
Extracting new urban patterns in cities: Analysis, Models and
Applications

Hitham Assem

A thesis submitted in fulfillment of the requirments
for the degree of

Doctor of Philosophy

School of Computer Science and Statistics
Trinity College Dublin

March 2018





Declaration

I, the undersigned, declare that this thesis has not been submitted as an exercise for a
degree at this or any other university and it is entirely my own work. I agree to deposit
this thesis in the University’s open access institutional repository or allow the Library to
do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library
conditions of use and acknowledgement.

Hitham Assem
March, 2018

3



Extracting new urban patterns in
cities: Analysis, Models and Applications

Hitham Assem

Summary

Smart city initiatives rely on real-time measurements and data collected by a large num-
ber of heterogenous physical sensors deployed throughout a city. The data gathered by
physical sensors can capably identify important events in cities, but seldom explain the
underlying reasons behind such events. In other words, physical sensors can identify what
happens, but may be unable to explain why or how specific events occur or patterns
emerge. The rise of Location-based Social Networks (LBSNs) has allowed millions of
dwellers and visitors of a city to share their observations, thoughts, feelings, and experi-
ences, or in other words, their perceptions about their city through social media updates.
LBSNs data represents a treasure which is still under explored, especially as the added
location dimension on social networks bridges the gap between the physical world and the
digital online social network services, potentially leading to the emergence of new types
of applications.

This thesis shows how the use of this powerful LBSNs data coupled with machine
learning techniques, can lead to the extraction of new urban patterns in cities. The
thesis starts by leveraging the power of Deep Learning and in particular, Deep Belief
Networks, for extracting a new urban pattern which is called Socio-demographic Regional
Patterns. It is shown for the first time that it is possible to extract a unique pattern for
various regions in cities of very close spatial proximity. The five boroughs in New York
City are considered in a case study with an emphasis on extracting a unique pattern for
each of the boroughs. Second, a new approach is introduced that discovers functional
regions that not only change across space but time as well. It is shown with the proposed
approach that it is possible to extract different functionalities for the same physical regions
during the day. This type of new urban pattern is called, Temporal Functional Regions
Patterns. Next, a new approach for Recognizing Recurrent Crowd Mobility Patterns in
cities is introduced for illustrating how crowd shifts across space and time with various
crowd level intensities. In addition, it is shown that the correlation between the extracted
crowd mobility patterns and the temporal functional regions patterns provides further
new insights into the motivation behind crowd mobility. Finally, it is shown how some
of these extracted patterns can brought together to solve a domain specific challenge
(Network Demand Prediction). To do so, a new deep learning based-approach (titled ST-
DenNetFus) is introduced for fusing some of the extracted urban patterns with network
demand data achieving a higher level of accuracy on predicting the network demand across
cities compared to without fusing these patterns.
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Chapter 1

Introduction

1.1 Motivation

Mobile devices and smartphones are considered the most rapidly growing technologies in
the world [1]. Market analysis estimates 1.75 billion smart-phones by 2014 in a world
where location-based technologies is typically equipped in such devices [2]. An interesting
survey in relation to smartphone usage in the USA shows as of February 2012 that 74%
of smartphone owners utilize location based services such as Twitter or Foursquare on
their phones. This is up from 55% in May 2011 indicating that the rise of the overall
proportion of US adults who get location based information has almost been doubled over
a short time frame [3].

In this way, the emergence the smartphone industry has led to the significant rise
of what is called Location-based Social Networks (LBSNs) which empower people to
share their activity related choices using their social networks (e.g., Facebook, Twitter,
Foursquare). LBSNs lead to the emergence of a type of uncontrolled experimental context
resulting in datasets with novel characteristics. This is in direct contrast with other
previous methods used by scientists to collect datasets that can be useful for extracting
urban patterns across cities: population survey methods (exploited typically by urbanists)
have been of high economic cost and rather static in recording the temporal dimension of
the extracted patterns; while sensor based methods instrumented by computer scientists
in recent years could only be deployed and utilized by small number of participants and
for a finite period of time. Furthermore, datasets which describe urban mobility owned by
large telecom providers are very valuable and have become only sporadically to scientists
due to privacy and economic concerns.

Although previous mobility data featured geographical coordinates of users, LBSNs
come with fundamentally different attributes [4]: First, LBSNs not only report the geo-
graphical coordinates of the user but also identify the venues where users check-in such
as restaurants, outdoor activities, or a stadium. In other words, it has the power to corre-
late the location of the user along with her activity. In addition, these broadcasts contain
semantically rich information such as tips, comments or recommendations on the venues
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visited by the users. Finally, the scale of LBSNs data is all based on the user level partic-
ipation which can itself gives some cultural, socio-demographic and behavioural insights
within different cities [5].

LBSNs data represents a treasure which is still under explored especially as the added
location dimension bridges the gap between the physical world and the digital online
social network services. This data has stimulated the research community into identifying
new human-generated patterns in cities that can find a natural application for not only
predicting events and providing novel recommenders that facilitate users’ choices and
social interactions but can also help in discovering social commonalities among people [6].
In addition, by coupling real time social systems like Twitter1, Facebook2, and Google
Buzz3 with location sharing services like Foursquare4, Gowalla5 and Google Latitude6, we
can foresee an un-precedented access to activities, actions and footprints of millions of
people [5]. This has the potential for deeper insights and better geospatial understanding
of cities’ unique characteristics and the collective consciousness of the people who reside,
work and play within different regions in cities [7]. The research community is exploring
the potential of harnessing the power of such data and its impact on different domain
areas including urban planning [8], marketing [9][10], urban energy [11][12], and economy
[13].

The motivation of the work in this thesis is inspired by four major shifts in think-
ing. First, gathering and analysing longer time duration of LBSNs datasets compared to
previous state-of-the-art research work could yield the discovery of new urban patterns
that were not possible before. This could potentially help in overcoming the challenge
of the “the unreasonable effectiveness of data” [14]. Second, with the continuous growth
of the number of users using location-based services, the sparsity challenge for inferring
new insights about urban patterns is possibly lessened. Third, a shift of focus towards
crowd behavioural analysis rather than user-centric behaviour may support novel classes
of applications as those that will be discussed in this thesis. Fourth, the recent advance-
ments in the data mining and machine learning such as deep learning techniques and topic
models could potentially help in extracting new and finer urban patterns across cities.

1https://twitter.com/
2https://www.facebook.com/
3https://en.wikipedia.org/wiki/Google_Buzz
4https://foursquare.com/
5https://en.wikipedia.org/wiki/Gowalla
6https://google-latitude.en.softonic.com/web-apps
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1.2 Thesis and its substantiation

1.2.1 Research Question

The main research question posed in this thesis is:

To what extent can new urban patterns be extracted from LBSNs data and be used in a
new machine learning architecture that fuses diverse data sources to solve a spatio-temporal
time series forecasting problem (Network Demand Prediction)?

In this thesis, urban pattern is defined as “a recurrent pattern in an urban environment
that can be computed if the spatio-temporal feature of individuals’ mobility data in cities
extracted from distinct traces of higher level information (such as people commonalities,
recurrent behaviours, or inference on upcoming events) is leveraged”.

1.2.2 Research Objective and Technical Approach

As has been discussed in the previous section, geo-location data and especially LBSNs
constitute a novel and online platform for capturing human mobility data associated with
human activities through textual data (tweets in case of Twitter) or venue categories
(check-ins venues in case of Foursqaure). They provide the ability to study what the
individual is doing, when and where, as well as having no definitive end or number of
participants being required. Further, the multiple layers of data that concurrently exist
in these systems create a new ecosystem of information with promising implications for
discovering new urban patterns that potentially can be useful in various applications.

Consequently, the argument outlined in this thesis is that the use of geo-location data
over a longer time duration, and especially data from LBSNs, coupled with the utilization
of advancements in machine learning will result in the extraction of new urban patterns.
It is argued that these patterns can be of direct benefit to the development of effective
applications and services, or can be of indirect benefit by utilizing these patterns as
an external factors for solving particular domain problems, such as Network Demand
Prediction.

The following objectives summarize the research of this thesis:

1. To identify novel urban patterns that can be extracted using LBSNs data.

2. To establish whether the correlation of various extracted urban patterns could bring
further insights.

3. To establish in what way machine learning approaches would help extract the urban
patterns.

4. To demonstrate the utility of the extracted urban patterns in solving a spatio-
temporal time series forecasting problem (Network Demand Prediction).
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The following points represent a step-by-step approach that has been fol-
lowed to address the objectives. Figure 1.1 summarizes the followed approach.

1. Investigate the state-of-the-art: This theoretical investigation involved reviewing
various machine learning approaches with a focus on its recent advancements as
well as reviewing the previous work in extracting urban patterns. This step served
as a basis for understanding what type of machine learning models could help in
extracting new urban patterns.

2. Identifying potential new urban patterns to extract: The availability of LB-
SNs data (with longer time span and finer granularity) opened the possibility for
new patterns to be extracted. This step involved identifying the potential intuitive
new patterns that could be extracted using LBSNs data. For instance, the state-
of-the-art showed several works in extracting static functional regions (functionality
of regions that does not change across time), an intuitive new potential pattern in
this example could be the ability to extract functional regions that change across
time (someone could think of a region’s functionality as a “Business” district in the
morning, “Eating” in the afternoon, and “Night-life” at night).

3. Dataset gathering and exploratory analysis: This step involved gathering the
LBSNs dataset and performing some exploratory statistical analysis for better under-
standing the dataset properties, this includes the frequency of tweets by users, the
dataset’s density analysis and the applications used.

4. Extracting the identified new urban patterns: In this step and for each of the
identified potential new urban patterns, the following steps are carried out:

a) Develop machine learning algorithms for extracting the identified new
urban patterns: This step focused on researching and developing the machine
learning models for extracting the potential patterns identified in step 2 using
the dataset gathered in step 3.

b) Evaluate the extracted patterns: This step involved evaluating and validat-
ing the extracted patterns. In some cases, subjective methods are used through
a case study to try matching the extracted patterns to our understanding of the
areas within cities. In other cases, objective methods are employed using well-
known evaluation metrics for estimating the accuracy of the proposed machine
learning models.

5. Identify a potential domain problem that could benefit indirectly from the
extracted patterns: This involved researching what type of problems in a specific
domain that indirectly could intuitively benefit from the extracted urban patterns.
For instance, someone could think that the functionality of regions as well as crowd
mobility patterns could be related to the network demand variation across a city.
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Figure 1.1: Technical Approach.

6. Establish a machine learning architecture for spatio-temporal prediction
problems: This involved researching and developing a machine learning architecture
for fusing some of the extracted urban patterns with another domain specific dataset
in one architecture for showing the impact of the extracted urban patterns for the
identified domain specific problem from step 5.

7. Evaluate the impact of fusing the extracted patterns on solving the identi-
fied domain problem: This involved objective quantitative evaluation for testing
the accuracy of the developed machine learning architecture using well-known metrics
that measures the accuracy of time series forecasting techniques.

1.3 Contributions & Publications

1.3.1 Contributions

The core contribution of this thesis is two-fold. First, I extracted new urban patterns
from LBSNs in ways that reveal the common attributes of users’ behaviour across them.
Through this thread of research, I have been able to extract three new urban patterns includ-
ing: Socio-demographic Regional Patterns, Temporal Functional Regions, and Recurrent
Crowd Mobility Patterns. In addition the last two patterns have been correlated together
for deriving deeper insights into the motivation behind crowd mobility. Second, I have
shown for the first time that some of these extracted urban patterns if fused as external
data sources with network data have an impact on improving the accuracy of the Network
Demand Prediction problem, which is crucial challenge in the Telecommunications service
provider domain. The following highlights the core contributions described in this thesis:

1. First, a new type of urban pattern (which is referred to in this thesis as “Socio-
demographic Regional Patterns”) has been identified and extracted using Deep-Belief-
Networks. This unique pattern can be extracted for regions even if these regions are
located within the same city. To the best of our knowledge, there has been no previous
research that shows the ability to extract a unique pattern of regions and moreover,
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Deep-Belief-Networks have not been leveraged previously for extracting urban patterns
in cities.

2. Second, a new type of urban pattern called “Temporal Functional Regions” is intro-
duced to recognize regions’ functionalities that change across space and time and it
is shown how clustering based techniques can be used to extract this pattern. Ex-
tracting the functionalities of regions has been temporally static in the state-of-the-art
which means that it has not been shown previously that it is possible to extract various
functionalities for the same region based on the time of the day.

3. Third, a new urban pattern called “Recurrent Crowd Mobility Patterns” is introduced
and a new approach for recognizing these patterns across cities that highlights the
level of crowdedness has been developed. Furthermore, it is shown that correlating
these mobility patterns with the Temporal Functional Regions provides insights into
the motivation behind crowd mobility. Through our research, it is demonstrated
that the proposed approach outperforms other baselines used in the state-of-the-art.
Furthermore and for the first time, this correlation has the potential to provide new
insights about cities, in that understanding the motivation behind such crowd shifts
has the potential to empower several key city management applications, such as traffic
management, urban planning, and public safety.

4. Finally, it is demonstrated how the prior two extracted patterns (Temporal functional
regions and Recurrent Crowd Mobility Patterns) could be of benefit to one of the
challenges in the Telecommunications service provider domain, the Network Demand
Prediction problem. The reason for choosing this particular problem is three-fold:
First, intuitively someone could think that the Temporal Functional Regions as well
as the Crowd Mobility patterns across space and time could impact the network
usage patterns. Second, the Network Demand Prediction problem on itself is quite
complicated problem for the telco operators due to the various external factors that
could impact the network usage patterns [15]. Third, being able to predict more
accurately the network demand has a quite positive impact on the telco operators as
they could be able to allocate network resources adaptively according to the predicted
demand rather than over-provisioning network resources which is a highly costly ap-
proach [16]. In this thesis, a new deep learning based approach is introduced titled
as ST-DenNetFus demonstrating for the first time how to fuse some of the extracted
urban patterns with network data for increasing the accuracy of predicting network
demand. ST-DenNetFus has the ability to fuse various external data sources of dif-
ferent dimensionalities which argued that other spatio-temporal prediction problems
could leverage same approach.
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1.3.2 Publications

During my PhD studies, I have been involved in many fruitful collaborations that have
yielded to 11 published works that span the areas of urban mobility, location-based social
networks, topic modelling, urban activity, neighbourhood modelling and cognitive network
management. In relation to this thesis, chapter 3 and in particular the machine learning
TCDC-based recommenders is based on the work in [SmartCity 2015] [PUC 2016]. Sandra
Buda and Lei Xu provided support on the design of the experiments and assisted in
the writing of the paper. I carried out the design and implementation of the proposed
TCDC framework for both the regression and classification models. Chapter 5 builds
on [SIGSPATIAL 2016] in which I carried out the design, analysis, implementation and
evaluation of these works as well as writing the paper. Chapter 6 builds on [ICTAI 2016]
in which I carried out the design, analysis, implementation and evaluation of these works,
whereas the co-authors contributed to the writing of the paper and provided support on
refining technical aspects of the methodologies exploited around the clustering techniques
employed. Chapter 7 is based on the work in [TIST 2017] where I designed the proposed
framework and developed the algorithms and baselines whereas the co-authors helped in
formalizing the algorithms and generating some map visualizations. Chapter 8 is based on
the work in [TKDE 2018] in which I designed and developed the deep learning architecture
while the coauthors helped in setting-up, conducting some experiments on GPUs for
speeding up the training time and writing some sections in the paper.

Papers related to this thesis

1. Assem, H. and O’Sullivan, D., 2015, December. Towards bridging the gap between
machine learning researchers and practitioners. In Smart City/SocialCom/SustainCom
(SmartCity), 2015 IEEE International Conference on (pp. 702-708). IEEE.

2. Assem, H., Xu, L., Buda, T.S. and O’Sullivan, D., 2016. Machine learning as a service
for enabling Internet of Things and People. Personal and Ubiquitous Computing,
20(6), pp.899-914.

3. Assem, H., Xu, L., Buda, T.S. and O’Sullivan, D., 2016, November. Spatio-temporal
clustering approach for detecting functional regions in cities. In Tools with Artificial
Intelligence (ICTAI), 2016 IEEE 28th International Conference on (pp. 370-377).
IEEE.

4. Assem, H. and O’Sullivan, D., 2016, October. Discovering New Socio-demographic
Regional Patterns in Cities. In Proceedings of the 9th ACM SIGSPATIAL Workshop
on Location-based Social Networks (p. 1). ACM.

5. Assem, H., Buda, T.S. and O’Sullivan, D., 2017, August. "RCMC: Recognizing
Crowd Mobility Patterns in Cities based on Location Based Social Networks Data."
ACM Transactions on Intelligent Systems and Technology (TIST). ACM.
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6. Assem, H., Xu, L., Buda, T.S. and O’Sullivan, D., 2016 "Cognitive Architecture and
its applications in Smarter Cities." Springer Book Chapter.

7. Assem, H., Caglayan, B., Buda, T.S. and O’Sullivan, D., 2018, "ST-DenNetFus: A
New Spatio-Temporal DenseNet-based architecture for Network Demand Prediction."
ACM Transactions on Knowledge and Data Engineering (TKDE). ACM. (Submit-
ted).

Other works during PhD study

1. Xu, L., Assem, H., Yahia, I.G.B., Buda, T.S., Martin, A., Gallico, D., Biancani,
M., Pastor, A., Aranda, P.A., Smirnov, M. and Raz, D., 2016, June. CogNet: A
network management architecture featuring cognitive capabilities. In Networks and
Communications (EuCNC), 2016 European Conference on (pp. 325-329). IEEE.

2. Velez, G., Quartulli, M., Martin, A., Otaegui, O. and Assem, H., 2016, June. Ma-
chine Learning for Autonomic Network Management in a Connected Cars Scenario.
In International Workshop on Communication Technologies for Vehicles (pp. 111-
120). Springer International Publishing.

3. Buda, T.S., Assem, H., Xu, L., Raz, D., Margolin, U., Rosensweig, E., Lopez, D.R.,
Corici, M.I., Smirnov, M., Mullins, R. and Uryupina, O., 2016, April. Can machine
learning aid in delivering new use cases and scenarios in 5G?. In Network Operations
and Management Symposium (NOMS), 2016 IEEE/IFIP (pp. 1279-1284). IEEE.

4. Buda, T. S., Assem, H., and Xu, L. (2017, May). ADE: An ensemble approach for
early Anomaly Detection. In Integrated Network and Service Management (IM),
2017 IFIP/IEEE Symposium on (pp. 442-448). IEEE.

1.4 Chapters outline

The thesis starts with some background in chapter 2, presenting an overview of the evo-
lution of the different types of spatio-temporal datasets through to the growth of LBSNs.
Further, the properties of LBSNs that make such datasets quite unique are discussed. In
addition, the most important research findings investigated by scientists in the study of
extracting urban patterns are presented. Chapter 3 introduces the various paradigms of
machine learning with a focus on the techniques that will be further used in the core
chapters to follows. Through this introduction, a new approach called TCDC is intro-
duced which could be utilized for recommending the optimum supervised machine learning
model. In chapter 4, an overview description, analysis and statistics on the LBSNs dataset
is illustrated that will be used in the core chapters to follow.

The rest of the thesis and the core contributions are organized in the following way.
Each of chapters 5, 6, 7, 8 are generally organized in subsections following the general
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pattern of motivation, state-of-the-art, what has been developed, and how it has been
evaluated.

• In chapter 5, a new model for discovering new unique weekly urban patterns for
various regions within a city is presented. The proposed model is entitled as Socio-
demographic Regional Pattern model. In particular, the power of deep learning
is leveraged for forming a complex automated feature hierarchy and Deep-Belief-
Nets is employed to identify these unique weekly region-footprints patterns that
have not been possible to discover before. Through the experiments, it has been
demonstrated that it is feasible to discover unique patterns for each of the boroughs in
New York City with nearly 70% accuracy. Furthermore, the existence and complexity
of the extracted patterns (as well as to gain a better understanding of these unique
patterns) is validated by applying Latent Dirichlet Allocation (LDA).

• In chapter 6, a new approach is introduced for discovering for the first time Tempo-
ral Functional Regions patterns, showing that the functionality of regions
can vary temporally during the day compared to the prior state-of-the-art
work that mostly focused on discovering static spatial functional regions
that does not take the temporal factor into account. Different time intervals
for discovering the Temporal Functional Regions were studied and it is concluded that
2 and 4 Hours time intervals seem the most reasonable granularity for discovering
Temporal Functional Regions. The resultant Temporal Functional Regions gener-
ated from the 4 Hours time interval, illustrating the morning, afternoon, evening
and night functional regions, are analyzed and visualised. Furthermore, the results
are analyzed subjectively by mapping some of the functional regions generated from
the proposed approach to our common understanding of these regions’ features.

• In chapter 7, a new approach is introduced that is capable of extracting Recur-
rent Crowd Mobility Patterns with an estimation of three levels of crowd inten-
sity utilizing an approach combining Kernel Density Estimation (KDE) and
Non-negative Matrix Factorization (NMF). The extracted Recurrent Crowd
Mobility Patterns show how crowd shifts from one area to another during each day
across various time-slots. A detailed analysis is presented on the extracted crowd
patterns with an exploratory visualization showing that the proposed approach can
identify obvious mobility patterns that recur over time and space in the urban sce-
nario outperforming other three baseline methods. Using the same time interval, it
is further shown that correlating the Temporal Functional Regions described
in chapter 6 with the identified Recurrent Crowd Mobility Patterns can
yield a deeper understanding of the city dynamics and can produce insights around
the motivation behind crowd mobility.
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• In chapter 8, a new deep-learning based approach called ST-DenNetFus is pro-
posed, to collectively forecast two types of telecommunications network throughput
(uplink and downlink) in each and every region of a city. The designed architec-
ture for ST-DenNetFus is based on unique properties of spatio-temporal data. More
specifically, dense network neural network is employed to model the temporal close-
ness, period, and trend properties for the network demand. For each property, a
branch of dense convolutional units is designed, each of which models the spatial
properties of the network demand. This aggregation is further combined with
external factors including the two extracted patterns discussed in the
previous two chapters showing their positive impact on the accuracy for
the Network Demand Prediction problem which is very important in the
telecommunications service provider domain. An extensive experimental eval-
uation is further presented where it is found that ST-DenNetFus outperformed five
well-known baselines.

Finally, in chapter 9, the main findings and directions for future work in extracting
urban patterns research and its potential applications are summarized. Figure 1.2 sum-
marizes the core contributions mapped to the chapters in the thesis.
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Chapter 2

Background and State-of-the-Art

Chapter overview: This chapter gives a historic background of the spatio-temporal
datasets that can be used for extracting urban patterns starting from survey-based meth-
ods, cellular networks data, until the rise of the location-based social networks. Further,
it highlights the four main properties of location-based social networks that make this data
source most unique: spatial accuracy, publicly availability, global accessibility, and venue
categorization. Finally, an overview of the state-of-the-art for extracting urban patterns
is discussed highlighting the techniques used and some interesting outcomes.

2.1 Background - An historic perspective upon urban spatio-temporal datasets

In this section, a brief overview is provided on the spatio-temporal datasets that can be
used for extracting urban patterns in cities. The first type of datasets were gathered
using survey based methods and initiated empirical research work for describing human
migration patterns. The second type of spatio-temporal data gathered have been from
the communication interactions observed in cellular networks, with this type of data
leading to important breakthroughs regarding extracting urban patterns due to the scale
of acquiring records from large populations. Although these types of data were found to
be very powerful in supporting analysis of urban patterns, the accessibility of these types
of data have been found to be quite challenging and expensive by the research community.

2.1.1 Survey-based methods and census data

The first modern attempt for understanding and extracting some meaning from urban
patterns took place in 1885 when E.G. Ravenstein published his work called “The Laws of
Migration” [17] in the Journal of the Statistical Society. Ravenstein analyzed census data
in the United Kingdom and highlighted important patterns and regularities of population
mobility amongst the Irish, British and the Scottish Kingdoms. He supported his work
empirically with census data where migration movements of millions of citizens were
recorded. A large volume of research work utilizing survey-based methods followed aimed
at analyzing and extracting urban patterns with the main focus being on human migration
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utilizing survey-based methods [17] [18] [19] [20]. However, the datasets collected using
survey-based methods have provided only a very static viewpoint of human movements
and hence, limits the potential for extracting urban patterns. Even today, this type of
data could inform us for instance about the city or a country in which an individual
resides, perhaps even the year of some occasion but they do not point to the exact place
people go nor the timing of their visits. Thus, survey-based methods suffer from limited
spatial and temporal granularity for the aim of extracting finer urban patterns. While
research using such type of datasets can provide us meaningful insights into large scale
human migration mobility, it is not able to capture any patterns related to the dynamicity
between and within cities.

But then how can someone extract meaningful urban patterns in dynamic urban en-
vironments? One example of these patterns could be to understand how people move
in cities across space and time. This pattern for instance has been motivated by the
process of intensive urbanization that took place heavily in the second half of the twen-
tieth century. As crowds of agricultural population started shifting towards the cities,
resulting in a sudden increase in the population size, city planners became overwhelmed
with big challenges in deploying and allocating cities’ resources such as transportation
infrastructure and providing administrative services to citizens. At that point, gaining
knowledge about the following become vital: how people use urban spaces1, are there
any social commonalities between population residing in different regions2; and where
the crowd is concentrated and how they shift from one area to another3. The principle
method to acquire such knowledge has been to conduct representative population surveys
[21]. These surveys have made it possible to acquire some of these knowledge such as the
origins and destinations of trips in a city [22][23], and the transport means employed by
commuters. However, it has been very challenging to infer other types of knowledge due
to the limitations of such static methods as, described earlier.

2.1.2 Mobile Phones as Sensors

In the early 1990s, the launch of the second generation cellular technology (2G) in Finland
promised a massive change in human communications. Although the idea of using mobile
phone was an idea that has been around for a while, it was this time that it began to be-
come mainstream. For the first time in our history, the human movement could potentially
be tracked and predicted with per second granularity, highly geographic precision and for
very large scale population. When a mobile user initiated a call or sent a text message, a
session is created in the database with her position at the nearest Base Transceiver Station
(BTS) that was handling the communication channel. While celebrating the opportunities
that these massive urban sensing data brings to us, there was also fear. Privacy concerns

1This is referred to in this thesis as “functional regions”.
2This is referred to in this thesis as “Socio-demographic Regional Patterns”.
3This is referred to in this thesis as “Recurrent Crowd Mobility Patterns”.
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were raised about the possibility of the misuse of this data by the telecommunication
providers. Researchers on the other side found it challenging to get access to such data
due to legal restrictions and economic constraints. With little or no information about
the social demographic characteristics of the individuals or the types of activities they
are performing, the possibility of extracting meaningful urban patterns using such data
is still inadequate [24]. For example, although the study provided by Becker et al. [25]
promises to see plausible estimate of the estimates of the spatial distribution of residence
by users of different phone usage patterns (e.g., classified “workers” or “partiers” based
on call detail records (CDR)), a complete picture of human activities in non-home/work
categories is very difficult to be inferred, as it is hard to validate those types of activities
from purely the CDR data. Similar challenges are faced by other studies, In [26], Eagle et
al. found it hard to differentiate between non-home/work activities. Other limitations of
CDRs lie in their sparse temporal frequency where a sample is generated only when one
of the prior mentioned transactions occurs, and on their rather coarse spatial granularity,
as locations are based on the granularity of a cell tower [25]. In addition, cell towers vary
in density from an area to another which affects the estimates and precision of the data
recorded.

Despite the fact that the appearance of cellular data constituted a big step towards
understanding human movement on a large scale compared to the data captured from
survey-based methods, it did not provide the opportunity for researchers to shed light on
extracting urban patterns taking place in cities captured by millions of people. For that a
technology that would enable the recording of peoples’ activities with spatial granularity
of a few tens of meters was required to emerge.

2.1.3 The rise of location-based social networks (LBSNs)

The introduction of the World Wide Web in the early 1990s and the emergence of Internet
services contributed in transcending the constraints imposed by the physical world and
led to entering the digital era where information storage and exchange were becoming
key to everything. New communication methods such as email let people interact and
communicate reliably with their peers around the world, commercial activity moved also
online in which money was able to be transferred from one party to another almost
instantaneously. The improvements of web search engines were introduced allowing people
to navigate effectively through massive amount of information and data.

The progress of this digital era shed the light on the expectation that people will care
more about what was happening in the virtual universe rather than their real lives, this
favoured further the introduction of the online social networks and in particular, Facebook
which was launched in 2004. Facebook spread very fast across university students and
today counts for more than one billion registered users [27]. The introduction of smart
phone afterwards in the early 2000s however signalled a massive transition in the way
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people were accessing traditional web services. The classic image of a user who is using
her desktop machine to access their email and web services began to fade and progressively
a new type of web user emerged. That was the mobile user, carrying a computational
device and capable of accessing the web from almost anywhere.

With the substantial and quick growth of mobile technologies, the idea of adapting
social network platform to the mobile space emerged. The first online social networks
that explicitly use location as their primary feature appeared in 2008. Foursquare4 and
Gowalla5 took the lead in this new space and their service was based on a simple notion:
share with your friends information about the place where you are. Despite concerns
of sharing such private information, the thrill of exploring urban space in a new way
attracted lots of users to the two location-based social networks and created a massive
user base for each of them [28]. Twitter and Flicker were then first to allow the association
of photos and messages (tweets) with the location/geographic information utilizing the
GPS modules embedded in smartphones.

However, the activity of users in location-based social networks has brought into ex-
istence a completely new paradigm of crowdsourced data. These new type of datasets
are expected to have a real impact on extracting interesting urban patterns that could
potentially benefit various amount of applications including: public safety, transportation,
urban planning and others. Moreover, due to the richness of this data comprising of text,
images associated with the geographical information, it paves the way for computer sci-
ence to deploy a new era of machine learning techniques that could make sense of this
very special type of spatio-temporal data sources.

2.2 Background - Location-based social networks unique properties

The addition of spatial property in a location-based social networking service bridges the
gap between the social networking services and the real-world social networks. Location-
based Social Networks is formally defined as a type of social networking in which geo-
graphic services and capabilities such as geocoding and geotagging are used to enable
additional social dynamics [29]. A comprehensive definition for the location-based social
networks was given by Yu Zheng [30], as:

“A location-based social networks (LBSNs) do not only mean adding a location to an
existing social network so that people in the social structure can share location-embedded
information, but also consists of the new social structure made up of individuals connected
by the interdependency derived from their locations in the physical world as well as their
location-tagged media content, such as photos, video, and text. Here, the physical location
consists of the instant location of an individual at a given timestamp and the location his-
tory that an individual has accumulated in a certain period. Further, the interdependency

4https://foursquare.com
5http://blog.gowalla.com
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includes not only that two persons co-occur in the same physical location or share similar
location histories but also the knowledge, e.g., common interests, behaviors, and activities,
inferred from an individual’s location (history) and location-tagged data.”

The location-based social networks’ unique properties can be summarized as follows:

• Spatial Accuracy: Location-based services provide for the first time the opportu-
nity to record the geographic position (location) of an individual user in terms of
GPS accuracy (10s of meters) as well as capturing the user’ activity through the
venue category (if using Foursquare) or may be through textual information (if us-
ing Twitter). This gives a clear advantage over cellular networks data (CDRs) that
provides the accuracy of the user’s location with respect to the nearest BTS but the
user’s exact location is missing. As will be discussed in later chapters, this precision
of location attached with the user’s activity may be used to infer interesting urban
patterns across cities (for instance, where crowd shifts across space and time, and
why).

• Publicly available: The second property of this type of data, the availability of
such data to a researcher for gathering and analysis. The first route for gathering
such data is using Twitter’s Streaming API6 which can be used for free and captures
a sample of 1% of all Tweets. A second route for accessing this data could be through
Twitter decahoses7 which provides a sample of 10% of all Tweets but with a paid
option. An alternative route to the previous two is through Foursquare’s own API,
yet the corresponding query limits yield much smaller datasets than Twitter. It is
important to note that with all these routes, the tweets or check-ins that have been
set to be private will not be captured. The merits of the public access of data is
two-fold; first, the academic researcher can use the data to conduct new analyses,
techniques and models, and secondly, research outputs can be reproduced by other
researchers upon publication.

