended history bisimulation can be proved to be a historyless bisimulation too:

Lemma 3.5.13. Consider the following relation R:

R = { (P,∆, Q) | (H1 B P ) ≈r (H2 B Q),∆ = (H1 on H2), for some H1, H2 }

R is a historyless bisimulation.

Proof. Let C1 = (H1 B P1), C2 = (H2 B P2),∆ = (H1 on H2), and let C1 ≈r C2. We have to show

that the four conditions from Def. 3.5.4 of historyless bisimulation hold.

Condition 1, namely that, ∆ = (H1 on H2) is consistent, is a straightforward consequence of the

fact that H1 and H2 are action consistent. In order to prove Condition 2, we have to show that if

P1
τ−→hl
σ1
P ′1, then P2

τ
=⇒hl

σ2
P ′2 and (P ′1, σ1∆σ2, P

′
2) ∈ R.

The following derivation hold:

1. P1
τ−→hl
σ1
P ′1 by hypothesis

2. (H1 B P1)
τ−→u (H ′1 B P

′
1) and H ′1 = H1σ1 by Prop. 3.5.10

3. (H2 B P2)
τ
=⇒u (H ′2 B P

′
2) by C1 ≈r C2 and 2

4. (H ′1 B P
′
1) ≈r (H ′2 B P

′
2) ”

5. P2
τ
=⇒hl

σ2
P ′2 and H ′2 = H2σ2 by Prop. 3.5.10 on 3

6. σ1∆σ2 = σ1(H1 on H2)σ2 because ∆ = (H1 on H2)

7. = (H ′1 on H ′2) by Prop. 3.5.9

8. (P ′1, σ1∆σ2, P
′
2) ∈ R by 4, 7

The proof is similar to the proof of Condition 2 of Lemma 3.5.12.

Let us prove Condition 3, namely that if P1
k(a)−−−→hl

σ P ′1 is a challenger move and k ] P2,∆, then

P2
d(a)
==⇒hl

σ123
P ′2 and (P ′1, σ1∆σ2 ∪ {(k, d}, P ′2) ∈ R.

The following derivation proves Condition 3:
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1. P1
k(a)−−−→hl

σ1
P ′1 and k ] P1 by hypothesis

2. (H1 B P1)
k(a)−−−→u (H ′1 B P

′
1) by Prop. 3.5.10

3. H ′1 = H1σ1, k(a) ”

4. (H2 B P2)
k(a)
==⇒u (H ′2 B P

′
2) because C1 ≈r C2 and 2

5. (H ′1 B P
′
1) ≈r (H ′2 B P

′
2) ”

6. P2
d(a)
==⇒hl

σ2
P ′2 by Prop. 3.5.10

7. H ′2 = H2, σ
′
2(k′(a)) and d = σ′2(k′) ” for some σ′2 and k′

8. ∆′ = (H ′1 on H ′2)

9. = (H1σ1, k(a) on H2σ2, σ
′
2(k′(a))) by 3 and 7

10. = (H1σ1 on H2σ2) ∪ (k, d) by Def. 3.5.5

11. = σ1(H1 on H2)σ2 ∪ (k, d) by Prop. 3.5.9

12. = σ1∆σ2 ∪ (k, d) because ∆ = (H1 on H2) by hypothesis

13. (P ′1,∆
′, P ′2) ∈ R by 5, 12

The proof for Condition 4 is similar to the proof of Condition 2 and 3.

We conclude the chapter by proving that extended history bisimulation and historyless bisimulation

coincide. Together with Theorem 3.3.9, this result proves that history and historyless bisimulation

coincide too.

Theorem 3.5.14. For any TCCSm processes P and Q, P ≈r Q if and only if P ≈hl Q.

Proof. To prove the first direction of the theorem, suppose that P ≈hl Q. By definition, P ≈hl Q

holds if and only if P ≈∅hl Q holds, which can also be reformulated as P ≈(∅on∅)
hl Q, since the join of

two empty histories is the empty relation. The two empty histories are also action consistent, because

they are empty. From these two facts, we can infer (∅ B P )R(∅ B Q) as per Lemma 3.5.12. Since ≈r

is the largest weak bisimilarity, it follows that (∅ B P ) ≈r (∅ B Q), and therefore P ≈r Q.

To prove the opposite direction of the theorem, suppose that P ≈r Q. By definition of history

bisimulation, P ≈r Q if and only if (∅ B P ) ≈r (∅ B Q). The history join of two empty sets is the empty

set over pairs (i.e. (∅ on ∅) = ∅). Since this history join is trivially consistent and (∅ B P ) ≈ (∅ B Q)

holds by hypothesis, we have that (P, (∅ on ∅), Q) belongs to R as per Lemma 3.5.13. Therefore

P ≈(∅on∅)
hl Q holds, which implies that P ≈hl Q holds by definition of ≈hl.
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Chapter 4

Historyless bisimulation algorithm

The present chapter presents an algorithm to calculate a bisimulation equivalence between two TCCSm

processes, if one such relation exists. In order to guarantee termination, the bisimulation algorithms

that we consider only terminate if their inputs are finite-state, but as discussed in the introduction to

Chapter 2, histories can grow indefinitely in a history bisimulation game.

In Section 3.5 we described historyless bisimulation, where histories are replaced by a single envi-

ronment ∆, the dependency set that relates one player’s transactions to the other player’s transactions

and vice versa. Historyless bisimulation is not enough to guarantee a finite state LTS yet. There are

two ways in which TCCSm processes can yield an infinite LTS: by picking a new transaction name

from an infinite supply of names, and by recursively spawning fresh processes or channels.

The first problem is illustrated by in Fig. 4.1.a. Let P be Ja.co .k 0K, a transaction whose body can

only perform a tentative action a. By Rule HL-k(a), the following are all valid transitions according

to the LTS in Fig. 3.4:

P
l1(a)−−−→hl

[k 7→l1] Jco .l1 0K

P
l2(a)−−−→hl

[k 7→l2] Jco .l2 0K

P
l3(a)−−−→hl

[k 7→l3] Jco .l3 0K

. . .

The Historyless LTS allows transitions that rename a transaction with any fresh name, picked from

an infinite set. Therefore the set of successors of P is infinite too; it contains a state JP ′ .li QK for

each fresh transaction name li in the domain of all transaction names T \{k}.

Theorem 3.4.12 shows that the choice of a fresh name over another is not important as far as

bisimulations are concerned. Section 4.1 shows that it is possible to reduce the choice of fresh labels

from an infinite set of names to exactly one name, without losing distinguishing power.

Another source of infinity is due to recursive processes, as illustrated in Fig. 4.1.b.
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a) P

Jco .k1 0K

Jco .k2 0K

Jco .kn 0K

l1(a)

l2(a)

ln(a) ...

b)
Q Q | b Q | b | b

. . .a a a

P = Ja.co .k 0K Q = rec X.(a.X | b)

Fig. 4.1: Both processes P and Q yield infinite state LTSs.

Let Q = rec X.a.0 |X. The following is a sequence of valid transitions from Q:

Q
τ−→hl
ε Q | b

τ−→hl
ε Q | b | b

τ−→hl
ε Q | b | b | b

. . .

Each unfolding of the recursive process in Q spawns a new b process. The recursive process Q is still

available at each unfolding, therefore Q can spawn an infinite number of b processes, and therefore Q

yields an infinite state LTS.

Section 4.2 describes a class of processes that yield a finite state LTS by design. This is achieved

by a syntactic restriction on TCCSm processes, namely by disallowing spawning processes or creating

fresh channels under a recursive process. Finally Section 4.3 describes an algorithm to calculate

bisimulation equivalences between TCCSm processes with finite state LTSs. The algorithm is an

adaptation of the on-the-fly algorithm from [Bergstra, 2001] to the transactional case.

4.1 Nameless LTS

As mentioned in the introduction to this chapter, each transition in TCCSm can substitute the name

of one or more transactions with a fresh name. Since the set of transaction names is infinite, there is

an infinite number of fresh names that transactions can be renamed with. This is not the only case

where a process yields an infinite state LTS because of fresh names: the same problem arises when a

dormant transaction is activated. For example, a simple process such as Q = J0 I 0K generates an

infinite state LTS, because Q can activate its dormant transaction by transition J0 I 0K new l−−−→ J0 .l 0K

for any k ∈ T .

In order to have finite state LTSs even for these simple processes, it is necessary to restrict the

choice of fresh names to a single one. This can be achieved by imposing a total order ≤T on T , and

by forcing the LTS to only pick the least fresh name available from T minus the transaction names

currently used in a process. Each distinct transaction name k in T is assigned a unique natural number

i; we indicate with ki the i-th transaction name. The ordering ≤T has the property that ki ≤ kj

whenever i ≤ j. The ordering ≤T is a simple lifting of the natural number ordering to transaction

58



NL-Act

P
ξ−→ε Q

P
ξ−→

nl

ε Q

NL-FreshAct

P
ξ−→l̃ 7→k Q

P
ξ−→

nl

l̃ 7→k Q

k = min(T \fn(P ))

NL-Co

P
co k−−→ Q

P
τ−→

nl

[k 7→co] Q

NL-Ab

P
ab k−−→ Q

P
τ−→

nl

[k 7→ab] Q

NL-New

P
new k−−−→ Q

P
τ−→

nl

ε Q
k = min(T \fn(P ))

Fig. 4.2: Nameless LTS.

names, and therefore it is total by construction. The bottom element of ≤T is k0. For ease of notation

we write ki + kj for ki+j .

The Historyless LTS from Fig. 3.4 is therefore refined into the Nameless LTS as shown in Fig. 4.2.

When no fresh name is introduced, Rule NL-Act simply reproduces the transition performed in its

premise. When a fresh transaction name is introduced (e.g. because of a k(µ) action), the Historyless

LTS allows a process to pick any fresh name k from an infinite supply of names (namely T \fn(P,Q),

if P and Q are playing a bisimulation games).

Rule NL-FreshAct only allows processes to pick exactly one name k, that is the least element of

T minus the transaction names in P . Since the order ≤T on T is total and with bottom, there is

always one and only one such name. Similarly, when a fresh transaction is activated, Rule NL-New

allows process P to pick exactly one name k, which is the least T minus fn(P ). There is only one

such transition for the same reason as for Rule NL-FreshAct. When a process P commits or aborts

a transaction k, the name k does not occur anymore in P . Therefore Rule NL-Co and NL-Ab simply

reproduce the TCCSm transition in their premises.

Since Rule NL-FreshAct and NL-New restrict the choice of fresh transactions to exactly one,

TCCSm processes’s LTSs are finite image, i.e. they do not support an infinite number of transitions.

The definition of nameless bisimulation is similar to the definition of historyless bisimulation from

Def. 3.5.4:

Definition 4.1.1. (Nameless bisimulation) A ternary relation R ⊆ P×D× is a weak bisimulation

when for all (P,∆, Q) ∈R:

1. ∆ is consistent,

2. if P
k(a)−−−→σ1

P ′, then Q
d(a)
==⇒σ2

Q′ and P ′ ≈∆′

hl Q
′, where ∆′ = σ1∆σ2 ∪ {(k, d)},

3. if P
τ−→σ1

P ′, then Q
τ
=⇒σ2

Q′ and P ′ ≈σ1∆′σ2

hl Q′

4. the converse of the previous two conditions.

We write ≈nl for the largest nameless bisimulation. Two TCCSm processes are nameless bisimilar,

or P ≈nl Q, when P ≈∅nl Q holds.

The proof that historyless and nameless bisimulation coincide is a consequence of the fact that

processes are bisimilar up to renamings:

Lemma 4.1.2. Let P ≈∆
hl Q. For any transaction renaming π1 and π2 such that range(π1) ] P and

range(π2) ] Q, P ≈∆
hl Q implies π1(P ) ≈π1∆π2

hl π2(Q).
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Proof. By proving that the relation

R = { (π1(P ), π1∆π2, π2(Q)) | range(π1) ] P and range(π2) ] Q }

is a historyless bisimulation. The lemma is proved as Prop. 3.4.6.

Lemma 4.1.3. Let P ≈∆
nl Q. For any transaction renaming π1 and π2 such that range(π1) ] P and

range(π2) ] Q, P ≈∆
nl Q implies π1(P ) ≈π1∆π2

nl π2(Q).

Proof. The lemma is proved as in the previous lemma, by proving that the relation

R = { (π1(P ), π1∆π2, π2(Q)) | range(π1) ] P and range(π2) ] Q }

is a nameless bisimulation.

We can now prove that historyless and nameless bisimulation relate the same processes:

Theorem 4.1.4. Let P and Q be TCCSm processes. Then P ≈hl Q if and only if P ≈nl Q.

Proof. We have to show that ≈hl is a nameless bisimulation, and that ≈nl is a historyless bisimulation.

We will only show that ≈nl is a historyless bisimulation, since the proof for the other case is similar.

Let P ≈∆
nl Q. In order to show that ≈nl is a historyless bisimulation, we have to show the four

conditions in Def. 3.5.4 hold for ≈nl. By definition, P ≈nl Q holds when P ≈∅nl Q holds, where ∅

is the empty dependency set. Condition 1 holds trivially, because the empty dependency is trivially

consistent.

To prove Condition 2, suppose that P
k(a)−−−→hl

σ1
P ′ for some k. If k is not the least transaction name

in T \ftn(P ), then there exists a transaction k′ such that P
k′(a)−−−→hl

σ′1
P ′′, P ′′ = π(P ′) and σ′1 = πσ,

where π = [k 7→ k′]. By nameless bisimulation, there exists a weak transition Q
d(a)
==⇒nl σ2Q

′ such

that P ′′ ≈∆′

nl Q
′, where ∆′ = σ′1∆σ2 ∪ {(k′′, d)}Q′. Since k′′ = π(k) and P ′′ = π(P ′), we can rewrite

∆′ as ∆′ = πσ1∆σ2 ∪ π{(k, d)}Q′ and the theorem is proved by Lem. 4.1.3.

Condition 3 and 4 are proved similarly.

4.2 Syntactic restrictions for a finite LTS

As already mentioned, bisimulation algorithms only terminate for processes with a finite LTS. In CCS,

syntactic restrictions are a common method to identify classes of such processes (cfr. [Milner, 1982]):

for any CCS processes P such that no parallel and restriction construct occurs within recursive defi-

nitions of the form rec X.Q, the LTS of P is finite. Consider in fact the following process:

P = rec X.νa.X

Process P recursively generates channel restrictions ad infinitum. Therefore LTS of P has an infinite

number of states, because the set of states of P are processes P enclosed by a series of channel

restrictions νa.−.
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If transaction nesting was allowed, the same restriction would have to apply to dormant transac-

tions under recursion. In fact, consider the following process:

Q = rec X.JX I 0K

Process Q does not contain the parallel or restriction constructs, however it recursively activates fresh

transactions ad infinitum. As it was the case for process P , process Q would generate an infinite

number of states, one for each nested transaction; and therefore dormant transactions should be

disallowed syntactically too under the recursion construct, in order to have a finite state LTS.

Such restriction would unfortunately rule out restarting transactions. However in the case of flat

transactions it is possible to both allow dormant transactions under recursive processes and obtain

a finite state LTS. Section 4.2.1 shows that CCS processes with the aforementioned restrictions are

indeed finite state. The proof of this property is omitted in [Milner, 1982], and I could not find a full

proof for it in the literature; therefore we provide a full proof here. After showing the finite state LTS

result for standard CCS, Section 4.2.2 shows that the same syntactic restriction yields finite state LTS

for TCCSm processes.

4.2.1 Finite State CCS

In this section we will prove that CCS processes have a finite set of states they can evolve to, when

the parallel construct is forbidden within recursion. Our proof strategy is to provide an upper bound

for the set of reachable states of a process P . The upper bound function is defined structurally on a

process P , which simplifies the proof of finiteness. The core of the proof is then to show that the set

of reachable states of a process is always contained in the upper bound.

Syntax

We call this restricted version of CCS serial CCS. Its syntax is defined as follows:

P,Q ::= 0
∣∣ X ∣∣ α.P ∣∣ rec X.S ∣∣ P +Q

∣∣ νa.P ∣∣ P |Q
S, T ::= 0

∣∣ X ∣∣ a.S ∣∣ rec X.S ∣∣ S + S

Standard CCS processes, such as choice, prefix and restriction, are indicated by the letters P,Q.

Processes S and T are serial processes, that is, processes that cannot contain any occurrence of the

parallel or restriction constructs under recursive definitions. Notice that closed serial processes are a

subset of CCS processes.

We prove our results with reference to the following LTS semantics:

α.P
α−→ P rec X.P

τ−→ P [X 7→ rec X.P ]

P
α−→ P ′

νa.P
α−→ νa.P ′

a 6= α

P
α−→ P ′

P |Q α−→ P ′|Q

P
a−→ P ′ Q

ā−→ Q′

P |Q τ−→ P ′|Q′
P

α−→ P ′

P +Q
α−→ P ′
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Label α ranges over the set Act ∪ Act ∪ {τ}. We indicate the set of processes with the letter P, the

set of serial processes with the letter S, and the set of variables as V ar.

The syntax allows terms with open recursion variables X. We are not interested in them, because

we are only interested in terms that can be run in the operational semantics. Therefore we first define

the usual notion of free variables:

Definition 4.2.1 (Free Variables). For a serial CCS process S, the set FV (S) of free variables in S

is defined inductively as follows:

FV (0) = ∅ FV (α.S) = FV (S) FV (X) = {X}

FV (rec X.S) = FV (S)− {X} FV (P +Q) = FV (P ) ∪ FV (Q) FV (νa.P ) = FV (P )

and stipulate that closed terms are not only well-formed, as per Def. 2.1.1, but also do not contain

open recursion variables:

Definition 4.2.2 (Closed term). A term P is closed when FV (P ) = ∅.

We can now give a simple definition of substitution, that replaces an open variable X in a term P

with a closed term Q:

Definition 4.2.3 (Term substitution). Term substitution [X 7→ R] is defined by the following equa-

tions:

0[X 7→ R] = 0

X[X 7→ R] = R

Y [X 7→ R] = Y if X 6= Y

α.P [X 7→ R] = α.(P [X 7→ R])

rec X.S[X 7→ R] = rec X.S

rec Y.S[X 7→ R] = rec Y.(S[X 7→ R]) if X 6= Y

νa.P [X 7→ R] = νa.(P [X 7→ R])

(P +Q)[X 7→ R] = P [X 7→ R] +Q[X 7→ R]

(P |Q)[X 7→ R] = P [X 7→ R] |Q[X 7→ R]

When R is a closed term and X is the only free variable occurring in P , P [X 7→ R] is a closed

term. When R is closed, capture avoidance is unnecessary and therefore we do not need to work with

syntactic terms up to renaming of bound variables [Pierce, 2002].

We conclude this section with a technical lemma that shows how to swap the application of two

substitutions σ and σ′ to the same process S:

Lemma 4.2.4. Let T, T ′ be serial processes, and σ = [X 7→ T ] and σ′ = [Y 7→ T ′] be two substitutions.

For any serial process S, if X 6= Y , T is closed and X is not free in T ′, then Sσσ′ = Sσ′[X 7→ Tσ′].

Proof. We prove this lemma by structural induction on S.

(S = 0) : The equalities 0σσ′ = 0 = 0σ′[X 7→ Tσ′] prove the lemma in this case.

(S = Z) : There are three cases to consider: Z = X, Z = Y and Z is different from both X and Y . In the

first case, the following equalities hold:
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1. Sσσ′ = X[X 7→ T ]σ′

2. = Tσ′ by def. of substitution

3. = X[X 7→ Tσ′] ”

4. = Xσ′[X 7→ Tσ′] because X[Y 7→ T ′] = X

5. = Sσ′[X 7→ Tσ′] because S = X by hp.

When Z = X, Sσ = X[X 7→ T ] = T , and therefore Sσσ′ = Tσ′ (1-2). By definition of

substitution, Tσ′ can be written as X[X 7→ Tσ′] (3). Since X and Y are different and σ′ =

[Y 7→ T ′], Xσ′ = X, and Sσσ′ can be rewritten as Xσ′[X 7→ Tσ′] (4), which is equal to

Sσ′[X 7→ Tσ′] (5) because S = X by hypothesis. The lemma is proved by (5).

In the second case, the following equalities hold:

1. Sσσ′ = Y σ[Y 7→ T ′]

2. = T ′ because σ = [X 7→ T ] and X 6= Y

3. = T ′[X 7→ Tσ′] because X 6∈ FV (T ′)

4. = Y [Y 7→ T ′][X 7→ Tσ′] by def. of substitution

5. = Sσ′[X 7→ Tσ′]

When Z = Y , the equalities Sσσ′ = Y σσ′ = Y σ′ = T ′ hold, since σ = [X 7→ T ], Y [X 7→ T ] = Y

and Y [Y 7→ T ′] all hold by hypothesis and by definition of substitution (1-2). Since X is

not free in T ′, T ′ = T ′σXT holds (3). By definition of substitution we can also write that

T ′ = Y [Y 7→ T ′], which gives Sσσ′ = Y [Y 7→ T ′][X 7→ Tσ′] (4) when combined with the

previous equalities (1-3). Since S = Y and σ′ = [Y 7→ T ′], this equality can be rewritten as

Sσσ′ = Sσ′[X 7→ Tσ′], which proves the lemma.

Finally, let us consider the third case, where variable Z is different from both X and Y :

1. Sσσ′ = Zσσ′

2. = Z because Z 6= X,Y

3. = Zσ′[X 7→ Tσ′] ”

4. = Sσ′[X 7→ Tσ′]

In this case the lemma is proved by first applying σ and σ′ to Z, which is equal to Z itself (1-2)

since Z is different from both X and Y . By the same token, Z is also equal to Zσ′[X 7→ Tσ′] (3).

By definition of substitution this implies Sσσ′ = Sσ′[X 7→ Tσ′] (5), which proves the lemma.

(S = α.S′) : This case is easily proved by the inductive hypothesis:

1. Sσσ′ = (α.S′)σσ′

2. = α.S′σσ′ by def. of substitution.

3. = α.S′σ′[X 7→ Tσ′] by ind. hypothesis

4. = (α.S′)σ′[X 7→ Tσ′] by def. of substitution.

5. = Sσ′[X 7→ Tσ′]
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(S = rec Z.S′) : The proof of the lemma in this case depends on the value of variable Z. We have three cases:

Z = X, Z = Y and Z different from both X and Y .

If Z = X, the following holds:

1. Sσσ′ = (rec X.S′)σσ′

2. = (rec X.S′)σ′ by def. of substitution on rec

3. = rec X.(S′σ′[X 7→ Tσ′])

4. = rec X.S′σ′[X 7→ Tσ′]

5. = Sσ′[X 7→ Tσ′]

The application of σ to S in (1) results in Equation (2) since rec Z.S′ is closed in X. Equation

(3) follows by definition of substitution. Equality (4) is justified by definition of substitution

extension, since variable Z is actually X, and the inner extension [X 7→ Tσ′] is overridden by the

outer one. Equation (5) is obtained again by definition of substitution, and it can be rewritten

as Equation (6), which proves the lemma.

If Z = Y , then the following holds:

1. Sσσ′ = (rec Y.S′)[X 7→ T ]σ′

2. = (rec Y.S′[X 7→ T ])σ′ by def. of substitution

3. = rec Y ′.S′[X 7→ T ] by def. of substitution on rec

4. = (rec Y.S′)σ′[X 7→ Tσ′] because σ′ = [Y 7→ T ′] and T is closed

5. = Sσ′[X 7→ Tσ′]

By definition of substitution, rec Y.S′σσ′ = rec Y.S′σσ′ (1-2), which in turn is equal to

rec Y.S′σ (3) by definition of substitution, when Y is both the recursion variable and the domain

of σ′. For the same reason, rec Y.S′σ = (rec Y.S′)σ = (rec Y.S′)σ′σ holds. Since T is closed,

T = Tσ′ holds, and since σ = [X 7→ T ], this implies that (rec Y.S′)σ′σ = (rec Y.S′)σ′[X 7→ Tσ′]

(4). Therefore Sσσ′ = Sσ′[X 7→ Tσ′] holds, and the lemma is proved.

If Z is different from both X and Y , then the lemma follows straightforwardly by inductive

hypothesis.

(S = S′ + T ) : The lemma is proved by induction, as for the case S = α.S′.

Proof strategy

To state the finiteness theorem more precisely, we need to define what the set of reachable states of a

process is:

Definition 4.2.5 (Reachable states). The set of reachable states succ(P ) of a finite CCS process P

is:

succ(P ) = {s | P ⇒ s}
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where ⇒ = (
α−→)∗ is the reflexive and transitive closure of

α−→.

The finiteness theorem we are going to prove is the following:

Theorem 4.2.6 (Finite state LTS). For any process P in finite CCS, succ(P ) is a finite set.

The semantic definition of succ(P ) makes a direct proof of this theorem difficult, especially because of

the presence of loops in recursive processes. To overcome this problem, we can give an upper bound

to the set of reachable states:

Definition 4.2.7. (State generating function)

The state generator function gen :: Proc→ P(Proc) is defined as follows:

gen(P ) = P ∪



∅ if P = 0

{X} if P = X

gen(P ′) if P = α.P ′

gen(S)[X 7→ rec X.S] if P = rec X.S

gen(P ′) ∪ gen(Q) if P = P ′ +Q

{ νa.s | s ∈ gen(Q) } if P = νa.Q

{ s|s′ | s ∈ gen(P ′), s′ ∈ gen(Q) if P = P ′|Q

Although not very precise, the gen function contains all the possible states that a process can evolve to,

plus many spurious ones, such as after forbidden communications over a restriction, or synchronizations

over mismatching channels. But since we are only interested in proving the finiteness of restricted

CCS processes, the upper bound provided by gen will be sufficient.

It is easy to see that gen only generates finite sets:

Lemma 4.2.8 (Finiteness of gen-sets). For any finite CCS process P, gen(P ) is a finite set.

Proof. By structural induction on P .

If we can show that succ(P ) ⊆ gen(P ), then by Lemma 4.2.8 we can prove that succ(P ) is finite too,

because the subset of a finite set is finite as well.

Finiteness of serial processes

Before proving that finiteness for restricted CCS processes, we prove finiteness for serial processes.

A serial process can only transition to another serial process:

Lemma 4.2.9. Let S be a closed serial process such that S 6= X, and let σ be a substitution [X 7→ S0]

where S0 is a closed term. If Sσ
α−→ P , then there exists a serial process T such that S

α−→ T and

P = Tσ.

Proof. We prove this lemma by induction on the structure of S.

(S = 0) : This case is trivial, because process 0 cannot take any transitions.

(S = Y ) : This case is trivial too, because S is different from X by hypothesis, and therefore Sσ = Y σ = Y ,

and Y cannot take any transitions.
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(S = α.S′) : By definition of substitution, (α.S′)σ = α.S′σ. The only transition that this process can take is

α.S′σ → S′.σ. The serial process S′ proves the lemma.

(S = rec Y.S′) : We must distinguish two cases: either Y = X, or Y 6= X.

(X = Y ): When X = Y , (rec X.S′)σ = rec X.S′ holds by definition of substitution, and we have:

1. rec X.S′ → S′[X 7→ rec X.S′] by def. of the LTS

2. S′[X 7→ rec X.S′] = S′[X 7→ rec X.S′]σ because S′[X 7→ rec X.S′] is closed

3. rec X.S′σ → S′[X 7→ rec X.S′]σ

By definition of the LTS for recursive processes, S can take the transition rec X.S′ −→

S′[X 7→ rec X.S′] (1). Since S is a closed term, then S′[X 7→ rec X.S′] is closed too,

and S′[X 7→ rec X.S′] = S′[X 7→ rec X.S′]σ (2) holds because σ = [X 7→ S0]. Therefore,

because of (2) and because (rec X.S′)σ = rec X.S′, we can rewrite (1) as rec X.S′σ →

S′[X 7→ rec X.S′]σ (3); taking T = S′[X 7→ rec X.S′] proves the lemma.

(X 6= Y ): In the second case, when S = rec Y.S′ and Y 6= X, the following transitions hold:

1. S
τ−→ S′[Y 7→ rec Y.S′] by def. of the LTS

2. Sσ
τ−→ S′σ[Y 7→ rec Y.S′σ] “

3. S′σ[Y 7→ rec Y.S′σ] = S′[Y 7→ rec Y.S′]σ by Lem. 4.2.4

4. Sσ
τ−→ S′[Y 7→ rec Y.S′]σ by 2,3

In this case the substitution σ does apply to S, i.e. (rec Y.S′)σ = rec Y.S′σ. According

to the LTS, rec Y.S′ can take transition S
τ−→ S′[Y 7→ rec Y.S′] (1); therefore Sσ can take

transition Sσ
τ−→ S′σ[Y 7→ rec Y.S′σ] too (2). Since σ = [X 7→ S0], and both rec Y.S′ and

S0 are closed terms, the equality S′σ[Y 7→ rec Y.S′σ] = S′[Y 7→ rec Y.S′]σ (3) holds by

Lemma 4.2.4. Thus we can rewrite the previous transition as Sσ
τ−→ S′[Y 7→ rec Y.S′]σ

(4). The lemma is proved by taking T = S′[Y 7→ rec Y.S′] as witness.

(S = S′ + S′′) : by inductive hypothesis on either branch of the choice.

From the previous lemma, we can infer the processes that a recursive process can evolve to, as

stated in the following corollary:

Corollary 4.2.10. Let S be a sequential process and σ be the substitution [X 7→ rec X.S]. If

rec X.S ⇒ S′, then either there exists a serial process T such that S ⇒ T and S′ = Tσ, or

S′ = rec X.S.

Proof. We prove this corollary by induction on the length n of the derivation rec X.S ⇒n S′.

(k = 0): If the length of the derivation is 0, then by reflexivity we have:

rec X.S ⇒ rec X.S

If we take S′ = rec X.S, then S′ is the witness that proves the lemma.
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(n = k+1): If the length of the derivation is k + 1, by inductive hypothesis we assume that rec X.S ⇒k

S′′
α−→ S′, and either there exists a serial process T ′ such that S ⇒ T ′ and S′′ = T ′σ, or S′′ is

rec X.S. Moreover, we can further divide the first case in two sub-cases: in the first sub-case,

T ′ is X; in the second sub-case, T ′ is not the variable X, i.e. T 6= X. We prove the lemma for

the three cases outlined above.

If T ′ = X, then S′′ = T ′σ = rec X.S. According to the LTS, the only transition that rec X.S

can take is rec X.S
τ−→ S[X 7→ rec X.S], which can be rewritten as S′′

τ−→ Sσ. If we take

T = S, then T is the witness that proves the lemma by the last derivation and the reflexive

weak transition S ⇒ S.

Let us consider the case S 6= X. Since S′′
α−→ S′ and S′′ = T ′σ, by Lemma 4.2.9 T ′σ

α−→ S′

implies that there exists a serial process T ′′ such that T ′
α−→ T ′′ and S′ = T ′′σ. The lemma is

proved by the witness T ′′, since S ⇒ T ′
α−→ T ′′ implies that S ⇒ T ′′, and S′ = T ′′σ.

Lastly, the proof for the case S′′ = rec X.S is the same as in the first case, when S′′ = X.

We can now show that the gen(S) function is an upper bound to succ(S) for any serial process S:

Lemma 4.2.11. For any serial process S, succ(S) ⊆ gen(S).

Proof. We prove this lemma by structural induction on S.

(S = 0) : The lemma holds because succ(0) = {0} = gen(0)

(S = α.S′) : According to the LTS, the only transition that S can take is α.S′
α−→ S′. Thus the only successors

of α.S′ are α.S′ itself (by reflexivity) and the successors of S′, i.e. succ(α.S′) = {α.Qs}∪succ(S′).

By definition of gen, gen(α.S′) = {α.Qs} ∪ gen(S′). Since the singleton set {α.S′} is common

to both succ(S) and gen(S), and succ(S′) ⊆ gen(S′) holds by inductive hypothesis, the lemma

is proved.

(S = X) : The lemma holds because succ(X) = {X} = gen(X)

(S = rec X.S′) : We need to show that succ(rec X.S′) ⊆ gen(rec X.S′). We prove this statement by showing

that, for any serial process S0 that rec X.S′ can evolve to, S0 is contained in gen(rec X.S′). If

we can prove this result for any successor S0, it follows that all successors of S are contained in

gen(S), and thus that succ(rec X.S′) ⊆ gen(rec X.S′), which proves the lemma.

We prove that, if rec X.S′ ⇒ S0, then S0 ∈ gen(rec X.S′), by induction on the length of the

derivation rec X.S′ ⇒n S0.

(n = 0): By reflexivity, we have that rec X.S′ ⇒ rec X.S′. By definition, gen(rec X.S′) is

{rec X.S′} ∪ gen(S′)[X 7→ rec X.S′], and thus rec X.S′ is contained in gen(rec X.S′).

(n = k + 1): Let us assume that rec X.S′ ⇒k+1 S′′. Recall that, since the main lemma is being

proved by structural induction, by inductive hypothesis we have that succ(S′) ⊆ gen(S′).

By Corollary 4.2.10, S′′ is either equal to a serial process Tσ such that S′ ⇒ T , or to

rec X.S′. Let us analyze both cases.

67



In the first case, since T is a successor of S′, we have that T ∈ succ(S′). By inductive

hypothesis, we have that succ(S′) ∈ gen(S′), and thus we can infer that T is contained

in gen(S′). If we apply the substitution σ to both T and to the set gen(S′), we obtain

that Tσ ∈ gen(S′)σ. Since {rec X.S′} ∪ gen(S′)σ = gen(rec X.S′), if Tσ is contained

in gen(S′)σ, then Tσ is contained in gen(rec X.S′) too. This last inclusion proves the

lemma.

In the second case, where S′′′ is rec X.S′, the proof is the same as in the base case.

(S = S′ + S′′) : By induction on either branch of the choice.

Finiteness of CCS processes

Before proving Theorem 4.2.6, we need two auxiliary lemmas to infer the shape that processes under

parallel and restriction constructs take, after taking transition steps.

Lemma 4.2.12. Let νa.P be a restricted CCS process. For any process Q such that νa.P ⇒ Q, there

exists a process P ′ such that P ⇒ P ′ and Q = νa.P ′.

Proof. By definition of the LTS, process νa.P can make a transition to νa.P ′ only if P transitions to

P ′. By repeatedly applying this observation, the lemma is proved.

Lemma 4.2.13. For any CCS processes P , Q and s, P |Q ⇒ s implies that s = P ′ |Q′ for some

process P ′ and Q′ such that P ⇒ P ′ and Q⇒ Q′.

Proof. By induction on the length of the derivation of P |Q⇒ s.

We prove next that gen is an upper bound to the successor states of any restricted CCS process

P :

Lemma 4.2.14. For any CCS process P , succ(P ) ⊆ gen(P ).

Proof. We prove this theorem by structural induction on P .

(P = 0) : succ(0) = {0} = gen(0), which proves the case.

(P = α.P ′) : The proof of this case is the same as for the corresponding case in Lemma 4.2.11. According to

the LTS, the only transition that P can take is α.P ′
α−→ P ′, and thus the only successors of P

are P itself and the successors of P ′. In other words, succ(P ) = {P} ∪ succ(P ′). By definition

of gen, we have gen(P ) = {P} ∪ gen(P ′). Since, by inductive hypothesis, succ(P ′) ⊆ gen(P ′),

from the previous two deductions we can infer that succ(S) ⊆ gen(S), which proves the lemma.

(P = rec X.S) : By Lemma 4.2.11.

(P = νa.P ) : by Lemma 4.2.12 and structural induction.

(P = P ′ +Q) : by definition of gen(P ′ +Q) and by structural induction.

(P = P ′ |Q) : by Lemma 4.2.13, structural induction and definition of gen(P ′ |Q).
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We can finally prove Theorem 4.2.6:

Theorem 4.2.6 For any process P in finite CCS, succ(P ) is a finite set.

Proof. From Lemma 4.2.14, we have that succ(P ) ⊆ gen(P ). From Lemma 4.2.8, we have that gen(P )

is a finite set. Since succ(P ) is a subset of a finite set, then succ(P ) is a finite set too.

4.2.2 Restrictions for finite-state TCCSm processes

The same restrictions that makes the LTS derived from a CCS process finite, also makes a TCCSm

process finite. The proof strategy is the same as in the standard CCS case, by providing an upper

bound for the set of states derivable from a TCCSm process. However, the presence of transactions

adds a complication to the proof strategy, because of transaction names. Since transactions can

be renamed, activated, committed or aborted, we need to provide an upper bound to the highest

transaction name according to the ordering ≤T . We show in this section that the total number of

parallel processes that a process can spawn is an upper bound to the number of distinct transactions

(and therefore distinct transaction names) that can be generated.

Syntactic restrictions on TCCSm

We present the grammar of restricted processes in TCCSm that yield a finite state LTS. The restriction

disallows the parallel and restriction constructs to occur within a recursive process. The grammar is

as follows:

P,Q ::=
∑

µi.Pi
∣∣ X ∣∣ rec X.S ∣∣ co.P ∣∣ JP I QK

∣∣ νa.P ∣∣ P |Q ∣∣ JP .k QK

S, T ::=
∑

µi.Si
∣∣ X ∣∣ rec X.S ∣∣ co.S ∣∣ JS I T K

Since restricted terms are a subset of TCCSm , the Nameless LTS from Fig. 4.2 is clearly applicable

on them. For consistency with the previous section, we maintain label α to denote all kind of actions

that the LTS from TCCSm can perform, namely a, k(a), τ, new k, ab k and co k.

By Def. 2.1.1 of well-formedness, active transactions cannot occur under a recursive definition, a

prefix or a transaction in a well-formed process. Therefore a serial process S cannot contain an active

transaction, but only dormant ones.

Since active transactions can only occur inside the scope of a restriction or inside parallel processes,

it is easy to show that the set of transaction names ftn(P ) is proportional to the number of top-level

parallel processes in P . The number of parallel processes is defined as follows:

Definition 4.2.15 (Transaction name upper bound). Let P be well-formed. The maximum number
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of transaction names tmax(P ) :: Proc→ T is defined as follows:

t(P ) =



k1 if P ∈ {0, X, rec X.S}

max(t(Pi)) + k1 if P =
∑
i∈I
µi.Pi and I 6= ∅

t(P ′) if P = co.P ′

max(t(P ′), t(Q)) if P = JP ′ .k QK

max(t(P ′), t(Q)) if P = JP ′ I QK

t(P ′) if P = νa.P ′

t(P ′) + t(Q) if P = P ′ |Q

Intuitively, there can be at most one active transaction per parallel process, because nested trans-

actions are prohibited by well-formedness. Therefore the upper bound provides an estimate of the

number of parallel processes that can be generated at any transition of an input process P . It is

easy to see from the definition of the upper bound that if t(P ) = kn, then P contains at most n − 1

occurrences of the parallel construct “ | ”. The rest of this section formalizes and proves this intuition.

We begin by proving that the upper bound is always greater than k0, and that it is always an

upper bound for the number of distinct active transactions in a process:

Lemma 4.2.16. For any well-formed P :

1. k1 ≤T t(P );

2. if t(P ) = kn then |ftn(P )| ≤ n.

Proof. Property 1 is proved straightforwardly by structural induction. Property 2 is proved by struc-

tural induction as well, using the fact that if t(P ) = kn, then n ≥ 1 by Property 1. When P is either

0, X,
∑
µi.Pi, rec X.S, co.P

′ or JP ′ I QK, then by well-formedness the set of free transaction names

of P is the empty set, and therefore its size is 0; more formally, |ftn(P )| = |∅| = 0. If t(P ) = kn, then

n is greater than 0 by Property 1, and therefore |ftn(P )| ≤ n holds.

