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Abstract

“... we are trying to conceive a new way of thinking about computers in the world, one that

takes into account the natural human environment and allows the computers themselves to

vanish into the background” - Mark Weiser, 1991 [1].

Weiser was ahead of his time with this visionary idea of a ubiquitous computing environ-

ment that would enhance and improve daily life. His ideas involve a paradigm shift away

from the constraints of the one-on-one personal computer situation which is now a common

part of daily life. Although technology has not reached Weiser’s adventurous predictions,

progress to advance state-of-the-art in ubiquitous computing is under-way.

Furthermore, current research projects within the Knowledge and Data Engineering Group

(KDEG) closely resemble some of Weiser’s early visions. Software is being developed here

to implement intelligent environments. Inside these smart worlds, doors open automatically

but only to authorized persons, rooms identify people on entry and the environment as a

whole works to recognise the behavioural patterns and intentions of those living and working

in the space. Universal progress on the development of ubiquitous computing technologies

has been hindered by a commonly recurring set of problems involving cost and logistics when

implementing suitable test environments.

This dissertation describes TATUS, a ubiquitous computing simulator aimed as overcom-

ing these cost and logistical issues. Based on a 3D games engine, the simulator has been

designed to maximise usability and flexibility while minimising working knowledge of the

game engine.
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Chapter 1

Introduction

This dissertation describes a simulator called TATUS that has been developed to support

researchers writing software to control ubiquitous computing environments. A peripheral

piece of software-under-test (SUT) connected to the simulator assimilates exported state in

order to develop its own representation of the world. Based on the view the SUT holds of

the environment, it makes decisions to change the world in reaction to user movements and

behaviour. The overall effect is to allow the SUT to control the TATUS virtual environment

such that the environment behaves intelligently according to the experimental goals of the

SUT. The graphics and network connection features of a game engine have been exploited to

support the core simulator.

Figure 1.1 High-level simulator overview.
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1.1 Project Motivation

When developing devices, protocols and software to support a ubiquitous computing environ-

ment, the common problem set encountered involves cost, logistics and location. Acquisition

of adequate resources, such as embedded and hand-held devices, often prohibits experimen-

tation by exceeding the project budget. In the case that resources are freely available, the

logistics of managing large scale projects and instructing a test user community are complex

and time-consuming.

In addition, most ubiquitous computing applications require testing and experimentation

in their target location for valid and beneficial results to be produced. Through careful

device positioning, a standard office can be adapted to resemble another environment such

as a living-room, however it is difficult to simulate large or specialised locations, for example

an airport.

In response to these issues, TATUS provides a virtual ubiquitous computing environment.

Cost is no longer a problem because all TATUS ubiquitous computing environments are

assumed to be fully equipped and configured. Complex logistics, although not eliminated are

alleviated because the test-arena is configured and monitored from a single desktop machine.

Finally the virtual world is built in accordance with experimental requirements which means

a suitable location is always available.

Currently within the Knowledge and Data Engineering Group (KDEG), there are a num-

ber of researchers developing software intended to control ubiquitous computing environ-

ments. The software is being designed with a view to providing the intelligence that supports

smart environments. The simulator provides a test-bed to execute experiments that test the

logic and rules implemented within the SUT code. Prior to this, the research group has lacked

a ubiquitous computing test-bed, hindering developers as they try to validate their work.

The envisaged benefits of the simulator include:

• Provision of a research test-bed to experiment with SUT.

• Experimentation without the cost and logistical issues presented by physical installa-

tions.

• Flexible experiments because multi-player game settings allow multiple researchers to
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interact in a single experiment while non-player-character (NPC) Artificial Intelligence

(AI) allows a single researcher to work independently.

• Replication of experiments using saved settings.

• Experiment review by rerunning recorded and logged experiments.

1.2 Project Objectives

The objective of the project was to develop a 3D simulator to satisfy the following objectives:

1. Allow researchers to connect software-under-test (SUT) to the simulator.

2. Allow researchers to select simulator events of interest for notification to the SUT.

3. Provide researchers with an instruction protocol allowing the SUT to control actions

within the simulator.

4. The simulator must be flexible to handle diversity in research projects and cope with

multiple SUT connections in parallel.

5. The simulator must be usable. In particular, this means a straightforward intial setup

procedure and an easy mechanism to configure and run tests.

6. The simulator must realistically reflect the current state of ubiquitous computing tech-

nology e.g. pressure sensors and RFID (Radio Frequency Identification) tags. This

version of the simulator is not aimed at developing new device technology, communica-

tion protocols or wireless media.

1.3 Dissertation Structure

Chapter 2: State-of-the-Art Chapter 2 notes diversity in ubiquitous computing test-

beds. The chapter specifically focuses on UbiWise [2], a 3D ubiquitous computing

simulator that is well recognised. The second section of the chapter provides the rea-

soning behind supporting TATUS with a game engine. This section also covers the

process of selecting an appropriate game. The final section of the chapter introduces

Half-Life, a first-person-shooter (FPS) game.

3



Chapter 3: Design Although from the outset, there were clear high-level goals for the

final deliverable, the requirements for the project were drawn-up based on meetings

with potential users. The first part of this chapter presents those requirements. The

second part of the chapter discusses the TATUS design.

Chapter 4: Implementation Chapter 4 explains how components of the system are im-

plemented by modifying the game engine. The chapter first presents the relationships

between system components followed by the implementational details behind each sys-

tem element.

Chapter 5: Results, Evaluation & Discussion Chapter 5 presents results, evaluation

and discussion of TATUS. Results are divided into two sections according to two sep-

arate simulator prototypes. The section titled evaluation is a theoretical comparison

between the final implementation and the original objectives. Finally the chapter fin-

ishes with a discussion that compares TATUS to its counterpart UbiWise.

Chapter 6: Further Work & Conclusions Chapter 6 presents ideas for future develop-

ment of the simulator followed by conclusions about the success of its design and im-

plementation.

4



Chapter 2

State of the Art

The following chapter is divided into two sections. The first section discusses some existing

technology that has been implemented to test and evaluate ubiquitous computing environ-

ments. The second section of the chapter focuses on the 3D game engine which is used to

render the virtual ubiquitous computing environment inside TATUS.

2.1 Ubiquitous Computing Simulators

In the paper “User Study Techniques in the Design and Evaluation of a Ubicomp Environ-

ment” [3], Consolvo and Arnstein make the claim that techniques for evaluating and assessing

ubiquitous computing environments have not yet been well-established. A variety of practices

are currently used to test ubiquitous computing environments, with many research groups

developing test arenas specifically tailored towards their own experiments. The following

section presents research projects currently active along with the methods of testing and

experimentation employed to evaluate their work.

The Sentient Computing Project [4] is moving away from the conventional view that

human-computer interaction is all premeditated and involves explicit deliberate actions with

a computer interface. The project is working to develop applications that can model a true

representation of the world so that a person’s natural surroundings become in essence a user

interface. The natural movements and gestures of people occupying the space become the

input commands to the application controlling the environment.

The Sentient Computing Project has set up a physical test-environment in the Engineering

5



Figure 2.1 The Sentient test environment.

Department at Cambridge University. Figure 2.1 shows the real-world environment with the

graphical representation drawn up by the application alongside. The application received

input from sensors and actuators embedded in the room. The red colour applied to the

phone in right-hand image of Figure 2.1 demonstrates the application’s ability to recognise

when the phone is use.

Earlier this year Ricardo Morla and Nigel Davies evaluated a location-based ubiquitous

computing application using a hybrid test environment [5]. A remote medical monitoring

system was implemented as the test application. Using existing network and context simula-

tors the team simulated the potential conditions that occur in a user’s home e.g. temporary

disconnection from the network. From this they were able to verify that the application does

perform reliably under target conditions.

TCD’s KDEG research group is currently researching applications similar in theory to

those being developed by the Sentient Computing Project at Cambridge. However, unlike

Sentient, KDEG does not have a suitable location to setup a similar physical test environment.

Neither is the approach adopted by Morla and Davies using network and context simulators

suitable to satisfactorily test and evaluate the software being developed.

The ideal solution for KDEG researchers is a high quality 3D interactive ubiquitous

computing simulator. Research has shown that only one such simulator, UbiWise [2], has

6



successfully been developed to date. Its design is discussed in the following section and an

explanation is presented as to why the simulator is unsuitable for use as a test-bed for KDEG

research.

2.1.1 UbiWise

UbiWise targets the development and testing of hardware and low-level software for ubiqui-

tous computing devices. The mutual dependency between developing these two technologies

had been hindering real-world development of these types of devices. The UbiWise project

aimed to simulate the existence of devices in order to develop the systems that would run

on them. UbiWise emerged from an amalgamation of two existing simulators, WISE and

UbiSim.

2.1.2 UbiSim

Initially developed as QuakeSim the early goals were to produce context information in real-

time using a semi-realistic environment. Its overall goal was to fill the void for testing and

demonstrating context aware services without the high overhead of installing real physical

devices and operators of those devices. QuakeSim worked by taking raw simulated data

outputted from the Quake III Arena (Q3A) [26] gaming environment and processing it in the

Context Toolkit. The context server was also capable of inserting data produced by real-world

sensors and using the result to deliver meaningful context to applications and services.

When Barton and Vijayaraghavan took over QuakeSim from Bylund and Espinoza they

extended it to become UbiSim. The most obvious changes they made allowed wireless devices

to be displayed rather than weapons for use by the user. So the game Q3A was further tailored

towards the world of ubiquitous computing.

2.1.3 WISE

WISE is not a ubiquitous computing simulator in its own right. The initial motivation be-

hind it was to provide an arena for demonstrating protocols at the application layer without

full-scale development and deployment. On a grander scale it was hoped that WISE would

encourage invention and development of services specifically targeting digital devices con-

necting directly to the Internet e.g. wireless cameras or PDAs. The results produced from
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WISE aimed to guide developers in creating the interfaces and protocols required by such

devices in the face of problems such as latency and connectivity issues.

The Wise environment consists of a 2D world or interface which displays an image of a

simulated device. The user manipulates the device to communicate with real-world Internet

services or other simulated devices. The underlying supporting software is a Web Client that

connects to the desired Internet services and interacts with the outside world via the HTTP

protocol.

2.1.4 UbiWise: UbiSim + WISE

UbiWise makes use of the graphical interfaces provided by each tool. UbiSim provides the 3D

model of the simulated world that the user can navigate around in the first person manner

as is normally done when playing a first-person shooter game. This is called the physical

environment view. In this view, the user’s current weapon becomes the user’s current wireless

device.

The second view provided by the system is called the Device-Interaction View. This is a

Java window as part of the WISE system where screen areas are mapped to particular device

buttons so the device can be controlled by a mouse and keyboard.

UbiWise offers three usage roles. The first role, the user, interacts with the simulated

environment when running an experiment or playing out a scenario. This involves navigating

around the 3D world using the game controls or using the mouse and keyboard to interact

with the WISE interface.

The second role is that of a researcher where the user adjusts the simulated environment,

pre-run time, setting up the world to suit a particular scenario. Generally when using this

type of simulator it is necessary to consider in advance the actions that will be carried out.

For example a meeting requires a conference room with appropriate facilities e.g. large table

but to execute a lecture there must be projection facilities in the room.

The third role is that of a developer, it is the most technical role and is filled by anyone

extending the simulator to improve the ubiquitous computing environment. This includes

incorporation of new devices and wireless media. As a developer the user understands the

background processes to the UbiWise system.

8



Figure 2.2 Client-Server layout of WISE and UbiSim.

2.1.5 UbiWise vs. KDEG Requirements

Based on the project objectives presented in chapter 1, UbiWise will be analysed in terms of

its suitability for KDEG research. The original objective is noted in bold at the start of each

item on the list below.

1. Allow researchers to connect software-under-test (SUT) to the simulator.

Applications or software tested using the UbiWise simulator must first be developed

inside the UbiWise tool. Experimentation with external software is not supported.

2. Allow researchers to select simulator events of interest for notification to

the SUT. From the information presented in the UbiWise paper there is no reason

to believe this feature is supported. Further UbiWise targets testing and development

of hardware and low-level software. KDEG research targets development of high-level

intelligent software capable of controlling smart environments based on the input it

receives from embedded sensors and actuators.

3. Provide researchers with an instruction protocol allowing the SUT to control
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actions within the simulator. From the information presented against requirement

1, UbiWise does not support testing of external software and as such no instruction

protocol is in place for use by the SUT.

4. The simulator must be flexible to handle diversity in research projects and

cope with multiple SUT connections in parallel. UbiWise is tailored very specif-

ically towards testing devices; the tool’s flexibility focuses on device design and config-

uration.

5. The simulator must be usable. In particular, this means a straightforward

intial setup procedure and an easy mechanism to configure and run tests.

Since UbiWise does not satisfy objective 1, it cannot meet objective 5.

