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Summary

An extrem ely challenging example of a m ultivariate inverse inference problem  is the statistica l 
reconstruction of palaeoclim ate from fossil pollen data , which represents the m otivating re­

search problem considered in this thesis. The model train ing dataset, consisting of highly mul­
tivariate, zero-inflated com positional counts for vegetation, as well as m easurem ents on several 

clim ate covariates, presents numerous challenges of model choice and inference. T he addressing 
of these challenges provides the focus for the research contributions presented herein.

Specifically, a statistical inconsistency of existing spatial models for zero-inflated composi­

tional coiuits d a ta  is identifled and a parsimonius modelling solution to  this problem  developed. 
We discuss hierarchical or “nesting" structures for the decomposition of joint inference tasks, in 

the context of m ultivariate compositional d a ta  models, into the product of independent, less 

com putationally challenging inference problems, and detail how the optim al decom position 

structu re  can be learned from the data.

O utstanding  issues of d a ta  analysis and model criticism  prom pt the developm ent of a 

methodology for Bayesian residual analysis and outlier detection in the  context of discrete, 

non-Gaussian count data. This methodology is built upon the use of Gaussian random  effect 

term s as a surrogate for classical residuals and the harnessing of fast approxim ate Bayesian 
inference algorithm s to  provide com putationally efficient im plem entations of the m ethod. We 

dem onstrate how the approach provides a visual m ethod for the quick approxim ate validation 
of a priori model assum ptions and the learning of underlying residual trend  s tru c tu re  within 

the data.

The drawbacks of om itting influential chinate covariates from forward models and the re­

sulting im pact on inverse stage inferences are detailed, and the existing forward modelling 

m ethodology for the palaeoclim ate reconstruction problem is extended to  incorporate an ad­

ditional clim ate covariate. This prom pts the development of a sam pling scheme for model 

inversion which is dem onstrated to  be significantly faster th an  the com peting, determ inistic 

model inversion methods.

Finally, the above advances in Bayesian model development and the new m ethod for com­

putationally  efficient inverse inference are applied to  the  palaeoclim ate reconstruction problem  

and the progress over existing models and m ethods is dem onstrated.
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Chapter 1

Introduction

One of the prim ary aiiiiH in statistical modelling is to measure the influence of variables (called 

covariates) on the observed measure(s) of interest (the response). The aim may be to extract 

some subtle understanding of potentially complex relationships from the data, or to use cali­
b ra ted  models for prediction given "new d a ta” as in inverse problems. Typically, several models 
are proposed and discrim ination between the various models may be based on any num ber of 

criteria, possibly leading to  the choice of an ‘"optimal” model.

However, bo th  tim e and com putational constraints place limits on the num ber and com­

plexity of models th a t can be considered. W here the observed response is non-Gaussian in 
natu re  the detection of “outliers”, or fast model validation through the inspection of posterior 
residuals, can be trem endously difficult. The burden of inference can enforce compromises in 
model complexity, resulting in the omission of im portan t predictor variables from proposed 

d a ta  models. Additionally, the inversion of calibrated m ultivariate models for prediction can 

become com putationally challenging, prim arily due to evaluations of complex multidimensional 

integrals, a problem  th a t worsens given increasingly sophisticated models.

These problems arise in the context of the palaeoclim ate reconstruction project - the main 

application of interest in this thesis, which m otivates much of the work contained herein. The 
huge, m ultivariate, spatially referenced coimts dataset, available for model fitting, provides 

several com putational and methodological challenges to  the statistica l modeller.

T he aim of this thesis is to address many of these challenges. This includes the development 
of a richer class of models for palaeoclimate reconstruction. This will require extensions to 

existing statistica l modelling methodology for large spatial regression problems, as well as 

developing com putationally  efficient algorithm s for prediction given the fitted models. A 

further aim is the development of a m ethodology for the criticism of the train ing dataset, 

nam ely m ethods for the fast detection of outliers and model criticism for discrete, non-Gaussian 

count observations.

In order to  provide a further introduction to  the m otivation for these aims, in the following
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we describe th e  pa laeochm ate  reco nstruc tion  p ro jec t and  provide an  overview  of th e  rem aining, 

o u ts tan d in g  challenges. We also in troduce  th e  d a ta se ts  we propose to  use, provide an  outline 

of th e  s tru c tu re  of th e  thesis and  sum m arise  th e  research con trib u tio n s m ade.

1.1 Palaeoclim ate R econstruction Project

1.1.1 M otivation

As po litic ians and  sc ien tists becom e increasingly  aw are of th e  p o ten tia l c a ta s tro p h ic  resu lts of 

ex trem e changes in th e  E a r th ’s clim ate , m uch tim e and  effort has been  devoted  to  th e  devel­

opm ent of soph istica ted  global c lim ate  m odels for exploring possible fu tu re  c lim ate  outcom es. 

However, fu tu re  c lim ate  is inheren tly  unknow n; it is im possible to  v a lida te  th e  speculative 

fu tu re  c lim ate  pred ictions produced.

Conversely, palynological or proxy-based  reco n stru c tio n s of p a laeoc lim ate  provide a v ita l 

source of in fo rm ation  from  w hich we can draw  inferences on th e  p ast - such inferences present 

a  m echanism  for th e  validation  of p roposed  c lim ate  m odels, b u t also provide an  invaluable 

insight in to  th e  E a r th ’s history. For exam ple, th e  analysis of high reso lu tion  oxygen-isotope 

records, o b ta in ed  from  G reen land  ice cores, ind ica te  th a t  th e re  were num erous rapid  c lim ate 

fluc tuations during  th e  last glacial period  (F igure 1.1).

o
CO

o
I

LD

I

0 10 20 30 40 50

A ge (Ka BP)

F ig u r e  1 .1 : T em p era tu re  reco nstruc tion  a t a  site  in  G reen land  (G roo tes & S tu iver 1995).
is used as a proxy for te m p e ra tu re  providing th e  basis for reco n stru c tio n s of c lim ate  in 

G reen land  over th e  p ast 50 ,000  years.
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As the recording of environmental data using instrumental sources is a relatively recent 
occurrence, long term information must be derived from other, indirect, proxy indicators. 
Several (organism based) proxies for climate exist, including; chironomids (non-biting midges), 
diatoms (algae), beetles, tree rings and pollen produced by local vegetation, the central premise 
being that past climate can be inferred from fossil samples of these sources, albeit with some 
uncertainty. Huntley (1993) notes that many reconstructions of palaeoclimate using such 
proxies are qualitative, seeking to use the fossil proxy information to classify past climate in 
terms of similar modern day climatic conditions, or “biomes”. These are essentially subjective 
descriptions of past climate in terms such as “artic”, "boreal”, “humid”, “arid”; for a description 
of these biomes and an example of the qualitative reconstruction of palaeobiomes from fossil 
pollen data, see Allen et al. (2000).

Quantitative reconstructions of the palaeoclimate are to be preferred; such approaches 
attem pt to use analytical tools to provide objective and repeatable reconstructions of past 
climate, enabling incorporation of data  from many different sources and the simultaneous use 
of multiple proxies.

1.1 .2  Q u an tita tive  R econ stru ction  o f P ast C lim ate

Haslett et al. (2006) presented a framework for the quantitative, pollen based reconstruction of 
palaeoclimate at single site locations. The framework involved the specification of a Bayesian 
hierarchical model for pollen-climate interaction; the response consisted of compositional count 
vectors of pollen data, with two recorded aspects of climate as covariates. The approach 
involved the splitting of the reconstruction problem into two distinct stages; at the initial, 
forward stage, the proposed model for pollen-climate interaction was calibrated using the 
modern training dataset. At the inverse stage, the inferred model was “inverted” and used to 
make inferences on past climate given fossil pollen data obtained from lake sediment cores (a 
broader discussion of the approach is available in Section 2.3).

The authors acknowledged the deferral of several substantial issues in the paper, chief 
amongst them being the quality of the modern training data. Inference procedures were 
sampling based; this resulted in the necessity to run models for several weeks and the com­
putational drawbacks encountered by the approach made it difficult to criticize both the data 
and various other aspects of the methodology. Most importantly, the use of leave-one-out cross 
validation for model criticism was too computationally expensive to consider, thus the most 
vital statistic for the approach, the predictive accuracy, was impossible to calculate,

Salter-Townshend (2009) made significant advances in addressing many of the computa­
tional issues introduced in Haslett et al. (2006). Through the use of fast approximate Bayesian 
inference algorithms, Salter-Townshend was able to greatly reduce the time taken at the for­
ward, or model fitting, stage. This facilitated exploration of various aspects of the methodology 
and concluded in refining of the model, addressing issues including zero-inflation of the counts
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dataset. Hierarchical structures, obtained from expert opinion, were also introduced, enabling 
decomposition of the model likelihood. An approximate, leave-one-out cross validation algo­
rithm was developed, which was used to determine the predictive accuracy of the approach; 
for the final model, averaged over the whole dataset, the 95% highest posterior density regions 
for climate contained the true climate locations only 74% of the time.

Ad hoc measures, such as the “Gaussian blurring” of posteriors for climate, in light of data 
uncertainty, were used to increase the predictive accuracy of the approach further. Some crit­
icism of the training data was attempted; reference distributions for outlier detection were 
defined, however, posterior sampling distributions for the measures were unknown and thus 
critical metrics with which to determine outliers, unavailable. Furthermore, due to time con­
straints, inference procedures were empirical Bayes based; this resulted in the posterior uncer­
tainty in model hyperparameters being unaccounted for at the inverse stage.

Perhaps the most significant result produced in Salter-Townshend (2009), was the conclu­
sion that the use of only two climate covariates, tem perature (MTCO) and growing season 
(GDD5), was not enough for accurate modelling of the pollen response, and was partly the 
reason for the poor predictive accuracy of the base model.

1.1.3 R em ain ing  O u tstan d ing  C hallenges

In the context of the palaeoclimate reconstruction project, there remain a number of significant 
outstanding challenges. To summarise the previous section, the most signihcant of these 
include:

• The development of richer models for the palaeoclimate problem, including the exten­
sion of existing models to incorporate further climate variables and the construction of 
likelihood models which capture unique features of the pollen dataset such as N-infiation 
of the compositional counts.

• The development of a methodology for the fast, computationally efficient detection of 
outliers in the modern pollen training dataset and methods for explicit criticism of the 
forward models.

• The development of fast integration schemes for prediction at the inverse stage, which 
account for all posterior uncertainty in model parameters.

The main aspect of these remaining challenges are acknowledged to be computational in 
nature and form the background for many of the extensions in the statistical methodology 
proposed in this thesis. These contributions are outlined in further detail in Section 1.4.
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1.2 A pplication D atasets

Two datasets are used in this thesis which both motivate the research contributions contained 
herein and provide examples for the apphcation of proposed methodological contributions. In 
the following a brief introduction is given to each.

1.2.1 T h e RSIO P ollen  D ataset

The RSIO dataset of Allen et al. (2000) consists of a collection of modern (m) sample pollen 
counts along with associated measurements of several climate covariates, obtained from nu­
merous locations across the northern hemisphere. The sample counts at a given site are 
provided by examining the pollen composition of a sample of sediment obtained from the up­
per 5 to 10mm of the surface of the lake bed. The pollen counts, denoted =  {y^,  
n =  7742, are recorded for as many plant types as are distinguishable, though in this thesis 
information on only 28 plant types is considered. Present-day climate covariates for each site, 
C"* =  { c ^ * , c ” }, are typically estimated by extrapolating information available from local 
weather stations. Five main climate covariates are provided, with the ones most frequently 
utilised in climate models being: a measure of the length of the growing season (GDD5), a 
measure of winter tem perature (MTCO) and a measure of the amount of moisture available 
locally to plants (AET PET). The two remaining variables relate to summer temperature 
(MTWA) and an additional tem perature sum measure (GDDO). Taken together, this collec­
tion of data  is referred to as the modern, or training, dataset. Further details of the model 
training dataset relevant to the reconstruction problem are discussed in Section 7.1.1.

Additional information, namely fossil pollen counts (denoted are obtained from cores 
of lake bed sediment; typically, a core is divided up into N  (potentially non-uniform) slices, 
with a sample pollen composition provided for each slice; the prehistoric climate (denoted C^) 
corresponding to the deposition of the fossil pollen is inherently unknown, though time scale 
information (with uncertainty), is available from the carbon dating of a number of the pollen 
slices. In Chapter 7, a fossil pollen core from Glendalough upper, a lake site located in the 
Wicklow mountains in Ireland, is used for illustrative purposes.

1.2.2 A M I D ata se t

A supplementary dataset considered in this thesis, with the purpose of displaying the applica­
tion of developed methodologies outside of the palaeoclimate context, is the AMI data set. The 
data  set, obtained from Souza & Migon (2010), consists of demographic and medical variables 
observed upon patient admission to hospital following an Acute Myocardial Infarction (AMI), 
more commonly referred to as a “heart attack”. A sample of 546 outpatients was observed 
at Procardi'aco Hospital in Rio de Janeiro, Brazil; the recorded response variable is binary,
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regarding patient outcome after hospital admission for AMI, namely survival (0) or death (1). 
There were 73 deaths recorded in total during the study. Information is also available for a 
number of predictor variables which are hypothesized to be important in predicting in-hospital 
mortality. There were 11 variables recorded in total for each patient.

The motivation for collection of the data was the development of models for the accurate 
prediction of patient outcome given the recorded AMI predictor variables. This has an ob­
vious economic benefit in that chnical resources are potentially prioritized for those patients 
identified as having a higher probability of a negative outcome. Misrecording of the predictor 
variables corresponding to even a few of the patients can have a negative effect on model fitting 
and prediction accuracy; with this in mind, Souza & Migon (2010) aimed to identify patients 
for whom admission or additional data was possibly misrecorded.

1.3 Overview of Chapters

In the following we provide a brief outline of each chapter in this thesis.

C h a p ter  2: P a la eo c lim a te  R eco n stru ctio n  from  P o llen  D a ta

A brief review of the literatvire on palaeoclimate reconstrviction from pollen data  is presented. 
The process by which fossil chmate is reconstructed, using both Bayesian and non-Bayesian 
methods is detailed, and the current weaknesses of each respective methodology outlined. We 
focus in particular on the work of Haslett et al. (2006) and Salter-Townshend (2009), who 
provide the starting points for much of the work contained herein.

C h a p ter  3: S ta tis t ic a l M eth o d o lo g y

The reconstruction of palaeoclimate from fossil pollen data  requires drawing on a wide range of 
statistical methods and in this chapter we present many of these methods. Statistical models 
for the non-parametric Bayesian modelling of spatially referenced count data  are presented, 
and procedures for making inference on the parameters of these models outlined. A simple toy 
example is used to describe the framework of inverse Bayesian inference problems and diag­
nostic methods for the evaluation of inverse model performance are detailed. Some gaps in the 
existing methodology are identified and the solutions developed in this thesis are introduced.

C h a p ter  4: B a y esia n  R esid u a l A n a ly sis  for so m e N o n -G a u ssia n  R e sp o n se  M o d els

Methods for Bayesian residual analysis and outlier detection, under the assumption of discrete, 
non-Gaussian count outcomes, are identified as an outstanding challenge. A brief review of 
the existing literature on Bayesian residual analysis is provided and weaknesses of the current
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methodology outlined. This prompts the development of an alternative methodology for outlier 
detection and residual analysis, based on the incorporation of Gaussian random effcct terms 
into models for residual analysis purposes. The random effects are used as a “surrogate” for 
classical residuals and a number of simulation studies are used to assess the relative strengths 
and weaknesses of the proposed methodology. Finally, the power of the proposed approach is 
illustrated by application to the AMI data set, introduced in Section 1.2.2 above.

C h a p ter  5: M o d els  for M u ltiv a r ia te  O b servation a l D a ta

In this chapter we focus on models for highly multivariate observational data and investigate 
the implications of erroneous a priori modelling choices. Specifically, we evaluate the im­
pact of ignoring dependence structure between (correlated) model components at the forward 
stage, on the resulting (inverse) predictive performance of the calibrated models at the inverse 
stage. Hierarchical or “nesting” structures for (X)inpositional data  are also introduced, which 
facilitate the decomposition of multivariate compositional data  models into a series of less 
computationally challenging, univariate models for which inference tasks are computationally 
much simpler. We detail how the optimal structure for the nesting can be learned from the 
data. Finally, a statistical inconsistency of existing zero-inflated models for Binomial coimt 
data is highlighted. This prompts the development of a simple model extension to address 
this issue.

C h a p ter  6: S p a tia l P rior M o d els  and  C o m p u ta tio n a lly  E fficient In verse In feren ce

The primary focus in Chajjter (j lies in the specification of spatial prior models for the forward 
stage and the construction of algorithms for computationally efficient inverse inference given 
calibrated models at the inverse stage. It is demonstrated that failure to include all relevant 
spatial variables in the forward models, upon which the response depends, will lead to erro­
neous inferences in spatial prediction. The factors impeding the specification of GMRF-based 
spatial prior models in several spatial dimensions are detailed. These obstacles are surmounted 
via the development of an approach for constructing spatial prior models on irregularly shaped 
regions in several spatial dimensions. Finally, a fast sampling-based scheme for making inverse 
inferences in calibration problems is developed, which results in a substantial speedup of model 
inversion tasks. We detail how the computational advantages of the scheme becomes more 
pronounced for increasing dimension of both C  and Y .

C h a p ter  7: A p p lica tio n s  in P a la eo c lim a te  R eco n stru ctio n

The motivating research problem considered in this thesis concerns the reconstruction of fossil 
climate from fossil pollen data. In this chapter we apply the methodologies and algorithms, 
developed in previous chapters, to the RSIO pollen and climate dataset. We illustrate how the
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incorporation of an additional climate variable, A E T /PE T , into the forward models, in addi­
tion to fully accounting for the compositional nature of the data collection procedure, leads to 
a model with substantially increased inverse predictive accuracy. The proposed methodologies 
for residual analysis and outlier detection are also applied and possible sources for the slight 
loss in predictive accuracy of the best-fitting model are identified. Climate reconstructions 
at Glendalough, for a number of different forward models, both marginal and nested, are 
compared to independent reconstructions from the statistical literature.

C h a p ter  8: R e su lts  and C on clu sion s

In Chapter 8 the results from preceding chapters are summarised and discussed. Outstanding 
issues and challenges of the work presented in this thesis are outlined and possible solutions 
to these remaining challenges are proposed.



1.4 Research Contributions

The following are the main contributions made by the research contained in this thesis:

1. A novel, Bayesian approach to residual analysis in settings where response variables are 
both non-Gaussian and discrete is presented, with a focus on the Poisson and Binomial 
regression model setting. The proposed approach has distinct advantages over existing 
methods as regards both computational speed, due to the harnessing of fast approximate 
Bayesian inference algorithms, and the automatic provision of a metric by which to 
determine potential outliers. It is also demonstrated that exploratory tools from classic 
Gaussian residual analysis may be harnessed to gain an extra insight into underlying 
model dynamics at no extra computational cost.

2. Hierarchical (or nesting) structures for models of zero inflated compositional comits 
data, initially introduced in Salter-Townsherid (2009), are explored in greater detail - 
it is demonstrated that hierarchical structures can provide a full, but not necessarily 
unique, decomposition of Multinomial model likelihoods. We additionally illustrate how 
the ‘best’ nesting structure can be learned from the data. Methodological contribu­
tions include the development of a zero/N inflated likelihood for modelling zero-inflated 
Binomial counts.

3. A fcist, sampling based, inference procedure for prediction at the inverse stage in calibra­
tion problems is developed, which is demonstrated to be significantly computationally 
faster than existing deterministic integration algorithms. This has general application 
in the paradigm of inverse problems.

4. The richer class of models specifically developed for the palaeoclimate reconstruction 
project are applied. It is demonstrated that the inclusion of an extra climate covariate 
results in a class of models which have significantly superior predictive accuracy com­
pared to existing, competing models. Finally, a number of exciting new results for the 
reconstruction of the palaeochmate at a site at Glendalough in Ireland are presented.
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Chapter 2

Palaeoclimate Reconstruction from 
Pollen Data

The primary objective of this chapter is to provide a brief review of the existing methodology 
for pollen based palaeoclimate reconstruction, the main motivating problem considered in this 
thesis. The highly multivariate nature of the data sets used for the statistical reconstruction 
of past climate provide a number of immense challenges to the statistical modeller, several 
of which are discussed in detail in the following sections. Although this chapter will focus 
explicitly on the existing palaeoclimate reconstruction literature, the statistical challenges we 
introduce and propose to address arise in a wide variety of statistical problems.

2.1 Palaeoclim ate R econstruction

As previously mentioned, palynological reconstructions of palaeoclimate provide a vital source 
of information from which we can make inferences on past climate. According to Huntley 
(2001), the main advantage of palaeovegetation based reconstruction of the palaeoclimate is 
the multivariate nature of the response data set; the data set contains information on a wide 
range of {)lant types (“taxa”), with each separate plant taxon providing information on multiple 
aspects of climate. Here, each taxon (plant type) can consist of one or more species, an entire 
genus or sometimes even a family of several plant species. As each particular plant taxon 
prefers slightly different climatic conditions (Huntley 1993), the pollen composition of the 
fossil record can be analysed to make insightful inferences about past climate.

The multivariate nature of the fossil record is necessary as reconstructions of local climate 
based on single plant taxa can be noisy or unpredictable; for example, Subally & Quezel (2002) 
note tha t the Artemisia germs can flourish under a immber of contrasting climatic conditions 
- the Artemisia geims consists of about 300 species of plants, some of which conversely favour 
either extremely hot or extremely cold, arid climatic conditions. The benefit of a multivariate
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pollen data  set is that inferences on climate made by jointly analysing a number of plant 
taxa can be used to narrow the range of climate conditions that could have occurred thereby 
reducing the uncertainty in climate predictions.

All of the climate reconstruction methods discussed in this thesis exploit the uniformitarian 
principle, specifically, “the present is the key to the past”. The general framework of such an 
approach may be stated as follows; modern pollen data with known modern climate variables 
is used to calibrate models for pollen-climate interaction. The calibrated models are then 
“inverted” and used to make inferences on the climate corresponding to fossil pollen, obtained 
from fossil sediment cores, for which climatic conditions at the time of pollen deposition 
are unknown. There are a number of limitations to this approach, the principal one being 
that, in some cases, there exists no modern climate analogue for the pollen composition being 
analysed. Huntley (2001) discusses this limitation in greater detail and provides an introduction 
to several others.

In the following sections we focus on the statistical approaches used in model calibration 
for the pollen-climate relationship. The various estimation methods which appear in the 
palaeoclimate reconstruction literature can be divided into two distinct strands which we 
denote, as per Haslott et al. (200()), as “classical” (non-Bayesian) and Bayesian.

2.2 Classical Approach

According to Holden et al. (2008), almost all of the reconstruction methods currently employed 
by palaeolimnologists apply frequentist or non-Bayesian statistical methods. Furthermore, the 
majority of these statistical approaches are based on observing and attempting to model the 
empirical relationships between modern pollen taxa and climate (Birks et al. 2010), making 
use of the “uniformitarian principle” as introduced in the previous section. In the following we 
focus on one modelling strategy in particular, the “response surface” method for quantitative 
climate estimation. It is the method most similar in spirit in a Bayesian sense to the work 
of Haslett et al. (2006) and Salter-Townshend (2009), which provide the starting points for 
much of the work contained in this thesis.

Huntley (1993) provides an overview of the response surface method for the reconstruction 
of past climates from fossil pollen data. Given some observed modern pollen counts along 
with associated measurements on a number of climate predictor variables C™, our interest 
lies in inferring the smooth spatial surface Xi{C)  which describes the underlying relationship 
between pollen and chmate for the z*’’ plant taxon. Xi{C)  is denoted the “response surface” for 
taxon i and describes the way in which the pollen counts of the taxon vary with climate, 
C.  The pollen counts are thus an indirect observation of the “response" at a given location in 
climate space, perturbed by both non-climatic environmental and random variation. From here 
on the model fitting stage will be denoted the “forward stage”; correspondingly, the “inverse
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stage” will denote where calibrated models are “inverted” and used to provide quantitative 
inferences on unknown climates for fossil pollen data. This notation and terminology is adopted 
for the remainder of this thesis.

Noting the multimodal response to climate of some observed pollen proportions, Bartlein 
et al. (1986) use cubic polynomials of order two and three as bases in the estimation of response 
surfaces for eight pollen taxa in two climate dimensions. A response surface is fit to the pollen 
percentages of each taxon with least squares used to estimate the regression effects. Only 
the non-zero pollen counts are used to estimate model parameters and an implicit constraint 
is employed by the authors in that only counts data from the climatological range of each 
species is used in model fitting; because of the global nature of the polynomial bases used for 
the response surfaces, the authors are required to transform the pollen percentages and omit 
the observed zeroes to prevent strange model behaviour at the boundaries of climate space. 
It is perhaps for this reason that no climate reconstructions are produced; estimated pollen 
compositions for the eight taxa used in model fitting are instead compared to their observed 
pollen compositions.

Prentice et al. (1991) attem pt to surmount this model fitting problem by using non-linear 
calibration methods to infer non-parametric response surfaces. Response surfaces are obtained 
for thirteen different pollen taxa in three climate dimensions by using a locally weighted 
averaging t(x:hni(iu(^: because the smfac(!s are ht locally rather than globally, their method 
does not suffer from the boundary effects experienced by Bartlein et al. (1986). Quantitative 
climate reconstructions are provided using the calibrated response surfaces; climate values are 
inferred for the fossil pollen data by “scanning” predicted pollen percentages, obtained from 
the calibrated response surfaces and comparing them to the observed pollen percentages. The 
ten “nearest” climates in pollen composition to the observed climates are identified using a 
squared chord distance disimilarity measure. In order to address the multimodality of the 
output, the final (single) inferred climate value is taken as the centroid of the ten proposed 
climate values, each weighted by the inverse squared distances. An average chord distance 
measure is used to assess model fit.

Allen et al. (2000) use similar methods to provide reconstructions of the fossil climate 
corresponding to a fossil pollen core obtained from a site at Monticchio in Southern Italy. 
Qualitative methods are first used to classify each of the possible fossil climates into plant 
biomes. The qualitative results are then used to motivate quantitative reconstructions of the 
palaeoclimate - each fossil pollen sample is compared to predicted samples produced by the 
inferred response surfaces with the 10 closest modern climate analogues identified, subject 
to the constraint that the proposed climates must arise from the same biome identified by 
qualitative methods. As in Prentice et al. (1991), a squared distance metric is then used to 
provide single climate values from the 10 identified modern climate analogues.

However. Salter-Townshend (2009) notes the unsatisfactory nature of the squared distance
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method used by both sets of authors to infer single chmate values at the inverse stage. The 
deficiencies of the approach arc illustrated through a hypothetical example where the 10 iden­
tified modern climate analogues for a fossil sample occur at contrasting extremes of climate 
space. The modern analogues are thus separately indicating that climatcs in the “centre” of 
the climate space are infeasible given the fossil pollen data. Conversely, if the squared chord 
distances for each modern analogue are roughly equal, using the inversely weighed centroid 
of the modern analogues will infer a final climate value which is located in the centre of the 
climate space, wholly disagreeing with the separate inferences of each analogue!

A further substantial modelling issue involves the decision of which environmental factors 
to include in the forward models; according to Beerling et al. (1995), the modelling approach at 
the forward stage is open to the criticism that the mechanism determining a species distribution 
may not involve the climate variables which are used to develop the model. Huntley (1993) 
discusses this subject in detail, proposing that reconstructions from models involving three 
particular aspects of climate, degree of winter cold (MTCO), growing season warmth (GDD5) 
and a measure of moisture (AET PET) are to be preferred. Huntley (1993) also details how 
the models must account for interaction between the various climate covariates, for example 
a warmer summer will lead to a requirement for more moisture. As a result we can conclude 
that inferences derived from approaches which calibrate models on individual climate variables 
separately, svich as ter Braak (1995), may be misleading.

The main weakness of classical methods is that there seems to be no consistent way to make 
statements of uncertainty in the quantitative reconstructions that are produced. Paiaeocli- 
mate reconstructions are presented in terms of single chmate values that are estimated from 
multimodal outputs with only cursory measures of uncertainty provided. This deficiency is 
noted by Holden et al. (2008) who use the interesting phrase “the major weakness of these 
(sic classical) approaches is that they do not explicitly model the uncertainty associated with 
individual reconstructions", a sentiment also expressed in Haslett et al. (2006) and Birks et al. 
( 2010 ).

2.3 T he B ayesian  A pproach

The Bayesian paradigm provides the solution to the problems introduced in the previous 
section; statistical parameters are presented as random variables and a likelihood function is 
used to make probabilistic statements about the random variables in light of the observed data. 
The main advantage of the Bayesian methodology is that all uncertainties, both uncertainty 
in model parameters and uncertainty in the data, can be accounted for in a coherent and 
consistent manner.

In a series of papers, Vasko et al. (2000), Toinvonen et al. (2001) and Korhola et al. (2002) 
appear to be the first to set out a detailed, Bayesian statistical modelling approach to climate
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reconstruction from proxy data. The particular chmate proxy considered by the authors are 
species of chironomids, a type of non biting midge. A parametric form is adopted for the ch­
mate response surfaces; unimodal Gaussian curves are used to model the chironomid response 
to one aspect of climate, the mean July temperature. Toinvonen et al. (2001) adopt a Poisson 
likelihood for the observed chironomid counts, ignoring the compositional nature of the counts 
induced by the data collection process. Vasko et al. (2000) extend this approach, accovmting 
for Multinomial structure in the data; the model is evaluated by comparing estimated chi­
ronomid proportions, given inferred model parameters, to the observed proportions. Korhola 
et al. (2002) use this approach to provide a climate reconstruction, given fossil chironomid 
counts, for a site in northern Fennoscandia and compare the output to results obtained from 
a number of classical approaches.

However, as previously discussed, the unimodal assumption for climate response surfaces 
may not be suitable for all ecological processes. Each pollen/chironomid taxon may be com­
prised of a number of subspecies and thus may have more than one preference of environmental 
conditions. With this in mind, Bhattacharya (2006) relaxes the unimodal assumption for the 
response surfaces, using a flexible weighed mixture of Gaussian functions to model the chirono­
mid response to climate. The predictive accuracy of the approach is evaluated in an inverse 
sense, using a leave-one-out cross validation measure with the author observing a substantial 
improvement in prediction accuracy given multimodal climate response surfaces.

For more recent work on climate reconstructions under the Bayesian paradigm see Paciorek 
& McLachlan (2009), who use a Bayesian framework to analyze forest composition from fossil 
pollen data  with the aim of estimating the composition of ancient forests or Li et al. (2010), 
who use a Bayesian hierarchical model to incorporate three separate proxies for climate along 
with the use of external forcings to model large scale tem perature evolution.

In the following, we introduce the work of Haslett et al. (2006) and Salter-Townshend 
(2009), who provide the background for many of the methodological and computational con­
tributions that are presented in this thesis.

H a sle tt e t  al. (2006)

Haslett et al. (2006) present a Bayesian approach to palaeoclimate reconstruction which is 
similar in spirit to the response surface method of Huntley (1993). The authors consider a 
subset of the data (14 pollen taxonomic groups are selected from expert opinion from the 
total set of 48 taxa) and attem pt to reconstruct prehistoric climate for two climate covariates, 
MTCO and GDD5, at a site in Ireland. The approach, as with standard response surface 
methods, involves the splitting up of the reconstruction problem into two distinct stages, the 
forward stage and the inverse stage. In the following we describe the statistical model as 
presented in the paper.
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In the following we denote, by (C"*, Y ^) ,  the m odern clim ate d a ta  (clim ate measurem ents 

and pollen counts y™) and by {C^, Y^)  their fossil d a ta  equivalents. At the forward stage, 

the authors make the explicit approxim ation th a t the pollen response surfaces, X.  are inferred 

independent of the fossil pollen d a ta  (see Equation 2.2), justifying this assum ption by noting 

th a t the fossil pollen on its own contains very little inform ation on the laten t X.  Rougier 

(2008), see “cu tting  feedback”, provides additional support for this hypothesis.

T T { X \ Y ^ , C ^ , C f  , Y f )  K  7r(X|y™,C"” ) (2.1)
7r(y"»|X,C-»)7T(X) ^

7 r ( y " i , C " » )  ' ’

H aslett et al. (2006) approxim ate continuous clim ate space in two dimensions by a fine 

discrete grid of dimension 51 x 51 with a “buffer region” employed to  reduce the com putational 
burden; a non-param etric conditional autoregression (CAR) model (Besag 1986) is used as a 

prior for X  to  ensure sm oothness and address the possible m ulti-m odal na tu re  of the latent 
responses. The local structu re  in the model, provided by the CAR prior on X,  allows the 

au thors to  harness the com putational advantages of Markov random  helds.

However, the normalising constant, 7r(y™ ,C”*), in Equation 2.2 is not known in closed 
form; Haslett et al. (2006) perform approxim ate numerical integration using a M etropolis 

Hastings Markov chain M onte Carlo algorithm. Due to  the rmmber of latent param eters 
introduced by the model (around ten thousand), the model is slow to  run and the authors 

readily adm it th a t convergence of the chains is far from assured. Indeed the high dimensionality 
of the approach is acknowledged to be a source of much com putational burden and leads to 

several compromises in model complexity.

Specifically, the smoothness param eter of the la tent response surfaces, k, is fixed a priori.  
Additionally, a com pound (Dirichlet) m ultinom ial structu re  is used to model the overdispersed 

com positional counts which the authors note is perhaps “overrestrictive”; one common 6 pa­

ram eter is used to  model the overdispersion across all taxonom ic groups. H aslett et al. (2006) 
adm it th a t this model m ay not sit well w ith scientific theory - a t m any sites certain taxa  are 

completely missing, a feature which is not allowed by the model. The authors also note the 

extensive num ber of zeroes in the observational dataset and acknowledge the need to  trea t 

zero inflation  of the pollen counts explicitly.

Due to the com putational burden imposed by the sam pling based inference procedure, 

model validation tools such as leave-one-out cross validation are inaccessible; rerunning the 

model for each left out set of datapoin ts and evaluating the accuracy of the  resulting clim ate 

predictions given the “tru th ” is infeasible in finite com puting time. A sa tu ra ted  cross validation 

m ethod (the model is validated using the same counts th a t are used to  tra in  the model) is 

used instead to  evaluate the predictive accuracy of the approach. Using the samples obtained
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from the forward stage, the authors determine that approximately 96% and 97% of MTCO 
and GDD5 vahies he inside their corresponding 95% highest posterior density regions.

S a lter-T o w n sh en d  (2009)

Model validation does not play a big role in Haslett et al. (2006). The reliance on sampling 
based algorithms for inference restricts the comparison of multiple models and the identifi­
cation of observations which are not well captured by the fitted model. Through the use of 
fast approximate Bayesian inference algorithms (the INLA algorithm, see Section 3.3), Salter- 
Townshend (2009) is able to surmount this obstacle - model fitting is reduced from weeks in 
the case of Haslett et al. (2006) to minutes, with full Bayesian inference on all unknown model 
parameters. W ith the computational obstacle of model fitting overcome, Salter-Townshend 
(2009) is able to criticise and develop various aspects of the methodology.

The use of fast approximate inference algorithms enables the relaxation of a number of 
the computational concerns of Haslett et al. (2006); existing models are extended to include 
explicit modelling of the zero-inflation present in the data, at very little extra computational 
cost. The extra zeroes are addressed through the development of a parsimonius model which 
captures zero-inflation of the count observations at the cost of inferring an extra, zero-inflation 
parameter for each taxa. However, whilst Salter-Townshend (2009) identifies “nesting” or hier­
archical structures (see Section 5.4) as a valuable tool for decomposing joint models involving 
Multinomial likelihoods into the product of independent components, the author does not 
show that such structures provide the correct full likelihood in the context of zero-inflated 
count outcomes. Furthermore, a point missed by Salter-Townshend (2009) is that, in the con­
text of zero-inflated Multinomial count data, zero-inflation of the counts corresponding to one 
plant taxa possibly results in “N” inflation of the counts corresponding to another. Thus the 
proposed models for palaeocUmate reconstruction are not “symmetric” (see Section 5.5.1) and 
lead to statistically inconsistent inferences in model fitting. One contribution in this thesis is 
the addressing of this issue; we construct a parsimonius model which explicitly accounts for 
N-inflation in the compositional counts leading to consistency in the inferences produced for 
model parameters.

Whilst Salter-Townshend (2009) considers data criticism and model validation in a much 
more substantial manner than Haslett et al. (2006), the focus remains on the inverse stage of 
the calibration problem. Reference measures, such as the root mean squared error of prediction 
(RMSEP) are utilised with the explicit aim of identifying observations which do not agree well 
with the fitted model. However, the empirical properties of the resulting RMSEP values are 
unknown and hence critical bounds by which to detect outliers unavailable. Furthermore, as 
the focus is on inverse predictive performance of the fitted models, little or no effort is made 
to evaluate a-priori modelling assumptions at the forward stage; the identification of model 
weaknesses is difficult due to the lack of suitable model and data criticism tools for inverse
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problems (Salter-Townshend 2009). A critical contribution in this thesis is the development 

of m ethods for fast model validation through the analysis of posterior random  effect term s 

and the provision of exphcit critical bounds by which outliers can be quickly detected, see 

C hapter 4 for further details. For the ftrst tim e explicit, objective criticism of bo th  the RSlO 

model training dataset and the forward models is possible.

A key advance in Salter-Townshend (2009) is the development of a fast leave-one-out cross 

validation algorithm  by which the accuracy of the clim ate predictions produced by the cali­

b ra ted  model can be verified. For each left-out count the 95% highest posterior density region 

for clim ate is constructed and the resulting HPD region evaluated to determ ine if the true 

clim ate location is contained w ithin it. The use of such a dem anding statistic  for model vali­

dation is required in order to  effectively test the predictive ability of the model for its later uses 

in fossil clim ate reconstruction. However, the predictive accuracy of the final model of Salter- 

Townshend (2009) is shown to be just 74%. Suggesting uncertainty in the d a ta  as one possible 
cause of the poor model predictive accuracy, ad-hoc measures such as the “Gaussian blurring” 

of the clim ate posteriors, are used to increase predictive performance, essentially, posteriors 
on clim ate are convolved with a Gaussian kernel of fixed bandw idth which results in more 

conservative 95% flPD  regions. However, Salter-Townshend (2009) readily adm its th a t the 
appropriateness of this approach is not thoroughly investigated.

Conversely, in this thesis we illustrate th a t the poor model predictive perform ance in Salter- 

Townshend (2009) is due to  the failure to  fully accoiuit for the com positional nature of the 
pollen counts and the use of models which do not include all im portant clim ate covariates, 

specifically, Huntley (1993) recommend th a t at least three aspects of climate, nam ely GDD5, 
M TCO and A E T /P E T  should be used in clim ate models for the specific plant tax a  which are 

available in the RSIO pollen training dataset. We extend the current modelling methodology 
to  incorporate an additional clim ate covariate; this results in a large increase in the “size” of 

the clim ate space and greatly im pacts on the speed of the determ inistic numerical integration 

algorithm s of Salter-Townshend (2009) for model inversion. A further contribution in this 

thesis is the construction of a fast sampling-based scheme for model inversion, which results 

in substan tial tim e savings in making inferences on the fossil clim ates corresponding to  fossil 

pollen d a ta  a t any given site.