• Global Accessibility: The location-based social networks applications are deployed
on the web, thus anyone at any place that has an Internet connectivity can access it.
A remarkable feature in location-based social networks is the scale of capturing user
activities. Unlike survey based methods that have been discussed before, location-
based social networks allow for the collection of data that goes beyond the limitations
posed by an experimental setting, both in terms of the scale of participation and
duration of the experiment. Both of these features are especially relevant to the work
presented in this thesis as it will allow us to extract more meaningful urban patterns
that would not be feasible without the scale of the data and its time duration.

6https://dev.twitter.com/docs/streaming-apis
7https://gnip.com/realtime/decahose/
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• Venues Category: Location-based social networks such as Foursquare are special
for the multiple layers of information associated with them. For instance, the venue
database constitutes the core of Foursquare in which not only the location of the user
is recorded but also semantic information about the user’s activity based on the exact
place that is visited (e.g., American Restaurant, Library, or University). Today, there
are already several type of applications that utilize such information through the
Foursquare venue API8. In addition, several research work have been based on such
type of unique information [31][32][33][34]. The initial set of venues when Foursquare
was launched was at scale of hundreds of thousands of Points Of Interests (POIs).
This has since been augmented and empowered through crowdsourcing in which users
keep adding new venues every day. Overall, Foursquare enumerates more than 50

million venues globally, which span across the majority of countries around the world.

2.3 State-of-the-Art - Extracting urban patterns

This section provides just a brief general overview of relevant research in the state of
the art related to the extraction of urban patterns. In each of chapters 4 to 6 to follow,
the related work of each of the proposed core contributions will be presented in-depth
highlighting how the proposed work progresses the state-of-the-art.

Urban computing [35] is emerging as a new paradigm where every vehicle, device,
building, and person can be used as a sensor for probing city dynamics and further using
advanced machine learning and data mining techniques for serving people and their cities.
The work presented in this thesis is also a step towards urban computing. In this section,
the state-of-the-art in extracting urban patterns in cities is reviewed pointing to the
relevant key findings related to the work proposed in this thesis.

In recent years, many approaches have been introduced for identifying urban patterns
in cities using mobility and LBSNs data. Bicoocchi et al. proposed in [36] an approach
based on clustering and segmentation of GPS traces to infer the places of relevance to
the user. In [26], Eagle et al. introduce Principle Component Based approach to infer
places and mobility urban patterns on the basis of nearby RF beacons (e.g., WIF and
GSM towers) where the top eigenvectors of the PCA represents human activities (termed
as eigenbehaviors). Sigg et al. [37] compare various data mining techniques for extracting
urban patterns from mobility data where they concluded that Independent Component
Analysis (ICA) and PCA are the best suited for identifying human daily patterns.

The previous work was focusing on unsupervised learning methods and other cluster-
ing methods (e.g., K-means) which shows a great success in the prior art for detecting
and extracting interesting urban patterns in cities through grouping together days that
are similar for the whole 24 hours. However, there is another type of urban patterns

8https://developer.foursquare.com/
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that could be of interest which results from clustering days for certain time interval only
[38]. Topic models were found of a great benefit in extracting such type of urban pat-
terns. Topic models are kind of probabilistic models (unsupervised methods) that are
used for discovering semantic structure of a document collection. These unsupervised
methods have been very useful in extracting useful semantic information in a variety of
applications that requires identifying unique topics or concepts, such as distributional
semantics [39], word sense induction ([40]; [41]), and information retrieval ([42]). In very
recent years, we have seen topic models as a potential type of machine learning models for
extracting individual recurrent urban patterns in cities. In [43], Laura et al. introduced
Latent Dirichlet Allocation (LDA) based approach to automatically discover users’ rou-
tine behaviour utilizing Google Latitude mobility dataset. The main objective was more
towards extracting routine behaviours other than relevant places compared to what have
been proposed in [36] and [26].

For the sake of predicting user’s specific activity pattern, Samiul et al. [44] propose
foundational tools that can be used to predict user’s specific activity patterns. They
address identified limitations and adapted a topic model that can extract the activity
patterns without the socio-demographic details of the individuals. Felix et al. in [45]
applied and trained LDA based topic model on a combined textual and movement data
on averaged week activity for a check-ins dataset. They further identified, analyzed, and
interpreted the output topics in space and time with a focus in analyzing city areas usage
with temporally varying profiles which charcterized the intensities of within-day activities.

Among the various state-of-the-art that focused on extracting urban patterns in cities,
there has been more focus recently within the research community on extracting and
predicting urban mobility patterns but still with a main focus on individual’s mobility
rather than crowd mobility. In [46] and [47], the authors mainly forecast billions of
individuals’ mobility traces rather than the aggregated crowd flows. One challenge is
that this task is computationally expensive, and predicting individual’s mobility is not
necessary useful to public safety and disaster management and other applications that
could more benefit from crowd analysis. In [38], authors presented an approach based on
LDA with the aim for detecting recurrent activities with the aim of identifying hotspots in
city life. Although the approach is very useful in detecting mobility patterns, the recurrent
urban patterns detected from LDA for the weekdays was with a probability of maximum
0.22 and for the weekends was around 0.35, which we think it is not still high enough to
claim a clear detection for mobility recurrent crowd patterns. Another branch of research
focuses on predicting traffic volume and travel speed on the road [48] [49] [50] [51], to the
best of our knowledge most of the work reviewed in this area focuses on single or specific
road segments rather than citywide approach for travel and speed. Recently, the research
community has started to focus on city wide scale traffic flows prediction. In [52], the
authors proposed an approach to predict crowd flows using human mobility data, weather
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conditions, and road network data utilizing Gaussian Markov random fields, to cope with
noisy and missing data. In [53], the authors propose a deep-learning based model for
forecasting the flow of crowds in each region using trajectory, weather and events data.

Having presented in this chapter background and an overview of state of the art with
respect to urban patterns, the next chapter takes a similar to describing the background
and state of the art with respect to the machine learning techniques of relevance to this
research.
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Chapter 3

Background on machine learning & the
TCDC

Chapter overview: This chapter gives an overview on the main machine learning paradigms
with a focus on the techniques that will be used in the core work presented in this thesis.
The main machine learning paradigms introduced in this chapter are supervised learning,
unsupervised learning, and deep learning. First, the chapter introduces some of the most
well-known supervised learning models by describing a new proposed approach called TCDC
that helps in choosing an optimum supervised learning model for a particular task. This
approach was developed at the beginning of the research work when reviewing the machine
learning techniques. This new approach has been published in [SmartCity 2015] and [PUC
2016]. Then unsupervised learning is introduced with a focus on specific clustering based
techniques as well as topic models that are used in this research. Finally, the chapter
highlights the growth of a recent paradigm called “deep learning” in which it will be used
in this research with several of its variations.

3.1 Background

Over the past decade, machine learning has developed distinct wide theoretical and prac-
tical tracks that revolve around predictive analytics and improving performance with
experience. Machine learning has incorporated different methods from different origins,
some of them have their origins from artificial intelligence whereas others are coming
from applied statistics. This can be observed from the first journal in Machine Learn-
ing in 1986 where the main focus was around trees and rule-based models. By the late
90’s, the picture had drastically changed focusing more on the methods originated from
artificial intelligence like multilayer neural networks.

By early 2000s, there has been great advancements in the supervised learning ap-
proaches for classification and regression for the sake of prediction and avoiding over-fitting
where techniques like pruning trees, weight decay and penalties have been introduced to
counter this effect. Another area of progress in this period relates to developing supervised
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learning algorithms to take into account domain knowledge during the induction process,
by selecting the main useful features (often called feature engineering process) via di-
mension reduction methods (for example: PCA, Linear Discriminant Analysis). Other
advances include different methods for dealing and handling missing data via different
induction methods. In 2006, a breakthrough in neural networks showed that a kind of
neural networks called deep belief network could be efficiently trained using a so-called
greedy layer-wise pretraining as outlined in [54, 55, 56]. This breakthrough has intro-
duced a new wave of research in machine learning called deep learning, which shows that
researchers are able now to train deeper neural networks that had been impossible before.

3.2 Supervised learning

Supervised learning is a paradigm in machine learning that is used when the correct
output is explicitly given for given inputs (features). A reasonable example of this kind of
problem is a dataset that considers a hand-writing recognition problem where it is formed
of a collection of images of hand-written digits, and for each image, a determination
is made of what the true image is. Thus, a set of features, and an output are stated
explicitly in the form (images, digit). There are different ways that the dataset can be
presented to the supervised learning process, the most common in practice, is a dataset
that is already presented complete and entire before the learning process. Other variations
include active learning and online learning [57]. In active learning, the dataset is formed
through queries that are made, while in online learning, the dataset is given one example
at a time. The latter happens in problems where streaming data needs to processed in
real-time. Supervised learning can be classified into regression or classification models.
Regression models can be defined as the learning process for predicting a continuous
numeric quantity while classification models are used for predicting a discrete categorical
response.

In this section, the most popular supervised machine learning models are summarized
through introducing a new recommender approach that I developed during the course of
my PhD, to support being able to select the most optimum machine learning supervised
learning model for a particular task. The evaluation of the proposed recommenders is
discussed in depth in Appendix A.

Assuming there is a problem that it is thought that supervised learning can solve, the
question one is faced with is: How to choose between the multiple existing wide range of
machine leaning models [58]. This question cannot be answered easily since choosing the
optimum machine learning model largely depends on: (a) the characteristics of the data
and the type of questions that need to be answered (b) the metric used for selecting the
model. Given this challenge, a high level general approach called TCDC (which stands for
Train, Compare, Decide, and Change) was designed. The TCDC proposed approach is
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composed of the TCDC closed loop process and the TCDC decision metric as illustrated
in Figure 3.1a and Figure 3.1b and presented in this section.

3.2.0.1 TCDC closed-loop process

The proposed TCDC approach is introduced as a closed loop process as shown in Fig-
ure 3.1a for selecting the optimum supervised machine learning model. The proposed
approach passes through four main phases:

• Train: In this phase, two models get trained on the dataset: (a) The most flexible but
least interpretable model available in the practitioner’s toolbox such as Support Vec-
tor Machines (SVMs) (this model will be referred to as a reference model and will not
change through the whole closed loop process) (b) The simplest model available in the
practitioner’s toolbox which is the least opaque and highly interpretable (e.g.: Mul-
tivariate Adaptive Regression Splines (MARS), Partial Least Squares (PLS), Naive
Bayes).

• Compare: In this phase, the predictive performance of the two models trained from
the previous step are compared. The accuracies will be measured using identical
resampled bootstrap datasets, and hence, a paired t-test will be used to determine if
the differences between the models are statistical significant [59, 60]. In Figure 3.3
and Figure 3.4, this comparison is referred to as ACPP (stands for Acceptable Com-
parable Predictive Performance) in which the selection will be towards the simplest
model with a certain tolerance. The degree of tolerance will be specified by the user
which will indicate the tradeoff between predictive accuracy and the TCDC Decision
Metric described in the next section (This tolerance can be thought of as penalty for
moving towards an optimum model).

• Decide: This phase checks if the predictive performance of the simpler model is
acceptable compared to the reference model. The simpler model is selected in case
it has a comparable acceptable performance. Otherwise, we move to the next phase.

• Change: If this phase is reached, it means that an optimum model has not yet been
found with an acceptable performance compared to the reference model. So in this
phase, a more complicated model is selected and the train phase is started again
with an aim of finding the optimum model and at that stage, the closed loop will
get broken. In this phase, the highest predictive performance model from two or
more similarly complicated models might be compared before inputing the best to
the next phase.

The closed loop of the TCDC approach is not an infinite loop since it will end up
with the choice of the reference model if none of the other models was found to have an
acceptable comparable performance. By employing the TCDC approach, the optimum
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machine learning model that has an acceptable predictive performance with the mini-
mum computational complexity, highest interpretability and easiest to implement can be
recommended to the user.

3.2.0.2 TCDC Decision Metric

In the proposed TCDC approach, the objective is not only to choose a model with an
acceptable predictive performance compared to the reference model but also the model
that achieves a good trade-off between the factors illustrated below, that is referred to as
benefit metrics, as shown in Figure 3.1b

• Interpretability: While a primary interest of machine learning models is to gen-
erate accurate predictions, a secondary interest may be the ability to interpret the
model and understand why it works. The unfortunate reality is that, the more ac-
curate model, the less interpretable it is. Hence, a tradeoff should be made between
interpretability versus predictive performance [61]. Hence, trying out first the more
interpretable models in our proposed TCDC approach is a great advantage if it is
found to have an acceptable performance.

• Computational complexity: Different machine learning models suffer different
levels of computational complexities [61]. This should be taken into account when
choosing the model since a high computational complex model (e.g.: SVM) may not
allow the prediction equation to be exported to a production system in practice.

• Ease of implementation: Some models are not easy to implement while others are
very easy to develop. Trying first an algorithm which is easy to be implemented (e.g.:
MARS model) is optimum for saving time especially if they yield a performance close
to those models that requires more time to be implemented.

Sorting the machine learning models first according to the benefit metrics discussed
above is one of the key ideas in the proposed general TCDC approach. In the proposed
recommenders discussed in the next sections, SVM is chosen as the reference model in the
TCDC approach since it has been found to be very powerful (i.e.: most accurate) across
many problem domains, because it performs well in practice and because it is easy to use
[62]. In addition, there are various methods and techniques for splitting and resampling
the data for the sake of choosing the best performance model [61]. In the proposed TCDC
approach, the recommendations summarized in Figure 3.2 are suggested based on what
was concluded from [63, 64, 65].
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3.2.1 Proposed TCDC Recommender Approach

3.2.2 TCDC-based Recommender for Regression Models

In this section, the focus will be on regression models, which are used for predicting a
continuous outcome. As a first step when approaching a regression supervised learning
problem, we recommend applying a flexible smoother model called Loess [66] in order to
explore the relationship between the features and the outcome variable and hence, discover
whether it is linear or non linear regression problem. Exploring visually the scatter plot
generated from the applied loess model will allow us to identify the degree of linearity
of the learning problem and hence, towards taking a decision as to which part of the
workflow shown in Figure 3.3 to follow. A summary of the proposed recommender for
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Figure 3.3: TCDC-based Recommender applied for supervised regression learning models.

the regression models is shown in Figure 3.3 and will be described in the following two
sections.

3.2.2.1 Linear regression models

Assuming the relationship between the features and the outcome is linear, we recommend
first investigating the degree of between-features correlations. We suggest using Principle
Component Analysis (PCA) for evaluating the magnitude of the correlation problem on
the full set of features, and hence, evaluating the percentage of variance accounted by
each component visualized from the so-called scree plot. For instance, having 2-3 compo-
nents that have relative contribution to the total variance indicates the existence of 2-3
relationships between features.

In case of having high between-features correlations, we recommend afterwards to check
the number of features (F ) against the number of samples (N) existing in the dataset. In
case the number of samples exceeds the number of features, we recommend using a Partial
Least Square (PLS) model. PLS can be described as a supervised technique that finds
the components that describes the most variability in the data and at the same provides
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the maximum correlation (maximum covariance) with the outcome. PLS has one tuning
parameter which is the number of components and it is recommended to use either simple
or repeated 10-fold CV method according to the size of the data set to estimate this
tuning parameter (refer to Figure 3.2). On the other hand, if the number of features is
greater than the number of samples, we suggest as a first preference to deploy shrinkage
parameter methods especially elastic net. The advantage of the elastic net is that it
provides effective regularization using the ridge penalty and feature selection quality as
the lasso penalty. As a second preference, the use of Principal Component Regression
(PCR) is recommended. This is composed of applying PCA first and then regression,
and has been used widely in problems with high correlation predictors and having more
features than data samples. However, we do not recommend the PCR as a first preference
because PCA is considered an unsupervised method that does not take into account any
correlation with the response. Hence, if the variability is weak with the outcome, the
PCR has a greater chance to perform poorly.

On the other side, and in case of having low between-features correlation with number
of features more than the number of data samples, Ordinary Linear Regression (OLR) can
be applied safely, as under these circumstances as there will be unique set of regression
coefficients existing. However, if the number of features is more than the number of
samples, we suggest the model based on the problem’s dimensionality. If it is a high
dimension problem, we recommend using the Least Angle Regression (LARS) model that
can be used to fit lasso models more efficiently; lasso models provide regularization to
improve the model and simultaneously conducts feature selection. If it is not a high
dimensional problem, we recommend using the ridge Model. In effect, this model shrinks
the estimates towards zero as the regularizer coefficient increases as shown in [67].

Using Bootstrap (refer to Figure 3.2), we compare the performance of one of the selected
linear models based on the problem’s characteristics as we described above with the
Support Vector Machines (SVM) (as the reference model) using linear kernel. If the
performance is equivalent or within an acceptable range of compared to the SVM, it
is recommended to choose the linear models according to the proposed benefit metrics.
Linear models allow for more interpretability and a less complex model that can be better
exporter to a production system.

3.2.2.2 Non-linear regression models

Assuming the relationship between the features and the outcome was found to be nonlinear
after the data exploration initial step performed by the loes model, we recommend training
the Multivariate Adaptive Regression Splines (MARS) model and comparing it with the
performance of SVM using Radial Basis function kernel. We suggest using the MARS
model given that its performance is acceptable and comparable to that which SVM scored.
The preference for choosing and trying MARS initially is actually due to several reasons.
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First, the MARS model conducts feature selection as the model equation is independent
of the features that are not involved with any of the final model features. Second, the
MARS model is considered one of the most interpretable models. Third, the MARS
model requires very little preprocessing (Data Cleaning), and additionally, the correlated
predictors do not significantly affect the model performance. Hence, it makes it a very
suitable model to try first based on the TCDC approach and its decision metric discussed
in the previous section.

If the MARS model did not perform well compared to the SVM model, we still do not
recommend to go and choose SVM directly. Instead, we recommend to change the model
according to the TCDC loop and try different regression trees and rule based methods
before choosing the final model. We recommend comparing the performance of the inter-
pretable regression trees models (M5 and rule based methods) with the non-interpretable
methods (Random Forests and Boosting). In theory, the predictive performance of the
non-interpretable models is expected to outperform the interpretable models. However,
in practice and in some cases, the performance of the interpretable models is really com-
parable to the non-interpretable models. In such a case, the interpretable models will
be preferred to avoid the disadvantages of the non-interpretable models including high
computational cost, high memory requirements, and less interpretability.

Finally, the optimum regression tree model chosen from the previous step will be
compared again with the predictive performance of the SVM with Radial Basis Function
(RBF) kernel using Bootstrap and a decision should be made for the tree models if they
perform well relative to SVM.

3.2.3 TCDC-based Recommender for Classification Models

In the previous section, the focus was on introducing the TCDC-based recommender for
selecting a regression model when approaching a problem of a continuous outcome. In
this section, the TCDC-based recommender that deals with the categorical outcome (clas-
sification problem) is introduced. The classification model aims to categorize the data
samples into groups based on the characteristics of the features and the minimization
problem for achieving this is different for each technique. Although many of the regres-
sion models discussed previously can be used for classification purposes, the performance
metrics differ from the regressions models. A summary for the TCDC recommender for
the classification models is shown Figure 3.4 and will be described in the following two
sections.

3.2.3.1 Linear classification models

In this section, we explore a recommender for approaching the machine learning problems
when the relation between the features and the outcome can be approximated by a linear
function. Following the same approach applied previously for the regression models, we
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Figure 3.4: TCDC-based Recommender applied for different supervised classification learning models.

recommend as an initial step applying PCA and visualize the scree plot to characterize
the magnitude of the between-features correlations. In case of high correlations, we rec-
ommend checking the number of samples (N) against the number of features (F ). In
case the number of samples exceeds the number of features, we recommend fitting Partial
Least Squares Discriminant Analysis (PLSDA) model which is an evolution of applying
PLS to classification problems. PLSDA aims to find the latent variables which will reduce
dimensions whilst optimizing the correlation between categorical features. PLSDA does
a good job in classification since it considers group information while trying to reduce
dimension. In case of low between feature-correlations and having data samples at least
5 times more than the number of features, we recommend using Linear Discriminant
Analysis. This model attempts to maximize a function that represents the difference be-
tween the means, normalized by a measure of the within-class variability, or the so-called
scatter. Otherwise and in the case of having data samples less than 5 times the number
of features, we recommend using logistic regression: a model which is somehow between
the linear classification model, that uses hard threshold, and linear regression, that uses
no threshold and it restricts the output smoothly to the probability range [0, 1].
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In the case of having the number of features that are more than the number of samples,
we recommend checking the problem dimensionality. If it is a high dimensional problem,
a linear classification model called Nearest shrunken centroid model (known as PAM)
has been found to perform well in such kind of high dimensionality. The PAM model
performs well for the problems with large number of features due to the fact that it has
a built-in feature selection that is controlled via the shrinkage parameter [68]. In this low
N and large F configuration, the data probably is difficult to be classified with a highly
non-linear model and in this case, the PAM linear classification model is a good choice.
On the other hand and in case of low dimensional problem but still where the number of
features is larger than the number of samples, we suggest using PLSDA.

Based on the problem that we have, and the model we choose, we recommend com-
paring the predictive performance of the chosen model of SVM with linear kernel. Based
on the TCDC approach introduced in Sect. 3.2.1, a decision will be favoured towards the
chosen model if its performance is comparable and acceptable relative to the SVM model.

3.2.3.2 Non-linear classification models

In this section, the proposed TCDC-based recommendations for the non-linear classifica-
tion machine learning problems are discussed. We recommend training Flexible Discrim-
inant Analysis (FDA) model as it has several advantages based on our TCDC criteria
discussed in Sect. 3.2.1. Hence, we believe it is worth exploring FDA as the first algo-
rithm and selecting it if its performance was acceptable and comparable to the SVM with
RBF kernel. FDA can be described as a process where for K classes, a set of K multi-
variate regression model using any model (we recommend this model to be MARS for the
various reasons discussed in the previous section) can fit to a binary class indicators and
using an optimal scoring technique, discriminant coefficients can be derived. If the pre-
dictive performance was found unacceptable compared to the SVM, then we recommend
checking the number of features (F ) against the number of samples (N).

In case the number of samples are more than the number of features, we then identify
the dataset size and for a small dataset, we recommend using Regularized Discriminant
Analysis (RDA). RDA can be described simply as a method for providing nonlinear sepa-
rating surface between Linear Discriminant Analysis and Quadratic Discriminant Analysis
(QDA). For medium to large datasets, we recommend using Mixture Discriminant Anal-
ysis (MDA). MDA is a generalization of the Linear Discriminant Analysis; it allows the
representation of each class by multiple Gaussian distributions and each of these distri-
butions have same covariance structures but different means. A decision will be favoured
towards choosing RDA or MDA (according to the dataset size) if they have acceptable
performance compared to SVM.

In the case where the number of features more than the number of samples, we rec-
ommend checking if the features are categorical or the viability of converting them to
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categories. In the case where the features are categories or they are easily transformed,
we recommend training Naive Bayes (NB) and choosing it as a final model in case its
predictive performance is comparable to SVM. Naive Bayes (NB) classifier is a learning
algorithm in which the features are discrete valued. NB is based on a strong assumption
that the features are conditionally independent given the outcome. This is an extremely
strong assumption yields a substantial reduction in the complexity of the calculations and
so it is worth exploring the performance of NB. Laplace smoothing is a simple change to
NB that in most cases makes NB works much better, especially for text classification
problems.

In the previous scenarios, in case the performance of FDA, RDA, MDA or Naive Bayes
was not satisfying compared to the SVM with RBF, we recommend at this stage training
classification trees. The structure of the classification trees is similar to the structure of
the regression trees. One of the reasons we recommend trying trees at this stage because
if there was no model found with acceptable predictive performance from what have been
tried previously. This may be due to the nature of the features and fortunately trees do
a great job with handling different types of features as well as missing data.

For the trees, we recommend training and comparing the predictive performance be-
tween Classification And Regression Trees (CART) and C4.5 classification models (In-
terpretable trees) which are considered the most widely used. They are similar models
except that they are based on different splitting criterion, CART model is based on the
Ginni Index criteria [69] whilst C4.5 is based on the cross-entropy criteria [70]. When
training CART, it is recommended to create independent category features that may pro-
vide valuable interpretability regarding the relation between features and outcome. We
do not think that the performance differs substantially between both models and hence
a practitioner can rely only on trying one model but we have both in Figure 3.4 for a
more comprehensive picture. Afterwards, we recommend comparing the predictive per-
formance of the outperformed model from C4.5 and CART with the outperformed model
from Boosting and Random forest (Non interpretable trees). The choice will be favoured
towards the interpretable trees model if it has a comparable performance to the non in-
terpretable model. Finally, the final model will be chosen after comparing the predictive
performance of the selected tree model with the SVM model, favouring the tree model
if it has an acceptable performance compared to the SVM. Eventually, if no model was
found of an acceptable performance, SVM can be considered at this stage as the optimum
model to be used.

3.3 Unsupervised learning

Unsupervised learning is a type of machine learning model used to draw inferences from
datasets when the input data has no labeled responses (absence of ground truth). In this
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section, two of the most usable suite of unsupervised learning algorithms (clustering and
probabilistic topic models) that will be used in the core chapters to follow are discussed.

3.3.1 Unsupervised Clustering Algorithms

Clustering is an unsupervised learning method. Given items x1, ..., xn ∈ RD, the goal is
to group them into reasonable clusters. A pairwise distance/similarity function between
items, and sometimes the desired number of clusters are needed. In this section, three of
the most popular clustering techniques are reviewed that will be used for recognizing the
“Temporal Functional Regions” introduced in chapter 6.

3.3.1.1 Agglomerative Hierarchical Clustering

The following steps summarize the procedures of the Agglomerative Hierarchical Cluster-
ing:

1. Assign each item x1, ..., xn in its own cluster c1, c2, ..., cn.

2. Repeat until there is only one cluster left:

3. Merge the nearest clusters, say ci and cj.

After performing the previous steps, the result will be a cluster tree in which it can be
cut at any level to produce different clusters. For defining the “nearest clusters” in step 3,
there is a need for defining a distance measure d(x, x′) between items. The following are
some variations for measuring it:

• Single-linkage: This is equivalent to the minimum spanning tree algorithm. A
threshold can be set and the clustering is stopped once the distance between clusters
exceeds the threshold. Hence, the distance between clusters ci and cj is defined as:
d(ci, cj) = minx∈ci,x′∈cjd(x, x′).

• Complete-linkage: In this case the distance between clusters ci and cj is defined as
follows: d(ci, cj) = maxx∈ci,x′∈cjd(x, x′). This usually generates compact and roughly
clusters, equal in diameter.

• Average-linkage: In this case, the distance is somewhere between the single and
complete and is defined as follows: d(ci, cj) =

∑
x∈ci,x′∈cjd(x,x′)
|ci|.|cj | .

3.3.1.2 K-means Clustering

This is the most widely used type of clustering. It is an iterative algorithm which keeps
track of the clustering centers (means) where the number of clusters k needs to be provided
to the algorithm. The centers are in the same feature space of the input x. The following
steps summarize the k-means algorithm:
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1. Start by choosing random k centers µ1, µ2, ..., µk.

2. Repeat until the clusters saturate:

3. Assign x1, ..., xn, to their nearest centers, respectively.

4. Update each center µi to the mean number of samples.

It is worth noting that step 3 is equivalent to creating a Voroni diagram under the
current centers. Since k-means clustering is a special case of Gaussian Mixture Model
(GMM) when the covariance of the Gaussian components tends to zero, it is unable to
trace winding clusters. Hence, the next type of clustering is introduced that addresses
this limitation.

3.3.1.3 Spectral Clustering

The previous discussed clustering techniques beside the generative models such as EM that
are used to learn mixture density suffer from several drawbacks. First, harsh simplifying
assumptions (e.g., that the density of each cluster is Gaussian) usually need to be made to
use parametric density estimators. Second, iterative algorithms are needed to find a good
solution since the log likelihood can have many local minima. A promising alternative
that has recently emerged in a number of fields is to use spectral method for clustering.

Spectral clustering takes a graph W and the number of clusters C as input where
graph nodes are x1, ..., xn and the undirected edges have non-negative weights reflecting
the similarity between nodes. The weights are symmetric: wij = wji and wij = 0 if no
edge. These weights can be represented in an n × n matrix W , which full specifies the
graph. The graph is usually generated using one of these methods: (a) k-nearest-neighbor
(KNN) graph. (b) Fully connected graph with RBF weights. (c) εNN graph.

From the formed weight matrixW , three different graph Laplacian matrices are defined:
(a) Unnormalized Laplacian (L = D−W ). (b) Normalized Laplacian (Lrw = I −D−1W ).
(c) Another Normalized Laplacian (Lsym = I−D−1

2 WD
−1
2 ). It turns out that Laplacian’s

eigen values are always non-negative. In the ideal case, each cluster forms a connected
component in graph W . Let U be the n × C matrix formed with these C eigenvectors
as columns. xi will be then represented by the i − th row in U for i = 1, ..., n. Then all
points within a cluster have the same new representation where clustering in these new
space is trivial, with e.g. k-means. The following steps summarize the spectral clustering
algorithm:

1. Input: graph W , number of clusters C.

2. Compute unormalized Laplacian (L = D − W ) or normalized Laplacian (Lrw =

I −D−1W ).

3. Compute matrix U = [φ1|...|φC ] where C are the first eigenvectors.
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4. Represent xi by the i-th row in U .

5. Use k-means to cluster the new representation of xi into C clusters.

3.3.2 Unsupervised Topic Modeling

Machine learning scientists have developed probabilistic topic modeling, a suite of algo-
rithms that aim to discover and annotate large archives of documents with thematic
information. Topic models are statistical methods that analyze the words of the original
texts to discover the themes that run through them, how the extracted themes are con-
nected to each other, and how they change over time. Since topic modeling algorithms do
not require any kind of annotations to the documents or labeling of the documents, the
topics extracted emerge from analyzing the original texts. The following highlights two
of the most popular implementations of topic models that will be used in several sections
in this thesis (mainly chapter 5 and chapter 7).

• Latent Dirichlet Allocation (LDA): LDA [71] is a statistical model that reflects
the intuition that documents exhibit multiple topics. Each document exhibits the
topics with different proportion. As we described earlier, the objective of the topic
modeling is to automatically discover the topics from a collection of documents. The
central computational problem that LDA solves is to use the observed documents
to find the hidden structure; the topics, per-document topic distribution, and the
per-document per-word topic assignments. This can be thought of “reversing” the
generative process in which the objective is to infer the hidden structure that likely
generated the observed collection. In particular, this computational problem that
LDA solves is the problem of computing the posterior distribution and the conditional
distributions of the hidden variables given the documents.

• Non-negative Matrix Factorization (NMF): The work of topic modeling has
largely been focusing on the use of LDA. However, NMF can be also applied to textual
data to reveal the hidden structure [72]. NMF decomposes a data matrix into fac-
tors that are constrained for not containing negative values. Given a document-term
matrix A ∈ Rm×n representing m unique terms that exist in corpus of n documents,
NMF provides a reduced rank-k approximation comprising of two non-negative fac-
tors A ≈WH, where the objective is to minimize the reconstruction error between A
and the low-dimensional approximation. The columns or basis vectors of W ∈ Rm×k

can be interpreted as the topics, defined with non-negative weights relative to the m
terms/words. The values in the matrix H ∈ Rk×n provide the per-document topic
distribution.

LDA has been used widely in the literature for extracting individual recurrent patterns
in cities [71][43][36]. However and to the best of our knowledge, NMF has not been used
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in the literature before for this objective. Nevertheless and for the first time, it is shown
in this thesis that NMF is quite powerful for extracting urban patterns. In particular in
chapter 7, NMF is utilized for extracting Recurrent Crowd Mobility Patterns where it
was found that it surpasses the performance of LDA.

