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Chapter 4

Gene Expression Profiling of
Ovarian Cancer Cell Lines in
Normoxia and Hypoxia



4.1 Introduction
41.1 Microarrays

Microarray technology was first developed in the 1980’s as a way of providing high
sensitivity immunoassays for diagnostic purposes [392]. Today there are microarray
platforms available for analysis of DNA and protein samples. DNA microarrays
consist of large numbers of DNA sequences which are immobilized onto a solid
surface which allow for the analysis of thousands of genes simultaneously [393].
There are many different DNA microarray platforms available which have
differences both in how they are fabricated and in their functions [394]. The normal
workflow in a microarray experiment consists of RNA isolation from a source tissue,
conversion of RNA to cDNA, labelling of cDNA and hybridization to the array,
followed by array scanning and data analysis [393]. Good experimental design is
essential for any microarray experiment, and one should consider many different
factors including cost, number of replicates, the questions to be answered by the

data and the characteristics of the source material [393].

4.1.2 Uses of DNA Microarrays

DNA microarrays have been employed for a wide variety of uses including gene
profiling of cancer types, identification of biomarkers associated with disease
diagnosis, prognosis or treatment and identification of signalling pathways within

cells in response to stimuli such as drug treatments etc.

41.2.1 Gene Profiling

It has been noted that despite molecular heterogeneity in tumours, patients who receive a
particular diagnosis are given a certain course of treatment [395]. However, molecular
profiling of tumours may provide more useful clinical information on tumour classification
and thus treatment course [395]. In B-cell lymphoma, the Revised European-American
Lymphoma (REAL) classification is used, however, it does not ideally separate different
tumour morphologies — a study by Alizadeh et al. showed using DNA microarray technology

that the subgroups could be more accurately divided using molecular profiling [395].
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Although some heterogeneity remained within the groups, the authors showed how DNA
microarrays could improve upon previous classification based on morphology. In malignant
melanoma, a cancer which generally does not display recurrent genetic changes, a
previously unrecognized subgroup of the disease was identified using microarray technology
[396]. Gene profiling of adrenocortical carcinoma, a rare cancer, was able to identify
differences between benign and malignant neoplasms and identify key transcriptional

events involved in its pathogenesis [397].

Epithelial ovarian cancer is a clinically heterogeneous disease, with a number of histological
subtypes. Microarray technology has been extremely useful in the analysis of ovarian
carcinomas. A study by Welsh et al. showed that gene expression profiles of normal ovarian
tissue clustered separately from ovarian carcinomas due to differential expression of gene
groups, and also that within the serous carcinoma group, there were a number of subgroups
which clustered together [398]. A later study by Schwartz et al. showed that gene profiling
could also differentiate between histological subtypes of ovarian cancer [399]. In addition,
the group found that gene expression profiling could separate high grade from low grade
tumours, indicating that differences in genetic makeup of the tumour could influence
tumour aggressiveness. It has also been shown that clear cell ovarian carcinoma has quite a
distinct gene signature relative to other types of ovarian cancer [399,400]. Thus DNA
microarray profiling has provided a lot of information on molecular differences between
normal ovarian tissue and different types of ovarian carcinoma, shedding light on genes

linked to the different tumour biologies observed.

4.1.2.2 Diagnostic Biomarker Discovery

As the standard treatment for cancers often depend on or are linked to the tissue of
origin, it is vital that a correct diagnosis is made. This is not always straightforward,
particularly in cell types which are morphologically similar, or in the case of
metastatic disease of an unknown primary. One example of where a correct
diagnosis is essential is in a particular type of lung cancer. Patients presenting with a
unilateral malignant pleural effusion may be suffering from malignant pleural
mesothelioma or from metastatic adenocarcinoma of the lung [401]. These diseases

have quite different treatments — mesothelioma requiring both surgery and
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chemoradiation, and adenocarcinoma, chemotherapy. Histological diagnosis is not
always easy due to lack of sufficient material [401], and an incorrect diagnosis could
lead to certain patients suffering from side effects of unnecessary treatments, or
patients not receiving the necessary measures. Gordon et al. used U95A Affymetrix
arrays to screen over 200 specimens of both cancer types. Using relatively small
quantities of starting material, they were able to identify panels of biomarkers which

could discriminate between the two tumour types with sensitivity of 97%.

Prostate cancer is the second leading cause of cancer death in men [402]. Prostatic
intraepithelial neoplasia (PIN) is a precursor for prostate cancer, and the presence of
high grade PIN is a significant risk factor for later development of prostate cancer
[402]. Identification of biomarkers which can diagnose prostate cancer and
differentiate between high-grade and lower grades of PIN is essential for good
patient care. Bull et al. developed custom microarrays based on a computer search
for genes often overexpressed in cancer [402]. Using tissue samples from normal
prostate, benign prostatic hyperplasia (BPH), PIN and prostate cancer they identified
sets of genes overexpressed in PIN and prostate cancer relative to normal prostate,
and also overexpressed in prostate cancer relative to BPH. These markers provided
potential starting points for validation in prostate biopsy specimens as diagnostic

biomarkers.

Ovarian cancer is normally diagnosed using radiological imaging, serum Cal25 levels
and a thorough patient history. However, Cal25 has certain limitations as a
diagnostic tool. It is often not raised in early stage ovarian cancers, and is raised in a
number of benign conditions such as endometriosis [403]. Thus, identification of
novel biomarkers is essential. Although all biomarkers to date have not shown
tremendous potential, microarray analysis can continually provide novel targets.
For example, microarray analysis of ovarian cancer cell lines as well as normal
ovarian surface epithelium (NOSE) identified a potential biomarker of ovarian
cancer, osteopontin [404]. A follow-up study validating the usefulness of

osteopontin as a serum diagnostic biomarker found it could pick up early stage and




late stage ovarian cancers with sensitivities of 80.4% and 85.4% respectively [405].
Similarly, prostatin, another potential ovarian cancer biomarker was identified by
microarray analysis of ovarian cancer cell lines and NOSE [406]. The group’s
validation of this biomarker in a large number of serum samples from patients with
benign and malignant ovarian disease displayed its potential as a serum biomarker.
In addition, microarray analysis has been used to identify gene signatures which can
differentiate between metastatic ovarian carcinoma and colon carcinoma, two
cancers which can be difficult to separate histologically and have completely

different treatment regimens [407].

4.1.2.3 Prognostic Biomarker Discovery

Prognostic biomarkers have several uses in cancer treatment. They can identify
patients who are more likely to have a poor outcome, and thus may indicate that
more aggressive treatment is necessary. Also, they can identify patients who do not
respond well to particular types of therapy and thus may benefit more by being
spared harsh therapy regimens to no effect. Similarly to diagnostic biomarkers,
microarray data has been vital in identifying novel prognostic biomarkers in many
types of cancer. A study by Inoue et al. used microarrays to study tissue from
patients with various stages of gastric cancer [408]. This group divided the tumours
into two groups depending on the presence or extent of certain prognostic factors
such as tumour size, metastasis etc. They then scored and averaged the gene
expression intensity of genes associated with these prognostic factors for each
group. Using these scores, they divided the patients into three groups associated
with clinical response, thus demonstrating a use for microarray data in determining
prognosis. Another study by Weigelt et al. identified a 70-gene profile able to
predict later metastasis in young breast cancer patients [409]. They used
microarrays to profile matched primary breast tumours and metastases and found
that distant metastases of breast tumours display the same molecular profile and
70-gene signature as their primaries, and showed that this signature could predict

the presence or absence of metastasis. Mammaprint®™ is a prognostic test based
p prog



on a 70-gene signature which classifies patients based on likelihood of metastasis
[410]. The signature was initially identified in a set of 78 breast tumours, and
subsequently validated in a number of studies [410]. Oncotype DX® is a similar
breast cancer prognostic test based on expression of 21 genes which analyses the
likelihood of recurrent disease in oestrogen receptor-positive, lymph node-negative
patients [411]. It was formulated based on review of published data of breast
cancer biomarkers which were then evaluated in three clinical association studies
[411]. Tests such as these aid clinicians in decision making regarding appropriate
treatment such as adjuvant chemotherapy [412] and demonstrate a tangible

usefulness for microarray data in patient treatment.

In ovarian cancer, microarrays have also been employed to identify prognostic
markers. In 2005, Okamoto et al. screened 8 serous adenocarcinomas as well as
paclitaxel-resistant ovarian cancer cell lines using Affymetrix U133 arrays [413].
Using this data they identified 44 genes associated with resistance/sensitivity to
chemotherapy. Following validation of the results, they selected one gene,
indoleamine 2,3-dioxygenase (IDO) to evaluate at the protein level in a further 24
tumour specimens. They found that positive IDO expression in tumours was
significantly associated with relapse and poorer outcome, thus identifying a
prognostic predictor for ovarian cancer. Hartmann et al. gene expression profiled 79
ovarian cancer tumour samples obtained before chemotherapy [414]. They used a
complex algorithm which they had previously established to analyse the gene
expression data and compiled a list of 14 genes which they then applied to an
independent sample cohort. This gene list was found to have an accuracy of 86% in
predicting the outcome of late stage ovarian cancer patients following platinum-
taxane chemotherapy. In addition, a study from our group also identified a gene
expression profile distinguishing primary and recurrent ovarian cancers using Human
Genome Survey Microarrays by Applied Biosystems [415]. Using an initial training
set of five primary and five recurrent serous adenocarcinomas they identified a

number of differentially expressed genes. They then profiled a set of matched
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primary and recurrent samples from the same patients and identified a further list of
genes, which interestingly belonged to the same gene families as those identified in
the initial training set analysis. A subset of genes identified was then validated in a
cohort of primary and recurrent adenocarcinomas. This study identified potentially
important predictors of ovarian cancer recurrence — this is important as recurrent
ovarian cancer adversely affects patient prognosis. Thus microarrays have been

used in a variety of ways to identify markers associated with prognosis.

4.1.2.4 Therapeutic Biomarker Discovery

As many tumours are biologically and clinically heterogeneous, it would be
reasonable to assume that one type of treatment would not work for all tumours.
However, it has been normal to treat particular tumours with a set chemotherapy
regimen for many cancers. DNA microarray technology has been employed to
segregate tumour types, and to determine prognostic factors for different cancers as
discussed above, thus it also can play a role in determining potential therapeutic
targets. These can then be utilized and developed to provide more individualized
therapy regimens for patients who will benefit most. Several therapeutic
biomarkers have been identified using microarray technology. Schwartz et al.
screened 70 cervical cancer tumours on Affymetrix U133+2 arrays and analysed
tumour pathways associated with tumour metabolism [416]. They noted that genes
involved in the PI3K/Akt signalling pathway were significantly up-regulated in more
metabolically active tumours, and that tumours expressing high levels of Akt protein
had a poorer clinical response than those with weak Akt expression. This is clinically
significant, as in vitro studies have already shown PI3K inhibitors to increase
sensitivity to radiation therapy in cervical cancer cell lines [417], thus it highlights a
potential therapeutic role for these drugs in treatment of patients with up-
regulation of the PI3K/Akt pathway. Yamamura et al. analysed a publically available
dataset containing microarray data on a set of primary and metastatic (omental)
ovarian cancer tumour specimens [418]. They found overexpression of genes

associated with the transforming growth factor B (TGFB) signalling pathway in
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omental lesions compared with primary tumours. They also showed that protein
levels of the TGFPB receptor 2 were up-regulated in omental lesions, validating the
microarray data. They then used the TGFB pathway inhibitor, A-83-01, to
investigate its effects on the metastatic properties of the murine ovarian cancer cell
line HM-1. They were able to show that when the inhibitor was applied, the
invasion, motility and adhesion properties of the cells were reduced. Subsequent in
vivo studies showed that A-83-01 was able to improve the survival time of mice with
ovarian tumours, thus indicating its potential as an adjunct treatment for ovarian

cancer.

Therefore, it can be seen that microarrays provide a minefield of data which can
provide useful leads for researchers and provide novel data which can lead to

improvements both in diagnosis and treatment of cancers.

4.1.3 Microarray Analysis of Hypoxia-Induced Changes

Microarray technology has also been employed to identify changes induced by
hypoxia in a number of different diseases. Starmans et al. used microarrays to
analyse gene expression following various exposures to hypoxia [419]. They looked
at gene expression changes in colon cancer, breast cancer and prostate cancer cell
lines and then picked gene lists based on genes which were either up- or down-
regulated in at least two of the three cell lines as well as genes that were
differentially expressed over time. They then cross-compared these lists to
publically available mRNA data in primary breast cancer samples in order to identify
genes which may hold prognostic value. They found that these up-regulated gene
lists which were derived from in vitro samples were not prognostic when applied to
the public databases, although interestingly down-regulated gene lists were highly
prognostic although the authors noted that this may not be due to hypoxia per se,
rather they considered that the down-regulated gene lists such as cell cycle genes

were likely representative of other cellular phenomena such as cell proliferation.



Similarly, in a study of hepatocellular carcinoma, van Malenstein et al. exposed the
human liver carcinoma cell line, HepG2, to hypoxia for up to three days followed by
RNA extraction and analysis on Agilent microarrays [420]. They determined an in
vitro hypoxic gene set of 265 up-regulated genes and compared their data with
publically available data sets. They removed any genes whose expression did not
correlate with in vivo data from the public data sets resulting in a smaller set of four
up-regulated and three down-regulated genes. Expression of this gene set in the
public data sets was able tc predict progression free survival and overall survival,

and identify patients with or without vascular invasion.

Chi et al. exposed a number of different normal human cell types to hypoxia and
analysed the gene expression response on microarrays [421]. Genes which were
more than 2.5-fold increased in epithelial cells exposed to hypoxia were selected for
analysis in renal cell carcinoma, breast cancer and ovarian cancer. They identified
repression of cell cycle genes in response to hypoxia although it was unclear
whether this was directly due to hypoxia, or rather due to changes in the cells’
energy requirements. They analysed the ‘hypoxia response’ in a set of 72 ovarian
cancer samples and found that samples expressing the ‘hypoxia response’ genes had

poorer progression free survival and overall survival.
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4.1.4 Aim

The results from Chapter 3 indicated that exposure to hypoxia increased resistance

to cisplatin in A2780 and A2780cis cells. The aim of this chapter was three-fold:

i) To identify genetic changes associated with hypoxia in ovarian cancer cell

lines
ii) To determine whether these changes are associated with chemoresistance

iii) To evaluate their potential as biomarkers for chemoresistance in ovarian

cancer




4.2 Methods

4.2.1 Sample Selection

From the results of the hypoxia matrix (Chapter 3) we selected the point on the
matrix which provided the most consistent and significant changes in resistance.
We chose the ‘hypoxia naive’ samples which were in hypoxia for the entire duration
of cisplatin treatment (72 hours). Twenty four arrays were processed in total. Three
biological replicates from independent experiments were run for each of the

following matrix conditions:
i) A2780 (Normoxia, untreated)
ii) A2780 (Hypoxia, untreated)
iii) A2780 (Normoxia, cisplatin treated)
iv) A2780 (Hypoxia, cisplatin treated)
) A2780cis (Normoxia, untreated)
vi) A2780cis (Hypoxia, untreated)
vii) A2780cis (Normoxia, cisplatin treated)

viii)  A2780cis (Hypoxia, cisplatin treated)

4.2.2 Sample Preparation

Total RNA was extracted from A2780 and A2780cis using the RNeasy mini kit as
described in Chapter 2. RNA was quantified on the NanoDrop spectrophotometer
and the quality was assessed using the Bioanalyzer before running the arrays.
Samples were prepared for array analysis and run using the methods set out in
Chapter 2. Arrays were run for three biological replicates for each cell line and

condition. Data was analysed using Expression console software (Affymetrix, US).



4.2.3 Array Quality Control Analysis

All arrays were screened using quality control methods as set out by the quality
assessment white paper. The arrays were visually checked for uniform intensity and
for correct alignment. Other quality aspects were assessed using the algorithms set
out in the quality control white paper [422]. Metrics were examined at probe level,
probe set summarizations and individual probe levels. Three types of metrics are
used for quality control — sample metrics, hybridization metrics and labelling

metrics.

A. pm_mean is the mean intensity for all probes on the array before any
intensity transformations. This allows the user to ascertain whether a chip is
unusually dim or bright, which may have an effect on certain parameters e.g.

may see unusually high median absolute deviation of residuals.

B. pos_vs_neg_auc is the area under the curve for a receiver operating
characteristic plot comparing 'signals for positive controls to negative
controls. This is used to measure how well the probe set can separate the
signal from the positive controls to negative controls, assuming the negative
controls are false positives and the positive controls are true positives.

Values between 0.8 and 0.9 could normally be expected.

C. X_mean is the mean signal value for all probe sets analysed from category

X

D. X_mad_residual_mean is the mean of the absolute deviation of the residuals
from the median, for all probe sets from category ‘X’. Different probes
return different intensities when hybridized to the same target. The RMA
algorithm is used to create models for responses — the residual is the
difference between the actual value and the predicted ‘model’ value. This is

used to determine the mean of all the absolute deviation values produced
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and identifies if there are any problems with the chip e.g. if the median

deviation of the residuals are unusually high.

X_rle_mean is the mean absolute relative log expression (RLE) of all probe
sets analysed from category ‘X’. This uses the signal estimate from a probe
set on a particular chip and calculates the difference from the median signal
of that probeset across all the chips. This should be low, reflecting low

biological variability between samples.

all_probeset is all the probe sets analysed. It includes the majority of the
probe sets which are used for the downstream statistical analysis and is the

most representative measure of the quality of the data.

bac_spike is the set of probe sets which hybridize to the pre-labelled
bacterial spike controls (BioB, BioC, BioD and Cre). It is used to identify any
problems with hybridization and the chip. It generally shows more variability

than other categories due to the limited number of probe sets and spikes.

. polya_spike is the set of polyadenlylated RNA spikes (Lys, Phe, Thr and Dap).
This identifies problems with the target preparation. These also have more

variability due to the limited number of probe sets and spikes.

neg_control is the set of putative intron based probe sets from putative
housekeeping genes. Four-probe probe sets were designed against intronic
regions of probe sets which were shown to have constitutive expression over
a large sample number on 3’IVT arrays. These are used to estimate the false

positive rate for the pos_vs_neg_auc metric.

pos_control is the set of putative exon based probe sets from putative
housekeeping genes. Four-probe probe sets were designed against exonic
regions of probe sets which were shown to have constitutive expression over
a large sample number on 3’IVT arrays. These are used to estimate the true

positive rate for the pos_vs_neg_auc metric. This category, along with the
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all_probeset category reflects the quality of the whole experiment and the

nature of the details used for statistical analysis.

4.2.4 Array Data Analysis

All data was analysed using the Bioconductor libraries ‘oligo’, ‘limma’ and ‘made4’.
Limma is a widely used and highly regarded library for the statistical analysis of
microarray data. Oligo is designed specifically for use with Affymetrix GeneChip
microarrays while Made4 incorporates useful visualisation and analysis tools for
further analysis. The Bioconductor package is a valuable computational resource for
the analysis of high-throughput biology, most especially in the field of microarray
analysis. It is a highly active collaborative project, written in R, which is an open
source, interactive computer system for the visualisation and analysis of statistical

data.

4.2.4.1 Data Normalization

Data normalization is carried out to correct for any differences in expression levels
within and between chips, in order to facilitate comparison between chips. The
Robust Multi-array Average (RMA) method was used to normalize and summarize
the datasets. This is a log scale linear additive model which removes background
intensity and normalizes probe level data across arrays [423]. Tukey’s median polish
is used to estimate expression values which are log base 2 transformed. Quantile
normalization is used to make the distribution of probe intensities for each array in a
set of arrays the same [424]. This accounts for any ‘obscuring variation’ in the data
— variation which has been introduced in the sample prep etc., as opposed to true
variation between biological samples [425]. Quantile normalization may be
problematic if a probe has the same value across all arrays, however it does not
seem to be a problem in reality [424]. As each gene of interest is probed with
approximately 26 probes, the RMA method is used to summarize the probe

intensities for each probe set [424]. The RMA method has certain advantages over
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other methods of analysis e.g. average difference as it has been shown to produce a
much smaller standard deviation (SD) for genes with low expression values and it is
also better able to detect differentially expressed probe sets [425]. It has been
shown to have better precision, more consistency and higher specificity and

sensitivity than other models for data analysis [423].
4.2.4.2 Differential Gene Expression Analysis

Limma was used to test for statistical differences between gene expression levels
across arrays. The fold change and standard errors are first estimated by fitting a
linear model to each gene. This model summarises the data from each set of
replicates to give a single value per condition, so that these values can be compared
between groups, rather than between samples. This is then followed by the
application of empirical Bayes smoothing to the standard errors. Pair-wise contrasts
were then defined to compare the summarised samples to each other, thus allowing
the algorithm to calculate fold change. Within Limma, the default method for
ranking genes is the B statistic, which calculated the log odds of differential
expression. The more well known adjusted p-value can be used to the same effect,
and adjusted p-values will usually rank differentially expressed genes in the same
order as the B-statistic. In this experiment, the adjusted p-value cut-off value of
0.05 was used to detect differentially expressed genes. Using the average fold-
change as a means of ranking is generally not recommended because this ignores
the variability between replicate arrays. In statistical analysis, the p-value controls
Type | error i.e. the probability that a significant ‘positive’ result is really a true
negative. A p-value <0.05 determines that in 100 significant results, 5 of them are
predicted to be false. In small scale experiments this is perfectly adequate.
However, in microarray experiments, thousands of genes are analysed
simultaneously leading to an inflated false positive rate, known as the family-wise
error rate (FWER). For this reason, an adjusted p-value was used in this study. The
p-value was adjusted using the method of Benjamini and Hochberg [426]. Their

false-discovery rate (FDR) is one method of controlling FWER which accounts for
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both the presence and number of errors made. They define the FDR as ‘the

expected proportion of errors among the rejected hypotheses’.

4.2.4.3 Analysis of Target Gene Lists

Genes with a fold change of 22 and an adjusted p-value (FDR<0.05) were deemed

significant for further analysis. In total, seven lists of genes were analysed.
i) A2780 v A2780cis (Normoxia, Untreated)
i) A2780 (Normoxia, Untreated) v A2780 (Hypoxia, Untreated)
iii) A2780cis (Normoxia, Untreated) v A2780cis (Hypoxia, Untreated)
iv) A2780 (Normoxia, Untreated) v A2780 (Normoxia, Cisplatin Treated)
V) A2780 (Hypoxia, Untreated) v A2780 (Hypoxia, Cisplatin Treated)
vi) A2780cis (Normoxia, Untreated) v A2780cis (Normoxia, Cisplatin Treated)
vii) A2780cis (Hypoxia, Untreated) v A2780cis (Hypoxia, Cisplatin Treated)

Lists were analysed using the gene annotation database DAVID (Database for
Annotation, Visualization and Integrated Discovery) v6.7 [427,428]. DAVID is a web-
based functional annotation tool which agglomerates gene annotation information
from a number of public information sources such as Panther, Biocarta etc. It allows
the user to access information such as gene ontology and function; identify related
gene groups; and to visualise genes within pathway maps. It contains a pre-built
Affymetrix chip background to allow better gene list comparisons for this microarray
format. Following pathway analysis on DAVID, individual gene function and
relevance was determined using PubMed and the online tool iHOP (information

hyperlinked over Proteins) [429].