When P = JP ′ .k Q′K, then |ftn(P )| = |{k}| = 1 holds. Since n is greater or equal to 1 by Property

1, |ftn(P )| ≤ n holds and the lemma is proved. When P = P ′ |Q, |ftn(P ′∪Q)| ≤ |ftn(P ′)|+|ftn(Q)|

holds by definition of set union. By inductive hypothesis if t(P ′) = ki then |ftn(P ′)| ≤ i, and if

t(Q) = kj then |ftn(Q)| ≤ j. Therefore |ftn(P ′ ∪Q)| ≤ |ftn(P ′)| + |ftn(Q)| ≤ i + j holds, and the

lemma holds by transitivity. When P = νa.P ′, the lemma is proved by the inductive hypothesis.

The following lemma shows that the upper bound never increases with transitions in the nameless

LTS:

Lemma 4.2.17. For any well-formed process P , if P
ξ−→nl
σ Q then t(P ) ≥T t(Q).

Proof. By rule induction on P
ξ−→nl
σ Q.

• Suppose that Rule NL-Act is used, then one of transitions rules from Fig. 2.2, namely one of

the CCS rules (Rule CCSsum, CCSsync or CCSrec), transactional Rule TrTau, or one of the

propagation rules (Rule Restr or ParL). It is easy to show by rule induction that in all of these
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cases no transaction is renamed, and therefore t(P ) ≤T t(Q). For example, by Rule CCSsum

the transition Σµi.Pi
µi−→ε Pi holds. By definition of t(Σµi.Pi) = max(t(Pi)) + k1, and therefore

t(Pj) ≤T t(P ) holds by definition of maximum.

By Rule CCSsync, the following holds:

P
a−→ε P

′ Q
a−→ε Q

′

P |Q τ−→ε P
′ |Q′

By definition t(P |Q) = ki+j if t(P ) = ki and t(Q) = kj ; similarly t(P ′ |Q′) = ki′+j′ if t(P ′) = ki′

and t(Q′) = kj′ . Since t(P ) ≤T t(P ′) and t(Q) ≤T t(Q′) hold by inductive hypothesis, then

ki′+j′ ≤T ki+j holds by transitivity.

When Rule CCSrec is used, the case follows immediately by definition of t(−). If Rule TrTau

is used, then JP .k QK τ−→ε JP ′ .k QK holds only if P
τ−→ε P

′ holds. The alternative process Q in

transaction ki is unchanged, therefore the lemma follows by inductive hypothesis t(P ′) ≤T t(P ).

When Rule Restr or ParL is used, the lemma follows by inductive hypothesis as well.

• Suppose that Rule NL-FreshAct is used, then either one of the transactional rules from Fig. 2.2

has been used (Rule TrSum, TrAct, or TrSync) or one of the propagation rules (Rule Restr

or ParL).

Suppose that Rule TrSum is used. Then Σµi.Pi
kn(a)−−−→ε 7→kn JPj | co .kn Σµi.PiK holds if µj = a

for some j. By definition of t(−), moreover t(JPj | co .kn Σµi.PiK) = max(t(Pj | co), T (Σµi.Pi)) =

max(k1 + t(Pj), T (Σµi.Pi)) holds. Since t(Σµi.Pi) = k1 + max(t(Pi)), then k1 + t(Pj) ≤T
k1 + max(t(Pi)) holds because the maximum on the right-hand side contains t(Pj), and there-

fore the inequality max(k1 + t(Pj), T (Σµi.Pi)) ≤T T (Σµi.Pi) holds.

When Rule TrAct is used, the lemma follows by inductive hypothesis, as for the case of Rule

TrTau. When Rule TrSync is used, the proof is similar to that of Rule CCSsync. The remaining

cases are proved by the inductive hypothesis.

• Suppose that Rule NL-New is used. The lemma is proved by rule induction on either Rule

TrNew, TrIgn or TrRestr. In the first case JP I QK new k−−−→ JP .k QK holds, and the lemma

holds because the upper bound for the dormant and active transaction is the same, by definition

of t(−). The remaining cases are proved by the inductive hypothesis.

• Suppose that Rule NL-Co or NL-Ab are used. The lemma is proved by rule induction on either

Rule TrCo, TrAb, TrBroadcast, TrIgn or TrRestr. In the first case the lemma can be

easily proved by rule induction on  co, since t(co.P ) = t(P ) for any P . The second case is

straightforward, since t(Q) ≤T max(t(P ′), t(Q)) holds for any P ′ and Q. The remaining cases

are proved by inductive hypothesis.

We now show that nameless transitions preserve the limit provided by the upper bound t(−):

Lemma 4.2.18. Let P be a well-formed process such that ∀l ∈ ftn(P ). l ≤ t(P ). If P
ξ−→nl
σ Q holds,

then ∀l ∈ ftn(Q). l ≤ t(Q).
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Proof. By rule induction.

• When Rule NL-Act is used, no transaction is renamed or created, therefore the lemma follows

straightforwardly by inductive hypothesis.

• Suppose that Rule NL-FreshAct is used. In order to prove this case, we first prove by rule

induction a stronger property on transitions
k(a)−−−→[l̄ 7→k] that introduce fresh transaction names:

P(P
k(a)−−−→[l̄ 7→k] Q) = for any set K ⊆ T , k = min(T \(ftn(P ) ∪K))

implies ∀l ∈ ftn(Q). l ≤T t(Q) + km where m = |K|

If this stronger property holds, then the lemma follows by taking K = ∅.

Suppose that Rule TrAct is used. Then Σµi.Pi
kn(a)−−−→ε 7→kn JPj | co .kn Σµi.PiK holds if µj = a

for some j. Suppose also that kn = min(T \(ftn(Σµi.Pi) ∪ K)) for some K. Since Σµi.Pi is

well-formed by hypothesis, it contains no active transactions; therefore ftn(Σµi.Pi) = ∅ and

kn = min(T \K).

We need to show that ∀l ∈ ftn(Q). l ≤T t(Q) + k|K|, which is equivalent to showing that

k ≤T t(Q) + k|K|, since the only free transaction name in Q is k itself. There are two cases to

consider: either K is a sequence of contiguous names k0, k1, . . . kn, or it is not. If it is such a

sequence, then k = kn+1 because T \K = {kn+1, kn+2 . . .}, and |K| = n + 1. Because of this

the inequation k = kn+1 ≤T kn+1 = k|K| holds, which implies kn+1 ≤ t(Q) + k|K| holds by

transitivity, and the lemma is proved. If K is not a sequence, then there exists an element in T

that is not in K and that is lower than k|K|. Since k ≤ k|K| holds, then k ≤ t(Q) + max(K)

also holds and the lemma is proved.

Suppose now that Rule TrAct is used. Then JP .l QK
k(a)−−−→[l 7→k] JP ′ .k QK holds assuming that

P
a−→ε P

′ and k ] l hold. Let k = min(T \(ftn(JP .l QK) ∪ K)) for some K. By definition

of well-formedness P and Q have no nested transactions, therefore ftn(JP .l QK) = {l} and

k = min(T \{l} ∪K) hold.

We need to show that ∀l ∈ ftn(JP .l QK). l ≤T t(JP .l QK)+k|K|, which is equivalent to showing

that k ≤T t(JP .l QK) + k|K|, since the only free transaction name in JP .l QK is k itself. There

are two cases to consider: either K ∪ {l} is a sequence of contiguous names k0, k1, . . . kn, or it

is not. If it is such a sequence, then |K ∪ {l}| ≤ n + 1, |K| = n, and k = kn+1 hold, because

T \K ∪ {l} = {kn+1, kn+2 . . .}. Because of this, the inequality k ≤T t(JP .l QK) + k|K| can

be rewritten as kn+1 ≤ t(JP .l QK) + kn; since k1 ≤T t(JP .l QK) holds by Property 1 of Lem.

4.2.16, then kn+1 ≤T k1 +kn ≤T t(JP .l QK)+kn holds, and the lemma is proved by transitivity.

If K ∪ {l} is not a sequence, then the lemma is proved as in the previous case.

Suppose that Rule TrSync is used. Then the following holds:

P
k(a)−−−→σ1 P

′ Q
k(a)−−−→σ2 Q

′

P |Q k(τ)−−−→(l̃1,l̃2)7→k P
′σ2 |Q′σ1

σ1 = l̃1 7→ k

σ2 = l̃2 7→ k
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where k = min(T \(ftn(P |Q)∪K)) for any K. In order to apply the inductive hypothesis on the

transitions P
k(a)−−−→σ1 P

′ and Q
k(a)−−−→σ2 Q

′, we need to show that k = min By definition of free

transaction names, ftn(P |Q) = ftn(P )∪ftn(Q), therefore k = min(T \(ftn(P |Q)∪K)) can be

rewritten as both k = min(T \(ftn(P )∪(ftn(Q)∪K))) and k = min(T \(ftn(Q)∪(ftn(P )∪K)))

for any K. These equalities allow us to use the inductive hypothesis on the two aforementioned

premises.

Let ftn(P ) = i and ftn(Q) = j. By inductive hypothesis ∀l ∈ ftn(P ).l ≤T t(P )+k|K∪ftn(Q)| =

t(P ) + k|K| + kj holds. By Property 2 of Lem. 4.2.16 kj ≤T t(Q) holds, and therefore ∀l ∈

ftn(P ).l ≤T t(P ) + k|K| + t(Q) holds too. Since t(P |Q) = t(P ) + t(Q) holds by definition of

t(−), the previous inequation can be rewritten as ∀l ∈ ftn(P ).l ≤T t(P |Q) +k|K|. By a similar

reasoning, it can also be shown that ∀l ∈ ftn(Q).l ≤T t(P |Q) + k|K|; the lemma is proved by

combining the previous two statements.

When Rule Restr or ParL are used, the lemma follows by inductive hypothesis.

• When Rule NL-New is used, the lemma is proved by rule induction as in the case of Rule

NL-FreshAct, using the same stronger inductive hypothesis.

• When Rule NL-Ab or NL-Co is used, a transaction k is removed from the initial process Q, and

the lemma is proved straightforwardly by rule induction.

We conclude this section by showing that the function t(−) provides an upper bound to the set of

names generated by a restricted TCCSm process:

Theorem 4.2.19. Let P be a well-formed TCCSm process such that ∀k ∈ ftn(P ). k ≤T t(P ). If

P
ξ1−→nl

σ1

ξ2−→nl
σ2
. . .

ξn−→nl
σn Q, then ∀l ∈ ftn(Q). l ≤T t(P ).

Proof. By repeated application of Lem. 4.2.18 ∀l ∈ ftn(Q). l ≤T t(Q). Since t(Q) ≤T t(P ) holds by

repeated application of Lem. 4.2.17, the theorem holds by transitivity of ≤T .

The theorem assumes that the active transactions in a process P are all less than t(P ). It is easy

to show that, if this is not the case, there exists a renaming π such that this condition is satisfied in

π(P ). The renamed process π(P ) is bisimilar to P by Thm. 3.4.12.

State generation

The state generating function gen is slightly more complicated in the transactional case, because of

transaction names.
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Definition 4.2.20. (State generating function)

The state generator function gen :: Proc→ P(Proc) is defined as follows:

gen(P, n) = P ∪



∅ if P = 0

{X} if P = X

gen(P ′, n) if P = α.P ′

gen(S, n)[X 7→ rec X.S] if P = rec X.S

gen(P ′, n) ∪ gen(Q,n) if P = P ′ +Q

{ νa.s | s ∈ gen(P ′, n) } if P = νa.P ′

{ s | s′ | s ∈ gen(P ′, n), s′ ∈ gen(Q,n) } if P = P ′ |Q

gen(P ′, n) if P = co.P ′

{ JP ′′ .k QK |P ′′ ∈ gen(P ′, n), k ≤ n } ∪ gen(P ′, n) ∪ gen(Q,n) if P = JP ′ I QK

{ JP ′′ .l QK |P ′′ ∈ gen(P ′, n), l ≤ n } ∪ gen(P ′, n) ∪ gen(Q,n) if P = JP ′ .k QK

where Q\co is Q′ when Q co Q
′.

As in the previous section, gen can be easily proved to generate only finite sets because it is defined

inductively.

Lemma 4.2.21. For any TCCSm process P and transaction name n ∈ T , gen(P, n) is a finite set.

Proof. By induction on the structure of P .

Upper bound

We now prove that gen(P, t(P )) is an upper bound for succ(P ). As in the previous section, a few

lemmas are needed to infer the states that parallel, recursive and transactional processes evolve to.

We will have to extend Lemma 4.2.9, 4.2.11, 4.2.13 and Corollary 4.2.10:

Lemma 4.2.22. Let T, T ′ be serial TCCSm processes, and σ = [X 7→ T ] and σ′ = [Y 7→ T ′] be

two substitutions. For any serial process S, if X 6= Y , T is closed and X is not free in T ′, then

Sσσ′ = Sσ′[X 7→ Tσ′].

Proof. Similar to the proof of Lem. 4.2.4.

Lemma 4.2.23. Consider a TCCSm process S and a substitution [X 7→ S0] such that S 6= X for any

variable X. If S[X 7→ S0] co S
′, then S  co S

′′ and S′ = S′′[X 7→ S0].

Proof. By rule induction.

Lemma 4.2.24. Let S and S0 be well-formed closed TCCSm processes, and σ = [X 7→ S0]. If

S 6= X, then Sσ
ξ−→nl
σ′ Q implies that there exists some T such that S

ξ−→nl
σ′′ T and either Q = Tσ or

Q = JT .k T
′Kσ for some T ′ and k.

Proof. By structural induction as for Lem. 4.2.9 except when S = JT1 I T2K, in which case the lemma

follows by definition of substitution.
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Corollary 4.2.25. For any serial TCCSm process S and variable X, rec X.S ⇒ s implies that either

∃T.S ⇒ T and s = T [X 7→ rec X.S] or s = rec X.S, or S ⇒ JS1 .k S2K and s = JS1 .k S2K [X 7→

rec X.S] for some k, S1, S2.

Proof. The proof is the same as for Corollary 4.2.10.

Before proving a result similar to Lemma 4.2.27, we need to explicate what shape a transactional

process can take throughout its transitions.

Lemma 4.2.26. For any serial processes P,Q and transaction name k, JP .k QK⇒ s implies one of

the following:

1. there exists P ′ and l such that P ⇒ P ′ and s = JP ′ .l QK, or

2. P ⇒ co⇒ P ′ and s = P ′, or

3. Q⇒ Q′ and s = Q′

Proof. By induction on the length of the derivation JP .k QK⇒ s. In the base case s = JP .k QK by

reflexivity, and the lemma is proved because s falls in the Case 1.

In the inductive case, suppose that P ⇒n s′ → s, and that s′ falls in either Case 1, 2 or 3. In

Case 1, if there exists P ′ and l such that P ⇒ P ′ and s′ = JP ′ .l QK, then we need to take three cases

on the transition JP ′ .l QK → s: either l is committed by Rule NL-Co, l is aborted by Rule NL-Ab,

or P ′ performs a tentative action by Rule NL-Act or Rule NL-FreshAct. It is easy to verify that in

the first case P ⇒ P ′′ and s′ = JP ′′ .l′ QK holds; in the second case P ′  co P
′′ holds, and therefore

P ⇒ co⇒ P ′′ holds; and in the third case Q⇒ Q′ holds.

The lemma is straightforward for Case 2, because if there exists P ′ such that P ⇒ co⇒ s′, s′ = P ′

and P ′ → s, then P ⇒ co⇒ s follows by definition of ⇒. The proof for Case 3 is similar to Case

2.

We can now prove that get(P, t(P )) is an upper bound for succ(P ), provided that transaction

names in P are lower than t(P ):

Lemma 4.2.27. For any serial TCCSm P such that ∀l ∈ ftn(P ).l ≤T t(P ), succ(P ) ⊆ gen(P, t(P )).

Proof. The proof is by structural induction. The proofs for 0, α.S are the same as for Lemma 4.2.11,

since the definition of gen for TCCSm does not change from the one for CCS. We have to develop a

proof for the transactional constructs:

(P = rec X.S) : by Cor. 4.2.25.

(P = co.T ) : this case is trivial, because co.T cannot take transitions.

P = JP .k QK By definition of succ, for any s ∈ succ(JP .k QK), there exists a derivation JP .k QK ⇒ s. By

Lem. 4.2.26 is either JP ′ .l Q′K for some l, P ′, Q′, or some P ′ such that P ⇒ P ′, or some Q′

such that Q ⇒ Q′. In the first case, by Thm. 4.2.19 l ≤ t(JP .k QK) holds, and JP ′ .l Q′K ∈

gen(JP .k QK , t(JP ′ .l QK)) holds by inductive hypothesis. In the other two cases the lemma

follows straightforwardly by inductive hypothesis.
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(P = JQ I RK) : This case is proved similarly to the case P = JP .k QK.

Finally, we prove that processes from serial TCCSm have a finite state LTS:

Theorem 4.2.28 (Finiteness of TCCSm ). For any serial process P in TCCSm , succ(P ) is a finite

set.

Proof. By Lem. 4.2.27, succ(P ) ⊆ gen(P, t(P )) holds, where gen(P, t(P )) is a finite set by Lem.

4.2.21. Since succ(P ) is a subset of a finite set, then succ(P ) is a finite set too.

4.3 Bisimulation algorithm

This section presents an algorithm to calculate bisimulation equivalence between TCCSm agents. Our

algorithm is an adaptation of the on-the-fly algorithm from Sokolsky and Cleaveland [Bergstra, 2001,

Chp. 6, pg. 416], which operates on CCS agents. Given two processes P and Q, and their relative

LTSs, a bisimulation algorithm calculates a bisimulation equivalence between P and Q, if one such

relation exists. Many global bisimulation algorithms operate in two phases: in the first phase they pre-

compute and store the entire LTSs from P and Q; in the second phase they calculate the bisimulation

by manipulating this information.

For example, the second phase of the Paige-Tarjan algorithm [Paige and Tarjan, 1987] iteratively

divides the entire state space into blocks. The algorithm starts with a single block B containing all

the states derivable from P and Q. A state P0, called splitter, is iteratively picked from a block Bi,

and all the remaining states Pi are compared with the splitter. If there exists a transition that the

splitter can perform but that Pi cannot, the block Bi is split into two blocks Bi and Bi+1: the former

contains all the processes that can perform the same actions as the splitter, and the latter contains

all the other processes. Blocks are split as much as possible; the algorithm terminates when no new

blocks can be created. The final blocks constitute equivalence classes of bisimilar states. Processes P

and Q are bisimilar if they belong to the same block.

As pointed out in [Bergstra, 2001], global bisimulation algorithms tend to perform poorly in prac-

tice, because the state space generated by P and Q can be large and therefore costly to store and

manipulate. This situation is aggravated in the transactional case, because a historyless bisimulation

is a ternary relation P × D × P, where D is the set of dependency sets. If we were to adapt the

Paige-Tarjan algorithm to TCCSm , then blocks would have to be parametric to some dependency set

∆. Suppose that the P can activate at most n different transactions, and that Q can activate at most

m (i.e. t(P ) = kn and t(Q) = km). The total number of possible dependency set is the power set of

D, which in this case amounts to |P(D)| = 2(n+2)(m+2), where the constant 2 added to both n and m

accounts for the labels ab and co. The adapted Paige-Tarjan algorithm would have to generate and

store the entire state space of P and Q multiplied by a factor of 2(n+2)(m+2), which can be a severe

penalty.

In contrast to global algorithms, local or on-the-fly algorithms only comprise a single phase that

combines state generation and bisimulation checking. The state space is generated and explored
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dynamically starting from the input processes, and it terminates either after building a bisimulation

equivalence, or after finding a counter-example. This approach has the advantage of generating only

the portion of the input processes’ LTSs that is necessary to build the equivalence. Moreover, if

two processes are not bisimilar, chances are that local algorithms will terminate much more quickly.

Global algorithms can find a counter-example only after the first phase is completed, whereas local

algorithms can terminate after generating a smaller portion of the state space.

These advantages benefit the transactional setting too, in light of the previous discussion of the

Paige-Tarjan algorithm. It is also not immediate how to adapt the Paige-Tarjan algorithm to transac-

tions: since historyless bisimulations are ternary relations between two processes and a ∆ dependency

set, it is not possible to merge indistinctly all the states of P and Q into the one block, but care

has to be taken to link transactions that belong to P and Q in ∆. The local algorithm described in

[Bergstra, 2001] adapts more easily to the transactional setting.

The local bisimulation algorithm from Sokolsky and Cleveland builds a bisimulation graph G =

〈V,E〉 that represents a bisimulation relation. The vertices V are triples of the form (P,Q,∆). The

edges E, which we call justification edges, are triples of the form ((P,Q,∆), (ξi, σ), (P ′, Q′,∆′)) with

i ∈ {1, 2}. A bisimulation graph G has the following properties:

• if (P,Q,∆) ∈ V , then ∆ is consistent;

• whenever (P,Q,∆) ∈ V and P
k(a)−−−→

nl

σ1
P ′, then Q

d(a)
==⇒nl

σ2
Q′, (P ′, Q′, σ1∆σ2 ∪ {k, d}) ∈ V and

((P,Q,∆), (k(a)1, σ1), (P ′, Q′, σ1∆σ2 ∪ {k, d})) ∈ E;

• whenever (P,Q,∆) ∈ V and P
τ−→

nl

σ1
P ′, then Q

τ
=⇒nl

σ2
Q′, (P ′, Q′, σ1∆σ2) ∈ V and ((P,Q,∆),

(τ1, σ1), (P ′, Q′, σ1∆σ2 ∪ {k, d})) ∈ E;

• whenever (P,Q,∆) ∈ V and Q
k(a)−−−→

nl

σ2
Q′, then P

d(a)
==⇒nl

σ1
P ′ and (P ′, Q′, σ1∆σ2 ∪ {k, d}) ∈ V

and ((P,Q,∆), (k(a)2, σ2), (P ′, Q′, σ1∆σ2 ∪ {k, d})) ∈ E;

• whenever (P,Q,∆) ∈ V and Q
τ−→

nl

σ2
Q′, then Q

τ
=⇒nl

σ1
Q′ and (P ′, Q′, σ1∆σ2) ∈ V and

((P,Q,∆), (τ2, σ2), (P ′, Q′, σ1∆σ2 ∪ {k, d})) ∈ E;

Two TCCSm processes P and Q are bisimilar if there exists a bisimulation graph G containing

the triple (P,Q, ∅), where ∅ is the empty dependency set. If G exists, then its vertices V repre-

sent a nameless bisimulation between P and Q. The edges of the graph are triples of the form

((P,Q,∆), (ξi, σ), (P ′, Q′,∆′)) with i ∈ {1, 2}. The index i records which of the two players moved

first in the bisimulation game: if i is 1, then P challenged Q with a transition P
ξ−→

nl

σ P ′, and Q

responded with some weak transition to Q′; if i is 2, the converse holds.

The core bisimulation algorithm BISIM is presented in Fig. 4.3. The auxiliary search functions

SEARCH HIGH and SEARCH LOW are shown in Fig. 4.4. The algorithm manipulates four main

data structures: two global structures (shared across different invocations of BISIM , SEARCH HIGH

and SEARCH LOW ), and two local structures (visible only within the scope of a particular BISIM

invocation).

The input of the algorithm is a triple (P,Q,∆), an empty bisimulation graph G and an empty set

R of rejected triples. If (P,Q,∆) already belongs in R or ∆ is not consistent, then the triple is added
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1 R := ∅; −− the set of rejected triples
2 G := < ∅, ∅ >; −− the empty bisimulation graph
3

4 related = True
5 not related = False
6

7 BISIM(p, q,∆) =
8 if 〈p, q,∆〉 ∈ R
9 then not related

10 else if 〈p, q,∆〉 ∈ vertices G
11 then return related
12 else
13 if not( isConsistent ∆)
14 then addNode R 〈p, q,∆〉 −− reject the input triple
15 return not related
16 else do
17 let G’ = addNode G 〈p, q,∆〉 −− assume that the triple is bisimilar
18 −− let P attack in the bisimulation game

19 for each (p′, ξ, σ) ∈ {(p′, ξ, σ1)|p ξ−→σ1 p
′} while status = not related:

20 status := not related
21 if highp′,ξ,σ,q does not exist
22 then create highp′,ξ,σ,q −− creates a global variable
23 highp′,ξ,σ,q := 1

24 status := SEARCH HIGH(p
ξ−→σ p

′, q,∆)
25 if status = not related

26 then A := A ∪{r ξ−→σi p, s, i,∆
′|((p, q,∆), ξi, σi, (r, s,∆

′)) ∈ edges(G)} }
−− the input triple must be removed

27 −− let Q attack in the bisimulation game

28 for each (q′, ξ, σ) ∈ {(q′, ξ, σ2)|q ξ−→σ2 q
′} while status = not related:

29 status := not related
30 if lowq′,ξ,σ,p does not exist
31 then create lowq′,ξ,σ,p
32 lowq′,ξ,p := 1

33 status := SEARCH LOW(q
ξ−→ q′, p)

34 if status = not related

35 then A := A ∪{s ξ−→σi q, r, i,∆
′|((p, q,∆), ξi, σi(r, s,∆

′)) ∈ edges(G)} }
36 if status = not related
37 −− remove the input node and sanitize the bisimulation graph
38 G := removeNode G 〈p, q,∆〉
39 R := R ∪ 〈p, q,∆〉
40 while A 6= ∅
41 choose (r

ξ−→ r′, s, type,∆′) from A

42 A := remove(A, (r
ξ−→σ r

′, s, type,∆′))
43 if type = 1
44 then highr′,µ,s := highr′,µ,s + 1

45 status := SEARCH HIGH(r
ξ−→σ r

′, s)
46 if status = not related
47 then A := addEdges(A, 〈r, s,∆′〉, type)
48 G := removeNode(G, 〈r, s,∆′〉, type)
49 R := addNode(R, 〈r, s,∆′〉, type)
50 else lowr′,µ,s := lowr′,µ,s + 1

51 status := SEARCH LOW(r
ξ−→σ r

′, s)
52 if status = not related
53 then A := addEdges(A, 〈r, s,∆′〉, type)
54 G := removeNode(G, 〈r, s,∆′〉, type)
55 R := addNode(R, 〈r, s,∆′〉, type)
56 return status

Fig. 4.3: Bisimulation algorithm.
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1 SEARCH HIGH( p
ξ−→σ1 p

′, q,∆)=
2 status := not related

3 qs := {q ξ′−→ • | (ξ = τ ⇒ ξ′ = τ) ∧ (ξ = k(a)⇒ ξ′ = d(a))}
4 while status 6= related and highp′,k(µ),q ≤ |qs| (q

x−→σ2 q
′) := qs[highp′,k(µ),q]

5 ∆′ := σ1∆σ2

6 if ξ == k(a) ∧ ξ′ == d(a)
7 then ∆′ := ∆′ ∪ {(k, d)}
8 if ∆′ is consistent
9 then status := BISIM(p′, q′,∆′)

10 if status = related

11 then newEdge := < 〈p, q,∆〉, k(µ)−−−→
H

σ1 〈p
′, q′,∆′〉 >

12 G := addEdge(G, newEdge)
13 else highp′,ξ,q := highp′,k(µ),q + 1
14 return status
15

16 SEARCH LOW( q
ξ−→σ2 q

′, p,∆)=
17 status := not related

18 ps := {p ξ′−→ • | (ξ = τ ⇒ ξ′ = τ) ∧ (ξ = k(a)⇒ ξ′ = d(a))}
19 while status 6= related and lowq′,l(µ),p ≤ |ps|

20 (p
ξ′−→σ1 p

′) := ps[lowq′,ξ,p]
21 ∆′ := σ1∆σ2

22 if ξ == k(a) ∧ ξ′ == d(a)
23 then ∆′ := ∆′ ∪ {(k, d)}
24 if ∆′ is consistent
25 status := BISIM(p′, q′,∆′)
26 if status = related

27 then newEdge := < 〈p, q,∆〉 l(µ)−−→
L

σ2 〈p
′, q′,∆′〉 >

28 G := addEdge(G, newEdge)
29 else lowp′,l(µ),q := lowp′,l(µ),q + 1
30 return status

Fig. 4.4: Search routines for the bisimulation players.

to R and the algorithm terminates with a negative answer. Otherwise, the algorithm greedily assumes

that P and Q are related under ∆, adds the triple to the (initially empty) graph G and proceeds to

verify that the two processes are indeed related.

For each transition P
ξ−→

nl

σ1
P ′, the algorithm enumerates all matching weak transitions Q

ξ′

=⇒nl
σ2
Q′

(ξ matches ξ′ if they are both τ , or one is d(a) and the other is d′(a) for some d and d′). One

of the weak transitions is picked and a new triple (P ′, Q′, σ1∆σ2) is created. The algorithm re-

cursively checks if a bisimulation graph can be created from (P ′, Q′, σ1∆σ2), and greedily adds all

such vertices as much as possible. If the new triple is indeed bisimilar, a new justification edge

((P,Q,∆), (ξ1, σ1), (P ′, Q′, σ1∆σ2)) is added to G, and a new transition from P is analysed.

If all transitions from P can be matched by Q and vice versa, the algorithm terminates with a

positive answer and a bisimulation graph G. If a transition P
ξ−→

nl

σ1
P ′ cannot be matched by any weak

transition Q
ξ′

=⇒nl
σ2
Q′ (for example because all the resulting triples (P ′, Q′, σ1∆σ2) sets are inconsis-

tent), then P and Q are not related under ∆. The triple (P,Q,∆) is removed from G and added to R,

and all the justification edges connected to it, i.e. those of the form ((P0, Q0,∆0), (ξi, σ), (P,Q,∆)),

are invalidated and must be recalculated. If i is 1, then the algorithm tries to find another weak
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Fig. 4.5: Sample bisimulation of the parallel expansion law in TCCSm .

transition from Q0 to match P0
ξ−→

nl

σ P . If i is 2, then the weak transition is picked from P0 to match

Q0
ξ−→

nl

σ Q.

• the bisimulation graph G

• the set R of rejected triples (P,Q,∆) such that P and Q are not bisimilar under ∆.

The local data structures are:

• a set of indexes highP,ξ,σ,P ′,Q and lowQ,ξ,σ,Q′,P . For any transition P
ξ−→

nl

σ P ′, there exists a fi-

nite set S(P, ξ, σ, P ′, Q) = {Q ξ′

=⇒nl
σ′ Q

′ | ∃Q′.Q ξ′

=⇒nl
σ′ Q

′, ξ ∼ ξ′ } of weak transitions from Q that

match the transition from P . We assume that the set S(−) is indexed. The index highP,ξ,σ,P ′,Q

indicates which weak transition in S(P, ξ, σ, P ′, Q) has being currently been picked by the bisim-

ulation algorithm to match a transition P
ξ−→

nl

σ P ′. The converse applies for low indexes when

analysing Q
ξ−→

nl

(σ, ) Q
′ transitions. The high and low indexes are increased monotonically start-

ing from 0, ensuring that all weak transitions in S(−) are attempted at most once.

• a set A of justification edges ((P,Q,∆), (ξi, σ), (P ′, Q′,∆′)) that have been invalidated because

(P ′, Q′,∆′) is in R.

The algorithm incrementally calculates a bisimulation graph with the aforementioned properties.

The input of the procedure BISIM is a triple (P,Q,∆), from which G is built. The state spaces of P

and Q are explored using a depth-first strategy. Any triple (P,Q,∆) is analyzed at most once. If a

triple is rejected, it is moved from G to R, where the triple cannot be retrieved anymore. When the

LTSs of P and Q have finite states and are image-finite, termination is guaranteed by the fact that

all triples are evaluated once.

An implementation of the algorithm is available at the following URL:

https://bitbucket.org/carlo_spaccasassi/communicating-transactions
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The bisimulation algorithm is implemented in Haskell, using the PatriciaTree graph library to represent

the graph G. The implementation outputs the LTSs of the input processes and the bisimulation

relation in the DOT format. Figure 4.5 shows the bisimulation automatically calculated by the

implementation for the processes P = Ja.b.co + b.a.co .k0 0K and Q = Ja.co .k0 0K | Jb.co .k0 0K, which

is a version of the parallel expansion law of CCS in the transactional setting (Ja.b.co + b.a.co .k0 0K ≈hl

Ja.co .k0 0K | Jb.co .k0 0K). The red dotted lines represent bisimilar states in the two LTSs. The label

on such lines are dependency set ∆. The graphical rendering of the DOT file has been performed with

GVEdit, from the Graphviz software.
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Chapter 5

TransCML

A crucial aspect to asses the effectiveness of communicating transaction in a programming language

is the invention of efficient runtime implementations. In this chapter we describe the challenges and

the first experimental results in our investigation of pragmatic approaches to communicating trans-

actions. We equip a simple concurrent functional language with communicating transactions, called

TCML, and a novel rule for the sequential evaluation of transactions. TCML formalizes the informal

programming language that we introduced in Chapter 1. We use TCML to discuss the challenges in

making an efficient implementation of languages with communicating transactions (Section 5.1).

We also use this language to give a modular implementation of consensus scenarios such as the

SNO example from Sec. 1.1. The simple operational semantics of this language allows for the com-

munication of SNO processes with arbitrary other processes (such as the Babysitter process) without

the need to add code for the SNO protocol in those processes. Moreover, the more efficient, partially

aborting strategy discussed above is captured in this semantics.

Our semantics of this language is non-deterministic, allowing different runtime scheduling strate-

gies of processes, some more efficient than others. To study their relative efficiency we have de-

veloped a skeleton implementation of the language which allows us to plug in and evaluate such

runtime strategies (Section 5.2). We describe several such strategies (Section 5.3) and report the

results of our evaluations (Section 5.4). We conclude by discussing the results and drawing some

conclusions for efficient transaction scheduling (Section 5.5). This chapter’s material is drawn from

[Spaccasassi and Koutavas, 2013].

5.1 The TCML Language

We study TCML, a language combining a simply-typed λ-calculus with π-calculus and communicating

transactions. For this language we use the abstract syntax shown in Fig. 5.1 and the usual abbrevi-

ations from the λ- and π-calculus. Values in TCML are either constants of base type (unit, bool,

and int), pairs of values (of type T ×T ), recursive functions (T →T ), and channels carrying values of

type T (T chan). A simple type system (with appropriate progress and preservation theorems) can

be found in the technical report from [Spaccasassi, 2013] and is omitted here.

Source TCML programs are expressions in the functional core of the language, ranged over by
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T ::= unit
∣∣ bool

∣∣ int
∣∣ T ×T ∣∣ T →T

∣∣ T chan

v ::= x
∣∣ ()

∣∣ true
∣∣ false

∣∣ n ∣∣ (v, v)
∣∣ fun f(x) = e

∣∣ c
e ::= v

∣∣ (e, e)
∣∣ e e ∣∣ op e ∣∣ letx = e in e

∣∣ if e then e else e∣∣ send e e
∣∣ recv e

∣∣ newChanT
∣∣ spawn e∣∣ atomicJeBk eK

∣∣ commit k

P ::= e
∣∣ P ‖ P ∣∣ νc.P ∣∣ JP Bk P K

∣∣ cok
op ::= fst

∣∣ snd
∣∣ add

∣∣ sub
∣∣ mul

∣∣ leq

E ::= []
∣∣ (E, e)

∣∣ (v,E)
∣∣ E e

∣∣ v E ∣∣ op E ∣∣ letx = E in e∣∣ ifE then e1 else e2

∣∣ send E e
∣∣ send v E

∣∣ recv E
∣∣ spawnE

where n ∈ N, x ∈ Var , c ∈ Chan, k ∈ K

Fig. 5.1: TCML syntax.

e, whereas running programs are processes derived from the syntax of P . Besides standard lambda

calculus expressions, the functional core contains the constructs send c e and recv c to synchronously

send and receive a value on channel c, respectively, and newChanT to create a new channel of type

chanT . The constructs spawn and atomic, when executed, respectively spawn a new process and

transaction; commit k commits transaction k—we will shortly describe these constructs in detail. As

usual, the expression e1; e2 is syntactic sugar for letx = e1 in e2 when x is not free in e2.

A simple running process can be just an expression e. It can also be constructed by the parallel

composition of P and Q (P ‖ Q). We treat free channels as in the π-calculus, considering them to

be global. Thus if a channel c is free in both P and Q, it can be used for communication between

these processes. The construct νc.P encodes π-calculus restriction of the scope of c to process P .

We use the Barendregt convention for bound variables and channels and identify terms up to alpha

conversion. Moreover, we write fc(P ) for the free channels in process P .

We write JP1 Bk P2K for the process encoding a communicating transaction. This can be thought

of as the process P1, the default of the transaction, which runs until the transaction commits. If,

however, the transaction aborts then P1 is discarded and the entire transaction is replaced by its

alternative process P2. Intuitively, P2 is the continuation of the transaction in the case of an abort.

As we will explain, commits are asynchronous, requiring the addition of process cok to the language.

The name k of the transaction is bound in P1. Thus only the default of the transaction can potentially

spawn a cok. The meta-function ftn(P ) gives us the free transaction names in P .

Processes with no free variables can reduce using transitions of the form P −→Q. These transitions

for the functional part of the language are shown in Fig. 5.2 and are defined in terms of reductions

e ↪→ e′ (where e is a redex ) and eager, left-to-right evaluation contexts E whose grammar is given in

Fig. 5.1. Due to a unique decomposition lemma, an expression e can be decomposed to an evaluation

context and a redex expression in only one way. Here we use e[u/x] for the standard capture-avoiding

substitution, and δ(op, v) for a meta-function returning the result of the operator op on v, when this

is defined.

Rule Step lifts functional reductions to process reductions. The rest of the reduction rules of

Fig. 5.2 deal with the concurrent and transactional side-effects of expressions. Rule Spawn reduces

a spawn v expression at evaluation position to the unit value, creating a new process running the
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If-tt if true then e1 else e2 ↪→ e1

If-ff if false then e1 else e2 ↪→ e2

Let letx = v in e ↪→ e[v/x]
Op op v ↪→ δ(op, v)
App (fun f(x) = e) v2 ↪→ e[fun f(x) = e/f ][v2/x]

Step E[e] −→ E[e′] if e ↪→ e′

Spawn E[spawn v] −→ v () ‖ E[()]
NewChan E[newChanT ] −→ νc.E[c] if c 6∈ fc(E[()])
Atomic E[atomicJe1 Bk e2K] −→ JE[e1] Bk E[e2]K
Commit E[commit k] −→ cok ‖ E[()]

Fig. 5.2: Sequential reductions

application v (). The type system of the language guarantees that value v here is a thunk. With this

rule we can derive the reductions:

spawn(λ(). send c 1); recv c −→(λ(). send c 1) () ‖ recv c

−→ send c 1 ‖ recv c

The resulting processes of these reductions can then communicate on channel c. As we previously

mentioned, the free channel c can also be used to communicate with any other parallel process.

Rule NewChan gives processes the ability to create new, locally scoped channels. Thus, the following

expression will result in an input and an output process that can only communicate with each other:

letx = newChanint in (spawn (λ(). send x 1); recv x)

−→ νc. (spawn (λ(). send c 1); recv c)

−→∗ νc. (send c 1 ‖ recv c)

Rule Atomic starts a new transaction in the current (expression-only) process, engulfing the entire

process in it, and storing the abort continuation in the alternative of the transaction. Rule Commit

spawns an asynchronous commit. Transactions can be arbitrarily nested, thus we can write:

atomicJspawn(λ(). recv c; commit k)Bk ()K;

atomicJrecv d; commit l Bl ()K

−→Jspawn(λ(). recv c; commit k); atomicJrecv d; commit l Bl ()K

Bk (); atomicJrecv d; commit l Bl ()KK

−→∗J(recv c; commit k) ‖ Jrecv d; commit l Bl ()K

Bk (); atomicJrecv d; commit l Bl ()KK

This process will commit the k-transaction after an input on channel c and the inner l-transaction

after an input on d. As we will see, if the k transaction aborts then the inner l-transaction will be

discarded (even if it has performed the input on d) and the resulting process (the alternative of k)

will restart l:

(); atomicJrecv d; commit l Bl ()K

The effect of this abort will be the rollback of the communication on d reverting the program to a
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Sync

E1[recv c] ‖ E2[send c v]−→E1[v] ‖ E2[()]

Eq

P ≡ P ′−→Q′ ≡ Q
P −→Q

Par

P1−→P ′1
P1 ‖ P2−→P ′1 ‖ P2

Chan

P −→P ′

νc.P −→ νc.P ′

Emb

P1 ‖ JP2 Bk P3K−→J(P1 ‖ P2) Bk (P1 ‖ P3)K

Step

P −→P ′

JP Bk P2K−→JP ′ Bk P2K

Co

P1 ≡ cok ‖ P ′1
JP1 Bk P2K−→P ′1/k

Abort

JP1 Bk P2K−→P2

Fig. 5.3: Concurrent and Transactional reductions (omitting symmetric rules).

consistent state.