3.4 The rise of Deep Learning

Deep Learning is considered one of the most recent advancements in machine learning
aiming at learning feature hierarchy formed by the composition of low level features [73].
A standard neural network (NN) consists of many simple connected processors called
neurons where each produced a sequence of real-valued activations. First layer of neurons
(input neurons) gets activated through sensors perceiving the environment, the following
middle layers neurons get activated through the weighted connections from previous layers.
Learning in neural networks is about finding weights that make the NN exhibits the
desired behaviour. Depending on the NN architecture and how the neurons and layers
are connected to each other, this may require long causal chains of computational layers
where each layer performs a non-linear transformation for the aggregate activation for the
whole network. Deep learning is about accurately assigning weights across many such
layers.

Shallow NN models with few layers have been around for decades, models with few
successive nonlinear layers of neurons date back at least to the 1960s and 1970s. An
efficient gradient descent method called backpropagation (BP) was developed in the 1970s

but have been applied to NN afterwards in 1981. However, BP has been found to be
difficult to work with deep learning with many hidden layers in practise by 1980s and
become a very important research subject by the early 1990s. DL became practically
feasible to some extent through the help of unsupervised learning as a pre-training pro-
cedure through a new architecture called Deep Belief Networks (DBNs) introduced by
Hinton et al. in 2006 [74], this was considered the first breakthrough in the DL field.
DBNs use an unsupervised learning algorithm that greedily trains one layer at a time
where each layer forms a Restricted Boltzmann Machine (RBM) [75]. Shortly afterwards,
auto-encoders [55] were proposed exploiting the same concept of training intermediate
levels of representations using unsupervised learning performed for each layer. Other al-
gorithms have been introduced afterwards that follow the same principle that is neither
RBMs nor auto-encoders [76]. Since 2006, deep networks have seen huge success in several
tasks and applications including but not limited to, dimensionality reduction [77], natural
language processing [78], classification tasks [79], and several more. In fact, since 2009, su-
pervised deep NNs have won many official international pattern recognition competitions,
outperforming alternative machine learning models such as kernel machines [80].

Another thing that helped deep learning to evolve was related to the progression of the
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hardware for training such computational expensive models. While the previous millen-
nium saw several attempts at creating specific NN hardware such as the work proposed
by Jackel et al. [81] and Ramacher et al. [82]) as well as exploiting standard hardware
such as the work proposed by Anguita et al. [83] and Muller et al. [84], the new millen-
nium brought a DL breakthrough in form of utilizing cheap Graphical Processing Units
(GPUs). GPUs excels at the fast matrix and vector multiplications required not only for
video games but also for training NNs, where they can speed up the learning process by
a factor of 50 or more. In these days, most of the recent successes in contests for patterns
recognition have been utilizing multiple GPUs for training deep NNs and outperforming
existing state-of-the-art results. In the work presented in this thesis and in particular in
chapter 5 and chapter 8, four of the recent advancements in deep learning are used enti-
tled: Deep Belief Networks (DBNs), Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs) and Long-Short Term Memory (LSTMs). These techniques will
be discussed in depth in the corresponding core chapters to follow.

Having presented in this chapter an overview on various machine learning techniques
of relevance to the research presented in this thesis, the next chapter takes the first step
towards the core of this thesis by describing the LBSNs dataset that will be used in the
core contribution chapters.
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Chapter 4

Dataset gathering and characteristics

Chapter overview: The dataset considered in this thesis expands upon existing work on
LBSNs datasets through its size and diversity. The dataset gathered tracks the activities
of users on Twitter for a period of 2 years, starting from January 2013, and ending with
December 2014. To the best of our knowledge, this dataset is the largest LBSNs data
that has been analyzed compared to the maximum duration of 1 year LBSNs datasets that
have been used before in the literature [6][8][5]. This chapter starts by describing the
dataset format and then the initial filtering procedures on the original dataset needed for
the core chapters to follow. Finally, some of the statistics related to the dataset density
and application types used in the dataset are shown.

4.1 Dataset format

The dataset used can be gathered from GNIP1, a Twitter’s enterprise API platform,
delivering a wide range of APIs for gathering data from Twitter’s Firehose. A simi-
lar publicly available dataset but for less time duration (spanning from late Septem-
ber 2010 to late January 2011) which can be used for generating some of the patterns
discussed in this thesis is available from [5]. In the dataset, each tweet is stored as
a tuple with the following attributes: userID, tweetID, time, text, statusesCount, fol-
lowersCount, friendsCount, provider, expandedURL, location. An example of tuple is:
[824895, 3293997, 2013-05-01T01:00:00.000Z, Eating before the movie (@ Village Pour-
house - @pourhousedwntwn w/ 4 others) [pic]: http://t.co/iRKziigKvY, 9528, 385, 413,
foursquare, http://4s.com/ZSsSMP, 40.731, -73.988].

4.2 Dataset filtering

From this original Twitter dataset and for the purpose of achieving the core work presented
in chapter 5, the whole dataset from NYC is filtered for each borough (Manhattan, The
Bronx, Brooklyn, Queens, and Staten-Island). For performing this step, the boundaries

1https://gnip.com
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specified by BetaNYC are used. BetaNYC works with New York City government, elected
officials and other stakeholders to engage NYC “civic-minded” technology and design
community2. Furthermore, and for the work proposed in chapter 6 and 7, we needed
to further filter Manhattan data based on the boundaries of its zip-codes3. Figure 4.1a
and Figure 4.1b show the boundaries used for filtering the dataset for the five boroughs
including Manhattan and the zip-codes for Manhattan respectively.

The Manhattan filtered dataset resulted in a total collection of 596, 757 users and
13, 296, 244 geo-tagged tweets. The total size of the dataset is 3.39GB. We observed an
average of 22.28 geo-labelled tweets per user, spanning from at least 1 tweet for 170, 185

users and up to a maximum of 89, 999 tweets for 1 user. This can be observed in more
detail in Figure 4.2a. Moreover, it is noticed that between 10 and 1, 000 tweets is the
most dense and typical in the dataset.

4.3 Dataset density based on different factors:

The density visualization for the filtered dataset is illustrated in Figure 4.3 for the average
density for a week day compared to a weekend day. Figure 4.3a shows the spatial density
for Monday as this is the day with the least tweets during the week. Moreover, the spatial
density of regions on Sunday is illustrated in Figure 4.3b as compared to other days of
the week, it is expected that on Sunday people will not work as much. In particular, it
is worth noticing that Sunday is much more dense spatially than Monday. We expand
on this result and show the density comparison between weekdays and weekends using
a different visualisation in Figure 4.4. Moreover, the frequency of tweets per hourly
basis is illustrated in Figure 4.2c. The lowest number of tweets are observed generally
to occur at 9AM , on Wednesdays, while the highest number of tweets typically occurs
at 11PM also on Wednesdays. It is noticed that there is a drop in the users’ activity
starting from 02AM , which decreases to low percentages especially between 05AM and
08AM -09AM , suggesting a sleeping period. Further, the activity of the users increases
steadily until 03PM and further reaching highest frequency during the evening and close
to midnight, suggesting that most tweets occur outside of working hours. In addition,
Figure 4.2d illustrates the tweets frequency per weekday, illustrating that the highest and
lowest amount of tweets occur on Fridays and Mondays, respectively. Figure 4.2b expands
on these results, combining an hourly visualization per weekday.

2The data can be found at [http://data.beta.nyc/dataset/nyc-borough-boundaries] and was last updated on January 5,
2015.

3The data for these zip-codes boundaries can be found at [https://data.cityofnewyork.us/Business/Zip-Code-Boundaries].
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Figure 4.1: NYC boroughs boundaries and Manhattan zip-codes.
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Figure 4.2: Frequency of tweets and users.
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(a) Monday. (b) Sunday.

Figure 4.3: First visualizations for the datasets’ density maps.

(a) Weekday. (b) Weekend.

Figure 4.4: Second visualizations for the datasets’ density maps.

4.4 Application types

The tweets were posted from 1115 applications, such as Twitter applications, Foursquare,
Instagram, and dlvr.it. Their popularity can be observed in Table 4.1, with ∼ 52% of the
tweets originating from Twitter for iPhone. The second and third most popular sources
are Instagram and Foursquare.

Name Percentage

Twitter for iPhone 51.98%
Instagram 20.36%
Foursquare 10.97%
Twitter for Android 9.91%
Twitter for iPad 1.03%
dlvr.it 0.75%

Table 4.1: Distribution of Tweets’ Sources.

Having presented in this chapter an overview on the dataset that will be used in the
core contribution chapters to follow, the next chapter introduces the first urban pattern
extracted and introduced in this thesis titled as Socio-demographic Regional Patterns.
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Chapter 5

Extracting new Socio-demographic Regional
Patterns

Chapter overview: In this chapter, the first new type of urban pattern titled “Socio-
demographic Regional Patterns” is introduced. The chapter also described how it can be
extracted leveraging the power of deep learning using a Deep-Belief-Networks based model.
This new approach has been published in [SIGSPATIAL 2016]. It is demonstrated in this
chapter that this pattern can be extracted for each of the boroughs in NYC using the dataset
discussed in chapter 4. Given weekly foot-prints captured from LBSNs, it is shown that
the correct borough for these weekly-footprints can be predicted with an accuracy of up to
70%.

5.1 Motivation

As highlighted in chapter 3, Deep Learning is considered one of the most recent advance-
ments in machine learning aiming at learning feature hierarchy formed by the composition
of low level features [73]. Deep Learning provides an automatic feature selection at multi-
ple levels of abstractions allowing a system to learn very complex functions mapping the
input to output directly without depending completely on human-crafted features. The
concept of automating the feature selection process will become more important with the
rise of machine learning applications and the availability of complex datasets in which
building human-crafted features will become extremely expensive [73].

This chapter starts by demonstrating the first new type of urban pattern dicovered
in this thesis which is referred to as Socio-demographic Regional Patterns. It is shown
how this pattern has been inferred using DBN for detecting different patterns for very
close proximity regions in cities. The Socio-demographic Regional Patterns is defined as
patterns comprising individual activities in a certain region during certain time-slot for a
particular day. For instance, for a particular area, the following spatial-temporal activities
can be constructed from an LBSNs dataset: sat-Eating-12AM, sat-NightLife-01AM, sun-
Traveling-15PM, mon-Shopping-17PM, and so on. This means as an example for a given
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region, there has been on Saturday an eating activity at 12AM and a NightLife activity
at 01AM . On Sunday, there has been a travelling activity at 15PM while on Monday,
a shopping activity at 17PM , and so on. Of course the aggregation of huge amounts of
such spatial-temporal activities might form a unique pattern that varies from region to
region which is precisely what the proposed model is trying to capture.

The power of DBN can be leveraged to infer such a possible unique pattern that
can differentiate regions of close proximity to each other based on what is referred to as
region-footprints captured from different regions. For example, by capturing crowd weekly
activities from one of the boroughs in NYC (region-footprints), the proposed trained
DBN model could potentially predict activities that might occur in this borough. This
implies that such model can be leveraged for further understanding the socio-demographic
commonalities between different regions across the globe. For example, figuring out which
borough has the closest socio-demographic pattern to certain district in London can yield
to better understanding of the commonalities between both and further exploring any
relation with other external common factors including social, economic, and political that
resulted in such commonality. Further extending this to more districts and cities across
the globe may yield to new and deeper insights about our cities.

By applying the proposed approach, the following specific contributions are highlighted
in this chapter:

1. DBNs for topic modeling can be successful for detecting new type of complex patterns
in cities that has not been feasible before. In fact, in the previous state-of-the-art
research, topic models have been seen as a great success for recognizing individual
recurrent patterns [43][85] but to the best of our knowledge, there has been no prior
work that applied and leveraged the power of DBNs for automatically extracting
features for detecting new and more complex crowd patterns in cities.

2. The impact of applying different DBNs architectures is demonstrated for choosing
the optimal K with the best performance for classifying different patterns among
the boroughs within NYC where K is the latent representation for each region in the
city.

3. The proposed Socio-demographic Regional Patterns model based on DBNs can be
successfully applied on a sparse dataset coming from LBSNs. The proposed model
has been validated on a geo-location dataset collected from New York City that
was described in chapter 4. Finally, the proposed trained model has been shown
to recognize unique pattern for each Borough within NYC based on the recurrent
weekly region-footprint that recur over both space and time dimensions.
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5.2 State-of-the-Art

The work presented in this chapter is based on applying DBN for topic modeling for the
sake of detecting new activity patterns in cities. Hence, the state-of-the-art is reviewed
from two perspectives: First is related to the prior work that utilizes LBSNs data for the
sake of learning latent activity patterns in cities. The second is related to the evolution
of DBNs until it has been utilized for topic models.

5.2.1 Activity Patterns in Cities

In recent years, many approaches have been proposed for identifying patterns using mo-
bility and LBSNs data. In [36], Bicoocchi et al. proposed an approach based on clustering
and segmenting GPS traces to infer the places of relevance to the user. In [26], Eagle et
al. applied Principle Component Analysis (PCA) to infer places and mobility patterns
on the basis of nearby RF beacons (e.g., WIF and GSM towers). The human activities
termed as eigenbehaviors are represented as the top eigenvectors of the PCA. Similarly,
the work presented by Sigg et al. in [37] compares different data mining techniques for
extracting patterns from mobility data where they found that Independent Component
Analysis (ICA) and PCA are best suited for identifying daily patterns of humans.

Although the previous unsupervised learning methods and other clustering methods
(e.g., K-means) showed success for detecting patterns in cities through grouping together
days that are similar for the whole 24 hours. However, there is a need for detecting
patterns and clustering days for certain time interval only [38]. Topic modeling bridges this
gap and several works has been based on topic modeling for extracting individual recurrent
patterns. Topic models were introduced originally for finding underlying topics of words
from a large collections of documents, with Latent Dirichlet Allocation (LDA) being one of
the implementations of topic modeling that has been widely used for extracting individual
recurrent patterns in cities [71].

In [43], Laura et al. presented a method based on LDA to automatically discover
users routine behaviour extracted from Google Latitude mobility dataset. They focused
more on extracting the routine behaviours other than relevant places compared to what
have been proposed in [36] and [26]. In [38], authors presented an approach based on
LDA for crowd detection that recur over time and space using Twitter posts of data in
New York which contains a large set of users but in a sparse way. In [44], Samiul et
al. provided foundational tools that can be used to predict user specific activity pat-
terns. They addressed the main limitation for geo-location data for modeling individual
behaviours and presented a topic model that can extract the activity patterns without
the socio-demographic details of the individuals. Felix et al. in [45] combined textual and
movement data and they applied topic models to the combined data on an averaged week
activity in which they were able to show how city modalities evolve over time and space.
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5.2.2 Deep Belief Nets for Topic Modeling

In this section, the motivation of applying DBN on document data is introduced. In the
past, neural networks have had the drawbacks of the following: It requires labeled data
that is difficult to obtain in most cases, the learning time does not scale well as it is very
slow in networks with multiple hidden layers and it has the tendency to get stuck in a poor
local minima [86]. Smolensky introduced the RBM [87] and Hinton introduced afterwards
a learning algorithm called Contrastive Divergence for the training RBM [74]. Hinton and
Salakhutdinov introduced the pretraining process by stacking a number of RBMs [77] and
being able to train each RBM separately using the Contrastive Divergence algorithm.
This was found to provide a crude convergence for the parameters in which can be used
as an initialisation for the finetuning process. The finetuning process is very similar to the
learning algorithms that have been used in the Feed Forward Neural Networks (FFNN). By
using an optimisation model, the parameters converges to reconstruct the input. Hinton
and Salakhutdinov validated their method on the popular MNIST dataset, where they
demonstrated how they reduce the dimensionality of an input vector of 784-dimensions
to 2-dimensions vector that well represent the data in the 2-dimensional space, in terms
of the ability to spread the data based on labels in the output space [77].

Hinton and Salakhutdinov introduced the Constrained Poisson Model (CPM) as a core
component of RBM to model word count data for performing a dimensional reduction on
document data [88]. This approach has been replaced by the Replicated Softmax model
(RSM) introduced by Hinton and Salakhutdinov due to the inability of the CPM to define
a proper distribution over word counts [89]. Later RSM was introduced to act as the first
component in the DBN pertaining process [90]. Hinton and Salakhutdinov validated their
introduced approach on two datasets: Reuters Corpus Volume II and 20 Newsgroups.
For measuring the similarity between documents using hamming distance, Hinton and
Salakhutdinov introduced Semantic Hashing to produce binary values [88]. Based on the
above findings, this work relied on using RSM as the first component in the DBN along
with Semantic Hashing.

Though this section separates prior works on extracting activity patterns in cities
and the huge advancements of DBNs for topic modeling in recent years, no prior work
has attempted to apply DBNs for topic modeling for the sake of inferring new types of
fine grained patterns within cities. In the rest of this chapter, it will be shown that it
is possible to extract a unique pattern for different regions within cities leveraging the
power of DBNs.

5.3 Socio-demographic Regional Patterns model

In this section, the problem of discovering Socio-demographic Regional Patterns is first
defined along with some definitions which will be used in the chapter. Then the proposed
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DBN-based model is described, which has been developed and trained for extracting the
Socio-demographic Regional Patterns.

5.3.1 Notation and Definitions

Inferring unique patterns for different regions within the same city involves finding com-
plex multi-weekly patterns from an individual’s activities everyday (individual-footprints)
within each region, we call these type of patterns, Socio-demographic Regional Patterns.
Region-footprint is defined as a distribution of individual-footprints within a particular
region in the city where each individual-footprint can be represented by day of the week,
category of activity and time. Hence, the problem of inferring Socio-demographic Regional
Patterns can be defined as: given a set of individual-footprints within a city for m weeks
as r11, r21, r31, ... r

n1
1 ; r12, r22, r32, ... r

n2
2 ; ... ;r1m, r2m, r3m, ... rnm

m where an individual on week
1, 2, ...m participates in activities n1, n2, ..., nm respectively, determine the K dimensional
subspace through φk, k ∈ 1, 2, ..., K where each φk is a distribution of region-footprint so
that weeks with similar region-footprint lies next to each other. Figure 5.1 illustrates the
Socio-demographic Regional Patterns inference problem.

5.3.2 Deep-Belief-Network Model

The main difference between the theory of the traditional FFNNs and DBNs is the training
procedure as training DBNs is defined by two main steps: pretraining and finetuning. In
the pretraining process, the neural network is separated pairwise to form two layered
networks in which each form RBM. Each RBM is trained independently in which the
output of the lower RBM is provided as input to the next higher-level RBM and so forth.
The goal of this pretraining process is to perform rough approximations of the model
parameters. These parameters are passed to the finetuning process. In the finetuning
process, the network is transformed into a Deep Autoencoder (DA) by unrolling the whole
DBN and by repeating the input and hidden layers and attaching it to the output of the
DBN. By this structure, the DA can perform backpropagation on the unlabeled data by
computing the probability of the input data p(x̂) rather than computing the probability
of the label given the input data p(ŷ|x̂).

In the context of this chapter, the objective is to model a document1 by its word2 count
vector. In other words, the main interest is in the number of times an individual-footprint
appears in a week representing the document. Thus, bottom RBM layer is replaced by
RSM and stochastic binary units are used for all the hidden layers. In the RSM, each
input of the visible units v1, ...., vD is scalar values. The inputs of the visible units as

1The document represents a week of region-footprint in a borough within NYC.
2The word represents individual-footprint captured for particular borough in NYC.
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Figure 5.1: Socio-demographic Regional Patterns Inference Problem.

binary vectors forming a matrix U are defined as

U =



u1,1 u1,2 ... u1,D

u2,1 u2,2 ... u2,D

. . . .

. . . .

uN,1 uN,2 ... uN,D


(5.1)

where D indicates the size of the dictionary3 and N represents the length of the document.
Hence, the input vectors are represented as

ûi = U:,i = [u1,i, ..., uN,i] (5.2)

The energy of the RSM is defined as

e(U, ĥ;w) = −
N∑

n=1

M∑
j=1

i=1∑
D

WijnhjUn,i −
N∑

n=1

D∑
i=1

Un,ibn,i −
M∑
j=1

hjaj (5.3)

where Wijn is the weight between visible unit i at location n in the document Un,i, and
hidden unit j [91]. bn,i is the bias of Un,i. aj is the bias of hidden unit j. The conditional
distribution of the hidden units hj and visible units can be computed as

p(hj = 1|U) = σ(aj +
N∑

n=1

D∑
i=1

Un,iWijn) (5.4)

p(Un,i = 1|ĥ) =
ebn,i+

∑M
j=1 hjWijn∑d

q=1 e
bn,q+

∑M
j=1 hjWqjn

(5.5)

3The dictionary represents all different individual-footprints that exist in the whole dataset.
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where σ represents the logistic sigmoid function and Eq. 5.5 denotes the softmax func-
tion. It is worth emphasizing that the softmax function can be applied to multinomial
distribution only which is what is denoted by U .

The hidden units of RBM are stochastic binary units. The RBM’s inference is con-
ducted by finding representation of the hidden layer ĥ = [h1, ..., hM ] that minimizes the
energy e(v̂, ĥ;w) with respect to the visible layer v̂ = [v1, ..., vD] [92]. The energy is
defined as in [93]

e(v̂, ĥ;w) = −
D∑
i=1

bivi −
M∑
j=1

ajhj −
D,M∑

i=1,j=1

vihjWij (5.6)

where vi is the state of the visible unit, hj is the state of the hidden unit, bi is the bias of
the visible layer, aj is the bias of the hidden layer, Wij is the weight between vi and hj
and which represents a matrix comprising all the weights and biases. A joint distribution
can describe the visible (vi) and hidden layers (hj) as

p(v̂, ĥ;w) =
1

Z(w)
e−e(v̂,ĥ;w) where Z(w) =

∑
v̂,ĥ

e−e(v̂ĥ;w) (5.7)

where p(v̂, v̂;w) is called Boltzmann distribution and Z(w) is the partition function used
as a normalizing constant for the Boltzmann distribution. The probability the model
reconstructs the visible vector v̂ is calculated by [91]

p(v̂;w) =
1

Z(w)

∑
ĥ

e−e(v̂,ĥ;w) (5.8)

The conditional distribution over the hidden units and visible units are calculated using
Eq. 5.9 and Eq. 5.10 respectively.

p(hj = 1|v̂) = σ(aj +
D∑
i=1

viWi,j) (5.9)

p(vi = 1|ĥ) = σ(bi +
M∑
j=1

hjWi,j) (5.10)

For training, the derivative of the log-likelihood is calculated with respect to the model
parameters w as illustrated in [91]. Contrastive Divergence is used for approximating the
gradient of the objective function as suggested by Hinton in [74]. Hence, the RBM update
of the weights and biases is done by

∆W = ε(Epdata [v̂ĥT ]− Eprecon [v̂ĥT ]) (5.11)

∆b̂ = ε(Epdata [ĥ]− Eprecon [ĥ]) (5.12)

∆â = ε(Epdata [v̂]− Eprecon [v̂]) (5.13)
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where Epdata [.] is the expectation of the joint distribution of the real data, Eprecon [.] is the
expectation with respect to the reconstructions and ε is the learning rate. The distribution
of precon is calculated using a Gibbs chain running for one iteration, since it has been shown
that it works well [74].

After the pretraining is finished with the previous procedures, it is expected that
the parameters estimated which will be passed to the finetuning process are already in
proximity to a local minima on the error surface. The finetuning process will further apply
an optimisation algorithm to adjust these parameters to ensure convergence. Conjugate
Gradient is used as the optimization algorithm since it has been proved to be faster than
the Gradient Descent and more robust [94].

5.4 Experiments setup

In this section, the dataset along with its preparations procedures is first described and
then the evaluation metric that has been used to evaluate the proposed model is presented.

5.4.1 Dataset description and preparation

The Foursquare [95] is one of the most popular LBSNs services used. In terms of scale,
Foursquare claims over 6 million registered users and around 1 million check-ins per day.
Foursquare like other services allow users to check-in at different venues (e.g., restaurants,
museums, home), write comments and tips, and upload pictures and videos about the
visited venues. The check-ins filtered within NYC for the dataset introduced in chapter 4
can be viewed in Figure 5.2 as a heat map. From this filtered check-in dataset, a subset
of all of these checkins are selected that lies in any of the five NYC regions/boroughs
boundaries. The five boroughs of NYC were chosen in order to explore whether a unique
socio-demographic patterns could be inferred for each borough, primarily because each
borough has different characteristics and unique histories than each other [96]. The five
boroughs in NYC are Manhattan, Brooklyn, Queens, Bronx, and Staten Island. Then,
the data is is further processed and prepared in the following way:

• Activity Categorization: The type of the visited locations is categorized in the
dataset for each check-in into 9 categories (Entertainment, Education, Night Life,
Recreation, Social Services4, Residence, Shopping, Travelling, and Eating) as per
the Foursquare categorization. This was expected to help significantly decrease the
sparsity problem when feeding the data to the DBN as it expects to increase the
word count for specific individual-footprints within each borough. Hence, increasing
the chances for finding a unique pattern for each borough.

4This category involves check-ins related to services provided for the benefit of the community, such as pharmacy,
recycling facility, and Laundry service.
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Figure 5.2: Check-ins in New York City (Heat map).

• Time-span Aggregation: In this step, each day is divided into 12 time-slots where
each time-slot lasts for 2 hours each. In general the longer the slot, the finer the
recurrent activity behaviour is captured. Based on the dataset and the conducted
experiments, it was found that 12 time slots provides a good tradeoff between de-
creasing sparsity of the dataset and preserving the fine routine behaviours in the
data required for capturing the Socio-demographic Regional Patterns.

In the methodology proposed in the previous section, DBN for topic modeling is devel-
oped and proposed to identify if a unique pattern for each of the five boroughs across NYC
can be extracted. To do so, an analogy is drawn between discovering socio-demographic
patterns of a region and the topic discovery of a document. Specifically in this work, a
word is represented as the individual-footprint (day of the week, category of activity and
time), while a document is comprised of the individual-footprints of one week in a bor-
ough and the corpus is formed of several documents of multi-weekly individual-footprints.
There are K latent topics (socio-demographic weekly patterns) in the model, where K
is the number of output units of the DBN. For example, a document can comprise the
following words: TueTraveling9, TueResidence10, etc. This represents that there was
an activity of Travelling on Tuesday from 06PM -8PM and Tuesday from 08PM -10PM ,
there was an activity in relation to residence and so on.
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5.4.2 Evaluation Methodology

In this section, the evaluation methodology is defined for measuring the accuracy of the
proposed DBN model for discovering socio-demographic patterns. The data is split into
training dataset 70% and test dataset 30% where each document represents one week
activity pattern of one borough, this split ratio is common in several machine learning
tasks [97][98][99]. The selection of the documents for the two sets was performed on the
basis that both have an equal proportion of different labels. The test dataset will be used
only for evaluating the model and not for training purposes. A forward-pass is performed
for the test dataset on the trained DBN and generates a K dimensional vector with the
length equivalent to the number of output units of the DBN. To compute the accuracy for
a test document, the distance proximity is calculated between the nearest neighbours and
the query/test document using Euclidean distance. Hence, the accuracy can be defined
as the fraction between the number of neighbours belonging to same class of the test
document to the total number of neighbours queried as

Accuracy =
no. of true labeled docs

no of docs queried
(5.14)

This evaluation is performed for a different number of neighbours on {1, 3, 7, 15}. The
accuracy measurement evaluates the probability for similar week patterns (where each
week is a document) taken from the same borough as the query week. This gives an
indication of how well the weekly activity patterns of each borough can be spread. Hence,
the higher the accuracy, the more obvious and unique socio-demographic patterns for each
borough.

5.5 Results & validation

In this section, the proposed Socio-demographic Regional Patterns model is evaluated and
the generated results is further validated using LDA and KL-Divergence. The choice of
these is based on the fact that LDA is a well-known topic model that was used previously
for extracting urban patterns [38] and KL-Divergence is a established method for choosing
the optimum number of topics [100]. Further, the results of different DBNs architectures
are shown highlighting the most accurate model. Last, the unique patterns extracted
from applying DBN is validated and interpreted by applying LDA.

5.5.1 Results

The size of the dimensionality reduction of the DBN (number of output units in the DBN
which we refer to as K) must be decided empirically. Hence, different DBN architectures
are applied and the reconstruction errors are analyzed when applied to the dataset for
choosing the optimal K. Four-layered DBN with two different architectures has been
used in the experiment as illustrated in Figure 5.3. Based on our dataset, 750 input
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Figure 5.3: DBN Architectures.

data points {x1, ..., x750} are passed through the DBN and the output layer is varied with
5, 10 and 20 units. These two DBNs architectures are referred to as 750-500-250-125-k
and 750-500-500-100-k where k is the number of output units which represents the latent
representation of a specific borough of NYC.

There are several input parameters that can be adjusted and tuned when training the
DBN and there is no proof on an optimal adjustment for the structure of the DBN for best
performance. Hence, different combinations are experimented of the following parameters
seeking the optimum structure for our problem and dataset. The learning parameters
of the pre-training are set with a learning rate ε = 0.01, momentum m = 0.9, and a
weight decay λ = 0.001. The weights are initialized with variance 0.01 from a 0-mean
normal distribution. Furthermore, 50 epochs are repeated and all biases are initialized to
0. For finetuning, large batches are set to 10 and four line searches are performed for the
Conjugate Gradient algorithm with 50 epochs. These parameters are found to be stable
for our experiments and close to what has been used in [101] that have proved to be stable
on different popular datasets. It is worth highlighting that when the number of epochs is
increased to 100, there was not much difference in the performance observed and hence,
the 50 epochs was found to be the optimum as it is obviously faster.

To further decrease the sparsity of the dataset and increase the possibility of finding
unique region-footprint pattern for each of the boroughs, six samples from the original
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Figure 5.4: DBN 750-500-250-125-k.

dataset were created where each sample was filtered with a minimum number of words per
each document (one week of individual-footprints). For example, the maximum words of
300 per document, indicates that all weeks/documents that have less than 300 individual-
footprints are removed. The 6 new sampled datasets created were equivalent to documents
of at least 30, 100, 200, 300, 500, and 1000 words.

Figure 5.4 and Figure 5.5 show the results for training the DBNs for both architec-
tures. When the number of output units is increased from 5 to 10 for both architectures,
an obvious increase is observed in the accuracy for the 5 sampled datasets. However, the
increase is not that obvious when moving from 10 to 20 output units which indicates satu-
ration in performance. Interestingly, the new sampled dataset with 300 minimum number
of words is observed to outperform in both architectures in all of the cases regardless of
the number of output units. This can be interpreted as being because of the sparsity
problem. By removing the documents/weeks of less than certain number of individual
patterns, as the sparsity problem decreases until reaching a certain limit and then it starts
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Figure 5.5: DBN 750-500-500-100-k.

to increase again due to the decrease in the number of documents to the extent that it
impacts negatively upon the generalization and increases the chances of overfitting. It is
worth emphasising that in the case of 300 words upwards, there were no documents to
process for the Staten Island borough.

For the DBN 750-500-250-125-k, the best accuracy achieved is shown in Figure 5.4c
with 68.17%, 65.59%, 64.65%, and 62.19% for the 1, 3, 5 and 7 neighborhoods respectively
for the 300 words dataset. On the other hand, DBN 750-500-500-100-k shows slightly
less accuracy equivalent to 65.25%, 63.59%, 61.66%, and 60.29% for the 1, 3, 5 and 7

neighborhoods for the 300 words dataset as shown in Figure 5.5c.

It is worth highlighting that when doubling the number of hidden layers from 3 to 7,
there has been no any significant increase in the performance observed as illustrated in
Figure 5.6 with a maximum accuracy of 61.03%. This indicates that there is no direct
proportional relationship between the number of hidden layers and the accuracy.
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Figure 5.6: DBN 750-500-400-400-200-200-100-100-k.