6. The simulator must realistically reflect the current state of ubiquitous com-

puting technology e.g. pressure sensors and RFID (Radio Frequency Identi-

fication) tags. This version of the simulator is not aimed at developing new

device technology, communication protocols or wireless media. UbiWise aims

to develop and advance device technology. This goal is completely orthogonal to the

objective 6. From requirement 2, the events generated in such an environment cannot

be guaranteed to exactly reflect the current state of ubiquitous computing technology.

In chapter 5 a full comparison of UbiWise and TATUS is presented as part of the projects

evaluation.

2.2 3D FPS Games

Many of the 3D first-person-shooter network games released for PCs since the late 1990’s

have also released SDKs which allow programmers to modify the game through the inclusion

of new rules, physics, weapons and characters. The term mod is appropriately used to refer

to the games resulting from such adjustments.

The general aim in choosing to use one of these games is to exploit the 3D graphics

engine while mapping the projects requirements into the SDK code to provide a virtual

3D ubiquitous computing environment as a test-bed for researchers. In addition the LAN

style implementation of these games provides potential for multiple researchers to interact
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in a single experiment. Finally, the SDK also provides limited AI and scripted sequences to

include non-player-characters (NPCs) allowing a single researcher to run tests independently.

When choosing the game for this project the potential candidates were Half-Life [17],

Quake III Arena [?, qke]nd Unreal Tournament [29]. Tables 2.1, table 2.2 and table 2.3 show

profiles for Half-Life, Quake III Arena and Unreal Tournament respectively. These games are

designed on the same basic principles and in fact Half-Life is derived from Quake with about

30% of the original code remaining at its core. Research for these games has determined that

Quake III Arena is less mod-friendly than the original Quake release. Mods such as Quake

III Rally [28] have published this as the reason for discontinuing development work on their

mods.

Each of the games would have sufficiently met the project requirements, however Half-Life

outshone the others for two main reasons.

• Firstly, the Half-Life SDK [18] uses a C/C++ combination accommodating object-

oriented modelling and also providing the most accessible implementation language of

the three. Quake uses an adaptation of C called QC, this does not allow object-oriented

style programming, while Unreal Tournament uses an object-oriented language called

UnrealScript.

• Secondly, although Half-Life has not officially been documented by its creators, Valve

[17], the tutorials, articles, forums and advice available online is far superior in content

and comprehensibility than the equivalent texts for either of the other games. For the

most part this was made possible by Botman [21] a programmer who put huge effort into

exploring and documenting the SDK code when the first release was made available.

2.3 Introduction to Half-Life

Half-Life (HL) uses a client-server architecture allowing up to 32 players to compete in a

single game. The server machine runs either in dedicated-mode, full 32 clients, or player-

mode, 15 clients (16 players) in total. Each client has enough built-in artificial intelligence

to estimate player movements in the case of lost messages from the server, correcting to the

true picture of the world when contact is re-established.
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Half-Life
Developer Valve Corporation
Distributor Sierra Entertainment, Inc [20]
Release Date 31 October 1998
Platform PC only, game modification requires C compiler
Mod development Valve HL SDK v 2.3
Editor Microsoft Visual C v 6.0 (as used by Valve)
Map Editor Valve Hammer Editor [19]
Language C/C++ inc object-oriented modeling

Table 2.1 Profile for Half-Life.

Quake III Arena
Developer id Software
Distributor id Software
Release Date December 1999
Platform PC/MAC
Mod development Quake III SDK [27]
Editor Microsoft Visual C
Map Editor Q3Radient [27]
Language QC - A Quake adaptation of C.

Table 2.2 Profile for Quake III Arena.

Unreal Tournament
Developer Epic Games [29]
Distributor Atari [30]
Release Date November 1999
Platform PC/MAC
Mod development UnrealScript source files, UnrealED 3.0
Editor UnrealED 3.0
Map Editor UnrealED 3.0
Language UnrealScript featuring object-oriented modeling

Table 2.3 Profile for Unreal Tournament.
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A total-conversion of HL involves creating new maps, weapons, characters, physics and

rules. The simplest method to modify the game uses map creation alone. To adjust or add

new instances of the remaining items, the HL SDK must be reprogrammed. Both techniques

are discussed in the following section.

2.3.1 Map Creation

New maps or levels can provide the illusion of an entirely new game. Every world is a

combination of basic shapes but through careful application of textures the map’s terrain can

be varied dramatically. Valve released a map editor called Hammer which is a drawing tool

for building maps. Hammer saves maps in the BSP (Binary Space Partitioning) format used

by Half-Life.

BSP files have been designed to improve game play by minimising the calculations involved

at run-time when drawing the environment. The BSP file saves the topology of a map as

a binary tree. Objects that are geographically close in the map are stored in neighbouring

nodes within the tree. In addition to the BSP file, Hammer produces a MAP file which

provides a textual representation of the world. It lists information about objects in the world

such as their name, type, size and coordinates.

Due to the size of images for this section, all screenshots are stored in Appendix G. A

view of Hammer can be seen in Figure 6.6.

2.3.1.1 Brushes & Entities

Figure 6.7 shows a map under development in Hammer. Brushes are the three dimensional

solid objects that represent the physical structure of the room e.g. walls, doors, furniture.

Textures are applied to these blocks to create the door, whiteboard, carpet and walls. Entities,

on the other hand, are neither visible nor physically tangible during game-play. They exist

only through the effects they supply to a map e.g. sound/light. Hammer shows the positioning

of entities through the use of icons e.g. the light bulb at the centre of Figure 6.7. Entity-

Brushes are the result of selecting a brush and associating an entity with it using a technique

called tying. When tied, the combination provides a functional object e.g. a door or button.

Entities in Hammer are selected from drop lists on display in Figure 6.7. The lists are

populated using a text file called the FGD file. This is mentioned here because it becomes
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an important feature in the final design for TATUS. The FGD file can be edited to add

or remove Hammer’s selection of entities. Every entity added to a map can be configured

through Hammer’s Properties dialog box. An important value supplied as part of setting up

an entity is a string value called its targetname. Targetnames are used by HL to identify

entities in a map and are not required to be unique but where entities share a name, the

engine will identify them as a group.

2.3.1.2 Triggers

Triggers are essentially entity-brushes, however unlike the example of an entity-brush that is

a door, triggers are invisible during game-play. They are used to generate events based on

a player’s movements and location. For this reason, they must be invisible so that it is not

possible to consciously avoid them. When a player enters a region of a map occupied by a

trigger the associated event is activated e.g. a door is opened.

As a result, a normal entity alone cannot act as a trigger since the boundary of the trigger

must be detectable to the game engine. In Figure 6.7 triggers can be seen as the purple blocks

surrounding the door. In this instance the triggers are present to open the door when a play

approaches. During the setup process for the trigger, the door’s targetname is stored as the

target for the trigger. At runtime the engine can perform a lookup using the target value to

search for the entity to be activated.

The following section discusses game modification at the next level using the SDK to

reprogram Half-Life.

2.3.2 HL SDK Coding

Coding refers to re-writing the HL SDK by modifying two key dynamic-linked-libraries

(DLLs). The hl.dll controls games rules and entity behaviour while the client.dll is responsible

for screen rendering. The HL SDK divides its code into six folders according to functionality:

• cl dll contains the client.dll code for screen rendering.

• common contains header files built into both the hl and client dlls.

• dll contains the hl.dll code for physics and rules.
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• engine contains code that allows the hl and client dlls to communicate with the core
engine.

• pm shared contains code to handle player movement.

• utils contains code to examine maps and graphical models.

The SDK allows new weapons, characters, physics, rules and graphics to be introduced.

The SDK does not provide access to the underlying support infrastructure for running a game.

This means there is no access to the I/O connection between the game and its peripherals,

namely the player controls and the network connection. This posed a problem for Design 1

which will be discussed in Chapter 3.

Within the SDK’s code, the class hierarchy for entities all stem from a class called

CBaseEntity. This determines that all entities have two important common features. The

first is a data structure called the pev, its full contents are listed in Appendix B. The pev

contains attributes that are relevant to all entities regardless of their derived class. For ex-

ample the targetname supplied through the Properties dialog of Hammer is common to all

entities and is stored in the variable targetname of the pev structure.

The second important feature of the CBaseEntity class is a set of five functions common

to all entities. These functions are Use, Think, Touch, Spawn, and KeyValue.

• Use is invoked to activate an entity e.g. call Use to open a door. As its parameters it

takes pointers to two entities, activator and caller. Activator is the entity initiating the

sequence of events e.g. the player that walked through the trigger. Caller is the trigger

invoking the door’s Use function.

• Touch is invoked when two entities collide, usually due to a player or NPC walking

into another entity. This function will most commonly be talked about in relation to a

player walking through a trigger. A single argument to the function is an entity pointer

to the second entity involved in the collision.

• Think is invoked at regular time intervals and is used to give the impression of thinking.

For example a monster often uses its Think function to intelligently change a player

through a map by invoking its AI at regular intervals.

• Spawn is called when loading a map to initialise each entity in the map.
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• KeyValue extracts the data provided through Hammer’s Properties dialog and uses it

to populate an entity’s data structures.

2.4 Conclusion

Chapter 2 discussed state-of-the-art in terms of a variety of test-beds employed to evalu-

ate ubiquitous computing environments. A 3D interactive simulator called UbiWise was

presented and reasons were provided why UbiWise does not satisfy the objectives for this

project. Finally Half-Life was introduced and the main features of its development environ-

ment were described.
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Chapter 3

Design

Chapter 2 introduced the HL SDK and although in retrospect it is easy to isolate modification

of the game’s code to a limited set of files, the discovery stage and learning curve were both

difficult and time-consuming. Two main factors affected the learning process.

Firstly, although the HL SDK was chosen because its tutorials and articles were by far the

most comprehensible, information in this format is no substitute for well-documented code.

No single website within the Half-Life community condenses all aspects of the engine into a

single source. The second impediment is the SDK’s size. Chapter 2 mentions the directory

structure that stores the SDK’s files. Modification of the SDK targets two specific dll files,

hl.dll and client.dll. Between them, these libraries implement over 250 files and this number

greatly increases when the dependencies on header files stored in the remaining folders are

resolved.

Faced with these two problems, each mutually exacerbating the other, a rapid-prototyping

approach was adopted. Chapter 3 begins its discussion of the simulator’s design by setting

out the project requirements that were drawn up for TATUS.

3.1 Project Requirements

The high-level goal for this project was to provide a convenient and flexible 3D virtual ubiq-

uitous computing environment that researchers can use to test ubiquitous computing applica-

tions currently under development. Chapter 1 gave a broad overview of some key objectives

for the simulator which in the initial stages of the project were outlined in only the most
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general and vague terms.

Specific design requirements were derived by combining these initial key objectives with

requests gathered from departmental researchers. Prospective users attended a workshop in

January 2004 for the opportunity to suggest potential features for the final simulator. The

full potential feature set drawn up at this meeting are documented in Appendix D.

In accordance with the finite time available to complete this project, a subset of features

were selected for implementation. Although many items on the original list are important

characteristics of a ubiquitous computing environment, it was necessary to choose features

that would be most useful in the short term. As a result, items such as state extraction were

chosen before issues such as modeling network connectivity. The selected items are listed

under the Project Requirements List.

3.1.1 Project Requirements List

1. 3D Graphical Interface

Provision of a 3D interactive graphical user interface using an off-the-shelf and modi-

fiable game engine such that a researcher can navigate through the virtual ubiquitous

computing environment.

2. Separation of HL and SUT

The project design must not require that the SUT be developed or integrated as part of

the modified game engine. Instead, extraction of state information will allow the SUT

to control the environment from an external position.

3. Realism

The simulated ubiquitous computing environment must realistically model the equiva-

lent real-world physical implementation as closely as possible. It is crucial that Half-

Life’s complex data system is not exploited in an unreasonable manner.

4. Flexibility

The simulator is being developed to test a range of software. Its design must be generic

and not tailored to provide specific state or to interface to a particular piece of software.
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5. Usability

The connection procedure, resulting from requirement 2, between the simulator and

SUT must be straight-forward and quick to implement. This also supports requirement

4, flexibility, by encouraging re-use of the simulator.

6. Extensibility

Given the finite time allocated for this project, a subset of potential features for the

simulator have been drafted, see requirement 7. This extensibility requirement provides

for extending the feature set at a later date.

7. Short List

(a) Information Extraction: State information is streamed out of the HL environ-

ment to the SUT. The SUT uses the data to build its own picture of the world

relevant to the decisions it has been programmed to make about the ubiquitous

computing environment.

(b) State Selection Service: Researchers are provided with a mechanism to select

a subset of the state information most suited to the goals of the SUT. This is to

avoid a full state dump, potentially containing surplus data and wasting machine

resources.

(c) SUT Influence: The SUT is provided with an interface or API to impose changes

and decisions on the simulated ubiquitous computing environment. Where control

of events has been designated to the SUT it is important that Half-Life’s game

rules and physics do not influence the state of the environment.

