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Abstract

SIMD extensions to the instruction sets of general purpose processors have be-

come widespread, and SIMD width and the capabilities provided by the hard-

ware are steadily increasing with newer processor generations.

This thesis tackles two challenges faced by compilers when generating code

for modern SIMD extensions: SIMD code generation for interleaved memory

access patterns, and SIMD code generation for custom types not provided by

hardware.

On the topic of SIMD code generation for interleaved memory access, we

address strided array access specifically, and propose and evaluate a technique

for the generation of SIMD code to gather and scatter data elements between

memory and SIMD registers. Our technique extends a prior state of the art

technique to support a wider class of interleaved memory access.

On the topic of SIMD code generation for custom datatypes, we propose

and evaluate a vectorized code generation approach which supports reduced-

precision floating point number formats along a continuum between native

types.

We demonstrate that compilers can generate efficient SIMD code for both

challenges using modern SIMD extensions, without requiring special hardware

support beyond the general-purpose data movement and reorganization fea-

tures already present in a variety of modern SIMD-enhanced general purpose

processors.
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Chapter 1

Introduction

SIMD (Single Instruction Multiple Data) execution is a mode of parallel execu-

tion where a processor executes a single instruction that operates on multiple

values at once. These values are held in wide registers (often referred to as vec-

tor registers), with each value notionally occupying a specific lane, representing

the location of the value within the register. Using SIMD instructions, all the

values stored in a register can be operated on simultaneously. SIMD instruc-

tions are often referred to as vector instructions, and in this thesis, the two terms

are used interchangably.

For example, on a 4-way SIMD machine, a single SIMD add instruction will

simultaneously perform four additions, adding together pairs of values which

occupy the same lane in their respective registers to produce four results. SIMD

execution is an efficient way to exploit fine-grained parallelism at the instruc-

tion level to speed up the execution of programs. The degree of parallelism

exploited by a program using vector instructions is known as the vectorization

factor, written VF for short.

Both x86 and ARM [66] processor families provide extensions with a set

of instructions supporting short vector parallelism. Intel’s Streaming SIMD

Extensions (SSE) for x86 and the ARM NEON instruction set both operate on

128-bit vector registers which can be treated as a number of 8-, 16-, 32-, or 64-

bit lanes. Intel’s Advanced Vector eXtensions (AVX) introduced 256-bit vector

registers [25], doubling the potential vectorization factor which can be achieved
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over SSE. Intel’s forthcoming AVX-512 extensions will support even longer 512-

bit vector registers.

1.1 Challenges

This thesis tackles two challenges faced by compilers when generating code for

modern SIMD extensions. First, in Chapter 3, we address the problem of SIMD

code generation for interleaved memory access patterns with strides other than

powers of two. Second, in Chapter 4, we address the problem of SIMD code

generation for datatypes whose width is not a power of two. Chapter 2 explores

some motivation and background for supporting these memory access patterns

in vectorized code.

1.2 Thesis Structure

The remainder of this thesis is structured as follows.

In Chapter 2, we present an overview of the capabilities of present-day

SIMD hardware, and discuss the area of automatic vectorization in compilers.

We are particularly interested in the generation of code for vector memory ac-

cess. We also explore the relationship between SIMD and approximate comput-

ing, with a particular focus on memory access in variable-accuracy algorithms.

In Chapter 3, we propose a new approach to automatic vectorization for

non-consecutive memory access patterns. Our approach extends the state of

the art, and we achieve significant performance gains on two widespread mod-

ern SIMD architectures.

In Chapter 4, we propose a novel, vectorized approach to reduced-precision

representation of floating point data. We propose a set of low-precision storage

formats, and show that they can be implemented using current SIMD exten-

sions, without requiring specific hardware support. Several formats do not

correspond to any available machine type, but we demonstrate that they can be

manipulated very efficiently in a vectorized fashion. In our experimental eval-
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uation, we find that these formats can be supported with little to no overhead

compared to native formats, and in some cases can even result in performance

gain. We conclude in Chapter 5, discuss our findings at a more general level,

and present some interesting directions for future work.

1.3 Contributions

The principal contributions of this thesis are as follows. We propose a general

scheme for the generation of vectorized code for a class of non-contiguous data

access which we term Static Affine Interleaving. This class of non-contiguous

data access encompasses all dense array accesses which have a compile-time

constant stride and offset. The state-of-the-art prior work of Nuzman et al.

developed a method for the vectorization of the subset of accesses where the

stride of access is a power of two [53]. We extend and generalize their approach

to support the case of arbitrary compile-time constant strides.

We demonstrate that significant speedup can be obtained from automatic

vectorization of interleaved accesses at a variety of strides, many of which have

previously been considered to require irregular or hand-tailored solutions.

We also propose a scheme for the vectorized implementation of customized

multibyte data formats for storage of results with reduced accuracy. Our scheme

performs computation using native data formats, and inserts format conver-

sion operations during loading and storing of data. Recent work in the area

of reduced-precision representations [33] identified a low-level vectorized ap-

proach as likely to have significant value.

We show that efficient vectorized code can be generated to accelerate the

conversion between natively supported datatypes and custom multibyte data

formats which lack native support. Although conversion of data between for-

mats has significant overheads, we demonstrate that a vectorized implementa-

tion of reduced-precision floating point storage formats can achieve speedup

even at small scales well outside the supercomputing context where previous

results were demonstrated.
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1.4 Collaborations and Published Work

A modified version of Chapter 3 has been accepted for publication in ACM

Transactions on Architecture and Code Optimization.

Andrew Anderson, Avinash Malik, and David Gregg. “Automatic Vectoriza-

tion of Interleaved Data Revisited”. In: ACM Transactions on Architecture and

Code Optimization (TACO) 12.4 (2015), p. 50

This work arose out of a collaboration with Dr. Avinash Malik on a domain-

specific language and compiler designed to support image processing appli-

cations. As part of that work, we realized that there was no all-purpose solu-

tion to the problem of generating vectorized code for strided memory access.

