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4.1 Introduction

4.1.1 Microarrays

Microarray  t ech n o lo g y  w as  first  d e v e lo p e d  in t h e  1980 ' s  as a way o f  providing high 

sensi tivity i m m u n o a s s a y s  for  d iagnost ic  p u r p o s e s  [392], Today t h e r e  ar e  microa rray  

p la t fo rm s  available for  analysis o f  DNA and p ro te in  samples .  DNA microa rrays  

consis t  o f  large n u m b e r s  o f  DNA s e q u e n c e s  which are  immobi lized o n t o  a solid 

su rface  which  al low for t h e  analysis of  t h o u s a n d s  o f  g e n e s  s im ul t aneou s ly  [393]. 

The re  ar e  m a n y  d i f fe ren t  DNA microa rr ay  p la t fo rm s  available which have 

di f fe rences  b o th  in h o w  t h e y  a r e  fa br i ca ted  and  in t h e i r  func t ions  [394]. The no rmal  

workf low in a microar ray  e x p e r i m e n t  consis ts  of  RNA isolat ion f rom  a source  t issue ,  

conve rs ion o f  RNA to  cDNA, labelling of  cDNA a n d  hybr id iza tion t o  t h e  array,  

fo l lowed by ar ray  scann in g  a n d  d a ta  analys is  [393].  Good  ex p e r im en ta l  des ign is 

essen t ia l  for  any m ic roa rray  e x p e r im en t ,  and o n e  sho uld  cons ide r  m an y  di f ferent  

fac tor s  including cost ,  n u m b e r  of  replicates ,  t h e  q u es t i o n s  to  b e  a n s w e r e d  by t h e  

d a t a  and  t h e  cha racter is t ics  of  t h e  s ou rc e  mater ia l  [393].

4.1.2 Uses of DNA Microarrays

DNA microar rays  h av e  b e e n  em p lo y ed  for  a wide  var ie ty  o f  uses  including g en e  

profiling o f  c a n ce r  types ,  identi ficat ion o f  b iom ark e rs  as soc ia ted  wi th d i sease  

diagnosis ,  prognos is  or  t r e a t m e n t  and identi f icat ion of  signalling p a th w a y s  wi thin 

cells in r e s p o n s e  to  stimuli  such as d rug  t r e a t m e n t s  etc.

4.1.2.1 Gene Profiling

It has been noted that  despite molecular heterogenei ty in tumours,  patients who receive a 

particular diagnosis are given a certain course of t rea tment  [395]. However, molecular 

profiling of tumours may provide more useful clinical information on tumour  classification 

and thus t rea tment  course [395]. In B-cell lymphoma, the  Revised European-American 

Lymphoma (REAL) classification is used, however,  it does not ideally separate different 

tumour  morphologies -  a study by Alizadeh et  al. showed using DNA microarray technology 

that  the  subgroups could be more accurately divided using molecular profiling [395].



Although some heterogeneity remained w ith in the groups, the authors showed how DNA 

microarrays could improve upon previous classification based on morphology. In malignant 

melanoma, a cancer which generally does not display recurrent genetic changes, a 

previously unrecognized subgroup o f the disease was identified using microarray technology 

[396]. Gene profiling o f adrenocortical carcinoma, a rare cancer, was able to identify 

differences between benign and malignant neoplasms and identify key transcriptional 

events involved in its pathogenesis [397].

Epithelial ovarian cancer is a clinically heterogeneous disease, w ith a number o f histological 

subtypes. Microarray technology has been extremely useful in the analysis o f ovarian 

carcinomas. A study by Welsh et al. showed that gene expression profiles o f normal ovarian 

tissue clustered separately from  ovarian carcinomas due to differential expression o f gene 

groups, and also that w ith in the serous carcinoma group, there were a number o f subgroups 

which clustered together [398]. A later study by Schwartz et al. showed that gene profiling 

could also differentiate between histological subtypes o f ovarian cancer [399]. In addition, 

the group found that gene expression profiling could separate high grade from low grade 

tumours, indicating that differences in genetic makeup o f the tum our could influence 

tum our aggressiveness. It has also been shown that clear cell ovarian carcinoma has quite a 

distinct gene signature relative to other types o f ovarian cancer [399,400]. Thus DNA 

microarray profiling has provided a lot o f inform ation on molecular differences between 

normal ovarian tissue and d ifferent types o f ovarian carcinoma, shedding light on genes 

linked to the d ifferent tum our biologies observed.

4.1.2.2 Diagnostic Biomarker Discovery

As the  standard tre a tm e n t fo r  cancers o fte n  depend on o r are linked to  the  tissue o f 

o rig in , it is v ita l th a t a co rrec t diagnosis is m ade. This is no t always s tra ig h tfo rw a rd , 

p a rticu la rly  in cell types w h ich  are m orpho log ica lly  s im ila r, o r in th e  case o f 

m e tas ta tic  disease o f an unknow n prim ary. One exam ple o f w here  a co rrec t 

diagnosis is essential is in a pa rticu la r type  o f lung cancer. Patients p resen ting  w ith  a 

un ila te ra l m a lignant p leura l e ffus ion  may be su ffe ring  fro m  m alignant p leura l 

m eso the liom a o r fro m  m e tas ta tic  adenocarcinom a o f the  lung [401]. These diseases 

have qu ite  d iffe re n t tre a tm e n ts  -  m esothe liom a requ iring  both  surgery and
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chemoradiation, and adenocarcinoma, chemotherapy. Histological diagnosis is not 

always easy due to lack of sufficient material [401], and an incorrect diagnosis could 

lead to certain patients suffering from side effects of unnecessary treatm ents, or 

patients not receiving the necessary measures. Gordon et al. used U95A Affymetrix 

arrays to screen over 200 specimens of both cancer types. Using relatively small 

quantities of starting material, they were able to identify panels of biomarkers which 

could discriminate between the two tum our types with sensitivity of 97%.

Prostate cancer is the second leading cause of cancer death in men [402]. Prostatic 

intraepithelial neoplasia (PIN) is a precursor for prostate cancer, and the presence of 

high grade PIN is a significant risk factor for later development of prostate cancer 

[402]. Identification of biomarkers which can diagnose prostate cancer and 

differentiate between high-grade and lower grades of PIN is essential for good 

patient care. Bull et al. developed custom microarrays based on a computer search 

for genes often overexpressed in cancer [402]. Using tissue samples from normal 

prostate, benign prostatic hyperplasia (BPH), PIN and prostate cancer they identified 

sets of genes overexpressed in PIN and prostate cancer relative to normal prostate, 

and also overexpressed in prostate cancer relative to BPH. These markers provided 

potential starting points for validation in prostate biopsy specimens as diagnostic 

biomarkers.

Ovarian cancer is normally diagnosed using radiological imaging, serum C al25  levels 

and a thorough patient history. However, C al25  has certain limitations as a 

diagnostic tool. It is often not raised in early stage ovarian cancers, and is raised in a 

num ber of benign conditions such as endometriosis [403]. Thus, identification of 

novel biomarkers is essential. Although all biomarkers to date have not shown 

trem endous potential, microarray analysis can continually provide novel targets. 

For example, microarray analysis of ovarian cancer cell lines as well as normal 

ovarian surface epithelium (NOSE) identified a potential biomarker of ovarian 

cancer, osteopontin [404]. A follow-up study validating the usefulness of 

osteopontin as a serum diagnostic biomarker found it could pick up early stage and



late stage ovarian cancers with sensitivities of 80.4% and 85.4% respectively [405]. 

Similarly, prostatin, another potential ovarian cancer biomarker was identified by 

microarray analysis of ovarian cancer cell lines and NOSE [406]. The group's 

validation o f this biomarker in a large number of serum samples from patients w ith 

benign and malignant ovarian disease displayed its potential as a serum biomarker. 

In addition, microarray analysis has been used to identify gene signatures which can 

differentiate between metastatic ovarian carcinoma and colon carcinoma, two 

cancers which can be difficult to separate histologically and have completely 

different treatment regimens [407],

4.1.2.3 Prognostic Biomarker Discovery

Prognostic biomarkers have several uses in cancer treatment. They can identify 

patients who are more likely to have a poor outcome, and thus may indicate that 

more aggressive treatment is necessary. Also, they can identify patients who do not 

respond well to particular types of therapy and thus may benefit more by being 

spared harsh therapy regimens to no effect. Similarly to diagnostic biomarkers, 

microarray data has been vital in identifying novel prognostic biomarkers in many 

types of cancer. A study by Inoue et at. used microarrays to study tissue from 

patients w ith various stages o f gastric cancer [408]. This group divided the tumours 

into two groups depending on the presence or extent o f certain prognostic factors 

such as tum our size, metastasis etc. They then scored and averaged the gene 

expression intensity of genes associated with these prognostic factors fo r each 

group. Using these scores, they divided the patients into three groups associated 

with clinical response, thus demonstrating a use for microarray data in determining 

prognosis. Another study by Weigelt et al. identified a 70-gene profile able to 

predict later metastasis in young breast cancer patients [409]. They used 

microarrays to profile matched primary breast tumours and metastases and found 

that distant metastases of breast tumours display the same molecular profile and 

70-gene signature as their primaries, and showed that this signature could predict 

the presence or absence of metastasis. Mammaprint®™ is a prognostic test based



on a 70-gene signature which classifies patients based on likelihood o f metastasis

[410], The signature was in itia lly  identified in a set o f 78 breast tum ours, and 

subsequently validated in a num ber o f studies [410]. Oncotype DX® is a sim ilar 

breast cancer prognostic test based on expression o f 21 genes which analyses the 

likelihood o f recurrent disease in oestrogen receptor-positive, lymph node-negative 

patients [411], It was form ula ted based on review o f published data o f breast 

cancer biom arkers which were then evaluated in three clinical association studies

[411], Tests such as these aid clinicians in decision making regarding appropriate 

trea tm en t such as adjuvant chem otherapy [412] and dem onstrate a tangible 

usefulness fo r m icroarray data in patient treatm ent.

In ovarian cancer, microarrays have also been employed to  identify prognostic 

markers. In 2005, Okamoto et at. screened 8 serous adenocarcinomas as well as 

paclitaxel-resistant ovarian cancer cell lines using A ffym etrix U133 arrays [413]. 

Using th is data they identified 44 genes associated w ith  resistance/sensitivity to  

chem otherapy. Following validation o f the results, they selected one gene, 

indoleam ine 2,3-dioxygenase (IDO) to  evaluate at the protein level in a fu rthe r 24 

tum ou r specimens. They found tha t positive IDO expression in tum ours was 

significantly associated w ith  relapse and poorer outcome, thus identify ing a 

prognostic pred ictor fo r ovarian cancer. Hartmann et al. gene expression profiled 79 

ovarian cancer tum our samples obtained before chem otherapy [414], They used a 

complex a lgorithm  which they had previously established to  analyse the gene 

expression data and compiled a list o f 14 genes which they then applied to  an 

independent sample cohort. This gene list was found to  have an accuracy o f 86% in 

predicting the outcom e o f late stage ovarian cancer patients fo llow ing p la tinum - 

taxane chem otherapy. In addition, a study from  our group also identified a gene 

expression pro file  distinguishing prim ary and recurrent ovarian cancers using Human 

Genome Survey M icroarrays by Applied Biosystems [415]. Using an in itia l tra in ing 

set o f five prim ary and five recurrent serous adenocarcinomas they identified a 

num ber o f d iffe ren tia lly  expressed genes. They then profiled a set o f matched



primary and recurrent samples from  the same patients and identified a further list of  

genes, which interestingly belonged to the  same gene families as those identified in 

th e  initial training set analysis. A subset o f genes identified was then validated in a 

cohort of primary and recurrent adenocarcinomas. This study identified potentially  

im portant predictors of ovarian cancer recurrence -  this is im portant as recurrent  

ovarian cancer adversely affects patient prognosis. Thus microarrays have been  

used in a variety of ways to  identify markers associated w ith  prognosis.

4.1.2.4 Therapeutic Biomarker Discovery

As m any tum ours are biologically and clinically heterogeneous, it w ould be 

reasonable to  assume tha t  one type of t re a tm e n t  would not work for all tumours. 

However, it has been normal to  trea t  particular tum ours w ith  a set chem otherapy  

regimen for many cancers. DNA microarray technology has been em ployed to  

segregate tu m o u r types, and to  determ ine  prognostic factors for different cancers as 

discussed above, thus it also can play a role in determ in ing potential therapeutic  

targets. These can then be utilized and developed to provide more individualized  

therapy  regimens for patients w ho  will benefit most. Several therapeutic  

biomarkers have been identified using microarray technology. Schwartz et  al. 

screened 70 cervical cancer tum ours  on Affymetrix U 133+ 2  arrays and analysed  

tu m o u r  pathways associated with  tu m o u r metabolism [416]. They noted tha t  genes 

involved in the  PI3K/Akt signalling pathw ay w ere  significantly up-regulated in more  

metabolically active tumours, and that tum ours expressing high levels of Akt protein  

had a poorer clinical response than those with  w eak Akt expression. This is clinically 

significant, as in vitro studies have already shown PI3K inhibitors to  increase 

sensitivity to radiation therapy  in cervical cancer cell lines [417], thus it highlights a 

potential therapeutic  role for these drugs in t re a tm e n t  of patients w ith  up- 

regulation of the  PI3K/Akt pathway. Yam am ura e ta l .  analysed a publically available  

dataset containing microarray data on a set of primary and metastatic (om ental)  

ovarian cancer tum ou r specimens [418], They found overexpression o f genes 

associated with  the  transforming growth factor P (TGF(B) signalling pathw ay in



omental lesions compared w ith primary tumours. They also showed that protein 

levels o f the TGPP receptor 2 were up-regulated in omental lesions, validating the 

microarray data. They then used the TGF(3 pathway inhibitor, A-83-01, to 

investigate its effects on the metastatic properties o f the murine ovarian cancer cell 

line HM*1. They were able to  show that when the inhibitor was applied, the 

invasion, m otility and adhesion properties of the cells were reduced. Subsequent in 

vivo studies showed that A-83-01 was able to improve the survival time of mice with 

ovarian tumours, thus indicating its potential as an adjunct treatment for ovarian 

cancer.

Therefore, it can be seen that microarrays provide a minefield of data which can 

provide useful leads for researchers and provide novel data which can lead to 

improvements both in diagnosis and treatment of cancers.

4.1.3 M icroarray Analysis of Hypoxia-Induced Changes

Microarray technology has also been employed to identify changes induced by 

hypoxia in a number of different diseases. Starmans et al. used microarrays to 

analyse gene expression following various exposures to hypoxia [419]. They looked 

at gene expression changes in colon cancer, breast cancer and prostate cancer cell 

lines and then picked gene lists based on genes which were either up- or down- 

regulated in at least two o f the three cell lines as well as genes that were 

differentially expressed over time. They then cross-compared these lists to 

publically available mRNA data in primary breast cancer samples in order to identify 

genes which may hold prognostic value. They found that these up-regulated gene 

lists which were derived from in vitro samples were not prognostic when applied to 

the public databases, although interestingly down-regulated gene lists were highly 

prognostic although the authors noted that this may not be due to hypoxia per se, 

rather they considered that the down-regulated gene lists such as cell cycle genes 

were likely representative o f other cellular phenomena such as cell proliferation.



Similarly, in a study of hepatocellular carcinoma, van Malenstein et al. exposed the 

human liver carcinoma cell line, HepG2, to hypoxia for up to three days followed by 

RNA extraction and analysis on Agilent microarrays [420], They determined an in 

vitro hypoxic gene set o f 265 up-regulated genes and compared their data w/ith 

publically available data sets. They removed any genes whose expression did not 

correlate with in vivo data from the public data sets resulting in a smaller set of four 

up-regulated and three down-regulated genes. Expression o f this gene set in the 

public data sets was able to predict progression free survival and overall survival, 

and identify patients with or w ithout vascular invasion.

Chi et al. exposed a number o f different normal human cell types to hypoxia and 

analysed the gene expression response on microarrays [421], Genes which were 

more than 2.5-fold increased in epithelial cells exposed to hypoxia were selected for 

analysis in renal cell carcinoma, breast cancer and ovarian cancer. They identified 

repression o f cell cycle genes in response to hypoxia although it was unclear 

whether this was directly due to hypoxia, or rather due to changes in the cells' 

energy requirements. They analysed the 'hypoxia response' in a set o f 72 ovarian 

cancer samples and found that samples expressing the 'hypoxia response' genes had 

poorer progression free survival and overall survival.



4.1.4 Aim

The results from Chapter 3 indicated that exposure to hypoxia increased resistance 

to  cisplatin in A2780 and A2780cis cells. The aim of this chapter was three-fold:

i) To identify genetic changes associated with hypoxia in ovarian cancer cell 

lines

ii) To determine whether these changes are associated w ith chemoresistance

iii) To evaluate their potential as biomarkers for chemoresistance in ovarian 

cancer

t }



4.2 Methods

4.2.1 Sample Selection

From the results o f the hypoxia matrix (Chapter 3) we selected the point on the 

matrix which provided the most consistent and significant changes in resistance. 

We chose the 'hypoxia naive' samples which were in hypoxia for the entire duration 

of cisplatin treatm ent (72 hours). Twenty four arrays were processed in total. Three 

biological replicates from independent experiments were run fo r each of the 

following matrix conditions:

i) A2780 (Normoxia, untreated)

ii) A2780 (Hypoxia, untreated)

iii) A2780 (Normoxia, cisplatin treated)

iv) A2780 (Hypoxia, cisplatin treated)

v) A2780cis (Normoxia, untreated)

vi) A2780cis (Hypoxia, untreated)

vii) A2780cis (Normoxia, cisplatin treated)

viii) A2780cis (Hypoxia, cisplatin treated)

4.2.2 Sample Preparation

Total RNA was extracted from A2780 and A2780cis using the RNeasy mini kit as 

described in Chapter 2. RNA was quantified on the NanoDrop spectrophotometer 

and the quality was assessed using the Bioanalyzer before running the arrays. 

Samples were prepared for array analysis and run using the methods set out in 

Chapter 2. Arrays were run for three biological replicates for each cell line and 

condition. Data was analysed using Expression console software (Affymetrix, US).



4.2.3 Array Quality Control Analysis

All ar rays  w e r e  s c r e e n e d  us ing qual ity control  m e t h o d s  as se t  o u t  by t h e  qual ity 

a s s e s s m e n t  w h i t e  pape r .  The ar rays  w e r e  visually ch ecked  for uni fo rm in tens i ty and 

for  c o r re c t  a l ign men t .  O t h e r  qual ity a sp ec t s  w e r e  a s se ssed  using t h e  a lgor i thms  se t  

o u t  in t h e  quali ty control  w h i t e  p a p e r  [422]. Metrics  w e r e  ex a m in e d  a t  p r o b e  level, 

p r o b e  s e t  su m m ar i za t i o n s  and individual p ro b e  levels. Th ree  t y p e s  of  met r ic s  are  

u sed  for  qual i ty  control  -  sa m p le  metrics ,  hybridiza tion met r ic s  an d  labelling 

metr ics .

A. p m _ m e a n  is t h e  m e a n  in tens i ty  for  all p ro b e s  on t h e  a r ra y  b e fo re  any 

in tens i ty  t r ans fo rm a t ions .  This al lows t h e  u s e r  to  ascer ta in  w h e t h e r  a chip is 

unu sual ly  d im or  bright,  which m ay  have an ef fec t  on  ce r ta in  p a r a m e t e r s  e.g. 

m ay  s e e  unusually  high m e d ia n  ab s o lu t e  devia t ion of  residuals.

B. p o s _ v s _ n e g _ a u c  is t h e  a r ea  u n d e r  t h e  curve for a re ce iver  o p e ra t in g  

cha rac te r i s t ic  plot  co m p ar in g  signals for posi tive cont ro ls  t o  negat ive  

cont rol s .  This is u sed  to  m e a s u r e  h o w  well t h e  p r o b e  s e t  can s e p a r a t e  t h e  

signal f r om  t h e  posi tive con trol s  to  nega t ive  controls ,  a s s u m in g  t h e  negat ive  

co n t ro l s  ar e  false posi t ives an d  t h e  posi tive control s  a r e  t r u e  positives.  

Values  b e t w e e n  0.8 and  0.9 could normally  be  ex pec ted .

C. X _ m ea n  is t h e  m e a n  signal value  for all p ro b e  se ts  ana ly sed  f r om  ca tego ry  

'X'.

D. X _ m a d _ r e s id u a l_ m e a n  is t h e  m e a n  o f  t h e  ab so lu t e  dev ia t ion o f  t h e  residuals  

f r om  t h e  median ,  for  all p r o b e  se t s  f rom ca te go ry  'X'. Different p ro b e s  

r e tu r n  d i f f eren t  in tens it ies  w h e n  hybridized to  t h e  s a m e  t a r g e t .  The RMA 

a lgor i thm  is used t o  c r e a t e  m ode l s  for re s p o n se s  -  t h e  residual  is t h e  

d i f fe re nce  b e t w e e n  t h e  ac tual  va lue  an d t h e  p redic ted  'm o d e l '  value.  This is 

u sed  t o  d e t e r m i n e  t h e  m e a n  of  all t h e  abso lu te  devia t ion values  p ro duced



and identifies if there  are any problenns with  the  chip e.g. if the  median  

deviation o f  the  residuals are unusually high.

E. X_rle_m ean is th e  mean absolute relative log expression (RLE) o f all probe  

sets analysed from  category 'X'. This uses the  signal estim ate  from  a probe  

set on a particular chip and calculates the  difference from  the  median signal 

of tha t  probeset across all the  chips. This should be low, reflecting low  

biological variability betw een samples.

F. all_probeset is all the  probe sets analysed. It includes the  majority of the  

probe sets which are used for the  downstream  statistical analysis and is the  

most representative measure of the  quality o f  the  data.

G. bac_spike is th e  set of probe sets which hybridize to  the  pre-labelled  

bacterial spike controls (BioB, BioC, BioD and Cre). It is used to identify any  

problems w ith  hybridization and th e  chip. It generally shows more variability  

than other categories due to  the  limited num ber o f probe sets and spikes.

H. polya_spike is th e  set o f  polyadenlylated RNA spikes (Lys, Phe, Thr and Dap). 

This identifies problems w ith  the  target preparation. These also have more  

variability due to  th e  lim ited n u m b er of probe sets and spikes.

I. neg control is th e  set o f  putative intron based probe sets from putative  

housekeeping genes. Four-probe probe sets w ere  designed against intronic  

regions of probe sets which w ere  shown to  have constitutive expression over 

a large sample n um ber on 3 'IVT arrays. These are used to  estim ate  the  false 

positive rate for the  pos_vs_neg_auc metric.

J. pos_control is the  set o f  putative exon based probe sets from  putative  

housekeeping genes. Four-probe probe sets w ere  designed against exonic  

regions of probe sets which w ere  shown to have constitutive expression over  

a large sample n um ber on 3'IVT arrays. These are used to  estim ate the  true  

positive rate for the  pos_vs_neg_auc metric. This category, along with  the
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all_probeset category reflects the quality of the whole experiment and the 

nature of the details used for statistical analysis.

4.2.4 Array Data Analysis

All data was analysed using the Bioconductor libraries 'oligo', 'limma' and 'made4'. 

Limma is a widely used and highly regarded library for the statistical analysis of 

microarray data. Oligo is designed specifically for use with Affymetrix GeneChip 

microarrays while Made4 incorporates useful visualisation and analysis tools for 

further analysis. The Bioconductor package is a valuable computational resource for 

the analysis o f high-throughput biology, most especially in the field of microarray 

analysis. It is a highly active collaborative project, w ritten in R, which is an open 

source, interactive computer system for the visualisation and analysis o f statistical 

data.

4.2.4.1 Data Normalization

Data normalization is carried out to correct for any differences in expression levels 

within and between chips, in order to facilitate comparison between chips. The 

Robust Multi-array Average (RMA) method was used to normalize and summarize 

the datasets. This is a log scale linear additive model which removes background 

intensity and normalizes probe level data across arrays [423]. Tukey's median polish 

is used to  estimate expression values which are log base 2 transformed. Quantile 

normalization is used to make the distribution of probe intensities for each array in a 

set of arrays the same [424]. This accounts for any 'obscuring variation' in the data 

-  variation which has been introduced in the sample prep etc., as opposed to true 

variation between biological samples [425]. Quantile normalization may be 

problematic if a probe has the same value across all arrays, however it does not

seem to be a problem in reality [424]. As each gene of interest is probed with

approximately 26 probes, the RMA method is used to summarize the probe 

intensities for each probe set [424]. The RMA method has certain advantages over 

 ( )



o t h e r  m e t h o d s  o f  analysis e.g. av e rag e  di f ference  as it has  b ee n  s h o w n  to  p r o d u c e  a 

m u ch  smal l er  s t an d a r d  devia t ion (SD) for  g e n e s  wi th low express ion values  and  it is 

also b e t t e r  able  t o  d e t e c t  di fferent ial ly exp res sed  p ro b e  se t s  [425].  It has  been  

s h o w n  to  have b e t t e r  precision,  m o re  consis tency and  higher  specificity and 

sens it ivity t h a n  o t h e r  m o d e l s  for  d a t a  analysis [423].

4.2.4.2 Differential Gene Expression Analysis

Limma w a s  used  to  t e s t  for stati st ical  d i fferences  b e t w e e n  g e n e  express ion  levels 

across  arrays.  The fold c h a n g e  an d s t an d a rd  er ro rs  are  first e s t i m a t e d  by fi t t ing a 

l inear m o d e l  t o  each  gen e .  This m ode l  s u m m ar i s e s  t h e  d a t a  f rom ea ch  se t  of  

rep l ica te s  t o  give a single valu e  p e r  condi t ion,  so t h a t  t h e s e  values  can b e  c o m p a r e d  

b e t w e e n  groups ,  r a th e r  t h a n  b e t w e e n  samples .  This is t h e n  fo l lowed by t h e  

appl ica tion of  empirica l Bayes s m o o t h in g  to  t h e  s t a n d a r d  er rors .  Pai r-wise co n t ra s ts  

w e r e  t h e n  def ined  to  c o m p a r e  t h e  s u m m a r i s e d  sam ples  t o  ea ch  o th e r ,  t h u s  al lowing 

t h e  a lgor i thm to  ca lcula te fold change .  Within Limma, t h e  de fau l t  m e t h o d  for 

ranking g en e s  is t h e  B stat ist ic,  which ca lcu la ted  t h e  log o d d s  of  d ifferential  

express ion.  The m o r e  well know n a d jus ted  p-value can be  used  t o  t h e  s a m e  effect ,  

and  ad ju s te d  p-values  will usually rank differential ly ex p r es sed  g e n e s  in t h e  s a m e  

o r d e r  as t h e  B-statistic. In th is  exp e r im en t ,  t h e  a d jus ted  p-value cut -off  va lue  of  

0 .05 w as  used  to  d e t e c t  different ial ly ex pres sed  genes .  Using t h e  a v e rag e  fold- 

c h a n g e  as a m e a n s  of  ranking is genera l ly  n o t  r e c o m m e n d e d  b e c a u s e  this ignores 

t h e  variabili ty b e t w e e n  repl ica te  arrays.  In s tat ist ical  analysis,  t h e  p-value controls  

Type I e r ro r  i.e. t h e  probabi l i ty t h a t  a significant 'pos it ive '  result  is really a t ru e  

negat ive .  A p-value <0.05 d e t e r m i n e s  t h a t  in 100 significant results,  5 o f  t h e m  are  

p re d ic ted  t o  be  false.  In small  scale e x p e r im e n t s  this is perfec t ly  a d e q u a t e .  

However ,  in microar ray  ex p e r im en t s ,  t h o u s a n d s  of  g e n e s  ar e  analysed  

s im u l t an eous ly  leading to  an inflated  false posi tive rate,  kno wn as t h e  family-wise 

e r ro r  r a te  (FWER). For this  re ason ,  an ad jus ted  p-value w as  used  in this s tudy.  The 

p-value w as  ad jus ted  using t h e  m e t h o d  of Benjamini  and H oc hbe rg  [426]. Their 

fa lse-discovery  r a te  (FDR) is o n e  m e t h o d  of controll ing  FWER which a c co u n t s  for



both the presence and number o f errors made. They define the FDR as 'the 

expected proportion of errors among the rejected hypotheses'.

4.2.4.3 Analysis of Target Gene Lists

Genes w ith a fold change of >2 and an adjusted p-value (FDR<0.05) were deemed 

significant for further analysis. In total, seven lists o f genes were analysed.

i) A2780 V A2780cis (Normoxia, Untreated)

ii) A2780 (Normoxia, Untreated) v A2780 (Hypoxia, Untreated)

iii) A2780cis (Normoxia, Untreated) v A2780cis (Hypoxia, Untreated)

iv) A2780 (Normoxia, Untreated) v A2780 (Normoxia, Cisplatin Treated)

v) A2780 (Hypoxia, Untreated) v A2780 (Hypoxia, Cisplatin Treated)

vi) A2780cis (Normoxia, Untreated) v A2780cis (Normoxia, Cisplatin Treated)

vii) A2780cis (Hypoxia, Untreated) v A2780cis (Hypoxia, Cisplatin Treated)

Lists were analysed using the gene annotation database DAVID (Database for 

Annotation, Visualization and Integrated Discovery) v6.7 [427,428]. DAVID is a web- 

based functional annotation tool which agglomerates gene annotation information 

from a number o f public information sources such as Panther, Biocarta etc. It allows 

the user to access information such as gene ontology and function; identify related 

gene groups; and to visualise genes w ithin pathway maps. It contains a pre-built 

A ffymetrix chip background to allow better gene list comparisons for this microarray 

format. Following pathway analysis on DAVID, individual gene function and 

relevance was determined using PubMed and the online tool iHOP (information 

hyperlinked over Proteins) [429].