4.3 Results

Following the quality control and general clustering analysis, for clarity, results and

discussion for Chapter 4 will be described together as three sections:
1. Comparison of A2780 and A2780cis
2. The Effect of Hypoxia on Gene Expression in A2780 and A2780cis

3. The Effect of Hypoxia on Genetic Response to Cisplatin Treatment in A2780 and

A2780cis
4.3.1 Quality Control of Arrays
4.3.1.1 Visual Quality Control

All arrays passed initial visual inspections. The visual inspections checked for any
scratches on the array surface, any ‘patchy’ staining, regional areas of high or low
intensity or any overall differences in intensity between arrays. Expression of the B2
oligo positive control was also visually assessed (Figure 4.1). This control
oligonucleotide hybridizes at various positions on the chip, including the
checkerboard corners, at the edge and internally. This is necessary for correct

alignment of the array’s grid.
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Checkerboard Alternating
Corner border

Figure 4.1. Location of B2 Oligo Positive Controls on GeneChip Arrays. All arrays
were checked for intensity of B2 positive controls at regions within the chip, at the
edge and checkerboard corners (A) and at the bottom of the chip (B). Good
expression of these controls is necessary for correct alignment of the chip’s grid.
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4.3.1.2 Probe Metrics Quality Control

These quality control metrics involve computing summary statistics for each array in
a set and then comparing all the arrays in the set together. It allows for
identification of any outliers in the data set which may skew the results. Three
levels of metrics were used — probe level, probe summarization and control probe
signals. There was a very low level of variation observed for all the probe metrics.
Some of the probe metric statistics are displayed in Figures 4.2 and 4.3. The area
under the curve (AUC) for a receiver operating characteristic (ROC) plot to
discriminate between positive and negative control signals was above 0.85 for all
the arrays (Figure 4.2A). This indicates a high degree of separation between the
positive and negative controls which are indicators of true positives and false
positives respectively. Box plots displaying the relative log expression (RLE) signals
for all the arrays (Figure 4.2B) identified no outliers within the data set. The median
RLE for all arrays was approximately O, indicating that there was no skew in the data
following normalization. The mean absolute deviation of residuals for the positive
controls, bac spikes and poly A spikes were very similar for all arrays (Figure 4.3A),
indicating that there were no problems with target preparation, hybridization,
washing etc. The hybridization controls displayed the expected rank order in
relation to their respective concentrations (Figure 4.3B). Again, this provided
assurance that sample preparation was carried out correctly. Therefore, overall the
quality control metrics indicated that the microarray experiments were successful,

and that there were no outlier arrays within the experiment.
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curve for positive vs. negative controls was >0.85 for all the arrays (A, red line). This
indicated good separation of signal from positive and negative controls which
represent true positives and false positives respectively. The graph of the
mad_residual_mean for all probes (blue line) is relatively constant, indicating the
absence of outlying samples. The rle_mean for all probes (green line) is low,
indicating low biological variability between samples. Relative log expression plots
for all arrays (B) confirm that there are no outlying arrays within the dataset which
may skew the results. In addition, the median relative log expression for all arrays
was ~0, indicating the absence of skew in the data.
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Figure 4.3. Control Signal Quality Control Metrics. The absolute deviation of
residuals for positive controls (green line), bac spikes (red line) and poly A spikes
(blue line) (A) were similar for all arrays. This is an indicator or overall data quality,
and shows that there were no problems with target preparation, array hybridization,
washing etc. The rank order of bac spikes (BioB (green) <BioC (pink) <BioD (blue)
<Cre (red)) were as expected from their concentrations. This provided assurance of

correct sample preparation.
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4.3.2 Differential Gene Expression Analysis
4.3.2.1 Summary Characteristics Analysis

A Pearson’s correlation was carried out to examine correlation of gene expression at

two levels:
1. Between samples within a group
2. Between sample groups

A coefficient score of 1 indicates perfect correlation between the samples and is
coloured red on the graph (Figure 4.4). Scores <1 indicate less correlation between
samples and are coloured blue on the graph. The Pearson’s correlation showed that
the strongest correlations were seen between samples of the same group, which
had coefficient scores of >0.97 for all samples, however, one sample in the
untreated hypoxic A2780 group did not correlate as closely with the other two
replicates. This sample was included in the analysis as it still displayed similar
correlation coefficients with the other samples in the study as the other samples
within its group. All A2780cis samples displayed low correlation with A2780
samples. Hypoxic samples correlated more closely than normoxic samples for each

cell line, regardless of whether they were treated with cisplatin.

Hierarchical clustering analysis again demonstrated that the samples all clustered
together according to group (Figure 4.5). Samples treated with cisplatin clustered
more closely than samples which were untreated, in hypoxia and normoxia. All

A2780cis samples clustered separately from A2780.
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Figure 4.4. Pearson’s Correlation of Samples Analysed on Affymetrix Arrays.
Pearson’s correlation was used to analyse correlation between sample groups based
on their gene expression profiles. The strongest correlation was seen between
samples of the same group represented by red blocks on the graph. The weakest
correlations were generally seen between samples in the different cell lines.
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Figure 4.5. Clustering Denogram of Hierarchical Clustering Analysis of Gene
Expression Profiles of A2780 and A2780cis Cells With/Without Exposure to
Hypoxia and Treatment with Cisplatin. A2780cis samples clustered separately from
A2780. Cisplatin treated samples clustered more closely than untreated samples,
regardless of hypoxic exposure. Cells which were untreated but exposed to hypoxia
clustered separately from normoxic untreated cells.



4.3.3 Results: Comparison of A2780 and A2780cis

The A2780/A2780cis model of cisplatin resistant ovarian cancer is often used in the
literature, however, to my knowledge, there is no study which shows a whole-
genome profile comparison of the two cell lines. A summary of the differential gene
expression characteristics of the two cell lines is presented in Table 4.1. All data
presented is for genes displaying a differential gene expression with a fold-change of

>2 and an FDR<0.05.

Table 4.1. Differential Gene Expression Summary Characteristics of A2780 vs.
A2780cis.

Total Number of Differentially Up-regulated Down-regulated
Expressed genes
1202 541 691

Figure 4.6 outlines the chromosomal locations of the differentially expressed genes
in A2780cis relative to A2780. Genes highlighted in yellow are up-regulated, while
those in red are down-regulated. This is of interest as chromosomal changes are
common in cancer — amplification of certain regions of the genome as well as
translocation and loss of heterozygosity (LOH) have all been shown to be implicated
in the pathogenesis of various cancers. A volcano plot (Figure 4.7A) allows for fast
discrimination of differentially expressed genes with large and significant fold
changes. Genes located on the top left or right of the plot identify those genes of
interest.  These included highly down-regulated genes such as MEF2C and
ARHGAP28, and highly up-regulated genes such as PDGFC and FAM2C. A heat map
(Figure 4.7B) allows large amounts of genetic data to be represented simply in

graphic form. It allows for rapid identification of any patterns within the data.
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Figure 4.6. Chromosomal Location Plot of Differentially Expressed Genes in
A2780cis Compared to A2780. Plot depicting the chromosomal location of up-
regulated (yellow) and down-regulated (red) genes in A2780cis compared to A2780.
The differentially expressed genes are generally spread evenly over the
chromosomes, however some concentrated areas of down-regulated genes are
noted on chromosome 1 and chromosome 13 (boxed regions). n =3
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Figure 4.7. Overview of Gene Expression Changes in A2780 and A2780cis. Volcano
plot (A) and Heat map (B) depicting overall gene expression changes in A2780cis
relative to A2780. The volcano plot allows for fast identification of genes with large
and significant fold changes such as MEF2C and PDGFC (arrows). n =3



The two cell lines were compared using the DAVID database in order to identify
significantly up- or down-regulated pathways which could contribute to the
observed cisplatin resistance in A2780cis. Lists of the top five significantly up-
regulated and down-regulated pathways and the genes affected are displayed in
Tables 4.2 and 4.3. The pathways were identified by DAVID as part of the KEGG
database. Genes present in more than one pathway are only represented once in

the table. Genes picked for discussion are highlighted in bold.

Table 4.2. Top Five Significantly Up-Regulated Pathways in A2780cis Compared to
A2780.

Pathway Genes P-value

Gap Junction GNAI1, GUCY1A3, GUCY1B3,ITPR3, 0.005
PDGFC, PDGFA, PrKCA, PrkKCB, TUBB4

Pathways in Cancer Fas, Jakl, KITLG, AR, ARNT2, CTNNA3, 0.01

FGF1, FGF10, FGFR2, ITGAS6, Jun,
PPARYy, PLD1, VEGFC

Calcium Signalling ATP2B4, CHRNA7, CACNA1H, CAMK4, 0.02
CYSLTR2, GNAL, PTGER3, P2RX5, ERBB3

PPAR Signalling CD36, ACSL], CPT1A, FABP5, MMP1, 0.02
SLC27a2

Long-term depression PLA2G3 0.02
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Table 4.3. Top Five Significantly Down-Regulated Pathways in A2780cis Compared
to A2780.

Pathway Genes P-value
Focal Adhesion FYN, SHC4, ACTN3, CAV1, CAV2, COL1A2, |<0.0001
COLB6A3, FLNC, HGF, IGF1R, ITGAS, ITGAS,
LAMA1, PIK3CA, PDGFD, PDGFA, SPP1,
THBS1, AKT3, VAV3, VCL
Arrythmogenic Right CDH2, CACNG7, DSC2, DSG2, DMD, <0.0001
Ventricular Cardiomyopathy | CACNA1C, JUP, SLC8a1l, TCF7L1
Melanoma CDKN2A, FGF18, FGF20, FGF5 0.001
Axon Guidance EPHA3, EPHA7, NTNG1, PLXNC1, ROBO2, | 0.006
SEMA3E, SEMAGA, SEMAGD, SLIT2,
UNCS5C
Cell Adhesion Molecules CDH2, CLDN17, CLDNS8, CNTNAPA2, HLA- | 0.006
DPA1, HLA-DRB3, NEO1, NLGN4X, NEGR1,
SDC2, VCAN
4.3.4 Discussion: Comparison of Gene Profile of A2780cis with
A2780

The pathways which were found to be altered in A2780cis compared to A2780 were
not surprising for a more aggressive, chemotherapy-resistant cell line. Up-
regulation of biological signalling pathways as well as common cancer pathways may
be expected in a cell line which has been induced to become resistant to treatment.
In addition, down-regulation of adhesion molecules may signal the cells’ movement
towards a metastatic phenotype, with reduced gene expression for proteins which
anchor the cells to their milieu. Indeed, in culture, A2780cis were seen to be less
dependent on the culture surface, and many live cells grew within the media in
suspension. We examined the differentially expressed genes in order to identify

possible mechanisms by which the cells were more resistant to cisplatin.

Platelet-derived growth factor (PDGF) is a growth factor with many roles including
regulation of smooth muscle and stimulation of angiogenesis and metastasis [430].
PDGFC is an isoform of PDGF identified in 2000 by Li et al. which binds to the PDGF

receptor alpha (PDGFRa) [431]. It has been shown to be a potent transforming
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agent in vitro [432] and has been linked to many disease pathologies, both
cancerous and non-cancerous [433-436]. PDGFC has been shown to be associated
with resistance to cisplatin in head and neck squamous cell carcinoma (HNCC)
patients and knockdown of PDGFC was shown to increase sensitivity to cisplatin in
HNCC cell lines [437]. Another PDGF isotype, PDGFA was shown to be
overexpressed in A2780cis relative to A2780. PDGFA has been shown to act as a
chemoattractant for recruitment of fibroblasts to tumour microenvironment [438].
Fibroblasts aid tumour growth and metastasis by secretion of paracrine growth
factors and extra-cellular matrix (ECM) remodelling [439]. PDGFA has not yet been
directly linked to cisplatin resistance in the literature, however it has been noted

that regions of its promoter is a target for cisplatin binding [440].

Jakl is a member of the janus kinase subfamily of cytoplasmic protein tyrosine
kinases which play an important role in cytokine signalling [441]. Once activated by
binding of a ligand, Jak’s can phosphorylate and activate transcription factors known
as signal transducers and activators of transcription (STATs) [441]. A previous
microarray study has identified STAT1 as associated with cisplatin resistance in
ovarian cancer [442]. Cisplatin resistance induced by prolactin in breast carcinoma
was mediated through activation of the Jak pathway [443] and erythropoietin-
induced cisplatin resistance in malignant melanoma was also shown to be mediated
through Jak-STAT signalling [444]. Recently, Jak activation has been linked to
cisplatin resistance as well as cell motility and enhanced cell migration in ovarian
cancer [445] and down-regulation of Jakl has been shown to abrogate cisplatin
resistance induced by FGF-2 in an osteosarcoma model [446]. In addition, BRCA1
has been shown to activate Jakl in a prostate cancer model [447], an interesting
finding considering BRCA1 deficient ovarian cancers are generally sensitive to
platinum agents [448]. Thus there is a collection of evidence supporting the role of

Jak1 in cisplatin resistance.

Kit ligand (KITLG), also known as stem cell factor, binds to the proto-oncogene c-kit,

a tyrosine kinase receptor which can bind a number of ligands including PDGF [449].
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KITLG is a mitogenic and angiogenic molecule involved in carcinogenesis [450] and
has been implicated in cisplatin resistance. Co-treatment of ovarian cancer cells
with KITLG and cisplatin increased cisplatin resistance, whereas inhibition of KITLG
using a neutralizing antibody enhanced the cells’ sensitivity to cisplatin [8]. In
addition, a study by Zhang et al. in 2008 identified a sub-population of ovarian
cancer cells with stem-like properties which over-expressed KITLG and were

resistant to cisplatin and paclitaxel [451].

ERBB3 (Her3) is a member of the epidermal growth factor receptor (EGFR) family
[452]. It has been shown to be over-expressed in a subset of breast tumours [453],
oral squamous cell carcinomas [454], malignant melanoma [455] and ovarian
carcinoma [456]. ERBB3 has no intrinsic enzymatic activity, and forms a
heterodimer with ERBB2 (Her2) resulting in signal transduction [457]. ERBB2 over-
expression has been linked to chemoresistance and poor survival in ovarian cancer
[458], and expression of ERBB3 has been associated with cisplatin resistance in lung
cancer models [459]. In fact, co-expression of ERBB2 and ERBB3 has been linked to
enhanced chemoresistance to a number of drugs in breast cancer [460]. In addition,
a study by Chan et al. investigated the role of the epidermal growth factor in drug
resistance using both in vitro and in vivo methods [461]. They showed that
transfection of cells with a type of EGFR deficient in tyrosine kinase signalling ability
resulted in reduced colony forming ability and increased sensitivity to cisplatin

relative to cells with competent EGFR.

A number of down-regulated genes were identified which have linked to
chemoresistance in A2780cis. CAV1 (caveolin 1) is an integral membrane protein
which is a marker of caveolae, invaginations in the plasma membrane [462]. A study
by Koleske et al. in 1995 demonstrated a reduction in caveolin expression in a
transformed fibroblast cell line [463] and transfection of breast carcinoma cells with
full-length CAV1 was shown to reduce the cells’ proliferation and colony forming
ability [464]. Up-regulation of CAV1 has been shown to be associated with multi-

drug resistance in a number of cancer types [465,466] however low expression of
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CAV1 has been linked to cisplatin resistance in oral squamous cell carcinoma [467]
and overexpression of CAV1 has been shown to increase cisplatin sensitivity in
breast cancer [468]. In ovarian carcinoma, CAV1 expression has been shown to be
reduced relative to normal ovarian epithelium and is a putative tumour suppressor
candidate [469,470]. In addition, high expression of CAV1 in prostate cancer has
been linked to longer progression-free survival (PFS) times [471] however no
relationship has yet been shown between CAV1 expression and PFS in ovarian

cancer [469,472].

Thrombospondin-1 (THBS1) is a glycoprotein which facilitates cell adhesion and
regulates cell proliferation in a cell type-dependent manner [473]. THBS1
expression has been shown to be down-regulated in breast cancer [474] and re-
expression of THBS1 in breast cancer celis has been associated with reduction in
proliferation and angiogenesis [475]. In bladder cancer, low THBS1 expression has
been linked to increased recurrence of disease and poorer overall survival [476].
THBS1 has been shown to be expressed in a large proportion of ovarian carcinomas,
and high THBS1 expression was shown to be associated with improved survival and
inversely related to p53 expression [477,478]. However, other studies have
identified high THBS1 expression to be associated with poorer prognosis [479,480],
thus it is unclear how THBS1 expression affects survival in ovarian cancer. A THBS1
mimetic, ABT-510 has been shown to reduce ascites, tumour growth and metastasis
in orthotopic mouse models of ovarian cancer [481] and has been shown to increase
the cytotoxic ability of cisplatin and paclitaxel [482]. In addition, up-regulation of
THBS1 by cellular pre-treatment with 5-fluorouracil, another cytotoxic agent, has
been shown to increase cisplatin sensitivity in head and neck squamous cell
carcinoma [483]. Therefore it is clear that THBS1 does play a role in cisplatin

resistance.

Some concentrated regions of gene down-regulation were identified on
chromosome 1 and chromosome 13. Loss of heterozygosity (LOH) refers to the loss

of function of a gene allele where the other allele was previously inactivated, and in



cancer is usually associated with loss of tumour suppressor function. LOH at the p53
locus has previously been associated with chemoresistance in osteosarcoma [484].
In addition, changes in copy number of certain genes have been linked to resistance
to certain cytotoxic drugs e.g. depletion of topoisomerase lla has been associated
with reduced sensitivity to topoisomerase inhibitors in breast carcinoma [485].
Similarly, in ovarian cancer, loss of expression of methylation-controlled J protein
(MCJ) has been linked to reduced cisplatin sensitivity [486], while in gastric cancer,
loss of PTEN (phosphatase and tensin homologue) was associated with increased
cisplatin resistance [487]. LOH has previously been identified in ovarian cancer on
several chromosomes including chromosomes 1 and 13. Zborovskaya et al.
identified regions of LOH on chromosome 1 in both benign and invasive ovarian
tumours [488]. Other studies of ovarian cancer have also identified LOH on
chromosome 1 [489,490] and chromosome 13 [491,492] as observed in this study.
A study by Prasad et al. demonstrated monosomy of chromosome 13 in A2780cis,
thus rendering the cell line susceptible to LOH [493]. LOH of chromosome 13q14
has been linked to chemoresistance in leukaemia [494], while deletion of 13q has
been identified as a prognostic marker in myeloid leukaemia patients [495]. LOH of

chromosome 1 has not yet been related to chemoresistance in the literature.

In addition, DNA hypermethylation resulting in gene silencing has also been
associated with cancer progression [22] and could provide an alternative mechanism
for gene down-regulation in A2780cis. Changes in chromosome copy number,
including amplification and deletion can be detected using comparative genomic
hybridization (CGH). CGH analysis of many tumours has identified karyotypic
abnormalities associated with chemoresistance such as loss of chromosome 17 and
regions of chromosome 2 in lung cancer [496], loss of chromosome 11 in ovarian
cancer [497], and decrease in copy numbers of topoisomerase enzymes in multiple

drug-resistant cell lines [498].

Thus there are a number of different mechanisms by which cisplatin resistance may

be occurring in A2780cis involving a number of different pathways within cells
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including down-regulation of cell adhesion and up-regulation of cellular signalling.
Only a small number of genes which may be involved in this process have been
discussed, and there were many other genes identified which have been linked to
cisplatin resistance. Functional analysis of these targets may identify potential

therapeutic biomarkers for ovarian cancer.

4.3.5 Results: The Effect of Hypoxia on the Transcription Profile of
A2780 and A2780cis

In order to determine the influence of hypoxia on the gene expression of A2780 cells
and A2780cis pathway analysis was carried out on the gene lists generated by the
Bioconductor analysis for each cell line, and subsequently compared the gene
expression differences between the two cell lines. In particular, altered genes which
were common for the two cell lines were examined, to see if these genes could
account for the increased resistance to cisplatin observed in hypoxia for the two cell
lines. In addition, the changes induced by hypoxia in A2780’s were compared to the
first analysis (A2780 v A2780cis) to see if any of the gene changes induced by
hypoxia were the same as gene changes induced by prolonged cisplatin treatment.
The gene changes induced by hypoxia for both cell lines are summarized in Table

4.4.

Table 4.4. Summary of the Gene Expression Changes Induced by Hypoxia in A2780
and A2780cis.

Cell Line Total Number Up-regulated Down-regulated
Differentially Expressed
Genes

A2780 2675 1130 1545

A2780cis 1611 885 726

Less changes were induced in A2780cis cells compared to A2780 but for both cell
lines, similar numbers of genes were up- and down-regulated. Chromosomal
location plots (Figure 4.8), volcano plots (Figure 4.9A, 4.10A) and heat maps (Figure

4.9B, 4.10B) graphically summarize the data. The top up- and down-regulated
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pathways from DAVID analysis are summarized in Tables 4.5 — 4.8. If genes were
part of more than one pathway, they are represented once in the table. Genes

which are later discussed are highlighted in bold.
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Figure 4.8. Chromosomal Location Plots of Genes Differentially Expressed by
Hypoxia in A2780 and A2780cis cells. Plots show the chromosomal positions of
genes differentially expressed in A2780 (A) and A2780cis (B) in response to hypoxic
exposure. Up-regulated genes are represented in yellow, down-regulated in red,
while genes whose expression was unchanged in A2780cis compared to A2780 are
represented in white. More changes in gene expression are observed in A2780 with
chromosomes 16, 17 and 19 demonstrating a lot of down-regulation of gene
expression. Gene expression changes are more evenly distributed across the
chromosomes in A2780cis. n=3
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Figure 4.9. Volcano Plot and Heat Map of Gene Expression Changes in A2780 Cells
in Response to Hypoxia. Volcano plot (A) identifies genes which have large fold-
changes and significance such as TAF9B and PLOD2 (arrows) while the heat map (B)
allows for fast visualization of the pattern of differences between gene expression in
normoxia and hypoxia. n = 3
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Figure 4.10. Volcano Plot and Heat Map Gene Expression Changes in A2780cis
Cells in Response to Hypoxia. Volcano plot (A) provides fast identification of those
genes whose differential gene expression values (fold-changes) are both large and
highly significant such as TAF9B (arrow). Heat map (B) allows for easy identification
of patterns in differential gene expression. n =3
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Table 4.5. Top Five Up-Regulated Pathways in A2780 Cells Exposed to Hypoxia.

Pathway Genes P-value

MAPK signalling DDIT3, RASGRP1, RASGRF1, BDNF, 0.001
CACNB4, DUSP1, DUSP16, DUSP3,
FGF1, FGF11, FGF23, FLNC, GADDA45A,
GADDA45B, JUN, MAPT, TAB2, MAP3K?2,
PDGFA, PLA2G3, PPM1A, STK3, TNF,
AKT3, FOS

Focal adhesion BIRC3, CAV1, CAV2, COL6A3, IGF1R, 0.002
ITGA10, ITGB3, LAMA1, LAMB1,
PDGFD, SPP1, ROCK1, THSB1, TNXA,

VEGFA
Renal Cell Carcinoma GAB1, EGLN1, EGLN3, EPAS1, SLC2A1 0.01
Starch and Sucrose GBE1, HK2, PGM1, PGM2L1, PYGL, 0.04
Metabolism PYGM
Complement and CD55, BDKRB1, C5AR1, FGG, MBL2, 0.04
Coagulation Cascade PROS1, SERPINE1, C3

Table 4.6. Top Five Down-Regulated Pathways in A2780 Cells Exposed to Hypoxia.

Pathway Genes P-value

DNA replication FEN1, MCM2-7, POLA1, POLA2, POLE2, | <0.001
POLE3, POLD3, PRIM1, PCNA, RFC3,
RFC5, RNASEH1, RNASEH2A

Cell cycle CDC45, E2F1, E2F2, E2F4, ANAPC13, <0.001
ANAPC4, ANAPCS, ATR, CDC25A,
CDC6, CCND1, CCND3, CCNE1, CCNE2,
CDKN2A, ESPL1, PLK1, PKMYT1, RBL1,
TFDP1

Pyrimidine metabolism CTPS, CAD, ITPA, PNP, POLR1A, <0.001
POLR1B, POLR1C, POLR2L, POLR3B,
POLR3H, RRM2, UMPS

Base Excision Repair 0OGG1, APEX2, MBD4, UNG, TDG <0.001

Homologous Recombination | BLM, RAD51, RAD51L3, RAD54L, <0.001
BRCA2, XRCC2, EME1, TOPO3A
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Table 4.7. Top Five Up-Regulated Pathways in A2780cis Cells Exposed to Hypoxia.

Pathway

Genes

P-value

Focal adhesion

XIAP, BIRC2, BIRC3, ACTN3, CAV1,
CAV2, IGF1R, ITGAS, ITGB1, ITGB3,
JUN, COL11A1, LAMC1, MET, PIK3CA,
PDGFA, PDGFRA, SPP1, ROCK1, VEGFA,
TNC

<0.001

Axon guidance

EPHAG6, L1CAM, SRGAP1, CXCR4,
GNAI1, SEMA3A, SEMA3C, SEMA3D,
NFATS, SLIT2, KRAS

0.002

TGF beta signalling

E2F5, SMAD2, INHBA, BMPR2, INHBE,
ID4, LTBP1, RBL2, ZFYVE16

0.007

MAPK signalling

DDIT3, TAOK1, CACNA2D1, CACNB4,
CACNG7, DUSP1, DUSP16, DUSP2,
FGF1, MAPT, MAP3K2, TAB2, PPM1A,
PPM1B, FOS

0.02

Toll like receptor signalling

TRAF3, CCL5, CXCL10, CXCL11, PIK3CA,
TLR3

0.02

Table 4.8. Top Five Down-Regulated Pathways in A2780cis Cells Exposed to

Hypoxia.
Pathway Genes P-value
DNA replication MCM3-5, FEN1, POLA2, POLE2, POLE3, | <0.001
POLD3, PRIM1, PRIM2, PCNA, RFC3,
RFC5, RNASEH2A
Cell cycle CDC45, SKP2, ANAPC13, ANAPCS, <0.001
CDC20, CDC25A, CDC6, CCND3,
CCNE2, CDK2, ESPL1, PLK1, PKMYT1
Oxidative phosphorylation ATP5D, ATP6VOE2, ATP6VOC, <0.001
ATP6VOB, ATP6V1B2, COX3, COX17,
NDUFA3, NDUFB10, NDUFS3,
NDUFV1, ND2, ND4, COX8A, COX6B1
Pyrimidine metabolism PNP, POLR2E, POLR2L, RRM1, TK1 0.001
Base excision repair APEX2 0.004




4.3.5.1 Identification of Common Gene Expression Changes in A2780
and A2780cis in Response to Hypoxia

The common patterns of gene expression in response to hypoxia were further
examined in both cell lines. In total, 914 genes were commonly dysregulated in
A2780 and A2780cis cells exposed to hypoxia. Of these, 431 were up-regulated and
483 were down-regulated. A break-down of the differential gene expression

patterns is provided in Figure 4.11.