(d) Scenario Creation: Researchers can set up a test environment most fitting to

SUT experiments, for example a lecture scenario requires a presentation room.

The following sections of this chapter discuss developing a design to meet these criteria.

3.2 Simulator Design

In the initial stages of the rapid-prototyping approach, the high-level design for the simulator

was generalised and vague as shown in Figure 3.1. The modified game engine and SUT needed
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Figure 3.1 High Level Design Overview.

some method of communication to exchange information. Messages travelling outbound from

the simulator contain state information about the simulated environment. Messages travelling

inbound to the simulator contain instructions to adjust the simulated environment.

There are two specific features introduced as part of this high-level overview. These

features specifically target requirements 2, 4 and 5, the HL/SUT separation, flexibility and

usability and are listed below.

1. Network Connection

The network connection allows the simulator and SUT to run on separate computers.

This is important because when both programs are run in parallel on a single machine

the simulator’s graphics absorb the entire screen. In addition, the keyboard and mouse

are dominated by Half-Life’s player controls. Running each program on a separate

machine means a researcher can view and control both programs concurrently. This is

particularly relevant when debugging test software.

2. Proxy

The Proxy removes any need to integrate a network connection into the SUT code by

providing a ready-made link to the simulator. This is supplied with a view to reducing

set-up time when initially connecting new SUT to TATUS. The Proxy also provides an

API that offers function calls to send and receive messages to and from the simulator.

Two designs were considered for implementing TATUS.
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3.3 Design 1:Exploiting HL’s Client-Server Message System

Network games such as Half-Life use a client-server model to distribute and share information.

Potentially this is a goldmine of opportunity for capturing the state of the environment. The

intended approach involved two steps:

1. Produce a Reduced Client by removing the screen rendering code from the SDK. The

SUT determines no useful information from the image printed to the screen of a com-

puter. Figure 3.2 shows how the SUT interacts with the environment through the

reduced, non-graphical client while researchers continue to make use of the standard

Half-Life client.

2. Capture state as it arrives from the server at the client-side. Primarily the SUT is

interested in changes to the environment and so it will interpret state information as

a delta value calculated from the current and new views of the world. Based on the

calculations the SUT will make decisions and provide instructions that change the state

of the ubiquitous computing environment.

The success of this approach depended on the feasibility of both steps listed above. A

discussion of each follows:

1. Part one of this approach, although never implemented is believed to be feasible. The

HL SDK adopts a split-share approach to its code. All user interface code, such as

graphics and sound, are built into the client.dll file. The rules and physics that support

the environment are part of the hl.dll file. Both dlls work from shared data structures

and variables.

The hl.dll runs AI code to update the shared data. The client.dll reads the shared data

in order to render the world on screen. From this it seems reasonable to assume that

the internal representation of the environment will persist if client.dll is removed from

the project.

2. Chapter 2 discussed both the organisation of files within the SDK’s directory structure

and the access rights of programmers to the core engine code. Part 2 of this design fails

because Valve does not allow modification to the game’s supporting infrastructure. In
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Figure 3.2 Overview of Design 1.
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particular the I/O with peripheral resources such as player controls and the network

connection is protected. Access to the network connection is required to capture state

as it is delivered from the server.

Intercepting messages at this level would have allowed the simulator to capture the full

view of the environment in order to pass it on to the SUT. Instead a mod developer can

only manipulate this data at a much higher level after the messages have been parsed

and their contents distributed to the appropriate variables and data structures.

Overall it was not possible to implement Design 1. Design 2 discusses an alternative

approach sparked by exploiting triggers to generate event-driven messages.

3.4 Design 2: Exploiting Triggers

Based on the information presented about the HL SDK in chapter 2, it is evident that

triggers are used to generate events. There is a definite parallel between this and objective

2 presented in chapter 1. Objective 2 states the simulator must allow researchers to select

simulator events of interest for notification to the SUT.

However, according to requirement 7(c), the SUT must be designated to have complete

control over the outcome of these selected events. The rules and physics in the game engine

cannot intervene or supplement the result. As such, the event’s information must be passed

on to the SUT, which in turn will decide whether or not an environment change is required.

Design 2 began with the adaptation of a standard trigger to capture state information and

stream it out to the SUT.

3.4.1 Ubiquitous Computing Trigger & Information Extraction

In an early prototype experiment for the simulator, a character enters a room, the event is

noted by the SUT and the lighting is switched on. Figure 3.3 shows a map for the scenario.

A trigger has been placed across the doorway to register the event when the player enters

the room. In this scenario the targetname for the light-entity is supplied as the target value

for the trigger.

Under standard game conditions the light’s Use function is invoked for every activation of

the trigger. Removing this function call takes control of the event away from the game. For
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Figure 3.3 Intelligent lighting scenario.
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Figure 3.4 Trigger and Message Sender combination.

the moment this satisfies half of requirement 7(c) by preventing the game from interfering

with the outcome of the event. To further meet the requirement, information about the event

must be gathered and delivered to the SUT.

The expected language choice for implementing SUT is Java. As a result, the connection

mechanism between the simulator and SUT must permit Java and C++ to successfully

communicate. Due to the complex nature of HL, techniques such as RMI (Remote-Method-

Invocation) and technologies such as CORBA are too heavy-weight to be incorporated into

the SDK’s code. In addition, investigation determined that the C++ socket class, CSocket,

is also beyond the tolerance of the HL SDK due to conflicting libraries. Instead a low-level

socket implementation, using winsock.h, proved viable.

Providing each trigger with its own socket connection is not practical in terms of efficiency

or scalability. Such an implementation would require one port for each trigger added to a

map. A second entity, called a Message Sender, is included in the design to host a single

socket connection to the network, see Figure 3.4. Each trigger stores a pointer to the Message

Sender object so that when activated the messages generated can be sent to the SUT through

the Message Sender.

The combination presented in Figure 3.4, shows how a set of triggers and a Message
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Sender work together to pass information out of the simulator and on to the SUT. Streaming

data out of the simulator in this manner is a near fulfilment of requirement 7(a). As was

mentioned in section 3.2, part of this design includes a proxy that hosts a network connection

on behalf of the SUT. The Proxy is responsible for delivery of messages to the SUT which

completely satisfies requirement 7(a). The Proxy’s design will be discussed in section 3.5.

The design so far has partially satisfied requirement 7(c), to completely meet its requisites

an instruction protocol and inbound delivery service is needed.

3.4.2 SUT Influence

An asynchronous messaging system between TATUS and the SUT is used for two reasons:

1. The HL engine will not tolerate a synchronous messaging system whereby game progress

is expected to halt while the SUT performs its processing.

2. Although the SUT is using game events to build up its own view of the world, it may not

want to act on every event that it is notified about. An asynchronous design provides

the SUT with the option to ignore uninteresting events.

From this a separate inbound connection is required from the SUT to TATUS. It has

already been established that the low-level socket implementation used by winsock.h is the

best solution for connections between the SUT and the simulator.

A Message Distributor entity is included in this design to fill two roles:

1. It hosts the second socket added to the simulator.

2. It manages the redistribution of instructions that arrived from the simulator to their

intended entity.

The Message Distributor is designed to use its Think cycle to check the socket for incoming

messages. Based on the targetname supplied in the message, the Message Distributor will call

on an engine look-up function to get a pointer to that entity and thus deliver the message.
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3.4.3 Polling Body

This section temporarily revisits the issue of state extraction. The ubiquitous computing

trigger has fully satisfied the requisites for requirement 7(a) however according to the event-

style messaging used, it is conceivable that the SUT may endure extended periods of data

starvation due to an absence of events. A second entity is introduced to extract data from

the simulator.

A Polling Body imitates the Message Distributor in its exploitation of the Think cycle.

The Polling Body also imitates the ubiquitous computing trigger in its mechanism for sending

messages to the SUT. The combined effect is an entity capable of collecting information at

regular intervals on behalf of the SUT. The introduction of the Polling Body allows this

design to surpass the potential offered by Design 1 mentioned at the start of the chapter.

Design 1 was confined to fixed state deliveries from the central game server. This second

design offers both timed and event-driven state delivery to the SUT. Figure 3.5 shows the

overall design for the 3D simulator component of TATUS.

3.4.4 Messaging Protocol

The messaging protocol provides the vocabulary between the simulator and Proxy. Messages

are written in XML [8] and defined using two DTDs [9] created for both inbound and outbound

messages. All messages are sent in string format, with inbound messages prefixed by their

length to assist dynamic memory allocation on the HL receiver side. DTDs for TATUS are

held in Appendix C.

XML was chosen to structure messages because it fills the two basic criteria required:

1. Messages must be strings or character based for socket based communication.

2. Messages must incorporate semantics about data leaving and instructions entering the

simulator.

Outbound DTD

Outbound messages are produced by two separate types of entity so two separate types

of message exist, event and poll. Since event messages are mainly concerned with entities
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Figure 3.5 Core 3D simulator design.
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and attributes involved in a trigger’s activation, the event message elements are designed

to describe information about the activator, target and trigger. The globals element stores

information sourced from the gpGlobals data structure which is included in Appendix B.

Poll messages use five elements to enclose data, instance, class set, targeting, radius and

globals.

1. Instance elements contain the targetname of a map entity along with a subset of pev

attributes from the named entity.

2. Class set elements are the most sophisticated element. They contain a classname

along with both pev and local variable attribute values. It is not possible to include

local variables for other elements since their classname cannot be predetermined outside

run-time. This element gathers information about all entities of this class.

3. Targeting elements contain the targetname of a map entity along with a subset of pev

attributes. Information is collected for every entity in the map that is targeting the

named map entity.

4. Radius elements contain the targetname of a map entity, an integer value denoting

radius along with selected pev attributes. The radius supplied marks out a sphere

surrounding the named entity. Information is collected about every entity that lies

within that sphere.

Inbound DTD

Inbound messages contain instructions to change the environment. The main commands used

to do this call on an entity’s Touch, Use and Think functions. The Inbound DTD contains

three major elements to accommodate these function calls.

• Touch names the entity receiving the instruction. It also names the other entity that

was supposedly involved in the collision.

• Use names the entity receiving the instruction. It also names the function’s activator

and caller. Finally it specifies a usetype, either switch on, switch off, toggle or set. On

and off commands switch the entity on or off respectively and toggle switches between

on and off. Classes interpret the set command individually.
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• Think names the entity receiving the instruction.

Message Format DTD

A third DTD included in the design satisfies requirement 7(b) which states that researchers

must be provided with a mechanism to select a subset of the state information most suited to

the goals of the SUT. It is specifically aimed at defining the attribute set to be collected by

ubiquitous computing triggers and polling bodies with a view to avoiding a full state dump.

The elements of this DTD correspond to the elements of the Outbound Message DTD

with all semantics persisting. It will be explained later in this chapter how a researcher links

the XML files according to this DTD with the ubiquitous computing triggers and polling

bodies added to maps.

3.4.5 Message Definition Tool

Hand-writing XML is inconvenient and tedious and although requirement 7(b) has been fully

satisfied with the inclusion of the Message Format DTD as part of the design, this Message

Definition Tool is introduced as a convenience feature for the researcher with a view to

improving general usability of the tool as laid out in objective 5.

This message definition tool provides a Java Swing interface displaying the available

attribute set for each of the major elements within poll and event messages. Using the

interface, a researcher can select a subset of attributes for each element. The tool will generate

the appropriate XML content when the document is saved. The tool also loads existing XML

format files to allow reselection or refinement of previously used message formats.

In addition to relieving the researcher from the tedious task of writing XML this further

improves usability by giving easy access to the HL data store. As a result of keeping de-

velopers outside the HL environment they are not familiar with the variables used by the

engine. Presenting the available attributes in this manner improves usability of the ubiquitous

computing simulator system as a whole.

It was mentioned in chapter 2 that Hammer parses a FGD file to populate the lists of

entities and attributes, or properties. It was also noted that the FGD file is extensible to

accomodate extra entities added as part of a new game modification. In accordance with

this, the Message Definition Tool uses the same FGD file, along with the pev and gpGlobals
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Figure 3.6 Role of XML message format file.

structures, to populate the attribute sets on display. As a result, the Message Definition Tool

will automatically update itself to correspond with future extensions to TATUS and hence

satisfying requirement 5, extensibility.

3.4.6 Extension to Hammer (Map Editor)

According to requirement 7(d), the researcher requires a mechanism to create scenarios most

suitable for running experiments designed for the SUT. Hammer provides the solution to this

requirement. The FGD file has been extended to include the ubiquitous computing trigger,

the polling body entity, the Message Sender and the Message Distributor. As a result Hammer

is fully compliant with maps for TATUS.