4.3 Results

Following the  quality control  and genera l  clustering analysis, for  clarity, results and 

discussion for Chapter  4 will be described t o g e t h e r  as th re e  sections:

1. Compar i son of  A2780 and A2780cis

2. The Effect of  Hypoxia on Gene  Expression in A2780 and  A2780cis

3. The Effect of  Hypoxia on Genet ic Response  to Cisplatin Tr ea tm en t  in A2780 and 

A2780cis

4.3.1 Quality Control of Arrays

4.3.1.1 Visual Quality Control

All a r r a y s  p a s s e d  initial v isua l i n s p e c t i o n s .  The  visual  i n s p e c t i o n s  c h e c k e d  fo r  any  

s c r a t c h e s  o n  t h e  a r r a y  s u r f a c e ,  a n y  ' p a t c h y '  s ta in ing ,  re g i ona l  a r e a s  o f  high o r  low 

i n t e n s i t y  o r  a n y  overa l l  d i f f e r e n c e s  in i n te n s i t y  b e t w e e n  a r rays .  Expres s io n  o f  t h e  B2 

ol igo p os i t i ve  c o n t r o l  w a s  a l so  v isual ly a s s e s s e d  (Figure 4.1) .  This c o n t r o l  

o l i g o n u c l e o t i d e  h y br id iz e s  a t  v a r i o u s  p o s i t i o n s  o n  t h e  chip,  inc lu d i ng  t h e  

c h e c k e r b o a r d  c o r n e r s ,  a t  t h e  e d g e  a n d  in ternal ly .  This is n e c e s s a r y  f o r  c o r r e c t  

a l i g n m e n t  o f  t h e  a r r a y ' s  grid.
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Figure 4.1. Location of B2 Oligo Positive Controls on GeneChip Arrays. All arrays 

were checked for intensity o f B2 positive controls at regions w ith in the chip, at the 

edge and checkerboard corners (A) and at the bottom of the chip (B). Good 

expression o f these controls is necessary for correct alignment of the chip's grid.



4.3.1.2 Probe Metrics Quality Control

T hese  qual i ty con tro l  met r ic s  involve c o m p u t in g  s u m m a r y  s tat is tics  for  each  ar ray  in 

a s e t  an d  t h e n  co m p ar in g  all t h e  ar rays  in t h e  s e t  t o g e t h e r .  It al lows for 

ident i ficat ion of  any out l iers in t h e  d a t a  se t  which m ay  skew  t h e  results.  Three  

levels o f  met r ics  w e r e  us ed  -  p r o b e  level, p ro b e  s u m m ar iza t i on  a n d  control  p ro b e  

signals. T her e  w as  a very  low level of  var ia t ion o b s e r v e d  for  all t h e  p ro b e  metrics .  

S o m e  of  t h e  p r o b e  met r ic  s tat ist ics ar e  d isplayed in Figures 4.2 an d  4.3. The ar ea  

u n d e r  t h e  curve  (AUC) for  a receiver  o p e ra t i n g  cha racter is t ic  (ROC) plot  to  

d iscr iminate  b e t w e e n  posi tive and  negat ive  control  signals w as  a b o v e  0 .85 for  all 

t h e  ar rays  (Figure 4.2A). This indicates a high d e g r e e  of  s e p a ra t i o n  b e t w e e n  t h e  

posi tive and  nega t ive  cont ro ls  which are  indicators  o f  t r u e  posi t ives an d  false 

pos it ives  respect ively.  Box plots  displaying t h e  relat ive log express ion (RLE) signals 

for  all t h e  ar rays  (Figure 4.2B) ident if ied no outl iers wi thin t h e  d a ta  set .  The m ed ian  

RLE for all a r rays  w as  ap p rox im a te ly  0, indicat ing t h a t  t h e r e  w as  no skew in t h e  d a t a  

fo llowing normal iza t ion.  The m e a n  abso lu te  devia t ion of  res iduals  for t h e  posi tive 

controls ,  bac spikes  and  poly A spikes w e r e  very s imilar for  all a r rays  (Figure 4.3A), 

indicat ing t h a t  t h e r e  w e r e  no p rob lem s  wi th t a rg e t  p rep a ra t i o n ,  hybridiza tion,  

w ash in g  etc.  The hybridiza tion controls  d isplayed t h e  ex p e c t ed  rank o r d e r  in 

re la tion  to  t he i r  respec t ive  co n c en t r a t i o n s  (Figure 4.3B). Again, this p rovided 

a s s u ra n ce  t h a t  s am p le  p re p a ra t i o n  w a s  carried  o u t  correctly.  Th e re fo re ,  overal l  t h e  

qual ity control  met r ics  indicated  t h a t  t h e  microa rray  e x p e r im e n t s  w e r e  successful ,  

an d  t h a t  t h e r e  w e r e  no ou t l ier  ar rays  wi thin t h e  ex pe r i m en t .
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Figure 4.2. Probe Summarization Quality Control Metrics. The area under the 

curve for positive vs. negative controls was >0.85 for all the arrays (A, red line). This 

indicated good separation o f signal from positive and negative controls which 

represent true positives and false positives respectively. The graph of the 

mad_residual_mean for all probes (blue line) is relatively constant, indicating the 

absence of outlying samples. The rle_mean for all probes (green line) is low, 

indicating low biological variability between samples. Relative log expression plots 

for all arrays (B) confirm that there are no outlying arrays w ithin the dataset which 

may skew the results. In addition, the median relative log expression for all arrays 

was ~0, indicating the absence of skew in the data.



Figure 4.3. Control Signal Quality Control Metrics. The absolute deviation o f 

residuals fo r positive controls (green line), bac spikes (red line) and poly A spikes 

(blue line) (A) were sim ilar fo r all arrays. This is an indicator or overall data quality, 

and shows tha t there were no problems w ith  target preparation, array hybridization, 

washing etc. The rank order o f bac spikes (BioB (green) <BioC (pink) <BioD (blue) 

<Cre (red)) were as expected from  the ir concentrations. This provided assurance o f 

correct sample preparation.
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4.3.2 Differential Gene Expression Analysis

4.3.2.1 Summary Characteristics Analysis

A Pear son 's  corre l a t i on  w as  carried  o u t  t o  e x a m in e  corre l a t i on  of g e n e  expres s ion at  

t w o  levels:

1. B e tw e e n  sa m p le s  with in  a g ro up

2. B e tw e e n  sam p le  g ro ups

A coefficient score  of  1 indicates  pe r fec t  co rre la t ion  b e t w e e n  t h e  s am p le s  an d  is 

co loured  red  on t h e  g raph  (Figure 4.4). Scores  <1 indicate  less cor re la t ion  b e t w e e n  

sam p les  a n d  a r e  co loured  blue  on t h e  gra ph.  The P ea r so n 's  cor re la t ion  s h o w e d  t h a t  

t h e  s t r o n g es t  co rre l a t ions  w e r e  s e e n  b e t w e e n  s am p le s  o f  t h e  s a m e  group ,  which 

had coeff ic ient  scor es  of  >0.97 for  all sam ples ,  ho w ever ,  o n e  s am p le  in t h e  

u n t r e a t e d  hypoxic A2780 g ro up  did n o t  co r re l a t e  as closely wi th t h e  o t h e r  tw o  

replicates .  This s am p le  w as  included in t h e  analysis as it still d isplayed similar 

corre la t ion  coefficients wi th t h e  o t h e r  s a m p le s  in t h e  s tudy  as t h e  o t h e r  sam p le s  

wi thin its group.  All A2780cis s am p le s  d isplayed low cor re la t ion  wi th A2780  

samples .  Hypoxic sam p le s  c o r re l a t ed  m o r e  closely t h a n  normoxic  sam ples  for  each 

cell line, re ga rd less  of w h e t h e r  t h e y  w e r e  t r e a t e d  wi th  cisplatin.

Hierarchical  c lus ter ing analysis again  d e m o n s t r a t e d  t h a t  t h e  sam ples  all c lu s te re d  

t o g e t h e r  ac co rd ing  to  g ro up  (Figure 4.5). S am ples  t r e a t e d  wi th cisplatin c lu s te re d  

m o r e  closely t h a n  s am p le s  which w e r e  u n t r e a t e d ,  in hypoxia and normoxia .  All 

A2780cis  s a m p le s  c lu s tered  se p a r a t e ly  f rom  A2780.
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Figure 4.4. Pearson's Correlation of Samples Analysed on Affymetrix Arrays.

Pearson's correlation was used to analyse correlation between sample groups based 
on their gene expression profiles. The strongest correlation was seen between 

samples of the same group represented by red blocks on the graph. The weakest 

correlations were generally seen between samples in the different cell lines.
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Figure 4.5. Clustering Denogram of Hierarchical Clustering Analysis of Gene 
Expression Profiles of A2780 and A2780cis Cells W ith/Without Exposure to 

Hypoxia and Treatment with Cisplatin. A2780cis samples clustered separately from 
A2780. Cisplatin treated samples clustered more closely than untreated samples, 
regardless o f hypoxic exposure. Cells which were untreated but exposed to hypoxia 

clustered separately from normoxic untreated cells.



4.3.3 Results: Comparison of A2780 and A2780cis

The A2780/A2780cis model o f cisplatin resistant ovarian cancer is often used in the 

literature, however, to my knowledge, there is no study which shows a whole- 

genome profile comparison of the two cell lines. A summary o f the differential gene 

expression characteristics of the two cell lines is presented in Table 4.1. All data 

presented is for genes displaying a differential gene expression with a fold-change of 

>2 and an FDR<0.05.

Table 4.1. Differential Gene Expression Summary Characteristics of A2780 vs. 

A2780cis.

Total Number of Differentially 
Expressed genes

Up-regulated Down-regulated

1202 511 691

Figure 4.6 outlines the chromosomal locations of the differentially expressed genes 

in A2780cis relative to A2780. Genes highlighted in yellow are up-regulated, while 

those in red are down-regulated. This is of interest as chromosomal changes are 

common in cancer -  amplification of certain regions of the genome as well as 

translocation and loss o f heterozygosity (LOH) have all been shown to be implicated 

in the pathogenesis of various cancers. A volcano plot (Figure 4.7A) allows for fast 

discrimination of differentially expressed genes w ith large and significant fold 

changes. Genes located on the top left or right of the plot identify those genes of 

interest. These included highly down-regulated genes such as MEF2C and 

ARHGAP28, and highly up-regulated genes such as PDGFC and FAM2C. A heat map 

(Figure 4.7B) allows large amounts o f genetic data to be represented simply in 

graphic form. It allows for rapid identification of any patterns w ithin the data.
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Figure 4.6. Chromosomal Location Plot of Differentially Expressed Genes in 
A2780cis Compared to A2780. Plot depicting the chromosomal location o f up- 
regulated (yellow) and down-regulated (red) genes in A2780cis compared to A2780. 

The differentially expressed genes are generally spread evenly over the 
chromosomes, however some concentrated areas of down-regulated genes are 

noted on chromosome 1 and chromosome 13 (boxed regions), n = 3
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Figure 4.7. Overview of Gene Expression Changes in A2780 and A2780cis. Volcano 

p lo t (A) and Heat map (B) depicting overall gene expression changes in A2780cis 

relative to  A2780. The volcano p lot allows fo r fast identifica tion o f genes w ith  large 

and significant fold changes such as MEF2C and PDGFC (arrows), n = 3
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The tw o  cell lines were compared using the DAVID database in order to  identify 

significantly up- or down-regulated pathways which could contribu te  to  the 

observed cisplatin resistance in A2780cis. Lists o f the  top  five significantly up- 

regulated and down-regulated pathways and the  genes affected are displayed in 

Tables 4.2 and 4.3. The pathways were identified  by DAVID as part o f the  KEGG 

database. Genes present in m ore than one pathway are only represented once in 

the  table. Genes picked fo r discussion are highlighted in bold.

Table 4.2. Top Five Significantly Up-Regulated Pathways in A2780cis Compared to  

A2780.

Pathway Genes P-value

Gap Junction G N AIl, GUCY1A3, GUCY1B3,ITPR3, 
PDGFC, PDGFA, PrKCA, PrKCB, TUBB4

0.005

Pathways in Cancer Fas, Jakl, KITLG, AR, ARNT2, CTNNA3, 
FGFl, FGFIO, FGFR2, ITGA6, Jun, 
PPARy, PLDl, VEGFC

0.01

Calcium Signalling ATP2B4, CHRNA7, CACNAIH, CAMK4, 
CYSLTR2, GNAL, PTGER3, P2RX5, ERBB3

0.02

PPAR Signalling CD36, ACSLl, CPTIA, FABP5, M M P l, 
SLC27a2

0.02

Long-term depression PLA2G3 0.02



Table 4.3. Top Five Significantly Down-Regulated Pathways in A2780cis Compared 

to A2780.

Pathway Genes P-value

Focal Adhesion FYN, SHC4, ACTN3, CAVl, CAV2, C0L1A2, 
COL6A3, FLNC, HGF, IGFIR, ITGA5, ITGA8, 
LAMAl, PIK3CA, PDGFD, PDGFA, SPPl, 
THBSl, AKT3, VAV3, VCL

<0.0001

Arrythmogenic Right 
Ventricular Cardiomyopathy

CDH2, CACNG7, DSC2, DSG2, DMD, 
CACNAIC, JUP, SLCSal, TCF7L1

<0.0001

Melanoma CDKN2A, FGF18, FGF20, FGF5 0.001

Axon Guidance EPHA3, EPHA7, NTNGl, PLXNCl, R0B02, 
SEMA3E, SEMA6A, SEMA6D, SLIT2, 
UNC5C

0.006

Cell Adhesion Molecules CDH2, CLDN17, CLDN8, CNTNAPA2, HLA- 
DPAl, HLA-DRB3, NEOl, NLGN4X, NEGRI, 
SDC2, VCAN

0.006

4.3.4 Discussion: Comparison of Gene Profile of A2780cis with
A2780

The pathways which were found to be altered in A2780cis compared to A2780 were 

not surprising fo r a more aggressive, chemotherapy-resistant cell line. Up- 

regulation o f biological signalling pathways as well as common cancer pathways may 

be expected in a cell line which has been induced to  become resistant to  treatment. 

In addition, down-regulation of adhesion molecules may signal the cells' movement 

towards a metastatic phenotype, w ith reduced gene expression for proteins which 

anchor the cells to their milieu. Indeed, in culture, A2780cis were seen to be less 

dependent on the culture surface, and many live cells grew with in the media in 

suspension. We examined the differentially expressed genes in order to  identify 

possible mechanisms by which the cells were more resistant to cisplatin.

Platelet-derived growth factor (PDGF) is a growth factor with many roles including 

regulation o f smooth muscle and stimulation o f angiogenesis and metastasis [430]. 

PDGFC is an isoform of PDGF identified in 2000 by Li et al. which binds to the PDGF 

receptor alpha (PDGFRa) [431]. It has been shown to be a potent transforming



agent in vitro [432] and has been linked to many disease pathologies, both 

cancerous and non-cancerous [433-436]. PDGFC has been shown to be associated 

w ith resistance to cisplatin in head and neck squamous cell carcinoma (HNCC) 

patients and knockdown of PDGFC was shown to increase sensitivity to  cisplatin in 

HNCC cell lines [437], Another PDGF isotype, PDGFA was shown to  be 

overexpressed in A2780cis relative to A2780. PDGFA has been shown to act as a 

chemoattractant for recruitment of fibroblasts to tumour microenvironment [438]. 

Fibroblasts aid tum our growth and metastasis by secretion of paracrine growth 

factors and extra-cellular matrix (ECM) remodelling [439]. PDGFA has not yet been 

directly linked to cisplatin resistance in the literature, however it has been noted 

that regions of its promoter is a target for cisplatin binding [440].

Jakl is a member of the janus kinase subfamily of cytoplasmic protein tyrosine 

kinases which play an important role in cytokine signalling [441]. Once activated by 

binding o f a ligand, Jak's can phosphorylate and activate transcription factors known 

as signal transducers and activators of transcription (STATs) [441]. A previous 

microarray study has identified STATl as associated with cisplatin resistance in 

ovarian cancer [442]. Cisplatin resistance induced by prolactin in breast carcinoma 

was mediated through activation o f the Jak pathway [443] and erythropoietin- 

induced cisplatin resistance in malignant melanoma was also shown to be mediated 

through Jak-STAT signalling [444]. Recently, Jak activation has been linked to 

cisplatin resistance as well as cell m otility and enhanced cell migration in ovarian 

cancer [445] and down-regulation o f Jakl has been shown to abrogate cisplatin 

resistance induced by FGF-2 in an osteosarcoma model [446]. In addition, BRCAl 

has been shown to  activate Jakl in a prostate cancer model [447], an interesting 

finding considering BRCAl deficient ovarian cancers are generally sensitive to 

platinum agents [448]. Thus there is a collection of evidence supporting the role of 

Jakl in cisplatin resistance.

Kit ligand (KITLG), also known as stem cell factor, binds to the proto-oncogene c-kit, 

a tyrosine kinase receptor which can bind a number of ligands including PDGF [449].

 (  )---------------------------------------------------------



KITLG is a mitogenic and angiogenic molecule involved in carcinogenesis [450] and 

has been implicated in cisplatin resistance. C o -treatm ent of ovarian cancer cells 

with  KITLG and cisplatin increased cisplatin resistance, w/hereas inhibition of KITLG 

using a neutralizing antibody enhanced the  cells' sensitivity to  cisplatin [8]. In 

addition, a study by Zhang et al. in 2008  identified a sub-population o f  ovarian  

cancer cells with  stem-like properties which over-expressed KITLG and w ere  

resistant to  cisplatin and paclitaxel [451],

ERBB3 (Her3) is a m e m b er of the  epiderm al growth factor receptor (EGFR) family  

[452]. It has been shown to be over-expressed in a subset of breast tum ours [453], 

oral squamous cell carcinomas [454], malignant m elanom a [455] and ovarian  

carcinoma [456]. ERBB3 has no intrinsic enzymatic activity, and forms a 

h ete ro d im er  with ERBB2 (Her2) resulting in signal transduction [457]. ERBB2 o v e r ­

expression has been linked to  chemoresistance and poor survival in ovarian cancer  

[458], and expression of ERBB3 has been associated with cisplatin resistance in lung 

cancer models [459]. In fact, co-expression o f ERBB2 and ERBB3 has been linked to  

enhanced chemoresistance to a num ber o f drugs in breast cancer [460]. In addition, 

a study by Chan et al. investigated the  role of the  epiderm al growth factor in drug  

resistance using both in vitro  and in vivo methods [461]. They showed tha t  

transfection of cells w ith  a type o f  EGFR deficient in tyrosine kinase signalling ability  

resulted in reduced colony forming ability and increased sensitivity to  cisplatin 

relative to  cells with com peten t EGFR.

A n u m b er of dow n-regulated genes w ere  identified which have linked to  

chemoresistance in A2780cis. C A V l (caveolin 1) is an integral m em brane  protein  

which is a m arker of caveolae, invaginations in the  plasma m em b ran e  [462]. A study  

by Koleske et  al. in 1995 dem onstrated  a reduction in caveolin expression in a 

transform ed fibroblast cell line [463] and transfection o f  breast carcinoma cells w ith  

full-length C A V l was shown to  reduce the cells' proliferation and colony form ing  

ability [464]. Up-regulation o f  C A V l has been shown to be associated w ith  m u lt i­

drug resistance in a n um ber of cancer types [465,466] how ever low expression of



CAVl has been linked to cisplatin resistance in oral squamous cell carcinoma [467] 

and overexpression of CAVl has been shown to increase cisplatin sensitivity in 

breast cancer [468]. In ovarian carcinoma, CAVl expression has been shown to be 

reduced relative to normal ovarian epithelium and is a putative tumour suppressor 

candidate [469,470]. In addition, high expression of CAVl in prostate cancer has 

been linked to longer progression-free survival (PFS) times [471] however no 

relationship has yet been shown between CAVl expression and PFS in ovarian 

cancer [469,472],

Thrombospondin-1 (THBSl) is a glycoprotein which facilitates cell adhesion and 

regulates cell proliferation in a cell type-dependent manner [473]. THBSl 

expression has been shown to be down-regulated in breast cancer [474] and re­

expression of THBSl in breast cancer cells has been associated with reduction in 

proliferation and angiogenesis [475], In bladder cancer, low THBSl expression has 

been linked to increased recurrence of disease and poorer overall survival [476]. 

THBSl has been shown to be expressed in a large proportion of ovarian carcinomas, 

and high THBSl expression was shown to be associated with improved survival and 

inversely related to p53 expression [477,478], However, other studies have 

identified high THBSl expression to be associated with poorer prognosis [479,480], 

thus it is unclear how THBSl expression affects survival in ovarian cancer, A THBSl 

mimetic, ABT-510 has been shown to reduce ascites, tumour growth and metastasis 

in orthotopic mouse models of ovarian cancer [481] and has been shown to increase 

the cytotoxic ability of cisplatin and paclitaxel [482], In addition, up-regulation of 

THBSl by cellular pre-treatment with 5-fluorouracil, another cytotoxic agent, has 

been shown to increase cisplatin sensitivity in head and neck squamous cell 

carcinoma [483]. Therefore it is clear that THBSl does play a role in cisplatin 

resistance.

Some concentrated regions of gene down-regulation were identified on 

chromosome 1 and chromosome 13. Loss of heterozygosity (LOH) refers to the loss 

of function of a gene allele where the other allele was previously inactivated, and in
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cancer is usually associated with loss o f tum our suppressor function. LOH at the p53 

locus has previously been associated w ith chemoresistance in osteosarcoma [484]. 

In addition, changes in copy number of certain genes have been linked to resistance 

to certain cytotoxic drugs e.g. depletion of topoisomerase Ha has been associated 

with reduced sensitivity to  topoisomerase inhibitors in breast carcinoma [485]. 

Similarly, in ovarian cancer, loss o f expression o f methylation-controlled J protein 

(MCJ) has been linked to reduced cisplatin sensitivity [486], while in gastric cancer, 

loss o f PTEN (phosphatase and tensin homologue) was associated with increased 

cisplatin resistance [487]. LOH has previously been identified in ovarian cancer on 

several chromosomes including chromosomes 1 and 13. Zborovskaya et al. 

identified regions of LOH on chromosome 1 in both benign and invasive ovarian 

tumours [488]. Other studies o f ovarian cancer have also identified LOH on 

chromosome 1 [489,490] and chromosome 13 [491,492] as observed in this study. 

A study by Prasad et al. demonstrated monosomy of chromosome 13 in A2780cis, 

thus rendering the cell line susceptible to LOH [493]. LOH of chromosome 13ql4 

has been linked to  chemoresistance in leukaemia [494], while deletion of 13q has 

been identified as a prognostic marker in myeloid leukaemia patients [495]. LOH of 

chromosome 1 has not yet been related to chemoresistance in the literature.

In addition, DNA hypermethylation resulting in gene silencing has also been 

associated w ith cancer progression [22] and could provide an alternative mechanism 

for gene down-regulation in A2780cis. Changes in chromosome copy number, 

including amplification and deletion can be detected using comparative genomic 

hybridization (CGH). CGH analysis o f many tumours has identified karyotypic 

abnormalities associated with chemoresistance such as loss o f chromosome 17 and 

regions o f chromosome 2 in lung cancer [496], loss o f chromosome 11 in ovarian 

cancer [497], and decrease in copy numbers of topoisomerase enzymes in multiple 

drug-resistant cell lines [498].

Thus there are a number o f different mechanisms by which cisplatin resistance may 

be occurring in A2780cis involving a number o f different pathways w ith in cells



including down-regulation o f cell adhesion and up-regulation o f cellular signalling. 

Only a small number of genes which may be involved in this process have been 

discussed, and there were many other genes identified which have been linked to 

cisplatin resistance. Functional analysis o f these targets may identify potential 

therapeutic biomarkers for ovarian cancer.

4.3.5 Results: The Effect of Hypoxia on the Transcription Profile of
A2780 and A2780cis

In order to determine the influence of hypoxia on the gene expression o f A2780 cells 

and A2780cis pathway analysis was carried out on the gene lists generated by the 

Bioconductor analysis for each cell line, and subsequently compared the gene 

expression differences between the two cell lines. In particular, altered genes which 

were common for the two cell lines were examined, to see if these genes could 

account for the increased resistance to cisplatin observed in hypoxia for the two cell 

lines. In addition, the changes induced by hypoxia in A2780's were compared to the 

first analysis (A2780 v A2780cis) to see if any of the gene changes induced by 

hypoxia were the same as gene changes induced by prolonged cisplatin treatment. 

The gene changes induced by hypoxia for both cell lines are summarized in Table 

4.4.

Table 4.4. Summary of the Gene Expression Changes Induced by Hypoxia in A2780 

and A2780cis.

Cell Line Total Number 
Differentially Expressed 
Genes

Up-regulated Down-regulated

A2780 2675 1130 1545
A2780cis 1611 885 726

Less changes were induced in A2780cis cells compared to A2780 but for both cell 

lines, similar numbers of genes were up- and down-regulated. Chromosomal 

location plots (Figure 4.8), volcano plots (Figure 4.9A, 4.10A) and heat maps (Figure 

4.9B, 4.108) graphically summarize the data. The top up- and down-regulated



pathways from DAVID analysis are summarized in Tables 4.5 -  4.8. If genes were 

part o f more than one pathway, they are represented once in the table. Genes 

which are later discussed are highlighted in bold.
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Figure 4.8. Chromosomal Location Plots of Genes Differentially Expressed by 

Hypoxia in A2780 and A2780cis cells. Plots show the chromosomal positions of 

genes differentially expressed in A2780 (A) and A2780cis (B) in response to hypoxic 

exposure. Up-regulated genes are represented in yellow, down-regulated in red, 

while genes whose expression was unchanged in A2780cis compared to A2780 are 

represented in white. More changes in gene expression are observed in A2780 with 

chromosomes 16, 17 and 19 demonstrating a lot o f down-regulation of gene 

expression. Gene expression changes are more evenly distributed across the 

chromosomes in A2780cis. n = 3
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Figure 4.9. Volcano Plot and Heat Map of Gene Expression Changes in A2780 Cells 

in Response to Hypoxia. Volcano p lo t (A) identifies genes which have large fo ld - 

changes and significance such as TAF9B and PL0D2 (arrows) while the heat map (B) 

allows fo r fast visualization o f the pattern o f differences between gene expression in 

normoxia and hypoxia, n = 3
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Figure 4.10. Volcano Plot and Heat Map Gene Expression Changes in A2780cis 

Cells in Response to Hypoxia. Volcano p lo t (A) provides fast identifica tion o f those 

genes whose d iffe rentia l gene expression values (fold-changes) are both large and 

highly significant such as TAF9B (arrow). Heat map (B) allows fo r easy identification 

o f patterns in d iffe rentia l gene expression, n = 3
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Table 4.5. Top Five Up-Regulated Pathways in A2780 Cells Exposed to Hypoxia.

Pathway Genes P-value

MARK signalling DDIT3, RASGRPl, RASGRFl, BDNF, 
CACNB4, DUSPl, DUSP16, DUSP3, 
FGFl, F G F ll, FGF23, FLNC, GADD45A, 
GADD45B, JUN, MAPT, TAB2, MAP3K2, 
PDGFA, PLA2G3, PPMIA, STK3, TNF, 
AKT3, FOS

0.001

Focal adhesion BIRC3, CAVl, CAV2, COL6A3, IGFIR, 
ITGAIO, ITGB3, LAM Al, LAM Bl, 
PDGFD, SPPl, ROCKl, THSBl, TNXA, 
VEGFA

0.002

Renal Cell Carcinoma GABl, EGLNl, EGLN3, EPASl, SLC2A1 0.01

Starch and Sucrose 
Metabolism

GBEl, HK2, PG M l, PGM2L1, PYGL, 
PYGM

0.04

Complement and 
Coagulation Cascade

CD55, BDKRBl, C5AR1, FGG, MBL2, 
PROSl, SERPINEl, C3

0.04

Table 4.6. Top Five Down-Regulated Pathways in A2780 Cells Exposed to Hypoxia.