Process and transactional reductions are handled by the rules of Fig. 5.3. The first four rules

(Sync, Eq, Par, and Chan) are direct adaptations of the reduction rules of the π-calculus, which allow

parallel processes to communicate, and propagate reductions over parallel and restriction. These rules

use an omitted structural equivalence (≡) to identify terms up to the reordering of parallel processes

and the extrusion of the scope of restricted channels, in the spirit of the π-calculus semantics. Rule

Step propagates reductions of default processes over their respective transactions. The remaining rules

are taken from TransCCS [de Vries et al., 2010].

Rule Emb encodes the embedding of a process P1 in a parallel transaction JP2Bk P3K. This enables

the communication of P1 with P2, the default of k. It also keeps the current continuation of P1 in the

alternative of k in case it aborts. To illustrate the mechanics of the embed rule, let us consider the

above nested transaction running in parallel with the process P = send d (); send c ():

J(recv c; commit k) ‖ Jrecv d; commit l Bl ()K

Bk (); atomicJrecv d; commit l Bl ()KK ‖ P

After two embedding transitions we will have

J(recv c; commit k) ‖ JP ‖ recv d; commit l Bl P ‖ ()K Bk P ‖ . . .K

Now P can communicate on d with the inner transaction:

J(recv c; commit k) ‖ Jsend c () ‖ commit l Bl P ‖ ()K Bk P ‖ . . .K

Next, there are (at least) two options: either commit l spawns a col process which causes the commit

of the l-transaction, or the input on d is embedded in the l-transaction. Let us assume that the latter
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occurs:

J J(recv c; commit k) ‖ send c () ‖ commit l

Bl (recv c; commit k) ‖ P ‖ ()K

Bk P ‖ . . .K

−→∗JJcok ‖ col Bl . . .K Bk . . .K

The transactions are now ready to commit from the inner-most to the outer-most using rule Commit.

Inner-to-outer commits are necessary to guarantee that all transactions that have communicated have

reached an agreement to commit.

This also has the important consequence of making the following three processes behaviourally

indistinguishable:

JP1 Bk P2K ‖ JQ1 Bl Q2K

JP1 ‖ JQ1 Bl Q2K Bk P2 ‖ JQ1 Bl Q2KK

JJP1 Bk P2K ‖ Q1 Bl JP1 Bk P2K ‖ Q2K

Therefore, an implementation of TCML, when dealing with the first of the three processes can pick any

of the alternative, non-deterministic mutual embeddings of the k and l transactions without affecting

the observable outcomes of the program. In fact, when one of the transactions has no possibility of

committing or when the two transactions never communicate, an implementation can decide never

to embed the two transactions in each-other. This is crucial in creating implementations that will

only embed processes (and other transactions) only when necessary for communication, and pick

the most efficient of the available embeddings. The development of implementations with efficient

embedding strategies is one of the main challenges for scaling communicating transactions to pragmatic

programming languages.

Similarly, aborts are entirely non-deterministic (Abort) and are left to the discretion of the under-

lying implementation. Thus in the above example any transaction can abort at any stage, discarding

part of the computation. In such examples there is usually a multitude of transactions that can be

aborted, and in cases where a “forward” reduction is not possible (due to deadlock) aborts are nec-

essary. Making the TCML programmer in charge of aborts (as we do with commits) is not desirable

since the purpose of communicating transactions is to lift the burden of manual error prediction and

handling. Minimizing aborts, and automatically picking the aborts that will undo the fewer compu-

tation steps while still rewinding the program back enough to reach a successful outcome is another

major challenge.

The SNO scenario can be simply implemented in TCML using restarting transactions. A restarting

transaction uses recursion to re-initiate an identical transaction in the case of an abort:

atomickJeK
def
= fun r() = atomicJeBk r ()K

A transactional implementation of the SNO participants from Chapter 1 simply wraps their code in

restating transactions:

let alice = atomickJsync dinner; sync movie; commit kK in
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Sched. Gath.
Transaction

trie

e1 ene2 . . .

abort,
embed,
commit

side-effect no-
tif.
& ack

Fig. 5.4: TCML runtime architecture.

let bob = atomickJsync dinner; sync dancing; commit kK in

let carol = atomickJsync dancing; commit kK in

let david = atomickJsync dancing; sync movie; commit kK in

spawn alice; spawn bob; spawn carol; spawn david

Here dinner, dancing, and movie are implementations of CSP synchronization channels and sync a

function to synchronize on these channels. Compared to a potential ad-hoc implementation of SNO in

CML the simplicity of the above code is evident (the version of Bob communicating with the Babysitter

is just as simple). However, as we discuss in Sec. 5.4, this simplicity comes with a severe performance

penalty, at least for straightforward implementations of TCML. In essence, the above code asks from

the underlying transactional implementation to solve an NP-complete satisfiability problem.

In the following sections we describe an implementation where these transactional scheduling

decisions can be plugged in, and a number of heuristic transactional schedulers we have developed

and evaluated. This work shows that although more advanced heuristics bring measurable performance

benefits, the exponential number of runtime choices require the development of innovative compilation

and execution techniques to make communicating transactions a realistic solution for programmers.

5.2 An Extensible Implementation Architecture

We have developed an interpreter for the reduction semantics of TCML using Concurrent Haskell

[Jones et al., 1996, Marlow et al., 2001] to which we can plug-in different decisions about the non-

deterministic transitions of our semantics. Here we briefly explain the runtime architecture of this

interpreter, shown in Fig. 5.4.

The main Haskell threads are shown as round nodes in the figure. Each concurrent functional

expression ei is interpreted in its own thread according to the sequential reduction rules in Fig. 5.2

of the previous section. Side-effects in an expression will be generally handled by the interpreting

thread, creating new channels, spawning new threads, and starting new transactions. Sequential and

concurrent operations are mapped to their Haskell counterparts (e.g. TCML functions to Haskell

functions). Synchronous channels are built on top of Haskell’s MVars, together with special code to

preserve channel invariants in case their enclosing transactions are modified during communication.

Except for channel creation, the evaluation of all other side-effects in an expression will cause a

notification (shown as dashed arrows in Fig. 5.2) to be sent to the gatherer process (Gath.). This
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process is responsible for maintaining a global view of the state of the running program in a Trie

data-structure. This data-structure essentially represents the transactional structure of the program;

i.e., the logical nesting of transactions and processes inside running transactions:

data TTrie = TTrie {

threads :: Set ThreadID,

children :: Map TransactionID TTrie, ... }

A TTrie node represents a transaction, or the top-level of the program. The main information

stored in such a node is the set of threads (threads) and transactions (children) running in that

transactional level. Each child transaction has its own associated TTrie node. An invariant of the

data-structure is that each thread and transaction identifier appears only once in it. For example the

complex program we saw on page 85:

J(recv c; commit k)tid1 ‖ J(recv d; commit l)tid2 Bl ()K

Bk (); Jl I recv d; commit lK()K ‖ P tidP

will have an associated trie:

TTrie{threads = {tid P},

children = {k 7→ TTrie{threads = {tid 1},

children = {l 7→ TTrie{threads = {tid 2},

children = ∅}}}}}

The last ingredient of the runtime implementation is the scheduler thread (Sched. in Fig. 5.4).

This makes decisions about the commit, embed and abort transitions to be performed by the expres-

sion threads, based on the information in the trie. Once such a decision is made by the scheduler,

appropriate signals (implemented using Haskell asynchronous exceptions [Marlow et al., 2001]) are

sent to the running threads, shown as dotted lines in Fig. 5.4. Our implementation is parametric

to the precise algorithm that makes scheduler decisions, and in the following section we describe a

number of such algorithms we have tried and evaluated.

A scheduler signal received by a thread will cause the update of the local transactional state of the

thread, affecting the future execution of the thread. The local state of a thread is an object of the

TProcess data-type:

data TProcess = TP {

expr :: Expression,

ctx :: Context,

tr :: [Alternative] }

data Alternative = A {

tname :: TransactionID,

pr :: TProcess }

The local state maintains the expression (expr) and evaluation context (ctx) currently interpreted

by the thread and a list of alternative processes (represented by objects of the Alternative data-

type). This list contains the continuations stored when the thread was embedded in transactions.

The nesting of transactions in this list mirrors the transactional nesting in the global trie and is thus

compatible with the transactional nesting of other expression threads. Let us go back to the example

of page 85:

J(recv c; commit k)tid1 ‖ J(recv d; commit l)tid2 Bl ()K

Bk (); Jl I recv d; commit lK()K ‖ P tidP
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where P = sendd (); sendc (). When P is embedded in both k and l, the thread evaluating P will

have the local state object

TP{expr = P, tr = [A{tname = l, pr = P}, A{tname = k, pr = P}]}

recording the fact that the thread running P is part of the l-transaction, which in turn is inside

the k-transaction. If either of these transactions aborts then the thread will rollback to P , and the

list of alternatives will be appropriately updated (the aborted transaction will be removed).

Once a transactional reconfiguration is performed by a thread, an acknowledgment is sent back to

the gatherer, who, as we discussed, is responsible for updating the global transactional structure in

the trie. This closes a cycle of transactional reconfigurations initiated from the process (by starting a

new transaction or thread) or the scheduler (by issuing a commit, embed, or abort).

What we described so far is a simple architecture for an interpreter of TCML. Various improve-

ments are possible; for example, the gatherer is a message bottleneck, and together with the scheduler

they are single points of failure. But such concerns are beyond the scope of this thesis. In the following

section we discuss various policies for the scheduler which we then evaluate experimentally.

5.3 Transactional Scheduling Policies

We now turn our attention to investigate schedulers that make decisions on transactional reconfigu-

ration based only on runtime heuristics. An important consideration when designing a scheduler is

adequacy [Winskel, 1993, Chap. 13, Sec. 4]. For a given program, an adequate scheduler can produce

all outcomes that the non-deterministic operational semantics can produce for that program. However,

this does not mean that the scheduler should be able to produce all traces of the non-deterministic

semantics. Many of these traces will simply abort and restart the same computations over and over

again. Previous work on the behavioural theory of communicating transactions has shown that all

program outcomes can be reached with traces that never restart a computation [de Vries et al., 2010].

Thus a goal for schedulers is to minimize re-computations by minimizing aborts.

Moreover, as we discussed at the end of Sec. 5.1, many of the exponential number of embeddings

can be avoided without altering the observable behaviour of a program. This can be done by embedding

a process inside a transaction only when this embedding is necessary to enable communication between

the process and the transaction. We take advantage of this in a communication-driven scheduler we

describe in this section.

Even after reducing the number of possible non-deterministic choices faced by the scheduler, in

most cases we are still left with a multitude of alternative transactional reconfiguration options. Some

of these are more likely to lead to efficient traces than other. However, to preserve adequacy we

cannot exclude any of these options since the scheduler has no way to foresee their outcomes. In these

cases we assign different, non-zero probabilities to the available choices, based on heuristics, which

leads to measurable performance improvements without violating adequacy. Of course some program

outcomes might be more likely than others. This approach trades measurable fairness for performance

improvement.

However, the probabilistic approach is theoretically fair. Every finite trace leading to a program

outcome has a non-zero probability. Diverging traces due to sequential reductions also have non-zero
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probability to occur. The only traces with zero probability are those in the reduction semantics that

have an infinite number of non-deterministic reductions. Intuitively, these are unfair traces that abort

and restart transactions ad infinitum, even if other options are possible.

Random Scheduler (R). The first scheduler we consider is the random scheduler, whose policy

is, at each point, to simply select one of all the non-deterministic choices with equal probability,

without excluding any of them; any abort, embed, or commit actions are equally likely to happen.

For example, the scheduler might decide at any time to embed Bob into Carol’s transaction, or abort

David. Although this naive scheduler is not particularly efficient, as one would expect, it is obviously

adequate and fair according to the discussion above. If a reduction transition is available infinitely

often, scheduler R will eventually select it.

There is much room for improvement. Suppose transaction k can commit:

JP ‖ cok .k QK

Since R makes no distinction between the choices of committing and aborting k, it will often unnec-

essarily abort k. All processes embedded in this transaction will have to roll back and re-execute; if

k was a transaction that restarts, the transaction will also re-execute. This results to a considerable

performance penalty. Similarly, scheduler R might preemptively abort a long-running transaction that

could have committed, given enough time and embeddings.

Staged Scheduler (S). The staged scheduler partially addresses these issues by prioritizing its

available choices. Whenever a transaction is ready to commit, scheduler S will always decide to send

a commit signal to that transaction before aborting it or embedding another process in it. This

does not violate adequacy; before continuing with the algorithm of S, let us examine the adequacy of

prioritizing commits over other transactional actions with an example.

Consider the following program in which k is ready to commit.

JP ‖ cok .k QK ‖ R

If embedding R in k leads to a program outcome, then that outcome can also be reached after

committing k from the residual P ‖ R.

Alternatively, a program outcome could be reachable by aborting k (from the process Q ‖ R).

However, the cok was spawned from one of the previous states of the program in the current trace. In

that state, transaction k necessarily had the form: JP ′ ‖ E[commit k] .k QK, and the abort of k was

enabled. Therefore, the staged interpreter indeed allows a trace leading to the program state Q ‖ R

from which the outcome in question is reachable.

If transaction T cannot commit, S prioritizes embeddings into T over aborting it. This decision is

adequate because transactions that take an abort reduction before an embed step have an equivalent

abort reduction after that step. When no commit nor embed options are available, the staged inter-

preter lets the transaction run with probability 0.95 to progress more in the current trace, and aborts

it with probability 0.05 —these numbers have been fine-tuned experimentally.
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This heuristic greatly improves performance by minimizing unnecessary aborts. Its drawback is

that it does not abort transactions often, thus program outcomes reachable only from transactional

alternatives are less likely to appear. Moreover, this scheduler does not avoid unnecessary embeddings.

Communication-Driven Scheduler (CD). To avoid spurious embeddings, scheduler CD improves

over R by performing an embed transition only if it is necessary for an imminent communication. For

example, at the very start of the SNO example the CD scheduler can only choose to embed Alice into

Bob’s transaction or viceversa, because they are the only processes ready to synchronize on dinner.

Because of the equivalence

JP .k QK ‖ R ≡cxt JP ‖ R .k Q ‖ RK

which we previously discussed, this scheduler is adequate.

For the implementation of this scheduler we augment the information in the trie data-structure

(Sec. 5.2) with channels with a pending communication operation (if any). In Sec. 5.4 we show that

this heuristic noticeably boosts performance because it greatly reduces the exponential number of

embedding choices.

Delayed-Aborts Scheduler (DA). The final scheduler we report is DA, which adds a minor im-

provement upon scheduler CD. This scheduler keeps a timer for each running transaction k in the trie,

and resets it whenever a non-sequential operation happens inside k. Transaction k can be aborted

only when its timer expires. This strategy benefits transactions that perform multiple communications

before committing. The CD scheduler is adequate because it only adds time delays.

5.4 Evaluation of the Interpreters

We now report the experimental evaluation of interpreters using the preceding Scheduling policies.

The interpreters were compiled with GHC 7.0.3, and the experiments were performed on a Windows

7 machine with Intel R© CoreTMi5-2520M (2.50 GHz) and 8Gb of RAM. We run several versions of two

programs:

1. The three-way rendezvous (3WR) in which a number of processes compete to synchronize

on a channel with two other processes, forming groups of three which then exchange values.

This is a standard example of multi-party agreement [Reppy, 1999, Donnelly and Fluet, 2006,

Lesani and Palsberg, 2011]. In the TCML implementation of this example each process nonde-

terministically chooses between being a leader or follower within a communicating transaction.

If a leader and two followers communicate, they can all exchange values and commit; any other

situation leads to deadlock and eventually to an abort of some of the transactions involved.

2. The SNO example of the introduction, as implemented in Section 5.1, with multiple instances

of the Alice, Bob, Carol, and David processes.

To test scheduler scalability, we tested a number of versions of the above programs with differing

numbers of competing parallel processes. Each test process continuously performs 3WR or SNO

cycles and our interpreters are instrumented to measure the number of operations in a given time,
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Fig. 5.5: Experimental Results.

from which we compute the mean throughput of successful operations. The results are shown in Fig.

5.5.

Each graph in the figure contains the mean throughput of operations (in logarithmic scale) as a

function of the number of competing concurrent TCML processes. The graphs contain runs with each

scheduler we discussed (random R, staged S, communication-driven, CD, and communication-driven

with delayed aborts DA) as well as with an ideal non-transactional program (ID). The ideal program

in the case of 3WR is similar to the TCML, non-abstract implementation [Reppy, 1999]. The ideal

version of the SNO is running a simpler instance of the scenario, without any Carol processes—this

instance has no deadlocks and therefore needs no error handling. Ideal programs give us a performance

upper bound.

As predictable, the random scheduler (R)’s performance is the worst; in many cases R could not

perform any operations in the window of measurements (30sec).

The other schedulers perform better than R by an order of magnitude. Even just prioritizing

the transactional reconfiguration choices significantly cuts down the exponential number of inefficient

traces. However, none of the schedulers scale to programs with more processes; their performance

deteriorates exponentially. In fact, when we go from the communication-driven (CD) to the delayed

aborts (DA) scheduler we see worst throughput in larger process pools. This is because with many

competing processes there is more possibility to enter a path to deadlock; in these cases the results

suggest that it is better to abort early.

The upper bound in the performance, as shown by the throughput of ID is one order of magnitude

above that of the best interpreter, when there are few concurrent processes, and (within the range

of our experiments) two orders when there are many concurrent processes. The performance of ID is

increasing with more processes due to better utilization of the processor cores.

It is clear that in order to achieve a pragmatic implementation of TCML we need to address

the exponential nature in consensus scenarios such as the ones we tested here. Our exploration of

purely runtime heuristics shows that performance can be improved, but we need to turn to a different

approach to close the gap between ideal ad-hoc implementations and abstract TCML implementations.
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5.5 Conclusions

In this chapter we have presented TCML, a simple functional language with built-in support for

consensus via communicating transactions. TCML has a simple operational semantics and can simplify

the programming of advanced consensus scenarios; we introduced such an example (SNO and 3WR)

which has a natural encoding in TCML. We also introduce the architecture and experimental results.

The usefulness of communicating transactions in real-world applications, however, depends on

the invention of efficient implementations. We described the obstacles to overcome and our first

experimental results. We gave a framework and a modular implementation to develop and evaluate

current and future schedulers of communicating transactions, and used it to examine schedulers based

solely on runtime heuristics. We have found that some of them improve upon the performance of

a naive randomized implementation but do not scale to programs with significant contention, where

exponential numbers of computation paths lead to necessary rollbacks. It is clear that purely dynamic

strategies do not lead to sustainable performance improvements.

In order to obtain better performance, we intend to pursue a direction based on the extraction of

information from the source code which will guide the language runtime. This information will include

an abstract model of the communication behaviour of processes that can be used to predict with high

probability their future communication pattern. This abstract model is session types, which will be

the subject of the following two chapters. A promising approach to achieve this is the development of

technology in type and effect systems and static analysis. Although the scheduling of communicating

transactions is theoretically computationally expensive, realistic performance in many programming

scenarios could be achievable by exploiting information from the static analysis.
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Chapter 6

Session Types for ML

Näıve scheduling policies have been found to be insufficient to obtain a scalable implementation of

communicating transactions in the presence of contention in Chapter 5. For example, in the case of the

three-way rendezvous the scheduler will randomly abort transactions, until a successful configurations

is found. This method is highly inefficient, because it is completely oblivious of the actual structure

of the three-way rendezvous protocol.

We have already pointed out that, by analyzing the three-way rendezvous LTS in Fig. 1.4, it

can be inferred that the only possible successful consensus group is one where a participant is the

leader and two other are followers. If the scheduler had access to this information, its task could

be simplified and limited to grouping together processes and assigning them proper roles, according

to their protocols. It is interesting to note that the scheduler does not have to be aware of all the

interactions happening between processes in a consensus group: once three TWR processes have been

paired, they can complete the rendezvous without any intervention by the scheduler.

While the three-way rendezvous is a simple example, concurrent programming in general often

requires processes to communicate according to intricate protocols. In mainstream programming

languages these protocols are encoded implicitly in the program’s control flow, and no support is

available to extract them or for verifying their correctness. Therefore, before making a transaction

scheduler protocol-aware, we first need mechanisms to extract protocols from programs in the first

place. And in order to do this, we need a formalism to encode protocols in the first place.

[Honda, 1993] and then others ([Takeuchi et al., 1994, Honda et al., 1998, Gay and Hole, 1999])

suggested the use of session types to make communication protocols explicit and checkable in program

typing. Since then, session type disciplines have been developed in a number of variations for process

calculi and high-level programming languages (see [Hüttel et al., ] for an overview). In this chapter

we provide a facility for static protocol checking in an ML-like programming languages equipped

with session types, called MLS. We do not include communicating transactions in MLS because of

the complexity of the topic. We will discuss in Chapter 9 how we believe that session types and

transactions can be combined for better scheduling performance.

The following section presents an overview of the current approaches to combine functional lan-

guages with session types, and the advantages contributed by our approach. Section 6.2 shows in-

teresting examples which use session communication and we would like to type in MLS. Section 6.3
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gives the syntax and operational semantics of the language. Section 6.4 presents the details of our

typing system and the type soundness result. Section 6.5 discusses the extension of our type system

to a form of recursive session types. Section 6.6 presents related work.

6.1 Overview

Many of the current efforts to developing high-level languages with session types use a single substruc-

tural type system which combines both expression and session typing (e.g., [Vasconcelos et al., 2006,

Wadler, 2012, Ng et al., 2011]). This is a flexible approach, which enables the typing of programs

mixing different language features, but poses significant challenges when used to extend an existing

language such as ML: the extension needs to be conservative (i.e., type existing programs), scale to

the full language, and enable type inference to considerably reduce the burden on providing type

annotations. Although there are successes using this approach for new programming languages, to

our knowledge there is yet to be an ML type system encompassing session types that addresses these

challenges.

An alternative approach to extending a programming language with session types is through

the use of monads [Toninho et al., 2013, Pucella and Tov, 2008]. With this approach session-typed

communications are isolated from the rest of the language, providing a conservative-by-construction

language extension. Pucella and Tov [Pucella and Tov, 2008] have showed that a level of type inference

is possible in this setting, albeit it needs to be guided by the programmer with a number of type-

level expressions. Perhaps the main challenge with using monads is the ability to combine language

features. As explained in [Toninho et al., 2013], functional abstraction of common communication

sequences, where the channel is given as an argument, is not possible. Moreover, the combination of a

session communication monad with other effects such as mutable state and exceptions is not obvious.

In this chapter we put forward a new approach for adding session types to high-level programming

languages, which we present in a core of ML. Rather than typing sessions directly on the source code,

our approach is based on first extracting the communication effect of program expressions and then

imposing a session type discipline on this effect. Our goal is to use this two-level approach to simplify

the extension of ML with session types and achieve a sound and complete session type inference

algorithm.

To extract the communication effect of ML programs we adapt and extend the work on type-and-

effect systems developed by Amtoft, Nielson and Nielson [Amtoft et al., 1999, Nielson and Nielson, 1996].

Our extension provides a method for dealing with aliasing of session endpoints using regions, obviating

the need for a substructural type system for ML. Furthermore, we develop a session type discipline for

communication effects inspired by Castagna et al. [Castagna et al., 2009] and show that it guarantees

a weak deadlock-freedom property. In principle, this discipline could be replaced with alternative ones

from the literature, although care is needed to preserve inference and typing guarantees.

A simple extension and combination of the above techniques does not achieve our goal. We also

develop in Chapter 7 a sound and complete inference algorithm for our session type discipline which

includes delegation. To our knowledge this is the first such inference algorithm. Our two-level approach

to extending ML with sessions offers the following benefits:

95



A sound and complete session type inference algorithm for ML: Our session type discipline admits

a sound and complete inference algorithm which automatically discovers session types used in

programs, and can handle session delegation. Our system also inherits a sound and complete

inference algorithm of the type-and-effect system for ML [Amtoft et al., 1999] with modest mod-

ifications, which extends Milner’s W algorithm [Milner, 1978a].

A conservative extension of the base language: any expression not using session communication is

assigned a “pure” effect and is trivially typable in our system.

Feature combination and scalability: our approach already allows the combination of session com-

munication with functional features and can type interesting programs. Moreover, the language

of communication effects can be easily enriched with new linguistic features; in Section 6.5 we

show an extension of our language with recursive session types.

Typing guarantees weak deadlock freedom: programs that do not diverge, where every request for

opening a session is met, are guaranteed to run to completion and avoid type errors. We

believe this to be a pragmatic compromise between session type systems that do not guarantee

any deadlock freedom (e.g., [Vasconcelos et al., 2006]) and those that guarantee global deadlock

freedom but reject programs with general recursion (e.g., [Wadler, 2012]). Our typing guarantee

is similar to that in [Toninho et al., 2013] with the exception that we need to account for dynamic

session creation.

Typing requires minimal programmer annotations: as we will show in Section 6.2, there is only one

instance where programmers need to manually guide the type checker to type their code.

Here we focus on a pure core of ML. However, we believe that the techniques we use would work equally

well in other high-level languages—we leave this for future work. The language employs Hindley-

Milner polymorphism and primitives for sending pure monomorphic values, internal and external

choices through choice labels L, and session delegation and resumption. The ability to send functions

containing communication effects would be an implicit form of delegation and would unnecessarily

complicate the exposition of our system.

For simplicity of presentation we develop our system for finite sessions and then show how it can

be extended with recursive sessions. However, even with finite session types, we use a novel typing

for a class of useful, non-pure recursive functions, which we call self-contained functions. For example

consider the function of type Unit→ Unit:

rec f( )⇒ let z = req-init () in

case z {L0 ⇒ f (), L1 ⇒ ()}

(?)

When called, the function invokes req-init requesting to open a new session on a global channel

init. When the request is accepted by a partner process, a session endpoint is bound to z through

which private communication between the two processes is possible. The process presents its partner

with choices L0 and L1. If L0 is chosen, the function recurs; if L1 is chosen the function terminates.

In both cases no further communication on endpoint z will occur, and therefore z can be given the
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finite session type Σ{?L0.end, ?L1.end}. This behaviour is representative of systems that run a finite

protocol for an arbitrary number of iterations.

6.2 Motivating Examples

Before presenting the details of the type system, we give and discuss two example implementations

of a swap service, which symmetrically exchanges values between pairs of processes connecting to it.

These are typical examples where process communication is used in programming.

6.2.1 A Swap Service

Our first example is a direct implementation of the swap service where a spawned coordinator process

accepts two connections on a channel swp, opening two concurrent sessions with processes that want

to exchange values. It then receives the two values from the processes, sends them back crosswise,

and recurs.

let coord = rec f( )⇒ let∗ z1 = acc-swp ()

x1 = recv z1

z2 = acc-swp ()

x2 = recv z2

in send z2 x1; send z1 x2; f ()

in spawn coord ; . . .

It is easy to see that the two endpoints that the coordinator receives from the two calls to acc-swp

will be used according to the session type:

?T.!T.end

This says that, on each of the two endpoints, the coordinator will first read a value of some type T

(?T ) and then output a value of the same type (!T ) and close the endpoint (end). From the code we

see that the interleaving of sends and receives on the two endpoints achieves the desired swap effect.

To use this service we simply apply the following swap function to the value to be exchanged.

let swap = funx⇒ let z = req-swp ()

in send z x; recv z

in . . .

When applied to x, swap requests a connection on swp, receiving a session endpoint z, then sends x

on z and finally receives a value on z which is returned as the result of the function. The endpoint

received by the call to req-swp will be used according to the session type:

!T1.?T2.end

Where T1 and T2 are the argument and return types of the function, respectively. By comparing

the two session types above we can see that the coordinator and the swap service can communicate
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without type errors, and indeed are typable, when T1 = T2 = T .

Our type system is able to type this simple swap library, and our type inference algorithm can

automatically deduce the two session types from the source code.

6.2.2 Delegation for Efficiency

The preceding simple swap service may become a bottleneck of the program since all data communi-

cations are sequentialized through the coordinator service. This can reduce performance, especially

if values of significant size are swapped. Here we give a more efficient implementation in which the

values exchanged do not go through the coordinator.

The new swap function is:

let swap = funx⇒ let z = req-swp ()

in case z {Fst⇒ send z x; recv z

Snd⇒ let∗ z′ = resume z

y′ = recv z′

in send z′ x; y′ }

in . . .

It again connects to the coordinator over channel swp, but now offers two choices: Fst and Snd. If

the coordinator selects the first one then the swap method behaves as before: it sends its value and

receives another which it returns. If the coordinator selects the second choice then swap will resume

(i.e., input) another endpoint by calling resume z, bind it to z′, and then receive a value y′ from z′,

send x on z′ and finally return y′. Therefore, the session type of endpoint z is

Σ{?Fst.!T1.?T2.end, ?Snd.?η.end}

denoting the choice between the two options Fst and Snd, and the protocol followed in each one. Here

η is the session type of endpoint z′ which is η = ?T2.!T1.end. Again, T1 and T2 are the argument and

return types of swap.

The new coordinator is:

let coord = rec f( )⇒ let z1 = acc-swp ()

in sel-Fst z1;

let z2 = acc-swp ()

in sel-Snd z2; deleg z2 z1; f ()

in spawn coord ; . . .

It accepts two sessions on swp, receiving two endpoints: z1 and z2. It selects Fst on z1 (sel-Fst z1)

and Snd on z2 (sel-Snd z2). The coordinator then sends z1 over z2 and recurs.

The protocol followed by the coordinator over the two endpoints is now more intricate, and in fact

different for each one. However, both endpoints must have the same session type because they are
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Syntax

Expressions: e ::= v
∣∣ x ∣∣ (e, e)

∣∣ e e ∣∣ letx = e in e
∣∣ if e then e else e∣∣ spawn e

∣∣ case e {Li ⇒ ei}i∈I
Systems: S ::= e

∣∣ S ‖ S
Values: v ::= k ∈ Const

∣∣ (v, v)
∣∣ funx⇒ e

∣∣ rec f(x)⇒ e
∣∣ p∣∣ req-c

∣∣ acc-c ∣∣ send ∣∣ recv ∣∣ sel-L ∣∣ deleg ∣∣ resume
Eval. Contexts: E ::= [·]

∣∣ (E, e)
∣∣ (v,E)

∣∣ E e ∣∣ v E ∣∣ letx = E in e
∣∣ ifE then e else e∣∣ spawnE

∣∣ caseE {Li ⇒ ei}i∈I

Operational Semantics

if tt then e1 else e2 ↪→ e1 (RIft)
if ff then e1 else e2 ↪→ e2 (RIff)
letx = v in e ↪→ e[v/x] (RLet)
(funx⇒ e) v ↪→ e[v/x] (RApp)
(rec f(x)⇒ e) v ↪→ e[rec f(x)⇒ e/f ][v/x] (RFix)
E[e] ‖ S −→ E[e′] ‖ S if e ↪→ e′ (RBeta)
E[spawn v] ‖ S −→ E[()] ‖ v () ‖ S (RSpn)
E1[req-c ()] ‖ E2[acc-c ()] ‖ S −→ E1[p] ‖ E2[p] ‖ S if p, p ] E1, E2, S (RInit)
E1[send (p, v)] ‖ E2[recv p] ‖ S −→ E1[()] ‖ E2[v] ‖ S (RCom)
E1[deleg (p, p′)] ‖ E2[resume p] ‖ S −→ E1[()] ‖ E2[p′ ] ‖ S (RDel)
E1[sel-Lj p] ‖ E2[case p {Li ⇒ ei}i∈I ] ‖ S −→ E1[()] ‖ E2[ej ] ‖ S if j ∈ I (RSel)

Fig. 6.1: MLS syntax and operational semantics.

both generated by accepting a connection on swp. This can be encoded with an internal choice:

!Fst.η′ ⊕ !Snd.!η′.end

In the case where the coordinator chooses the first choice, the rest of the session η′ over the endpoint

is delegated, and therefore it can be any session—η′ will be executed from the process that receives

z1 (running a swap function). If the coordinator selects the second choice then it simply delegates an

endpoint with session type η′.

In our type system, if the coordinator is type-checked in isolation, then typing succeeds with any η′.

However, if both coordinator and swap function are typed in the same program, typing succeeds only

when η′ = η and T1 = T2. These equalities are necessary to guarantee that the two dual endpoints of

swp have dual session types.

Our type inference algorithm is able to type this program and derive the above session types

directly from the source code, with no programmer annotations.

6.3 The Language MLS

Here we introduce the untyped core of MLS. Its syntax and operational semantics are shown in Fig.

6.1. An MLS expression can be one of the usual lambda expressions (value, variable, a pair constructor,

let-binding, or conditional), or spawn e which evaluates e to a function and asynchronously applies it

to the unit value; it can also be case e {Li ⇒ ei}i∈I which, as we will see, implements finite external

choice.

We use standard syntactic sugar for writing programs in MLS, such as e1; e2 instead of letx =
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e1 in e2 when x 6∈ fv(e2), infix operators, etc. A running process in MLS is a closed expression and

a running system S is a parallel composition of processes. We identify systems up to the reordering

of parallel processes and the removal of terminated, unit-value processes. A single process with no

active session endpoints is an MLS program.

The values of MLS contain the basic Unit, Bool, and Int constants and all standard integer and

boolean operators. Values also include pairs (v, v′), and first class recursive (rec f(x)⇒ e) and non-

recursive (funx⇒ e) functions. Following the tradition of binary session types [Honda et al., 1998],

communication between processes happens over dynamically generated entities called sessions which

have exactly two endpoints. Thus, MLS values contain a countably infinite set of endpoints, ranged

over by p. We assume a total involution (·) over this set, with the property p 6= p, which identifies

dual endpoints. We write o ] o′ when the syntactic objects o and o′ contain distinct endpoints.

The language is equipped with a small-step, call-by-value operational semantics. Fig. 6.1 shows

the redex expressions that perform beta reductions ↪→. Systems take small-step transitions −→ by

decomposing a system into an evaluation context E with a beta redex in its hole (RBeta), or by

the effectful transitions discussed below. Evaluation contexts include standard call-by-value contexts,

but also the parallel system contexts E ‖ S and S ‖ E. An RSpn reduction generates new processes

containing a single application.

A process can request (or accept) to open a session by applying req-c (resp., acc-c) to the unit

value, which returns the endpoint (resp., dual endpoint) of a new session. Here c ranges over an

infinite set of global initialization names for sessions, called channels. To simplify presentation, global

channels are not values; instead, MLS has req-c and acc-c as values for each c.

Once two processes synchronize on a global channel and each receives a fresh, dual endpoint (RInit

reduction), they can use the endpoints to exchange messages. Applying send to an endpoint and a

value will send this value over the session, whereas applying recv to an endpoint will receive a value

over the session. The synchronization of these two applications leads to a synchronous communication

reduction (RCom).

A process can also offer a number of options to its dual with the construct case e {Li ⇒ ei}i∈I ,

implementing, as mentioned earlier, a finite external choice. Here L ranges over a countably infinite

set of choice labels, and I is a finite set of natural numbers. We assume a fixed enumeration of these

labels, thus Li denotes a unique label for each natural number i. When a process offers a choice

of labels on session endpoint p, its dual can select one of those labels with the expression sel-Lj p

(RSel).

The intuition of session types is that once a session is open, the processes controlling its endpoints

are in charge of executing a predefined communication protocol. However, any of these processes may

delegate this obligation to another process, by sending one endpoint p over another endpoint q, with

the application deleg q p. A process with an endpoint q can receive p with the expression resume q,

and continue executing the protocol over p (RDel). The example of the swap service in Example 6.2.2

used delegation to create a direct connection between processes that run the swap function.
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Type Variables: α
Behaviour Variables: β
Region Variables: ρ
Session Variables: ψ

Type Schemas: TS ::= ∀(~α~β~ρ~ψ : C). T

Types: T ::= Unit
∣∣ Bool

∣∣ Int
∣∣ T × T ∣∣ T β→ T

∣∣ Sesρ
∣∣ α

Constraints: C ::= T ⊆ T
∣∣ b ⊆ β ∣∣ ρ ∼ r ∣∣ c ∼ η ∣∣ c ∼ η ∣∣ C,C ∣∣ ε

Type Envs: Γ ::= x : TS
∣∣ Γ,Γ

∣∣ ε
Regions: r ::= l

∣∣ ρ
Behaviours: b ::= β

∣∣ τ ∣∣ b ; b
∣∣ b⊕ b ∣∣ recβ b ∣∣ spawn b ∣∣ push(l : η)∣∣ popρ!T

∣∣ popρ?T
∣∣ popρ!ρ

∣∣ popρ?l
∣∣ popρ!Li

∣∣ ∑
i∈I

popρ?Li ; bi

Fig. 6.2: Syntax of types, behaviours, constraints, and session types.

6.4 Two-Level MLS Typing for Sessions

We give a type inference system for MLS organized in two levels. The first level is a type-and-effect

system adding communication effects and endpoint regions to the Hindley-Milner type system. This is

an extension of the type-and-effect system of Amtoft, Nielson and Nielson [Amtoft et al., 1999]. The

second level imposes a session typing discipline to the communication effects of the first level.

6.4.1 First Level: Functional Types and Communication Effects

We use typing judgments of the form

C; Γ ` e : T . b

which assign to expression e the type T and behaviour b, under type environment Γ and constraint

environment C. The constraint environment relates type-level variables to concrete terms and enables

type inference. These components are defined in Fig. 6.2.

Static Endpoints. First we require that textual sources of session endpoints are annotated with

unique region labels in a pre-processing step, updating MLS syntax as follows.

Values: v ::= . . .
∣∣ pl ∣∣ req-cl ∣∣ acc-cl ∣∣ resumel

With this extension, the system uses regions to statically approximate the endpoint that will be used

at each communication at runtime, effectively creating one type Sesl for each endpoint source.1 The

type-and-effect system uses region variables ρ to track the flow of labels at the type level. Dynamic end-

points generated at different source expressions are statically distinguished, but those generated from

the same expression are identified, resulting to the rejection of some type safe programs (Sec. 6.4.2).

This can be remedied with standard context-sensitive solutions such as k-CFA [Shivers, 1991].

Functional Types. An expression in MLS can have a base type Unit, Bool, or Int, a pair type T×T ′,

a function type T
β→ T ′, or a session endpoint type Sesρ. Type variables α are used for polymorphism

(and type inference). Each function type is annotated with a behaviour variable β and each session

1Technically, endpoint types are annotated with session variables Sesρ which are related to endpoint labels through
the constraint environment C.
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endpoint type with a region variable ρ, respectively denoting the effect of the function body and the

endpoint’s textual source.