3.5 Java Proxy

In response to requirements 2, Separation of Half-Life and SUT, and 5, Usability, a proxy

is included in the system design. It hosts a network connection to the simulator which is

accessible to the SUT using an API. The Proxy minimises the adjustment made to the SUT

during the initial setup procedure by providing a ready-made network connection. The API
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Figure 3.7 Proxy class system overview.

uses overloaded functions to allow the SUT to send instructions in either XML or DOM

format. Figure 3.7 displays the relationships between the classes designed to implement the

Proxy.

The remainder of this section discusses the role of each class in allowing the proxy to

operate.

• SocketReader hosts the inbound socket, and provides a method to read one line of

text from the socket at a time.

• Receiver manages messages retrieval through iterative calls to SocketReader’s get-

Line method and thus ensures messages are received in full. Receiver will spawn a

TxnReceive thread to deliver every message that is removed from the network.

• TxnReceive threads will persist until they successfully obtain the lock on the SUT

and deliver their message.

• SUTLock is an interface that the SUT must implement as part of the connection pro-

cedure to the Proxy. The SUTLock prevents interference between threads attempting

to deliver messages to the SUT.
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• TxnSender threads are spawned by the SUT and are supplied with an instruction

for the simulated environment. These threads will attempt to obtain the lock on the

Sender object which will forward the instructions across the network.

• Sender manages dispatching instructions to the simulator. SUT working under light

loads may wish to avoid using threads to send messages so it is also possible to make a

direct function call to the Sender object to send an instruction.

• SocketReader hosts the outbound connection to the simulator and provides a method

to put one line of text through the socket at a time. Each line of text should correspond

to a full message based on the receiving mechanism implemented on the simulator side

which is described in chapter 4.

3.6 Conclusion

The final design for TATUS is laid out in Figure 3.8 featuring the following system compo-

nents:

1. Core 3D Simulator

2. Proxy

3. Message Definition Tool

4. Map Editor

The role of each component is synopsised below:

1. The Core 3D simulator provides an interactive simulated ubiquitous computing envi-

ronment. Ubiquitous Computing Triggers and Polling Bodies generate event-driven and

polled messages respectively. All messages contain simulator state information and are

sent to the SUT. A Message Sender object hosts a socket connection as an outbound

access point to the network connection. A Message Distributor hosts a corresponding

inbound socket and delivers arriving instructions to the appropriate entities.
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Figure 3.8 Final system design for TATUS.

34



2. The Proxy hosts the network connection to the simulator so that the connection setup

procedure between SUT and TATUS is minimised. The Proxy’s classes provide an API

to the SUT as an easy method to send and receive messages.

3. The Message Definition Tool generates and saves the XML Message Format File. The

contents of the file are defined by the researcher using the tool’s GUI.

4. The Map Editor offers a toolset for creating maps and saves them in a BSP/MAP

format so they can be loaded into the simulator.
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Chapter 4

System Implementation

4.1 Introduction

This chapter describes the implementation of the design as presented in chapter 3. The

chapter is divided into two sections. Firstly an overview of TATUS provides a high-level view

of the relationships between the components that make up the system. The second part of

the chapter will discuss the implementation of each component in isolation starting with the

3D Simulator, followed by the Java Proxy, the Map Editor and finally the Message Definition

Tool.

Before progressing any further, it is worth noting the following terminology. Entities

within the game can be identified by two separate sets of names depending on whether they

are being discussed in relation to the map editor or SDK’s code. For example, taking the

ubiquitous computing trigger, in the map editor it is known by the name tcd message trigger

while in the SDK the class representing this entity is called TcdTriggerMessage. A translation

function, shown below, lets the game engine map between the two entity names and hence

the engine can successfully create a model of the world in memory using C++ objects.

LINK\_ENTITY\_TO\_CLASS( tcd\_message\_trigger, TcdTriggerMessage);

Table 4.1 shows the name mapping for all the ubiquitous computing entities. As far as

possible throughout this document, map names will be used when discussing entities in maps

and similarly, SDK class names will refer to code implementation.
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Map Name SDK Class Name
tcd message trigger TcdTriggerMessage
tcd polling body TcdPollingBody
tcd message sender TcdMessageSender
tcd message distributor TcdMessageDistributor

Table 4.1 Translation between map names and SDK class names.

Figure 4.1 An overview of TATUS.

4.2 Component Relationships

Figure 4.1 displays an overview of the components that make up the system supporting

the ubiquitous computing simulator. A key feature of this diagram shows the relationship

between the XML format file and the system components that use it. The Message Definition

tool is responsible for creating the file and writing to it the XML content generated by the

researcher’s chosen attribute set. The Map Editor saves the name of the XML file into the

BSP file. When the simulator reads the BSP file it also reads the list of XML files and loads

them into DOM objects for easier accessibilty.
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4.2.1 3D Simulator

On start-up, the engine reads the BSP file and loads its own model of the environment into

memory. Part of this process is to determine the set of XML files relied on by entities inside

the level. Also during this set-up phase entities are spawned, a term used to denote creating

an instance of an entity class, similar to running the constructor in a standard object-oriented

language. In the case of TcdMessageSender and TcdMessageDistributor, this involves estab-

lishing a network connection to the proxy. TcdMessageTrigger and TcdPollingBody use the

procedure to obtain a reference to TcdMessageSender.

4.2.2 Message Definition Tool

The purpose of this tool is to generate the XML format files. At the user’s discretion, this

should be added to Half-Life’s working directory under the path .\tcdUbiSim\xmlFiles.

The simulator will search this folder when starting a new level.

4.2.3 Map Editor

When inserting a new tcd trigger message or tcd polling body into a map, it is required

that an XML format file name be supplied as one of the object properties, see Figure 4.2.

Tcd polling bodies are also supplied with their think interval through the same dialog.

4.2.4 Java Proxy

Java Proxy supports the network connection to and from the simulator. The proxy program

must always run before the simulator start-ups to successfully allow spawning of TcdMes-

sageSender and TcdMessageDistributor entities when a level is loading.

4.3 Component Implementations

In the following section the implementation of each system component will be covered in

detail, starting with the 3D simulator, followed by the Java Proxy, the Map Editor and

finally the Message Definition Tool.
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Figure 4.2 Adding an XML filename property to a ubiquitous computing trigger.

4.3.1 3D Simulator

Figure 4.3 shows the interactions involving entities inside the simulator, both amongst them-

selves and with system components external to the simulator. This implementation section

will focus on the four ubiquitous computing entities added to the SDK as part of the game

to ubiquitous computing simulator conversion.

TcdMessageSender: Implementing an Outbound Connection

As discussed in chapter 2, entities in Half-Life exist either independantly or tied to brushes. It

was also mentioned that entity-brushes are physically tangible and reactive to touch. Standard

entities or point-entities on the other hand are not. For this reason TcdMessageSender has

been derived from CPointEntity, the point-entity base-class, with a view to preventing player

and NPC interaction or interference.

The outbound network connection managed by TcdMessageSender is set-up as a client

socket running on port 5060. For reasons mentioned in chapter 3 the low-level sockets avail-

able from winsock.h are used to implement this connection. Figure 4.4 shows TcdMessage-

Sender’s setup method. The parameters to this function are a port number and a string

value identifying the server e.g.localhost could be supplied as this value. WSAStartup sets up
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Figure 4.3 Core simulator design.

parameters for winsock while the function gethostbyname returns a data structure containing

information such as the host’s network address and the type network address used e.g. an IP

address. Finally, an open socket is allocated for the connection.

TcdMessageDistributor & TcdMessageReceiver

Two classes share responsibility for the receipt and distribution of messages. TcdMessageRe-

ceiver is a stand-alone class, it does not inherit any features specific to the game e.g. from

CBaseEntity. Similar to TcdMessageSender, during the Spawn cycle of TcdMessageReceiver,

port 5061 is assigned to host the connection. However, this time a listening socket is employed

because the asynchronous messaging system means that messages arriving via this port are

all initiated at the proxy side.

In view of the fact that the SDK does not support string manipulation as defined in

the standard C++ library ¡string.h¿, an alternative method to accommodate varying mes-

sage lengths was required. Messages leaving the proxy are prefixed by four digits, denoting

messages length, and so allowing messages to reach lengths up to 9999 characters. TcdMes-

sageReceiver parses this value before taking the message content from the socket’s buffer.

In addition to preventing a requirement for fixed length messages, this allows memory to

be allocated and also retrieved at run-time, an important feature given the memory footprint

for the game. The code shown in Figure 4.6 controls memory allocation and message retrieval,
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Figure 4.4 TcdMessageSender setup function, tcd sender socket.cpp.
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Figure 4.5 Class diagram for TcdMessageDistributor.
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Figure 4.6 Allocation of memory when receiving a message, tcd receiver socket.cpp.

it can be found in tcd receiver socket.cpp.

It should be noted that because the memory allocated to the buffer array must be refer-

enced outside this method, buffer is stored as a global variable. Further a separate function

called deleteBuffer will release the memory when the message has been parsed.

TcdMessageReceiver also provides a set of functions for use by TcdMessageDistributor

which carry out actions such as connection set-up and message retrieval. Although TcdMes-

sageReceiver provides connection set-up code at the level of initialising Winsock parameters,

TcdMessageDistributor manages connection establishment ensuring the setup code is re-run

until a successful outcome is achieved.

By exploiting the TcdMessageDistributor’s Think function, TcdMessageReceiver’s setup

code is invoked at regular intervals until the network link is constructed. However, when this

task is accomplished, the TcdMessageDistributor’s cycle becomes redundant. Through the

use of a SetThink function, the class can define two implementations of the Think function

for itself, switching between the two as determined by the implemented logic.

Figure 4.7 displays the code for the ConnectThink() function. Initially it attempts to

locate a client and make a connection. If it is successful in this, control is switched to the

RetrieveThink() function and finally regardless of the connection outcome the time is set for

the next Think invocation. RetrieveThink, as the name implies, calls on the methods from
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Figure 4.7 TcdMessageDistributor’s ConnectThink function, tcd message distributor.cpp.

TcdMessageReceiver to check the socket for any messages that are waiting to be delivered.

A drawback to this design means that messages can only be serviced on the simulator

side as quickly as the think interval allows, since only one message is retrieved per cycle.

However, easing this problem, the Inbound Message DTD does provide for the inclusion of

more than a single instruction per message.

When a message arrives, its content is loaded into a DOM object using the XercesC [12]

tool. TcdMessageDistributor need only manipulate the object to the point of determining

which entity is the target of each instruction. Using the name supplied by the SUT, the

following look-up function will obtain a pointer to the entity instance in question and from

that the appropriate function, Think, Touch or Use can be called.

CBaseEntity *activator = UTIL_FindEntityByTargetname(NULL, activatorname);

Should the case occur that more than one entity has been entered in the map under

the same targetname, a while loop will apply the instruction to all entities saved under the

provided name. This is a useful feature when the map creator wants a single trigger to target

more than one entity e.g. all the lights in a single room.

TcdTriggerMessage

TcdTriggerMessage inherits from the CBaseTrigger to maintain standard trigger character-

istics i.e. reaction to touch and invisibility. At spawn time it locates the XML format file

named in its properties and loads the content into a DOM object, again using XercesC. A
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separate standard game function, KeyValue, is used to extract property information from the

map and populate the data variables of entity objects. As such, the filename will already

have been supplied to TcdTriggerMessage before Spawn() is called.

The second action performed at Spawn time is the retrieval of a reference to the tcd message sender.

Previously, targetnames have been discussed as means of identifying entities using the UTIL FindEntityByTargetname.

TcdMessageSender is identified by its classname instead, since a well-formed map will only

ever have one instance of the class included in it. The next piece of code is an equivalent

lookup function that uses the classname of an entity instead of a targetname.

sender = TcdMessageSender::Instance(FIND\_ENTITY\_BY\_CLASSNAME

( NULL, "tcd\_message\_sender" ));

TcdPollingBody

Implemented with the same principles in mind as the tcd message trigger, however working

on its Think function rather than its Touch function, the entity gathers data on a timed cy-

cle. Similar to TcdMessageSender and TcdMessageDistributor, it inherits from CPointEntity

making it invisible and untouchable.

The code extract in Figure 4.9 shows the polling body using the Xerces parser to get

an instance of the XML format file represented as a DOMDocument (DOM) object. The

genMessage function manipulates the DOM object and amends it by inserting corresponding

attribute values for each of the attribute names. Following this, using the XercesC domWriter

the DOM object is converted to an XML string before being forwarded to TcdMessageSender.

The think interval, as supplied in the map properties, is used to set the next time to call

this Think function. The default think time is 30 seconds although it is preferable to increase

this value where possible to reduce the load on the engine.

State Retrieval

Both TcdTriggerMessage and TcdPollingBody must retrieve data values from Half-Life.

There is no existing function as part of the standard SDK that will perform this task. An ap-

proach was adopted to implement the inverse effect that is applied by the KeyValue function,

introduced in chapter 2. This can be explained as follows.
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Figure 4.8 Relationships between TcdTriggerMessage, TcdMessageSender & TcdPolling-
Body.