Pathway Genes P-value

DNA replication FENl, MCM2-7, POLAl, P0LA2, P0LE2, 
P0LE3, P0LD3, PRIM l, PCNA, RFC3, 
RFC5, RNASEHl, RNASEH2A

<0.001

Cell cycle CDC45, E2F1, E2F2, E2F4, ANAPC13, 
ANAPC4, ANAPC5, AIR, CDC25A, 
CDC6, CCNDl, CCND3, CCNEl, CCNE2, 
CDKN2A, ESPLl, PLKl, PKMYTl, RBLl, 
TFDPl

<0.001

Pyrim idine metabolism CTPS, CAD, ITPA, PNP, POLRIA, 
POLRIB, POLRIC, P0LR2L, P0LR3B, 
P0LR3H, RRM2, UMPS

<0.001

Base Excision Repair OGGI, APEX2, MBD4, UNG, IDG <0.001

Homologous Recombination BLM, RAD51, RAD51L3, RAD54L, 
BRCA2, XRCC2, EMEl, T0P03A

<0.001
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Table 4.7. Top Five Up-Regulated Pathways in A2780cis Cells Exposed to Hypoxia.

Pathway Genes P-value

Focal adhesion XIAP, BIRC2, BIRC3, ACTN3, CAVl, 
CAV2, IGFIR, ITGA5, ITGBl, ITGB3, 
JUN, C O L llA l,  LAM Cl, MET, PIK3CA, 
PDGFA, PDGFRA, SPPl, ROCKl, VEGFA, 
TNC

<0.001

Axon guidance EPHA6, LICAM, SRGAPl, CXCR4, 
G N A Il, SEMA3A, SEMA3C, SEMA3D, 
NFAT5, SLIT2, KRAS

0.002

IG F beta signalling E2F5, SMAD2, INHBA, BMPR2, INHBE, 
ID4, LTBPl, RBL2, ZFYVE16

0.007

MARK signalling DDIT3, TAOKl, CACNA2D1, CACNB4, 
CACNG7, DUSPl, DUSP16, DUSP2, 
FGFl, MART, MAP3K2, TAB2, PPMIA, 
PPM IB, FOS

0.02

Toll like receptor signalling TRAF3, CCL5, CXCLIO, CXCLll, PIK3CA, 
TLR3

0.02

Table 4.8. Top Five Down-Regulated Pathways in A2780cis Cells Exposed to 

Hypoxia.

Pathway Genes P-value

DNA replication MCM3-5, FENl, P0LA2, P0LE2, P0LE3, 
P0LD3, PRIM l, PRIM2, PCNA, RFC3, 
RFC5, RNASEH2A

<0.001

Cell cycle CDC45, SKP2, ANAPC13, ANAPC5, 
CDC20, CDC25A, CDC6, CCND3, 
CCNE2, CDK2, ESPLl, PLKl, PKMYTl

<0.001

Oxidative phosphorylation ATP5D, ATP6V0E2, ATP6V0C, 
ATP6V0B, ATP6V1B2, C0X3, C0X17, 
NDUFA3, NDUFBIO, NDUFS3, 
NDUFVl, ND2, ND4, C0X8A, C0X6B1

<0.001

Pyrim idine metabolism PNP, P0LR2E, P0LR2L, RRM l, TK l 0.001

Base excision repair APEX2 0.004
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4.3.5.1 Identification of Common Gene Expression Changes in A2780
and A2780cis in Response to Hypoxia

The c o m m o n  p a t t e r n s  o f  g e n e  express ion  in r e s p o n s e  t o  hypoxia w e r e  f u r th e r  

e x a m in e d  in bot h  cell lines. In total ,  9 14  g e n e s  w e r e  c o m m o n l y  dys reg u la te d  in 

A 2780 and A2780cis cells e x p o s e d  to  hypoxia.  Of th e s e ,  431 w e r e  u p - r eg u la t ed  and  

483 w e r e  do w n - r eg u la ted .  A b re ak -d o w n  of  t h e  d ifferent ial  g e n e  ex p res s ion  

p a t t e r n s  is provided in Figure 4.11.

P a th w ay  analysis w a s  carried o u t  on t h e  c o m m o n l y  dys re gu la te d  g e n e s  in o r d e r  to  

ident ify g e n e s  which may a c c o u n t  for t h e  increas ed  cisplatin re s is tance  o b s e r v e d  in 

t h e  t w o  cell lines in hypoxia.  A s u m m a r y  of  t h e  p a t h w a y  analysis is provided  in 

Tables 4.9 an d  4.10.  Ge nes  which w e r e  c h o se n  for  d iscuss ion a r e  h ighlighted in



Tota l

1761 914 697

454 1062 483 243

Up-regulated Down-regulated

Figure 4.11. Summary of Common Differential Gene Changes in A2780 and 
A2780cis Cells Exposed to Hypoxia. Venn Diagram showing summary o f gene 

expression patterns in A2780 (pink) and A2780cis (green). In total, 914 genes were 

commonly dysregulated in response to hypoxia in the two cell lines. Of these, 431 
were up-regulated and 483 were down-regulated, n = 3
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Table 4.9. Significantly Enriched Pathways from  Commonly Up-Regulated Genes in 

A2780 and A2780cis in Response to Hypoxia.

Pathway Genes P-value

MAP kinase signalling DDIT3, CACNB4, DUSPl, DUSP16, 
FGFl, JUN, M APT, MAP3K2, TAB2, 
PDGFA, FOS, P P M IA

0.02

Focal adhesion BIRC3, CAVl, CAV2, IGFIR, ITGB3, 
SPPl, ROCKl, VEGFA

0.02

Table 4.10. Top Five Significantly Enriched Pathways from Commonly Down- 

Regulated Genes in A2780 and A2780cis in Response to Hypoxia.

Pathway Genes P-value

DNA replication FENl, MCM3 - 5 ,  P0LA2, P0LE2, 
P0LE3, P0LD3, PRIM l, PCNA, RFC3, 
RFC5, RNASEH2A

<0.001

Cell Cycle CDC45, ANAPC13, ANAPC5, CDC25A, 
CDC6, CCND3,, CCNE2, ESPLl, PLKl, 
PKMYTl

<0.001

Base Excision Repair APEX2 0.001

Mismatch Repair EXO 0.001

Oocyte Meiosis CALM l, PPPICA 0.006

4.3.5.2 Evaluation of Common Gene Expression Differences in
A2780cis and Hypoxic A2780 Cells

The sim ilarities in gene expression changes between A2780cis cells and A2780 cells 

which had been made hypoxic were exam ined to  investigate w hether the gene 

changes being induced by hypoxia were s im ila r to  those induced by repeated 

cisplatin exposure. This may identify  com m on mechanisms o f cisplatin resistance. 

The gene expression changes are summarized in Figure 4.12. We found tha t only 

128 genes were com m only dysregulated in both  conditions, representing only a very 

small fraction o f the to ta l num ber o f gene changes observed. Hypoxia induced a far 

greater num ber o f changes in gene expression than repeated cisplatin exposure -  in 

to ta l exposure o f A2780 cells to  hypoxia resulted in d iffe rentia l expression o f over 

2,500 genes. In comparison, A2780 cells which had been made cisplatin resistant



through repeated cisplatin exposure (A2780cis) had only approx. 1,200 differentially 

expressed genes. This indicates that hypoxia affects a far greater number o f cellular 

processes than cisplatin alone.

As so few genes were commonly dysregulated, pathway analysis on DAVID identified 

only two commonly up-regulated pathways (Table 4.11) and one commonly down- 

regulated pathway (Table 4.12) although this was non-significant. The entire list of 

dysregulated genes was then searched in order to find potential links w ith cisplatin 

resistance. In total, five genes (three up-regulated, two down-regulated) were 

found that have been associated w ith cisplatin resistance in the literature (Table 

4.13).
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Total

1074 128 2547

440 71 1059 634 57 1488

Up-rGgulated Down-regulated

Figure 4.12. Comparison of Gene Expression Changes Induced by Hypoxia and 
Repeated Cisplatin Exposure in A2780. A2780cis (A2780 cells repeatedly exposed 

to cisplatin, pink) differentially expressed a tota l of 1202 genes in comparison to 

A2780. A2780 exposed to hypoxia (green) differentially expressed a total of 2,675 
genes compared to A2780 in normoxia. Of these, 71 genes were up-regulated in 

common, while 57 were down-regulated, n = 3
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Table 4.11. Commonly Up-Regulated Pathways in A2780 Exposed to Hypoxia and 

A2780cis.

Pathway Genes P-value

MAP kinase signalling CACNB4, FGFl, JUN, MAPI, PLA2G3, 
PDGFA

0.01

Arginine and Proline 
Metabolism

ARG2, P4HA2, SATl 0.03

Table 4.12. Commonly Down-Regulated Pathways in A2780 Exposed to Hypoxia 

and A2780cis.

Pathway Genes P-value

DNA Replication RFC3, RNASEHl 0.07

Table 4.13. Commonly Dysregulated Genes in A2780 Exposed to Hypoxia and 

A2780cis which are Linked to Cisplatin Resistance in the Literature.

Gene Annotation Dysregulation

CD55 CD55 molecule, decay accelerating factor for 
complement (Cromer blood group)

Up-regulated

USP2 ubiquitin specific peptidase 2 Up-regulated

CXADR coxsackie virus and adenovirus receptor Up-regulated

TIMP3 TIMP metallopeptidase inhibitor 3 Down-regulated

CDKN2A cyclin-dependent kinase inhibitor 2A 
(melanoma, p l6 , inhibits CDK4)

Down-regulated
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4.3.6 Discussion: General Gene Expression Response to Hypoxia in
A2780 andA2780cis

Many genes and pathways which have been well documented to be involved in the 

cellular response to hypoxia were identified in A2780 and A2780cis. Some common 

markers o f hypoxia were dysregulated in both A2780 and A2780cis in response to 

hypoxia.

Although HIF-la was not up-regulated (>2-fold, FDR<0.05) in either cell line in 

response to hypoxia, marked up-regulation o f some surrogate markers o f hypoxia 

was observed. In A2780 exposed to hypoxia, the glucose transporter, GLUT-1 

(Slc2al) was increased 2.61 fold, NDRGl was increased 15.47 fold, carbonic 

anhydrase 9 was increased 20.42 fold and HIF-2a was increased 2.61 fold. In 

A2780cis, NDRGl was increased 4.18 fold and carbonic anhydrase was increased 

4.18 fold. This provided confidence that the effects observed were tru ly due to a 

hypoxic response. Although it may seem unusual that H IF-la mRNA was not altered 

following hypoxic exposure, it is possible for HIF-la to be transcribed under normal 

oxygen conditions, and it has been shown that H IF-la is regulated at the protein 

level [499]. A previous study in a murine hepatoma cell line found that the mRNA 

transcript level o f HIF-la was not altered following hypoxic exposure, however, the 

DNA binding ability o f H IF-la was markedly increased [499]. In addition, a study in 

A2780 cells by Huang et al. showed that the hypoxia mimetic C0 CI2 did not alter 

mRNA levels of HIF-la, yet increased the protein levels [500]. We have shown in 

Chapter 2 that hypoxia increased the protein levels o f H IF-la -  while we saw 

virtually absent bands on Western blot for H IF-la in normoxia in A2780 and 

A2780cis, we saw HIF-la protein expression from 4 hours hypoxia exposure.

The mitogen-activated protein kinase (MARK) signalling pathway is a downstream 

signalling pathway of activated Ras proteins and is associated with subsequent 

activation of m itogen/extracellular signal regulated kinases (MEK) and extracellular 

regulated kinases (ERK) leading to regulation of cell proliferation and survival [22]. 

We found up-regulation o f many members o f this pathway including RAS guanyl



releasing protein 1 (RASGRPl), a protein essential for Ras activation [501] and its 

overexpression has been implicated in carcinogenesis in keratinocytes [502] and 

resistance to MEK inhibitors in leukaemia [503].

Brain-derived neurotrophic factor (BDNF) is a growth factor produced by neurons 

and its expression has been shown to be induced in response to hypoxia [504,505] 

and it provides protection from hypoxia-induced cell death [506,507], It has been 

shown to influence cell proliferation and promote cell survival in neuroblastoma 

[508], stimulate invasion in pancreatic adenocarcinoma [509], promote cell survival 

in breast cancer [510], In addition, it has been implicated in the pathogenesis of 

prostate carcinoma [511], lung cancer [512], stomach cancer [513] and 

hepatocellular carcinoma [514], It has also been shown to confer protection against 

cisplatin in neuroblastoma [515] and [516],

GADD45A (growth arrest and DNA damage inducible protein) is a protein induced by 

cellular stresses such as hypoxia and DNA-damaging agents. It is activated by p53 

[517] and has many functions including induction of growth arrest, DNA repair, 

apoptosis, maintenance of genome stability and regulation of cell signalling [518]. 

Previous microarray data has shown it to be induced by hypoxia [519]. Its 

overexpression has been implicated in the pathogenesis of pancreatic ductal 

adenocarcinoma [520], oesophageal squamous cell carcinoma [521]. In addition, it 

has been identified as a both a promoter and inhibitor of breast carcinogenesis 

depending on the other signalling pathway alteration [522] and indeed other studies 

have identified GADD45A as a pro-apoptotic mediator [523,524]. In vivo 

experiments have shown that GADD45A-null mice are more prone to ovarian 

cancers as well as vascular tumours and in males, hepatocellular carcinomas [525].

Up-regulation of genes involved in focal adhesion was also observed. BIRC3 

(baculoviral lAP repeat domain containing 3) is a member of the inhibitor of 

apoptosis family of proteins. Its expression can be induced by tumour necrosis 

factor alpha (TNFa) [526] and the human papillomavirus (HPV) via NFkB activation
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[527], Its expression has been associated w ith  cisplatin resistance in prostate cancer 

cell lines [528]. BIRC3 has previously been shown to  be induced by hypoxia  

[529,530] and has been linked to  increased proliferation and reduced apoptosis in 

gastric cancer [531]. It has been shown in breast cancer cell lines tha t  oestrogen  

t rea tm en t  up-regulated BIRC3 mRNA and protein  leading to  protection from  cell 

death by TN Fa t rea tm en t  [532]. In ovarian cancer, up-regulation of BIRC3 has been  

shown to protect cells from  apoptosis [533 ,534] ,  BIRC3 has been linked to  

resistance to cisplatin in lung cancer [535] and has been identified as a possible

therapeutic  target for oral squamous cell carcinoma [536], breast carcinoma [532]

and prostate cancer [537].

Vascular endothelial growth factor A (VEGFA) is a m e m b er o f  the  VEGF fam ily  of  

angiogenic growth factors. VEGF induces angiogenesis through a variety o f  actions 

including stimulation of endothelial cell proliferation, inducing secretion of

proteases which allow for cell migration, stimulation o f vascular leakiness and

prom otion of survival o f  nascent epithelial cells [538]. Its production is stimulated  

by hypoxia [539], certain hormones such as oestrogen and testosterone [540] and 

by cytokines [541], Expression of VEGFA has been observed in m any tu m o u r types  

such as leukaemia [542], breast cancer [543] and prostate cancer [544]. In ovarian  

cancer, VEGFA expression in tu m o u r  tissue has been shown to  be higher than in 

normal ovary [545] and higher levels o f  VEGFA have been observed in serum  

samples from ovarian cancer patients than in those from  patients presenting with  

benign ovarian disease [546]. It has been identified as a potentially  useful m arker of  

disease persistence and survival following first-line chem otherapy  [547]. VEGFA is 

currently being exploited as a therapeutic  target through monoclonal antibody  

therapy and its receptor through tyrosine-kinase receptor inhibitors [122]. 

Bevacizumab is a monoclonal antibody directed against VEGFA which is being used 

in combination with chem otherapy  in a num ber o f  different cancers [122]. Early 

trials of bevacizumab in persistent or recurrent ovarian cancer revealed the  drug to  

have significant activity, and although it was associated with some haematologic
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toxicity, it was generally well tolerated by patients [548], and a recent large scale 

phase III trial of bevacizumab in combination with carboplatin in first line 

chemotherapy for epithelial ovarian cancer revealed significantly increased 

progression free survival and overall survival in patients receiving bevacizumab 

[549],

LICAM (L I cell adhesion molecule) is a cell surface antigen initially identified in 

neurons [550]. It has been implicated in the pathogenesis of many cancers. In vivo  

studies in lung cancer have demonstrated LICAM to be involved in tumour  

metastasis [551]. In ovarian cancer, LICAM expression has been associated with 

increased tumour aggressiveness, poorer survival and chemoresistance [552]. Its 

expression is HIF-la-inducible, and together with angiopoietin-like 4 (ANGPTL4) -  

which we also found to be over-expressed in hypoxia -  has been shown to mediate 

vascular metastasis of breast cancer [553,554]. It has been linked to cisplatin 

resistance in cholangiocarcinoma [555], ovarian carcinoma [556] and renal cell 

carcinoma It has also been identified as a potential therapeutic target -  in mouse 

studies, combination therapy of ovarian tumours with a combination of anti-LlCAM  

antibodies and paclitaxel increased tumour response compared with paclitaxel alone 

[557].

The genes and pathways which were down-regulated in response to hypoxia were  

similar in A2780 and A2780cis. Cell cycle genes were down-regulated in both cell 

lines. This is unsurprising, as hypoxia has been observed to down-regulate cells 

involved in the cell cycle in many different cell types, inducing cell cycle arrest [558]. 

Hypoxia has been shown to down-regulate cyclin D1 through activation of p38 in 

prostate carcinoma cell lines [559], while in ovarian carcinoma, hypoxia has been 

shown to reduce levels of cyclin D1 and D2 as well as decreasing levels of cyclin E 

[560], all genes which we found to be under-expressed in hypoxia. W e also 

observed reduction of cell cycle dependent phosphatase CDC25A, which is the  

master regulator of cell cycle transition from Gi to S phase [561]. Loss of CDC25A in 

hypoxia has also been observed in colon cancer cells [558,561].
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In addition, down-regulation o f  the  cyclin-dependent kinase inhibitor CDKN2A was 

observed in hypoxia in A 2780  cells. CDKN2A ( p l6 )  is a tum ou r suppressor which  

inhibits H IF - la  activity [562], It also down-regulates  expression o f  VEGF through its 

interaction w ith  H IF - la  [563]. In ovarian cancer, studies have shown that the  p l 6  

gene can be m ethylated  in up to  50% o f cases [2] and tha t  p l 6  protein expression is 

reduced w ith  increasing grade o f disease [564]. O th er  studies have shown high p l 6  

protein expression in m oderately- and poorly-d ifferentiated ovarian carcinomas  

[565,566]. CDKN2A expression has been suggested as a predictive b iom arker of  

hypoxic cell-sensitizing agents such as n imorazole in oesophageal squamous cell 

carcinoma [567] and p l 6  expression has been associated with  sensitivity to cisplatin 

in several d ifferent tu m o u r types [568-570].

Loss o f proteins involved in DNA replication was also observed in A 27 80  and 

A2780cis. There was reduced expression o f  m any m em bers o f the  m in i­

chrom osom e maintenance family of proteins (M C M s). M C M s  are com ponents o f  a 

helicase enzyme involved in DNA replication and cell proliferation, and they inhibit 

H IF - la  activity [571]. Hypoxia has been previously shown to dow n-regu la te  M C M  

expression [572,573], thus indicating a potential mechanism by which cells 

p otentia te  the  hypoxic response. M C M  expression has been shown to be increased 

in increasing grades of ovarian carcinoma [574,575] and high M C M S  expression has 

been linked to  poorer survival times [576]. In addition M C M 2  expression has been  

linked to  cisplatin resistance [577].

Concentrated regions of gene down-regulation w ere  observed on chrom osomes 11, 

16, 17 and 19 in A 2780  exposed to hypoxia. Chrom osom e 16 has been shown to 

have regions of deletion and hyperm ethylation  in ovarian cancer [578]. Similarly, 

LOH has been observed on chrom osom e 17 [579,580] and 19 [581] in ovarian  

tum ours. Hypoxia has been associated with chrom osom al aberrations in cancer, 

and particular variants of the  H IF - la  protein have been linked to  LOH in lung cancer 

[582]. In addition LOH has also been linked to hypoxia in prostate cancer [583], and



breast carcinoma cells cultured in hypoxic conditions were shown to have complex 

karyotypic abnormalities [584],

LOH of chromosome 11 has been associated with Ras-mediated cellular 

transformation, indicating the presence of tumour suppressor genes [585]. In 

ovarian cancer, deletion o f l l p l 3  has been associated with multi-drug resistance 

and loss o f CD44 expression [586]. Similarly, loss of regions of chromosome 11 in 

head and neck squamous cell carcinoma is associated with increased risk of 

recurrent disease [587], resistance to chemo- and radiotherapy in leukaemia [588], 

and in chronic lymphocytic leukaemia (CLL) is linked to more aggressive disease and 

early disease progression [589], LOH of chromosomes llq 2 4  and 17q21 in ovarian 

cancer has been linked to poor survival [590], and chromosome 11 has been noted 

as a source o f tum our suppressor genes for ovarian cancer such as RPL27A, which 

was down-regulated in A2780's exposed to hypoxia in our study [591].

LOH on chromosome 16 has been associated with recurrence and more aggressive 

tum our pathology in Wilms tum our [592]. Similarly, in endometrial cancer, LOH of 

chromosome 16q is associated w ith increased tumour grade and poorer prognosis 

[593], while in prostate cancer, LOH on chromosome 16q is associated with invasion 

and metastasis [594], CGH analysis of ovarian tumours has identified loss of 

chromosome 16 in serous carcinomas [595] and BRCA2 mutated cancers [596]. 

There is currently no information on LOH of chromosome 16 in relation to hypoxia in 

the literature.

LOH of chromosome 17 in ovarian cancer has been associated with loss o f tum our 

suppressor genes in both cancer tissues and cell line models [579]. A study of 

BRCAl-mutated ovarian cancers found LOH of the entire chromosome 17 in 12 of 14 

cases, while two cases had LOH of 17q [580]. A cisplatin-resistant osteosarcoma cell 

line has been shown to have genomic instability of chromosome 17 [597]. 

Chromosome 17 has also been implicated in acquired cisplatin resistance in prostate
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carcinoma [598] and neuroblastoma [599]. Hypoxia has not yet been shown to  

directly induce chromosomal alterations to  chrom osom e 17.

Chromosome 19 was also shown to  contain regions o f  concentrated gene d o w n -  

regulation. Allelic loss at chrom osom e 1 9 q l 2  has been shown to  be predictive of  

poor prognosis in borderline mucinous ovarian tum ours  [581]. In a study o f  20  

ovarian tum ours of mixed histology, LOH of chrom osom e 19 was observed in 

approxim ately  half of tum ours, in a region encoding DNA repair genes such as XRCCl 

and Akt2, both of which w ere  dow n-regu la ted  by hypoxia in A 2780  cells in our study  

[600]. LOH o f  chrom osom e 19 has not y e t  been linked to  hypoxia or cisplatin 

resistance in the  literature.

Overall, the  patterns o f  gene expression changes w e observed w ere  in accordance  

with the  evidence in the  literature. The genes observed which have been previously  

linked to  cisplatin resistance w ere  up-regulated  in response to hypoxia. Dow n-  

regulated genes were  generally not related to  cisplatin response or w ere  indicative  

of cisplatin sensitivity. However, w hen  choosing regions of ovarian tum ours  to  

process for histochemical and pathological analysis, regions of necrosis -  hypoxic  

regions -  are generally avoided, there fo re , gene expression from any one tu m o u r  

region may not be representative o f the  entire  tum our.

Pathway analysis was carried out on com m only  expressed genes in A 2780  and 

A2780cis in response to  hypoxia in order to  firstly narrow  down the large n u m b er of  

dysregulated genes in either cell line alone, and secondly in order to  search for any  

potentially stronger b iom arker candidates -  i.e. candidate genes in more than one  

cell line. Two significantly up-regulated pathways w ere  identified -  MAP kinase 

signalling and focal adhesion. D U SPl (dual specificity phosphatase 1) is an enzym e  

responsible for dephosphorylating MAP kinases and required for relief o f cellular 

genotoxic stress [601,602]. It has been shown to  be hypoxia-inducible and it has 

been shown to have a n um ber of roles including dephosphorylation and inactivation  

of JNK (c-Jun N term inal kinase) [603], inhibition o f  chemotaxis of im m une cells to



the tumour microenvironment [604], tum our metastasis [605,606] and regulation of 

VEGF expression and microvessel density [607]. It has been shown to have anti­

proliferative effects in breast cancer [608] and its expression has been negatively 

correlated with tumour differentiation in lung cancer [609]. In studies of ovarian 

cancer, the role of DUSPl is a little unclear. Positive DUSPl expression has been 

associated with reduced progression free survival [610], however another study has 

associated DUSPl expression with reduced malignant potential [611] and a third 

study was unable to associate DUSPl with any clinical outcome [612]. However, 

expression of DUSPl has been shown to mediate resistance to cisplatin in ovarian 

cancer [613] and in lung cancer cells [614],

The insulin like growth factor 1 receptor (IGFIR) is a transmembrane tyrosine kinase 

receptor which is activated by binding of its ligands, insulin-like growth factor 1 and 

2. The IGFs act as tissue growth factors and their binding to IGFIR results in the 

stimulation of several signalling pathways within the cell including the PI3K/Akt 

pathway, mTOR and Ras/MAPK pathways [615]. IGFl has been shown to increase 

ovarian cancer cell proliferation [616] and inhibition of the IGFIR attenuates this 

response [617,618]. The expression of IGFIR has been shown to be up-regulated in 

recurrent ovarian cancer compared to primary [619]. Transfection of normal 

ovarian epithelial cells with IGFIR resulted in significantly increased proliferation, 

reduced expression of Fas, a receptor involved in apoptosis and increased colony 

forming ability [620]. Injection of transfected cells into mice resulted in formation of 

tumours, indicating increased tumourigenicity of the IGFlR-transfected cells. BRCAl 

suppresses IGFIR activity [621], thus, lack of this suppression in BRCAl-deficient 

tumours may contribute to their pathophysiology. Up-regulation of the IGFIR  

signalling pathway has been implicated in cisplatin resistance in cancer. Eckstein et 

al. demonstrated up-regulation of IGFIR and PI3K pathways in cisplatin-resistant 

ovarian cancer cells [622]. IGFIR has also been implicated in cisplatin resistance in 

oesophageal carcinoma [623]. The IGFIR has been identified as a potential 

therapeutic target in ovarian cancer and others. An antibody against the IGFIR was
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shown to  inhibit cell proliferation and survival in in vitro  studies and, in combination  

with the  cytotoxic agent gemcitabine, s tim ulated tu m o u r regression in orthotopic  

tu m o u r models [624], Further in vitro and in vivo studies using the  ovarian cancer 

m odel A 2780  showed antibody therapy to  reduce tu m o u r cell proliferation and 

inhibit xenograft tu m o u r growth [625], A novel small molecule inhibitor o f the  

IGFIR, BM S-554417 , has been shown to  reduce cell proliferation and tu m o u r growth  

through inhibition of the  Akt signalling pathw ay and Gq-Gi arrest [626],

The com m only  dysregulated pathways in A 27 80  cells exposed to  hypoxia and 

A2780cis cells were  com pared in order to determ ine  if similar pathways w ere  

involved in hypoxia-induced resistance and cisplatin-induced resistance. The genes 

contained within the  pathways found had no association to cisplatin resistance in 

the  literature. The entire  list of com m only dysregulated genes identified five genes 

which have links to cisplatin resistance.

CD55 regulates activation of the com plem ent system by accelerating the  

degradation of certain enzymes w ith in  the  pathw ay [627] and up-regulation of CD55 

expression has been linked to cisplatin resistance in oral squamous cell carcinoma  

[628]. Its expression has been linked to the  pathogenesis o f  several cancer types. 

Expression of CD55 at the  invasive front of rectal cancer cells was associated with  

increased tum ou r recurrence and metastasis [629]. A study of lung cancer, CD55  

inhibition with  anti-CD55 antibody was shown to  am eliorate  the  effects of herceptin  

antibody therapy [630]. Its up-regulation in breast cancer has been shown to 

protect against com plem ent-m edia ted  cytotoxicity [631] and inhibition o f  its 

expression with siRNA sensitizes cancer cells to  c om plem en t-m edia ted  attack in 

vitro [632,633]. Hypoxia has previously been shown to induce CD55 expression in 

vitro in both epithelial and non-epithelial cell lines [634] and in vivo [635]. In ovarian  

cancer, expression of CD55 has been observed in up to  three  quarters of ovarian  

tum ours [636], and CD55 monoclonal antibody therapy  has been suggested as a 

potentially  useful therapy  for occult micrometastases which cannot be picked up on 

imaging following cytoreductive surgery [637].



USP22 (ubiquitin specific peptidase 22) is an enzyme which is involved in regulation 

of protein degradation via the proteasome and is expressed in many different 

human tissues including ovary [638]. USP22 has been identified as a putative cancer 

stem cell marker whose function lies in deubiquitination of histones, transcriptional 

activation and in progression o f the cell cycle -  cells depleted of USP22 arrested in 

Gi [639], In addition to deubiquitination o f histones, USP22 has also been shown to 

regulate activity of TRFl, a telomere-associated protein [640], Recent studies have 

shown USP22 to act through a number o f signalling pathways such as INK4a/ARF, 

Akt [641] and Jak-Stat [642], Overexpression of USP22 in colorectal carcinoma has 

been linked to advanced stage o f disease, poorer survival and correlated w ith 

expression of other biomarkers such as c-myc [643]. In breast cancer, 

overexpression of USP22 was positively correlated to lymph node metastasis and 

poorer outcome [553], while in gastric cancer, co-expression of USP22 with BMI-1 

was also linked to poorer outcome [644], This is the first study to identify USP22 as 

induced by hypoxia.