5.5.2 Validation

In this work context, it would be of interest to validate and better understand the unique
patterns between the different boroughs within NYC. For doing so, LDA topic model is
trained on the data filtered for 300 words which show the best accuracy in our experiments.
For choosing the optimum number of topics for training LDA, the approach presented
in [102] is applied where LDA is executed for number of topics ranging from 1 − 100

and the symmetric Kulback-Leibler (KL) divergence is computed of the singular value
distributions of matrix M1 and the vector distribution L ∗M2 where M1 and M2 can
be viewed as the matrices generated from the LDA matrix factorization methods. These
methods factorize the document-word frequency matrix and L is a vector containing
the length of each document/weekly-footprints in the corpus formed of the full weekly-
footprints of 1 borough. The higher the KL-Divergence, the less optimum number of
topics. The advantage of this approach is that it makes use of the properties from both
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matrices M1 and M2 whereas other approaches proposed in [103] and [104] only consider
the information in the stochastic topic-word and ignore the document-topic matrix. The
results computed are shown in Figure 5.7a, Figure 5.7b, Figure 5.7c and Figure 5.7d for
Bronx, Brooklyn, Manhattan and Queens boroughs respectively.

As it can be observed in the graphs of Figure 5.7, the optimal number of topics is rela-
tively low for all boroughs datasets. It can be observed from Figure 5.7c and Figure 5.7d
that the optimum number of topics is between 5 and 20. However, from Figure 5.7c and
Figure 5.7d, the optimum number of topics seems to be between 5 and 15. Hence, 10

topics were selected to train the LDA for the 4 boroughs’ datasets. Table 5.1 and Ta-
ble 5.2 show the results when applying LDA for discovering the top 10 topics. Table 5.1
shows the first 5 topics results whilst Table 5.2 shows the last 5 topics. The results of
three Boroughs are shown since Bronx results are quite close to Queens results. Some
interesting common patterns found from the results are as follows:

• Brooklyn: The main pattern captured in Brooklyn was in relation to eating activi-
ties with all afternoon starting from 04PM onwards. The overall probability for the
eating activities reaches 0.45.

• Manhattan: The main pattern captured in Manhattan was in relation to social ser-
vices activities with most captured around noon from 12PM -02PM with an overall
probability of 0.38.

• Queens: The main pattern captured in Queens was in relation to traveling activities
on weekdays and weekends with an overall probability of 0.47.

In summary, this section can be concluded with the following two main points:

1. In general, identifying unique patterns for different regions within cities is consid-
ered a complex problem that requires advanced machine learning models for being
able to automatically learn features at multiple levels to learn the complex Socio-
demographic Regional Patterns without depending on human crafted features. This
was achieved via training the DBN with multiple layers. The complexity of inferring
these patterns are validated by the low probabilities when LDA is applied for infer-
ring regional unique weekly patterns within each borough. This is obvious from the
results shown in Table 5.1 and Table 5.2.

2. Although, the low probabilities observed when LDA is applied indicates the com-
plexity of detecting a unique pattern for each of the boroughs from the complete
individual-footprints (e.g., friEating10), a clear unique pattern is observed in rela-
tion to the activity categories which validated that there is at least a different pattern
for each of the boroughs.
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Figure 5.7: Number of Topics Vs Symmetric KL Divergence for NYC Boroughs.

Table 5.1: Recurrent Region-footprint results for the first five topics (1-5).

Topics Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
Boroughs Word Prob Word Prob Word Prob Word Prob Word Prob

friEating10 0.017 monTraveling6 0.018 satEating0 0.001 thuEating11 0.011 sunEating8 0.010
sunEating1 0.016 satEating11 0.016 sunEating8 0.001 sunEating9 0.011 thuEating0 0.008
sunEating9 0.011 satEating10 0.011 satEating11 0.001 satEating0 0.011 satEating0 0.007
satNighlife2 0.011 wedEating0 0.011 monTraveling6 0.001 thuShopping11 0.011 sunEating10 0.007

Brooklyn

satShopping11 0.010 sunEating0 0.011 satEating8 0.001 sunEating8 0.011 wedEating11 0.006
tueSocialServices6 0.015 thuSocialServices6 0.026 monSocialServices6 0.026 monSocialServices7 0.015 tueSocialServices6 0.019
tueEating8 0.013 thuEating6 0.018 tueSocialServices6 0.015 friEating0 0.015 monSocialServices6 0.018
tueEating9 0.012 monSocialServices6 0.017 sunEating8 0.015 thuEating0 0.015 thuEating8 0.016
thuEating0 0.011 thEating8 0.015 sunEating9 0.014 thuEating9 0.013 tueEating8 0.015

Manhattan

tueSocialServices7 0.011 wedEating11 0.013 monEating9 0.013 wedEating9 0.011 friSocialServices6 0.015
monTraveling6 0.015 monTraveling5 0.023 friTraveling5 0.009 tueTraveling6 0.025 wedTraveling6 0.017
monTraveling5 0.010 tueTraveling6 0.018 satShopping9 0.009 monTraveling6 0.015 monShopping9 0.017
monShopping10 0.009 monTraveling0 0.013 tueTraveling6 0.009 friTraveling6 0.014 wedTraveling5 0.016
thuTraveling6 0.008 tueTraveling5 0.013 satEating9 0.009 monTraveling11 0.012 wedTraveling8 0.013

Queens

friTraveling6 0.007 monTraveling6 0.012 thuTraveling6 0.008 sunShopping9 0.011 wedEducation6 0.013

Table 5.2: Recurrent Region-footprint results for the last five topics (6-10).

Topics Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
Boroughs Word Prob Word Prob Word Prob Word Prob Word Prob

sunEating8 0.027 tueTraveling5 0.012 huTraveling6 0.010 satEating11 0.001 satEating0 0.001
satShopping8 0.026 sunEating0 0.011 wedTraveling6 0.010 sunEating0 0.001 sunEating0 0.001
satEating8 0.024 tueEating0 0.09 thuEating9 0.009 sunEating8 0.001 satEating9 0.001
satRecreation8 0.017 satEating11 0.08 monTraveling6 0.009 sunShopping9 0.001 satEating8 0.001

Brooklyn

satShopping10 0.016 sunShopping10 0.008 wedEating9 0.009 tueTraveling0 0.001 satShopping9 0.001
monSocialServices6 0.086 satEating0 0.016 wedEating8 0.018 monSoicalServices6 0.018 monSocialService6 0.014
wedEating8 0.073 friEating0 0.013 tueSocialServices6 0.017 monEating8 0.018 friEating8 0.013
monEating6 0.040 friEating8 0.013 wedSocialServices6 0.012 sunNightlife1 0.013 thuEating8 0.013
wedShopping8 0.033 satNighlife2 0.013 sunEating9 0.011 wedSocialServices6 0.013 monEating8 0.012

Manhattan

monShopping10 0.033 sunEating0 0.013 sunEating11 0.011 tueEating11 0.013 satEating0 0.011
tueTraveling6 0.018 thuTraveling5 0.013 monTraveling6 0.001 tueRecreation2 0.020 monTraveling6 0.001
tueTraveling0 0.014 wedTraveling11 0.011 friTraveling5 0.001 tueTraveling9 0.015 wedTraveling6 0.001
wedTraveling11 0.013 friTraveling5 0.010 tueTraveling6 0.001 tueRecreation1 0.014 friTraveling5 0.001
tueTraveling5 0.013 tueTraveling11 0.009 monTraveling7 0.001 wedEating0 0.012 tueTraveling6 0.001

Queens

wedTraveling6 0.011 thuTraveling6 0.001 tueRecreation0 0.001 tueRecreation0 0.011 wedTraveling11 0.001
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5.6 Summary

In this chapter, the possibility of classifying new weekly pattern to one of the cities’
regions has been explored using a proposed trained DBN based model. The five boroughs
in New York City (NYC) have been considered as an example for demonstrating that it is
feasible to extract unique patterns for each of the boroughs that differ from one another.
To the best of our knowledge, there has been no previous research that shows the ability
to extract such unique patterns of regions within the same city and moreover, DBNs have
not been leveraged before for extracting urban patterns in cities. More specifically, in
this chapter, it is shown that the best proposed trained model of DBN is able to achieve
nearly 70% accuracy for classifying/predicting the region based on new/unseen weekly
crowd activities in the city showing that discovering such type of patterns is feasible. The
proposed pattern and extraction method is likely to find a natural application and impact
for better understanding the commonalities between socio-demographics between regions
across the globe. In addition it is anticipated that it will support the understanding as to
whether there are any correlations between these patterns with other urban parameters
such as energy consumption, economic development and industrialization.

Having presented in this chapter the first introduced contribution and urban pattern
in this thesis referred to as Socio-demographic Regional Patterns, the next chapter intro-
duces a clustering based approach for extracting the second type of urban pattern called
Temporal Functional Regions patterns.
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Chapter 6

Extracting the new Temporal Functional
Regions patterns

Chapter overview: In this chapter, the second type of new urban pattern proposed in
this thesis is introduced titled as “Temporal Functional Regions patterns”. It is described
how it is possible to extract for the first time, using a clustering based approach, finer
functional regions in cities that change across space and time. Various time intervals
are studied for identifying the most suitable time granularity for extracting such Temporal
Functional Regions. This new approach has been published in [ICTAI 2016]. Furthermore,
It is demonstrated in this chapter as to how the approach has been applied to studying some
specific regions in Manhattan, where it is validated that the proposed approach follows our
intuitive understanding for the functionality of some of those regions.

6.1 Motivation

Urban planning focuses on planning the land use in cities. Urban planners determine
the functionality of regions within cities for being able to design urban environments
and make the best use of the available spaces to increase the well being of citizens. For
achieving this purpose, urban planners require a large amount of data on urban land use
that is typically gathered from direct observations or questionnaires that captures how
citizens interact with the urban environment. However, this approach has some obvious
limitations in relation to the cost of running surveys and gathering such amounts of data,
besides privacy concerns from citizens for providing such information (refer to chapter
2). An alternative approach for capturing functional regions and land use is Geographic
Information Systems (GIS) which provides satellite imagery that has the possibility to
capture land use through advanced vision techniques. Nevertheless, such techniques fail
to capture real time information as satellite images are not captured frequently.

The approach presented in this chapter utilizes both spatial (geo-tagged location) and
temporal (time-stamped) information, highlighting for the first time how the functionality
of a region can vary temporally. As an example, a region within a city can exhibit shopping
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functionality in the afternoon, whereas at ight it can turn to be more of a residential area.
In another region, it might be considered a business district in the morning if it is a home
for lots of companies while later at night it might have night-life functionality due to the
presence of lots of restaurants and bars in the same region. This logical and intuitive
inference motivated my research into extending and applying clustering techniques to
account for the temporal variations, in order to characterize the region during different
time slots of the day. This is precisely the goal of the proposed approach in this chapter
which is a step towards urban computing [35] and helps in understanding urban dynamics
for cities. The following specific contributions of this part of the research are highlighted
as follows:

1. It is shown for the first time that taking into account temporal variation to char-
acterize a region’s functionality at different slots during the day has the potential
to detect variability of the functionality of the same region within the day. It is
anticipated this may yield a better understanding of city dynamics compared to the
default “no temporal split” approach.

2. Different time intervals have been studied in order to explore the optimum interval
for detecting Temporal Functional Regions within the day. This has allowed the
exploration of the tradeoff between sparsity of data and detecting meaningful func-
tionalities of a region. The proposed approach has been successfully applied on a
sparse dataset coming from LBSNs, as described in chapter 4.

3. Three different clustering based techniques are developed for detecting Temporal
Functional Regions deriving the optimum number of clusters for each time interval.

4. Results of applying the approach to regions are likely to find a natural application
in providing better personalized recommendations to users based on the variability
of the regions’ functionality they visit, as well as supporting the understanding of
commonalities of socio-demographics between regions across the globe.

6.2 State-of-the-Art

Over a number of years, many approaches have been proposed for exploring functional
regions in a city using socio-demographic data [105]. However, the process of acquiring and
updating such data is very expensive and time consuming [105]. Hence, other alternative
data sources have been attempted including human mobility data, survey data, and most
recently LBSNs data as overviewed in chapter 2. In this section, the attempts within
the state-of-the-art to discover functional regions from different types of data are focused
upon.
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6.2.1 Human Mobility & Survey Data

In this branch of research, there have been several attempts for utilizing the human
mobility data to explore spatio-temporal patterns to infer the functions of regions using
mobile phone Erlang data [106][107], taxicab data [108][109], wifi data [109] and smart
card data [110]. Besides the human mobility data, some other studies have relied on using
activity-based survey data to explore the spatial-temporal patterns and then derive the
functional regions of a city [109]. Unfortunately, human mobility and survey data have
their own limitations in the context of deriving functional regions. Human mobility data
is subject to a lack of travel demand information which consequently impacts the detailed
characteristics of regions that can be inferred. Hence, empirical analysis is needed to
infer cluster of regions’ type leading to the inability to distinguish between the likes of
non-home/work activities [109]. To overcome these challenges, Yuan et al. used both
information about human mobility among regions and Point Of Interests (POIs) located
in a region [109]. They introduced a topic-based inference model which links the human
mobility with POIs, however, this is not always be the case in real scenario. For instance,
one user goes to a library that is beside a shopping center. If the library is not in the POI
data, then her movement will be linked to shopping rather than the educational purpose.

6.2.2 LBSNs Data

With the rise of LBSNs such as Foursquare, Twitter and Flickr, it is feasible to record a
user’s surrounding along with their movement routes through what is so-called “check-in”.
Unlike data from cell phone and car trajectories data, check-in data not only contain
the location but also the activity category of the user. False check-ins is one of the
obvious challenges in relying on this data but Cheng et al. [109] proposed a series of rules
to eliminate false check-ins and We et al. [111] introduced five criteria to discover the
fake/untrusted check-in.

Check-in data has shown to be a great source for discovering functional regions com-
pared to previous types of data. Justin et al. [112] relied on LBSNs data to discover
sub-urban areas from foursquare data referred to as Livehoods. Felix et al. [45] com-
bined both textual and movement data from LBSNs dataset to obtain semantically rich
modalities of urban dynamics. One of their contributions was clustering city areas into
functional regions relying on analogous results that can be obtained to represent areas of
similar functions for particular time periods. Thiago et al. [113] measured dynamics of
eight cities on a large scale using LBSNs data. However, they did not consider the inter-
dependence between the functional regions and human activities which has been studied
in detail by Ye et al. in [114].
Though, prior works for exploring functional regions are separated based on the data
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source (Human Mobility data, Survey data or LBSNs data), to our knowledge, no prior
work using LBSNs data has attempted to study functional regions whilst taking into ac-
count temporal variations to characterise regions at different time slots during the day. In
contrast in the research I have undertaken and described in this chapter, (a) it is shown
how to derive finer functional regions during the day in a city by studying different time
slots of the day and (b) the performance derived from using different clustering techniques
is demonstrated.

6.3 Temporal functional regions patterns

In this section, the notation used in the proposed approach is introduced first. Then
a description of the proposed approach for extracting Temporal Functional Regions is
discussed highlighting the method for deriving the optimum: number of clusters, clustering
method as well as the number of slots for splitting the dataset.

6.3.1 Notation and Definitions

The raw LBSNs dataset is denoted with D. Moreover, the dataset is split into d days,
which are further split into s time slots of equal sizes, such that d = 〈t1, t2, ...ts〉. In this
work, the optimum number of slots is studied to split the initial dataset d from a set of
candidates: S = {2, 4, 8, 12, 24}. For instance for s = 2, the dataset d is split into two
time slots of 12h each. The dataset for a day d remains of 24h duration when s is equal
to 1. Further, each time interval ti has a duration of: ‖ti‖= 24

s
, ∀i ∈ [1, s].

In order to determine the functional regions of a city, a set of 9 activity categories
have been formulated (e.g., entertainment, education), as follows: A = {a1, ...a9}. These
are also referred to as functions. Moreover, act(rj) denotes the main activity related to
region rj. In addition, a checkin within a region rj and time-slot ti is denoted with c

rj
ti .

The activity related to the checkin crjti is denoted with act(crjti ).

Further, Crjti (ak) is defined as the set of relevant check-ins to a specific activity ak within
region rj and during time-slot ti as follows:

Crjti (ak) = {crjti | act(c
rj
ti ) = ak, ∀ak ∈ A , ∀ i ∈ [1, s] , ∀j ∈ [1,m]} (6.1)

The number of check-ins relevant to a specific activity ak within region rj and during
time-slot ti is referred by the number of elements within the associated set ‖Crjti (ak)‖.

Definition 1 (Checkins Matrix Cti) A Checkins Matrix is defined as a matrix contain-
ing the checkins relevant to each activity within each region rj at interval ti, as follows:
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Cti =



Cr1ti (a1) Cr1ti (a2) ... Cr1ti (a9)

Cr2ti (a1) Cr2ti (a2) ... Cr2ti (a9)

. . . .

. . . .

Crmti (a1) Crmti (a2) ... Crmti (a9)


, ∀ i ∈ [1, s] (6.2)

Moreover, the set of all checkins for d, ∀ti ∈ d, i ∈ [1, s] is denoted by Cd.

Further, the input vector for each region rj is represented during a time interval ti as
the cardinalities of each element of a row of the matrix Cti , as follows:

~Cti(rj) =< ‖Crjti (a1)‖ , ..., ‖C
rj
ti (a9)‖>, ∀ i ∈ [1, s] ∧ ∀ j ∈ [1,m] (6.3)

where ‖Crjti (ak)‖ represents the number of checkins relevant to each activity ak within
region rj at interval ti, ∀j ∈ [1,m] ∧ ∀ i ∈ [1, s].

Definition 2 (Static Functional Region frak) A static functional region is defined as
a set of regions that change their functionality over space only, depending on the spatial
distribution of the checkins contained in dataset D. The functional region is associated to a
single activity and does not consider any shifts in functionality across the time dimension.

Definition 3 (Temporal Functional Region frakti ) A temporal functional region is de-
fined as a set of regions that change their functionality over space and time, depending on
the activity shifts across the temporal variation of the different time slots considered. A
functional region over an interval ti for an activity ak is denoted by frakti , and defined as
a set of regions rj with the same function ak over the time interval ti, as follows:

frakti = {rj | act(rj) = ak, ∀j ∈ [1,m]}, ∀ i ∈ [1, s] ∧ ∀ ak ∈ A (6.4)

Moreover, all the functional regions generated by the clustering techniques for an in-
terval ti are denoted by: Frti = {fra1ti , fr

a2
ti , ..., fr

a9
ti }, ∀ i ∈ [1, s].

6.3.2 Proposed Approach

This section describes the proposed approach for generating spatio-Temporal Functional
Regions from raw LBSNs dataD. Three algorithms are described. The proposed approach
is based on clustering the regions for detecting Temporal Functional Regions, deriving
the optimum number of clusters for each time interval. This is achieved by applying the
clustering techniques by varying the number of clusters on each of the time slots and
generating the corresponding evaluation metrics – silhouette coefficient, sc. The latter,
sc, is used as the metric for identifying the quality of the clustering results. The silhouette
coefficient sc is chosen due to two obvious reasons. First, the silhouette score is bounded
between −1 for incorrect clustering and +1 for highly dense clustering, while a score
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around 0 indicates overlapping clusters. Second, the silhouette score is high when the
clusters are well separated and dense which follows the concept of cluster. Hence, if most
objects have a high value, then it indicates an appropriate configuration for clustering.
The silhouette coefficient sc for a single sample can be expressed as:

sc =
b− a

max(a, b)
(6.5)

where a is the mean distance between a sample and all other points in same cluster while
b is the mean distance between a sample and all other points in the next nearest cluster.
The silhouette coefficient is used to estimate the performance of the generated functional
regions’ clusters based on the euclidean pairwise difference of between and within cluster
distances. Additionally, it is used to identify the optimal number of clusters, which
is essential for the three clustering techniques used, by maximizing the value of this
coefficient.

Optimum number of clusters (Algorithm 1): Given each day d of datasetD, initially,
the input data will be aggregated for each time-slot and mapped into a number of keywords
for each checkin. The keywords will further be processed over the given time slots and
over the multiple physical regions to form a matrix of checkins per activity and region
for each time-slot. This data preparation step will give us Cd, the matrix containing
the checkins relevant to each activity within each region for all time intervals in d (refer
to the previous notation section). Further, this matrix is given to Algorithm 1, which
based on the input matrix returns the number of optimal clusters for each time interval
ti of d, given a clustering technique method and the number of splits s for the time
interval. The optimum number of clusters is explored by varying k between 2 and 14

(line 5), as it was found through experimentation that going further with k did not bring
significant improvements in the sc results. Three of the most well known mature clustering
techniques are explored in the experimentation, denoted by method in Algorithm 1 listing
specifically: (i) Agglomerative hierarchical clustering, (ii) K-means clustering, and (iii)
Spectral clustering. Agglomerative Hierarchical clustering considers that each item is in
its own cluster, it merges nearest clusters and further iterates this process until only one
cluster is left. Spectral clustering can be thought as a “pre-processing” step to change
the feature representation before passing the new representation to K-means. K-means
is a widely known technique which assumes that the number of clusters k is known and
is an iterative algorithm which tracks the cluster means. It is worth highlighting that
spectral clustering in particular have been widely used in urban computing generally and
in particular for detecting functional regions as shown in [4][112]. Refer to chapter 3 for
more details about the clustering algorithms used in this chapter.

Algorithm 1 calculates the optimum number of clusters for each time-slot such that it
maximizes sc (lines 4 to 11). Moreover, the optimum number of clusters for all time slots
is calculated by averaging the optimum number of clusters for each time-slot (line 12).
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// Phase 1: Traverse time slots ti and find optimum number of clusters maximizing
sc

map(ti, [method, opti, scimax
])← ∅ ;

for i ∈ [0, s] do
Cti ← subset(Cd,ti);
// Initialize maximum silhouette score and optimal number of clusters for ti
scimax

← −1;
opti ← −1;
// Find the optimal number of clusters opti from k ∈ [2, 14]
for k ∈ [2, 14] do
Clusters← cluster(Cti , k, method);
if sc(Clusters) > scimax

then
scimax

← sc(Clusters);
opti ← k;
mapti .put(ti, [method, opti, silcimax

]);
end

end
end
opt← round( 1

s ·
∑s
i=1 opti);

return opt, mapti ;
Algorithm 1: opt#Clusters(Cd,method, s)

The algorithm also constructs a map denoted by mapti , which stores for each time inter-
val ti (i.e., the key of the map) a list of values: a clustering method, and its associated
optimum number of clusters opti and the maximum silhouette coefficient scimax . Its struc-
ture is: map(ti, [method, opti, scimax ]). For instance, the map is illustrated in Figure 6.1
and Figure 6.2 for a slot s = 4 and s = 2 respectively (i.e., d = 〈t1, t2〉 and the duration
of each ti is 12h or 6h) depicting the silhouette coefficient for each k. This information on
the optimum number of clusters is later used to determine the optimal clustering method
in Algorithm 2.

Optimum clustering method and number of slots to split the dataset (Algo-
rithm 2): Further, in order to derive the optimum method for clustering the considered
dataset and the optimum number of slots s to divide the dataset d, mapti is constructed
for each potential number of slots s for splitting the d dataset by applying Algorithm 1
receiving as variation all potential values of s. This leads us to a second map, denoted
further by mapsti which stores for each slot size s (i.e., the key) mapti . Its structure is:
map(s,map(ti, [method, opti, scimax ])).

The algorithm for determining the optimum method and slots is presented in Algo-
rithm 2 and receives as input the map mapsti , and the set S, which contains the explored
values of slots s. It traverses all potential values of s and further verifies the maximum sc

coefficient across all number of slots s and all clustering methods considered (lines 4 to 9).
If the difference between the maximum sc score achieved and closest but less optimal sc
score is less than the threshold τ = 0.001, the algorithm proceeds with the already found
number of slots as described above (line 9).
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// Phase 2: Traverse mapsti and find optimum number of splits and clustering
method maximizing sc

methodopt ←′ ′;
sopt ← −1;
for s ∈ S do

scmax ← −1;
mapti ← mapsti .get(s);
for i ∈ [0, s] do

methodi ← mapti .get(ti)[0];
sci ← mapti .get(ti)[2];
if sci > scmax and sci − scmax > τ then

scmax ← sci;
// Remember optimum method and splits s
methodopt ← methodi;
sopt ← s;

end
end

end
return sopt, methodopt ;

Algorithm 2: opt#Slots&Method(mapsti , S)

Functional region detection (Algorithm 3): Algorithm 3 returns the activity of each
physical region rj, ∀j ∈ [0,m]. After concluding the optimum number of clusters opt in Al-
gorithm 1, the optimum clustering technique methodopt, and the optimum number of time
slots sopt to split the dataset in Algorithm 2, the clustering is then performed. For each
region, the algorithm counts the percentage of keywords within the checkins registered in
that region during the time-slot ti by retrieving the vector ~Cti(rj) (See Section 6.3.1) from
the checkins matrix (line 8). Afterwards, the top activity is identified by calculating the
maximum percentage within the checkins registered within the functional region ~Cti(frti).
Finally, this represents the most dominating functional feature of the functional region
(line 10).

6.4 Experiments setup

The raw data introduced in chapter 4 was preprocessed and mapped into a suitable
format that can be consumed by the selected clustering algorithm. The outcome of data
preparation was a set of Spatial-temporal Functional Matrices, each of which covers a
given time-slot. Every Spatial-temporal Functional Matrix illustrates the probability of
each physical area belonging to functional categories. The preprocessing work can be
decomposed into Activity Categorization, Time-slot Aggregation, and Geographic Region
Categorization as follows:

• Activity Categorization: The visited location of each check-in is classified into 9

categories: Entertainment, Education, Night Life, Recreation, Social Services1, Res-
1This category involves check-ins related to services provided for the benefit of the community, such as pharmacy,

recycling facility, and Laundry service.

78



Phase 3: Apply opt and method to Cd divided by optimum s and determine functional
regions Frti for each time interval ti

for i ∈ [0, sopt] do
Cti ← subset(Cd,ti);
Frti ← cluster(Cti , opt, methodopt );
for ∀frti ∈ Frti do

~Cti(frti)← ∅ ;
for rj ∈ frti do

~Cti(rj)← subset(Cti ,rj);
// Update the checkins count of each activity for frti
~Cti(frti)← update(~Cti(frti),~Cti(rj) );

end
// Calculate the top activity for functional region frti
topActivityFr ← maxCount(~Cti(frti));

end
end

Algorithm 3: functionalRegionDetection(Cd, opt, methodopt, sopt)

idence, Shopping, Travelling, and Eating, as used in Foursquare applications.These
9 activity categories will act as the functionalities of regions in our work. This pre-
processing step will not only decrease the sparsity problem significantly when feeding
the data to clustering techniques but also enable more meaningful functionalities of
regions in this research to be used. In particular, this categorization mapped 532

different keywords in the dataset into 9 labels as functional regions to be mapped.

• Time-slot Aggregation: The daily records are then split into 24, 12, 6, 3 time-
slots, each of which lasts for 1, 2, 4, and 8 hours respectively. In general the smaller
the slot, the finer the region’s functionality can be captured but with more sparsity
challenges. The step aims to study the tradeoff between sparsity of the dataset and
preservation of the meaningful functionality of a region.

• Geographic Region Categorization: The processed data, which contains check-
ins from Manhattanis then categorised into the zip codes boundaries The boundaries
of Manhattan area and its zip codes are provided by NYC Department of Information
Technology & Telecommunication as it was illustrated in chapter 4. This enables us
to process the data as a matrix Cti defined in Equation 6.2.

6.5 Results and Validation

In this section, the results are shown for the proposed Temporal Functional Regions
approach presented in section 6.3. The proposed approach is applied for identifying the
optimum number of clusters k for each time interval by varying k from 2 to 14. As
discussed previously, Figure. 6.1 and Figure. 6.2 show the results for the 4 and 2 hours
intervals which resulted in 6 and 12 time slots respectively. From Figure 6.1a, Figure 6.1b,
and Figure 6.1c, the optimum number of clusters for Hierarchical, K-means and Spectral
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(c) Spectral clustering

Figure 6.1: Exploring optimum number of clusters k for the 4 Hours interval resulting in 6 time slots.

clustering for the 4 Hours interval are 13, 12, and 10 respectively specified with a dashed
line in the figures. Similarly, Figure 6.2a, Figure 6.2b, and Figure 6.2c shows that 12,
12 and 9 are the derived optimum number of clusters for the 2 Hours interval for the
Hierarchical, K-means and Spectral clustering respectively. This process is repeated for
the whole time intervals studied, 1 hour, 2 hours, 4 hours, 8 hours and with no temporal
split at all. The resulting average silhouette scores are summarized and concluded for each
temporal variation as illustrated in Figure 6.3. From this figure, it is worth emphasizing
the following three points:

1. The “No Temporal Split” resulted in the least average silhouette scores which indi-
cates the least quality of clustering compared to the Temporal Functional Regions.

2. There has been a substantial improvement in the silhouette scores for the 4 hours
interval compared to the 8 Hours interval, however, the scores seem to stabilize going
forward for the 2 hours and 1 hour time intervals.