Figure 4.9 TcdPollingBody’s Think function, tcd polling body.cpp.
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Figure 4.10 KeyValue function for TcdTriggerMessage, triggers.cpp.

The KeyValue function extracts the map properties from the BSP file loaded into a game

of Half-Life. These properties are supplied through Hammer’s properties dialog which is

setup using the entity definitions stored in the FGD file. Similarly, the Message Definition

Tool sources its attribute sets from the FGD file definitions. As a result, the data being

retrieved by TcdTriggerMessage and TcdPollingBody corresponds to the data values that

are populated using the KeyValue function.

Figure 4.10 shows the KeyValue function for TcdTriggerMessage at work. The if statement

compares TcdTriggerMessage’s only local variable, xmlfilename, against the KeyValueData

structure that has been taken from the map information. If they match the data is saved

into this variable, otherwise the function invokes the parent implementation of the same

method. This can cycle all the way back to CBaseEntity’s implementation of KeyValueData.

CBaseEntity holds the parent implementation of this function for all classes and it is used to

populate the generic data structure, pev.

Based on this information, a new function has been implemented throughout the class

47



Figure 4.11 TcdTriggerMessage’s getEntityData function, triggers.cpp.

hierarchy to emulate this technique. The function is called getEntityData. For example

during an activation the TcdTriggerMessage may want to collect data about the Activator

entity. TcdTriggerMessage calls the Activator’s getEntityData passing the variable name as

a parameter.

The getEntityData function compares the variable name to the local variables for the

Activator’s class. If no match is made, the getEntityData function defined for the Activa-

tor’s parent class in invoked. Again this has a cyclical nature and can revert all the way

to CBaseEntity level. Figure 4.11 shows the code for TcdTriggerMessage’s getEntityData

function.

Implementing this solution was a laborious task. However it was also a once-off task.

Future entities that are added to the simulator will implement their own version of the func-

tion where required. Entities that do not define a unique set of local variables may disregard

this function and the engine will automatically revert to the implementation inherited from

a parent class. This is already accepted practice for mod development since it applies to each

of the Touch, Think, Use, Spawn and KeyValue functions.

4.3.2 Java Proxy

Figure 4.12 displays the relationships between the Java classes that implement the Proxy.

Chapter 3 discussed the role that each class played in transferring messages between the

simulator and SUT. This section discusses some of the code implemented to support the

interactions between the classes.
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Figure 4.12 Proxy Class System Overview.

Messages Arriving at the Proxy

Three classes specifically handle messages arriving at the proxy. SocketReader houses the

ServerSocket linking the two programs, Receiver manages the receipt of messages and finally

TxnReceive objects are threads that take responsibility for a single message and ensure it is

delivered to the SUT.

Receiver is implemented as a thread allowing it to run in parallel with the Sender object.

Inside its run method it continuously invokes the SocketReader’s getLine method concate-

nating the lines until a full message has been retrieved, shown in Figure 4.13.

When a full message has been identified, a TxnReceive thread is spawned taking the

message as a parameter. At the centre of the Figure 4.12 it can be seen that the SUT must

implement an interface called SUTLock. TxnReceive threads must call the lockSUT method

in order to gain access to the object and hence pass on their message. When the SUT is

finished processing the message it will unlock itself in preparation for the next message.

The pool of TxnReceive threads is adaptable with a view to keeping the sockets between

the simulator and SUT as free as possible. It is not expected that this pool size will reach

unmanageable proportions. The drawback to incorporating threads into message delivery is
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Figure 4.13 Code used by SocketReader to receive a message in full.

that delivery order is not guaranteed. This is not considered a problem since in a real-world

network the same problem is often encountered when dealing with messages arriving at a

device. However this was the motivation for time-stamping each messages as part of the

DTD definition.

Messages Leaving the Proxy

In return when the SUT is ready to send an instruction into the simulator it has two options

available. It can spawn a TxnSend thread, passing an XML instruction string and a reference

to a sender object as the thread’s parameters. This may suit SUT that is particularly busy.

Alternatively, the SUT can make a direct function call to the Sender object.

Similar to the Receiver class, Sender is an extension of Thread, however its run method is

implemented solely to manage the connection process. SocketReader hosts a standard Socket

object and so behaves as a client. Under normal client behaviour, if the server is not up

and running the client will fail. These are the circumstances under which the Proxy must

create its outbound link. Catching and handling the IOExceptions generated by the failed

link allows the client to keep trying with a sleep period in between attempts. When the run

method has completed, the Sender object persists but its thread lifecycle is finished.

4.3.3 Map Editor

As mentioned in chapter 2, amending the map editor’s FGD file allows a game developer to

provide new game entities for inclusion in levels. To extend the FGD file a developer must

know about three types of class:
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Figure 4.14 FGD file entry for tcd polling body.

• SolidClass: Defines a brush based entity and its attributes.

• PointClass: Defines a point entity and its attributes.

• BaseClass: Defines a base set of attributes for reuse by either of the above classes.

In correspondence with the SDK code implementation of TcdMessageSender, TcdMes-

sageDistributor and TcdPollingBody, PointClasses have been added to the FGD file for each.

TcdTriggerMessage, on the other hand, has been included as a SolidClass. Figure 4.14 shows

the FGD file entry for tcd polling body.

A well-formed ubiquitous computing simulator map will contain one TcdMessageSender

and one TcdMessageDistributor. It will also contain the required info player start, the start-

up location for the first-person character.

4.3.4 Message Definition Tool

The Message Definition Tool is used to generate the XML files that correspond to the Message

Format DTD. As such, the interface implemented for this tool reflects the elements defined

in the DTD. Chapter 3 discussed the motivation for the DTD’s structure, it will not be

reiterated here.

The tool’s interface contains three tabbed panes, one each to define event and poll mes-

sages and a third to display the current XML contents of the document. Within the Event

and Polled tabs are drop lists which contain the major message elements as taken from the

DTD.

For a Poll message the major elements are:

• Class Set

• Instance
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• Targeting

• Radius

• Globals

For an Event message the major elements are:

• Activator

• Trigger

• Target

• Globals

Selecting an element from the list displays an interface tailored to the contents of the

chosen element. These interfaces are put together using pev panels, class panels, global

panels and text-fields.

For example in Figure 4.15, the Class Set element for a poll message has been selected.

From the Message Format DTD in Appendix C it can be seen that Class Set elements contain

both class and pev attributes. The interface in Figure 4.15 appropriately is constructed from a

class panel, the uppermost panel and a pev panel, the lower panel labelled Generic Attributes.

Appendix G displays some further examples of the interface in use to illustrate the globals

panel and text-fields.

Features of the Message Definition Tool

In order to manipulate the XML files the tool provides the standard set of file control com-

mands provided by any editor:

• New: start a brand new file.

• Open: load an existing file.

• Save: save changes to current file.

• Save As: save current file under a new file name.

• Close: close the current document.

• Exit: exit the tool.
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Figure 4.15 Message Definition Tool Interface, the Class Set Interface.
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Figure 4.16 Message Format tab and file menu.

Figure 4.16 displays the tool’s File menu along with its Message Format tab. The Message

Format tab displays the document’s current contents and can be updated using the Refresh

button. Documents that are open in the tool are stored in a DOM format using the XercesJ

[12] tool. This tool will parse an existing XML document into DOM format when opening

a file and loading its contents into the tool. It will also generate the XML string from the

DOM object when saving the file or outputting it to the display in the Message Format tab.

4.4 Conclusion

In this chapter the implementation of TATUS has been described. A high-level view of the

relationships between system components was presented. Following this each of the four

components were discussed in isolation, starting with the core 3D simulator, followed by the

Java Proxy, the Map Editor and finally the Message Definition Tool. Chapter 5 presents

results, evaluation and a discussion of TATUS.
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Chapter 5

Results, Evaluation & Discussion

This chapter presents results, evaluation and a discussion of TATUS. The first result set is

based on feedback from both KDEG and CIT (Cork Institute of Technology) researchers

following an early demonstration of the project. The second set of results relates to the

final implementation of TATUS. Feedback for this version was provided by a KDEG Ph.D.

student, Tony O’Donnell. Experimentation scenarios based on Tony’s work provided solid

examples when extending the first prototype. These scenarios are documented in Appendix

E.

The second section titled evaluation is a theoretical assessment comparing the simulator’s

design with the original project objectives as laid out in chapter 1. The chapter finishes with

a discussion relating the design and implementation of TATUS with that of its most similar

counterpart, UbiWise.

5.1 Results: TATUS v1

On the 8th July 2004, the first prototype of TATUS was presented to a group of KDEG

researchers. The purpose of the presentation was to demonstrate the tool’s usability from

a user’s perspective and so focused on running and creating experiments in the TATUS

environment.

According to the test storyline presented, an audience will be sitting in a conference room

waiting for a speaker to arrive and a lecture to begin. The role of the lecturer is played through

the first-person game controls while the audience is made up of NPCs. When the simulation
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commences, the lecturer is waiting outside the conference room door, as he approaches the

room the door opens allowing him to enter.

From here the lecturer progresses to the podium, the smart environment recognises his

movements and the room is switched to presentation mode, signified by dimming the lighting.

During the presentation an audience member interrupts proceedings to ask a question. The

room is taken out of presentation mode for the duration of the ensuing discussion. Recom-

mencing the presentation returns the room to presentation mode. Finally, at the end of the

presentation, the lecturer steps away from the podium signifying the completion of his talk.

The room is restored to normal settings, the conference room door opens and the lecturer

exits.

5.1.1 Demonstrating TATUS v1

To run the experiment the map shown in Figure 5.1 was created. Three couches are marked by

the yellow rectangles, the heavy grey outline represents the room’s walls and the green triangle

is the speaker’s podium. The purple lines denote triggers which register the movements of

the player and NPCs. To raise a question an NPC must stand, in the process the trigger

next to the middle couch is activated. Since the first-person control is already absorbed by

the lecturer, a simple Java Swing interface is used to prompt the NPC to stand.

TATUS v1 preceded the communication protocol defined in the DTDs. To demonstrate

state extraction, a fixed set of attributes were displayed in a Java Swing window, see Figure

5.2. The window represents the position held by the SUT in the simulator system. It also

demonstrates the role that SUT plays in providing instruction to the environment. This im-

plementation does not exactly resemble the asynchronous messaging system because TATUS

v1 does not implement the message protocol that allows spontaneous instruction from the

SUT client. Figure 5.3 shows the flow of messages to and from the simulator. The semantics

behind the variables displayed in the SUT window are as follows:

Player Name: Name of the character touching the trigger.

Object Name: Trigger name.

Target Object: Name of the entity to be activated e.g. conference room door.
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Figure 5.1 Overview of Presentation Scenario Map.
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Figure 5.2 SUT place-holder.

Message: A question relating to the event e.g. Open conference room door?

5.1.2 Feedback on TATUS v1

Feedback from KDEG Researchers

KDEG researchers had two main concerns following the demonstration.

1. The first involved gaining access to Half-Life’s internal data set. Both the outbound

message protocol and the message definition protocols were under development but not

established at this stage. Motivation for the Message Definition Tool was prompted by

these concerns to provide researchers with an easy access route to define messages.

2. The researchers’ second concern was a translation service between Half-Life terminology

and SUT terminology. Using the string values provided through the map editor seemed

a suitable solution. Half-Life already has built-in code to relate these strings to the

objects and data structures it stores. On the other-hand, the researcher is responsible
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Figure 5.3 Actions driving messages between TATUS and SUT.
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for populating an entity’s property fields at map-creation time. As such, it is within

their control to choose values best suited to the SUT.

In addition to the concerns put forward, it was proposed that the simulator also be

used for designing and planning the layout of ubiquitous computing environments. It is

expected that in the coming year, a room will become available to KDEG researchers for

physical implementations of experiments. Prior to setting up the devices, researchers could

predetermine their best positioning inside a simulated room.

Feedback from CIT Researchers

On the 15th July, a similar presentation was given at a meeting between CIT and TCD

researchers. CIT are currently developing a 2D network simulator specifically aimed at mod-

elling the communication channel characteristics in a sensor network. The meeting focused

on linking the two simulators and using them to model a single environment.

By relating the results from each simulator it is hoped that a TATUS user will experience

varying signal levels due to fluctuations in Bit Error Rate, Throughput and Quality of Service.

CIT represent their results in SVG [10] (Scalable Vector Graphics) format. TATUS takes its

view of the world from the BSP and MAP files produced by the map editor. A relationship

derived between these files is the expected path forward.

5.2 Results: TATUS v2

The results presented in this section correspond to the final implementation of TATUS.

To demonstrate the system’s capabilities the previous scenario is reused, however a new

Java Swing window clarifies the outbound and inbound messaging protocols as well as the

asynchronous messaging system. In addition, the Message Definition Tool is introduced as

an element of version 2.

5.2.1 Demonstrating TATUS v2

Figure 5.4 displays the improved Java GUI. The window is divided into two panels. The

uppermost panel displays state information arriving from the simulator, the lower panel
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accepts XML file names that list instructions to the simulator. This is a more precise imitation

of SUT behaviour.