Pathway analysis was carried out on the commonly dysregulated genes in order to
identify genes which may account for the increased cisplatin resistance observed in
the two cell lines in hypoxia. A summary of the pathway analysis is provided in
Tables 4.9 and 4.10. Genes which were chosen for discussion are highlighted in

bold.
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Total

697

e 949

Up-regulated Down-regulated

Figure 4.11. Summary of Common Differential Gene Changes in A2780 and
A2780cis Cells Exposed to Hypoxia. Venn Diagram showing summary of gene
expression patterns in A2780 (pink) and A2780cis (green). In total, 914 genes were
commonly dysregulated in response to hypoxia in the two cell lines. Of these, 431
were up-regulated and 483 were down-regulated. n = 3




Table 4.9. Significantly Enriched Pathways from Commonly Up-Regulated Genes in
A2780 and A2780cis in Response to Hypoxia.

Pathway Genes P-value

MAP kinase signalling DDIT3, CACNB4, DUSP1, DUSP16, 0.02
FGF1, JUN, MAPT, MAP3K2, TAB2,
PDGFA, FOS, PPM1A

Focal adhesion BIRC3, CAV1, CAV2, IGF1R, ITGB3, 0.02
SPP1, ROCK1, VEGFA

Table 4.10. Top Five Significantly Enriched Pathways from Commonly Down-
Regulated Genes in A2780 and A2780cis in Response to Hypoxia.

Pathway Genes P-value

DNA replication FEN1, MCM3 —5; POLA2, POLEZ, <0.001
POLE3, POLD3, PRIM1, PCNA, RFC3,
RFC5, RNASEH2A

Cell Cycle CDC45, ANAPC13, ANAPCS, CDC25A, <0.001
CDC6, CCND3, CCNE2, ESPL1, PLK1,
PKMYT1
Base Excision Repair APEX2 0.001
Mismatch Repair EXO 0.001
Oocyte Meiosis CALM1, PPP1CA 0.006
4.3.5.2 Evaluation of Common Gene Expression Differences in

A2780cis and Hypoxic A2780 Cells

The similarities in gene expression changes between A2780cis cells and A2780 cells
which had been made hypoxic were examined to investigate whether the gene
changes being induced by hypoxia were similar to those induced by repeated
cisplatin exposure. This may identify common mechanisms of cisplatin resistance.
The gene expression changes are summarized in Figure 4.12. We found that only
128 genes were commonly dysregulated in both conditions, representing only a very
small fraction of the total number of gene changes observed. Hypoxia induced a far
greater number of changes in gene expression than repeated cisplatin exposure —in
total exposure of A2780 cells to hypoxia resulted in differential expression of over

2,500 genes. In comparison, A2780 cells which had been made cisplatin resistant
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through repeated cisplatin exposure (A2780cis) had only approx. 1,200 differentially
expressed genes. This indicates that hypoxia affects a far greater number of cellular

processes than cisplatin alone.

As so few genes were commonly dysregulated, pathway analysis on DAVID identified
only two commonly up-regulated pathways (Table 4.11) and one commonly down-
regulated pathway (Table 4.12) although this was non-significant. The entire list of
dysregulated genes was then searched in order to find potential links with cisplatin
resistance. In total, five genes (three up-regulated, two down-regulated) were
found that have been associated with cisplatin resistance in the literature (Table

4.13).



Total

1488

Up-regulated Down-regulated

Figure 4.12. Comparison of Gene Expression Changes Induced by Hypoxia and
Repeated Cisplatin Exposure in A2780. A2780cis (A2780 cells repeatedly exposed
to cisplatin, pink) differentially expressed a total of 1202 genes in comparison to
A2780. A2780 exposed to hypoxia (green) differentially expressed a total of 2,675
genes compared to A2780 in normoxia. Of these, 71 genes were up-regulated in
common, while 57 were down-regulated. n =3

]
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Table 4.11. Commonly Up-Regulated Pathways in A2780 Exposed to Hypoxia and

A2780cis.

Pathway Genes P-value

MAP kinase signalling CACNBA4, FGF1, JUN, MAPT, PLA2G3, 0.01
PDGFA

Arginine and Proline ARG2, P4HA2, SAT1 0.03

Metabolism

Table 4.12. Commonly Down-Regulated Pathways in A2780 Exposed to Hypoxia

and A2780cis.
Pathway Genes P-value
DNA Replication RFC3, RNASEH1 0.07

Table 4.13. Commonly Dysregulated Genes in A2780 Exposed to Hypoxia and

A2780cis which are Linked to Cisplatin Resistance in the Literature.

Gene Annotation Dysregulation

CD55 CD55 molecule, decay accelerating factor for | Up-regulated
complement (Cromer blood group)

usP2 ubiquitin specific peptidase 2 Up-regulated

CXADR coxsackie virus and adenovirus receptor Up-regulated

TIMP3 TIMP metallopeptidase inhibitor 3 Down-regulated

CDKN2A cyclin-dependent kinase inhibitor 2A Down-regulated

(melanoma, p16, inhibits CDK4)




4.3.6 Discussion: General Gene Expression Response to Hypoxia in
A2780 and A2780cis

Many genes and pathways which have been well documented to be involved in the
cellular response to hypoxia were identified in A2780 and A2780cis. Some common
markers of hypoxia were dysregulated in both A2780 and A2780cis in response to

hypoxia.

Although HIF-1a was not up-regulated (>2-fold, FDR<0.05) in either cell line in
response to hypoxia, marked up-regulation of some surrogate markers of hypoxia
was observed. In A2780 exposed to hypoxia, the glucose transporter, GLUT-1
(Slc2al) was increased 2.61 fold, NDRG1 was increased 15.47 fold, carbonic
anhydrase 9 was increased 20.42 fold and HIF-2a was increased 2.61 fold. In
A2780cis, NDRG1 was increased 4.18 fold and carbonic anhydrase was increased
4.18 fold. This provided confidence that the effects observed were truly due to a
hypoxic response. Although it may seem unusual that HIF-1a mRNA was not altered
following hypoxic exposure, it is possible for HIF-1a to be transcribed under normal
oxygen conditions, and it has been shown that HIF-1a is regulated at the protein
level [499]. A previous study in a murine hepatoma cell line found that the mRNA
transcript level of HIF-1a was not altered following hypoxic exposure, however, the
DNA binding ability of HIF-1a was markedly increased [499]. In addition, a study in
A2780 cells by Huang et al. showed that the hypoxia mimetic CoCl, did not alter
mRNA levels of HIF-1a, yet increased the protein levels [500]. We have shown in
Chapter 2 that hypoxia increased the protein levels of HiF-1la — while we saw
virtually absent bands on Western blot for HIF-1a in normoxia in A2780 and

A2780cis, we saw HIF-1a protein expression from 4 hours hypoxia exposure.

The mitogen-activated protein kinase (MAPK) signalling pathway is a downstream
signalling pathway of activated Ras proteins and is associated with subsequent
activation of mitogen/extracellular signal regulated kinases (MEK) and extracellular
regulated kinases (ERK) leading to regulation of cell proliferation and survival [22].

We found up-regulation of many members of this pathway including RAS guanyl
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releasing protein 1 (RASGRP1), a protein essential for Ras activation [501] and its
overexpression has been implicated in carcinogenesis in keratinocytes [502] and

resistance to MEK inhibitors in leukaemia [503].

Brain-derived neurotrophic factor (BDNF) is a growth factor produced by neurons
and its expression has been shown to be induced in response to hypoxia [504,505]
and it provides protection from hypoxia-induced cell death [506,507]. It has been
shown to influence cell proliferation and promote cell survival in neuroblastoma
[508], stimulate invasion in pancreatic adenocarcinoma [509], promote cell survival
in breast cancer [510]. In addition, it has been implicated in the pathogenesis of
prostate carcinoma [511], lung cancer [512], stomach cancer [513] and
hepatocellular carcinoma [514]. It has also been shown to confer protection against

cisplatin in neuroblastoma [515] and [516].

GADDA45A (growth arrest and DNA damage inducible protein) is a protein induced by
cellular stresses such as hypoxia and DNA-damaging agents. It is activated by p53
[517] and has many functions including induction of growth arrest, DNA repair,
apoptosis, maintenance of genome stability and regulation of cell signalling [518].
Previous microarray data has shown it to be induced by hypoxia [519]. Its
overexpression has been implicated in the pathogenesis of pancreatic ductal
adenocarcinoma [520], oesophageal squamous cell carcinoma [521]. In addition, it
has been identified as a both a promoter and inhibitor of breast carcinogenesis
depending on the other signalling pathway alteration [522] and indeed other studies
have identified GADD45A as a pro-apoptotic mediator [523,524]. In vivo
experiments have shown that GADD45A-null mice are more prone to ovarian

cancers as well as vascular tumours and in males, hepatocellular carcinomas [525].

Up-regulation of genes involved in focal adhesion was also observed. BIRC3
(baculoviral IAP repeat domain containing 3) is a member of the inhibitor of
apoptosis family of proteins. Its expression can be induced by tumour necrosis

factor alpha (TNFa) [526] and the human papillomavirus (HPV) via NFkB activation



[527]. Its expression has been associated with cisplatin resistance in prostate cancer
cell lines [528]. BIRC3 has previously been shown to be induced by hypoxia
[529,530] and has been linked to increased proliferation and reduced apoptosis in
gastric cancer [531]. It has been shown in breast cancer cell lines that oestrogen
treatment up-regulated BIRC3 mRNA and protein leading to protection from cell
death by TNFa treatment [532]. In ovarian cancer, up-regulation of BIRC3 has been
shown to protect cells from apoptosis [533,534]. BIRC3 has been linked to
resistance to cisplatin in lung cancer [535] and has been identified as a possible
therapeutic target for oral squamous cell carcinoma [536], breast carcinoma [532]

and prostate cancer [537].

Vascular endothelial growth factor A (VEGFA) is a member of the VEGF family of
angiogenic growth factors. VEGF induces angiogenesis through a variety of actions
including stimulation of endothelial cell proliferation, inducing secretion of
proteases which allow for cell migration, stimulation of vascular leakiness and
promotion of survival of nascent epithelial cells [538]. Its production is stimulated
by hypoxia [539], certain hormones such as oestrogen and testosterone [540] and
by cytokines [541]. Expression of VEGFA has been observed in many tumour types
such as leukaemia [542], breast cancer [543] and prostate cancer [544]. In ovarian
cancer, VEGFA expression in tumour tissue has been shown to be higher than in
normal ovary [545] and higher levels of VEGFA have been observed in serum
samples from ovarian cancer patients than in those from patients presenting with
benign ovarian disease [546]. It has been identified as a potentially useful marker of
disease persistence and survival following first-line chemotherapy [547]. VEGFA is
currently being exploited as a therapeutic target through monoclonal antibody
therapy and its receptor through tyrosine-kinase receptor inhibitors [122].
Bevacizumab is a monoclonal antibody directed against VEGFA which is being used
in combination with chemotherapy in a number of different cancers [122]. Early
trials of bevacizumab in persistent or recurrent ovarian cancer revealed the drug to

have significant activity, and although it was associated with some haematologic

pp————.

197 |



toxicity, it was generally well tolerated by patients [548], and a recent large scale
phase Il trial of bevacizumab in combination with carboplatin in first line
chemotherapy for epithelial ovarian cancer revealed significantly increased
progression free survival and overall survival in patients receiving bevacizumab

[549].

L1CAM (L1 cell adhesion molecule) is a cell surface antigen initially identified in
neurons [550]. It has been implicated in the pathogenesis of many cancers. In vivo
studies in lung cancer have demonstrated L1CAM to be involved in tumour
metastasis [551]. In ovarian cancer, LICAM expression has been associated with
increased tumour aggressiveness, poorer survival and chemoresistance [552]. Its
expression is HIF-1la-inducible, and together with angiopoietin-like 4 (ANGPTL4) —
which we also found to be over-expressed in hypoxia — has been shown to mediate
vascular metastasis of breast cancer [553,554]. It has been linked to cisplatin
resistance in cholangiocarcinoma [555], ovarian carcinoma [556] and renal cell
carcinoma It has also been identified as a potential therapeutic target — in mouse
studies, combination therapy of ovarian tumours with a combination of anti-LLCAM
antibodies and paclitaxel increased tumour response compared with paclitaxel alone

(557

The genes and pathways which were down-regulated in response to hypoxia were
similar in A2780 and A2780cis. Cell cycle genes were down-regulated in both cell
lines. This is unsurprising, as hypoxia has been observed to down-regulate cells
involved in the cell cycle in many different cell types, inducing cell cycle arrest [558].
Hypoxia has been shown to down-regulate cyclin D1 through activation of p38 in
prostate carcinoma cell lines [559], while in ovarian carcinoma, hypoxia has been
shown to reduce levels of cyclin D1 and D2 as well as decreasing levels of cyclin E
[560], all genes which we found to be under-expressed in hypoxia. We also
observed reduction of cell cycle dependent phosphatase CDC25A, which is the
master regulator of cell cycle transition from G; to S phase [561]. Loss of CDC25A in

hypoxia has also been observed in colon cancer cells [558,561].




In addition, down-regulation of the cyclin-dependent kinase inhibitor CDKN2A was
observed in hypoxia in A2780 cells. CDKN2A (p16) is a tumour suppressor which
inhibits HIF-1a activity [562]. It also down-regulates expression of VEGF through its
interaction with HIF-1a [563]. In ovarian cancer, studies have shown that the p16
gene can be methylated in up to 50% of cases [2] and that p16 protein expression is
reduced with increasing grade of disease [564]. Other studies have shown high p16
protein expression in moderately- and poorly-differentiated ovarian carcinomas
[565,566]. CDKN2A expression has been suggested as a predictive biomarker of
hypoxic cell-sensitizing agents such as nimorazole in oesophageal squamous cell
carcinoma [567] and p16 expression has been associated with sensitivity to cisplatin

in several different tumour types [568-570].

Loss of proteins involved in DNA replication was also observed in A2780 and
A2780cis. There was reduced expression of many members of the mini-
chromosome maintenance family of proteins (MCMs). MCMs are components of a
helicase enzyme involved in DNA replication and cell proliferation, and they inhibit
HIF-1a activity [571]. Hypoxia has been previously shown to down-regulate MCM
expression [572,573], thus indicating a potential mechanism by which cells
potentiate the hypoxic response. MCM expression has been shown to be increased
in increasing grades of ovarian carcinoma [574,575] and high MCM3 expression has
been linked to poorer survival times [576]. In addition MCM?2 expression has been

linked to cisplatin resistance [577].

Concentrated regions of gene down-regulation were observed on chromosomes 11,
16, 17 and 19 in A2780 exposed to hypoxia. Chromosome 16 has been shown to
have regions of deletion and hypermethylation in ovarian cancer [578]. Similarly,
LOH has been observed on chromosome 17 [579,580] and 19 [581] in ovarian
tumours. Hypoxia has been associated with chromosomal aberrations in cancer,
and particular variants of the HIF-1a protein have been linked to LOH in lung cancer

[582]. In addition LOH has also been linked to hypoxia in prostate cancer [583], and
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breast carcinoma cells cultured in hypoxic conditions were shown to have complex

karyotypic abnormalities [584].

LOH of chromosome 11 has been associated with Ras-mediated cellular
transformation, indicating the presence of tumour suppressor genes [585]. In
ovarian cancer, deletion of 11p13 has been associated with multi-drug resistance
and loss of CD44 expression [586]. Similarly, loss of regions of chromosome 11 in
head and neck squamous cell carcinoma is associated with increased risk of
recurrent disease [587], resistance to chemo- and radiotherapy in leukaemia [588],
and in chronic lymphocytic leukaemia (CLL) is linked to more aggressive disease and
early disease progression [589]. LOH of chromosomes 11924 and 17921 in ovarian
cancer has been linked to poor survival [590], and chromosome 11 has been noted
as a source of tumour suppressor genes for ovarian cancer such as RPL27A, which

was down-regulated in A2780’s exposed to hypoxia in our study [591].

LOH on chromosome 16 has been associated with recurrence and more aggressive
tumour pathology in Wilms tumour [592]. Similarly, in endometrial cancer, LOH of
chromosome 16q is associated with increased tumour grade and poorer prognosis
[593], while in prostate cancer, LOH on chromosome 16q is associated with invasion
and metastasis [594]. CGH analysis of ovarian tumours has identified loss of
chromosome 16 in serous carcinomas [595] and BRCA2 mutated cancers [596].
There is currently no information on LOH of chromosome 16 in relation to hypoxia in

the literature.

LOH of chromosome 17 in ovarian cancer has been associated with loss of tumour
suppressor genes in both cancer tissues and cell line models [579]. A study of
BRCA1-mutated ovarian cancers found LOH of the entire chromosome 17 in 12 of 14
cases, while two cases had LOH of 17q [580]. A cisplatin-resistant osteosarcoma cell
line has been shown to have genomic instability of chromosome 17 [597].

Chromosome 17 has also been implicated in acquired cisplatin resistance in prostate




carcinoma [598] and neuroblastoma [599]. Hypoxia has not yet been shown to

directly induce chromosomal alterations to chromosome 17.

Chromosome 19 was also shown to contain regions of concentrated gene down-
regulation. Allelic loss at chromosome 19q12 has been shown to be predictive of
poor prognosis in borderline mucinous ovarian tumours [581]. In a study of 20
ovarian tumours of mixed histology, LOH of chromosome 19 was observed in
approximately half of tumours, in a region encoding DNA repair genes such as XRCC1
and Akt2, both of which were down-regulated by hypoxia in A2780 cells in our study
[600]. LOH of chromosome 19 has not yet been linked to hypoxia or cisplatin

resistance in the literature.

Overall, the patterns of gene expression changes we observed were in accordance
with the evidence in the literature. The genes observed which have been previously
linked to cisplatin resistance were up-regulated in response to hypoxia. Down-
regulated genes were generally not related to cisplatin response or were indicative
of cisplatin sensitivity. However, when choosing regions of ovarian tumours to
process for histochemical and pathological analysis, regions of necrosis — hypoxic
regions — are generally avoided, therefore, gene expression from any one tumour

region may not be representative of the entire tumour.

Pathway anaiysis was carried out on commonly expressed genes in A2780 and
A2780cis in response to hypoxia in order to firstly narrow down the large number of
dysregulated genes in either cell line alone, and secondly in order to search for any
potentially stronger biomarker candidates — i.e. candidate genes in more than one
cell line. Two significantly up-regulated pathways were identified — MAP kinase
signalling and focal adhesion. DUSP1 (dual specificity phosphatase 1) is an enzyme
responsible for dephosphorylating MAP kinases and required for relief of cellular
genotoxic stress [601,602]. It has been shown to be hypoxia-inducible and it has
been shown to have a number of roles including dephosphorylation and inactivation

of JNK (c-Jun N terminai kinase) [603], inhibition of chemotaxis of immune cells to
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the tumour microenvironment [604], tumour metastasis [605,606] and regulation of
VEGF expression and microvessel density [607]. It has been shown to have anti-
proliferative effects in breast cancer [608] and its expression has been negatively
correlated with tumour differentiation in lung cancer [609]. In studies of ovarian
cancer, the role of DUSP1 is a little unclear. Positive DUSP1 expression has been
associated with reduced progression free survival [610], however another study has
associated DUSP1 expression with reduced malignant potential [611] and a third
study was unable to associate DUSP1 with any clinical outcome [612]. However,
expression of DUSP1 has been shown to mediate resistance to cisplatin in ovarian

cancer [613] and in lung cancer cells [614].

The insulin like growth factor 1 receptor (IGF1R) is a transmembrane tyrosine kinase
receptor which is activated by binding of its ligands, insulin-like growth factor 1 and
2. The IGFs act as tissue growth factors and their binding to IGF1R results in the
stimulation of several signalling pathways within the cell including the PI3K/Akt
pathway, mTOR and Ras/MAPK pathways [615]. IGF1 has been shown to increase
ovarian cancer cell proliferation [616] and inhibition of the IGF1R attenuates this
response [617,618]. The expression of IGF1R has been shown to be up-regulated in
recurrent ovarian cancer compared to primary [619]. Transfection of normal
ovarian epithelial cells with IGF1R resulted in significantly increased proliferation,
reduced expression of Fas, a receptor involved in apoptosis and increased colony
forming ability [620]. Injection of transfected cells into mice resulted in formation of
tumours, indicating increased tumourigenicity of the IGF1R-transfected cells. BRCA1
suppresses IGF1R activity [621], thus, lack of this suppression in BRCA1-deficient
tumours may contribute to their pathophysiology. Up-regulation of the IGF1R
signalling pathway has been implicated in cisplatin resistance in cancer. Eckstein et
al. demonstrated up-regulation of IGF1R and PI3K pathways in cisplatin-resistant
ovarian cancer cells [622]. IGF1R has also been implicated in cisplatin resistance in
oesophageal carcinoma [623]. The IGF1R has been identified as a potential

therapeutic target in ovarian cancer and others. An antibody against the IGF1R was



shown to inhibit cell proliferation and survival in in vitro studies and, in combination
with the cytotoxic agent gemcitabine, stimulated tumour regression in orthotopic
tumour models [624]. Further in vitro and in vivo studies using the ovarian cancer
model A2780 showed antibody therapy to reduce tumour cell proliferation and
inhibit xenograft tumour growth [625]. A novel small molecule inhibitor of the
IGF1R, BMS-554417, has been shown to reduce cell proliferation and tumour growth

through inhibition of the Akt signalling pathway and G,-G; arrest [626].

The commonly dysregulated pathways in A2780 cells exposed to hypoxia and
A2780cis cells were compared in order to determine if similar pathways were
involved in hypoxia-induced resistance and cisplatin-induced resistance. The genes
contained within the pathways found had no association to cisplatin resistance in
the literature. The entire list of commonly dysregulated genes identified five genes

which have links to cisplatin resistance.

CD55 regulates activation of the complement system by accelerating the
degradation of certain enzymes within the pathway [627] and up-regulation of CD55
expression has been linked to cisplatin resistance in oral squamous cell carcinoma
[628]. Its expression has been linked to the pathogenesis of several cancer types.
Expression of CD55 at the invasive front of rectal cancer cells was associated with
increased tumour recurrence and metastasis [629]. A study of lung cancer, CD55
inhibition with anti-CD55 antibody was shown to ameliorate the effects of herceptin
antibody therapy [630]. Its up-regulation in breast cancer has been shown to
protect against complement-mediated cytotoxicity [631] and inhibition of its
expression with siRNA sensitizes cancer cells to complement-mediated attack in
vitro [632,633]. Hypoxia has previously been shown to induce CD55 expression in
vitro in both epithelial and non-epithelial cell lines [634] and in vivo [635]. In ovarian
cancer, expression of CD55 has been observed in up to three quarters of ovarian
tumours [636], and CD55 monoclonal antibody therapy has been suggested as a
potentially useful therapy for occult micrometastases which cannot be picked up on

imaging following cytoreductive surgery [637].
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USP22 (ubiquitin specific peptidase 22) is an enzyme which is involved in regulation
of protein degradation via the proteasome and is expressed in many different
human tissues including ovary [638]. USP22 has been identified as a putative cancer
stem cell marker whose function lies in deubiquitination of histones, transcriptional
activation and in progression of the cell cycle — cells depleted of USP22 arrested in
G; [639]. In addition to deubiquitination of histones, USP22 has also been shown to
regulate activity of TRF1, a telomere-associated protein [640]. Recent studies have
shown USP22 to act through a number of signalling pathways such as INK4a/ARF,
Akt [641] and Jak-Stat [642]. Overexpression of USP22 in colorectal carcinoma has
been linked to advanced stage of disease, poorer survival and correlated with
expression of other biomarkers such as c-myc [643]. In breast cancer,
overexpression of USP22 was positively correlated to lymph node metastasis and
poorer outcome [553], while in gastric cancer, co-expression of USP22 with BMI-1
was also linked to poorer outcome [644]. This is the first study to identify USP22 as

induced by hypoxia.

The coxsackie virus and adenovirus receptor (CXADR) was identified in 1997 [645].
Its functional utility in cancer treatment was demonstrated by a study which used
the receptor to facilitate adenoviral-mediated transfer of Fas ligand to lymphocytes,
thus stimulating apoptosis [646]. Indeed, adenovirus-mediated overexpression of
the CXADR was shown to increase transgene expression [647]. In ovarian cancer cell
line studies, it was shown that a minimum level of CXADR expression is necessary for
adenoviral gene transfer [648], and that the level of CXADR expression is linked to
the susceptibility of cells to adenovirus-mediated transfection [649]. A study of
CXADR in ovarian tumours showed it to be expressed in the majority of tumours,
with stronger expression in well-differentiated carcinomas [650]. Transfection of
the ovarian carcinoma cell line, SKOV3, with CXADR resulted in increased cell
adhesion and reduced colony formation thus presenting a potential role in
metastasis prevention [651], however a further study of ovarian cancer CXADR

expression linked over-expression with poorer progression free survival and overall



survival [652]. Increased levels of CXADR have been observed in a cisplatin-resistant
laryngeal carcinoma cell line [653]. A previous study found reduced levels of CXADR
in gastric, colon and prostate carcinoma cell lines following hypoxic exposure [654],
however, we found up-regulation of CXADR following hypoxia in both A2780 and
A2780cis. Our study used 0.5% O, for 72 hours, whereas the previous study used 1%
O, for 24 hours — this may indicate a time-dependence or severity of hypoxia-
dependence on the effects observed. While there may be an initial drop in CXADR
expression on exposure to hypoxia, this may be reversed during prolonged hypoxia —
although a time-course of CXADR expression would need to be carried out to

confirm this.