Avinash provided many helpful comments and lent his expertise in analysis

and program transformation to initial discussions of the approach. In addition,

he incorporated an early implementation of the techniques into a compiler he

was developing, and provided feedback on their operation. We also collabo-

rated on the text of the paper accepted by ACM TACO. However, the structure

of the techniques and the associated optimizations presented in Chapter 3 are

my own work.
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Chapter 2

Background & Literature Review

Automatic vectorization is a family of compiler techniques within the more

general field of automatic parallelization. An auto-vectorizing compiler at-

tempts to identify statements or operations in a program which can be executed

in parallel using SIMD instructions, and then to transform the program so that

those statements or operations are actually performed in parallel using SIMD

hardware.

Automatic vectorization in one form or another has been incorporated in

compilers for many years, beginning with compilers for vector supercomput-

ers [3, 4, 90]. Starting with the Hewlett-Packard PA-RISC processor family [46],

and Sun Microsystems UltraSPARC [36], commodity computer hardware be-

gan to include some SIMD capabilities, by extending existing instruction sets

with SIMD instructions. Wider availability of SIMD capabilities in commodity

hardware [60, 61] has made automatic vectorization an important concern for

optimizing compilers.

Many of the challenges of generating vector code stem from the design and

implementation of SIMD extensions in general-purpose processors. With this

in mind, we have structured this chapter as follows. We first review some liter-

ature describing important features and limitations of SIMD hardware, and the

context in which SIMD extensions were developed. We then discuss a selection

of key publications on automatic vectorization techniques, which have influ-
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enced the work presented in this thesis. Finally, we summarize and discuss the

specific challenges tackled by this thesis in the context of prior work.

2.1 Review of Features of SIMD Hardware

Many microarchitectures in widespread use today provide short vector instruc-

tions as an extension of the scalar instruction set to support applications with

fine-grained data parallelism [25]. Typically, short vector extensions are im-

plemented in separate functional units, with their own pipeline and register

files. They provide parallel versions of scalar arithmetic, data movement, and

miscellaneous other functions.

SIMD extensions to the instruction sets of general purpose processors (GPPs)

were first developed in response to the evolving need for acceleration of rich

multimedia applications, which incorporated computationally heavy tasks such

as audio and video decoding [46] and computer vision [22]. As general purpose

processors have become faster and more capable, new application areas which

benefit from acceleration with SIMD continue to develop. A good example of

such an area is computational photography [65].

Diefendorff and Dubey give an early overview of the challenges posed by

these multimedia applications, and describe how they were expected to influ-

ence processor design [23]. Though almost two decades have passed since the

publication of their review, their predictions have largely been borne out. Mul-

timedia applications remain widespread, and general purpose processors have

had more and more SIMD capabilities included with each processor genera-

tion. Many of the challenges they discuss, such as data reorganization, still

pose problems for vectorizing compilers today.

More recently, Talla et al. discuss the design of SIMD extensions and ar-

chitectural enhancements [79]. They discuss the overheads associated with the

implementation SIMD extensions in general purpose processors, and investi-

gate the causes of bottlenecks in vectorized programs. They find that memory

22



access patterns in programs are one of the primary impediments to efficient

utilization of SIMD hardware. From Talla et al.:

[...] even though GPPs are enhanced with SIMD extensions to ex-

tract DLP in multimedia programs, there is a mismatch between

the requirements of media applications (for address generation and

nested loops) and the ability of GPPs with SIMD extensions.

2.1.1 SIMD-Enhanced GPPs versus Traditional Vector Machines

Arguably the most important practical difference between SIMD-enhanced gen-

eral purpose processors and traditional vector machines is in the functionality

provided by the memory subsystem.

Traditional vector processors provided rich data access instructions for gather,

scatter, and strided memory operations. However, modern SIMD extensions

typically provide very poor support for non-consecutive memory access. SIMD

instructions on GPPs work best on data that is contiguous in memory, and oper-

ating on non-contiguous data requires the generation of additional instructions

to perform data layout transformation — packing and unpacking data elements

between memory and vector registers.

However, real-world programs often manipulate data stored non-consecutively

in memory, and have nested loops [79]. To parallelize these programs us-

ing SIMD extensions, the compiler must be able to transform the program to

map these structures on to the restricted capabilities provided by the hardware.

Nuzman and Henderson describe the challenges of multi-platform automatic

vectorization in the GCC compiler [52].

Additionally, the length of vector registers in a general purpose processor is

typically fixed at a short size. For example, the size of a vector register is 128

bits on Intel SSE and ARM NEON.
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2.1.2 SIMD versus Out-of-Order Superscalar Execution

Out-of-order superscalar processors dynamically exploit parallelism in the pro-

gram while it is executing, by finding independent instructions in the program

and executing them in parallel. The parallelization is accomplished entirely in

hardware, using complex logic which inspects instructions which are about to

be executed, and finds those which can execute in parallel, using the differ-

ent functional units within the processor. This is in contrast to SIMD execution,

where the compiler is responsible for transforming the input program to extract

parallelism by mapping multiple scalar operations to a single SIMD operation.

Lee and DeVries, and later, Lee and Stoodley, investigated the merits of

SIMD parallel execution compared to out-of-order superscalar execution [44,

45]. As the degree of parallelism present in a program increases, they found

that SIMD execution is able to exploit the parallelism more efficiently than out-

of-order superscalar execution, while not requiring any more silicon area. From

Lee and DeVries [[44]]:

There are two reasons why vector processors are no more area-intensive

than superscalar processors. One is that partitioning the register

file into vector registers and lanes provides tremendous bandwidth

without incurring a large area penalty. The second reason is that

the control logic for issuing vector instructions is only slightly more

complex than the control logic for scalar issue. In contrast, instruc-

tion control in superscalar processors is significantly more complex

and thus requires substantially more area to implement.