A set of drop-lists in the State Information Display Panel display the names of attributes

for the Activator, Target, Trigger and Globals elements. As can be seen in the screenshot,

the Trigger list has been supplied with the attributes target, targetname and classname.

Selection of any of these attributes displays the corresponding value in the text-field below.

This interface was designed to display message contents in the most flexible manner possible,

however it has been tailored for event messages which are easier to demonstrate during a

presentation than poll messages.

The Instruction Panel accepts the name of an XML file which contains a pre-defined

instruction message. Prior to the presentation, a set of these files were written and saved.

Each file provided instructions to open the conference room door, switch the lights on, switch

the lights off or prompt the NPC audience member to stand/sit. The flexibility of the interface

closely resembles asynchronous messaging.

5.2.2 Experimenting with TATUS v2

In addition to the demonstration of TATUS v2, the simulator was installed on a second ma-

chine for testing by a KDEG Ph.D. student, Tony O’Donnell. Two major achievements were

realised as a result. Firstly, TATUS was successfully installed and used on a second machine

in the college. Secondly, with minimal instruction and guidance, Tony has successfully cre-

ated and run experiments independently using the full toolset: Message Definition Tool, Map

Editor and 3D simulator. Figure 5.5 displays Tony’s work using the map editor.

5.2.3 Feedback on TATUS v2

Through his experience with the TATUS, Tony O’Donnell provided feedback about the sim-

ulator. Overall, TATUS is considered a usable tool with user-friendly features such as the

Map Editor and Message Definition Tool. In addition, the type and quality of information

produced is considered useful to the research proposed for testing inside the environment.

In response to his experience with TATUS, the following two ideas have been proposed to

improve usability for the tool:
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Figure 5.4 Improved Java Swing Interface.
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Figure 5.5 Ubiquitous computing environment created by Tony O’Donnell.

1. Currently, the start up procedure for TATUS requires the proxy to run first followed by

the simulator, each invoked by a separate command. For convenience a single command

incorporating both steps might be implemented.

2. The set of attributes presented by the Message Definition Tool is vast and disorderly.

Providing a basic view that display only a subset of values would be helpful, espe-

cially for new users. The full attribute set could be part of an advanced option. This

suggestion is similar to the proposed Profiles for Message Definition Tool feature

presented as further work in Appendix F.

5.3 Evaluation

5.3.1 Project Objectives vs. Project Implementation

The following section compares the original objectives as set out in chapter 1, with the final

deliverable presented in chapters 3 and 4. The original objective is noted in bold at the start

of each item on the list below.

1. Allow researchers to connect SUT to the simulator. The Java Proxy interfaces

the SUT to the simulator. In the process it shields the SUT from the network connection
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code and, where requested, will convert the XML message protocol into Xerces Java

DOM objects. Researchers must implement the Java SUTLock interface inside their

own code to allow the Proxy’s threads to deliver messages. The SUT uses an instance

of the Proxy’s Sender class to supply the environment with instructions.

2. Allow researchers to select simulator events of interest for notification to

the SUT. Using TcdTriggerMessage entities, the researcher marks physical locations

where interesting events will occur. Instances of TcdTriggerMessage forward messages

when activated, so notifying the SUT about significant events.

3. Provide researchers with an instruction protocol allowing the SUT to control

actions within the simulator. According to the Inbound Messaging DTD, the SUT

can invoke the Use, Touch or Think function for any entity identifiable by a targetname.

4. The simulator must be flexible to handle diversity in research projects and

cope with multiple SUT connections in parallel. TATUS implements both event

driven and polled messaging for state extraction, providing a flexible means of gathering

data. In addition, it is at the user’s discretion to define the most appropriate messages

for their software using the Message Definition Tool. Finally, TATUS has provisions as

part of its socket implementation to accept more than one SUT as a client.

5. The simulator must be usable. In particular, this means a straightforward

intial setup procedure and an easy mechanism to configure and run tests.

The Java Proxy’s API minimises the alterations required to the SUT for successful con-

nection with the simulator. The SUT does not have to contain client and server sockets

required to communicate with the simulated environment. The Message Definition Tool

and Map Editor simplify the set-up procedure for experiments and are accessible, as

proved by Tony O’Donnell’s work to test the simulator.

6. The simulator must realistically reflect the current state of ubiquitous com-

puting technology e.g. pressure sensors and RFID (Radio Frequency Identi-

fication) tags. This version of the simulator is not aimed at developing new

device technology, communication protocols or wireless media. Inline with

objective four, TATUS does not impose a veto on any data leaving the simulator, for
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this reason some responsibility lies in the hands of the SUT not to exploit Half-Life’s

resources in an unreasonable manner. It was not required that network connectivity

be modelled as part of the simulator, however investigative studies have begun with a

view to including this feature in the future.

5.4 Discussion: A Comparison of TATUS and UbiWise

UbiWise is a device-centric simulator, it focuses on user manipulation of devices and the

interactions between devices e.g. protocol support in the discovery phase. The simulator

for this project on the other hand targets the intelligent technology controlling ubiquitous

computing environments through the use of embedded sensors and actuators.

In both simulators, users of the systems can fill three roles, as defined in the paper

UbiWise, A Ubiquitous Wireless Infrastructure Simulation Environment [2].

• User

• Researcher

• Developer

The following sections will discuss how the simulators differ with respect to each of these

roles.

5.4.1 Role1: The User

A User is the person running the simulation. UbiWise offers two views to the user, the 3D

physical view (game environment) and the 2-D device view (Java Swing Interface). UbiWise’s

developers considered immersion in the 3D physical view less important than contemplation

of the overall results. A user in such an instance does all manipulation of the devices through

the device view only. The 3D view is used solely to see the effects of device manipulation on

the 3D environment.

The UbiWise example scenario illustrates two people standing in a ubiquitous computing

environment, each carrying their own wireless device, namely a digital camera for character1

and a PDA for character2. Each character/player also has access to a shared storage space
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which is represented by a picture frame on the wall. The data transferred between device

and storage is an image and so each player can monitor when the information in the picture

frame has changed.

Each player works from a separate client machine. Each client displays a 2D device view

specific to the player as well as a view of the shared 3D space. In UbiWise’s test-case there

are two characters:

• Character1 carries a digital camera connected to the wireless network. User1’s 3D view

shows the character carrying a digital camera in the same manner as any character

would carry a weapon in a first-person-shooter game. Within the 3D view the user

can also see the physical environment around him including the picture frame on the

wall and the other character. This user’s 2D view displays all devices that the user has

access to, namely the digital camera and the picture frame on the wall. Each device is

contained in a sub-frame of the main window for this software.

• Character 2 carries a PDA in the place of the digital camera so views are as for client1

but replacing the camera with a PDA.

UbiWise is using the game engine to avoid attempting to generate a 3D view through

Java’s Swing package, a whole project in itself as they quite rightly point out. Users monitor

changes to the physical world environment via the 3D view, but interact with the scenario

through their 2D view. When Character1 transfers an image from the camera into storage

the action essentially changes the texture of the wall within the space of the picture frame.

The game engine looks after updating Character2’s view of the shared storage space. In this

case the player for Character2 is aware of the new data through changes that happen in the

3D view. Ideally the PDA would be aware of the change and automatically notify its user

about the new content online.

By comparison, the test-case SUT for TATUS specifically targets predicting user inten-

tions based on notifications from sensors and actuators embedded in the environment. For

this it is not necessary to simulate devices or device characteristics. The general assump-

tion when working with TATUS is that the virtual environment is adequately equipped and

configured to support the experiments it runs.
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Although both simulators have a 3D engine at their core which is supplemented by the

use of Java Swing Interfaces, the TATUS does not intend that any of its Java interfaces are

used at run-time. In contrast to UbiWise, TATUS is very much interested in allowing the

user to become immersed in the 3D physical world for the duration of the experiment.

5.4.2 Role 2: The Researcher

Researchers for UbiWise and TATUS share a common work methodology:

• Both groups program SUT through Java.

• Both groups set up scenarios using a map editor.

However, this is where the similarities end. UbiWise’s SUT is a 2D graphical represen-

tation of a device, mapping screen regions to Java handlers and manipulated using a mouse.

SUT designs for UbiWise must be programmed directly into the WISE environment.

TATUS on the other hand allows researchers to develop Java software irrespective of any

intention to connect it to the simulator. When the SUT is ready for testing, the researcher

implements the SUTLock interface and includes an instance of the Proxy’s Sender object so

providing minimal disruption to the original code.

5.4.3 Role 3: The Developer and the Half-Life Experience

The role of the developer is consistent in both simulators. A developer is responsible for

adapting the chosen game engine to improve the quality of the virtual ubiquitous computing

environment. Following the experiences encountered while working with the HL SDK, it has

become apparent that its complexity requires the presence of an experienced developer.

In order to tackle the SDK, a developer must at least have a good working knowledge of

C/C++. The game engine exploits many of C’s low-level features to maximise performance.

Most KDEG researchers share a strong Java background. The initial transition away from

the JVM which cushions programmers from low-level tasks such as memory management and

garbage collection is frustrating and a source of aggravation.

The major issues complicating project development for TATUS stemmed mainly from

the HL engine. The game is finely tuned in order to meet the high-performance demands
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placed on it, ranging from screen refreshes at rates of 30 times per second combined with

a network communication protocol to coordinate the 3D physical environment view on all

client machines. This frequently led to clashing header files used for imported code, most

notably when attempting to use the CSocket class.

Half-Life was released in 1998 with the first SDK following shortly afterwards. No version

of the SDK has been officially documented to date. The release version 2.3 comes equipped

with a set of ReadMe files offering a brief introduction for mod developers. In this respect the

age of the SDK, works both to the advantage and disadvantage of newcomers. In the early

days when the code was largely undocumented, a programmer going by the name Botman [21]

spent a great deal of time working out the interactions between classes and dlls and writing

down his findings. This opened up the world of Half-Life to many more game developers who

were perhaps less skilled at using C/C++.

However, Botman’s findings also had a negative effect on the Half-Life gaming community.

As the number of mod developers increased so did the number of web pages publishing

tutorials, opinions and general advice. It is common to find websites publishing inaccurate,

misleading and badly-written material. Newcomers to the Half-Life scene must now trawl

through both the good and bad websites to locate useful and valid information.

Further, most developers have a specific idea for a mod and hence their work is localised

to a subset of the SDK classes. This means there is no single source of information available

as a look-up for facts and solutions. Two useful resources are Planet Half-Life [22] and Handy

Vandals Almanac [23] which index some of the best and most reliable sites available for SDK

and mapping tutorials. A second hugely important resource is The Wavelength [24], which

offers invaluable tutorials for building and debugging the SDK. In addition The Wavelength

provides the most active HL coder’s forum, where regularly an experienced programmer will

be found logged on and willing to help.

5.5 Conclusion

In conclusion, the results presented in this chapter, supported by Tony O’Donnell’s use of

TATUS, show that a usable and flexible tool has been developed. The project objectives

as laid out in chapter 1 have been satisfied. Finally the comparison between UbiWise and
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TATUS confirms that this simulator contributes another dimension to 3D ubiquitous com-

puting simulators.
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Chapter 6

Conclusions & Further Work

This chapter presents ideas for future development of TATUS followed by conclusions about

the design and success of the project.

6.1 Further Work

Appendix F presents proposed future development for TATUS under the following headings:

• Extension to Proxy

• Profiles for Message Definition Tool

• Network connectivity modelling

• XML file logging for Message Definition Tool

• Logging and recording experiments

• Sensor/Actuator library

• Extension to Outbound Message DTD

• Extension to Inbound Message DTD

However within this section only the first three items from the list will be discussed.

6.1.1 Extension to Proxy

The major potential development for TATUS is an extension or overlay to the Java Proxy’s

API, so improving data selection by incorporating a run-time filtering system. The idea
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is inspired by TinyDB [13], a query processing system specifying a simple SQL-style inter-

face for data collection. Some TinyDB features relevant to this project include metadata

management, high level queries and multiple queries.

Metadata management involves cataloguing and describing the kind of data available

from the game engine along with defining the semantics associated with each piece of data.

Currently researchers must manually refer to documentation for this information. Using

declarative style high-level queries, the researcher will have a more sophisticated method of

data selection including conditions for data collection. Finally, running multiple queries in

parallel will allow collection of data at variable sample rates from a subset of available sources.

6.1.2 Experiment profiles for Message Definition Tool

Part of the feedback from Tony O’Donnell’s use of TATUS suggested that a reduction or

categorisation of the attributes presented at this interface would provide for a more user-

friendly tool. In response to this request two ideas are put forward to improve the Java

window.

1. Implementation of user or experiment profiles would allow a researcher to define a par-

ticular subset of attributes to be of interest to their particular research. Researchers

could choose to display one of these profiles or the full attribute set when creat-

ing/altering messages.