TIMP3 (metallopeptidase inhibitor 3) is a member of a family of proteins which
deactivate tissue metallopeptidases — enzymes employed by tumour cells to break
down the extracellular matrix - and is repressed by EGFR activation [655,656]. A
previous study also found TIMP3 to be down-regulated following hypoxic exposure
[657]. Hypermethylation of TIMP3 has been observed in many cancer types
including ovarian [658]. Previous cDNA microarray analysis has identified it as
down-regulated in lung cancer [659], uveal melanoma [660] mengioma [661].
Methylation of TIMP3 in papillary thyroid cancer was associated with extrathyroidal
invasion, metastasis to lymph nodes and multi-focal tumours [662]. Its methylation
as part of a panel of three markers was recognised as a diagnostic tool to separate
patients with Barret’s oesophagus at risk of progression to oesophageal
adenocarcinoma [663]. Its potential as a diagnostic biomarker was identified by
Leung et al., who identified methylation of TIMP3 in serum samples from late stage
gastric cancer patients [664]. Transfection of a breast cancer cell line with
recombinant TIMP3 resulted in reduced proliferation and reduced metastatic
potential, thus indicating its potential as a therapeutic target [665]. A study of paired
ovarian tumour samples, pre- and post-chemotherapy, identified TIMP3 as one of
the down-regulated genes following chemotherapy and a potential marker of

chemoresistance [666]. Adenoviral-mediated transfection of TIMP3 into cervical
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cancer cell lines resulted in increased apoptosis, reduced proliferation and had
synergistic effects when co-incubated with cisplatin and in vitro studies showed
TIMP3 to inhibit growth of tumour xenografts, an effect that was ameliorated when

combined with cisplatin therapy [667].




4.3.7 Summary

Thus, our studies of the effect of hypoxia on gene expression in A2780 and A2780cis

identified several findings:

1. Hypoxia induces a large number of chianges in gene expression in both A2780
and A2780cis, although more changes are induced in A2780

2. A large proportion of genes are commonly dysregulated in both A2780 and
A2780cis in response to hypoxia

3. Few genes are commonly dysregulatted in A2780 cells exposed to hypoxia
and normoxic A2780cis

4. Most gene expression differences im hypoxia which were associated with
cisplatin resistance were up-regulated

5. A number of potential biomarkers of cisplatin resistance in relation to
hypoxia were identified including BDNF, BIRC3, VEGFA and IGF1R (up-
regulated) and CDC25A, CDKN2A and TIMP3 (down-regulated).
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4.3.8

4.3.8.1

Results: The Effect of Hypoxia on Response to Cisplatin in

A2780 and A2780cis

Comparison of Untreated A2780 Cells with Cisplatin Treated
A2780 Cells in Normoxia and Hypoxia

The changes in gene expression in A2780 following treatment with cisplatin were

compared between normoxia and hypoxia. Differential gene expression changes are

summarized in Table 4.14. Data is displayed for genes with a fold change of 22 and

FDR <0.05. More genes were differentially expressed in A2780 cells which were

treated with cisplatin in hypoxia. Similar proportions of genes were up- and down-

regulated in A2780 treated with cisplatin in normoxia and hypoxia. Chromosomal

location plots (Figure 4.13) display the location of gene expression differences on

the chromosomes. A volcano plot and heat map (Figures 4.14 and 4.15) graphically

display differences in gene expression patterns between both groups.

Table 4.14. Summary of Differential Gene Expression Characteristics for A2780

Cells Treated with Cisplatin for 72 hours in Normoxia or Hypoxia.

Cell Line Total Number Differentially Up-regulated Down-
Expressed Genes regulated

A2780 1521 702 819

Normoxia

A2780 2099 1037 1062

Hypoxia
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Figure 4.13. Chromosomal Location Plots for Differentially Expressed Genes in
A2780 Cells in Response to Cisplatin Treatment in Normoxia and Hypoxia.
Chromosomal location plots for A2780 cells treated with cisplatin in normoxia (A)

and hypoxia (B).

represented in yellow, down-regulated in red and unchanged are represented in
white. Up- and down-regulated genes were spread evenly across the chromosomes.
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Figure 4.14. Differences in Gene Expression Patterns Between Untreated and
Cisplatin Treated A2780 Cells in Normoxia. Volcano Plot (A) and heat map (B)
displaying differences in gene expression patterns between normoxic A2780 which
are untreated and normoxic A2780 treated with cisplatin. n =3
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Figure 4.15. Differences in Gene Expression Patterns between Untreated and
Cisplatin Treated A2780 Cells in Hypoxia. Volcano plot (A) and heat map (B)
displaying differences in gene expression patterns. Volcano plot identifies genes
which display a high magnitude of differential expression such as NRN1 (arrow)
while heat map identifies clusters of genes which are differentially expressed. n = 3



Analysis of the gene expression on DAVID identified a number of pathways up- and

down-regulated following cisplatin treatment. The top five pathways up- and down-

regulated by cisplatin treatment in normoxia are summarized in Tables 4.15 and

4.16. The top pathways up- and down-regulated by cisplatin treatment in hypoxia

are summarized in Tables 4.17 and 4.18. Genes which appear in more than one

pathway are represented once on the tables.

Table 4.15. Top Four Significantly Up-Regulated Pathways in A2780 Cells Treated
with Cisplatin in Normoxia.

Pathway Genes P-value
p53 signalling Fas, MDM2, CCNG2, p21, GADD45A, <0.001
RRM2B, SESN1, ATM, TP5313, ZMAT3
Lysosome CD63, GM2A, GNPTAB, CTSL1, FUCA1, <0.001
iIUDA, LAMP2, LAMP3, MAN2B1, MANBA,
SCARB2, SLC17a5
Ribosome RPL13, RPL13A, RPL24, RPL30, RPS18, <0.001
RPS24, RPS27, RPS27L, RPS29, RPL32
Other glycan FUCA1, MAN2B2 0.006
degradation
Table 4.16. Top Four Significantly Down-Regulated Pathways in A2780 Cells
Treated with Cisplatin in Normoxia.
Pathway Genes P-value
DNA Replication DNA2, FEN1, MCM2-7, POLA1, POLA2, <0.001
POLD1, POLE2, POLE3, POLD3, PRIM1,
PRIM2, RFC2, RFC3, RFC5, RNASEH1,
RNASEH2A,
Cell cycle CDC45, E2F2, MAD2L1, SKP2, ANAPC1, <0.001
ANAPC5, BUB1, BUB1B, CDK1, CDC20,
CDC25, CDC6, CCNA2, CCNB2, CCNE1,
CCNE2, CDK2, CDKN2A, ESPL1, GAD45G,
PLK1, PKMYT1
Pyrimidine DHODH, PNP, POLR3D, POLR3G, RRM1, <0.001
metabolism RRM2, TK1, UCK1
Oocyte meiosis FBXO5, AURKA, SGOL1 <0.001




Table 4.17. Top Four Up-Regulated Pathways in A2780 Cells Treated with Cisplatin

in Hypoxia.

Pathway Genes P-value

p53 signalling CD82, Fas, MDM2, APAF1, CASP9, CCND3, <0.001
CDKN1A, LRDD, PMAIP1, SESN1, SFN,
TP5313, ZMAT3

Apoptosis BCL2L1, CAPN1, CASP6, IKBKB, PIK3R1, <0.001
PIK3R3, PKA, RIPK1

ABC Transporters ABCA1, ABCA10, ABCA5, ABCC10, ABCD1, 0.01
ABCD3, TAP1

Chronic myeloid SHC4, SHC1, SMAD3 0.01

leukemia

Table 4.18. Top Four Down-Regulated Pathways in A2780 Treated with Cisplatin in

Hypoxia.
Pathway Genes P-value
Cell Cycle CHEK1, DBF4, E2F5, MAD2L1, RAD21, SKP2, <0.001
TTK, WEE1, BUB1, BUB1B, CDK1, CDC20,
CDC25, CDC6, CCNA1, CCNB1, CCNB2, CDK2,
CDKN1B, GADD45B, ORC1L, ORC6L, PTTG1,
PLK1, STAG2, TGFB2
Oocyte meiosis FBXO5, AURKA, MAPK3, IP3R3, IGF1R, <0.001
PPP3CC, SGOL1
DNA replication POLE2, PRIM1, PRIM2, RFC1-5 <0.001
MAPK signalling DDIT3, RASGRP1, RASGRF1, ATF4, CACNB4, | 0.002

DUSP1, DUSP16, FGF23, JUN, MAPT,
MAP3K2, NR4A1l, PLA2G3, PDGFA, PKCA,
PKCG, STK3, STMN1, ZAK, TGFB2, TNF, AKT3,
FOS

Pathway analysis revealed that similar pathways are stimulated when cells are

treated with cisplatin in hypoxia and normoxia. To further clarify the role of the

genes identified, the break-down of gene expression in the two conditions was

examined. Figure 4.16 is a Venn Diagram which displays the numbers of genes

which are up- and down-regulated following cisplatin treatment in normoxia and

{ 213 |




hypoxia. Of all the genes differentially expressed in the two lists, 338 are common.

Of these, 137 are up-regulated, while 201 are down-regulated.
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Figure 4.16. Comparison of Differntial Gene Expression Changes in A2780 Cells
Treated with Cisplatin in Normoxia and Hypoxia. Venn Diagram summarizing the
comparison in gene expression between A2780 treated with cisplatin in normoxia
(pink) and hypoxia (green). In total, 338 genes were in common between the two
lists. Of these, 137 were up-regulated while 201 were down-regulated. n =3
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Genes which were only over-expressed or under-expressed in cells treated with
cisplatin in hypoxia were examined in order to identify genes which may account for
the increased cisplatin resistance observed in hypoxic cells in Chapter 3. Pathway
analysis was then carried out on the genes which were up-and down-regulated in
A2780 treated in hypoxia only. The significantly over-represented pathways are
summarized in Tables 4.19 and 4.20. Genes occurring in more than one pathway are

represented once in the table.

Table 4.19. Pathway Analysis of Up-Regulated Genes in A2780 Cells Treated with
Cisplatin in Hypoxia Only.

Pathway Genes P-value

Apoptosis BCL2L1, APAF1, CAPN1, CASP6, CASP9, IKBKB, | 0.001
PIK3R1,PIK3R3, PRKACA, RIPK1

ABC Transporters ABCA1, ABCA10, ABCA5, ABCC10, ABCD1, 0.002
ABCD3, TAP1

Amyotrophic Lateral CCS, GRIN2C, GPX1, MAP2K3 0.005

Sclerosis

Small Cell Lung Cancer | TRAF4, ITGA3 0.02

p53 signalling CD82, CCND3, LRDD, PMAIP1, SFN 0.02

Pancreatic Cancer SMAD3, RALGDS 0.02

Chronic Myeloid SHC4, SHC1 0.03

Leukemia




Table 4.20. Pathway Analysis of Down-Regulated Genes in A2780 Cells Treated
with Cisplatin in Hypoxia Only.

Pathway Genes P-value
MAPK signalling DDIT3, RASGRP1, RASGRF1, ATF4, CACNB4, <0.001
DUSP1, DUSP16, FGF23, GADD45B, JUN,
MAPT, MAP3K2, NR4A1, PLA2G3, PDGFA,
PKCA, PKCG, PPP3CC, STK3, STMN1, ZAK,
TGFB2, TNF, AKT3, FOS
Cell Cycle CHEK1, DBF4, E2F5, RAD21, WEE1, CDC20, 0.002
CDC25, CCNB1, CDKN1B, ORC6, PTTG1,
STAG2
Steroid Biosynthesis DHCR7, CYP51A1, EBP, SCAMOL, SC5DL 0.005
ErbB Signailing NCK1, NRG4, ERBB4, ERBB3 0.01
Nitrogen Metabolism ASNS, CA9, CA14, CTH, CA5B 0.02
Systemic Lupus HIST1H2AC, HIST1H2AB, HIST1H2AG, | 0.02
Erythematosus HIST1H2BH, HIST1H2BI, HIST1H2AD,
HIST1H4A, HIST2H2AB, HLA-DMA
Axon Guidance EPHA6, EPHA7, CXCR4, CFL2, LRRC4C, | 0.02
SEMA3C, SEMA3E, UNCS5C
Colorectal Cancer FZD2, IGF1R, MSH2, TCF7L1 0.03
Gap Junction ITPR3, PDGFD, PRKG1, TUBB2B 0.04

From the pathway analysis, a list of genes which have been directly linked to

cisplatin resistance in the literature are displayed in Table 4.21. Genes which were

picked for discussion are highlighted in bold.
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Table 4.21. Dysregulated genes in the Hypoxic Response to Cisplatin in A2780
which have been Directly Linked to Cisplatin Resistance.

Gene Annotation Reference | Fold- FDR
Symbol Change
BCL2L1 BCL2-like 1 [668] 2.17 <0.001
IKBKB inhibitor of kappa light polypeptide | [669] 2.13 <0.001
gene enhancer in B-cells, kinase
beta
PIK3R1 phosphoinositide-3-kinase, [670] 3.29 <0.001

regulatory subunit 1 (alpha)

RIPK1 receptor (TNFRSF)-interacting [671] 3.51 <0.001
serine-threonine kinase 1

ABCD3 ATP-binding cassette, sub-family D | [498] 2.18 <0.001
(ALD), member 3

GPX1 glutathione peroxidase 1 [672] 3.46 <0.001
CCND3 cyclin D3 [673] 233 <0.001
SFN stratifin (674] 3.97 <0.001
DDIT3 DNA-damage-inducible transcript 3 | [675] -5.12 <0.001
NR4A1 nuclear receptor subfamily 4, [676] -2.75 <0.001

group A, member 1

TNF tumour necrosis factor [677] -2.87 <0.001

E2F5 E2F transcription factor 5, p130- [678] -2.08 <0.001
binding

UNC5C unc-5 homolog C (C. elegans) [679] -2.62 <0.001

MSH?2 mutS homolog 2, colon cancer, [680] -2.03 <0.001

nonpolyposis type 1 (E. coli)




4.3.8.2 Comparison of Untreated A2780cis Cells with Cisplatin
Treated A2780cis Cells in Normoxia with Hypoxia

The effect of cisplatin treatment on A2780cis was examined in order to identify the
changes induced by cisplatin in normoxia and hypoxia and to identify any common
changes between the two conditions. A summary of the differential gene
expression characteristics of A2780cis treated with cisplatin in normoxia and
hypoxia are presented in Table 4.22. Chromosomal location plots, volcano plots and
heat maps provide graphical representation of the data (Figures 4.17, 4.18 and
4.19). The top up- and down-regulated pathways in response to cisplatin treatment
are summarized in Tables 4.23 and 4.24 (normoxia) and Tables 4.25 and 4.26
(hypoxia). A summary of the ‘hypoxia only’ response to cisplatin is provided in

Figure 4.21 and Tables 4.27 and 4.28.

Table 4.22. Summary of Differential Gene Expression Characteristics of A2780cis
Treated with Cisplatin in Normoxia and Hypoxia.

Cell Line Total Number of | Up-regulated Down-regulated
Dysregulated
Genes

A2780cis 1282 710 572

Normoxia

A2780cis 928 292 636

Hypoxia
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Figure 4.17. Chromosomal Location Plots for Differentially Expressed Genes in
A2780cis Cells in Response to Cisplatin Treatment in Normoxia and Hypoxia.
Chromosomal location plots demonstrate evenly distributed gene expression
changes in normoxia (A) and hypoxia (B). Genes up-regulated in response to
cisplatin are represented in yellow, down-regulated in red, and genes whose
expression was unchanged in response to cisplatin are represented in white. n =3
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Figure 4.18. Volcano Plot and Heat Map Depicting Gene Expression Changes in
Response to Cisplatin in A2780cis in Normoxia. Volcano plot identifies genes which
were highly significantly dysregulated such as TXNIP (arrow, A), while heat map
provides rapid visual presentation of patterns of gene expression differences (B).
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Figure 4.19. Volcano Plot and Heat Map Depictingl Gene Expression Changes in
Response to Cisplatin in A2780cis in Hypoxia. Volcano plot (A) identifies genes
which are highly significantly altered in response to cisplatin such as CEACAM1
(arrow) while heat map (B) provides rapid visualization of patterns of gene
expression differences in cisplatin treated A2780cis. n =3
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Table 4.23. Top Five Significantly Up-Regulated Pathways in A2780cis Treated with
Cisplatin in Normoxia.

Pathway Genes P-value

p53 signalling CD82, MDM2, PERP, APAF1, CCNG2, <0.001
CDKN1A, GADD45A, RRM2B, SESN1, SFN,
ATM, THBS1, TNFRSF10B, TP5313, ZMAT3

Apoptosis XIAP, BIRC3, CASP10, IL1R1, IRAK4, PIK3R3, <0.001
PPP3CA, TNFSF10, TNFRSF10D

Ribosome FAU, RPL11, RPL13A, RPL27, RPL24, RPL30, <0.001
185, RP521, RPS24, RPL32, RP529

Lysosome CD63, GNPTAB, C(CTSL1, CTSO, FUCA1, | 0.002

HGSNAT, IDS, LAMP3, MANBA, SCARB2,
SLC17A5, SMPD1

Systemic Lupus H3F3A, C1R, C1S, HIST1H2AD, HIST1H2BK, 0.02
Erythematosus HIST1H4A, HLA-DMA, HLA-DPA, C3

Table 4.24. Top Five Significantly Down-Regulated Pathways in A2780cis Treated
with Cisplatin in Normoxia.

Pathway Genes P-value

Cell cycle CDCA45, E2F1, SKP2, TTK, ANAPC1, ANAPCS, <0.001
BUB1, BUB1B, CDK1, CDC20, CDC25A,
CCNA2, CCNB2, CCNE2, CDK2, ESPL1, MCM2
-5, MCM7, ORC1L, PLK1, PKMYT1

DNA Replication POLD1, POLE3, POLD3, PRIM1, PRIM2, <0.001
RFC2, RFC3, RFC5, RNASEH2A

Oocyte meiosis FBXO5, SGOL1 <0.001

Mismatch Repair EXO1 <0.001

Homologous RAD51, RAD54L, XRCC2, EME1 <0.001

Recombination
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Table 4.25. Top Three Significantly Up-Regulated Pathways in A2780cis treated
with Cisplatin in Hypoxia.

Pathway Genes P-value

p53 signalling CD82, MDM2, APAF1, CDKN1A, GADDA45A, <0.001
LRDD, SESN1, SFN, TP5313, ZAMAT3

Bladder Cancer PGF, HRAS 0.03

ABC Transporters ABCA1, ABCD1, ABCG4, TAP1 0.03

Table 4.26. Top Three Significantly Down-Regulated Pathways in A2780cis Treated
with Cisplatin in Hypoxia.

Pathway Genes P-value
Cell Cycle E2F5, MAD2L1, SKP2, TTK, ANAPC1, BUB1, <0.001
BUB1B, CDK1, CDC20, CDC25C, CCNA2,
CCNB1, CCNB2, CDK2, ESPL1, MCM3, MCM4,
MCM®6, ORC6L, PTTG, PLK1
DNA Replication DNAZ2, POLA1, POLE2, PRIM1, PRIM2, RFC1, | <0.001
RFC3, RFC5
Oocyte Meiosis FBXO43, FBXO5, MAD2L1, AURKA, IGF1R, <0.001

SGOL1
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Figure 4.20. Comparison of Gene Expression Changes in A2780cis Treated with
Cisplatin in Normoxia and Hypoxia. In total, 257 genes were commonly
dysregulated in A2780cis treated with cisplatin in normoxia (pink) and hypoxia
(green). Of these, 103 were up-regulated and 154 were down-regulated. n =3




Table 4.27. Pathway Analysis of Up-Regulated Genes in the A2780cis Hypoxic

Response to Cisplatin.

Pathway

Genes

P-value

Focal Adhesion

ITGA3, PGF, PXN, PARVA, HRAS, VTN

0.04

Table 4.28. Pathway Analysis of Down-Regulated Genes in the A2780cis Hypoxic

Response to Cisplatin.

IGF1R, PTTG

Pathway Genes P-value
Systemic Lupus GRIN2B, C5, HIST1IH2AC, HIST1H2AE, <0.001
Erythematosus HIST1H2BI, HIST1IH2BN, HIST1HA4A,

HIST2H2AB, HIST2H2AC, HIST2H2BF
Valine, Leucine and ACAT1, BCAT1, ALDH6A1, BCKDHA, HADH, 0.004
Isoleucine degradation | PCCA
Homologous BLM, RAD51L1, RAD54B, BRCA2 0.03
Recombination
Oocyte meiosis FBX043, MAD2L1, ARUKA, CDC25C, CCNB1, | 0.05




Table 4.29. Dysregulated Genes in A2780cis Hypoxic Only Response to Cisplatin
Linked to Cisplatin Resistance in the Literature.

Gene Annotation Reference | Fold- FDR

Symbol Change

LRDD Leucine rich and death domain [681] 3.48 <0.001
containing

S100A4 $100 calcium binding protein A4 [682] 2.36 <0.001

RAD51C | RAD51 homolog C (S. cerevisiae) [683] 2.12 <0.001

PCNA proliferating cell nuclear antigen [(684] 2.97 <0.001

NOTCH1 | Notch1 [685] 2.04 <0.001

SFEN Stratifin (686] 5.14 <0.001

CDK1 cyclin-dependent kinase 1 [687] -4.94 <0.001

RGS2 regulator of G-protein signaling 2, [688] -2.69 <0.001
24kDa

JUN jun proto-oncogene [689] -2.37 <0.001

FHIT fragile histidine triad gene [690] -2.82 <0.001

MAD2L1 | MAD2 mitotic arrest deficient-like 1 [335] -4.91 <0.001
(yeast)

EGR1 early growth response 1 [691] -2.19 <0.001

CCNB1 cyclin B1 [692] -2.30 <0.001

GPC3 glypican 3 (693] -5.35 <0.001

E2F5 E2F transcription factor 5, p130- (678] -2.06 <0.001
binding

UPRT uracil phosphoribosyltransferase [694] -2.14 <0.001
(FUR1) homolog (S. cerevisiae)
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The gene lists which were generated in the ‘hypoxic only’ response to cisplatin in
A2780 and A2780cis were compared in order to identify any commonly dysregulated
genes or pathways — dysregulation in two cell lines may prove these targets to be
stronger biomarker candidates. In total, 30 genes were commonly up-regulated in
the two cell lines’ ‘hypoxic only’ response to cisplatin, while 95 genes were
commonly down-regulated. The pathway analysis on these lists is displayed in
Tables 4.30 and 4.31. Only one pathway was significantly up-regulated based on the
30 commonly up-regulated genes — p53 signalling. Four separate pathways were
significantly down-regulated and are summarized in Table 4.31. Genes which were

contained within more than one pathway are represented once on the table.

Table 4.30. Significant Commonly Up-Regulated Pathways in the A2780 and
A2780cis ‘Hypoxic Only’ Response to Cisplatin.

Pathway Genes P-value

p53 signalling CD82, APAF1, SFN <0.001

Table 4.31. Significant Commonly Down-Regulated Pathways in the A2780 and
A2780cis ‘Hypoxic Only’ Response to Cisplatin.

Pathway Genes P-value
Systemic Lupus HIST1IH2AC, HIST1H2AE, HIST1H2BI,HIST1H4L, | 0.02
Erythmatosus HIST2H2AB

A literature search was carried out to identify those genes identified on pathway
analysis which have been previously linked to cisplatin resistance. One gene
identified on the pathway analysis was previously linked to cisplatin resistance - SFN.
The entire lists of commonly up- and down-regulated genes were then examined in

order to determine if genes which had not been represented in the pathway analysis
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were associated with cisplatin resistance. This identified one further gene (Table

4.32).

Table 4.32. Commonly Dysregulated Genes in the A2780 and A2780cis ‘Hypoxic
Only’ Response to Cisplatin which have Been Directly Linked to Cisplatin

Resistance.

Gene Annotation Reference | Alteration in
Expression

SFN Stratifin (686] Up

E2F5 E2F transcription factor 5, p130-binding [(678] Down

i
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4.3.9 Discussion: The Effect of Hypoxia on Response to Cisplatin in
A2780 and A2780cis

In Chapter 3, drug-treating A2780 cells in hypoxia induced nearly 10-fold resistance
to cisplatin compared to A2780 cells which were treated in normoxia. Gene
expression data generated by microarrays was explored in order to identify genes or

pathways which may contribute to the increased resistance.