The types of session endpoints do not contain a session type because session types evolve during

the execution of the program. In Example 6.2.1, the two uses of z in the body of swap refer to the

same endpoint but at different states: at the first it can perform a send and then a receive, and at

the second it can only perform the receive. Therefore, Sesρ only refers to the static identity of an

endpoint through ρ, ignoring its session type.

Communication Effects. Inspired by Castagna et al. [Castagna et al., 2009], the behavioural effect

of a MLS expression can be thought of as describing operations on a stack of session endpoints ∆. This

stack contains frames of the form (l : η), where l is a static endpoint and η a session type (described

in Sec. 6.4.2).

The expression can push a new frame on the stack (push(l : η)), or reduce the top session type

by performing an input (popρ?T ) or output (popρ!T ) of a value; a delegation (popρ!ρ) or resumption

(popρ?l) of an endpoint; or an offer (
∑
i∈I popρ?Li ; bi) or selection (popρ!Li) of a choice. When the

top session type of ∆ is finished then it is popped from the stack. The application of req-cl or acc-cl

has a push(l : η) effect; the application of send, recv, and deleg, has the corresponding effect with

ρ calculated by the type of the first argument (Sesρ). Departing from [Amtoft et al., 1999], function

resume is annotated with its own fresh label, instead of a variable which would be mapped through

the constraint environment C to a single label. This allows the typing of programs where a resume

statement can input endpoints with different labels.

Example 6.4.1. Consider the following program P that spawns two clients, one proxy, and one

server; P is typable in MLS, provided e1 and e2 are.

let cli1 = (fun ⇒ let zc = req-cl1 () in e1)

cli2 = (fun ⇒ let zc = req-cl2 () in e2)

prx = (fun ⇒ let zc = acc-clc ()

zs = req-sls ()

in deleg zs zc)

srv = (fun ⇒ let∗ zs = acc-slp ()

x = resumel zs

in send x 1; send x tt)

in spawn prx 1; spawn prx 2; spawn cli ; spawn srv ;

Both clients request a session on c. The proxy accepts one of them and in turn requests a session

with the server on s. Once the server accepts, the proxy delegates the client session over the server

session. The server then sends two values to the connected client over the client session.

In the absence of label l on the underlined resume construct of the server, the type system would

calculate that both l1 and l2 endpoints can flow to x at runtime. Therefore, x will have type Sesρ, with

ρ related to both l1 and l2 in the constraint environment, which violates the unique-label requirement

mentioned earlier.
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The rest of the behaviours follow the structure of the code: τ is the silent behaviour of pure

computations; behaviour b ; b′ allows sequencing, and b ⊕ b′ internal choice. Behaviour recβ b marks

recursive behaviour. As we discussed MLS does not have recursive session types but does allow

recursive effectful functions, such as the coordinator in Example 6.2.1.

Constraints. Constraint sets C have inclusion constraints for types (T ⊆ T ′) and behaviours (b ⊆

β), and equality constraints for regions (ρ ∼ r). They also contain exactly two equality constraints

(c ∼ η and c ∼ η′) per global channel c, one for the behaviour of the runtime endpoints returned by

acc-c and one for those returned by req-c. These are the two kinds of endpoints of c.

The simple inclusion constraints for behaviours are sufficient for typing any functionally-typable

program without the introduction of a sub-effecting relation [Talpin and Jouvelot, 1992]. Intuitively,

b ⊆ β means that β may behave as b. Although not strictly necessary here, type constraints

are more general to enable principal typing in the presence of subtyping constraints Int ⊆ real

[Amtoft et al., 1999, §1.5.1], often appearing in the session-types literature. We write C ` o ⊆ o′ and

C ` o ∼ o′ for the reflexive and transitive closure of constraints in C; we say that these constraints

are derivable from C. We write C ` C ′ if all constraints of C ′ are derivable from C. We will work

with well-formed constraints, satisfying the following conditions.

Definition 6.4.2 (Well-Formed Constraints). C is well-formed if:

1. Type-Consistent: for all type constructors tc1, tc2, if (tc1(~t1) ⊆ tc2(~t2)) ∈ C, then tc1 = tc2,

and for all t1i ∈ ~t1 and t2i ∈ ~t2, (t1i ⊆ t2i) ∈ C;

2. Region-Consistent: if C ` l ∼ l′ then l = l′;

3. Behaviour-Compact: all cycles in behaviour constraints contain at least one (recβ b ⊆ β) ∈ C;

also if (recβ b ⊆ β′) ∈ C then β = β′ and ∀(b′ ⊆ β) ∈ C, b′ = recβ b.

The first condition disallows constraints such as (Int ⊆ T × T ′) which lead to type errors, and

deduces (Ti ⊆ T ′i ) from (T1 × T2 ⊆ T ′1 × T ′2). The second condition requires that only endpoints from

a single source can flow in each ρ.

Example 6.4.3. The following program requests two session endpoints, bound to x and y. It then

binds one of these endpoints to z, depending on the value of e, and sends 1 over x and tt over z.

let∗ (x, y) = (req-cl1 (), req-dl2 ())

z = if e thenx else y

in send x 1; send z tt

This program is not typable because communications on the c- and d-endpoints depend on the value

returned from e, which cannot be statically determined. In our framework, z will have type Sesρ and

the constrain environment will contain C ` ρ ∼ l1, ρ ∼ l2. The program will be rejected by the second

condition of Def. 6.4.2.

In related work (e.g., [Gay and Hole, 2005]) such a program is rejected because of the use of

substructural types for session endpoints.

The third condition of Def. 6.4.2 disallows recursive behaviours through the environment without

the use of a recβ b effect. The second part of the condition requires that there is at most one
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recursive constraint in the environment using variable β. This condition is necessary to guarantee

type preservation and the decidability of session typing.

Polymorphism. The type system extends Hindley-Milner polymorphism with type schemas TS of

the form ∀(~γ : C). T , where γ ranges over any variable α, β, ρ, ψ. Type environments Γ bind unique

variable names to type schemas; we let ∀(∅).T = T . Besides type (~α), behaviour (~β), and region (~ρ)

variables, type schemas also generalize session variables ~ψ. A type schema contains a set C which

imposes constraints on quantified variables. For TS to be well-formed, we must have fv(C) ⊆ {~γ}.

The polymorphic types of the constant MLS functions are:

req-cl :∀(βρψ : push(l : ψ) ⊆ β, ρ ∼ l, c ∼ ψ).Unit
β→ Sesρ

acc-cl :∀(βρψ : push(l : ψ) ⊆ β, ρ ∼ l, c ∼ ψ).Unit
β→ Sesρ

send :∀(αβρ : popρ!α ⊆ β).Sesρ × α β→ Unit

recv :∀(αβρ : popρ?α ⊆ β).Sesρ
β→ α

sel-L :∀(βρ : popρ?L ⊆ β).Sesρ
β→ Unit

deleg :∀(βρρ′ : popρ!ρ′ ⊆ β).Sesρ × Sesρ
′ β→ Unit

resumel :∀(βρρ′ : popρ?ρ′ ⊆ β, ρ′ ∼ l).Sesρ
β→ Sesρ

′

The effect of req-cl (acc-cl) is to push a new static session endpoint l on the stack. The session type

of the endpoint is a variable ψ, to be substituted with a concrete session type (or a fresh variable in

the case of inference) at instantiation of the polymorphic type. This ψ has to be equal to the session

type associated to the static endpoint c (resp., c), expressed by the constraint c ∼ ψ (resp., c ∼ ψ).

The return type of the function is Sesρ, where ρ ∼ l. The types of the rest of the functions follow

the same principles. The following definition allows the instantiation of a type schema under a global

constraint environment C.

Definition 6.4.4 (Solvability). ∀(~γ:C0). T is solvable from C using substitution σ when dom(σ) ⊆ {~γ}

and C ` C0σ. TS is solvable from C if it exists σ such that TS is solvable from C using σ.

Typing Rules. The rules of our type-and-effect system are shown in Fig. 6.3. Most typing rules

are standard—we discuss only those different from [Amtoft et al., 1999]. Rule TMatch types a case

expression with an external-choice behaviour of the same number of branches. The choice labels Li

(i ∈ I) in the code determine those in the behaviour. The computation of each branch will return

a value of the same type T but possibly have a different effect bi. Rule TSub is for subtyping and

sub-effecting. The latter can only replace behaviours with variables, avoiding a more complex relation.

Definition 6.4.5 (Functional Subtyping). C ` T <: T ′ is the least reflexive, transitive, compatible

relation on types with the axioms:

(T1 ⊆ T2) ∈ C

C ` T1 <: T2

C ` ρ ∼ ρ′

C ` Sesρ <: Sesρ
′

C ` T ′1 <: T1 C ` β ⊆ β′ C ` T2 <: T ′2

C ` T1
β→ T2 <: T ′1

β′→ T ′2
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TPair
C; Γ ` e1 : T1 . b1 C; Γ ` e2 : T2 . b2

C; Γ ` (e1, e2) : T1 × T2 . b1 ; b2

TVar

C; Γ ` x : Γ(x) . τ
TLet
C; Γ ` e1 : TS . b1 C; Γ, x : TS ` e2 : T . b2

C; Γ ` letx = e1 in e2 : T . b1 ; b2

TConst

C; Γ ` k : typeof (k) . τ

TApp

C; Γ ` e1 : T ′
β→ T . b1 C; Γ ` e2 : T ′ . b2

C; Γ ` e1 e2 : T . b1 ; b2 ;β

TFun
C; Γ, x : T ` e : T ′ . β

C; Γ ` funx⇒ e : T
β→ T ′ . τ

TIf
C; Γ ` e1 : Bool . b1 C; Γ ` ei : T . bi (i∈{1,2})

C; Γ ` if e1 then e2 else e3 : T . b1 ; (b2 ⊕ b3)

TEndp

C; Γ ` pl : Sesρ . τ
C ` ρ ∼ l

TMatch
C; Γ ` e : Sesρ . b C; Γ ` ei : T . bi (i∈I)

C; Γ ` case e {Li ⇒ ei}i∈I : T . b ;
∑
i∈I

popρ?Li ; bi

TSub
C; Γ ` e : T . b

C; Γ ` e : T ′ . β

C ` T <: T ′

C ` b ⊆ β

TRec

C; confinedC(Γ), f : T
β→ T ′, x : T ` e : T ′ . b

C; Γ ` rec f(x)⇒ e : T
β→ T ′ . τ

C ` confined(T, T ′)
C ` recβ b ⊆ β

TSpawn

C; confinedC(Γ) ` e : Unit
β→ Unit . b

C; Γ ` spawn e : Unit . b ; spawnβ

TIns
C; Γ ` e : ∀(~γ : C0).T . b

C; Γ ` e : Tσ . b

dom(σ) ⊆ {~γ}
∀(~γ : C0). T is solvable from C by σ

TGen
C ∪ C0; Γ ` e : T . b

C; Γ ` e : ∀(~γ : C0).T . b

{~γ} ∩ fv(Γ, C, b) = ∅
∀(~γ : C0).T is WF, solvable from C

Fig. 6.3: Type-and-Effect System for Expressions

An important rule in our system is that for recursive functions (TRec). Since we only consider

finite session types, the communication effect of the body of a recursive function should be confined.

This captures two interrelated conditions:

• The recursive function does not use previously opened endpoints or non-confined functions from

the type environment, nor it returns any endpoint or non-confined function.

• The communication effect of applying the function is only on endpoints that the function opens

internally, and the session type of these endpoints will be followed to completion (or delegated)

before the function returns.

These two conditions guarantee that, no matter how many times the function recurs, it leaves the

environment’s sessions unaffected, even if the body of the function has non-trivial communication

effects. The first condition is enforced in TRec by the side-condition C ` confined(T, T ′), for the

argument and return types of the function, and the typing of the function’s body under confinedC(Γ),

the confined part of Γ.

Definition 6.4.6 (Confined Types). C ` confined(o) is the least compatible relation on type schemas,
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types, and behaviours that admits the following axioms.

T ∈ {Int,Bool,Unit}

C ` confined(T )

b ∈ {τ, recβ b′}

C ` confined(b)

∀(T ⊆ α) ∈ C. C ` confined(T )

∀(α ⊆ T ) ∈ C. C ` confined(T )

C ` confined(α)

C ` confined(T, ~T1, ~T2,~b)

C ` confined(∀(~γ : (~T1 ⊆ ~T2), (~b ⊆ ~β), (~o1 ∼ ~o2)).T )

C ` confined(T, T ′) C ` confined(β)

C ` confined(T
β→ T ′)

∀(b ⊆ β) ∈ C. C ` confined(b)

C ` confined(β)

Moreover, confinedC(Γ) is the largest subset of Γ such that for all (x : TS ) ∈ confinedC(Γ) we have

C ` confined(TS ).

The above definition does not enforce the second condition for confinement. This is done in the

session typing discipline of the second level of our system (Sec. 6.4.2), and in fact only for those

recursive functions that are applied and whose behaviour is part of the communication effect of the

program. This separation between the two levels simplifies type inference.

Similarly to recursive functions, a spawned function must be confined. This is again enforced in

part by the side-condition of Rule TSpawn and the rule for spawn in our session type discipline.

6.4.2 Second Level: Session Types

The type-and-effect system we presented so far is parametric to session type annotations in the con-

straint environment (constraints c ∼ η and c ∼ η). Indeed, our adaptation of the type inference

algorithm for the type-and-effect system [Amtoft et al., 1999] will only produce variables for session

type annotations (c ∼ ψ and c ∼ ψ). It is the job of the session typing in the second level of our

system to check (and, in the case of inference, to deduce) session types for the endpoints used in the

program.

As we discussed previously and showed in the examples of Sec. 6.2, MLS session types are finite

but allow useful recursive expressions with a communication effect. In Sec. 6.5 we show an extension

of the type system with recursive session types. Session types are higher-order to allow for delegation

of endpoints. Their syntax is:

η ::= end
∣∣!T.η ∣∣?T.η ∣∣!η.η ∣∣?η.η ∣∣ ⊕

i∈I
!Li.ηi

∣∣ ∑
i∈(I1,I2)

?Li.ηi
∣∣ ψ

Session types describe the sequence of communications over a session endpoint. A session type is
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finished (end) or it can describe further interactions: the input or output of a confined value (resp.,

?T.η or !T.η), or the delegation or resumption of an endpoint of session type η′ (resp., !η′.η or ?η′.η).

It may also describe the ability of the process to choose a communication label Li from a number of

labels I (
⊕

i∈I !Li.ηi), signifying to its partner that session type ηi is to be followed from that point

on.

Moreover, a session type can describe the ability of the process to offer to its dual an external

choice
∑
i∈(I1,I2)?Li.ηi. Here I1 contains the labels that the process must be able to accept and I2 the

labels that it may accept. We require that I1 and I2 are disjoint and I1 is not empty. Hence, session

types give a lower (I1) and an upper (I1 ∪ I2) bound of the labels in external choices. These two

sets of labels are not necessary for typing external choice—we could use only the first set. However,

the two sets of labels make type inference deterministic and independent of source code order, thus

simpler to implement. It also makes typing more efficient, modular and intuitive.

Example 6.4.7. Consider a program P [e1][e2] containing the expressions:

e1
def
= letx = acc-cl1 () in casex {L1 ⇒ e, L2 ⇒ e?}

e2
def
= letx = req-cl2 () in sel-L2 x

Suppose e? contains a type error, possibly because of a mismatch in session types with another part

of P . If a type inference algorithm run on P [e1][e2] first examines e1, it will explore both branches

of the choice, tentatively constructing the session type Σ{L1.η1, L2.η2}, finding the error in e?. One

strategy might then be to backtrack from typing e? (and discard any information learned in the L2

branch of this and possibly other choices in the code) and continue with the session type Σ{L1.η1}.

However, once e2 is encountered, the previous error in e? should be reported. A programmer, after

successfully type checking P [e1][()], will be surprised to discover a type error in e1 after adding in e2.

The type-and-effect system here avoids such situations by typing all choice branches, even if they are

inactive, at the expense of rejecting some—rather contrived—programs. A similar approach is followed

in the type-and-effect system of the previous section by requiring all branches to have the same type

(Rule TMatch in Fig. 6.3).

We express our session typing discipline as an abstract interpretation semantics for behaviours

shown in Fig. 6.4, which conservatively approximates the communication effect of expressions at

runtime. It describes transitions of the form ∆ � b −→C ∆′ � b′, where b, b′ are communication effects.

The ∆ and ∆′ are linear stacks on which static endpoint labels together with their corresponding

session types (l : η) can be pushed and popped. Inspired by Castagna et al. [Castagna et al., 2009],

in the transition ∆ � b −→C ∆′ � b′, the behaviour b can only use the top label in the stack to

communicate, push another label on the stack, or pop the top label from the stack provided its session

type is end. This stack principle gives us a weak deadlock freedom property (Theorem 6.4.16).

We will treat these stacks linearly, in the sense that a label can be pushed onto a stack only if it

has not been previously pushed on (and possibly popped from) that stack. Therefore, every stack ∆

contains an implicit set of the labels that have been pushed onto it, which is accessed by ∆.labels.

This requirement guarantees that the following unsafe program is rejected.
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End (l : end) ·∆ � b −→C ∆ � b

Beta ∆ � β −→C ∆ � b if C ` b ⊆ β
Plus ∆ � b1 ⊕ b2 −→C ∆ � bi if i ∈ {1, 2}
Push ∆ � push(l : η) −→C (l : η) ·∆ � τ if l ] ∆.labels

Out (l : !T.η) ·∆ � popρ!T ′ −→C (l : η) ·∆ � τ if C ` ρ ∼ l, confinedC(T ′), T ′ <: T

In (l : ?T.η) ·∆ � popρ?T ′ −→C (l : η) ·∆ � τ if C ` ρ ∼ l, confinedC(T ′), T <: T ′

Del (l : !ηd.η) · (ld : η′d) ·∆ � popρ!ρd −→C (l : η) ·∆ � τ if C ` ρ ∼ l, ρd ∼ ld, η′d <: ηd

Res (l :?ηr.η) � popρ?lr −→C (l : η) · (lr : ηr) � τ if (l 6= lr), C ` ρ ∼ l
ICh (l :

⊕
i∈I

!Li.ηi) ·∆ � popρ!Lj −→C (l : ηj) ·∆ � τ if (j ∈ I), C ` ρ ∼ l

ECh (l :
∑

i∈(I1,I2)

?Li.ηi) ·∆ �
∑
j∈J

popρ?Lj ; bj −→C (l : ηk) ·∆ � bk if k ∈ J, C ` ρ ∼ l,
I1 ⊆ J ⊆ I1 ∪ I2

Rec ∆ � recβ b −→C ∆ � τ if ε � b ⇓C′ ,
C ′ = (C\(recβ b ⊆ β))∪(τ ⊆ β)

Spn ∆ � spawn b −→C ∆ � τ if ε � b ⇓C
Seq ∆ � b1; b2 −→C ∆′ � b′1; b2 if ∆ � b1 −→C ∆′ � b′1

Tau ∆ � τ ; b −→C ∆ � b

Fig. 6.4: Abstract Interpretation Semantics.

Example 6.4.8. Consider the channel c whose session type is simply η =!Int.end and the program:

let f = fun ⇒ (req-cl ()) in

letx = f () in

send x 1;

let y = f () in

send x 1

The program does not obey session η, because it sends two integers on x, and none on y. According to

the type-and-effect system of the previous section, x and y have type Sesρ, with ρ ∼ l in a constraint

environment C. Moreover f has type Unit
β→ Unit with

(push(l : η); popρ!Int; push(l : η); popρ!Int; τ ⊆ β) ∈ C

Because region analysis identifies endpoints generated from the same source code location, the above

behaviour does not differentiate between the labels in the second push and the final output. Therefore,

the only reason to reject this behaviour is because it pushes the same location on the stack twice.

The linearity of the stacks means that the program in the above example is rejected, even if the

second send x 1 is replaced with send y 1, which would fix the problem in the code. We can remedy

this with standard extensions from static analysis of [Shivers, 1991]. Note that the correct version of

the above program is not typable under a more straightforward substructural session type discipline

(e.g., [Vasconcelos et al., 2006]) because the function f would have a linear type and therefore it would

not be possible to apply it twice.

Rule End from Fig. 6.4 simply removes a finished stack frame, and rule Beta looks up behaviour
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variables in C; Plus chooses one of the branches of non-deterministic behaviour. The Push rule

extends the stack by adding one more frame to it, as long as the label has not been added before

on the stack; this requirement will reject the program in Ex. 6.4.8. Rules Out and In reduce the

top-level session type of the stack by an output and input, respectively. The requirement here is that

the labels in the stack and the behaviour match, the usual subtyping [Gay and Hole, 2005] holds for

the communicated types, and that the communicated types are confined. Note that sending confined

(recursive) functions does not require delegation of endpoints because the typing rule TRec of Fig.

6.3 forbids open endpoints from the context to end up in these functions.

Transfer of endpoints is done by delegate and resume (rules Del and Res). Delegate sends the

second endpoint in the stack over the first; resume mimics this by adding a new endpoint label in the

second position in the stack. Resume requires a one-frame stack to guarantee that the two endpoints

of the same session do not end up in the same stack [Castagna et al., 2009], causing a deadlock. If we

abandon the weak deadlock-freedom property guaranteed by our type system, then the conditions in

Res can be relaxed and allow more than one frame.

A behaviour reduces an internal choice session type by selecting one of its labels (ICh). A behaviour

offering an external choice is reduced non-deterministically to any of its branches. The behaviour

must offer all active choices (I1 ⊆ J) and all behaviour branches must be typable by the session type

(J ⊆ I1 ∪ I2).

Our session type discipline requires that behaviours follow to completion or delegate all (l : η)

frames in a stack.

Definition 6.4.9. ∆ � b ⇓C ~∆′ when for all b′,∆′ such that ∆ � b −→∗C ∆′ � b′ 6→C we have b′ = τ

and ∆′ ∈ {~∆′}. We write ∆ � b ⇓C when ∆ � b ⇓C ε, where ε is the empty stack.

Because of finite session stacks and session types, behaviour-compact constraint environments,

and because of the rule for recursive behaviour explained below, there are no infinite sequences of

reductions over this semantics. Therefore ∆ � b ⇓C ~∆′ is decidable.

Note that according to the rules of Fig. 6.4, in order for ∆ � b ⇓C to be true, session variables

ψ can only appear as delegated types not used in the reductions. For typable programs, our session

type inference algorithm can indeed infer session types that will satisfy this requirement (Sec. 6.4.3).

As we explained in the previous section, recursive functions in MLS must be confined. In part this

means that the communication effect of applying the function is only on endpoints that the function

opens internally, and the session type of these endpoints will be followed to completion (or delegated)

before the function returns. This is enforced in Rule Rec, where recβ b must have no net effect on the

stack, guaranteed by ε � b ⇓C′ . Here C ′ = (C\(recβ b ⊆ β))∪(τ ⊆ β) is the original C with constraint

(recβ b ⊆ β) replaced by (τ ⊆ β) (cf., Def. 6.4.2).

Similarly to recursive functions, a spawn will create a new, confined process. This is guaranteed

by Rule TSpawn in Fig. 6.3, and Rule Spn here which requires that the effect b of the spawned process

satisfies ∆ � b ⇓C .

Type annotations The rule for recursive behaviour gives a method to safely bypass the linearity

principle of the stacks, which requires that each label is pushed on the stack at most once, and type
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more programs. Because of this restriction, the swap method of Ex. 6.2.1 can only be applied once

in the body of the let.

To explain this let us consider the type schema of the swap function: ∀(α1α2β : C0)α1
β→α2, where

C = (push(l : η); popρ!α1; popρ?α2; τ ⊆ β), (ρ ∼ l), (α1 ⊆ α2)

The expression

swap (); swap ()

which applies swap twice at type Unit
β→ Unit will have a behaviour (omitting some τs):

push(l : η); popρ!Unit; popρ?Unit; τ ;

push(l : η); popρ!Unit; popρ?Unit; τ

This behaviour clearly violates stack linearity because it pushes l twice on the stack, and therefore

the expression is not typable in our system.

However, the communication effect of swap is confined, and therefore we can define the function

using the rec construct instead of fun. In this case, the type schema of swap will contain the constraint

set

C = (recβ (push(l : η); popρ!α1; popρ?α2; τ) ⊆ β), (ρ ∼ l)

and the above expression will have behaviour:

b = recβ (push(l : η); popρ!Unit; popρ?Unit; τ);

recβ (push(l : η); popρ!Unit; popρ?Unit; τ)

It is easy to verify that this behaviour satisfies ε � b ⇓C .

Therefore the rec construct can be used by programmers as an annotation to mark the functions

that are confined and therefore it is safe to apply multiple times in programs.

Endpoint Duality So far our type discipline does not check session types for duality. The program

spawn (fun ⇒ letx = req-c () in send x tt);

letx = acc-c () in recv x+ 1

should not be typable because its processes use dual endpoints at incompatible session types. Therefore

we require that dual session endpoints (c ∼ η and c ∼ η′) have dual session types.

Definition 6.4.10 (Valid Constraint Environment). C is a valid constraint environment if there

exists a substitution σ of variables ψ with closed session types, such that Cσ is well-formed and for

all ∀(c ∼ η), (c ∼ η′) ∈ Cσ we have C ` η ./ η′.

Definition 6.4.11 (Duality). C ` η ./ η′ if the following rules and their symmetric ones are satisfied.
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C ` end ./ end

C ` T <: T ′

C ` η ./ η′

C ` !T .η ./ ?T ′.η′

C ` η0 <: η′0

C ` η ./ η′

C ` !η0.η ./ ?η′0.η
′

∀i ∈ I0. C ` ηi ./ η′i

C `
⊕
i∈I0

!Li.ηi ./
∑

i∈(I0I1,I2)

?Li.η
′
i)

where C ` η <: η′ is [Gay and Hole, 2005] subtyping, with C needed for inner uses of C ` T <: T ′,

extended to our form of external choice, where C `
∑
i∈(I1,I2)?Li.η

′
i <:

∑
i∈(J2,J2)?Li.η

′
i when I1 ⊆ J1

and J1 ∪ J2 ⊆ I1 ∪ I2 and ∀(i ∈ J1 ∪ J2). C ` ηi <: η′i.

6.4.3 Combining the Two Levels

We are interested in typing source-level programs which contain a single process e with no open

endpoints. However, to prove type soundness, we need to type running systems containing multiple

running processes and open endpoints. For each running process we need to maintain a stack ∆,

containing the session types of the endpoints opened by the process.

Definition 6.4.12 (Typing). We write C 

−−−−−−−→(
∆ � b, e

)
if C is well-formed and valid, (C; ∅ `

−−−−−→
e : T . b), and (

−−−→
∆ � b ⇓C), for some type T .

Program e is well-typed if C 

(
ε � b, e

)
for some C and b.

Type soundness in our system guarantees a weak deadlock freedom property of typed programs,

which we discuss here. The key property is well-stackedness, the fact that in a running system, there is

always a way to repeatedly remove dual endpoints with dual session types from the top of two stacks,

until all stacks are empty. Note that this does not mean that programs are deterministic. Multiple

pairs of dual endpoints can be at the top of a set of stacks at any time.

We let S range over ˜(∆ � b, e), identify S up to reordering, and write S for ẽ when S = ˜(∆ � b, e).
In this section, in addition to labels, we also store the corresponding endpoints in ∆ stacks (and

trivially lift ⇓C to such stacks).

Definition 6.4.13 (Well-stackedness). C 
ws S is the least relation satisfying the rules:

C 
ws ε

C 
ws S,
(
∆ � b, e

)
,
(
∆′ � b′, e′

)
C ` η ./ η′ p, p ] ∆,∆′,S

C 
ws S,
(
(pl : η) ·∆ � b, e

)
,
(
(pl
′

: η′) ·∆′ � b′, e′
)

Theorem 6.4.14 (Type Preservation). Suppose C 
 S and C 
ws S. If S−→ ẽ′, then there exist

∆̃′, b̃′ such that S ′ = ˜(
∆′ � b′, e′

)
and C 
 S ′ and C 
ws S ′.

Proof. See Appendix A.

Type soundness is more technical. We divide system transitions to communication transitions

between processes (−→c) and internal transitions (−→i). Let S −→c S ′ (S −→i S ′) when S−→S′,

derived by Rule RInit, RCom, RDel or RSel of Fig. 6.1 (resp., any other rule); S =⇒c S
′ when

S −→∗i −→c−→∗i S′.

We also define dependencies between processes of a running system according to the following

definition.
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Definition 6.4.15 (Dependencies). Let P =
(
∆ � b, e

)
and Q =

(
∆′ � b′, e′

)
be processes in S.

P and Q are ready (P � Q): if ∆ = (pl : η) ·∆0 and ∆′ = (pl
′

: η′) ·∆′0;

P is waiting on Q (P 7→ Q): if ∆ = (pl : η) ·∆0 and ∆′ = ∆′1 · (pl
′

: η′) ·∆′0 and ∆′1 6= ε;

P depends on Q,R (P Z⇒ (Q,R)): if P = Q� R, or P 7→+ Q� R.

The following type soundness theorem describes a system that cannot take any communication

transitions.

Theorem 6.4.16 (Type Soundness). Let C 
 S and C 
ws S. Then

1. S =⇒c S ′, or

2. S −→∗i (F ,D,W,B) such that:

Processes in F are finished: ∀
(
∆ � b, e

)
∈ F . ∆ = ε, b = τ and e = v.

Processes in D diverge: ∀
(
∆ � b, e

)
∈ D.

(
∆ � b, e

)
−→∞i .

Processes in W wait on channels: ∀
(
∆ � b, e

)
∈ W. e = E[req-cl] or e = E[acc-cl].

Processes in B block on sessions: ∀P =
(
∆ � b, e

)
∈ B. e = E[e0] and e0 is send v, recv v,

deleg v, resume v, sel-Lv, or case v {Li ⇒ ei}i∈I and

∃Q ∈ (D,W). ∃R ∈ (D,W,B). S ` P Z⇒ (Q,R)

Proof. See Appendix A.

The theorem needs to take into account several possibilities. MLS has general recursion and

therefore processes may diverge (set D). Moreover, sessions open and close dynamically, thus processes

may not find a communication partner when they are trying to open a new session (setW). Processes

may also block waiting to communicate on a session endpoint (set B). The above theorem says that in

systems where no more communication steps are possible, we will always find a diverging or waiting

process if we follow the dependencies of a blocked processes.

The intuitive consequence of type soundness is that in the absence of divergence and in the presence

of enough communication partners to start new sessions, there are no blocked processes, and when

communications are no longer possible all processes have reduced to a value.

Corollary 6.4.17. Let C 
 S and C 
ws S. If S 6=⇒c and S −→∗i (F , ∅, ∅,B), then B = ∅.

6.5 Extension to Recursive Session Types

So far we developed our type system and inference algorithm considering only finite session types.

Here we sketch the extension of our work to a form of recursive types. We first extend the syntax of

expressions and behaviours with new recursive constructs, and add a form of recursive session types.

v ::= . . .
∣∣ recses f(x)⇒ e

b ::= . . .
∣∣ recρβ b

η ::= . . .
∣∣ µX.η ∣∣ X
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The new construct for recursive functions distinguishes these functions from confined recursive

functions, which should be treated differently in the type system. The recursive behaviour recρβ b is a

new behaviour construct which records the static identity ρ of an endpoint with a recursive type used

in the body b of the behaviour. A recursive session type µX.η is well-formed only when it is guarded ;

i.e., X appears in η under prefixes containing choice labels. Moreover, X cannot be delegated in η.

These restrictions are to avoid complications with unfolding recursion.

A new rule in our type-and-effect system types the new recursive functions:

TRec2

C; confinedC(Γ), f : T
β→ T ′, x : T, z : Sesρ ` e : T ′ . b

C ` confined(T, T ′) C ` recρβ b ⊆ β

C; Γ, z : Sesρ ` recses f(x)⇒ e : T
β→ T ′ . τ

This rule is similar to TRec for recursive functions, with the exception that it requires that exactly

one session endpoint from the environment to be used in the function. The static identity ρ of the

endpoint is recorded in the behaviour of the function.

The additional rules in the second level of our type system is:

(l : µX.η) ·∆ � recρβ b −→C ∆ � τ

when (l : η) � b ⇓C′ , C ` ρ ∼ l and

C ′ = (C\(recρβ b ⊆ β))∪(τX ⊆ β)

Moreover,

(l : X) � τX −→C ε � τ

These two rules check that the behaviour proceeds according to the recursive session type. Note that

these rules keep the length of reductions finite, and therefore ∆ � b ⇓C is still decidable.

Because recursive session types are guarded, the subtype relation can be easily extended:

C ` X <: X

C ` η <: η′

C ` µX.η <: µX.η′

With the addition of recursive session types we can write programs that run potentially infinite

protocols.

Example 6.5.1. Consider the following server expression:

let z = acc-init ()

in (recses f(x)⇒ send z x; case z { Inc⇒ f (x+ 1),

End⇒ () }) 0

The server accepts a connection on init creating the endpoint z. It then enters a loop which sends a

number on z and offers two choices to its partner: to terminate (End) or to loop (Inc). The session
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type of endpoint z here is

µX.!Int.Σ{?Inc.X, ?End.end}

6.6 Related Work

We presented a new approach for adding session types to high-level programming languages, and used

it to give a conservative extension of a core of ML. In the extended language we can type interesting

programs with only minimal annotations. For example, in order to send a recursive function as a value

over some endpoint p, the function must be recursive function. We consider it an annotation when a

function must be expressed as a recursive function in order to be sent. We showed that type soundness

guarantees a weak deadlock-freedom property. A sound and complete type inference algorithm for our

type system is developed in Chapter 7. To our knowledge this is the first such algorithm for session

types that supports delegation.

Our approach is based on extracting the communication effect of program expressions and then

imposing a session type discipline on this effect. To extract communication effects we extended the

work of [Amtoft et al., 1999] for inferring the communication behaviour of CML programs. This

extends foundational work, such as Milner’s original polymorphic type inference ([Milner, 1978b]) and

Tofte and Talpin’s region analysis ([Tofte and Talpin, 1994]). This effect is a term in a restricted

process algebra which lends itself well for session type checking. The session type discipline we use

is inspired by [Castagna et al., 2009] where a stack principle is imposed on session types. This stack

principle gives us weak deadlock freedom. The accuracy of regions for approximating the endpoints in

a program can be improved using context-sensitive techniques from static analysis (e.g., k-CFA from

[Shivers, 1991]).

Our session type discipline is presented as an abstract interpretation where ∆ � b ⇓C means that

all paths from b with stack ∆ and environment C reduce to a terminal configuration ε � τ . An

equivalent definition for ∆ � b ⇓C can be given using inference rules.

Another approach to checking session types in high-level languages include substructural type

systems. As representative examples, [Vasconcelos et al., 2006] develop such a type system for a

functional language with threads, and [Wadler, 2012] presents a linear functional language with effects.

Type soundness in the former guarantees only that communications respect session types, whereas in

the latter it also guarantees deadlock freedom. Our type soundness sits in between these two extremes:

deadlock freedom is guaranteed only when processes do not diverge and their requests for opening

new sessions are met. We believe that we could replace our session discipline with any of these (or

indeed others) giving a more relaxed or more strict typing system. However it is unclear whether a

sound and complete inference algorithm would still be possible with such a change.

[Toninho et al., 2013] add session-typed communication to a functional language using a monad.

This approach cleanly separates language features and type soundness gives deadlock freedom guaran-

tee similar to ours. [Pucella and Tov, 2008] have used an indexed monad to embed in Haskell session

types, including a form of recursive sessions but without endpoint delegation. In this system session

types are inferred by Haskell’s type inference. However, the programmer needs to guide type inference

using type-level operations with no runtime effect.
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[Mezzina, 2008] developed a type inference algorithm for session types in a calculus of services. The

type system does not have recursive session types but it can type replicated processes that only use

finite session types, similar to our approach. This system also does not support endpoint delegation.
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Chapter 7

Session Types Inference Algorithm

This chapter presents the inference algorithms to infer session types for any given expression e in MLS.

Session type inference does not require the programmer to add any annotations, but only to indicate

which recursive functions need to be self-confined, as explained in Remark 6.4.2. We will explain that

our algorithms are sound and complete with reference to the two stages type system of Chapter 6.

Our approach consists of three inference algorithms, W, SI and D. Algorithm W calculates the

types, behaviours and constraints to type e under the first stage of Sec. 6.4.1. Algorithm SI and D

correspond to the second stage of type checking: the former calculate the session types of each channel

c and c̄ in e, while the latter checks that the inferred session types associated with c and c̄ are indeed

dual. The heart of session type inference is Algorithm SI, which is the main focus of this chapter.

AlgorithmW is a straightforward adaptation of the homonymous algorithm of [Amtoft et al., 1999]:

given an expression e, W calculates its type t, behaviour b and constraints set C; no session informa-

tion is calculated. Apart from simple adaptations on concurrency primitives from CML to MLS, the

algorithm generates pairs of constraints c ∼ ψ and c ∼ ψ′ for any global channel occurring in the e,

with ψ and ψ′ unique session variables. These variables only occur in the behaviour b in the form of

push(l :ψ) operations. Soundness and completeness results of W follow from [Amtoft et al., 1999], as

explained in Section 7.1.

Given the behaviour b of e and the constraint set C calculated by W, Algorithm MC recursively

explores all the transitions allowed by the abstract interpretation semantics of Fig. 6.4 with a depth-

first strategy. During this process, the algorithm expands the ψ variables in b to concrete session

types according to the operators in b. The output is a set of substitutions [ψ 7→ η] for all the ψ

variables contained in b, and a refined set of constraints C ′. Algorithm SI is described in Section 7.2.

Its termination is described in Section 7.2.1, which hinges on the fact that C is behaviour-compact.

Soundness and completeness results are discussed respectively in Section 7.2.2 and 7.2.3.

For each pair of constraints c ∼ η and c̄ ∼ η′, Algorithm D checks that η and η′ are dual. More

constraints and substitutions might be discovered in this last phase, for example in case an endpoint

from c is delegated, and the dual endpoint from c̄ completes the session. Section 7.3 describes this

last algorithm and briefly discusses its soundness and completeness.
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7.1 Algorithm W

Given an expression e, the first step to session type inference is inferring a type T , behaviour b and

constraints C such that C; Γ ` e : T . b holds, according to the typing rules of Fig. 6.3, if any

such typings exists. As already mentioned, Algorithm W can be adapted straightforwardly from the

homonymous Algorithm W of [Amtoft et al., 1999], and therefore its definition is not included in this

thesis. Algorithm W is composed by three sub-algorithms: Algorithm W ′, F and R.

Algorithm W ′ is the core inference algorithm. Given as inputs a typing environment Γ, an empty

constraints set C and an expression e, Algorithm W ′ recursively traverses the abstract syntax tree of

e. The leaves are either base values, such as integers, or variables. The former is assigned its base type

and the empty behaviour (e.g. Int and τ); the latter is assigned a fresh type variable α and again the

empty behaviour τ . Instead of using unification, as the original Algorithm W of [Milner, 1978b], the

algorithm generates type constraints. For example, suppose that e = if e1 then e2 else e3 and that

the following holds:

C; Γ ` e1 : Bool . b1

C; Γ ` e2 : T2 . b2

C; Γ ` e3 : T3 . b3

Instead of finding a most general substitution σ such that T2σ = T3σ through unification,W ′ generates

a fresh variable α and two new constraints C ′ = {T2 ⊆ α, T3 ⊆ α}, and it returns the following typing:

C ∪ C ′; Γ ` if e1 then e2 else e3 : α . b1; b2; b3

As explained in Sec. 6.4.1, concurrency primitives are values with polymorphic types of the form

TS = ∀(~α~β~ρ~ψ : C0). T . For example, send has type ∀(αβρ : popρ!α ⊆ β).Sesρ × α β→ Unit. Algorithm

first W ′ creates a substitution σ that instantiates the variables ~α~β~ρ~ψ in TS with fresh variables.