3. Based on the previous point, the 4 hours slot was found to be the most reason-
able when deriving the Temporal Functional Regions which will be illustrated and
visualized in detail in the next section.
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Figure 6.2: Exploring optimum number of clusters k for the 2 Hours intervals resulting in 12 time slots.
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Figure 6.3: Temporal variation silhouette scores for different time intervals.
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Table 6.1: Area clustering results for the morning activities.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9 cluster 10 cluster 11 cluster 12 cluster 13
Recreation (0.54) Eating (0.26) Eating (0.38) Traveling (0.35) Recreation (1) SocialServices (0.54) Entertainment (0) SocialServices (1) Education (0.76) Shopping (1) NightLife (0.68) Eating (1) Residence (0.66)
Shopping (0.08) Recreation (0.23) Residence (0.22) Eating (0.19) Entertainment (0) Eating (0.39) Education (0) Entertainment (0) Eating (0.24) Entertainment (0) Eating (0.26) Entertainment (0) Traveling (0.21)
Eating (0.08) SocialServices (0.13) Traveling (0.1) Recreation (0.12) Education (0) Recreation (0.03) NightLife (0) Education (0) Entertainment (0) Education (0) Education (0.05) Education (0) Eating (0.11)
Traveling (0.07) Traveling (0.11) Shopping (0.09) SocialServices (0.09) NightLife (0) Shopping (0.02) Recreation (0) NightLife (0) NightLife (0) NightLife (0) Entertainment (0) NightLife (0) NightLife (0.01)
Residence (0.07) Shopping (0.1) Entertainment (0.09) Entertainment (0.09) SocialServices (0) Residence (0.02) SocialServices (0) Recreation (0) Recreation (0) Recreation (0) Recreation (0) Recreation (0) Recreation (0.01)
Education (0.06) Residence (0.06) Recreation (0.08) Education (0.05) Residence (0) Education (0) Residence (0) Residence (0) SocialServices (0) SocialServices (0) SocialServices (0) SocialServices (0) Shopping (0.01)
SocialServices (0.05) NightLife (0.05) SocialServices (0.03) Shopping (0.05) Shopping (0) Traveling (0) Shopping (0) Shopping (0) Residence (0) Residence (0) Residence (0) Residence (0) Entertainment (0)
Entertainment (0.04) Education (0.04) Education (0) Residence (0.04) Traveling (0) Entertainment (0) Traveling (0) Traveling (0) Shopping (0) Traveling (0) Shopping (0) Shopping (0) Education (0)
NightLife (0) Entertainment (0.03) NightLife (0) NightLife (0.02) Eating (0) NightLife (0) Eating (0) Eating (0) Traveling (0) Eating (0) Traveling (0) Traveling (0) SocialServices (0)

Table 6.2: Area clustering results for the afternoon activities.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9 cluster 10 cluster 11 cluster 12 cluster 13
Eating (0.33) Education (0.33) SocialServices (0.4) Traveling (0.51) Recreation (0.4) SocialServices (0.27) Shopping (0.85) Entertainment (0) SocialServices (0.77) SocialServices (0.62) Recreation (0.75) SocialServices (0.99) Eating (0.95)
Shopping (0.19) Eating (0.23) Eating (0.2) Residence (0.14) Eating (0.22) Traveling (0.23) SocialServices (0.15) Education (0) Eating (0.16) Recreation (0.38) Residence (0.08) Shopping (0.01) SocialServices (0.04)
SocialServices (0.15) SocialServices (0.11) Recreation (0.12) Eating (0.09) Residence (0.08) Eating (0.17) Entertainment (0) NightLife (0) Education (0.03) Entertainment (0) Traveling (0.05) Entertainment (0) Traveling (0.02)
Recreation (0.11) Recreation (0.1) Shopping (0.1) Recreation (0.08) Entertainment (0.08) Entertainment (0.1) Education (0) Recreation (0) Traveling (0.02) Education (0) Eating (0.04) Education (0) Entertainment (0)
Traveling (0.1) Traveling (0.08) Education (0.07) Shopping (0.07) Shopping (0.07) Shopping (0.09) NightLife (0) SocialServices (0) Entertainment (0.01) NightLife (0) Education (0.03) NightLife (0) Education (0)
Residence (0.04) Shopping (0.06) Traveling (0.05) SocialServices (0.06) Traveling (0.06) Education (0.06) Recreation (0) Residence (0) Shopping (0.01) Residence (0) Entertainment (0.03) Recreation (0) NightLife (0)
Education (0.04) Residence (0.05) Residence (0.03) Entertainment (0.04) SocialServices (0.05) Recreation (0.06) Residence (0) Shopping (0) Recreation (0) Shopping (0) Shopping (0.02) Residence (0) Recreation (0)
NightLife (0.03) Entertainment (0.03) Entertainment (0.02) Education (0) Education (0.04) NightLife (0.02) Traveling (0) Traveling (0) NightLife (0) Traveling (0) SocialServices (0) Traveling (0) Residence (0)
Entertainment (0.02) NightLife (0.01) NightLife (0.01) NightLife (0) NightLife (0.01) Residence (0.01) Eating (0) Eating (0) Residence (0) Eating (0) NightLife (0) Eating (0) Shopping (0)

Table 6.3: Area clustering results for the evening activities.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9 cluster 10 cluster 11 cluster 12 cluster 13
SocialServices (0.91) Eating (0.26) Recreation (0.42) SocialServices (0.44) Education (0.34) Traveling (0.42) Eating (0.6) Shopping (0.55) Eating (1) Education (1) Shopping (0.94) Entertainment (0) Eating (0.41)
Eating (0.04) Shopping (0.18) Eating (0.21) Eating (0.4) Eating (0.19) Entertainment (0.15) Recreation (0.1) SocialServices (0.37) Entertainment (0) Entertainment (0) SocialServices (0.06) Education (0) Shopping (0.18)
Education (0.02) Recreation (0.14) Education (0.09) Shopping (0.14) Residence (0.13) Shopping (0.13) Shopping (0.08) Eating (0.05) Education (0) NightLife (0) Entertainment (0) NightLife (0) SocialServices (0.11)
Recreation (0.02) SocialServices (0.13) Shopping (0.08) Entertainment (0.02) Shopping (0.12) Eating (0.12) Entertainment (0.07) Education (0.04) NightLife (0) Recreation (0) Education (0) Recreation (0) Recreation (0.09)
Shopping (0.01) Traveling (0.1) Traveling (0.06) Education (0) Recreation (0.1) SocialServices (0.09) SocialServices (0.06) Entertainment (0) Recreation (0) SocialServices (0) NightLife (0) SocialServices (0) NightLife (0.06)
Entertainment (0) Residence (0.05) SocialServices (0.04) NightLife (0) Traveling (0.06) Education (0.05) Traveling (0.05) NightLife (0) SocialServices (0) Residence (0) Recreation (0) Residence (0) Education (0.05)
NightLife (0) Entertainment (0.05) Entertainment (0.04) Recreation (0) SocialServices (0.04) Recreation (0.03) NightLife (0.03) Recreation (0) Residence (0) Shopping (0) Residence (0) Shopping (0) Entertainment (0.04)
Residence (0) Education (0.05) Residence (0.04) Residence (0) Entertainment (0.02) NightLife (0.01) Education (0.02) Residence (0) Shopping (0) Traveling (0) Traveling (0) Traveling (0) Traveling (0.04)
Traveling (0) NightLife (0.03) NightLife (0.02) Traveling (0) NightLife (0.01) Residence (0) Residence (0.01) Traveling (0) Traveling (0) Eating (0) Eating (0) Eating (0) Residence (0.02)

Table 6.4: Area clustering results for the night activities.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 cluster 8 cluster 9 cluster 10 cluster 11 cluster 12 cluster 13
Recreation (0.65) Entertainment (0.51) Eating (0.28) Traveling (0.84) Education (0.44) Residence (0.65) Eating (0.59) SocialServices (1) Entertainment (0) Shopping (0.93) Education (1) Eating (1) Recreation (0.21)
Eating (0.09) Eating (0.23) Shopping (0.19) Education (0.08) SocialServices (0.13) Recreation (0.12) Recreation (0.11) Entertainment (0) Education (0) SocialServices (0.04) Entertainment (0) Entertainment (0) Traveling (0.21)
SocialServices (0.08) Traveling (0.17) Recreation (0.13) Entertainment (0.06) Shopping (0.12) Eating (0.09) SocialServices (0.09) Education (0) NightLife (0) Eating (0.03) NightLife (0) Education (0) Shopping (0.17)
Education (0.06) SocialServices (0.03) NightLife (0.1) SocialServices (0.02) Eating (0.12) Education (0.06) Shopping (0.07) NightLife (0) Recreation (0) Entertainment (0) Recreation (0) NightLife (0) Eating (0.14)
Residence (0.04) Shopping (0.03) Traveling (0.08) Eating (0.02) Recreation (0.09) Shopping (0.04) Traveling (0.06) Recreation (0) SocialServices (0) Education (0) SocialServices (0) Recreation (0) SocialServices (0.12)
Shopping (0.03) Recreation (0.02) SocialServices (0.07) NightLife (0) NightLife (0.05) SocialServices (0.02) Education (0.04) Residence (0) Residence (0) NightLife (0) Residence (0) SocialServices (0) Residence (0.05)
Traveling (0.03) Education (0.01) Entertainment (0.06) Recreation (0) Traveling (0.03) Traveling (0.01) Residence (0.03) Shopping (0) Shopping (0) Recreation (0) Shopping (0) Residence (0) NightLife (0.04)
Entertainment (0.02) NightLife (0) Education (0.05) Residence (0) Entertainment (0.01) Entertainment (0) NightLife (0.01) Traveling (0) Traveling (0) Residence (0) Traveling (0) Shopping (0) Education (0.03)
NightLife (0) Residence (0) Residence (0.04) Shopping (0) Residence (0.01) NightLife (0) Entertainment (0.01) Eating (0) Eating (0) Traveling (0) Eating (0) Traveling (0) Entertainment (0.03)

Due to the above, the results of the proposed approach are visualized and discussed
focusing on the 4 Hours slot. For better understanding and validating the discovered func-
tional regions, the following slots within the 4 Hours interval are defined: (a) Morning
slot from 08AM -12PM . (b) Afternoon slot from 12PM -04PM . (c) Evening slot from
04PM -08PM . (d) Night slot from 08PM -12AM . Our results reported are for the Hier-
archical Clustering output for a number of clusters K equals to 13 as it has the maximum
silhouette score of 0.59 compared to 0.54 and 0.58 for Spectral and K-means clustering
respectively (refer to Figure 6.3).

Table 6.1, 6.2, 6.3, and 6.4 show the results of Algorithm 3 for the morning, afternoon,
evening, and night activities respectively. Each value in a cluster represents the number of
check-ins with a specific functionality divided by the total number of check-ins observed in
these zip-codes belonging to this specific cluster during certain time duration. Figure 6.4
shows the corresponding visualization for the Temporal Functional Regions illustrating
how some regions can vary through the day. Six regions are highlighted in Figure 6.4d
as A, B, C, D, E, and F as an example to better analyse and validate the generated
functional regions. The following analysis as to why we observe the results we do for each
region intuitively validates that the approach works:

• Region A: This region starts in the morning as a “recreation” functional area then
in the afternoon it turns as an “educational” area due to the presence of several
educational institutes in this area including Fordham university, Lincoln center, New
York Institute of technology, and John Jay college of criminal justice. Then in the
evening and night, the area turned to be “eating” functional area as it is considered
attractive destination for several popular restaurants.
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Figure 6.4: Temporal Functional Regions Visualizations.
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• Region B: This region dedicates most of its space to the central park of Manhattan
and is likely the reason that it is classified as a “recreation” functional region through
the whole day with no any change over time.

• Region C: This region starts as an “eating” area in the morning and then turns to be
an “educational” area until night and this can be interpreted due to the presence of
one the biggest universities in US, Columbia university which indicates the influence
of this university on the dominant functionality of this area not only in afternoon
and evening but also in the night.

• Region D: This area starts in the morning and continues in the afternoon as a
“travelling” functional region and that can be interpreted due to the presence of
Triborough Bridge known officially as the Robert F. Kennedy which is a complex of
three separate bridges in NYC that connects boroughs of Manhattan, Queens and
the Bronx via Randalls and Wards Islands. In the evening, like most of other regions
this area turns to be more “eating” area. At night, it seems as a more “recreation”
area and that is due to the presence of two of the most popular parks Wards Island
and Randalls parks which are very popular parks for hosting out door night events.

• Region E: This region starts in the morning as an “eating” functional and then its
functionality changes in the afternoon to an “educational” due to the presence of The
City of College in New York and then its dominant function turned to an “eating”
area again like most of other areas at evening. At night this area has been found to
be a “residential” area which might make sense for an area with no many outgoing
night activities.

6.6 Summary

Discovering the functionality of regions in cities can enable new types of valuable applica-
tions that can benefit different end users: Urban planners could better identify the prox-
imity of existing functional regions and hence, can contribute to better future planning
for the cities. Tourists could differentiate scenic areas from other business and residential
areas which will help in reducing effort for trip planning. Moreover, local people can
better understand each part of their cities by understanding the different functionality of
areas. With the rise of Location-Based Social Networks which attract lots of new users
everyday with the potential of bridging the gap between the physical world and digital
online social network services, it was shown in this chapter that identifying functional
regions taking into account temporal variations of geographic user activity has become
possible and is more sensible when identifying functional regions.

In this work, a novel approach is proposed to modeling functional areas taking into
account temporal variation by means of place categories. The proposed approach com-
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pares between three clustering algorithms (Hierarchical, K-means, and Spectral) on areas
and users of Manhattan borough in New York City using a dataset from one of the most
vibrant LBSNs, Foursquare. In addition, the impact of different temporal variations splits
on the quality of the clustering algorithms comparing it to the default approach with no
temporal variation has been studied. The proposed approach introduced in this chapter
may not only lead in deeper understanding of a complex city but also may offer finer per-
sonalized recommendations based on regions’ functionality that changes over space and
time. In the next chapter, a novel approach for recognizing Recurrent Crowd Mobility
Patterns will be introduced and further will be correlated with the Temporal Functional
Regions introduced in this chapter for showing the feasibility of extracting deeper insights
around the motivation behind crowd mobility when correlating both extracted patterns.

Having presented in this chapter the second introduced contribution and urban pat-
tern in this thesis referred to as Temporal Functional Regions patterns, the next chapter
introduces a new approach for extracting an urban pattern called Recurrent Crowd Mo-
bility Patterns. In addition, it will be shown that correlating both patterns could result
in further insights into the motivation behind crowd mobility.
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Chapter 7

Recognizing Recurrent Crowd Mobility
Patterns

Chapter overview: This chapter introduces a new approach for extracting Recurrent
Crowd Mobility patterns in Cities (titled as RCMC) using a combination of the Kernel
Density Estimation (KDE) and Non-negative Matrix Factorization (NMF) algorithms.
KDE is used initially for extracting the crowd concentration variability across space and
time whereas its output is fed to the NMF for extracting the “recurrent” behaviour of
the crowd mobility. Using the same time interval as that used for extracting Temporal
Functional Regions (as discussed in the previous chapter), it is further shown that the cor-
relation between both patterns can provide interesting insights into the motivation behind
crowd mobility. This new approach has been published in [TIST 2017].

7.1 Motivation

Recognizing crowd mobility patterns in cities is very important for public safety, traffic
management, disaster management, and urban planning [115]. In this chapter, a novel
approach is introduced for recognizing Recurrent Crowd Mobility Patterns in cities. In
addition, it is shown that the correlation between the extracted crowd mobility patterns
with those Temporal Functional Regions introduced in chapter 6, supports the derivation
of deeper insights into the motivation behind crowd mobility. The correlation between
both patterns could potentially empower several applications such as traffic management,
urban planning, and public safety. The following points summarize the contributions
for the proposed approach along with some exemplar applications that could potentially
benefit from the proposed approach:

1. A novel KDE/NMF based approach is proposed for extracting Recurrent Crowd
Mobility Patterns where individuals mobility (represented by latitude and longitude)
is fed into a Kernel Density Estimation (KDE) to infer crowded areas. Then the
crowded areas act as the input to a Non Negative Matrix Factorization (NMF) based
approach for recognizing the Recurrent Crowd Mobility Patterns and determining
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when and where the crowd shifts during the various days of a week. The same
crowded areas may span for consecutive several time slots and hence, the proposed
approach intuitively also reveals also the level of crowdedness through the use of the
NMF based approach. We refer to the level of crowdedness as the “crowd intensity”
for each region.

Exemplar application: Being able to determine that a recurrent crowd mobility
pattern for day d shifts from region r1 at time-slot t1 to region r2 at time-slot t2
could allow city planners to dynamically allocate cities resources accordingly (e.g.,
energy resources). Similarly, the telco operators may be able to dynamically migrate
network resources from r1 to r2. This is in contrast to existing solutions that over-
provision cities’ various regions with similar amount of network resources, which
has been found to be a very expensive solution [116]. Another obvious benefit for
extracting such patterns, is the ability of detecting anomalous and rare events. For
instance, detecting that region r3 is crowded at time-slot t2 could raise an emergency
alarm of an anomalous behaviour occurring compared to the expected pattern.

2. Furthermore, in this research some specific regions have been studied to highlight
how further the correlation between the extracted Recurrent Crowd Mobility Pat-
terns with their Temporal Functional Regions might help in better understanding
the motivation behind the crowd mobility and capturing the dynamicity of such
regions.

Exemplar application: Marketing and advertisement is a key natural domain for
such correlated patterns. For instance, customized recommendation services could
be built based on this correlation on where crowd will go and for what purpose. If
the crowd at time t1 is located in region r1 identified as “Eating” functional area, the
recommendations could be adapted for the purpose of suggesting restaurants that
suits time-slot t1 (e.g., lunch restaurants or dinner restaurants) and if the crowd is
expected to move to region r2 at time-slot t2 with an expected dominant functionality
of “Education”, the recommendations could then be dynamically adapted towards
students’ deals/offers and so on.

7.2 State-of-the-Art

Among the various state-of-the-art that focused on extracting urban patterns in cities,
there have been a more recent focus within the research community on extracting and
predicting mobility patterns. In [46] and [47], the authors mainly forecast billions of indi-
viduals’ mobility traces rather than the aggregated crowd flows. The individual mobility
patterns are those concerned with predicting the future locations of individuals. One
challenge in this task is that it is computationally expensive, and predicting individual’s
mobility is not necessarily useful to public safety, disaster management and other appli-
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cations that could more benefit from crowd mobility. Another branch of research focuses
on predicting traffic volume and travel speed on the road [48] [49] [50] [51], to the best of
our knowledge the majority of the work reviewed in this area focuses on single or specific
road segments rather than citywide scale approach for travel and speed. Recently, the
research community has started to focus on city wide scale traffic flows prediction. In
[52], the authors proposed an approach to predict crowd flows including human mobil-
ity data, weather conditions, and road network data utilizing Gaussian Markov random
fields, to cope with noisy and missing data. In [53], the authors propose a deep-learning
based model for forecasting the flow of crowds in each region using trajectory, weather
and events data. The proposed approach in this chapter is different from the two previous
approaches as their proposed models focus naturally on an individual region and not the
city, and they do not partition the city using zip codes which could be more meaningful
partitioning to city planners. In addition, the proposed approach estimates crowd inten-
sity which provides a finer understanding of the level of crowdedness. Nevertheless and
for the first time, I show in this chapter that correlating the extracted Recurrent Crowd
Mobility Patterns with the Temporal Functional Regions using same time interval has the
potential for deeper insights about cities as well as understanding the motivation behind
such crowd shifts.

7.3 Recurrent crowd mobility pattern

7.3.1 Notation and Definitions

In a similar manner to the previous chapter, the raw LBSNs dataset is denoted with D.
Moreover, the dataset is split into d days, which are further split into s time slots of equal
sizes, such that d = 〈t1, t2, ...ts〉. The dataset for a day d remains of 24hour duration
when s is equal to 1. Further, each time interval ti has a duration of: ‖ti‖= 24

s
, ∀i ∈ [1, s].

Definition 4 (Region rj) The dataset D contains geo-tagged data, which is further di-
vided into m physical regions such that R = {r1, ...rm}, where R represents the collection
of all regions rj, ∀j ∈ [1,m]. Each region rj is associated with a zip-code and repre-
sents a collection of points each denoted by prjl and identified by a latitude and longitude:
p
rj
l =< lat

rj
l , long

rj
l >, ∀j ∈ [1,m] ∧ l ∈ [1, n].

In order to identify the spatial areas where the relative intensity of tweets in a certain time-
slot and day is significantly higher compared to the overall spatial tweeting distribution,
a crowded area is defined as follows:

Definition 5 (Crowded Area CA) A crowded area CA is defined as a set of points pl,
pl =< latl, longl >, which are equal to a density estimation larger than or equal to the
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mean of the overall density estimates of the spatial distribution for ti in day d:

CA = {p | ρK(p) ≥
n∑

l=1

ρK(pl)

n
, pl = < latl, longl >} (7.1)

Moreover, since crowded areas change over time, therefore the crowded areas over a time
interval ti is referred as CAti , and over a dataset d as CAd. The footprint of an individual
I during a time-slot ti is denoted by IF ti , where a footprint is represented by a tuple
between a time interval ti during the day d and the region rIj (i.e., zip-code) where
individual I is located (i.e., the location of the individual’s’ checkin): IF ti =< ti, rj >.
Further, a crowd footprint is defined as follows:

Definition 6 (Crowd Footprint CF ti) A crowd footprint during a time-slot ti is de-
fined as a set containing the individual footprints of all individuals during time interval ti,
denoted further by CF ti. Moreover, CFd is denoted by the sequence of all crowd footprints
within the day d: CFd = 〈CF t1 , ..., CF ts〉

For instance, a day can be translated into the following sequence of crowd footprints:
CFd = 〈< t1, zip10002 >,< t1, zip10014 >,< t2, zip10011 >,< t3, zip10003 >, ..., etc.〉.
This suggests that crowds exist in zip-code areas 10003 and 100014 in the time-slot t1. In
the second and third time slots (t2 and t3), the crowd has been shifted to zip codes 10011

and 10003 respectively. It is worth emphasizing that since the objective is not to detect
the mobility of a particular crowd in time, the IF ti and IF ti might not contain same
individuals.

7.3.2 Proposed Approach (RCMC)

The proposed approach for detecting Recurrent Crowd Mobility Patterns, is based on
three phases as follows:

(1) Crowd detection Phase: The crowded areas are detected at certain time interval
given a certain geographical area. The proposed crowd detection approach is based on the
spatial distribution of the social life traces captured from the LBSNs dataset as introduced
in chapter 4. The proposed approach for crowd detection can be applied to any dataset
that represents a reasonable1 spatial-temporal distribution for the life traces in a certain
geographical area.

(2) Data preparation Phase: After detecting crowded areas from the previous phase,
data is transformed in this phase into a data structure that is suitable for processing by
the third phase. In particular, a document is formulated for each day of the week which
consists of the crowd footprints generated from the crowded areas at a certain time-slot.
The 7 documents comprising crowd footprints generated in this phase will be the input
data structure for input into the next phase.

1A reasonable spatial-temporal dataset is the one that has an acceptable level of sparsity preserving the real-life
spatial-temporal distribution of citizens across a city.

90



(3) Recurrent crowd mobility patterns recognition Phase: The 7 documents
generated from the previous phase act as the input to this final phase with the aim
of extracting the Recurrent Crowd Mobility Patterns (i.e., topics) over space and time
by applying topic-based models. Such detected crowd mobility patterns can be further
correlated with the Temporal Functional Regions to understand the motivation behind
crowd mobility. The following sections describe each of these phases in depth.

7.3.2.1 Crowd detection phase

The main objective of this phase is to detect the crowded areas at a given time-slot of
each day in the week. Hence the following approach is applied:

(1) Each day of the week is divided into s time-slots lasting for 24
s

hours each. Here
each time-slot is still the raw data but only filtered temporally. Figuring out the optimum
s may vary from dataset to another as it was illustrated previously in the previous chapter
when deriving the Temporal Functional Regions (see Figure 6.3 in chapter 6). In general,
the bigger is s, the finer mobility patterns can be detected.

(2) For each time-slot ti, multi-variate kernel density estimation is applied with the
aim of detecting the most crowded areas. Kernel Density Estimation was selected as
it is a well-established non-parametric statistical technique, due to its computationally
efficiency and scalability for processing streaming data. A kernel is a positive function
K(x, h) which is controlled by the bandwidth parameter h. In the proposed approach,
gaussian kernel is utilized since it is the most widely used and have shown success across
various applications [117]. Given this kernel form, the density estimate at a point p within
a group of points pl; l ∈ [1, n] is given by:

ρK(p) =
1

n

n∑
l=1

K

(
p− pl
h

)
, where K(x, h) = α · exp( x2

2 · h2
) (7.2)

The bandwidth h here acts as a smoothing parameter, controlling the tradeoff between
bias and variance in the result. A large bandwidth leads to a very smooth (i.e. high-
bias) density distribution. A small bandwidth leads to an unsmooth (i.e., high-variance)
density distribution.

Algorithm 4 presents the approach of this phase. The algorithm checks from lines 5 to 7
for all points p ∈ p

rj
l whether their density estimation is greater or equal to the mean

of the overall density estimates of the spatial distribution in rj for time-slot ti in day d
(calculated at line 4). If so, the point is added to CA, the algorithm constructs the tuples
CFd, by traversing the constructed CA and building a tuple of the associated zip-code
and the time interval the point belongs to.

To sum up, in this phase, it is identified where and when the city is most crowded and
how the crowd shifts temporally based on the time-slot during the day. This phase only
focuses on city dynamics and disregards the citizens’ behaviour dimension.
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// Phase 1: Identify crowded areas using Multi Variate Kernel Density Estimation,
mvkde function, with gaussian kernel

CAd ← ∅;
for ti ∈ d do
CAti ← ∅;
for rj ∈ R do

// Calculate the mean of the overall density estimates of the spatial
distribution for time-slot ti in day d

mean←
∑n
l=1

ρK(pl)
n ;

for p ∈ prjl do
// Apply mvkde
ρK(p)← mvkde(p,pl);
// Add the point p to CAti if density greater or equal to mean
if ρK(p) ≥ mean then
CAti ← CAti ∪ {p};

end
end

end
CAd ← CAd ∪ CAti ;

end
return CAd;

Algorithm 4: generateCrowdedAreas(d)

7.3.2.2 Data preparation phase

After pre-processing the data and identifying the crowded areas in the previous phase,
the data is further processed in a representation that is suitable for topic models and
precisely Non-negative Matrix Factorization (NMF) which will be the main pillar for
recognizing crowd mobility patterns as will be illustrated in the phase to follow. In order
to recognize the crowd mobility patterns of a city, the footprints of individuals IF ti for
each day is created during each time-slot ti , as IF ti =< ti, rj >. In particular, given the
crowded areas CAti for each time-slot ti from the previous phase (crowd detection phase),
each of these points prjl is mapped with their associated zip-code2 rj for constructing the
tuples IF ti .

Further, 7 documents are generated, where each document d represents a day of the
week and each word in the document is a IF of an individual. For each document, the
crowd footprints CFd are generated, which represents the set of all individual footprints
within dataset d by merging all individuals’ footprints for all time slots ti, ∀i ∈ [0, s].

This phase is concluded by generating the set of all crowd footprints CF ti for those
points that Algorithm 4 marked as belonging to crowded areas, pl ∈ CAti for each time-
slot ti within the d dataset. This phase aggregates the crowd footprints across all intervals
and returns the associated crowd footprints for the day d, CFd.

2The approach of assigning zip codes is considered, however, this can be replaced with any other boundaries definition.
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7.3.2.3 Recognition phase

In the proposed methodology, NMF [117] technique is employed for recognizing crowd
mobility patterns for discovering crowd shifts from one area to another in a city. NMF
refers to an unsupervised family of algorithms from linear algebra that simultaneously
perform dimension reduction and clustering. While NMF has become popular as a tool
for data exploration in bioinformatics, and was used in the past for clustering documents,
it has only recently been recognised as a useful tool for topic modeling [118]. Topic
models as introduced in chapter 3 are powerful tools initially developed to characterise
text documents, but can be extended to other collections of discrete data (e.g., mobility
data).

NMF seeks to decompose a data matrix into factors that are constrained so that they
will not contain negative values. Given a document-term matrix M ∈ Ruxd representing
u unique terms present in a corpus of d documents, NMF generates a reduced rank-k
approximation as the product of two non-negative factors:

M ≈WH such thatW ≥ 0, H ≥ 0 (7.3)

where the objective is to minimize the reconstruction error between M and the low-
dimensional approximation. In the case of text data, the columns or basis vectors of
W ∈ Ruxk can be interpreted as topics, defined with non-negative weights relative to the
u terms. The entries in the matrix H ∈ Rkxd provide document memberships with respect
to the k topics. Note that, unlike LDA which operates on raw frequency counts, NMF
can be applied to a non-negative matrix M that has been previously normalized using
common pre-processing procedures such as TF-IDF [119] term weighting and document
length normalization. As with LDA [120], document-topic assignments are not discrete,
allowing a single document to be associated with more than one topic. Formally, the entity
termed word is the basic unit of discrete data defined to be an item from a vocabulary
of size V . A document comprises of a sequence of w words. A corpus D if the whole set
of the collection of d documents. In the context of this work, the word is represented by
a location(zip-code) and time-slot which is depicted by IF as introduced in the previous
section. A document is a day of the city with the aggregation of all the IF ti , ∀ti ∈ d that
exists in the dataset of this particular day. Hence, the corpus is formulated of 7 documents
where each represents one day of the week. The final objective is to extract “topics” that
each represents the crowd mobility patterns in cities. Each topic represents a sequence
of crowd mobility concentration that recur across space and time for a particular day, for
instance, one topic for Saturdays could indicate crowd concentration in area zip-10003
from 08AM -12PM then from 12PM -04PM , the crowd concentration shifts towards zip-
10026 and so on. A summary of the analogy from document-topics to crowd-mobility
patterns is shown in Figure 7.1.
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Figure 7.1: Analogy from document-topics to crowd-mobility patterns.

// Phase 3:
M← genMatrix(CFD);
M←Tf-IDF(M);
// Initial factors generated using the NNDSVD below
W,H← NMF(M);
// Calculate reconstruction error ε based on euclidean distance ed between M, W, H
ε← ed (M,W,H);
// Minimize ε through EM
W‘,H‘ ← EM(W,H, ε);

Algorithm 5: crowdPatternDetection(CFD)

The following steps and Algorithm 5 summarize the proposed approach based on NMF:

(1) From the 7 documents generated from the previous procedure of data preparation, the
document-term matrix M is constructed.

(2) TF-IDF term weighting and unit length normalisation is applied to the document-term
matrix M (algorithm 5, line 2).

(3) NMF algorithms are often initialized with random factors. However, this can lead
to many different “unstable” results, depending on the random values. To ensure a sin-
gle definitive output, initial factors are generated using the Non-negative Double Singu-
lar Value Decomposition (NNDSVD) approach proposed by Boutsidis and Gallopoulos
[121] (algorithm 5, line 3).

(4) The standard Euclidean formulation of NMF is applied for measuring the reconstruc-
tion error ε between M and the approximation WH, using the initial factors from step
3 (algorithm 5, line 4).

(5) Furthermore, an optimization process based on EM algorithm is applied to refine W
and H in order to minimize the objective function (Equation 7.4) by iterating between
two multiplicative update rules (Equation 7.5) until convergence for a number of itera-
tions (algorithm 5, line 5).
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2
||M−WH||F2 =

d∑
i=1

u∑
j=1

(Mij − (WH)ij)
2 (7.4)

Hcj ←− Hcj
(WH)cj

(WWH)cj
Wic ←− Wic

(MH)ic
(WHH)ic

(7.5)

(6) The resulting k topics are defined by: (a) topic descriptions as given by the top-ranked
terms in the columns of the factor W; (b) document membership weights as given by the
values in the rows of H.

Figure 7.2 shows the NMF application for detecting crowd mobility patterns where
matrix M depicts the document-term matrix where each row indicates a day of the week
and each column represents a CFd. Matrix W represents the latent relationship between
each day of the week and the topics where each can indicate a different crowd mobility
pattern. Finally matrix H shows the relationship and correlation between each of the
topics (crowd patterns) and the CFd.

7.4 Experiments setup

The following explains the setup used in the different phases during the experiments that
were undertaken.
Data preparation phase: Based on the dataset gathered and introduced in chapter 4,
we follow the proposed approach for detecting the Recurrent Crowd Mobility Patterns in
Manhattan comprising of three phases as introduced in the previous section.

For the crowd detection phase, each day of the week is divided into 6 time-slots lasting
for 4 hours each (i.e., s = 6, ‖ti‖= 4). The reasons for choosing s as 6 are two-fold:

1. Intuitively, the objective is to try to extract recurrent patterns following the common
terminology used by the public as well as urban planners such as morning, evening,
and night activities. Hence, following terminology is considered: Late Night (12AM -
04AM), Early Morning (04AM -08AM), Late Morning (08AM -12PM), Afternoon
(12PM -04PM), Evening (04PM -08PM), Early Night (08PM -12AM).

2. In chapter 5 (section 3.4), it was shown that 6 time-slots are the most suitable gran-
ularity for detecting Temporal Functional Regions so choosing same time interval for
detecting Recurrent Crowd Mobility Patterns will facilitate the correlation between
both3 and hence, deriving further insights around the motivation behind crowd mo-
bility.