2. Categorisation of attributes through highlighting is another approach to breaking up

the attribute set. Highlights might distinguish between string, integer or vector data.

The highlighting might also denote the attribute names that are fully documented in

terms of their semantic meaning.

6.1.3 Network connectivity modelling

In connection with the discussions held during the CIT research meeting, there is keen interest

to incorporate some network connectivity modelling in TATUS. This will either utilise a

second simulator that already models this problem. Alternatively, it may make use of some

of the existing Half-Life physics such as sound patterns or blast effects. Ideally, implementing
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this idea will provide developers with models for latency, disconnection and lost messages so

further improving the plausibility of the experiments and results that they produce.

6.2 Conclusions

This project has realised a usable and flexible ubiquitous computing simulator for use as a test-

bed for SUT. The toughest work occurred in the earlier stages of design when investigating

the capabilities and facilities provided by the engine. This discovery period drove much of

the design’s development, for example the dual method of state extraction using triggers and

polling bodies. Similarly, the DTDs are very much inline with the implementation of the

engine i.e. Touch, Use, Think commands.

TATUS fulfils the objectives presented in chapter 1 as follows:

1. The Java Proxy hosts a network connection and protocol interpretation scheme in order

to connect the SUT to the simulator.

2. Researchers can subscribe to event notification by using a TcdTriggerMessage entity.

3. The Inbound Messaging DTD supplies an environment instruction protocol.

4. Adaptable message content, combined with both event-driven and polled state extrac-

tion provides a flexible access route to Half-Life’s data. TATUS also has built-in provi-

sions as part of its socket control to accept more than one SUT as a client.

5. Usability has been substantially addressed through implementation of the Java Proxy,

extension to the Map Editor and finally development of a Message Definition Tool.

6. In accordance with objective four, TATUS does not impose a veto on any data leaving

the simulator, for this reason some responsibility lies in the hands of the SUT not to

exploit Half-Life’s resources in an unreasonable manner.

When working with the HL SDK, its sheer size and complexity will hinder the most

experienced C/C++ programmers. It is highly recommended that a novice learns at least

the basic language feature set especially where C++ deviates from other object-oriented

languages such as Java. There is no quick and easy route to modifying the HL SDK but it
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can be done intelligently. Identification of useful and reliable resources is essential at an early

stage.

The final deliverable for this project is more than a simulator. It is a system that takes

the researcher right through the stages of developing a scenario, defining the message content

supplied to the SUT and finally running a test. The design behind TATUS offers huge

opportunity for extending the simulator for example through an improved TinyDB style

Proxy. In the long term it is believed that such simulators will play a crucial role in realising

the sophisticated and visionary ideas imagined by Mark Weiser over a decade ago.
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Appendix A

Glossary & Abbreviations

Term Definition
Activator An entity which uses another entity possibly by touching a

trigger.
AI Artificial Intelligence.
API An Application Programming Interface provides access to a

lower-level module, e.g. a virtual machine, through a set of
software functions.

Brush Solid object in a map.
BSP Binary Space Partitioning improves screen rendering times

by using a tree structure to represent geographical proximity
among map entities and brushes.

BSP file File generated by Hammer, see BSP.
Caller An entity which invokes another’s Use function. The caller

often refers to an activated trigger.
CBaseEntity The base class for all Half-Life entities.
Classname The generic name for an entity in the map editor e.g. light

or tcd polling body.
Dll A Dynamic Linked Library is a file storing compiled and

linked Windows functions aimed at a specific task.
DOM The Document Object Model is a W3C standard specifying

a common way for programs to represent XML documents
as objects in a computers memory.

DOMDocument Xerces’ implementation of the W3C DOM specification.
DTD Document Definition Type is a schema specification for

XML documents defined by W3C.
Entity Environmental effect in a map e.g. lighting.

Table 6.1 Glossary & Abbreviations
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Term Definition
Entity-brush Combination of an entity and brush to create an object that

can be activated.
FGD Text file that supplies Hammer with a list of entities for

Half-Life or a HL Mod.
FPS First-person-shooter. A game in which the player interacts

with the world through the eyes of a character.
gpGlobals HL data structure storing the game’s state.
Half-Life FPS game released by Valve Corporation.
Hammer Map editor for HL.
HL see Half-Life.
HL SDK Software development kit for Half-Life.
KDEG Knowledge and Data Engineering Group, Trinity College

Dublin.
KeyValue HL function which loads map properties into C/C++ ob-

jects when a new level is loaded.
Macro Set of program instructions stored in executable form.
MAP Text file generated by Hammer representing a map in terms

of classnames, targetnames and coordinates for size and lo-
cation.

Mod Game that results from reprogramming (modifying) the HL
SDK.

Pev HL data structure specifically used to store entity data.
Polling body TATUS entity that gathers state information on a timed

cycle.
Proxy Intermediary program that interfaces a client and server es-

pecially used for protocol interpretation.
Q3A Quake III Arena, FPS game released by id Software.
QC Quake’s variant on the C-language.
RFID Radio Frequency Identification, analog-to-digital technology

used to locate or track an item.
Scenario Situation or experiment drawn up to test SUT.
SDK Software Development Kit provides programmers with a

software environment to develop further applications.
Spawn HL function that creates an instance of an entity in memory.
Sprite 2D graphic that appears three-dimensional when viewed

from any angle.
Storyline see Scenario.
SUT Software-Under-Test. Software still in development stages

that will be tested using TATUS.
Targetname String value supplied through Hammer to identify an entity.

Table 6.1 (Continued)
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Term Definition
tcd message distributor TATUS entity that receives and distributes instructions

from SUT.
tcd message sender TATUS entity that sends state information to SUT.
tcd message trigger TATUS entity that gathers state information on an

event-driven basis.
tcd polling body see Polling body.
Test-bed Experimental platform to evaluate a tool’s perfor-

mance.
Texture Pattern applied to a brush.
Think HL function invoked on a timed cycle to give the im-

pression of thinking.
Think interval Period between invocations of an entity’s Think func-

tion.
Touch HL function invoked when two entities collide.
Trigger HL entity used to activate events in a map.
Use HL function invoked when an entity is used e.g. pushing

a button.
W3C World Wide Web Consortium.
Xerces Apache project implementing the W3C DOM specifi-

cation in Java, C++ and Perl environments.
XML eXtensible Markup Language, a W3C specification for

data and document structure.

Table 6.1 (Continued)
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Appendix B

Pev & gpGlobals Data Structures

Source: .\engine\progdefs.h

Working Directory: Mod’s source directory.

Data type Variable Name Variable Semantics
string t classname Entity class
string t globalname
vec3 t origin Entity’s position
vec3 t oldorigin Entity’s last position
vec3 t velocity Entity’s velocity
vec3 t basevelocity
vec3 t clbasevelocity Velocity used for client.dll predictions
vec3 t movedir Direction of movement
vec3 t angles Direction the entity is facing
vec3 t avelocity Direction change (degrees per second)
vec3 t punchangle
vec3 t v angle Player only, direction of view
vec3 t endpos
vec3 t startpos
float impacttime
float starttime
int fixangle Indicates adjustments required to angles value
float idealpitch Deviation from horizontal plane
float pitch speed
float ideal yaw Actual rotation around vertical axis
float yaw speed Ideal rotation around vertical axis

Table 6.2 Pev variables & semantics.
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Data type Variable Name Variable Semantics
int modelindex
string t model
int viewmodel Personality of NPC/Player e.g. Scientist
int weaponmodel Player’s weapon
vec3 t absmin
vec3 t absmax
vec3 t mins
vec3 t maxs
vec3 t size maxs - mins
float ltime
float nextthink Time think function will next be called
int movetype Movements such as walking, running, flying

0 = stationary, never moves
3 = walking
4 = monster movement with gravity
5 = monster movement without gravity i.e. fly
12 = follow entity pointed to by aiment

int solid
int skin
int body
int effects
float gravity
float friction
int light level
int sequence Predefined animation sequence, NPCs are pro-

grammable.
int gaitsequence Player animation sequence, 0 = none
float frame Playback position in animation sequence
float animtime Time when frame was set.
float framerate Animation playback rate (-8x to 8x)
float scale Sprite rendering scale
int rendermode
float renderamt
vec3 t rendercolor
int renderfx
float health Health of an entity, 0 = dead
float frags
int weapons
float takedamage
int deadflag
vec3 t view ofs Eye position

Table 6.2 (Continued)
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Data type Variable Name Variable Semantics
int button
int impulse
int spawnflags
int flags
int colormap
int team
float max health
float teleport time
float armortype
float armorvalue
int waterlevel
int watertype
string t target Entity to target e.g. for triggers
string t targetname Name of this entity, as supplied in map editor
string t netname Name of player, supplied in game config file
string t message String supplied from map editor
float dmg take
float dmg save
float dmg
float dmgtime
string t noise
string t noise1
string t noise2
string t noise3
float speed
float air finished
float pain finished
float radsuit finished
int playerclass
float maxspeed
float fov Field of View
int weaponanim
int pushmsec
int bInDuck
int flTimeStepSound
int flSwimTime
int flDuckTime
int iStepLeft
float flFallVelocity
int gamestate
int oldbuttons
int groupinfo

Table 6.2 (Continued)
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Data type Variable Name Variable Semantics
float time Clock maintained by game engine
float frametime
float force retouch
string t mapname Name of current level
string t startspot
float deathmatch
float coop
float teamplay
float serverflags
float found secrets
vec3 t v forward
vec3 t v up
vec3 t v right
float trace allsolid
float trace startsolid
float trace fraction
vec3 t trace endpos
vec3 t trace plane normal
float trace plane dist
float trace inopen
float trace inwater
int trace hitgroup
int trace flags
int msg entity
int cdAudioTrack
int maxClients Max number of clients that can connect to

Server
int maxEntities
const char pStringBase
void pSaveData
vec3 t vecLandmarkOffset

Table 6.3 gpGlobals variables & semantics.
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Appendix C

Inbound, Outbound & Message Format DTDs

Inbound Message DTD

<!--This DTD defines the building blocks used to

construct a message inbound to the Simulator-->

<?xml version="1.0"?>

<!ELEMENT message (touch | use | think)*>

<!ELEMENT touch (name, activator)>

<!ELEMENT use (name, activator, caller, usetype)>

<!ELEMENT think (name)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT activator (#PCDATA)>

<!ELEMENT caller (#PCDATA)>

<!ELEMENT usetype (on | off | toggle | set)>

<!ELEMENT on EMPTY>

<!ELEMENT off EMPTY>

<!ELEMENT toggle EMPTY>

<!ELEMENT set EMPTY>

81



Outbound Message DTD

<!--This DTD defines the building blocks used to construct

a message outbound from the Simulator-->

<?xml version="1.0"?>

<!ELEMENT message (time, (event | poll)) >

<!ELEMENT poll ( instance?, class_set?, targeting?, radius?, globals?)>

<!ELEMENT event (activator?, trigger?, target?, globals?)

<!ELEMENT instance ( name, pev )>

<!ELEMENT class_set ( name, pev, class )>

<!ELEMENT targeting ( name, pev)>

<!ELEMENT radius ( name, distance, pev )>

<!ELEMENT activator ( name, pev )>

<!ELEMENT trigger ( name, pev )>

<!ELEMENT target ( name, pev )>

<!ELEMENT globals (att)*>

<!ELEMENT pev (att)*>

<!ELEMENT class (att)*>

<!ELEMENT att (name, val)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT val (#PCDATA)>

<!ELEMENT time (#PCDATA)>
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Message Format DTD

<!--This DTD defines the building blocks used to construct a message format-->

<?xml version="1.0"?>

<!ELEMENT format (event | poll) >

<!ELEMENT poll ( instance?, class_set?, targeting?, radius?, globals?)>

<!ELEMENT event (activator?, trigger?, target?, globals?)>

<!ELEMENT instance (name, pev) >

<!ELEMENT class_set (name, class, pev)*>

<!ELEMENT targeting (name, pev)*>

<!ELEMENT radius (name, distance, pev)*>

<!ELEMENT activator (Att)*>

<!ELEMENT trigger (Att)* >

<!ELEMENT target (Att)* >

<!ELEMENT globals (att)*>

<!ELEMENT pev (att)*>

<!ELEMENT class (att)*>

<!ELEMENT att (#PCDATA)>

<!ELEMENT name(#PCDATA)>

<!ELEMENT distance(#PCDATA)>
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Appendix D

KDEG Workshop Review

This document reviews the KDEG workshop that took place in January 2004.

Introduction

A high level aim of the simulator will focus on topics/experiments that are unrealistic to

implement in the real world for either cost or logistical reasons. This document is the first

draft of candidate features for the ubiquitous computing simulator. The document is divided

into three sections. Section 1 focuses on input to the simulator from the real-world. Section 2

focus on extracting state from the virtual environment. Section 3 looks at useful features and

possible adaptations for Half-Life to be incorporated as part of a realistic virtual ubiquitous

computing environment.