The primitive is then assigned type Tσ, and a new constraint set C0σ is added to C. For example,

send can be assigned type Sesρfr × αfr
βfr→ Unit by substitution σ = [α, β, ρ 7→ αfr, βfr, ρfr], and the

constraint set C0σ = {popρfr!αfr ⊆ βfr} is added to C.

The only modification that we introduce with regards to primitives, is that each occurrence of the

construct req-cl is always assigned the same, unique fresh variable ψ in its constraints set. For example

AlgorithmW ′ generates for req-cl1 and req-cl2 the constraints push(l1 :ψ) ⊆ β and push(l2 :ψ) ⊆ β′

for some fresh variables ψ, β1 and β2. The same happens with acc-c; acc-c and req-c are assigned

two distinct variables ψ and ψ′.

Constraints are generated and accumulated by W ′ throughout the abstract syntax tree of e. Al-

gorithm F and R are optimizations of the constraints set C calculated by W ′. These two algorithms

are not necessary for the inference process itself, but significantly decrease the number of constraints

in C. They are therefore very useful by making W more efficient and its output more readable.

Algorithm F iteratively breaks complex type constraints into simpler type, and substitutes vari-

ables for concrete types as much as possible. For example, the constraint α ⊆ Int yields the substitution
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[α 7→ Int]; the constraint T1
β→ T2 ⊆ T ′1

β′→ T ′2 is replaced by the constraints T ′1 ⊆ T1, T2 ⊆ T ′2 and

β ⊆ β′. The only modification necessary for session types is to introduce a new case for the type of

end-points Sesρ, which replaces Sesρ ⊆ Sesρ
′

with ρ ∼ ρ′.

Algorithm R focuses on constraints that only contain a variable on both the left and right-hand

side (e.g. constraints of the form α1 ⊆ α2). The algorithm explores the graph that such constraints

compose by transitivity, and reduces it by collapsing cycles and removing redunant constraints that

don’t occur in the behaviour b anymore, for example.

The soundness of Algorithm W can be stated as follows:

Theorem 7.1.1 (Soundness of Algorithm W). If W([], e) = (σ, t, b, C) then C; [] `n e : t . b.

Regarding completeness, let jdg? be any valid typing judgement for an expression e. Completeness

first show that AlgorithmW always calculates a judgment jdg for e. Moreover it also shows that jdg?

is a lazy instance of jdg: in the sense that there exists a substitution σ′ such that jdg? can always

be derived by further instantiating jdg with σ′ and by subtyping. This second property points to the

fact that W calculates principal types for e (see [Amtoft et al., 1999], Sec. 1.5.1, p.30). Completeness

is stated as follows:

Theorem 7.1.2 (Completeness of AlgorithmW). If C?; [] `atn e : t? . b? with C? atomic (i.e. all type

constraints in C? have the form α1 ⊆ α2), then W([], e) = (σ, b, t, C) and there exists a substitution

σ? such that:

• C? ` Cσ?

• C? ` bσ? ⊆ b?

• C? ` tσ? <: t?

7.2 Algorithm SI

Algorithm SI infers a session type η for each for each channel c and c̄ in the constraints C and

behaviour b calculated from Algorithm W. The pseudo-code for the complete algorithm, together

with helper functions, is presented in Appendix B.

Algorithm SI operates on a slightly different syntax of session types, which is defined as follows:

η ::=ψ
∣∣ end

∣∣!T.η ∣∣?T.η ∣∣!η.η ∣∣?η.η ∣∣ ψin

∣∣ ψex

Variable ψ is a session type variable, which are introduced by Algorithm W. Internal and external

choices are removed from sessions. In their place, we have two special variables ψin and ψex, which

are bound by choice constraints, defined by the following new constraints on ψin and ψex:

c ::= . . .
∣∣ ⊕
i∈I

!Li.ηi ∼ ψin

∣∣ ∑
i∈(I1,I2)

?Li.ηi ∼ ψex

During session inference, the constraint set C might be refined to a new set C ′, containing more precise

session types for ψin and ψex (for example by adding new labels to an internal choice, or by moving
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an active label to inactive in an external choice), or new constraints on types (because of a pop for

example). Choice constraints in C are ordered according to subtyping:

C ` ψin ∼ η C ` η <: η′

C ` ψin ∼ η′
Inf-IChoice

C ` ψex ∼ η C ` η <: η′

C ` ψex ∼ η′
Inf-EChoice

Abstract interpretation transitions can be naturally extended to the sub-language just presented,

except for the two cases when b pops a label Lk, and the top of the stack contains either ψin or ψex.

In these two cases, if C ` ψex ∼ η or C ` ψex ∼ η, η substitutes ψex or ψin on the stack.

For all constraints (c ∼ ψ) ∈ C, Algorithm SI infers a substitution σ and a refined set C ′ such

that ε � bσ ⇓C′ ε holds. The core of this algorithm is the abstract interpreter MC. The inputs to

MC are a configuration ∆ � b, a set of constraints C and an internal continuation stack K. The

continuation stack K is defined by the grammar K ::= ε
∣∣ b ·K. We indicate with K[b] the stack b ·K.

Algorithm SI performs a call MC
(
ε � b, ε, C

)
, where b and C are derived by Algorithm W.

Algorithm MC recursively explores all the transitions allowed by the abstract interpretation

semantics in Fig. 6.4. Session variables from constraints c ∼ ψ in C are eventually pushed on

the stack by a push operation in b. Session inference is guided by pop operations. For example,

MC
(
(l : ψ) ·∆ � popρ!T, K, C

)
produces the substitution [ψ 7→ !α.ψ′], with α and ψ′ fresh, and adds

the constraint (T ⊆ α) to C.

All substitutions are applied eagerly and composed iteratively. Sequential behaviour b1; b2 is

decomposed into b1 and a continuation []; b2, which is pushed on the continuation stack K. Inference

is first carried out on b1; if b1 evaluates to τ , then a continuation []; b2 is popped from K, and MC

evaluates the behaviour [τ ]; b2. Whenever a branching behaviour is explored, such as b1 ⊕ b2, each

branch bi is explored separately, and their resulting substitutions and constraints are composed.

Algorithm MC terminates when b is τ and the continuation stack is empty. The output is a

substitution σ that instantiates the session variables ψ generated byW with the accrued session types

η calculated byMC; the constraint set C with the accumulated constraints C ′ fromMC are returned

as well. Inference fails when MC reaches a configuration stuck ∆ � b in which either ∆ is not the

empty stack or b is not τ . This corresponds to an error in the session type discipline.

7.2.1 Finiteness of Abstract Interpretation

This section proves that the abstract interpretation of a configuration ∆ � b in a well-formed envi-

ronment C always generates a finite state-space. We first formalize the notion of behaviour compact

from Definition 6.4.2. Then we define a translation from behaviours with β variables to ground be-

haviours, i.e. behaviours without βs. We show that this translation is fully abstract with reference to

the abstract interpretation semantics. Finally, we show that a configuration ∆ � b and constraints C

generate a finite state-space when b is ground and C is well-formed.
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Formalization of behaviour compactness

By Definition 6.4.2, a set of constraints C is well-formed only if it is behaviour compact, i.e. all cycles

in behaviour constraints contain at least one (recβ b ⊆ β) ∈ C, and recursive behaviour constraints

(recβ b ⊆ β′) in C are unique, and no other constraint can bind another behaviour b to β′ in C.

Let B denote the set of all behaviours b, and let β in b hold whenever there is an occurrence of β in b

(when b = recb′ β, we stipulate that β in b only if β in b′). In order to formalize this particular notion

of cyclicity, we introduce a binary relation on behaviours, that allows variables β from constraints

recβ b ⊆ β to form cycles, but disallows all other β to do so. This relation is called the dependency

relation, and it is defined as follows:

Definition 7.2.1 (Dependency relation). Let C be a well-formed constraint set. The dependency

relation 99KC⊆ B × B is the least relation such that:

β 99KC b
C ` b ⊆ β, b 6= recβ b

′
β 99KC b

β 99KC β′
β′ in b

β1 99KC β2 β2 99KC b3

β1 99KC b3

We say that a constraint set C is behaviour compact when 99KC is a strict well-founded order. It

is well-known that if a relation R is a strict order, then it denotes a direct acyclic graph. Therefore if

the relation 99KC is a strict order, 99KC is acyclic except on recursive constraints recβ b ⊆ β.

Lemma 7.2.2. If C1 = C ] {recβ b ⊆ β} is behaviour compact, then C2 = C ∪ {τ ⊆ β} is behaviour

compact.

Proof. Since τ is a ground term, there is no variable β′ in τ such that τ 99KC β′. There is also no

variable β′ in recb β such that recb β 99KC β′, since this is directly forbidden by the definition of

dependency relation. Because of these two facts, the relation denoted by 99KC1 is the same relation

denoted by 99KC2
. And since the former is a strict order, the latter is a strict order, which proves the

lemma.

Behaviour variables elimination

The occurrence of a variable β in a behaviour b creates an indirect link between b and the constraints

C where β is defined. This hidden connections introduces cumbersome technical complications when

proving properties of the abstract interpretation semantics. On the contrary, ground behaviours, i.e.

behaviours that do not contain β variables, are easier to reason about. This section introduces a

translation from any behaviour b to the ground behaviour JbKgC , and shows that it is fully abstract

w.r.t the abstract operational semantics.

The abstract interpretation semantics treats β variables as place-holders: Rule ICh replaces a

β with any behaviour b to which β is bound in C; Rule Rec effectively replaces β with a τ inside

recursive behaviours recβ b. This observation suggests that a β variable can be substituted either

with the internal choice of all the behaviour it binds in C, or with a τ inside recursive behaviours.

Such a translation is defined as follows:

Definition 7.2.3 (Ground translation). Let C be a well-formed constraint set. The ground translation
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J−KgC :: B → B is the total function defined by the following equations:

JβKgC =
⊕
{ JbiK

g
C | bi ⊆ β ∈ C } Jrecβ bK

g
C]{b′⊆β} = recβ JbKgC∪{τ⊆β}

Jb1; b2K
g
C = Jb1K

g
C ; Jb2K

g
C Jspawn bKgC = spawn JbKgC

Jb1 ⊕ b2KgC= Jb1K
g
C ⊕ Jb2K

g
C J

∑
i∈I

popρ?Li ; biK
g
C=

∑
i∈I

popρ?Li ; JbiK
g
C

JbKgC = b if b ∈ G

where G = { b | ∀β.β ] b } is the set of ground terms.

Let C be the set of all constraint sets. We introduce an ordering on behaviours and constraints:

Definition 7.2.4 (Structural relation). Let C be well-formed, and b be finite. The relation �s⊆ B×B

is defined as follows:

recβ b �s b b1; b2 �s bi for i ∈ {1, 2}

spawn b �s b b1 ⊕ b2 �s bi for i ∈ {1, 2}∑
i∈I

popρ?Li ; bi �s bi for i ∈ I

The structural relation �s is obviously well-founded, since we only consider finite behaviours b in

C.

Lemma 7.2.5. Let C be well-formed, and let � = �s ∪ 99KC . Relation � is well-founded.

Proof. The lemma is proved by showing that any non-empty subset Q of B has a minimal element m,

i.e. an element such that for all behaviours b if m � b, then b 6∈ Q.

Let Q be a subset of B. Since 99KC is well-founded, there must be a minimal element b1 which is

minimal in Q according to 99KC . If b1 is a variable β1 then β1 is minimal in Q according to �s as

well, because by definition there is no b such that β1 �s b holds. Therefore β1 is minimal according

to � too and the lemma is proved.

If b1 is not a variable, then let B2 be the intersection between Q and the successors of b1 according

to �s. We need to consider three cases: B2 is empty, B2 contains no singleton variables β, or B2

contains at least one singleton variable β2.

If B2 is the empty set, then b1 is minimal in Q according to 99KC , because by definition 99KC only

relates variables and b1 is not a variable. Therefore the lemma is proved by b1.

If B2 contains no singleton variables, then there must be a minimal element of them according to

�s, and the lemma is proved as in the case when B2 = ∅.

If B2 contains a variable β2, then let B3 be the intersection between Q and all the successors of

β2 according to 99KC . If B3 is empty, then the lemma is proved as in the case b1 = β1. If B3 is

not empty, then there must be a minimal element b3 of them. If we take B4 to be the intersection

between Q and the successors of b3 according to �s, notice that B4 cannot contain any singleton

variables β4, because otherwise β2 99KC β4 would hold, and the hypothesis that β2 is minimal would

be contradicted. Therefore B4 is either empty or it contains no singleton variables, and the lemma is

proved as the respective cases for B2.
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We now show that, when a constraint set C is well-formed, the ground translation of a behaviour

b in C does not expand β variables infinitely, but it constructs a finite ground behaviour, i.e. a

behaviour with a finite syntax tree:

Lemma 7.2.6. Let C be well-formed and b be a finite behaviour. For any behaviour b, JbKgC is a finite

ground term.

Proof. By well-founded induction on �=99KC ∪ �s.

The base case is when b is a ground term in {τ, push(l : η), popρ!L . . .}. These are all ground

terms in G, and for these terms the translation JbKgC = b, which is finite and ground by hypothesis. If

b ∈ {b1; b2, b1⊕b2, spawn b1, J
∑
i∈I

popρ?Li ; biK
g
C}, then the lemma is proved by the inductive hypothesis,

since for example if b = b1; b2, then Jb1K
g
C and Jb2K

g
C are finite ground terms, and therefore Jb1K

g
C ; Jb2K

g
C

is finite and ground too.

Because of well-formedness, there are two cases to consider when b = β: either β is bound to a

unique constraint b 6= recβ b
′ in C, or it is bound to multiple bi which are not recursive behaviours. In

the case that b ⊆ β is the only constraint on β in C, and we can write C ad C ′]{b ⊆ β}. By definition

of translation we have JβKgC = Jrecβ b′K
g
C′]{b⊆β} = recβ Jb′KgC′]{b⊆τ}. Since 99KC′]{b⊆β}=99KC′]{b⊆τ}

by Lem. 7.2.2, then �=99KC′]{b⊆τ} ∪ �s. By inductive hypothesis Jb′KgC′]{b⊆τ} is finite and ground,

therefore recβ Jb′KgC′]{b⊆τ} is finite and ground too, and the lemma is proved. In the latter case, when

β is bound to multiple non-recursive behaviours bi, the set of all such bi is finite by well-formedness,

and the lemma is proved by the inductive hypothesis as in the case b1; b2.

Having proved that the ground translation of a behaviour b always exists for well-formed constraints

C, we show some property of the translation w.r.t. the abstract semantics:

Lemma 7.2.7. Let C be well-formed.

1. if ∆ � b −→C ∆ � b′, then ∆ � JbKgC −→C ∆′ � Jb′KgC

2. If ∆ � JbKgC −→C ∆′ � b′′, then there exists a b′ such that b′′ = Jb′KgC .

Proof. By rule induction.

Since the ground translation is always defined, and since transition between a behaviour b and

its ground translation are interchangeable by the previous lemma, we will only consider finite ground

terms from now on.

Finite state-space

We conclude this section by showing that, given a well-formed C, all configurations ∆ � b always

generate a finite state-space, i.e. the set of reachable states from ∆ � b is finite. We prove this result

by designing a function that assigns an integer, or size, to any configuration ∆ � b, and then show

that the size of a configuration always decreases after taking a step in the abstract interpretation

semantics. Since configurations of size 0 cannot take steps, and since the size decreases after taking a

step in the semantics, the number of states that a finite configuration ∆ � b can reach is finite.

We first introduce the size function on behaviours:
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Definition 7.2.8 (Behaviour size). For any behaviour b, the behaviour size size(−) :: B → N is the

total function defined by the following equations:

size(τ) = 0 size(β) = 0

size(push(l : η)) = 2 size(popρ?ρ′) = 2

size(popρ!T ) = 1 size(popρ?T ) = 1

size(popρ!ρ′) = 1 size(popρ!Li) = 1

size(
∑
i∈I

popρ?Li ; bi) = 1 + |I|+
∑
i∈I size(bi) size(recβ b) = 1 + size(b)

size(b1; b2) = 1 + size(b1) + size(b2) size(spawn b) = 2 + size(b)

size(b1 ⊕ b2) = 2 + size(b1) + size(b2)

According to the definition, τ is the behaviour with the smallest size, zero. Most pop operations

have size 1, except for the resume operation popρ?ρ′, which has size 2. Notice that push has size 2

as well. The reason for this difference is that these operations introduce new frames on the stack in

the abstract interpretation semantics, and therefore have to be counted twice in order for the abstract

interpretation semantics to be always decreasing in size. The size of the other behaviours is defined

inductively.

We now introduce the size of a stacks:

Definition 7.2.9 (Stack size). The size of a stack ∆, or size(∆), is defined by the following equations:

size(ε) = 0 size((l : η) ·∆) = 1 + size(∆)

In short, the size of a stack is its length, or total number of frames. We finally specify the size of

configurations:

Definition 7.2.10. The size of a configuration ∆ � b, or size(∆ � b), is the sum size(∆ � b) =

1 + size(∆) + size(b).

Lemma 7.2.11. Let C be well-formed, and let b be a ground finite behaviour. If ∆ � b −→C ∆′ � b′,

then size(∆ � b) > size(∆′ � b′).

Proof. By rule induction.

If Rule End is applied, then (l : end) ·∆ � b −→C ∆ � b. By definition of size, size((l : end) ·∆ � b) =

size((l : end) ·∆) + size(b) = 1 + size(∆) + size(b) = 1 + size(∆ � b), which proves the lemma.

By hypothesis b is a ground term, therefore Rule Beta cannot be applied.

If Rule Push is applied, then ∆ � push(l:η) −→C (l : η)·∆ � τ holds. By definition, size(∆ � push(l : η)) =

2 + size(∆) = 1 + size((l : η) ·∆) = 1 + size((l : η) ·∆ � τ), which proves the lemma. The case for

Rule Res is proved similarly.

If Rule Out is applied, then (l : !T.η) · ∆ � popρ!T ′ −→C (l : η) · ∆ � τ holds. By definition,

size((l : !T.η) ·∆ � popρ!T ′) = size((l : !T.η) ·∆) + 1 = 1 + size(∆) + 1 = size((l : η) ·∆) + 1 =

size((l : η) ·∆ � τ), which proves the lemma. The cases for Rule In and Del are proved similarly.

If Rule ICh is applied, then ∆ � b1 ⊕ b2 −→C ∆ � bi holds for i ∈ {1, 2}. By definition of size, then

size(∆ � b1 ⊕ b2) = size(∆) + 1 + size(b1) + size(b2) = 1 + size(∆ � bi) + size(bj) for {i, j} = {1, 2}.
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The lemma is proved by 1 + size(∆ � bi) + size(bj) > size(∆ � bi) for i ∈ {1, 2}. The cases for Rule

ECh, Rec, Spn and Tau are proved similarly.

If Rule Seq is applied, then ∆ � b1; b2 −→C ∆′ � b′1; b2 only if ∆ � b1 −→C ∆′ � b′1 holds. By

rule induction size(∆ � b1) > size(∆′ � b′1). By definition of size, size(∆ � b1; b2) = 1 + size(∆) +

size(b1) + size(b2); by the previous inequality we have that 1 + size(∆) + size(b1) + size(b2) >

1 + size(∆′) + size(b′1) + size(b2) = size(∆′ � b′1; b2), which proves the lemma.

The state space of a configuration is defined as follows

Definition 7.2.12 (Execution states). Let ∆ � b and C be well-formed. The set of execution states

of ∆ � b under C, J∆ � bKC , is the least set S that satisfies the following conditions:

1. ∆ � b ∈ S

2. if ∆1 � b1 ∈ S and ∆1 � b1 −→C ∆2 � b2, then ∆2 � b2 ∈ S

3. if ∆1 � K[spawn b1] ∈ S, then Jε � b1KC ⊆ S

4. if ∆1 � K[recβ b1] ∈ S, then Jε � b2KC\(recβ b⊆β)∪(τ⊆β) ⊆ S

The execution size of ∆ � b under C, or |∆ � b|C , is the size of J∆ � bKC .

We now prove configurations in well-formed C always generate finite state spaces.

Theorem 7.2.13 (Finite state-space). Let ∆ � b be a configuration such that b is a finite ground

behaviour. For any well-formed C, |∆ � b|C ≤ size(∆ � b).

Proof. By mathematical induction on size(∆ � b). By definition of size(−), the base case is when

size(∆ � b) = 1, which is only possible when ∆ = ε and b = τ . In this case the execution states of

ε � τ is Jε � τKC = {ε � τ}; the size of this set is therefore 1, and the base case is proved.

The inductive case is when size(∆ � b) > 1. Configuration ∆ � b might or might not be able

to take a transition step ∆ � b −→C ∆′ � b′. If it cannot take a step, then |∆ � b|C = 1, and the

proposition is proved by the hypothesis that size(∆ � b) > 1.

Suppose that there exists ∆′ � b′ such that ∆ � b −→C ∆′ � b′. Let us proceed by rule induction.

Most cases are trivial, except when Rule Spn or Rec is applied. If Rule Spn is applied, then the

following holds:

∆ � spawn b −→C ∆ � τ
ε � b ⇓C

By definition of size, size(∆ � spawn b) = 1+size(∆)+size(spawn b) = 1+size(∆)+2+size(b) =

size(∆ � τ)+1+size(ε � b). By definition of execution states, J∆ � spawn bKC = {∆ � spawn b}∪J∆ �

τKC ∪ Jε � bKC . By inductive hypothesis we have that J∆ � τKC ≤ size(∆ � τ) and Jε � bKC ≤

size(ε � b). Therefore, since the set {∆ � spawn b} has size 1, |∆ � spawn b|C = |J∆ � spawn bKC | =

|{∆ � spawn b}|+ |J∆ � τKC |+ |Jε � bKC | = 1+ |J∆ � τKC |+ |Jε � bKC | ≤ 1+size(∆ � τ)+size(ε � b) =

size(∆ � spawn b), which proves the proposition. The case for Rule Rec is proved similarly.

The result of finiteness gives us a convenient induction principle for configurations:
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Corollary 7.2.14. If ∆ � b −→C ∆′ � b′, then J∆ � b′KC ⊃ J∆′ � b′KC .

Proof. By Prop. 7.2.13 and Lem. 7.2.11.

Using this principle, we can prove termination of MC:

Proposition 7.2.15 (Termination of SI). For any well-formed C and ∆ � K[b], MC
(
∆ � b, K, C

)
terminates.

Proof. By induction on the execution size of ∆ � K[b]. For any clause MC
(
∆ � b, K, C

)
, any

recursive sub-call toMC either contains as input either a configuration ∆′ � b′ that is directly smaller

than ∆ � b by execution size (e.g. after a pop is executed), or can be unfolded until its input is smaller

(e.g. when the behaviour is an external choice at line 78). The proposition follows directly from the

inductive hypothesis

Termination of SI follows directly from this result:

Theorem 7.2.16 (Termination of SI). For any well-formed C and b, SI(b, C) terminates.

Proof. By Prop. 7.2.15.

7.2.2 Soundness of Algorithm SI

We now present a proof of soundness for Algorithm SI, namely that if SI(b, C) = (σ1, C1), then

ε � bσ1 ⇓C1
; more informally, the substitution σ1 found by SI is always a valid session type. The

result of soundness depends on the soundness of MC, namely that if MC(∆ � b, C,K) = (σ1, C1),

then ∆σ1 ≡ ∆′ and ∆′ � K[b]σ1 ⇓C1 . We assume that all the free variables in the input configuration

∆ � K[b] also occur in some constraint in C.

We begin by defining a simple notion of equivalence to remove terminated sessions from a stack

∆:

Definition 7.2.17 (Terminated session equivalence).

ε ≡ ε

∆ ≡ ∆′

(l : end) ·∆ ≡ ∆′

∆ ≡ ∆′

(l : η) ·∆ ≡ (l : η) ·∆′
η 6= end

AlgorithmMC progressively refines the input set of constraint C by refining session variables, as-

signing a lower session type to external and internal choices, and by adding type constraints. When the

algorithm terminates, the resulting set C ′ is a refinement of C, after applying the inferred substitution

σ to it. We define more formally the notion of constraints refinement as follows:

Definition 7.2.18 (Constraints refinement). A constraint set C is a refinement of constraint set C ′,

written C ` C ′, when:

• for all constraints (C ` ψin ∼ η′) in C ′, there exists a session η such that C ` η′ <: η and

C ` ψin ∼ η hold.

• for all constraints (C ` ψex ∼ η′) in C ′, there exists session η such that C ` η′ <: η and

C ` ψex ∼ η hold.
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• if C ′ ` push(l : η′) ⊆ β, then C ` push(l : η) ⊆ β and C ` η <: η′

• for all other constraints (g ⊆ g′) in C ′, C ` g ⊆ g′ holds

Following [Amtoft et al., 1999, Sec. 2.2.5, p.51], substitution is defined as follows:

Definition 7.2.19 (Session inference substitution). An inference substitution σ is a total function

from session variables ψ to sessions η. The domain of an inference substitution σ is dom(σ) =

{ψ |σ(ψ) 6= ψ } and its range is rg(σ) =
⋃
{FV (σ(ψ)) |ψ ∈ dom(σ) }.

Substitutions preserve constraints refinement:

Lemma 7.2.20 (Substitution invariance). Let C and C ′ be well-formed, and σ a session inference

substitution. If C ′ ` C, then C ′σ ` Cσ.

Proof. Invariance on ψ and ρ variables is proved by case analysis as Lemma 2.17, p. 68 of [Amtoft et al., 1999].

The cases for ψin, ψex and α can be proved similarly.

We now prove that the algorithm MC produces a refinement of its input constraints set C. We

first need to show prove that the sub-type checking sub-routing produces refinements:

Lemma 7.2.21 (Constraint refinement on sub-types). If sub(η1, η2, C) = (σ1, C1), then C1 ` Cσ1.

Proof. By structural induction on η1.

Function sub terminates when either η2 has the same shape as η1 (i.e. if η1 =!T1.η
′
1 then η2 =

!T2.η
′
2), or η2 is a variable ψ2. In the latter case (η1, ψ2, C) = (σ,Cσ) with σ = [ψ2 7→ η1], and the

lemma is trivially proved by Cσ ` Cσ.

Consider the former case, when η1 and η2 have the same shape. When η1 = end the lemma holds

trivially. If η1 is !T1.η
′
1, then η2 =!T2.η

′
2; by induction we have C1 ` Cσ1 ∪ {T2σ1 ⊆ T1σ1}, which

implies C1 ` Cσ1 by definition of constraint refinement. The case for η1 =?T1.η
′
1 is proved similarly.

The cases for delegate and resume hold directly by inductive hypothesis.

When η1 is an internal choice, we need to show that f(I2, C) = (σ1, C1) implies C1 ` Cσ1. This

can be easily proved by induction of the size of I2. The base case (line 21) is trivial. In the inductive

case, if a label k from I2 is missing in I1 (lines 22-25), then
⊕

i∈I1∪{k}!Li.η1i ⊕ η2k is a subtype of⊕
i∈I1 !Li.η1i by definition (because I1 ∪ {k} ⊂ I1) and the lemma follows by inductive hypothesis. If

k is in I1, then the lemma follows directly by inductive hypothesis.

When η1 is an external choice, we need to show that f(J1∪J2, C) = (σ1, C1) implies C1 ` Cσ1. We

prove this by induction on the size of J1 ∪ J2. Let η1 =
∑
i∈(I1,I2)?Li.η1i and η2 =

∑
i∈(J1,J2)?Li.η2i

be such that I1 ⊆ J1. The base case (line 36) is trivial. In the inductive case, suppose that a label

k is either in the inactive labels J2, or it is in both the active labels I1 and J1. Then it is sufficient

to show that η1k is a subtype of η2k, which holds by inductive hypothesis on sub. If k is in the active

labels I1 but it is in the inactive labels J2, then removing k from I1 and adding it to the inactive

labels I2 makes I1\{k} be a subset of J1; under this condition the subsequent call f(I ∪ {k}, C1) is

proved as in the previous case. If k is neither in I1 nor I2, then k is added to the inactive labels I2

and the lemma is proved as in the previous case too.
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We can now prove that MC produces refinements:

Lemma 7.2.22 (Constraint refinement). If MC(∆ � b, C,K) = (σ1, C1), then C1 ` Cσ1.

Proof. By induction on the execution size |∆σ � bσ|C1 .

Most cases follow directly from the inductive hypothesis, such as the case for push:

11 −− push a new frame on the stack

12 MC
(
∆ � push(l : η), C, K

)
= (σ2σ1, C2)

13 if (σ1,∆1) = closeFrame(l,∆)

14 and (σ2, C2) = MC
(
(l : ησ1) ·∆1 � τ, Cσ1, Kσ1

)
At line 14 MC

(
(l : ησ1) ·∆1 � τ, Cσ1, Kσ1

)
= (σ2, C2). By inductive hypothesis we obtain directly

that C2 ` Cσ2σ1.

The lemma is also trivial when b is a pop operation that sends a type T :

16 −− send

17 MC
(
(l :ψ) ·∆ � popρ!T, C, K

)
= (σ2σ1, C2)

18 if C ` l ∼ ρ

19 and σ1 = [ψ 7→ !α.ψ′] where α,ψ′ fresh

20 and (σ2, C2) =MC
(
(l :ψ′) ·∆σ1 � τ, Cσ1 ∪ {T ⊆ α}, Kσ1

)
At line 20 MC

(
(l :ψ′) · ∆σ1 � τ, Cσ1 ∪ {T ⊆ α}, Kσ1

)
= (σ2, C2). By inductive hypothesis we

obtain directly that C2 ` Cσ2σ1 ∪ {Tσ2 ⊆ ασ2}, which by definition constraints refinement implies

that C2 ` Cσ2σ1, and the lemma is proved. The lemma is proved similarly when a type T is received

(lines 25-32), and when a session is resumed (lines 50-61). When pop delegates a session (lines 34-48),

the lemma is proved by Lem. 7.2.21.

The lemma holds directly by inductive hypothesis when pop selects a label and either a new

constraint is added (lines 63-67), or the label is already contained in the internal choice on the

stack (lines 69-71). When a new label is added to the internal choice on the stack, the lemma is a

straightforward consequence of the definition of subtyping for internal choice (the new internal choice

is larger, therefore it is a subtype of the original one) and of inductive hypothesis.

Suppose that pop chooses a label from an external choice. If the clause at line 89 is called, then

the lemma is proved straightforwardly by inductive hypothesis. If the clause at line 78 is called, then

a new constraint on ψex is added to C. Subsequently the clause at line 89 is called, and the lemma is

proved as in the first case. If the clause at line 84 is called, then
∑
j∈(I1J1,I2J2)?Lj .ηj is a super-type

of
∑
i∈(I1,I2I3J1J2)?Li.ηi by definition of sub-typing, since I1 ⊆ I1J1 and the indexes in the former

session are all contained in the indexes of the latter session. By definition, the clause at line 89 is

called next, and the lemma is proved as in the first case.

Because of sub-typing, the structure of inferred sessions may change during inference (for example

when a new label is added to an internal choice). Therefore we need to define the notion of stack

sub-typing :
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Definition 7.2.23 (Stack sub-typing). Let C be well-formed. A stack ∆1 is a subtype of stack ∆2,

or C ` ∆1 <: ∆2, when the following relations are satisfied:

C ` ε <: ε

C ` (l : η1) ·∆1 <: (l : η2) ·∆2 if C ` η1 <: η2 and C ` ∆1 <: ∆2

The following theorem, also known as Liskov’s substitution principle in [Vasconcelos et al., 2006],

states that if a configuration ∆ � b can take a transition, then for any ∆′ sub-stack of ∆, ∆′ � b can

also take a transition. Substitutions also propagate over transitions:

Theorem 7.2.24 (Liskov’s substitution principle). Let C2 ` C1σ, C2 ` ∆2 <: ∆1σ and C2 `

confined(∆2). If ∆1 � b→C1 ∆′1 � b
′, then:

1. ∆2 � bσ →C2 ∆′2 � b
′σ1

2. C2 ` ∆′2 <: ∆′1σ

3. C2 ` confined(∆′2)

Proof. By rule induction. The proof of 3 is a trivial consequence of the hypothesis C2 ` confined(∆2),

since the continuation of a confined session is itself confined. We only prove 1 and 2:

Case End: Suppose that (l : end) · ∆1 � b →C1 ∆1 � b. By definition of substitution ((l : end) ·

∆1)σ = (l : end) · ∆1σ; by definition of stack sub-typing the hypothesis C2 ` ∆2 <: ((l : end) ·∆1)σ

implies that ∆2 = (l : end) ·∆′2 for some ∆′2 such that C2 ` ∆′2 <: ∆1σ. Rule End yields ∆2 � bσ →C2

∆′2 � bσ, which proves the proposition together with C2 ` ∆′2 <: ∆1σ

Case Beta: Let ∆1 � β →C1 ∆1 � b, assuming that b ` β ⊆ C1. By definition of refinement,

C2 ` C1σ implies that C2 ` bσ ⊆ βσ. Since βσ = β by definition of inference substitution, C2 ` bσ ⊆ β

holds, and therefore the proposition is proved by applying Rule Beta on ∆2 � β.

Case Plus: Let ∆1 � b1⊕b2 →C1
∆1 � bi with i ∈ {1, 2}. By definition of substitution (b1⊕b2)σ =

b1σ ⊕ b2σ. The proposition is proved by straightforward application of Rule Plus, which yields

∆2 � b1σ ⊕ b2σ →C2 ∆2 � biσ.

Case Push: Let ∆1 � push(l : η) →C1
(l : η) · ∆1 � τ with l ] ∆. By application of Rule Push,

∆2 � push(l : η)σ →C2
(l : ησ) · ∆2 � τ holds because push(l : η)σ = push(l : ησ). By definition of

subtyping C2 ` ησ <: ησ holds by reflexivity, and therefore C2 ` (l : ησ) ·∆2 <: (l : ησ) ·∆1σ holds,

because C2 ` ∆2 <: ∆1σ holds by hypothesis; therefore the proposition is proved.

Case Out: Let (l : !T.η) ·∆1 � popl!T0 →C1
(l : η) ·∆1 � τ , with C1 ` confined(T0) and C1 ` T0 <:

T . By definition of substitution ((l : !T.η) · ∆1)σ = (l : !Tσ.ησ) · ∆1σ holds. By definition of stack

sub-typing, C2 ` ∆2 <: (l : !Tσ.ησ) ·∆1σ implies that ∆2 = (l : !T ′.η′) ·∆′2 such that C2 ` Tσ <: T ′

and C2 ` ∆′2 <: ∆1σ.

Since C2 ` C1σ holds by hypothesis, then C1 ` T0 <: T implies C2 ` T0σ <: Tσ. By transitivity

C2 ` T0σ <: Tσ and C2 ` Tσ <: T ′ imply C2 ` T0 <: T ′. Since popl!T0σ = popl!(T0σ), an application

Rule Out yields (l : !T ′.η′) ·∆′2 � popl!T0σ →C2 (l : η′) ·∆′2 � τ , which proves 1. By definition of session

sub-typing, the hypothesis C2 ` (l : !T ′.η′) ·∆′2 <: (l : !Tσ.ησ) ·∆1σ implies η′ ` ησ <: C2. We have
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already proved that C2 ` ∆′2 <: ∆1σ holds, therefore we can infer C2 ` (l : η′) ·∆′2 <: (l : ησ) ·∆1σ,

which proves 2.

Cases In, Del, Res: proved as in case Out, using the fact that sub-typing is covariant for In, Res,

and it is contravariant for Del.

Case ICh: Let (l :
⊕

i∈I !Li.ηi) · ∆1 � popl!Lk →C1 (l : ηk) · ∆1 � τ with k ∈ I. By definition

of internal choice variables, configuration (l :
⊕

i∈I !Li.ηi) · ∆1 � popρ!Lk is equivalent to (l :ψin) ·

∆1 � popρ!Lk with C1 ` ψin ∼
⊕

i∈I !Li.ηi for some ψin. Since C2 ` C1σ holds by hypothesis, by

definition of constraint refinement there exists a session η′ =
⊕

j∈J !Lj .η
′
j such that C2 ` ψin ∼ η′ and

C2 `
⊕

j∈J !Lj .η
′
j <:

⊕
i∈I !Li.ησi hold, with J ⊆ I.

Since J ⊆ I, k ∈ I implies k ∈ J ; and since (popρ!Lk)σ = popρ!Lk, an application of Rule ICh

yields (l :
⊕

j∈J !Lj .η
′
j) ·∆′2 � (popρ!Lk)σ →C2

(l : η′k) ·∆′2 � τ , which proves 1. By definition of session

sub-typing C2 `
⊕

j∈J !Lj .η
′
j <:

⊕
i∈I !Li.ηi implies C2 ` η′k <: ηk; since C2 ` ∆′2 <: ∆1σ holds by

hypothesis, then C2 ` (l : η′k) ·∆′2 <: ∆1σ holds too, which proves 2.

Case ECh: similar to the case for ICh.

Lemma 7.2.25 (Soundness of sub). If sub(η1, η2, C) = (σ1, C1), then C1 ` η1σ1 <: η2σ1.

Proof. By structural induction on η1. The structure of the proof is similar to the structure of the

proof for Lem. 7.2.21.

When η1 and η2 have mismatching shapes, sub substitutes η1 for η2 or viceversa, and the lemma is

proved straightforwardly by reflexivity of subtyping. When η1 =!T1.η
′
1 and η2 =!T2.η

′
2, C is expanded

with the constraint {T2 ⊆ T1}. By structural induction η′1 is a subtype of η′2; since C1 contains the

constraint {T2 ⊆ T1}, η1 is a subtype of η2 by definition of subtyping. The case for receive is similar;

the cases for delegation and resume follow straightforwardly by structural induction. When η1 is

either an internal or external choice, the lemma follows by Lem. 7.2.21.

Soundness of session inference depends on the following central result:

Theorem 7.2.26 (Soundness of Algorithm MC). Let C be well-formed in ∆ � b. If MC(∆ �

b, C,K) = (σ1, C1), then ∆σ1 ≡ ∆′ and ∆′ � K[b]σ1 ⇓C1
.

Proof. In order to account for K, the lemma is proved by induction on the lexicographic order given

by the execution size |∆σ1 � K[b]σ1|C1
and the length of K. Let us proceed by case analysis on

MC(∆ � b, C).

•1 −− remove terminated frames

2 MC
(
(l : end) ·∆ � b, C, K

)
=MC

(
∆ � b, C, K

)
This case follows directly from the inductive hypothesis.

•4 −− MC terminates with behaviour τ

5 MC
(
∆ � τ, C, ε

)
= (σ, Cσ)

6 if σ = finalize ∆

By definition of finalize, a ∆σ is equivalent to the empty stack ε, since finalize succeeds only

if it replaces all variables ψ in ∆ with end, and only end sessions are left in it. The lemma is

therefore proved by taking ∆′ = ε, because ε � τσ ⇓C holds trivially.
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•8 −− pop a sub−behaviour from the continuation stack

9 MC
(
∆ � τ, C, b ·K

)
=MC

(
∆ � b, C, K

)
By inductive hypothesis.

•11 −− push a new frame on the stack

12 MC
(
∆ � push(l : η), C, K

)
= (σ2σ1, C2)

13 if (σ1,∆1) = closeFrame(l,∆)

14 and (σ2, C2) = MC
(
(l : ησ1) ·∆1 � τ, Cσ1, Kσ1

)
If this clause succeeds, then also the inner calls to closeFrame does, which implies ∆σ1 ≡ ∆1.