Detecting crowded areas phase: Multi-variate kernel density estimation is applied
for detecting crowded areas. Gaussian kernel is used as they are the most commonly
used proving success in various applications [117]. For setting the bandwidth h used for

3Despite this, the proposed approach has the potential to be applied to smaller time intervals for the purpose of detecting
finer mobility patterns if needed.
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Figure 7.2: NMF: Given a non-negative matrix M, find k-dimension approximation in terms of non-negative
factors W and H.

controlling the tradeoff between bias and variance, an exhaustive search was performed
over a range of [−1, 1] parameter values for an estimator through a cross-validated grid-
search over a parameter grid. It was concluded that 0.1 is the optimum bandwidth for
the KDE gaussian kernel fitted model. Figure 7.3 shows an example of the KDE results
for one time-slot (12PM -04PM) where the x axis represents the latitude and the y axis
represents the longitude in which the darker the blue, the more crowded areas. From
this Figure, it can be observed that there is a difference in the crowd spatial distribution
between the weekends (Figure 7.3a and Figure 7.3b) and the Weekdays (e.g., Wednesdays,
Figure 7.3c). This follows intuitive thinking.
Recognition phase: The dataset samples are further processed into individual-footprints
that are equal or larger than the mean of the overall density estimate of the spatial distri-
bution for each of the time slots for every day. Aggregating the samples based on the day
of the week resulted in 7 documents where each represents a day of the week comprising a
set of individual-footprints resulted from the crowd detection step. In order to detect the
“recurrent” crowd mobility patterns, the approach presented in detail in Section 7.3 and
precisely in Algorithm 5 is applied. Although, there are several objective methods [122] for
choosing the optimum number of topics, a subjective approach is applied in this research
which is still the most reliable approach to date through interpreting the results taking
into account what makes sense from the domain knowledge perspective [120]. Therefore,
Algorithm 5 was first applied with the maximum number of topics that is bounded to 7

due to the dimensionality of matrix W with 7 rows (see Figure 7.2). Table 7.1 shows the
results of applying Algorithm 5 using 7 as the number of topics. Each topic represents a
different recurrent mobility pattern and the numbers in the table indicates the probability
of a particular day belonging to a certain topic. In other words, it indicates the signifi-
cance of the pattern/topic for a particular day. It is worth highlighting two points from
this table: (a) Our proposed approach can discover of maximum three different patterns
where each of the weekend days has a different pattern (Topic 3 and Topic 4) and the rest
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(a) Saturdays.

40.70 40.75 40.80 40.85
Latitude

74.04

74.02

74.00

73.98

73.96

73.94

73.92

Lo
ng

itu
de

pearsonr = 0.88; p = 0

(b) Sundays.
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(c) Wednesdays.

Figure 7.3: KDE Gaussian Kernel Results (12PM-04PM).

of the weekdays share a common pattern (Topic 0). (b) The dominant pattern extracted
for each day, represented by the probability highlighted in blue.

The optimum number of topics in this case is defined as the least number of topics that
could still discover all the different patterns captured with the maximum number of topics.
In our case, the maximum number of patterns are 3, extracted from the maximum number
of topics, 7. Hence, the proposed approach was applied on 6, 5, 4, and 3 topics and it
was concluded that 4 topics is the least number of topics that can discover 3 different
patterns. Besides, the results for the model trained on 2 topics is of interest as well, as
this investigation might reveal one common pattern for the weekends and another for
the weekdays, where each is represented by different topic. Therefore, in the following
sections, the extracted Recurrent Crowd Mobility Patterns will be discussed in depth
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Table 7.1: Probability of each day belonging to certain topic (Topics = 7).

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
Saturday 0.23102539 0.18439917 0. 0.57040886 0.01416657 0. 0.
Sunday 0.28908052 0.71091948 0. 0. 0. 0. 0.
Monday 0.41321829 0.02970232 0.39386167 0.11050093 0.04348833 0. 0.00922846
Tuesday 0.36381954 0.02375433 0.11015824 0.18867259 0. 0.3135953 0.

Wednesday 0.52313879 0.00003962 0.03673921 0.02144045 0.01621852 0.00797331 0.39445011
Thursday 0.62695577 0. 0.10387766 0. 0.11728928 0.15187729 0.

Friday 0.40699213 0.09169875 0. 0.11397975 0.29060095 0.06595809 0.03077032

when the number of topics is 2 and 4.
Moreover, for estimating the crowd intensity, the top-k words are divided for each of the

extracted topics into three portions based on the per-word topic assignments probabilities
indicating: (i) “Low” ([0− 0.33]), (ii) “Medium” (]0.33− 0.66]) and (iii) “Highly” crowded
regions ([0.66− 1]). Our argument that these three equal divided portions could indicate
an estimate of the crowd intensity.

7.5 Results and Validation

In this section, the topic distributions are discussed when selecting 2 and 4 topics for
training the proposed approach. Then, an evaluation metric called “topics stability” is
introduced with the aim of evaluating the effectiveness of our proposed approach compared
to other two baselines.
Topic distribution when utilizing two topics: Figure 7.4 shows the topic distribution
across each day where the x axis indicates the day of the week and the y axis represents the
probability of a particular day belonging to a certain topic. It can be observed that Topic
0 in Figure 7.4a represents the weekdays’ recurrent crowd mobility pattern with at least
0.8 probability for all weekdays. Figure 7.4b represents the weekends’ recurrent crowd mo-
bility pattern with 0.73 probability for Saturdays and 0.8 probability for Sundays. Hence,
our proposed approach trained on two topics clearly extracts obvious Recurrent Crowd
Mobility Patterns for the weekdays and weekends following the intuitive understanding.
Figure 7.5 and Figure 7.6 visualize the top-150 words (choosing 150 words will be justified
later in Section 7.5) representing the Recurrent Crowd Mobility Patterns for the weekdays
and weekends respectively with an estimation of the crowd intensity using three differ-
ent grades of red colour where light-red, medium-red, and dark-red indicate low-crowded,
medium-crowded, and highly-crowded areas respectively.

In the following discussion, the observed results are intuitively validated based on anal-
ysis of the areas involved by the author of this thesis. It is observed from the weekdays
pattern visualized in Figure 7.5 that the most crowded time during the weekdays is from
08PM -12AM with the crowd concentrating in the midtown and lower Manhattan. In-
tuitively this is likely due to the presence of the most popular venues in NYC in these
areas such as Times Square, Carnegie Hall, One World Trade Center, and Chinatown. In

98



(a) Weekdays pattern. (b) Weekends pattern.

Figure 7.4: Probability of each day belonging to certain topic (Topics = 2).

addition, it is observed that in this time-slot, the upper west side of Manhattan is crowded.
This could be interpreted as being due to the presence of very popular theatres as well
as the metropolitan opera; one of the most popular venues in NYC. Furthermore, upper
manhattan at this time-slot was found to be still crowded but with lower crowd intensity.
From 04PM -08PM , the concentration of crowd is similar to the prior time-slot for the
highly crowded areas with an obvious difference that the intensity of the crowd is less for
the upper and upper west side areas. From 12PM -04PM , generally, it can be observed
that the crowd concentration is less from the prior time-slot sustaining the highly crowded
areas for the most popular areas in midtown and lower manhattan. From 08AM -12PM ,
this could be seen as the least crowded time-slot during the weekdays. By going earlier,
it is observed that crowd starts again to shift to lower and midtown of Manhattan. Fig-
ure 7.6 shows the extracted recurrent crowd mobility pattern for the weekends. One of
the main differences compared to the weekdays pattern is that the most crowded time-slot
is from 04PM -08PM . This can be explained by an intuitive understanding that people
start going out on weekends earlier than weekdays. In addition and following the common
sense, the Central Park Manhattan area can be seen to be crowded from 12PM -04PM

and from 04PM -08PM unlike the weekdays pattern. In addition and although that from
08AM -12PM is still the least crowded time-slot but it is more crowded if compared to
the weekdays patterns. It is worth noticing that the most recurrent crowded time-slot
across the whole week is found to be from 04PM -08PM on the weekends. It is interesting
to gather further insights about this observation when extracting different patterns for
Saturdays and Sundays when the number of topics equals to 4. This is illustrated in the
next section.
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(a) 12AM-04AM. (b) 04AM-08AM. (c) 08AM-12PM.

(d) 12PM-04PM. (e) 04PM-08PM. (f) 08PM-12AM.

Figure 7.5: Topic 0 (weekdays).
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(a) 12AM-04AM. (b) 04AM-08AM. (c) 08AM-12PM.

(d) 12PM-04PM. (e) 04PM-08PM. (f) 08PM-12AM.

Figure 7.6: Topic 1 (weekends).
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Topic distribution when utilizing four topics: Figure 7.7 shows three different pat-
terns extracted when setting the number of topics to 4. Similarly to the previous section,
the x axis indicates the day of the week and the y axis represents the probability of
a particular day belonging to a certain topic. As shown from Figure 7.7a, the pattern
depicted by Topic 0 has a probability greater than 0.5 for Wednesdays, Thursdays, and
Fridays and around 0.45 for Mondays and Tuesdays. Compared to the extracted pattern
for weekdays in case of 2 topics, the weekdays pattern extracted from 4 topics is less
significant but at the expense of extracting finer patterns for the weekends. Topic 1 as
shown in Figure 7.7b highlights the pattern for Sundays with more than 0.7 significance
and Figure 7.7c represents the Saturdays pattern with more than 0.5 significance. To sum
up, in the case of 4 topics, there was success in extracting the maximum number of pat-
terns with the maximum number of topics (7 topics as shown in Table 7.1). In addition,
compared to 2 topics, the significance of the pattern is less, but resulted in extracting dif-
ferent pattern for each of the weekend days (Topic 1 and Topic 3). Figure 7.8, Figure 7.9,
and Figure 7.10 visualize the top-150 words representing the extracted Recurrent Crowd
Mobility Patterns for the weekdays (Topic 0), Saturdays (Topic 1), and Sundays (Topic
3) respectively.

It is observed from the weekdays pattern visualized in Figure 7.8 that it follows a very
similar crowd mobility pattern to that of the weekdays extracted when the number of
topics equals 2 (refer to Figure 7.5). When the number of topics equals 4, it is possible to
extract different recurrent crowd mobility pattern for each of the weekend days that had
not been possible when the number of topics is set to 2. From Figure 7.9, it is observed
that the most crowded time-slot on Saturdays is from 08PM -12AM compared to 04PM -
08PM on Sundays (see Figure 7.10). Again this is validated by common sense as people
prefer to return earlier usually on Sundays for getting ready for the start of the working
week. For the 04PM -08PM time-slot on Sundays, nearly all areas in the upper west side
are crowded. For Sundays, it is observed that the central park of Manhattan is getting
crowded in the afternoon, evening, and early night.

It is worth highlighting from the visualized maps in all cases that the time-slot with
the least number of crowded areas is from 08AM -12PM which follows the same statistics
of the dataset (refer to chapter 4, Figure 4.2c)4.
Topics Stability: Due to the difficulty of assessing the accuracy of the extracted recur-
rent mobility patterns due to the lack of ground truth, the purpose of this discussion is to
validate the extracted topics through performing a topics/patterns stability analysis. This
requires introducing a topic stability metric for assessing the ability for a topic-based al-
gorithm to extract similar patterns on new unseen dataset. Since the main purpose of the
proposed approach is to extract “recurrent” crowd mobility patterns, it is expected that
such patterns will be similar even in a smaller time duration. However, the motivation

4The dataset statistics shows that from nearly 7AM to 12PM is the least frequency of check-ins for all days of the week
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(a) Weekdays pattern. (b) Sundays pattern.

(c) Saturdays pattern.

Figure 7.7: Probability of each day belonging to certain topic (Topics = 4).

for extracting the patterns on a bigger dataset is obviously for accuracy perspective. For
this purpose, the dataset D, introduced in chapter 4 comprising of 24 months is divided
into 18 months for the training dataset and 6 months for the testing dataset.

In order to define the topic stability, we define a “topic” first as a set consisting of three
other subsets, where each subset represents a certain level of crowd intensity, i..e, “Low”
(L), “Medium” (M), or “High” (H), as follows: Topic = {L,M,H}. For instance, a topic
can be represented as follows: Topic 0 (from training dataset) = {{2zip10002, 3zip10003,
4zip10019}, {1zip10001, 4zip10018}, {2zip10003, 5zip10022}}, where for instance L =
{2zip10002, 3zip10003, 4zip10019}. This is generated across both the training and test
dataset, denoted further by TRX and TEX , X ∈ Topic, respectively, where each subset
consists of a set of words (e.g., 2zip10002).
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(a) 12AM-04AM. (b) 04AM-08AM. (c) 08AM-12PM.

(d) 12PM-04PM. (e) 04PM-08PM. (f) 08PM-12AM.

Figure 7.8: Topic 0 (weekdays).
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(a) 12AM-04AM. (b) 04AM-08AM. (c) 08AM-12PM.

(d) 12PM-04PM. (e) 04PM-08PM. (f) 08PM-12AM.

Figure 7.9: Topic 1 (Saturdays).
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(a) 12AM-04AM. (b) 04AM-08AM. (c) 08AM-12PM.

(d) 12PM-04PM. (e) 04PM-08PM. (f) 08PM-12AM.

Figure 7.10: Topic 3 (Sundays).
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We further introduce the stability metric ST of a subset X as follows:

ST (X) = {‖TRX ∩ TEX‖
‖TEX‖

· 100} , ∀X ∈ Topic (7.6)

where ‖X‖ represents the number of elements in the set X. For instance, ‖TEX‖ and
‖TRX‖ represent the number of words in the training and test set of X, respectively.

The stability of a topic is the set of stabilities of each subset X:

ST (X) = {ST (L),ST (M),ST (H)}

Let us consider the following example for clarification: Topic 0 (from training dataset)
= {{2zip10002, 3zip10003, 4zip10019}, {1zip10001, 4zip10018}, {2zip10003, 5zip10022}}
and Topic 0 (from testing dataset) = {{2zip1002, 3zip1003, 4zip10024}, {1zip10022,4zip10018},
{2zip10015,5zip10023}}. Both topics resulted as the pattern for a certain day. By taking
the first set in each topic, it was observed that 2 words are common from the 3 words that
exist in the test dataset. Hence, in this case ST (L) = 2

3
·100 = 66.67%. Following the same

process, the topic stability across the three sets is: ST (Topic0) = {66.67%, 50%, 0%}.
In order to have a fair comparison between 2 topics where each is extracted from a

different dataset, the number of words in each should be equivalent to same amount of
variance that is captured by each topic. For example, if 100 words capture 90% of the
variance of Topic 0 extracted from dataset D1, then we should be looking for the number
of words that captures same amount of variance in Topic 0 extracted from dataset D2,
which might be different than 100 depending on the size of the dataset. In this research,
capturing 90% of variance is considered sufficient for claiming that most of the pattern is
captured by the model and hence, the top 150 and 60 words are utilized for the selected
training and test dataset, respectively. This is shown in Figure 7.11, where the x axis
indicates the number of words and the y axis represents the variance captured by the
topic from certain number of words. Similarly, the same process is followed when the
number of topics equals to 4, and similar number of words are concluded for the training
and test datasets.

Baseline Comparisons: The RCMC proposed approach for extracting Recurrent Crowd
Mobility Patterns has been compared with the following baselines for evaluating its effec-
tiveness:

• LDA: In this baseline, the crowded areas are captured by counting the number of
Twitter posts sent by users and then Latent Dirichlet Allocation (LDA) is used for
extracting Recurrent Crowd Mobility Patterns. LDA [71] as introduced in chapter
3 is an unsupervised learning algorithm that models each document as a mixture of
topics. The model generates topics in terms of a discrete probability distribution over
words for each topic, and then the per-document discrete distributions over topics is
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Figure 7.11: Total variance captured by topics with various number of words (Number of Topics = 2).

inferred. It is worth highlighting that this baseline is nearly the same approach to
what has been proposed by Laura et al. [38].

• Tf-idf: Similar to the previous baseline, the crowded areas are captured by counting
the number of Twitter posts sent by users then the Term Frequency-Inverse Document
Frequency (Tf-idf) is used for extracting the crowd patterns. Tf-idf is a well-known
method for scoring the importance of words in a document based on how frequently
they appear across several documents.

Figure 7.12 and Figure 7.13 show the results of the topics/patterns stability when
the number of topics equals 2 and 4 respectively comparing our proposed approach with
the baselines. The proposed comparisons show that RCMC consistently and significantly
outperform the baselines. From Figure 7.12, it is worth highlighting the following points:
(a) The patterns extracted by RCMC are 100% stable for the “Medium” crowded areas for
all time-slots for the weekdays. LDA performed similarly only on two time slots (12AM -
04AM and 12PM -04PM) while it showed at least 20% worse performance compared to
RCMC. Tf-idf has very bad performance with 50% topic stability across all time-slots
except for the 12AM -04AM with 20% stability (See Figure 7.12a); (b) For the weekends
and as shown in Figure 7.12b, the patterns extracted by RCMC are 100% stable for
the “Highly” crowded areas for all time-slots. LDA scored similarly only for two time
slots while it performed worse compared to RCMC with at least 20% on the rest of the
time-slots. Similarly to the weekdays patterns, Tf-idf performed the worst.

From Figure 7.13, the following points are observed: (a) From Figure 7.13a, the RCMC
approach performed the best across all time-slots except the 08AM -12PM for the “High”
and “Low” crowded areas. (b) For Mondays and as shown in Figure 7.13b, the RCMC
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(a) Weekdays Pattern Stability.

(b) Weekends Pattern Stability.

Figure 7.12: Topics Stability (Number of Topics = 2).

performed still the best across all time-slots but with similar observation for the 08AM -
12PM in which baselines performed better for the “High” and “Low” crowded areas. (c)
For Saturdays and as shown in Figure 7.13c, RCMC performed the best with at least
of 10 − 20% difference compared to the baselines. (d) For Sundays and as shown in
Figure 7.13d, RCMC outperformed all baselines but with an exception again for the
08AM -12PM time-slot.

Generally, for all of the previous discussed points, it is clear that RCMC outperforms
the baselines in the extraction of recurrent mobility patterns compared to the baselines.
The 08AM -12PM time-slot is an exception when the number of topics equals 4 in some
cases, there is no clear scientific justification of this observation except that generally the
08AM -12PM time-slot seems its crowd pattern is not too obvious and that was clear
from the visualisations maps presented before. LDA performed the second after RCMC

109



(a) Tuesdays, Wednesdays, Thursdays, and Fridays Pattern Stability.

(b) Mondays Pattern Stability.

(c) Saturdays Pattern Stability.

(d) Sundays Pattern Stability.

Figure 7.13: Topics Stability (Number of Topics = 4).
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and Tf-idf performed the worst in nearly all cases. As shown from our experiments the
overall stability when the number of topics is 2 is better compared to 4 topics. This was
intuitively expected that the more number of topics, the less resulted stable topics that
can be detected from the test dataset compared to the training dataset. This is due to
the fact that the size of the testing dataset is usually less than the training dataset and
hence, it would be harder to capture similar patterns from the testing dataset.

7.6 Case study - Correlating Temporal Functional Regions patterns with
Recurrent Crowd Mobility Patterns

In this section, a few physical regions in Manhattan are highlighted as examples of how
correlating Temporal Functional Regions pattern with recurrent crowd mobility pattern
could deliver useful insights about the motivation for crowd mobility in cities. In particu-
lar, the focus is on the extracted recurrent mobility patterns when the number of topics is
2 (see Figure 7.5 and Figure 7.6). Figure 7.14 highlights the regions5 selected for analysis:

• Zip-10025: This region has been categorized with “Eating” functionality during all
of the time-slots in the day except from 04AM -08AM , when it belongs to “Night
Life” which intuitively corresponds with the functionality expected at such a time.
It can be observed that this area has been ranked as a “Low” crowded area during
all time slots in the weekdays and “Medium” crowded for the afternoon and evening
time slots, naturally for the purpose of “Eating”.

• Zip-00083: This region corresponds to the central park in Manhattan which the
introduced Temporal Functional Regions approach from the previous chapter catego-
rized it as expected as a “Recreation” area in nearly all time slots during the day. It is
identified as “Low” or not crowded area during the weekdays and “Medium” crowded
area over the weekends for the evening and early nights durations which follows what
is expected from such an area with this functionality.

• Zip-10036: This region is identified by RCMC as “Highly” crowded during most of
the time-slots for the weekends and weekdays except from 08AM -12PM time-slot
during the weekdays which could be justified as it is late sleeping area and hence,
people’s activities are expected to start a bit late at least in the weekdays. This
is not surprising for a region that comprises of Times Square, which is a major
commercial intersection and neighbourhood in Manhattan, sometimes referred to as
The Center of the Universe, and the heart of the world. As highlighted from the
previous chapter, the temporal functional region introduced approach categorized
this area with dominant functionality of “Traveling” from 12AM -04AM and from
12PM -04PM which follows an expected pattern temporally and spatially for one of

5We tried to select the most dynamic regions/zip-codes based on our research and understanding of the popular/dynamic
areas in NYC.
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Figure 7.14: Case study for some particular zip-codes.

the world’s most visited touristic areas in the world. From 04AM -08AM , this area
is classified as “Night Life” area which is not surprising for an area that comprises
very popular night life spots including clubs, bars, etc. In Evening and Early Night,
its functionality is mainly “Eating” due to the huge amount of cafes and restaurants
in this area, while from 12PM -04PM , this area is found as “Social Services” area
which follows the temporal expectation for such a time interval. As it can be seen,
this area is very rich in its temporal functionalities variations due its classification
as always “Highly” crowded area by the RCMC approach.

• Zip-10001: From 12AM -04AM , this region is categorized as “Highly” crowded and
this could be understandable due to that its temporal functionality at this time-slot is
found to be “Traveling” as it owns one of the main train stations in NYC that is open
for 24 hours (Pennsylvania Station as well as 33rd Street train station) that connects
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Manhattan with Brooklyn and west NY. Similarly from 08AM -12PM , the region is
classified as “Highly” crowded in weekends for the same functionality (“Traveling”).
From 12PM -04PM , the region is classified as “Highly” crowded during weekdays and
weekends for the sake of “Social Services” which follows most of the neighbourhood
areas’ functionalities at the same time-slot. It is worth highlighting that this area
contains Union Square, which is very popular with its dinning and eating venues and
hence follows the motivational crowds shift patterns detected in this region.

• Zip-10003: This region starts from 12AM -04AM in the weekdays as “Highly”
crowded for “Eating” functionality. Then “Medium” crowded from 04AM -08AM

for “Night Life” functionality compared to Zip-10036 which is “Highly” crowded at
same time-slot for same purpose. As it is a region with late sleeping patterns, the
area tends to be “Low” or not crowded from 08AM -12PM before the crowd shifts
again towards it for “Eating” from 12PM -04PM (the expected time for lunch) and
then “Highly” crowded during Evening and Early Night.

• Zip-10002: For this region, it is observed that is “Low” or not crowded during the
weekdays but it is “Medium” crowded during the weekends for the purpose of “Eating”
with an exception of the time-slot from 08AM -12PM which is not crowded. This
follows the features of the region as crowd shifts towards it mainly in weekends for
“Eating” and hence, no crowd in weekends for the morning slots.

7.7 Summary

In this chapter, a new approach for Recognizing Crowd Mobility Patterns in Cities (titled
RCMC) using LBSNs data has been introduced. The proposed approach was shown
to be capable of extracting Recurrent Crowd Mobility Patterns with an estimation of
the crowd intensity utilizing a KDE/NMF based approach. The proposed approach is
evaluated on the LBSNs data that was introduced in chapter 4. It is further shown that
the proposed approach outperforms two baseline topic-based models through a “stability”
evaluation metric. Through a case study for some particular regions, it is further shown
in this chapter that the correlation between the extracted Recurrent Crowd Mobility
Patterns with the Temporal Functional Regions (introduced in the previous chapter) can
provide further insights around the motivation behind crowd mobility. The extracted
patterns from the proposed RCMC approach have the potential to benefit a wide variety
of applications. For example, from the urban planners perspective, it can help them
understand how crowd shifts across space and time allowing them to better allocate cities’
resources. As well personalized recommendations for activity could be provided to people
based on the region’s functionality during certain times of the day. New home buyers could
use the correlation between Recurrent Crowd Mobility Patterns and Temporal Functional
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Regions to understand investment values for real estate through understanding when
crowd mobility shifts to a particular region and for what purpose.

Having presented in this chapter the third extracted urban pattern, the next chapter
introduces a new deep learning based approach called St-DenNetFus that fuses two of the
previous extracted patterns with network data for showing the potential impact of such ex-
tracted urban patterns in helping to solve one of the challenges in the telecommunications
service provider domain (Network Demand Prediction).
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Chapter 8

Network demand prediction using the
extracted urban patterns

Chapter overview: This chapter introduces a deep-learning based approach called, ST-
DenNetFus, to forecast network demand (i.e. uplink and downlink throughput) in every
region of a city. ST-DenNetFus is an end to end structure for capturing unique proper-
ties from spatio-temporal data. ST-DenNetFus employs various branches of dense neural
networks for capturing temporal closeness, period, and trend properties. For each of these
properties, dense convolutional neural units are used for capturing the spatial properties
of the network demand across various regions in a city. Furthermore, ST-DenNetFus in-
troduces extra branches for fusing external data sources of various dimensionalities, in our
case, these external factors are the crowd mobility patterns, Temporal Functional Regions,
and the day of the week. This new approach has been submitted to [TKDE 2017]. The
proposed approach not only shows the indirect benefit that could result from the extracted
patterns discussed in the previous chapters on one of the most important challenges in the
telecommunications domain, Network Demand Prediction, but also argues that the pro-
posed framework could be leveraged for any other spatio-temporal prediction problems that
requires fusing external data sources of various dimensionalities.

8.1 Motivation

Mobile data traffic has increased dramatically in the last few decades [123]. Besides,
the increase in the number of devices accessing the cellular network, emerging social
networking platforms such as Facebook and Twitter has further added to the mobile data
traffic [124]. This led to the need to increase the network resources provided to end-
users and consequently this has caused a huge cost increase on the operators. The mobile
network operators are striving for solutions to reduce the OPEX and CAPEX costs of such
emerging demand. Reducing the OPEX and CAPEX cost is not only of importance to the
operators but as well to the environment. The statistics show that the total CO2 emissions
from the information and communication technology (ICT) infrastructure contributes for
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2% of total CO2 submissions across the globe in which the telecommunication industry
is a major part of it [125].

In this chapter, two types of network throughput are predicted: downlink and uplink.
Downlink is the total downloaded network throughput in a region during a given time
interval. Uplink denotes the total uploaded network throughput in a region during a
given time interval. Both types of throughput track the overall Network Demand1 of a
region. There are significant spatial and temporal variations in cellular traffic [126] and
the cellular system is designed using the philosophy of worst case traffic (such as to fulfil
the quality of service (QoS) in case of a peak traffic). Hence, there is a growing need
to have a spatio-temporal prediction based model for the Network Demand Prediction
problem [127].

As discussed in chapter 3, deep learning [128] has been applied successfully in many
applications, and is considered one of the most cutting edge techniques in Artificial In-
telligence (AI). There are two types of deep neural networks that tries to capture spatial
and temporal properties: a) Convolutional Neural Networks (CNNs) for capturing spatial
structure and dependencies. b) Recurrent Neural Networks (RNNs) for learning temporal
dependencies. However, it is still very challenging to apply these type of techniques to
the spatio-temporal Network Demand Prediction problem due to the following reasons:

1. Spatial dependencies:
Nearby - The downlink throughputs of a region might be affected by the uplink
throughputs of nearby regions and vice versa. In addition, the downlink through-
puts of a region would affect its own uplink throughputs as well.
Distant - The network demand of a region can be affected by the network demand of
distant regions especially if both are supported by same Base Station geographically.

2. Temporal dependencies:
Closeness - Intuitively, the network demand of a region is affected by recent time
intervals. For instance, a high network demand occurring due to a crowded festival
occurring at 9PM will affect that of 10PM .
Period - Network demand during morning or evening hours may be similar during
consecutive weekdays, repeating 24 hours.
Trend - Network demand may increase as summer approaches especially on week-
ends. Recent study showed that the summer usage increases in the evening and early
morning hours from about midnight to 4AM , which indicates that teens and young
adults are not putting down mobile devices just because it is a summer break.

1In our terminology, we refer to both types of throughputs uplink and downlink as Network Demand.
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3. External Factors:
Multiple - Some external factors may impact the network demand such as the Tem-
poral Functional Regions, crowd mobility patterns and day of the week. For example,
a business functional region may rely on the wireless networks more than the cellular
networks. In addition, a highly crowded area has a higher chance for more network
usage.
Dimensionality - The external factors may vary in the dimensionality of the data.
For example, the day of the week data will be in 1-dimensional space since it varies
across time only but crowd mobility or Temporal Functional Regions data will be in
2-dimensional space since it varies across space and time.

To tackle the above challenges, in this chapter a spatio-temporal deep learning based
architecture called ST-DenNetFus is proposed that collectively predict the uplink and
downlink throughputs in every region. The proposed contributions in this chapter are
five-fold:

1. ST-DenNetFus employs convolutional-based dense networks to model both nearby
and distance spatial dependencies between regions in cities.

2. ST-DenNetFus employs several branches for fusing various external data sources of
different dimensionality. The architecture proposed is expandable according to the
availability of the external data sources needed to be fused.

3. ST-DenNetFus uses three different dense networks to model various temporal prop-
erties consisting of temporal closeness, period, and trend.

4. The proposed approach has been evaluated on a real network data extracted from
NYC and in particular Manhattan, for 6 months. The results reinforces the advan-
tages of the new approach compared to 4 other baselines.

5. For the first time, it is shown that the extracted urban patterns (specifically crowd
mobility and Temporal Functional Regions) when fused as an external data sources
for estimating the network demand, leads to more accurate prediction results.

8.2 State-of-the-Art

In this section, the state-of-the-art is reviewed from two different perspectives. First, the
recent advancements of convolutional neural networks are discussed and then an overview
on the Network Demand Prediction related work is presented.
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8.2.1 Convolutional neural networks advancements

In the last few years, deep learning has led to very good performance on a variety of prob-
lems, such as visual recognition, speech recognition and natural language processing [129].
Among different types of deep neural networks, convolutional neural networks (CNN)
have been most extensively studied. CNN is inspired by the natural visual perception
mechanism of living creatures [130]. Hubel & Wiesel [131] in 1959 found that cells animal
visual cortex are responsible for detecting light in receptive fields. In 1980 and inspired
by this discovery, Kunihiko Fukushima [132] proposed neocognitron which could be seen
as the predecessor of CNN. The first modern framework of CNN is later introduced in
1990 by LeCun [132] and has been further improved in [133]. LeCun’s paper introduces a
neural network called LeNet-5 of multiple layers and is trained using the backpropagation
algorithm [134] for classifing handwritten digits. LeNet-5 has shown effectiveness in ex-
tracting representation of the original image, which makes it possible to recognize visual
patterns directly from raw pixels with little preprocessing. A parallel study by Zhang
et al. [135] introduced a network called SIANN which stands for shift-invariant artificial
neural network to recognize characters from an image. However, it was found to be very
challenging for both networks to perform well on more complex problems such as video
classification due to the lack of training data the computational power available a that
time [136].

Since 2006, various methods have been developed to overcome the limitations and chal-
lenges encountered in training deep CNNs. The most notable work started by Krizhevsky
et al. when they introduced an architecture called AlexNet [137]. The overall architec-
ture of AlexNet is similar to LeNet-5 but with deeper structure and showed significant
improvements compared to LeNet-5 on the image classification task. With the success
of AlexNet, several successful architectures have evolved, ZFNet [138], VGGNet [139],
GoogleNet [140] and ResNet [141]. One of the main typical trends with these evolving
architectures is that the networks are getting deeper. For instance, ResNet, the winner
of ILSVRC 2015 competition got deeper 20 times more deeper than AlexNet and 8 times
deeper than VGGNet. This typical trend is because networks can better approximate the
target function when they are deeper. However, the deeper the network the more complex
it is, which makes it more difficult to optimize and easier to suffer overfitting. Of course,
various methods are proposed to deal with these problems in various aspects. Recently
in 2016, a new architecture has been introduced called DenseNets [142] that exploits the
potential of the network through feature reuse, yielding condensed models that are easy
to train and highly parameter efficient. DenseNets obtain significant improvements over
most of the state-of-the-art networks to date, whilst requiring less memory and computa-
tion to achieve high performance [142]. Hence, in this work we rely mainly on leveraging
the dense blocks as a core part of the proposed ST-DenNetFus architecture as will be
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described in the sections to follow. To the best our knowledge, this is the first work to
show the effectiveness of DenseNet on a different domain than computer vision.