2.4 Advances in this Thesis

Since the “proof of concept” paper of H aslett et al. (2006) and tlie thesis of Salter-Townshend 

(2009) the contributions contained in this thesis to  the modelling of the RSlO datase t may be 

sum m arized as follows.

1. Extension of the existing 2 dimensional clim ate models to  incorporate a further clim ate 

covariate, A E T /P E T  (using Section 6.2.3).
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2. Extension of the partially nested structures of Salter-Townshend (2009) to the lowest 
levels (using Section 5.4 and applied in Section 7.3.2).

3. Explicit modelling of the N-inflation in the pollen counts data (using Section 5.5).

4. Development of methods for criticism of the training dataset and the fast validation of 
the forward models (Section 4.2 and 7.2.5).

5. Construction of a fast, sampling-based scheme for inversion of the forward model for 
fossil climate prediction (Section 6.3).
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Chapter 3

Statistical Methodology

The primary interest of the work detailed in this thesis is palaeochmate reconstruction. Specih- 
cally, statistical models are constructed for the pollen-climate relationship and inferences made 
on the parameters of these models given model training data. The fitted models then are ev̂ al- 
uated in terms of their fit to the data and inverted to make inferences on the unknown climate 
corresponding to some fossil pollen data.

Each of these tasks involve drawing on a wide range of statistical methods and in this 
chapter we detail many of these methods. We begin with a brief introduction to Bayesian 
inference and proceed to introduce details of statistical modelling methodology relevant to the 
work contained in this thesis.

3.1 Bayesian Inference

The Bayesian analyst, given the observed data, is concerned with learning about some un­
known parameters corresponding to the processes which produced the data. These unknown 
parameters, denoted X  = { x i,.. .,x „ } , are treated as random variables imder the Bayesian 
framework. One of the main advantages of the Bayesian methodology is that all vmcertainties, 
both uncertainty in model parameters and uncertainty in the data, can be accounted for in a 
coherent and consistent manner.

The prior distribution, which we denote is a key part of Bayesian inference. Prior
knowledge about parameter values can be obtained from any number of sources, including, 
information derived from previous studies on the subject or based on expert opinion. Alterna­
tively, non-informative priors may be specified, refiecting situations where the analyst cannot 
provide much background information on the parameters in question. We use the probability 
density function tt{X)  to express these beliefs.

The observed data, which we denote Y  = is modelled using a likelihood
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function ti{Y\ X)  which is parameterised by the latent parameters X .  This represents the 
probability distribution of the data Y , given X ,  and is used to calculate the joint probability 
of observing the data in question as a function of the parameters.

Posterior information regarding the unknown parameters X ,  subsequent to observing data 
y ,  can be summarized through the use of Bayes’ theorem.

. , x , y )  =  ,3.1,

oc t: {X) i: {Y\X)  (3.2)

oc prior x likelihood (3.3)

The posterior is proportional to the product of the prior and the likelihood and reflects all 
that is known about X  in light of the observed data. Bayes’s theorem provides a mechanism 
for combining both these sources of information.

3.1 .1  B ayesian  H ierarchical M odels

The framework for many of the models used in this thesis is that of a Bayesian hierarchical 
model (Gelman et al. 2003, Chapter 2). The use of Bayesian hierarchical models allows the 
latent parameters X ,  to be dependent on further hyperparameters, 6 as follows;

Y  ~ n{Y\ X) (3.4)

A x \ e ) (3.5)

9 ~ n{0) (3.6)

The observable outcomes Y  are modelled conditionally on the latent parameters X  which 
themselves are specified in terms of the hyperparameters 0. The hyperparameters themselves 
may be incorporated into the hierarchical structure, modelled as random variables and esti­
mated from the data, by the addition of extra levels to the model hierarchy.

3.2 Markov Chain M onte Carlo

Any features of the posterior distribution are legitimate for Bayesian inference (Gilks et al. 
1996), these include the calculation of posterior moments, marginal densities or highest pos­
terior density regions, for example. All of these integration based summaries can be expressed 
in terms of posterior expectations of functions of X  by drawing samples {X^^ \ i  = 1 , . . .  ,n}

20



from 7r(X |y) and approximating:

E[ f {X) \ Y]
I  f { X ) n { X ) n { Y \ X ) d X  

f  7r ( X) 7: ( Vl X) dX
(3.7)

(3.8)

However, in many circumstances, posterior distributions are not known in closed form, 
generally due to the impossibility of analytically evaluating normahsing constants. As a result, 
direct sampling from the posterior distribution is not possible and independent samples are

a method of generating dependent samples from the posterior distribution of interest. These 
samples can be used for Monte Carlo integration purposes; this is then Markov chain Monte 
Carlo. Markov chain Monte Carlo (MCMC) methods provide algorithms for the drawing of 
(correlated) samples from highly complex or multi-dimensional distributions from which direct 
sampling is impossible. Two such algorithms include the Metropolis-Hasting algorithm and 
the Gibbs sampler. A very simple summary of these methods is provided in the following, for 
a more comprehensive introduction see Gilks et al. (1996).

3.2 .1  T h e M etrop o lis-H astin gs A lgorithm

Metropolis-Hastings algorithms (introduced in Metropolis et al. (1953) and generalised in Hast­
ings (1970)) are an important class of MCMC sampling algorithm which generate a Markov 
chain of samples from any target probability distribution of interest, such as the posterior 
distribution in Equation 3.7. The main advantage of the algorithm is that it circumvents the 
problem of calculating the normalizing constant of the target distribution, thus the distribution 
need only be known up to a proportionality constant.

The basic idea of the algorithm is as follows; suppose the target distribution from which 
we wish to sample is 7t(X).  Given the current state X^, the algorithm begins by first drawing 
a candidate state, X',  from a proposal density q{-\X^). Generation of the candidate state X'  
is only dependent on the previous state X* and this candidate is accepted with probability

If the candidate state is accepted, the next value in the Markov chain, is set as X',

unavailable. A solution to this problem is provided by the use of Markov chains which provide

a{X' ,  X*') where:

a{X^,X' )  =  min ( 1
T r { X t ) q { X ' \ X i )

(3.9)

otherwise X̂ ~̂  ̂ remains in the same state and is set as X^. In order to generate samples, the
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algorithm is allowed to iterate from an initial starting state until convergence is achieved (i.e. 
until the samples increasingly appear to be dependent samples from the stationary distribution 
7t ( X ) ) ,  from this point on the algorithm is run until the required number of samples are 
obtained. Though the set of samples from the Markov chain, . . . ,  are generally
dependent, the autocorrelation between the samples can be studied to obtain a subset of the 
samples that are approximately independent.

It is important to choose the proposal distributions carefully, for while any choice of q{-\-) 
will yield the correct stationary distribution of the Markov chain (Gilks et al. 1996), the mixing 
and convergence properties of the algorithm are dependent on the proposal distribution chosen. 
If the proposed moves between states are small, the probability of acceptance of a candidate 
value will be relatively high and consequently the chain will take a long time to explore 
the target distribution. Conversely, if the proposed moves between states are too large, the 
acceptance rate will be quite low and the chain will fail to move, greatly reducing the number 
of effective samples available for inference. In both these extreme cases the algorithm can be 
said to “mix slowly”, indicating that the chain moves slowly around the support of the target 
distribution (Gilks et al. 1996).

An additional issue is deciding when convergence of the Markov chain has occurred. The 
random walk can remain for many iterations in a region that has been influenced by the 
starting point of the chain potentially leading to the misleading conclusion that the chain has 
converged. A general solution to this problem, as noted by Gilks et al. (1996), is the running 
of multiple parallel chains, each with different initial starting points. Though increasing the 
computational burden, this provides a practical measure for determining if convergence has 
occurred.

3.2.2 Gibbs Sam pling

Gibbs sampling (see Gelfand & Smith (1990)) is another MCMC technique which occurs 
as a special case of the Metropolis-Hastings algorithm. Suppose X  = { x \ , . . . , x n }  and 
7t(xi, . . .  ,Xn) is the target joint probability distribution of interest. The idea behind Gibbs 
sampling is that we can set up a Markov chain simulation algorithm from the joint posterior 
distribution by successfully simulating individual parameters from the set of n  conditional 
distributions. Using the Gibbs sampler, parameters are updated component wise using the 
proposal distribution:

qi{x[\x\ ,XU) = T^{x[\XU) (3.10)

This proposal is Markovian as x- depends solely on X^^-. Considering this proposal distribu­
tion in the context of the Metropolis-Hastings algorithm, we note that a  in Equation 3.9 always
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equals unity; is always set equal to x'-. As a result, accept/reject steps are unnecessary; 
each is effectively a sample point from the marginal distribution n{xi). The algorithm
thus proceeds by iteratively sampling from the full conditionals in a random sequence until 
the required number of samples has been obtained.

However, despite the absence of an accept/reject step, Gibbs sampling can also suffer 
from mixing and convergence issues. Single-site updating can be highly disadvantageous if 
parameters are highly dependent in the posterior 7t(X) (Rue & Held 2005), for example in 
problems involving spatial regression models. Furthermore, if n is high dimensional, issues 
may arise in the speed at which the algorithm explores the full target distribution; it can be 
difficult to determine when the algorithm has converged. These issues plagued the forward 
modelling stage in Haslett et al. (2006); due to the number of random variables introduced by 
the non-parametric modelling approach, MCMC chains had to be run for a number of weeks 
to provide samples from the posterior and convergence was difficult to assess.

3.2 .3  E m pirical B ayes

In Section 3.1.1 we introduced the concept of a Bayesian hierarchical model. Given the hi­
erarchical model framework, the data Y  depend on some unknown parameters X . which are 
further dependent on some hyperparameters 0. At the lowest level of the model, the hyper­
parameters are drawn from an appropriate second stage prior, however, at some stage in the 
model framework the remaining parameters must be treated as known. A method of avoiding 
this assumption is the use of empirical Bayes methods (Carlin & Louis 2000). In an empirical 
Bayes analysis, the data are used to estimate the prior parameters and we then proceed as if 
these parameters are known. The empirical Bayes approach essentially involves the replace­
ment of the integration step in Equation 3.7 by a maximization, using the maximized values 
of 9 to make inferences on unknown parameters at higher stages of the hierarchical model.

0{Y) — max^» 7T(r, X, 6) 
7r{X\e,Y)7T{Y)

(3.11)

The value of 9 used in parameter inference, 9 is obtained by maximizing the marginal 
posterior distribution 'k{9\Y) over 9. Inference on the remaining model parameters is thus 
based on the estimated posterior distribution ’k{X\Y,9)-.

^(X\Y^ =  h{y\X,9)^{X\9)i:{9)d9
 ̂ j  j  TT{Y\X,9)T:{X\9)TT{9)dXd9  ̂ ’

_  i: { Y \ X , 9 ) t:{X\9)

J tt{Y\X, 9)TT{X\9)dX
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The drawback of such an approach, as discussed in Gelman et al. (2003), is that the resuhing 
predictions do not account for all parameter uncertainty and thus posterior density regions 
will generally be less conservative than those obtained by a fully Bayesian approach. However, 
if the posterior distribution of 'K{d\Y) is reasonably “peaked” the approximation can be quite 
accurate.

3.3 Integrated N ested  Laplace Approxim ations

In Section 3.2 we discussed how Markov Chain Monte Carlo methods can be used to obtain 
simulation based summary statistics from nearly any target posterior distribution of interest. 
In this section we consider an alternative to MCMC for fully Bayesian inference on model 
parameters, the deterministic, integrated nested Laplace approximation (INLA) method of Rue 
et al. (2009).

To recap, interest lies in making inference on a number of unknown parameters (X, 9) 
corresponding to a target posterior distribution of interest, such as tha t considered in Equa­
tion 3.15.

7T(X,0l'i') =  7r(A'lY;t))w(t)lV) (3.14)
TT{Y\X, e)TT{X, 0)

(3.15)

The INLA algorithm proceeds by using a Laplace approximation for 7r(^|y); essentially 
this involves replacing the denominator in Equation 3.16 by the Gaussian approximation 
kg(X\ Y ,  0) to the full conditional n{X\Y,9) ,  evaluated at the modal value of X ,  X*{0).  
nG{X\Y,9)  is thus approximated as a multivariate Gaussian distribution with mean /j,{9) and 
covariance matrix S(0) (i.e. MVN{^i{9),'E,{9))),  with (9) indicating the explicit dependence 
of the approximation on 9. If additional Markov structure is specified for X , X  is a Gaus­
sian Markov Random Field (Section 3.4.1) and the Markov structure is carried through to 
f T G ( x | r , 0 ) .

n{9\Y) =
7t{Y,X,9)
n{X\Y,0)
7r(y ,X,0)

n G{ X\ Y , 9 ) x=x'{e)

(3.16)

(3.17)

In order to make marginal statements about the latent field posterior X ,  the posterior 
for the model hyperparameters, 7t(0|F), is evaluated on a discrete grid; the approximate
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marginal posterior for X  can then be obtained by summing over the discrete values of the 
hyperparameters. In the following the Aj represent area weights which ensvire the probability 
density of ii{9\Y) sums to 1 (see Equation 3.18 - 3.20).

Thus the posterior for each G X is represented as a weighed mixture of Gaussians. If the 
marginal posterior of an individual Xi is required to a greater degree of accuracy, a Laplace 
approximation can be used in a similar manner to Equation 3.17. For further details we defer 
to Rue et al. (2009).

An important point to note however, is that the INLA methodology, much like methods 
based on Monte Carlo sampling techniques, is not without its issues. The numerical algorithms, 
used to explore the space of 9, require initial starting positions and are thus subject to “getting 
stuck” in local modes. Additionally, the posterior for model hypcrparameters, 'k{0\Y), is 
represented on a discrete grid - as a result, models are limited in the number of hyperparameters 
tha t can be considered (Rue et al. 2009) suggest dim(0) < 6), providing an explicit constraint 
on the complexity of models that can be constructed when using the INLA algorithm.

In this section we focus on prior models for X  where we assume X  is a smooth spatial process

multivariate Gaussian spatial priors for X  is very common in point referenced spatial regression 
problems such as those involving environmental data (Bannerjee et al. 2004). X  is defined as 
a multivariate Gaussian process with mean vector jj. and n x n covariance matrix S(0), where 
the individual elements in T,{d) describe the spatial covariance between each of the latent Xi. 
The degree of covariance between the Xi is governed by underlying model hyperparameters 0, 
which parameterise In the following, for simplicity of notation, we suppress the explicit
0 dependence; the spatial prior for X  may thus be written as X  ~  MVN(/u,  S).

In a typical analysis the dimension of the covariance matrix is directly related to the 
number of recorded observations - we may be interested in inferring a smooth latent Xi for 
each observation m. However, as the dimensionality of the available dataset increases, such 
prior specifications become too computationally demanding to work with. This is due to the

J  n{X\0,Y)7T{e\Y)dO 

j  T x { X \ e , Y ) T T { 0 \ Y ) d 9

Y,^{X\euY)^{9,\Y) X A i

(3.18)

(3.19)

(3.20)

3.4 Spatial Prior M odels

indexed by some location vector, details of which are suppressed in the following. The use of
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0{n^)  cost of inverting large dense n x n  covariance matrices S in order to evaluate probability 
densities. Banncrjec ct al. (2004) refer to this as “the big n problem”.

In the following we discuss one possible solution for surmounting this difficulty. We consider 
the setting where additional Markov structure is applied to the precision (inverse covariance) 
matrix Q, leading to the harnessing of fast, sparse matrix algorithms to obtain vast computa­
tional savings.

3.4 .1  G aussian  M arkov R andom  F ields

Suppose as previously that X  has a multivariate Gaussian distribution with mean ^  and 
precision m atrix Q. If we define a labeled graph G = {V, e), where V  = ( 1 , . . . ,  n) and e be 
such that there is no edge between node i and j  iff Xi±Xj \X- i j .  Then we say X  is a GMRF 
wrt G.

Definition 3.4.1 A random vector X  =  ( x i , . . .  ,x „)^  is called a GM RF wrt a labeled graph 
G = {V,e) with mean fi and positive definite precision matrix Q, iff its density has the form:

n{X)  =  (2 ^ ) - t  \Q \h x p  (^-^-{X  -  n ) ^ Q{ X  -  /x)) (3.21)

and
Qij ^  0 { i , j }  € e y  i j t  j.

A  Gaussian Markov random field may thus be simply described as a random vector fol­
lowing a multivariate Gaussian distribution with additional Markov properties. The Markov 
properties are contained in the precision matrix Q\ if Xi and xj  are conditionally independent 
given the “rest” (X- i j ) ,  then the corresponding Qij entry in the precision matrix Q is zero. 
Given a defined graph structiu'c, many of the entries in Q are zero; the harnessing of compu­
tationally efficient algorithms for operations on sparse matrices will thus significantly reduce 
computation time (see Rue & field (2005)).

GMRF structures can be quite natural, such as situations where the data are defined on a 
lattice as in image analysis problems, however most approaches based on GMRFs approximate 
continuous space by a discrete grid with observations “pushed” to the nearest gridpoint. This is 
not strictly necessary, Lindgren et al. (2011) have developed methods to extend this theory to 
the continuous plane, details of which are omitted here. W ith regard to the “big n problem”, 
the dimensionality of the latent process reduces to the dimensionality of the grid; this can 
result in vast computational savings in addition to those available from the sparse structure 
implied by the Markov properties.
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Intrinsic G aussian M arkov R andom  Fields

In many applications, including those considered in this thesis, intrinsic Gaussian Markov 
random fields (IGMRFs) are of particular interest. Intrinsic GMRFs are always improper 
since the precision matrix is not of full rank and therefore cannot be inverted to give the 
covariance matrix. Intrinsic GMRFs have extensive use as a prior on the smoothness of the 
latent surfaces in spatial regression models, for their application in a variety of statistical 
problems see Rue & Held (2005, Chapters 4 & 5).

D efin ition  3.4.2 Let Q be a n n x n  symmetric, positive semi-definite matrix with rank n —k > 
0. Then X  = { x \ , a:„) is an Im proper G M R F  of rank n — k with parameters (/Lt, Q), if  
its density is

n{X)  = ( 2 ^ ) - ^  (IQ D ^exp (3.22)

IQI* denotes the generalised determinant which is formed as the product of the n ~  k 
non-zero eigenvalues. The parameters (/x, Q) no longer represent the mean and the precision 
since they do not formally exist. Following Rue & Held (2005) we continue to adopt this 
terminology for convenience. The expected value of the individual Xi, fii is undefined, however, 
the conditional mean E{xi \X- i)  can be expressed as a weighed average of the neighbouring 
Xj where the neighbourhood structure of each Xi is defined by G.

The precision matrix, Q for an intrinsic GMRF in one dimension is quite easily constructed 
from first principles using a simple random walk. Given an equally spaced grid of length n  and 
assuming independence of the increments, the precision matrix corresponding to an IGMRF 
of order one on the line can be easily obtained by specifying a Gaussian prior with mean zero 
for the pairwise forward dift'erences, i.e. Xi+\ — ~  A^(0,k“ ^).

n —1

7t{X\ k) (X K ^“ exp( —— ^^(A x i)^ ) (3.23)
1= 1

n —1

=  « V e x p ( - ^  ^ ( x j + i  -  Xi)^) (3.24)
i=l

=  K ~  e x T p { - -X ^Q X )  (3.25)

We set Q = kR  where k is a hyperparameter governing the smoothness of the latent process. 
The higher the value of the precision parameter the smoother the resulting spatial process will 
be. Additionally, R  is the structure matrix given by:
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/ 1 - 1

- 1  2 - 1

- 1  2 - 1

\

R (3.26)

- 1  2 - 1  

- 1  2 - 1

V -1  ]

It is quite easy to extend this approach to obtain the precision matrices for IGMRFs of any 
desired order on the hne. In a multidimensional setting however, there are many choices for 
the neighbourhood structure, see Rue & Held (2005, Chapter 3). At the edges of the discrete 
space, care must be taken in order that the defined precision matrix Q has the correct rank. 
If a regular grid (in m > 1 dimensional space) is utilised then we must be careful to correct 
Q in terms of “edge eflPects”; a solution to this problem includes the creation of a “buffer zone” 
around the discrete region of interest. This is discussed in further detail in Chapter 6.

3.5 M odelling D iscrete D ata

The primary data sets considered in this thesis consist of discrete counts data. In the following 
we provide a brief overview of the statistical modelling of count data  which is drawn mainly 
from Salter-Townshend (2009, Chapter 2 & 3). This includes the introduction of simple 
model extensions to standard likelihood families to address issues relevant to the palaeoclimate 
reconstruction problem such as overdispersion and zero-inflation of the pollen covmts.

3.5 .1  Log-Link F unctions

A likelihood function that is frequently used to model count observations is the Poisson distri­
bution, however, this function is constrained to have non-negative parameters. If the counts 
are spatially indexed, our interest lies in linking the count observations Y  = {yi, ■ ■ ■ ,yn)  to 
the underlying unconstrained spatial field X.

The use of log-link functions provides a method of doing so, the rate param eter of the 
Poisson distribution is taken as the exponent of the underlying spatial field, specifically:

yi ~  Poisson(yi; Ai) 

A, =  exp(xi)

(3.27)

(3.28)
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X  ~  G M R F(/i,Q ) (3.29)

Using this transform ation, the unconstrained (—00, + 00) la tent field variables are tran s­

formed into positive random  num bers [0, +co) which are com patible w ith the Poisson likeli­

hood model. As per the preceding section, the latent field is modelled non-param etrically as 

a  GM RF. In the context of model param eters th a t are constrained to lie on the unit interval 

[0,1], such as probability values, the logit transform , pi = provides the appropriate

transform ation.

3 .5 .2  Spatial Zero-Inflated  M odels

A common feature of ecological datasets, such as the RSlO pollen dataset, is their tendency to 

contain many zero values. If standard  statistical models such as the Poisson are used to  model 
such data , the excess of zero observations can greatly im pact param eter estim ation; statistical 

inferences derived from the model will be biased by them  (Salter-Townshend 2009).

R idout et al. (1998) discuss a number of solutions to  this problem; here we focus on one of 
these in particular, the use of of zero-modified distributions to  account for the excess zeroes. 

Such models assume th a t the observed d a ta  arise from a process which consists of two distinct 
states; a zero sta te  from which only zero counts are observed and a Poisson s ta te  from which 

the non-zero counts and some of the zero counts are observed (Hall 2000). As per R idout et al. 
(1998), zero counts arising from the zero sta te  are referred to as “stru c tu ra l” zeroes whereas 

those arising from the Poisson process are referred to  as “sam pling” zeroes.

The resulting zero-inflated Poisson likelihood for the d a ta  is:

,  I ^  X j  1 -  +  g»Poisson 0; y = 0
[ qiPoisson[yi; Xi) y > 0

In Equation 3.30, qi represents the probability th a t an observed count arise from a Poisson 
model w ith ra te  param eter Aj. Alternatively, in the context of a  zero observation, (1 — q^) 

represents the probability th a t the count arises from a s ta te  th a t produces only zeroes. W here 

the response is spatially referenced, both  the ra te param eters of the Poisson model and the zero- 

inflation probabilities of the zero sta te  may be separately modelled as a function of underlying 

m odel covariates. A Bayesian hierarchical model for such d a ta  m ay be presented as:

yt ~  ZIPoisson(yj; Ai,(^i) (3.31)

Xi =  exp(xi) (3.32)
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(3.33)

(3.34)

(3.35)

The zero-inflated distribution  has an additional spatial field in com parison w ith the  non­

zero-inflated Poisson model - the additional field Z,  through the  use of a logit transform , is

of laten t param eters requiring inference a t the forward stage is doubled for the zero-inflated 

model.

Of course alternative models to  the Poisson may be used to  model the observed counts. 

O ther probability  distributions for count data , such as the Negative Binomial, can be modified 

to  account for excess zeroes in a similar m anner. However, an im portant point to  note is 

th a t these m ethods are not com patible w ith models for compositional d a ta  and can lead to 

statistically  inconsistent, erroneous param eter estim ates. We present and develop a solution 
to  this issue in Section 5.5.

S in gle P ro c ess  M o d els  for Z ero-Inflation

Of particu lar interest in this thesis are single process models for zero-inflation, where the 

laten t spatial field governing the zero-inflation probabilities, Z,  is assum ed to  be a function of 
the latent spatial field governing the ra te  param eters of the mean, X .  Parsim onious models 
may then  be developed which greatly reduce the com putational burden of model fitting - 

Salter-Townshend & Haslett (2006) detail the use of such models, in situations where the 

laten t param eters are modelled non-param etrically, reduces the num ber of la ten t param eters 
requiring inference by half. Essentially, the probability of presence of a given count observation 

is modelled as:

The probability of presence, for a given count observation, is trea ted  as a  monotonic func­

tion of the m iderlying latent field for positive a ; specifically, as the value of the underlying 

laten t random  variable Xi increases in value, the probability of observing a zero observation de­

creases. Additionally, if a  =  0, the zero-inflated model simply reduces to  its non-zero inflated 

version.

A point to  note is th a t this model should only be applied to d a ta  for which the assum ption 

of such a relationship can be justified. For examples of applications of this model in a general 

context see Lam bert (1992), who considers zero-inflation of m anufacturing defects, or Hall

used to  control the probabilities which govern the point mass a t zero. As a result, the number

(3.36)
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(2000) who considers the use of such models in an ecological setting. Salter-Townshend (2009) 

provides justification for the application of this model in the contcxt of the palaeoclim ate 

reconstruction problem  relevant to this thesis.

3.5.3 Overdispersion M odels

Counts d a ta  which display excess variation over th a t expected by a given statistica l model 

are said to be overdispersed. For example, overdispersion in the context of Poisson count 

observations may be identified by the empirical variance being substantially  greater than  the 

em pirical mean; Poisson models with a single ra te  param eter governing both the mean and 

the variance will perform  poorly in such settings.

T he solution to  this problem  is the use of overdispersed likelihoods; Gaussian random  effect 

term s may be incorporated into models to explicitly model the additional source of variation 

as follows:

yi ~  Poisson(i/j; Aj) (3.37)

\ i  = exp{xi + Ui) (3.38)

Ui ~  iV(0,cj2) (3.39)

X  -  G M R F (//,Q ) (3.40)

The addition of the random  effect term s results in a model which is overdispersed with 

regard to  the spatial com ponent X .  However, as the Gaussian random  effects are not conjugate 

to  the Poisson likelihood, this results in a t least a doubling of the num ber of la tent param eters 
in the model - a random  effect term  must be inferred for each datum  as well as an additional

hyperparam eter a^. However, as we will discuss in detail in Section 4.2.3, the use of the INLA

algorithm  of Rue et al. (2009) provides a solution to  this problem - the com putational speed 

of the algorithm  facilitates quick approxim ate inference on all model param eters including the 

random  effect terms.

A lternatively, the  assum ption th a t the random  effects arise from a d istribu tion  conjugate to 

the Poisson likelihood, such as the G am m a distribution, leads to  a modelling situation  which 

is convenient in term s of com putation. As per Salter-Townshend (2009) the model may be 

w ritten  as:

yi ~  Poisson(j/i; Aj) (3-41)

Aj =  Gamma(Aj,(5, ( 1 - p i ) / P t )  (3 -42 )
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(5 +
X -  GMRF(/i,g)

(3.43)

(3.44)

As the Gamma distribution of the Aj’s is conjugate to the Poisson hkehhood, the above 
model can be simplified by analytically integrating out the Aj’s (see Salter-Townshend (2009) 
for further details) to obtain:

n{yi\xi) =  -p i )y -  (3.45)

This is the Negative-Binomial model which carries a single extra parameter over the simple 
Poisson model, namely an overdispersion parameter, S, which governs the degree of overdis­
persion observed. As compared to the model with Gaussian random effects in Equation 3.37 
- 3.40, inference on the parameters of the Negative Binomial model is computationally less 
intensive by virtue of the substantially reduced inference task due to the “integration out” of 
the Gamma overdispersion.

One final important caveat, as noted by Ridout et al. (1998), is tha t the source of overdisper­
sion must be carefully analysed - overdispersion due to an excess of zeroes in the observational 
dataset is most suitably modelled with a zero-modified distribution. The use of overdispersed 
models in this setting will perform poorly in an obvious manner, resulting in an underesti­
mation of the mean and an over-inflation of the variance. In Table 7.3 we observe this result 
in the context of the palaeoclimate reconstruction problem, where the lack of explicit models 
for the zero/N-inflation of pollen counts leads to a substantially overestimated overdispersion 
parameter and a deterioration in model performance in terms of prediction.

3.6 Inverse Problem s

The main class of problems considered in this thesis are statistical calibration or inverse in­
ference problems. Such problems can be decomposed into two distinct stages; at an initial 
model fitting or “forward stage”, training data is used to calibrate models for the relationship 
between some observed response Y  and the recorded covariate(s) C. At the “inverse stage”, 
the calibrated models are used inversely to make inference on the unknown covariate(s), cor­
responding to new observations, for which such information is unknown.

A typical example of such a problem is provided by the radiocarbon dating problem, 
see Buck et al. (2006). Specifically, at the forward stage the “calibration curve”, which de­
scribes the relationship between calendar age and radiocarbon age, is estimated from a set of 
high precision calibration data. At the inverse stage, the calendar age of a fossil artifact may
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then be determined, with quantifiable uncertainty, given the calibrated model and an estimate 
of the radiocarbon age of the fossil.

The radiocarbon dating problem provides a simple example of a univariate inverse infer­
ence problem; both the data  Y  and calendar age C  are univariate - Y  represents the set 
of radiocarbon ages and C  the corresponding measurements of calendar age. As such, this 
particular problem provides a useful vehicle for displaying subtle details of inverse inference 
problems. In the following section we present a simple, illustrative toy example.

3 .6 .1  T oy E x a m p le

We create a simple toy example which is similar in spirit to the radiocarbon dating problem 
introduced above. Ten counts, Y ' = (y 'j,. . . ,  2/jq), are observed at random discrete spatial 
locations, C ' =  ( c j , . . . ,  Cjq), on an equally spaced grid, C of length 100; this is the model 
training dataset. Subsequent to their recording, an additional observation, ynew, is discovered 
for which the associated spatial location c„ew is unknown. The broad idea of the problem is 
visually presented in Figure 3.1.

Interest ultimately lies in making inferences on the vmknown spatial location of the new 
count observation. The first step is to calibrate a model for the response-covariate relationship 
given the model training data; this is the forward stage.

Forward Stage

At the forward stage, we construct a model for the response-covariate relationship. Each 
observation y[ G Y ' , is assumed to be an indirect observation of the latent response surface 
X  at location c' G C '. The problem effectively corresponds to making inferences about an 
unknown, smooth fvmction X ,  some of whose values are observed with error.

As the nature (shape) of the response surface is not known, the most appropriate course of 
action is to assume a non-parametric form; the only requirement is tha t the response surface is 
a smooth function over the location space C. We assume the observed data are conditionally 
Gaussian distributed with known noise parameter cr̂ . A simple model for the data can be 
written as follows:

The data observations are taken to be conditionally independent given X , where X is a

y'i =  ^ ( C i ) + C i

X ~  GMRF[ Q)  

6i ~  N{0,(x‘̂)

(3.46)

(3.47)

(3.48)
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F ig u re  3.1: A simple example of an inverse inference problem. Model train ing  data , consisting 
of ten observational counts along with associated known spatial location is recorded. Interest 
ultim ately lies in making inference on the unknown spatial location of a  new d a ta  count, ynew

sm ooth spatial process defined at each of the lUO spatial locations. I ’he model in E quation 3.47 
can be rew ritten as F ' =  A X  + e where is a 10 x 100 projection m atrix  which projects X ,  

defined in 100 dimensional space, to  the ten dimensional space of V' .  T he projection m atrix 

A  simply consists of O’s and I ’s as follows:

A[z,c,] = \  ^ (3.49)
I 0 otherwise

For example, the first observation y[ is observed a t location c[ = 14. Consequently the 1®̂ 

row of ^  is a row of zeroes with the only non-zero entry at location 14; this entry has value 1. 

The expression of the model in tliis form at allows us to  define a prior for X  which is defined 

across the 100 spatial locations of C.  We specify an IGM RF prior of order 2 for X .  This 

prior model is fully param eterised given the precision m atrix  Qx  for which the precision, or
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sm oothness param eter k , is assumed known. See Lindgren & Rue (2008) for details on the 

structu re  of Qx- In the following, Qy is the diagonal inverse covariance m atrix  of the observed 
d a ta  with values a~^  along the diagonal and zeroes elsewhere. For simplicity the value of 

is assum ed known.

The posterior d istribution of X  is proportional to a product of the likelihood times the 

prior:

, C  , C)  oc t t {Y' \X,C' ) t x{X\C)  (3.50)

oc -  A X ) ^ Q y { Y '  -  A X ) ^ e x p [ - ] ^ X ' ^ Q x X ^  (3.51)

oc exp ^ - i ( X  - /x)^Q(X - /x)^ (3.52)

As the GM RF prior for X  is conjugate to the Gaussian likelihood for the data, the posterior 

d istribu tion  for X .  given the fixed model hyperpararneters is known exactly. Through some 
simple m atrix  m anipulations, the posterior for X  can be recognised as m ultivariate norm al 

with m ean param eters p. and posterior precision m atrix  Q where:

^  =  { Q x  +  A ^ Q y A ) - ^ A ^ Q y Y '  (3.53)

Q = [Qx + A^'QyA)  (3.54)

T he posterior mean of X  along with 95% HPD regions is presented in Figure 3.2.

Given the  calibrated model, our interest turns to  making inferences on the unknown spatial 

location, Cnew> corresponding to  the newly observed ynew This is the inverse stage.

In verse S ta g e

The process for inverting the calibrated model, ti{ X \ Y ' , C ) ,  to make inferences on Cnew given 

j/new may be formalized as follows:

^(^new lynewi ^  ^  ) — J* ^(^new5 "^lynewj ^  i ^  (3.55)

=  j  T ^ { c ^ e w \X ,y n e ^ ,Y ' , C ' )T T { X \y ^ e^ ,Y ' , C ' )d X  (3.56)

W j  n{Cnew\X,ynew)T^{X\ynew,Y ' ,C' )dX  (3.57)
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F ig u re  3 .2 : Posterior mean, /i, o f the sm ooth response surface along w ith  95% H P D  regions.
is a sm ooth spa tia l func tion  over C .

OC J 7r(ytiew |Cnew) ^ )^ (C n e w )^ (^ |?/new) ^  , C ) d X  (3.58)

=  K I  n { y n e ^ \ c „ , ^ , X ) 7 r { c n , ^ ) n { X \ , Y ' , C ' ) d X  (3.59)

Here f t ' is a norm alis ing  constant w hich ensures E qua tion  3.59 sums to  un ity . As typ ica lly  

very l i t t le  in fo rm a tion  is known a p r io r i  about the value o f c„ewi a un ifo rm  p rio r is placed 

on each o f the spatia l locations which comprise C.  The inverse stage o f the inverse problem  

can provide a num ber o f com puta tiona l d ifficu lties . The “ in teg ra tion  out"' o f X  can be com­

p u ta tio n a lly  tax ing  when the like lihood  in  E quation  3.59 is not conjugate to  the posterio r for

the la ten t surface tt{ X \ Y ' , C ' ) .  Fortunate ly, in  the simple example presented here, they are 

conjugate and thus the in tegra l in  Equation  3.59 can be com puted ana ly tica lly .

In  order to  present a su itab le posterior, the norm alis ing  constant, K ,  in  E qua tion  3.59 is 

also o f concern. T h is  problem  is addressed by d iscre tiz ing  the loca tion  space to  a fin ite  number 

o f spa tia l locations. Thus K  can be obta ined by ca lcu la ting  the p ro b a b ility  density  at each 

g rid  loca tion  and d iv id in g  th rough  by the sum o f th e ir  values to  provide a norm alised posterior
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which sums to 1. This posterior is shown in Figure 3.3.

The simphcity of the example presented here detracts from important details of the prob­
lem. It is quite evident that the information gleaned from the model is directly related to 
the shape of the response surfacc; if the response surface is “too” smooth then, in certain 
situations, the inferences derived from the model will be uninformative - for example, pro­
ducing prediction regions which are uniform across the location space. Conversely, response 
surfaces which are not smooth or “wiggly in nature, may produce posteriors that are multi­
modal and uninformative in a completely contrasting manner. We refer the interested reader 
to Salter-Townshend (2009) (page 37) or Buck et al. (2006) for additional details.

One last important point to note, is that the problems considered in this thesis are not 
univariate, as in the above example, but multivariate-, in the context of the motivating palaeo- 
climate reconstruction problem there are several response surfaces each of which have their 
own observed counts data. The simplest manner of addressing the multivariate inverse prob­
lem, is to treat each set of counts as independent for both the forward and inverse stages. 
Inference can then be performed on each response surface separately. The inverse predictive 
distribution given all the calibrated models is then the product of the predictive distributions 
for each of the individual models. This decomposition of multivariate models into the product 
of separate univariate models provides many conipvitational conveniences at both the forward 
and inverse stages, and is discussed in great detail in Chapter 5.

3.7 M odel Validation for Inverse Problem s

In this thesis we primarily consider problems of inverse inference - in the context of the 
motivating palaeoclimate application, model training data is used to calibrate models for the 
interaction between climate (covariate) and pollen (response); the calibrated models are then 
used inversely, to make inferences on the unobserved climates corresponding to sets of fossil 
pollen counts. As the ultimate objective is to use calibrated models for prediction in an inverse 
sense; model evaluation metrics should focus on the inverse stage of the problem.

3.7.1 Cross Validation in the Inverse Sense

Leave-one-out cross-validation is a tool used commonly for evaluating model fit to data. How­
ever, cross-validation in the context of inverse problems, is subtly different to cross-validation 
in the forw'ard sense. Specifically, in inverse cross-validation, the ability of the model to predict 
the known climate location q , given y* and the remainder of the training dataset (Y_i,C_j) 
is assessed; this contrasts with cross-validation in the forward sense, where the ability of the 
model to predict y, given Cj and {Y-i, C -i)  is of interest.

As detailed by Bhattacharya & Haslett (2007) and Salter-Townshend (2009), there are
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Figure 3.3: Above: Plot of calibrated model with training data  also plotted. Below: Posterior 
distribution for spatial location given the new count datum. The posterior probability on 
location is observed to be higher for locations where the value of the response crosses the 
calibrated lines.
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several problems involved with use of leave-one-out cross-validation for model validation in 

the context of inverse problems; given the model calibration dataset { C ,Y ' ) ,  the forward 

models m ust be refit given the omission of each set of pairs (c ',y ') . However, in situations 

where inference procedures are sampling based, this task  can be extrem ely com putationally 
intensive; in the context of the palaeoclimate reconstruction project, large, com putationally 

(;omi)lex models m ust be refit for eacli left out datum  which is infeasible given finite com puting 

time.

Through the use of the Integrated Nested Laplace A pproxim ation (INLA) algorithm  for 

fast approxim ate param eter inference, Salter-Townshend (2009) was able to greatly reduce this 

com putational burden at the forward stage - fast updates could be made to  model posteriors 

for the left out points and thus leave-one-out cross validation could be achieved both  quickly 

and exactly. One of the prim ary model validation metrics, in an inverse sense, presented 

in Salter-Townshend (2009), is the percentage of observations lying outside the 95% highest 
posterior density (HPD) region.