Kozyrakis and Patterson additionally compare a SIMD architecture with both

superscalar and VLIW architectures [37]. They find that for multimedia appli-

cations on embedded systems, a SIMD architecture has advantages in perfor-

mance and power consumption, and has reduced design complexity versus su-

perscalar and VLIW machines. They also found that applications parallelized

with SIMD instructions typically have reduced code size compared to super-

scalar and VLIW parallelism.
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2.2 Automatic Vectorization on General Purpose Pro-

cessors

While a fully comprehensive overview of published work on SIMD is impos-

sible, several review works have been published concerning automatic vector-

ization using short vector extensions specifically. In an early work,

Cheong and Lam describe the design and implementation of an optimizer

which targets the UltraSPARC VIS instruction set [20], and provide a general

review of the challenges faced by automatic vectorization.

Krall and Lelait give a high-level overview of compilation techniques for

so-called multimedia processors (processors incorporating SIMD extensions for

the purpose of accelerating multimedia applications) [38].

Ren et al. also discuss the vectorization of applications using SIMD exten-

sions targeted at multimedia applications [67]. Many techniques applied to

vectorize programs using short vector extensions were initially developed for

traditional long-vector machines [4].

2.2.1 Capabilities of Vectorizing Compilers

Maleki et al. describe an evaluation of production compilers which perform

automatic vectorization, aiming to investigate what sorts of programs are dif-

ficult for compilers to automatically vectorize, and what the reasons for these

difficulties are [49].

Their evaluation covers the open-source GCC compiler, as well as Intel’s

ICC, and IBM’s XLC. They provide a thorough review of the issues that limit

automatic vectorization by these compilers in a range of programs drawn from

different benchmark suites. A key issue is that of memory access patterns, in

particular, programs with non-unit stride memory access.

From Maleki et al.:

Our results show that after 40 years of studies in auto vectorization,

today’s compilers can at most vectorize 45-71% of the loops in our
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synthetic benchmark and only 18-30% in our collection of applica-

tions.

Bik et al. provide a detailed overview of the automatic vectorization methods

used in the Intel C++/Fortran compiler [12]. They also note that vectorization

of non-unit-stride memory references poses significant challenges. According

to Bik et al. elaborate instruction sequences may be used to implement non-

unit stride memory references, but this method usually does not yield much

speedup.

Two reviews have been published which specifically discuss the automatic

vectorization capabilities of the GCC compiler: first in 2004 [51] and again in

2006 [54]. Again, non-consecutive memory access patterns are noted as a con-

cern. The initial review notes that non-unit stride memory references incur

considerable overhead, and, because of this, the access patterns supported by

the vectorizer are limited to consecutive access only. The later review was per-

formed just after the publication of a technique by the same authors which

generates efficient code for power-of-two strided access [53]. This technique

has remained the state-of-the-art for many years, and at the time of writing is

the default method of vectorization for non-consecutive memory accesses in

GCC. The work of Nuzman et al. is particularly relevant to this thesis, and is

discussed in detail in Chapter 3.

2.2.2 Trends in SIMD Width and Memory Access

There is a global trend towards increasing SIMD width on general purpose

processors, exemplified by the introduction of progressively wider vector units

in successive generations of processors in the x86 family [25].

Schaub et al. recently investigated the impact of increasing SIMD width on

control flow and memory divergence in vectorized code [72]. They find that as

SIMD width increases, across a wide range of representative benchmark pro-

grams, memory access becomes less uniform and less consecutive. If vectoriz-

ing compilers are to be able to exploit the trend in increasing SIMD width for
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actual performance gain, one of the key challenges is efficient, flexible SIMD

code generation for non-consecutive memory access.

2.2.3 The Problem of Non-Consecutive Memory Access

SIMD instructions on modern processors operate on data packed consecutively

into vector registers, and typically only provide instructions to load and store

data from consecutive memory locations. However, a common data access pat-

tern is where data items that are processed in consecutive operations in a pro-

gram are stored non-consecutively in memory. Strided array access is a com-

mon example of non-consecutive data access.

When automatic vectorization techniques group together operations which

use data that is not consecutive in memory, and the processor does not support

SIMD operation on non-consecutive data, the compiler must generate code to

gather different data elements together into a vector register for reads, or scatter

the contents of a vector register over memory, for writes. We refer to this as the

problem of non-consecutive memory access.

Due to the difficulty of dealing with memory access in the generation of

vectorized code, Chang and Sung propose augmenting processors with special

hardware to support irregular, misaligned, and strided memory access [17].

However, until robust hardware support for non-consecutive access with SIMD

extensions becomes widespread, the task of generating fast code for non-consecutive

memory access falls to the compiler.

While some automatic vectorization techniques have been proposed which

can deal with non-consecutive data access, they typically work by attempting

to circumvent the lack of hardware support for non-consecutive data access.

Some techniques attempt to reorganize the program so that access becomes

consecutive [42], but this is not always possible.

Other techniques insert extra instructions in the program to rearrange data

in memory so that the data elements operated on by SIMD instructions are

stored consecutively, but this has significant overhead [48].
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Because of the widespread lack of hardware gather/scatter support, many

vectorization techniques operate with the assumption that all data access is

consecutive. A broad selection of these techniques are discussed in Section 2.3.

If a region of the program contains non-consecutive data access, these tech-

niques are unable to vectorize that region. A paper at the 2004 GCC Developers

Summit [51] describes the status of automatic vectorization in the open-source

GCC compiler. At that time, the compiler would only vectorize regions with

consecutive data access.

In 2006, Nuzman et al. described a technique by which the compiler could

generate efficient SIMD instructions to perform strided array access, without

requiring hardware support for gathering or scattering operations. The tech-

nique has been the state-of-the-art approach for loop vectorization, and is the

default method for vectorization of strided array access in GCC at present.

However, the technique can only generate SIMD code for power-of-two strided

access [53].

2.3 Overview of Automatic Vectorization

Automatic vectorization relies on many pieces of compiler technology in ad-

dition to the techniques which actually perform the translation of programs

to vector form. In this section, we review the literature on supporting tech-

nologies for vectorization. These include program analysis, theoretical models

of computation, and code and data restructuring techniques. We also discuss

some optimization challenges which are particularly important for vectorized

programs, such as optimization of data permutations and locality of data ac-

cess.