The coxsackie virus and adenovirus receptor (CXADR) was identified in 1997 [645]. 

Its functional u tility  in cancer treatm ent was demonstrated by a study which used 

the receptor to facilitate adenoviral-mediated transfer of Fas ligand to lymphocytes, 

thus stimulating apoptosis [646], Indeed, adenovirus-mediated overexpression of 

the CXADR was shown to increase transgene expression [647], In ovarian cancer cell 

line studies, it was shown that a minimum level of CXADR expression is necessary for 

adenoviral gene transfer [648], and that the level o f CXADR expression is linked to 

the susceptibility o f cells to adenovirus-mediated transfection [649]. A study of 

CXADR in ovarian tumours showed it to be expressed in the majority of tumours, 

w ith stronger expression in well-differentiated carcinomas [650]. Transfection of 

the ovarian carcinoma cell line, SK0V3, with CXADR resulted in increased cell 

adhesion and reduced colony formation thus presenting a potential role in 

metastasis prevention [651], however a further study of ovarian cancer CXADR 

expression linked over-expression w ith poorer progression free survival and overall



survival [652], Increased levels of CXADR have been observed in a cisplatin-resistant 

laryngeal carcinoma cell line [653], A previous study found reduced levels of CXADR 

in gastric, colon and prostate carcinoma cell lines following hypoxic exposure [654], 

however, we found up-regulation of CXADR following hypoxia in both A2780 and 

A2780cis. Our study used 0.5% O2 for 72 hours, whereas the previous study used 1% 

O2 for 24 hours -  this may indicate a time-dependence or severity of hypoxia- 

dependence on the effects observed. While there may be an initial drop in CXADR 

expression on exposure to hypoxia, this may be reversed during prolonged hypoxia -  

although a time-course of CXADR expression would need to be carried out to 

confirm this.

TIMP3 (metallopeptidase inhibitor 3) is a mem ber of a family of proteins which 

deactivate tissue metallopeptidases -  enzymes employed by tumour cells to break 

down the extracellular matrix - and is repressed by EGFR activation [655,656]. A 

previous study also found TIMP3 to be down-regulated following hypoxic exposure 

[657]. Hypermethylation of TIMP3 has been observed in many cancer types 

including ovarian [658], Previous cDNA microarray analysis has identified it as 

down-regulated in lung cancer [659], uveal melanoma [660] mengioma [661]. 

Methylation o fT IM P 3 in papillary thyroid cancer was associated with extrathyroidal 

invasion, metastasis to lymph nodes and multi-focal tumours [662]. Its methylation  

as part of a panel of three markers was recognised as a diagnostic tool to separate 

patients with Barret's oesophagus at risk of progression to oesophageal 

adenocarcinoma [663]. Its potential as a diagnostic biomarker was identified by 

Leung et al., who identified methylation of TIMP3 in serum samples from late stage 

gastric cancer patients [664]. Transfection of a breast cancer cell line with 

recombinant TIMP3 resulted in reduced proliferation and reduced metastatic 

potential, thus indicating its potential as a therapeutic target [665]. A study of paired 

ovarian tumour samples, pre- and post-chemotherapy, identified TIMP3 as one of 

the down-regulated genes following chemotherapy and a potential marker of 

chemoresistance [666]. Adenoviral-mediated transfection of TIMP3 into cervical
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cancer cell lines resulted in increased apoptosis, reduced proliferation and had 

synergistic effects when co-incubated w ith cisplatin and in vitro studies showed 

TIMP3 to inhibit growth o f tum our xenografts, an effect that was ameliorated when 

combined with cisplatin therapy [667],



4.3.7 Summary

Thus, our studies of the effect o f hypoxia on gene expression in A2780 and A2780cis 

identified several findings:

1. Hypoxia induces a large number o f ch anges in gene expression in both A2780 

and A2780cis, although more changes are induced in A2780

2. A large proportion of genes are comimonly dysregulated in both A2780 and 

A2780cis in response to hypoxia

3. Few genes are commonly dysregulatted in A2780 cells exposed to hypoxia 

and normoxic A2780cis

4. Most gene expression differences in  hypoxia which were associated w ith 

cisplatin resistance were up-regulated

5. A number o f potential biomarkers of cisplatin resistance in relation to 

hypoxia were identified including BDNF, BIRC3, VEGFA and IGFIR (up- 

regulated) and CDC25A, CDKN2A and TIMP3 (down-regulated).



4.3.8 Results: The Effect of Hypoxia on Response to Cisplatin in
A2780andA2780cis

4.3.8.1 Comparison of Untreated A2780 Cells with Cisplatin Treated
A2780 Cells in Normoxia and Hypoxia

The changes in gene expression in A2780 following treatm ent w ith cisplatin were 

compared between normoxia and hypoxia. Differential gene expression changes are 

summarized in Table 4.14. Data is displayed for genes w ith a fold change of >2 and 

FDR <0.05. More genes were differentially expressed in A2780 cells which were 

treated w ith cisplatin in hypoxia. Similar proportions o f genes were up- and down- 

regulated in A2780 treated w ith cisplatin in normoxia and hypoxia. Chromosomal 

location plots (Figure 4.13) display the location of gene expression differences on 

the chromosomes. A volcano plot and heat map (Figures 4.14 and 4.15) graphically 

display differences in gene expression patterns between both groups.

Table 4.14. Summary of Differential Gene Expression Characteristics for A2780 

Cells Treated with Cisplatin for 72 hours in Normoxia or Hypoxia.

Cell Line Total Number Differentially 
Expressed Genes

Up-regulated Down-
regulated

A2780
Normoxia

1521 702 819

A2780
Hypoxia

2099 1037 1062
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Figure 4.13. Chromosomal Location Plots for Differentially Expressed Genes in 

A2780 Cells in Response to Cisplatin Treatment in Normoxia and Hypoxia.

Chromosomal location plots for A2780 cells treated with cisplatin in normoxia (A) 

and hypoxia (B). Genes up-regulated in response to cisplatin treatm ent are 

represented in yellow, down-regulated in red and unchanged are represented in 

white. Up- and down-regulated genes were spread evenly across the chromosomes, 

n = 3



A

Untreated Cisplatin Treated

Figure 4.14. Differences in Gene Expression Patterns Between Untreated and 

Cisplatin Treated A2780 Cells in Normoxia. Volcano Plot (A) and heat map (B) 

displaying differences in gene expression patterns between normoxic A2780 which 

are untreated and normoxic A2780 treated w ith  cisplatin. n = 3
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Untreated Cisplatin Treated

Figure 4.15. Differences in Gene Expression Patterns between Untreated and 

Cisplatin Treated A2780 Ceils in Hypoxia. Volcano plot (A) and heat map (B) 

displaying differences in gene expression patterns. Volcano plot identifies genes 

which display a high magnitude of differential expression such as NRNl (arrow) 

while heat map identifies clusters of genes which are differentially expressed, n = 3
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Analysis o f the gene expression on DAVID identified a num ber o f pathways up- and 

down-regulated fo llow ing cisplatin trea tm en t. The top five pathways up- and down- 

regulated by cisplatin trea tm en t in normoxia are summarized in Tables 4.15 and 

4.16. The top  pathways up- and down-regulated by cisplatin trea tm en t in hypoxia 

are summarized in Tables 4.17 and 4.18. Genes which appear in more than one 

pathway are represented once on the tables.

Table 4.15. Top Four Significantly Up-Regulated Pathways in A2780 Cells Treated 

with Cisplatin in Normoxia.

Pathway Genes P-value

p53 signalling Fas, M DM 2, CCNG2, p21, GADD45A, 
RRM2B, SESNl, ATM, TP53I3, ZMAT3

<0.001

Lysosome CD63, GM2A, GNPTAB, CTSLl, FUCAl, 
lUDA, LAMP2, LAMP3, MAN2B1, MANBA, 
SCARB2, SLC17a5

<0.001

Ribosome RPL13, RPL13A, RPL24, RPL30, RPS18, 
RPS24, RPS27, RPS27L, RPS29, RPL32

<0.001

Other glycan 
degradation

FUCAl, MAN2B2 0.006

Table 4.16. Top Four Significantly Down-Regulated Pathways in A2780 Cells 

Treated with Cisplatin in Normoxia.

Pathway Genes P-value

DNA Replication DNA2, FENl, MCM2-7, POLAl, P0LA2, 
POLDl, P0LE2, P0LE3, P0LD3, PRIM l, 
PRIM2, RFC2, RFC3, RFC5, RNASEHl, 
RNASEH2A,

<0.001

Cell cycle CDC45, E2F2, MAD2L1, SKP2, ANAPCl, 
ANAPC5, BUBl, BUBIB, CDKl, CDC20, 
CDC25, CDC6, CCNA2, CCNB2, CCNEl, 
CCNE2, CDK2, CDKN2A, ESPLl, GAD45G, 
PLKl, PKMYTl

<0.001

Pyrim idine
m etabolism

DHODH, PNP, P0LR3D, P0LR3G, RRMl, 
RRM2, TK l, UCKl

<0.001

Oocyte meiosis FBX05, AURKA, SGOLl <0.001



Table 4.17. Top Four Up-Regulated Pathways in A2780 Cells Treated with Cisplatin 

in Hypoxia.

Pathway Genes P-value

p53 signalling CD82, Fas, M DM 2, APAFl, CASP9, CCND3, 
CDKNIA, LRDD, PMAIPl, SESNl, SFN, 
TP53I3, ZMAT3

<0.001

Apoptosis BCL2L1, CAPNl, CASP6, IKBKB, PIK3R1, 
PIK3R3, PKA, RIPKl

<0.001

ABC Transporters ABCAl, ABCAIO, ABCA5, ABCCIO, ABCDl, 
ABCD3, TAPI

0.01

Chronic myeloid 
leukemia

SHC4, SHCl, SMAD3 0.01

Table 4.18. Top Four Down-Regulated Pathways in A2780 Treated with Cisplatin in 

Hypoxia.

Pathway Genes P-value

Cell Cycle CHEKl, DBF4, E2F5, MAD2L1, RAD21, SKP2, 
TTK, WEEl, BUBl, BUBIB, CDKl, CDC20, 
CDC25, CDC6, CCNAl, CCNBl, CCNB2, CDK2, 
CDKNIB, GADD45B, ORCIL, 0RC6L, PTTGl, 
PLKl, STAG2, TGFB2

<0.001

Oocyte meiosis FBX05, AURKA, MAPK3, IP3R3, IGFIR, 
PPP3CC, SGOLl

<0.001

DNA replication P0LE2, PR IM l, PRIM2, RFCl-5 <0.001

MAPK signalling DDIT3, RASGRPl, RASGRFl, ATF4, CACNB4, 
DUSPl, DUSP16, FGF23, JUN, MAPT, 
MAP3K2, NR4A1, PLA2G3, PDGFA, PKCA, 
PKCG, STK3, STM Nl, ZAK, TGFB2, TNF, AKT3, 
FOS

0.002

Pathway analysis revealed tha t sim ilar pathways are stim ulated when cells are 

treated w ith  cisplatin in hypoxia and normoxia. To fu rthe r clarify the role o f the 

genes identified, the break-down o f gene expression in the tw o  conditions was 

examined. Figure 4.16 is a Venn Diagram which displays the numbers o f genes 

which are up- and down-regulated fo llow ing cisplatin trea tm en t in normoxia and
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hypoxia. Of all the genes differentially expressed in the two lists, 338 are common. 

Of these, 137 are up-regulated, while 201 are down-regulated.



Total

1183 338 1761

618 201 861565 137 900

Down-rcgulatedUp-rcgulated

Figure 4.16. Comparison of Differntial Gene Expression Changes in A2780 Cells 

Treated with Cisplatin in Normoxia and Hypoxia. Venn Diagram summarizing the 

comparison in gene expression between A2780 treated w ith  cisplatin in normoxia 

(pink) and hypoxia (green). In to ta l, 338 genes were in common between the tw o 

lists. Of these, 137 were up-regulated while  201 were down-regulated, n = 3
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Genes which were only over-expressed or under-expressed in cells treated w ith  

cisplatin in hypoxia were examined in order to  identify genes which may account for 

the increased cisplatin resistance observed in hypoxic cells in Chapter 3. Pathway 

analysis was then carried out on the genes which were up-and down-regulated in 

A2780 treated in hypoxia only. The significantly over-represented pathways are 

summarized in Tables 4.19 and 4.20. Genes occurring in more than one pathway are 

represented once in the table.

Table 4.19. Pathway Analysis of Up-Regulated Genes in A2780 Cells Treated with  

Cisplatin in Hypoxia Only.

Pathway Genes P-value

Apoptosis BCL2L1, APAFl, CAPNl, CASP6, CASP9, IKBKB, 
PIK3R1,PIK3R3, PRKACA, RIPKl

0.001

ABC Transporters ABCAl, ABCAIO, ABCA5, ABCCIO, ABCDl, 
ABCD3, TAPI

0.002

Am yotrophic Lateral 
Sclerosis

CCS, GRIN2Q GPXl, MAP2K3 0.005

Small Cell Lung Cancer TRAF4, ITGA3 0.02

p53 signalling CD82, CCND3, LRDD, PM AIPl, SFN 0.02

Pancreatic Cancer SMAD3, RALGDS 0.02

Chronic Myeloid 
Leukemia

SHC4, SHCl 0.03



Table 4.20. Pathway Analysis of Down-Regulated Genes in A2780 Cells Treated 

with Cisplatin in Hypoxia Only.

Pathway Genes P-value

MARK signalling DDIT3, RASGRPl, RASGRFl, ATF4, CACNB4, 
DUSPl, DUSP16, FGF23, GADD45B, JUN, 
MART, MAP3K2, NR4A1, PLA2G3, PDGFA, 
PKCA, PKCG, PPP3CC, STK3, STM Nl, ZAK, 
TGFB2, TNF, AKT3, FOS

<0.001

Cell Cycle CHEKl, DBF4, E2F5, RAD21, WEEl, CDC20, 
CDC25, CCNBl, CDKNIB, 0RC6, PTTGl, 
STAG 2

0.002

Steroid Biosynthesis DHCR7, CYP51A1, EBP, SC4M0L, SC5DL 0.005

ErbB Signalling NCKl, NRG4, ERBB4, ERBB3 0.01

Nitrogen Metabolism ASNS, CA9, CA14, CTH, CA5B 0.02

Systemic Lupus 
Erythematosus

HIST1H2AC, HIST1H2AB, HIST1H2AG, 
HIST1H2BH, HIST1H2BI, HIST1H2AD, 
HIST1H4A, HIST2H2AB, HLA-DMA

0.02

Axon Guidance EPHA6, EPHA7, CXCR4, CFL2, LRRC4C, 
SEMA3C, SEMA3E, UNC5C

0.02

Colorectal Cancer FZD2, IGFIR, MSH2, TCF7L1 0.03

Gap Junction ITPR3, PDGFD, PRKGl, TUBB2B 0.04

From the pathway analysis, a list o f genes which have been directly linked to 

cisplatin resistance in the lite ra ture  are displayed in Table 4.21. Genes which were 

picked fo r discussion are highlighted in bold.

{ }



Table 4.21. Dysregulated genes in the Hypoxic Response to Cisplatin in A2780 

which have been Directly Linked to Cisplatin Resistance.

Gene
Symbol

Annotation Reference Fold-
Change

FDR

BCL2L1 BCL2-like 1 [668] 2.17 <0.001

IKBKB inh ib ito r o f kappa light polypeptide 
gene enhancer in B-cells, kinase 
beta

[669] 2.13 <0.001

PIK3R1 phosphoinositide-3-kinase, 
regulatory subunit 1 (alpha)

[670] 3.29 <0.001

RIPKl receptor (TNFRSF)-interacting 
serine-threonine kinase 1

[671] 3.51 <0.001

ABCD3 ATP-binding cassette, sub-fam ily D 
(ALD), m em ber 3

[498] 2.18 <0.001

GPXl g lu ta th ione peroxidase 1 [672] 3.46 <0.001

CCND3 cyclin D3 [673] 2.33 <0.001

SFN stra tifin [674] 3.97 <0.001

DDIT3 DNA-damage-inducible transcrip t 3 [675] -5.12 <0.001

NR4A1 nuclear receptor subfamily 4 , 

group A, m em ber 1
[676] -2.75 <0.001

TNF tum ou r necrosis factor [677] -2.87 <0.001

E2F5 E2F transcrip tion factor 5, p l3 0 - 
binding

[678] -2.08 <0.001

UNC5C unc-5 hom olog C (C. elegans) [679] -2.62 <0.001

MSH2 mutS hom olog 2, colon cancer, 
nonpolyposis type 1 (E. coli)

[680] -2.03 <0.001
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4.3.8.2 Comparison of Untreated A2780cis Cells with Cisplatin
Treated A2780cis Cells in Normoxia with Hypoxia

The effect of cisplatin treatment on A2780cis was examined in order to  identify the 

changes induced by cisplatin in normoxia and hypoxia and to identify any common 

changes between the two conditions. A summary o f the differential gene 

expression characteristics of A2780cis treated w ith cisplatin in normoxia and 

hypoxia are presented in Table 4.22. Chromosomal location plots, volcano plots and 

heat maps provide graphical representation o f the data (Figures 4.17, 4.18 and 

4.19). The top up- and down-regulated pathways in response to cisplatin treatment 

are summarized in Tables 4.23 and 4.24 (normoxia) and Tables 4.25 and 4.26 

(hypoxia). A summary o f the 'hypoxia only' response to cisplatin is provided in 

Figure 4.21 and Tables 4.27 and 4.28.

Table 4.22. Summary of Differential Gene Expression Characteristics of A2780cis 

Treated with Cisplatin in Normoxia and Hypoxia.

Cell Line Total Number of
Dysregulated
Genes

Up-regulated Down-regulated

A2780cis

Normoxia

1282 710 572

A2780cis

Hypoxia

928 292 636
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Figure 4.17. Chromosomal Location Plots for Differentially Expressed Genes in 

A2780cis Cells in Response to Cisplatin Treatment in Normoxia and Hypoxia.

Chromosomal location plots demonstrate evenly distributed gene expression 

changes in normoxia (A) and hypoxia (B). Genes up-regulated in response to 

cisplatin are represented in yellow, down-regulated in red, and genes whose 

expression was unchanged in response to cisplatin are represented in white, n = 3
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Cisplatin TreatedUntreated

Figure 4.18. Volcano Plot and Heat Map Depicting Gene Expression Changes in 

Response to Cisplatin in A2780cis in Normoxia. Volcano p lot identifies genes which 

were highly significantly dysregulated such as TXNIP (arrow, A), while  heat map 

provides rapid visual presentation o f patterns o f gene expression differences (B). 

n = 3
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Figure 4.19. Volcano Plot and Heat Map Depictingl Gene Expression Changes in 

Response to Cisplatin in A2780cis in Hypoxia. Volcano plot (A) identifies genes 

which are highly significantly altered in response to cisplatin such as CEACAMl 

(arrow) while heat map (B) provides rapid visualization o f patterns of gene 

expression differences in cisplatin treated A2780cis. n = 3
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Table 4.23. Top Five Significantly Up-Regulated Pathways in A2780cis Treated with  

Cisplatin in Normoxia.

Pathway Genes P-value

p53 signalling CD82, MDM2, PERP, APAFl, CCNG2, 
CDKNIA, GADD45A, RRM2B, SESNl, SFN, 
ATM, THBSl, TNFRSFIOB, TP53I3, ZMAT3

<0.001

Apoptosis XIAP, BIRC3, CASPIO, IL IR I, IRAK4, PIK3R3, 
PPP3CA, TNFSFIO, TNFRSFIOD

<0.001

Ribosome FAU, R P L ll, RPL13A, RPL27, RPL24, RPL30, 
18S, RPS21, RPS24, RPL32, RPS29

<0.001

Lysosome CD63, GNPTAB, CTSLl, CTSO, FUCAl, 
HGSNAT, IDS, LAMP3, MANBA, SCARB2, 
SLC17A5, SM PDl

0.002

Systemic Lupus 
Erythematosus

H3F3A, CIR, CIS, HIST1H2AD, HIST1H2BK, 
HIST1H4A, HLA-DMA, HLA-DPA, C3

0.02

Table 4.24. Top Five Significantly Down-Regulated Pathways in A2780cis Treated 

with Cisplatin in Normoxia.

Pathway Genes P-value

Cell cycle CDC45, E2F1, SKP2, TTK, ANAPCl, ANAPC5, 
BUBl, BUBIB, CDKl, CDC20, CDC25A, 
CCNA2, CCNB2, CCNE2, CDK2, ESPLl, MCM2 
-  5, MCM7, ORCIL, PLKl, PKMYTl

<0.001

DNA Replication POLDl, P0LE3, P0LD3, PRIM l, PRIM2,
RFC2, RFC3, RFC5, RNASEH2A

<0.001

Oocyte meiosis FBX05, SGOLl <0.001

Mismatch Repair EXOl <0.001

Homologous
Recombination

RAD51, RAD54L, XRCC2, EM El <0.001



Table 4.25. Top Three Significantly Up-Regulated Pathways in A2780cis treated  

with Cisplatin in Hypoxia.

Pathway Genes P-value

p53 signalling CD82, MDM2, APAFl, CDKNIA, GADD45A, 
LRDD, SESNl, SFN, TP53I3, ZAMAT3

<0.001

Bladder Cancer PGF, HR AS 0.03

ABC Transporters ABCAl, ABCDl, ABCG4, TAPI 0.03

Table 4.26. Top Three Significantly Down-Regulated Pathways in A2780cis Treated 

with Cisplatin in Hypoxia.

Pathway Genes P-value

Cell Cycle E2F5, MAD2L1, SKP2, TTK, ANAPCl, BUBl, 
BUBIB, CDKl, CDC20, CDC25C, CCNA2, 
CCNBl, CCNB2, CDK2, ESPLl, MCM3, MCIVI4, 
MCM6, 0RC6U PTTG, PLKl

<0.001

DNA Replication DNA2, POLAl, P0LE2, PR IM l, PRIM2, RFCl, 
RFC3, RFC5

<0.001

Oocyte Meiosis FBX043, FBX05, MAD2L1, AURKA, IGFIR, 
SGOLl

<0.001
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1025 257 671

418 ,154 482607 103 189

Down-regulatedUp-regulated

Figure 4.20. Comparison of Gene Expression Clianges in A2780cis Treated with 
Cisplatin in Normoxia and Hypoxia. In total, 257 genes were commonly 

dysregulated in A2780cis treated w ith cisplatin in normoxia (pink) and hypoxia 
(green). Of these, 103 were up-regulated and 154 were down-regulated, n =3
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Table 4.27. Pathway Analysis of Up-Regulated Genes in the A2780cis Hypoxic 

Response to Cisplatin.

Pathway Genes P-value

Focal Adhesion ITGA3, PGF, PXN, PARVA, HRAS, VTN 0.04

Table 4.28. Pathway Analysis of Down-Regulated Genes in the A2780cis Hypoxic 

Response to Cisplatin.

Pathway Genes P-value

Systemic Lupus 
Erythematosus

GRIN2B, C5, HIST1H2AC, HIST1H2AE, 
HIST1H2BI, HIST1H2BN, HIST1H4A, 
HIST2H2AB, HIST2H2AC, HIST2H2BF

<0.001

Valine, Leucine and 
Isoleucine degradation

ACATl, BCATl, ALDH6A1, BCKDHA, HADH, 
PCCA

0.004

Homologous
Recombination

BLM, RAD51L1, RAD54B, BRCA2 0.03

Oocyte meiosis FBX043, MAD2L1, ARUKA, CDC25C, CCNBl, 
IGFIR, PTTG

0.05
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Table 4.29. Dysregulated Genes in A2780cis Hypoxic Only Response to Cisplatin 

Linked to Cisplatin Resistance in the Literature.

Gene
Symbol

Annotation Reference Fold-
Change

FDR

LRDD Leucine rich and death domain 
containing

[681] 3.48 <0.001

S100A4 SlOO calcium binding prote in A4 [682] 2.36 <0.001

RAD51C RAD51 hom olog C (S. cerevisiae) [683] 2.12 <0.001

PCNA pro liferating  cell nuclear antigen [684] 2.97 <0.001

NOTCHl Notch 1 [685] 2.04 <0.001

SFN Stratifin [686] 5.14 <0.001

CDKl cyclin-dependent kinase 1 [687] -4.94 <0.001

RGS2 regulator o f G-protein signaling 2, 

24kDa
[688] -2.69 <0.001

JUN jun proto-oncogene [689] -2.37 <0.001

FHIT fragile h istid ine triad gene [690] -2.82 <0.001

MAD2L1 MAD2 m ito tic  arrest defic ient-like 1 
(yeast)

[335] -4.91 <0.001

EGRl early grow th response 1 [691] -2.19 <0.001

CCNBl cyclin B1 [692] -2.30 <0.001

GPC3 glypican 3 [693] -5.35 <0.001

E2F5 E2F transcrip tion factor 5, p l3 0 - 
binding

[678] -2.06 <0.001

UPRT uracil phosphoribosyltransferase 
(FURl) hom olog (S. cerevisiae)

[694] -2.14 <0.001



The gene lists which were generated in the 'hypoxic only' response to cisplatin in 

A2780 and A2780cis were compared in order to identify any commonly dysregulated 

genes or pathways -  dysregulation in two cell lines may prove these targets to be 

stronger biomarker candidates. In total, 30 genes were commonly up-regulated in 

the two cell lines' 'hypoxic only' response to cisplatin, while 95 genes were 

commonly down-regulated. The pathway analysis on these lists is displayed in 

Tables 4.30 and 4.31. Only one pathway was significantly up-regulated based on the 

30 commonly up-regulated genes -  p53 signalling. Four separate pathways were 

significantly down-regulated and are summarized in Table 4.31. Genes which were 

contained within more than one pathway are represented once on the table.

Table 4.30. Significant Commonly Up-Regulated Pathways in the A2780 and 

A2780cis 'Hypoxic Only' Response to Cisplatin.

Pathway Genes P-value

p53 signalling CD82, APAFl, SFN <0.001

Table 4.31. Significant Commonly Down-Regulated Pathways in the A2780 and 

A2780cis 'Hypoxic Only' Response to Cisplatin.

Pathway Genes P-value

Systemic Lupus 
Erythmatosus

HIST1H2AC, HIST1H2AE, HIST1H2BI,HIST1H4L, 
HIST2H2AB

0.02

A literature search was carried out to identify those genes identified on pathway 

analysis which have been previously linked to cisplatin resistance. One gene 

identified on the pathway analysis was previously linked to cisplatin resistance - SFN. 

The entire lists of commonly up- and down-regulated genes were then examined in 

order to determine if genes which had not been represented in the pathway analysis



w ere associated w itii cisplatin resistance. This identified one further gene (Table 

4.32).

Table 4.32. Commonlv Dysregulated Genes in the  A2780 and A2780cis 'Hypoxic 

Only' Response to  Cisplatin which have Been Directly Linked to  Cisplatin 

Resistance.

Gene Annotation Reference A lteration in 
Expression

SFN Stratifin [686] Up

E2F5 E2F transcription factor 5 , p l30-b inding [678] Down



4.3.9 Discussion: The Effect of Hypoxia on Response to Cisplatin in
A2780andA2780cis

In Chapter 3, drug-treating A 2780  cells in hypoxia induced nearly 10-fold resistance 

to  cisplatin com pared to  A 2780  cells which w ere  treated  in normoxia. Gene  

expression data generated by microarrays was explored in order to  identify genes or 

pathways which may contribute  to  the  increased resistance.

The top up-regulated pathways in A 2780  treated  with  cisplatin in normoxia included 

p53 signalling and lysosome. These pathways w ere  not surprising as cisplatin 

t re a tm e n t  has been shown to  induce apoptosis. Indeed, m utation in the  p53 gene  

leading to  loss o f function has been shown to  cause resistance to  cisplatin [695,696],  

and adenovirus-mediated transfer o f  exogenous p53 to  a p53-null lung cancer cell 

line induced apoptosis and increased the cells' sensitivity to  cisplatin [697], The  

microarray analysis identified a n um ber o f  molecules related to p53 signalling which 

w ere  up-regulated. Fas is a m e m b er  of the  TNF receptor superfamily which induces 

cell death on stimulation by a ligand [698]. Activation of Fas results in the  form ation  

of a m ultim olecular protein complex known as the  death-inducing signalling 

complex (DISC) and involves the  proteins FADD (Fas-associated death domain), and 

caspase 8 [698]. Previous studies have shown up-regulation o f  Fas on cells trea ted  

with cisplatin [699,700], a lthough cisplatin can induce apoptosis independent o f Fas 

activation [701]. Ovarian tum ours resistant to chem otherapy  generally express less 

Fas than chemosensitive tum ours  [702].