Input to Simulator

This section lists the current set of inputs to the simulator, namely environment rules, user

controls, real-world influence and events.

User Controls

User input is limited to keyboard and mouse commands used by a player to navigate around

a map. From the findings published by the UbiWise [2] development team, it is known that

modifying weapons in a FPS game to become useable ubiquitous computing devices is a

difficult result to achieve. Here we propose that external real-world devices are interfaced to
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the simulator to provide an extra set of controls in addition to the keyboard and mouse. This

is also with a view to incorporating natural user reaction, and avoiding premeditated input

to wireless handheld devices.

Real-World Influence

Real-world influence allow the output generated by a service operating in the real-world to

influence the state of the virtual world. The simulator will need to understand the behaviour

of such services in order to benefit from the input that it receives. An interface will be

required to allow researchers to develop new services for test in the simulated environment.

Commercial technologies/protocols such SOAP/WSDL, JXTA, Jini could be implemented as

an option that a developer could turn on/off.

Events

The researcher should be able to trigger an event at any given moment e.g. a device failure

or incoming message.

Extraction of Useful Information

State Extraction

The following information has been noted as interesting to current projects within the group:

• Location and velocity of devices.

• Location, velocity and stance of a character.

• State of fixed objects e.g. closed/open door

• Device occupancy

Logging

Maintaining a history of significant events will allow a particular scenario to be replayed

under a particular set of conditions. A researcher may want to adjust these settings based on

the outcome of previous tests i.e. change the state of the environment for future experiments

in order to produce a more useful or interesting test result.
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Provide stimulus to SUT

It should be possible to extract the state of the virtual world to provide input to software

in development stages with a view to exploiting/testing features of the code. This is with a

view to debugging and investigation of future potential for the SUT.

The Environment

The environment should focus on the interfaces between devices and software in the real

and virtual worlds. Users and software in the real-world will be able to manipulate devices

and objects in the virtual world to change the state of the virtual world. Software in the

real-world can model its own view of the people and devices in the virtual world.

Character Interaction

The aim is to capture a character’s intention according to his/her interaction with other char-

acters and the general surroundings. Movement, velocity, gesture and gait are all indicative of

a person’s objective. Capturability is a major issue. Characters and event sequences should

progress in as natural a manner as possible by removing as much preplanned movement as

possible.

Ideas for capturability:

• Gaze: The orientation of a character indicates the direction that they are looking.

• Gesture: Use of existing character movement to imitate normal behaviour e.g. point-

ing by raising/lowering an invisible weapon.

Characters, other than that controlled by the researcher are needed not only for the

researcher to interact with but also to occupy devices/services that are available in the world.

The challenge is to make these NPCs behave in a normal/natural manner to produce a real-

world effect.

Scenario: Calling a meeting should prompt all characters involved to go to the venue.

Issues:
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• Natural movement patterns

• Programmable behavioural patterns

• Interaction between people/characters

• Interaction of people with environment/services/devices

• Multi-player vs NPCs

Wireless Media & Network Connectivity

The issues to be emulated:

• Intermittency and how well a particular service copes with varying levels.

• Packet loss models e.g. according to radio shadows.

• Parallel wireless links e.g. WLAN, Bluetooth, infrared running in the same room.

• Provide controls over the above three issues for the researcher.

It is expected that modification of game physics will be required to improve the quality

of the simulated ubiquitous computing environment in this respect. There is potential for

mapping network connectivity onto existing game physics such as sound or blast effects.
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Appendix E

Test Scenarios

The following scenarios are supplied courtesy of Tony O’Donnell, Ph.D. student (KDEG),

and are specifically tailored to his current research. In chapter 5 there are results presented

based on Tony O’Donnell’s use of TATUS.

Scenario 1: Presentation

Outline: This scenario covers an undergraduate project report presentation session.

Characters: Sheila (lecturer), group leaders for the 4 project groups, an audience of second

year economics students

Equipment/Sensors: Multiple video/audio sensors, projector & screen

Policies

• The lecturer stands at the front of the theatre

• Presenters do so from the lectern

• Presenters have control of the projector subject to intervention by the lecturer

• When a presentation is underway, the lights dim

• Audience members may ask questions by raising their arms

• Presentations are relayed over the Internet

• Presenters should wait their turn by standing at the front of the class

• Presentations last 10 minutes
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Presentation storyline

It is the end of term and the second year economics class have just completed their major

term project. Each group must present their project to the class at a session where their

classmates can challenge their report’s findings. The class files into the lecture theatre, with

the bulk taking their seats, while the presenters make their way down to the front. Sheila,

the course lecturer has already decided the order of speakers and alerted the system to this

order. As a result, the slides for the first group have been loaded when their presenter makes

her way to the lectern. From time to time, members of the audience raise their hand to ask

questions. The presenter signals that they will take the question by pointing at the student

concerned. Once a question has been allowed, a directional microphone directs itself at the

questioner, and their voice is replayed over the pa system, and the net.

When a speaker approaches the end of their allotted time, the system discretely alerts

them via the lectern terminal. When the time has fully elapsed the lecturer can allow addi-

tional time with a suitable phrase, but failing that, the lectern microphone is disconnected

and the student makes their way back to their seat.

At the end of the presentations, they are placed online and the class are forwarded a link

to their location as well as that of the recording of the session.

Scenario 2: Meeting

Outline: This scenario covers a research project meeting. The meeting takes place within a

ubicomp-friendly meeting room.

Characters: John (Research Director), Anne, Peter, Frank, Jim, Sandra

Equipment/Sensors: Multiple video/audio sensors, projector & screen, electronic white-

board, terminals

Policies

• The RD always sits at the top of the table

• Only one person may control the projector at a time

• Control of the projector is claimed by standing near the lectern
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• Multiple users may interact with the whiteboard simultaneously subject to restrictions
enforced by the RD

• The controller of the projector has temporary control of the meeting and can decide
who can speak, with the exception of the RD

• When a presentation is underway, the lights dim

Meeting storyLine

It is Tuesday afternoon and the Systems Research Group arrives into the seminar room for

their weekly meeting. John, the group’s leader, has already logged into the room management

system in order to configure it for today’s meeting. This included equipping the room’s phone

system with international dialling capabilities for this afternoon’s conference call, ensuring

that a live stream be delivered to Jim as he will be attending remotely, advising the room’s

management system of the group members expected to attend in order to load profiles and

mount their personal filestorage. He also requests that the meeting be recorded.

The group members enter the room and John makes his way to his usual seat at the

top of the table. The other members take seats around the meeting table. Once everyone

is seated the meeting gets underway with a review of the previous weeks action plan. The

system displays a copy of the previous week’s plan on each terminal, and as points on it are

dealt with, it updates the plan in order to forward an update to the group’s inboxes after the

meeting.

The main parts of today’s meeting are a presentation from Sandra and a discussion of

revisions of the current prototype the group are working on. John calls on Sandra and she

makes her way up to the lectern. The system loads Sandra’s presentation from her filestorage

and when she indicates she’s ready to begin, the lights dim, the presentation’s first slide

appears and the recording system focuses on Sandra and stops recording interventions from

other attendees.

Sandra begins her presentation, however half-way through the fourth slide Peter raises his

hand. Sandra’s terminal alerts her to the question and she pauses to allow the question. The

system, recognising that she is allowing the question, begins to record Peter. After dealing

with the question, Sandra proceeds with her presentation, answering some further questions.

When she completes the final slide the lights come back on and she asks for further questions.
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About ten minutes later, John realises that time is passing and interrupts to bring Sandra’s

presentation to an end. The system acknowledges John’s role and allows this interruption.

The meeting now moves onto a discussion of the group’s current prototype.

Jim is the lead designer of the prototype, and he asks for an image of the current design

to be displayed on the whiteboard. The same image is relayed to Jim’s terminal. He gives a

brief report of the prototype’s progress.

After he finishes, Anne walks up to the whiteboard and suggests some design changes.

Sandra points out flaws in two of them but the others seem like possibilities. A discussion

of these then ensues and after some more minor alterations, an updated design is saved from

the whiteboard.

The last main piece of business is a conference call with the group’s partner in Amsterdam.

Having previously equipped the room with international dialling capabilities John puts the

call through and the system monitors the group for contributions. At the end of the call it

is agreed that a further call will be necessary. John asks the system to suggest some suitable

times, which it does by examining the members’ diaries. Once a suitable time is agreed the

call ends, as does the meeting.

The system places a copy of the recording of the meeting online and emails the attendees

with a link to the recording.
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Appendix F: Further Work

Appendix F presents proposed ideas for future development in the following areas:

• Extension to Proxy

• Profiles for Message Definition Tool

• XML file logging for Message Definition Tool

• Network connectivity modelling

• Logging & recording experiments

• Sensor/Actuator library

• Extension to Outbound Message DTD

• Extension to Inbound Message DTD

Extension to Proxy

The major potential development for TATUS is an extension or overlay to the Java Proxy’s

API so improving data selection data by incorporating a run-time filtering system. The

idea is inspired by TinyDB [13], a query processing system specifying a simple SQL-style

interface for data collection. Some TinyDB features relevant to this project include metadata

management, high level queries and multiple queries.

Metadata management involves cataloguing and describing the kind of data available

from the game engine along with defining the semantics associated with each piece of data.

Currently researchers must manually refer to documentation for this information. Using

declarative style high-level queries, the researcher will have a more sophisticated method of

data selection to include conditions for data collection. Finally, running multiple queries

in parallel allows collection of data at variable sample rates from a subset of the available

sources.
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Profiles for Message Definition Tool

Part of the feedback from Tony O’Donnell’s use of TATUS suggested that a reduction or

categorisation of the attributes presented at this interface would provide for a more user-

friendly tool. In response to this request two ideas are put forward to improve the Java

window.

1. Implementation of user or experiment profiles would allow a researcher to define a

particular subset of the attributes to be of interest to their particular research. Re-

searchers could choose to display one of these profiles or the full attribute set when

creating/altering messages.

2. Categorisation of attributes through highlighting is another approach to breaking up

the attribute set. Highlights might distinguish between string, integer or vector data. It

might also denote the attribute names that are documented in terms of their semantics.

Network connectivity modelling

In connection with the discussions held during the CIT research meeting, there is keen interest

to incorporate some network connectivity modelling in TATUS. This may utilise a second

simulator that already supports modelling this problem. Alternatively, it may make use

of some of the existing Half-Life physics such as sound patterns or blast effects. Ideally,

implementing this idea will provide developers with models for latency, disconnection and

lost messages, so further improving the quality of the experiments and results produced by

researchers.

XML file logging for Message Definition Tool

As was previously mentioned, all usable XML files must be saved to Half-Life’s working direc-

tory under the path ".\tcdUbiSim\xmlFiles\". This logging system would save a filename,

file and file description to remind the user about the original intentions when creating the

format file. A text field added to the Message Definition Tool would allow the researcher the

opportunity to supply some comment by way of a file description.
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Logging & Recording Experiments

Although game recording is provided in the standard game of Half-Life the feature has not

yet been exploited for the simulator. However, recording and logging experiments is very

important when reviewing results, applying changes to the software or designing future ex-

periments. Ideally, a researcher will have access to these results possibly with some sort of

cataloguing system for easy reference.

Sensor/Actuator Library

Not part of the project requirements, ubiquitous computing devices have not been added to

the simulator. This extra resource, in the form of a sensor/actuator library, will further tailor

the simulator towards becoming a true representation of a ubiquitous computing environment.

Its purpose will be to provide researchers with devices they can embed in the environment

and alter through parameters for use in experiments.

Extension to outbound DTD

The current format for attribute elements leaving the simulator is a name-value pair. There

is no type information to allow the SUT to automatically interpret arriving data, it must

know in advance the type of data to expect. This extension will introduce a data-type field

as part of the basic attribute element.

Extension to Inbound DTD

This extension will introduce two new instruction types to the inbound messaging DTD. A

poll instruction will allow the SUT to request specific data about a named entity on demand.

The set instruction will allow the SUT to change variable values for a named entity.
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Appendix G: TATUS Screenshots

Figures 6.1 - 6.5 follow the sequence of images corresponding to the scenario discussed in

chapter 5 in relation to demonstrating both TATUS v1 and v2. Following these images are

screenshots for both Hammer, the map editor, and the Message Definition Tool.

Figure 6.1 Lecturer waits outside the conference room.
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Figure 6.2 Audience wait for lecture to commence.

Figure 6.3 View from audience.
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Figure 6.4 Lights dim for presentation to commence.

Figure 6.5 Audience member stands to ask a question.
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Figure 6.6 Standard Hammer Interface.
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Figure 6.7 Map under development in Hammer.
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Figure 6.8 Poll message, radius attributes.

Figure 6.9 Poll message, instance attributes.
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Figure 6.10 Event message, activator attributes.

Figure 6.11 Event or Poll message, global attributes
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