Over the years, many approaches to automatic vectorization have been pro-

posed. So many, in fact, that recent work has applied machine learning tech-

niques to the problem of simply choosing which vectorization techniques to

apply to particular programs [78]. Broadly speaking, the approaches to auto-
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matic vectorization which are implemented in compilers for general-purpose

programming languages such as C and C++ belong to one of two families.

2.3.1 Loop Vectorization

One family of approaches deals with cyclic control structures which repeat-

edly iterate a set of operations. Multiple instances of the same operation are

grouped together from successive iterations of the control structure to form a

single SIMD operation. We refer to this family of approaches as loop vectoriza-

tion.

Loop vectorization targets loops specifically, with the aim of performing

multiple loop iterations in parallel by transforming the instructions in the loop

into vectorized form. Early vectorizers focused exclusively on vectorizing loops [3],

and the area is still the subject of much work.

For nested loops, the innermost loop is the usual target for vectorization, but

vectorization of outer loops can sometimes yield better results [85]. The topic

of vectorization of outer loops is revisited by Nuzman and Zaks for modern

short vector extensions [55].

Karrenberg and Hack propose a holistic approach to vectorization of whole

functions, encompassing control and data flow [35]. Their approach can be

seen as an evolution of loop vectorization. However, their approach, like each

of the others cited, assumes consecutive memory access.

2.3.2 Superword Level Parallelism

Another family of approaches deals with straight-line code, which performs

a set of operations only once. Multiple isomorphic operations in a subgraph

of the program, which perform the same computation but work on different

data elements, are selected. These are grouped together into a single SIMD

operation. We refer to this family of approaches as superword level parallelism or

SLP.
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Vectorization techniques based on SLP [42] incorporate a tactic which can

handle a restricted case of non-consecutive memory access. SLP attempts to

transform programs so that memory accesses become consecutive, for example,

by searching for an unrolling factor for scalar loops which results in a dense

memory access pattern in the vectorized loop. It is not always possible to trans-

form the program in such a way.

For loops, for example, an unrolling factor that makes strided access consec-

tive can only be found if the scalar version of the loop touches every element

of each accessed array region within VF loop iterations [42].

Park et al. [59] propose a “SIMD Defragmentation” approach which tries to

extract parallelism at the level of subgraphs of operations within the program,

similar to SLP. However, their approach does not address non-consecutive mem-

ory access beyond what was proposed in Larsen and Amarasinghe’s original

SLP paper.

Very recently, Porpodas et al. introduced a flexible version of SLP which can

parallelize subgraphs which are not perfectly isomorphic by introducing extra

operations to make them so [64]. However, like Park et al., they do not address

non-consecutive memory access beyond what was proposed in the original SLP

paper.

2.3.3 Analysis and Program Transformation

Automatic vectorization usually proceeds from the structure of data depen-

dences within the program. A dependence analysis is used to detect operations

or regions in the program which can run in parallel [57]. Many classical code

optimization and reorganization techniques can applied before vectorization to

make the program easier to vectorize [50, 5]

The polyhedral model is an important framework for this kind of analy-

sis [21]. In the polyhedral model, data dependences between statments in loops

are modeled as a dependence polyhedron, that is, by relations between sets of

points in an integer vector space where each point represents a loop iteration

(the iteration space). This representation is transformed and manipulated to
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reorganize loops so that parallelism is exposed and locality is improved. Opti-

mizers based on the polyhedral model are used in LLVM [30] and in GCC [63,

77, 81]. Vectorization can be represented in the polyhedral model, and Tri-

funovic et al. apply the model to generate vectorized code for loop nests [80].

However, the focus of their work is high-level optimization of the control struc-

ture, and the generation of code for the data access in the reorganized loops is

not addressed.

2.3.4 Vectorization of Control Flow

Auto-vectorization approaches can also be applied to vectorize control flow,

such as conditional branches generated by if-statements, within a program.

Previous work extends SLP [75] to enable it to vectorize control flow by con-

verting conditional expressions in the scalar code into predicated vector ex-

pressions (if-conversion).

Later work by Shin et al. introduced an approach which takes advantage

of a particular type of SIMD instruction called BOSCC (Branch On Superword

Condition Code) to represent control flow in vectorized programs [76].

2.3.5 Domain-Specific SIMD Languages and Compilers

A common tactic to ease the task of producing SIMD code is to use domain-

specific languages which either provide explicit-SIMD programming constructs,

or programming constructs that can be mapped to efficient SIMD code by the

compiler.

SPL [89] is a domain-specific language for describing transformations used

in digital signal processing. The associated compiler system, SPIRAL [27], gen-

erates fast SIMD code to implement the transformations. Research on the SPI-

RAL system has resulted in several advances in SIMD code generation, partic-

ularly in the area of SIMD permutations [28].

Some approaches propose to extend C and similar languages with explicit

SIMD language features [15]. These include Intel’s ispc, which is a language
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and compiler system for SIMD [62] that also extends C with SIMD language

features. The IVL language and compiler is another explicit-SIMD program-

ming system based on ispc [47].

The Halide language [65] is a project that differs from other approaches by

decoupling the specification of algorithms from their schedule. Halide allows

programmers to explicitly request vectorized execution of regions of their pro-

gram, in addition to other methods of parallelization.

All of these approaches aim to improve the performance of SIMD programs

by giving the programmer more ways to structure their code to explictly take

advantage of SIMD hardware.

2.4 Memory Access with Multimedia Extensions

There are several concerns specifically with memory access in programs which

make use of multimedia extensions. In this section we review some approaches

to concerns such as alignment, locality of access, and data layout transforma-

tion.

2.4.1 Spatial Locality of Access

Spatial locality of access is a major concern in optimized code generation, par-

ticularly on microarchitectures with an extensive cache. When an access causes

data to be fetched into the cache, subsequent accesses very close to the first are

likely to result in cache hits, speeding up the program by eliminating costly

main memory accesses. To exploit this arrangement, compilers optimize for

spatial locality by rearranging the program so that data frequently accessed

together in the program are stored closer together in memory.