C D K N IA  (p21) is a cyclin-dependent kinase inhibitor and is induced by cisplatin as 

part of the  apoptotic response [703,704]. Underexpression o f  C D K N IA  has been  

linked to  cisplatin sensitivity [705], whereas C D K N IA  overexpression was shown to 

increase cisplatin resistance [706]. In ovarian cancer cell lines, cytoplasmic CD KN IA  

expression was associated w ith  cisplatin resistance, while s iRNA-mediated C D KN IA  

knock down sensitized th e  cells [707]. Similarly, in prostate carcinoma, siRNA 

directed against C D KN IA  in testicular cancer also sensitized the  cells to cisplatin 

t re a tm e n t  [708]. SU5416, a VEGF receptor-selective inhibitor has been shown to
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ameliorate the effects of cisplatin through down-regulation o f CDKNIA, along with 

other cell cycle-related proteins [308], thus demonstrating its potential as a 

therapeutic target.

Lysosomes are cellular organelles which contain a number of enzymes associated 

with cellular degradation. Cathepsins are protein-degrading enzymes located within 

the lysosome [709], Cathepsin L has been implicated in a number of different 

carcinogenic processes including apoptosis, proliferation, angiogenesis and invasion 

[709], Expression of cathepsin L has been correlated to tumour grade, recurrence 

and poorer survival in urothelial carcinoma [710]. Cathepsin L has been explored as 

a potential diagnostic biomarker for ovarian cancer -  serum levels were significantly 

higher in patients w ith malignant disease compared w ith benign or healthy controls 

-  however, its sensitivity and specificity is low [711,712]. In addition, a further study 

found that supplementation with an anti-oxidant. Vitamin B, following 

chemotherapy resulted in reduced cathepsin activity [713]. A previous study in 

melanoma has also identified cathepsin L as up-regulated in hypoxia [714]. Its 

potential usefulness as a therapeutic target was demonstrated in glioma cells. 

Transfection o f cisplatin-resistant glioma cells w ith the oncolytic virus parvovirus 

resulted in significant cell death with activation of cathepsins B and L [715]. The 

lysosomal-associated membrane proteins 2 and 3 (LAMP2 and LAMP3) were also up- 

regulated following cisplatin treatment in normoxia in A2780. In vitro studies have 

identified LAMP2 as a marker of cisplatin sensitivity. Reduced LAMP2 expression 

was shown to be associated with cisplatin resistance in an ovarian cancer cell line 

[716], however over-expression of LAMP2 has also been shown to confer resistance 

to  cisplatin in colon and breast carcinoma cell lines [717]. LAMP3 has not yet been 

associated w ith response to cisplatin, however, LAMP3 over-expression has been 

associated with metastasis in cervical cancer [718].

In A2780 cells treated in hypoxia, some markers of sensitivity to cisplatin were also 

up-regulated following cisplatin treatment. PMAIPl (phorbol-12-myristate-13- 

acetate-induced protein 1/NOXA) is a pro-apoptotic protein which is activated by
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p53 [719]. PM AIPl has been shown to be induced by HIF-la , and to induce cell 

death in association with release of cytochrome c from the mitochondria and 

caspase activation [720], It has been shown to be induced by proteasome inhibitors 

such as bortezomib, after which it induces apoptotic cell death in melanoma [721], 

Similarly, it is induced by diallyl trisulfide, an organosulfur molecule which 

modulates drug metabolism systems, and facilitates cell death in prostate carcinoma 

[722]. PM AIPl has previously been shown to be inducible in response to cisplatin 

treatm ent in gastric cancer [723], breast cancer [724] and cervical cancer [725] and 

has been shown to be involved in the synergistic effects induced by the Bel inhibitor 

ABT-737 when combined with cisplatin treatment in head and neck squamous cell 

carcinoma cells [726]. A study by Difeo et al. identified a therapeutic potential for 

PM AIP l inhibition -  they showed that targeting the tumour suppressor KLF6-SV1 in 

a mouse model of ovarian cancer resulted in increased survival times due to 

increased apoptosis mediated through PM AIPl [32].

In A2780 and A2780cis treated in normoxia and hypoxia with cisplatin, there was 

down-regulation of many genes related to DNA replication and the cell cycle. There 

was wide-spread down-regulation of DNA polymerase enzymes. Cisplatin treatment  

has previously been shown to inhibit the action of DNA polymerases [253,727]. 

Indeed, increased DNA polymerase beta activity has been observed in a cisplatin- 

resistant leukaemia cell line [728]. In addition, increased DNA polymerase alpha 

activity has been shown in a cisplatin resistant ovarian cancer cell line, A2780CP 

[729] and cisplatin resistant colon carcinoma cell line, HCT8 [730]. siRNA-mediated 

down-regulation of DNA polymerase beta has been shown to sensitize cells to the 

cytotoxic activity of cisplatin [731]. Primase 1 and 2 (PR IM l and PRIM2) enzymes 

were also down-regulated in response to cisplatin. Primase enzymes work in 

conjunction with DNA polymerase to synthesise new DNA strands and a functioning 

primase is required for DNA synthesis and repair to occur following DNA damage 

[732]. Thus, reduced levels of primase, as observed in this study, limit the repair of 

DNA following genotoxic stress and lead to triggering of apoptosis. Indeed, several



studies in a n u m b e r  o f  d i f fe re n t  cancers have  show n th a t  inh ib it ion  o f  p r im a s e  leads  

to  apoptosis  [7 3 3 -7 3 5 ] ,

D o w n -re g u la t io n  o f  cell cycle c o m p o n e n ts  was also observed  in cells t r e a te d  w ith  

cisplatin in both  hypoxia  and no rm o x ia . Cell cycle progression is p os it ive ly  reg u la ted  

by cyclin d e p e n d e n t  kinases (CDKs) w h ich  a re  ac t iva ted  by cyclins [22 ] .  T h e re  w as  

d o w n -re g u la t io n  o f  both  CDKs and cyclins in response to  cisplatin in n o rm o x ia  and  

hypoxia  in both  cell lines. C D K l  is responsib le  fo r  cell cycle progression  th ro u g h  G 2 

to  M  phase, w h i le  CDK2 is responsib le  fo r  cell cycle progression th ro u g h  G i  to  S 

phase [22]. In both  A 2 7 8 0  and A 2780c is , C D K l,  2 and  cyclins A2, B2, E l  and  E2 w e r e  

all d o w n -re g u la te d  in response to  cisplatin , w h i le  C D K l,  2 and cyclins A 2 , B1 and  B2 

w e r e  d o w n -re g u la te d  in th e  hypoxic response. Cisplatin has prev ious ly  b e e n  show n  

to  induce cell cycle arrest in a n u m b e r  o f  cell lines. A s tudy  o f  b la d d e r  ca rc in o m a  

s h o w e d  th a t  cisplatin and a n o th e r  cyto tox ic  drug g em c ita b in e ,  w e r e  ab le  to  induce  

cell cycle arrest a t G i  and G 2 phases, and in ad d it ion , th e y  sh o w e d  t h a t  cisplatin  

induced apoptosis  only  o ccurred  in p 5 3 -w i ld  ty p e  cells [736 ] .  A s tu dy  o f  cervical 

carc in o m a also sh o w e d  cell cycle a rrest fo l lo w in g  t r e a t m e n t  w ith  c isplatin  [737 ] .  

O verexpress ion  o f  CCNA2 has b een  linked to  ch em o res is tan ce  and p o o r  prognosis in 

e n d o m e tr ia l  carc inom a [738 ] .  S imilarly , overexpress io n  o f  C C N E l p ro m o te s  cell 

survival in ovarian  cancer cell lines [739 ] .

T he  'hypoxic only' response to  cisplatin -  i.e. th e  genes d if fe ren t ia l ly  expressed  by 

th e  response to  cisplatin in hypoxia b u t  n o t  norm o x ia  w e r e  e x a m in e d  in o rd e r  to  

id en tify  genes w hich  m ay  be associated w ith  resistance, ra th e r  th an  jus t th e  n orm a l  

response to  c isp la tin -induced  D N A  d a m a g e  as discussed ab ove .

N otch  signalling is a highly conserved  p a th w a y  w ith  fu n ctio ns  in e m b ryo g enes is  and  

tissue se lf -re n e w a l [740 ] .  N O T C H l  is a re c e p to r  fo r  th e  ligands Jagged 1 and  2 and  

D elta - l ike  1, 3 and 4 [740 ] .  It w as  u p -re g u la te d  in th e  A 2 7 8 0  'hypoxic on ly ' response  

to  cisplatin. In cervical can cer N o t c h l  expression has b een  observed  b o th  in tu m o u r  

sam ples and cell lines [685 ] .  It w as  sh ow n  to  in te ra c t  w i th  NF-KB p a th w a y  and
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antagonize cisplatin-mediated cytotoxicity [685]. A nother study in head and neck 

cancer associated N O T C H l expression with  resistance to  cisplatin [741], siRNA- 

m ediated  targeting o f N O T C H l in ovarian cancer cell lines was shown to  inhibit cell 

proliferation [742]. Similarly, inhibitors o f gamma-secretase, the  enzyme that  

cleaves th e  N O T C H l intracellular domain to  initiate signalling, w ere  also shown to  

inhibit cell proliferation and stim ulate apoptosis [743], T rea tm en t o f ovarian cancer 

cells w ith  th e  novel therapeutic  agents xanthohum ol and w ithaferin  A resulted in 

reduced N O T C H l mRNA and protein expression, reduced cell proliferation, cell cycle 

arrest and apoptosis [744,745]. Thus N O T C H l is a potentially  useful therapeutic  

target for the  t rea tm en t  o f  ovarian cancer. A study o f  ovarian cancer found that  

N O T C H l expression was higher in cancer tissue com pared to  norm al tissue, and that  

its expression was correlated with  differentiation and tu m o u r stage -  poorly  

differentia ted  tum ours expressed higher levels of NOTCH [746].

BCI2I1 (BCI2 like 1) is an anti-apoptotic  protein which was up-regulated in the  

A2780cis 'hypoxic only' response to  cisplatin. Expression of BCI2I1 has been linked 

to  the  pathophysiology o f  many different cancers through its effects on apoptosis  

including Hodgkin's Disease [747], breast cancer [748] and ovarian cancer [749]. In 

ovarian cancer BCI2I1 expression has been w idely  studied. BCI2I1 expression is 

higher in malignant ovarian tissue com pared to  benign, and correlated with  

progesterone receptor levels [749]. Lower BCI2I1 in ovarian tum ours com pared to  

normal ovarian tissue has also been observed, indicating a potential a lternative role 

apart from  anti-apoptosis [750]. In addition, no difference in BCL2I1 expression has 

been observed betw een serous and mucinous or clear cell ovarian tum ours  

[751,752]. It has also been linked to  pathology associated with stem cells -  it is up- 

regulated by the stem cell m arker Piwil2 [753]. Previous m icroarray analysis of 

serous ovarian cancer identified BCL2I1 as over-expressed [754], and its expression 

has been linked with  a shorter progression free  survival [755,756]. BCI2I1 

expression has been associated w ith  cisplatin resistance in ovarian cancer cell lines 

[757], and is expressed in protein sampled from  ascetic fluid [758]. Lack o f dow n-



regulation o f BCL2I1 in response to cisplatin, as observed in this study, was shown to 

correlate w ith cisplatin resistance [759]. In addition, hypoxia has been shown to 

increase BCL2L1 expression [760]. BCI2I1 has demonstrated potential usefulness as 

a therapeutic target. Inhibition o f BCI2I1 w ith siRNA in an ovarian cancer cell line 

has been shown to induce anoikis -  apoptosis induced from anchorage-independent 

growth -  and reduce tumourgenicity in cells transplanted to in vivo models [761]. It 

has also been implicated in the action of novel therapeutics such as curcumin [762] 

and the green tea extract, epigallocatechin-3-gallate [763].

MAD2L1 is a highly conserved spindle checkpoint protein whose main function is to 

ensure faithful chromosome segregation during mitosis in conjunction w ith other 

proteins such as BUBl [764], It was down-regulated in the A2780 'hypoxic only' 

response to cisplatin. MAD2L1 expression has been associated with resistance to 

cisplatin in several cancer types. In nasopharyngeal carcinoma cell lines, low 

MAD2L1 expression was associated w ith cisplatin, and could be overcome with 

MAD2L1 transfection [765]. Similarly, in gastric carcinoma, silencing o f MAD2L1 

induced cisplatin resistance [766]. MAD2L1 expression has been shown to sensitize 

cancer cells to cisplatin through activation of the MEK pathway [767] and through 

interference with the DNA repair pathway [768]. Prencipe et al. examined MAD2L1 

expression in ovarian cancer cells exposed to hypoxia, and found that MAD2L1 was 

down-regulated -  although this was independent o f promoter methylation -  and 

validation of this work in ovarian tissue samples confirmed a reciprocal relationship 

between MAD2L1 protein expression and expression of CA9, a surrogate marker for 

hypoxia [769].

E2F1 was down-regulated in the 'hypoxic only' response in A2780 and A2780cis cell 

lines. E2F1 is a transcription factor which has a role in activating genes involved in 

cell cycle progression, apoptosis and senescence, and is negatively regulated by the 

retinoblastoma protein, pRb [770], Its expression has long been shown to induce 

apoptosis mediated by p53 [771]. DNA damaging agents and other stresses such as 

hypoxia [772] have been shown to induce expression of E2F1, and this expression
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has been shown to be mediated through the ATM/ATR kinase pathway [773]. Its 

expression in hypoxia is regulated by another member of the E2F family, E2F6 [774], 

In addition, E2F1 depletion has been associated w ith increased tumour angiogenesis 

through VEGF activation [775], Over-expression o f E2F1 has been directly linked to 

cisplatin sensitivity [776], In addition, E2F1 has been shown to play an important 

role in cisplatin-mediated nephrotoxicity in in vitro and in vivo studies [777], 

However, studies of E2F1 expression in ovarian carcinoma have shown E2F1 to be 

up-regulated in serous carcinomas compared to borderline tumours [778], however 

previous studies correlated E2F1 expression w ith tumour stage and grade, thus 

highlighting its potential as a prognostic indicator for ovarian cancer [779,780].

4.3.10 Hypoxic Biomarker Discovery

This chapter has provided a comprehensive analysis of the transcriptional changes 

induced by exposure of ovarian cancer cells to hypoxia. We have explored the 

unique genetic changes which occur in cells receiving drug treatm ent in hypoxia, as 

well as identifying common genetic alterations between cisplatin-induced and 

hypoxia-induced chemoresistance. There is a paucity of literature utilizing 

microarray data to glean new information regarding the role of hypoxia in ovarian 

cancer chemoresistance. For the first time, we have used a paired platinum 

resistance cell line model to investigate the transcriptional alterations invoked by 

hypoxic exposure. We have identified many novel biomarkers, including markers 

not previously associated w ith ovarian cancer, hypoxia, and/or chemoresistance. As 

mentioned previously, there are relatively few surrogate markers o f tumour 

hypoxia, and HIF-la itself has certain problems due to difficulties in isolation of its 

protein and conflicting evidence in the literature regarding its significance in terms 

o f survival. Therefore, as hypoxia is proving to be such an im portant mediator of 

chemoresistance, it is imperative to discover consistent markers o f its presence. 

This study has identified many markers influenced by hypoxia, and linked them to 

platinum resistance in ovarian cancer and others. In Chapter 5, we provide an initial 

evaluation o f their expression in a cohort of ovarian tumour samples.



4.3.11 Summary

The e x p e r im e n t s  examin ing  t h e  ef fec t  of  hypoxia on t h e  r e s p o n s e  o f  A2780 and  

A2780cis to  cisplatin re vea led  a n u m b e r  of  findings:

1. Similar p a th w a y s  and a large n u m b e r  of  g e n e s  ar e  c o m m o n ly  dys re gu la te d  

bo th  in norm oxia  an d  hypoxia an d  in bot h  cell lines.

2. M any g e n e  ch an g es  w e r e  as wou ld  be  e x p e c t e d  in a cell line faced  wi th t h e  

genotoxic  s t re s so rs  of  cisplatin an d hypoxia.

3. A n u m b e r  of  c h a n g es  in hypoxic cells w e r e  ident if ied which did n o t  ent i re ly 

fit wi th a no rm al  r e s p o n s e  to  cisplatin -  t h e s e  g e n e s  w e r e  o f t en  m ark e rs  of  

re s is tance  t o  cisplatin,  and hold potent i a l  p r o g n o s t i c / t h e r a p e u t i c  value.



Chapter 5
Evaluation of Novel Hypoxic 

Biomarkers of Ovarian Cancer



5.1 Introduction

Based on the array analysis o f Chapter 4, four potential biomarkers of hypoxia and 

ovarian cancer were selected for validation in a cohort of ovarian tum our samples. 

In the array analysis, a number of hypoxia-related biomarkers of ovarian cancer 

were identified that were altered in (i) both cisplatin resistance and hypoxia 

resistance, (ii) general response to hypoxia in one or both cell lines and (iii) response 

to cisplatin in hypoxia in one or both cell lines. Markers were chosen based on their 

potential to serve as markers of chemoresistance in ovarian cancer, due to their 

expression patterns in cells exposed to hypoxia/cisplatin/both, and based on 

information available in the literature on the ir connection to cisplatin resistance.

i) Angiopoietin-like 4 (ANGPTL4) -  Up-regulated in A2780 cells exposed to 

hypoxia (8.65-fold); A2780cis cells exposed to hypoxia (3.48-fold)

ii) BDNF -  Up-regulated in A2780 cells exposed to hypoxia (2.69-fold)

iii) HER3 -  Up-regulated in A2780cis compared to A2780 (normoxia, 2.71- 

fold); A2780 cells exposed to  hypoxia (3.44-fold); down-regulated in 

A2780 'hypoxic only' response (i.e. gene expression was altered when 

cells were treated with cisplatin in hypoxia, but not when treated in 

normoxia) to cisplatin (-3.2-fold)

iv) H IF-la -  although the expression of H IF-la was not altered in these 

samples, its expression is widely studied in the literature in terms of 

hypoxia

A fifth  biomarker, MAD2L1 was validated in the hypoxia matrix, however, its 

expression was not determined in the tissue sample cohort, as its expression in the 

same cohort was previously determined by one o f our collaborating groups [781], 

On the array analysis it was down-regulated in the A2780 response to cisplatin in 

normoxia (-2.01-fold) and the A2780 and A2780cis response to cisplatin in hypoxia (- 

3.41-fold and -4.91-fold respectively).
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5.1.1 Angiopoietin-like 4

The ability of tum ours to  produce the ir  own blood supply by stimulating the  growth  

of blood vessels (angiogenesis) is one of the  hallmarks of cancer [16]. Tum our  

angiogenesis is stimulated in a nu m b er o f ways. Vascular endothelial growth factor  

(VEGF) is released by tu m o u r  cells leading to proliferation of endothelial cells, 

platelet derived growth factor (PDGF) released by activated platelets stimulates  

perivascular cells, and angiopoietins signal through the insulin-like growth factor  

pathw ay [41]. In 2000, angiopoietin-like 4 (ANGPTL4) was discovered and 

designated as hepatic f ibrinogen/angiopoietin -re lated  protein (HFARP) by Kim et  al. 

[782]. In the  same year, tw o  o ther groups discovered the  same protein and named  

it fasting induced adipose factor (FIAF) [783] and PGAR (PPAR gam m a angiopoietin  

related) [784], Studies in a variety o f malignant and non-m alignant cell types have 

shown ANGPTL4 to  have a n um ber of functions including prevention of apoptosis  

[782], regulation of fat and carbohydrate metabolism [785,786], induction of  

angiogenesis [787], inhibition o f  angiogenesis [788,789], inhibition of metastasis  

[790] and facilitation o f  metastasis [791]. Thus, ANGPTL4 is seen to  have 

paradoxical functions.

In vitro experiments have shown ANGPTL4 to  be m ethylated  in gastric cancer [792]  

and breast cancer [793] cell lines and transfection o f  hepatocellular carcinoma cells 

with recombinant ANGPTL4 was shown to  reduce cell proliferation and reduce  

tu m o u r growth in mice [794]. The angiogenesis inhibitor ZD6474, which acts via the  

VEGF receptor as well as the  epiderm al growth factor receptor (EGFR), has been  

shown to up-regulate expression of ANGPTL4 while reducing tu m o u r  growth and 

metastasis in mice [795]. However, a study examining the  gene expression profiles 

of breast tu m o u r metastases found that ANGPTL4 was up-regulated in the  tum ou r  

metastases [796], and high expression of ANGPTL4 has been associated with  poor  

survival in oral tongue squamous cell carcinoma [797]. ANGPTL4 has been  

suggested as a diagnostic b iom arker for renal cell carcinoma [798]. In addition, up- 

regulation o f  ANGPTL4 has been implicated in angiogenesis in Kaposi's sarcoma
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[799] and  invasion in gas tr ic ca rc inom a [800]. In o e s o p h a g e a l  ca rc inom a,  ANGPTL4 

express ion co r re la t es  wi th invasion and p o o r e r  overall  survival [801], while in 

e n d o m e t r i a l  cancer ,  its express ion co r re la te s  wi th invasion an d  b e t t e r  overall  

survival [802], Thus  t h e r e  is conflicting ev idence  in t h e  l i te ra ture  on t h e  func t ion of 

ANGPTL4 an d  its ef fec ts  in d i f ferent  c a n ce r  types .  Currently,  t h e r e  is no  ev iden ce  in 

t h e  l i te ra ture  on ANGPTL4 express ion and its re la t ionsh ip  wi th cisplatin res is tance ,  

and t h e r e  is very l imi ted info rmat ion on ANGPTL4 express ion in ovar ian  cancer .  One  

s tu d y  has  s how n  ANGPTL4 to  be  e x p r e s s ed  in t h e  ovar ian  ca n ce r  cell line SK0V3, 

and in xenog ra f t  t u m o u r s  der ived f rom it [803].

5.1.2 Brain-Derived Neurotrophic Factor

Brain-derived n e u r o t r o p h ic  fa c t o r  (BDNF) is a g ro w th  fac to r  which binds  t h e  TrkB 

r e c e p t o r  resul t ing in e n h a n c e d  ex c i t e m e n t  of  n e u r o n s  and pro tec t io n  agains t  

cellular s t re s se s  [804]. BDNF over -expr ess ion has  b e e n  ob se rv ed  in m an y  cance r  

ty p es  including hepa tocel lu la r  ca rc inom a [805]. A s tu d y  of  colorecta l  ca rc inoma 

fo und  BDNF to  be  p r o d u c e d  in t h e  cellular r e s p o n s e  t o  s t ress,  and s u p p re s s e d  

ap o p to s i s  [806]. Hypoxia has  b e e n  sh o w n  t o  induce BDNF express ion  in vitro  and  in 

vivo  [807,808].  In b re a s t  cancer ,  BDNF w a s  fo und  to  be  over -ex p re s sed  w h e n  

c o m p a r e d  to  normal  t issue ,  and  w as  a ssoc ia te d  wi th a n u m b e r  of f e a tu r e s  of  t u m o u r  

aggress iveness  such as lymph n o d e  m e ta s t a s i s  an d  r e d u ced  p rog ress ion -f re e  and 

overall  survival [809]. In a s tud y of  cervical cance r ,  BDNF w a s  u p -r egu la ted  in cance r  

t i ssue  and was  as soc ia ted  wi th low FIGO (Internat ional  Federa t ion  of  Obste t r ic ians  

an d  Gynaecologis ts)  s t age  and r e d u ced  f e a tu r e s  o f  invasion [810]. Indeed,  o v e r ­

express ion of  BDNF in a norm al  endo thel ia l  cell line s t imul a t ed  m a n y  tu m o r ig en ic  

p rope r t ie s  such as increased  cell prol ifera tion,  survival, invasion,  and  ang iogenes is  

[811]. In fact,  BDNF has  b e e n  s h o w n  to  s t imu la te  produc t ion  of  VEGF in a HIF- la-  

d e p e n d e n t  m a n n e r  [812]. BDNF has  recen t ly  b e e n  s h o w n  to  play a role in cisplatin 

re s is tance  in head  and neck s q u a m o u s  cell c a rc in o m a  th r o u g h  affec ting t h e  ra tio of 

pro-  and an t i -a po pto t i c  prote ins ,  and th r o u g h  up -r egu la t ion of  en z y m es  such as 

g lu ta th io ne -s - t ra ns fe rase  and t h e  mul t idrug re s is t an ce  pro te in ,  MDR-1 as well as
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activation o f the Akt and MARK signalling pathways [516], In ovarian cancer, BDNF 

has been shown to  increase cell pro liferation  and m igration through activation o f 

the Akt pathway [813]. A study o f BDNF expression in ovarian cancer tissues found 

no difference in mRNA expression between m alignant and non-tum our tissue, 

however high levels o f its receptor, TrkB were noted and correlated w ith  poor 

survival [814]. Inh ib ition o f BDNF has been shown to  induce apoptosis in 

hepatocellular carcinoma and breast cancer, thus dem onstrating its therapeutic 

potentia l [805,815]. Similarly, the Akt inh ib ito r perifosine has been shown to  exert 

its effects, at least partially, through down-regulation o f BDNF [816].

5.1.3 HER3

HERS (ERBB3) is a m em ber o f the epidermal grow th facto r receptor (EGFR) fam ily. 

Activation o f HERB through ligand binding stim ulates its dim erization w ith  another 

m em ber o f the ERBB fam ily -  HERB has no in trinsic enzymatic (tyrosine kinase) 

activ ity o f its own [817]. Following activation, members o f the EGFR fam ily 

stim ulate several signalling pathways w ith in  the cell including Ras/MAPK, P13K/Akt, 

Src/NFKB, PAK-l/Rac and catenin/cytoskeleton [818]. HERB is frequently  co­

expressed w ith  HER2 in breast cancer [819]. Knockdown o f HERB w ith  siRNA has 

been shown to  decrease m etastatic potentia l [820]. In colon carcinoma, elevated 

HERB is associated w ith  reduced progression free survival in tum ou r samples, and 

knockdown o f HERB in cell lines resulted in reduced p ro life ra tion , m igration and 

invasion o f cells [821]. Signalling through HERB has been linked to  resistance to  a 

num ber o f therapeutic agents including gefitin ib  in lung cancer [822] and paclitaxel 

in breast cancer [823]. A study o f glioblastoma has identified HERB expression as 

prom inent in a putative cancer stem cell population [824]. In vivo studies in ovarian 

cancer have identified tha t HERB is involved in stim ulating cell pro lifera tion , and tha t 

targeting HERB w ith  siRNA reduces cell grow th and increases progression-free and 

overall survival in mice [21]. In breast cancer, the HER2/HERB heterod im er is 

associated w ith  decreased survival [825], and oncogenic signalling through HERB can 

attenuate the effects o f HER2-mediated therapies [826]. Four a lternative splice
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variants of HER3 have been identified in ovarian cancer cell lines and normal tissues 

[827], Previous cDNA microarray studies have identified over-expression o f  HER3 in 

serous ovarian adenocarcinoma tissue [828]. O ther studies of EGFR expression in 

ovarian cancers have shown tha t  EGFR is expressed in only a small subset of  

tum ours [829,830], how ever its expression has been associated w ith  poorer survival

[830]. Interestingly, a study in ovarian cancer cell lines showed tha t  t re a tm e n t  with  

heregulin, a ligand for HERS, and EGF significantly decreased HERS expression in 

some cell lines, while HERS expression was reduced to  a lesser am ount in others

[831]. This was associated with  activation o f  the  MARK pathway, and was also 

linked to sensitivity to  the  monoclonal a-HER2 antibody, pertuzum ab, which 

prevents dimerization of HER2 molecules.

5.1.4 MAD2L1

M AD2L1 is a m em b er of the  spindle checkpoint assembly of proteins [832] whose  

function is to ensure faithful chrom osom e segregation during mitosis [764]. Loss of  

one M AD2L1 allele results in a defective spindle checkpoint and inappropriate  

chrom osom e segregation [833]. Over-expression of M AD2L1 has been observed in 

gastric cancer and colon cancer, and is associated with  metastasis [834,835]. A 

previous microarray study of endom etria l carcinoma identified MAD2L1 as o ver­

expressed in cases with lymph node positivity [836], while in thyroid cancer, over­

expression of M AD2L1 was observed in anaplastic carcinoma, a particularly  

aggressive subtype [837]. Expression of M AD2L1 in hepatocellular carcinoma is 

associated with  tum ou r grade and reduced overall survival [838]. Reduced  

expression o f M AD2L1 in ovarian cancer cell lines is associated with a loss of  

checkpoint control [839] and low M AD2L1 expression has been observed in the  

chrom ophobe subtype of renal carcinoma -  which is associated with  chromosomal 

monosom y [840], and in a large proportion of marginal zone B-cell lymphom as due  

to  hypermethylation [841], Knockdown of M AD2L1 in cervical cancer cells was 

shown to result in chrom osom e loss in mitosis and reduced viability [842]. 