Notice that ∆1 contain no frame of the form (l : η) for any η, i.e. l ] ∆1. Because of this and

by taking ∆′ = ∆1, the LTS allows the following transition:

∆′ � K[push(l : η)] −→C2
(l : η) ·∆′ � K[τ ]

Since the inner call MC
(
(l : ησ1) · ∆1 � τ, Cσ1, Kσ1

)
succeeds too, the lemma follows by

inductive hypothesis.

•16 −− send

17 MC
(
(l :ψ) ·∆ � popρ!T, C, K

)
= (σ2σ1, C2)

18 if C ` l ∼ ρ

19 and σ1 = [ψ 7→ !α.ψ′] where α,ψ′ fresh

20 and (σ2, C2) =MC
(
(l :ψ′) ·∆σ1 � τ, Cσ1 ∪ {T ⊆ α}, Kσ1

)
Let us assume that the above clause has been used. Because the domain of inference substitutions

is session variables ψ, in this case we have:

(
(l :ψ) ·∆

)
σ2σ1 � K[popρ!T ]σ2σ1 = (l : !α.(ψ′σ2)) ·∆σ2σ1 � (Kσ2σ1)[popρ!T ]

From the algorithm we have that C ` l ∼ ρ holds. The inner call toMC has C1 = Cσ1∪{T ⊆ α}

as input constraints set. By Lem. 7.2.22, C2 ` C1σ2, and therefore C2 ` (T ⊆ α)σ2, which

implies C2 ` T ⊆ α because σ2 is an inference substitution. Since C ` l ∼ ρ and C2 ` T ⊆ α

both hold, the abstract interpretation semantics allows the following transition:

(l : !α.(ψ′σ2)) ·∆σ2σ1 � (Kσ2σ1)popρ!Tc →C2 (l :ψ′σ2) ·∆σ2σ1 � (Kσ2σ1)[τ ]

By inductive hypothesis, (l :ψ′σ2) ·∆σ2σ1 � (Kσ2σ1)[τ ] ⇓C2
holds. Because of this, and since

(l : !α.(ψ′σ2)) · ∆σ2σ1 � (Kσ2σ1)popρ!Tc →C2
(l :ψ′σ2) · ∆σ2σ1 � (Kσ2σ1)[τ ], it follows that(

(l :ψ) ·∆
)
σ2σ1 � K[popρ!T ]σ2σ1 ⇓C2

holds, which proves the lemma.

• The other cases for popρ!T , popρ?T , popρ!Lk, popρ?Lk, popρ!ρd and popρ?ld are all proved

similarly, except for this case:

37 MC
(
(l : !ηd.η) · (ld : η′d) ·∆ � popρ!ρd, C, K

)
= (σ2σ1, C2)

38 if C ` l ∼ ρ and C ` ld ∼ ρd
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39 and (σ1, C1) = sub(η′d, ηd, C)

40 and (σ2, C2) =MC
(
(l : η) ·∆σ � τ, C1, Kσ1

)
The only difference with the previous case is that we have to prove that C ′ ` ηd′σ <: ηdσ, which

follows by Lem. 7.2.25.

• Suppose that the following MC clause has been applied:

96 −− sequencing

97 MC
(
∆ � b1 ; b2, C, K

)
=MC

(
∆ � b1, C, b2 ·K

)
The lemma is proved directly by inductive hypothesis.

• Suppose that the following MC clause has been used:

99 −− internal choice in the behaviour

100 MC
(
∆ � b1 ⊕ b2, C, K

)
= (σ2σ1, C2)

101 if (σ1, C1) =MC
(
∆ � b1, C, K

)
102 and (σ2, C2) =MC

(
∆σ1 � b2σ1, C1, Kσ1

)
This case is proved by Lem. 7.2.22, inductive hypothesis and Prop. 7.2.24.

Soundness of Algorithm SI can be stated as follows:

Theorem 7.2.27 (Soundness of Algorithm SI). Let C be a well-formed constraints set. If SI(b, C) =

(σ1, C1), then ε � bσ1 ⇓C1
.

Proof. The definition of Algorithm SI is:

1 SI(b, C) = (σ2σ1, C2)

2 if (σ1, C1) =MC
(
ε � b, C, ε

)
3 and (σ2, C2) = choiceVarSubst C1

By definition of choiceVarSubst, C2 = C1σ2, which implies C2 ` C1σ2. The theorem follows directly

by soundness of MC, i.e. Prop. 7.2.26, and by Lem. 7.2.22, since ε ≡ ε holds.

7.2.3 Completeness of Algorithm SI

Lemma 7.2.28. If C ` C ′σ and ∀ψ.C ` σ(ψ) <: σ′(ψ), then C ` C ′σ′.

Proof. By structural induction on constraints over β, c, ψin and ψex.

Lemma 7.2.29 (Completeness of sub). Let η and η′ be well-formed in C and C0σ. If C ` η1σ <: η2σ

and C ` C0σ, then sub(η1, η2, C0) = (σ1, C1) terminates, and there exists a substitution σ′ such that

∀ψ ∈ dom(σ).C ` σ(ψ) <: σ′(σ1(ψ)) and C ` C1σ
′.

Proof. By structural induction on η1. Let η′1 = η1σ and η′2 = η2σ be such that C ` η′1 <: η′2.

If η1 is a variable ψ1, then sub terminates at line 52 with σ1 = [ψ1 7→ η2] and C1 = C0σ1, regardless

of the shape of η2. Moreover σ can be decomposed into σ = [ψ1 7→ η′1] · σ′′ for some σ′′. The lemma
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is proved by taking σ′ = σ′′, because C ` σ(ψ) <: σ′(σ1(ψ)) holds for all ψ ∈ dom(σ): for ψ = ψ1 we

have σ(ψ1) = η′1, which is a subtype of σ′(σ1(ψ)) = σ′(η2) = η′2 by hypothesis; for any other ψ, σ(ψ)

and σ′(ψ) are equal by definition. Moreover C ` C1σ
′ follows by Lem. 7.2.28.

If η1 is a session of the form !T1.η
′′
1 , then either η2 = ψ2, or η2 =!T2.η

′′
2 with C ` T2 <: T1 holding by

definition of subtyping. The first case is proved similarly to the case for η1 = ψ1, but using the clause

at line 53. The second case is proved by inductive hypothesis, since sub in this case only adds a new

constraint {T2 ⊆ T1} to C0 in the clause at line 5. The proof for the case η1 =?T1.η
′′ is proved similarly

at line 8, considering that session sub-typing is covariant instead of contravariant. When η1 =!η1d.η
′′
1

and η2 6= ψ2, the inner clauses at line 13 terminates by inductive hypothesis, and the lemma is proved

similarly by transitivity of the session subtyping relation and of constraint refinement. Similarly, when

η1 =?η1r.η
′′
1 and η2 6= ψ2, the clauses at line 16 terminate by inductive hypothesis and the proof is by

inductive hypothesis and transitivity too. When η1 = ψin1 and η2 6= ψ2, the lemma is proved by a

induction on the size of the internal choice indexes I2, where η2 = ψin2 and ψin2 ∼
⊕

i∈I2 !Li.ηi holds.

Similarly, when η1 = ψex1 and η2 6= ψ2, then η2 = ψex2 and ψex2 ∼
∑
j∈(J1,J2)?Lj .ηj hold, and the

proof follows by induction on the size of J1 ∪ J2 over the inner call to function f.

The completeness of Algorithm SI relies on the completeness of AlgorithmMC, stated as follows:

Theorem 7.2.30 (Completeness of Algorithm MC). Let ∆ � K[b] be well-formed in C and in C0σ.

If (∆ � K[b])σ ⇓C and C ` C0σ, then there exists σ′ such that MC(∆ � b, C0) = (σ1, C1) terminates,

∀ψ ∈ dom(σ).C ` σ(ψ) <: σ′(σ1(ψ)) and C ` C1σ
′

Proof. The lemma is proved by induction of the lexicographic order between the execution size |∆σ1 �

K[b]σ1|C1 and length of a behaviour b (i.e. structural induction).

Base case. The base case is when the execution size is equal to 1, that is, when J∆ � K[b]σKC =

{∆ � K[b]σ}, and ∆ � K[b]σ 6→C . Since ∆ � K[b]σ is strongly normalizing by hypothesis, then

∆ = ε and K[b] = τ , which implies that K = ε and b = τ . In such a case, the clause MC(ε �

τ, C0, ε) = (σid, C0) at line 5 terminates trivially. The lemma is proved by taking σ′ = σ, because

σ′(σid(ψ)) = σ′(ψ) = σ(ψ) for any ψ and therefore C ` σ(ψ) <: σ′(σ1(ψ)) holds by reflexivity, and

because C ` C0σid = C0 holds by hypothesis.

Inductive case. In the inductive case, the execution size |∆σ � K[b]σ|C is greater than 1, and

therefore there exists a configuration ∆′ � b′ such that ∆σ � K[b]σ −→C ∆′ � b′ holds. It is easy to

show that ∆σ � K[b]σ −→C ∆′ � b′ holds if and only if b is a pop, push We proceed by rule induction:

End: Suppose that Rule End has been used:

(l : end) ·∆σ � K[b]σ −→C ∆σ � K[b]σ

There are two cases to consider: either ∆ = (l : end) ·∆′, or ∆ = (l :ψ) ·∆′ and ψσ = end. In the

first case, the clauseMC
(
(l : end)·∆ � b, C0, K

)
=MC

(
∆ � b, C0, K

)
and the lemma is proved

by the inductive hypothesis. In the second case, we need to show thatMC
(
(l :ψ)·∆ � b, C0, K

)
terminates; this can be proved by structural induction on K[b]. If b = τ and K = ε, then MC

terminates by applying finalize on ∆, and the proposition is proved as in the base case. If b = τ

and K 6= ε, then the proposition is proved by inductive hypothesis on the clause at line 9.
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If b = push(l : η′), then closeFrame closes ψ in the clause at line 12, because a well-formed stack

cannot push the same label l twice. In all other cases either the proposition follows by induction,

or K[b] must have the form of a pop operation. In the latter case, l cannot be contained in region

ρ of the pop operation by well-formedness of the stack, and therefore the only applicable clause

in the last one at line 120, that calls closeTop.

Push: Suppose that the following transition is taken:

∆σ � (K[push(l : η)])σ −→C (l : ησ) ·∆σ � K[τ ] if l ] ∆

We first need to show that MC
(
∆ � push(l : η), C0, K

)
terminates. Suppose that the frames

with closed sessions end are removed from the top of the stack, as in the case for End. The

first clause that matches MC
(
∆ � push(l : η), C0, K

)
is the one at line 12. By hypothesis

l ] ∆ holds, therefore the inner call to closeFrame can only return the identity substitution.

Therefore σ1 = σid and ∆1 = ∆ hold, and there exists a substitution σ′′ such that the starting

substitution σ can be split in the composition of σ1 and σ′′, i.e. σ = σ′′σ1 = σ′′. The lemma

is then proved by inductive hypothesis on the inner call to MC with the smaller configuration

(l : (ησ1)σ′′) · (∆1σ1)σ′′ � τ = (l : ησ) ·∆σ � τ .

Out: Let (∆ � K[b])σ = (l : !T.ησ) ·∆′σ � popρ!T ′, and suppose that the following transition is taken:

(l : !T.ησ) ·∆′σ � K[popρ!T ′] −→C (l : ησ) ·∆′σ � K[τ ] if C ` ρ ∼ l, pure(T ′), T ′ <: T

We must consider two cases: ∆ = (l :ψ) ·∆′ and σ(ψ) =!T.η, or (l : !T.η) ·∆′.

In the first case the call to MC
(
(l :ψ) ·∆′ � popρ!T ′, C0, K

)
is matched by the clause at line

17, and it produces the substitution σ1 = [ψ 7→ !α.ψ′] and a new constraint T ′ ⊆ α by definition,

where ψ′ and α′ are fresh variables. By hypothesis σ has the form [ψ 7→ !T.η′], and it can be

decomposed into σ′′ = [ψ 7→ !T.ψ′] and σ′′′ = [ψ′ 7→ η′]. The lemma is proved by applying

the inductive hypothesis on the inner call to MC and by taking σ′ = σ′′′[α 7→ T ], since σ′′ can

be further decomposed into σ1 and [α 7→ T ] and therefore the substitution [α 7→ T ] guarantees

that σ′σ1 = σ; therefore ∀ψ ∈ dom(σ).C ` σ(ψ) <: σ′(σ1(ψ)) follows by reflexivity. Notice that

C ` C1σ
′ holds too by definition of constraints refinement, because the new constraint T ′ ⊆ ασ

becomes T ′ ⊆ T when σ′ = σ′′′[α 7→ T ] is applied to it, and because C ` T ′ <: T holds by

hypothesis from the side-conditions on Rule Out.

If ∆ = (l : !T.η) ·∆′, then the call MC
(
∆ � popρ!T ′, C0, K

)
is matched by the clause at line

22. The lemma is proved straightforwardly by taking σ′ = σ, since Algorithm MC returns the

identity substitution in this case.

In: This case is proved similarly to [Out], using the clauses at lines 26 and 31, recalling that session

sub-typing is covariant instead of contravariant for inputs.

Del: This case is proved similarly to [Out], using the clauses at lines 35 and 40, together with Lem.

7.2.29 in the latter case. Notice that ld ∼ ρd holds by hypothesis, and therefore the clause at
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line 45 is not applicable.

Res: This case is proved similarly to [Out], using the clauses at lines 51 and 56. Notice that the

clause at line 59 cannot be called, because the labels in the behaviour b = popρ?lr match the

label in the stack ∆ by hypothesis.

ICh: Let (∆ � K[b])σ = (l :ψin) · ∆′σ � Kσ[popρ!Lj ], and suppose that the following transition is

taken:

(l :
⊕
i∈I

!Li.ηi) ·∆′ � Kσ[popρ!Lk] −→C (l : ηk) ·∆′ � Kσ[τ ] if (j ∈ I), C ` ρ ∼ l

There are two cases to consider: either ∆ = (l :ψ) ·∆′, or ∆ = (l :ψin) ·∆′.

If ∆ = (l :ψ) ·∆′, then the only clause that matches the call to MC
(
∆ � b, K, C0

)
is the one

at line 64. Since ψσ = ψin, substitution σ can be decomposed as σ = σ′[ψ 7→ ψin]. Moreover

C ` ψin ∼
⊕

i∈J !Li.ηi and k ∈ J hold by the side conditions of Rule ICh. Algorithm MC first

produces the substitution σ1 = [ψ 7→ ψin], and introduces a new constraint ψin ∼
⊕

i∈{k}!Li.ψi

in C0, where ψk is a fresh variable. Let σ′′ = σ′[ψk 7→ ηk]σ1. Since (l :ψ) ·∆′ � Kσ′′[popρLk] ⇓C
holds by hypothesis, and since ((l :ψk)·∆′ � K[τ ]) = (l : ηk)·∆′σ′σ1 � Kσ′σ1[τ ] holds because ψk

is a fresh variable, then (l : ηk) ·∆′σ′σ1 � Kσ′σ1[τ ] ⇓C holds too. Moreover, since C ` C0σ holds

by hypothesis and C ` ψin ∼
⊕

i∈J !Li.ηi where J contains k both hold by the side condition

of Rule ICh, then C ` C0σ
′′ ∪ {ψin ⊆ ψkσ

′′} holds too, because by definition of constraint

refinement and of session sub-typing C `
⊕

j∈J !Lj .ηj <:
⊕

i∈{k}!Li.ηi. Therefore the inductive

hypothesis applies to the inner call of MC
(
(l :ψk) · ∆′ � τ, K, C0 ∪ {ψin ⊆ ψk}

)
, and which

also proves the theorem, since ψk is not in the domain of σ.

In the case that ∆ = (l :ψin) · ∆′, then C0 must contain a constraint ψin ∼
⊕

i∈I !Li.ηi by

definition of constraint well-formedness. There are two sub-cases to consider: either k is in I,

or it is not. In the former case the theorem is proved straightforwardly by inductive hypothesis

on the inner clause at line 69. If k is not in I, then the only applicable clause of AlgorithmMC

is the one at line 73, which adds k to ψin, and the theorem follows by inductive hypothesis on

the inner call to MC with the extended internal choice.

ECh: Suppose that the following transition is taken:

(l :
∑

i∈(I1,I2)

?Li.ηi) ·∆ �
∑
j∈J

popρ?Lj ; bj −→C (l : ηk) ·∆ � bk if k ∈ J, C ` ρ ∼ l,

I1 ⊆ J ⊆ I1 ∪ I2

The proof of this case is similar to the proof for Rule ICh: if ∆ = (l :ψ) · ∆′, then Algorithm

MC terminates by applying the clause at line 78, which first creates a new constraint on ψex,

and then recursively calls the clause at line 89, which is proved by inductive hypothesis and

transitivity of session sub-typing. If ∆ = (l :
∑

i∈(I1,I2)

?Li.ηi) · ∆′, then either the clause at line 84

is called, in case either some labels in J from the behaviour are missing from I1 or I2, or in

case the active labels in I1 are more than the labels in J ; or the clause at line 89 is called, in
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case the session type designated by ψex contains all the labels J in the behaviour, and the active

labels I1 are included in J . In the former case the constraint in the session type are adjusted

appropriately and the theorem is proved as in the first case, because the clause at line 89 is the

only clause that matches the adjusted session type. In the latter case the proof is by inductive

hypothesis and transitivity as in the first case.

84 89

Spn: Suppose that the following transition is taken:

∆ � K[spawn b] −→C ∆ � K[τ ] if ε � b ⇓C

Assume that the frames with closed sessions end are removed from the top of the stack, as in

the case for End, resulting in a stack ∆′. The clause MC
(
∆′ � spawn b, K, C0

)
is matched at

line 105. Since ε � b and ∆′ � K[τ ] are smaller configurations than ∆′ � spawn b, the theorem

follows by inductive hypothesis and transitivity of session sub-typing.

Rec: This case is proved similarly to the case for Rule Spn, with the exception that the clause at

line 110 is called, and that the environment C0 is properly manipulated to swap the recursive

constraint recb β ⊆ β with τ ⊆ β.

Plus: Suppose that the following transition is taken:

∆ � K[b1 ⊕ b2] −→C ∆ � K[bi] if i ∈ {1, 2}

Assume that the frames with closed sessions end are removed from the top of the stack, as in

the case for End. The only applicable clause in this case is the one at line 100. The inductive

hypothesis can be applied directly on the first inner call to MC, which implies that σ can be

refined into σ′σ1. By inductive hypothesis, C ` σ(ψ) <: σ′(σ1(ψ)) holds for all ψ in the domain

of σ. Notice that, by construction of algorithms sub and MC, σ′σ1 produces super types only

in the case of delegation, therefore it is easy to show that (∆ � K[b1⊕ b2)σ′σ1 ⇓C holds as well.

Therefore (∆ � K[b2)σ′σ1 ⇓C holds too, and the theorem is proved by the inductive hypothesis.

Beta: Suppose that the following transition is taken:

∆σ � βσ −→C ∆σ � b if C ` b ⊆ β

Since ∆ � βσ is well-formed in both C and C0σ, variable β is constrained not only in C (by

assumption C ` b ⊆ β holds), but it is also constrained to some b′ in C0σ, i.e. C0σ ` b′ ⊆ βσ. By

definition of constraint refinement, C ` C0σ implies that b′ = bσ, because there is no sub-typing

relation defined for behaviours, therefore bσ and b′ must be equal. The lemma is then proved

directly by inductive hypothesis.

Assume that the frames with closed sessions end are removed from the top of the stack, as in the

case for End. If the top of the stack in ∆ is not end, the only applicable clause is the one at line
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116, whereby MC
(
∆ � β, C0, K

)
=MC

(
∆ � b0, C0, K

)
with b0 =

⊕
{bi | ∃i. (bi ⊆ β) ∈ C}.

By definition of MC, the only clause that matches the inner call MC
(
∆ � b0, C0, K

)
is the

clause for internal choice at line 100. Since the execution size of ∆σ � βσ is greater than the

execution size of each ∆σ � biσ component, the proof follows by inductive hypothesis, in the

same way as for Rule Plus.

Seq: Suppose that the following transition is taken:

∆ � K[b1; b2] −→C ∆′ � K[b′1; b2] if ∆ � b1 −→C ∆′ � b′1

Assume that all closed end sessions are removed from ∆, resulting in ∆′, as for the case End.

The clauseMC
(
∆′ � b1; b2, K, C0

)
becomesMC

(
∆′ � b1, b2 ·K, C0

)
at line 97, and the lemma

is proved by inductive hypothesis, because the execution size of ∆′ � K[b1; b2] is equal to the

execution size of ∆′ � b2 ·K[b1], but the size of b1 is smaller than the size of b1; b2.

Tau: Suppose that the following transition is taken:

∆ � K[τ ; b] −→C ∆ � K[b]

Assuming that all closed session are removed from ∆ as in the case for End and that a stack

∆′ is returned, the clause at line 97 is called first, whereby b2 is pushed on the stack K. Then

the clause at line 9 is called recursively, whereby the τ behaviour is discarded and b2 is popped

back from the stack. The lemma follows by inductive hypothesis on the smaller configuration

∆′ � K[b2].

Completeness for session type inference can be stated as follows:

Theorem 7.2.31 (Session type inference completeness). Let ε � bσ? and C? be well-formed. If

ε � bσ? ⇓C? and C? ` C, then SI(b, C) = (σ1, C1) and there exists σ such that C? ` C1σ and

∀ψ ∈ dom(σ?).C ` σ?(ψ) ⊆ σσ1(ψ).

Proof. The proof follows by applying Proposition 7.2.30 on the configuration ε � b under C first.

Algorithm MC returns σ1 and C1 such that there exists a σ′ such that C ` σ?(ψ) ⊆ σ′σ1(ψ) for any

ψ in the domain of σ?, and C ` C1σ
′. Since the call to choiceSubst simply substitutes ψin and ψex

variables with their (unique) relative internal and external choices in C1, the new substitution σ2 and

C2 that this function returns does not change the typing of sessions, and therefore ∀ψ ∈ dom(σ).C `

σ(ψ) <: σ′(σ2(σ1(ψ))) holds, and C ` C2σ
′ follows by C ` C1σ

′, which proves the lemma.

7.3 Algorithm D

The duality check algorithm, which we call Algorithm D, takes the constraints set C calculated by the

second stage, and returns a larger constraints set C ′. As in Nielson& Nielson, the algorithm simply

halts when a duality check fails, rather than throwing an exception.
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(σ,C ] {end ./ end}) ↪→ (σ,C)
(σ,C ] {!T1.η1 ./ ?T2.η2}) ↪→ (σ,C ∪ {T1 ⊆ T2, η1 ./ η2})
(σ,C ] {!η′1.η1 ./ ?η′2.η2}) ↪→ (σ′σ,C ′ ∪ {η1σ

′ ./ η2σ
′}) if (σ′, C ′) = sub(C, η1, η2)

(σ,C ] {
⊕
i∈I0

!Li.η1i ./
∑

i∈(I1,I2)

?Li.η2i}) ↪→ (σ,C ∪
⋃
i∈I0
{η1i ./ η2i}) if I0 ⊆ I1

(σ,C ∪ {ψ1 ./ η2}) ↪→ (σ′σ,C ′) if (σ′, C ′) = expand(C,ψ1 ./ η2)
(σ,C ∪ {ψin ./ η2}) ↪→ (σ′σ,C ′) if (σ′, C ′) = expand(C,ψin ./ η2)
(σ,C ∪ {ψex ./ η2}) ↪→ (σ′σ,C ′) if (σ′, C ′) = expand(C,ψex ./ η2)

Fig. 7.1: Transition rules for Algorithm D.

Algorithm D manipulates a new kind of constraints, called duality constraints. A duality constraint

has the form (η1 ./ η2), where η1 and η2 are inference session types. At the beginning, Algorithm DC

creates a duality constraint η1 ./ η2 for each channel c and c̄ such that session types η1 and η2 have

been derived, i.e. such that {η1 ⊆ c, η2 ⊆ c̄} ∈ C. For any other channel c such that {η1 ⊆ c} is in

C, but no constraint {η2 ⊆ c̄} is in C, Algorithm DC introduces a constraint η1 ./ ψ2, where ψ2 is a

fresh variable.

After this initial setup, Algorithm DC non-deterministically applies one of the following rules to

the configuration (σid, C), until no more rules can be applied: where the helper function sub is the

same helper function from Algorithm SI (which returns a substitution and a set of constraints such

that the two input sessions are in the sub-typing relation).

The duality constraints are increasingly simplified, until no more simplifications are possible. After

Algorithm DC is finished, the input set C fails the duality check when there exists a duality constraint

Cη1 ./ η2 such that neither η1 or η2 are fresh session type variables ψ, i.e. η1 6= ψ1 and η2 6= ψ2.

Algorithm D collects all c ∼ η1 and c̄ ∼ η2 constraints in C ′, generates duality constraints η1 ./

η2 and iteratively tries to discharge these constraints by applying the rules of Def. 6.4.11, possibly

substituting variables with concrete terms. It ultimately returns a substitution σ and the set of

constraints C ′′ such that C ′′ is a valid type solution according to Def. 6.4.10. For example, if η1 =!T1.η
′
1

and η2 =?T2.η
′
2, the empty substitution and the constraints {T1 ⊆ T2, η

′
1 ./ η

′
2} are generated. When

comparing internal and external choices, D checks that all the branches in the internal choice are

included in the set of active branches in the external choice. When one of the two sessions is a

variable ψ, the algorithm collects all constraints ψ ./ ηi and calculates the least super-type of the

dual of all ηi sessions. Algorithm D succeeds when no more simplification step can be taken, and only

duality constraints among session variables remain. Soundness and completeness of Algorithm D is

straightforward.
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Chapter 8

Literature review

This chapter present an overview of the latest approaches to non-isolated, communicating transactions

in the literature. The existing work in the literature can be categorized along three main approaches.

The first one is a foundational approach, wherein communicating transactions constructs are inves-

tigated through process algebras, such as CCS, the π or Join calculus, in order to give a formal

foundation to Service composition. Another approach is the extension of concurrent programming

languages, such as CML, and concurrency models, such as the Actor model or the Join calculus, with

transactional constructs, usually with the goal of making concurrent programming easier. Last is

the attempt to extend the Software Transactional Memory (STM) model. By dropping the isolation

requirement in a controlled manner, communication between transactions is allowed. The goal of this

approach is to make concurrent programming easier as well, while exploiting previous research and

implementation on STM.

We will discuss encodings of the Saturday Night Out problem, described in Chapter 1, for some of

languages investigated in this survey. After having reviewed these approaches, we will draw parallels

and differences among them, and we will present recurring properties in the literature that seem to

characterise communicating transactions.

8.1 Process calculi

8.1.1 Overview

Many approaches to communicating transactions have been proposed in the area of process algebra.

We can identify two main areas that motivate the need for transactions: service composition and

modeling physical systems, mainly biochemical ones.

Ever since the advent of the Internet, an ever common trend that has been witnessed is the offer of

computational services over the web. Web Services technology aims to facilitate the interoperability

of such services in a network, which is often composed of very diverse systems that are not designed

to cooperate with each other. It is generally useful to define new web services on top of smaller

web services. This aggregated web service will have to execute all of its sub-services in order to be

considered complete; if any of the sub-services fails or is not available, the aggregated service is not
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valid and must annul all the partial work it completed thus far. We can see that these kinds of services

enjoy some form of atomicity.

Particularly important in this regard is the concept of long running transactions (LRT). First intro-

duced in [Garcia-Molina and Salem, 1987] (albeit under a different name), a long running transaction

is a transaction whose execution takes a substantial amount of time, possibly on the order of hours or

days, and that involves collaboration with distributed components. The cause of the lengthy duration

might be the need to access to many external components, lengthy computations, interaction with

human users, and so on. The target of [Garcia-Molina and Salem, 1987] was database applications,

and LRTs cannot be implemented efficiently with traditional transactions because of the excessive

latency. Traditional transactions need to maintain exclusive access of shared resources in order to

preserve the semantic invariant of atomicity. It is not acceptable for this to happen for an extended

period of time, because it penalizes other shorter-termed transactions, which end up aborting more

frequently; LRTs themselves might struggle to have all the required resources at once.

The proposed solution to handle LRTs is to weaken the notion of atomicity from traditional

ACID transactions. Rather than relying on atomicity to preserve database consistency, all long

running transactions must specify a compensation. A compensation is an additional piece of code,

whose purpose is to reestablish any invariant that might be violated during the execution of its

respective transaction prior to commit. The first solution to handle LRTs in such a manner is

[Garcia-Molina and Salem, 1987], sagas. LRTs are divided in smaller transactions, each represent-

ing a unit of work and each equipped with its own compensation. A saga comprises a top-level

transaction that wraps the smaller unit of work, which are transactions as well. Sagas guarantee

either the complete execution of all their nested transactions, or the execution of their compensations

in reverse commit order, in case of aborted partial executions. For example, suppose that we need to

book five seats in a flight reservation system. We can write a transaction that books a single seat, and

whose compensation frees its reservation in the database. Such a saga will be an outer transaction

containing five nested transactions, each booking a single seat. When running this saga, the flight

reservation system will be able to run the five transactions concurrently with other sagas, rather than

sequentially (i.e. getting exclusive access to the records of the whole flight, book five seats and then

release access).

Many industrial proposal for web services, known as web service composition languages (WSCL),

support long running transactions with varying forms of compensation (not necessarily sagas), such as

WSDL, WSCI, WS-BPEL, WSFL, BizTalk, XLANG and BPMN. Unfortunately these proposals lack

a foundational formal theory, and starting from the seminal work of [Garcia-Molina and Salem, 1987],

many formal languages have been proposed to reason about LRTs. One such example among the

first proposed formalisms is the πt-calculus from [Bocchi et al., 2003, Bocchi, 2006]. The πt-calculus

extends the asynchronous π calculus with a transactional construct to handle arbitrarily nested LRTs

(unlike sagas). LRTs are expressed by the trans(P, F,B,C) construct, that monitors the execution

of process P . Parent transactions collect compensations C from nested transactions in the failure bag

B. In case of failure, a parent transaction executes the failure bag B first, followed by the failure

manager F .

An important difference between sagas and the πt-calculus is that transactions in the πt-calculus
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are allowed to interact with each other, whereas no notion of communication is present in sagas.

This is to be expected, since sagas were designed to maintain consistency in database updates, rather

than the coordination of distributed components, as in web services. In the πt-calculus, transac-

tions are allowed to freely communicate with any other process. In case of aborts, asynchronous

messages generated within a transaction are not removed, but are visible to other processes. As in

the πt-calculus, StAC from [Butler and Ferreira, 2004, Butler et al., 2005] extends Communicating

Sequential Processes [Hoare, 1978a], with primitives to install, remove and activate compensations.

StaC allows arbitrary nesting of transactions too, and synchronization among processes via events,

as is common in CSP. Webπ∞ [Mazzara and Lucchi, 2004], has a transaction model similar to that

of the πt-calculus, but transactions are named. Using transaction names, it is possible for any pro-

cess to abort another one. Webπ∞ has been used to effectively model the BPEL language. dcπ

[Vaz et al., 2009], allows for dynamically extensible compensations, which are built progressively de-

pending on the actions executed by sub-transaction in an LRT. An interesting example of a language

for web services is cJoin from [Bruni et al., 2015, Bruni et al., 2002], which we will discuss in greater

detail in Section 8.1.2.

In addition to soundly aggregating business services, such as web services in Service-Oriented Ar-

chitectures (SOA), communicating transactions have found another interesting application in mean-

ingfully modeling biological systems. In the biological and chemical world, some systems are naturally

reversible: if a biochemical system transitions from a configuration G to a configuration G′, which

we can represent as G → G′, the system can spontaneously perform the reverse transition G′  G

and return back to its original state. For example, [Danos and Krivine, 2007] describes the principle

of protein elasticity in DNA, in the absence of particular system configurations such as complexa-

tion or activation, proteins can fold together and unfold back to their original form freely. In the

presence of complexation and activation, the principle of plasticity operates, according to which pro-

teins will not be able to revert back to their original form. The principles of elasticity and plasticity

have a parallel in communicating transactions by the principles of transaction reversibility and irre-

versibility. As a further example, a fundamental mechanism called toehold mediated branch migration

[Cardelli and Laneve, 2011a], a special DNA strand called toehold can displace another toehold within

a double DNA strand. The operation releases the affected toehold, which in turn can displace the initial

toehold itself, thus reverting the DNA strand back to its original form. Reversibility has been found

to be useful to model quantum computing and software testing too [Phillips and Ulidowski, 2007].

The first formal model proposed for this kind of reversible systems is Reversible Communicating

Concurrent Systems [Danos et al., 2004, Danos and Krivine, 2005](RCCS), where each CCS process

can undo any of the interaction it has had with other partners at any time. In a followup work, this

initial study was complemented with a notion of irreversibility within reversible transactions. We

will describe in more detail RCCS in Section 8.1.3, but we will provide a short introduction to it

here in order to discuss the subsequent work in the area. In Reversible CCS, each standard CCS

process is equipped with a memory, which is a stack that records which actions the process has taken,

and with whom. A forward transition will perform a standard CCS action and store the relative

information in the memory; a backward transition will pop information from the memory stacks of the

involved processes, and rebuild their original processes as if they had not communicated at all. A key
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contribution in this work is the realization that reversible actions need only be causally consistent :

past actions need not be reverted deterministically, undoing each single operation as it has been

performed in a time line, but they can be undone non-deterministically, thus swapping some past

transitions.

Phillips and Ulidowski describe an alternative technique to obtain reversible computations in

[Phillips and Ulidowski, 2007]. Rather than equipping processes with memories to store their original

form, evaluation in [Phillips and Ulidowski, 2007] does not consume processes, but just moves an

“execution pointer” across the syntactical definition of a process, in order to keep track of which

part of it is currently being executed. To clarify what we mean, consider the following CCS process

P = a.b + c. Under CCS’s operational semantics, P can perform either one of these two transitions,

either P
a−→ b = Q or P

c−→ 0 = Q′. Notice that the plus operator “+” disappears during the transition,

and thus it is impossible to reverse Q or Q′ to the original process P . Rather than substituting a

process during evaluation, we can mark which branch is currently being evaluated, and which actions

have been executed. For example, if we mark with an underscore sign the actions that have been

executed, we can get the following alternative evaluations: P
a−→ a.b + c and P

c−→ a.b + c. We now

have enough information to revert the evaluation of a process, by just removing the marks in reverse

order. This approach is not enough though. Consider the process P = a | a and Q = a.a. Both

processes can perform two a actions, but in P both actions can be reversed in any order, whereas

in Q the second action a must be reverted before the first one (because the second term needs to

revert from a.a to obtain a.a). To avoid this problem, past CCS prefixes are decorated with unique

identifiers to distinguish them from other prefixes with the same name.

A further alternative is presented in [Cardelli and Laneve, 2011b, Cardelli and Laneve, 2011a] with

the presentation of reversible structures. Reversible structures is a simple algebra based on asyn-

chronous message passing. The basic units of computation are gates, which define sequences of input

messages to capture, followed by sequences of output messages to release. Prefixes are coupled with a

similar mechanism as in [Phillips and Ulidowski, 2007] based on unique IDs. All reductions on gates

(i.e. consummation or production of messages) are reversible. With the addition of a parallel and

restriction operator, reversible structure can encode CCS’s choice operator and the Join calculus Join

definitions; an encoding of the asynchronous RCCS in reversible structures is provided, together with

a standardization lemma over weakly coherent structures (that is, structures in which all message IDs

are unique), which allows reasoning about these structures without considering converse reductions.

Reversible structures are used to model actual instances of biological systems, such as the toehold

mediated branch migration.

Starting from CCS, the idea of reversible computations has been ported to different languages

and extensions of CCS. A probabilistic analysis of a slight generalization of RCCS is carried out in

[Bacci et al., 2011], in which a lower bound on energy costs that guarantee convergence to a suc-

cessful state in finite time is proved in a probabilistic setting. Recent work from Lanese at el.

has focused on extending the idea of reversible computations to more expressive languages, such

as the Higher Order π-calculus [Lanese et al., 2013a], the addition of a finer grained control over

reversibility [Lanese et al., 2010] and an extension to the Oz language with reversible computations

in [Lienhardt et al., 2012]. A compositional semantics for Reversible Higher Order π is presented
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in [Cristescu et al., 2013]. Reversible computations have also been embedded in a language for dis-

tributed systems with CSP-style communications in [Brown and Sabry, 2015].

Finally, we mention TransCCS, a language that, unlike cJoin and the πt-calculus, models perfect

rollback rather than compensations; and, rather than reversible computations as in RCCS, features

checkpointing, that is, reversibility to previous states of a program. We will discuss TransCCS in

8.1.4.

8.1.2 cJoin

The cJoin calculus from [Bruni et al., 2015] and [Bruni et al., 2002] is based on the Join calculus of

[Fournet and Gonthier, 1996], a process calculus equivalent to the asynchronous π-calculus but de-

signed to enforce a locality principle on extruded names, with the addition of a few well-disciplined

primitives for LRTs. As mentioned in the introduction, this calculus is born in the context of web

services composition and in particular in Service Oriented Architectures (SOA), whereby new compo-

nents and applications (or services) can be developed by assembling existing ones. It does not model

a specific web service industry proposal, but some of its roots can be found in the BizTalk language.

Transactions in cJoin are intended to describe the transactional interaction of several partners,

under the assumption that any partner executing a transaction may communicate only with other

transactional partners. In such a case, transactions run by other parties are bound to achieve the

same outcomes (i.e. either they all succeed or all fail). Hence, a distinguishing feature of cJoin is that

ongoing transactions can be merged to complete their tasks and when this happens either all succeed

or all abort. Additionally, cJoin is based on compensations, i.e., partial executions of transactions are

recovered by executing user-defined programs instead of providing automatic roll-back.

In addition to standard Join processes, cJoin provide a new kind of term, generally of the form

[P : Q], involving a process P that is required to be executed until completion and the corresponding

compensation Q, to be executed in case P cannot complete successfully. Upon reaching a special

process abort, a transaction is canceled and its compensation Q is released.

Note that the transactional primitive in cJoin relieves programmers from coding protocols needed

to agree on a common result for a distributed transaction, while leaving to the programmer the

responsibility for defining suitable compensations to recover aborted transactions, as is common with

the compensation paradigm. Automatic perfect roll-back of a process Q can be encoded as the

recursive transaction P = [Q : P ].

Several examples demonstrating the expressiveness of cJoin and a prototype language implemen-

tation based on the JoCaml compiler are provided in [Bruni et al., 2015]. The Saturday Night Out

problem can be encoded in cJoin as shown in Figure 8.1.In this encoding, we simulate TransCCS’s non-

deterministic aborts by the introduction of ab() messages, which can be consumed either to produce

the abort process, or to commit the transaction if all its tasks Ti are performed.

8.1.3 Reversible CCS

Reversible Communicating Concurrent Systems [Danos et al., 2004], abbreviated RCCS, extends Mil-

ner’s Calculus of Communicating Systems, or CCS [Milner, 1982], with backtracking. The operational
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def T1(w)|T1(w′) I w()|w′()
T2(w)|T2(w′) I w()|w′()
T3(w)|T3(w′) I w()|w′() in

def A() B [def w()B 0
w′()B 0
ab()B abort
ab() | w() | w′()B 0

in dinner(w) | movie(w′) | ab() : A() ]
B() B [def w()B 0

w′()B 0
ab()B abort
ab() | w() | w′()B 0

in dinner(w) | salsa(w′) | ab() : A() ]
C() B [def w()B 0

ab()B abort
ab() | w()B 0

in movie(w) | ab() : A() ]
D() B [def w()B 0

w′()B 0
ab()B abort
ab() | w() | w′()B 0

in movie(w) | salsa(w′) | ab() : A() ]
in A() | B() | C() | D()

Fig. 8.1: A solution to the Saturday Night Out problem in cJoin.

semantics of CCS is non-deterministic: whenever processes have partners with which they can syn-

chronize, the semantics simply allows processes to pick a random partner among the many, without

preferring a particular one. After such a choice is made, processes resume their evaluation.