P ercen ta g e  O u tsid e  95% H ig h est P o ster io r  D e n s ity  R eg io n

The particular cross-validation statistic  th a t is used extensively throughout this thesis, is the 
percentage of training d a ta  th a t fall outside the 95% highest posterior density region. The pre­

dictive d istribution here, is the leave-one-out cross validation posterior predictive distribution 
for the om itted location given all other locations and count data.

As per Salter-Townshend (2009), we denote by A, the percentage of observations whose 
spatial location is outside the 95% highest posterior density region of their inverse predic­

tive density. Essentially, if the model fits the d a ta  then the expected value of A across all 

observations is 5%. The following procedure to obtain the HPD regions is obtained from Salter- 

Townshend (2009):

1. The HPD region is initialized to  contain none of the locations.

2. The discrete location of highest probability mass is selected and added to  the HPD region

3. If the to ta l mass of the HPD region is less than  95%, the location of the next highest 

probability mass is selected and added to  the HPD region.

4. Step 3 is repeated until the to ta l probability mass of the HPD region is g reater than  or 

equal to  95%.

As noted by Salter-Townshend (2009), this means th a t the HPD region will contain 95% 

o r  m o re  of the to ta l probability mass. Therefore the expected value of A is <  5%. R eturning 
to  the inverse posterior for location given a sample fossil count presented in Figure 3.3, the 

corresponding HPD region on clim ate is presented in Figure 3.4.
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F igu re 3.4: 95% highest posterior density for chm ate location given a new count. The 
location space C  is discretized to a regular grid; the 95% HPD region for location contains 
95.12% of the probability mass and the 95% HPD region is seen to  contain two disjoint 
probability regions.

As the u ltim ate objective is the accurate prediction of ancient clim ates corresponding to 

fossil pollen counts, the leave-one-out cross validation m easure is perhaps the m ost relevant 
m etric for comparing and contrasting the perform ance of different models. However, this 

m etric provides little insight in term s of the vmderlying predictive perform ance of each model 

- cross-vahdation simply evaluates w hether the 95% HPD predictive region for the om itted 

clim ate location given all o ther counts contains the true clim ate location, b u t does no t give 
an insight into the accuracy of the placem ent of the resulting posterior, or the range and 

m ultim odality of the prediction regions produced. This prom pts the consideration of additional 
m etrics for the evaluation of model performance, one such m etric is the mean squared error of 

prediction.
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3.7 .2  M ean Square Error o f  P red iction

In the context of palaeochmate reconstruction, a number of authors have considered the use of 
the mean squared error of prediction [ MS E P )  as a metric for evahiating model performance, 
see for example Vasko et al. (2000) or ter Braak (1995). In contrast with the binary nature 
of cross-validation metrics where predictive regions either contain the true climate location 
or do not (0 or 1), the M S E P  provides a measure for evaluating the placement of posterior 
predictive distributions and thus provides an important metric for the comparison of multiple 
different models.

As location space is always discretised onto a grid with Ng gridpoints, the M S E P  is simply 
obtained as the expectation of the square of the difference between the new location, Cnew and 
the predicted location under the posterior for the inverse stage given the new count Cnew which 
we denote here as c.

M S E P  = E [||c -cn ew ||^ ]  (3.60)
N,

= ^7r(cfc)||cfc -  CnewlP (3.61)
fc=l

Here Hc/t — CnewlP is the squared distance between location Ck on the grid and the true 
location c^evi and Tr(cfc) represents the associated posterior predictive mass on climate at 
location c^, at the inverse stage, given the new count ynew, i-e. ii{ck) = 7r(c/c|ynew) C"). In 
certain cases it may be more convenient to work with the root mean square error of prediction 
{ R M S EP ) .  This is simply obtained as the square root of the M S E P ,  i.e. R M S E P  =
V m s e p .

Since we consider climate models in this thesis which may incorporate differing number 
of climate covariates, the M S E P  is always rescaled to lie between 0 and 1; in d dimensional 
climate space, this is achieved by dividing through the calculated M S E P  by the the associated 
d.

However, a notable flaw with the M S E P  as a model comparison metric is tha t it does not 
provide a method of determining whether model performance is poor due to the presence of 
multiple modes, or due to spurious mislocation of the climate posterior with regard to the true 
location. For example, in Figure 3.5, two contrasting climate predictions for Cnew are produced 
which obtain approximately the same value for the M S E P .

The 95% HPD regions of both climate predictions produced in Figure 3.5 contain the
true spatial location. However, clearly one of the predictions is to be preferred, that of
7T2 (Cnew 12/new) C'O- Simple statistics such as the distance of the true climate location to 
the mode are insufficient on their own, but arc potentially useful in this situation in providing
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F ig u r e  3 .5 :  Mean squared error of prediction (MSEP) for two notional methods to climate 
reconstruction. The M S E P  for each approach is 0.040 and 0.039 respectively.

an additional measure to differentiate between the M S E P s .  In this thesis we denote this 
metric by Ẑ mode =  ||cmode ~ Cnewll) which represents the absolute distance between the true 
location Cnew and Cmode? which is the grid location with the highest predictive probability mass 
for Cnew given the new count. This metric is additionally scaled by the dimensionality of the 
space d, in order to provide values of I^mode which are defined on [0,1]. For example, in three 
climate dimensionals this metric is calculated as:

/ /„m ode „new \2  _ i_  /„m ode ^n e w \2  i ('„mode „new \2  D^., = ) +(■=«------ ,382)
where the c; are scaled to lie between zero and one. This produces a metric defined on the 

correct spatial dimension. How’ever the model with the “best” M S E P  may not necessarily be 
the most with the best predictive accuracy in terms of leave-one-out cross-validation, as we 
observe in the following chapters.
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Chapter 4

Bayesian Residual Analysis for some 
Non-Gaussian Response Models

In m any d a ta  s tud ies th e  iden tification  of observations w hich dev ia te  significantly  from  th e  

f itted  m odel is of p a ram o u n t in terest. However, Bayesian residual analysis, in th e  con tex t of 

d iscrete , non-G aussian , count observations, has long been recognised as a  challenging p ro b ­

lem  (A lbert & C hib  1995). T h is is owing to  a  num ber of factors; the  sam pling  d is trib u tio n s 

of p roposed residuals ten d  to  be unknow n, im peding th e  ob jec tive  de tec tion  of ou tlie rs and  

th e  use of fast m odel valida tion  tools. F u rtherm ore , th e  use of sim ula tion  based inference 

procedures for p a ram e te r inference can be trem endously  slow, placing tim e co n stra in ts  on th e  

num ber, and  com plexity , of m odels th a t  th e  Bayesian ana ly st m ay consider.

T he novel co n trib u tio n s in th is  ch ap te r re la te  to  m odel choice and d a ta  criticism . Specif­

ically, we propose so lu tions to  th e  above issues involving B ayesian residual analysis in th e  

non-G aussian  se ttin g , focusing in p a rticu la r  on residual analysis for Poisson and  B inom ial 

regression m odels. We bu ild  up o n  ex isting  th eo ry  regard ing  th e  use of poste rio r random  effect 

te rm s as a  “su rro g a te” for classical residuals. We develop a  m ethodology  for ou tlie r d e te r­

m ina tion , based  on G aussian  app rox im ations to  posterio r ran d o m  effects, providing m etrics 

by w hich to  sy stem atica lly  identify  possible outliers. We propose a  visual approach  to  assess 

a priori m odel assum p tio n s and  harness th e  fast ap p ro x im ate  Bayesian inference algorithm s 

of R ue et al. (2009) to  provide co m p u ta tio n a lly  efficient im p lem en ta tions of our m ethods, 

enab ling  th e  quick com parison  of m ultip le  m odels. A dditionally , we h ighligh t how th e  inves­

tig a tio n  of p o ste rio r random  effects for residual tren d  or p a tte rn s  p o ten tia lly  provides a  rich 

source of in fo rm ation  on underly ing, com plex re la tionsh ips h idden  w ith in  th e  d a ta . M uch of 

th e  work in  th is  ch ap te r  is rep o rted  in  Sweeney & H asle tt (2011).

T h is ch ap te r  is o rganized  as follows; Section  4.1 provides a  b rie f review  of som e of th e  ex ist­

ing lite ra tu re  for B ayesian  residual analysis, w ith  a focus on th e  Poisson, B inary  and  B inom ial 

regression m odel se ttin g . In Section 4.2 we in troduce  a  fram ew ork for ou tlie r de tec tio n  in the
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presence of discrete, non-G aussian count observations and provide a solution to  the  inference 

issues which arise as a result of the approach. In Section 4.3, we discuss the properties and 

lim itations of the approach as derived from a num ber of sim ulation studies. In Section 4.4, we 

apply our developed residual analysis methodology to  a datase t from the medical literature.

4.1 Bayesian Residual Analysis: An Overview

In the context of Gaussian data , Chaloner & B rant (1988) propose a Bayesian approach for the 

detection of outliers based on the posterior d istribution of the error term s in regression models. 

The approach may best be explained in the context of a simple regression problem; consider 

the non-param etric regression model yi =  f { x i ) + t i  where ti is a random  sam ple from A/’(0, cr^) 

and /  a sm ooth non-param etric function of the predictor variables X  =  {x i, A piiori,
each model residual, =  Ui — f{xi ) ,  is assum ed to arise from an 7V(0. distribution.
In light of d a ta , the d istribution  of each ti follows from the posterior d istributions of /  and 
CT̂ respectively, reflecting the posterior uncertain ty  in model param eters.

A given observation is flagged as outlying if the related posterior d istribu tion  of e j(/, u^), 

7r(eiiy), located far from zero (A lbert & Chib 1995). The posterior probability of such an 

event is Pvi =  Pr(\t i \  >  k(j\Y)  and observations with values of P i i  >  2^{ — k) are determ ined 

as outliers. Access to  standard , classical Gaussian residual theory provides th e  critical bounds 
for outlier detection, nam ely values of fc =  1.96 and 2 $ ( —1.96) =  .05.

Bayesian residual analysis in the  G aussian setting is generally quite simple; critical regions 

for the detection of possibly abberan t observations are easily obtained from the well established 

theory on outlier detection. Additionally, plots of the posterior residuals, 7r(ej|y), help provide 

an insight into underlying laten t trends or patterns w ithin the d a ta  th a t  may have been 
overlooked a t the model formulation stage.

In contrast, where the response d a ta  are non-Gaussian in nature , the  definition of model 

residuals and their analysis is much less clear cut. This is due to  a num ber of factors; in the 

context of binary data , Souza & Migon (2010) note th a t classical residuals, such as Pearson or 

deviance residuals, suffer from unknown sam pling distributions; residual plots are thus difficult 

to  interpret. As a result, outlier detection is confined to  highlighting residuals which appear 

“large” in m agnitude, a relatively subjective measure.

A Bayesian framework for outlier detection in the binary d a ta  setting  is provided by A lbert 

& Chib (1995). Given the binary regression model E{yi) =  =  F{xip) ,  the au thors propose

the model residual: ri =  xji — pi, noting th a t the  continuous valued posterior distributions for 

each ri can be visually evaluated to learn about outlying observations. Each posterior r, has 

support on the interval (y  ̂—l ,yj )  and outlier detection involves the identification of posteriors, 

7r(ri|F ), which tend towards the “extremes" ( — 1 or 1) of their respective support region.
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Observations w ith large values of Pr{\ri\ > k\y)  are identified as outlying, however, as in 

the  classical setting, there is great difficulty in assigning appropriate values of k. The prior 
distributions of the ri are unknown owing to  the discrete nature of the response variable thus 

sam pling distributions for the are unavailable. According to  the authors, a value of k  =  .75 
may be suitable for outlier detection purposes, however, whilst this results in the detection 

of observations th a t do not agree well with the chosen model, there is no theory by which to 

determ ine th a t such a choice of k is always appropriate. Furtherm ore, there is no elaboration 

by the authors on the properties of the  ap])roa('h, specifically, the num ber of potential outliers 

th a t  one should generally “expect”.

There are several papers in the literature which consider the incorporation of random  effect 

term s into models for outlier detection purposes. M arshall & Spiegelhalter (2007) present a 

sim ulation based approach to  identifying outliers in Bayesian hierarchical models with random  

effect components, illustrating  the approach by application to  m ortality  comparisons between 

hospitals. O utlier detection is based on predictive model criticism, involving the exam ination 

of possible conflict between the predictive prior and the likelihood. The com putational nature 
of the  approach, which is MCMC based, involves the development of approxim ate leave-one-out 
cross validation m ethods for outlier detection and proposes measures for evaluating whether 
prior assum ptions regarding the d istribution of the random  effects are appropriate.

A lbert He Chib (1995) suggest the use of “tolerance random  variables”, Zi = x j f3+(i .  W hilst 

the prior distributions of the (random  effects) are Gaussian, their posterior distributions 
conditional on d a ta  are not. Rem arking th a t the posteriors appear “Gaussian like”, the authors 

a ttem p t to  identify outliers using standard  Gaussian residual theory. However, in our practical 
experience, posterior distributions for residuals corresponding to count observations of zero 

frequently exhibit substan tial skewness. Furtherm ore, there tends to  be significant skewness 
in posterior random  effccts where the global variance param eter is large. The authors do not 

discuss this issue and avoid it by fixing the value of the  variance param eter of the random 

effects a priori.

Souza & Migon (2010) also prom ote the inclusion of random  effect term s in binary regression 

models for outlier detection purposes. The prior distribution  for each random  effect term  is 

specified as a two-component scale m ixture of normals; 'ji\ki N{0,  [ { l - k i ) a ‘̂ + ck ia ‘̂ ]),c > 1 
and ki\n ~  Bern{TT). Observations with large pk^ = Pr{ki  =  1) are identified as outliers, 

nam ely observations w ith high posterior probability of requiring an ex tra  random  effect to 

cap ture excess variability. According to  the  authors, their results correspond well to  those 

obtained using the m ethods of A lbert & Chib (1995), however, there remain issues regarding 

the determ ination of appropriate critical values for the  pi. A pproxim ately 5%, or 27 of the 
546 observations, are identified as outliers using the critical bound chosen - as such, it appears 

th a t  Gaussian residual theory is used to m otivate the choice of critical values. However, no 

justification for such an assum ption is provided and inference procedures, as in A lbert & Chib
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(1995) are sampling based, leading to long run times for parameter inference.

Thall & Vail (1990) use independent random effects to capturc patient and visit level effects 
in a longitudinal study for epilepsy treatment. By examining residuals comparing the fitted 
and observed counts of each subject at each visit, they identify a number of patients who had 
particularly large counts relative to the fitted model. Breslow & Clayton (1993) improve on 
this, using more complex models to identify patients with especially low counts, that were 
not so apparent in Thall and Vail’s analysis. However, in both papers, outlier detection is 
(subjectively) based on the visual analysis of residual plots. A similar paper in the same vein, 
by Perperoglou & Eilers (2009), promotes the use of distribution free deviance effects to model 
overdispersion of count outcomes in a number of discrete count data studies. The authors are 
not motivated by residual analysis per se, but note th a t analysis of the estimated deviance 
effects may suggest patterns in the data that can be captured by modified models.

In the context of the motivating palaeoclimate reconstruction project, Salter-Townshend 
(2009) defines reference distributions for the detection of outliers in the modern training 
dataset used for model calibration. However, the posterior sampling distributions of the ref­
erence measures are unknown and thus critical measures with which to determine outliers are 
unavailable. Several assumptions of the model are not examined, including the distributional 
assumptions of the random effect terms used to model overdispersion of the count observa­
tions. The model criticism tools considered concern the predictive accuracy of the approach, 
a measure from which it is difficult to derive information on the possible inadequacy of the 
model - for example, Salter-Townshend (2009) notes a correlation between poor model pre­
diction accuracy and increasing altitude, a possibly spurious result as we will later show in 
Chapter 7; the altitude covariate is perhaps in fact acting as a proxy for moisture availability.

All of the introduced approaches for Bayesian residual analysis in the non-Gaussian data 
setting are subject to the same constraint; it is difficult to provide critical bounds by which 
to identify outliers, resulting in outlier detection by the visual analysis of posterior random 
effects or through the use of ad-hoc reference measures. Inference procedures tend to be 
sampling based; this imposes computational constraints on the Bayesian analyst as the fitting 
and comparison of multiple models for the data  is time consuming and thus rarely considered. 
Additionally, model validation tends to be computationally expensive, being based on cross 
validation measures; there is little consideration of the use of the posterior random effects as 
a fast model validation tool.

4.2 Gaussian Random  Effects as a Tool for R esidual Analysis

In many data studies, the variability in the observed data  is typically greater than tha t which 
can be captured by the usual exponential family probability models. In the context of Poisson 
count observations, this “overdisper.sion” can be detected by comparing the empirical means
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and the variances of the observations; a significant inequahty in these vahies indicates th a t  

the counts are overdispersed. As an example, Figure 4.1 presents some overdispersed Poisson 

count observations, sim ulated using the d a ta  generating process in Equations 4.1 - 4.2.

Ui ~  7V(0,1) (4.1)

Ui ~  Poisson(e^^'°^^'''“‘) (4.2)

One solution to this overdispersion problem, as introduced in Section 3.5.3, is to incorporate 

Gaussian random  effect term s, U — { u i , ...««}, into the model to cap ture the overdispersion. 

Given the  modelling of th is ex tra  source of variability by the random  effect term s, interest 

re tu rns to  the identification of observations which still seem to  deviate significantly from the 

fitted model.

As previously mentioned, several authors have considered the exam ination of the posterior 
random  effects, ’K{ui\Y),  for outlier detection purposes. Common to all approaches is the prob­

lem of objectively obtaining measures or bounds for the autom atic detection of outliers given 
the posterior random  effects 'K{ui\Y). Expressed in m athem atical form, a given observation is 

said to be an outlier if 7r(|uj| >  k \ Y )  is greater than  some critical m easure /crit(^) for a chosen 
value of k .  The m ajor difficulty in existing approaches concerns the selection of appropriate 

values of k  and in obtaining the associated critical vahies f c n t { k )  as the sampling distributions 
of the posterior random  effects tend to  be unknown.

In A lbert & Chib (1995), outliers are detected amongst the (non-Gaussian) posterior ran­
dom effects through the use of standard  Gaussian residual theory, k  is set equal to  1.96 and 

/ c r i t ( ^ )  is thus equal to 2^>( —1.96). A priori,  each 7r(ui) is Gaussian, however, conditional 

on the d a ta  each ■n{ui\y) can be extremely non-Gaussian, especially in situations where yi 
is zero. T he authors do not address this issue, nor the properties of the chosen value of k .  

T he explicit critical m easure obtained from Gaussian residual theory is also used in an ad-hoc 
m anner; only observations with outlying probabilities significantly greater th an  the critical 

m easure arc identified as outliers.

An outlier detection m ethod based on the exam ination of the posterior random  effects 

can be com putationally quite demanding. It is not possible to “in tegrate o u t” tlio random  

effect term s as the  Gaussian distribution of the random  effects is not conjugate to  the non- 

G aussian likelihoods th a t  are typically used for count observations. Furtherm ore, the time 

and com putational expense of this approach is proportional to  the size of the d a ta  set - a 

random  effect m ust be included in the model for each observation, increasing the number 

of unknown param eters th a t m ust be inferred. This constrains the fitting, criticism  and 

com parison of m ultiple models in studies th a t are d a ta  “rich” w ith problem s exacerbated if 

inference procedures are sampling based.
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F ig u re  4.1: Overdispersed Poisson count observations, simulated using the data  generating 
process in Equations 4.1 - 4.2.

4.2.1 A M ethodology for Residual Analysis and Outlier D etection

In this thesis we propose to address the above issues through the formulation of a methodology 
for residual analysis and outlier detection, similarly built upon the use of posterior random 
cffect terms as a “surrogate” for classical residuals. We propose to address the issue of objec­
tive bounds for outlier detection by expressing each posterior random effect in approximate 
Gaussian form, thus providing an explicit link to standard Gaussian residual theory. In Sec­
tion 4.3 we examine the properties of this approximation. We illustrate how the posterior 
random effect terms can be (}uickly analyzed, in a classical residual analysis manner, to learn 
about residual patterns or trends within the data  potentially masked by the discrete nature 
of the response variable. These features are considered as novel contributions in this thesis.

The primary advantage of the proposed methodology, as compared to existing methods, will 
be its computational efficiency; through the use of the INLA algorithm of Rue et al. (2009) we 
propose to address the time constraints imposed by the use of MCMC based methods. This will 
facilitate the quick implementation and comparison of multiple models for the data, providing 
a visual method for model validation and enabling the fast evaluation of model assumptions 
using classical residual analysis tools. Indeed the harnessing of the INLA algorithm for fast 
approximate inference on model parameters is critical to the success of the approach.

In the following we present a framework for Bayesian residual analysis in the non-Gaussian 
setting, as presented in Sweeney & Haslett (2011). In Section 4.2.2 we present a flexible frame-
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work for modelling the covariate-response relationship within which m ost popular statistica l 

models can be constructed. In Section 4.2.3 we detail how the INLA algorithm  provides a 

m echanism  for fast, com putationally efficient inference on the unknown random  effect term s 

which is critical to the success of the proposed approach. In Section 4.2.4 we present an ob­

jective approach to  outlier detection based on standard  Gaussian residual theory, facilitated 

by the expression of each posterior random  effect in Gaussian form.

4 .2 .2  M od el Fram ework

We present the model of Sweeney H aslett (2011) in the flexible generalized linear model 

(GLM) framework (Gelman et al. 2003). Potential overdispersion of the observed counts 
is accounted for by the addition of a (mean zero) Gaussian random  effect coiaponent to 

the non-param etric predictor. In the following let yj represent the observed response, Xi 

the observed predictor variable(s), g a nonspecified link function and /  some sm ooth non- 

param etric function of the predictor variables.

E{yi\wi) = g{wi) (4.3)

m  = f [ x i )  + (4.4)

Ui ~  N{0,a'^)  (4.5)

T hrough the formulation of the inference task via a Bayesian hierarchical model, the model
can be m ade as simple or as complex as necessary; the addition of ex tra  stages to  the model 
hierarchy is simple and easy to  implement. Let U represent the  vector of ran(k)m effects U = 

{ui ,  . . . , Un} ,  Y  = {yi , . . . , yn}  the vector of observations, X  =  { x i,. .. ,x „ }  the corresponding 
vector of covariates and 6, the vector of model hyperparam eters.

7r{J,U,0\Y,X)  a  t, { Y J , U , X , 0 )  (4.6)

(X 7 r ( y | / , C / , X , 0 ) 7 r ( [ / , / | X , 0 ) 7 r ( 0 )  (4.7)
n

=  X[i T{y i \ u i J , X, e )T: {UJ \X, 6 )T: {e )  (4.8)
i=\

T he prior d istribution  of a given random  effect, Ui is specified as A'’(0, a^) w ith appropriate 

priors used for /  and 9. As the joint posterior, T^{f ,U,9\Y,X)  is usually not known in closed 
form, obtaining m arginal posterior statem ents requires the evaluation of complex integrals 

either, numerically, or through the use of sampling based inference procedures. In the context 
of large datasets, the addition of random  effect term s to the model can be burdensom e in
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the extreme; as previously mentioned, a posterior random effect must be inferred for each 
observation which, given large amounts of data, will introduce computational issues.

To illustrate these computational issues, we briefly return to the motivating palaeoclimate 
reconstruction problem. The RSIO dataset of Allen et al. (2000), considered in Chapter 7, 
contains over 200,000 observations. The model framework for residual analysis we propose 
requires tha t a random effect be inferred for each datapoint; as a result numerical evaluation 
of the posterior is completely infeasible. Additionally, simulation based inference procedures 
such as MCMC will encounter the usual range of issues regarding correlation between samples, 
convergence of the sampling chains and burn-in periods. The use of MCMC for parameter 
inference in the context of the palaeoclimate reconstruction project was shown to be too slow to 
consider (Salter-Townshend 2009) for models that were much less computationally demanding 
than the ones considered later in this thesis.

4 .2 .3  Fast A p p rox im ate B ayesian  Inference for P osterior  R andom  E ffects

In order to sidestep the computational issues of simulation based inference of unknown model 
parameters, we take advantage of the fast approximate Bayesian inference algorithms of Rue 
et al. (2009), as introduced in Section 3.3. In the following we briefly describe the framework 
of the approach in the context of the introduced model:

nr=i X i , e ) n { U , f \ X ,  0)n{9)
7r { U, f \ 0 , Y , X)

nr=i /i f \ x ,  9)-n{9)
f T G ( t / , / | 0 , r , x ) {uj}={ujY(e)

(4.10)

(4.11)

Equation 4.11 is more commonly known as the Laplace approximation. A Gaussian ap­
proximation is fit to the joint posterior distribution of the random effect terms, U, and the 
non-parametric function of the predictor variables, /  conditional on 9. ^ G{U, f \ 9 , Y , X)  
is the Gaussian approximation to the full conditional of {U, f }  and {C/,/}  [9) is the mode of 
the full conditional for {U,  /}  for a given value of 6. This simplifies to an empirical Bayes type 
approach if we fit this approximation using the modal value of 9 which maximizes the poste­
rior density of n{9\Y^X)\  numerical search algorithms such as the Newton Raphson algorithm 
provide a method for locating the modal value. We defer to Rue et al. (2009) for additional 
details.

Otherwise, if the dimension of the model hyperparameters, 9, is not too great (typically 
the models in this thesis contain at most four), the joint posterior distribution of 6, given the 
data, can be computed on an (arbitrarily fine) discrete grid. Probability weights can then
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be calculated which enable us to represent the posterior distribution for each random effect, 
iT{ui\Y) as a weighed mixture of Gaussians.

n{ui\Y) =  Y^TTG{ui\ek,Y) X n{9k\Y) x A/t (4.12)
k

^G{ui\6k, Y )  is available from TTciui, f{xi)\6k^ Y)  and are area weights which ensure the 
posterior probability distributions for cach random effect sum to one.

In Figure 4.2 we fit Gaussian approximations {^g) to posterior random effects for a num­
ber of count values where t t { u )  ~  N{0,1).  We observe that the error between the Gaussian 
approximation to the posterior and the true posterior reduces as the value of the count obser­
vation increases. This is to be expected, asymptotic statistical theory dictates that Gaussian 
approximations to the Poisson distribution become more accurate with increasing value of the 
rate parameter.

The R-INLA package of Rvie et al. (2009) provides software which implement the approxi­
mations introduced in this section. Through the use of numerical algorithms for inference on 
the (low dimensional) model hyperparameters and the harnessing of algorithms for fast oper­
ations on sparse matrices, the software facilitates quick, approximate inference on unknown 
model parameters. Full posterior inference on the random effect terms can thus be carried out 
in seconds or minutes whereas previously, using MCMC methods, this would have taken hours 
or even days. This facilitates the fast fitting, criticism and comparison of multiple models 
for the observed data  and is crucial to the success of the proposed methodology for residual 
analysis.

4 .2 .4  R esid u a l A nalysis and O utlier D etectio n

As identified in Section 4.1, the provision of objective critical boimds for systematic outlier 
detection is a recurrent problem in non-Gaussian data studies. In the following we address this 
issue by taking advantage of the Gaussian approximation to the posterior distribution of the 
random effect terms to obtain objective critical measures for outlier detection from Gaussian 
residual theory. In Section 4.3 we investigate the properties associated with this choice of 
critical measures.

Suppose we say the observation is an outlier if Pr* =  Pr{\ui\ > k\Y)  is sufficiently 
“large” (i.e. greater than /crit(^)) where fc is a critical value supplied from an available reference 
distribution.

P r { \ u i \ > k \ Y )  = f  Pr{\ui\ > ka\Y)Tr{a'^\Y)da'^ (413)
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F ig u re  4.2: Com parison of T^G{u\y){----- ) and 7t(u|?/)(— ) for a immber of count values. We
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of the count observation increases.
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«  J  Prciluil > ka\Y)n{a'^\Y)da'^ 

=  E„2[1 -  PrG{ui{a) < ka\Y) +  

P r c i -U i ia )  < ka\Y)]

(4.14)

(4.15)

A priori, each ui ~  where cr̂  £ 6. The probability that a given Uj is “outlying”,
for a given value of cr̂ , is calculated from the Gaussian approximation to the full conditional. 
The integral in Equation 4.13 can be replaced with a summation due to the representation of 
7 t( ( J^ |F )  on a discrete grid. In the above, Pr{ui < ka\Y) = ^{ka,  where T:{ui\a'^,Y )  w
A^(//j(cr^), r^(a^)) and k is available from standard Gaussian residual theory. The resulting 
probability, Pr{\ui\ > k\Y) can be compared to 2$(-/c) to identify “suspicious” observations. 
Thus a given random effect may be detected aa outlying due to the magnitude of its mean 
or the “size” of the variance surrounding it. Uncertainty in the variance parameter, cr̂  of the 
random cffcct terms can be “integrated out” by repeating this process for all values of with 
the corresponding posterior probabilities obtained from ■K[a‘̂ \Y).

In order to provide an example of the method, the posterior random effects corresponding 
to the count observations in Figure 4.1, are inferred given the known model parameters. In 
Figure 4.3, the posterior random effect for each observation is plotted along with the 95% error 
bounds. Under standard Gaussian residual theory and given the data generating process, we 
would expect that approximately 5% of observations should be detected as potentially outlying. 
However, we see that 11% of the observations are identified as having outlying probabilities 
that are significant. We also note that the majority of the counts detected appear to be those 
corresponding to small values of in. In Section 4.3.1, we investigate this result in further detail, 
providing an explanation for the (excess) number of observations detected.

Under the proposed framework, the posterior random effects are used as a surrogate for 
classical residuals to aid in outlier detection. However, they may additionally be used in 
an exploratory fashion (as in classical residual analysis) for model criticism purposes. In 
Section 4.3 we will illustrate how the examination of the mean posterior random effects, 
E{U\Y),  may help identify patterns within the data masked by the discrete nature of the 
response variable. In Figure 4.4 we present a quantile-quantile plot of the mean posterior 
random effects corresponding to the posterior random effects in Figure 4.3 (a). We see that 
the mean posterior random effects seem to reflect well the underlying data  generating process 
which was Gaussian.

Plots of the posterior random effects such as the quantile-quantile plot presented in Fig­
ure 4.4 provide a quick visual method of evaluating a priori model assumptions. As we will 
later see in Section 4.3.3, the quantile-quantile plots can used to provide an informative insight 
into underlying model properties and detect model inadequacy. This is considered one of the 
novel contributions in this thesis.
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F igure 4.3: (a) Boxplots of the posterior random effcc.ts corresponding to tlie count observa­
tions presented in Figure 4.1. Posterior distributions of the random effects which significantly 
cross the dashed lines (±1.96ct) are considered outliers, a here is fixed at its posterior modal 
value, as in an empirical Bayesian analysis fashion. In (b), the observations (•), corresponding 
to the outliers detected in (a) are identified.
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F ig u re  4.4: Quantile-quantile plot of the inferred mean posterior random effects, E{U\Y).  
The sample qiiantiles of the random effects seem to match well the theoretical quantiles of a 
Gaussian distribution.

To summarise, the framework for residual analysis and outlier detection we present in this 
thesis can be considered as an approach which facilitates significant exploration of the observed 
data. In contrast to MCMC based methods for parameter inference, the use of fast approximate 
Bayesian inference algorithms allows the fast fitting of multiple models for the observed data. 
Through the expression of the posterior random effect terms in approximate Gaussian form, 
we are able to quickly identify outliers, using critical measures obtained from Gaussian residual 
theory. We are also able to use the posterior random effect terms as a fast model validation 
tool; analysis of the posterior random effects may identify residual, uncaptured trend patterns, 
helping to suggest more appropriate models for the data in question.

4.3 Properties Of the Proposed M ethodology

The proposed methodology for residual analysis in the non-Gaussian setting is based upon 
the examination of posterior random effect terms which we use as a surrogate for classical 
residuals. In order to identify outliers, we approximate each posterior random effect by a 
weighed mixture of Gaussians. In this thesis we propose that such an approximation facilitates 
access to standard Gaussian residual theory. We do not expect the posterior random effects to 
have the same distributional properties as the Gaussian distribution, but based on empirical 
analysis the results seem to coincide greatly, especially where count observations are large.
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In th is section we propose to  investigate the properties of this approach. Section 4.3.1 

focuses on deriving, via sim ulation studies, the outlier detection properties of the proposed 

approach in the Poisson setting; in Section 4.3.2 we consider a similar analysis for the Binomial 

and Bernouilli response setting. Finally, in Section 4.3.3 the use of the posterior random  effects 

as a model validation tool is investigated. W hilst the sim ulated studies in the following appear 

quite specific in nature, they are m otivated by the d a ta  applications ('onsidered later in this 

thesis.

4 .3 .1  O utlier D etectio n  P ro p erties  in th e  P o isson  S ettin g

R eturning to  the simple Poisson example presented in Figure 4.3, we note th a t 11% of the ob­

servations are recorded as have significant outlying probabilities, more th an  would be expected 

under standard  Gaussian residual theory. In analysing the plots of the posterior random  ef­

fects, we observe th a t the 95% highest posterior density intervals are significantly wider for 

random  effects corresponding to  low count values th an  for large count values, reflecting the 

fact th a t the Gaussian approxim ation to  a given posterior is more accurate for large count 
values. This perhaps explains why the m ajority  of the  count observations suggested as outly­
ing are those with low values - a given random  effect may be considered outlying due to  the 

m agnitude of its mean or the uncertain ty  surrounding it (A lbert & Chib 1995).

T he discrete nature of the response variable in the non-Gaussian setting  masks the un­
derlying random  effect; as a result there is more uncertain ty  in posterior d istributions of

random  effect term s in the non-Gaussian setting  as com pared to  the  G aussian setting. We 

should therefore “expect” to  identify more observations as potentially outlying th an  would be 

expected under standard  Gaussian residual theory.

In the  following we investigate this claim. 200 count observations are sim ulated for each 

of 15 values of /x G [0,5] according to  the d a ta  generating process in E quation 4.16 - 4.17. 
Given the known model param eters, the  proposed m ethodology for outlier detection is used 

to identify the number of outliers occurring am ongst the  sim ulated counts for each value of 

j i .  These num bers are recorded and this process repeated 50 times in order to derive the 

outlier detection properties of the approach. As the value of n  increases, the sim ulated count 
observations will also increase in value. In Figure 4.2 we observed th a t  the posterior random  

effects became more “Gaussian like” as the  value of the count observation increased; as a result 
we propose th a t the number of outliers detected  given increasing f i  should tend to  the number 

expected under classical Gaussian residual theory.

Ui ~  iV (0 ,1) (4.16)

y i  ~  Poisson(e^“'"“*) (4.17)
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Figure 4.5 presents the sim ulation results. As expected, for increasing value of we observe 

th a t the num ber of outliers detected tends towards the num ber expected under classic Gaussian 

residual theory. Conversely, we also note th a t the performance of the approach deteriorates 

as /i ^  0. This is due to  an increase in the number of zero or low count observations which 

arise, these observations are “more likely” to  be identified as outlying due to  the  m agnitude of 

the uncertain ty  in the posterior distributions of the corresponding random  effects.

A further im portant factor in the detection of outlying observations is the  global posterior 

variance 'K{a‘̂ \Y )  of the random  effects. In order to calculate the outlying probabilities for 

individual random  effects, we m ust integrate over TT{cr'^\Y) (see Equation 4.15).

In order to  assess the effect of on outlier detection, 200 count observations are sim ulated 

for each of 15 values of G [0.1,4], according to  the d a ta  generating process in Equation 4.18 
- 4.19. T he mean param eter fi is set equal to 4 to reduce the mmiber of zero or low count 
observations which may mask deficiencies of the approach. Given the known model param eters, 

the  proposed methodology for outlier detection, presented in Equation 4.13 - 4.15 previously, 

is used to  identify the num ber of outliers occurring am ongst the sim ulated counts for each 

value of a^. The perform ance of the approach is evaluated in term s of two critical bounds, 

variously k  =  4>“ ^(.95) and k = $ “ ^(.975). This process is repeated 50 tim es in order to 
derive the  outlier detection properties of the approach conditional on

u^ ~  A^(0, cr^) (4.18)

xji ~  Poisson(e‘*“'"“’) (4-19)

In Figure 4.6 the results of the sim ulation study are plotted. We observe th a t the number 
of outliers detected is relatively stable across a range of values of In a general sense, we 

observe th a t on average twice as m any observations are identified as outlying in the Poisson 
count setting  as would typically be expected under standard  Gaussian residual theory. These 

results perhaps provide a  further explanation for the percentage of outliers (11%) identified 

using 5% Gaussian error bounds in the simple example presented earlier in th is chapter.

Additionally, we observe the deterioration of the approach as cr̂  —> 0. As previously 

m entioned, the prior distribution  of each random  effect is specified as A^(0,cr^). As cr̂  —> 0, 

the  posterior d istribution of a given random  effect, TiG{ui\Y) ~  reverts to the

prior m ean of 0. However, the reduction in posterior variance of the random  effects is not

linear w ith respect to the reduction in cr̂  for small values of cr .̂ The discrete nature of the

response variable masks the underlying random  effects, thus as decreases in m agnitude the 

uncertain ty  in the  posterior random  effects due to  the non-Gaussian response becomes more 

prom inent and results in an increase in the num ber of posterior random  effects identified as 

potentially  outlying. The most im portant result obtained from Figure 4.6 is th a t  if the data
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F ig u re  4.5: (a) A plot of the percentage of observations detected  as outliers for a number 
of sim ulated datasets when (a) k  =  $ “ ^(.95) =  1.96 and (b) k  =  $ “ ^(.975) =  2.24, across 
a range of values of f i .  Each o represents the num ber of outliers detected in an independent 
sim ulation for a given value of /j . . The dashed line (---- ) represents the 5% error line.
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Figure 4.6: (a) A plot of the percentage of observations detected as outliers for a number 
of simulated datasets when (a) k  =  <J>“ ^(.95) =  1.96 and (b) k =  $ “ ^(.975) =  2.24, across a 
range of values of Each o represents the number of outliers detected in an independent 
simulation for a given value of The dashed line (— ) represents the 5% error line.
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truly are Poisson distributed (i.e. overdispersion of the counts is negligible) the proposed 
approach performs poorly.

4 .3 .2  O u tlier  D e te c tio n  P ro p erties  in th e  B in om ial S ettin g

W ith a view to the application of the developed methodology for outlier detection to the AMI 
dataset of Souza & Migon (2010) in Section 4.4, we attem pt to obtain a broad outline of the 
properties of the proposed approach in the context of Binomial response data.

The first simulation study considered concerns the performance of the approach with regard 
to increasing values of the sum total, N,  of the Binomial counts. The discrete nature of the 
response variable will maisk the underlying random effect, hence there will be more uncertainty 
in posterior distributions of random effect terms in the Binomial setting as compared to the 
Gaussian setting. Therefore, as in the Poisson setting, we should “expect” to identify more 
observations as potentially outlying than would be expected under standard Gaussian residual 
theory. In the following we use simulated data to assess the validity of this claim.