Shin et al. discuss optimizing for spatial locality in vectorized code specifi-

cally [73], and propose some techniques to optimize locality using vector regis-

ters [74]. The polyhedral model also deals very comprehensively with locality

concerns at a more general loop level [14, 13].
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2.4.2 Alignment

A common restriction of SIMD load and store instructions on modern proces-

sors is that access to data which is not aligned with vector registers is subject to

a performance penalty compared to accessing aligned data.

Several works have addressed the issue of aligned access with vectorization.

Eichenberger et al. and Wu et al. propose several heuristics which can deal with

alignment issues while vectorizing, either statically [24] or at runtime [87]. Sub-

sequently Fireman et al. present two algorithms which are optimal for special

cases of the alignment problem [26]. However, all three assume that memory

access, though it may be misaligned, is still consecutive.

2.5 Approximate Computing

Approximate computing is an emerging area of research [31]. The general idea

is to design applications and hardware so that they can tolerate a loss of quality

or accuracy in their results to improve performance or energy efficiency.

Some existing work has integrated approximate computing concepts into

compilation systems. Petabricks is a language and compiler which supports

variable accuracy algorithms [7]. Programmers provide multiple implementa-

tions of algorithms, and with the use of benchmarking and auto-tuning, the sys-

tem selects the appropriate implementation for a new platform. Programmers

can also provide accuracy constraints for the implementation of an algorithm

using annotations, which the compiler can incorporate into the code generation

process, producing faster but less accurate code. Green is another compiler sys-

tem which supports approximate computing, which is targeted specifically at

reducing the energy used by programs [9].

Chapter 4 introduces a method of generating low-level vectorized code to

implement customized data storage formats, which are designed to represent

reduced-accuracy results produced by approximate algorithms. The idea is

to save space in memory (and reduce memory bandwidth) by using formats

which have lower precision than natively supported types.
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2.5.1 Floating Point Programs with Reduced Accuracy

Exploiting reduced accuracy requirements in floating point computations to ac-

celerate applications is the topic of several related works. Some, like Buttari et

al. [16], choose to reduce precision in increments of the available native types

on the platform. In the case of Buttari et al., their approach performs com-

putationally expensive portions of numerical algorithms using single precision

arithmetic, and less expensive portions using double precision arithmetic. They

note that the choice of single precision arithmetic leads to speedups of up to 2x

versus double precision for applications which are memory bound, due to the

2x reduction in the amount of data transferred through the memory bus.

This approach is also used by Rubio-Gonzalez et al. [71] who present an au-

tomated system which finds a compile-time instantiation of the types of float-

ing point variables in the program which improves performance. Their ap-

proach is subject to accuracy constraints which are specified by the program-

mer via annotations in the source code. Like Buttari et al. [16] they consider

only the available native machine types.

Lam et al. [41] also pursue this approach, by using binary instrumentation

and translation to modify existing binaries and automatically find a satisfac-

tory mixed-precision version of a program. Input programs are constrained

to use double precision arithmetic only, and the system searches for program

variables which can have their precision lowered without adversely affecting

the computed results. Again, only natively supported types are considered for

replacement.

2.5.2 Customized Data Storage Formats

Programs which produce approximate results with reduced accuracy often do

not require the full precision of native types to represent those results. In this

situation, the use of full precision native formats can lead to inflated storage

requirements and excess memory traffic. Using a specialized data storage for-

mat can reduce the amount of memory traffic created by the program, with

associated gains in energy efficiency and overall runtime.
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Using vectorization to support specialized storage formats is particularly

attractive. Vectorized execution provides a low-cost means of accelerating data

reorganization and conversion by exploiting fine-grained data parallelism across

multiple accesses. Vectorized implementations of specialized storage formats

can make use of special vector reorganization instructions provided by modern

processors, which are not available for scalar registers. In addition, vectorized

execution is already the norm for many numerical applications.

2.5.3 Multibyte Floating Point

Jenkins et al. [33], propose to accelerate I/O performance of applications by

reducing the resolution of the data. However, although the goal of that work is

similar, there are several important differences with the approach we propose.

In terms of practical differences, an important distinction between the two

pieces of work is that our approach parallelizes at the level of loop iterations,

using vector memory access and vector reorganization to achieve a parallel

speedup. Jenkins et al. evaluate their low-resolution scheme at extreme scale

using thread-level parallelism via MPI, and using MPI to perform the data lay-

out transformations. They note that a low-level vectorized approach appears to

be promising future work given that data reorganization using MPI incurs sig-

nificant overhead. In addition, the work of Jenkins et al. only deals with reads,

whereas we propose an end-to-end approach which can deal with writes of

reduced precision data in addition to reads.

Another important refinement over the work of Jenkins et al. is the topic of

rounding, which is not addressed by that work. Jenkins et al. use simple trun-

cation to obtain low-resolution data. This approach causes a measure of avoid-

able error which can be reduced significantly by performing correct rounding

to select the nearest representable value in the target format for a given input

value. In Chapter 4 we present a scheme for supporting custom floating point

storage formats with correct rounding of data.
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2.6 Summary and Directions for Improvement

Chapters 3 and 4 propose methods which generate SIMD code to efficiently

implement memory access patterns which lack good hardware support – either

by virtue of accessing data non-consecutively, or by accessing data stored in a

format which does not correspond to native machine types.

In Chapter 3 we propose a generalization of the technique of Nuzman et

al. [53] which removes the power-of-two constraint allowing vectorized code

to be generated for a gathering or scattering operation with any compile-time

constant stride.

Since difficult memory access patterns are often an impediment to vector-

ization [49], there appears to be significant value in a more general approach

which can effectively vectorize a wider class of non-consecutive data access.

Direct performance improvements aside, such an approach could act as an en-

abling technique for many of the vectorization tactics reviewed, allowing them

to be applied to a wider range of programs by providing a way to generate

SIMD code for more cases of non-consecutive memory access.

Previous work [48] has demonstrated some performance gains from trans-

forming the layout of data in memory with scalar code just before the execution

of vectorized code which accesses that data. However, being able to synthesize

vectorized code to perform interleaved reads and writes directly in a vector-

ized loop or basic block means that instruction-level parallelism between data

movement and computation can offset the overhead of memory access. This

on-the-fly transformation of data layouts is the recommended mode of opera-

tion to achieve good performance using Intel’s SIMD extensions [1].