Decisions made at non-deterministic choices cannot be undone. It might be the case that the

systems evolves into an undesired state, whereas a different non-deterministic choice would have

brought the system to a desired state. For instance, suppose that it is important for the system to

perform an action ω. Consider the following scenario:

P = ā.0 Q = a.0 + a.ω Sys = P | Q

In Sys, the first process P can non-deterministically synchronize with either the left or right branch

of the choice in Q. If P synchronizes with the right branch, the system evolves into the desired state

where it can perform action ω. But if P happens to synchronize with the left branch, the option to

perform action ω is eliminated, and the system is deadlocked in an undesired state.

We can call such computations forward computations, where a CCS process evaluates from an

initial state to a final state (or diverges). In the previous example it would be useful to undo the last

choice of synchronization, if this turns out to be the wrong one. For example, if P and Q synchronize

with each other, we would like the resulting system to be able to go back to state Sys and try again.

We can call such a backtracking action a backward computation.

Reversible CCS provides support for backtracking and backward computations to CCS processes.

In RCCS, each CCS process is equipped with a memory m that stores past actions that a process

has performed, together with alternative choices that were available at the time of a forward compu-

tation. Without delving into the syntax and formal semantics of RCCS, let us revisit our previous
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example with the addition of RCCS memories. Let us equip Sys with the empty memory 〈〉, and try

to synchronize P and Q again:

〈〉B Sys

≡ 〈1〉B ā.0 | 〈2〉B a.0 + a.ω
〈1〉,〈2〉:τ−−−−−→ 〈2, ā〉〈1〉B 0 | 〈1, a, a.ω〉〈2〉B 0

In RCCS, memories are stacks. The memories 〈1〉 and 〈2〉 indicate that the process 〈1〉P results

from forking the Sys process to the left, whereas 〈2〉Q results from forking Sys to the right. In the final

state of the system, the first memory contains the extra element 〈2, a〉〈1〉, that records a communication

over channel a with a process on the right. Interestingly, the other memory 〈1, a, a.ω〉〈1〉 records that

Q synchronized over channel a with a process on its left, and that it chose to discard process a.ω at

the same time.

The memories have enough information to reconstruct terms P and Q before they chose to syn-

chronize on the left branch of Q, and choose again:

〈2, ā〉〈1〉B 0 | 〈1, a, a.ω〉〈1〉B 0
〈2,ā〉,〈1,a,a.ω〉:τ∗−−−−−−−−−−−→ 〈1〉B a.0 | 〈2〉B a.0 + a.ω

〈1〉,〈2〉:τ−−−−−→ 〈2, ā〉〈1〉B 0 | 〈1, a, a.0〉〈2〉B ω

Thanks to memories, we have been able undo the wrong choice, recover the system to a previous

state and is now able to perform ω. The authors prove in [Danos et al., 2004] that backtracking in

RCCS does not augment the expressive power of the language, that is, backward computations can

only evaluate to states reachable using forward computations only.

Even though the system has reached a successful state, the system might still revert back to a

previous state. To prevent further backtracking, RCCS processes can perform irreversible or commit

actions, which are usual actions marked by an underscore, such as τ , a, b. Upon performing an

irreversible action, an RCCS process empties its corresponding memory, thus barring it from reverting

to previous states. Moreover processes which had previously interacted with it cannot backtrack either,

since their memories now lack their complements, which have just been erased. Memories lacking a

partner memory are called locked memories.

Because of the commit behaviour of RCCS, there is no simple encoding of the SNO example.

In fact, any RCCS process can perform an irreversible action, regardless of agreement with other

processes. In such a case, it is not possible for the partners to recover to a consistent state, since

their memories will become locked. To overcome this problem, it is necessary to explicitly design a

concurrent consensus algorithm; we will not investigate further into this encoding.

A proof method to reason on transactional RCCS processes is provided in [Danos and Krivine, 2005],

based on a weak bisimulation relation between RCCS and CCS processes. An LTS representing a spec-

ification and an RCCS process are weakly Φ-bisimilar if a causal encoding relation can be established

between the two. A causal encoding has a definition similar to bisimulation, but only relates LTS

actions in Φ with irreversible RCCS actions, and is only defined on traces in causal form. Without

entering into details, we can say that these are a kind of traces with mostly forward transitions and
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whose reversibility is limited, so that the RCCS process does not backtrack excessively, and the speci-

fication cannot match the RCCS process anymore. Deadlocks and partial choice may happen in causal

form traces, but they are not observable; only traces leading to an irreversible action are eventually

observable.

8.1.4 TransCCS

TransCCS proposes a calculus to describe cooperation in distributed system that rely on automatic

recovery in case of error or fault. Rather than installing compensations to counteract the side-effects

occurred during the execution of a transaction as in cJoin (see Sec. 8.1.2), processes in TransCCS rely

on coordinated checkpointing. Before executing a transaction or interacting with another process, a

TransCCS process can store enough local information to be able to revert back to one of its previous

states in case of fault. After several interactions, partners involved in a transaction can agree on a

point beyond which they do not need to roll-back anymore, after which their interactions become

definitive. TransCCS extends CCS with communicating transactions, that is, transactions that can

interact with each other, and a mechanism, called embedding, to capture coordinated checkpointing

in a disciplined way.

On top of standard CCS processes, TransCCS features transactions of the form JP Bk QK, where

P is the processes running within transaction k, and Q is the state to rollback to in case of failure.

P can make transaction k definitive, or commit it, using the co k primitive . When a transaction

commits, the alternative process Q is removed and only P remains. In TransCCS, failure is modeled

by a spontaneous event that can occur at any time. When a transaction aborts, the running process

P is removed and Q is run in its place.

Processes running within a transaction cannot communicate with processes outside of it. In order

to allow communication, processes must be embedded in a transaction. When a process R is embedded,

a copy of it is saved in Q, and a copy of it is run in parallel with P , as described by the following rule

from the operational semantics of TransCCS:

R | JP Bk QK→ JR | P Bk R | QK

Once R is embedded in k, R and P can freely communicate with each other. R can be a transaction

too, thus embedding can lead to nested transactions.

There is no complementary action to embedding: after being embedded in k, process R must wait

for the transaction to either commit or abort to escape from it. Under this point of view, we can view

embedding as a syntactical means to introduce dependencies between transactions. When several

transactions need to interact, they have to be embedded into each other and become interdependent.

Thanks to this mechanism, dependencies across transactions are manifest and their representation

does not require a separate mechanism, such as a dependency graph.

Two testing theories [de Vries et al., 2010, De Vries et al., 2010] have been developed to study the

behaviour of Communicating transactions. Testing theories in [Hennessy, 1988] study the behaviour

of a process by observing its reactions to tests that interact with it. One setting, called may testing,

focuses on whether a process might satisfy a given test; the other, called fair testing, studies whether
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Jã.b̃.co aliceKalice | Jã.c̃.co bobKbob | Jã.co carolKcarol | Jb̃.c̃.co davidKdavid

Fig. 8.2: A solution to the Saturday Night Out problem in TransCCS.

a process can always satisfy a test, excluding the case of divergence. In [De Vries et al., 2010] may

testing is linked to safety, if we test a system with failure tests: we study systems that cannot satisfy

these tests, so that “nothing bad will happen”. Fair testing is linked to liveness, where we consider

whether the system will eventually satisfy success tests, meaning that “something good will eventually

happen”. Both theories can be characterized by the two different notions of clean traces, which are

exactly the sequences of actions that lead a transaction to a commit point, to the exclusion of non-

committing traces. Communicating transactions are also formally proved to compose well under may

and fair testing: given two processes P and Q with the same safe or live behaviour, it is possible to

employ either P or Q interchangeably in a system without any noticeable behavioural difference.

A solution to the Saturday Night Out example is presented in Figure 8.2, which is essentially the

same solution to the SNO presented in Sec. 1.2. We introduce two shortcuts in this solution for the

sake of clarity. The first shortcut is restarting transactions, that is, transactions that are restarted in

case of an abort:

JP Kk , µX.JP Bk XK

We also define synchronous channels, that is, channels over which processes can synchronize with

either the send or receive operator:

c̃.P , c.P + c̄.P

8.2 Programming Language Extensions

8.2.1 Overview

It is common wisdom today that concurrent programming is difficult [Oram and Wilson, 2007]. Tra-

ditional solutions based on locks and monitors are often unsatisfactory, because they are very hard

to reason about; thus programming with these mechanisms is very error prone. Much effort has been

invested in finding new technique to alleviate these problems. Particularly interesting is the research

of new programming language abstractions to express concurrent algorithms more easily and in a more

modular fashion. Another thorny subject is error handling in distributed systems, where failures are

more frequent and hard to recover from, as opposed to a non-distributed systems.

In the pursuit of abstractions to facilitate concurrent programming, CML [Reppy, 1999] introduced

events. As a motivating example, suppose that we had to model a request/reply protocol between a

client and a server. Suppose that the server side had the following ML implementation:

fun serverLoop () = if serviceAvailable()
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then let

val request = accept reqCh

in

send (replyCh, doIt request);

serverLoop ()

end

else doSomethingElse()

In this example, the server receives a request for a service from the reqCh channel, and provides

a response on the replyChy channel. In order for this protocol to work, the client must behave

exactly as the server expects. For example, a malicious client might send a request and never wait

for the answer on channel replyChy. Because communication is synchronous in CML, the server

waits indefinitely on the send operation, waiting for the client to synchronize. A standard solution in

functional programming is to regulate the use of the reqCh and replyCh channels by encapsulating

them into a function abstraction:

fun clientCall x = (send(reqCh, x); accept replyCh)

By limiting the scope in which these channels can be accessed to the abstraction, clients are guaranteed

to respect the protocol. But this solution hides too much from the client. Suppose the server is not

available. If the client tries to use this abstraction, it will get stuck on the first send operation. If the

client had access to the actual reqCh channel, it might ping the server for its availability, or, if allowed

by the programming language, perform selective communication, that is, communicate on either one

of two (or more) channels, depending on which is available first.

The tension between abstraction on one hand, and selective communication on the other hand, is

the main motivation behind Concurrent ML. In order to get the best of both worlds, CML introduces

events. Events are the equivalent of lambda abstractions for sequential evaluation in the concurrent

world. An event is a parametric type that describes a communication pattern, for example receiving

a number over either a channel c1 or c2. A value of type event has no side effect until a special

operator called sync is applied to it. On one hand, events provide ways to abstract communications;

for example, in our client/server example, we might provide clients with an event that encapsulates

a send followed by a receive. On the other hand, events are compositional, because, for example,

the client can combine the event it gets from the server with another event of his own, and perform

either one of them through a choice operator. The separation of communication pattern and actual

execution is thus very beneficial. There are several other benefits as well, such as a clear semantics

and an efficient implementation.

There are some limits to CML’s power of abstraction though. As stated in Theorem 6.1 [Reppy, 1999],

it is not possible to create an n+1-rendezvous abstraction from any given n-way rendezvous primitive

(e.g. send and receive over channels). Moreover, it has been proved that CML events almost form a

monad in [Jeffrey, 1997], but fail to do so. In order to overcome these problems, Transactional Events

[Donnelly and Fluet, 2006] extends CML events with an ulterior sequencing operator thenEvt, that

chains two concurrent events together into a single, combined one, which succeeds only if both sub-

events synchronize successfully with other partners; otherwise the combined event fails. This new
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combinator effectively increases the expressive power of CML, but at the cost of NP-Hardness. In

fact, synchronizing transactional events becomes an NP-Hard problem, because an event scheduler

has to exhaustively explore all possible event synchronizations beforehand in order to find a matching

set of events. We will describe CML’s events first, and then TE in more detail in Section 8.2.2.

This line of research has sparked interest in several directions. The type discipline imposed

on Transactional Events does not allow side effects inside an event. For example it is not possi-

ble to read or write to cell references within a transactional event. Transactional Events for ML

[Effinger-Dean et al., 2008] lifts the type discipline imposed in TE, and allows operations on ML ref-

erences to freely mix with transactional events. Unlike TE, nested transactions are allowed, but

they behave like a single, unique transaction. One of its main contributions is to provide a low-level

semantics based on search threads for event synchronizations and separate heap search threads for

memory references. The implementation is based on a chunking mechanism similar to the one used

in Transactional Memory, which we will discuss later in Section 8.3.

In [Kehrt et al., 2009] transactional events are explored in a more concrete setting to find useful

communication patterns in the programming practice, especially in client/server applications. Par-

ticularly interesting is a subtle difference in behaviour of CML’s wrap and TE’s thenEvt operators,

because of the transactional flavour of transactional events. Consider the following program:

sync (sendEvt c1 4); sync (sendEvt c2 5)

where a client wants to first send a number on channel c1, and then another one in c2. Notice that

two separate events are used; moreover, the first must be synchronized before evaluating the second

one. Consider now the following server written in CML:

sync (chooseEvt

(wrap (recvEvt c1) (fun x -> (x, sync (recvEvt c2))))

(wrap (recvEvt c2) (fun x -> (sync (recvEvt c1), x))))

and the following server written in TE:

sync (chooseEvt

(thenEvt (recvEvt c1)

(fun x -> thenEvt (recvEvt c2) (fun y -> alwaysEvt (x,y))))

(thenEvt (recvEvt c2)

(fun y -> thenEvt (recvEvt c1) (fun x -> alwaysEvt (x,y)))))

Both servers describe a choice of two sub events, but the CML server can satisfy the client’s

request, because wrap can synchronize on its first send event, and then release a function to satisfy

the second one. The TE server cannot do so, because the thenEvt creates a transaction that must

be fully satisfied before it can commit. Thus it either performs both recv events in the same sync

evaluation, or none of them. The client can only perform a single send operation inside its first sync

operation; thus client and server cannot communicate because of the type discipline of TE events.

Recent work has studied fairness in transactional events [Amsden and Fluet, 2012]. The authors

provide an instrumented semantics for Transactional Events, that is proved to be fair according
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to the notion of I/O and synchronization fairness. Informally, a fair IO thread scheduler ensures

that every all threads make progress, whereas a fair synchronization scheduler ensures that every

thread trying to synchronize on an event often enough, will eventually do so. The proof is based on

action trace bisimilarity, which is an equivalence based on trace inclusion. The authors also discuss

an implementation based on decidable synchronization groups, that is, sets of events for which it is

decidable to check whether they can be synchronized together. The implementation is only guaranteed

to be fair in the presence of decidable synchronization groups, an assumption similar to obstruction

freedom in STM (see Sec. 6 in [Amsden and Fluet, 2012]): a transaction executed in isolation will

commit in a finite number of steps.

Concurrent programming is made difficult not only for its conceptual complexity, but also for the

actual unreliability of distributed systems [Elnozahy et al., 2002b]. Large distributed systems are very

common nowadays, for example web services and cloud computing, as has been argued in Section 8.1.1.

However resilient single components may be, not all the components of a large distributed system can

be trusted to be reliable (for example, web services provided by third parties), but might fail at

any moment. We can distinguish between permanent and transient failures. A permanent failure

is a failure from which recovery is impossible, such hardware failures. It is sometimes assumed that

components subject to this kind of faults have access to a stable storage system, which is not subject

to failure.

Transient faults are faults that are not permanent in nature, and might not occur again under

different circumstances. A common cause of transient faults is resources unavailability. For example,

a timeout exception might be raised during a channel operation, if the load on the communication

network is too high, or by losing a race condition. Semantic inconsistency is another cause too, for

example if serializability is violated in software transactional memory.

Failure management is thus another important aspect of distributed system, and a complicated one.

On the one hand, dealing with errors programmatically can be cumbersome, for example when relying

on time-outs (cfr. Section 3 in [Ziarek and Jagannathan, 2010]). On the other hand, the unreliable

nature of distributed components might arise because of exceptional conditions that cannot be foreseen

and thus adequately programmed for. So much so that many techniques have been developed to

handle failure gracefully. A common technique to handle failure is coordinated checkpointing, (see

[Elnozahy et al., 2002a] for a survey).

In coordinated checkpointing, processes periodically save checkpoints, that store local information

about a process’ state. In case of failure, processes can load up and resume one of their previous

states and recover their previous execution. When restoring a checkpoint, it is important that all

processes restore a globally consistent state of the system. In particular, a globally consistent state

must guarantee that any side effect that occurred after a process has restored a local checkpoint, does

not affect any other process. For example, suppose that process A saves a checkpoint, communicates

with process B and a transient failure occurs on A. In order to have a globally consistent state,

process B will have to restore a previous checkpoint too, otherwise it would witness an effect which

has not taken place yet (i.e. the communication from A).

Stabilizers [Ziarek et al., 2006, Ziarek and Jagannathan, 2010] extend Concurrent ML with prim-

itives to deal with transient faults through coordinated checkpointing. In particular, this language
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extension provides three primitives: stable, stabilize, cut. Function abstractions enclosed in a

stable section are automatically monitored, and checkpoints are automatically created whenever a

communication or spawn operation is performed. When any of these checkpoints are created, each

process also records a dependency with the other thread it is interacting with. All processes together

form a dependency graph The stabilize keyword can be invoked within the stable section to activate

checkpoint recovery. The dependency graph is examined, the inter-dependencies among the involved

processes are examined, and a globally consistent checkpoint is calculated and restored. Note that

failure conditions must be manually recognized in the monitored code according to this model. In

order to limit the scope of rollback, the language provides a cut operation, after which it is impossible

to revert a portion of stabilized code to its origin.

This last construct is useful to avoid problems such as the domino effect [Elnozahy et al., 2002b],

but its resulting commit behaviour makes it difficult to express examples such as the SNO problem.

For example, in the scenario presented in [Spaccasassi and Koutavas, 2013], if Carol performs a cut

after having found a partner for dinner, Alice and Bob will not be able to abort their own transactions

and will be stuck with an unsatisfactory agreement. Coordinated checkpointing is shown to greatly

simplify error management in concurrent code, in particular in dealing with programmable failures

such as timeouts in the Swerve server (cfr. Section 3 in [Ziarek et al., 2006]).

Transactors [Field and Varela, 2005, Lesani et al., 2009] extends the Actor model with a mecha-

nism similar to Stabilizers, but deals with both transient and permanent failures. We will discuss

transactors from [Field and Varela, 2005] in more detail in Section 8.2.3. A final interesting example

is Reagents [Turon, 2012, Turon, 2013], a novel programming language that encompasses communi-

cation pattern abstractions à la Join calculus (see Section 8.1.2), coordinated checkpointing through

optimistic and isolation for shared state operations, as in Transactional Memory (see Section 8.3). We

will discuss Reagents in greater detail in Section 8.2.4.

8.2.2 Transactional Events

Concurrent ML [Reppy, 1999], or CML for short, is an extension to Standard ML that adds sup-

port for concurrency in a modular fashion, so that selective communication can be easily integrated

with function abstractions in standard Standard ML. CML’s concurrency model features synchronous

communication over typed channels and a novel abstraction called events. An event describes a com-

munication pattern expressed either by simple primitives, such as channel send and receive primitives,

or complex events defined by event combinators, such as the non-deterministic choice between two

events. Events can only be evaluated by the sync operator. If another thread is evaluating a matching

event, then the two threads can synchronize. Otherwise, if there are not matching events, it is blocked.

Under this light, we can understand that events only describe communication patterns in a modular

way; events can be freely composed and decomposed, because their actual evaluation is deferred to

the evaluation of a sync expression.

The simplest primitives that CML offers are send and receive, to send and receive values over

typed channels. The following is a very simple communication example, in which a thread sends the

unit value () to another thread:
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let c = channel

in

spawn ( fun _ => sync ( send (c, ()) ) );

sync ( receive c )

The alwaysEvt operator can always be matched by any event, whereas the neverEvt can never

be matched by another event. The choice operator allows a thread to synchronize on either one of

two events. The wrap operator takes an event e and a function f in input. Whenever an event e is

synchronized on, wrap applies the result of the synchronization to function f . The whole compound

event is considered synchronized as soon as the e event has synchronized. Notice that function f

cannot backtrack anymore at this point, in case the value it has received was not expected, or in case

it tries to synchronize on a second event unsuccesfully.

As stated already stated in Sec. 8.2.1, the three-way rendezvous cannot be expressed in CML

as an event. In order to overcome this limitation of CML and retain CML’s modularity, Donnelly

and Fluett introduced the notion of transactional events; they added a new operator thenEvt, that,

given two events e1 and e2, succeeds if and only if e1 is synchronized first, and then e2. Thanks to

this construct, the language acquires a transactional flavour, since transactional events either either

synchronize all of their sub-events, or none of them.

Thanks to this new construct, Transactional Events can express n-way rendezvous straightfor-

wardly, along with other useful programming patterns, such as guarded inputs. It can also be shown

that thenEvt, together with the other event combinators, confers a monad-with-plus structure to

Transactional Events. Transactional Events are shown to form a monad-with-plus, a mathematical

structure that facilitates the composition of transactional events.

The implementation of the language is considerably complicated by the introduction of the new

transactional operator. A refined semantics is presented, adding suspended threads and search threads

to the operational semantics of TE. When a sync is performed, execution threads become suspended

threads, and a new search thread is spawned. Search threads perform the communications specified

in the code. At any source of non-determinism, such as the choice operator, two or more search

threads are spawned, one for each non-deterministic branch. When the search threads finds a sequence

of communications, such that all participating threads can all match their respective events, that

particular interaction is replicated on the previously suspended threads. As can be expected, the

exhaustive exploration of process states is a sound approach, but inefficient. Unfortunately this

issue is inevitable, as the authors prove that the problem of finding matching transactional events

is an NP-Hard problem, since it can encode the 3-boolean satisfiability problem (cfr Section 5.4 in

[Donnelly and Fluet, 2006]).

8.2.3 Transactors

As mentioned in the introduction, a common concern in distributed systems is the maintenance of

distributed state, i.e. maintaining state consistency across multiple distributed components in a

network. Transactors address this concern by modeling component failures and providing primitives

to manage state persistence at the semantics level.
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In the Actor model processes, called actors, communicate with each other via asynchronous message

passing. Communication is not based on channels: actors can reference each other directly by name.

Each actor has a unique id for its name, and a mailbox, which is a essentially a queue holding all

received messages. An Actor processes mailbox messages in succession. Consumed messages are

pattern-matched and processed according to user-defined case expressions.

Transactors extend the Actors model with persistent state and a set of operations for distributed

checkpointing. Each transactor is equipped with a state S, in which it can store a value v through the

primitive setstate(v), and retrieve it through the primitive getstate. When Transactors interact,

each Actor records a dependency from receiver to the sender, together with the sender’s dependencies.

Dependencies between transactors fall into three categories: message dependencies, which we have just

discussed, state dependencies and creation dependencies. Message dependencies are promoted to state

dependencies whenever a transactor modifies its own state after having received a message. If the state

is not modified, the transactor will ignore any message dependency in case of rollback or checkpointing.

Creation dependencies dispose of transactors spawned after a checkpoint.

In addition to state and communication operations, a transactor has three checkpointing opera-

tions: stabilize, checkpoint, and rollback. After invoking stabilize, a transactor commits not

to modify its internal state anymore: any subsequent invocation of setstate will not modify the

actual state S. This immutability guarantee is instrumental in the calculation of global checkpoints

together with other partners. Stabilization can be thought of as the first phase of a two-phase commit-

ment protocol. After stabilizing, a transactor can attempt to checkpoint its current state by invoking

the checkpoint operation. This operation is only successful if the transactor has invoked stabilize,

and the transactors it depends on have either stabilized or created a checkpoint. If successful, a

transactor will be able to save its current state. Checkpointing can be thought of as the second phase

of a two-phase commitment protocol.

After checkpointing, a transactor will be able to restore its last checkpointed state by invoking the

rollback operation, and become available to process new messages in its mailbox. If no checkpoints

are available, the rollback operation will make the transactor disappear. Node and network failures

are modeled in the semantics as spontaneous rollbacks, i.e. transitions in the operational semantics

of the Transactors that can be taken at any time by any term, irrespective of the current redex being

evaluated. Such kind of spontaneous rollbacks bear the same effect as a rollback. The only visible

effect from a failure is the loss of messages being processed by transactors. Messages sent before

checkpointing are invalidated. Note that the rule to fire a spontaneous failures is only valid when a

transactor has not stabilized yet; the authors assume that stable transactors only need to save the

“program counter” of its current evaluation to persistent storage, which is not modeled (see §6.5 in

[Field and Varela, 2005]).

Two fundamental results are proved for Transactors. Evaluation is divided in normal reduction

steps for transactors, and spontaneous failure reduction steps. The first result is that, for any config-

urations k and k′, such that k evaluates to k′ through either normal reduction steps or failure steps,

there is another sequence of evaluation steps from k to k′ that does not use any failure reduction step.

Thus it is possible to describe an equivalence between traces, much like clean traces in TransCCS (see

[de Vries et al., 2010]), with the exception that roll-back is almost perfect, because the only visible
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effect of a rollback is a potential loss of messages. Transactors cannot find a global checkpoint in the

general case. For example, it is possible to write a malicious transactor that creates dependencies by

sending messages, but never stabilizes. The second result is that, under an assumption of fairness, it

is possible to devise an algorithm to find a global checkpoint that is guaranteed to terminate.

8.2.4 Reagents

Reagents provide two main primitive operations: updates to references to memory cells, and syn-

chronous communication over endpoints. Together with these operators, there are a number of other

“low-level” primitives to manipulate state and continuations. Reagents can be composed by a choice

operator, that succeeds only if one of two specified reagents can be matched; and a conjunction oper-

ator, that succeeds only if both its operands succeed. Reagents can be sequenced, as in Transactional

Events, thus forming a monad. Reagents can also be composed into catalysts. A catalyst is a reagent

that is not consumed after a reaction, but is always available for further reactions. Thus catalysts are

reminiscent of the def expressions in the Join calculus of [Fournet and Gonthier, 1996], and of the

chemical abstract machine of [Berry and Boudol, 1990]. Finally, it is possible to specify post-commit

actions, that are performed after a reaction has taken place. Post-actions are not required to be

executed atomically with the former part of a reagent. These combinators are affirmed to produce

both an arrow and monad structure.

Dependency conflicts introduced by the joint use of communication and state manipulation are

not considered in [Turon, 2012]. Consider for example the case in which two reagents communicate

with a swap channel, but then write on the same state location. The two reagents are required

to commit together, because of the communication interaction. At the same time, their reaction

cannot be committed, because overwriting the same reference cell breaks memory isolation. The

implementation does not deal with these cases, but just throws an error. The author refers to the

approach taken in [Lesani and Palsberg, 2011], according to which the reaction would be aborted and

tried again.

Failure to build reagent reactions is automatically handled by the implementation. A reagent can

fail either transiently, if it loses a race to obtain a reactant with another reagent, or permanently, if it

needs to block because the required reactant is missing. Reagents are tentatively evaluated according

to the reactions they offer and the reactants they need. While tentatively evaluating reagents, the

underlying implementation builds a continuation for each partial successful reaction, until a special

Commit continuation is reached. At this point, the involved reagents race to rescind they offer they

have used, and try to perform a kCAS (Compare-And-Set) operation to finalize the reaction. Commit

is thus coordinated.

8.3 Transactional Memory Extensions

8.3.1 Overview

Software Transactional Memory was first invented by Shavit and Touitou in [Shavit and Touitou, 1995].

The main idea is to treat shared memory in a concurrent system as a database. This idea sparked
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a lot of interest in the scientific community in the last twenty years. In the programming languages

area, a chief example of STM is its Haskell variant, Haskell STM from [Harris et al., 2005]. Haskell

STM offers a modular abstraction for transactions that significantly simplifies concurrent program-

ming, as exemplified in [Peyton-Jones, 2007]. There are some limits to transactional memory though.

Since transactions are isolated, constructions that require transactions to communicate are not pos-

sible. For example, the authors of Haskell STM cite swap channels as something which cannot be

done in Haskell; three-way rendezvous, barriers and other kind of rendezvous abstractions cannot be

implemented with STM alone as well [Smaragdakis et al., 2007, Lesani and Palsberg, 2011].

This line of work has transactional memory with isolation as a starting point, and extends it

with primitives for inter-transaction communication. The attractiveness of this solution lies in tak-

ing advantage of the results of prior research in STM, where well-understood transaction theories

(e.g. correctness and opacity in [Guerraoui and Kapalka, 2008]) and industrial implementations are

available.

An issue that is currently being tackled in this area is how to combine STM’s isolation mechanisms

with communicating transactions, which are not isolated. Section 8.3.2 describes in greater details one

such approach, Communicating Memory Transactions (CMT) [Lesani and Palsberg, 2011]. Reagents

and Transactional Events for ML are related to this line of research too, to the extent that they try

to combine either Join patterns or Transactional Events with stateful computations.

TIC [Smaragdakis et al., 2007] proposes to extend isolated transactions with a Wait primitive.

Code sections within a Wait are allowed to break free from isolation and interact with other threads or

modify memory state. Transaction Communicators and Synchronizers [Luchangco and Marathe, 2011,

Luchangco and Marathe, 2005] are very similar in spirit to Communicating Memory Transactions,

but they work on a different level of granularity, e.g. objects rather than memory cells. OCTM

[Miculan et al., 2015] is a recent language inspired by both CMT and the transaction merging mech-

anism of [Koutavas et al., 2014]. The goal of the language is to provide non-isolated transactional

memory for loosely coupled processes, i.e. processes for which it is not immediate to orchestrate

successful consensus groups. The expressiveness of the language is demonstrated by an encoding of

TCCSm in OCTM.

8.3.2 Communicating Memory Transactions

Communicating Memory Transactions describe Software Transactional Memory that, in addition to

the usual STM semantics for shared memory, allow transactions to communicate with each other

through asynchronous message passing.

CMT extends traditional STM semantics [Koskinen et al., 2010] with asynchronous communica-

tion. The semantics is extended with a dependency graph, that tracks interactions among transactions

via message-passing. Send and receive operations have the standard semantics. Aborting a transac-

tion implies aborting its dependent transactions in the dependency graph. Particular care has to be

devoted to commits and transaction dependencies. A transaction can be committed only if it belongs

to a cluster. A cluster is a set of transactions that have reached the end of their atomic blocks, and

that depend either on committed transactions or transactions of the same cluster. The last condition
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let alice(dinnerSc, dinnerRc, movieSc, movieRc)

atomic

swap( d, dinnerSc, dinnerRc, () );

swap( m, movieSc, movieRc, () )

let bob(dinnerSc, dinnerRc, salsaSc, salsaRc)

atomic

swap( d, dinnerSc, dinnerRc, () );

swap( s, salsaSc, salsaRc, () )

let carol(movieSc, movieRc)

atomic

swap( m, movieSc, movieRc, () )

let david(movieSc, movieRc, salsaSc, salsaRc)

atomic

swap( m, movieSc, movieRc, () );

swap( s, salsaSc, salsaRc, () )

let system =

dinnerSc := newChan(); dinnerRc := newChan();

movieSc := newChan(); movieRc := newChan();

salsaSc := newChan(); salsaRc := newChan();

// spawn Alice, Bob, Carol and David

Thread.create( alice(dinnerSc, dinnerRc, movieSc, movieRc) );

Thread.create( bob(dinnerSc, dinnerRc, salsaSc, salsaRc) );

Thread.create( carol(movieSc, movieRc) );

Thread.create( david(movieSc, movieRc, salsaSc, salsaRc) );

Fig. 8.3: A solution to the Saturday Night Out problem in CMT.

prevents transaction scheduling from deadlock, in case the dependency graph created by message

passing among transactions contains cycles (in which case, all the transactions involved in the cycle

must belong to the same cluster).

The semantics of CMT is shown to preserve opacity, a notion of correctness for software trans-

actional memory. Communications in CTM are shown to be safe, meaning that it is not possible to

receive messages from aborted transactions. CMT transactions are also shown to be strictly more

expressive than CML through a series of examples, as in Transactional Events. For example, the

authors provide encodings for three-way rendezvous, synchronous queues and barrier abstractions.

For the sake of efficiency, the proposed implementation of CMT does not guarantee Transactional

Event’s completeness property, namely that if a successful interleaving of transactional events exists,

then the scheduler will find it. On the one hand, the authors claim that termination of concurrent

algorithms should not depend on scheduler implementation. On the other hand, they state that the

nature of transaction scheduling is computationally too expensive to find an exact solution too.

CMT is implemented on top of the Scala Transactors library (not to be confused with the Transac-

tors model described in [Field and Varela, 2005]). It extends previous transactional memory systems

(TL2 and DSTM2) with message passing. Whenever a transactor receives a message, the receiving

transactor stores a dependency link to the sending transactor. These dependency links form a de-

pendency graph, which is calculated whenever a transaction must be aborted or committed; the set
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of terminated transactions whose dependent transactions belong to that same set, is called a cluster

search. An abort will cause dependent transactions to be aborted as well, whereas a transaction can

commit only if all other transactions in its cluster search are either committed or trying to commit.

Moreover, the transactions in the cluster search must also verify that write and read operation on

transactional memory by the involved transactions do not invalidate each other, but that the order of

commits is consistent. The implementation is shown to have little overhead and yield up to a thousand

times better execution performance than Transactional Events.

The SNO problem can be solved in CMT by the code listing in Figure 8.3. Our solution is quite

similar to the Transactional Events’ one. We have used CMT’s implementation of swap channels in

[Lesani and Palsberg, 2011] to simulate synchronous communication; .

8.4 Conclusions

We have reviewed three areas where the concept of communicating transactions is investigated: the

foundational approach, the programming language approach and the STM approach. Four properties

of communicating transactions seem to recur in these approaches, and each property is characterized

by one of two extremes. We identify the following characteristics:

1. atomicity: strong versus weak

2. fault model: spontaneous versus induced

3. commit behaviour: coordinated versus uncoordinated

4. reversibility: transitions versus states

The first property we consider is atomicity. A transaction is atomic if either all the computations

it comprises are evaluated up to completion, or none of them are; no partial execution of an atomic

transaction is allowed. Constructs supporting this property significantly simplify concurrent program-

ming in nearly all the areas we have investigated in this chapter. While atomicity has clear advantages

from a programmer’s point of view, it involves many difficulties in practice, the main challenge being

how to deal with side-effects. In the domain of databases, traditional ACID transactions write data

to shared memory as side-effects. When a transaction is aborted, the side-effects must be nullified

too, because otherwise memory would contain side-effects from a transaction that in principle has not

started yet, and thus atomicity would be compromised.

In traditional transactions most mechanisms such as logging and journaling support this kind of

atomicity. In communicating transactions it is not always practical to guarantee atomicity, depending

on the application domain. For example, interactions between transactional partners introduce de-

pendencies among them. If network delays are significant, resources used within a transaction might

be blocked for too long and lead to inefficiencies in case of aborts. This is the case for sagas, as

explained in Sec. 8.1.1. Therefore, usually transactional systems guarantee one of two different kinds

of atomicity: strong and weak atomicity.

In case of abortion, a system that enjoys strong atomicity will automatically revert all side-

effects that occurred during a transaction. Interacting partners are automatically rolled back as
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well. Any asynchronous message that has been sent from a transactional process is usually either

deleted or marked as invalid. These systems usually provide stronger transactional abstraction to

programmers, often at the cost of a slower runtime environment. Strongly atomic systems might

construct an intricate dependency graph, which is expensive to query. We can abscribe to this trend

Reversible CCS in [Danos et al., 2004], TransCCS in [de Vries et al., 2010], Transactional Events in

[Donnelly and Fluet, 2006] and Communicating Memory Transactions in [Lesani and Palsberg, 2011].

According to weak atomicity, not all side-effects are automatically reversed, but must be countered

manually, if at all. For example, compensations are custom pieces of code that restore system invariants

that might be violated during a transaction (recall the flight preservation system example for sagas in

Sec. 8.1.1). Alternatively, we can say that transaction aborts are observable in a weakly atomic system.

Some languages belonging to this second group are cJoin in [Bruni et al., 2015] and Transactors in

[Field and Varela, 2005]. Implementations usually perform better, in no small part because there

are fewer dependencies and side-effects to track in this case, but programmers must assume more

responsibilities to preserve system invariants (e.g. with compensations).

The second property in systems supporting communicating transactions is the fault model, which

describes how faults and errors are raised. We can distinguish two kind of fault models: spontaneous

and induced. According to the spontaneus fault model, faults can occur at any time for no foresee-

able motive, such as hardware failure, violated invariants in an information system or a particular

biochemical configuration. In a wider sense, deadlocks can be considered failures too, thus deadlocked

transactions might be aborted spontaneously, in order to restore the system to a consistent state. If

deadlocks are taken into account, then the design of such systems must take into account deadlock

detection, which is an NP-hard problem. This is the case for Transactional Events for example in Sec.

8.2.2.

There is usually no explicit construct to abort transactions for systems with the spontaneous

fault model. Rather, the operational semantics of such languages provides non-deterministic means

for transactions to either perform a computaion (e.g. internally or by interacting with other pro-

cesses) or abort at any time. Example of languages with spontaneous aborts are Transactors from

[Field and Varela, 2005], RCCS from [Danos et al., 2004], TransCCS from [de Vries et al., 2010] and

CMT in [Lesani and Palsberg, 2011]. Transactional Events from [Donnelly and Fluet, 2006] can be

abscribed to this paradigm too, although technically a transactional event nevers aborts in the first

place, because it only interacts with perfectly matching partners.

In languages with the induced fault model assumption, unpredictable failure is not of concern. The

erroneous states that the system reaches are under the control of the programmer, who can react to

their occurrences and deal with them programmatically. For example, price disagreement for a service

might lead a business transaction to abort in cJoin. In this case the language provides a primitive to

explicitly abort a transaction. This construct is also the only means of aborting a transaction; thus

deadlocked transactions cannot be unblocked. Theoretically, spontaneous failure can be simulated in

this kind of languages as well, as we have shown for the SNO example in Sec. 8.1.2, although it is

unclear what their actual performance in practice will be. Stabilizers in [Ziarek et al., 2006] and cJoin

are examples of this fault model.
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The third property is commit behaviour. Nearly all the languages we have reviewed agree that

interactions between communicating transactions introduces dependencies among partners, so that if

one transaction aborts, all the other transactions must abort too. While there is homogeneity in the

case of aborts, there is a slight diversity in regards to committing a set of interdependent transactions.

On the one hand, commitment of transactions is interpreted as an agreement between partners,

and thus the set of transactions is committed if and only if each transaction is ready to commit. This

is the case for Cjoin, TransCCS, CMT and Transactional Events. On the other hand, commitment is

interpreted as the safety point after which a process is not willing to roll back anymore, regardless of

the state of its partners. In this case the language provides primitives to effectively cut dependencies

among transactions, and allows a single partner to impose its own decision on other interacting

partners. For example, in Stabilizers a thread can use the cut operator to actively ignore dependencies

and refuse to backtrack to previous checkpoints. Similarly, a process performing an irreversible action

in RCCS can generate locked memories, thus effectively disallowing another process to revert after

that point.

Finally, the fourth property is reversibility. By reversibility we mean the method by which a

language allows a system to undo side-effects and revert to previous configurations. Again, this

property seems to depend on the application domain. One approach is transition reversibility, which

makes program evaluation reversible. For example, the operational semantics of reversible structures in

[Cardelli and Laneve, 2011b] contains rules for both forward and backward computations. Transition

reversibility is a fine-grained kind of reversibility, since each single transaction can be back-tracked.

Transaction reversibility is a pervasive feature of RCCS and reversible systems, and seems more

appropriate to model inherently reversible systems such as the biochemical ones.