The top up-regulated pathways in A2780 treated with cisplatin in normoxia included
p53 signalling and lysosome. These pathways were not surprising as cisplatin
treatment has been shown to induce apoptosis. Indeed, mutation in the p53 gene
leading to loss of function has been shown to cause resistance to cisplatin [695,696],
and adenovirus-mediated transfer of exogenous p53 to a p53-null lung cancer cell
line induced apoptosis and increased the cells’ sensitivity to cisplatin [697]. The
microarray analysis identified a number of molecules related to p53 signalling which
were up-regulated. Fasis a member of the TNF receptor superfamily which induces
cell death on stimulation by a ligand [698]. Activation of Fas results in the formation
of a multimolecular protein complex known as the death-inducing signalling
complex (DISC) and involves the proteins FADD (Fas-associated death domain), and
caspase 8 [698]. Previous studies have shown up-regulation of Fas on cells treated
with cisplatin [699,700], although cisplatin can induce apoptosis independent of Fas
activation [701]. Ovarian tumours resistant to chemotherapy generally express less

Fas than chemosensitive tumours [702].

CDKN1A (p21) is a cyclin-dependent kinase inhibitor and is induced by cisplatin as
part of the apoptotic response [703,704]. Underexpression of CDKN1A has been
linked to cisplatin sensitivity [705], whereas CDKN1A overexpression was shown to
increase cisplatin resistance [706]. In ovarian cancer cell lines, cytoplasmic CDKN1A
expression was associated with cisplatin resistance, while siRNA-mediated CDKN1A
knock down sensitized the cells [707]. Similarly, in prostate carcinoma, siRNA
directed against CDKN1A in testicular cancer also sensitized the cells to cisplatin

treatment [708]. SU5416, a VEGF receptor-selective inhibitor has been shown to
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ameliorate the effects of cisplatin through down-regulation of CDKN1A, along with
other cell cycle-related proteins [308], thus demonstrating its potential as a

therapeutic target.

Lysosomes are cellular organelles which contain a number of enzymes associated
with cellular degradation. Cathepsins are protein-degrading enzymes located within
the lysosome [709]. Cathepsin L has been implicated in a number of different
carcinogenic processes including apoptosis, proliferation, angiogenesis and invasion
[709]. Expression of cathepsin L has been correlated to tumour grade, recurrence
and poorer survival in urothelial carcinoma [710]. Cathepsin L has been explored as
a potential diagnostic biomarker for ovarian cancer — serum levels were significantly
higher in patients with malignant disease compared with benign or healthy controls
—however, its sensitivity and specificity is low [711,712]. In addition, a further study
found that supplementation with an anti-oxidant, Vitamin B, following
chemotherapy resulted in reduced cathepsin activity [713]. A previous study in
melanoma has also identified cathepsin L as up-regulated in hypoxia [714]. Its
potential usefulness as a therapeutic target was demonstrated in glioma cells.
Transfection of cisplatin-resistant glioma cells with the oncolytic virus parvovirus
resulted in significant cell death with activation of cathepsins B and L [715]. The
lysosomal-associated membrane proteins 2 and 3 (LAMP2 and LAMP3) were also up-
regulated following cisplatin treatment in normoxia in A2780. In vitro studies have
identified LAMP2 as a marker of cisplatin sensitivity. Reduced LAMP2 expression
was shown to be associated with cisplatin resistance in an ovarian cancer cell line
[716], however over-expression of LAMP2 has also been shown to confer resistance
to cisplatin in colon and breast carcinoma cell lines [717]. LAMP3 has not yet been
associated with response to cisplatin, however, LAMP3 over-expression has been

associated with metastasis in cervical cancer [718].

In A2780 cells treated in hypoxia, some markers of sensitivity to cisplatin were also
up-regulated following cisplatin treatment. PMAIP1 (phorbol-12-myristate-13-

acetate-induced protein 1/NOXA) is a pro-apoptotic protein which is activated by

[ 231 } - —



p53 [719]. PMAIP1 has been shown to be induced by HIF-1a, and to induce cell
death in association with release of cytochrome c¢ from the mitochondria and
caspase activation [720]. It has been shown to be induced by proteasome inhibitors
such as bortezomib, after which it induces apoptotic cell death in melanoma [721].
Similarly, it is induced by diallyl trisulfide, an organosulfur molecule which
modulates drug metabolism systems, and facilitates cell death in prostate carcinoma
[722]. PMAIP1 has previously been shown to be inducible in response to cisplatin
treatment in gastric cancer [723], breast cancer [724] and cervical cancer [725] and
has been shown to be involved in the synergistic effects induced by the Bcl inhibitor
ABT-737 when combined with cisplatin treatment in head and neck squamous cell
carcinoma cells [726]. A study by Difeo et al. identified a therapeutic potential for
PMAIP1 inhibition — they showed that targeting the tumour suppressor KLF6-SV1 in
a mouse model of ovarian cancer resulted in increased survival times due to

increased apoptosis mediated through PMAIP1 [32].

In A2780 and A2780cis treated in normoxia and hypoxia with cisplatin, there was
down-regulation of many genes related to DNA replication and the cell cycle. There
was wide-spread down-regulation of DNA polymerase enzymes. Cisplatin treatment
has previously been shown to inhibit the action of DNA polymerases [253,727].
Indeed, increased DNA polymerase beta activity has been observed in a cisplatin-
resistant leukaemia cell line [728]. In addition, increased DNA polymerase alpha
activity has been shown in a cisplatin resistant ovarian cancer cell line, A2780CP
[729] and cisplatin resistant colon carcinoma cell line, HCT8 [730]. siRNA-mediated
down-regulation of DNA polymerase beta has been shown to sensitize cells to the
cytotoxic activity of cisplatin [731]. Primase 1 and 2 (PRIM1 and PRIM2) enzymes
were also down-regulated in response to cisplatin. Primase enzymes work in
conjunction with DNA polymerase to synthesise new DNA strands and a functioning
primase is required for DNA synthesis and repair to occur following DNA damage
[732]. Thus, reduced levels of primase, as observed in this study, limit the repair of

DNA following genotoxic stress and lead to triggering of apoptosis. Indeed, several



studies in a number of different cancers have shown that inhibition of primase leads

to apoptosis [733-735].

Down-regulation of cell cycle components was also observed in cells treated with
cisplatin in both hypoxia and normoxia. Cell cycle progression is positively regulated
by cyclin dependent kinases (CDKs) which are activated by cyclins [22]. There was
down-regulation of both CDKs and cyclins in response to cisplatin in normoxia and
hypoxia in both cell lines. CDK1 is responsible for cell cycle progression through G,
to M phase, while CDK2 is responsible for cell cycle progression through G; to S
phase [22]. In both A2780 and A2780cis, CDK1, 2 and cyclins A2, B2, E1 and E2 were
all down-regulated in response to cisplatin, while CDK1, 2 and cyclins A2, B1 and B2
were down-regulated in the hypoxic response. Cisplatin has previously been shown
to induce cell cycle arrest in a number of cell lines. A study of bladder carcinoma
showed that cisplatin and another cytotoxic drug gemcitabine, were able to induce
cell cycle arrest at G; and G, phases, and in addition, they showed that cisplatin
induced apoptosis only occurred in p53-wild type cells [736]. A study of cervical
carcinoma also showed cell cycle arrest following treatment with cisplatin [737].
Overexpression of CCNA2 has been linked to chemoresistance and poor prognosis in
endometrial carcinoma [738]. Similarly, overexpression of CCNE1 promotes cell

survival in ovarian cancer cell lines [739].

The ‘hypoxic only’ response to cisplatin — i.e. the genes differentially expressed by
the response to cisplatin in hypoxia but not normoxia were examined in order to
identify genes which may be associated with resistance, rather than just the normal

response to cisplatin-induced DNA damage as discussed above.

Notch signalling is a highly conserved pathway with functions in embryogenesis and
tissue self-renewal [740]. NOTCH1 is a receptor for the ligands Jagged 1 and 2 and
Delta-like 1, 3 and 4 [740]. It was up-regulated in the A2780 ‘hypoxic only’ response
to cisplatin. In cervical cancer Notch1 expression has been observed both in tumour

samples and cell lines [685]. It was shown to interact with NF-KB pathway and
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antagonize cisplatin-mediated cytotoxicity [685]. Another study in head and neck
cancer associated NOTCH1 expression with resistance to cisplatin [741]. siRNA-
mediated targeting of NOTCH1 in ovarian cancer cell lines was shown to inhibit cell
proliferation [742]. Similarly, inhibitors of gamma-secretase, the enzyme that
cleaves the NOTCH1 intracellular domain to initiate signalling, were also shown to
inhibit cell proliferation and stimulate apoptosis [743]. Treatment of ovarian cancer
cells with the novel therapeutic agents xanthohumol and withaferin A resulted in
reduced NOTCH1 mRNA and protein expression, reduced cell proliferation, cell cycle
arrest and apoptosis [744,745]. Thus NOTCH1 is a potentially useful therapeutic
target for the treatment of ovarian cancer. A study of ovarian cancer found that
NOTCH1 expression was higher in cancer tissue compared to normal tissue, and that
its expression was correlated with differentiation and tumour stage — poorly

differentiated tumours expressed higher levels of NOTCH [746].

BCI2I1 (BCI2 like 1) is an anti-apoptotic protein which was up-regulated in the
A2780cis ‘hypoxic only’ response to cisplatin. Expression of BCI2I1 has been linked
to the pathophysiology of many different cancers through its effects on apoptosis
including Hodgkin’s Disease [747], breast cancer [748] and ovarian cancer [749]. In
ovarian cancer BCI2I1 expression has been widely studied. BCI2I1 expression is
higher in malignant ovarian tissue compared to benign, and correlated with
progesterone receptor levels [749]. Lower BCI2I1 in ovarian tumours compared to
normal ovarian tissue has also been observed, indicating a potential alternative role
apart from anti-apoptosis [750]. In addition, no difference in BCL2I1 expression has
been observed between serous and mucinous or clear cell ovarian tumours
[751,752]. It has also been linked to pathology associated with stem cells — it is up-
regulated by the stem cell marker Piwil2 [753]. Previous microarray analysis of
serous ovarian cancer identified BCL2I1 as over-expressed [754], and its expression
has been linked with a shorter progression free survival [755,756]. BCl2I1
expression has been associated with cisplatin resistance in ovarian cancer cell lines

[757], and is expressed in protein sampled from ascetic fluid [758]. Lack of down-
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regulation of BCL2I1 in response to cisplatin, as observed in this study, was shown to
correlate with cisplatin resistance [759]. In addition, hypoxia has been shown to
increase BCL2L1 expression [760]. BCI2I1 has demonstrated potential usefulness as
a therapeutic target. Inhibition of BCI2I1 with siRNA in an ovarian cancer cell line
has been shown to induce anoikis — apoptosis induced from anchorage-independent
growth —and reduce tumourgenicity in cells transplanted to in vivo models [761]. It
has also been implicated in the action of novel therapeutics such as curcumin [762]

and the green tea extract, epigallocatechin-3-gallate [763].

MADZ2L1 is a highly conserved spindle checkpoint protein whose main function is to
ensure faithful chromosome segregation during mitosis in conjunction with other
proteins such as BUB1 [764]. It was down-regulated in the A2780 ‘hypoxic only’
response to cisplatin. MAD2L1 expression has been associated with resistance to
cisplatin in several cancer types. In nasopharyngeal carcinoma cell lines, low
MAD2L1 expression was associated with cisplatin, and could be overcome with
MAD2L1 transfection [765]. Similarly, in gastric carcinoma, silencing of MAD2L1
induced cisplatin resistance [766]. MAD2L1 expression has been shown to sensitize
cancer cells to cisplatin through activation of the MEK pathway [767] and through
interference with the DNA repair pathway [768]. Prencipe et al. examined MAD2L1
expression in ovarian cancer cells exposed to hypoxia, and found that MAD2L1 was
down-regulated — although this was independent of promoter methylation — and
validation of this work in ovarian tissue samples confirmed a reciprocal relationship
between MAD2L1 protein expression and expression of CA9, a surrogate marker for

hypoxia [769].

E2F1 was down-regulated in the ‘hypoxic only’ response in A2780 and A2780cis cell
lines. E2F1 is a transcription factor which has a role in activating genes involved in
cell cycle progression, apoptosis and senescence, and is negatively regulated by the
retinoblastoma protein, pRb [770]. Its expression has long been shown to induce
apoptosis mediated by p53 [771]. DNA damaging agents and other stresses such as

hypoxia [772] have been shown to induce expression of E2F1, and this expression
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has been shown to be mediated through the ATM/ATR kinase pathway [773]. Its
expression in hypoxia is regulated by another member of the E2F family, E2F6 [774].
In addition, E2F1 depletion has been associated with increased tumour angiogenesis
through VEGF activation [775]. Over-expression of E2F1 has been directly linked to
cisplatin sensitivity [776]. In addition, E2F1 has been shown to play an important
role in cisplatin-mediated nephrotoxicity in in vitro and in vivo studies [777].
However, studies of E2F1 expression in ovarian carcinoma have shown E2F1 to be
up-regulated in serous carcinomas compared to borderline tumours [778], however
previous studies correlated E2F1 expression with tumour stage and grade, thus

highlighting its potential as a prognostic indicator for ovarian cancer [779,780].
4.3.10 Hypoxic Biomarker Discovery

This chapter has provided a comprehensive analysis of the transcriptional changes
induced by exposure of ovarian cancer cells to hypoxia. We have explored the
unique genetic changes which occur in cells receiving drug treatment in hypoxia, as
well as identifying common genetic alterations between cisplatin-induced and
hypoxia-induced chemoresistance. There is a paucity of literature utilizing
microarray data to glean new information regarding the role of hypoxia in ovarian
cancer chemoresistance. For the first time, we have used a paired platinum
resistance cell line model to investigate the transcriptional alterations invoked by
hypoxic exposure. We have identified many novel biomarkers, including markers
not previously associated with ovarian cancer, hypoxia, and/or chemoresistance. As
mentioned previously, there are relatively few surrogate markers of tumour
hypoxia, and HIF-1a itself has certain problems due to difficulties in isolation of its
protein and conflicting evidence in the literature regarding its significance in terms
of survival. Therefore, as hypoxia is proving to be such an important mediator of
chemoresistance, it is imperative to discover consistent markers of its presence.
This study has identified many markers influenced by hypoxia, and linked them to
platinum resistance in ovarian cancer and others. In Chapter 5, we provide an initial

evaluation of their expression in a cohort of ovarian tumour samples.

S S S S S SRS {. 236 ;E -



4.3.11 Summary

The experiments examining the effect of hypoxia on the response of A2780 and

A2780cis to cisplatin revealed a number of findings:

1. Similar pathways and a large number of genes are commonly dysregulated
both in normoxia and hypoxia and in both cell lines.

2. Many gene changes were as would be expected in a cell line faced with the
genotoxic stressors of cisplatin and hypoxia.

3. A number of changes in hypoxic cells were identified which did not entirely
fit with a normal response to cisplatin — these genes were often markers of

resistance to cisplatin, and hold potential prognostic/therapeutic value.
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Chapter 5

Evaluation of Novel Hypoxic
Biomarkers of Ovarian Cancer



| Introduction

Based on the array analysis of Chapter 4, four potential biomarkers of hypoxia and
ovarian cancer were selected for validation in a cohort of ovarian tumour samples.
In the array analysis, a number of hypoxia-related biomarkers of ovarian cancer
were identified that were altered in (i) both cisplatin resistance and hypoxia
resistance, (ii) general response to hypoxia in one or both cell lines and (iii) response
to cisplatin in hypoxia in one or both cell lines. Markers were chosen based on their
potential to serve as markers of chemoresistance in ovarian cancer, due to their
expression patterns in cells exposed to hypoxia/cisplatin/both, and based on

information available in the literature on their connection to cisplatin resistance.

i) Angiopoietin-like 4 (ANGPTL4) — Up-regulated in A2780 cells exposed to
hypoxia (8.65-fold); A2780cis cells exposed to hypoxia (3.48-fold)

ii) BDNF — Up-regulated in A2780 cells exposed to hypoxia (2.69-fold)

iii) HER3 — Up-regulated in A2780cis compared to A2780 (normoxia, 2.71-
fold); A2780 cells exposed to hypoxia (3.44-fold); down-regulated in
A2780 ‘hypoxic only’ response (i.e. gene expression was altered when
cells were treated with cisplatin in hypoxia, but not when treated in

normoxia) to cisplatin (-3.2-fold)

iv) HIF-1a — although the expression of HIF-la was not altered in these
samples, its expression is widely studied in the literature in terms of

hypoxia

A fifth biomarker, MAD2L1 was validated in the hypoxia matrix, however, its
expression was not determined in the tissue sample cohort, as its expression in the
same cohort was previously determined by one of our collaborating groups [781].
On the array analysis it was down-regulated in the A2780 response to cisplatin in
normoxia (-2.01-fold) and the A2780 and A2780cis response to cisplatin in hypoxia (-
3.41-fold and -4.91-fold respectively).
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5.1<1 Angiopoietin-like 4

The ability of tumours to produce their own blood supply by stimulating the growth
of blood vessels (angiogenesis) is one of the hallmarks of cancer [16]. Tumour
angiogenesis is stimulated in a number of ways. Vascular endothelial growth factor
(VEGF) is released by tumour cells leading to proliferation of endothelial cells,
platelet derived growth factor (PDGF) released by activated platelets stimulates
perivascular cells, and angiopoietins signal through the insulin-like growth factor
pathway [41]. In 2000, angiopoietin-like 4 (ANGPTL4) was discovered and
designated as hepatic fibrinogen/angiopoietin-related protein (HFARP) by Kim et al.
[782]. In the same year, two other groups discovered the same protein and named
it fasting induced adipose factor (FIAF) [783] and PGAR (PPAR gamma angiopoietin
related) [784]. Studies in a variety of malignant and non-malignant cell types have
shown ANGPTL4 to have a number of functions including prevention of apoptosis
[782], regulation of fat and carbohydrate metabolism [785,786], induction of
angiogenesis [787], inhibition of angiogenesis [788,789], inhibition of metastasis
[790] and facilitation of metastasis [791]. Thus, ANGPTL4 is seen to have

paradoxical functions.

In vitro experiments have shown ANGPTL4 to be methylated in gastric cancer [792]
and breast cancer [793] cell lines and transfection of hepatocellular carcinoma cells
with recombinant ANGPTL4 was shown to reduce cell proliferation and reduce
tumour growth in mice [794]. The angiogenesis inhibitor ZD6474, which acts via the
VEGF receptor as well as the epidermal growth factor receptor (EGFR), has been
shown to up-regulate expression of ANGPTL4 while reducing tumour growth and
metastasis in mice [795]. However, a study examining the gene expression profiles
of breast tumour metastases found that ANGPTL4 was up-regulated in the tumour
metastases [796], and high expression of ANGPTL4 has been associated with poor
survival in oral tongue squamous cell carcinoma [797]. ANGPTL4 has been
suggested as a diagnostic biomarker for renal cell carcinoma [798]. In addition, up-

regulation of ANGPTL4 has been implicated in angiogenesis in Kaposi’s sarcoma



[799] and invasion in gastric carcinoma [800]. In oesophageal carcinoma, ANGPTL4
expression correlates with invasion and poorer overall survival [801], while in
endometrial cancer, its expression correlates with invasion and better overall
survival [802]. Thus there is conflicting evidence in the literature on the function of
ANGPTL4 and its effects in different cancer types. Currently, there is no evidence in
the literature on ANGPTL4 expression and its relationship with cisplatin resistance,
and there is very limited information on ANGPTL4 expression in ovarian cancer. One
study has shown ANGPTL4 to be expressed in the ovarian cancer cell line SKOV3,

and in xenograft tumours derived from it [803].
95.1:2 Brain-Derived Neurotrophic Factor

Brain-derived neurotrophic factor (BDNF) is a growth factor which binds the TrkB
receptor resulting in enhanced excitement of neurons and protection against
cellular stresses [804]. BDNF over-expression has been observed in many cancer
types including hepatocellular carcinoma [805]. A study of colorectal carcinoma
found BDNF to be produced in the cellular response to stress, and suppressed
apoptosis [806]. Hypoxia has been shown to induce BDNF expression in vitro and in
vivo [807,808]. In breast cancer, BDNF was found to be over-expressed when
compared to normal tissue, and was associated with a number of features of tumour
aggressiveness such as lymph node metastasis and reduced progression-free and
overall survival [809]. In a study of cervical cancer, BDNF was up-regulated in cancer
tissue and was associated with low FIGO (International Federation of Obstetricians
and Gynaecologists) stage and reduced features of invasion [810]. Indeed, over-
expression of BDNF in a normal endothelial cell line stimulated many tumorigenic
properties such as increased cell proliferation, survival, invasion, and angiogenesis
[811]. In fact, BDNF has been shown to stimulate production of VEGF in a HIF-1a-
dependent manner [812]. BDNF has recently been shown to play a role in cisplatin
resistance in head and neck squamous cell carcinoma through affecting the ratio of
pro- and anti-apoptotic proteins, and through up-regulation of enzymes such as

glutathione-s-transferase and the multidrug resistance protein, MDR-1 as well as
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activation of the Akt and MAPK signalling pathways [516]. In ovarian cancer, BDNF
has been shown to increase cell proliferation and migration through activation of
the Akt pathway [813]. A study of BDNF expression in ovarian cancer tissues found
no difference in mRNA expression between malignant and non-tumour tissue,
however high levels of its receptor, TrkB were noted and correlated with poor
survival [814]. Inhibition of BDNF has been shown to induce apoptosis in
hepatocellular carcinoma and breast cancer, thus demonstrating its therapeutic
potential [805,815]. Similarly, the Akt inhibitor perifosine has been shown to exert

its effects, at least partially, through down-regulation of BDNF [816].
5.1.3 HER3

HER3 (ERBB3) is a member of the epidermal growth factor receptor (EGFR) family.
Activation of HER3 through ligand binding stimulates its dimerization with another
member of the ERBB family — HER3 has no intrinsic enzymatic (tyrosine kinase)
activity of its own [817]. Following activation, members of the EGFR family
stimulate several signalling pathways within the cell including Ras/MAPK, PI3K/Akt,
Src/NFkB, PAK-1/Rac and catenin/cytoskeleton [818]. HER3 is frequently co-
expressed with HER2 in breast cancer [819]. Knockdown of HER3 with siRNA has
been shown to decrease metastatic potential [820]. In colon carcinoma, elevated
HER3 is associated with reduced progression free survival in tumour samples, and
knockdown of HER3 in cell lines resulted in reduced proliferation, migration and
invasion of cells [821]. Signalling through HER3 has been linked to resistance to a
number of therapeutic agents including gefitinib in lung cancer [822] and paclitaxel
in breast cancer [823]. A study of glioblastoma has identified HER3 expression as
prominent in a putative cancer stem cell population [824]. In vivo studies in ovarian
cancer have identified that HER3 is involved in stimulating cell proliferation, and that
targeting HER3 with siRNA reduces cell growth and increases progression-free and
overall survival in mice [21]. In breast cancer, the HER2/HER3 heterodimer is
associated with decreased survival [825], and oncogenic signalling through HER3 can

attenuate the effects of HER2-mediated therapies [826]. Four alternative splice
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variants of HER3 have been identified in ovarian cancer cell lines and normal tissues
[827]. Previous cDNA microarray studies have identified over-expression of HER3 in
serous ovarian adenocarcinoma tissue [828]. Other studies of EGFR expression in
ovarian cancers have shown that EGFR is expressed in only a small subset of
tumours [829,830], however its expression has been associated with poorer survival
[830]. Interestingly, a study in ovarian cancer cell lines showed that treatment with
heregulin, a ligand for HER3, and EGF significantly decreased HER3 expression in
some cell lines, while HER3 expression was reduced to a lesser amount in others
[831]. This was associated with activation of the MAPK pathway, and was also
linked to sensitivity to the monoclonal a-HER2 antibody, pertuzumab, which

prevents dimerization of HER2 molecules.
51.4 MAD2L1

MAD2L1 is a member of the spindle checkpoint assembly of proteins [832] whose
function is to ensure faithful chromosome segregation during mitosis [764]. Loss of
one MAD2L1 allele results in a defective spindle checkpoint and inappropriate
chromosome segregation [833]. Over-expression of MAD2L1 has been observed in
gastric cancer and colon cancer, and is associated with metastasis [834,835]. A
previous microarray study of endometrial carcinoma identified MAD2L1 as over-
expressed in cases with lymph node positivity [836], while in thyroid cancer, over-
expression of MAD2L1 was observed in anaplastic carcinoma, a particularly
aggressive subtype [837]. Expression of MAD2L1 in hepatocellular carcinoma is
associated with tumour grade and reduced overall survival [838]. Reduced
expression of MAD2L1 in ovarian cancer cell lines is associated with a loss of
checkpoint control [839] and low MAD2L1 expression has been observed in the
chromophobe subtype of renal carcinoma — which is associated with chromosomal
monosomy [840], and in a large proportion of marginal zone B-cell lymphomas due
to hypermethylation [841]. Knockdown of MAD2L1 in cervical cancer cells was
shown to result in chromosome loss in mitosis and reduced viability [842].