However, in gastric cancer, inhibition o f  M AD2L1 with  siRNA was shown to reduce
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apoptosis following treatm ent with the cytotoxic drugs vincristine and cisplatin

[766]. Similarly, a study of MAD2L1 in testicular carcinoma correlated high MAD2L1 

expression with sensitivity to  cisplatin mediated through the ERK signalling pathway

[767]. This may be m ediated, at least in part, by interference of MAD2L1 with DNA 

repair proteins [768]. An in v itro  study by Sudo e t  al. showed that over-expression 

of MAD2L1 in an ovarian cancer cell line which is low in endogenous MAD2L1, 

OVCA432, increased sensitivity to paclitaxel [843]. Indeed, high MAD2L1 expression 

induces cellular senescence, and paclitaxel resistance [844]. A study by our 

collaborators in University College Dublin showed that low MAD2L1 expression is 

associated with resistance to paclitaxel in ovarian cancer cell lines, and low MAD2L1 

expression in ovarian tumours is associated with reduced progression free survival 

[781].

5.1.5 HlF-la

Hypoxia-inducible factor l a  (HIF-la) is a transcriptional activator which is stabilized 

in hypoxic conditions [845]. There have been a large number of articles which 

investigate its potential utility as a prognostic or therapeutic biomarker in cancer. In 

vivo studies have linked HIF-la expression to tumourigenesis, and knock-down of 

HIF-la has been shown to reduce tum our growth and metastasis [846]. The 

potential usefulness of HIF-la as a m onitor for response to therapy was 

demonstrated in a study of liver cancer, which showed reduced HIF-la levels in the  

sera of patients who had undergone transcatheter arterial chemoembolization 

(TACE) to restrict tum our blood supply [847]. Similarly, HIF-la has also been shown 

to have potential as a prognostic biomarker -  its expression predicts progression 

free survival in rectal cancer [848] and in pancreatic adenocarcinoma it is associated 

with reduced overall survival [849]. In addition, polymorphism analysis of HIF-la in 

non-small cell lung cancer correlated certain polymorphisms of HIF-la with 

prognosis [850].
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HIF-la  and m an y  of  its t a rg e t  g en e s  h av e  b e e n  ident if ied  as up - r e g u la t ed  in c lear cell 

ovar ian  ca rc inom a [851], and  in s e r o u s  ovar ian  ca rc inom a  its express ion  w a s  linked 

wi th r e d u ced  progress ion f r ee  survival and  overal l  survival [200].  It has  also b ee n  

ident if ied as up -r egu la ted  in p la t inum -re s i s t an t  ovar ian  t u m o u r s  [852], HIF- la  

express ion is h igher  in poorly  d i f f e rent ia ted  ovar ian  t u m o u r s  w h e r e  its express ion 

co r re la t es  wi th vascular  endothe l i a l  g ro w th  f ac to r  (VEGF) [853]. Interest ingly,  high 

HIF- la  express ion was  as soc ia ted  wi th in c re ased  p rogr es s ion -f re e  survival in 

subopt imal ly  d eb u lk ed  ovar ian  ca n ce r  pa t i en t s  w h o  s u b s e q u e n t ly  u n d e r w e n t  

p l a t i n u m / t a x a n e  b a se d  c h e m o t h e r a p y  [201],

The express ion of s u r r o g a t e  m ark e rs  of  HIF- la  such as carbonic  an h y d r a s e  9 (CA9) 

an d  glucose  t r a n s p o r t e r  1 (GLUT-1) has  also b e e n  ex a m in e d  in ovar ian  t u m o u r s .  

Expression of  CA9 is p r e s e n t  in all ty p es  of  ovar ian  n eop lasm ,  h o w e v e r  it is h igher  in 

m uc inous  t u m o u r s  [854]. A n o th e r  s tudy  fo und  t h a t  express ion o f  CA9 was  higher  in 

muc inous  and  e n d o m e t r io id  ovar ian  t u m o u r s  and  linked it t o  s h o r t e r  overall  survival 

[855]. GLUT-1 is o v e r -e xpre s sed  in invasive t u m o u r s  c o m p a r e d  to  bo rde r l ine  

[856,857] and  has  b e e n  linked to  t u m o u r  g ra d e  [858].  In addi t ion  it has  b e e n  sh o w n  

to  be  ove r -e xpre s sed  in poor ly  d i f f e ren t i a t ed  t u m o u r s  and as soc ia ted  wi th sh o r t e r  

progress ion  f r ee  survival [859].  Previous  w ork  by o u r  g ro u p  ex a m in e d  express ion of 

vascular endothel ia l  g ro w th  fa c t o r  (VEGF) in ovar ian  ca rc inom as ,  and fo und  t h a t  low 

express ion of  VEGF co n f e r re d  a survival a d v a n ta g e  [860].

5.1.6 Aim

The aim of this c h a p t e r  w as  two-fold:

i) To val idate  t h e  results  of  t h e  hypoxia matrix,  and  to  eva lu a t e  t h e  ef fec t  of 

differing lengths  of  hypoxic e x p o s u re  on g e n e  express ion

ii) To eva lu a te  s o m e  of  t h e  b iom arke rs  ident i fied  in C h a p te r  5 in a c o h o r t  of  

ovar ian  t u m o u r  sam p le s



5.2 Methods

5.2.1 Samples -  Cell Lines

The quality of gene expression data from arrays can be variable depending on the  

platform used and thus real-t im e polymerase chain reaction (PCR) is often employed  

to  validate microarray results. M arkers which w ere  selected from  the  microarray  

analysis for further investigation w ere  validated using real-t im e Reverse 

Transcription-PCR (RT-PCR). In addition, as only a very small subset o f the  hypoxia  

matrix had been interrogated on the  microarrays, the  expression o f these genes was  

determ ined  in alternative matrix conditions. Expression o f  four genes (ANGPTL4, 

BDNF, HER3 and MAD2L1) was validated using Taqm an RT-PCR on the samples 

interrogated on the  Affym etrix  arrays as well as som e o ther points of the  hypoxia  

matrix, summarized in Table 5.1. Initial experiments revealed some inconsistency in 

Ct values betw een  some biological replicates w ith in  sample groups, there fo re  all 

samples w ere  'cleaned up' by washing in ice-cold isopropanol followed by 

reconstitution in RNase-free w ater ,  in order to  rem ove any residual contam inating  

salts following RNA extraction. Following clean-up, samples o f  th e  same type all 

displayed expression levels within one Cj of each other. All experim ents w ere  

carried out for n=3. 185, GAPDH (glyceraldehydes) and 3-actin w e re  evaluated as 

endogenous controls in a range of samples, and p-actin was chosen due to  its low  

variation in expression.

5.2.2 Samples -  Tumour Tissue

Expression of four genes (ANGPTL4, BDNF, HERB and H IF - la )  was exam ined in a 

cohort of 35 serous papillary ovarian tu m o u r samples. The patient characteristics 

are summarized in Table 5.2. Tum our regions w ere  macrodissected from  formalin  

fixed paraffin em bedded  (FFPE) sections and RNA was extracted using the  RNeasy  

FFPE kit (Qiagen, UK). Sectioning and RNA isolation was carried out by one of our  

group's collaborators in University College, Dublin. RNA was converted to cDNA and 

Taqm an PCR was carried out as described in Chapter 2. A list o f  the  probes is



displayed in Table 5.3. GAPDH was used as an endogenous contro l fo r these 

samples, as (3-actin displayed an unacceptable degree o f variation between samples.

Table 5.1. List of Samples Used for Validation Based on the Hypoxia Matrix.

Expression in these samples was determ ined fo r both A2780 and A2780cis.

Sample Type

Normoxia, Untreated 

Hypoxia, Untreated 

Normoxia, Cisplatin Treated 

Hypoxia, Cisplatin Treated 

Acute hypoxia (4 hours), Untreated 

Chronic hypoxia (5 days). Untreated

Table 5.2. List of Patient/Tumour Characteristics

Histology Stage Grade Number
Serous Adenocarcinoma 2 3 2
Serous Adenocarcinoma 3 1/2 3

Serous Adenocarcinoma 3 2 7
Serous Adenocarcinoma 3 2/3 2
Serous Adenocarcinoma 3 3 15
Serous Adenocarcinoma 4 1/2 1
Serous Adenocarcinoma 4 2/3 1
Serous Adenocarcinoma 4 3 4
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Table 5,3. List of Probes for Taqman® PCR. All probes were obtained from  Applied 

Biosystems, USA.

Probe Assay Code
ANGPTL4 Hs01101127_m l

BDNF Hs00380947_m l

HER3 Hs00176538_m l

H IF -la Hs00153153_m l

MAD2L1 Hs03063324_gl

ACTB 4333762F

GAPDH 4326317E

5.2.3 Sample Grouping and Relative Quantitation

Patient samples were grouped as outlined in Table 5.4 according to  the ir response 

to  p la tinum /taxane chem otherapy obtained from  fo llow -up data. Progression-free 

survival (PFS) and overall survival (OS) were determ ined as the num ber o f months 

fo llow ing com pletion o f p la tinum /taxane chem otherapy until recurrence or death 

respectively.

Relative gene quantita tion  fo r both cell line and tissue samples was determ ined 

using the method, as described in Chapter 2. For cell line samples, the

calibrators (reference samples) used were e ither A2780 (normoxia, untreated) or 

A2780cis (normoxia untreated). For all patient samples, the ca librator was the 

group o f patients deemed to  have responded to  chem otherapy (Table 5.4).

Once fold-changes had been determ ined, statistical significance was determ ined by 

a one-sided Student's t-tes t o f the hypothesis tha t the fold change = 1, w ith  p<0.05 

determ ined as significant. Data was graphed and statistical analysis carried out 

using GraphPad Prism Software.
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Table 5.4. Classification of Tumour Samples Based on Response to Chemotherapy.

Class Response Number of 

Samples

Responders Recurrence >12 months following completion of 
chemotherapy

17

Partial
Responders

Recurrence between 6 - 1 2  months following 
completion o f chemotherapy

11

Non-Responders Recurrence <6 months following completion of 
chemotherapy

7

5.2.4 Kaplan-Meier Survival Analysis

Relationships between gene expression and progression free survival (PFS) and 

overall survival (OS) were analysed using Kaplan-Meier survival curves on Prism 

software. This method allows for analysis o f data where some data might be 

censored -  the end-point has not yet occurred (e.g. death). This analysis is based on 

several assumptions outlined by Bland and Altman [861]. Firstly, it is assumed that 

the censored patients have the same survival prospects as those who are followed -  

in this study, patient data is censored if the patient has not yet progressed or died. 

Secondly, it is assumed that survival probabilities are the same for patients recruited 

early and late in the study -  this is not relevant for this study as all patients were 

'recruited' at the same time. Finally, it is assumed that the event occurred at the 

time specified. This is true for certain events e.g. date of death is relatively 

unambiguous. However, time of progression is more complex, as it is not always 

clear from patient records exactly when progression occurred. In the case o f ovarian 

cancer management, Cal25 levels are checked regularly, at 6-month intervals. A 

rising Cal25 can be indicative of recurrent disease, however, not all clinicians 

conclude that a patient has recurred until they are symptomatic -  thus it can be 

unclear exactly when a recurrence has taken place. We determined tim e of



recurrence as when it was identified on radiology and logged in the patient's notes 

by their consultant. Curves are generated using a product lim it formula and 

compared using the log rank test, a non-parametric test which can be used to 

compare groups containing censored data. It tests the null hypothesis that there is 

no difference between the groups in the probability of an event at any given time 

point, and is based on the same assumptions as those used to generate a survival 

curve [862]. If an individual's data is censored, it is considered to be at risk of an 

event at the time of censoring, but not in subsequent time points [862].

Follow-up data for PFS and OS with Taqman data was available for 27 o f the 35 

patients. Graph Pad Prism software was used for calculating Kaplan-Meier curves 

based on the follow-up data. For each gene, the samples were split into two groups, 

high expressers and low expressers, and the PFS and OS data was entered (Table 

5.5). If the event had occurred at the most recent follow-up point available, i.e. the 

patient had recurred or died, the data was given the binary code 1. If the event had 

not yet occurred, i.e. the patient was still healthy/alive at the most recent follow-up 

point, the data was given the binary code 0 to facilitate censoring of data. To 

separate the samples into high and low expressers, the median value for expression 

for each gene (ACt) was determined for all samples. A higher Cj value on Taqman® 

analysis for a gene, indicates that a lower amount of target is present, therefore 

samples w ith a higher ACj value were classed as low expressers while samples w ith a 

lower ACt value were classed as high expressers.

Table 5.5. Breakdown of High And Low Gene Expression.

Gene Number of High Expressers Number of Low Expressers
ANGPTL4 14 13
HER3 16 13
HIF-la 15 12



5.3 Results

5.3.1 Array Validation

A summary o f array validation is displayed in Figures 5.1 and 5.2 and Table 5.6.

5.3.1.1 ANGPTL4

ANGPTL4 was up-regulated in response to  hypoxia in A2780 and A2780cis on arrays 

and was confirm ed w ith  RT-PCR (Figures 5 .IB  and 5.1C). In addition, RT-PCR 

identified expression o f ANGPTL4 as up-regulated in A2780cis when compared to  

A2780 (Figure 5.1A). ANGPTL4 was up-regulated in the response to  cisplatin in 

normoxia in A2780 and also in the hypoxic response to  cisplatin in A2780cis (Figure 

5.2D).

5.3.1.2 BDNF

BDNF was identified as up-regulated on the array analysis in A2780 cells in response 

to  hypoxia (Figure 5 .IB ) and was confirmed using RT-PCR. In addition, RT-PCR 

picked up expression o f BDNF in the response to  hypoxia in A2780cis (Figure 5.1C). 

BDNF was up-regulated in response to  cisplatin in normoxia in A2780cis and down- 

regulated in response to  cisplatin in hypoxia in both A2780 and A2780cis on PCR 

(Figure 5.2).

5.3.1.3 HER3

On arrays, HER3 was up-regulated in A2780cis compared to  A2780 (Figure 5.1A) and 

up-regulated in the response to  hypoxia in A2780 (Figure 5 .IB). It was dow n- 

regulated in the hypoxic response to  cisplatin in A2780 (Figure 5.2B). The same 

changes were observed by Taqman analysis (Figure 5 .IB). In addition, HER3 

expression was found to  be up-regulated in response to  hypoxia in A2780cis, in the 

A2780cis response to  cisplatin in normoxia, and down-regulated in response 

cisplatin in hypoxia in both cell lines (Figure 5.2).



5.3.1.4 MAD2L1

On arrays, MAD2L1 was down-regulated in response to cisplatin in normoxia and 

hypoxia in A2780 and in hypoxia in A2780cis (Figure 5.2). Taqman PCR revealed 

MAD2L1 to be up-regulated in A2780cis compared to  A2780. It was also up- 

regulated in response to hypoxia (Figure 5.IB and 5.1C) and in the response to 

cisplatin in normoxia in both cell lines (Figure 5.2A and 5.2C), however it was found 

to be down-regulated in the hypoxic response to cisplatin in both cell lines (Figure 

5.2B and 5.2D).



Table 5.6. Comparison of Fold-Changes in Validation Genes on Array and Taqman® (TM). Taqman® findings which were contrary 

to  the array findings are highlighted in red. Novel findings on Taqman® not identified in the array analysis are highlighted in blue.

Gene A2780V
A2780cis
(Normoxia)

A2780 
Normoxia v 
Hypoxia

A2780cis 
Normoxia v 
Hypoxia

A2780 
Untreated v 
Cisplatin 
(Normoxia)

A2780 
Untreated v 
Cisplatin 
(Hypoxia)

A2780cis 
Untreated v 
Cisplatin 
(Normoxia)

A2780cis 
Untreated v 
Cisplatin 
(Hypoxia)

Array TM Array TM Array TM Array TM Array TM Array TM Array TM

BONF - 1.10 2.69 4.79 - 28.64 - -1.20 - -2.5 - 4.52 - -6.25

ANGPTL4 - 4.86 8.65 22.20 3.48 9.59 - 2.48 - 1.28 - 1.96 - 3.45

HER3 2.71 11.86 3.44 7.11 - 7.78 - 2.66 -3.20 -5.00 - 7.99 - -3.45

MAD2L1 - 27.10 - 7.43 - 4.14 -2.01 2.16 -3.91 -4.70 - 9.24 -4.91 -20.00

{ 253 }
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Figure 5.1. Comparison of Taqman® Analysis and Array Data. Taqman® and 

Array fold-changes are compared fo r A2780 v A2780cis (A); A2780 normoxia v 

hypoxia (B) and A2780cis normoxia v hypoxia (C). Threshold o f 2-fold change is 

indicated by the black bar. n=3
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Figure 5.2. Comparison of Array and Taqman® fold changes for cisplatin 

response. Fold-changes identified on arrays and Taqman® fo r (A) A2780 

Untreated v Cisplatin (normoxia); (B) A2780 Untreated v Cisplatin (hypoxia); (C) 

A2780cis Untreated v Cisplatin (normoxia); (D) A2780cis Untreated v Cisplatin 

(hypoxia). Threshold o f 2-fold change is indicated by the black bar. n=3
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5.3.2 Further Evaluation of the Hypoxia Matrix

Expression o f the identified genes was analysed in other parts of the hypoxia 

matrix in order to determine if other types of hypoxic exposure affected their 

expression. The hypoxia matrix had explored the effect of acute (4 hours) and 

chronic (5 days) exposure to hypoxia prior to drug treatment, as well as the 

effect o f hypoxia concomitant w ith drug treatm ent w ithout previous exposure. 

The array data was based on samples which had been exposed to hypoxia for the 

treatm ent duration (72 hours), so in this experiment we evaluated the effect of 

the other hypoxia durations on gene expression.

5.3.2.1 ANGPTL4

When A2780 (normoxia) was used as a calibrator, ANGPTL4 was found to be 

significantly increased following 72 hours o f hypoxia (Figure 5.3A). It was also 

increased following acute and chronic hypoxia, although this did not reach 

significance. When A2780cis (normoxia) was used as a calibrator (Figure 5.4A), 

there was a trend for increased expression in 72 hours hypoxia, however 

expression was not significantly different from normal in acute or chronic 

hypoxia.

5.3.2.2 BDNF

When A2780 (normoxia) was used as a calibrator, BNDF was found to be 

significantly decreased following acute hypoxia (Figure 5.3B). There was a trend 

for it to  be increased following 72 hours of hypoxia, and chronic hypoxia 

although this was not significant. When A2780cis (normoxia) was used as a 

calibrator (Figure 5.4B), there was a trend of increased expression in 72 hours 

hypoxia, however expression was not significantly different from normal in acute 

or chronic hypoxia.

5.3.2.3 HER3

When A2780 (normoxia) was used as a calibrator (Figure 5.3C), HERB was 

significantly up-regulated following 72 hours hypoxia. HER3 expression was not 

significantly different from normal oxygen in A2780 following acute hypoxia.



There was a trend for increased expression following chronic hypoxia, although 

this was not significant. When A2780cis (normoxia) was used as a calibrator 

(Figure 5.4C), HER3 was reduced in acute and chronic hypoxia although this was 

not significant.

S.3.2.4 MAD2L1

When A2780 (normoxia) was used as a calibrator (Figure 5.3D), MAD2L1 was 

increased following acute hypoxia, but its expression decreased with increasing 

time in hypoxia. When A2780cis (normoxia) was used as a calibrator (Figure 

5.4D), MAD2L1 expression showed a trend to increase following 72 hours and 

chronic hypoxia, although this was not significant due to the high amount of 

variation between groups.
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Figure 5.3. Changes in Gene Expression in A2780 in the Hypoxia matrix.

Changes in gene expression o f ANGPTL4 (A), BDNF (B), HER3 (C) and MAD2L1 (D) 

as measured by Taqman RT-PCR. A2780 (normoxia) was used as a calibrator. 

BDNF expression was reduced in acute hypoxia while  increased fo llow ing longer 

hypoxic exposures (A); ANGPTL4 was increased in hypoxia (B); HERS was 

increased fo llow ing 72 hours hypoxia (C); MAD2L1 was increased fo llow ing acute 

hypoxia, but this reduced w ith  longer exposure to  hypoxia (D) n=3 *p<0.05

**p<0.01

{  258 }



A B

Figure 5.4. Changes in Gene Expression in A2780cis in the Hypoxia Matrix.

Changes in gene expression o f ANGPTL4 (A), BDNF (B), HER3 (C) and MAD2L1 (D) 

as measured by Taqman RT-PCR. A2780cis (normoxia) was used as a calibrator. 

BDNF, ANGPTL4, HER3 and MAD2L1 were all increased fo llow ing  72 hours of 

hypoxia compared to  normoxia. n=3
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5.3.3 Expression of ANGPTL4, BDNF, HER3 and H IF -la  in
Tumour Sample Cohort

Following the validation o f ANGPTL4, BDNF HERS and MAD2L1 in the cell line 

work, the ir expression was determined in a cohort of ovarian tum our samples. 

As mentioned previously, MAD2L1 expression has previously been determined in 

this set of samples by our collaborators, therefore the expression of HIF-la, a 

marker o f tumour hypoxia was determined instead.

5.3.3.1 ANGPTL4

ANGPTL4 expression was significantly up-regulated in partial responders and 

significantly down-regulated in non-responders to chemotherapy (Figure 5.5A) 

compared to responders to chemotherapy. Kaplan-Meier survival analysis 

showed a trend towards shorter PFS and OS for samples highly expressing 

ANGPTL4, however this was non-significant (Figure 5.5B p = 0.18 and 5.5C p = 

0.96, Table 5.7).

5.3.3.2 BDNF

BDNF expression was observed in only 6 o f the 35 samples assayed, thus a 

thorough analysis of its significance was not possible in this study. It could be 

studied as part of a larger cohort o f samples, and perhaps in different types of 

samples e.g. recurrent vs. primary.

5.3.3.3 HER3

HER3 expression was significantly down-regulated in partial- and non-responders 

(Figure 5.6A) compared to  responders to chemotherapy. Kaplan-Meier survival 

analysis showed a trend towards longer PFS and shorter OS fo r samples highly 

expressing HER3, however this was non-significant (Figure 5.6B p = 0.11 and 5.6C 

p = 0.7. Tables.?).



S.3.3.4 H IF-la

HIF-la expression was significantly up-regulated in partial- and down-regulated 

in non-responders (Figure 5.7A) compared to responders to chemotherapy. 

Kaplan-Meier survival analysis showed a trend towards longer PFS and slightly 

shorter OS for samples which over-expressed HIF-la, however this was non­

significant (Figure 5.7B p = 0.3 and 5.7C p = 0.9, Table 5.7).
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Figure 5.5. Expression of ANGPTL4 in Cohort of Tumour Samples. ANGPTL4 

was significantly up-regulated in patients w ith a partial response (n = 11), while it 

was significantly down-regulated in non-responders (n = 7) compared to 

responders (n = 17) to  chemotherapy (A). Kaplan-Meier curves indicated a trend 

towards reduced progression free survival (B) and overall survival (C) in samples 

which over-expressed ANGPTL4 (n = 14) compared to under-expressers (n = 13), 

although this was non-significant. *p<0.05 **p<0.01
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Figure 5.6. Expression of HER3 in Cohort of Tumour Samples. HER3 expression 

was significantly down-regulated in both partial (n = 11) and non-responders (n = 

7) to chemotherapy compared to responders (n = 17) (A). Kaplan Meier survival 

analysis indicated a longer progression free survival (B) and shorter overall 

survival (C) for samples which over-expressed HER3 (n = 16) compared to those 

which under-expressed HERS (n = 13) however this was non-significant.

**p<0.01 ***p<0.001
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Figure 5.7. Expression of HIF-la in Cohort of Tumour Samples. HIF-la 

expression was significantly up-regulated in partial (n = 11) and down-regulated 

in non-responders (n = 7) to chemotherapy compared to responders (n = 17) (A). 

Kaplan-Meier analysis revealed a trend towards increased progression-free 

survival (B) and reduced overall survival (C) in samples which over-expressed HIF- 

la  (n = 15) compared to those which under-expressed HIF-la (n = 12), however 

this was non-significant. **p<0.01



Table 5.7. Summary of Kaplan-Meier Analysis. Median values for PFS and OS
(months) in over- and under-expressers o f ANGPTL4, HER3 and HIF-la. Curves 
were not statistically significant as determined by the log rank test.

Gene Median PFS Median OS
Under- Over- Under- Over-

expressers expressers expressers expressers
ANGPTL4 19.5 9.0 46.0 41.0

HER3 8.0 19.5 43.0 41.0

HIF-la 10.0 11.0 41.0 31.0
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5.4 Discussion

The differential  g e n e  express ion  of  ANGPTL4, BDNF, HER3 and  MAD2L1 as 

d e t e r m i n e d  by ar ray  analysis w a s  val idat ed  using T aq m a n  PCR b e f o re  moving to  

e x a m i n e  the i r  express ion in ovar ian  t u m o u r  sam ples .  Due to  t h e  po tent ia l  for  

in t roduct ion  of  a r te fac ts  w/ithin ar ray  ex p e r im en t s ,  t h e  resul ts  ar e  genera l ly  

v a l idat ed  by a var ie ty  of  m e t h o d s  such as c o m p r e h e n s i v e  l i te ra tu re  s ea rch  o f  t h e  

d a t a  previously  publ ished  in t h e  s a m e  sys tem,  RT-PCR analysis o f  t h e  s a m e  

s am p les ,  and p ro te in  val idat ion [863], Artefacts  m ay  b e  in t ro d u ce d  at  any s tage  

du r ing t h e  ex pe r im en t .  For example ,  a sufficient  n u m b e r  of  replica tes  m u s t  be 

car r ied  o u t  in o r d e r  t o  r e d u ce  any 'noise '  in t h e  dat a ,  and t h e  s o f tw a re  u sed  for 

im ag e acquis it ion  and d a t a  normal iza t ion m ay  affec t  t h e  final g e n e  list o b ta ined .  

In addi t ion ,  if a r rays  ar e  carried  o u t  in 'b a tc hes ' ,  t h e r e  can be  d i f ferences  

b e t w e e n  b a t c h e s  i n d e p e n d e n t  of  biological s ignificance [854]. In th is  s tudy,  t h e  

re sul ts  of  g e n e s  to  b e  f u r th e r  analysed w e r e  first va l idat ed  us ing RT-PCR on t h e  

s a m e  sam p le s  as  t h e  arrays.

5.4.1 Biomarker Selection

Select ion o f  po tent ia l  b iom ark e rs  t o  eva lu a t e  in t h e  t u m o u r  s a m p l e  co hor t  was  

b a s e d  on a co m b in a t io n  of  analysis of  p a t t e r n s  of  g e n e  express ion on  microarray,  

an d  t h o r o u g h  l i te ra ture  sea rc h  in o r d e r  t o  ident ify c a n d id a t e  g en e s  which 

disp layed s t ro n g  poten t i a l  for  f u r th e r  d e v e lo p m e n t .  As t h e r e  w a s  a l imi ted t im e  

pe r io d  a l loca ted  t o  t h e  final ex p e r im en ts ,  w e  w ished  t o  se lec t  b iom ark e rs  which 

h ad  previously  d isplayed p ro m ise  as b io m ark e r  ca nd id a tes ,  ye t  r e ta in ed  novel ty  

-  in t h a t  t h e y  p e r h a p s  had  sh o w n  p ro m ise  in ca n ce r  t y p e s  o t h e r  th a n  ovar ian ,  or 

t h a t  t h e y  had b e e n  linked to  c h e m o t h e r a p y  res is tance ,  b u t  n o t  necessar i ly  

p l a t inu m  res is tance .  ANGPTL4 w a s  c h o se n  as  it w as  u p - r eg u la t ed  in b o th  cell 

l ines in r e s p o n s e  t o  hypoxia,  and  w as  par ticularly novel.  The re  w a s  previous  

ev id en c e  t h a t  express ion of  ANGPTL4 w as  a nega t ive  influence  on survival in a 

n u m b e r  of  cance r s  [797,801],  h o w e v e r ,  t h e r e  w as  relat ively little in fo rmat ion  on 

its express ion in ovar ian  can ce r  and  no s t ro n g  link b e t w e e n  its express ion and 

pl a t inum  res is tance .  BDNF w as  up - r eg u la t ed  in t h e  p a r e n t  A2780 cell line in



response to hypoxia. Previous studies on BDNF had shown th a t  its expression 

was associated with  a num ber o f  aggressive tu m o u r properties such as invasion 

and angiogenesis [811], and it had been previously linked to cisplatin resistance 

in head and neck squamous cell carcinoma [516]. However, there  was limited  

information available on BDNF expression, or its significance in relation to 

survival in ovarian cancer. In addition, BDNF had shown promise as a potential  

therapeutic  target in ovarian cancer and others [805,865], and thus was of  

interest in our study population. HERS displayed an unusual pattern of 

expression in the  hypoxia matrix, and was up-regulated in response to  hypoxia, 

yet down-regulated in the  response to  cisplatin in hypoxia. HERS had previously  

been shown to  be a potential therapeutic  target in ovarian cancer [866], and had 

been linked to sensitivity to  monoclonal antibody therapy  with  gefitinib [867] 

and pertuzum ab [831], but the  relationship betw een  HERS expression and 

cisplatin resistance was unclear. Although not a novel m arker o f hypoxia, or 

cisplatin resistance, H IF - la  was chosen to  evaluate in the  tu m o u r sample  

population as it is a universal m arker o f  hypoxia. In addition, there  is some  

conflicting evidence in the  literature regarding th e  association of H IF - la  

expression with  survival in ovarian cancer, w ith  high expression of H IF - la  having 

been linked to both reduced and increased PFS and OS in ovarian cancer by tw o  

separate groups [200,201], there fore  it was of interest to further exam ine the  

relationship betw een survival and H IF - la  expression in an ovarian cohort.