Another approach is state reversibility, which seems more grounded in the software engineering

practice, such as web server design in [Ziarek et al., 2006]. A language with state reversibility provides

specific primitives to capture a state of the system, along with other constructs to restore the system

to such previously saved states. The reversibility of such languages seems in a sense superimposed by

the addition of such primitives. State reversibility is a coarse-grained kind of reversibility, similar to

the chuncking technique in Transactional Events for ML from [Effinger-Dean et al., 2008] and logging

in STM [Harris et al., 2005]. It is less pervasive than transaction reversibility on the operational

semantics, since all transactions are definitive. The system itself might be taken back to one of its

previous states by peculiar constructs. Embedding in TransCCS and check-pointing in Stabilizers can

be viewed as an example of this property.
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Chapter 9

Conclusions

In this chapter we summarize the work presented in this thesis, and discuss in Section 9.1 some

remaining open questions that would be interesting to address in future work.

Consensus is an often occurring problem in concurrent and distributed programming. The need

for developing verification techniques and programming language support for consensus has already

been identified in previous work on transactional events [Donnelly and Fluet, 2006], communicating

memory transactions (CMT) [Lesani and Palsberg, 2011], transactors [Field and Varela, 2005] and

cJoin [Bruni et al., 2015], as it has been observed in Chapter 8.

In Chapter 2 we have presented history bisimulations [Koutavas et al., 2014], a behavioural the-

ory for communicating transactions based on bisimulation equivalence. However histories can grow

indeterminately by design, and therefore they are not amenable to be computed algorithmically. In

Chapter 3 we have shown how history bisimulations can be reformulated as historyless bisimulations.

Instead of configurations with histories, historyless bisimulation relates TCCSm processes with the

aid of a dependency set ∆, a binary relation between transaction names of the processes being com-

pared. The dependency set ensures that not only actions are matched, but also the consensus groups

are matched throughout a bisimulation game. Historyless bisimulation is proved to be equivalent to

history bisimulation.

After replacing histories with the dependency set, we have provided a discipline for generating

fresh transaction names in a deterministic fashion with the Nameless LTS in Chapter 4. Based on the

syntactic restriction for serial CCS processes in [Milner, 1982], we have proved that the same syntactic

restrictions identify a class of TCCSm processes which have finite-state LTSs by construction. We have

finally provided an algorithm to calculate historyless bisimulation equivalences for finite-state space

processes, based on the bisimulation algorithm of Sokolsky and Cleaveland in [Bergstra, 2001].

In Chapter 5 we have defined the operational semantics of TCML, a functional concurrent program-

ming language inspired by CML and equipped with communicating transactions. We have showed

how some of the examples from Chapter 1, namely the three-way rendezvous and the Saturday Night

Out problem, can be implemented easily and modularly in TCML. We have described the architecture

of a prototype implementation that allows transaction scheduling policies to be defined and modularly

plugged into the prototype. We have explored several näıve scheduling policies, and we have demon-

strated by experimental results that such policies do not scale well with the number of participants
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in consensus groups, resulting in exponentially decreasing numbers of committing groups.

The experimental study of transaction scheduling policies motivated us to develop more sophisti-

cated tools of static analysis of the underlying protocols that concurrent systems implement. We have

introduced in Chapter 6 a new type and effect system for a concurrent functional language equipped

with session types, called MLS and inspired by [Amtoft et al., 1999]. The type system of MLS is di-

vided in two stages, one that describes the (concurrent) behaviour of a program, and one that verifies

that such behaviour respects not only session types, but a stack-based discipline of sessions inspired

by [Castagna et al., 2009] that guarantees a weak form of deadlock freedom, under some specific cir-

cumstances. The language and type system of MLS allow for the definition of session type inference

algorithm based, which is described in Chapter 7, which is proved to be sound and complete.

9.1 Future directions

On the theoretical side, it would be interesting to extend the bisimulation theory from flat transac-

tions to nested transactions. This entails extending the transaction renaming mechanism to allow

communication between inner and outer transactions, which can be allowed freely to communicate as

in TCCSm . However such freedom introduces inter-dependencies across transactions that have an

unclear semantics.

Suppose that the following transition is allowed:

JP1 | Ja.P2 .k2 Q2K .k1 Q1K | Jā.P3 .k3 Q3K
l(τ)−−→[k2,k3 7→l] JP1 | JP2 .l Q2K .k1 Q1K | JP3 .l Q3K

Ideally, l can commit only if k1 can commit, because otherwise inconsistencies can be introduced.

For example, if l is committed and then k1 is aborted, process P3 and its previous communication over

process a cannot be rolled back anymore. This behaviour is not intended to occur in communicating

transactions. Similarly, aborting k1 should trigger the abortion of l as well.

After a careful LTS has been established, the notions of bisimulation presented in Chapter 2 form

a solid starting point to formulate proof methods for nested transactions. An interesting research

question is then whether nested transactions are more expressive than flat transactions, or whether

an encoding exists from nested to flat transactions (the opposite direction is trivial).

On the practical level, it would be interesting to rethink TCML as a concurrent functional language

that includes both transaction renamings instead of embeddings, and session types. Transaction

renamings would allow the transaction scheduler in Chapter 5 not to record a TTrie data structure.

This has the advantage of not having to deal with a forest of alternatives, from which the best

configuration has to be picked. This is a big penalty in terms of computation time. Instead of a TTrie,

a simpler structure such as a list of active transactions would suffice.

At compilation time, the type and effect system presented in Chapter 6 provide both the behaviour

of a program, and the protocol with which each process it spawns can communicate. A simple extension

to this system is to add a communicating transactions behaviour whenever a transaction is encountered

in the source code, together with a commit behaviour co.

Having an abstract view of transactions on the behaviour level, we can statically determine which
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combination of transactions can reach a commit, according to a semantics similar to TCCSm . The

successful consensus groups can be calculated at compilation time, and encoded in a suitable data

structure for the transaction scheduler to consume. At run time the scheduler will use this information

as a guide to group transactions together. In the SNO example, the scheduler would know that the

only successful grouping is Alice | Bob | David. The efficacy of this approach will then have to be

tested with a new experimental study, and then compared with the results presented in Chapter 5.

Another interesting venue of research is to derive consensus groups heuristics based on the behaviour.

This approach might be more attractive when the consensus groups cannot be determined statically,

such as when the number of participants is too high and the computation of the consensus groups is

too expensive.

Further extensions to the session type discipline presented in Chapter 6 is also possible. More

powerful forms of recursion are worth exploring; a mechanism to generate channel names dynamically,

with constructs such as newChan from TCML; more powerful analysis of static endpoints, such as

k-CFA, that allow the typing of more programs.
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Appendix A

Proof of Type Preservation and

Soundness for MLS

A.1 Preliminaries

To prove type soundness (progress and preservation) we first define the typed reductions of S con-

figurations shown in Fig. A.1. Recall that we let S range over ˜(∆ � b, e), write S for ẽ when

S = ˜(∆ � b, e), and identify S and S up to reordering. Here we write ~b for an arbitrary sequen-

tial composition of behaviours, which may be empty (ε). We also superscripts in sequences of terms

to identify them (e.g., ~τ1 may be different than ~τ2), and we identify sequential compositions up to

associativity and the axiom ε ; b = b ; ε = b.

In Sec. 6.4.1 we assumed that programs are annotated by unique region labels in a pre-processing

step. This is necessary to achieve the maximum accuracy of our system (and reject fewer programs).

Because beta reductions can duplicate annotations here we drop the well-annotated property. Type

soundness for general annotated programs implies type soundness for uniquely annotated programs.

Lemma A.1.1 (Weakening). Suppose C; Γ ` e : TS . b. Then C; Γ ] Γ′ ` e : TS . b.

Proof. By induction on C; Γ ` e : TS . b.

Lemma A.1.2 (Type Decomposition). Suppose C; Γ ` E[e] : TS . b. Then there exist TS ′, b′, ~bnxt

and fresh x such that b = ~τ ; b′ ;~bnxt and C; Γ ` e : TS ′ . b′ and C; Γ, x:TS ′ ` E[x] : TS . ~τ ; τ ; bnxt.

Proof. By structural induction on E.

Lemma A.1.3 (Type Composition). Suppose C; Γ, x:TS ′ ` E[x] : TS . b and C; Γ ` e : TS ′ . b′.

Then there exists ~bnxt such that b = ~τ ; τ ;~bnxt and C; Γ ` E[e] : TS . ~τ ; b′ ;~bnxt.

Proof. By structural induction on E using Lem. A.1.1.

Lemma A.1.4. Suppose C 
ws S,
(
∆ · (pl : η) ·∆′ � b, e

)
and C ` η <: η′. Then C 
ws S,

(
∆ · (pl :

η′) ·∆′ � b, e
)
.
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A.2 Preservation

Preservation relies on two lemmas, the first is that typed reductions of Fig. A.1 preserve well-

typedness, well-stackedness and well-annotatedness; the other is that untyped reductions can be

simulated by the typed reductions.

Lemma A.2.1. Suppose C 
 S and C 
ws S and S →C S ′. Then C 
 S ′ and C 
ws S ′.

Proof. By induction on S →C S ′ using the type composition and decomposition (Lem.(s) A.1.3 and

A.1.2).

The most interesting case is that of delegation (TRDel). In this case we have

S =
(
(pl1 : !ηd.η1) · (p′l′1 : η′d) ·∆1 � ~τ1 ; τ ; τ ; τ ; popρ1!ρd ;~bnxt1, E1[deleg (pl1 , p′

l′1)]
)
,(

(pl2 : ?ηr.η2) � ~τ2 ; τ ; τ ; popρ2?ρr ;~bnxt2, E2[resumelr pl2 ]
)
, S0

→C
(
(pl1 : η1) ·∆1 � ~τ1 ; τ ;~bnxt1, E1[()]

)
,
(
(pl2 : η2) · (p′lr : ηr) � ~τ2 ; τ ;~bnxt2, E2[p′

lr ]
)
, S0 = S ′

and by C 
 S:

C; ∅ ` E1[deleg (pl1 , p′
l′1)] : T1 . ~τ

1 ; τ ; τ ; τ ; popρ1!ρd ;~bnxt1

C; ∅ ` E2[resumelr pl2 ] : T2 . ~τ
2 ; τ ; τ ; popρ2?ρr ;~bnxt2

(pl1 : !ηd.η1) · (p′l
′
1 : η′d) ·∆1 � ~τ

1 ; τ ; τ ; τ ; popρ1!ρd ;~bnxt1 ⇓C

(pl2 : ?ηr.η2) � ~τ2 ; τ ; τ ; popρ2?ρr ;~bnxt2 ⇓C

By type decomposition Lem. A.1.2 and inversion on the rules of Fig. 6.3 and Fig. 6.4:

C; ∅ ` deleg (pl1 , p′
l′1) : Unit . τ ; τ ; τ ; popρ1!ρd C; x:Unit ` E1[x] : T1 . ~τ

1 ; τ ;~bnxt1

C; ∅ ` resume pl2 : Sesρr . τ ; τ ; popρ2?ρr C; x:Sesρr ` E2[x] : T2 . ~τ
2 ; τ ;~bnxt2

(pl1 : η1) ·∆1 � τ ;~bnxt1 ⇓C C ` ρ1 ∼ l1, ρd ∼ l′1, η′d <: ηd

(pl2 : η2) · (p′lr : ηr) � τ ;~bnxt2 ⇓C C ` ρ2 ∼ l2, ρr ∼ lr

Note that the transition rules considered in ⇓C do not take into account the concrete endpoints p, p′

and p—they are existentially quantified in these rules. By Lem. A.1.3 and the rules of Fig. 6.4:

C; ∅ ` E1[()] : T1 . ~τ
1 ; τ ;~bnxt1 (pl1 : η1) ·∆1 � ~τ

1 ; τ ;~bnxt1 ⇓C

C; ∅ ` E2[p′lr ] : T2 . ~τ
2 ; τ ;~bnxt2 (pl2 : η2) · (p′lr : ηr) � ~τ

2 ; τ ;~bnxt2 ⇓C

Therefore C 
 S ′.

From C 
ws S we deduce:

C 
ws S0,
(
(pl1 : !ηd.η1) · (p′l

′
1 : η′d) ·∆1 � b1, e1

)
,
(
(pl2 : ?ηr.η2) � b2, e2

)
C 
ws S0,

(
(p′l

′
1 : η′d) ·∆1 � b1, e1

)
,
(
ε � b2, e2

)
C ` !ηd.η1 ./ ?ηr.η2, η1 ./ η2 p, p ] p′,∆1,S0 p′ ] ∆1,S0
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where b1, e1, b2 and e2 are the appropriate behaviours and expressions shown above. Therefore,

C ` η′d <: ηr and from Lem. A.1.4 we deduce

C 
ws S0,
(
∆1 � b1, e1

)
,
(
(p′l

′
1 : η′d) · ε � b2, e2

)
and C 
ws S0,

(
(pl1 : η1) ·∆1 � b1, e1

)
,
(
(pl2 : η2) · (p′lr : ηr) � b2, e2

)
which completes the proof for this case. The rest of the cases are similarly proved.

Lemma A.2.2. Suppose C 
 S and S−→ ẽ′. There exists S ′ such that S →C S ′ and S′ = ẽ.

Proof. By the definitions of the reduction relations (→C) and (−→) in Fig. 6.1 and Fig. fig:typed-

reductions. In this proof the structure of behaviours needed for establishing the (→C) reductions are

deduced using Lem. A.1.2 and inversion on the typing rules; the necessary structure of the stacks is

deduced by inversion on the rules of the ⇓C relation (Fig. 6.4).

The proof of preservation (Fig. 6.4.14) is a direct consequence of the preceding two lemmas.

A.3 Type Soundness

We first extend the notion of internal and communication steps to the reductions of Fig. A.1.

Lemma A.3.1. Let S →C S ′.

• S →C
c S ′ if the transition is derived with use of the rules TRInit, TRCom, TRDel, TRSel;

• S →C
i S ′ otherwise.

A diverging process is one that has an infinite sequence of internal transitions (−→i).

Definition A.3.2 (Divergence). A process P diverges if P →C
i S1 →C

i S2 →C
i S3 →C

i . . .. A system

S diverges if for any P ∈ S, P diverges.

These transitions may spawn new processes, and divergence can result from infinite spawn chains.

Example A.3.3. Let P
def
=
(
ε � b, (rec f(x)⇒ spawn f) ()

)
where b

def
= τ ; τ ; recβ (τ ; spawnβ); P is a

diverging process.

To prove progress we first divide a system into its diverging and non-diverging parts. The non-

diverging part of the system can only take a finite number of internal transitions.

Lemma A.3.4. Let C 
 S and C 
ws S. Then S = D,ND and D diverges and for some ND′,

ND →C ∗
i ND′ 6→C

i .

Proof. By definition of diverging system (and its negation).

The non-diverging part of the system that cannot take any more internal steps consists of processes

that are values, or stuck on global channels or session primitives.

Lemma A.3.5. Let C 
 ND and C 
ws ND and ND 6→C
i . Then ND = F ,W,B and:
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Processes in F are finished: ∀
(
∆ � b, e

)
∈ F . ∆ = ε, b = τ, e = v.

Processes in W wait on global channels: ∀
(
∆ � b, e

)
∈ W. e = E[req-cl] or e = E[acc-cl].

Processes in B block on a session primitive: ∀P =
(
∆ � b, e

)
∈ B. e = E[e0] and e0 ∈

{send v, recv v, deleg v, resume v, sel-L v, case v {Li ⇒ ei}i∈I}.

Proof. If a process in ND is not in one of the three categories then it would be able to take an

internal step. Moreover, the structure of the stack ∆ and behaviour b of finished processes follows

from C 
 ND and C 
ws ND.

From the preceding two lemmas we can easily derive the most part of progress.

Corollary A.3.6. Let C 
 S and C 
ws S. Then S −→∗i (F ,D,W,B) such that:

Processes in F are finished: ∀
(
∆ � b, e

)
∈ F . ∆ = ε, b = τ, e = v.

Processes in D diverge: ∀
(
∆ � b, e

)
∈ D.

(
∆ � b, e

)
−→∞i .

Processes in W wait on global channels: ∀
(
∆ � b, e

)
∈ W. e = E[req-cl] or e = E[acc-cl].

Processes in B block on a session primitive: ∀P =
(
∆ � b, e

)
∈ B. e = E[e0] and e0 ∈

{send v, recv v, deleg v, resume v, sel-L v, case v {Li ⇒ ei}i∈I}.

What is missing is that when S cannot take any more communication steps (⇒c) then all processes

in B depend on processes in D and W. This follows by well-stackedness of (well-typed) systems. We

write (F ,D,W,B) for a system whose finished processes are in F , diverging processes are in D, waiting

processes are in W and blocked processes are in B.

Lemma A.3.7. Let C 
 S and C 
ws S and S = (F ,D,W,B) and W,B 6−→i. Then

1. If P,Q ∈ W and P � Q then P,Q −→c S ′, for some S ′.

2. The ( 7→) dependencies in S create a directed acyclic graph.

3. If P ∈ B then there exist Q,R ∈ D,W,B such that P Z⇒ (Q,R).

Proof. Prop. 1 follows from C 
 S and C 
ws S. Prop. 2 is proved by induction on C 
ws S.

Prop. 3: Because P ∈ B and P is well-typed, the stack of P is non-empty. Thus, by Prop. 1, there

exists Q ∈ S such that P 7→+ Q is the longest sequence of dependencies without repetitions (this is

possible because of Prop. 2). We examine two cases:

• P 7→∗ P ′ 7→ Q and the top-level frame in the stack of P ′ has an endpoint p and p appears in

the top frame of Q; then P � Q; therefore P Z⇒ (P ′, Q).

• P = P1 7→ . . . 7→ Pn 7→ Q and the top-level frame in the stack of P ′ has an endpoint p and

p appears in a frame other than the top one in Q; then there exists R such that Q 7→ R (by

C 
ws S); R cannot be one of the processes P1, . . . , Pn because of Prop. 2. Moreover R cannot

be a process in F (because processes in F have empty stacks due to typing), and R cannot be

any other processes in D,W,B because the sequence of dependencies is the longest. Thus this

case is not possible.

Type Soundness is a direct consequence of Cor. A.3.6 and Lem. A.3.7.
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TREnd(
∆ � b, e

)
, S →C S ′(

(l : end) ·∆ � b, e
)
, S →C S ′

TRBeta
C ` b′ ⊆ β

(
∆ � b[b′/β], e

)
, S →C S ′(

∆ � b, e
)
, S →C S ′

TRIft(
∆ � ~τ ; τ ; (b1 ⊕ b2) ;~bnxt, E[if tt then e1 else e2]

)
→C (∆ � ~τ ; b1 ;~bnxt, E[e1]

)
TRIff(

∆ � ~τ ; τ ; (b1 ⊕ b2) ;~bnxt, E[if ff then e1 else e2]
)
→C (∆ � ~τ ; b2 ;~bnxt, E[e2]

)
TRLet(

∆ � ~τ ; τ ;~bnxt, E[letx = v in e]
)
→C (∆ � ~τ ;~bnxt, E[e[v/x]]

)
TRApp(

∆ � ~τ ; τ ; τ ;~bnxt, E[(funx⇒ e) v]
)
→C (∆ � ~τ ;~bnxt, E[e[v/x]]

)
TRRec(

∆ � ~τ ; τ ; τ ; recβ b ;~bnxt, E[(rec f(x)⇒ e) v]
)

→C (∆ � ~τ ; b[recβ b/β] ;~bnxt, E[e[rec f(x)⇒ e/f ][v/x]]
)

TRSpn(
∆ � ~τ ; τ ; (spawn b) ;~bnxt, E[spawn v]

)
, S →C (∆ � ~τ ; τ ;~bnxt, E[()]

)
,
(
ε � τ ; τ ; b, v ()

)
, S

TRInit
p, p ] E1, E2,S,∆1,∆2(

∆1 � ~τ
1 ; τ ; τ ; push(l1 : η1) ;~bnxt1, E1[req-cl1 ()]

)
,(

∆2 � ~τ
2 ; τ ; τ ; push(l2 : η2) ;~bnxt2, E2[acc-cl2 ()]

)
, S

→C ((pl1 : η1) ·∆1 � ~τ
1 ; τ ;~bnxt1, E1[pl1 ]

)
,
(
(pl2 : η2) ·∆2 � ~τ

2 ; τ ;~bnxt2, E2[pl2 ]
)
, S

TRCom(
(pl1 : !T1.η1) ·∆1 � ~τ

1 ; τ ; τ ; τ ; popρ1!T ′1 ;~bnxt1, E1[(send (pl1 , v))]
)
,(

(pl2 : ?T2.η2) ·∆2 � ~τ
2 ; τ ; τ ; popρ2?T ′2 ;~bnxt2, E2[recv pl2 ]

)
, S

→C ((pl1 : η1) ·∆1 � ~τ
1 ; τ ;~bnxt1, E1[()]

)
,
(
(pl2 : η2) ·∆2 � ~τ

2 ; τ ;~bnxt2, E2[v]
)
, S

TRDel(
(pl1 : !ηd.η1) · (p′l

′
1 : η′d) ·∆1 � ~τ

1 ; τ ; τ ; τ ; popρ1!ρd ;~bnxt1, E1[deleg (pl1 , p′
l′1)]
)
,(

(pl2 : ?ηr.η2) � ~τ2 ; τ ; τ ; popρ2?ρr ;~bnxt2, E2[resumelr pl2 ]
)
, S

→C ((pl1 : η1) ·∆1 � ~τ
1 ; τ ;~bnxt1, E1[()]

)
,
(
(pl2 : η2) · (p′lr : ηr) � ~τ

2 ; τ ;~bnxt2, E2[p′
lr ]
)
, S

TRSel
k ∈ I( (

pl1 :
⊕

i∈I !Li.ηi
)
·∆1 � ~τ

1 ; τ ; τ ; popρ1!Lk ;~bnxt1, E1[sel-Lk p
l1 ]
)
,( (

pl2 :
∑
i∈(I1,I2)?Li.η

′
i

)
·∆2 � ~τ

2 ; τ ;
(∑

j∈J popρ2?Lj ; bj
)

;~bnxt2, E2[case pl2 {Lj ⇒ ej}j∈J ]
)
, S

→C ((pl1 : ηk) ·∆1 � ~τ
1 ; τ ;~bnxt1, E1[()]

)
,
(
(pl2 : η′k) ·∆2 � ~τ

2 ; bk ;~bnxt2, E2[ek]
)
, S

Fig. A.1: Typed Reductions.
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Appendix B

Inference Algorithms

This appendix contains the full length version of Algorithm SI in Section B.1 and the helper function

expand for Algorithm D in Section B.2.

B.1 Algorithm SI

1 SI(b, C) = (σ2σ1, C2)

2 if (σ1, C1) =MC
(
ε � b, C, ε

)
3 and (σ2, C2) = choiceVarSubst C1

4

5 choiceVarSubst (C ]
−−−−−−−−→
{ηi ⊆ ψini} ]

−−−−−−−−→
{ηj ⊆ ψexj}) = (σ,Cσ)

6 if σ =
−−−−−−−→
[ψini 7→ ηi]

−−−−−−−→
[ψexj 7→ ηj ]

7 and ψin, ψex ] RHS(C) for any ψin, ψex

B.1.1 Algorithm MC

1 −− remove terminated frames

2 MC
(
(l : end) ·∆ � b, C, K

)
=MC

(
∆ � b, C, K

)
3

4 −− MC terminates with behaviour τ

5 MC
(
∆ � τ, C, ε

)
= (σ, Cσ)

6 if σ = finalize ∆

7

8 −− pop a sub−behaviour from the continuation stack

9 MC
(
∆ � τ, C, b ·K

)
=MC

(
∆ � b, C, K

)
10

11 −− push a new frame on the stack

12 MC
(
∆ � push(l : η), C, K

)
= (σ2σ1, C2)

13 if (σ1,∆1) = closeFrame(l,∆)

14 and (σ2, C2) = MC
(
(l : ησ1) ·∆1 � τ, Cσ1, Kσ1

)
15

16 −− send

17 MC
(
(l :ψ) ·∆ � popρ!T, C, K

)
= (σ2σ1, C2)
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18 if C ` l ∼ ρ

19 and σ1 = [ψ 7→ !α.ψ′] where α,ψ′ fresh

20 and (σ2, C2) =MC
(
(l :ψ′) ·∆σ1 � τ, Cσ1 ∪ {T ⊆ α}, Kσ1

)
21

22 MC
(
(l : !T ′.η) ·∆ � popρ!T, C, K

)
=MC

(
(l : η) ·∆ � τ, C ∪ {T ⊆ T ′}, K

)
23 if C ` l ∼ ρ

24

25 −− recv

26 MC
(
(l :ψ) ·∆ � popρ?T, C, K

)
= (σ2σ1, C2)

27 if C ` l ∼ ρ

28 and σ1 = [ψ 7→ ?α.ψ′] where α,ψ′ fresh

29 and (σ2, C2) =MC
(
(l :ψ′) ·∆σ1 � τ, Cσ1 ∪ {α ⊆ T}, Kσ1

)
30

31 MC
(
(l : ?T ′.η) ·∆ � popρ?T, C, K

)
=MC

(
(l : η) ·∆ � τ, C ∪ {T ′ ⊆ T}, K

)
32 if C ` l ∼ ρ

33

34 −− delegation

35 MC
(
(l :ψ) · (ld : ηd) ·∆ � popρ!ρd, C, K

)
= (σ2σ1, C2)

36 if C ` l ∼ ρ and C ` ld ∼ ρd

37 and σ1 = [ψ 7→ !ηd.ψ
′] where ψ′ fresh

38 and (σ2, C2) =MC
(
(l :ψ′) ·∆σ � τ, Cσ1, Kσ1

)
39

40 MC
(
(l : !ηd.η) · (ld : η′d) ·∆ � popρ!ρd, C, K

)
= (σ2σ1, C2)

41 if C ` l ∼ ρ and C ` ld ∼ ρd

42 and (σ1, C1) = sub(η′d, ηd, C)

43 and (σ2, C2) =MC
(
(l : η) ·∆σ � τ, C1, Kσ1

)
44

45 MC
(
(l : η) · (ld : η′d) ·∆ � popρ!ρd, C, K

)
= (σ2σ1, C2)

46 if C ` ld 6∼ ρd

47 and (σ1,∆1) = closeFrame(ld, (l : η) · (ld : η′d) ·∆)

48 and (σ2, C2) =MC
(
∆1 � popρ!ρd, Cσ1, Kσ1

)
49

50 −− resume

51 MC
(
(l :ψ) · ε � popρ?lr, C, K

)
= (σ2σ1, C2)

52 if C ` l ∼ ρ and l 6= lr

53 and σ1 = [ψ 7→ ?ψ′r.ψ
′] where ψ′, ψ′r fresh

54 and (σ2, C2) =MC
(
(l :ψ′) · (lr :ψ′r) · ε � τ, Cσ1, Kσ1

)
55

56 MC
(
(l : ?ηr.η) · ε � popρ?lr, C, K

)
=MC

(
(l : η) · (lr : ηr) · ε � τ, C, K

)
57 if C ` l ∼ ρ and l 6= lr

58

59 MC
(
(l : ?η) · (ld : ηd) ·∆ � popρ?lr, C, K

)
= (σ2σ1, C2)

60 if (σ1,∆1) = closeFrame(ld, (l : ?η) · (ld : ηd) ·∆)

61 and (σ2, C2) =MC
(
∆1 � popρ?lr, Cσ1, Kσ1

)
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62

63 −− in. choice

64 MC
(
(l :ψ) ·∆ � popρ!Lk, C, K

)
= (σ2σ1, C2)

65 if C ` l ∼ ρ

66 and σ1 = [ψ 7→ ψin] where ψk, ψin fresh

67 and (σ2, C2) =MC
(
(l :ψk) ·∆σ � τ, Cσ1 ∪ {ψin ∼

⊕
j∈{k}

!Lj .ψj}, Kσ1

)
68

69 MC
(
(l :ψin) ·∆ � popρ!Li, C, K

)
=MC

(
(l : ηi) ·∆ � τ, C, K

)
70 if C ` l ∼ ρ

71 and i ∈ J and (ψin ∼
⊕
j∈J

!Lj .ηj) ∈ C

72

73 MC
(
(l :ψin) ·∆ � popρ!Li, C, K

)
=MC

(
(l :ψi) ·∆ � τ, C′ ] {ψin ∼

⊕
j∈J,i

!Lj .ηj}, K
)

74 if C ` l ∼ ρ

75 and i 6∈ J and C = C′ ] {ψin ∼
⊕
j∈J

!Lj .ηj} where ηi = ψi fresh

76

77 −− ex. choice

78 MC
(
(l :ψ) ·∆ �

∑
i∈I

popρ?Li ; bi, C, K
)

= (σ2σ1, C2)

79 if C ` l ∼ ρ

80 and σ1 = [ψ 7→ ψex] where ψex fresh

81 and C1 = {ψex ∼
∑

i∈(I,∅)
?Li.ψi} where

−→
ψi fresh

82 and (σ2, C2) =MC
(
(l :ψex) ·∆σ1 �

(∑
i∈I

popρ?Li ; bi
)
σ1, Cσ1 ∪ C1, Kσ1

)
83

84 MC
(
(l :ψex) ·∆ �

∑
j∈I1]I2]I3

popρ?Lj ; bj , C, K
)

=MC
(
(l :ψex) ·∆ �

∑
j∈I1]I2]I3

popρ?Lj ; bj , C1, K
)

85 if C ` l ∼ ρ and I3 ] J1 ] J2 and (I3 6= ∅ and J1 6= ∅

86 and C = C′ ] {ψex ∼
∑

j∈(I1J1,I2J2)
?Lj .ηj}

87 and C1 = C′ ∪ {ψex ∼
∑

i∈(I1,I2I3J1J2)
?Li.ηi}

88

89 MC
(
(l :ψex) ·∆ �

∑
i∈I

popρ?Li ; bi, C, K
)

= (σn . . . σ0, Cn)

90 if C ` l ∼ ρ and J1 ⊆ I and I ⊆ J1 ] J2

91 and C = C′ ] {ψex ∼
∑

j∈(J1,J2)
?Lj .ηj}

92 and for each k ∈ [1 . . . n] where I = {Lj1 , . . . , Ljn} and n ≥ 0

93 (σk, Ck) =MC
(
((l : ηjk ) ·∆ � bjk )σk−1 . . . σ0, Ck−1, Kσk−1 . . . σ0

)
94 where σ0 = σid and C0 = C

95

96 −− sequencing

97 MC
(
∆ � b1 ; b2, C, K

)
=MC

(
∆ � b1, C, b2 ·K

)
98

99 −− internal choice in the behaviour

100 MC
(
∆ � b1 ⊕ b2, C, K

)
= (σ2σ1, C2)

101 if (σ1, C1) =MC
(
∆ � b1, C, K

)
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102 and (σ2, C2) =MC
(
∆σ1 � b2σ1, C1, Kσ1

)
103

104 −− spawn

105 MC
(
∆ � spawn b, C, K

)
= (σ2σ1, C2)

106 if (σ1, C1) =MC
(
ε � b, C, ε

)
107 and (σ2, C2) =MC

(
∆σ1 � τ, C1, Kσ1

)
108

109 −− rec

110 MC(∆ � recβ b, C) = (σ2σ1, C2)

111 if C = C′ ] {b′ ⊆ β}

112 and (σ1, C1) =MC
(
ε � b, C′ ∪ {τ ⊆ β}, ε

)
113 and (σ2, C2) =MC

(
∆σ1 � τ, C1 ∪ ({b′ ⊆ β})σ1, Kσ1

)
114

115 −− behaviour variable

116 MC
(
∆ � β, C, K

)
=MC

(
∆ � b, C, K

)
117 where b =

⊕
{bi | ∃i. (bi ⊆ β) ∈ C}

118

119 −− try to close the top session if all previous clauses fail

120 MC
(
∆ � b, C, K

)
= (σ2σ1, C2)

121 if (σ1,∆1) = closeTop(∆)

122 and (σ2, C2) =MC
(
∆1 � bσ1, Cσ1, Kσ1

)
B.1.2 Helper functions

1 −− closeFrame forces frame l in the input stack to be the closed session

2 closeFrame(l, ε) = (σid, ε)

3 closeFrame(l, (l : end) ·∆) = (σid,∆)

4 closeFrame(l, (l :ψ) ·∆) = ([ψ 7→ end],∆[ψ 7→ end])

5 closeFrame(l, (l′ : η) ·∆) = (σ, (l′ : ησ) ·∆′)

6 if l′ 6= l and (σ,∆′) = closeFrame(l,∆)

7

8 −− closeTop forces the top of the stack to be end

9 closeTop((l : η) ·∆) = closeFrame(l, (l : η) ·∆)

10

11 −− finalize matches the input stack with the empty stack

12 finalize ε = σid

13 finalize (l : end) ·∆ = finalize ∆

14 finalize (l :ψ) ·∆ = σ2σ1

15 if σ1 = [ψ 7→ end]

16 and σ2 = finalize(∆)

B.1.3 Subtype checking

1 −− end

2 sub(end, end, C) = (σid, C)

3
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4 −− send/recv

5 sub(!T1.η1, !T2.η2, C) = (σ1, C1 ∪ {T2 ⊆ T1})

6 if (σ1, C1) = sub(η1, η2, C)

7

8 sub(?T1.η1, ?T2.η2, C) = (σ1, C1 ∪ {T1 ⊆ T2})

9 if (σ1, C1) = sub(η1, η2, C)

10

11 −− deleg/resume

12 sub(!ηd1.η1, !ηd2.η2, C) = (σ2σ1, C2)

13 if (σ1, C1) = sub(ηd2, ηd1, C) and (σ2, C2) = sub(η1σ1, η2σ1, C1)

14

15 sub(?ηr1.η1, ?ηr2.η2, C) = (σ2σ1, C2)

16 if (σ1, C1) = sub(ηr1, ηr2, C) and (σ2, C2) = sub(η1σ1, η2σ1, C1)

17

18 −− in. choice

19 sub(ψin1, ψin2, C) = f (I2, C)

20 if (ψin2 ∼
⊕
i∈I2

!Li.η2i) ∈ C

21 and f (∅, C) = (σid, C)

22 and f (I ] {k}, C) = f (I ] {k}, C1)

23 if C = C′ ] (ψin1 ∼
⊕
i∈I1

!Li.η1i) ] (ψin2 ∼
⊕
i∈I2

!Li.η2i)

24 and k 6∈ I1 and k ∈ I2

25 and C1 = C′ ] (ψin1 ∼
⊕

i∈I1∪{k}
!Li.η1i ⊕ η2k ) ] (ψin2 ∼

⊕
i∈I2

!Li.η2i)

26 and f (I ] {k}, C) = (σ2σ1, C2)

27 if (σ1, C1) = f (I, C)

28 and (ψin1 ∼
⊕
i∈I1

!Li.η1i), (ψin2 ∼
⊕
i∈I2

!Li.η2i) ∈ C1

29 and k ∈ I1 and k ∈ I2

30 and (σ2, C2) = sub (η1kσ1, η2kσ1, C1)

31

32 −− ex. choice

33 sub(ψex1, ψex2, C) = f (J1 ∪ J2, C)

34 if (ψex1 ∼
∑

i∈(I1,I2)
?Li.η1i), (ψex2 ∼

∑
i∈(J1,J2)

?Li.η2i) ∈ C

35 and I1 ⊆ J1

36 and f (∅, C) = (σid, C)

37 and f (I ∪ {k}, C) = (σ2σ1, C2)

38 if (ψex1 ∼
∑

i∈(I1,I2)
?Li.η1i), (ψex2 ∼

∑
i∈(J1,J2)

?Li.η2i) ∈ C

39 and (k ∈ I2 or (k ∈ I1 and k ∈ J1)

40 and (σ1, C1) = f (I, C)

41 and (σ2, C2) = sub (η1kσ1, η2kσ1, C1)

42 and f (I ∪ {k}, C) = f (I ∪ {k}, C1)

43 if C = C′ ] (ψex1 ∼
∑

i∈(I1,I2)
?Li.η1i) ] (ψex2 ∼

∑
i∈(J1,J2)

?Li.η2i)

44 and k ∈ I1 and k ∈ J2
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45 and C1 = C′ ] (ψex1 ∼
∑

i∈(I1\{k},I2∪{k})
?Li.η1i) ] (ψex2 ∼

∑
i∈(J1,J2)

?Li.η2i)

46 and f (I ∪ {k}, C) = f (I ∪ {k}, C1)

47 if C = C′ ] (ψex1 ∼
∑

i∈(I1,I2)
?Li.η1i) ] (ψex2 ∼

∑
i∈(J1,J2)

?Li.η2i)

48 and k 6∈ I1 and k 6∈ I2

49 and C1 = C′ ] (ψex1 ∼
∑

i∈(I1,I2∪{k})
?Li.η1i+?Lk.η2k) ] (ψex2 ∼

∑
i∈(J1,J2)

?Li.η2i)

50

51 −− session inference

52 sub(ψ, η, C) = (σ,Cσ) if σ = [ψ 7→ η]

53 sub(η, ψ,C) = (σ,Cσ) if σ = [ψ 7→ η]

B.2 Function expand for Algorithm D

The helper function expand is defined as follows:

expand(C,ψ1 ./ end) = (σ,Cσ) if σ = [ψ1 7→ end]

expand(C,ψ1 ./ ?T.η2) = (σ,Cσ) if σ = [ψ1 7→ !α.η2]

expand(C,ψ1 ./ !T.η2) = (σ,Cσ) if σ = [ψ1 7→ ?α.η2]

expand(C,ψ1 ./ !η′2.η2) = (σ,Cσ) if σ = [ψ1 7→ !ψ′1.ψ
′′
1 ]

expand(C,ψ1 ./ ?η′2.η2) = (σ,Cσ) if σ = [ψ1 7→ ?ψ′1.ψ
′′
1 ]

expand(C,ψ1 ./
⊕
i∈I

!Li.η2i) = (σ,Cσ ∪ C ′) if σ = [ψ1 7→ ψex] and C ′ = {ψex ∼
∑

i∈(I,∅)
?Li.ψ2i}

expand(C,ψ1 ./
∑

i∈(I1,I2)

?Li.η2i) = (σ,Cσ ∪ C ′) if σ = [ψ1 7→ ψin] and C ′ = {ψin ∼
⊕
i∈I1

!Li.ψ2i}

expand(C,ψex ./
⊕
i∈I0

!Li.η2i) = (σid, C
′) if C = C ′′ ∪ {ψex ∼

∑
i∈(I1,I2)

?Li.η1i}

and C ′ = C ′′ ∪ {ψex ∼
∑

i∈(I1∪I0,I2\I0)

?Li.η1i} ∪
⋃
i∈I0
{η1i ./ η2i}

expand(C,ψin ./
∑

i∈(I1,I2)

?Li.η2i) = (σid, C
′) if C = C ′′ ∪ {ψin ∼

⊕
i∈I0

!Li.η1i}

and C ′ = C ′′ ∪ {ψex ∼
⊕

i∈(I0\I2)∩I1
!Li.η1i} ∪

⋃
i∈I0∩I1

{η1i ./ η2i}

expand(C,ψin ./ ψex) = (σid, C
′) if C = C ′′ ∪ {

⊕
i∈I0

!Li.η1i ⊆ ψin} ∪ {
∑

i∈(I1,I2)

?Li.η1i ⊆ ψex}

and C ′ = C ′′ ∪ {ψin ∼
⊕

i∈(I0\I2)∪I1
!Li.η1i} ∪ {ψex ∼

∑
i∈(I1∩(I0\I2),I2∪(I0\I1)

?Li.η1i}

∪
⋃

i∈(I0\I2)∩I1
{η1i ./ η2i}

where all α,ψ, ψin, ψex variables on the right-hand side are fresh, and where fresh variables ψ1i and

ψ2i are generated, in case index i is not defined in the starting internal or external choice. Symmetric

rules are omitted.
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