However, in gastric cancer, inhibition of MAD2L1 with siRNA was shown to reduce



apoptosis following treatment with the cytotoxic drugs vincristine and cisplatin
[766]. Similarly, a study of MAD2L1 in testicular carcinoma correlated high MAD2L1
expression with sensitivity to cisplatin mediated through the ERK signalling pathway
[767]. This may be mediated, at least in part, by interference of MAD2L1 with DNA
repair proteins [768]. An in vitro study by Sudo et al. showed that over-expression
of MAD2L1 in an ovarian cancer cell line which is low in endogenous MAD2L1,
OVCAA432, increased sensitivity to paclitaxel [843]. Indeed, high MAD2L1 expression
induces cellular senescence, and paclitaxel resistance [844]. A study by our
collaborators in University College Dublin showed that low MAD2L1 expression is
associated with resistance to paclitaxel in ovarian cancer cell lines, and low MAD2L1
expression in ovarian tumours is associated with reduced progression free survival

[781].
5.1.5 HIF-1a

Hypoxia-inducible factor 1a (HIF-1a) is a transcriptional activator which is stabilized
in hypoxic conditions [845). There have been a large number of articles which
investigate its potential utility as a prognostic or therapeutic biomarker in cancer. In
vivo studies have linked HIF-1a expression to tumourigenesis, and knock-down of
HIF-1la has been shown to reduce tumour growth and metastasis [846]. The
potential usefulness of HIF-la as a monitor for response to therapy was
demonstrated in a study of liver cancer, which showed reduced HIF-1a levels in the
sera of patients who had undergone transcatheter arterial chemoembolization
(TACE) to restrict tumour blood supply [847]. Similarly, HIF-1a has also been shown
to have potential as a prognostic biomarker — its expression predicts progression
free survival in rectal cancer [848] and in pancreatic adenocarcinoma it is associated
with reduced overall survival [849]. In addition, polymorphism analysis of HIF-1a in
non-small cell lung cancer correlated certain polymorphisms of HIF-1la with

prognosis [850].



HIF-1a and many of its target genes have been identified as up-regulated in clear cell
ovarian carcinoma [851], and in serous ovarian carcinoma its expression was linked
with reduced progression free survival and overall survival [200]. It has also been
identified as up-regulated in platinum-resistant ovarian tumours [852]. HIF-1a
expression is higher in poorly differentiated ovarian tumours where its expression
correlates with vascular endothelial growth factor (VEGF) [853]. Interestingly, high
HIF-1la expression was associated with increased progression-free survival in
suboptimally debulked ovarian cancer patients who subsequently underwent

platinum/taxane based chemotherapy [201].

The expression of surrogate markers of HIF-1a such as carbonic anhydrase 9 (CA9)
and glucose transporter 1 (GLUT-1) has also been examined in ovarian tumours.
Expression of CA9 is present in all types of ovarian neoplasm, however it is higher in
mucinous tumours [854]. Another study found that expression of CA9 was higher in
mucinous and endometrioid ovarian tumours and linked it to shorter overall survival
[855]. GLUT-1 is over-expressed in invasive tumours compared to borderline
[856,857] and has been linked to tumour grade [858]. In addition it has been shown
to be over-expressed in poorly differentiated tumours and associated with shorter
progression free survival [859]. Previous work by our group examined expression of
vascular endothelial growth factor (VEGF) in ovarian carcinomas, and found that low

expression of VEGF conferred a survival advantage [860].
5.1.6 Aim
The aim of this chapter was two-fold:

i) To validate the results of the hypoxia matrix, and to evaluate the effect of

differing lengths of hypoxic exposure on gene expression

ii) To evaluate some of the biomarkers identified in Chapter 5 in a cohort of

ovarian tumour samples



5.2 Methods

5.2,1 Samples - Cell Lines

The quality of gene expression data from arrays can be variable depending on the
platform used and thus real-time polymerase chain reaction (PCR) is often employed
to validate microarray results. Markers which were selected from the microarray
analysis for further investigation were validated using real-time Reverse
Transcription-PCR (RT-PCR). In addition, as only a very small subset of the hypoxia
matrix had been interrogated on the microarrays, the expression of these genes was
determined in alternative matrix conditions. Expression of four genes (ANGPTL4,
BDNF, HER3 and MAD2L1) was validated using Tagman RT-PCR on the samples
interrogated on the Affymetrix arrays as well as some other points of the hypoxia
matrix, summarized in Table 5.1. Initial experiments revealed some inconsistency in
Cr values between some biological replicates within sample groups, therefore all
samples were ‘cleaned up’ by washing in ice-cold isopropanol followed by
reconstitution in RNase-free water, in order to remove any residual contaminating
salts following RNA extraction. Following clean-up, samples of the same type all
displayed expression levels within one Cr of each other. All experiments were
carried out for n=3. 18S, GAPDH (glyceraldehydes) and B-actin were evaluated as
endogenous controls in a range of samples, and B-actin was chosen due to its low

variation in expression.
5.2.2 Samples - Tumour Tissue

Expression of four genes (ANGPTL4, BDNF, HER3 and HIF-1a) was examined in a
cohort of 35 serous papillary ovarian tumour samples. The patient characteristics
are summarized in Table 5.2. Tumour regions were macrodissected from formalin
fixed paraffin embedded (FFPE) sections and RNA was extracted using the RNeasy
FFPE kit (Qiagen, UK). Sectioning and RNA isolation was carried out by one of our
group’s collaborators in University College, Dublin. RNA was converted to cDNA and

Tagman PCR was carried out as described in Chapter 2. A list of the probes is




displayed in Table 5.3. GAPDH was used as an endogenous control for these

samples, as B-actin displayed an unacceptable degree of variation between samples.

Table 5.1. List of Samples Used for Validation Based on the Hypoxia Matrix.
Expression in these samples was determined for both A2780 and A2780cis.

Sample Type

Normeoxia, Untreated

Hypoxia, Untreated

Normoxia, Cisplatin Treated

Hypoxia, Cisplatin Treated

Acute hypoxia (4 hours), Untreated

Chronic hypoxia (5 days). Untreated

Table 5.2. List of Patient/Tumour Characteristics

Histology Stage Grade Number
Serous Adenocarcinoma 2 3 2
Serous Adenocarcinoma 3 1/2 3
Serous Adenocarcinoma 3 2 7
Serous Adenocarcinoma 3 2/3 2
Serous Adenocarcinoma 3 3 15
Serous Adenocarcinoma 4 1/2 1
Serous Adenocarcinoma 4 2/3 1
Serous Adenocarcinoma 4 3 4

| 247

L S—



Table 5.3. List of Probes for Tagman® PCR. All probes were obtained from Applied
Biosystems, USA.

Probe Assay Code

ANGPTL4 Hs01101127_m1

BDNF Hs00380947_m1

HER3 Hs00176538_m1

HIF-1a Hs00153153_m1

MAD2L1 Hs03063324_g1

ACTB 4333762F

GAPDH 4326317E

5.2.3 Sample Grouping and Relative Quantitation

Patient samples were grouped as outlined in Table 5.4 according to their response
to platinum/taxane chemotherapy obtained from follow-up data. Progression-free
survival (PFS) and overall survival (OS) were determined as the number of months
following completion of platinum/taxane chemotherapy until recurrence or death

respectively.

Relative gene quantitation for both cell line and tissue samples was determined

B method, as described in Chapter 2. For cell line samples, the

using the 2
calibrators (reference samples) used were either A2780 (normoxia, untreated) or
A2780cis (normoxia untreated). For all patient samples, the calibrator was the

group of patients deemed to have responded to chemotherapy (Table 5.4).

Once fold-changes had been determined, statistical significance was determined by
a one-sided Student’s t-test of the hypothesis that the fold change = 1, with p<0.05
determined as significant. Data was graphed and statistical analysis carried out

using GraphPad Prism Software.



Table 5.4. Classification of Tumour Samples Based on Response to Chemotherapy.

Class Response Number of
Samples

Responders Recurrence >12 months following completion of 17
chemotherapy

Partial Recurrence between 6 — 12 months following 11

Responders completion of chemotherapy

Non-Responders | Recurrence <6 months following completion of B 7
chemotherapy

524 Kaplan-Meier Survival Analysis

Relationships between gene expression and progression free survival (PFS) and
overall survival (OS) were analysed using Kaplan-Meier survival curves on Prism
software. This method allows for analysis of data where some data might be
censored — the end-point has not yet occurred (e.g. death). This analysis is based on
several assumptions outlined by Bland and Altman [861]. Firstly, it is assumed that
the censored patients have the same survival prospects as those who are followed —
in this study, patient data is censored if the patient has not yet progressed or died.
Secondly, it is assumed that survival probabilities are the same for patients recruited
early and late in the study — this is not relevant for this study as all patients were
‘recruited’ at the same time. Finally, it is assumed that the event occurred at the
time specified. This is true for certain events e.g. date of death is relatively
unambiguous. However, time of progression is more complex, as it is not always
clear from patient records exactly when progression occurred. In the case of ovarian
cancer management, Cal25 levels are checked regularly, at 6-month intervals. A
rising Cal25 can be indicative of recurrent disease, however, not all clinicians
conclude that a patient has recurred until they are symptomatic — thus it can be

unclear exactly when a recurrence has taken place. We determined time of
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recurrence as when it was identified on radiology and logged in the patient’s notes
by their consultant. Curves are generated using a product limit formula and
compared using the log rank test, a non-parametric test which can be used to
compare groups containing censored data. It tests the null hypothesis that there is
no difference between the groups in the probability of an event at any given time
point, and is based on the same assumptions as those used to generate a survival
curve [862]. If an individual’s data is censored, it is considered to be at risk of an

event at the time of censoring, but not in subsequent time points [862].

Follow-up data for PFS and OS with Tagman data was available for 27 of the 35
patients. Graph Pad Prism software was used for calculating Kaplan-Meier curves
based on the follow-up data. For each gene, the samples were split into two groups,
high expressers and low expressers, and the PFS and OS data was entered (Table
5.5). If the event had occurred at the most recent follow-up point available, i.e. the
patient had recurred or died, the data was given the binary code 1. If the event had
not yet occurred, i.e. the patient was still healthy/alive at the most recent follow-up
point, the data was given the binary code O to facilitate censoring of data. To
separate the samples into high and low expressers, the median value for expression
for each gene (ACy) was determined for all samples. A higher Cy value on Tagman®
analysis for a gene, indicates that a lower amount of target is present, therefore
samples with a higher ACy value were classed as low expressers while samples with a

lower ACy value were classed as high expressers.

Table 5.5. Breakdown of High And Low Gene Expression.

Gene Number of High Expressers Number of Low Expressers
ANGPTL4 14 13
HER3 16 13
HIF-1a 15 12




5.3 Results

T | Array Validation
A summary of array validation is displayed in Figures 5.1 and 5.2 and Table 5.6.
5311 ANGPTL4

ANGPTL4 was up-regulated in response to hypoxia in A2780 and A2780cis on arrays
and was confirmed with RT-PCR (Figures 5.1B and 5.1C). In addition, RT-PCR
identified expression of ANGPTL4 as up-regulated in A2780cis when compared to
A2780 (Figure 5.1A). ANGPTL4 was up-regulated in the response to cisplatin in
normoxia in A2780 and also in the hypoxic response to cisplatin in A2780cis (Figure

5.2D).
5.3.1.2 BDNF

BDNF was identified as up-regulated on the array analysis in A2780 cells in response
to hypoxia (Figure 5.1B) and was confirmed using RT-PCR. In addition, RT-PCR
picked up expression of BDNF in the response to hypoxia in A2780cis (Figure 5.1C).
BDNF was up-regulated in response to cisplatin in normoxia in A2780cis and down-
regulated in response to cisplatin in hypoxia in both A2780 and A2780cis on PCR
(Figure 5.2).

5.3.1.3 HER3

On arrays, HER3 was up-regulated in A2780cis compared to A2780 (Figure 5.1A) and
up-regulated in the response to hypoxia in A2780 (Figure 5.1B). It was down-
regulated in the hypoxic response to cisplatin in A2780 (Figure 5.2B). The same
changes were observed by Tagman analysis (Figure 5.1B). In addition, HER3
expression was found to be up-regulated in response to hypoxia in A2780cis, in the
A2780cis response to cisplatin in normoxia, and down-regulated in response

cisplatin in hypoxia in both cell lines (Figure 5.2).
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5.3.1.4 MAD2L1

On arrays, MAD2L1 was down-regulated in response to cisplatin in normoxia and
hypoxia in A2780 and in hypoxia in A2780cis (Figure 5.2). Tagman PCR revealed
MAD2L1 to be up-regulated in A2780cis compared to A2780. It was also up-
regulated in response to hypoxia (Figure 5.1B and 5.1C) and in the response to
cisplatin in normoxia in both cell lines (Figure 5.2A and 5.2C), however it was found
to be down-regulated in the hypoxic response to cisplatin in both cell lines (Figure

5.2B and 5.2D).



Table 5.6. Comparison of Fold-Changes in Validation Genes on Array and Tagman® (TM). Tagman® findings which were contrary
to the array findings are highlighted in red. Novel findings on Tagman® not identified in the array analysis are highlighted in blue.

Gene A2780 v A2780 A2780cis A2780 A2780 A2780cis A2780cis
A2780cis Normoxia v Normoxia v Untreated v Untreated v Untreatedv | Untreated v
(Normoxia) Hypoxia Hypoxia Cisplatin Cisplatin Cisplatin Cisplatin

(Normoxia) (Hypoxia) (Normoxia) (Hypoxia)
Array | TM Array | TM Array | TM Array | TM Array | TM Array | TM Array | TM

BDNF - 1.10 |2.69 (479 |- 28.64 | - -1.20 | - -2.5 - 452 |- -6.25

ANGPTLY | - 486 |865 |22.20(3.48 [(9.59 |- 2.48 - 1.28 - 1.96 |- 3.45

HER3 2574 11.86 ({3.44 |7.11 |- 148 | = 2.66 -3.20 |-5.00 |- 7.99 | - -3.45

MAD2L1 | - 27.10 | - 7.43 |- 4.14 |(-2.01 | 2.16 -391 |(-470 |- 9.24 | -491 |-20.00
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Figure 5.1. Comparison of Tagman® Analysis and Array Data. Tagman® and
Array fold-changes are compared for A2780 v A2780cis (A); A2780 normoxia v
hypoxia (B) and A2780cis normoxia v hypoxia (C). Threshold of 2-fold change is
indicated by the black bar. n=3
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Figure 5.2. Comparison of Array and Tagman® fold changes for cisplatin
response. Fold-changes identified on arrays and Tagman® for (A) A2780
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A2780cis Untreated v Cisplatin (normoxia); (D) A2780cis Untreated v Cisplatin
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5.3.2 Further Evaluation of the Hypoxia Matrix

Expression of the identified genes was analysed in other parts of the hypoxia
matrix in order to determine if other types of hypoxic exposure affected their
expression. The hypoxia matrix had explored the effect of acute (4 hours) and
chronic (5 days) exposure to hypoxia prior to drug treatment, as well as the
effect of hypoxia concomitant with drug treatment without previous exposure.
The array data was based on samples which had been exposed to hypoxia for the
treatment duration (72 hours), so in this experiment we evaluated the effect of

the other hypoxia durations on gene expression.

53.2.1 ANGPTL4

When A2780 (normoxia) was used as a calibrator, ANGPTL4 was found to be
significantly increased following 72 hours of hypoxia (Figure 5.3A). It was also
increased following acute and chronic hypoxia, although this did not reach
significance. When A2780cis (normoxia) was used as a calibrator (Figure 5.4A),
there was a trend for increased expression in 72 hours hypoxia, however
expression was not significantly different from normal in acute or chronic

hypoxia.

53.2.2 BDNF

When A2780 (normoxia) was used as a calibrator, BNDF was found to be
significantly decreased following acute hypoxia (Figure 5.3B). There was a trend
for it to be increased following 72 hours of hypoxia, and chronic hypoxia
although this was not significant. When A2780cis (normoxia) was used as a
calibrator (Figure 5.4B), there was a trend of increased expression in 72 hours
hypoxia, however expression was not significantly different from normal in acute

or chronic hypoxia.
5.3.2.3 HER3

When A2780 (normoxia) was used as a calibrator (Figure 5.3C), HER3 was
significantly up-regulated following 72 hours hypoxia. HER3 expression was not

significantly different from normal oxygen in A2780 following acute hypoxia.
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There was a trend for increased expression following chronic hypoxia, although
this was not significant. When A2780cis (normoxia) was used as a calibrator
(Figure 5.4C), HER3 was reduced in acute and chronic hypoxia although this was

not significant.
5.3.2.4 MAD2L1

When A2780 (normoxia) was used as a calibrator (Figure 5.3D), MAD2L1 was
increased following acute hypoxia, but its expression decreased with increasing
time in hypoxia. When A2780cis (normoxia) was used as a calibrator (Figure
5.4D), MAD2L1 expression showed a trend to increase following 72 hours and
chronic hypoxia, although this was not significant due to the high amount of

variation between groups.
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Changes in Gene Expression in A2780 in the Hypoxia matrix.

Changes in gene expression of ANGPTL4 (A), BDNF (B), HER3 (C) and MAD2L1 (D)
as measured by Tagman RT-PCR. A2780 (normoxia) was used as a calibrator.

BDNF expression was reduced in acute hypoxia while increased following longer
hypoxic exposures (A); ANGPTL4 was increased in hypoxia (B); HER3 was
increased following 72 hours hypoxia (C); MAD2L1 was increased following acute

hypoxia, but this reduced with longer exposure to hypoxia (D) n=3 *p<0.05
**p<0.01
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Figure 5.4. Changes in Gene Expression in A2780cis in the Hypoxia Matrix.
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as measured by Tagman RT-PCR. A2780cis (normoxia) was used as a calibrator.
BDNF, ANGPTL4, HER3 and MAD2L1 were all increased following 72 hours of

hypoxia compared to normoxia. n=3



5.3.3 Expression of ANGPTL4, BDNF, HER3 and HIF-1a in
Tumour Sample Cohort

Following the validation of ANGPTL4, BDNF HER3 and MAD2L1 in the cell line
work, their expression was determined in a cohort of ovarian tumour samples.
As mentioned previously, MAD2L1 expression has previously been determined in
this set of samples by our collaborators, therefore the expression of HIF-1a, a

marker of tumour hypoxia was determined instead.
5331 ANGPTL4

ANGPTL4 expression was significantly up-regulated in partial responders and
significantly down-regulated in non-responders to chemotherapy (Figure 5.5A)
compared to responders to chemotherapy. Kaplan-Meier survival analysis
showed a trend towards shorter PFS and OS for samples highly expressing
ANGPTL4, however this was non-significant (Figure 5.5B p = 0.18 and 5.5C p =
0.96, Table 5.7).

5332 BDNF

BDNF expression was observed in only 6 of the 35 samples assayed, thus a
thorough analysis of its significance was not possible in this study. It could be
studied as part of a larger cohort of samples, and perhaps in different types of

samples e.g. recurrent vs. primary.
5.3.3:3 HER3

HER3 expression was significantly down-regulated in partial- and non-responders
(Figure 5.6A) compared to responders to chemotherapy. Kaplan-Meier survival
analysis showed a trend towards longer PFS and shorter OS for samples highly
expressing HER3, however this was non-significant (Figure 5.6B p = 0.11 and 5.6C
p=0.7, Table 5.7).



5.3.3.4 HIF-1a

HIF-1a expression was significantly up-regulated in partial- and down-regulated
in non-responders (Figure 5.7A) compared to responders to chemotherapy.
Kaplan-Meier survival analysis showed a trend towards longer PFS and slightly
shorter OS for samples which over-expressed HIF-1a, however this was non-

significant (Figure 5.7Bp=0.3 and 5.7Cp = 0.9, Table 5.7).
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Figure 5.5. Expression of ANGPTL4 in Cohort of Tumour Samples. ANGPTL4
was significantly up-regulated in patients with a partial response (n = 11), while it
was significantly down-regulated in non-responders (n = 7) compared to
responders (n = 17) to chemotherapy (A). Kaplan-Meier curves indicated a trend
towards reduced progression free survival (B) and overall survival (C) in samples
which over-expressed ANGPTL4 (n = 14) compared to under-expressers (n = 13),
although this was non-significant. *p<0.05 **p<0.01
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Figure 5.6. Expression of HER3 in Cohort of Tumour Samples. HER3 expression
was significantly down-regulated in both partial (n = 11) and non-responders (n =
7) to chemotherapy compared to responders (n = 17) (A). Kaplan Meier survival
analysis indicated a longer progression free survival (B) and shorter overall
survival (C) for samples which over-expressed HER3 (n = 16) compared to those
which under-expressed HER3 (n = 13) however this was non-significant.
**p<0.01 ***p<0.001
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Figure 5.7. Expression of HIF-1a in Cohort of Tumour Samples. HIF-1a
expression was significantly up-regulated in partial (n = 11) and down-regulated
in non-responders (n = 7) to chemotherapy compared to responders (n = 17) (A).
Kaplan-Meier analysis revealed a trend towards increased progression-free
survival (B) and reduced overall survival (C) in samples which over-expressed HIF-
la (n = 15) compared to those which under-expressed HIF-1a (n = 12), however

this was non-significant. **p<0.01
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Table 5.7. Summary of Kaplan-Meier Analysis. Median values for PFS and OS
(months) in over- and under-expressers of ANGPTL4, HER3 and HIF-1a. Curves

were not statistically significant as determined by the log rank test.

Gene Median PFS Median OS
Under- Over- Under- Over-
expressers expressers expressers expressers
ANGPTL4 19.5 9.0 46.0 41.0
HER3 8.0 19.5 43.0 41.0
HIF-1a 10.0 11.0 41.0 31.0
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54 Discussion

The differential gene expression of ANGPTL4, BDNF, HER3 and MAD2L1 as
determined by array analysis was validated using Tagman PCR before moving to
examine their expression in ovarian tumour samples. Due to the potential for
introduction of artefacts within array experiments, the results are generally
validated by a variety of methods such as comprehensive literature search of the
data previously published in the same system, RT-PCR analysis of the same
samples, and protein validation [863]. Artefacts may be introduced at any stage
during the experiment. For example, a sufficient number of replicates must be
carried out in order to reduce any ‘noise’ in the data, and the software used for
image acquisition and data normalization may affect the final gene list obtained.
In addition, if arrays are carried out in ‘batches’, there can be differences
between batches independent of biological significance [864]. in this study, the
results of genes to be further analysed were first validated using RT-PCR on the

same samples as the arrays.
5.4.1 Biomarker Selection

Selection of potential biomarkers to evaluate in the tumour sample cohort was
based on a combination of analysis of patterns of gene expression on microarray,
and thorough literature search in order to identify candidate genes which
displayed strong potential for further development. As there was a limited time
period allocated to the final experiments, we wished to select biomarkers which
had previously displayed promise as biomarker candidates, yet retained novelty
—in that they perhaps had shown promise in cancer types other than ovarian, or
that they had been linked to chemotherapy resistance, but not necessarily
platinum resistance. ANGPTL4 was chosen as it was up-regulated in both cell
lines in response to hypoxia, and was particularly novel. There was previous
evidence that expression of ANGPTL4 was a negative influence on survival in a
number of cancers [797,801], however, there was relatively little information on
its expression in ovarian cancer and no strong link between its expression and

platinum resistance. BDNF was up-regulated in the parent A2780 cell line in



response to hypoxia. Previous studies on BDNF had shown that its expression
was associated with a number of aggressive tumour properties such as invasion
and angiogenesis [811], and it had been previously linked to cisplatin resistance
in head and neck squamous cell carcinoma [516]. However, there was limited
information available on BDNF expression, or its significance in relation to
survival in ovarian cancer. In addition, BDNF had shown promise as a potential
therapeutic target in ovarian cancer and others [805,865], and thus was of
interest in our study population. HER3 displayed an unusual pattern of
expression in the hypoxia matrix, and was up-regulated in response to hypoxia,
yet down-regulated in the response to cisplatin in hypoxia. HER3 had previously
been shown to be a potential therapeutic target in ovarian cancer [866], and had
been linked to sensitivity to monoclonal antibody therapy with gefitinib [867]
and pertuzumab [831], but the relationship between HER3 expression and
cisplatin resistance was unclear. Although not a novel marker of hypoxia, or
cisplatin resistance, HIF-1la was chosen to evaluate in the tumour sample
population as it is a universal marker of hypoxia. In addition, there is some
conflicting evidence in the literature regarding the association of HIF-1la
expression with survival in ovarian cancer, with high expression of HIF-1a having
been linked to both reduced and increased PFS and OS in ovarian cancer by two
separate groups [200,201], therefore it was of interest to further examine the

relationship between survival and HIF-1a expression in an ovarian cohort.

Thus, the biomarkers were chosen based on both novelty and previous
knowledge on their role(s) in cancer. There were many alternative biomarker
candidates which could have been chosen, and will be explored in future

projects.
5.4.2 Cell Lines

Angiopoietin-like 4 (ANGPTL4) expression on RT-PCR correlated with the results
observed on array analysis. In addition, RT-PCR identified ANGPTL4 as up-
regulated in other samples in which the array analysis did not identify any

change. This may be explained in two ways. Firstly, the analysis was constricted
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by stringent statistical limits — only samples which passed a threshold of 2-fold
change in expression with an FDR<0.05 were considered as truly ‘changed’. It is
possible that with less stringent limits i.e. relying on a p-value <0.05, the changes
in ANGPTL4 expression could have been identified in the array analysis. In
addition, RT-PCR is a more sensitive tool than the microarray for identifying
differences in gene expression — on arrays, the ability to evaluate multiple
targets simultaneously limits accurate quantification of low levels of gene

expression [868].