Thus, the  biomarkers w ere  chosen based on both novelty and previous  

knowledge on the ir  role(s) in cancer. There w ere  m any alternative biom arker  

candidates which could have been chosen, and will be explored in future  

projects.

5.4.2 Cell Lines

Angiopoietin-like 4 (ANGPTL4) expression on RT-PCR correlated with the  results 

observed on array analysis. In addition, RT-PCR identified ANGPTL4 as up- 

regulated in other samples in which the array analysis did not identify any 

change. This may be explained in tw o  ways. Firstly, the  analysis was constricted

 ( ) -------------------------------------------------------



by stringent statistical limits -  only samples which passed a threshold of 2-fold  

change in expression with  an FDR<0.05 w ere  considered as truly 'changed'. It is 

possible tha t  w ith  less stringent limits i.e. relying on a p-value <0 .05, the  changes 

in ANGPTL4 expression could have been identified in the  array analysis. In 

addition, RT-PCR is a m ore  sensitive tool than the  microarray for identifying 

differences in gene expression -  on arrays, the  ability to  evaluate multiple  

targets simultaneously limits accurate quantification o f  low levels of gene  

expression [868].

Similarly, BDNF expression on RT-PCR concurred with  the  results on arrays and in 

addition it was identified as >2-fold up-regulated in hypoxic A2780cis cells, and 

was >2-fold down-regulated in the  response to  cisplatin in hypoxia for both cell 

lines.

The expression change for HERS in A2780cis cells com pared to  A 2780 , and in 

A 2780  cells exposed to  hypoxia com pared to  A 2780  concurred on both array and 

Taqman. Also, in A 27 80  cells treated  with  cisplatin in hypoxia, it was dow n-  

regulated both on array and Taqm an. In addition, it was shown to  be down-  

regulated in A2780cis cells trea ted  with  cisplatin in hypoxia on Taqm an, although  

no change was observed on array analysis. Also, Taqm an identified HER3 as up- 

regulated in response to  hypoxia in A2780cis.

MAD2L1 results on Taqm an validated for most o f th e  array t ime-points. Both 

array and Taqm an identified M AD2L1 as dow n-regu la ted  in response to cisplatin 

in hypoxia. In addition, M AD2L1 was found to  be up-regulated in the  A2780cis  

cell line com pared to  A 27 80  cells. W hile  Taqm an analysis displayed M AD2L1 as 

down-regulated  in response to  cisplatin in normoxia in A2780, Taqman  

dem onstrated  M AD2L1 as up-regulated. There are several reasons for non­

concordance betw een  array and Taqm an data. As m entioned  earlier, Taqm an is 

more sensitive than array analysis, and low fold-changes identified on arrays may  

not always be robust. Indeed it has been shown previously tha t  genes with  less 

than 4-fold changes in gene expression are not always consistently validated



The expression of the four genes were then analysed on samples which were 

exposed to acute and chronic hypoxia in order to determine if the length of 

hypoxic exposure affected the expression levels. In A2780 cells BDNF was found 

to be significantly reduced following acute hypoxia, yet was up-regulated 

following 72 hours and 5 days, although these were not statistically significant. 

Most articles investigating BDNF expression following hypoxia examine acute 

in term ittent hypoxia i.e. cycles of periods of hypoxia followed by reoxygenation. 

Some groups show that BDNF expression is increased in vivo [870,871], while 

others demonstrate reduced BDNF expression [872]. One study of BDNF 

expression in mice following continuous hypoxia for eight days found that BDNF 

was significantly increased, although this depended on the breed of mouse [873]. 

However, there are inherent limitations when comparing in vivo studies to in 

vitro studies such as this. In addition, most in vitro studies of BDNF are carried 

out on neuronal cell cultures. Two other studies are available in the literature 

examining the relationship between hypoxia on BDNF expression in cancer cells. 

Both studies were published by the same group and showed that in normal 

cerebellar granule neurons and in neuroblastoma cells, incubation with 

exogenous BDNF is shown to regulate expression o f VEGF in a HIF-la-dependent 

manner thus placing it up-stream of the HIF-la signalling pathway and 

presenting one mechanism in which HIF-la signalling may be mediated in non- 

hypoxic conditions [812,874]. Our study observed a dual-response to hypoxia in 

terms of BDNF production. There was an initial drop in BDNF expression which 

may be explained by an early response to hypoxic insult within the cells. For 

example, acute hypoxia is known to mediate a transient DNA damage response 

which initially results in phosphorylation of Chkl and cell cycle arrest, however 

after chronic periods o f hypoxia, Chkl is no longer phosphorylated, thus 

removing its block on cell cycle progression [573]. A similar type o f response 

may be occurring in the BDNF response to hypoxia, although there is nothing as 

yet in the literature to  confirm this. The following increase in BDNF expression 

following longer periods o f hypoxia most likely indicates the adaptive response 

to hypoxia, and the utilization of the protective effect o f BDNF on cell survival 

[875,876]. In A2780cis, the BDNF response to hypoxia was different. While

------------------------------- ( 269 )--------------------------------



BDNF was not induced by acute hypoxia it was up-regulated following 72 hours 

o f hypoxia. However, this response was dampened by 5 days of hypoxia, when 

the response was again not different from normoxia. While A2780cis did display 

increased resistance to cisplatin following chronic hypoxia in Chapter 3, the fold- 

changes were not nearly as large as those observed in A2780, or as those 

observed following cisplatin treatm ent in hypoxia for 72 hours. It may be that 

the reduced expression of BDNF following chronic hypoxia plays a part in the 

reduced levels o f resistance observed following chronic hypoxia in A2780cis. This 

may also be explained by a differential gene expression pattern which can be 

observed following different periods of hypoxic exposure [573].

ANGPTL4 expression was increased following all lengths of exposure to hypoxia 

in A2780, while the expression pattern was similar to that of BDNF in A2780cis. 

Previous microarray analysis has shown ANGPTL4 to be up-regulated from 24 

hours exposure to hypoxia in adipocytes [877]. In oesophageal carcinoma, 

ANGPTL4 was shown to be up-regulated from as early as 30mins in hypoxia in 

both single cells and 'bulk cells' [878], while in renal cell carcinoma, ANGPTL4 

was found to be raised to six times the basal level following 2 hours hypoxia, 

reaching a maximum of 8 times basal level at 20 hours [787]. This indicates that 

the amount of ANGPTL4 produced may be rate-lim ited, and does not increase 

continuously. In our study, it was found in both cell lines that ANGPTL4 was at its 

highest following 72 hours of hypoxia, and this declined following chronic 

hypoxia, which fits in with the previous data. In addition, it was found that while 

ANGPTL4 was still raised in A2780 cells following chronic hypoxia, although not 

statistically significant, in A2780cis, ANGPTL4 levels had returned to normoxic 

levels (< l-fo ld  difference). This may be due to biological differences between 

the tw o cell lines, and indeed, ANGPTL4 expression has been found to vary 

between different subtypes of cancer e.g. renal cancer [787], In addition, 

Taqman had identified ANGPTL4 as over-expressed in A2780cis compared to 

A2780, thus although the levels may have reduced following chronic hypoxia, it is 

likely that they are still at a high level o f expression. ANGPTL4 expression is 

mediated through HIF-la [554], and in colorectal cancer, ANGPTL4 has been



shown to  be induced by hypoxia through prostaglandin E2, a potent  

prostaglandin produced by COX-2, and has been shown to  p rom ote  cell 

proliferation both in vitro and in vivo [879],

HER3 expression was similar betw een  both cell lines following all lengths o f  

hypoxia -  no change following acute hypoxia, increased HER3 following 72 hours 

hypoxia and no change in HERS following chronic hypoxia. There is a paucity of  

l iterature describing HER3 expression in relation to  hypoxia. Gui et  al. isolated 

mesenchymal stem cells from  rat bone m arrow , subjected th e m  to  serum  

deprivation (SD) and anoxia (95%N2, 5%C02) and found reduced levels of HER3 

[880]. Heregulin, a ligand for HER3 was able to  decrease the  apoptosis observed  

following SD and anoxia. This is in contrast to  the  results observed in our study, 

however, there  are a num ber of key differences betw een  the  tw o  studies. Firstly, 

Gui et  al. used a non-transform ed prim ary cell culture o f  a normal cell type, while  

our study was using a malignant transform ed cell line, which will have a large 

num ber of inherent differences to  a non-m alignant cell line. Secondly, the  

degree of hypoxia was different for both studies -  while our study used 0.5% O 2, 

Gui et  al. used virtually anoxic conditions, which would be m ore severe than  

those in our study, and in addition Gui et  al. serum deprived the ir  cells before  

subjecting them  to hypoxia, which affects cell proliferation and reduces cell 

viability [881]. Thus it is not suitable to  directly com pare the  tw o  studies. Our  

study has provided novel inform ation on the  influence o f  hypoxia on HERB 

expression in an ovarian cancer cell line model.

In A 2780  cells, M AD2L1 expression was most highly expressed following acute  

hypoxia, and the expression reduced as the  length of hypoxia increased, while in 

A2780cis, there  was large variation observed in expression betw een  replicates. 

The most consistent replicates w ere  observed following 72 hours o f  hypoxia 

which showed an average o f  4-fold increase in M AD2L1 expression compared to  

normoxia. Similarly to HERB, there  is limited inform ation on hypoxia in relation 

to  MAD2L1 expression in the  literature. Prencipe et  al., our collaborators in 

University College, Dublin, examined M AD2L1 expression in three  ovarian cancer 

cell lines OVCA4B2, 0VCA4BB and U PN251 in 1% oxygen for 72 hours [769]. They



found decreased expression of MAD2L1 protein and nnRNA following 24 hours of 

hypoxia. This is in contrast to our findings, however, there may be biologic 

differences between the cell lines to explain these differential responses, in 

addition, the level and length of hypoxia exposure in the study by Prencipe et al. 

was different than that used in our study, and it may be that the change in 

expression of MAD2L1 is dependent on the severity and duration of oxygen 

deprivation. MAD2L1 over-expression, as was observed in our study, has been 

linked to  more aggressive tum our features such as liver metastasis in gastric 

cancer [834], reduced survival in colorectal cancer [835], lymph node metastasis 

in endometrial cancer [836] and increased tum our grade in hepatocellular 

carcinoma [838]. Interestingly, while MAD2L1 was found to be increased 

following expression to hypoxia, it was reduced following treatm ent with  

cisplatin in hypoxia, while it remained unchanged (A2780) or increased 

(A2780cis) following treatm ent with cisplatin in normoxia. Reduced MAD2L1 

expression has been shown to reduce apoptosis induced by cisplatin in gastric 

cancer [766], and high cisplatin expression has been shown to sensitize cells to 

cisplatin in testicular carcinoma [767]. It could be postulated that the cells which 

survived cisplatin treatm ent in hypoxia and were subsequently assayed for gene 

expression changes did so because of reduced levels of MAD2L1. Expression of 

MAD2L1 was not assayed in the tum our population used in this study, as its 

expression had been determined in the same cohort by a collaborating group 

[781]. This study found that low MAD2L1 protein expression was associated with  

reduced progression-free survival following adjustment for stage, grade and 

debulking status.

5.4.3 Tumour Samples

ANGPTL4 was up-regulated in tum our samples from patients who displayed a 

partial response to platinum /taxane chemotherapy (6 -  12 months free from  

disease following chemotherapy) while it was down-regulated in tum our samples 

from patients who did not respond to chemotherapy (<6 months free from  

disease following chemotherapy) in comparison to patients determined to have 

had a response (>12 months free from disease following chemotherapy). This is
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a novel finding, as, to  my knowledge, there  are currently no other studies in the  

l iterature which have examined its expression in serous ovarian cancer tu m o u r  

samples. In breast cancer, high ANGPTL4 expression (as part of a panel of VEGF- 

associated genes) was associated with  distant metastasis and reduced  

progression free survival [882], while in oral squamous cell carcinoma and 

oesophageal squamous cell carcinoma, high ANGPTL4 expression is associated 

with reduced overall survival [797,801]. A previous microarray study in 

endom etria l cancer identified ANGPTL4 expression as part o f  a panel o f  markers  

to  be associated with  vascular invasion, increased histologic grade and necrosis 

[802]. The exact function of ANGPTL4 in carcinogenesis is slightly unclear, as 

some of its functions seem paradoxical. W hile  certain studies have identified  

ANGPTL4 as a pro-angiogenic factor [787,799], others have noted tha t  ANGPTL4  

inhibits in vivo angiogenesis and suppresses tu m o u r growth [788,794]. ANGPTL4  

has been recognised as a down-regulated  target for the  tu m o u r suppressor gene  

U 94 in prostate carcinoma cell lines [883]. In addition, in vivo studies have 

dem onstrated ANGPTL4 to  prevent metastasis and invasion through reduction of  

vascular perm eability  and reduction of tu m o u r cell motility [790]. Yet, in studies 

of breast tum ours, ANGPTL4 expression has been linked to lung metastasis [791], 

and in hepatom a, it has been linked to  resistance to anoikis [884], In addition, 

ANGPTL4 has been shown to be m ethylated  in a small percentage of breast 

tum ours [793]. The observations in our study may represent a dual role for 

ANGPTL4 in the  pathology of ovarian carcinoma. The exact role of ANGPTL4 may  

depend on the  absolute quantity  of transcript present, the  cell type involved and 

its interplay with  o ther genetic factors. The Kaplan-M eier analysis showed that  

patient samples which over-expressed ANGPTL4 tended to  have shorter  

progression-free and overall survival than samples which under-expressed it, 

however this was non-significant. This is likely due to  the  limited n um ber of  

samples which w ere  examined in this study, and a larger cohort of samples 

should be assayed to confirm and expand on the  results found here.

Average HER3 expression was significantly dow n-regulated in partial- and non­

responders to  chem otherapy com pared to  responders. Similarly, Kap lan-M eier  
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analysis demonstrated a trend for increased progression-free and reduced 

overall survival in patients who were high-expressers o f HER3 compared to low- 

expressers, although this was non-significant. Previous studies of HERS 

expression in ovarian cancer samples have observed higher levels of HER3 in 

cancer compared to  benign disease [885] and correlated positive HER3 

expression w ith decreased survival [830], In endometrioid carcinoma of the 

ovary, HER3 expression was observed in half the tumours studied, and was 

associated w ith increased tumour grade [886]. However another study found 

that only a small proportion over-expressed HER3 and that over-expression was 

associated w ith well-differentiated tumours [456]. In breast cancer, high HER3 

expression is associated w ith lymph node metastasis [453] and reduced 

progression free survival [887]. In oral squamous cell carcinoma, HER3 over­

expression is associated w ith lymph node metastasis and poor survival [454], and 

in bladder carcinoma, HER3 expression in conjunction w ith HER2 is associated 

w ith reduced survival [888]. In colorectal cancer, HER3 over-expression is more 

common in early stage cancers [889] and negative HER3 expression has been 

associated w ith increased invasion and higher risk of disease recurrence [890]. 

The overwhelming evidence in the literature suggests HER3 over-expression to 

be associated w ith tum our aggressiveness and chemoresistance. HER3 over­

expression has been linked to resistance to the HER2 inhibitor, trastuzumab 

(Herceptin®) [891], while up-regulation o f HER3 has been linked to resistance to 

PI3K inhibitors in breast cancer cells [892]. HER3 has been shown to stimulate 

tumour cell migration [820]. Several therapies to target HER3 are being 

investigated. Monoclonal antibody therapy against HERS has been shown to 

inhibit growth of breast cancer cells [893] and is in preclinical trials [894]. The 

multi-kinase inhibitor, Foretinib, has also been shown to inhibit phosphorylation 

o f HERS in gastric cancer cell lines [895]. In addition, expression of exogenous 

oestrogen receptor beta (ER(3) in human breast cancer cells was shown to reduce 

levels of HERS and increase sensitivity to Tamoxifen therapy [896]. Our study 

found significant down-regulation of HER3 in patients who displayed a partial- or 

non-response to chemotherapy. Thus it is unlikely that in our study, low HERS 

expression is linked to platinum chemoresistance in these patients. There are
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several reasons which may explain this. Firstly, it may be that an as yet unknown 

molecule is negatively regulating HERS in our sample population. In addition, it 

is recognized that tumour sampling is very important in terms of evaluation of 

molecular processes due to high degrees o f intra-tum our heterogeneity -  and 

the levels o f biomarkers analysed in one study may not be representative o f the 

whole tum our [897]. This has implications for all studies o f potential biomarkers 

in cancer. It may be that the tum our regions which were analysed in this study 

were not representative of the whole tumour. It may be that subclones o f cells 

are responsible for the effects of high HERS expression. In addition, low HERS 

expression has been previously identified in ovarian cancer [8S1], although its 

significance has not been adequately determined. Interestingly, low HERS 

expression may identify patients who are suitable for alternate forms of 

chemotherapy. Alpha-TEA (alpha-tocopherol ether acetic acid analogue) is a 

Vitamin E analogue with anti-tumour properties through activation of Fas and 

JNK apoptotic pathways [898]. In addition, a-TEA down-regulates HERS and thus 

down-regulates the Akt and survivin pathways [898]. Therefore tumours already 

low in HERS may be more sensitive to  a-TEA therapy, and identification of these 

may highlight patients who would benefit from this.

Average expression of H IF-la was higher in patients who had a partial response, 

and lower in patients who had a non-response to chemotherapy compared to 

responders. Kaplan-Meier analysis indicated slightly longer progression-free and 

shorter overall survival in patients who expressed high levels o f HIF-la, although 

again this did not reach statistical significance. Previous studies have shown HIF- 

la  to be expressed in a large proportion of ovarian tumours [360], and HIF-la 

expression has been correlated w ith VEGF expression, tum our grade and poor 

overall survival [199,899]. HIF-la has also been shown to be highly expressed in 

clear cell ovarian carcinoma compared to other types -  clear cell carcinoma is 

noted for its poor prognosis [900] and its expression is higher in serous than 

mucinous adenocarcinomas [204]. Expression of H IF-la in serous ovarian 

carcinoma is associated with reduced overall survival in patients who have 

received carboplatin/paclitaxel chemotherapy [200]. Nuclear immunostaining,
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but not cytoplasmic, of ovarian carcinoma with H IF -la  has been shown to predict 

poor prognosis [5]. Interestingly, one study linked H IF -la  expression with 

improved outcome following carboplatin/paclitaxel chemotherapy in ovarian 

tumours and particularly in those with suboptimal debulking [201], In xenograft 

models, H IF -la  has been linked to microvascular density and inhibition of H IF -la  

associated with reduced tum our growth when treated with cytotoxic drugs 

[901], Oestrogen expression, a risk factor for ovarian cancer, has been shown to  

increase H IF -la  and VEGF expression and activate the PI3K pathway in ovarian 

carcinoma cell lines [902], Certain types of cancer treatm ent have been shown 

to exert their effects through inhibition of H IF -la . Fara-A (9-beta-D- 

Arabinofuranosyl-2-fluoroadenine), is a nucleotide analogue which is 

incorporated into DNA where it induces DNA damage and apoptosis in dividing 

cells [903]. A study of Fara-A in ovarian cancer cell lines found that it inhibited 

H IF -la  and activation of the Akt pathway [903], Similarly, reservatrol, a natural 

plant product which has anticancer effects, was shown to reduce H IF -la  protein 

levels and inhibited Akt and MARK signalling pathways [378]. Increased levels of 

H IF -la  in patients who received the antiangiogenic antibody therapy  

Bevacizumab were associated with increased progression-free survival, thus 

identifying it as a marker of patients who may benefit from this type of therapy  

[904], Albendazole was initially used as an anti-parasitic in farm animals, 

however, it has also been evaluated as a potential anticancer agent, and was 

shown in v itro  to inhibit accumulation of H IF -la  protein and in vivo to reduce 

tum our H IF -la  and VEGF expression [905]. A m em ber of a new class of 

anticancer drugs, campothecins, has been shown to reduce accumulation of HIF- 

l a  protein and to act synergistically with cisplatin [291]. H IF -la  itself has been 

shown to be a potentially useful direct target for therapeutic intervention. 

Treatm ent of ovarian cancer cells with H IF -la  antisense oligonucleotides 

attenuated the multi-drug resistance phenotype of the model [377]. Similarly a 

further study of ovarian cancer cells which inhibited H IF -la  with siRNA found 

reduced VEGF expression and angiogenic potential of the cells [164]. Thus, HIF- 

l a  is not just a prognostic factor for ovarian cancer, but helps to identify patients 

who may benefit from a wide range of novel cancer therapies.



Summary

The aim of this chapter was two-fold:

1. To validate the results of the microarray experiments of Chapter 4

2. To evaluate a number of hypoxia-associated biomarkers identified on the 

array analysis in a cohort of ovarian tumour samples

There were a number of findings in this chapter.

1. BDNF expression is altered by hypoxia, and this is dependent both on the 

duration of hypoxia and the cell line -  this is a novel finding

2. HERS expression is altered by hypoxia, and is differentially regulated 

depending on the presence or absence of hypoxia during treatm ent with 

cisplatin -  this is a novel finding

3. In an ovarian tumour cohort, ANGPTL4 was expressed in all samples, and 

the level of expression differed depending on the patient response to 

chemotherapy -  this is a novel finding

4. In an ovarian tum our cohort, HERS was under-expressed in partial- and 

non-responders to chemotherapy. This may identify patients who would 

benefit from alternative therapies such as a-TEA and pertuzumab

5. In an ovarian tum our cohort, H IF-la was up-regulated in patients who 

had a partial and down-regulated in patients who had a non-response to 

chemotherapy
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Chapter 6
General Discussion



6.1 Introduction

Ovarian c a n ce r  is a highly lethal mal ignancy,  ch a ra c te r i zed  by late d iagnosis and 

t h e  d e v e l o p m e n t  of  c h e m o r es i s t an ce .  M e c h an i s m s  of  c h e m o r e s i s t a n c e  are  

mul ti -factorial ,  and  t h e  influence of t h e  t u m o u r  m i c ro e n v i r o n m e n t  on 

ch e m o r e s i s t a n c e  is significant.  T u m o u r  hypoxia is t h e  resul t  of  rapid t u m o u r  

g ro w th  and is re spon sibl e  for swi tching on m a n y  aggress ive t u m o u r  f e a tu re s  

such as prol i ferat ion,  invasion,  me tas ta s i s ,  angiogenesi s ,  and ch e m o r e s i s t a n c e  

t h r o u g h  express ion o f  t h e  m a s t e r  hypoxia regula to r ,  HIF-la.  The aim of  this 

s tudy  w as  t o  ex a m in e  t h e  ef fec t  of  hypoxia on re s is t ance  to  c h e m o t h e r a p e u t i c  

drugs  in an ovar ian  c a n ce r  cell line model .  Firstly, t h e  d i rec t  ef fec t  of  hypoxia on 

cell viability fol lowing d ru g t r e a t m e n t  w a s  analysed using MTT assays  and  a 

com plex  hypoxia matrix.  Secondly,  t h e  global c h a n g e s  in g e n e  express ion in 

r e s p o n s e  to  hypoxia a n d / o r  cisplatin w e r e  d e t e r m i n e d  using Affymetrix Human 

G e n e  ST 1.0 ar rays,  and d a t a  w as  e v a lu a t e d  in t h e  co n tex t  of  t h e  l i te ra ture  to  

identify po ten t i a l  b iomarke rs  of  c h e m o r e s i s t a n c e  in re la t ion  to  hypoxia.  Finally, 

a se lec tion of  m a rk e r s  ident if ied on ar ray  analysis w a s  ev a lu a ted  in a c o h o r t  of 

s e ro u s  a d e n o c a r c i n o m a  sam ples ,  in o r d e r  t o  t r a n s l a t e  t h e  cell line d a t a  to  

meaningful  d a ta  in a ' real  life' context .

6.2 Hypoxia and Ovarian Cancer -  2008

A P u b m e d  sea rch for  l i te ra ture  publ ished  in English us ing t h e  sea rch  t e r m s  

'hypoxia '  and  'ovarian  cancer '  up  to  t h e  en d  of 20 0 8  yields 171 articles,  while 

sea rch ing  for l i te ra tu re  up to  t h e  c u r r e n t  d a t e  yields an addi t ional  100 art icles in 

t h e  space  of  t h r e e  years ,  highlighting t h e  fac t  t h a t  t u m o u r  hypoxia has  b e c o m e  a 

relatively ' h o t  topic '  in t e r m s  of  c a n ce r  r e sea rc h.  Up to  2008, a n u m b e r  of 

findings had b e e n  m a d e  in re la t ion to  hypoxia in t e r m s  of  ovar ian  cancer .

T u m o u r  hypoxia had  b e e n  sh o w n  to  be  as soc ia te d  wi th increased  t u m o u r  

vo lum e and necros is  and co r re la ted  wi th  r e d u c e d  b ioen erget ic  s t a tu s  d u e  to  

increased metabol ica l ly  active t u m o u r  cells [906,907].  In addit ion ,  g lucose 

u p take  into hypoxic regions  was  s h o w n  t o  be  inc re ased  in m e l a n o m a  and  ovar ian



tum ours and imm unohistochemical data linked this with  increased GLUT-1  

(glucose transporter 1) expression [908],

Early in vitro  studies showed th a t  exposure of ovarian cancer cells to  anoxia for  

24 hours did not affect cell viability, how ever reduced cell proliferation and 

induced cell cycle arrest at G i and G2 associated with  reduction in cyclin A and 

pRb expression [909], Further studies of hypoxia and the  cell cycle in ovarian 

cancer revealed th a t  cell cycle arrest is associated with  reduced CDK4 activity in 

relation to pRb, and reduction in Cyclins D l ,  D2 and increased p27 and Cyclin E 

[560], Cell survival in hypoxia was shown to be m ediated  through integrin-linked  

kinase [910],

In addition, tu m o u r  hypoxia had been shown to  abrogate the  ant i- tum our  

im m une response through down-regulation  of tu m o u r necrosis factor alpha 

(TNFa)-induced m onocyte chem oattractant protein 1 (MCP-1) [911]. Hypoxia 

was also shown to  increase levels o f  the p ro -in flam m atory  cytokine interleukin-8  

(IL-8) through the  NFKB pathw ay [912] and the PI3K pathw ay [913] as well as 

increasing chemokine receptors [914],

Hypoxia was associated w ith  angiogenesis m ediated through the  adenosine  

receptor [915], vascular endothelial growth factor (VEGF) [916], prostaglandin E2 

[917], chemokine strom al-derived factor CXCL12 [918], and activation of the  PI3K 

signalling pathw ay [919,920]. Hypoxia-m ediated dysregulation of PTEN and  

N D R G l have been implicated in the  carcinogenesis of endom etr io id  ovarian 

adenocarcinomas [921],

In addition, hypoxia was linked to  ovarian tu m o u r invasion and metastasis  

through reduced expression o f E-cadherin and increased expression o f SNAIL, a 

transcriptional repressor o f  E-cadherin [922]. Similarly, hypoxia has also been  

shown to  m ediate  invasion through up-regulation of heparanase expression 

[923]. An additional link betw een  hypoxia and metastasis was m ade by Kim e t al. 

w ho showed that hypoxia increased ovarian cancer cell responsiveness to  

lysophosphatidic acid, a molecule which is expressed in ovarian cancer ascites 

and is involved in regulation of ovarian cancer biology [924]. Hypoxia was known



to confer protection against radiation in an in vivo setting [925,926], while in 

vitro, tumours composed of ovarian cancer cells were relatively more 

radioresistant than tumours containing lower hypoxic fractions [927].

A link was made between hypoxia and resistance to chemotherapy in ovarian 

tumours by Siemann and Alliet in 1987, who observed in in vivo  studies that co­

treatment of a particular type of sarcoma with misoindazole and l - (2 -  

chloroethyl)-3-cyclohexyl-l-nitrosurea (CCNU) resulted in increased cell kill in 

lung metastases, but this was reduced in ovarian metastases -  postulated by the 

authors to be due to an increased fraction of hypoxic tumour cells in the ovarian 

metastases [928]. A subsequent study in Chinese hamster ovary (CHO) cells 

showed that resistance to a number of cytotoxic agents including etoposide, 

actinomycin D and vincristine was induced following exposure of the cells to 

anoxia for 24 hours [929]. In addition, hypoxia-related resistance to the 

antibiotic/cytotoxic drug mitomycin C, a drug which exhibits a cross resistance 

profile with cisplatin, was shown to be related to expression of detoxicating 

enzymes DT diaphorase and y-glutamylcystein synthase [930]. Studies of 

glucose-related stress, associated with the presence of tumour hypoxia, showed 

that induction of glucose-related stress resulted in increased resistance to a 

topoisomerase I inhibitor, campothecin, due to reduced drug accumulation and 

cell cycle arrest at Gi [931]. In addition, hypoxia had been shown to induce 

expression of a number of chemoresistance associated proteins such as 

glutathione-s-transferase (GST), and glucose-related protein 78 (GRP78) [932]. 