Given the data  generating process in Equation 4.20 - 4.22, 200 count observations are 
simulated for each of 15 values oi N  £ [1,1000]. Given the known model parameters, the 
proposed methodology for outlier detection is used to identify the number of outliers occurring 
amongst the simulated Binomial counts for increasing value of N.  These numbers are recorded 
and this process repeated a large number of times (50) in order to approximately derive 
the outlier detection properties of the approach for each value of N.  An intercept term Hi 
is simulated from a Uniform(3, —3) distribution in order to evaluate the properties of the 
approach over a broad range of values of pi = logit(/ii +  u,).

Ui ~  A^(0,1) (4.20)

yi ~  Binomial(A^, logit(yUj +  Uj)) (4.21)

fii ~  U n ifo rm (-3 ,3) (4.22)

In Figure 4.7 we present the simulation results. We observe that, for increasing value of 
N,  the number of outliers detected tends towards the number expected under classic Gaussian 
residual theory. Conversely, we also note tha t the performance of the approach deteriorates 
as N  decreases in value, with the highest average number of outliers detected when =  1, 
reflecting poor performance of the approach in settings where the response is binary.

As in the Poisson setting considered in the preceding section, a further im portant factor in 
the detection of outlying observations is the global posterior variance 7r(a^\Y) of the random 
effects. Fixing the value of N  to be 1000, we evaluate the performance of the proposed 
methodology for outlier detection by examining the number of outliers detected for varying
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F ig u re  4 .7 : (a) A plot of the percentage of observations detected as outliers for a num ber 
of sim ulated datasets when (a) k =  $ “ ^(.95) =  1.96 and (b) k =  $ “ ^(.975) =  2.24, across a 
range of values of N . Each o represents the num ber of outliers detected in an independent 
sim ulation for a given value of N . The dashed line (— ) represents the 5% error line.

61



values of

As before, 200 count observations are sim ulated for each of 15 values of £ [0.1,6] 

according to  the d a ta  generating process in Equation 4.23 - 4.25. Given the known model 

param eters, the proposed m ethodology for outlier detection is used to  identify the num ber of 

outliers occurring am ongst the sim ulated Binomial counts for each value of cr .̂ Once more 

this process is repeated 50 times.

Ui ~  (4.23)

Ui ~  Binomial(1000, logit(/ij +  Uj)) (4.24)

~  U niform (—3,3) (4.25)

In Figure 4.8 we observe th a t the num ber of outliers detected is relatively stable across a 

range of values of cr ,̂ though the perform ance worsens as tends towards zero. T his reflects 
th a t the  use of the posterior random  effect term s as a surrogate for classical residuals appears 

to have good properties for outlier detection, save in circum stances where the overdispersion 

in the observed d a ta  becomes increasingly small in m agnitude, i.e. the d a ta  tru ly  are Binomial 
in nature.

In Section 4.3.4 we discuss a num ber of conclusions regarding the properties of the  proposed 
methodology, as derived from the sim ulation studies presented here.

4.3 .3  Q uick A pp rox im ate M od el V alidation

The posterior random  effects have a further im portant use as a model validation tool, facil­

ita ting  a  quick approxim ate measure for determ ining if the a priori model assum ptions are 

appropriate. In the following sim ulation studies, we illustra te  how the posterior random  effects 

can be exam ined for model misspecification and how they  may further help suggest appropriate 

alternative d istributions for the random  effect terms.

R eturning to  Figure 4.4, we observe th a t a quantile-quantile plot of the  m ean posterior

random  effects well refiects the underlying d a ta  generating process which is Gaussian. However, 

the question arises as to  w hat form the quantile-quantile plots of the posterior Uj take if the

“tru e” d istribu tion  of the  random  effects is o ther th an  Gaussian.

We investigate this scenario by sim ulating some Poisson count observations where the Uj 

are generated from a Gam m a distribution and model fitting proceeds as if the Ui are Gaussian 

in nature. In Figure 4.9, we plot the quantile-quantile plot of the E{ U\ Y)  which result. We 

observe th a t  the quantile-quantile plot verifies th a t model misspecification has occurred; the 

G am m a d istribu ted  natu re  of the U{ can be clearly detected.
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Figure 4.8: (a) A plot of the percentage of observations detected as outliers for a number 
of simulated datasets when (a) k — $ “ ^(.95) =  1.96 and (b) k  =  $ “ ^(.975) =  2.24, across a 
range of values of a^.  Each o represents the number of outliers detected in an independent 
simulation for a given value of a^.  The dashed line (----) represents the 5% error line.
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F ig u re  4 .9 : (a) P lo t of sim ulated count observations where u* ~  G am m a(l,2 .5 ) and yi ~  
Poisson(e^“'"“')  (b) The corresponding quantile-quantile plot of the m ean posterior random  
effects, inferred given the a priori assum ption th a t the random  effects were in fact Gaussian. 
The (true) G am m a distributed  nature of the random  effects can be observed.
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Frequently, omission of m odel covariates, particularly in the case of categorical data, results 

in residual trend  patterns in the  posterior random  cfFccts. To provide an example of this, the 

Ui are sim ulated from a Gaussian m ixture distribution w ith different m eans and variances; 

Ui p X N{1,  .5) +  (1 —  p) X  A^(3,1) w ith p =  .5. Poisson counts are generated conditional on 

the sim ulated random  effects; in Figure 4.10 (a) the count observations which result can be 

observed. Once more, model param eters are inferred, conditional on the a priori assum ption 

th a t the  random  effects are Gaussian distributed.
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(a) (b)

F ig u re  4 .10: (a) P lot of the sim ulated count observations generated using random  effects th a t 
arise from a m ixture d istribution and (b) the corresponding quantile-quantile plot of the mean 
posterior random  effects where the a priori d istribution of the random  effects is univariate 
Gaussian.

Figure 4.10 (b) illustrates th a t the posterior Ui can be used to  detect this misspeciffcation; 
the quantile-quantile plot of the  posterior random  effects indicates a  two tier structure in the 

d a ta  due to  the omission of the covariates. There is residual trend  in the E{ U\ Y)  as the 

model is incorrectly specified. The random  effects are generated using a process comprised of 

a m ixture of Gaussians w ith differing means and variances which the  assum ed prior model for 

the  random  effects, Ui ~  A^(0, cr^), is unable to adequately capture. In param eter inference, 

the global variance param eter, of the random  effects is overestim ated as a result of the 
m ixture distribution, the single variance param eter inflated in a ttem pting  to  account for the 

excess variability in the counts. As a result, less outliers are detected  on average than  would 
be expected given the sim ulation studies considered previously.

Although the focus in the  above was on residual analysis in the Poisson count setting.
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this approach can be performed in the exact same manner for posterior random effects in the 
context of Binomial trial outcomes. In Section 4.4.2 we detail the use of the above methods 
for quickly assessing model properties in the context of a Binary regression problem. Later on, 
in Chapter 7, we detail the usefulness of the approach for fast approximate model validation 
in the context of zero ^N-inflated Binomial response data.

4.3.4 Strengths and W eaknesses o f th e M ethodology

Whilst the simulation experiments provided in the preceding sections do not provide an exten­
sive and rigorous assessment of the outlier detection properties of the proposed methodology, 
the experiments provide a wealth of information on the relative strengths and weaknesses of 
the approach. We illustrated that the posterior random effect terms can suitably be used 
for outlier detection with the experiments in this section indicating the stable properties of 
the approach under the various scenarios considered. The major strengths of the proposed 
methodology include its computational speed, due to the harnessing of the INLA algorithm 
for inference on model parameters, and the manner in which random effects can be used in 
an exploratory fashion. The fast nature of the inference procedure used for param eter infer­
ence means that multiple models for the data  in question can be quickly fit and discriminated 
between. The posterior random effects provide a method for doing so; they can be visually 
examined, at no extra computational cost, to quickly assess a priori model assumptions provid­
ing a fast, approximate model validation tool. This analysis may also be used to suggest more 
appropriate models for the data in question or detect the presence of vmmodelled covariates.

tiowever, we observe that the proposed approach does not appear to have good outlier 
detection properties in the context of low Poisson or Binomial counts data. As previously 
mentioned, such observations are “more likely” to be identified as potentially outlying due 
to the magnitude of the uncertainty in the posterior distributions of the corresponding ran­
dom effects. Ultimately, the major weakness of the approach lies with the overdispersion of 
the data. If no overdispersion is present, the posterior distribution of cr ,̂ which models the 
variance of the random effect terms, will tend to zero. Fm'thermore, the posterior random 
effect terms, which are a function of will also tend to zero. If the data  are only slightly 
overdispersed, it is difficult to accurately infer the variance param eter cr ,̂ typically resulting 
in its underestimation. As a result misleading inferences will be obtained by comparing the 
posterior random effect terms to critical bounds which are a function of a^. Figure 4.6 (a) 
illustrates this problem, the number of outliers detected increases as cr̂  tends to zero reflecting 
the poor performance of the approach.

In the absence of overdispersion, the proposed methodology falls down and alternative 
methods for outlier detection and residual analysis must be pursued.
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4.4 Application: Heart A ttack D ataset

In this section our proposed framework for residual analysis is demonstrated on the heart a t­
tack dataset of Souza & Migon (2010). Our main motivation is to predict outliers within the 
available dataset and compare our results with those obtained by the authors. The Bernoulli 
nature of the response variable provides a particularly challenging problem for the developed 
methodology, however, we illustrate how the proposed approach helps identify outliers in a 
much more systematic manner than  those considered in the paper. Additionally, we demon­
strate how visual analysis of the posterior random effect terms provides a novel insight into 
underlying model dynamics that potentially explain model failings.
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Figure 4.11: Survival outcom es for patients adm itted  to  hospital following a heart 
attack. A  sam ple o f 546 outpatients w ith  73 deaths was observed w ith  the prim ary  
endpoint of the trial being in-hospital death  from any cause.

The primary aim of Souza & Migon (2010), was the development of a Bayesian binary 
regression model to predict the probability of patient death after hospital admission following 
a heart attack. A secondary aim of the study was the identification of outliers, namely patients 
for whom data upon admission was possibly misrecorded, leading to models with enhanced 
predictive performance.

The dataset, introduced in Section 1.2.2, consists of demographic and medical variables 
observed upon patient admission to hospital. The resulting patient outcomes, namely survival 
(0) and death (1), are presented in Figure 4.11. Information on 11 predictor variables for 
in-hospital mortality is available. These include continuous variables such as age, measured in
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years and dichotomous variables such as sex, smoking history, heart attack history, diabetes 

and whether a history of arterial hypertension exists. Additional information is derived from 

electromagnetic examination of the patient subsequent to hospital admission; this includes a 

categorical measure for the severity of the heart attack which we henceforth denote “Killip”.

4.4.1 M od e l

Souza & Migon (2010) undertake a variable selection procedure, making use of Bayes factors 

to discriminate among competitive models as well as examining them for their predictive 

accuracy. The model with the best predictive ability, as determined by the authors, included 

the 9 variables age, sex, heart attack history, history of arterial hypertension, smoking habit, 
the Killip class on admission and the interactions age x hypertension, sex x hypertension and 

hypertension x heart attack history. An additional random effect term for each observation, 
Uj, was incorporated into the model to capture any outstanding, unexplained variability.

In Souza & Migon (2010) three different prior specifications are proposed for the Ui. Our 
proposed approach has most in common with model Ali  of the authors where Ui ~  7V(0, u^). 
The resulting model for the data is:

=  X j B  +  Ui (4.26)

TT{zi\0) ~  N { X j ’B,a^)  (4.27)

~  Bernoulh •— — -  (4.28)
V 1 +  e^’ /

B  =  {j3o, 0 1 , . . . ,  0s}  are a set of regression parameters corresponding to the set of covari- 

ates, Xi  =  { l,X ji, • • • jXjg} and 9 represents the underlying model hyperparameters including 

As noted by Fong et al. (2007) and Roos & Held (2011), posterior inference on the variance 

parameter of the random effect terms in logistic regression models is strongly influenced by the 

prior specification; there is very little information in the Bernoulli counts and hence the model 
is very prior sensitive (Simpson et al. 2011). As a result, an informative, ~  F (6 ,1) prior 

is placed on the variance parameter of the random effects. Conversely, each of the regression 

parameters is supplied with a non-informative prior.

4.4.2 R esu lts

Figure 4.12 plots the modal posterior random effects of the first 60 observations; the results 

correspond well to those produced in Figure 1 of Souza & Migon (2010). One of the main 

benefits of our approach is the expression of the posterior random effect terms as mixtures of 
Gaussians - as a result we can harness Gaussian residual theory to provide critical regions by
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F ig u re  4 .12 : (a) Posterior random  effects (o) for the first 60 patients with 50% ( - )  & 
95% (-) highest posterior density regions. ±1.96(7 bounds are represented by (—). Posterior 
d istributions which significantly cross the  error bounds are identified as outhers. a  here is 
fixed a t its posterior m odal value of 2.48.
(b) T he resulting posterior outlying probabilities (•) as well as the  5% critical bound (—). 
O bservations w ith outlying probabilities greater th an  the bound are identified as outliers.
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which to assess outlying activity. In Figure 4.12 we plot the posterior outlying probabilities 
corresponding to the first 60 observations. There arc three outliers identified which corresponds 
exactly with the results obtained by Souza & Migon (2010). However, most importantly, the 
run time for their MCMC based approach was two hours; our results were obtained in a matter 
of seconds. The outlying probabilities through the use of an objective critical bound provided 
by Gaussian residual theory; none of the outliers are subjectively chosen.
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Figure 4.13: Survival outcomes (o) for the first 60 patients with 3 identified outliers (•).

This contrasts with the results of Souza & Migon (2010), who identify as outliers the 27 
observations (all corresponding to deaths) with the largest probabilities of requiring an extra 
random effect to capture excess variability. This corresponds to exactly 5% of the observed 
dataset; the justification for the ad-hoc cut off point used in outlier determination is weak 
and appears motivated by the expectation, under standard Gaussian residual theory, that 
approximately 5% of the observations may be considered potentially outlying. If the subjective 
cut-off point of the authors is lowered slightly, an additional 13 observations are included in 
the outlying dataset.

Conversely, our approach flags 39 of the 546 observations as requiring further investigation 
which includes all 27 counts identified by Souza h  Migon (2010). This represents approxi­
mately 7% ot the complete dataset - this represents approximately half the amount of obser­
vations we would expect given the simulation studies previously considered in Figure 4.7 (a) 
for = 1. A possible reason for the flagging of less observations, than would be expected
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under the Gaussian framework, is provided by visual inspection of the posterior random effect 
terms. In Figure 4.14(a) we provide a quantile-quantile of the mean posterior random effects. 
We observe that the posterior random effects do not follow a Gaussian distribution but appear 
to be generated from a mixtures distribution, perhaps reflecting the possible absence of an 
im portant predictor covariate in the model.

Using the Mclust (Fraley & Raftery 2007) package in R for cluster analysis, the best fitting 
model identifies 4 Gaussian clusters in the posterior random effects. In Figure 4.14(b) we 
simulate a number of random effects from the mixture distribution identified by the Mclust 
package which we overlay on the inferred posterior random effects. The results are seen to 
correspond almost exactly.

The quantile-quantile plots provide a quick method of model validation, indicating that 
a more appropriate model for the residual trend in the random effect terms is a mixture of 
four Gaussians - interestingly, the best fitting model of the authors was one which employed 
a bivariate mixture for the a priori random effects. However, as previously stated, the trend 
structure observed in the model residuals may also indicate the presence of an explanatory 
variable which was not recorded at the patient admission stage.

4.5 Conclusions

Existing methods for Bayesian residual analysis in the presence of discrete, non-Gaussian count 
observations are subject to the same issue - it is difficult to define critical bounds by which 
outliers can be objectively and systematically identified. Furthermore, though several authors 
consider the use of Gaussian random effect terms for outlier detection purposes, none appear 
to consider their use as a tool for quick, visual validation of the fitted models.

In this chapter, we have sought to address these issues through the development of a 
statistical methodology for residual analysis and outlier detection in the non-Gaussian data 
setting. This methodology is built upon the incorporation of Gaussian random effect terms 
into models to capture possible overdispersion in the counts data, with the posterior random 
effect terms treated as a "surrogate” for classical residuals. The approximation of the posterior 
random effect terms in Gaussian form provides access to standard Gaussian residual theory 
and to classical residual analysis tools such as quantile-quantile plots of the posterior random 
effects.

There are several benefits of the proposed methodology - the use of fast approximate 
Bayesian inferenc:e algorithms facilitates the cjuick fit and comparison of multiple models for 
the data  in question. Objective critical bounds for systematic outlier detection are available 
from the harnessing of Gaussian residual theory. Additionally, the setting up of models in the 
generalised linear model framework demonstrates that the approach is possibly compatible 
with models in addition to the Poisson and Binomial models considered in this chapter; this
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Figure 4.14: (a) Q-Q plot of E{U\Y)  (o) & (b) Q-Q plot of E{U\Y)  (o) overlain with 
simulations (•) from a distribution comprised of a weighed mixtures of four Gaussians with 
parameters estimated from mclust.
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theory is the subject of ongoing investigation.

Whilst a rigorous mathematical formulation of the properties of the proposed methodology 
has not been presented here, a series of directed simulated data studies have provided an 
indication of certain properties or features of the approach. Performance failings are very 
evident, if the overdispersion present in the data is small in magnitude, the random effect 
terms are masked by the discrete nature of the response and are difficult to detect. The outlier 
detection properties of the approach in such settings is observed to deteriorate. Conversely, in 
the presence of overdispersion which is significant in magnitude, the approach appears to have 
good residual analysis and outlier detection properties. In the context of the presented Poisson 
and Binomial regression examples, the other features which affect performance appear to be 
the values of the counts under consideration, with studies involving many low count values 
providing a particular challenge to the methodology.

An application to a real dataset has shown the power of the developed approach for Bayesian 
residual analysis in the non-Gaussian setting. This application represents a challenging test 
of the methodology, due to the binary nature of the response variable. Inference on all model 
parameters is conducted in a m atter of seconds and the provision of an automatic, explicit 
bound for outlier detection purposes represents an advance over the methods of Souza & Kligon 
(2010). Finally, the use of quantile-cjuantile plots of the mean posterior random effects, provide 
a quick visual method of determining that the a priori modelling assumption of a univariate 
Gaussian distribution for the random effect terms is inappropriate.
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Chapter 5

Models for Multivariate Observational 
Data

Statistical calibration problems involving highly multivariate observational data  sets are mul­
tivariate inverse inference problems. Specifically, the forward stage involves the calibration of 
multivariate statistical models for the relationship between model covariates and the highly 
multivariate response. The calibrated models are then used inversely, to make inferences on 
the unobserved covariates corresponding to new data for which such information is unknown.

However, the statistical modelling of multivariate data poses many challenges of computa­
tion and model choice; fully Bayesian inference on the parameters of multivariate models for 
the highly multivariate response can be tremendously slow or even infeasible. This problem 
becomes acute in the presence of high dimensional data sets, such as the RSIO pollen and 
climate data  set, enforcing compromises in the complexity of models tha t are ultimately con­
sidered. As we will observe in the following sections, these compromises in model choice can 
adversely impact the prediction accuracy of calibrated models at the inverse stage.

The novel contributions in this chapter relate to statistical modelling. Specifically, we 
examine the introduced issues regarding the statistical modelling of multivariate response 
data  and extend existing modelling methodology to address these issues. We illustrate that the 
optimal hierarchical (nesting) structure for compositional counts data, in terms of prediction 
accuracy at the inverse stage, can be learned from the observed data. We detail the statistical 
incousistency of existing zero-inflat ion inodeLs for compositional count data  and address this 
issue via the construction of a modelling framework that considers both zero and N-inflation 
of the counts simultaneously. Inference details are suppressed throughout this chapter and 
model parameters are assumed known save to mention details of a computational nature; the 
focus is the impact of different model choices at the forward stage on the accuracy of the 
predictions produced at the inverse stage.

This chapter is organized as follows; in Section 5.1 we consider models for multivariate
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response data. We discuss the assumption of conditional independence of model components, 
which enables the decomposition of multivariate joint models into a series of separate univariate 
models and detail how this assumption introduces many computational conveniences at both 
the forward and inverse stage of the multivariate inverse inference problem.

In Section 5.2 and Section 5.3 we discuss models for multivariate counts data and explore 
the effect of dependence structure at various model levels on the accuracy of the predictions 
produced at the inverse stage. We focus in particular on models for compositional data, where 
dependence between model components is introduced by the data collection process. Given the 
assumption of conditional independence of model components, we illustrate that the omission 
of dependence structure leads to prediction intervals that are “too narrow”, resulting in a 
deterioration in the prediction accuracy of calibrated models.

In Section 5.4 we discuss hierarchical or “nesting” structures for the statistically efficient de­
composition of multivariate joint models involving compositional data into smaller, univariate 
inference tasks. We investigate a number of hierarchical structures for model decomposition 
and detail how the “best” hierarchical structure, in terms of predictive power at the inverse 
stage, can be learned from the data.

In Section 5.5 we examine hierarchical models for zero inflated compositional data. We 
detail how, in the Multinomial setting, zero-inflation of counts corresponding to one group can 
lead to N-inflation of another. A specialised likelihood function is introduced to accovmt for 
this extra source of variability.

5.1 M ultivariate Observational D ata

In a typical spatial regression problem, interest generally lies in making inferences on the latent, 
unobserved response surfaces which describe the relationship between some recorded covariates 
(spatial location) and the observed, multivariate response. Conversely, in this thesis, the latent 
response surfaces themselves are not of substantial interest. We are instead primarily focused 
on multivariate inverse inference’, the inferred multivariate response surfaces are required in 
order make inferences, inversely, on the unobserved covariates (fossil climate) corresponding 
to a set of “new“ (fossil pollen) responses. However, the initial (forward stage) which involves 
the calibration of multivariate models for the covariate-response relationship can be extremely 
challenging; with regard to the palaeoclimate reconstruction problem, the calibration dataset, 
available for model fitting, is highly multivariate.

In Equation 5.2 we present an example of a highly multivariate dataset which will serve 
as a tool to simply explain features of the inverse problem in following sections. The dataset 
consists of multivariate observations Y  = (Vi , . . . , ym)  which are (spatially) indexed by the 
(possibly multivariate) climate C  = ( c i , . . .  ,c„). In the context of the motivating palaeocli­
mate reconstruction problem, each column Yi £ Y  represents the observed pollen response to
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recorded C for each plant taxon.

Data =  {Yi , . .. ,Ym,C) (5.1)

 ̂ y n  • ym\ Cl ^

V y in  • ymn J

(5.2)

5.1.1 M ultivariate O bservational M odels

To recap, at the forward, model fitting stage the objective is to calibrate proposed models 
for the response-covariate interaction. If we assume that the observations in Equation 5.2 are 
realizations from a multivariate Gaussian distribution with unknown mean, X  and observed 
with error e, a suitable model for the multivariate dataset may be of the form presented in 
Equation 5.3.

In the context of the motivating palaeoclimate climate problem the model has the following 
interpretation; each column of X = { X i , . . . .  Xm)  represents the smooth, unknown spatial 
response surface governing the climate-pollen response for each plant taxon, with each Sij an 
independent, non-spatial error term.

 ̂ y u  ■■■ V m l

\  y i n  ■ ■ ■ V m n  j

Y  = X(C) + e

\  ( Xi(ci) ... X„(ci) \ £ll ••• £ml

\  Sir.

(5.3)

(5.4)

n{X\Y,C) = ti{Y\X, C) tt{X\C)  (5.5)

Accounting for sources of correlation structure in highly multivariate Y  may require the 
use of extremely complex models. In the context of compositional data, implicit correlation 
structure is introduced by the data collection process; the constraint that the rows of Y  in 
Equation 5.2 must sum to a specified total N  introduces dependence structure in the multi­
variate Y . Equally, this sum constraint also introduces correlation between the multivariate 
response surfaces of X; if the counts for an individual plant taxon increase, simultaneously 
the covmts must decrease for all others, implying a strong negative correlation structure across
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the response surfaces.

W ith regard to the latent field, if we assign a multivariate Gaussian prior distribution to 
X,  X  M V N { ^ ,  possible dependence structure can be captured through the covariance 
matrix Ex- The choice of a complex interaction structure for E x  generally results in a huge 
increase in the number of hyperparameters required to fully specify the model, corresponding 
to the inclusion of extra correlation parameters which govern the correlation structure between 
individual taxa. This potentially results in large dense matrices for E x , further resulting in 
an increase in computation time with regard to matrix operations involving Ex-

Inference procedures for models with complex dependence structures in the latent field X  
or in the multivariate observations Y  can be tremendously slow due to the sheer magnitude of 
the number of parameters we must jointly infer. Indeed, the computational burden of jointly 
inferring all model parameters and covariance structures, in the context of large datasets, may 
be computationally infeasible, thus imposing trade offs between model complexity and finite 
machine computation time.

For example, with regard to the motivating palaeoclimate reconstruction problem, the 
model calibration dataset considered in this thesis consists of 7742 observations for each of 28 
different plant taxa, providing 216776 observations in total. The use of standard geostatistical 
modelling methods will encounter the “big n” problem (Bannerjee et al. 2004); the consid­
eration of all response surfaces jointly will require the manipulation of a covariance matrix 
E x  of dimension 216776 x 216776, with the use of complex covariance structures between the 
latent response surfaces rendering this an extremely dense matrix. The computational cost 
of inferring the parameters of multivariate joint model is thus too computationally expensive 
to consider, enforcing the consideration of simpler models or approximation methods which 
greatly reduce the complexity of the inference task.

5.1.2 Univariate M odels

The simplest approach to dealing with this challenging problem is to decompose the multivari­
ate joint model into a subset of smaller, independent univariate models. At the forward stage 
this involves the decomposition of the multivariate joint inference problem for the latent field, 
tt{X\Y,C) ,  into a sequence of independent inference tasks, i.e. ■k{X\ Y,C)  = Ti{Xi\Yi,C) 
- the response surface for each plant taxa is thus inferred independently of the others, Salter- 
Townshend (2009) denotes this approach as “inference-via-the-marginals”. The multivariate 
model introduced in Equation 5.3 is thus decomposed into the one presented below; infer­
ence on the model parameters for each subset can then be carried out in isolation, drastically 
reducing the computational complexity of model fitting.
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V̂  = X , ( C ) +E i (5 .6)

(  Vii \  (  Xi{ci) \ (  \
+ (5.7)

m

7t{ X \ Y , C )  =  l l 7 T { Y , \ X^ , C) n{ X , \ C) (5.8)
1= 1

This approach is based on the assumption of conditional independence of model compo­
nents; the multivariate observations Y  are assumed to be conditionally independent given the 
latent field X ,  i.e. 7T(r|x) =  n r n "  ’K{yij\Xi{cj)),  in turn  the latent parameters for individ­
ual plant taxa are assumed conditionally independent given the spatial location, ■n{X\C) =

dependence between the univariate models at the likelihood level or in the latent field (the 
covariance m atrix E x  is thus block diagonal).

If the individual model components are truly independent, then inferences on the individual 
model components in isolation will be equivalent to those obtained when making inference on 
the the full model jointly. However, if interaction exists at any level between the (assumed 
independent) model components, inference on the parameters of the univariate models will 
only act as an approximation to joint inference on the full model, possibly leading to statis­
tically inefficient, or sub-optimal, param eter inferences. As we will observe in the following 
sections, the quality of this approximation is dependent on the strength of the true dependence 
structure.

5.1 .3  M o d el Inversion

The primary interest in this thesis is the use of calibrated models, inversely, for prediction 
given new data  for which the true model covariates are unknown. Specifically, given the 
model training data  (y, C), the goal is to infer the unknown climate corresponding to a 
set of new, univariate pollen responses

Written explicitly:

YYî  ’K{Xi\C).  There are no interaction terms included in the model for modelling possible

(5 .9)
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If the multivariate integral in Equation 5.9 is not known analytically, as is frequently 
the case in this thesis, computationally intensive sampling algorithms may be used for its 
evaluation. However, given the conditional independence assumption introduced in the previ­
ous section, the multivariate joint probability distributions, 7r(F"®'^|X, and ■k{X\Y ,C)  in 
Equation 5.9 decompose into the product of independent parts, further enabling the multivari­
ate joint integration step to be decomposed into the product or smaller, less computationally 
intensive univariate integrals in Equation 5.12 which can be evaluated deterministically. This 
results in extensive time savings at the inverse stage.

^ ( ^ n e w | y n e w , y ^ ^ )  ^

OC

The decomposition of joint multivariate models into a series of independent univariate 
models is based on the assumption of the conditional independence of model components. 
The resulting absence of dependence structure at the likelihood level or between the latent 
response surfaces in the multivariate joint model introduces many computational conveniences 
at both the forward and inverse stages. However, as we explore in the following sections, if 
this model decomposition is used erroneously, inefHencies will occur in the statistical inferences 
derived from the model.

5.2 M ultivariate C ounts D ata

In the previous section, models for multivariate observational datasets were introduced where 
the underlying distribution of the observations was assumed Gaussian in nature. If the distri­
bution of the observational dataset is other than Gaussian, as is the case for the motivating 
palaeoclimate application, this introduces an additional complexity to model inference tasks; 
posterior distributions for the parameters of the latent field are typically unavailable in closed 
form. In the following we consider the case where the observational dataset, introduced in 
Equation 5.2, consists of multivariate Poisson count observations.

We extend the multivariate model, introduced in Equation 5.1.1, to the Poisson count 
setting. The individual counts are modelled as Poisson distributed and linked to the latent 
field X  through the use of log-link function. The latent field is modelled as previously, with 
a multivariate Gaussian prior used to capture spatial smoothness. The hierarchical model for

n 7 r ( c - - |y r " ' , y ,C )  (5.10)
i

m  „

H  n{c^^^,X^\yf^^,Y,C)dX, (5.11), Jx,
m „

n  n{yr^\X„c-^'^)n{X,\Y,C)dX,  (5.12)
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the data  is:

V  ~  Poisson(A) (5.13)

A =  exp(X)  (5-14)

X ~  MVN{ f i , T . x )  (5.15)

Counts data tha t exhibits signs of overdispersion are of particular interest in this thesis; with 
regard to the motivating palaeoclimate reconstruction problem, the pollen count observations 
available for model fitting, appear to contain more variability than that expected by the usual 
exponential family models. As per Section 3.5.3, if the empirical variance of the observed 
counts is significantly greater than the empirical mean, this may indicate the presence of 
excess variability and the counts are said to be “overdispersed”.

5.2.1 M od ellin g  O verdispersion

As introduced in Section 3.5.3, a simple method of accounting for this excess variability is 
through the addition of mean-zero non-spatial Gaussian random ett’ects U, one for each count 
observation, to the model. The addition of random effect terms to the model thus induces 
overdispersion of the latent field with regard to the si)atial component X.

For example, say the data Y  is Poisson with rate parameters A and A, constrained to be 
non-negative, is comprised of exp{X + U),  the hierarchical model for the data in question is:

Y  -  Poisson (A) (5.16)

A =  exp{X + U) (5.17)

X ~  M V N { i i , E x )  (5.18)

U ~  MVN{<d,Y.u)  (5.19)

The computational problems of this particular approach are as follows; the incorporation 
of random effects terms into the model leads to a substantial increase in the number of latent 
parameters requiring inference. In the presence of large amounts of data  and in the context of 
multiple taxa being considered simultaneously, joint models for the data, which additionally 
incorporate dependence structure in the latent field, are much too computationally expensive 
to consider. One solution to this computational problem is to consider the overdispersed count 
data for each taxa independently of the others and fit univariate models instead, at the cost 
of disregarding the dependence structure that can be built into joint models for the data  in 
question.
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In the following section we focus on the scenario where dependence structure exists in the 
latent field, specifically, we aim to explore the effect of ignoring dependence structure in the 
latent field and the resulting impact on prediction accuracy of calibrated models at the inverse 
stage.

5.2 .2  S en sitiv ity  to  D ep en d en ce  S tructure in th e  L atent F ield

In the following we build upon the work of Salter-Townshend (2009) and use simulated data 
to illustrate the effect of (unaccounted for) dependence structure in the latent field at the 
forward stage on the predictive distributions produced at the inverse stage. Overdispersed 
Poisson count observations Y  are generated given a latent field, X,  comprised of 10 identical 
response surfaces (i.e. the same response surface is used 10 times) defin(;d on a regular grid of 
100 spatial locations and multivariate random effects U.  Given the simulated data, the first 
step is to calibrate a model for the location-response relationship.

A hierarchical model for the data  in question is:

Y  ~  Poisson (A) (5.20)

A =  exp{X + U) (5.21)

A' ~  A/V'A’( /i,S v )  (5.22)

U ~  MVN{0,T ,u)  (5.23)

Each row ( j )  of K is a vector of counts of length 10, { y j i ,  ■ ■ ■ , y j \ o ) ,  indexed by univariate 
spatial location ĉ . The prior for X is a multivariate Gaussian process of dimension 10 with 
dependence structure between the individual response surfaces included in Sa'- The random 
effects are treated as independent within an individual taxon but dependent across taxa with 
covariance structure across taxa modelled in S/y.

The modelling of dependence structure in the latent field between individual response sur­
faces and taxon random effects is not a simple task. Dependence structure, modelled by the 
inclusion of interaction terms in the respective covariance matrices, greatly increases the com­
putational burden of the inference task by virtue of the large number of covariance parameters 
which we must additionally infer. Furthermore, the inclusion of dependence structure in the 
multivariate model for univariate model components introduces the constraint tha t all model 
parameters must be jointly inferred.

The computational cost of inferring all model parameters jointly, even in the simple example 
considered here is extensive. However, the assumption of conditional independence of model 
components greatly reduces the computational burden - dependence structure is ignored, the 
response surfaces which encompass the latent field are not independent given location but
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are modelled as such in order to simplify the inference task and facilitate decomposition of 
the inference problem. The latent parameters corresponding to each individual taxa are thus 
inferred independently of all others.
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F ig u re  5.1: A plot of the percentage of locations falling outside their 95% predictive distri­
bution as the number of surfaces jointly considered increases. Interaction is related to the use 
of the same, unimodel, latent response surface to generate all counts and through dependence 
in the random cfTccts used for overdispcrsion.

In Figure 5.1 we present the result of this modelling choice. The incorrect assumption of 
independence of model components, given known model parameters, is manifested in the plot 
as an increase in the number of observations falling outside their 95% highest posterior density 
predictive (HPD) distribution region for climate; furthermore, the error rate increases with 
each additional taxon considered. Using the decomposed model, the assumption is made that 
there is no dependence structure between the response surfaces which comprise the latent field 
or between taxon random effects.

Conversely, by virtue of the data generating procedure there is a strong dependence struc­
ture between the latent parameters corresponding to each taxa. The same smooth response 
surface and random effects arc used to simulate the counts for each plant taxa, the latent
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parameters for each additional taxa considered are thus fully correlated with correlation equal 
to 1. The univariate approximation to the multivariate model does not account for this de­
pendence structure, treating the data and latent parameters for each taxa as conditionally 
independent, which they are clearly not. This is manifested as a deterioration in predictive 
power at the inverse stage.

However, other model evaluation statistics help provide a useful insight into the perfor­
mance of the model decomposition used. We note that, in spite of the number of observations 
detected as falling outside the 95% HPD region (A) increasing with each additional taxa con­
sidered, the absolute distance of the mode of the predictions on location produced to the true 
locations decreases, on average, with each additional taxa considered. Furthermore, the mean 
squared error of prediction is also seen to decrease.

These results seems to indicate that the climate predictions produced become increasingly 
accurate with each additional taxa considered. However, the erroneous treatment of the spatial 
response surfaces as conditionally independent given spatial location leads to posterior distri­
butions for lo<;ation that arc not sufhciently conservative. The 95% posterior distributions on 
spatial location given the observed data are too narrow, brought about by not modelling the 
inherent dependence structure introduced by the data generation process.
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Figure 5.2: Plots of the (a) M S E P  and (b) the distance to the mode (Dmode) for increasing 
number of taxa considered. For increasing number of taxa the placement of the inverse pre­
dictive distributions becomes increasingly accurate and peaked, as indicated by the decreasing 
M S E P  and Dmode statistics.

The simplest approach to inference on the parameters of large multivariate model is to
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perform inference on the taxon specific components of the latent field independently for both 
the forward and inverse stage of the problem, ignoring possible dependence structure in the 
latent field. In this section we have observed that the predictive posteriors produced at the 
inverse stage are quite sensitive to this approach. As previously discussed, a potential source

constraints, such as compositional data. In the following section we examine this issue further.

5.3 D ependence in the Likelihood

In the previous section, the impact of (unaccounted for) dependence structure in the latent 
field at the forward stage, on the predictions produced at the inverse stage was illustrated. One 
possible manner in which this dependence structure can arise is through the data  collection 
process, which we refer to as dependence in the likelihood', in the context of compositional data, 
the sum constraint on the observed data introduces a strong implied dependence structure into 
the latent field which likelihood models for the data must take into account.

In the following sections we discuss this issue further, introducing Multinomial models for 
the observational data  and investigating the pitfalls of conditional independence assumptions 
between indivddual model components in the presence of sum constraints.

5.3 .1  M u ltinom ia l L ikelihood Function

The Multinomial distribution is a multivariate likelihood with known degree of dependence 
(covariance) between model components. As opposed to situations where the data  are only 
presented in terms of proportions, if the totals for each row of the counts vector are known, 
then there is extra information available in the data as opposed to the base compositional 
data  setting. The probability distribution of the counts Y,  given the total N  is given by the 
Multinomial distribution.

The Multinomial likelihood can be expressed as the product of independent Poisson distri­
butions constrained by conditioning on the sum being equal to the total count N.  In Equa­
tion 5.24 we present the likelihood kernel for the Multinomial likelihood function and illustrate 
how this can be re-expressed in terms of the product of independent Poisson distributions.

of dependence structure in the latent field is the analysis of data  which is subject to sum

m

n {Y \P ,N )  cx H pI' (5.24)

(5.25)
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WT=i Poisson(y^, AQ 
Poisson(iV, N)

(5.26)

Here A =  {Ai, . . . ,  Am} represent the rate parameters for each of the independent Poisson 
distributions where each = Npi  and simple mathematical workings show that the correct 
full joint Multinomial likelihood is returned from the product of the marginals subject to the 
constraint. Of course the pi are not known; each j/j represents an indirect observation of the 
unobserved, underlying latent field and can be used to make inferences on the unknown pi.

5.3.2 M odelling the M ultinom ial Response

The representation of the Multinomial likelihood function as the product of independent Pois- 
sons provide conveniences as regards statistical models for the Multinomial response. As 
opposed to the probabilities P,  which are constrained to lie between zero and one, the Â ’s are 
constrained only to lie on the positive real line; through the use of a log-link (see Section 3.5.1) 
function, the A,’s can be directly related to the unconstrained latent field X ,  which is indexed 
by the spatial location C.

A typical hierarchical model is:

Poisson((X;™i Aj) ,iV)
\ i  = exp{Xi)  (5.28)

X, ~  M V N { ^ x „ Q x J  (5.29)

Dependence is assumed only to arise through the likelihood, thus independent multivari­
ate normal priors may be used for each of the m  latent response surfaces Xi  which make up 
the latent field X.  However, though the representation of the Multinomial as the product of 
independent Poisson distributions introduces certain modelling conveniences, model parame­
ters must still be inferred jointly. The likelihood cannot be decomposed into the product of 
conditionally independent parts due to the sum constraint.