8.2.2 Network Throughput Prediction

Cellular network throughput prediction plays an important role in network planning. This
section overviews some of the approaches that focus on traffic and throughput prediction.
In previous related work, AutoRegressive models have been very popular in application
of Network Demand Prediction but without taking spatial dependencies into account. To
name a few works, in [16], ARIMA and exponential smoothing model are used for pre-
dicting the network demand for a single cell and whole region scenarios. ARIMA was
found to outperform for a whole region scenario while the exponential smoothing model
had better performance for the single cell scenario. In [143], a hybrid method using both
ARMA and FARIMA is introduced to predict the cellular traffic where FARIMA found to
work effectively on the time series that holds long range dependence. For long time predic-
tion, the authors in [144] presented an approach with 12-hour granularity that allows to
estimate aggregate demands up to 6 months in advance. Shorter and variable time scales
are studied in [145], [146] adopting AutoRegressive Integrated Moving Average (ARIMA)
and Generalized AutoRegressive Conditionally Heteroskedastic (GARCH) techniques.

There are several pieces of work focused on taking into account the spatio-temporal
parameters when predicting network demand. In [127], regressors are introduced for dif-
ferent performance indicators at different spatio-temporal granularity for mobile cellular
networks focusing on per-device throughput, base station throughput and device mobil-
ity. Similar to this scope, the authors in [147] focus more on core network measurements
where mobile device traffic data is collected from a cellular network operator and is used to
classify IP traffic patterns of mobile cellular devices. The work presented in [148] studied
traffic prediction in cloud analytics and showed that optimizing parameters and metrics
can lead to accurate prediction even under high latency at the application/TCP layer to
improve the performance of the application avoiding buffer overflows and/or congestion.
More recently, researchers started to exploit external sources. In [15], the authors propose
a dynamic network resources allocation framework to allocate downlink radio resources
adaptively across multiple cells of 4G systems. Their introduced framework leverages
three types of context information: user’s location and mobility, application-related in-
formation, and radio maps. A video streaming simulated use case is used for evaluating
the performance of the proposed framework. Another interesting work presented in [149]
focuses on building Geo-localized radio maps for a video streaming use-case in which the
streaming rate is changed dynamically on the basis of the current bandwidth prediction
from the bandwidth maps. The empirical collection of geo-localized data rate measures is
also addressed in [150] which introduces a dataset of adaptive Hypertext Transfer Proto-
col (HTTP) sessions performed by mobile users. To the best our knowledge, in the field
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of telecommunications, end-to-end deep learning for Network Demand Prediction fusing
external cities patterns has not yet been undertaken.

8.3 Network demand prediction - ST-DenNetFus

8.3.1 Notation and Definitions

Definition 7 (Region) There are many definitions that could highlight a region such as
zip-code boundary [151] or defining regions by roads networks [8]. In this work, a region is
defined as a grid after partitioning the city into an I × J grid map based on the longitude
and latitude for generating image like matrices so that they can be further processed by
convolutional neural networks.

Definition 8 (Downlink/Uplink Throughput) In this work, downlink and uplink through-
put is defined as the maximum downlink and uplink throughput observed in the current
pixel. For a grid (i, j) that lies at the ith row and jth column, the downlink and uplink
throughput are defined at the time interval t respectively as

xdown,i,j
t =

∑
∀n∈(i,j)

|Ndown
n | (8.1)

xup,i,jt =
∑
∀n∈(i,j)

|Nup
n | (8.2)

Problem 1 Given the historical observations of the network demand {Xt|t = 0, ..., s−1},
predict Xs.

At the tth time interval, downlink and uplink throughputs in all I × J regions can
be denoted as a tensor Xt ∈ R2×I×J where (Xt)0,i,j = xdown,i,j

t , (Xt)1,i,j = xup,i,jt . For a
grid map of dimensions I × J , there are two types of network demand (Downlink/Uplink
Throughput) in each grid over time thus the observation at any time can be represented
by a tensor X ∈ R2×I×J .

8.3.2 Deep Dense Networks

Dense Convolutional Network (DenseNet) has been introduced recently and it has been
proved that it can scale naturally to hundreds of layers without exhibiting optimiza-
tion challenges [142]. It introduces direct connections between any two layers with the
same feature-map size. DenseNets has achieved state-of-the-art performances with fewer
parameters and less computation [142]. The main idea of DenseNet is to improve the
information flow between layers by proposing a different connectivity pattern, direct con-
nections from any layer to all the subsequent layers. This means that the lth layer receives
the feature-maps of all preceding layers, X0, ...,Xl−1, as input:

Xl = Hl([X0, ...,Xl−1]), (8.3)
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where [X0, ...,Xl−1] refers to the input and the concatenation of the feature-maps pro-
duced in layers 0, ..., l − 1. For the ease of implementation, the multiple inputs of Hl(.)

are concatenated into a single tensor.

8.3.3 Deep Spatio-Temporal Dense Network with Data Fusion (ST-DenNetFus)

Figure 8.1 presents the proposed architecture of ST-DenNetFus. Based on definition
7 and definition 8, each of the downlink and uplink network throughputs at time t is
converted to a 32 × 32 of 2-channel image-like matrix spanning over a region. Then the
time axis is divided into three fragments denoting recent time, near history and distant
history. Then these 2-channel image-like matrices are fed into three branches on the
right side of the diagram for capturing the trend, periodicity, and closeness and output
Xin. Each of these branches starts with convolution layer followed by L dense blocks
and finally another convolution layer. These three convolutional based branches capture
the spatial dependencies between nearby and distant regions. Then there is a number
of branches that fuse external factors based on their dimensionality. In our case, the
Temporal Functional Regions and the crowd mobility patterns are 2-dimensional matrices
(XExt−2D) that change across space and time but on the other side, the day of the week
is 1-dimensional matrix that change across time only (XExt−1D). At that stage a data
fusion layer that fuses the Xin, XExt−2D, and XExt−1D. The output is Xin−Ext which is
fed to tanh function to be mapped to [−1, 1] range. This helps in faster convergence in
the backpropagation learning compared to a standard logistic function [152].

8.3.3.1 Network Throughput input data

The network throughput data for both uplink and downlink are fed into the first three
branches (shown in blue in Figure 8.1).
Convolution Design. Since a city usually has a very large size with many regions, and
intuitively the network demand may be affected by nearby as well as distant regions, con-
volutional neural network can handle this effectively as it captures the spatial structure
through convolutions. In order to capture the dependency between regions, there is a
need to design many convolutional layers. Subsampling techniques have been introduced
to preserve distant dependencies and avoid the loss of resolution especially in video se-
quence generating tasks [153]. Unlike with the common approach to CNN, we do not use
subsampling but instead rely only on convolutions [154]. Support for such an approach
can be found in [115], where the authors were trying to capture the spatial dependencies
at a citywide scale similar to our problem here. They concluded that one convolution
naturally captures spatial near dependencies, and a stack of convolutions afterwards can
further capture the spatial distant citywide dependencies. The closeness, periodicity, and
trend components adapt 2-channel image-like matrices according to the time interval as
follows, [Xt−lc , ...,Xt−1], [Xt−lp.p, ...,Xt−p], and [Xt−lr.r...,Xt−r] respectively. lc, lp and lr
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Figure 8.1: ST-DenNetFus Architecture.

represent the length of the dependent sequence for the closeness, period and trend while
c, p and r depicts their span respectively. In our detailed implementation, the p captures
one day to capture daily periodicity while the r is equal to one week that reveals the
weekly trend of the network demand.

Each of these inputs is concatenated across the first axis (time interval) as tensors,
X

(0)
c , X(0)

p , and X
(0)
r and then followed by a convolution (convolution-1 in Figure 8.1) for

each branch as follows:

X(1)
c = f(W(1)

c ∗X(0)
c + b(1)

c ) (8.4)

X(1)
p = f(W(1)

p ∗X(0)
p + b(1)

p ) (8.5)

X(1)
r = f(W(1)

r ∗X(0)
r + b(1)

r ) (8.6)

where ∗ denotes the convolution operation, f(.) is an activation rectifier function [137],
and the (W(1)

c , b(1)
c ), (W(1)

p , b(1)
p ), and (W(1)

r , b(1)
r ) are the learnable parameters for this

first layer for the three branches.
Since our objective to have the final output size as same as the size of the input (size of

the grid map), a specific type of convolution called “same convolution” is employed which
allows the filter to go outside of the border of the input padding each outside the border
with a zero.
Dense blocks Design. Since in our case, there is a need to capture large citywide
dependencies for increasing the accuracy in predicting network demand, a very deep net-
work will be required. This will place both computational power and complexity burden
on its implementation. To address this issue, DenseNet has been employed with some
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modifications that exploits the potential of the network through feature reuse, yielding
condensed models that are easily trained and highly parameter efficient [142]. In our
proposed ST-DenNetFus architecture, each of the outputs from the first convolution layer
(shown as convolution-1 in Figure 8.1), X(1)

c , X(1)
p and X

(1)
r is passed through L layers,

each of which implements a non-linear transformation Hl(.), where l depicts the layer. In
our implementation, Hl(.) is defined as a composite function of two consecutive operations
of Rectified Linear Unit (ReLU) followed by a 3× 3 convolution. On top of the Lth dense
block, a convolutional layer is appended (shown as convolution-2 in Figure 8.1). The final
outputs of each of these branches after convolution-2 are X

(L+2)
c , X(L+2)

p and X
(L+2)
r .

8.3.3.2 External Factors & Fusion

Network demand can be affected by many complex external factors. One of the main
contributions of this research is to show how some of the extracted patterns as discussed
in the previous chapters can be of an impact on one of the most important challenges in
the telecommunications domain, Network Demand Prediction. Intuitively, the thought
was that there might be a relation between mobile data utilization and the functionality
of the regions. Thinking about a business district, then intuitively one could expect that
most companies will be empowered by a WiFi network and hence people once they arrive
to their work will probably rely on the WiFi network more than the cellular network. In
contrast, in a shopping district, the cellular network might be expected to be used more
than the WiFi network as usually people are walking in streets or in shops in which WiFi
is not universally or freely available. Another external factor that intuitively could impact
the network demand is the crowd mobility patterns as it is obvious that the more crowded
an area is, the higher network demand. In addition and as shown before in the literature
[127], the day of the week is of an impact to the network demand variation. The simple
example is that people typically rely on their cellular networks in a different pattern on
the weekends compared to the weekdays.

To predict the network demand at time t, the prior three external factors: Tempo-
ral Functional Regions patterns, day of the week and the crowd mobility patterns can
be already obtained. However, the challenge in embedding these external factors into a
model is that they vary in their dimensionality. In other words, the Temporal Functional
Regions and the crowd mobility patterns are both 2-dimensional features that vary across
time however, the day of the week is 1-dimensional feature that varies across the time. For
addressing this challenge, various branches have been introduced in the ST-DenNetFus
architecture to fuse the external features according to their dimensionality as shown in
the yellow branches of Figure 8.1. Let [E1D

t1
,...,E1D

tN
] and [E2D

t1
,...,E2D

tM
] depict the features

vectors for the 1-dimensional and 2-dimensional features respectively, M and N indicates
the number of the external 1-dimensional and 2-dimensional features respectively. For-
mally and for the 1-dimensional features, fully-connected layers are stacked and for the
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2-dimensional features, convolutional layers with 5× 5 filter are stacked for capturing the
spatial dependencies of these features employing the “same convolution”, for preserving
the final output size to be the same as the size of the input.

After the network demand data is input and output Xin is generated, and the other
branches for the external data sources XExt−2D and XExt−1D for the 2-dimensional and
1-dimensional features are produced, then a fusing layer (shown in red in Figure 8.1) is
used. The output Xin−Ext is further fed to a tanh function to generate X̂t which denotes
the predicted value at the tth time interval. These operations are summarized with the
following equations:

X̂t = tanh(Xin−Ext) (8.7)

Xin−Ext = Xin + XExt−2D + XExt−1D (8.8)

The ST-DenNetFus architecture can then be trained to predict X̂t from the Network
Throughput input data and the external features by minimizing mean squared error be-
tween the predicted demand and the true demand matrix:

κ(ε) = ||Xt − X̂t||2 (8.9)

where ε represents all the learnable parameters in the whole ST-DenNetFu architecture.
A summary of the procedures for training the proposed ST-DenNetFu architecture is

shown in Algorithm 6.

8.4 Experiments setup

In this section, an overview on the network (telco) dataset used is given, the baselines to
be used for comparison presented and finally the evaluation metrics that will be used in
the Results section will be discussed.

8.4.1 Dataset

The dataset used in this chapter is an application and network usage dataset gathered
from Truconnect LLC2, a mobile service provider based in US. The raw data contains
more than 200 billion records of mobile sessions that spans across 6 months from July
2016 to December 2016 in NYC. All of the mobile sessions are geo-tagged with longitude
and latitude. Mobile sessions can be any type of application usage on the phone that uses
mobile network. These sessions might include session types such as Youtube video views,
application downloads and updates, and web browsing sessions.

Each sample in the dataset is created due to one of the following: (a) every hour,
(b) every change of a pixel (lat, long of 4 digits with a resolution of 10 × 10), (c) every

2https://www.truconnect.com
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Input: Historical Observations: {X0, ...,Xs−1};
External 1D Features (E1D

t ): {E1D
t1 , ...,E

1D
tM };

External 2D Features (E2D
t ): {E2D

t1 , ...,E
2D
tN };

lengths of closeness, period, trend sequences: lc, lp, lr
span of period, trend: p, r
Output: STDenNetFus model M
// Construct training dataset
TR← ∅
for 1 ≤ t ≤ s− 1 do

TDc ← [Xt−lc , ...,Xt−1]
TDp ← [Xt−lp.p, ...,Xt−p]
TDr ← [Xt−lr.r...,Xt−r]
create a sample of ({TDc, TDp, TDr,E

1D
t ,E2D

t }, Xt) in training data TD
end
// Train STDenNetFus model M
Xc
in ← DenseNet(TDc), X

p
in ← DenseNet(TDp), Xr

in ← DenseNet(TDr)
Xin ← Xc

in + Xp
in + Xr

in

X1
Ext−1D,...,X

M
Ext−1D ← FCN(E1D

t1 ),...,FCN(E1D
tM )

XExt−1D ← X1
Ext−1D+ ... +XM

Ext−1D
X1
Ext−2D,...,X

N
Ext−2D ← CNN(E2D

t1 ),...,CNN(E2D
tM )

XExt−2D ← X1
Ext−2D+ ... +XN

Ext−2D
Xin−Ext ← Xin+XExt−1D+XExt−2D
X̂t ← tanh(Xin−Ext)
// Optimize parameters ε for κ, see equation 8.9
Initialize the parameters ε
for Stopping condition NOT met do

Select a batch of instances TDb from TD
Find parameters ε that minimizes κ

end
Conclude the learned STDenNetFus model M

Algorithm 6: Training the STDenNetFus architecture.

application used within this pixel and hour results in a new record in the dataset. On
average per mobile device, there are between 1000 − 1200 records per day. The main
features that are filtered and used within this dataset are as follows:

• Ueid: This feature represents a mobile device unique identifier.

• Latitude: This value represents the latitude of the bottom-right corner of the pixel
with resolution of 0.0001 degree.

• Longitude: This value represents the longitude of the bottom-right corner of the
pixel with resolution of 0.0001 degree.

• MaxRxThrpt: This value represents the maximum downlink throughput observed
on the network interface of the mobile device in the current pixel (in bps).

• MaxTxThrpt: This value represents the maximum uplink throughput observed on
the network interface of the mobile device in the current pixel (in bps).

The network demand data has strong periodical patterns for both MaxRxThrpt and
MaxTxThrpt. The weekly recurrence of the network demand values are shown in Figure
8.2. From this figure, it could be observed that the network demand has two strong
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Figure 8.2: Network Demand Data periodicity.

patterns: a) Daily, b) Weekly. In the daily recurrent, a maximum demand during peak
hours is observed during the day while the demand drops significantly after midnight.

The network data available spans for the last 6 months of 2016 while the LBSNs data
used in the previous chapters spans across 2 years in 2013 and 2014 (refer to chapter 4).
So for achieving the research objective of this chapter, LBSNs data is gathered across
the same 6 months of the network data using the Twitter streaming APIs3. This data is
used for extracting both the Temporal Functional Regions and Recurrent Crowd Mobility
Patterns by applying the approaches described in chapter 6 and 7 respectively.

8.4.2 Baselines

The proposed ST-DenNetFus approach has been compared with the following 4 baselines:

• Naive: A naive model [155] works by simply setting the forecast at time t to be
the value of the observation at time t− l where l is the lag value. Several lag values
are tested considering l equals to 1, 24, and 168 that corresponds to hourly, daily
or weekly which we refer to as Naive-1, Naive-24, and Naive-168 respectively. For
instance, in case of daily, the network demand at time t on Monday is considered
same as time t on Sunday. In case of weekly, the network demand at time t on
Monday is considered same as time t on previous Monday and for hourly, the network
demand at time t is considered same as time t− 1. These comparisons are shown in
Figure 8.3. From these comparisons, Naive-1 shows the best accuracy and following
that Naive-24 and Naive-168 respectively.

3https://dev.twitter.com/streaming/overview
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(a) Lag value impact on throughput downlink. (b) Lag value impact on throughput uplink.

Figure 8.3: Lag value impact for the Naive Model. The smaller the better.

• ARIMA: An ARIMA model [156] is a well-known model for analyzing and fore-
casting time series data. ARIMA is an acronym that stands for AutoRegressive
Integrated Moving Average and is considered a generalization of the simpler AutoRe-
gressive Moving Average and adds the notion of integration. A nonseasonal ARIMA
model is classified as titled as ARIMA(p, d, q) where p is the number of autoregressive
terms, d is the number of nonseasonal differences needed for stationarity, and q is the
number of lagged forecast errors in the prediction equation. In our trained model,
p, d, q are set to 1.

• RNN: Recurrent Neural Networks or RNNs [157] are a special type of neural net-
work designed for sequence problems. Given a standard feedforward Multilayer Per-
ceptron network, a recurrent neural network can be thought of as the addition of
loops to the architecture. For example, in a given layer, each neuron may pass its
signal latterly (sideways) in addition to forward to the next layer. The output of
the network may feedback as an input to the network with the next input vector.
And so on. In our experiments, the length of the input sequence is fixed to one
of the {1, 3, 6, 12, 24, 48, 168}. Figure 8.4 summarizes the comparison between these
variants and concludes that the best accurate model is RNN-12.

• LSTM: The Long Short-Term Memory or LSTM [158] network is a recurrent neu-
ral network that is trained using Back propagation Through Time and overcomes
the vanishing gradient problem. As such it can be used to create large (stacked)
recurrent networks, that in turn can be used to address difficult sequence problems
in machine learning and achieve state-of-the-art results [159]. Instead of neurons,
LSTM networks have memory blocks that are connected into layers. The experiments
are conducted on 6 LSTM variants following the same settings of RNN, including,
LSTM-1, LSTM-3, LSTM-6, LSTM-12, LSTM-24, LSTM-48, LSTM-168. Figure 8.5
summarizes the comparison between these variants, it can be concluded from this
figure that LSTM-6 is the most accurate model.
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(a) Input sequence length impact on throughput down-
link. (b) Lag value impact on throughput uplink.

Figure 8.4: Input sequence length impact for the RNN Model. The smaller the better.

(a) Input sequence length impact on throughput down-
link. (b) Input sequence length impact on throughput uplink.

Figure 8.5: The input sequence length impact for the LSTM Model. The smaller the better.

Going forward in this chapter, the best performing baseline models, Naive-1, RNN-12,
and LSTM-6 are referred to as simply Naive, RNN, and LSTM respectively.

8.4.3 Evaluation Metric

ST-DenNetFus is evaluated by the Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) as they are two of the most common metrics used to measure the accuracy
of continuous variables. Since RMSE has the benefit of penalizing large errors more so
it can be more appropriate in some cases, for example, if being off by 10 is more than
twice as bad as being off by 5. But if being off by 10 is just twice as bad as being off by
5, then MAE is more appropriate. Both metrics are used for comprehensively evaluating
the ST-DenNetFus approach, the following defines both metrics:
Mean absolute error (MAE): Is a quantity used to measure how close forecasts or
predictions are to the eventual outcomes. The mean absolute error is given by:

MAE =
1

n

n∑
j=1

||yi − ŷi|| (8.10)

Root mean squared error (RMSE): Is a quadratic scoring rule that also measures the
average magnitude of the error. It’s the square root of the average of squared differences
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between prediction and actual observation. The root mean squared error is given by:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (8.11)

In both Equations (8.10) and (8.11), yi and ŷi depict the actual values and the corre-
sponding predicted values respectively; n is the number of the available samples in the
dataset.

8.5 Results

8.5.1 Preprocessing

Manhattan region is divided into a grid (refer to Definition 7) for the pre-processing of
the data. For fitting a grid map to Manhattan region, it is needed to rotate the grid map
by an angle. For doing so, the longitude and latitude pairs of the grid map is processed
to find lon′ and lat′ with a rotation matrix as follows:

R =

[
0.9153 0.4027

0.4027 0.9153

]
(8.12)

loncenter = −73.9576 (8.13)

latcenter = 40.7878 (8.14)

< lon′, lat′ > = (< lon, lat > − < loncenter, latcenter >) ∗R (8.15)

After doing such transformation, the rotated grid appeared as shown in Figure 8.6.
For each grid, the median maximum throughput for users is derived for both the uplink
and downlink throughputs. The reason for using the median throughput is because telco
operators are more concerned with the experience of an average user network demand
when planning resources [160].

Since the tanh function is used in the output of the ST-DenNetFus to map the output
between [−1, 1], the data is preprocessed using the min-max normalization to scale the
network demand data between between −1 and 1. When evaluating the performance,
this transformation is inversed back later on to the original scale to be compared with the
ground-truth. For the external factors, one-hot encoding [161] is used to transform the
day of the week, functional regions and the crowd mobility patterns into binary vectors
and then they are fed normally to their corresponding branches in the ST-DenNetFus as
described in the previous section.

8.5.2 Hyperparameters

The learnable parameters of the ST-DenNetFus are initialized using a uniform distribution
in keras [162]. The convolutions of convolution-1 and convolution-2 use 24 and 2 filters of
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Figure 8.6: Manhattan rotated grid map.

size 3×3 respectively. Convolution-2 uses 2 filters to match the desired number of outputs
needed for the downlink and uplink throughput. Adam [163] is used for optimization, and
the batch size is set to 15 for fitting the memory of the GPU used in the experiments. The
number of dense blocks is set to 5. For p and r, they are empirically set to capture one-day
and one-week respectively where lc, lp and lr ∈ {1, 2, 3, 4}. The dataset is partitioned as
80% for the training dataset and the remaining 20% for the test dataset (this ration in
partitioning is one of the common practices in machine learning [164]) which is used for
evaluating the performance of the final selected model. From the training dataset, 90% is
selected for training each model and the remaining 10% for the validation dataset which
is used for choosing the best model as well as to early-stop the training algorithm if there
is no improvement found after 5 consecutive epochs.
Impact of growth rate: If each functionH produced k feature-maps as output, then the
lth layer will have k× (l− 1) + k0 input feature-maps, where k0 is the number of channels
in the input matrix. To prevent the network from growing too wide and to improve the
parameters efficiency, k is limited to a bounded integer. This hyperparamater is referred
to as growth rate [142]. Figure 8.7a and Figure 8.7b show the impact of increasing the
growth rate on the prediction’s accuracy for both the throughput downlink and uplink
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(a) Growth rate impact on throughput downlink. (b) Growth rate impact on throughput uplink.

Figure 8.7: Growth rate impact on the Network Demand Prediction. The smaller the better.

respectively. From these figures, it is obvious that the accuracy improves by increasing
the growth rate until reaching certain point in which widening further the network starts
to have a counter impact on the accuracy. Hence it was concluded that the optimum
growth rate is 24 for both downlink and uplink throughputs.
Impact of network depth: Figure 8.8a and Figure 8.8b show the impact of the network
depth on the predictions’ accuracy for the downlink and uplink throughputs respectively.
It was concluded from these figures that a network depth of 5 has the optimum results
which shows it can sufficiently capture with this depth the spatial dependence as well as
the distant one. However, when the network is very deep, training becomes more difficult.
Impact of parallel branches for external features: In ST-DenNetFus, each of the
external features are input into a separate branch unlike the traditional approach. The
traditional approach of fusing external features of same dimensionality merges these fea-
tures first and then fuses them into one branch. However, in our proposed approach, a
separate branch for each of the external features is used and then merge their outputs
in a later stage after the feedforward execution of each of the branches (shown in yellow
in Figure 8.1). In our case, although both the Temporal Functional Regions and crowd
mobility patterns are of same dimensionality where both are 2-dimensional matrices that
change across time (1-hour time-interval), they are each input on a separate branch and
then fused later. The impact of feeding the external features in this way is demonstrated
in Figure 8.9a and Figure 8.9b for the downlink and uplink throughput prediction respec-
tively. As it can be seen and compared to the traditional approach, our approach performs
10% RMSE and 8% MAE better for the downlink throughput prediction and 8% RMSE
and 7% MAE better for the uplink throughput prediction.
Impact of temporal closeness, period and trend: In order to determine the optimum
length of closeness, period and trend for the network demand dataset. The length of
period and trend are set to 1 and then the length of closeness is varied from 0 to 5 where
lc = 0 indicates that the closeness component/branch is not employed. Figure 8.10a
and Figure 8.10b summarize such analysis for both the downlink and uplink throughputs
prediction respectively. From these figures, it can be concluded that lc equals to 3 has
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(a) Network depth impact on throughput downlink. (b) Network depth impact on throughput uplink.

Figure 8.8: Network depth impact on the Network Demand Prediction. The smaller the better.

(a) External factors data fusion method impact on
throughput downlink.

(b) External factors data fusion method impact on
throughput uplink.

Figure 8.9: External factors data fusion method impact on the Network Demand Prediction. The smaller
the better.

(a) Temporal closeness impact on throughput downlink. (b) Temporal closeness impact on throughput uplink.

Figure 8.10: Temporal closeness impact on the Network Demand Prediction. The smaller the better.

the lowest RMSE and MAE shown on the y axis for both types of throughputs and lc = 0

has the highest RMSE and MAE. Then, lc is set to 3 and lr is set to 1 and then lp is
varied from 0 to 5. From Figure 8.11a and Figure 8.11b, it is concluded that the best
performance is when lp equals to 3. Finally, lc and lp are set to 3 and lr is varied in which
it is concluded from Figure 8.12a and Figure 8.12b that its best value is at 4. Based on
this analysis, it is concluded that the best configuration for the {lc, lp, lr} is {3, 3, 4}.
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(a) Temporal period impact on throughput downlink. (b) Temporal period impact impact on throughput up-
link.

Figure 8.11: Temporal period impact on the Network Demand Prediction. The smaller the better.

(a) Temporal trend impact on throughput downlink. (b) Temporal trend impact on throughput uplink.

Figure 8.12: Temporal trend impact on the Network Demand Prediction. The smaller the better.

8.5.3 Discussion

Table 8.1 shows the ST-DenNetFus Network Demand Prediction accuracy comparisons
with the baselines for both the throughput downlink and uplink. As shown, the proposed
ST-DenNetFus consistently and significantly outperforms all baselines. Specifically, the
results for the downlink throughput prediction demonstrate that ST-DenNetFus (with 5
dense-blocks) is relatively 30% RMSE and 20% MAE better than the Naive model, 20%

RMSE and 23% MAE better than ARIMA, 15% RMSE and 30% MAE better than RNN
and 10% RMSE and 20% MAE better than LSTM. For the uplink throughput prediction,
ST-DenNetFus is 27% RMSE and 20% MAE better than the Naive model, 20% RMSE
and 30% MAE better than ARIMA, 12% RMSE and 33% MAE better than RNN, and
10% RMSE and 30% MAE better than LSTM. ST-DenNetFus-NoExt is our proposed
version of ST-DenNetFus-Ext that does not consider external factors (e.g. Temporal
Functional Regions). It can be seen that ST-DenNetFus-NoExt is worse than the ST-
DenNetFus-Ext indicating that external factors and patterns fused are always beneficial.
Intuitively, the models in RMSE can be ranked as illustrated in Figure 8.13. It is worth
emphasizing that although the improvement in the predictive accuracy with fusing the
extracted urban patterns (ST-DenNetFus-Ext) compared to without fusing the urban pat-
terns (ST-DenNetFus-NoExt) is better but the improvement is not obviously significant.
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Table 8.1: Prediction accuracy comparisons with baselines

Evaluation Metric
(Downlink Throughput)

Evaluation Metric
(Uplink Throughput)

Model RMSE MAE RMSE MAE
Naive 13278936.747 7667966.397 5237542.197 2406522.277

ARIMA 12177307.197 8073921.767 4816366.977 2783808.635
RNN 11199525.956 8576942.055 4335734.302 2865784.639
LSTM 10580656.522 7660093.113 4216037.533 2713482.051

ST-DenNetFus-NoExt 9675762.836 6315907.039 3907936.380 2131071.282
ST-DenNetFus-Ext 9600259.526 6206750.047 3847875.555 1933871.466

(a) Comparison for downlink throughput prediction accuracy.

(b) Comparison for uplink throughput prediction accuracy.

Figure 8.13: Model ranking for Network Demand Prediction. The smaller the better.

However, this small improvement is considered quite a good achievement due to the fact
that: (a) Fusing external data sources usually in most of the prior state-of-the-art is quite
challenging task and in lots of cases it results in ingesting noise to the models leading to
worse accuracy [165] [166] [167]. (b) In most of the machine learning tasks, after trying
several techniques and reaching the best possible accuracy, it is quite challenging for any
further small improvement and at that level any kind of small improvement is considered
significant [168] [169].
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8.6 Summary

In this chapter, a new deep learning based approach called ST-DenNetFus is proposed
for forecasting the network demand (throughput uplink and downlink) in each and every
region of a city. For the first time, it has been shown that fusing some external patterns
such as Temporal Functional Regions and crowd mobility patterns improves the accuracy
of the forecasting due to their intuitive correlation with the network demand variation.
Compared to other 4 baselines, the proposed approach outperforms, confirming that the
proposed approach is better and more applicable to the Network Demand Prediction
problem. The introduced ST-DenNetFus is capable of learning the spatial and temporal
dependencies. In addition, it employs various branches for fusing external data sources of
various dimensionalities. In this chapter, it is concluded that besides the direct benefit of
the extracted patterns introduced in the previous chapters, theses patterns could have a
potential indirect impact on some of the challenges in other domains such as the Network
Demand Prediction problem in the telecommunications domain. In addition, the author
of this thesis argue that the introduced ST-DenNetFus architecture could be leveraged
for solving other spatio-temporal prediction problems that requires fusing external data
sources such as energy demand forecasting and others.

Having presented in this chapter the fourth and last introduced contribution in this
thesis showing how some of the urban patterns extracted in the previous chapters could
bring benefit to other domain problems (such as the Network Demand Prediction problem
in the telecommunications domain), the next chapter concludes the thesis, summarizing
the contributions and highlighting future work.
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Chapter 9

Reflections and outlook

Chapter overview: This chapter concludes the thesis by first summarizing the core con-
tributions presented in the core chapters including the Socio-demographic Regional Pat-
terns (chapter 5), Temporal Functional Regions Patterns (chapter 6), Recurrent Crowd
Mobility Patterns (chapter 7), and the proposed approach for the Network Demand Pre-
diction problem utilizing some of the extracted urban patterns (chapter 8). Second, a
summary of the challenges encountered in this research are discussed. Future directions
are then presented for each of the core contributions highlighting potential areas for ex-
tending the work presented in this thesis. Then, I shed the light on a new domain that
can emerge from this thesis that focuses on reasoning from challenges that our cities face
today from correlating various extracted urban patterns. Finally, a brief outlook is given
on the whole work.