H IF -la  activity and protein expression was shown to be reduced by cell 

treatment with cisplatin [309].

Hypoxia had been identified as a potential therapeutic target for treatment of 

ovarian cancer, and the concept of bioreductive hypoxia-selective drugs was 

being evaluated [933]. A hypoxia-activated drug, tirapazamine (TPZ), was shown 

to exert synergistic effects when ovarian cancer cells were co-incubated with 

activated TPZ and cisplatin, thus providing evidence for potential usefulness for 

hypoxia-activated drugs in the treatment of ovarian cancer [934]. Interestingly, 

ascorbate (vitamin C) was shown to markedly inhibit H IF - la  protein expression
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and reduce expression of H IF - la  targets VEGF and GLUT-1 [935]. Other cytotoxic 

agents had been shown to mediate their effects at least partially through 

inhibition of H IF - la  [378,379,901,903,936,937], Direct targeting of H IF - la  with 

siRNA was also shown to suppress resistance and enhance apoptosis [377,938]. 

Anti-angiogenic antibody bevacizumab was being evaluated in in vivo 

experiments [939,940].

Immunohistochemical studies of ovarian cancer observed positive H IF - la  

expression in many cases [941], in particular the clear cell carcinoma [900,942] 

and serous carcinoma [204] subtypes, and co-expression of H IF - la  with p53 was 

shown to be associated with poor overall survival [360]. While H IF - la  expression 

alone was not determined to have prognostic significance by some [853], others 

have shown high H IF - la  expression to be predictive of poor overall survival 

[199,200]. In addition, H IF - la  tumour expression was associated with increased 

expression of VEGF and p27, and decreased expression of Cyclin D1 and pRb 

[943]. High H IF - la  and VEGF expression are associated with increased tumour  

grade [899] and stage [5]. One study linked high H IF - la  expression with better 

response to platinum/taxane based chemotherapy [201].

Thus, before this project started, there was already quite a large amount of 

knowledge on the role of hypoxia in terms of ovarian cancer biology, in terms of 

metabolism, proliferation, angiogenesis, invasion and metastasis. H IF - la  had 

also been recognised both as an important therapeutic and prognostic marker of 

ovarian cancer. However, while it was widely shown that hypoxia induced 

chemoresistance to a number of cytotoxic agents, there was little information on 

the genetics behind the resistance, and in particular in relation to resistance to 

cisplatin. An understanding of how hypoxia affects platinum resistance is 

extremely important in the context of ovarian cancer, as platinum-based 

treatm ent is the standard of care for first-line treatment, and platinum 

resistance in ovarian cancer has been associated with a poorer outcome for 

ovarian cancer patients.
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6.3 Additions to Current Knowledge on Hvpoxia and
Ovarian Cancer Chemoresistance bv tliis Project

T he  first a im  o f  th is  p ro jec t  w as to  ch arac ter ize  th e  e ffec t  o f  various hypoxic  

challenges on th e  resistance pro file  o f  A 2 7 8 0  and its d a u g h te r  A 2780c is  ovarian  

carc in o m a cells. A hypoxia  'design m atr ix '  w as  fo rm u la te d  in o rd e r  to  te s t  

various c o m b in a t io n s  o f  hypoxia  and drug t r e a tm e n ts .  Cells w e r e  t re a te d  w ith  

th e  c h e m o th e ra p e u t ic  drugs cisplatin and paclitaxel in th e  p resen ce  or absence  

o f  hypoxia . In add it ion , th e  e ffe c t  o f  acu te  and chronic  exp o s u re  w as  exa m in e d  

by p re -expo s in g  th e  cells to  hypoxia b e fo re  d rug  t r e a tm e n t .  T hese  e x p e r im e n ts  

p ro v id ed  a n u m b e r  o f  novel f indings in re la t ion  to  drug  resistance in ovarian  

cancer and  hypoxia . Firstly, it w as  sh ow n  th a t  in c isp la tin -sensit ive  A 2 7 8 0  cells, 

resistance to  cisplatin increases o v e r  t im e ,  w h i le  in th e  a lre a d y  c isp la tin -res is tant  

cell line A 2780c is , a lth o u g h  hypoxia does increase resistance to  cisplatin, th e  

m a g n itu d e  o f  th e  increase is n o t  as large in A 2 7 8 0 ,  and th e  res istance dim inishes  

o v e r  t im e ,  a lthou gh  rem ain s  signif icant. This indicates th a t  a c e r ta in  n u m b e r  o f  

genes and p a th w a y s  w hich  a re  sw itched  on in A 2 7 8 0  fo l lo w in g  chronic  exposure  

to  cisplatin m ay  over lap  w i th  th o se  w h ich  are s w itch ed  on by hypoxia  to  induce  

resistance. This w as  a c o m p le te ly  novel find ing , as th e r e  had p rev ious ly  been  no  

studies published in re la t ion  to  ab so lu te  changes in resistance (IC50) to  cisplatin  

in re la t io n  to  hypoxia  and o varian  cancer. A  recen t  study by Su et al. m easu red  

changes in cisplatin IC50 in th e  o varian  cancer cell line C13K fo l lo w in g  t r e a tm e n t  

w ith  th e  hypoxia  m im e t ic  ag e n t  co ba lt  ch loride, and fo u n d  increasing resistance  

to  cisplatin w i th  increasing d egree  o f  hypoxia [3 0 6 ] .  H o w e v e r ,  th e r e  are still no  

articles published in re la t io n  to  th e  e ffec t  o f  p re -e x p o s u re  o f  hypoxia  on cisplatin  

resistance. S imilarly , th e r e  are curren t ly  no artic les pub lished in A 2780c is  

regard ing  th e  e ffe c t  o f  hypoxia on cisplatin resistance.

Secondly, it w as  sh ow n  th a t  th e re  is a t re n d  o f  increased resistance to  paclitaxel  

in A 2 7 8 0  cells in response to  hypoxia , a lthough  this is non-s ign if icant due to  a 

n u m b e r  o f  p o te n t ia l  co n fo u n d in g  factors  as discussed in C h a p te r  3. At th e  t im e  

o f c o m m e n c e m e n t  o f  this p ro ject,  th e r e  was no in fo rm a t io n  published in re lation  

to  paclitaxel resistance in ovarian  can cer associated w i th  hypoxia . H o w e v e r ,  th e  
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increased resistance we observed is in agreement with a study by Huang et al. in 

A2780 cells published in 2010 which observed increased paclitaxel resistance in 

cells treated for 24 hours in varying degrees of hypoxia [346]. Huang et al. 

demonstrated this response to be H IF-la-induced, and related to cell cycle arrest 

in Go/Gi- In addition, a study by Milane et al. in 2011 showed increased 

resistance to paclitaxel in SK0V3 and 0VCAR5 ovarian cancer cell lines which 

were exposed to 0.5% O2 during treatm ent [944], However, there have been no 

articles published examining the effect of hypoxia pre-exposure on the response 

to paclitaxel, as was examined in our study. Interestingly, the resistance profile 

of A2780cis to paclitaxel was not altered in hypoxia. An inverse relationship 

between cisplatin and paclitaxel resistance has been noted in a number of cell 

lines [945], however this was not a feature of this cell line model. There is 

currently no information in the literature regarding paclitaxel resistance in 

hypoxia in A2780cis.

When we had established that hypoxia does cause chemoresistance in our 

ovarian cancer model, we aimed to identify genes and pathways causing this 

resistance by whole genome profiling. RNA was extracted from the point on the 

hypoxia matrix which gave the largest and most consistent changes in resistance 

to cisplatin in both cell lines -  treatm ent with cisplatin in hypoxia with no pre­

exposure to hypoxia. The changes in gene expression were determ ined using 

Affymetrix Human Gene ST 1.0 arrays and were analysed using Affymetrix 

Expression Console software (quality control). Bioconductor (normalization and 

statistics), and DAVID (pathway analysis).
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In order to identify markers of chemoresistance, three main questions were 

focused on:

i) What are the common gene changes in A2780 cells chronically

exposed to cisplatin (A2780cis) and A2780 cells exposed to  hypoxia?

ii) What are the gene changes in A2780 and A2780cis cells in response to

hypoxia?

iii) What is the 'hypoxic only' response to cisplatin in A2780 and A2780cis

i.e. the gene changes which occur in response to cisplatin treatm ent 

in hypoxia but not normoxia

A plethora o f genetic changes were identified in response to  hypoxia and/or 

cisplatin treatment in both cell lines. This list was mined using pathway analysis 

and analysis of the individual genes through literature searches to identify any 

links to cisplatin resistance in ovarian cancer or others. When A2780cis cells 

were compared to A2780; a number o f gene changes were identified which had 

previously been linked to cisplatin resistance in the literature including platelet- 

derived growth factor C (PDGFC) in head and neck squamous cell carcinoma 

[437], protein kinase C alpha (PRKCA) in ovarian cancer [946], Jakl in 

osteosarcoma [446] and KIT ligand in ovarian cancer [8]. Thus, while we 

identified a number of genes which had previously been associated w ith cisplatin 

resistance in ovarian cancer as being altered in this cell line model, we also 

identified changes which have previously been identified in other cancer types as 

having potential involvement in cisplatin resistance in ovarian cancer.

In A2780 cells exposed to hypoxia, we identified a number of genes as 

dysregulated which had previously been observed in that cell line including FOS 

and telomerase RNA component [947]. However, the majority of genes 

identified have not been described as altered in A2780 in response to hypoxia 

previously, and no previous studies have analysed the gene changes in A2780 

following hypoxic exposure on array. Similarly, there has been no previous work 

published on the effect of hypoxia on A2780cis cells. Thus, the vast majority of 

information gleaned from the arrays is novel. We identified a number of genes
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associated with cisplatin resistance in both cell lines when exposed to hypoxia. 

These include genes which have been previously identified as associated with 

cisplatin resistance in ovarian cancer such as dual specificity phosphatase 1 

(DUSPl) [613], FOS [948], collagen type VI alpha 3 (COL6A3) [949], insulin-like 

growth factor 1 receptor (IGFIR) [622], Rho-associated coiled-coil containing 

protein kinase 1 (ROCKl) [950], x-linked inhibitor of apoptosis protein (XIAP) 

[951], MET [952], PIK3CA [953] Ll-CAM [556], and RBL2 [954], In addition, 

cisplatin related genes which had not previously been linked to ovarian cancer 

were identified including BIRC2 (prostate cancer) [528], BIRC3 (lung cancer) 

[151], CXCR4 (lung cancer) [955], BDNF (head and neck cancer) [516], AKT3 

(uterine cancer) [956], CD55 (oral squamous cell carcinoma) [628], SERPINEl 

(glioblastoma) [957], In addition, several of the markers had not previously been 

linked to hypoxia, including COL6A3, RBL2, and BIRC2. Thus the studies of 

changes in gene expression in hypoxia-exposed A2780 and A2780cis have 

identified novel markers of chemoresistance in ovarian cancer, as well as linking 

the expression of certain chemoresistance markers to hypoxia.

Gene profiling of A2780 and A2780cis cell lines following treatment with cisplatin 

in normoxia or hypoxia identified a wide range of genes which were dysregulated 

following drug treatment. A previous study by Varma et al. examined gene 

expression changes in A2780 cells following treatm ent with cisplatin using 

Affymetrix HG-U95 chips [693]. In their published article, they mainly focus on 

the effects of cisplatin on polyamine pathway genes. In our study, in general 

there was no change detected in the polyamine genes detected by Varma et al., 

however this can be explained in a number of ways. Firstly, the methods used in 

the two studies were quite different. The drug treatm ent period was from 2 - 2 4  

hours in Varma et al., compared to 72 hours in this study. Also, Varma et al. 

incubated their cells in drug-free medium for 16 hours following cisplatin 

treatment before processing for array experiments, unlike our study, in which 

RNA was harvested directly following drug treatment. In addition, the statistical 

models used for analysing data by Varma et al. were different from those used in 

this study, and may affect the final gene lists generated. A subsequent article by



Brun et al. o f the same group examined a wider range of genes in A2780 

following cisplatin treatm ent [958], Although some differences were noted 

between the differential gene expression from Brun et al. and our study, for 

many genes, the dysregulation followed the same pattern e.g. BTG2, CDKNIA, 

TP53I3 all up-regulated in both studies, and CENPA, MCM6 and PLK all down- 

regulated in both studies. There have been no studies published to  date which 

have gene profiled A2780 or A2780 cell lines following cisplatin treatm ent in 

hypoxia. In fact, to my knowledge, there are no microarray studies published to 

date in any cancer type which examine the effect of cisplatin treatm ent in 

conjunction with hypoxia exposure. Our analysis of the 'hypoxic only' response 

to cisplatin treatm ent yielded a number of markers related to cisplatin 

resistance. While many o f these had previously been linked with 

chemoresistance in ovarian cancer, e.g. BCL2L1 [959], PIK3R1 [670], RGS [688], 

PCNA [852], others had previously only been recognized as markers of 

chemoresistance in other cancer types e.g. E2F5 (lung) [678], RIPKl (cervical) 

[669], SFN (colon) [686] and NOTCHl (head and neck) [741]. Therefore, this 

microarray data has identified a number of novel chemoresistance markers of 

ovarian cancer.

Based on the questions asked of the array analysis, four genes were chosen for 

validation in a cohort of patient tumour samples:

i) HERS -  this was up-regulated in both A2780 cells exposed to chronic 

cisplatin (A2780cis) and A2780 cells exposed to hypoxia

ii) BDNF -  this was up-regulated in A2780 cells exposed to hypoxia

iii) ANGPTL4 -  this was up-regulated in both A2780 and A2780cis cells

exposed to hypoxia

iv) MAD2L1 -  this was down-regulated in both A2780 and A2780cis cells

exposed to  cisplatin in hypoxia



In addition; expression o f H IF-la was determined, as it is a universal marker of 

hypoxic change.

Expression was measured in a group o f serous papillary carcinomas, which were 

categorized as responders (>12 months progression free survival, PFS), partial 

responders (6 -  12 months PFS) or non-responders (<6 months PFS). HER3 

expression was significantly down-regulated in partial- and non-responders to 

platinum/taxane based chemotherapy. ANGPTL4 was up-regulated in partial- 

responders to chemotherapy, while it was down-regulated in non-responders. 

HIF-la was up-regulated in both partial- and non-responders to chemotherapy, 

while BDNF expression was not detected in the majority o f the samples tested. 

MAD2L1 expression was not evaluated in this study, as its expression in the same 

cohort had been previously evaluated by one o f our collaborating groups in 

University College Dublin.

The tum our sample validation of biomarkers revealed a number o f novel 

findings. While BDNF had been previously linked to cisplatin resistance, it was 

not linked to cisplatin resistance in ovarian cancer. Its expression, and 

expression of its receptor, had been previously demonstrated in normal ovarian 

tissue, where it plays a role in normal follicular development [960-962] and 

maturation of oocytes [963]. Since repeated ovulatory cycles are thought to be 

one reason for ovarian cancer development, there is potential for BDNF to play a 

role. Indeed, BDNF has previously been shown to induce ovarian cancer cell 

migration and proliferation [813], and expression of its receptor, TrkB, is 

associated w ith resistance to  anoikis [964]. Expression o f TrkB has been 

demonstrated in ovarian cancer tissues, and it is associated w ith poor outcome, 

while BDNF expression was not shown to be significantly different between 

normal and cancer tissues [814], Unfortunately, in this study, the number of 

samples expressing BDNF was insufficient for thorough analysis -  study in a 

larger cohort o f samples will be necessary to fully evaluate it.

This is the first study to describe ANGPTL4 expression in serous ovarian cancer 

tissue. One study has identified ANGPTL4 as expressed in a xenograft model of 

 ( ) -------------------------------------------------------



ovarian cancer [803], however there are no other studies demonstrating its 

expression in ovarian cancer tissues.

This study identified down-regulation o f HER3, a marker whose up-regulation is 

commonly associated with chemoresistance -  however, low expression o f HERB 

is associated with sensitivity to other therapeutics, and may identify patients 

who may benefit from alternative therapies. Tanner et al. found HERB 

expression in approximately 50% of a cohort o f 116 ovarian tumours, and 

associated HERB over-expression w ith reduced overall survival [830]. This is in 

contrast to our study. As discussed in Chapter 5, others have also observed low 

levels of HERB expression in ovarian cancer samples, therefore this was not a 

unique finding, and may be a feature o f the particular sample cohort used in this 

study, a result o f intra-tum our heterogeneity or due to HERB promoter inhibition 

by an as yet undetermined molecule. Although we found HERB over-expression 

to trend towards increased PFS, it also trended towards reduced OS, in 

agreement w ith the current literature. However, the cohort used in our study 

was very small, and all samples were positive for HERB expression. It is likely that 

in a larger cohort, these results may change, however, as discussed, it may be 

that low HERB expression may be an identifier for patients suitable for other 

therapies in addition to platinum/taxane.

We found HIF-la to be over-expressed in patients w ith a partial-response and 

down-regulated in patients w ith a non-response to platinum/taxane based 

chemotherapy. H IF-la over-expression has generally been associated with poor 

overall survival [199,200,360]. However other studies have shown HIF-la 

expression to be not associated w ith survival [853], or associated with improved 

response [201]. Thus this study has added to the body of knowledge on HIF-la 

as a prognostic indicator in ovarian cancer patient samples.

As MAD2L1 expression had previously been determined in the cohort of samples 

we used by Furlong et al. [781], we did not re-determine the expression in these 

tissues. Furlong et al. found that low MAD2L1 expression was associated with 

reduced progression free survival following carboplatin/paclitaxel-based
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chemotherapy .  Their group had previously shown MAD2L1 expression to be 

down-regula ted  by hypoxia and identified a reciprocal immunohistochemical 

staining pa t te rn  be tw een  IVIAD2L1 and CA9, a marker  of hypoxia in ovarian 

tissues  [769]. These are the  only s tudies  publ ished in relation to  MAD2L1 

expression and ovarian cancer t issue to  date ,  a lthough MAD2L1 had previously 

been linked to  plat inum resis tance in a num ber  of  o the r  cancers  including 

nasopharyngeal  [765], gastric [766] and tes ticular  cancer  [768], In addition, low 

MAD2L1 levels had also previously been  linked to  paclitaxel res is tance in ovarian 

cancer  cell lines [844,965].

6.4 Hypoxia and Ovarian Cancer -  2012: How this
study compares

Since this s tudy began,  the re  have been several advances in the  field of hypoxia 

and ovarian cancer.

Further  s tudies  were  carried out  on inhibition of the  hypoxia-stimulated pathway 

mTOR as a therapeut ic  s tra tegy for ovarian cancer  [966]. In addition, new 

inhibitors of HIF-la-related proteins  were  evaluated in cell lines and animal 

models  such as ABT-510 [481], campothec in  analogue NSC606985 [291], 

kaempferol [967], a lbendazole [905], BACPT [968], p70S6Kl [969] and sorafenib 

[970]. Further hypoxia-related prognost ic markers of ovarian cancer were 

identified such as iNOS [202] and bone-m orphogenet ic  protein 4 (BMP4) [971], 

Importantly,  the  results of several phase II and phase III trials on the  

effectiveness of the  anti-angiogenic, VEGF-targeting drug bevacizumab were 

published. In a phase II trial, Penson e t  at. evaluated the  effects of  combination 

bevacizumab with carboplat in/pacli taxel  in ovarian cancer  and found that  

combinat ion therapy  was associated with high remission and was well- tolerated 

[972]. A phase III trial by Perren e t  al. showed tha t  addition of bevacizumab to 

s tandard  chemotherapy  significantly improved progression free survival, and in 

particular in pat ients  at  high risk of  progression [549], thus  demonst rat ing  the  

clinical benefi t  of  a drug ta rge ted  against  an ovarian cancer/hypoxia  biomarker.
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Further insights into the  biology of H IF - la  effects on ovarian tumourigenesis  

w ere  discovered, such as the  implication of hypoxia-induced R ED D l in Ras- 

m ediated transform ation [973]. In addition, glucose deprivation was shown to  

stimulate expression of angiogenic m ediator VEGF [974] and follistatin, a 

tumourigenesis-associated protein [975], The role of ovarian hormones  

oestrogen and progestin in mediating H IF - la  expression via the  Akt pathw ay was 

discovered [205]. Some gene alterations in the  adaptive response to  hypoxia 

w ere  identified including Cyclin D1 and V-src [148]. Hypoxic ovarian tu m o u r  cells 

w ere  also shown to  produce tissue factor-coagulation factor VII, a player in 

thrombosis observed in ovarian cancer patients [976], and truncated, inactive 

forms o f  the  pro-apoptotic  protein BNIP3 [977], Akt and reactive oxygen species 

(ROS) w ere  identified as im portant mediators o f resistance to  hypoxia-induced  

apoptosis [978,979]. N O T C H l receptor ligand Delta-like 4 (DII4) was identified as 

up-regulated by hypoxia and was shown to  have potential as a therapeutic  target  

[980], S100A4 was shown to  be up-regulated by hypoxia and associated with  

increased invasiveness [981].

Further insight into the  mechanism of hypoxia-induced chemoresistance was 

dem onstrated. Increased phosphorylation of STAT3 in hypoxia was shown to 

confer resistance to  cisplatin and paclitaxel in A 2780-derived xenograft tum ours  

[189], and hyperbaric oxygen t rea tm en t  was shown to reduce STAT3 levels and 

improve chem otherapy  efficacy [982], In addition, inhibition o f the  ROCK 

pathway was shown to  increase cisplatin effectiveness in ovarian cancer cells 

[950],

Therefore, while there  have been substantial advances in the  understanding of 

the  biology of hypoxia and ovarian cancer, there  have been relatively few  

advances in the  understanding of how hypoxia causes chemoresistance in 

ovarian cancer. Our study has significantly contributed to the  body o f knowledge  

of how hypoxia affects chemoresistance in term s of absolute fold-changes of 

resistance, genetic modifications in response to hypoxia, and the evaluation of 

novel biomarkers of chemoresistance.
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6.5 Limitations of the Study

Although this study has provided some significant contributions to knowledge of

the role of hypoxia in ovarian cancer chemoresistance, there are several

limitations to the project.

The objective of the first results chapter, Chapter 3, was to observe the effects of 

hypoxia on chemoresistance in an ovarian cancer cell line model. We used a 

paired chemoresistance cell line model o f A2780 and A2780cis. This is the only 

commercially available platinum resistance model o f ovarian cancer. However, it 

would have been useful to repeat the experiments using other models. It was 

beyond the scope of this study to derive platinum resistant models from other 

ovarian cancer cell lines, however this is something that could be considered for 

future projects. Alternatively, it may be possible to source privately banked 

platinum resistant cell line models. In addition, while the response to cisplatin 

and paclitaxel in hypoxia was observed for the cell line model used, it would have 

been useful to observe some of the other effects of hypoxia on the cells. For 

example, the effect of hypoxia on cell cycle distribution through the use of flow 

cytometry could reveal whether hypoxia was inducing cell cycle arrest or 

progression, and indicate whether senescence, a tumour-preventative state 

consisting of irreversible cell cycle arrest [235], is being inhibited in order to 

enhance chemoresistance.

The sample size used in Chapter 5, in which the expression of a number of genes 

was evaluated in a cohort o f ovarian tum our samples is perhaps the most 

significant lim itation of the study. Due to time constraints, a small sample size of 

35 was used to carry out an initial assessment of the expression levels o f these 

genes in ovarian cancer tum our samples. The probability o f obtaining a 

statistically significant result when performing a statistical test, or 'power' is 

essential when designing an experiment [983]. Power calculations are based 

upon the level of significance desired, a, the size o f the biologically relevant 

difference, and the sample size, and power is generally greater w ith a larger 

sample size. Often, sample size calculations are based on a pilot study, a test
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sample group which gives an indication of the significance level which should be 

chosen, and identifies any issues w ith the experimental process. In fact, the 

experiments carried out in this study could serve as a pilot study for a future 

large scale study of these biomarkers. It would provide information on 

expression levels in this population -  for example, while ANGPTL4, HERS and HIF- 

la  were expressed in all samples assayed, BDNF was only expressed in 6 of 35 

samples, an important consideration when planning a larger scale study. Indeed, 

ANGPTL4 has been revealed as the most promising candidate based on the 

expression levels observed in this study, and will be of interest in future work.

6.6 Future W ork

Future studies on this project could include:

i) Analysis o f a hypoxia gradient

ii) Methylation analysis and hypoxia

iii) Evaluation o f current biomarkers in a wider cohort, and at the protein 

level

iv) Evaluation of other biomarkers not evaluated in this study

v) Functional analysis of promising biomarkers

While in this study we analysed changes which occurred at levels o f 0.5% oxygen, 

the oxygen levels within a tumour are not constant. There are gradients of 

hypoxia depending on how far cells are located from blood vessels [984]. 

Therefore, it would be o f interest to determine the effects of varying levels of 

hypoxia on chemoresistance. A collaborating group in Dublin City University has 

developed a silicone based chip which is capable of generating gradients of 

oxygen. This will facilitate high-throughput testing o f ovarian cancer cells in 

relation to varying concentrations of chemotherapeutic drugs at varying oxygen 

concentrations, and is one potential avenue for further research.

We observed concentrated regions of gene down-regulation in relation to 

cisplatin resistance and hypoxia. One reason for this may be gene 

hypermethylation, as hypoxia has previously been shown to induce gene

------------------------------------------------------( 2 3̂ )----------------------------------



methylation in cancer [985,986]. Certain genes which were linked to cisplatin- 

resistance were down-regulated in response to  hypoxia including DNA damage 

inducible transcript 3 (DDIT3) and tum our necrosis factor (TNF). Methylation of 

DDIT3 has previously been identified in chronic myeloid leukaemia [987] but not 

in ovarian cancer. Similarly, TNF has been identified as methylated in a large 

proportion of leukaemia cases [988] and demethylation of breast cancer samples 

has revealed a number o f up-regulated TNF-related pathways [989]. Thus, it 

would be of interest to carry out methylation analysis o f the genes which were 

down-regulated by hypoxia, and see if demethylation of the genes could improve 

chemosensitivity.

One lim itation of this study was that the cohort of tum our samples used to 

validate the biomarkers was small. It would be necessary to validate the 

biomarkers in a much larger cohort of tum our samples in order to fully evaluate 

their potential. Importantly, it would be valuable to identify whether changes 

observed at the mRNA level were also present at the protein level. Proteins are 

the effectors o f the genome i.e. it is the translated protein that carries out the 

function initiated by transcription of the gene. However, down-stream post- 

translational modification, protein folding and protein degradation can inhibit 

the desired effect o f transcription [990]. Therefore, changes at the mRNA level 

do not necessarily represent changes at the protein level. Protein biomarkers 

which may be detected using simple assays e.g. immunohistochemistry, in which 

the protein is recognized by a specific antibody, and detected using enzymatic 

methods, are essential to become useful routine laboratory tests. Thus, the 

likely most valuable future work for this study would be to determine the protein 

status o f the biomarkers identified.

In addition, we only examined expression in serous carcinoma cases categorized 

according to response. It would be o f use to examine their expression in other 

histological subtypes o f ovarian cancer, or perhaps compare expression in 

primary vs. metastatic/recurrent lesions in order to further understand their 

impact on tum our biology. Also, only a very small proportion of the potential 

biomarkers identified were validated in this study. Many other promising
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chemoresistance biomarkers were identified and have potential to  be validated 

in tum our samples. Functional analysis of promising biomarkers through over­

expression or knock-down in hypoxia could be used to analyse the ir potential as 

therapeutic targets in ovarian cancer patients. VEGF is one hypoxia-related 

biomarker which has had success as a therapeutic target in ovarian cancer, thus 

the potential is there for success w ith other novel biomarkers. In our study, 

ANGPTL4 was the most promising biomarker candidate, and if future studies can 

confirm and expand the findings, it would be a promising marker to carry out 

functional work on.

6.7 Conclusion

Overall this study has had a number o f findings in relation to hypoxia in terms of:

i) How duration and tim ing o f hypoxia affect resistance

ii) Gene profiles of ovarian cancer cells in response to hypoxia and/or 

chemotherapy

iii) Validation o f novel hypoxia-related biomarkers of chemoresistance

We have substantially added to the current body of knowledge in the literature 

in relation to genetic changes in response to  hypoxia in an ovarian cancer, and 

provided initial information on the expression o f potential biomarkers in tum our 

specimens.
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Figure A l. Comparison of Untreated Cells with Cells Treated with Vehicle 

Control Solutions. No difference in v iab ility  was observed between untreated 

A2780 cells and those treated w ith  cisplatin vehicle (A) or paclitaxel vehicle (B). 

Similarly, no difference in v iab ility  was observed between untreated A2780cis 

cells and those treated w ith  cisplatin vehicle (C) or paclitaxel vehicle (D). n = 3
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