It is quite simple to extend the modelling framework introduced in Equation 5.27-5.29 
to account for overdispersion of the Multinomial count outcomes. Though computationally 
burdensome, the addition of Gaussian random effect terms to capture the overdispersion is 
easily done through the addition of another level to the model hierarchy:

n i l i  Poisson(y^, A,)
Poisson((E” iAi),Â )  ̂ ^

Xi ^  exp{X{ci) +  Ui) (5.31)
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X, ~ MVN{nx„Qx,) 
Ui ~  MVN{ 0 , ' Eu)

(5.32)

(5.33)

The response surfaces for each plant taxa are assumed a priori independent; the non-spatial 
random effects, used to model count overdispersion are assumed to consist of independently

to be diagonal. As previously discussed, this supplies a flexible modelling strategy where 
individual taxa are allowed to display differing degrees of overdispersion whilst preserving the 
Multinomial likelihood, at the cost of inferring a large number of random effects (one for each 
count observation) in addition to an extra variance hyperparameter for each of the m  plant 
taxa.

This contrasts greatly with the approach of Haslett et al. (2006) who use a compound- 
Multinomial model for modelling overdispersed pollen count vectors. Essentially a Dirichlet 
process prior on the probabilities P  is mixed with a Multinomial likelihood for the count out­
comes to form a compound-Multinomial distribution for the likelihood. As noted by Haslett 
et al. (2006), this results in the rather unsatisfactory constraint that the overdispersion experi­
enced by each taxa is fixed to be the same across all taxa though maintaining the conditionally 
independent structure of the Multinomial likelihood.

In feren ce and M o d ellin g  Issues

The use of Multinomial models for the observed data  introduces many inference and mod­
elling problems. Though the Multinomial likelihood may be re-expressed as the product of 
independent Poisson distributions, the sum constraint, which corrects for the compositional 
nature of the data, requires that all model parameters be jointly inferred. In the presence 
of large amounts of data (the palaeoclimate reconstruction problem consists of n =  7742 ob­
servations for each of m =  28 plant taxa) the computational cost of simultaneously inferring 
all unknown model parameters is computationally infeasible. As a result approximations, in 
terms of likelihood models for the observed data, must be considered.

5.3.3 Sensitivity to D ependence Structure in the Likelihood

One such approximation to the joint (Multinomial) model likelihood is to simply approxi­
mate the Multinomial likelihood as the product of independent Poisson distributions without 
accounting for the sum constraint. Essentially:

identically distributed Gaussian random effects and as a result Ey in Equation 5.33 is taken

7 T ( r | A , i V )  CX (5.34)
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i=l
(5.35)

We denote this the ‘marginal model’ - as the likelihood is now taken to be the product of 
independent Poisson likelihoods, the specification of a prior model for the latent field that does 
not consider dependence structure between the latent response surfaces enables the decom­
position of the joint inference task; inference on the model parameters for each taxa can be 
completed separately. The joint model is thus approximated by the product of the marginal 
models. In the following we investigate the properties of this approximation.

A special case of the Multinomial model is the case where m = 2, which is the Binomial 
model. In the following we generate some overdispersed Binomial data, conditional on the 
latent field and re-infer model parameters given the true model (Binomial) and the marginal 
model, where the counts are treated as independently Poisson distributed.

At each of 100 spatial locations, a set of Binomial counts, Y  are generated with probabilities 
given by a logit transform of the latent field Wi = x(ci) + Ui where X is a smooth spatial surface 
defined over the location space and Ui is a simulated random effect from a A^(0,1) distribution. 
Due to the random cffects, the counts arc overdispersed, displaying more variability than simple 
Binomial data.

Given the simulated data, model parameters are inferred for the correct Binomial model 
and the approximate marginal model and the calibrated models used to infer the location of 
further simulated model validation data for which the true location is known. The number 
of observations which lie outside their 95% predictive region for location given count is then 
compared for the two approaches with this process completed a large number of times (200), 
ill order to build up a profile of the prediction properties of each approach. The results are 
presented in Figure 5.3

We observe in Figure 5.3 that, for the true Binomial model, approximately 5% of obser­
vations lie outside their 95% predictive regions for location given observation. Conversely, 
the corresponding error statistic for the Poisson marginal approximation to the Binomial is 
approximately 27% reflecting the result that the approximation of the Binomial likelihood by 
independent Poisson distributions fares poorly in this setting. The Poisson approach treats 
each set of counts as two independent Poisson observations whereas the Binomial approach 
acknowledges the fact that there is one less degree of freedom in each set of counts; given the 
total N,  only one of the counts provides any information.

Additional information about the vagaries of the approximation can be learned from study­
ing the performance of the approximate and joint approach with regard to the distance metrics, 
Dmode and the mean squared error of prediction, M S E P .  In Figure 5.4 (a), we observe that 
the error for the Dmode statistic for both the Binomial model and the marginal Poisson model 
seem to produce predictions for location that are equally well located, i.e. they have similar
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F ig u r e  5 .3 : A plot of the percentage of locations falling outside their 95% predictive HPD 
distribution regions for the true model (solid line) where the Binomial nature of the data  is 
addressed (sum constraint accounted for), versus the marginal model (dashed line) where the 
the counts are treated as independent, overdispersed Poisson observations. The error statistic 
is significantly higher for the Poisson model, which docs not account for the strong dependence 
structure in the simulated data, implied by the sum constraint.
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accuracy in predicting modes. In Figure 5.4 (b), we learn the cause of the poor predictive 
accuracy at the inverse stage; the posterior distributions for location produced by the marginal 
Poisson model, given each set of new counts, treat each count as independent information. As 
a result, the posterior predictive distribution for location is more peaked for the Poisson model 
than the Binomial model equivalent - the predictive distributions for location produced at the 
inverse stage are thus “too narrow” resulting in a deterioration in prediction accuracy.
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Figure 5.4: (a) Plots of the distance to the mode Dmode and (b) the M S E P  for the joint 
(solid line) and marginal (dashed line). Both models seem to predict the ‘true’ climate with 
equivalent accuracy, however the predictive posteriors on location produced using the marginal 
Poisson model are not conservative enough

In Figure 5.5, we additionally observe that the error statistic A, of the Poisson approxima­
tion to the Binomial is strongly dependent on the degree to which the data are overdispersed. 
The (T̂  parameter of the random effect terms is set as .5, i.e. Ui ~  A^(0,.5), representing 
a lower degree of overdispersion than the example considered in Figure 5.3. With the lower 
degree of overdispersion the accuracy of the decomposition is seen to improve substantially.

5.4 D ecom posing M odels Involving M ultinom ial Likelihoods

The previous section illustrated that naive decompositions of highly multivariate models, such 
as the assumption of the conditional independence of model components in the presence of 
Multinomial data, can lead to poor inference outcomes at the inverse stage. The sum con­
straint implied by the data collection process requires that the latent parameters for all model
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F ig u re  5.5: A plot of the percentage of locations falling outside their 95% predictive HPD 
distribution regions for the true model (solid line) where the Binomial nature of the data is 
addressed (sum constraint accounted for), versus the approximate model (dashed line) where 
the the counts are treated as independent, overdispersed Poisson observations. The error 
statistic is lower for the Poisson approximation to the Binomial model than the example 
presented in Figure 5.5 due to a lower degree of overdispersion.
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com ponents m ust be jointly inferred.

In this scction we study  the infercntially efficient m ethods of Rodriguez (2007) for decom­

posing large m ultivariate models, involving M ultinom ial data, into the product of smaller, 

independent univariate models which represent much less challenging inference tasks.

5.4.1 Hierarchical or “N esting” Structures

One possible strategy  for decomposing joint models involving M ultinomial response data, is 

to  define a hierarchy of nested comparisons between subsets of the  responses. As we will see 

in the following, the approach is quite a ttractive from a com putational viewpoint; using this 

m ethod, the m ultivariate joint model can be decomposed into a series of disjoint univariate 

models, the param eters of which can be inferred separately.

To illustrate how the approach might work, we provide a simple example in the guise of the 
m otivating palaeoclim ate problem. Given the (notional) plant species “grassy”, “shrub” and 

“tree”, we observe pollen counts Y  = { y i , y 2 , ys},  which are constrained to sum to  a to ta l N.  
A  simple graph of the d a ta  is presented in Figure 5.6

Grassy TreeShrub

F ig u re  5.6 : A simple example of some M ultinom ial pollen counts where there are 3 pollen 
categories, grassy, shrub and tree.

T he sum to ta l N  is explicitly known, thus the d a ta  at the lowest level may be considered as 

a set of M ultinom ial responses. As we observed in Section 5.3.3, the use of likelihood models 

for M ultinom ial response d a ta  which do not take in account the sum constraint can lead to 

erroneous inferences at the inverse stage. The d a ta  must be trea ted  as a set of constrained 

observations and unknown param eters in the jo in t model inferred jointly.

In the following we let {pi ,P2 ,P3 } denote the probability th a t an observed pollen count 

is from a tree species, a shrub species or a grass species respectively. { y i , y 2 ,V3 } are the 
corresponding, observed pollen counts. The M ultinom ial likelihood, neglecting constants, may 

be w ritten  as follows:
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TT{y \ p)  (X p f p f p f (5 .36)

If we consider that the responses can be ordered sequentially, then nesting structures pro­
vide an avenue for decomposing the Multinomial likelihood. For example, say we consider 
that pollen from trees and shrub species are somewhat related given that both comes from 
“woody’ type plants; we group these two plant types into a subset which we entitle “woody”. 
As a result the joint problem in Figure 5.6 decomposes into a sequence of two independent 
problems in Figure 5.7. We first decide whether a grassy or woody type pollen spectra has 
been observed. If woody pollen is observed, we are then interested in the category, tree or 
shrub, into which the observed response falls. The important point to note is that, given the 
known total for woody, the observed counts for tree and shrub are conditionally independent 
of the corresponding count for grassy.

Grassy Woody

Shrub Tree

Figure 5.7: A simple, sequential ordering of the pollen data.

Let (pi +P 2 ) represent the probability that an observed count is from a woody type species. 
To observe the effect that this se<}uential structure has on the likelihood, we multiply and divide 

through Equation 5.36 by {pi + P 2 )̂ ~̂*'̂ -̂

=  ( - ^ T  (5-38)VP1 + P 2 /  VP1 + P 2 /

We reparameterize as follows; let q\ =  (pi +  P2 ) denote the probability that an observed
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count is woody and q2 = {p\ +  P2 ) denote the conditional probabilitj' of observing a tree 

pollen count given th a t a woody type pollen count has been observed. Equation 5.38 may be 
rew ritten as:

7r(y|p) a  q'f (1 “  “  92)*'̂  (5 .39)

T he decomposed likelihood in Equation 5.38 may be recognised as the product of the 
likelihood kernels for two independent Binomial likelihoods. The first com ponent, involving 

q\, represents the probability of observing a woody pollen count with (1 — q\) representing 
the  probability of observing a grassy type pollen count. The second com ponent, involving 52, 

represents the probability of observing a tree species pollen count conditional on a woody type 

pollen count being observed.

T he M ultinom ial likelihood in Equation 5.36 is thus rew ritten  as the product of independent 
Binomial likelihoods; the param eters of the separate Binomial likelihoods are not shared. 
Through the use of a logit transform , the constrained probabilities in Equation 5.38 can be 

linked to  the unconstrained latent field X . If no interaction is assum ed between the individual 
com ponents (response surfaces) of X ,  the m ultivariate joint model involving the  M ultinomial 
likelihood splits into the product of independent univariate models; inference on the unknown 

param eters corresponding to  each model can thus be made separately, greatly simplifying the 

inference task.

5.4 .2  C hoice o f  N ested  C om parisons

An obvious point th a t was overlooked in the previous section is th a t a clear hierarchical 
s tructu re  existed in the simple example. In the absence of a clear hierarchical structure, the 

com plete set of possible nested comparisons include contrasting;

{Grassy} versus {Tree, Shrub}

{Tree} versus {Grassy, Shrub}

{Shrub} versus {Tree, Grassy}

T he first of these is presented in Figure 5.7 with the la tte r two presented in Figure 5.8. 

All decompositions of the likelihood will yield the correct jo in t likelihood. However, as noted 

by Rodriguez (2007), any choice of nesting contrasts can be selected for m odelhng, though only 

orthogonal com parisons will lead to a factorisation of the model likelihood into the product 

of independent parts. The authors use the interesting phrase th a t “the choice of comparisons
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should be based on the logic of the situation”.

Grassy

Other

Shrub

Tree

(a)

GrassyTree

OtherShrub

(b)

F ig u re  5.8: The two alternative nesting structures to the one presented in Figure 5.7.

As all decompositions will lead to the correct Multinomial likelihood, we can see tha t there 
is no one “unique” decomposition of the model likelihood. However, only the “true” nesting 
structure will lead to a statistically efficient decomposition of the model.

This is explained as follows; say the pollen of tree species and shrub species is fully cor­
related with a value of —1 and both are uncorrelated with the pollen count for the grassy 
species conditional on their sum. If a model decomposition such as that in Figure 5.8 (a) is 
chosen, the shrub and tree pollen counts will not be independent conditional on the sum of 
the grassy and shrub pollen counts. As a result, in making inference on the parameters of
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the independent model components, there will be residual uncaptured dependence structure 
in the data, resulting in spurious correlations being inferred between model components, a^ 
per Aitchison (1986).

In the following section we will observe how this dependence structure manifests itself as a 
deterioration in predictive power at the inverse stage.

5 .4 .3  C hoosing  th e  “B e st” N estin g  S tru ctu re

A number of questions arise with regard to the use of nesting structures to decompose joint 
models where the likelihood is Multinomial. Firstly, how sensitive are the predictions at 
the inverse stage to the nesting structure chosen? Secondly, if the predictions at the inverse 
stage are sensitive to the nesting structure chosen, is it possible to infer the “best” or most 
appropriate nesting structure?

Simulated toy data, where the true nesting structure for the generated data  is known, 
provides the easiest way to answer the posed questions. In order to investigate the statistical 
efficiency of the different nested comparisons introduced in the previous section, we simulate 
data from the model corresponding to the nesting structure presented in Figure 5.7 as follows:

At 200 random locations on a grid of length 100, Binomial counts { Y g , Y w ) are generated 
with probability { P g , P \ v },  with the sum constraint N  = 1000. The probabilities are ob­
tained, given the known spatial location, by a logit transform of a latent smooth overdispersed 
Gaussian field W  = X  + U. The overdispersion of the underlying latent field is set as <7̂  =  1, 
i.e. each Ui E U ^  A''(0,1). These simulated observations constitute the counts at the first 
level of the model hierarchy, i.e. the simulated data represents counts of “woody or grassy” 
pollen.

At the second level, given the counts Yw,  a further set of Binomial counts (Yt ,Y s ) are 
generated in a similar manner (i.e. are also overdispersed Binomial counts conditional on an 
underlying overdispersed smooth latent surface). The simulated data at this level represent 
counts of “tree or shrub” pollen, conditional on the presence of woody type pollen at the upper 
nest level.

The data generating procedure may be presented as follows:

{Yg ,Yw } ~  Binomial(1000, {Pgi-Piv}) (5.40)

~  Binomial(yiy, { ^ ,  ^ } )  (5.41)
Fw r w

The probabilities at each level in the model hierarchy are constrained to sum to one. A
further point to note is that, in the absence of the known nesting structure, at the lowest
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level, Yi,Y 2 ,Y 3  ~  Multinomial(PG, P t ,  ^s)- Thus at the lowest level the simulated counts 
simply represent a set of overdispersed Multinomial count observations. As the joint model 
decomposes into the product of independent univariate models given the choice of nesting 
structure, inference on the latent parameters for each univariate model can be completed 
independently of the other.

For each set of simulated data, generated using the process outlined in Equation 5.40 - 
5.41, the model parameters corresponding to each of the three nesting structures detailed 
in Figure 5.7 and Figure 5.8 are inferred. The calibrated models are then used to calculate 
the leave-one-out cross validation prediction accuracy for each nesting approach as well as a 
number of model fit measures. This process is completed a large number of times (100) in 
order to build up a profile of the predictive accuracy of the inferred models for each choice of 
nested comparisons.

We observe that the leave-one-out cross validation metric for the nesting structure (A) used 
to generate the data has an average error rate of 5%. Specifically, the number of observations 
which fall outside the 95% HPD region for location given data is approximately 5% given the 
inferred model parameters. Conversely, the corresponding statistics for the alternative nesting 
structures B ^  C have average error (A) statistics of approximately 7% and 8% respectively.

d H ierarchical S tru c tu re  A 
H ierarch ical S tru c tu re  B 
H ierarch ical S tru c tu re  C
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Figure 5.9; Prcxlic t̂ion accuracy of the three different nesting structures. The model with 
the correct nesting structure (A) is shown to have the best predictive performance in terms of 
leave-one-out cross-validation prediction accuracy

Thus we may conclude that the use of nesting structures other than the “true” nesting struc­
ture do not provide a disjoint decomposition of the full joint model - the existence of residual
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uncaptured dependence structure can be observed by the deterioration in prediction accuracy 
at the inverse stage of models which use nesting structures which do not fully decompose the 
model likelihood.

Model criticism tools provide a method of evaluating various aspects of the approach. In 
Figure 5.10, we observe that the absolute (distance) of the mode of the prediction produced, to 
the correct location is smallest for the approach involving the correct hierarchical structure A, 
than for the alternative nesting structures. Secondly, we observe that the posteriors on location 
for the correct hierarchical structure are on average slightly more conservative than those 
of the alternative, erroneous nesting structures. These have residual, spurious dependence 
structure left in the model, thus impairing their predictive accuracy at the inverse stage - if 
residual dependence is not modelled at the forward stage, this manifests itself in posterior 
predictive distributions on climate which are ‘narrower’ than the correct posterior predictive 
distributions.
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Figure 5.10: Plots of distance to the mode and expected distance to the mode for each of 
the three nesting structures. The true model {A) is shown to have the largest M S E P ,  on 
average, of the three models considered.

The method provided here for locating the “best” hierarchical is based on the analysis 
of inverse predictive power. For all possible combination of the observed taxa, the inverse 
predictive ability of each nesting decomposition can be compared to obtain the model with 
the best predictive power. This is analogous to the approach of Marden (1992), who studied the 
use of nesting orthogonal contrasts to analyze some rank data with the ultimate goal of finding 
the set of orthogonal contrasts which best captured the main features of the data. However, as
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the num ber of observed groups increases, the num ber of perm utations which we m ust evaluate 

in order to  identify the most appropriate nesting structu re  increases exponentially. We address 

this issue in C hapter 7, detailing how expert opinion can be availed of to  “narrow” the num ber 

of perm utations to  be considered.

5.5 Addressing Zero/N-inflation of the Multinomial Response

In practice, the m ultivariate com positional d a ta  sets th a t we wish to  model cannot be ade­
quately modelled using standard  statistical families such as the M ultinom ial. For example, 

as m entioned in Section 3.5.2, a common feature of ecological d a ta  sets, such as the RSIO 
datase t, is their tendency to  contain many zero counts - if sta tistica l models are used which do 

not account for a possible excess in the num ber of zeros, inferences derived from the d a ta  are 
likely to  be erroneous. Ridout et al. (1998) note th a t the erroneous natu re  of these inferences 

is predictable; the use of standard  Poisson models for d a ta  th a t contain an excess of zeros will 
lead to  an underestim ation in the ra te  param eter of the Poisson model as well as posteriors 

on model param eters which are not sufficiently conservative.

T he additional zeros may be modelled through the use of zero-modified d istributions (see 
Section 3.5.2). In a zero-modified distribution, as per Hall (2000), the observed d a ta  are 
assum ed to  arise from one of two distinct states, a zero sta te  from which only zero coimts 

are observed and an alternative sta te  from which all of the non-zero covmts and a few of the 
zero counts are observed - the alternative sta te  can be modelled through the  use of standard  
statistica l families such as the Poisson or the Binomial. However, it transpires th a t the use of 

such zero-modified distributions, in the context of d a ta  which is subject to  sum constraints, 
can lead to  inconsistent param eter estim ates. In the following, we discuss this issue in further 

detail and propose a solution to  this problem.

5.5 .1  S ta tistica l In con sisten cy  o f Z ero-Inflated  M odels for B in om ia l D ata

In Scction 3.5.2, we introduced the conccpt of zero-modified d istributions for the modelling of 

zero-inflated count data. To recap, a standard  zero-inflated model in the context of Binomial 

count outcomes may be presented as:

=  J (1 -  9) +  9 X Binomial(0,7V,p) y = 0 
O ' X  Binomial(y, A'^j P )  2 / > 0

Thus, w ith probability q, an observed zero coimt arises from a Binomial d istribu tion  with 

param eters N  and p. A lternatively, with probability (1 — q), the observed count arises from a 

d istribution with a point mass at zero. However, the zero-modified Binomial d istribu tion  is not
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symmetric. Consider tiic following example; say we have observed the pair of Binomial counts 
(yi>y2 ) which are constrained to sum to the total N.  Inferences regarding p, derived from the 
model in Equation 5.42, are dependent on whether we designate yi or y 2  as the response. To see 
this, consider the setting where y\ = 0 and thus z/2 =  - if 2/i is designated as the response, the
probability of observing this pair of observations is 7r(yi, Â ) =  {l — q)+q{ l —p)^ .  Conversely, if 
y 2  is designated as the response, the corresponding probabihty is 7t(j/2i N)  = q{l —p)^ .  These 
probabilities are not equal - as a result, the use of such a model will lead to inconsistency in 
statistical inferences.

To illustrate the impact tha t the choice of response has on param eter estimation, we create 
the following simple example. Given a smooth response surface P,  defined on a regularly 
spaced grid of length 100, 500 pairs of coimt outcomes {yu, y 2 i) are generated from the zero- 
inflated Binomial model in Equation 5.42 with q = p", a = .3. In total, 46 of the 500 Yi counts 
are zero whereas none of the Y2  counts are zero. The generated counts for Yi are presented 
in Figure 5.11 (a). Model parameters are estimated under two scenarios; (1) Y\ is regarded as 
the response and (2) ¥ 2  is regarded as the response. The expected value of P  obtained using 
both approaches is plotted in Figure 5.11 (b).
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Figure 5.11: (a) Simulated zero-inflated Binomial counts data, (b) The response surface P,  
estimated both using ¥\  as the response and subsequently ¥ 2 . Statistical inconsistency can be 
observed in the results obtained.

If ¥ 2  is modelled as the response the zero-inflation param eter must be zero as there are 
no zero observations observed for ¥ 2 ', the approach thus decomposes to a simple Binomial 
model which cannot handle the excess variability in the counts due to the extra N’s in ¥ 2 ;
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these correspond to the zeros of Y \ . Conversely, the model param eters estim ated when Fi is 

designated as the response are approxim ately correct; this is to  be expected as this was the 

m odel from which the d a ta  were generated.

T he statistica l inconsistency in results can be clearly observed. T he mean param eter is 

underestim ated for the zero-inflated model when Y2 is designated as the response; furtherm ore 

model param eter estim ates are not consistent - chosen models for the d a ta  are subject to 

the  problem  th a t  inferences derived from the model are dependent upon the counts which we 

choose to  analyse. We refer to  this problem  as “N-inflation” of the  counts d a ta  - in a Binomial 

model, zero-infiation of one set of counts will lead to  N-inflation in the  other.

In the following section we introduce a simple extension to  the  likelihood model introduced 

above which corrects for this problem. The identification of the statis tica l inconsistency of 

existing zero-inflation models and the development of a solution to  this problem  is regarded 

as a novel contribution in this thesis.

5.5.2 S en sit iv ity  to  Z ero /N -In fla t ion

An extension of the standard  zero-inflated Binomial model to  model N-inflation is:

n{y) =  <
(1 - 91)5 2 -1- qiq2 X Binomial(0, N , p )  y = 0
9i ( l  “  9 2 )  + X  Binomial(A^, A ,̂p )  V =  N  (5.43)
qiq2 X Binoniial(y, A ' , p )  0 < y < N

where:

91 = P “ ^92 =  ( 1 - P ) “^

Through the use of a logistic transform ation, the probability can be m ade a function of 

the  underlying spatial field X .  p = ^ i+exp^x))  • “ 2 ^ 0  then it is clear th a t th is model
decomposes into the zero-inflated Binomial model. Thus the zero/N -inflated model has one 

additional param eter, a param eter governing ‘N-inflation’, over the zero-inflated model. The 

constrvicted likelihood is com patible w ith the INLA algorithm .

In Figure 5.12, we observe the difference th a t this likelihood makes in spatial prediction. 

Given a generated count of zero from a zero/N -inflated Binomial w ith known param eters, the 

posterior on spatial location produced by the zero/N -inflated model is more peaked th an  the 

corresponding posterior predictive posterior obtained by a zero-inflated model, reflecting th a t 

there is additional inform ation available from the knowledge th a t if y  is zero then  N  — y is 

non-zero. In the presented example a \  a 2 — -3 and N  = 1000.

In Figure 5.13 we present the striking contrast in predictive d istributions produced by the 

zero /N-inflated and zero-inflated models for a count of N.  Given the zero-inflated model, all
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counts of N  are inferred to arise at the highest points on the response curve - this is due to the 
result that most counts of N  will be generated in this region of space. However, as previously 
mentioned, in the context of Binomial counts data, zero-infiation of one set of counts will lead 
to N-inflation of the paired coimts. Thus the zoro/N-inflated model recognises that the count 
of N  may actually be an artifact of zero-inflation and responds accordingly, resulting in the 
correct predictive distribution which is much less peaked.

In the context of the motivating palaeoclimate reconstruction problem, in Chapter 7 we 
illustrate that failure to explicitly account for the N-inflation present in the RSIO training 
dataset leads to a deterioration in predictive accuracy of the calibrated models at the inverse 
stage. Through explicit modelling of the N-inflation present in the pollen counts, model 
prediction accuracy is shown to be substantially increased. Further discussion on this subject 
is deferred to Chapter 7.

5.6 Conclusions

Multivariate statistical models for highly multivariate observational datasets introduce issues 
of computation and inference at the forward modelling stage. In the presence of dependence 
structure, either in the data  or through model specification, the parameters of the multivariate 
statistical model must be jointly inferred. However, in many cases, such as in the context of 
the motivating palaeoclimate reconstruction problem, joint inference on all model parameters 
is simply infeasible due to the sheer number of parameters requiring inference.

One solution to this problem is to decompose the multivariate joint model into a series 
of separate, independent univariate models, greatly simplifying inference tasks. This decom­
position is based on the assumption of conditional independence of the multivariate model 
components; the multivariate observations are assumed to be conditionally independent given 
the multivariate latent field and the response surfaces which comprise the latent field assumed 
conditionally independent given spatial location. If this decomposition is appropriate, infer­
ences on the parameters of each of the univariate models in isolation will be equivalent to 
those obtained making inferences on the full model jointly.

However, naive use of this decomposition, such as in settings where there are sum-to-total 
constraints on the observational data, will lead to poor inference outcomes at the inverse 
stage. A simulated example was used to demonstrate this result; the modelling of Binomial 
counts data as conditionally independent Poisson observations was shown to result in a model 
with substantially poorer predictive performance, as compared to the correct Binomial model. 
This was due to inverse predictive posteriors on spatial location which were not sufficiently 
conservative, brought about by the Poisson model erroneously treating each pair of Binomial 
counts as two separate, independent pieces of information.

One possible strategy for decomposing a computationally intensive joint model, involving
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F ig u re  5.13: Predictive distributions for the (a) zero/X-inflated and the (b) zero-inflated 
likelihood model for the count value y = N  = 1000. Note the change in density values of the 
y axis - the zcro/N-inflated model recognises that there’s not much information contained in 
the count of N .
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Multinomial response counts, into a series of separate univariate models is to define a hierar­
chy of nested comparisons between subsets of the responses. Essentially, the joint likelihood, 
involving dependent Multinomial counts, may be decomposed into the product of condition­
ally independent, less computationally intensive inference tasks involving separate Binomial 
likelihoods, resulting in computational conveniences at both the forward and inverse stages. 
Though every proposed nesting structure will lead to a full decomposition of the Multinomial 
model likelihood, only the “true” nesting structure will lead to a statistically efficient decom­
position of the joint model. In terms of inverse problems, a simulated example was used to 
demonstrate that the optimal nesting structure for any set of of count observations can be 
identified by fitting all possible nesting structures and identifying the one which best meets 
the model fitting criterion of choice, in this case A, a measure of the inverse predictive perfor­
mance. In situations where the evaluation of all possible nesting structures is too onerous to 
consider, the use of expert opinion can be used to narrow the number of possible permutations 
of taxa.

Finally, statistical models for Binomial counts data, which do not simultaneously account 
for an overabundance of zeros in each of the pair of Binomial counts, are subject to inconsis­
tency in parameter estimates - the over-abundance of zeros for one taxa results in X-inflation 
of the counts corresponding to the other. A parsimonious modelling solution to this problem 
is developed, and a simple example is used to demonstrate the impact of the use of the incon­
sistent likelihood model in the setting where N-inflation is present in the data. The resulting 
inverse inferences were shown to be highly erroneous.
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Chapter 6

Spatial Prior Models and 
Computationally Efficient Inverse 
Inference

The novel contributions in this chapter relate to computationally efficient inference at both the 
forward and inverse stages of spatial calibration problems. We outline a method of obtaining 
approximately correct precision structures for intrinsic GMRF models on irregularly shaped 
spatial domains, resulting in vast computational savings at the forward stage. An additional 
contribution is the development of a sampling ba.sed algorithm for computationally efficient 
inference at the inverse stage. We detail how the algorithm facilitates the ‘integration out” of 
hyperparameter uncertainty at no extra computational cost, as compared to empirical Bayes 
based methods and substantially reduces the time and computational cost of prediction at the 
inverse stage.

This chapter is organized as follows; in Section 6.1 we explore the effect of ignoring influ­
ential model covariates in spatial prior models at the forward stage, on the accuracy of the 
predictions produced at the inverse stage. We illustrate tha t if the constructed models do not 
include all spatial covariates upon which the response depends, inferences at the inverse stage 
will be erroneous.

In Section 6.2 we discuss spatial prior models for the forward stage of univariate inv^erse 
inference problems. We discuss models for discrete spatial variation, examine the use of 
random walks as spatial priors and detail their implementation in several spatial dimensions. 
Additionally, we detail a method of obtaining approximately correct precision matrices for 
intrinsic GMRF models on irregularly shaped spatial domains.

In Section 6.3 we propose an algorithm for computationally efficient inference at the inverse 
stage. The discretization of space involves the specification of a finite collection of random
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variables, a t each of which the posterior predictive regions must be evaluated in order to  obtain 

normalising constants. We detail a sampling algorithm  which helps to  efficiently in tegrate out 

hyperparam eter uncertainty in inverse problems.

6.1 Spatial Covariates

In a typical spatial regression problem, interest generally lies in m aking inferences on the 

latent, unobserved spatial response surface, X ,  which describes the relationship between some 

recorded spatial covariates, C  and the observed response Y . In this chapter we focus on the 

setting  where the response is univariate, i.e. we have an observational datase t Y  consisting of 

the n  univariate observations {yi, ■ ■ ■ ,yn)-

However, whilst Y  and spatially referenced X  are taken as univariate in the following, 

the spatial variables C  will remain highly multivariate. For example, in a regression problem 
such as the spatial distribution of iron ore at various locations in a mine, the d a ta  set may 

contain inform ation on a num ber of spatially referenced variables such as longitude, la titude 

and depth. In this setting C  = (C i, C 2 , C 3 ) where each row Ci £ C  describes a location in three 

dimensional space and the observed response, namely the quantity  of iron ore at a particular 
location in the mine, is a function of each of these three spatial variables jointly. Thus, the 
failure to  construct models which include all three variables will lead to misleading inferences 

being derived from fitted models at bo th  the forward and inverse stages.

In the context of the m otivating palaeoclim ate application, Himtley (2001) alludes to this 
problem, citing an earlier study by Conolly & Dahl (1970), where inappropriate clim ate vari­

ables were used to  model the pollen response to  clim ate of a particu lar plant species, Rubus 
chamaemorus. Specifically, the authors concluded th a t the spatial d istribution of th is partic­

ular plant was highly correlated with the  m aximum sum m er tem peratu re  of a given region; 

subsequent studies revealed the spurious natu re  of this statem ent, concluding th a t o ther vari­

ables such as the tem perature of winter m onths and in particular, the variability in m oisture 

available for plant respiration, were far more im portan t in determ ining the species range. 

The strong, spurious correlation between the species range and extrem e sum m er tem pera­

tu re  deduced by the authors, was in fact a  m anifestation of the correlation between extrem e 

sum m er tem perature and winter tem perature, a variable which had been om itted  in model 
construction.

In this thesis our prim ary interest is in inverse inference. C alibrated models themselves 

are not of intrinsic interest, our interest lies instead in making inferences on the underlying, 
unobserved spatial covariates corresponding to  new d a ta  for which such inform ation is un­

known. W ith this is mind, in the following section we illustra te  the im pact of the  omission 

of im portan t spatial variables during model construction on the inferences derived using the 

calibrated model a t the inverse stage.
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6.1 .1  T he Im pact o f  Spatial C ovariate O m ission

If models for the observed data are constructed which do not inchide the relevant spatial 
variables used to generate the response, inferences derived from the model will be erroneous.

To illustrate this point, we construct a simple toy example as follows; a single Gaussian 
distributed datum  is generated at a single location in two dimensional space ( c " ), 
given a smooth latent response surface X  and known model parameters, i.e.

~  7V(X(c?"'", c f " ) ,  1) (6.1)

Here C = (Ci,C '2 ); the two dimensional surface X { C \ , C 2 ), presented on a 50 x 50 grid, 
is plotted in Figure 6.1 (a), with the corresponding one dimensional (marginalised) projec­
tions (X i(C i) and X 2 {C2 )) of the surface also displayed (Figure 6.1 (b) and Figure 6.1 (c) 
respectively). As X { C \ , C 2 ) is defined on a regular 50 x 50 grid, X\{C\ )  and X 2 {C2 ) are easily 
obtained by marginalising over X(C'i,C'2 )in the C\  and C2 directions.

The generated value of j/”®* is dependent on a smooth function of both C\ and C2 due 
to the data generating mechanism. Hence, the use of models which do not account for this 
spatial interaction will lead to erroneous inferences at the inverse stage. In Figure 6.2 (a 
- c) this result is observed; the posterior predictive distribution, 7rjoint(ci®' ,̂ (=
I x  (c?®' ,̂ C2 ®'̂ , X |2/"®'^)dX) is presented along with its marginalised posteriors (7rjoint(c]'®' |̂y"®' )̂ 
& 7''joint(c2®*|y"®™)) and compared to the corresponding uni-dimensional predictive posteri­
ors 7Tind(c2®'̂ |y"®'̂ ) and 7rind(c2®' |̂y"®' )̂. These are marginally obtained as 7rind(cf®' |̂y"®") =  
f x  where i = 1,2 - the dependence of X  on both Ci  and C2 is ignored and
the uni-dimensional smooths (Figure 6.1 (b - c)) are used to provide reconstructions for each 
spatial dimension separately.

We observe spurious multimodality and mislocation of the posterior produced for C2 ®" using 
the model which does not account for the spatial interaction of X  over Ci  and C2 . The highest 
values of posterior probability mass are spuriously placed at the edges of location space. In 
contrast, given the (correct) joint model, the highest values of the posterior probability mass 
are centred on approximately the correct spatial locations. This, being the model from which 

generated gives the correct predictive distribution.

This simple toy example provides the following conclusion; if models for the data are 
constructed which do not include all spatial covariates upon which the data  depend, erroneous 
inferences are produced at the inverse stage. In Chapter 7, in the context of the palacoclimate 
reconstruction problem, we illustrate that failure to incorporate all influential climate variables 
into the forward models results in a deterioration in prediction accuracy and mislocation of 
climate posteriors at the inverse stage.
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F ig u re  6 .1: (a) Simulated two dimensional spatial surface X (C i,C 2), defined on a 50 x 50 
grid, (b) & (c) represent the respective unidimensional marginals of the two dimensional 
surface {X\ {C\ )  and X2{C2)) with interaction of X  over the spatial covariates marginalised 
out.
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F ig u re  6.2: (a) Posterior distribution on spatial location 7t((cj®'̂ , given the
simulated count =  3, in two dimensional space, evaluated using the joint model. In (b) 
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from which the count was generated is represented by the black dot (•).
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6.2 Spatial Prior M odels

In the preceding section, we used the known response surfaces at the forward stage to examine 
the effect of the omission (from models) of important spatial covariates on the inferences 
produced at the inverse stage. In this particular section we relax the assumption of known 
model parameters and focus on spatial prior models for the latent response surface X.

As previously mentioned in Section 3.4 , the use of multivariate Gaussian random field 
priors for X  is very common in point referenced spatial regression problems. X  is defined as a 
multivariate Gaussian process with mean vector // and n x n  covariance m atrix S(^), where the 
individual elements in S(0) describe the spatial covariance between each of the latent Xi. The 
degree of covariance between the x* is governed by both the underlying model hyperparameters 
0 (which parameterise S(0)) and the “distance” between spatial locations Ci £ C.

However, in using Gaussian random field models, the dimension of the covariance matrix is 
directly related to the number of recorded observations; as the dimensionality of the dataset 
under consideration increases, such prior specifications can quickly become too computation­
ally intensive to consider. This is due to the necessity of inverting large dense n x n  covariance 
matrices S in order to evaluate probability densities, where n is the number of unique spa­
tial locations at which data  is observed. Lindgren et al. (2011) provide a brief discussion on 
several approaches which try to address or avoid this issue - one such method involves the 
discretization of space and the harnessing of computationally efficient models for discrete or 
lattice based data.

6.2.1 D iscrete A pproxim ations to  Continuous Spatial Fields

In situations where the training dataset is large, the use of spatial models based on Gaussian 
random fields may not be feasible. An example of one such dataset is the RSIO dataset 
considered in this thesis: there are 7742 distinct observations for each separate plant taxon. 
The use of spatial models based on Gaussian random fields involves the manipulation of 
extremely dense covariance matrices of dimension 7742 x 7742. For even the simplest models, 
the computational cost of the approach is prohibitive.

One solution to this problem is to discretize the spatial region vmder consideration. The 
main benefit is computational; the discretization of the spatial region facilitates access to Gaus­
sian Markov random field models for X . As previously mentioned, GMRFs are parameterized 
by a mean jj, and a precision (inverse covariance) m atrix Q which describes neighbourhood 
structure; due to the Markov properties of GMRFs, Q is sparse and thus the use of numerical 
algorithms for operations on sparse matrices facilitates fast computing time.

However, the dimension of the spatial region under consideration can have a large impact 
on the computational efficiency of Gaussian Markov random field models; the computational
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benefits of the approach reduce with each additional spatial dimension considered. Rue & 
Martino (2006) note that the computational effort involved with manipulating Q matrices 
is dependent on the size of the matrix and the neighbourhood structure. For example, for 
a two dimensional GMRF defined on a square lattice of size m  x m, the cost of factorising 
Q is where n = (Lindgren et al. 2011). For a GMRF defined in three spatial
dimensions, such as on the unit cube, the equivalent factorisations have a computational cost 
of 0(n^/^) where n =  (Rue & Martino 2006). The reason for this is tha t Q is much less 
sparse in three spatial dimensions than two; the number of non-zero terms in Q induced by 
the local neighbourhood structure goes from O{nlog{n)) in two spatial dimensions to 
in three.