9.1 Summary of contributions

With the rise of online social networks and services that provided another useful source
where location data and human activity or relationships are being described, a classic
question this thesis attempts to address is how far new urban patterns can be extracted
harnessing the power of this type of data. The recent advancements and technologies
in machine learning is a key enabler for extracting the potential new urban patterns.
Through my journey of reviewing, studying and understanding various machine learning
techniques in the literature to see what might be the most suitable techniques for ex-
tracting urban patterns, I came up with a recommender approach called TCDC discussed
briefly in chapter 3 (whereas its validation and experiments are detailed in Appendix A).
TCDC can help machine learning researchers and practitioners to choose the optimum
supervised machine learning model for the classification and regression problems. After-
wards and for the aim of studying and extracting interesting urban patterns in cities,
LBSNs data is gathered and preprocessed for two full years as described in chapter 4, to
the best of our knowledge, this is the longest time duration LBSNs data that has been
studied in the literature so far.
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The first core contribution was presented in chapter 5 and focused on extracting new
urban pattern called Socio-demographic Regional Patterns. The proposed model based on
DBNs was able to extract a unique pattern for each of the boroughs in NYC utilizing the
weekly footprints comprising of individuals’ activities captured from the LBSNs dataset.
For an unseen weekly footprints capturing individuals’ activities, the best trained model
was able to classify the borough that such weekly footprints belongs to with nearly 70%

accuracy. Since in general, the DBNs trained models suffer from interpretability, I went
further and applied a well-known topic based model called LDA for better understanding
what could be the underneath unique pattern extracted for each of the boroughs. The
outcome results from LDA validated that there is an observable different pattern for each
of the boroughs and it proved that detecting such unique patterns is a complex task.

Since, the first core contribution showed an example of a new urban pattern that can
be extracted using LBSNs, the second core contribution focused on extracting new type
of functional regions that changes across space and time compared to the static functional
regions that was the focus in the previous state-of-the-art. This leads to the second core
contribution introduced in chapter 6 which focused on extracting what I refered to as
Temporal Functional Regions patterns using clustering based techniques. In this context, I
studied the optimum time interval for extracting such variation in the functionalities of the
regions in which four hours were found to be the most suitable time interval for capturing
the variation in the regions’ functionalities. Although the experiments show objectively
that the quality of clustering is better for the Temporal Functional Regions compared to
the static functional regions, I went further and validated subjectively for some selected
regions in Manhattan that the extracted Temporal Functional Regions follow the intuitive
understanding of the features of these regions.

Subsequently, in chapter 7, I went further to understand how crowd flows to the ex-
tracted Temporal Functional Regions from the previous chapter. This leads to the third
core contribution presented in this thesis, a new approach for Recognizing Recurrent
Crowd Mobility patterns in Cities called RCMC based on a combination of KDE/NMF al-
gorithms. I have adapted the KDE with gaussian kernel for extracting the crowded areas
which further acted as an input to the NMF-based algorithm for extracting the Recurrent
Crowd Mobility Patterns. For providing further insights on the level of crowdedness rec-
ognized, the output of the NMF-based algorithm is expanded for recognizing three levels
of crowd intensity. The proposed approach succeeds to extract three different Recurrent
Crowd Mobility Patterns, first for weekdays, second for Saturdays and third for Sundays.
However, when adapting two topics, it was possible to extract two different unique pat-
terns, one for the weekends and the other for the weekdays. The proposed approach was
tested objectively and subjectively. Due to the difficulty of assessing the accuracy of the
extracted Recurrent Crowd Mobility Patterns objectively due to the lack of ground truth,
I went further and introduced an evaluation metric called topic stability for assessing the
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ability for a topic-based algorithm to extract similar patterns using an unseen dataset
which is a key requirement for the proposed approach to detect “recurrent” patterns. It
was shown that the proposed approach outperforms in most cases two baselines based on
LDA and Tf-idf algorithms respectively. Using the same time interval (4 hours) as the one
used for recognizing the Temporal Functional Regions, some key areas in Manhattan are
selected and the mobility patterns extracted are correlated with the Temporal Functional
Regions, this correlation helped in deriving insights into the motivation behind crowd
mobility.

For illustrating an example of the impact of such extracted urban patterns in solving
another domain challenges, I thought to fuse these patterns as an external data sources
for exploring the possibility of improving the accuracy for the Network Demand Pre-
diction problem. The reason for choosing the Network Demand Prediction problem is
three-fold: First, intuitively I thought that the Temporal Functional Regions as well as the
crowd patterns across space and time could impact the network usage patterns. Second,
the Network Demand Prediction problem on itself is quite complicated problem for the
telco operators due to the various external factors that could impact the network usage
patterns [15]. Third, being able to predict the network demand reliably and accurately
can allow the operators to allocated network resources adaptively according to the pre-
dicted/expected demand from the model. This subsequently can reduce significantly the
costs accompanied with the current over-provisioning model for the network resources for
guaranteeing SLAs (Service Level Agreements). This concludes the fourth core contri-
bution in chapter 8 that introduced a deep learning convolutional neural networks based
architecture for predicting the network demand. Interestingly and for the first time, I
proved that the proposed approach improves the accuracy for the network demand when
fusing some of the extracted urban patterns introduced in this thesis. In addition and for
showing the effectiveness of the proposed approach, it outperformed other baselines that
utilizes popular recent time-series forecasting techniques

9.2 Summary of research challenges

Throughout the work presented in this thesis, the following challenges have been encoun-
tered:

Challenge-1: What are the main principles in which the author of this thesis
relied on for extracting new urban patterns? Intuitively and for addressing such
broad challenge, first, a shift of focus in the research carried out was more towards crowd
behavioural analysis rather than user-centric behaviour (that had more focus in the state-
of-the-art work). This shift in focus may help in extracting novel urban patterns and
supporting new classes of applications. This is coupled with working on longer time
duration LBSNs data as in most cases and intuitively, more obvious recurrent urban
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patterns can be extracted from longer time duration data. In addition, studying and
utilizing some of the recent advancements in machine learning such as deep learning
based models (e.g., Deep-Belief-Networks) helped in extracting new urban patterns.

Challenge-2: Using LBSNs data, how can the sparsity challenge be lessened for
extracting new urban patterns? The sparsity challenge is one of the major challenges
when analysing LBSNs datasets as it was shown in various studies before [170][170][171].
For overcoming such challenge in our research, the data gathered and analysed in this
thesis is of longer time duration (spanning across two full years as presented in chapter
4) compared to other LBSNs datasets used in the previous state-of-the-art research work.
The argument that this could yield the discovery of new urban patterns that were not
possible before by lessening the sparsity challenge.

Challenge-3: What are the most suitable machine learning models that can be
used for extracting urban patterns? In chapter 1 and in particular in section 1.2.1,
the urban pattern is defined as a recurrent pattern in an urban environment that can
be extracted if the spatio-temporal feature of individuals’ mobility data in cities is used.
Through the research carried out in this thesis, it is worth emphasizing that the spatio-
temporal feature in LBSNs data adds a new dimension for the machine learning models
that needs to be considered for extracting urban patterns. At the start of the research
work, various machine learning techniques have been studied in depth as introduced in
chapter 3. However, throughout the research work, it was found that some models were
useful in particular for extracting urban patterns such as Clustering-based techniques,
Convolutional Neural Networks, Deep-Belief-Networks, and Topic Models (such as LDA,
NMF). The author of this thesis believes that there is still a huge effort needed for re-
searching, developing and adapting new and existing machine learning techniques to suit
the spatio-temporal prediction problems in general and for extracting urban patterns in
particular.

Challenge-4: How can some of the extracted urban patterns bring indirect
benefit to solve a spatio-temporal time series forecasting problem? After it is
shown (in chapter 5, 6, and 7) how it is possible to extract new urban patterns leveraging
the power of LBSNs data utilizing various machine learning models, another challenge
encountered in this thesis is how to show that such extracted urban patterns can be of
an impact to other problems. For addressing such challenge, there was a need to come
up with an approach that can fuse some of these extracted urban patterns with another
domain specific data source (network data). Additional challenge that some of the external
data sources are of different dimensionalities which required a new approach for fusing all
together in one architecture. For addressing this challenge, various models and techniques
are researched which led to the development of the introduced ST-DenNetFus architecture
in chapter 8. It is built using multiple branches for fusing various dimensional data sources.
Through the developed architecture, it is shown that the various patterns can bring benefit
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in terms of higher accuracy for the Network Demand Prediction problem. Additionally,
the author of this thesis argues that the developed architecture can be of benefit to
other spatio-temporal prediction problems that fusing various data sources could boost
its prediction accuracy such as crowd flow forecasting or energy demand forecasting across
cities.

9.3 Future directions

The Socio-demographic Regional Pattern model introduced in chapter 5 could potentially
be extended in the future and applied to various cities across the globe. This means that
such model can be leveraged for further understanding the socio-demographic common-
alities between different regions across the globe. In addition, this model could be used
for understanding how specific cities evolve across time through capturing their weekly
citizens’ footprints from the LBSNs and identifying the city with the closest pattern to it.
This could be useful for exploring evolution of cities that various factors such as social,
economical, and political could be of relevance to such extracted patterns.

In chapter 6, the proposed work showed that the concept of Temporal Functional Re-
gions could be very useful for understanding how the functionality of regions could not
only change across space but also temporally, across time. This work could be extended
in the future to enrich and improve the accuracy of the extracted Temporal Functional
Regions by fusing other relevant data sources with LBSNs that intuitively could be corre-
lated to regions’ functionalities such as: Points Of Interests (POIs) and mobility patterns
(trajectory datasets). This could be seen as extending the work presented by Jing Yuan
et al. in [172] but for extracting the new notion of Temporal Functional Regions intro-
duced in this thesis. In addition and for further testing the effectiveness of the proposed
approach, it would be very useful to apply it to other cities than NYC that has less
dense check-ins and see how realistic the extracted Temporal Functional Regions will
be. Furthermore, the proposed approach extracted the regions’ functionalities based on
the zip-codes boundaries, in the future, it is worth exploring the quality of clustering on
other type of boundaries. This might be a tuning parameter that could further improve
the extracted functional regions. However, it is worth noting that choosing the type of
boundary might vary from application to another.

While our findings in chapter 7 allow for extracting Recurrent Crowd Mobility Pat-
terns in cities, in the future and as a first potential extension to the work, an anomalous
real-time recognition system could be built and experimented on the top of the proposed
approach. In summary, if there is an area that has been detected in real-time as highly
crowded but the output of the proposed RCMC approach recognized that it should be not
or less crowded, then an alarm could be raised to the corresponding authorities indicating
abnormal event occurring. Another potential extension to the work could be trying to
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mine from the text (e.g., tweets) in the LBSNs according to the time and location of the
abnormal event further insights around the reason behind such event. In the proposed
approach, the zip-codes boundaries are used as a way to define areas for extracting mo-
bility patterns. As a future direction, it is worth applying the proposed approach on
different types of boundaries (e.g., grid cell boundaries or road networks boundaries) and
experiment if there is any improvement in the stability of the patterns extracted. In addi-
tion, with the proposed approach, three various crowd mobility patterns were extracted
for weekdays, Saturdays and Sundays. In the future, it is worth exploring how topic
based models such as NMF and LDA could be extended to extract finer and more various
patterns for the weekdays.

Finally, and to show an example of the indirect benefit for some of the prior extracted
patterns, it was shown in chapter 8 that when fusing some of the extracted urban patterns
as external factors using a new deep learning based architecture titled as ST-DenNetFus,
the Network Demand Prediction was more accurate than without fusing such patterns.
This demonstrates clearly the value of such patterns in a problem that has never con-
sidered fusing such external factors before in the state-of-the-art. In the future, and for
solving this particular problem (Network Demand Prediction), it might be worth ingesting
more external sources that could be related to the network consumption such as weather
conditions. In addition, the data fusion mechanisms still need lots of future research work
and is crucial element in the future for making sense from various data sources. For ex-
ample, extending the proposed solution for fusing various sources using weighted merge
method might further improve the accuracy.

In all of the extracted patterns, the research has been carried on a LBSNs dataset
spanning over two complete years (2013 and 2014). In the future, it might be interesting
to test the limitations of extracting such patterns on a shorter time duration data and
whether it is possible to overcome any deterioration in the stability of the extracted
patterns by fusing other external data sources. In addition, it will be very interesting to
extract the urban patterns introduced in this thesis on other time durations for tracking
how cities progress. For instance, extracting the Temporal Functional Regions Patterns
using a data gathered in 2016 could be of interest to see the evolution in urban planning
and regions’ functionalities that have been made since then and similarly, for the Recurrent
Crowd Mobility Patterns and Socio-demographic Regional Patterns. In addition, it is
argued that the generated patterns and approaches presented in this thesis can be applied
on any other LBSNs data subjective to the density of samples per region. Hence, it is
argued that someone could adapt the region’s definition to generate stable urban patterns
using the approaches introduced in this thesis which is another interesting research path
to explore.
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9.4 Towards the emergence of urban reasoning

Urban computing is an interdisciplinary field where computer sciences meet conventional
city-related fields, like transportation, civil engineering, environment, economy, ecology,
and sociology in the context of urban spaces. Urban computing aims to tackle these issues
by using the data that has been generated in cities (e.g., traffic flow, human mobility, and
geographical data). Urban computing connects urban sensing, data management, data
analytics, and service providing into a recurrent process for an unobtrusive and continuous
improvement of people’s lives, city operation systems, and the environment. The term
urban computing has been introduced initially in [173] but has been further formalized
in depth in [35].

The contributions presented in this thesis is considered a step towards progressing
this emerging field. As presented in this thesis, the main focus of this research was
mainly towards extracting new urban patterns that could be of benefit to several types
of applications such as transportation, economy, and telecommunications. Through my
research work, I have concluded that some of these patterns when correlated with each
other, they could further provide deeper insights on the causality behind some challenges
that faces cities. This was obvious when correlating the Temporal Functional Regions with
the recurrent crowd mobility patterns for the aim of understanding the motivation/reason
behind crowd mobility. Similarly, the Temporal Functional Regions and crowd mobility
patterns were proved to be correlated with the network demand in cities, this correlation
could help in providing insights into the reasons of the variation of network demand
across space and time in cities. Hence, I hope that the findings in this thesis might open
the door in the future for extending the urban computing field to include the “reasoning”
element for further giving insights on the reasons behind the challenges that our cities face
today. Such extension could be referred to as “urban reasoning” and Figure 9.1 present my
thoughts on where urban reasoning could complement the urban computing framework in
the future. In other words, urban reasoning could be described as a multi-stage analytics
process comprising of three phases: Domain Knowledge Data Analytics (DKDA) phase,
City Wide Scale Data Analytics (CWDA) phase, and the correlation phase between the
DKDA and CWDA which will not only aim to provide deeper insights about our cities’
dynamicity but more importantly focuses on reasoning from certain challenges that our
cities face today.

9.5 Outlook

The emergence of a new generation of mobile web services and applications has generated
huge amounts of mobility data of unprecedented geographic scale and spatial granular-
ity. This data is accompanied by other layers of information including social interactions
between users and natural language expressions capturing users’ activities and opinions.
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The fact that every piece of online information is being geo-tagged brings not only new op-
portunities for extracting new urban patterns in cities or offering better services and new
type of applications for users, but comes with challenges for adapting the recent advance-
ments in machine learning to such type of spatio-temporal datasets. It will take some
time until the value of this data is fully digested by academics, government institutions
and industry, and when this happens, more data, more interesting extracted patterns and
hence, more questions will emerge.

In this thesis, I have attempted to take a step towards extracting new and interesting
urban patterns and showing the power of LBSNs data as well as the potential impact of
some of the extracted patterns on one of the common challenges in the telecommunications
domain (Network Demand Prediction). I hope that the patterns that were extracted, will
inspire researchers in various industries and academic disciplines to build and provide new
type of applications to users and government institutions that will make our cities better
in the future. In addition, the concept of the correlation between various extracted urban
patterns shown in this thesis for the aim of understanding and reasoning behind some
challenges that our cities face today could hopefully emerge new field focusing on “urban
reasoning”.

Urban Sensing & Data Acquisition

Urban Reasoning
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Urban Data Managment

City 
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Knowledge Data 
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Human 
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Figure 9.1: Empowering urban computing framework with urban reasoning.
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Appendix A

Evaluation of the TCDC Proposed Approach

In this Appendix, the evaluation and validation results for the TCDC-based recommenders
applied to the regression and classifications models introduced in chapter 3 are discussed.
In the first subsection, we present our methodology for evaluating the TCDC approach de-
scribing: (a) The metrics used in our evaluation for measuring the predictive performance
of the various models used; (b) The specifications of the datasets used. In the second sub-
section, we show and discuss the testing results obtained from running the TCDC-based
recommenders on the various datasets. Finally, we summarize our evaluation results in
the last subsection.

A.1 Evaluation Methodology

A.1.1 Predictive Performance Metric

There are many methods for measuring the predictive performance of the regression and
classification models. For the machine learning models that are used for predicting contin-
uous outcome, we need some measure of accuracy in order to evaluate the model. However,
there are plenty of ways for measuring the performance of the regression models, one of
the most commonly used method for measuring the predictive performance of a model
with a continuous response is the Root Mean Square Error (RMSE). The RMSE is eval-
uated by taking the square root of the Mean Square Error (MSE) so that units of the
original data are sustained. We used the RMSE for evaluating the predictive performance
of the regression models in the latter sections of the paper.

We now turn to measuring the predictive performance for models with a categorical
outcome. Although, there are lots of machine learning methods that are common between
regression and classification models, the way that we measure the predictive performance
is necessarily very different from both models as a metric like RMSE that is used in
regression will not be suitable in the classification context. For evaluating the classification
models used in the paper, we used the Accuracy as the metric for measuring performance
that is the number of correct predictions (True positives + True negatives) from all
predictions made. It is common knowledge that classifiers are biased towards preferring
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classes with categories. Thus, the accuracy may not evaluate the performance of a classifier
very well if the classifier works on a highly un-balanced dataset. The ROC/AUC curve
is more appropriate to identify the performance of a classifier in such a case. However,
applying ROC/AUC to a multiclass classification problem will bring extra complexity to
the evaluation work that is outside the scope of this work.

A.1.2 Datasets specifications

In order to show the impact of the proposed TCDC approach, we selected the datasets
for the testing and validation tasks that fulfils the following criteria: (a) Widely-known
datasets that have been used for a long time already for benchmarking within the machine
learning community (e.g.: Iris dataset); (b) Publicly and open source datasets, most of
the datasets used can be found in [174]; (c) Diverse datasets with respect to different
domains (health, agriculture, environmental, etc), this will facilitate demonstrating the
impact of our approach and its applicability on different domains. We implemented and
applied the proposed TCDC approach on 12 datasets and we illustrate in the paper their
results. Table A.1 summarizes the datasets’ specifications used in the paper where N
specifies the number of samples in the datasets, F is the number of features exist in the
dataset, the fourth column represent the number of principle components that capture
95% of the variances of the features, the high dimensional column captures whether the
number of features is greater than 100 or not, and finally the high correlation columns
identify the degree of between-features correlation.

Next in order to determine the degree of between-features correlation, we applied
PCA on the full set of transformed features of all datasets shown in Table A.1 and the
variances accounted for by each component was determined. In Figure A.1 scree plots
show a profile of the variability accounted by each component. We define a Low correlation
dataset as one when more than half the number of features can capture at least 95% of
the variances between the features. In Figure A.1, this is illustrated with the red line
showing half the number of features that exist in the dataset and the blue line outlining
the number of principle components capturing 95% of the variances. In another words,
when the blue line comes after the red line, it indicates low correlation between features
and vice versa. Before applying PCA, and in order to avoid summarizing feature scale
information, we have transformed skewed features in the dataset and then center and scale
the features before performing PCA. We choose to use PCA for determining the degree
of between feature correlations because when the datasets become high dimensional (too
many features), it starts to be harder to visually examine the correlation matrix of the
training set. For this reason we believe this method is more suitable in big datasets.
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Table A.1: A summary of datasets and some of their characteristics.

Aggregate Queries Set for the Query Answering Evaluation
on the Financial Database

Dataset Used for N F PC(95%) N >5F
High

Dimensional
High

Correlation
Airfoil Regression 1503 5 4 Yes No No
Bank notes Classification 1372 4 3 Yes No No
Bike sharing Regression 17379 15 9 Yes No No
Concrete compressive
strength

Regression 1030 8 6 Yes No No

Iris Classification 150 4 2 Yes No Yes
Lung cancer Classification 32 56 19 No No Yes
Musk Classification 6598 168 39 Yes Yes No
Poker hand Classification 1025010 10 10 Yes No No
Wine Classification 178 12 10 Yes Yes No
Wine red Classification 1599 11 9 Yes No No
Wine white Classification 4898 11 9 Yes No No
Yacht hyrdodynamics Regression 252 6 5 Yes No No
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(a) Air foil dataset.
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(b) Bike sharing dataset.
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(c) Concrete strength dataset.
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(d) Yacht hydro dynamics dataset.
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(e) Bank notes dataset.
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(f) Iris dataset.
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(g) Lung cancer dataset.
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(h) Musk dataset.
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(i) Pokerhand dataset.
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(j) Wine dataset.
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(k) Wine red dataset.
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(l) Wine white dataset.

Figure A.1: Scree plots for datasets used in regression and classification evaluation.

A.2 Testing Results

In this subsection, we show the results of applying the TCDC-based recommenders for
both regression and classification to the datasets. In order to produce unbiased and
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realistic comparison, we did not perform any kind of feature selection for all models trained
and we used the default settings for all algorithms with no fine tuning. In addition, we
applied the required features transformations (e.g.: centring, scaling, removing missing
values) for all models before training. As shown in table A.1, we have performed our
testing on 4 datasets for regression and 8 datasets for classification. We considered the
recommenders to be blinded as to whether the datasets are linear or non-linear and hence,
we performed on each dataset both paths of linearity and non-linearity tests as shown.
Besides, we considered the tolerance factor discussed before in chapter 3 (see Sec. 3.2.1)
to be equal zero in order to have unbiased results towards comparing only the predictive
performance.

A.2.1 Regression Results

Figure A.2 shows the linear regression results applied for the 4 datasets used for regression
where the x axis indicates the dataset name and the y axis shows the predictive perfor-
mance using the RMSE metric as described in the previous section. The model which
is selected via the TCDC approach is highlighted in red. From the introduced TCDC-
based recommender for regression (refer to chapter 3, Figure 3.3), it can be seen that the
recommendation path leads to the OLR model being recommended for all datasets used
(Airfoil, Bike sharing, Concrete compressive strength and Yacht hydro dynamics). This is
because these datasets have low between-features correlation and their number of samples
is greater than the number of features. In Figure A.2a, Figure A.2b and Figure A.2d, OLR
outperforms along with the Lasso and Ridge models and in Figure A.2c, OLR outperforms
along with the Ridge model compared to all other models. Obviously, TCDC resulted
in the outperforming model (OLR) for all of the prior datasets along with more benefits
rather choosing the other comparable performance models (Lasso or Ridge). OLR comes
with the benefit of being very attractive due to its interpretability of its coefficients and
its low computational complexity.

Figure A.3 shows the non-linear regression results for the predictive performance using
RMSE for all of the models used in the lower part of TCDC-based recommender for
regression (refer to chapter 3, Figure 3.3) with highlighting in red the chosen model from
the TCDC approach. For the Air foil dataset results shown in Figure A.3a, Random
Forests outperformed all other models with the smallest RMSE which coincides with the
outcome from the TCDC approach. Random Forest was chosen by the TCDC due to the
fact that MARS performed worse than SVM with RBF kernel, leading to progressing and
trying trees. Comparing the predictive performance of the Interpretable (M5 & Rule based
models) and Non-Interpretable trees (Boosting and Random Forest), it was found that the
Random Forests is the best predictive performance model. In Figure A.3b, Figure A.3d
and Figure A.3c, the best predictive performance model was found to be Random Forest
for the first two and Model Trees for the latter one. However, the TCDC approach selects
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(c) Concrete strength dataset.
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(d) Yacht hydro dynamics dataset.

Figure A.2: TCDC-based Linear Regression Results

the MARS model due to the fact that MARS performed better than SVM. This was due
to the fact that we used the default settings of SVM, however, SVM is from the models
that requires careful parameter selection unlike Bagging which works well with the most
decision tree types and requires little fine tuning [175]. Although TCDC choose MARS,
it still comes with the benefit of being able to conduct an automatic feature selection
and considered a high interpretable model in which correlated features do not drastically
impact its performance.

A.2.2 Classification Results

Figure A.4 shows the linear classification results applied for the 8 datasets used for clas-
sification as described in table A.1 where x axis indicates the dataset name and the y
axis shows the predictive performance using the Accuracy metric as described in the pre-
vious section. In a similar manner to the regression results, the model which is selected
by the TCDC approach is highlighted in red. Figure A.4a shows the results outcome of
the Bank notes data set. According to the TCDC-based recommender for classification
(refer to chapter 3, Figure 3.4), the LDA model is selected, trained and its performance is
compared with SVM with linear kernel. This is due to the fact that the between-features
correlations are low and the number of samples is greater than 5 times the number of fea-
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(d) Yacht hydro dynamics dataset.

Figure A.3: TCDC-based Non-linear Regression Results

tures in the Bank notes dataset. The outcomTCe of this comparison resulted in choosing
SVM which is actually the best performing model. In Figure A.4b, the TCDC approach
choses the PLSDA to train and compare its performance with SVM. This is due to that
the Iris dataset is of high between-features correlation. The SVM outperforms compared
to PLSDA and hence, it has been chosen. TCDC selects SVM as the best model for the
Iris dataset and actually it performs nearly very close compared to LDA which was the
best predictive performance model. In Figure A.4c, TCDC selects PLSDA to train and be
compared to SVM due to the high between-features correlations in the dataset. PLSDA
performs very close to the best model (Nearest Shrunken Centroid) and it comes with more
interpretability and less complexity for being deployed. For the Musk dataset illustrated
in Figure A.4d which is high dimensional dataset with more than 100 features and number
of samples more than the features, the Nearest Shrunken Centroid model is trained and
its performance is compared with SVM. The SVM outperformed all others and hence, it
has been chosen from TCDC matching the selection of the best predictive performance
model on this dataset. Similarly SVM was chosen by the TCDC recommender for the
Poker hand dataset shown in Figure A.4e as it outperformed the LDA model. However,
the Logistic Regression is the best model performing on this dataset with a difference of
2% compared to SVM. For the Wine, Wine red and Wine white datasets illustrated in
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(a) Bank notes dataset.
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(b) Iris dataset.
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(c) Lung cancer dataset.
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(d) Musk dataset.
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(e) Poker hand dataset.
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(f) Wine dataset.
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(g) Wine red dataset.
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(h) Wine white dataset.

Figure A.4: TCDC-based Classification Linear Classification Results

Figure A.4f, Figure A.4g and Figure A.4h respectively, the LDA which is the best per-
forming model has been chosen by TCDC since the between-features correlations is low
with the number of samples is greater than 5 times the number of features. Besides, LDA
outperformed when it is compared with SVM.

Figure A.5 shows the non-linear classification results performed on the 8 datasets for
classification. Figure A.4a shows the results of the different ML models applied to the
Bank notes dataset. Clearly, SVM with RBF kernel is the best model in terms of predictive
accuracy. TCDC approach chooses SVM as well since it moved through the whole path as
shown in the lower part of TCDC-based recommender for classification (refer to chapter
3, Figure 3.4) and SVM still outperformed all other models trained. For the Iris and
Wine datasets shown in Figure A.5b and Figure A.5f, the best model performed was RDA
which comes exactly with the same outcome from the TCDC recommender since both
datasets are considered small datasets and the performance of RDA outperforms SVM.
On the other hand and for the Lung cancer dataset with number of samples exceeding 10
times the number of features, the FDA model was selected by the TCDC approach since
it outperformed SVM and it was found to be the best model. For the Musk, Poker hand,
Wine red, and Wine white datasets visualised in Figure A.5d, Figure A.5e, Figure A.5g
and Figure A.5h respectively, they all followed the same path in the TCDC approach.
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(a) Bank notes dataset.
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(b) Iris dataset.
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(c) Lung cancer dataset.
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(d) Musk dataset.
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(e) Poker hand dataset.
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(f) Wine dataset.
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(g) Wine red dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

SVM FDA Naive
Bayes

Random
Forest

Boosting CART C45 RDA MDA

A
c
c
u
ra

c
y

Model

TCDC

(h) Wine white dataset.

Figure A.5: TCDC-based Classification Non-linear Classification Results.

Firstly, they have been trained against FDA and the resulted performance was found to
be less than SVM with RBF kernel. Secondly, they have been trained against MDA since
they are not considered small datasets and again their performance on MDA was found
less than SVM. Finally, they got trained against interpretable and non-interpretable trees
and Random Forest was selected with the best performance. This coincides with the fact
that Random Forest performs the best for these datasets compared to all models trained
as clearly demonstrated in the figures.

A.3 Evaluation Summary

From the testing and evaluation discussed in the previous section, it clearly illustrates
that choosing the best performing model would be a very time consuming process if we
took the default approach of trying lots of different models and comparing them blindly
regardless of the dataset’s specification. We have shown in the previous section that in
many cases, the TCDC recommenders can select the best performing model with less
trials and shorter steps. To summarize our evaluation results, we need first to define two
terms which are: (a) Baseline Approach: This is the default approach in which someone
tries to train the set of machine learning models randomly and chooses the best one in
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terms of predictive performance. (b) TCDC Approach: This is the approach introduced
in the paper which tries to select the optimum machine learning model in a smarter way
by taking into account the dataset’s specification before training and taking into account
the predictive performance along with the introduced TCDC benefit metrics when two
models are very close in their performance.

Figure A.6 and Figure A.7 show the summary of results comparing the predictive
performance for the Baseline and TCDC approaches for all the 12 datasets we used in
the testing and evaluation in the paper. The x axis indicates the dataset name and the y
indicates the predictive performance metric whether it is RMSE for regression or Accuracy
for classification. The TCDC approach was found to select the best model in terms of
predictive performance in 62.5% for all the regression tests performed (75% for linear
regression and 50% for non-linear regression) and 75% for all the classification tests (50%
for linear classification and 100% for non-linear classification). In most cases in which the
TCDC approach did not match the baseline, the difference in the predictive performance
was very close.
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Figure A.6: TCDC-based Regression Results Summary
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Figure A.7: TCDC-based Classification Results Summary.
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Appendix B

Demonstrator screenshots

In this Appendix, some screenshots are presented for the demonstrator that is developed
during the course of the PhD for visualizing some of the patterns extracted and introduced
in this thesis. The developed demonstrator allows end-users (e.g., cities’ authorities) to
visualize such patterns in realtime and take some mitigation actions when something
abnormal happens. It is worth noting that in the developed demonstrator, some more
features are implemented that are not discussed in the core chapters in this thesis for
showing some examples of how these patterns could be useful to end-users.

Figure B.1 shows the temporal functional regions changing across time. As in the
demo, a grid map is used for defining the regions boundaries for Manhattan rather than
zip-codes, it was needed to decrease the number of functionalities to overcome some
sparsity challenges when using smaller areas for regions boundaries. Figure B.2 illustrates
the crowd mobility across space and time while Figure B.3 shows the network demand
prediction across space and time taking into account the prior extracted patterns using
the ST-DenNetFus proposed approach as presented in chapter 8.

Figure B.4 visualizes the locations with abnormal patterns shown in red, these ab-
normality could be as a result of unexpected network demand in certain area or crowd
anomalous behaviour. Furthermore, the end-user could specify the warning communica-
tion mode as shown in Figure B.5 whether they would like to receive warnings through
an email, sms, or a webhook. In case of abnormal crowd patterns, the warning mode
might be “calling police station”. Finally and based on the network demand prediction,
suggestions for the location of portable base station could be recommended based on the
areas that require more network coverage. Figure B.6 shows screenshot of the demo for
this part.
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Figure B.1: Temporal Functional Regions variation in realtime.

Figure B.2: Crowd Mobility Patterns in realtime.
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Figure B.3: Network Demand Prediction in realtime taking into account various external factors.

Figure B.4: Abnormal patterns in realtime.
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Figure B.5: Warning modes.

Figure B.6: Optimum location for the portable base stations based on the predicted network demand.
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