In addition to our work on non-consecutive memory access, in Chapter 4,

we propose a novel, low-level vectorized approach to supporting custom data

formats. This is intended as a supporting technique for the area of approximate

computing, reviewed in Section 2.5. We aim to reduce storage requirements

and improve memory transfer times for programs with reduced-accuracy re-

sults.
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Chapter 3

Vectorization of Static Affine

Interleaving

Automatically exploiting short vector instructions sets is a critically important

task for optimizing compilers. Vectorizing compilers identify program regions

with fine-grained data parallelism and attempt to exploit this parallelism by

transforming the program to use vectorized execution. Automatic vectoriza-

tion is employed by many compilers, including those from the GNU Com-

piler Collection, LLVM, ICC, and more. Vectorized execution offers parallel

speedups without the complexity of executing multiple independent instruc-

tions in parallel, and is therefore usually efficient in the use of hardware re-

sources and energy.

However, automatic vectorization presents many problems in dependence

analysis, code restructuring and data access patterns [8, 86]. A common data

access pattern is where data items that are processed in different ways are in-

terleaved together in memory. Unlike traditional vector processors which pro-

vided rich data access instructions for gather, scatter, and strided memory oper-

ations, modern short vector extensions typically provide very poor support for

non-consecutive memory access. Short vector instructions work best on data

that is contiguous in memory and operating on non-contiguous data requires

the generation of additional instructions to perform data layout transformation —

packing and unpacking data elements between memory and vector registers.
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The need to reorganize data in vector registers has led to the inclusion of

many specialized instructions for data layout transformation in vector instruc-

tion sets. For example, processors supporting Intel’s SSE instruction set have

the special shufps instruction, which selects even or odd indexed lanes (de-

pending on the instruction mask) from two registers, and combines them in

one register. ARM’s NEON instruction set contains a similar vld2 instruction,

as does the Altivec instruction set (vperm). Such instructions typically include

permutation of vector registers where the order of the items in the lanes of

the register is changed, and combination of registers where a selection of lanes

from different register are interleaved together. The presence of these instruc-

tions means that vectorization is well positioned as a supporting technique for

other approaches which need to perform data layout transformations.

3.1 Modelling Arrays and Array Access

A dense array can be modelled as an indexed set of elements, where any two

consecutive indices specify consecutive array elements. Similarly, an iterated

access to such an array can be modelled as an indexed set, where any two con-

secutive indices specify array elements accessed by consecutive loop iterations.

However, consecutive elements of the access are consecutive in the temporal

sense, and are not required to be stored consecutively in the underlying array.

When this is the case, we say that the access is non-contiguous. When multi-

ple non-contiguous accesses share an underlying array, we say that the access

pattern (i.e. the union of all accessed elements) is interleaved.

The relationship between arrays and accesses is captured by the access func-

tion for each access. The access function translates a loop iteration variable

(which indexes elements of an access) so that it selects elements of an array.

The access function can be any function of the loop iteration variable and po-

tentially many more parameters. Many audio and video processing applica-

tions have access functions which are nonlinear and are implemented using

lookup tables, and implementations of signal processing algorithms such as
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the fast Fourier transform often use exotic nonlinear access functions, such as

bit-reversed ordering. Implementations of file systems, databases, and com-

pression algorithms frequently use space-filling curves as access functions.

In this work we focus on the class of access functions which result in Static

Affine Interleaving. This class encompasses all functions which are strictly affine

transformations of the loop induction variable with respect to the arrays being

accessed, where the values of all other parameters is statically known. Such

functions have the following general form.

Definition 1 (Access) We represent a strided access with iteration variable 𝑖 as a

function 𝑎 of the form

𝑎(𝑖) = 𝑏+ 𝑢 * (stride * 𝑖+ offset)

where 𝑏 is the base address of the array, and 𝑢 the unit size in bytes of an array element.

The access is consecutive when |stride| is 1, and nonconsecutive otherwise. Note that

the sign of the stride or offset may be negative.

For example, if the same array element is accessed in every loop iteration,

stride may be instantiated to zero, and offset to the index of the accessed

element in the underlying array. To visit every array element in order, stride

may be instantiated to 1. To visit the elements of the array in reversed order,

stride may be instantiated to -1, and offset to the length of the array, and so

on.

Our approach to vectorizing such accesses follows a simple, general scheme:

we cover the memory range accessed with non-overlapping vector loads or

stores, and map individual accessed elements to loaded or stored lanes. The

problem of vectorizing a strided access then becomes the problem of compos-

ing an ordered subset of loaded or stored lanes to or from a single vector reg-

ister. In this chapter, we develop our approach by first showing how to create

a vectorized code sequence in a simple, canonical form, and by application of

successive optimizations, refine it into the final form which will be emitted.
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While our approach does not require aligned access, it may be desirable for

performance reasons. Any implementation may apply a wide variety of possi-

ble techniques to ensure aligned access [24, 26]. One approach is to load extra

lanes and discard those unused, treating the vector register file as a compiler-

controlled cache [73]. However, this tactic has some corner cases: when the

base address of the array is misaligned or the array does not contain enough

data, an implementation using this tactic may have to apply array padding, or

rely on masked vector loads or stores. Similarly, when loop trip counts are not a

multiple of the vectorization factor (VF), extra iterations may need to be peeled

and performed as scalar iterations.

3.1.1 Notation and Presentation

We specify our code generation in terms of a simple abstract instruction set.

Similar to Wu et al., we use a representation with virtual vectors, and rely on a

later native code generation phase to map these to the actual hardware [88].There

are several motivations for this choice of instructions. Many architectures pro-

vide a large number of distinct specialized data reorganization instructions.

Were we to state our code generation in terms of specialized instructions, it

would restrict the applicability of our techniques to architectures with support

for those instructions. The choice of a simple, generic form of permute and

blend instructions ensures our approach is more widely applicable.

Second, the program transformations we propose in this chapter are quite

succinct when expressed in terms of these simple instructions. Including many

specialized data reorganization instructions would significantly complicate the

presentation of our techniques.