A further issue with the discretization of space is that the number of latent parameters 
requiring inference increases as a function of the spatial region being discretized, i.e. ap­
proximating space by a square lattice of length m  results in latent parameters (the 
node points) which must be inferred. Approximating space by a square lattice in three 
dimensions results in latent parameters. This power law increase in the number of latent 
parameters is known as the curse of dimensionality (Bishop 2006) and is illustrated graphically 
in Figure 6.3.

C1

(a) £> =  1

o

Cl

(b) D = 2 (c) D =  3

F ig u re  6.3: Illustration of the curse of dimensionality; the number of points required to 
discretize a regular space grows exponentially with the dimensionality D of the space.

Due to this curse of dimensionality, approaches based on the discretization of space are 
essentially constrained to consider at most three spatial dimensions, depending on the reso­
lution of the discretization. Though the number of latent parameters may ultimately end up 
being significantly greater than the number of observations, the computational benefits of the 
sparse nature of the precision matrices involved in GMRF models mean tha t the approach 
is preferable in situations where the observational dataset is large. In the following we make 
extensive use of illustrative examples involving spaces of one or two dimensions as operating 
in this space makes it relatively easy to illustrate introduced concepts graphically.
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6.2.2 Random  W alk Prior M odels in

In Section 3.4.1, we introduced intrinsic GMRFs and noted their extensive use as a prior 

on the smoothness of the latent surfaces in spatial regression models. To briefly recap, the 

structure of the precision matrix Q of an intrinsic GMRF of order one on the line can be easily 

constructed from first principles using a simple random walk. The higher the order of the 

intrinsic GMRF, the smoother the resulting curves produced will be; Lindgren & Rue (2008) 
discuss intrinsic GMRFs of order two on the line and note their use for smoothing data and 

modelling response functions. The probability density of an intrinsic GMRF of order 2 on the 

line is of multivariate Gaussian form:

n{ X)  oc K 2 exp( — (6-2)

The structure for the precision matrix corresponding to a first order IGMRF on the line 

is obtained by conditioning on the j)airwise forward differences, i.e. A (x) =  Xi+\ -  Xj ~  

A'’(0, Intuitively, the structure of Q corresponding to an IGMRF of order two is obtained 
by (x)nditioning on the second order differenc^js, i.e. A^(x) ~  7V(0, This increases the
number of neighbours upon which X{ G X  is dependent. Q is equal to kR,  where k is a strictly 
j)ositive parameter governing the smoothness of the spatial process and R i s  a, structure matrix 

which describes neighbourhood structure:

Q =

1 - 2 1
- 2 5 - 4 1
1 - 4 6 - 4 1

1 - 4 6 - 4  1

1 - 4 5 - 2
1 - 2  1

(6.3)

The rank of this matrix is n -  2, see Rue & Held (2005, page 110), for a formal derivation 
of how this structure is formed. Though it is quite simple to derive the precision structure in 

the one dimensional setting, this is not always the case - deriving the structures of precision 
matrices for spatial processes defined in several spatial dimensions is much less straightforward, 

as we will observe in the following sections.
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A pproxim ations to  P recision  Structures

The precision structure of a higher order IGMRF may also be obtained by convolving the 
structure matrix of a lower order IGMRF with itself, i.e. w x R^^\ From herein, we 
label precision matrices obtained by this method with an asterix (*). As we will observe in 
the following this approach provides an approximation to the correct precision structure. The 
resulting precision matrix, Q*, is of the form:

Q * =

to
CO1 1

1 CO 6 - 4 1
1 - 4 6 - 4 1

1 - 4 6 - 4
1 - 4 6

1

C
O1

(6.4)

By comparing Q* in Equation 6.3 with Q in Equation 6.4, we observe that the precision 
m atrix produced by convolution methods has the correct neighbourhood structure in the 
interior of the matrix but incorrect structure at the boundaries. Furthermore Q* has incorrect 
rank - the rank of Q* is n — 1 whereas the (correct) rank of Q is n — 2. In this simple 
setting the correct second order neighbourhood structure is quite easy to obtain and thus 
obtaining approximate precision structures by the convolution method seems an unnecessary 
approximation. However, as we will observe in the following sections, this approach provides 
a simple method of cheaply obtaining the approximately correct neighbourhood structure of 
precision matrices for processes defined in several spatial dimensions.

In the following, we investigate the effect that this misspecification of the neighbourhood 
structure at the boundaries has on the posterior response surfaces produced when using such 
methods.

B oundary Effects

In order to investigate the effect that misspecification of the neighbourhood structure in the 
prior precision matrix has on the resulting posteriors that are produced, we consider the follow­
ing toy example; a single smooth surface X  is used to generate random Gaussian observations 
at each of 100 discrete locations, C =  ( c i , . . . ,  cioo), on a regular line. Here, the spatial surface 
is of the form:
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X{c)  =  .04c +  3sin(.01c7r) (6.5)

A G aussian model is assum ed for Y ,  i.e. each yj is generated random ly from N{ X{ c i ) ,  1). 

The generated data , along with X  is presented in Figure 6.4.
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F ig u re  6 .4 : Sim ulated Gaussian response data , generated using a sm ooth spatial response 
surface (pictured).

In the following we assume th a t the natu re  (shape) of the response surface is not known, 
b u t is to  be inferred from the observed data . A simple model for the d a ta  is:

yi =  X{ c i ) +e i  (6.6)

X  ~  G M R F { Q ^ )  (6.7)

e* ~  iV (0 ,a2) (6.8)

The prior model for X  is an intrinsic G M RF of order 2. In the following we com pare and 

contrast the  posteriors which result from models for X  which utilise (a) the  correct precision 

m atrix  Q  and (b) the precision m atrix  Q*, obtained using convolution m ethods. In order 

to  com pare like w ith like, model liyperparam eters are fixed a priori, specihcally = 1 and 

K =  300. As bo th  the likelihood and the prior are of m ultivariate G aussian form, the posterior 

for AT is of known d istributional form; 7r(AT|F) ~  M V N { { Q y  + Qx)~^QyY, {Qy  + Qx)~^)  where 
Qy  is a diagonal m atrix  consisting of values of cr“  ̂ along the diagonal and zeroes elsewhere.
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Intuitivelj^, the use of a precision m atrix  w ith incorrect neighbourhood s tructu re  at the 

boundary will result in error in posterior X  at the boundary. In Figure 6.5(b) we plot the 

diagonal of the posterior variance m atrix  V = [Qy +  Qx)~^  obtained where is equal to  

Q and Q* respectively. We observe th a t the posterior variances produced w ith Q* as the 

prior precision m atrix  results in an underestim ation of the posterior variances as com pared to  

the correct posterior variances obtained using Q. Furtherm ore, in Figure 6.5(a) we observe 

th a t the posterior mean of X  is erroneous at the boundary and the 95% HPD regions are too 

“tigh t”.
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F ig u re  6.5: Comparison of the (a) posterior response surfaces and (b) posterior variances 
produced using spatial prior models with Q and Q* as the prior precision m atrices. The 
precision stric tu re of Q* at the  boundary is incorrect and is reflected in erroneous estim ation 
of the posterior m ean and variance at boundary regions.

However, we also note th a t the correct posterior means and variances of X  are obtained 

in the interior of the spatial region. This m otivates the following proposal; the spatial region 

under consideration, “the  region of interest”, is extended to  incorporate a buffer region on 

either side. This results in an increase in the size of X  due to  the  buffer region and the 

similarly extended prior precision m atrix  Q* will still have incorrect neighbourhood structure, 

liowever, the buffer region is constructed to  be large enough th a t there is no boundary effect 

in the region of interest.

This idea is analogous to  a proposal by Besag & Higdon (1999), who account for “edge 

effects” in the precision structu re of random  walk on the lattice by extending the region of 

interest w ith “additional layers”. The authors note th a t the s tructu re  of the precision m atrix
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is correct in the interior and converges quickly to the correct values on its boundary as the 
number of layers increases. Kneib (2006) refers to this approach “as a restriction of the infinite 
lattice to the finite case without correcting for the boundaries”.

In Figure 6.6 we observe the improvement in the posterior inferences for X  as a result of 
the incorporation of a buffer region. The discretized space of length 100 is extended to include 
an additional 10 gridpoints on each side. Q* is thus of dimension 120 x 120. In Figure 6.6 (b) 
we observe that the underestimation in the posterior variances at the boundaries of the region 
of interest has been corrected. Additionally, we observe that the posterior mean of X  and 
the corresponding 95% HPD regions essentially overlap with those of the correct approach. 
In general, the greater the buffer region used, the lesser the resulting error in the posterior 
response will be, as per Besag & Higdon (1999).

—  Hx ( Q )
95%  H P D  

H x (Q * )
95 %  H P D

-  -  R e g io n  o f  in te r e s t  
X B uffer reg io n
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  Vx(Q)
Vx(Q-)

  R e g io n  o f  in te r e st
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V J
~ \ I
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I I

4 0  6 0

lo ca tio n

(a) (b)

F ig u re  6.6: Comparison of the (a) posterior response surfaces and (b) the posterior variances 
produced using spatial prior models with Q and Q* as the prior precision matrices. W ith the 
incorporation of a buffer region, the posterior for X  is approximately correct in the region of 
interest.

The discussion thus far has revealed a modelling/computational strategy that seems to pro­
duce a good way of obtaining approximately correct precision structures for Q. The precision 
structure of a first order random walk for a regularly spaced lattice in any spatial dimension 
is easy to define, being a simple function of its nearest neighbours - if the region of interest is 
extended to incorporate a buffer region, the precision structure of higher order random walks 
can be obtained by convolution methods, which will have the correct precision structure in 
the interior. Whilst the extension of the region of interest increases the number of latent
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parameters that must be inferred in the uni-dimensional setting, this approach can result in 
vast computational savings in the context of irregularly spaced regions of interest in higher 
spatial dimensions.

6.2.3 Random  Walk Prior M odels in Several Spatial Dim ensions

In practice, the spatial regression problems we consider in this thesis are not confined to single 
spatial dimensions; the observational dataset usually contains information on a number of 
spatial covariates. In the following we discuss the construction of Markovian spatial prior 
models, based on random walks of order two, in both two and three spatial dimensions.

R andom  W alk Prior M odels in

Kneib (2006) discusses the construction of a bivariate random walk on a square lattice of length 
m  in two dimensions, noting the most commonly used neighbourhood structure is based on 
the four nearest neighbours; the dependence structure and coefficients of the precision m atrix 
at the interior in presented in Figure 6.7. Boundary conditions are not a problem in the first 
order setting as the neighbourhood structure for a given node is a simple function of its first 
order neighbours; the resulting Q matrix will have a rank of m? — 1.

o o o o o o o

o o o o o o o

0 0 0 *  0 0 0

o o •  O •  o o

o o o •  o o o

o o o o o o o

o o o o o o o

Figure 6.7: Dependence structure and coefficients of the precision matrix for a first order 
random walk in two spatial dimensions based on the four nearest neighbours.

Since our main requirement in modelling the spatially referenced observations is tha t the 
resulting response surface is smooth, we typically work with bivariate random walks of order 
two. Rue & Held (2005) provide a method for obtaining the precision structure of a random 
walk of order 2 on a lattice, based on an approximation to the biharmonic differential operator:
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dip')  dx^ dx^dy^ ^

where the biharmonic differential operator is a two-dimensional extension of the squared 
second order derivative. Kneib (2006), approximates the derivatives in Equation 6.9 by dif­
ference operators based on the twelve nearest neighbours resulting in a precision matrix with 
non-zero elements defined by:

(^(1,0) + ^(0,1)) “  ('̂ 0 ,0) + '^o,o)'^(o,i) + '̂ (0 ,1)) (6 . 10)

where Ai^o represents the forward difference in direction (1,0) and similarly for A q j . This 
approach yields the precision structure and coefficients in Figure 6.8. As noted by Kneib 
(2006), the neighbourhood structure at the boundaries can be obtained by careful modifi­
cation of the biharmonic differential operator (see Kneib (2006) for details) which must be 
incorporated in the precision structure by hand (Rue & Held 2005).

Figure 6.8: Dependence structure and coefficients of the precision m atrix for a two dimen­
sional second order random walk based on an approximation to the biharmonic differential 
operator.

If continuous two-dimensional space is approximated by a regular lattice, this approach can 
be used to obtain the neighbourhood structure of the precision m atrix of an intrinsic GMRF 
of order two. However, an im portant point to note is tha t this approximation of continuous 
space by a square lattice can be somewhat wasteful if the region of interest is an irregular

118



o

•  R egion of in te res t 
o  Buffer region

o

•  R egion  of in te res t

C, C,

( a )  ( b )

F igure  6.9: (a) Irregularly shaped region of interest for which boundary conditions are
difficult to calculate and (b) the incorporation of a buffer region enables the specification of 
the correct neighbourhood structure at the boundary.

subset of the spatial domain, as for example in Figure 6.9 (a). If the two dimensional space is 
approximated by a lattice of resolution 50 x 50, considerable effort will be expended in making 
inference on latent parameters outside of the region of interest.

A discretization of the continuous space in Figure 6.9 (a) on a square lattice of resolution 
m x m  results in m? latent parameters which comprise the discretized response surface over the 
spatial domain. The reason for working on a square lattice is that corrections to the second 
order neighbourhood structure of the precision matrix at the boundary regions are known 
and the precision matrix with correct rank can be obtained. In contrast, the derivation of 
the correct neighbourhood structure for the irregularly shaped region of interest is onerous in 
the extreme, requiring a large number of careful modifications to the biharmonic differential 
operator.

An alternative to discretizing the continuous space by a two-dimensional regular lattice 
is once more to “constrain the infinite space to the finite space” (Besag & Higdon 1999). A 
convex hull of locations, including an additional buffer region of length 3 in each direction, is 
defined around the “region of interest”, as presented in Figure 6.9 (b). The precision structure 
of a random walk of order one on the irregularly shaped region, incorporating the buffer region, 
can be obtained as a function of its nearest neighbours (see Figure 6.7). An approximation 
to the correct precision structure of Q can then be obtained by convolving the lower order 
precision structure matrix with itself as in Equation 6.4.

In the simple example presented here m =  50; the dimension of Q is 2500 x 2500 as
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compared to 1205 x 1205 for Q*. Q* has the correct precision structure in the region of 
interest and dim{Q*) «  dim{Q),  resulting in a large speeding up of inference tasks at the 
forward stage; regions of space which lie outside the region of interest are “cut out” from the 
spatial analysis. However, an important point to note is that the normalising constant must 
be carefully amended to ensure that the normalising constant of the resulting GMRF prior for 
X  based on Q* is correct. This is obtained as the product of the non-zero eigenvalues of Q*.

R an d om  W alk P rior  M o d els  in

The neighbourhood structure of the second order random walk on a three dimensional lattice is 
intuitively found by extending the biharmonic differential operator to three spatial dimensions:

02 q2

dx^ dy'̂  ^  dz^ )  dx ‘̂ dx ‘̂ dy'̂  dx^dz^ ^  dy'^dz^
a'* ,

As per Altas et al. (2002), the derivatives in Equation 6.11 can be approximated by differ­
ence operators based on the 24 nearest neighbours resulting in a precision matrix with non-zero 
elements defined by.

Q i j  —  ‘

42
- 1 2

2
1

0
4

(6 . 12 )

4 >4
where d?ij is the squared distances between node i and node j  on a 3D discrete grid, 

specifically (Pij =  {i  ̂ — jx)'  ̂+  {iy ~ jy)'  ̂ +  (*z ~  iz)^ where the (x, y, z) subscripts denote the 
location of node i and node j  in each respective space.

The coefficients presented in Equation 6.12 represent the neighbourhood structure at an 
interior point in the region of interest. However, restrictions at the boundary are onerous to 
compute and cumbersome to incorporate. An additional point to note is that discretizations of 
continuous space in will exacerbate the problems introduced in the preceding section; due to 
the curse of dimensionality a regular discretization of to a lattice of dimension m x m x m 
results in latent parameters; if the region of interest is irregular in shape, considerable 
effort will be expended in making inference on latent parameters which lie outside the region 
of interest, greatly slowing inference tasks if not rendering them infeasible.
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A solution to this problem is once more via the convolution method - we define the region 
of interest and add additional layers to form a buffer region around the region of interest in
order to negate edge effects. The neighbourhood structure of the first order random walk on 
the irregularly shaped lattice is obtained by conditioning on the hrst order neighbours. The 
first order precision structure matrix can then be convolved with itself to obtain the precision 
structure of a second order random walk - this matrix will have the correct precision structure 
at the interior and approximations to the correct structure at the boundaries which are far 
from the region of interest. This idea is analogous to the extension of the work of Besag & 
Higdon (1999), which proposes a similar approach in two spatial dimensions, to consider three 
spatial variables concurrently.

This approach results in vast computational savings - in Chapter 7, we detail how this 
method reduces the number of latent parameters in a three dimensional spatial smoothing 
problem from 125000 to approximately 40000. Additionally, the dimension of the precision 
matrices which we must manipulate is reduced accordingly, resulting in inferences procedures 
being speeded up by several orders of magnitude.

6.3 Fast Inverse Prediction Given New  D ata

So far we have given only cursory mention to the inverse stage of the calibration problem. 
Thus, the main objective in the remainder of this chapter is to study features of the inverse 
stage in detail. In particular, we are motivated to explore comf)utationally efficient methods 
of making inference inversely.

To briefly recap, at the inverse stage of a given calibration problem, interest lies in making 
inferences on the unknown spatial location corresponding to a newly observed datum 
given the calibrated model 7t(X,0|y, C). As before, X  represents the smooth latent response 
and 6 the vector of hyperparameters which parameterise the model. For simplicity in notation 
in the following, we omit specific reference to the training dataset (F, C)  and thus n(X,  6\Y, C) 
simplifies to 9). c"®"' and y"®" as also relabeled as c and y respectively.

At the inverse stage we introduce and ‘integrate out” the latent variables (X, 6) in order to 
evaluate 7r(c|?/):

In order to obtain the normalising constant K  in Equation 6.14, the continuous space under 
consideration is discrctized to a finite number, n of spatial locations C = ( c i , . . .  ,c„). K  is

7t ( c , X,e \y )dXde

i:{y\c,X,6)-K{c)T:{X,e)dXde

(6.13)

(6.14)
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then obtained by evaluating the unnormalised posterior at each of the n spatial locations and 
dividing through by the sum of their values to provide a normalised posterior which sums to 
1, i.e.

K  = [  f  n{y\xi,9)n{ci)n{xi\0)n{9)dxid6 (6.15)
i=i

where Xi — X{ci)  is univariate. In this thesis 'K{xi\9) is always of univariate Gaussian form 
and the posterior for 9 is discretized to a regular grid due to the use of the INLA algorithm 
for approximate Bayesian inference on model parameters (see Section 3.3). If the likelihood 
for the newly observed count y is Gaussian, the imnormalised posterior in Equation 6.14 is 
then available analytically by summing over the discretized posterior of 9.

Conversely, if the likelihood for the observed counts is non-Gaussian, the integral in Equa­
tion 6.14 is no longer tractable. The posterior at each grid location must then be evaluated 
by alternative methods; options include the use of sampling based algorithms or numerical 
integration algorithms such as quadrature. In the following we discuss the computational 
drawbacks of numerical integration of the posterior in Equation 6.14 and provide the motiva­
tion for a sampling based solution.

6.3.1 N um erica l E valuation  O f P osteriors

The inverse stage is necessarily computational in nature - in order to obtain the normalising 
constant for 7r(c |y) ,  the unnormalised posterior must be evaluated at each and every spatial 
location on the discretized grid. However, much like the forward stage, the inverse stage 
is subject to the curse of dimensionality. The number of equally spaced points required to 
discretize a d dimensional space in increases as a power law function of d - this can be 
observed in Figure 6.10 below:

In Figure 6.10, for the provided examples, we observe that n{c\y) is significantly non­
zero at only a very small subset of the spatial locations. As a result, in using numerical 
integration algorithms for posterior evaluation, we will expend significant effort evaluating 
posteriors on location which are essentially zero. This problem is exacerbated if uncertainty 
in model hyperparameters is additionally taken into account.

The ‘integration out” of the latent parameters {X,9)  in Equation 6.15 is completed as 
follows; conditional on each value of 9k G tt{9) where tt{9) is represented on a discrete grid, 
Tr{X\9k) ~  GMRF{fi{9k) ,Q{9k))  where •K{X\9k) ~  7t(xi, . . .  ,x„|0fc); n  here is the rmmber of 
discrete grid points. The evaluation of 7r(c|y) at each point q  on the discrete grid requires 
numerically integrating out the corresponding univariate .-r, for each value 9i ^  9\
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Figure 6.10: The number of gridpoints at which the posterior must be evahiated increases 
with each additional spatial dimension considered. In (a) is only significantly
non-zero at 20 of the 100 spatial locations (a continuous line is plotted for the probability 
density). In (b) we present a two-dimensional example where is only significantly
non-zero at a small subsection of locations on a 50 x 50 lattice.

n  Til p« = Y.Y. 7r(y|xj, ek)TT{ci)'K{xi\ek)n{9k\Y)dxi (6.16)
i=i k=i

For a fixed number of quadrature points, the computational cost of this numerical integra­
tion is 0{nm)  where n is the number of discrete locations which comprise the space under 
consideration and m represents the number of discrete points at which n{0) is evaluated. In 
the context of the palaeoclimate reconstruction problem, if model specification rcciuires the use 
of a large numbers of hyperparameters and several spatial dimensions are considered, inference 
procedures at the inverse stage will be slowed tremendously. This problem may be slightly 
alleviated if an empirical Bayes approach is employed and the value(s) of 9 are fixed at their 
posterior mode, reducing the computational cost to 0{n).  However, if posterior uncertainty 
in 6 is significant, the resulting posteriors on spatial location will be erroneous in location or 
spread.

6.3 .2  Sam pling  Schem e for C om pu tation a lly  Efficient Inverse Inference

The use of sampling based inference procedures may provide a solution to the problems raised 
in the preceding section - as opposed to exact numerical evaluation of the posterior at each
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of the n  spatial locations, m  times in a fully Bayesian analysis, sampling algorithms can be 
utilised so tha t samples are only obtained from regions of space where the probability is non­
zero. Therefore, sampling based methods should be more robust with regard to problems such 
the curse of dimensionality and, in particular, the inversion of forward models with numerous 
hyperparam eters.

An MCMC scheme which provides a method for achieving this aim is the Metropolis within 
Gibbs algorithm. The development of a methodology for increasing computational efficiency in 
prediction at the inverse stage of calibration problems, such as the palaeoclimate reconstruction 
problem, is considered a novel contribution in this thesis.

M etropolis W ith in  G ibbs A lgorithm

The target distribution from which we wish to sample, 7r(c|y), is generally intractable. How­
ever, this issue is resolved by augmenting the target distribution with the latent variables (X, 9) 
with the resulting augmented target distribution n { c , X , 6 \ y )  tractable. As 0 only depends on 
(c, y) indirectly, T^{0\X,c, y)  w 7r(0). The full posterior may be rewritten as:

7t(c, X ,  9\y) oc 7t(?/|c, X ,  6) t:{c)'k { X \ c, 0)n{0)  (6.17)

If the conditional distributions T:{c\X,0, y)  and 7r(X |0,c,y) are of known distributional 
form, the required samples can be obtained using a Gibbs sampling step, by sampling from 
each of the full conditional distributions in turn. Denoting X { c )  by x,  the broad outline of 
the Gibbs sampling step is presented as follows:

1. Choose arbitrary starting values 0̂ ^̂  and

2. For i = I , . . . ,  N:

- Sample ~

- Sample ~  y).

- Sample ~  tt{6)

Here each is univariate and represents the climate location sampled at iteration i from 
the set of all c values which comprise the discretized grid. Each is also univariate and 
represents a sample from the multivariate Gaussian spatial field defined at each of the n 
discretized climate locations.

However, in the problems considered in this thesis we are imable to sample directly from 
the conditional distributions in the above (save tt{0)) as they tend to be unknown. This issue
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is resolved by using a Metropolis - Hastings step to generate the required samples; this is then 
the Metropolis within Gibbs algorithm. In the following we discuss the construction of proposal 
distributions for x  and c.

Proposal Schem e for c

Proposal schemes for c are complicated by the fact tha t 7r(c|y) is generally nonstandard, often 
multimodal (Haslett et al. 2006) consisting of disjoint probability regions (Bhattacharya 2004) 
with no paths between them. For example:

Jt(cw»|y,K w . Y ' . C ’)

I Y , C )
G rid  p o in ts

Figure 6.11: Examples of multimodal posterior distributions for spatial location in d =  1 
and d — 2 climate dimensions.

As a result, proposal schemes based on random walks which propose 'local" moves for c, 
are subject to the problem of getting stuck in local modes - the starting value specified for c 
is obviously important in this setting. Conversely, proposal distributions which propose large 
moves will suffer from low acceptance rates due to the significant number of locations at which 
probability mass is non-zero, as for example in Figure 6.11 (b) above. This problem worsens 
with increasing spatial dimension or ‘peaked-ness” of the target posteriors.

The “best” idea in a sense, as noted by Gilks et al. (1996), is to obtain a proposal distribution 
q, which closely resembles the target posterior - conditional on the modal hyperparameters 
6 — 0*, we propose to utilise the Laplace approximation (see Tierney (1994)) to Tr{c\y,9*) 
as the foundation for our proposal density for 7r(c|y). Essentially, we evaluate the Laplace 
approximation to n{c\y,6*) at each spatial location (c i , . . . , cn)  € C, to obtain the required 
proposal distribution, i.e.
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For i — 1 , . . . ,  n  do

T^LA{ci \y)
T r { y , X i , C j , 0 * )

^ G { x \ y , C i , 0 * ) xi=x*{6*)
(6 . 18)

In the above the distribution of Xi corresponding to the mode of 9, 'K{xi\0*) is integrated out 
via the Laplace approximation at every spatial location Cj G C, to obtain an approximation 
to 7r(cj|7y, 0*). This is completed at each location on the grid and the probability values are 
summed over C to provide a normalised distribution which sums to unity.

The procedure for obtaining this approximation is outlined in Bishop (2006, pages 213- 
215), or alternatively in Rue & Held (2005, pages 167-170 ) and thus is not explored in 
further detail here. The Laplace approximation in this setting can be quite accurate, or 
indeed exact if the underlying response is Gaussian. However, as noted by Bjornkamp (2011)
- the quality of this approximation is subject to the quality of the Gaussian approximation 
to 7r(xj|y,Cj,0*). Bjornkamp (2011) notes that the Laplace approximation is subject to poor 
performance if TT{xi\y,Ci,6*) is skewed, which frequently occurs in the presence of low value 
or zero counts for y.

Additionally, the proposal region must be bounded (Albert 2007), i.e. Tr{c\y)/nLA{c\y,9*) >
0 V c. However, as we are only evaluating the Laplace approximation at the mode of (9, the 
approximation will tend to produce a proposal density for c that tends to be less conservative 
than the target posterior or even slightly erroneous in location. We correct for this by raising 
^LA{c\y,0*) to the power of a  and renormalising, where a  G (0,1), resulting in a proposal 
distribution than is more diffuse than the target. As a general rule of thumb, we propose 
using a value of a  =  .5. In Section 6.3.3 below, we discuss a method for determining if q is 
sufficiently bounded.

Using q obtained via the Laplace approximation, samples may be obtained using a Metropolis- 
Hastings step as follows:

1. Sample a candidate value c*

2. Compute the ratio:
^  ^  7t ( c *|  .. .)q{c\c*)

7t ( c | . .  .)q'(c*|c)

3. If min(i?, 1) > Uniform(0,1) then =  c* else

4. Repeat for a number of Metropolis-Hastings steps, if required, to reduce correlation in 
the samples

In the following we use an independence sampler (Tierney 1994) for q, i.e. q[c*\c) = q{c*) 
and q{c\c*) = q{c) - the probability of each independent move can be easily obtained from the
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proposal density. As we will observe in the following sections, the Laplace approximation as a 
proposal density closely approximates the target posterior and thus independent samples from 
q have high acceptance rates. The generated samples can then be fed back into the Metropolis- 
within-Gibbs algorithm presented above to provide samples from the target posterior.

Proposal Scheme for X

Proposal schemes for x  = X  (c) are much simpler to construct as, conditional on each value 9^ G 
6, each n{x\c,y,9k)  is continuous. Additionally, n{x\c,y,6k)  is ‘Gaussian-like'' being univariate 
and unimodal, though in the presence of zero values it may exhibit skewness (Bjornstrom 
(2011)). A simple proposal density for x  is the random walk proposal density.

The random walk proposal density is symmetric, i.e. q{x*\x) = q{x\x*) thus the acceptance 
probability simplifies to the ratio of the target density evaluated at the proposed new and old 
values. As noted by Rue & Held (2005), a typical example of a random walk proposal is the 
addition of a mean zero normal distribution to the current value of x, i.e. x* = x + z where 
2: ~

The broad outline of the approach is as follows:

1. Sample a candidate value x* q{x*\x^^ ^̂ )

2. Compute the ratio:
^  7r(x*|...) 

n[x \ . . . )

3. If min(i?, 1) > Uniform(0,1), then =  x* else

4. Repeat for a number of Metropolis steps, if required, to reduce correlation in the samples

ctJ is a scale parameter which affects the mixing of the algorithm and can be tweaked in 
order to increase acceptance rates - Roberts et al. (1997) provide analytical results, proposing 
that an acceptance rate around 50% in the univariate setting is appropriate. If a “good” 
value for cr̂  is not known a priori, the algorithm can be initialized with crj =  1 and its value 
adjusted accordingly during a burn-in period until the desired acceptance rate is approximately 
achieved.

6 .3 .3  Perform ance o f th e  A pproach for U nivariate Y

In the following we use a simple toy example to evaluate the performance of the proposed 
sampling algorithm with regard to fast model inversion in the univariate setting.
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T oy E x a m p le

Model training data, comprising univariate counts Y  = {yi, ■ ■ ■ ,V5 ) observed at 5 distinct 
spatial locations, is presented in Figure 6.12. At the forward stage the individual counts are 
modelled as Poisson distributed and linked to the underlying latent field X  through the use 
of a log-link function where X  is defined on an equally spaced grid of length 100.

The prior for X  is an intrinsic GMRF prior of order 2 with precision matrix Q = k,R (see 
Section 6.2.2 for details on the structure of R)  and the prior precision parameter k is assigned 
a non-informative F (l, .00005) prior. The resulting hierarchical model for the data is:

The INLA algorithm is used for approximate Bayesian inference on the unknown model 
parameters. In Figure 6.13 (a), the posterior distribution of k , 7r(«:|y), is presented on a equally 
spaced grid of length 50. The posterior for the latent field, •k{X\Y) ,  having marginalised over 
K (see Equation 3.20) is presented in Figure 6.13 (b). As the focus here is on the inverse stage, 
additional details of model fitting are omitted.

In the following, we evaluate the proposed sampling-based algorithm for model inversion by 
comparing its performance, in terms of computational speed and inverse predictive accuracy, 
to model inversion via quadrature for a number of toy examples.

C o m p a riso n  o f  N u m er ica l In teg ra tio n  v s S a m p lin g  for In verse P red ic tio n

Given a new count, y = 10, for which which the corresponding spatial location is unknown, 
we observe (see Figure 6.14 (a)) that the Laplace approximation to the posterior 7Ti^(c|y, k*) 
is slightly erroneous but nonetheless provides a good approximation to the target distribution 
7r(c|y). The proposal distribution, q{c), required for the Metropolis-within-Gibbs sampling 
scheme, is then obtained by raising the Laplace approximation 7T/,yi(c|y, k*) to the power 
of a  =  .5 and renormalising. crj, initialized with value .1, is rescaled during the first 50 
iterations such that the acceptance rate in the Metropolis steps for x  is approximately 50%, 
as per Roberts et al. (1997). Finally, the starting value for c is randomly sampled from 
^LA{c\y,  !<*) and the scheme proceeds by iteratively sampling from i x{c \x ,6,y) , 'K{x\9,c,y)  and 
7t(0 )  in turn, to provide the required samples from 7r(c|?/) .

In Figure 6.14 (b - c) we plot histograms of the resulting samples generated - intuitively, the

yi ~  Poisson (Aj)

\ i  =  exp{x i )

X  ~  I G M R F { kR)  

K ~  F ( l , .00005)

(6.19)

( 6 .20 ) 

(6 .21 ) 

(6 .22 )
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approxim ations to the target posterior improve in accuracy for increasing number of samples. 

The tim e cost comparison is as follows; evaluating 7r(c|y =  10) via determ inistic Laguerre 

quadrature with 25 evaluation points and incorporating all posterior uncertainty in k , takes 

approxim ately .22 seconds. Conversely, using sam pling based m ethods, the tim e taken to 

generate 5000 samples from the target posterior is .03 seconds, increasing to .07, .18 and .34 

seconds for 10000, 25000 and 50000 sam ples respectively - the tim e taken to produce the 

sam ples increases linearly in the number of samples. The acceptance rate is around 70% for 

the independence sampler proposal density provided by the scaled Laplace approximation to  

7r(c|y, K*) and 5 M etropolis-Hastings steps are used for each Gibbs step to provide samples 

for c that are approxim ately independent, as illustrated by the autocorrelation plot of the 

generated samples in Figure 6.15 (b).

In the simple exam ples presented above, the “true” posterior predictive distribution is 

defined over a relatively “wide” region. As a result, large numbers of sam ples are required 

for accurate approxim ations to the posterior. However, it is clear that extensive tim e savings 

can be made at the inverse stage, via the proposed sam pling scheme, if the target posteriors 

are relatively “peaked”, as in Figure 6.17 (b) and Figure 6.17 (d). 10000 (approximately) 

independent samples are sufficient to accurately approxim ate the target posterior 7r(c |y =  0), 

as observed in .06 seconds (Figure 6.17 (b)). Similarly, the tim e taken to generate the required 

number of samples (5000) for 7r(c |y =  50) is .03 seconds (Figure 6.17 (d)). These tim es compare 

extrem ely favourably to the .22 seconds required for exact evaluation of the each posterior using 

25 point Laguerre quadrature.

However, it must also be noted that the use of sam pling algorithm s for inverse prediction  

have one important caveat; it is difficult to determ ine when “sufficient” sam ples have been 

obtained to accurately approxim ate target posteriors. In practice the number of samples 

generated is not determ ined by the M onte Carlo error but by practical considerations such 

as tim e constraints - for exam ple in the palaeoclim ate reconstruction problem considered in 

Chapter 7, samples must be generated for each of 7742 independent reconstruction problems. 

Appreciable and significant uncertainty m ay exist in the target posteriors produced given the 

constrained numbers of samples, as highlighted by a comparison of the sam ple histograms in 

Figure 6.14(b - d).

Of course a further concern is the evaluation of situations where the proposal density is not 

sutticiently bounded. In Figure 6.16 we illustrate that poor proposal distributions, in this case 

due to an overly peaked proposal distribution for c, can once more be identified by viewing the 

autocorrelation plot of the generated samples. Proposal distributions that arc too “diffuse” 

or conservative m ay be identified in a similar maimer as acceptance rates will be similarly 

afiectcd.
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6.3.4 E xtension to  the M ultivariate setting

In practice, the problems considered in this thesis are multivariate in nature, both in terms of 
the data Y  and the climate C.

M u ltiv a r ia te  Y

For numerical integration algorithms, the computational cost of model inversion increases as 
a linear function of the number of taxa which are jointly considered. For example, if the 
computational cost of model inversion in the univariate setting, where Y  = y, is 0{nm)  
(see Section 6.3.1 above), the computational cost when Y  is multivariate of length p (i.e.
Y  = (yi , . . .  -yp)) is 0[nmp).  Due to the (assumed) conditional independence of each taxon 
given climate, the (multivariate) model inversion problem decomposes into the product of p 
separate, univariate model inversion problems.

For the sampling-based scheme, the cost of obtaining the Laplace approximation is also 
linear in the number of taxa, however, this is typically a much smaller calculation than the 
numerical integration equivalent. This is because the Laplace approximation is only evaluated 
once at each location, conditional on the modal hyperparameters of each individual taxa, i.e. 
t̂ l a {c\Y,0*) = i.'^LA{c\yj^O*)). Here 0* represents the modal hyperparameters of taxon
j. If y  is multivariate. X  is also, but due to the conditional independence assumption, the 
generation of samples for multivariate X  simply decomposes into the generation of univariate 
samples for each of the p components of X  independently.

The computational advantages enjoyed by the sampling-based approach become more pro­
nounced as the dimension of Y  increases. To highlight this point, we re-examine a simulated 
example considered in Section 5.2.2 previously. In that particular section, a simple multivari­
ate regression problem was used to illustrate how posteriors on climate become increasingly 
peaked with each additional taxa considered, as indicated by reducing average values of the 
M S E P  (see Figure 5.2 (a)). The important point to note however is that, as the target poste­
riors become increasingly peaked, the number of samples required for accurate approximations 
reduces and thus the sampling scheme will increase in its computational efficiency.

In Figure 6.18, this point is visually demonstrated. Two examples are considered where (a)
Y  is multivariate of dimension 5 (i.e. there are 5 separate plant taxa and (b) multivariate of 
dimension 10. The time taken to exactly evaluate the posteriors on climate in each respective 
setting, using deterministic Laguerre quadrature with 25 evaluation points, is 1.13 seconds 
and 2.27 seconds respectively.

For the sampling-based approach, 10,000 samples in the 5 taxon setting are sufficient to 
accurately approximate the target posterior. As the climate posterior in the 10 taxon setting 
is substantially more peaked, only 5,000 samples are required. The time taken to produce 
each set of samples is just .27 seconds and .25 seconds respectively. The introduction of
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additional taxa at the inverse stage results in the proposed sampling scheme becoming more 
computationally efficient due to the tightening of the predictive regions of target posteriors.
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F ig u re  6.18: In (a) Y  is multivariate of length 5 and in (b) Y  is multivariate of length 10. 
Observe that the posterior distributions become more “peaked” for increasing dimension of Y  
and thus less samples are required to accurately approximate the target posterior.

A final point to note is that the computational advantage of the sampling approach becomes 
even more pronounced for increasing dimension of C.  This is because, as per Figure 6.11 
(a) and Figure 6.11 (b), the percentage of spatial locations at which the target posterior is 
non-negligible is generally much less in two spatial dimensions than one. Thus, the use of 
the sampling scheme, which avoids visiting spatial locations at which the target posterior is 
essentially zero, results in substantial time savings. This claim is evidenced in Section 7.4; it is 
demonstrated how the use of the sampling-based scheme helps half the time taken for climate 
reconstruction at the Glendalough site in the two dimensional climate setting and reduces 
the time taken by a factor of approximately 20 in the three dimensional climate setting, as 
compared to numerical integration based methods.