Similarly, BDNF expression on RT-PCR concurred with the results on arrays and in
addition it was identified as >2-fold up-regulated in hypoxic A2780cis cells, and
was >2-fold down-regulated in the response to cisplatin in hypoxia for both cell

lines.

The expression change for HER3 in A2780cis cells compared to A2780, and in
A2780 cells exposed to hypoxia compared to A2780 concurred on both array and
Tagman. Also, in A2780 cells treated with cisplatin in hypoxia, it was down-
regulated both on array and Tagman. In addition, it was shown to be down-
regulated in A2780cis cells treated with cisplatin in hypoxia on Tagman, although
no change was observed on array analysis. Also, Tagman identified HER3 as up-

regulated in response to hypoxia in A2780cis.

MAD2L1 results on Tagman validated for most of the array time-points. Both
array and Tagman identified MAD2L1 as down-regulated in response to cisplatin
in hypoxia. In addition, MAD2L1 was found to be up-regulated in the A2780cis
cell line compared to A2780 cells. While Tagman analysis displayed MAD2L1 as
down-regulated in response to cisplatin in normoxia in A2780, Tagman
demonstrated MAD2L1 as up-regulated. There are several reasons for non-
concordance between array and Tagman data. As mentioned earlier, Tagman is
more sensitive than array analysis, and low fold-changes identified on arrays may
not always be robust. Indeed it has been shown previously that genes with less
than 4-fold changes in gene expression are not always consistently validated

(869].




The expression of the four genes were then analysed on samples which were
exposed to acute and chronic hypoxia in order to determine if the length of
hypoxic exposure affected the expression levels. In A2780 cells BDNF was found
to be significantly reduced following acute hypoxia, yet was up-regulated
following 72 hours and 5 days, although these were not statistically significant.
Most articles investigating BDNF expression following hypoxia examine acute
intermittent hypoxia i.e. cycles of periods of hypoxia followed by reoxygenation.
Some groups show that BDNF expression is increased in vivo [870,871], while
others demonstrate reduced BDNF expression [872]. One study of BDNF
expression in mice following continuous hypoxia for eight days found that BDNF
was significantly increased, although this depended on the breed of mouse [873].
However, there are inherent limitations when comparing in vivo studies to in
vitro studies such as this. In addition, most in vitro studies of BDNF are carried
out on neuronal cell cultures. Two other studies are available in the literature
examining the relationship between hypoxia on BDNF expression in cancer cells.
Both studies were published by the same group and showed that in normal
cerebellar granule neurons and in neuroblastoma cells, incubation with
exogenous BDNF is shown to regulate expression of VEGF in a HIF-1a-dependent
manner thus placing it up-stream of the HIF-1la signalling pathway and
presenting one mechanism in which HIF-1a signalling may be mediated in non-
hypoxic conditions [812,874]. Our study observed a dual-response to hypoxia in
terms of BDNF production. There was an initial drop in BDNF expression which
"~ may be explained by an early response to hypoxic insuit within the cells. For
example, acute hypoxia is known to mediate a transient DNA damage response
which initially results in phosphorylation of Chk1 and cell cycle arrest, however
after chronic periods of hypoxia, Chkl is no longer phosphorylated, thus
removing its block on cell cycle progression [573]. A similar type of response
may be occurring in the BDNF response to hypoxia, although there is nothing as
yet in the literature to confirm this. The following increase in BDNF expression
following longer periods of hypoxia most likely indicates the adaptive response
to hypoxia, and the utilization of the protective effect of BDNF on cell survival

(875,876]. In A2780cis, the BDNF response to hypoxia was different. While
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BDNF was not induced by acute hypoxia it was up-regulated following 72 hours
of hypoxia. However, this response was dampened by 5 days of hypoxia, when
the response was again not different from normoxia. While A2780cis did display
increased resistance to cisplatin following chronic hypoxia in Chapter 3, the fold-
changes were not nearly as large as those observed in A2780, or as those
observed following cisplatin treatment in hypoxia for 72 hours. It may be that
the reduced expression of BDNF following chronic hypoxia plays a part in the
reduced levels of resistance observed following chronic hypoxia in A2780cis. This
may also be explained by a differential gene expression pattern which can be

observed following different periods of hypoxic exposure [573].

ANGPTL4 expression was increased following all lengths of exposure to hypoxia
in A2780, while the expression pattern was similar to that of BDNF in A2780cis.
Previous microarray analysis has shown ANGPTL4 to be up-regulated from 24
hours exposure to hypoxia in adipocytes [877]. In oesophageal carcinoma,
ANGPTL4 was shown to be up-regulated from as early as 30mins in hypoxia in
both single cells and ‘bulk cells’ [878], while in renal cell carcinoma, ANGPTL4
was found to be raised to six times the basal level following 2 hours hypoxia,
reaching a maximum of 8 times basal level at 20 hours [787]. This indicates that
the amount of ANGPTL4 produced may be rate-limited, and does not increase
continuously. In our study, it was found in both cell lines that ANGPTL4 was at its
highest following 72 hours of hypoxia, and this declined following chronic
hypoxia, which fits in with the previous data. In addition, it was found that while
ANGPTL4 was still raised in A2780 cells following chronic hypoxia, although not
statistically significant, in A2780cis, ANGPTL4 levels had returned to normoxic
levels (<1-fold difference). This may be due to biological differences between
the two cell lines, and indeed, ANGPTL4 expression has been found to vary
between different subtypes of cancer e.g. renal cancer [787]. In addition,
Tagman had identified ANGPTL4 as over-expressed in A2780cis compared to
A2780, thus although the levels may have reduced following chronic hypoxia, it is
likely that they are still at a high level of expression. ANGPTL4 expression is

mediated through HIF-1a [554], and in colorectal cancer, ANGPTL4 has been



shown to be induced by hypoxia through prostaglandin E2, a potent
prostaglandin produced by COX-2, and has been shown to promote cell

proliferation both in vitro and in vivo [879].

HER3 expression was similar between both cell lines following all lengths of
hypoxia — no change following acute hypoxia, increased HER3 following 72 hours
hypoxia and no change in HER3 following chronic hypoxia. There is a paucity of
literature describing HER3 expression in relation to hypoxia. Gui et al. isolated
mesenchymal stem cells from rat bone marrow, subjected them to serum
deprivation (SD) and anoxia (95%N,, 5%C0O,) and found reduced levels of HER3
[880]. Heregulin, a ligand for HER3 was able to decrease the apoptosis observed
following SD and anoxia. This is in contrast to the results observed in our study,
however, there are a number of key differences between the two studies. Firstly,
Gui et al. used a non-transformed primary cell culture of a normal cell type, while
our study was using a malignant transformed cell line, which will have a large
number of inherent differences to a non-malignant cell line. Secondly, the
degree of hypoxia was different for both studies — while our study used 0.5% O,
Gui et al. used virtually anoxic conditions, which would be more severe than
those in our study, and in addition Gui et al. serum deprived their cells before
subjecting them to hypoxia, which affects cell proliferation and reduces cell
viability [881]. Thus it is not suitable to directly compare the two studies. Our
study has provided novei information on the influence of hypoxia on HER3

expression in an ovarian cancer cell line model.

In A2780 cells, MAD2L1 expression was most highly expressed following acute
hypoxia, and the expression reduced as the length of hypoxia increased, while in
A2780cis, there was large variation observed in expression between replicates.
The most consistent replicates were observed following 72 hours of hypoxia
which showed an average of 4-fold increase in MAD2L1 expression compared to
normoxia. Similarly to HER3, there is limited information on hypoxia in relation
to MAD2L1 expression in the literature. Prencipe et al., our collaborators in
University College, Dublin, examined MAD2L1 expression in three ovarian cancer
cell lines OVCA432, OVCA433 and UPN251 in 1% oxygen for 72 hours [769]. They
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found decreased expression of MAD2L1 protein and mRNA following 24 hours of
hypoxia. This is in contrast to our findings, however, there may be biologic
differences between the cell lines to explain these differential responses. in
addition, the level and length of hypoxia exposure in the study by Prencipe et al.
was different than that used in our study, and it may be that the change in
expression of MAD2L1 is dependent on the severity and duration of oxygen
deprivation. MAD2L1 over-expression, as was observed in our study, has been
linked to more aggressive tumour features such as liver metastasis in gastric
cancer [834], reduced survival in colorectal cancer [835], lymph node metastasis
in endometrial cancer [836] and increased tumour grade in hepatocellular
carcinoma [838]. Interestingly, while MAD2L1 was found to be increased
following expression to hypoxia, it was reduced following treatment with
cisplatin in hypoxia, while it remained unchanged (A2780) or increased
(A2780cis) following treatment with cisplatin in normoxia. Reduced MAD2L1
expression has been shown to reduce apoptosis induced by cisplatin in gastric
cancer [766], and high cisplatin expression has been shown to sensitize cells to
cisplatin in testicular carcinoma [767]. It could be postulated that the cells which
survived cisplatin treatment in hypoxia and were subsequently assayed for gene
expression changes did so because of reduced levels of MAD2L1. Expression of
MAD2L1 was not assayed in the tumour population used in this study, as its
expression had been determined in the same cohort by a collaborating group
[781]. This study found that low MAD2L1 protein expression was associated with
reduced progression-free survival following adjustment for stage, grade and

debulking status.
5.4.3 Tumour Samples

ANGPTL4 was up-regulated in tumour samples from patients who displayed a
partial response to platinum/taxane chemotherapy (6 — 12 months free from
disease following chemotherapy) while it was down-regulated in tumour samples
from patients who did not respond to chemotherapy (<6 months free from
disease following chemotherapy) in comparison to patients determined to have

had a response (>12 months free from disease foliowing chemotherapy). This is




a novel finding, as, to my knowledge, there are currently no other studies in the
literature which have examined its expression in serous ovarian cancer tumour
samples. In breast cancer, high ANGPTL4 expression (as part of a panel of VEGF-
associated genes) was associated with distant metastasis and reduced
progression free survival [882], while in oral squamous cell carcinoma and
oesophageal squamous cell carcinoma, high ANGPTL4 expression is associated
with reduced overall survival [797,801]. A previous microarray study in
endometrial cancer identified ANGPTL4 expression as part of a panel of markers
to be associated with vascular invasion, increased histologic grade and necrosis
[802]. The exact function of ANGPTL4 in carcinogenesis is slightly unclear, as
some of its functions seem paradoxical. While certain studies have identified
ANGPTL4 as a pro-angiogenic factor [787,799], others have noted that ANGPTL4
inhibits in vivo angiogenesis and suppresses tumour growth [788,794]. ANGPTL4
has been recognised as a down-regulated target for the tumour suppressor gene
U94 in prostate carcinoma cell lines [883]. In addition, in vivo studies have
demonstrated ANGPTL4 to prevent metastasis and invasion through reduction of
vascular permeability and reduction of tumour cell motility [790]. Yet, in studies
of breast tumours, ANGPTL4 expression has been linked to lung metastasis [791],
and in hepatoma, it has been linked to resistance to anoikis [884]. In addition,
ANGPTL4 has been shown to be methylated in a small percentage of breast
tumours [793]. The observations in our study may represent a dual role for
ANGPTL4 in the pathology of ovarian carcinoma. The exact role of ANGPTL4 may
depend on the absolute quantity of transcript present, the celi type involved and
its interplay with other genetic factors. The Kaplan-Meier analysis showed that
patient samples which over-expressed ANGPTL4 tended to have shorter
progression-free and overall survival than samples which under-expressed it,
however this was non-significant. This is likely due to the limited number of
samples which were examined in this study, and a larger cohort of samples

should be assayed to confirm and expand on the results found here.

Average HER3 expression was significantly down-regulated in partial- and non-

responders to chemotherapy compared to responders. Similarly, Kaplan-Meier
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analysis demonstrated a trend for increased progression-free and reduced
overall survival in patients who were high-expressers of HER3 compared to low-
expressers, although this was non-significant.  Previous studies of HER3
expression in ovarian cancer samples have observed higher levels of HER3 in
cancer compared to benign disease [885] and correlated positive HER3
expression with decreased survival [830]. In endometrioid carcinoma of the
ovary, HER3 expression was observed in half the tumours studied, and was
associated with increased tumour grade [886]. However another study found
that only a small proportion over-expressed HER3 and that over-expression was
associated with well-differentiated tumours [456]. In breast cancer, high HER3
expression is associated with lymph node metastasis [453] and reduced
progression free survival [887]. In oral squamous cell carcinoma, HER3 over-
expression is associated with lymph node metastasis and poor survival [454], and
in bladder carcinoma, HER3 expression in conjunction with HER2 is associated
with reduced survival [888]. In colorectal cancer, HER3 over-expression is more
common in early stage cancers [889] and negative HER3 expression has been
associated with increased invasion and higher risk of disease recurrence [890].
The overwhelming evidence in the literature suggests HER3 over-expression to
be associated with tumour aggressiveness and chemoresistance. HER3 over-
expression has been linked to resistance to the HER2 inhibitor, trastuzumab
(Herceptin®) [891], while up-regulation of HER3 has been linked to resistance to
PI3K inhibitors in breast cancer cells [892]. HER3 has been shown to stimulate
tumour cell migration [820]. Several therapies to target HER3 are being
investigated. Monoclonal antibody therapy against HER3 has been shown to
inhibit growth of breast cancer cells [893] and is in preclinical trials [894]. The
multi-kinase inhibitor, Foretinib, has also been shown to inhibit phosphorylation
of HER3 in gastric cancer cell lines [895]. In addition, expression of exogenous
oestrogen receptor beta (ERB) in human breast cancer cells was shown to reduce
levels of HER3 and increase sensitivity to Tamoxifen therapy [896]. Our study
found significant down-regulation of HER3 in patients who displayed a partial- or
non-response to chemotherapy. Thus it is unlikely that in our study, low HER3

expression is linked to platinum chemoresistance in these patients. There are




several reasons which may explain this. Firstly, it may be that an as yet unknown
molecule is negatively regulating HER3 in our sample population. In addition, it
is recognized that tumour sampling is very important in terms of evaluation of
molecular processes due to high degrees of intra-tumour heterogeneity — and
the levels of biomarkers analysed in one study may not be representative of the
whole tumour [897]. This has implications for all studies of potential biomarkers
in cancer. It may be that the tumour regions which were analysed in this study
were not representative of the whole tumour. It may be that subclones of cells
are responsible for the effects of high HER3 expression. In addition, low HER3
expression has been previously identified in ovarian cancer [831], although its
significance has not been adequately determined. Interestingly, low HER3
expression may identify patients who are suitable for alternate forms of
chemotherapy. Alpha-TEA (alpha-tocopherol ether acetic acid analogue) is a
Vitamin E analogue with anti-tumour properties through activation of Fas and
JNK apoptotic pathways [898]. In addition, a-TEA down-regulates HER3 and thus
down-regulates the Akt and survivin pathways [898]. Therefore tumours already
low in HER3 may be moare sensitive to a-TEA therapy, and identification of these

may highlight patients who would benefit from this.

Average expression of HIF-1a was higher in patients who had a partial response,
and lower in patients who had a non-response to chemotherapy compared to
responders. Kaplan-Meier analysis indicated slightly longer progression-free and
shorter overall survival in patients who expressed high levels of HIF-1a, although
again this did not reach statistical significance. Previous studies have shown HIF-
la to be expressed in a large proportion of ovarian tumours [360], and HIF-1a
expression has been correlated with VEGF expression, tumour grade and poor
overall survival [199,899]. HIF-1a has also been shown to be highly expressed in
clear cell ovarian carcinoma compared to other types — clear cell carcinoma is
noted for its poor prognosis [900] and its expression is higher in serous than
mucinous adenocarcinomas [204]. Expression of HIF-1la in serous ovarian
carcinoma is associated with reduced overall survival in patients who have

received carboplatin/paclitaxel chemotherapy [200]. Nuclear immunostaining,
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but not cytoplasmic, of ovarian carcinoma with HIF-1a has been shown to predict
poor prognosis [5]. Interestingly, one study linked HIF-1la expression with
improved outcome following carboplatin/paclitaxel chemotherapy in ovarian
tumours and particularly in those with suboptimal debulking [201]. In xenograft
models, HIF-1a has been linked to microvascular density and inhibition of HIF-1a
associated with reduced tumour growth when treated with cytotoxic drugs
[901]. Oestrogen expression, a risk factor for ovarian cancer, has been shown to
increase HIF-1a and VEGF expression and activate the PI3K pathway in ovarian
carcinoma cell lines [902]. Certain types of cancer treatment have been shown
to exert their effects through inhibition of HIF-la. Fara-A (9-beta-D-
Arabinofuranosyl-2-fluoroadenine), is a nucleotide analogue which is
incorporated into DNA where it induces DNA damage and apoptosis in dividing
cells [903]. A study of Fara-A in ovarian cancer cell lines found that it inhibited
HIF-1a and activation of the Akt pathway [903]. Similarly, reservatrol, a natural
plant product which has anticancer effects, was shown to reduce HIF-1a protein
levels and inhibited Akt and MAPK signalling pathways [378]. Increased levels of
HIF-1la in patients who received the antiangiogenic antibody therapy
Bevacizumab were associated with increased progression-free survival, thus
identifying it as a marker of patients who may benefit from this type of therapy
[904]. Albendazole was initially used as an anti-parasitic in farm animals,
however, it has also been evaluated as a potential anticancer agent, and was
shown in vitro to inhibit accumulation of HIF-1a protein and in vivo to reduce
tumour HIF-1a and VEGF expression [905]. A member of a new class of
anticancer drugs, campothecins, has been shown to reduce accumulation of HIF-
la protein and to act synergistically with cisplatin [291]. HIF-1a itself has been
shown to be a potentially useful direct target for therapeutic intervention.
Treatment of ovarian cancer cells with HIF-1la antisense oligonucleotides
attenuated the multi-drug resistance phenotype of the model [377]. Similarly a
further study of ovarian cancer cells which inhibited HIF-1a with siRNA found
reduced VEGF expression and angiogenic potential of the cells [164]. Thus, HIF-
lais not just a prognostic factor for ovarian cancer, but helps to identify patients

who may benefit from a wide range of novel cancer therapies.



5.4.4 Summary
The aim of this chapter was two-fold:
1. To validate the results of the microarray experiments of Chapter 4

2. To evaluate a number of hypoxia-associated biomarkers identified on the

array analysis in a cohort of ovarian tumour samples
There were a number of findings in this chapter.

1. BDNF expression is altered by hypoxia, and this is dependent both on the

duration of hypoxia and the cell line — this is a novel finding

2. HER3 expression is altered by hypoxia, and is differentially regulated
depending on the presence or absence of hypoxia during treatment with

cisplatin —this is a novel finding

3. In an ovarian tumour cohort, ANGPTL4 was expressed in all samples, and
the level of expression differed depending on the patient response to

chemotherapy — this is a novel finding

4. In an ovarian tumour cohort, HER3 was under-expressed in partial- and
non-responders to chemotherapy. This may identify patients who would

benefit from alternative therapies such as a-TEA and pertuzumab

5. In an ovarian tumour cohort, HIF-1a was up-regulated in patients who
had a partial and down-regulated in patients who had a non-response to

chemotherapy




Chapter 6

General Discussion



6.1 Introduction

Ovarian cancer is a highly lethal malignancy, characterized by late diagnosis and
the development of chemoresistance. Mechanisms of chemoresistance are
multi-factorial, and the influence of the tumour microenvironment on
chemoresistance is significant. Tumour hypoxia is the result of rapid tumour
growth and is responsible for switching on many aggressive tumour features
such as proliferation, invasion, metastasis, angiogenesis, and chemoresistance
through expression of the master hypoxia regulator, HIF-1a. The aim of this
study was to examine the effect of hypoxia on resistance to chemotherapeutic
drugs in an ovarian cancer cell line model. Firstly, the direct effect of hypoxia on
cell viability following drug treatment was analysed using MTT assays and a
complex hypoxia matrix. Secondly, the global changes in gene expression in
response to hypoxia and/or cisplatin were determined using Affymetrix Human
Gene ST 1.0 arrays, and data was evaluated in the context of the literature to
identify potential biomarkers of chemoresistance in relation to hypoxia. Finally,
a selection of markers identified on array analysis was evaluated in a cohort of
serous adenocarcinoma samples, in order to translate the cell line data to

meaningful data in a ‘real life’ context.

6.2 Hypoxia and Ovarian Cancer - 2008

A Pubmed search for literature published in English using the search terms
‘hypoxia’ and ‘ovarian cancer’ up to the end of 2008 yields 171 articles, while
searching for literature up to the current date yields an additional 100 articles in
the space of three years, highlighting the fact that tumour hypoxia has become a
relatively ‘hot topic’ in terms of cancer research. Up to 2008, a number of

findings had been made in relation to hypoxia in terms of ovarian cancer.

Tumour hypoxia had been shown to be associated with increased tumour
volume and necrosis and correlated with reduced bioenergetic status due to
increased metabolically active tumour cells [906,907]. In addition, glucose

uptake into hypoxic regions was shown to be increased in melanoma and ovarian
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tumours and immunohistochemical data linked this with increased GLUT-1

(glucose transporter 1) expression [908].

Early in vitro studies showed that exposure of ovarian cancer cells to anoxia for
24 hours did not affect cell viability, however reduced cell proliferation and
induced cell cycle arrest at G; and G, associated with reduction in cyclin A and
pRb expression [909]. Further studies of hypoxia and the cell cycle in ovarian
cancer revealed that cell cycle arrest is associated with reduced CDK4 activity in
relation to pRb, and reduction in Cyclins D1, D2 and increased p27 and Cyclin E
[560]. Cell survival in hypoxia was shown to be mediated through integrin-linked

kinase [910].

In addition, tumour hypoxia had been shown to abrogate the anti-tumour
immune response through down-regulation of tumour necrosis factor alpha
(TNFa)-induced monocyte chemoattractant protein 1 (MCP-1) [911]. Hypoxia
was also shown to increase levels of the pro-inflammatory cytokine interleukin-8
(IL-8) through the NFKB pathway [912] and the PI3K pathway [913] as well as

increasing chemokine receptors [914].

Hypoxia was associated with angiogenesis mediated through the adenosine
receptor [915], vascular endothelial growth factor (VEGF) [916], prostaglandin E2
[917], chemokine stromal-derived factor CXCL12 [918], and activation of the PI3K
signalling pathway [919,920]. Hypoxia-mediated dysregulation of PTEN and
NDRG1 have been implicated in the carcinogenesis of endometrioid ovarian

adenocarcinomas [921].

In addition, hypoxia was linked to ovarian tumour invasion and metastasis
through reduced expression of E-cadherin and increased expression of SNAIL, a
transcriptional repressor of E-cadherin [922]. Similarly, hypoxia has also been
shown to mediate invasion through up-regulation of heparanase expression
[923]. An additional link between hypoxia and metastasis was made by Kim et al.
who showed that hypoxia increased ovarian cancer cell responsiveness to
lysophosphatidic acid, a molecule which is expressed in ovarian cancer ascites

and is involved in regulation of ovarian cancer biology [924]. Hypoxia was known
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to confer protection against radiation in an in vivo setting [925,926], while in
vitro, tumours composed of ovarian cancer cells were relatively more

radioresistant than tumours containing lower hypoxic fractions [927].

A link was made between hypoxia and resistance to chemotherapy in ovarian
tumours by Siemann and Alliet in 1987, who observed in in vivo studies that co-
treatment of a particular type of sarcoma with misoindazole and 1-(2-
chloroethyl)-3-cyclohexyl-1-nitrosurea (CCNU) resulted in increased cell kill in
lung metastases, but this was reduced in ovarian metastases — postulated by the
authors to be due to an increased fraction of hypoxic tumour cells in the ovarian
metastases [928]. A subsequent study in Chinese hamster ovary (CHO) cells
showed that resistance to a number of cytotoxic agents including etoposide,
actinomycin D and vincristine was induced following exposure of the cells to
anoxia for 24 hours [929]. In addition, hypoxia-related resistance to the
antibiotic/cytotoxic drug mitomycin C, a drug which exhibits a cross resistance
profile with cisplatin, was shown to be related to expression of detoxicating
enzymes DT diaphorase and y-glutamylcystein synthase [930]. Studies of
glucose-related stress, associated with the presence of tumour hypoxia, showed
that induction of glucose-related stress resulted in increased resistance to a
topoisomerase | inhibitor, campothecin, due to reduced drug accumulation and
cell cycle arrest at G; [931]. In addition, hypoxia had been shown to induce
expression of a number of chemoresistance associated proteins such as
glutathione-s-transferase (GST), and glucose-related protein 78 (GRP78) [932].
HIF-1a activity and protein expression was shown to be reduced by cell

treatment with cisplatin [309].