Finally, it is important to note that on architectures which do have highly

specialized data reorganization instructions, they do not go unused. Many

multimedia architectures such as Intel SSE, AVX, AVX2, and ARM NEON pro-

vide such instructions in addition to generic instructions corresponding to those

we include. However, many of the highly specialized native instructions for

data reorganization can be expressed in terms of a short sequence of more
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generic permutes and blends. In this scenario, traditional tree-parsing instruc-

tion selection techniques [2] are very effective at selecting highly-specialized

native instructions to cover the sequences of simplified operations which we

generate. We detail our approach to native code generation in Section 3.4.6.

Instruction Arguments

load (Vector target, Pointer source)
store (Vector source, Pointer target)
permute (Vector source, Vector mask, Vector target)
blend (Vector left, Vector right, Vector mask, Vector target)

Figure 3-1: The target intermediate representation for code generation.

We assume the following informal semantics for the instructions in Figure 3-

1. load and store are packed vector load and store instructions. permute and

blend are masked permutation and blending instructions. permute moves the

𝑖th lane of the source to the lane of the target given in the 𝑖th lane of the mask.

blend selects the 𝑖th lane of the target from the left source if the 𝑖th mask lane

is L, or from the right source if it is R.

Presentation

We write mask literals as a list of lane values enclosed in angled brackets. Vec-

tors described by these masks have a common element size and type. Lanes

containing the special * mask element indicate a don’t-care output in the lane.

For example, the instruction permute a, ⟨*, 0, *, 1⟩, b moves lanes 0 and 1 of

vector a to lanes 1 and 3 of vector b, and leaves lanes 0 and 2 in an undefined

state. In addition to the * element, masks for the blend instruction may contain

only the two special values L and R, indicating left and right source register,

respectively. In graphical figures where data movement is indicated with ar-

rows, an arrow with a solid line represents data movement using the permute

instruction, and an arrow with a dashed line represents data movement using

the blend instruction.
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3.2 Technique

(a) Algorithm 1. Nonconsecutive read of the form a[4 * i] with VF = 4. First we
permute the load-mapped register set so that selected lanes will not collide under ver-
tical composition with blend. We then blend the permuted registers together to form
the packed vector corresponding to the access.

(b) Algorithm 2. Nonconsecutive write of the form a[4 * i] with VF = 4. We expand the
register to be stored into a register set which shadows the array region to be written.
This store-mapped register set is then written over the shadowed array region with
predicated writes, or using a read-modify-write sequence.

Figure 3-2: Vectorizing interleaved access using mapped register sets.

3.2.1 Enabling Interleaved Access: Automatically Vectorizing

a Single Strided Access

We vectorize a nonconsecutive read by first mapping the memory range ac-

cessed end-to-end into vector registers (the load-mapped register set). By per-

muting and blending this register set together, we can extract any subset of up

to VF lanes into a single packed vector register. We vectorize nonconsecutive

writes similarly, by first mapping a store-mapped register set to the memory

region being written. A non-consecutive write of data in a packed vector regis-

ter is performed by expanding the register into a register set with items at the

correct locations, and then combining this register set into the store-mapped

register set using the blend instruction. It is important to stress that these reg-

isters are only logically mapped to memory — a mapped register will result in
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the generation of a memory operation only if one or more lanes in the register

are active.

Any vectorized strided access may touch elements in the range of (stride *

VF) consecutive memory locations in one memory operation. Since this mem-

ory region is mapped by registers of length VF elements, it follows that a max-

imum of stride mapped registers are required for a single vectorized access.

Figures 3-2a and 3-2b show graphically the action of this simple canonical tech-

nique, and Algorithms 1 and 2 contain the logic required to generate the de-

picted instruction sequences.

Our approach has two phases: one phase permutes the mapped register set

to eliminate lane collision when interleaving or deinterleaving, and the other

phase takes a collision-free register set and combines registers using the blend

instruction to form a packed result. To see why lane collision is a problem,

consider Figure 3-2a: we cannot directly blend the initial mapped registers

together, because multiple elements occupy the same lane in their respective

registers, and collide when using the blend instruction.

ALGORITHM 1: Generate code to vectorize a read access (canonical)
Input: A strided access a, load-mapped register set p
Output: s[VF− 1] contains VF packed consecutive elements of a
𝑠← allocate VF temporary registers;
for 𝑖 = 0 to VF− 1 do

mask← ⟨VF× *⟩;
mask[i]← ((stride * 𝑖) + offset) mod VF;
r← p[((stride * 𝑖) + offset)/VF];
generate: permute r, mask, s[i];

end
for 𝑗 = 1 to VF− 1 do

left← 𝑗, right← VF− 𝑗;
mask← ⟨(left× L) + (right× R)⟩;
generate: blend s[j− 1], s[j], mask, s[j];

end
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ALGORITHM 2: Generate code to vectorize a write access (canonical)
Input: VF consecutive elements of a strided access a packed in register r
Output: Store-mapped register set p contains the VF elements of a in store order
pmask← ⟨VF× *⟩;
bmask← ⟨VF× L⟩;
pmasks← stride copies of pmask;
bmasks← stride copies of bmask;
𝑠← allocate stride temporary registers;
for 𝑖 = 0 to VF− 1 do

register← (stride * 𝑖)/VF;
lane← (stride * 𝑖) mod VF;
pmasks[register][lane]← 𝑖;
bmasks[register][lane]← R;
generate: permute r, pmasks[register], s[register];
generate: blend p[register], s[register], bmasks[register], p[register];

end

3.2.2 Exploiting Spatial Locality:

Grouping Multiple Interleaved Accesses

Multiple accesses to the same source or destination array can require overlap-

ping vector loads or stores in a vectorized loop iteration if they share the same

stride of access (shared-stride accesses). When this is the case, the accesses

often exhibit spatial locality which can be exploited to reduce the number of

memory operations in the vectorized program. Using the simple canonical ap-

proach from Section 3.2.1, we might generate loads and stores of the same data

more than once. Similar to Nuzman et al. [53], we exploit this spatial locality

by allowing multiple accesses to share mapped register sets when interleav-

ing/deinterleaving, reducing the number of memory operations in the vector-

ized loop.