6.4 Conclusions

If statistical models are constructed which do not include all spatial covariates upon which the 
response depends, inferences at the inverse stage will be erroneous. This result was highlighted 
via a simple toy example, where the failure to account for the interaction of a smooth surface 
over a set of spatial covariates was manifested in spurious multimodality and mislocation of 
inverse predictive posteriors.
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In situations where the observational dataset is too large for the consideration of spatial 
models based on Gaussian random fields, due to the “big n problem”, discretizations of the 
space under consideration to a regular grid and the use of GMRF models with sparse precision 
structures provide a solution. However, both the dimensionality of the discretization of space 
chosen and the neigbourhood structure specified have a large impact of the computational 
effic'iency of this approach. Furthermore, due to the course of dimensionality, the maximum 
number of spatial dimensions for which we can consider the use of such methods is 3 at most, 
due to the large number of random variables introduced by regular discretizations of space.

Extensive computational savings can be made by “cutting out” regions of space which are 
not of interest. However, problems then arise regarding the specification of the precision 
structures of intrinsic GMRFs of order 2 on the irregularly shaped spatial domain. We provide 
an approximate solution to this problem as follows: first a buffer region is incorporated around 
the region of interest. The precision structure of a random walk of order one on the augmented 
space is tlien easily obtained as a function of its first order neighbours. An approximation 
to the correct second order structure can then be obtained as a convolution of the first order 
structure with itself. This structure matrix will have the correct neighbourhood structure at 
the interior but incorrect structure at the boundary, which is constructed however, to be far 
from the region of interest.

The discretization of multidimensional space results in slow inference procedures at the 
inverse stage. This is because model inversion via deterministic integration algorithms require 
the evaluation of the inverse predictive posterior at every grid location on the discretized space. 
Numerical methods for the evaluation of posteriors will waste substantial effort evaluating 
probabilities at many grid locations that are essentially zero.

A Metropolis-within-Gibbs sampling scheme is constructed to address this issue, with the 
proposal density for moves on the discretized spatial domain obtained from a scaled Laplace 
approximation to the target posterior. The Laplace approximation has to be evaluated at 
every gridpoint but is however, much more computationally efficient than integration via 
quadrature, requiring the computational equivalent of 9 quadrature points for the calculation 
at each node. The sampling algorithm avoids the repeated sampling from locations with 
negligible probability mass, which blights deterministic integration approaches. Furthermore, 
the computational advantages enjoyed by the sampling-based scheme become more pronounced 
with increasing dimension of V and C.
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Chapter 7

Application: The Palaeoclimate 
Reconstruction Project

In this chapter we harness many of the models and m ethods developed in the preceding 
chapters to  extend existing models for palaeoclim ate reconstruction. Our m ain contributions 

include the extension of existing models to incorporate an additional clim ate variable, the 
development of a m ethodology for fast criticism of the model training d a ta  and the devel­
opm ent of a com putationally efficient algorithm  for quickly obtaining clim ate samples at the 

inverse stage. A fossil clim ate reconstruction at G lendalough is utilised to display the striking 
differences in clim ate reconstructions obtained by the incorjioration of an additional clim ate 

covariate into the forward model.

7.1 Bayesian Palaeoclim ate R econstruction Project

In the following we present the work contributed by this thesis to  the ongoing Bayesian palaeo­

clim ate reconstruction project, as described in H aslett et al. (2006) and Salter-Townshend 

(2009). We begin with a brief recap of the reconstruction dataset, previously introduced in 

Section 1.2.1, and detail further im portan t features of the datase t absent from the previous 
discussion.

7.1.1 The RSIO Dataset

T he RSIO datase t (Allen et al. 2000) consists of a collection of 7742 sample pollen proportions 

for each of 28 distinct p lant taxa, as well as associated m easurem ents for a num ber of clim ate 

variables. In this chapter we consider models in term s of three of the clim ate variables; the 

num ber of growing degree days above 5°C  (GDD5), the m ean tem perature of the coldest 

m onth (M TCO) and an estim ate of the ratio  of the actual to  potential evapotranspiration
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(A ET/PET). As detailed by Huntley (1993), these three climatic variables provide the main 
constraints which govern the geographical ranges of individual plant species.

However, there are additional features of the reconstruction dataset which impact on model 
performance; as noted by Haslett et al. (2006), a t very many of the sampling locations the 
count totals used to produce the pollen proportions are unknown. As a result, the rather 
unsatisfactory decision is made to express the observed counts at each location as a per mille 
of the sum at that location; a total coimt sum of 1000 is then assumed. Furthermore, the 
climate measurements at a specific site location are not known explicitly, but interpolated 
from information available from the nearest meteorological weather station. Salter-Townshend 
(2009), citing the uncertainty in climate locations as the main factor in poor model predictive 
performance, attem pted to account for this uncertainty in an ad-hoc manner at the inverse 
stage. However, the work contained in this chapter will reveal that the compositional nature of 
the data  and the covariates used in the palaeoclimate reconstruction models are of far greater 
importance.

Finally, though the extension of the existing palaeoclimate reconstruction models of Haslett 
et al. (2006) and Salter-Townshend (2009) to three climate dimensions is considered a novel 
contribution in this thesis, an additional climate variable MTWA - the mean temperature of the 
warmest month is not accounted for in the forward models. Later in this chapter we identify 
signals that suggest this variable may be of importance for accurate prediction, and that the 
forward models should possibly be amended for its inclusion. In Section 8.2.2 we detail the 
difficulties of this task.

7.2 Forward M odeling and Inference M ethodology

At the forward stage, models are calibrated for the relationship between the chosen climate 
variables and the observed response. Here the training dataset Y  consists of n =  7742 climate 
referenced (C) observations for each of N t  = 28 plant taxa. For simplicity in notation in the 
following, we suppress explicit reference to C.

In Section 5.1.1, we detailed how multivariate forward models for the palaeoclimate prob­
lem are too computationally expensive to consider, instead, as per Section 5.1.2, univariate 
models are used to model each plant taxon separately - the joint forward model for the palaeo­
climate problem is thus decomposed into the product of conditionally independent univariate 
components:

-k { X , 0\Y) = n{X\9,Y)TT{&\Y) (7.1)
N t

= ]]_n{Xi\Y„0^)TT{0,\Y,) (7.2)
i = l
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Here, as previously, we denote by Yi the pollen counts corresponding to  taxon i and by 

X i  the la tent response surface of taxon z; 9i denotes the model hyperparam eters relevar.t to  
taxon i. T he use of separate, independent univariate models for each tax a  introduces n.any 

com putational conveniences at the forward stage - the forward model for each p lan t :axa 
can be fitted independently, greatly reducing inference tasks. This is the by-taxon madel 

of Salter-Townshend (2009).

However, Salter-Townshend (2009) detailed how the use of this decomposition results in 

erroneous inferences at the inverse stage of the palaeoclimate problem  - unmodelled, residual 

dependence structu re in the laten t field (see Section 5.2.2) or a t the likelihood level (Sec­

tion 5.3), is m anifested as poor predictive performance of the calibrated  models. Recognising 

the  com positional nature of the training dataset as a factor, nesting structures (Section 3.4), 

which still facilitated decomposition of the forward stage, were utilised in order to  reduce the 

error. However, the introduced nesting structu re does not decompose the joint model exactly, 

on account of the failure of the author to  explicitly model sources of N-inflation in the RSIO 
dataset.

O ur contributions in this thesis to the forward modeling stage involve the extension of the 
nesting structu re introduced in Salter-Townshend (2009) (see Figure 7.11) to  the lowest levels. 
Using the m ethods developed in Section 5.4.3, the appropriate nesting structures for the lowest 
levels are learned from the  data. The joint likelihood for the (N t  =  27) groups comprising 
the nested structu re  can be w ritten in the form of Equation 7.2 above, and the forward model 

for each group can then be fitted independently as in the case of the marginals, or by-taxon 
model.

Furtherm ore, using the m ethods detailed in Section 6.2.3, we extend the models of Salter- 
Townshend (2009) to  consider an additional climate variable, overcoming the additional com­

pu tational burden through the use of bujfer regions. S tatistical consistency issues regarding 

the nested likelihood are addressed by the creation of a sym m etric zero/N -infiated Binomial 

likelihood model (Section 5.5.2). In the following, we introduce the models used in this chapter 

for the laten t X i  and the d a ta  response and briefly discuss details of inference.

7.2.1 M od elin g  th e  L atent X i

In th is thesis, clim ate models in both  two and three dimensions are considered for each Xi.  

In the two-dimensional clim ate setting, the two climate variables considered are GDD5 and 

M TCO. As per H aslett e t al. (2006), clim ate space is discretized to  a 50 x 50 grid with climate 

locations “pushed” to  their nearest grid location. This results in 2500 laten t param eters, which 

comprise the response surface of a given plant taxon. The prior on each latent surface is an 
intrinsic GM RF of order two:
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-K{Xi) ~  G M RF{Q ) (7.3)

The intrinsic GMRF prior model is parameterised by the precision m atrix Q, where Q = 
kR. i? is a structure matrix, obtained from a second order random walk in two climate 
dimensions (see Section 6.2.3) and k is a scaling parameter which governs smoothness. The 
structure of R  a t the interior in the two dimensional setting is described in Figure 6.7 with 
the appropriate corrections a t the boundary available in Kneib (2006).

Models in three climate dimensions, involving the A E T /PE T  variable in addition to the 
climate variables included in the two dimensional setting above, are complicated by the huge 
increase in the number of latent parameters introduced by the discretization of climate space. 
The discretization of space to a regular grid of dimension 50 x 50 x 50 in three climate di­
mensions results in 125,000 latent parameters - added to the reduced sparsity of the structure 
m atrix in three dimensions and the cost of manipulating matrices of this size, the computa­
tional cost of this approach is prohibitive. In Section 6.2.3, we detailed how the computational 
cost may be m itigated by recognizing tha t many of the latent parameters in the three dimen­
sional space are not of interest. A region of interest is defined (the region of interest for two 
dimensional climate space is presented in Figure 6.9) and a buffer region is then incorporated 
around the region of interest in order to negate edge effects. The resulting precision matrix. 
Q* = kR* where R* is the structure matrix of a second order random walk in three spatial 
dimensions, obtained by convolution methods (see Section 6.2.3), will have the correct neigh­
bourhood structure at the interior, and approximations to the correct precision structure at 
the boundary.

in three dimensions is once more modeled as a GMRF:

~  GMRF{Q*)  (7.4)

The structure of R* at the interior is described in Equation 6.12. In this chapter, a buffer 
region of length three nodes in each spatial direction is utilised. Using this approach, parts of 
space in which we not interested are ‘cut o u t’, reducing inference tasks considerably; this results 
in a substantial decrease in the number of latent parameters requiring inference, from 125,000 
to around 40,000, resulting in vast computational savings of several orders of magnitude at 
the forward stage.
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7.2 .2  M od elin g  th e  R esp on se

As a full 63.15% of the counts in the observational dataset are zero, only zero-modified likeli­
hood families (Section 3.5.2) for the observed data are considered. As per Salter-Townshend 
(2009), we use spatial zero-inflated models where the probability of presence for a given pollen 
count is linked to a function of the underlying latent response surface. Additional heterogen- 
ity in the count observations is modeled through the incorporation of random effect terms 
(Section 3.5.3) into the model - a random effect is included for each observation.

The three zero-inflated models for the response considered in this chapter are:

Z ero-in fia ted  N e g a tiv e  B in o m ia l m o d el

+ *.N egB m (0;p .„4) = 0
[  q i j l \ e g B m { y , j ; p i j , d , )  V i j  >  0

c /  j
where pi j  =   ̂ and qij =  ( j  • this is the by-taxon model presented in Salter-

Townshend (2009). There are three hyperparameters governing the zero-inflated Negative 
Binomial model for each taxon; a precision parameter Ki, a zero-inflation parameter ai and an 
overdispersion parameter Si, which models overdispersion of the count observations. The Neg­
ative Binomial model is essentially a Poisson model with Gamma distributed overdispersion, 
i.e. \ i j  ~  (1 — p i j ) / p i j ) ( s e e  Section 3.5.3).

Z ero-in fla ted  G au ssian  O v erd isp ersed  P o isso n  m o d el

/ I 2x j 1 -  + 9*.iPoisson 0; Aij Vij = 0
[ g i j t ^ o i s s o n { y i j ; A i j )  P i j  >  0

where Xij =  and q ĵ =  ( ^ 1 • Overdispersion of the pollen counts is
modeled via Gaussian random effect terms, i.e. Uij  ~  A (̂0, af).  As the Gaussian random effect 
terms are not conjugate to the Poisson likelihood, each random effect must be inferred at the 
forward stage, adding to the inference burden. There are three hyperparameters governing 
the zero-inflated overdispersed Poisson model for each taxon; a precision parameter Kj, a zero- 
inflation parameter and an overdispersion parameter cr?, which models the variance of the 
random effect terms.
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Z ero/N -in flated  G aussian O verdispersed B inom ial m odel

(1 -  qi j ) r i j  +  qi j r i jBmomied{0,Ni j ,pi j )  yi ĵ =  0
-  n,j) + qijr i jBmomia\{Nij ,  Ni j , pi j )  yi j  = Ni j  (7.7)

qi j r i jBmomial {y i j ,Ni j , p i j )  0 < yi j  <  Ni j

Xj^ j + u i  j  /  j + U j ^  j  \  , \
where pi j  = qij  = j  and n j  =  j  . N^j  is the total

count at location j  for group i - through the use of nesting structures, the data are grouped 
into sets of taxonomically related groups; for the nested compositional model presented in 
Section 7.3.2, there are 27 such groups. There are four hyperparameters governing the zero/N- 
inflated Binomial model for each group; a precision parameter Ki, two zero-inflation parameters 
( a i i ,a 2t) and an overdispersion param eter af ,  which models the variance of the random effect 
terms. If a 2i is set equal to zero, this model simplifies to the statistically inconsistent standard 
zero-inflated Binomial model (see Section 5.5.1).

The first two models do not take into account the compositional nature of the data  and are 
referred to as marginal models in the following. Additionally, as the zero ■ X-inflated Binomial 
model is based upon nesting structures for the grouping of pollen data, it is referred to as 
the nested model. Each of the models considered are overdispersed with regard to the spatial 
response. For simplicity in discussion in the following we drop the “Gaussian overdispersed” 
term, from herein the zero-inflated Gaussian overdispersed Poisson model will be referred to 
as the zero-inflated Poisson model. Similarly the zero-inflated Gatissian overdispersed zero/N- 
inflated Binomial model will be referred to as the zero/N-inflated Binomial model

7 .2 .3  In feren ce

Due to the assumption of decomposable joint models, the forward models for each taxon are 
fit independently of the rest. As the nmnber of hyperparameters is relatively low (at most 4 
for the nested model), the INLA algorithm of Rue et al. (2009) (Section 3.3) can be used for 
forward stage inference. This provides a quick approximate method for obtaining closed form 
posteriors for the latent X i. For an assessment of the algorithm in the context of application 
to the palaeoclimate reconstruction problem see Salter-Townshend (2009).

Treatm ent o f H yperparam eters

Salter-Townshend (2009), in the context of the palaeoclimate reconstruction problem, illus­
trated that approximations to ■n{6i\Yi) by point masses at the posterior modal values of 0i, 
resulted in very little loss of information at the inverse stage - this is the empirical Bayes 
(Section 3.2.3) approximation to fully Bayesian inference. Intuitively, the quality of this ap-
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proximation is due to the large numbers of observations for model training purposes - there 
are 7742 count observations for each of the 28 plant taxa at the forward stage.

An implicit constraint on inference procedures for models in three climate dimensions is 
the issue of storage - if each posterior 7r(6*j|yi) is represented on a coarse grid of length 50, the 
storage cost of Tr{Xi,9i\Y) for just one plant taxon is of the order of 350 megabytes. The total 
cost of storing the equivalent results for all 28 pollen taxa is around 10GB, potentially mo­
nopolizing computer resources. Due to this storage constraint and the quality of the empirical 
Bayes approximation (Salter-Townshend 2009), inference procedures for 9i in the following are 
empirical Bayes based.

7.2.4 R esu lts

The hardware used is a dedicated Linux cluster with 12 3.33GHz  processors and 96GB of 
RAM; the multi-core nature of the machine allows multiple models, 12 at a time, to be fit in 
parallel. The R-INLA package of Rue et al. (2009) is used for param eter inference; through 
the use of numerical algorithms for inference on the (low dimensional) model hyperparanieters 
and the harnessing of algorithms for fast operations on sparse matrices, the software facilitates 
quick, computationally efficient approximate inference on unknown model parameters. In 
Table 7.1 the average time (in seconds) taken to fit each model for a single plant taxon 
incorporating either two or three climate covariates is presented.

Model Hyperparameters 2D 3D
Zero-inflated Negative Binomial 3 67 27, 386
Zero-inflated Poisson 3 105 41,322
Zero/N-inflated Binomial 4 131 116,595

T ab le  7.1: Average time taken (in seconds) for empirical Bayes based inference for each taxon 
model in two and three climate dimensions.

In Table 7.1 we observe tha t the zero-inflated Negative Binomial model has the shortest 
fitting time for each set of climate covariatcs. This is due to the “integration out” of the 
random effect terms, included to model overdispersion of the counts data, which must be in­
ferred for both the zero-inflated Poisson model and the zero/N-inflated Binomial model (see 
Section 7.2.2). Due to the almost twenty-fold increase in the number of latent parameters in­
troduced by the incorporation of an additional chmate covariate, and the reduced sparseness 
of precision matrices in three dimensions, inference for the 3D forward models takes substan­
tially longer than the 2D setting - for example, empirical Bayes based inference on the nested 
forward model for a single plant taxon takes around a day and a half.

The calibrated models reveal a number of features of the training dataset:

1. Strong prior distributions liad to be specified for the precision param eter of the latent
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response surfaces to ensure smoothness of the posterior response surfaces. Exploratory 
analysis, including the refitting of forward models for several values for the prior param­
eters revealed that a prior distribution of n{Ki) ~  r(300, .1) produced posterior response 
surfa(xis with sufficient smoothness.

2. For all models, including the (Gamma overdispersed) Negative Binomial model, the 
overdispersion parameters are significantly non-zero. This illustrates tha t there is exten­
sive variability in the pollen counts over and above that expected by the zero-inflated 
models, even with the explicit modelling of the excess zeroes.

3. The use of zero/N-inflated Binomial models as compared to zero-inflated Binomial mod­
els results in a significant decrease in the inferred over dispersion parameters. This is due 
to explicit modeling of the N-inflation present in the data.

Model validation in the forward sense did not play a major role in Salter-Townshend (2009) 
or Haslett et al. (200(i). Model criticusm was instead confined to the evaluation of the predictive 
properties of calibrated models in the inverse sense - measures of prediction accuracy, such 
as the AI S E P ,  were used for model comparison. Little or no attem pt was made to detect 
observations which did not well fit the calibrated models at the forward stage.

In contrast, one of the primary contributions to the palaeoclimate reconstruction project 
presented in this thesis is the development of richer models which facilitate quick approximate 
methods for the evaluation of the performance of the fitted models. This method is based on 
analysis of posterior random effect terms which are included in models to accovmt for overdis­
persion of the pollen counts. Using the methods developed for residual analysis and outlier 
detection in Chapter 4, we illustrate how the posterior random effect terms, in the context of 
Gaussian overdispersion, can be quickly evaluated to learn about the vmderlying data mecha­
nisms and the suitability of a priori model assumptions. Through the harnessing of Gaussian 
residual theory, outliers among the very many count observations can be automatically identi­
fied - for the first time, explicit outlier detection is possible for the pollen counts of individual 
taxa at the forward stage. Of course it must be stated that this approach is only rendered 
feasible by the computational speed of the INLA algorithm.

7.2 .5  R esid u a l A nalysis and O utlier D etec tio n

For the sake of brevity in the following, we constrain our discussion to the results obtained 
by the zero/N-inflated Binomial model in three climate dimensions. As previously discussed, 
Gaussian random effect terms, one for each observation, arc incorporated into the forward 
models for each taxa to account for possible overdisperion of the pollen counts. The use of 
this model in the context of the palaeoclimate problem requires the specification of an explicit 
nesting structure for the forward problem. The nesting structure relevant to the following is 
presented in Section 7.3.2.
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We begin with an evaluation of posterior model properties, for a num ber of plant taxa, 

through the visual analysis of quantile-quantile plots of the mean posterior random  effcct 
term s. As detailed in Section 4.3.3, the expression of the posterior random  effect term s in 

Gaussian form provides for a quick, visual m ethod of establishing whether a priori d istribu­

tional assum ptions are appropriate - the observation of trends in the posterior random  effect 

term s other than  Gaussian may indicate possible model misspecification at the forward stage.

Quantile-Quantile Plots

In Figure 7.1, the quantile-quantile plots of the m ean posterior random  cffcct term s arc pre­

sented for an arb itra ry  six (for sake of brevity) of the (27) available plant taxa. The random  

effects are assigned an a priori Gaussian distribution; as per Section 4.3.3, if the a priori dis­

tribu tion  is appropriate, the posterior random  effect term s should also display distributional 

behaviour th a t is approxim ately G aussian in nature.

After controlling for the excess zeroes, the a priori Gaussian distribution for the random  ef­
fect term s appear appropriate as determ ined by visually analysing the quantile-quantile plots. 
This is a significant modelling achievement considering th a t each set of pollen observations 
consists of very m any Binomial counts which exhibit signs of bo th  zero and N-inflation. How­

ever, the posterior random  effects for each taxon do exhibit some signs of tail behaviour greater 
than  th a t  expected by Gaussian theory.

This is confirmed upon viewing the sample density of the mean posterior random  cffects, 
corresponding to  each of the plant tax a  in Figure 7.1, which are presented in Figure 7.2. We 

observe tail behaviour in all the sam ple density plots, perhaps indicating the presence of an 
unmodelled explanatory variable as per Section 4.2.4. For 4 of the 6 tax a  there is a noticeable 

right skew towards the  positive axis, indicating th a t several of the posterior random  effects 
are larger th an  expected. Overall, the a priori Gaussian d istribution for the overdispersion 

appears reasonable.

Of course an im portan t feature of the m ethodology for residual analysis presented in C hap­

ter 4 was the possibility of explicit outlier detection. For the sake of brevity in the following, 

we focus our a tten tion  on outlier detection for one of the plant tax a  - the Cedrus taxon, though 
the analysis can be readily applied to any of the o ther taxa. Our prim ary aim is to  determ ine 

w hether a recurring trend  can be established in the detected outliers.

Case Study: Outlier D etection for Cedrus

In this section, the power of the developed m ethodology for outlier detection in C hapter 4 

is illustrated  by application to the zero/N -inflated counts of the Cedrus taxon. Specifically, 

Gaussian residual theory  is harnessed in order to  provide explicit critical bounds by which 

outliers may be autom atically  detected  am ongst the posterior random  eff’ect term s. The counts
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F ig u re  7.2: Comparison of the sample densities of the mean posterior random effects for a 
number of the plant taxa.
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corresponding to the identified random effects may subsequently be investigated to evaluate 
the veracity of the claim of outlying behaviour.

Using the methods of Section 4.2.4, over 4.2% of the Cedrus dataset are identified as 
potentially outlying - this is less than typically expected, given the analysis conducted in 
Section 4,3 (here (y'cedrus ~  6-67), as there are very many zero counts recorded for the Cedrus 
taxon. This suggests tha t the Gaussian overdispersion parameter is being overestimated to 
compensate for the slightly skew behavior observed in Figure 7.2 (d). In Figure 7.3 we plot 
the 95% HPD regions for a subset of the posterior random effect terms as well as 95% critical 
bounds obtained from standard Gaussian residual theory. As per Section 4.2.4, HPD regions 
which lie significantly outside the critical bonds are identified as possible outliers.

An im portant point to note is that the posterior random effects corresponding to all detected 
outliers are strictly positive in nature; this indicates that the counts at all identified sites are 
significantly larger than expected given the respective site locations. In the following we plot 
the detected outliers on a world map for illustrative purposes, and discuss features of the 
detected outliers.

Cedrus, or more commonly known as Cedar, is a genus of coniferous trees tha t are native 
to mountainous regions of the Mediterranean and the western Himalyas. In terms of favoured 
environmental conditions, the species fares best at altitudes of between 1500-3200 in the 
Himalayas or 1000-2000m in the Mediterranean, expressing a preference for temperate regions 
and dry, semi-arid sites.

Given this knowledge, we can conclude that the largest outlier, detected at a site in North­
ern Finland, is spurious in nature as the site lies outside the geographical range of the Cedrus 
species. As the Cedrus genus is a relative of the pine family, we speculate that pollen corre­
sponding to a pine species native to the region may have been mistaken for Cedrus pollen. We 
observe a similar result at a site in the Alps in France; in Figure 7.13 (a), the Cedrus taxon 
shares a nest level with Olea, or Olive, which typically dominates the assemblage in this region. 
However for this site a low Cedrus count is the only observation for this nest, whereas pollen 
data corresponding to other pine species is quite plentiful. Furthermore, in the surrounding 
sites, little trace of Cedrus pollen is observed. This perhaps indicates misidentification of the 
pollen once more.

The next largest outliers correspond to three sites in the mountains of Kashmir region of 
India. Each of the Cedrus counts are low at these sites, being counts of 1, 4 and 10 respectively. 
Each of the sites are at altitudes of between 3680 - 5100 metres above sea level, which may 
be considered too extreme for the Cedrus species to flourish. The MTCO values recorded 
at each site are — 12.9°C, —16°C and — 16.8°C respectively, with these temperatures at the 
outer limit at which the Cedrus species can survive. At each site there are additional trace 
amounts of pollen corresponding to other tree species such as Alnus and Abies with the hardy 
shrub (grassy) species, Artemisia  and Chenopodiaceae dominating the pollen assemblage. The
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F ig u re  7.4: Map of the northern hemisphere presenting the site locations of the detected 
outliers. 4.24% of the Cedrus dataset is detected as potentially outlying.

explanation for the trace amounts of tree pollen at this extreme site may be due to features 
of the locahty - pollen spores may be transferred from lower altitudes on the prevailing wind 
to each of the site locations. An alternative explanation is that the climate measurements are 
simply misrecorded. A firm conclusion cannot be made without obtaining expert advice.

No specific trend can be determined for tlie remaining detected outliers save to mention 
that the Cedrus counts appear large at each of the relevant sites, as indicated by the strictly 
positive posterior random effect terms. However, one clue is that these sites are located 
in regions of North Africa and the Mid-East which have very hot summer temperatures, to 
which a local Cedrus species, Cedrus Atlantica, is perhaps better adapted than  respective Olea 
species. This result can be observed by plotting the sample density of the recorded MTWA’s 
at which Cedrus pollen is observed versus the sample density of the MTWA’s corresponding 
to the outlying observations - Figure 7.5 illustrates tha t outlying behaviour and extreme count 
observations, as determined by the analysis of the posterior random effects, appears correlated 
with MTWA. However, definite conclusions or explanations for this result once more require 
the provision of expert opinion.

The analysis in the above represents a substantial advance in comparison with what has 
been done previously. For example, Salter-Townshend (2009) attem pted to identify outliers in 
the RSIO pollen dataset through the analysis of the pollen composition at sites for which large
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values of the R M S E P  were recorded. However, this required the analysis of 28 pollen counts 
jointly and it was difficult to determine the cause of the outlying behaviour. Furthermore, as 
the distribution of the R M S E P s  was unknown, it was impossible to provide critical cut-off 
bounds or points; Salter-Townshend (2009) identified outliers in a subjective manner. Here, 
we avoid these obstacles via the analysis of posterior random effect terms which enable the 
systematic identification of outlying observations for each of the separate pollen taxa.
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F ig u re  7.5: Sample density of the MTWA’s across all locations at which Cedrus pollen 
is observed as compared to the sample density of the MTWA’s recorded for the outlying 
observations. We observe more extreme MTWA measurements, on average, for the outlying 
observations
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7.3 M odel Inversion

The primary interest in this thesis is not so much in the forward models, but in the inverse 
use of the fitted models for prediction. In the following we focus on the inverse stage of 
the reconstruction problem and evaluate the predictive performance of the various models 
introduced in Section 7.2.2. In the following we detail our advances over existing methods.

7 .3 .1  In v e r se  In feren ce

At the inverse stage, forward models are inverted to make inferences on the unknown fossil 
climate corresponding to new sets of pollen counts. As climate space is discretized to a regular 
grid, normalised posteriors can be obtained by evaluating the posterior predictive mass at each 
discrete location on the grid and dividing through by the sum.

In Section 7.3.2 and Section 7.3.3, quadrature is used to numerically evaluate the inverse 
predictive densities in order to obtain exact 95% HPD regions for evaluating model accuracy 
- as fully decomposable models are assumed (see Equation 7.2), inversion of the model can 
be performed separately for each taxon. The joint posterior is then found as the normalised 
product of the independent inverse predictive densities for each taxa separately. As per Salter- 
Townslicnd (2009), a buffer region is employed in both 2 and 3 dimensional space to omit 
infeasible climate locations, and reduce the number of locations at which the posterior must 
be evaluated.

In Section 7.4, predictions for the palaeoclimate corresponding to fossil pollen at a site in 
Glendalough in Ireland are produced using the sampling based methods established in Chapter 
6. We illustrate how the developed algorithm substantially reduces the computation time in 
obtaining samples from the posterior, especially with regard to the zero/ N inflated Binomial 
model, as compared to numerical integration based methods.

A ssessing  M odel P red ictive Perform ance

The most challenging model comparison statistic, in the context of the palaeoclimate recon­
struction problem, is the percentage of observations. A, which lie outside their corresponding 
leave-one-out inverse predictive distributions 95% highest posterior density (HPD) region. In 
order to obtain this statistic, models must be refit given the data minus each set of left out 
counts; the resulting inverse predictive distribution for climate is then analysed to determine 
if the true climate location lies within the 95% HPD region.

However, this is a computationally intensive task - on a standard computer with a 3AH G z  
processor and 4GB of RAM, the time taken to refit the model is 8 miimtes. In order to 
obtain the full leave-one-out cross validation statistic, this process must be repeated 7742 
times, requiring the order of weeks for its computation. As a compromise, a saturated cross
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validation metric is used instead; in Section 7.3.2 we illustrate that, due to the large numbers 
of observations available for model fitting, the differences between the inverse leave-one-out- 
predictive densities and saturated predictive densities are essentially negligible.

Other model comparison measures considered include the root mean squared error of pre­
diction ( RMS EP)  and Dmodei a measure of distance between the true climate location and 
the location corresponding to the mode of the saturated inverse predictive distribution (see 
Section 3.7.2).

7.3.2 Results: 2D C lim ate A pplication

In this section we explore the results obtained using the 2-dimensional climate models, which 
were introduced in Section 7.2 previously. We begin by first discussing the performance of 
saturated cross validation measures for model validation in the context of the palaeoclimate 
problem.

S a tu ra ted  C ross-V a lid ation

An approximation to the full leave-one-out cross validation is provided by the use of saturated 
cross validation methods. Essentially, models are evaluated using the pool of data from which 
the models were fit - in the presence of large amounts of data, the saturated and leave-one- 
out cross validation measures should approximately agree; the omission of a single set of 
observations will have little effect on the inverse predictive densities produced. The benefit of 
this approach is that the models only need to be fit once, the calibrated models can then be 
used to evaluate model performance.

In Figure 7.6, we illustrate that the inverse predictive densities produced by the saturated 
model provide an exact approximation to the leave-one-out inverse predictive densities with 
essentially negligible error. For a random subset of 500 of the 7742 model training counts, 
the predictive performance statistics for the leave-one-out and saturated cross validations 
are compared for the zero-inflated Poisson model. We observe approximately zero error in the 
comparison of cross vaUdation methods, justifying the use of the approximation in this setting; 
model validation is thus reduced from the order of weeks to the order of minutes.

M argin a l M o d els

The two marginal models, introduced in Section 7.2.2 above, are fit to the pollen dataset. 
In using the marginal models, the pollen observations for each taxon are considered condi­
tionally independent given the latent response surfaces, and the latent response surfaces (for 
each taxon) conditionally independent given climate location; as per Salter-Townshend (2009), 
model parameters for each taxon may thus be independently inferred. If this decomposition of
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F igu re 7.6: (a) Comparison of the (a) R M S E P  and (b) £>mode for a saturated versus leave- 
one-out cross validation. The error in the approximation is negligible due to large numbers of 
observations available for model training,

the joint model into independent components adequately reflects the underlying data gener­
ating process, the A statistic, namely the number of observations lying outside the saturated 

inverse cross validation predictive densities 95% HPD region, should be approximately 5% for 
any given set of taxa.

In Figure 7.7 we observe that this is not the case; for increasing number of taxa, the 
predictive accuracy of the approach is seen to deteriorate almost (approximately) linearly. As 

per Saltcr-Towushend (2009), this figure is obtained as follows; considering a single taxon, 

j ) choices of one taxon, for two taxa there are ( 2 ) combinations and so on. We 

take a random ten of these (^^) combinations for each of N t  =  ( 1 , . . . ,  27) and plot the mean 

of the A statistic obtained. The value of A for all 28 taxa is 20.59% and 21.19% for the 

zero-inflated Negative Binomial model and the zero-inflated Poisson model respectively.

Whilst model performance in terms of the number of observations lying within their re­

spective cross-validation 95% HPD regions is seen to deteriorate with each additional taxon 

considered, in Figure 7.9 we observe that the predictive power in terms of the R M S E P  and 

Dmode conversely improves. These metrics provide a measure of evaluating the placement of 
climate posteriors with regard to the true known location and indicate that the inverse pre­
dictive posteriors on climate becomes increasingly accurate, in terms of location, with each 

additional taxa considered. As per Section 5.2.2, this indicates that the cross-validation pre­

dictive densities produced at the inverse stage are not sufficiently conservative.

As we observe in Table 7.2 and Figure 7.8, the predictive performance of the zero-inflated
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F ig u re  7.7: Plot of A, the percentage of observations lying outside the corresponding satu­
rated inverse cross-validation 95% HPD region for both the (a) zero-inflated Negative Binomial 
and the (b) zero-inflated Poisson model. The predictive performance of both models is seen 
to disimprove linearly with each additonal taxa considered. The value of A for all 28 taxa 
is 20.59% and 21.19% for each respective approach, reflecting that the zero-inflated Negative 
Binomial model provides a slightly better fit to the data. Both models represent a poor fit to 
the data, as reflected by the A statistic for each which is substantially greater than 5%
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persed Poisson model.
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F ig u re  7.9; The predictive power statistics for the zero-inflated Negative Binomial model.

Negative Binomial model is slightly superior to tha t of the zero-inflated Poisson equivalent. 
In order to provide a possible explanation for this superiority in predictive performance we 
analyse the posterior random effect terms produced by the zero-inflated Poisson model. In 
Figure 7.10 we plot quantile-quantile plots of the mean posterior random effects of a uumber 
of the plant taxa. The plots indicate that the random effect terms display behaviour which 
is more common to that of the Gamma distribution (see Section 4.3.3), perhaps providing a 
reason for the slightly superior fit of the zero-inflated Negative Binomial model.

Model A R M S E P ^mode
Zero-inflated Negative Binomial 20.59% 0.109 .088
Zero-inflated Poisson 21.19% 0.116 .097

T able  7.2: Comparison of predictive performance of the marginal models.

Given marginal models for the data, the plant taxa are assumed to be conditionally inde­
pendent given climate at both the forward and inverse stages. However, the above analysis 
indicates that this assumption is erroneous, or at the very least that the plant taxa are not 
conditionally independent given two dimensions of climate. This is perhaps an unsurprising 
result - in Chapter 2 we detailed how two climate variables may not be sufficient to accurately 
model the pollen response. Additionally, as the data  collection process is compositional in na­
ture - pollen spores are c;ounted until a predefined total is reached, approaches which consider 
each taxon response surface separately will be subject to erroneous inferences at the inverse 
stage.
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F ig u re  7.10: Quantile-quantile plots of the mean posterior random effects produced by the 
zero-inflated (Gaussian overdispersed) Poisson model for a number of plant taxa. The posterior 
random effect terms appear to exhibit behaviour that is Gamma distributed in nature (see 
Figure 4.9) despite the a priori specification of a Gaussian distribution for the random effects 
terms.
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If the deterioration in performance is due to the compositional nature of the dataset, the 
use of hierarchical or nesting structures may provide a method of addressing this problem.

N ested  M odel

Salter-Townshend (2009) proposed to account for the compositional nature of the training 
dataset through the use of nesting structures (see Section 5.4). The plant taxa were grouped 
into smaller subsets of similar plants species - the nesting structure, obtained from expert 
opinion, is presented in Figure 7.11. As components of the separate nests or groups were con­
sidered conditionally independent given each nest total, Salter-Townshend (2009) was able to 
decompose the Multinomial joint problem into a series of conditionally independent Binomial 
problems. The nesting of taxa imposes a strict structure on the possible correlation structure 
between the individual taxa - in nests where there are just 2 taxa, the components of each 
taxa are fully negatively correlated due to the sum constraint.

However, as discussed in Section 5.5.1, the zero-inflated nature of the training dataset 
introduces a number of problems at the forward stage - as detailed in Section 5.5.2, models 
which do not account for N-inflation of the compositional counts data will produce statistically 
inconsistent results. Erroneous inferences are obtained in an obvious way - the use of a single 
zero-inflation parameter will not be able to capture all sources of heterogeneity in the observed 
counts, leading to an overestimation of overdispersion parameters. For the palaeoclimate 
reconstruction problem this result is observed in Table 7.3.

Furthermore, Salter-Townshend (2009) does not specify a fully nested structure - at several 
of the lowest nests in Figure 7.11 there are more than  two taxa; for these levels, conditional 
independence of the individual taxa is assumed and zero-inflated Negative Binomial models 
fit to each taxa separately. However, the data  are compositional in nature and the use of 
models which do not address the sum constraint will lead to erroneous inferences on model 
parameters and result in poor predictive performance at the inverse stage (see Section 5.3.3). 
In the context of the palaeoclimate reconstruction problem, in Figure 7.7 we observe that the 
predictive performance disimproves linearly with each additional taxa tha t is independently 
modelled.

In the following section we detail an extension of the partially nested structure of Salter- 
Townshend (2009) to full nesting of all levels.

Learning the O ptim al N estin g  Structure

In Section 5.4.3, we detailed how the optimal nesting structure, in the sense of cross-validation 
prediction accuracy, for a compositional dataset can be learned from the data. Essentially, 
each set of nesting structures are explored in turn until the “best” set of nested comparisons, 
here in terms of an inverse cross-validation metric, are identified. However, with regard to
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Figure 7.11: The nesting structure for the forward stage, as presented in Salter-Townshend (2009)



the palaeochmate reconstruction problem, the exploration of suitable nesting structures for 
the 28 taxon dataset is constrained by the sheer number of taxa; the number of possible taxa 
reorderings that would need to be explored is of the order of 10̂ ® for the simplest continuation 
ratio model type nesting structures (see Rodriguez (2007)).

As such, we attem pt to cut down on the number of structures we must explore by first 
analysing the performance of the nested model presented in Figure 7.11 at the nest levels 
which contain just 2 taxa. If the nesting structure in Figure 7.11 is correct, the inverse 
predictive accuracy of each nest should be approximately 95% (i.e. A =  5%). There are 
12 nests in Figure 7.11 which contain only two taxa; as the individual nests are conditionally 
independent given the sum totals for each nest and climate, each of the nests may be separately 
modelled using zero/N-infiated Binomial model presented above. Inversion of the model can 
also be performed separately and the joint posterior is fovmd as the normalised product of 
the independent inverse predictive densities of each nest. In this case, the saturated cross- 
validation prediction accuracy is 90.9%, indicating that the partially nested structure is quite 
accurate in its decomposition. We proceed to investigate nesting structures for the lowest 
levels.