Hypoxia had been identified as a potential therapeutic target for treatment of
ovarian cancer, and the concept of bioreductive hypoxia-selective drugs was
being evaluated [933]. A hypoxia-activated drug, tirapazamine (TPZ), was shown
to exert synergistic effects when ovarian cancer cells were co-incubated with
activated TPZ and cisplatin, thus providing evidence for potential usefulness for
hypoxia-activated drugs in the treatment of ovarian cancer [934]. Interestingly,

ascorbate (vitamin C) was shown to markedly inhibit HIF-1a protein expression
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and reduce expression of HIF-1a targets VEGF and GLUT-1 [935]. Other cytotoxic
agents had been shown to mediate their effects at least partially through
inhibition of HIF-1a [378,379,901,903,936,937]. Direct targeting of HIF-1a with
siRNA was also shown to suppress resistance and enhance apoptosis [377,938].
Anti-angiogenic antibody bevacizumab was being evaluated in in vivo

experiments [939,940].

Immunohistochemical studies of ovarian cancer observed positive HIF-1a
expression in many cases [941], in particular the clear cell carcinoma [900,942]
and serous carcinoma [204] subtypes, and co-expression of HIF-1a with p53 was
shown to be associated with poor overall survival [360]. While HIF-1a expression
alone was not determined to have prognostic significance by some [853], others
have shown high HIF-1a expression to be predictive of poor overall survival
[199,200]. In addition, HIF-1a tumour expression was associated with increased
expression of VEGF and p27, and decreased expression of Cyclin D1 and pRb
[943]. High HIF-1a and VEGF expression are associated with increased tumour
grade [899] and stage [5]. One study linked high HIF-1a expression with better

response to platinum/taxane based chemotherapy [201].

Thus, before this project started, there was already quite a large amount of
knowledge on the role of hypoxia in terms of ovarian cancer biology, in terms of
metabolism, proliferation, angiogenesis, invasion and metastasis. HIF-1a had
also been recognised both as an important therapeutic and prognostic marker of
ovarian cancer. However, while it was widely shown that hypoxia induced
chemoresistance to a number of cytotoxic agents, there was little information on
the genetics behind the resistance, and in particular in relation to resistance to
cisplatin. An understanding of how hypoxia affects platinum resistance is
extremely important in the context of ovarian cancer, as platinum-based
treatment is the standard of care for first-line treatment, and platinum
resistance in ovarian cancer has been associated with a poorer outcome for

ovarian cancer patients.



6.3 Additions to Current Knowledge on Hypoxia and
Ovarian Cancer Chemoresistance by this Project
The first aim of this project was to characterize the effect of various hypoxic
challenges on the resistance profile of A2780 and its daughter A2780cis ovarian
carcinoma cells. A hypoxia ‘design matrix’ was formulated in order to test
various combinations of hypoxia and drug treatments. Cells were treated with
the chemotherapeutic drugs cisplatin and paclitaxel in the presence or absence
of hypoxia. In addition, the effect of acute and chronic exposure was examined
by pre-exposing the cells tc hypoxia before drug treatment. These experiments
provided a number of novel findings in relation to drug resistance in ovarian
cancer and hypoxia. Firstly, it was shown that in cisplatin-sensitive A2780 cells,
resistance to cisplatin increases over time, while in the already cisplatin-resistant
cell line A2780cis, although hypoxia does increase resistance to cisplatin, the
magnitude of the increase is not as large in A2780, and the resistance diminishes
over time, although remains significant. This indicates that a certain number of
genes and pathways which are switched on in A2780 following chronic exposure
to cisplatin may overlap with those which are switched on by hypoxia to induce
resistance. This was a completely novel finding, as there had previously been no
studies published in relation to absolute changes in resistance (ICsg) to cisplatin
in relation to hypoxia and ovarian cancer. A recent study by Su et al. measured
changes in cisplatin ICsq in the ovarian cancer cell line C13K following treatment
with the hypoxia mimetic agent cobalt chloride, and found increasing resistance
to cisplatin with increasing degree of hypoxia [306]. However, there are still no
articles published in relation to the effect of pre-exposure of hypoxia on cisplatin
resistance. Similarly, there are currently no articles published in A2780cis

regarding the effect of hypoxia on cisplatin resistance.

Secondly, it was shown that there is a trend of increased resistance to paclitaxel
in A2780 cells in response to hypoxia, although this is non-significant due to a
number of potential confounding factors as discussed in Chapter 3. At the time
of commencement of this project, there was no information published in relation

to paclitaxel resistance in ovarian cancer associated with hypoxia. However, the



increased resistance we observed is in agreement with a study by Huang et al. in
A2780 cells published in 2010 which observed increased paclitaxel resistance in
cells treated for 24 hours in varying degrees of hypoxia [346]. Huang et al.
demonstrated this response to be HIF-1a-induced, and related to cell cycle arrest
in Go/Gy. In addition, a study by Milane et al. in 2011 showed increased
resistance to paclitaxel in SKOV3 and OVCARS5 ovarian cancer cell lines which
were exposed to 0.5% O, during treatment [944]. However, there have been no
articles published examining the effect of hypoxia pre-exposure on the response
to paclitaxel, as was examined in our study. Interestingly, the resistance profile
of A2780cis to paclitaxel was not altered in hypoxia. An inverse relationship
between cisplatin and paclitaxel resistance has been noted in a number of cell
lines [945], however this was not a feature of this cell line model. There is
currently no information in the literature regarding paclitaxel resistance in

hypoxia in A2780cis.

When we had established that hypoxia does cause chemoresistance in our
ovarian cancer model, we aimed to identify genes and pathways causing this
resistance by whole genome profiling. RNA was extracted from the point on the
hypoxia matrix which gave the largest and most consistent changes in resistance
to cisplatin in both cell lines — treatment with cisplatin in hypoxia with no pre-
exposure to hypoxia. The changes in gene expression were determined using
Affymetrix Human Gene ST 1.0 arrays and were analysed using Affymetrix
Expression Console software (quality control), Bioconductor (normalization and

statistics), and DAVID (pathway analysis).



In order to identify markers of chemoresistance, three main questions were

focused on:

i) What are the common gene changes in A2780 cells chronically
exposed to cisplatin (A2780cis) and A2780 cells exposed to hypoxia?

ii) What are the gene changes in A2780 and A2780cis cells in response to
hypoxia?

iii) What is the ‘hypoxic only’ response to cisplatin in A2780 and A2780cis
i.e. the gene changes which occur in response to cisplatin treatment

in hypoxia but not normoxia

A plethora of genetic changes were identified in response to hypoxia and/or
cisplatin treatment in both cell lines. This list was mined using pathway analysis
and analysis of the individual genes through literature searches to identify any
links to cisplatin resistance in ovarian cancer or others. When A2780cis cells
were compared to A2780, a number of gene changes were identified which had
previously been linked to cisplatin resistance in the literature including platelet-
derived growth factor C (PDGFC) in head and neck squamous cell carcinoma
[437], protein kinase C alpha (PRKCA) in ovarian cancer [946], Jakl in
osteosarcoma [446] and KIT ligand in ovarian cancer [8]. Thus, while we
identified a number of genes which had previously been associated with cisplatin
resistance in ovarian cancer as being altered in this cell line model, we also
identified changes which have previously been identified in other cancer types as

having potential involvement in cisplatin resistance in ovarian cancer.

In A2780 cells exposed to hypoxia, we identified a number of genes as
dysregulated which had previously been observed in that cell line including FOS
and telomerase RNA component [947]. However, the majority of genes
identified have not been described as altered in A2780 in response to hypoxia
previously, and no previous studies have analysed the gene changes in A2780
following hypoxic exposure on array. Similarly, there has been no previous work
published on the effect of hypoxia on A2780cis cells. Thus, the vast majority of

information gleaned from the arrays is novel. We identified a number of genes
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associated with cisplatin resistance in both cell lines when exposed to hypoxia.
These include genes which have been previously identified as associated with
cisplatin resistance in ovarian cancer such as dual specificity phosphatase 1
(DUSP1) [613], FOS [948], collagen type VI alpha 3 (COL6A3) [949], insulin-like
growth factor 1 receptor (IGF1R) [622], Rho-associated coiled-coil containing
protein kinase 1 (ROCK1) [950], x-linked inhibitor of apoptosis protein (XIAP)
[951], MET [952], PIK3CA [953] L1-CAM [556], and RBL2 [954]. In addition,
cisplatin related genes which had not previously been linked to ovarian cancer
were identified including BIRC2 (prostate cancer) [528], BIRC3 (lung cancer)
[151], CXCR4 (lung cancer) [955], BDNF (head and neck cancer) [516], AKT3
(uterine cancer) [956], CD55 (oral squamous cell carcinoma) [628], SERPINE1
(glioblastoma) [957]. In addition, several of the markers had not previously been
linked to hypoxia, including COL6A3, RBL2, and BIRC2. Thus the studies of
changes in gene expression in hypoxia-exposed A2780 and A2780cis have
identified novel markers of chemoresistance in ovarian cancer, as well as linking

the expression of certain chemoresistance markers to hypoxia.

Gene profiling of A2780 and A2780cis cell lines following treatment with cisplatin
in normoxia or hypoxia identified a wide range of genes which were dysregulated
following drug treatment. A previous study by Varma et al. examined gene
expression changes in A2780 cells following treatment with cisplatin using
Affymetrix HG-U95 chips [693]. In their published article, they mainly focus on
the effects of cisplatin on polyamine pathway genes. In our study, in general
there was no change detected in the polyamine genes detected by Varma et al.,
however this can be explained in a number of ways. Firstly, the methods used in
the two studies were quite different. The drug treatment period was from 2 - 24
hours in Varma et al., compared to 72 hours in this study. Also, Varma et al.
incubated their cells in drug-free medium for 16 hours following cisplatin
treatment before processing for array experiments, unlike our study, in which
RNA was harvested directly following drug treatment. In addition, the statistical
models used for analysing data by Varma et al. were different from those used in

this study, and may affect the final gene lists generated. A subsequent article by



Brun et al. of the same group examined a wider range of genes in A2780
following cisplatin treatment [958]. Although some differences were noted
between the differential gene expression from Brun et al. and our study, for
many genes, the dysregulation followed the same pattern e.g. BTG2, CDKN1A,
TP5313 all up-regulated in both studies, and CENPA, MCM6 and PLK all down-
regulated in both studies. There have been no studies published to date which
have gene profiled A2780 or A2780 cell lines following cisplatin treatment in
hypoxia. In fact, to my knowledge, there are no microarray studies published to
date in any cancer type which examine the effect of cisplatin treatment in
conjunction with hypoxia exposure. Our analysis of the ‘hypoxic only’ response
to cisplatin treatment yielded a number of markers related to cisplatin
resistance. While many of these had previously been linked with
chemoresistance in ovarian cancer, e.g. BCL2L1 [959], PIK3R1 [670], RGS [688],
PCNA [852], others had previously only been recognized as markers of
chemoresistance in other cancer types e.g. E2F5 (lung) [678], RIPK1 (cervical)
[669], SFN (colon) [686] and NOTCH1 (head and neck) [741]. Therefore, this
microarray data has identified a number of novel chemoresistance markers of

ovarian cancer.

Based on the questions asked of the array analysis, four genes were chosen for

validation in a cohort of patient tumour samples:

i) HER3 — this was up-regulated in both A2780 cells exposed to chronic

cisplatin (A2780cis) and A2780 cells exposed to hypoxia

ii) BDNF — this was up-regulated in A2780 cells exposed to hypoxia

iii) ANGPTL4 — this was up-regulated in both A2780 and A2780cis cells
exposed to hypoxia
iv) MAD?2L1 - this was down-regulated in both A2780 and A2780cis cells

exposed to cisplatin in hypoxia
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In addition, expression of HIF-1a was determined, as it is a universal marker of

hypoxic change.

Expression was measured in a group of serous papillary carcinomas, which were
categorized as responders (>12 months progression free survival, PFS), partial
responders (6 — 12 months PFS) or non-responders (<6 months PFS). HER3
expression was significantly down-regulated in partial- and non-responders to
platinum/taxane based chemotherapy. ANGPTL4 was up-regulated in partial-
responders to chemotherapy, while it was down-regulated in non-responders.
HIF-1a was up-regulated in both partial- and non-responders to chemotherapy,
while BDNF expression was not detected in the majority of the samples tested.
MAD2L1 expression was not evaluated in this study, as its expression in the same
cohort had been previously evaluated by one of our collaborating groups in

University College Dublin.

The tumour sample validation of biomarkers revealed a number of novel
findings. While BDNF had been previously linked to cisplatin resistance, it was
not linked to cisplatin resistance in ovarian cancer. Its expression, and
expression of its receptor, had been previously demonstrated in normal ovarian
tissue, where it plays a role in normal follicular development [960-962] and
maturation of oocytes [963]. Since repeated ovulatory cycles are thought to be
one reason for ovarian cancer development, there is potential for BDNF to play a
role. Indeed, BDNF has previously been shown to induce ovarian cancer cell
migration and proliferation [813], and expression of its receptor, TrkB, is
associated with resistance to anoikis [964]. Expression of TrkB has been
demonstrated in ovarian cancer tissues, and it is associated with poor outcome,
while BDNF expression was not shown to be significantly different between
normal and cancer tissues [814]. Unfortunately, in this study, the number of
samples expressing BDNF was insufficient for thorough analysis — study in a

larger cohort of samples will be necessary to fully evaluate it.

This is the first study to describe ANGPTL4 expression in serous ovarian cancer

tissue. One study has identified ANGPTL4 as expressed in a xenograft model of



ovarian cancer [803], however there are no other studies demonstrating its

expression in ovarian cancer tissues.

This study identified down-regulation of HER3, a marker whose up-regulation is
commonly associated with chemoresistance — however, low expression of HER3
is associated with sensitivity to other therapeutics, and may identify patients
who may benefit from alternative therapies. Tanner et al. found HER3
expression in approximately 50% of a cohort of 116 ovarian tumours, and
associated HER3 over-expression with reduced overall survival [830]. This is in
contrast to our study. As discussed in Chapter 5, others have also observed low
levels of HER3 expression in ovarian cancer samples, therefore this was not a
unique finding, and may be a feature of the particular sample cohort used in this
study, a result of intra-tumour heterogeneity or due to HER3 promoter inhibition
by an as yet undetermined molecule. Although we found HER3 over-expression
to trend towards increased PFS, it also trended towards reduced OS, in
agreement with the current literature. However, the cohort used in our study
was very small, and all samples were positive for HER3 expression. It is likely that
in a larger cohort, these results may change, however, as discussed, it may be
that low HER3 expression may be an identifier for patients suitable for other

therapies in addition to platinum/taxane.

We found HIF-1a to be over-expressed in patients with a partial-response and
down-regulated in patients with a non-response to platinum/taxane based
chemotherapy. HIF-1a over-expression has generally been associated with poor
overall survival [199,200,360]. However other studies have shown HIF-1a
expression to be not associated with survival [853], or associated with improved
response [201]. Thus this study has added to the body of knowledge on HIF-1a

as a prognostic indicator in ovarian cancer patient samples.

As MAD2L1 expression had previously been determined in the cohort of samples
we used by Furlong et al. [781], we did not re-determine the expression in these
tissues. Furlong et al. found that low MAD2L1 expression was associated with

reduced progression free survival following carboplatin/paclitaxel-based
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chemotherapy. Their group had previously shown MAD2L1 expression to be
down-regulated by hypoxia and identified a reciprocal immunohistochemical
staining pattern between MAD2L1 and CA9, a marker of hypoxia in ovarian
tissues [769]. These are the only studies published in relation to MAD2L1
expression and ovarian cancer tissue to date, although MAD2L1 had previously
been linked to platinum resistance in a number of other cancers including
nasopharyngeal [765], gastric [766] and testicular cancer [768]. In addition, low
MAD?2L1 levels had also previously been linked to paclitaxel resistance in ovarian

cancer cell lines [844,965].

6.4 Hypoxia and Ovarian Cancer - 2012; How this
study compares
Since this study began, there have been several advances in the field of hypoxia

and ovarian cancer.

Further studies were carried out on inhibition of the hypoxia-stimulated pathway
mTOR as a therapeutic strategy for ovarian cancer [966]. In addition, new
inhibitors of HIF-1a-related proteins were evaluated in cell lines and animal
models such as ABT-510 [481], campothecin analogue NSC606985 [291],
kaempferol [967], albendazole [905], BACPT [968], p70S6K1 [969] and sorafenib
[970]. Further hypoxia-related prognostic markers of ovarian cancer were
identified such as iINOS [202] and bone-morphogenetic protein 4 (BMP4) [971].
Importantly, the results of several phase Il and phase Il trials on the
effectiveness of the anti-angiogenic, VEGF-targeting drug bevacizumab were
published. In a phase Il trial, Penson et al. evaluated the effects of combination
bevacizumab with carboplatin/paclitaxel in ovarian cancer and found that
combination therapy was associated with high remission and was well-tolerated
[972]. A phase lll trial by Perren et al. showed that addition of bevacizumab to
standard chemotherapy significantly improved progression free survival, and in
particular in patients at high risk of progression [549], thus demonstrating the

clinical benefit of a drug targeted against an ovarian cancer/hypoxia biomarker.
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Further insights into the biology of HIF-1a effects on ovarian tumourigenesis
were discovered, such as the implication of hypoxia-induced REDD1 in Ras-
mediated transformation [973]. In addition, glucose deprivation was shown to
stimulate expression of angiogenic mediator VEGF [974] and follistatin, a
tumourigenesis-associated protein [975]. The role of ovarian hormones
oestrogen and progestin in mediating HIF-1a expression via the Akt pathway was
discovered [205]. Some gene alterations in the adaptive response to hypoxia
were identified including Cyclin D1 and V-src [148]. Hypoxic ovarian tumour cells
were also shown to produce tissue factor-coagulation factor VII, a player in
thrombosis observed in ovarian cancer patients [976], and truncated, inactive
forms of the pro-apoptotic protein BNIP3 [977]. Akt and reactive oxygen species
(ROS) were identified as important mediators of resistance to hypoxia-induced
apoptosis [978,979]. NOTCH1 receptor ligand Delta-like 4 (DIl4) was identified as
up-regulated by hypoxia and was shown to have potential as a therapeutic target
[980]. S100A4 was shown to be up-regulated by hypoxia and associated with

increased invasiveness [981].

Further insight into the mechanism of hypoxia-induced chemoresistance was
demonstrated. Increased phosphorylation of STAT3 in hypoxia was shown to
confer resistance to cisplatin and paclitaxel in A2780-derived xenograft tumours
[189], and hyperbaric oxygen treatment was shown to reduce STAT3 levels and
improve chemotherapy efficacy [982]. In addition, inhibition of the ROCK
pathway was shown to increase cisplatin effectiveness in ovarian cancer cells

[950].

Therefore, while there have been substantial advances in the understanding of
the biology of hypoxia and ovarian cancer, there have been relatively few
advances in the understanding of how hypoxia causes chemoresistance in
ovarian cancer. Our study has significantly contributed to the body of knowledge
of how hypoxia affects chemoresistance in terms of absolute fold-changes of
resistance, genetic modifications in response to hypoxia, and the evaluation of

novel biomarkers of chemoresistance.
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6.5 Limitations of the Study

Although this study has provided some significant contributions to knowledge of
the role of hypoxia in ovarian cancer chemoresistance, there are several

limitations to the project.

The objective of the first results chapter, Chapter 3, was to observe the effects of
hypoxia on chemoresistance in an ovarian cancer cell line model. We used a
paired chemoresistance cell line model of A2780 and A2780cis. This is the only
commercially available platinum resistance model of ovarian cancer. However, it
would have been useful to repeat the experiments using other models. It was
beyond the scope of this study to derive platinum resistant models from other
ovarian cancer cell lines, however this is something that could be considered for
future projects. Alternatively, it may be possible to source privately banked
platinum resistant cell line models. In addition, while the response to cisplatin
and paclitaxel in hypoxia was observed for the cell line model used, it would have
been useful to observe some of the other effects of hypoxia on the cells. For
example, the effect of hypoxia on cell cycle distribution through the use of flow
cytometry could reveal whether hypoxia was inducing cell cycle arrest or
progression, and indicate whether senescence, a tumour-preventative state
consisting of irreversible cell cycle arrest [235], is being inhibited in order to

enhance chemoresistance.

The sample size used in Chapter 5, in which the expression of a number of genes
was evaluated in a cohort of ovarian tumour samples is perhaps the most
significant limitation of the study. Due to time constraints, a small sample size of
35 was used to carry out an initial assessment of the expression levels of these
genes in ovarian cancer tumour samples. The probability of obtaining a
statistically significant result when performing a statistical test, or ‘power’ is
essential when designing an experiment [983]. Power calculations are based
upon the level of significance desired, a, the size of the biologically relevant
difference, and the sample size, and power is generally greater with a larger

sample size. Often, sample size calculations are based on a pilot study, a test



sample group which gives an indication of the significance level which should be
chosen, and identifies any issues with the experimental process. In fact, the
experiments carried out in this study could serve as a pilot study for a future
large scale study of these biomarkers. It would provide information on
expression levels in this population — for example, while ANGPTL4, HER3 and HIF-
la were expressed in all samples assayed, BDNF was only expressed in 6 of 35
samples, an important consideration when planning a larger scale study. Indeed,
ANGPTL4 has been revealed as the most promising candidate based on the

expression levels observed in this study, and will be of interest in future work.

6.6 Future Work

Future studies on this project could include:

i) Analysis of a hypoxia gradient

ii) Methylation analysis and hypoxia

iii) Evaluation of current biomarkers in a wider cohort, and at the protein
level

iv) Evaluation of other biomarkers not evaluated in this study

V) Functional analysis of promising biomarkers

While in this study we analysed changes which occurred at levels of 0.5% oxygen,
the oxygen levels within a tumour are not constant. There are gradients of
hypoxia depending on how far cells are located from blood vessels [984].
Therefore, it would be of interest to determine the effects of varying levels of
hypoxia on chemoresistance. A collaborating group in Dublin City University has
developed a silicone based chip which is capable of generating gradients of
oxygen. This will facilitate high-throughput testing of ovarian cancer cells in
relation to varying concentrations of chemotherapeutic drugs at varying oxygen

concentrations, and is one potential avenue for further research.

We observed concentrated regions of gene down-regulation in relation to
cisplatin resistance and hypoxia. One reason for this may be gene

hypermethylation, as hypoxia has previously been shown to induce gene
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methylation in cancer [985,986]. Certain genes which were linked to cisplatin-
resistance were down-regulated in response to hypoxia including DNA damage
inducible transcript 3 (DDIT3) and tumour necrosis factor (TNF). Methylation of
DDIT3 has previously been identified in chronic myeloid leukaemia [987] but not
in ovarian cancer. Similarly, TNF has been identified as methylated in a large
proportion of leukaemia cases [988] and demethylation of breast cancer samples
has revealed a number of up-regulated TNF-related pathways [989]. Thus, it
would be of interest to carry out methylation analysis of the genes which were
down-regulated by hypoxia, and see if demethylation of the genes could improve

chemosensitivity.

One limitation of this study was that the cohort of tumour samples used to
validate the biomarkers was small. It would be necessary to validate the
biomarkers in a much larger cohort of tumour samples in order to fully evaluate
their potential. Importantly, it would be valuable to identify whether changes
observed at the mRNA level were also present at the protein level. Proteins are
the effectors of the genome i.e. it is the translated protein that carries out the
function initiated by transcription of the gene. However, down-stream post-
translational modification, protein folding and protein degradation can inhibit
the desired effect of transcription [990]. Therefore, changes at the mRNA level
do not necessarily represent changes at the protein level. Protein biomarkers
which may be detected using simple assays e.g. immunohistochemistry, in which
the protein is recognized by a specific antibody, and detected using enzymatic
methods, are essential to become useful routine laboratory tests. Thus, the
likely most valuable future work for this study would be to determine the protein

status of the biomarkers identified.

In addition, we only examined expression in serous carcinoma cases categorized
according to response. It would be of use to examine their expression in other
histological subtypes of ovarian cancer, or perhaps compare expression in
primary vs. metastatic/recurrent lesions in order to further understand their
impact on tumour biology. Also, only a very small proportion of the potential

biomarkers identified were validated in this study. Many other promising



chemoresistance biomarkers were identified and have potential to be validated
in tumour samples. Functional analysis of promising biomarkers through over-
expression or knock-down in hypoxia could be used to analyse their potential as
therapeutic targets in ovarian cancer patients. VEGF is one hypoxia-related
biomarker which has had success as a therapeutic target in ovarian cancer, thus
the potential is there for success with other novel biomarkers. In our study,
ANGPTL4 was the most promising biomarker candidate, and if future studies can
confirm and expand the findings, it would be a promising marker to carry out

functional work on.
6.7 Conclusion

Overall this study has had a number of findings in relation to hypoxia in terms of:

i) How duration and timing of hypoxia affect resistance
ii) Gene profiles of ovarian cancer cells in response to hypoxia and/or
chemotherapy

iii) Validation of novel hypoxia-related biomarkers of chemoresistance

We have substantially added to the current body of knowledge in the literature
in relation to genetic changes in response to hypoxia in an ovarian cancer, and
provided initial information on the expression of potential biomarkers in tumour

specimens.
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