For the nosts labeled “montane”, “boreal” and “non-authropogeni(-” in Figure 7.11 there are 
three taxa at each lowest level - for each of these sets of taxa there are only three possible 
reordering structures. The three possible orderings are evaluated for each nest level and 
the optimal structure, in terms of saturated inverse cross-validation predictive accuracy, is 
presented in Figure 7.12, the inverse prediction accuracy of each structure is 96.12%, 95.08% 
and 95.67% respectively.

For the nests labeled “more drought tolerant” and “wide ranging cool tem perature”, locating 
the optimal nesting structure is more computationally expensive due to the number of taxa 
in each nest, 5 and 6 respectively. The “best” nesting structure for each group, once more 
in terms of saturated cross validation prediction accuracy, are presented in Figure 7.13. The 
saturated cross-validation inverse predictive accuracy of the nesting structure in Figure 7.13 
(a) is 90.65% as compared to 83.23% for the non-nested model. For Figure 7.13 (b) the nesting 
structure improves the saturated cross-validation predictive accuracy from 87.2% to 95.2%. 
These nesting structures are carried forward to the following sections.

One initial important comparison to make is between the performance of models which 
only account for zero-inflation in the Binomial split at each nest and models which account 
for zero/N-inflation of the counts - the zero-inflated model can be considered a subset of the 
zcro/X-inflated model with the N-inflation param eter fixed to zero. In Table 7.3, we see that 
model performance, as expected, is superior for the statistically consistent zero ^N-inflated 
model.

As the zero-inflated Binomial model does not account for the N-inflation present in the 
data, the overdispersion parameter is significantly overestimated. This represents the only
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Model A Q l 012 R M S E P P̂ mode
Zero-inflated Binomial 15.57% 0.215 — 8.65 .1255 ,1014
Zero/N-inflated Binomial 13.23% 0,203 0,205 4,50 ,1252 ,0994

Table 7.3: Comparison of predictive performance of the zero-inflated and zero/N-inflated 
Binomial model.

difference between the models. The average inferred value of cr̂  across all 27 nests is 8.65, 
as compared to an average value of 4.5 for the zero/N-inflated model. The explicit modelling 
of sources of N-inflation in the data results in a model with improved predictive performance 
in terms of A - comparison of the average R M S E P  and Dmode in Table 7.3 indicate that 
the zero/N-inflated model produces posteriors on climate which are more accurate in terms of 
location despite being slightly less conservative.

For the fully nested model, the parameters corresponding to each nest level can be inde­
pendently fit due to the assumption of conditional independence of the each nest level given 
the sum constraint and climate. If this assumption is accurate, A across all 27 nests should 
be approximately 5%. However, the saturated cross-validation inverse predictive accuracy of 
the model is actually 13.23%. This indicates that there is residual unmodelled dependence 
structure, either in the nesting decomposition used or due to the omission of an important 
climate variable in tlie forward model. However it must also be noted that the extension of 
the partially nested model of Salter-Townshend (2009) and explicit modelling of N-inflation 
in the data results in a substantial increase in predictive accuracy; A reduces from 26.46%, 
given the partially nested zero-inflated Beta-Binomial model in Salter-Townshend (2009), to 
13.23% given the fully nested zero/N-inflated Binomial model presented in this thesis.

Comparison Between N ested and Non-N ested Models

In Figure 7.14 we observe that the inverse predictive power of the nested model is not sub­
stantially different from that of the marginal models - both the R M S E P  and Z?mode are 
slightly larger on average, indicating that the inverse predictive densities produced by the 
nested model are more conservative. This is to be expected, as the nested model takes into 
account the compositional nature of the dataset - the fully nested model contains 27 groups 
whereas the by-taxon model considers there to be 28 independent taxa.

In Table 7.4 we observe that there is a substantial increase in saturated cross-validation 
inverse predictive accuracy for the nested model as compared to the non-nested models - A 
reduces from 20.59% for the best by-taxon model to 13.23% for the nested model at the cost 
of slightly more conservative prediction intervals as evidenced by the larger R M S E P  statistic.

In accounting for the compositional nature of the dataset, the posterior predictive densities 
produced by the nested model will necessarily be more conservative than the non-nested equiv-
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Figure 7.14: (a) Comparison of the sample density of the (a) R M S E P  and (b)Dmode for the 
three 2D models. On average, the zero-inflated Binomial model is the model with the poorest 
predictive power in terms of the R M S E P  and Dmode the best in terms of A.

Model A R M S E P ^mode
Zero-inflated Negative Binomial 20.59% 0.1083 .0881
Zero-inflated Poisson 21.19% 0.1161 .0972
Zero/N-infiated Binomial 13.23% .1252 .0994

Table 7.4: Comparison of results for the three models
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alents. This is observed in Figure 7.15 where contour plots of 95% posterior inverse predictive 
density regions, produced by both the nested and non-nested model, are presented for a  num­
ber of reconstruction examples. The marginal models are superior to the nested model in terms 
of predictive power but less favourable in terms of a leave-one-ovit cross-validation statistic - 
this illustrates the point that, in the context of the palaeoclimate reconstruction problem, the 
R M S E P  may not be the most suitable measure for determining the “best” model.

S h o rtco m in g s  o f 2D M odels

The two dimensional climate setting has revealed important features of the reconstruction 
problem. As per Salter-Townsend (2009), the treatment of the taxa as conditionally indepen­
dent given 2D climate results in poor model performance, in terms of saturated cross-validation 
inverse predictive accuracy. As observed in the above, this is partially due to the compositional 
nature of the dataset; nested structures are used to improve the cross validation prediction 
accuracy from 79.41%(A =  20.59%) in terms of the zero-inflated Negative Binomial model 
to 86.77%(A = 13.23%) for the zcro/N-inflatod Binomial model. Whilst tlu; (compositional 
nature of the data is an important factor in the deterioration of the predictive performance of 
the marginal model, the saturated inverse predictive accuracy of 86.77% for the fully nested 
model reflects that are other factors which impact on model performance; given the "true” 
model, the A statistic should be approximately 5%.

Salter-Townshend (2009) proposed a link between poor model performance and increasing 
altitude and also provided evidence for a link between poor predictive power and AET PET. 
For the best fitting 2D climate model, the zero/N-inflated Binomial model, we observe the same 
result, namely a correlation between poor model predictive performance and both altitude and 
A E T/PET.

In Figure 7.16 we observe the nature of this correlation; the predictive accuracy of the 
calibrated models is observed to deteriorate for increasing altitude and decreasing A E T /PE T , 
indicating that the predictive performance of the nested model is not as accurate in arid 
climate regions as compared to regions with plentiful moisture. Increasing altitude appears 
to have an impact on prediction accuracy; however this is perhaps once more a manifestation 
of the lack of a moisture variable - plant species which may not be well suited to the climate 
conditions at sea level in hot arid regions may thrive at higher altitudes where the climate is 
slightly cooler and more moisture potentially available.
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Figure 7.15: Comparison of the 95% inverse cross-vahdation predictive densities produced by 
the zero-inflated Negative Binomial (ZINB) model and the zero/N-inflated Binomial (nested) 
model for three count examples. The nested model is observed to produce predictive densi­
ties that are more conservative, as evidenced by the larger probability regions and smoother 
contours, acknowledging the compositional nature of the data. The true climate location is 
marked by the intersection of the two lines.
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F ig u re  7.16; Comparison of the sample density plots of (a) A E T /PE T  and (b) Altitude 
contrasting the sample density of the locations at which prediction accuracy is poor versus the 
sample density of all data locations. There appears to be a link between poor model predictive 
performance and both extreme altitude and extreme AET PET.

7.3 .3  R esults: 3D C lim ate A pplication

In this section we evaluate the impact on prediction accuracy of the incorporation of an 
additional climate variable, A E T/PET, into the forward models. As mentioned previously, 
making inferences on the parameters of the 3D models is computationally very costly - this 
is due to the sheer number of parameters introduced by the discretization of 3D space at the 
forward stage; empirical Bayes based inference on the parameters of the 3D model for each 
taxa takes the order of a day. For the sake of brevity in the following, we focus on the results of 
the 2 best fitting models (as identified in the 2D setting); the zero-inflated Negative Binomial 
model and the zero/N-inflatcd (nested) Binomial model.

Z ero -In fla ted  N eg a tiv e  B inom ial M odel

The A statistic for the zero-inflated Negative Binomial model in 3D indicates that the model 
provides a better fit to the observed data than the equivalent 2D model with A E T /PE T  
omitted; A for the 3D model is 5.04% lower than that of the corresponding 2D model (15.54% 
vs 20.59%). As the only difference between the models is the inclusion of the A E T /P E T  
variable, this indicates that A E T /PE T  is important for accurate climate prediction. This 
confirms the hypothesis of Huntley (1993) who argued that climate models conditioned on 
these 3 particular aspects of climate, at a minimum, are required.

While the predictive performance of the model is improved in the 3D setting, in Figure 7.17, 
we observe tha t the individual pollen taxa are still not conditionally independent given 3
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aspects of climate. However this approximation is more appropriate than the 2D setting as 
evidenced by the reduced A statistic overall.

The primary reason for the increase in predictive accuracy appears to be that the climate 
posteriors produced by the 2>D model are significantly more conservative than those of the 2D 
model. In Table 7.5, this is indicated by the value of R M S E P  being substantially larger than 
the predictive posteriors produced by the 2D models. In Figure 7.18 we illustrate this result 
graphically, plotting a number of cross-validation inverse predictive densities which help to 
emphasize the extent to which the predictive regions are more conservative.

In order to produce the 2D marginalised contour plots in Figure 7.18, the inverse predictive 
densities for the 2>D model (MTCO, GDD5, A E T /PE T ) are marginalised across the A E T /PE T  
dimension. This is easily achieved as the joint inverse predictive density on climate is defined 
on a discrete ZD (50 x 50 x 50) lattice - the marginalised 2D (M TC0,GDD5) predictive density 
of the 3D model is thus obtained by summing across the lattice in the A E T /P E T  direction 
and renormalising.

Model A R M S E P ^mode
2D Zero-inflated Negative Binomial 20.59% .1083 .08962
3D Zero-inflated Negative Binomial 15.54% .1458 .1122

Table 7.5; Comparison of results between the 2D and 3£> marginal models

Z ero/N -in fia ted  B inom ial M odel

The use of the of zero/X-iuflated Binomial models, in the context of Multinomial problems, 
requires the specification of a nesting structure. To this end. the optimal nesting structure 
identified in the 2D setting in Section 7.3.2 is carried forward to the 3D setting. Whilst a 
more appropriate approach is to re-infer the optimal nesting structure for the 3D model, the 
computational cost of model fitting render such an approach infeasible.

In Figure 7.19 we compare the sample densities of the model evaluation statistics from the 
2D setting with the 3D equivalents. Given the incorporation of the additional AET PET 
climate variable, the nested model in 3D produces posteriors on climate tha t that are signifi­
cantly more conservative than  the 2D version.

The superior predictive accuracy of the 3D model, as compared to the 2D setting is dis­
played in Table 7.6. We observe that the incorporation of the AET PET climate variable into 
the forward models results in enhanced predictive performance; the A statistic reduces from 
13.23% for the 2 dimensional model to 9.32% for the 3 dimensional model.

In Figure 7.20 we illustrate the extent to which the inverse predictive densities for the 
zero/X inflated Binomial model in 3D are more conservative that their 2D equivalents.
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F ig u re  7.17: Plot of A, the percentage of observations which fall outside their respective 
saturated inverse cross-validation 95% HPD regions for climate given the fitted 3D models. 
As in the 2D setting, the predictive performance of the models, in terms of A, is seen to 
deteriorate linearly with each additional taxa considered, indicating the the plant taxa are not 
conditionally independent given models conditioned on 3 aspects of climate. Given the “true” 
model A should be approximately 5%.

169



2D ZINB m odel 3 0  ZINB m odel

0.0 0 2 0.4 0 6 O .e 1 0 00 0.2 0 4 0.6 0.8 \ 0

(a) (b)

2 0  ZINB m o d e l 3 0  ZIN B m o d e l

0 0 0 2 0 4 0 6 0 8 1 0 0 0 0 2 0 4 0 6 0 8 1 0

(c) ( d )

2 0  ZIN B m o d e l 3 0  Z IN B  m o d e l

00 0 6 1 00 2 0.4 0 8 0 0 0.2 0 4 0.6 0 8 1.0

(c ) (f)

F ig u re  7.18: Comparison of the cross-vaUdation 95% inverse predictive densities produced 
by the zero-inflated Negative Binomial (ZINB) model in both 2 and 3 climate dimensions. For 
comparison purposes, the joint climate posteriors in SD are marginalised to the 2D setting. 
The buffer region used in the 2D setting to restrict implausible climates is clearly visible in the 
3D reconstructions, resulting in boundary effects on the inverse predictive densities (denoted 
by the dark black regions in the contour plots).
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Figure 7.19: Sample density plots of the R M S E P  and Dmode for the zero/N-inflated Bino­
mial model in 2D and 3D.

Model A R M S E P ■̂ mode
2D Zero/N-inflated Binomial 13.23% .1252 .0994
3D Zero/N-inflated Binomial 9.32% .2372 .1943

Table 7.6: Summary statistics for model fit and comparison for the zcro/X-inflated model 
for both 2 and 3 dimensions of climate. The zero/N-inflated model in 3D is a better fit to 
the data in terms of A but provides more conservative posteriors on climate as evidenced by 
R M S E P
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Figure 7.20: Comparison of inverse cross validation predictive densities produced by the 
zero/N-infiated Binomial model in 2 and 3 climate dimensions. For comparison purposes, the 
joint climate posteriors in 3 dimensions are marginalised to the 2 dimensional setting. The 
true climate location is marked by the intersection of the two lines.
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S h o rtco m in g s  o f 3D M odels

Wiiilst the predictive accuracy of the reconstruction models is observed to improve substan­
tially given the incorporation of the A E T /PE T  variable, model shortcomings remain. For 
example, for the model with the best predictive performance in 3D, the zero/N-inflated Bi­
nomial model, the saturated cross-validation accuracy. A, is 9.32%. Whilst this represents a 
substantial improvement in prediction accuracy over the 2D setting, its value is still signifi­
cantly greater than 5%, indicating tha t there may remain unidentified factors which impact 
on model performance.

There are several possible sources for the loss in predictive power. Inference procedures 
are empirical Bayes based, thus all uncertainty in the model parameters is not taken into 
account. Furthermore, the forward model was calibrated using a dataset from which the 
detected outliers were not excluded. One other possible source for the loss in predictive power 
was identified in Section 7.2.5 previously; specifically, exploratory analysis of the posterior 
random effect terms of the Cedrus taxon revealed a link between outlying behaviour, in terms 
of larger than expected counts, and extreme MWTA values. This result is confirmed across all 
taxa in Figure 7.21 below; essentially, a sample density plot of the MTWA values recorded at 
each of the 7742 sites is compared to a sample density plot of the MTWA values corresponding 
to the 9.32% of observations in the RSIO dataset for which climate was incorrectly classified. 
A distinct pattern emerges - climate prediction accuracy is observed to be poor at sites with 
extreme MTWA values. In Section 8.2.2 we discuss a modelling approach which may facilitate 
the inclusion of the MTWA climate covariate in the forward models to address this issue.
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Figure 7.21: The sample density of 2 sets of MTWA from the RSIO dataset. The black 
line represents the entire dataset whilst the red line represents the sample density of those 
altitudes for which prediction was incorrect.
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7.4 Fossil C lim ate R econstruction at Glendalough

In the following we compare and contrast the fossil climate reconstructions produced by a 
number of the models introduced in the preceding sections - the specific purpose here is to 
highlight the impact of model choices at the forward stage on the climate predictions tha t are 
ultimately produced using the calibrated models at the inverse stage.

The fossil pollen core we use for illustrative purposes is from the Glendalough lake site 
in Wicklow, Ireland (Haslett et al. 2006). The data  consists of 150 slices of lake sediment 
with sample pollen percentages for each of 28 plant taxa available for each slice. In order to 
transform the percentages into a format compatible with the calibrated forward models, the 
percentages are rescaled to a per mille basis and a total count sum of 1000 is then assumed. 
For simplicity in the following, we fix the calendar (year) ages of the slices at their maximum 
a posteriori (MAP) calendar ages, as obtained from Haslett & Parnell (2006), with the ages 
ranging from present day to approximately 15,000 years ago. Haslett et al. (2006) provide 
an estimate of present day GDD5 and MTCO values for Glendalough, giving estimates of 
1772 degree days for GDD5 and an MTCO value of 4.4‘’C. Based on the estimated (mod­
ern) AET PET values of a number of sites (in the RSIO training dataset) coincident to the 
Glendalough site, an A E T /P E T  ratio of 1 seems reasonable.

We consider two models for reconstruction purposes. These are tlie zero-inflated Nega­
tive Binomial model and the zero/N-inflated (nested) Binomial model. Reconstructions us­
ing both 2D and 3£> versions of the models are produced; model inversion is via the novel 
sampling-based scheme introduced in Section 6.3.2. Use of the sampling scheme here results 
in a significant speed up in model inversion, reducing the time taken to provide the climate 
reconstructions by half in the context of the 2D zero/N-inflated Binomial model (12 minutes 
vs 25 minutes) and by a factor of ~  20 for the ‘iD  models (1.15 hours versus 22 hours). 10,000 
samples appear sufficient to produce accurate inferences on fossil climate for each respective 
model.

In Figure 7.22 (a - d) we present the climate reconstructions for GDD5 at Glendalough. The 
reconstructions produced by each model indicate the occurrence of an extreme climate event 
approximately 10,000 years ago and this event is known as the Younger Dryas (see Haslett 
et al. (2006) for further details). Three of the four models indicate the presence of an additional 
climate event approximately 14,000 years ago, though in the context of ZD zero-inflated model, 
evidence for this is weaker than the nested models. Note that, owing to the zero'N-inflated 
model accounting for the compositional nature of the pollen dataset, the resulting climate 
reconstructions contain much more uncertainty than the zero-inflated Negative Binomial model 
equivalents.

In the context of the MTCO reconstructions a t Glendalough, in Figure 7.23 (a-d) we 
observe a much greater contrast in the climate reconstructions produced by each model, noting
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F ig u re  7.22: 50% & 95% HPD regions for the reconstruction of GDD5 at Glendalough for 
the zero-inflated Negative Binomial model and zero/N-inflated (nested) Binomial model in 
both 2D and 3-D.
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a striking difference between the respective 2D and 3D reconstructions. W ith the inchision of 
the A E T /P E T  covariate. the inferred chmate change corresponding to the Younger Dryas at 
Glendalough appears to be —35°C on average lower for the 3D zero-inflated Negative Binomial 
model as compared to its 2D equivalent. The (X)rresponding difference for the zero/N-iuflat(!d 
model is around -15°C . Additionally, both 3D models indicate the presence of a rapid 
warming and cooling event around 14,000 years before present - for the 2D zero/N-infiat('d 
model, the evidence for this is much weaker. Crucially, the 2D zero-inflated Negative Binomial 
model, as in Haslett et al. (2006), does not well reflect the Younger Dryas at all.

However, there is significant contrast between the respective 3D reconstructions, in that 
the 3D zero-inflated Negative Binomial model suggests that the change in MTCO during 
the Younger Dryads period was significantly more extreme than that proposed by the zero/N- 
inflated Binomial model. A further im portant point to note is that, whilst the 2D zero/N- 
inflated Binomial model and the 3D zero-inflated Negative Binomial model are broadly similar 
in terms of saturated cross-validation prediction accuracy, they produce fossil climate recon­
structions that are substantially different; this is an important result, indicating the influence 
of the A E T /P E T  climate variable on the MTCO reconstructions produced and validating its 
inclusion in the forward models.

Finally, as the 2D models do not include the AET PET variable, only two reconstructions 
are presented in Figure 7.24 (a - b). The 3D zero-inflated Negative Binomial model indicates a 
substantial change in the moisture availability for plant uptake during the Younger Dryas, sug­
gesting climate conditions similar to boreal or artic type climatic conditions, and a substantial 
decrease in moisture availability. Conversely, reconstructions from the zero/N-inflated model 
suggest tha t the opposite was the case; while the 50% IIPD regions appear more conservative 
pre-10,000 years ago than at present, they still place the majority of the highest predictive 
mass at A E T /P E T  ratios above .6, indicating a far less harsh climate than that reconstructed 
by the zero-inflated Negative Binomial model.

In the following, a more in-depth evaluation of the produced chmate reconstructions is 
provided. We identify the 3D zero N-inflated Binomial model as producing reconstructions 
which appear to best agree with reconstructions from other, independent sources and also 
provide a rationale for this result.

7.4.1 D iscussion

In the preceding section we observed tha t vastly differing climates at Glendalough are recon­
structed conditional on the forward model used. In the following, we discuss these climate 
reconstructions in further detail and discriminate between them by comparing them to recon­
structions obtained from independent sources.

Firstly, in Figure 7.25 we present the tem perature reconstruction at a site in Greenland
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F ig u re  7.23: 50% & 95% HPD regions for the reconstruction of MTCO at Glendalough 
for the zero-inflated Negative Binomial model and zero N-inflated (nested) Binomial model 
in both 2D and 3Z?. There are striking differences in the reconstructions produced by each 
model.
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F ig u re  7.24: 50% & 95% HPD regions for the reconstruction of A E T /PE T  at Glendalough 
for the zero-inflated Negative Binomial model and zero/N-inflated (nested) Binomial model in 
both 2D and 3D.

obtained via analysis of high resolution oxygen-isotope records; this is the GISP2 dataset 
of Grootes & Stuiver (1995)). The reconstruction indicates there there was rapid and extreme 
tem perature changes in the period between 10,000 - 15,000 calendar years before present.

While the location of Greenland is (relatively) far from Ireland, climate reconstructions 
for locations across Europe, which also indicate large scale climate changes in this period, 
are separately provided by a number of authors; Seret et al. (1992) detail rapid tem perature 
changes at Place des Vosges in France during this period, reconstructing climate using data 
from both beetles and pollen. W atts et al. (1996) and Allen et al. (1996) observe large-scale 
climate variability for sites located at Iberia in Spain and Monticchio in Italy (both reconstruc­
tions are pollen-based). Isarin (1997) reconstructs the tem perature across Europe during the 
Younger Dryas, noting large-scale temperature drops during this period based on tlie analysis 
of periglacial features. Brooks & Birks (2000) (using chironomids) and Atkinson et al. (1987) 
(using beetles) also provide evidence for large scale climate changes during this period at sites 
in Britain.

Therefore, our first conclusion is that the palaeoclimate reconstructions produced by the 
2D models are not plausible as they do not agree with other independent sources. The 2D 
zero-inflated Negative Binomial model does not identify the large scale climate changes which 
occurred during this period. Furthermore, based on the available literature, the changes 
indicated by the 2D zero/N-inflated Binomial model are not sufficiently extreme. These con­
clusions reflect the importance of the AET/ PET climate variable for accurate reconstructions 
using pollen-based proxies.
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F ig u re  7.25: Temperature reconstructions at a site in Greenland for the past 15,000 years.

A further result which requires investigation are the substantial differences in the recon­
structions of MTCO and AET PET produced by the 3D  models during the Younger Dryas 
period. According to Isarin (1997), average MTCO temperatures during this period, at lati­
tudes similar to that of Glendalough, were between —15°C and —25°C. Atkinson et al. (1987) 
propose values between —20°C and —25°C for sites across Britain (including Ireland). Fur­
ther evidence for this range of values is provided by O’Connell et al. (1999) who suggest that 
“winter temperatures were probably —20°C or lower” in Ireland during the Younger Dryas 
period. The inferences made by each respective author were derived from quantitative-based 
reconstruction methods.

These results indicate that the reconstruction for MTCO produced by the zero-inflated 
Negative Binomial model for the Younger Dryas period at Glendalough is in fact too cold. 
This perhaps, is a reflection of model inadequacies - the compositional nature of the data  is 
not taken into account at either the forward or the inverse stage. The reconstruction is thus 
based on the premise that the 28 available pollen counts, many of which are zero, each provide 
independent pieces of information, which is untrue. Additionally, a large percentage of the 
fossil pollen counts during the Younger Dryas correspond to the Betula taxa. This perhaps 
provides a further explanation for the extreme tem peratures reconstructed - Seret et al. (1992) 
notes a tendency for reconstruction models to produce climate reconstructions tha t are too 
cold in settings where Betula dominates the pollen assemblage.

One final conclusion we make is that, in the context of the various reconstruction models 
presented in this thesis, the zero N-inflated Binomial model appears to produce fossil climate 
reconstructions which agree favourably with the reconstructions produced by several authors.
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based on a variety of reconstruction methods, and is therefore the model to be preferred for 
reconstruction purposes.

7.5 Conclusions

In Salter-Townshend (2009), the predictive accuracy of the partially nested model was just 
74.5% (A =  25.5%). Uncertainty in the recorded climates at individual sites was proposed 
as the cause of the poor prediction accuracy and ad-hoc, “Gaussian blurring” of posteriors 
was used to substantially improve this result. However, the work detailed in this chapter 
has indicated that this hypothesis is erroneous - the poor predictive performance experienced 
by Salter-Townshend (2009) appears to have been a manifestation of the failure to fully account 
for the compositional nature of the RSIO dataset and the omission of the A E T /PE T  climate 
covariate from forward models. The evidence for this statement conies from the result that 
the saturated cross-validation inverse predictive accuracy of the iD  zero/ N-inflatcd Binomial 
model, developed in this thesis, is approximately 91%, indicating tha t there is little impact of 
uncertainty in the data  upon predictive performance.

Explicit criticism of the forward models was not considered in Haslett et al. (2006) or Salter- 
Townshend (2009). In contrast, here the use of Gaussian random effect terms to model overdis­
persion of the pollen counts provides a method for examining model fit at the forward stage. 
For the zero-inflated (Gaussian overdispersed) Poisson model in 2D, we observed that the a 
priori specification of a Gaussian distribution for the random effect terms was inappropriate 
for a number of the pollen taxa (Figure 7.10), with quantile-quantile plots of the mean poste­
rior random effects indicating that a Gamma distribution is perhaps more suitable. Further 
evidence for this result is perhaps provided by the slightly better predictive performance of the 
zero-inflated (Gamma overdispersed) Negative Binomial model in 2D. However, in the context 
of the 3Z) zero, N-inflated model, the a priori assumption of Gaussian behaviour proved quite 
reasonable, as determined by the visual analysis of a number of quantile-quantile plots (Fig­
ure 7.1), though there appear to be some evidence of skew behaviour in the posterior random 
effect terms.

As previously illustrated, the posterior random effect terms are a flexible tool that may also 
be used for outlier detection: analysis of the posterior random effect terms for the Cedrus taxon 
allowed for a detailed investigation of potentially outlying observations within the training 
dataset. A number of outliers were identified, some of which were possibly due to mislabeling 
of pollen samples at the data  collection stage. However, other detected outliers hinted at 
underlying model weaknesses; the random effects provide evidence that the addition of the 
MTWA climate variable to the forward models may be required for more accurate climate 
reconstruction. A future task involves the repeating of this analysis for each taxa with the 
aim of removing the spurious observations from the RSIO training dataset.
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For all models applied to  the RSIO train ing datase t, the overdispersion param eters are 

significantly non-zero. This indicates there is variability in the  pollen da tase t over and above 

th a t  expected by the zero-inflated models. A further point to  note is th a t  there appears 

to  be substantial X-inflation in the dataset. This result is confirmed by the significantly 

non-zero average value of 0 !2  across all tax a  in Table 7.3. In a ttem p tin g  to  account for the 

exccss variability in the dataset due to  this X-inflation, the overdispersion param eter of the 

zero-inflated Binomial model is, on average, significantly overestim ated (Table 7.3). Note 

th a t the statistically  consistent zero/N -inflated Binomial model displays superior predictive 

perform ance, in term s of A, to  the statistically  inconsistent zero-inflated Binomial model.

Exam ination of the A statistics of each of the  marginal models reveal th a t, whilst the 

assum ption of taxon independence in three clim ate dimensions appears to  be more acceptable 

th an  the assum ption of taxon independence given ju st two, the model fit is still quite poor 

(A =  15.84%). As the RSlO dataset is com positional in nature, it is speculated th a t  th is poor 
predictive accuracy is due to  the lack of accounting for th is com positional s tructu re  in the 

forward models.

T here are striking differences in the reconstructions obtained for the  fossil clim ate a t Glen- 

dalough by both  marginal and nested models in 2D  and 3D. The results obtained using the 
best fitting 3D  zero ^N-infiated model are shown to  be the only one to  agree w ith the existing 
literature; the use of a by-taxon model in 3D  reconstructs clim ates during the Younger Dryas 

th a t are simply too cold to  have existed in Ireland at th a t time. T his is due to  the  pre­
dom inance of Betula pollen in the fossil pollen assemblage during this period. An additional 
conclusion of the comparison of the reconstructions in both  2D  and 3D  is th a t the  A E T /P E T  

clim ate variable is essential for the capturing of extrem e clim ate events in the fossil pollen 

record.

T he development of a fast sam pling-based scheme for model inversion is shown to  sub­

stan tially  reduce the tim e taken in model inversion. As com pared to  num erical integration 

m ethods based on quadrature, the sam pling-based scheme results in a speedup of m odel inver­

sion by a factor of 20 for the 3D  zero/N -inflated Binomial model. T he corresponding speedup 

in the  2D  setting was only a factor of 2, indicating th a t the  com putational advantages of 

the sam pling-based scheme are more pronounced for increasing C . If uncertain ty  in model 

hyperparam eters was additionally taken into account, the com putational and tim e savings of 

the sam pling-based approach would be even greater.
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Chapter 8

Conclusions and Further Work

The m otivating apphcation of the research contained in this thesis concerns the statistical 

reconstruction of fossil clim ate from fossil pollen data. There are many challenging features 
of this ])roblem, bo th  in term s of model h tting  and in the inverse use of the fittcxi models for 

prediction. In seeking to  address these challenges, several im portant research contributions 

have been made. In the following we sum m arise these contributions and reflect on several 
conclusions regarding the palaeoclim ate reconstruction process, as derived from the applied 
work.

8.1 C onclusions

Model validation forms a crucial p art of model development, involving the evaluation of a priori 
modelling assum ptions and the analysis and identification of possibly spurious observations 
w ithin the train ing  dataset. However, in settings where the response consists of discrete, non- 

Gaussian count observations, such as in the case of the RSlO pollen dataset, these tasks are 
difficult to perform.

This problem has m otivated the development of a methodology for Bayesian residual anal­

ysis and outlier detection in the non-Gaussian setting, based on the analysis of Gaussian 

approxim ations to  posterior random  effect term s. We conclude th a t the approach has distinct 

advantages over existing m ethods as regards both  com putational speed, crucially due to  the 

harnessing of fast approxim ate Bayesian inference algorithm s, and the autom atic provision of 
m etrics by which to system atically determ ine potential outliers. It is also dem onstrated  th a t 

exploratory tools from classic G aussian residual analysis may be harnessed to  gain an ex tra  

insight into underlying model dynamics, facilitating subtle criticisms of extraordinarily  com­

plex models. A pplication to  two contrasting datasets in this thesis have revealed the power of 
the approach.

However, the weaknesses of the proposed methodology are also quite evident. The success.
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or otherwise, of the approach is intrinsically linked to the degree of overdispersion in the data, 
resulting in poor model performance if the overdispersion is small in magnitude. Furthermore, 
the outlier detection properties of the approach, in the context of observations with low count 
values such as binary outcomes, or the presence of many zeroes, is shown not to perform well.

Forward models which fail to acknowledge the compositional nature of multivariate count 
datasets, where the counts are constrained to sum to a total, result in fitted models with 
poor prediction accuracy, as determined by A. The resulting inverse predictive posteriors 
are not always sufficiently conservative and/or erroneous in location. Hierarchical (nesting) 
structures are shown to provide a useful manner of addressing this problem, facilitating the 
decomposition of multivariate compositional data models into a series of separate univariate 
models, for which inference tasks are much less computationally challenging. Such structures 
provide a full, but not necessarily unique, decomposition of model likelihoods.

However, careful comparison of the leave-one-out, inverse cross-validation prediction ac­
curacy of each of the possible nesting structures can help discern the optimal structure. In 
situations where the number of groups is extensive and thus the investigation and evaluation 
of all possible nesting structures is not possible, expert opinion can be used to reduce the per­
m utations of nesting structures to a manageable number. This approach provides the nesting 
structure identified for the RSIO pollen dataset in this thesis.

Application of standard zero-inflation models to Binomial response data can lead to statis­
tically inconsistent inferences in model fitting. It is observed that this statistical inconsistency 
results in the overestimation of overdispersion parameters and a reduction in the inverse pre­
dictive accuracy of the calibrated models due to the mislocation of predictive posteriors. A 
parsimonious model is developed which also addresses this "N-inflation” of the data. The 
model carries one extra hyperparameter over the standard zero-inflated setting. The applica­
tion of the new model to the RSIO pollen dataset reveals a substantial improvement in inverse 
predictive accuracy.

Model inversion via numerical integration methods, in the context of large multivariate 
inverse inference problems, can be extremely slow and computationally wasteful. Predictive 
posteriors for climate, given the fossil pollen counts, are frequently only significantly non-zero 
at a small subset of the discretized space under consideration. Thus the evaluation of climate 
posteriors at all gridpoints, required in order to obtain normalising constants for numerical 
integration based model inversion, is disadvantageous.

This problem is addressed in this thesis via the development of a fast sampling based 
inference procedure for computationally efficient model inversion. Laplace approximations to 
the inverse predictive posteriors at each gridpoint are used to both detect locations for which 
the inverse posterior predictive density is negligible, and provide a proposal distribution for the 
sampling scheme. The dramatic time savings of the approach are illustrated with application 
to the Glendalough fossil pollen core; full inference on the unknown fossil climates at the
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Glendalough site is reduced from 22 hours, using deterministic quadrature, to around an hour 
for the samphng-based scheme. This procedure has general application in the paradigm of 
inverse inference problems where model hyperparameters are placed on a discrete grid and the 
forward model posterior is Gaussian.

Significant advances have been made in this thesis as regards the modelling associated 
with the palaeoclimate reconstruction problem. The best fitting zero/N-inflated Gaussian 
overdispersed (nested) Binomial model is considerably richer than existing models, enabling 
explicit criticism of both the training dataset and the fitted models. It is demonstrated that 
the inclusion of an extra climate covariate and the full addressing of the compositional nature 
of the RSIO dataset leads to a class of models which have significantly superior predictive 
accuracy as compared to existing approaches. The rate of successful climate prediction, being 
approximately 91% for the training dataset, is slightly less than desired, reflecting remaining 
modelling as well as data quality issues. The MTWA climate variable, which evidence suggests 
is required for more accurate climate prediction, is not currently included in the forward 
models. Furthermore, the removal of outliers from the training dataset and the updating of 
models in light of this has not yet been completed.

The reconstruction of the fossil climate at Glendalough has provided considerable informa­
tion regarding the palaeoclimate reconstruction process. This provides the basis for a number 
of (“onclusions. Spccific;ally, marginal models, which do not account for the compositional 
nature of the pollen data, will perform poorly in comparison to nested models at the recon­
struction stage, potentially leading to erroneous and misleading inferences on climate and 
weaker reconstructions. Additionally, three climate variables, at a minimum, are required in 
the forward stage models, with the variables MTCO, GDD5 and A E T /P E T  appearing to be 
particularly crucial for accurate inference on fossil climate. Interaction between these climate 
variables must also be accounted for at both the forward and inverse stages.

Evidence for these conclusions is provided by the comparison of the reconstruction out­
put of the fitted models with a number of separate, independent reconstructions from the 
palaeoclimate reconstruction literature, obtained from a variety of proxy sources.

8.2 Further Work

Whilst the research presented in this thesis has contributed substantially to the palaeoclimate 
reconstruction project, several outstanding challenges remain. In the following the nature of 
these challenges is briefiy outlined.
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8 .2 .1  A n a lysis  o f  th e  RSIO P ollen  D a ta se t

A major contribution of the research contained in this thesis is the development of a methodol­
ogy for forward model criticism and objective outlier detection through the analysis of posterior 
random effect terms, A sample application of this methodology to the Cedrus taxon, presented 
in Section 7.2.5, revealed model imperfections - several of the proposed outliers were identified 
as possibly arising due to the failure to explicitly account for the MTWA climate variable 
in the forward models. Others were identified as a possible manifestation of analyst error in 
pollen identification at the data collection stage.

However, no attem pt is made in this thesis to correct the forward models in light of the data 
identified as erroneous. For a thorough analysis, the outliers identified for each individual plant 
taxon must be analysed on a case by case basis to differentiate truly spurious observations 
from those resulting due to labeling issues, a necessarily laborious task. This task also requires 
the provision of expert opinion in order to correctly reclassify mislabeled observations. The 
forward models must then be refit given the updated data set. Only preliminary work in this 
regard has begun.

8 .2 .2  4 D im en sion a l C lim ate Space

The saturated cross-validation inverse predictive accuracy of the best fitting 3 dimensional 
(nested) model in this thesis is approximately 91%, tha t is to say that nearly 91% of the climate 
observations in the model training dataset are contained within their respective saturated 95% 
HPD inverse posterior predictive density region. This result indicates that forward models 
based on 3 dimensions of climate alone are perhaps insufRcient to fully describe pollen-climate 
interaction. Whilst the 3 climate variables considered in the forward models in this thesis are 
advocated as the most important for climate reconstruction by the botany community, the 
exploratory analysis presented in Section 7.2.5 identifies a further link between a deterioration 
in model predictive performance and high values of the MTWA climate variable.

The extension of 3 dimensional models to incorporate this additional climate variable is 
infeasible given the current modelling approach, which is based on the use of GMRF prior 
models. The discretization of chmate space to a regular 50 x 50 x 50 x 50 grid in 4 climate 
dimensions, req\iired for the specihcation of GMRF prior models, results in the order of 6 
million latent variables for each pollen taxa. This number can be reduced dramatically by the 
“cutting out” of regions of space which are not of interest, as in the 3 dimensional climate set­
ting. However the number of latent variables remaining will still be quite large. An additional 
obstruction is the nature of the neighbourhood structure of the second order intrinsic GMRF 
prior which will necessarily be much less sparse in AD than 3D.

Due to the dimensionality of the RSIO pollen dataset, the consideration of multivariate 
Gaussian prior models, involving the manipidation of dense covariance matrices of dimension
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7742 X 7742 are equally infeasible. However, Gaussian predictive process models (Banerjee 
et al. 2008) provide a potential solution in this regard. Essentially, the multivariate spatial 
process defined at each of the 7742 data  locations is projected to a lower dimensional subspace 
of “knots” which arc constructed to be substantially fewer in number than the number of 
data  locations. This results in a substantial speeding up of matrix manipulations involving 
covariance matrices at moderate cost in loss of inferential accuracy. For an broader discussion 
of the relative merits and demerits of the approach, we refer the interested reader to Banerjee 
et al. (2008). One final important point to note is that Eidsvik et al. (2010) has shown that the 
predictive process approach is also compatible with the INLA algorithm of Rue et al. (2009), 
retaining the ability to quickly fit and analyse forward models for the data.
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