The degree of spatial locality present between any two shared-stride read or

write accesses to the same array in vectorized loop iteration (𝑖/VF) depends on

the distance between accessed array elements in scalar loop iteration 𝑖, that is,

the absolute difference between the offset of the two access functions. For any

two shared-stride accesses with distinct offsets, three scenarios are possible.
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(1) No locality — When the distance between offsets is greater than or equal

to (stride * VF), the accesses do not overlap vector loads or stores in a

vectorized loop iteration.

(2) Partial locality — When the distance is strictly less than (stride * VF) and

greater than or equal to stride, there is partial reuse — some elements of

the first access will map to the same loaded or stored registers as elements

of the second.

(3) Full locality — When the distance is strictly less than stride, there is full

reuse in a vectorized loop iteration — all VF elements of each access map to

the same set of vector loads or stores.

Note that our definition does not take into account temporal locality found

along the backedge of the vectorized loop. Rather, we focus exclusively on

exploiting spatial locality within VF iterations of the original loop.

Consider the pair of shared-stride memory accesses a[4 * i] and a[4 * i+ 1],

from Figure 3-3a or 3-3b. This pair of accesses require the same vector mem-

ory operations in every vectorized loop iteration — the grouping exhibits full

locality as we have defined it. However, when we include an access a[4 * i+ 5],

it will require an extra memory operation in every vectorized loop iteration,

because the underlying memory regions do not completely overlap (partial lo-

cality). Including another access, a[4 * i+ 7], that access would exhibit full lo-

cality with access a[4 * i+ 5], but only partial locality with accesses a[4 * i] and

a[4 * i+ 1].

In order to minimize the number of vector memory operations for any num-

ber of shared-stride accesses, it is sufficient to consider only groups of maximal

size, and load or store each resulting mapped register exactly once. However,

minimizing the number of memory operations does not guarantee the gener-

ation of optimal vectorized code for a loop containing such accesses, which

is a difficult optimization problem. Considerations include not only repeated

memory operations, but also vector register spills and reloads due to register

pressure and the scheduling of the instructions which perform the interleav-
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(a) Algorithm 1. Two nonconsecutive reads of the form a[4 * i] (dark dots) and
a[4 * i+ 1] (light dots) with VF = 4, with shared spatial locality can be serviced from
the same load-mapped register set using permute and blend sequences.

(b) Algorithm 2. Two nonconsecutive writes of the form a[4 * i] (dark dots) and
a[4 * i+ 1] (light dots) with VF = 4 are composed into a single store-mapped register
set, reducing the number of stores required.

Figure 3-3: Sharing load-mapped/store-mapped register sets to exploit spatial locality.

46



ing/deinterleaving, which can exhibit significant instruction-level parallelism

with the computation present in the loop. Barik et al. [11] demonstrate that

good solutions to such problems require tight integration between vectoriza-

tion, register allocation, and instruction scheduling during compilation.

We do not attempt to solve this optimization problem, but use the same

simple, practical grouping heuristic for accesses with locality as Nuzman et

al. [53] — group only those accesses which exhibit full locality as we have de-

fined it. This approach yields significant speedup in practice, and does not

require much engineering effort on the part of the compiler implementor.

In order to decide at compile time which shared-stride accesses can be ser-

viced from a shared mapped register set, we introduce the analytic concept of

an access group, which generalizes the similar concept of Nuzman et al. [53].

Definition 2 (Access Group) Accesses to the same array with the same direction

(read or write) may be grouped by mapping each access offset to some interval [𝑘, 𝑘 +

(stride − 1)], for 𝑘 ∈ N, where 𝑘 ≡ 0 mod stride. Each such interval, for any

particular stride, defines a distinct access group at that stride. The size of an access

group (written 𝑛) is bounded above by the shared stride of access of the group, and

below by zero.

Let us assume we are considering two accesses 𝑎0(𝑖) = 𝑏0 + 𝑢0 * (stride0 * 𝑖 +

offset0) and 𝑎1(𝑖) = 𝑏1 + 𝑢1 * (stride1 * 𝑖+ offset1). These accesses can share

the same load or store mapped register set iff

stride0 = stride1

𝑢0 = 𝑢1

⌊(𝑏0 + 𝑢0 * offset0)/(𝑢0 * stride0)⌋ = ⌊(𝑏1 + 𝑢1 * offset1)/(𝑢1 * stride1)⌋

This formulation groups accesses where stride of access and unit size are equal,

and the accesses are relatively aligned within stride elements of the shared

unit size of access. These criteria are sufficient to ensure that grouped accesses

exhibit full locality. To vectorize such an access group, we repeatedly apply
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Algorithm 1 or 2 but use only a single, shared mapped register set. Compos-

ing reads and writes into a shared mapped register set reduces the number of

memory operations required for any group of 𝑛 accesses. Since 𝑛 is bounded

above by the stride of access, and the number of mapped registers is exactly

equal to the stride of access (Section 3.3.2), this sharing represents a reduction

from worst-case 𝑂(𝑛2) memory operations considering individual accesses to

𝑂(𝑛) operations considering the access group.

3.2.3 Dealing with Store-Side Gaps

The work of Nuzman et al. [53] specifically excludes interleaved access patterns

with store-side gaps. A gap is any unread or unwritten area of memory between

elements of an interleaved access. Figure 3-3 displays two scenarios with gaps.

In both examples in the figure, only two of the four lanes in each loaded or

stored vector are used. While unused loaded lanes can simply be discarded,

unused lanes in stores require the implementation to preserve the contents of

memory in those lanes. As indicated in Figure 3-2, this may be achieved us-

ing predicated writes, or using a read-modify-write sequence. On both of our

experimental platforms, predicated writes have very poor performance, while

read-modify-write has excellent performance.

While predicated writes typically have the same semantics as the original

scalar writes, any implementation using read-modify-write sequences may en-

counter race conditions due to the fact that a read-modify-write sequence mod-

ifies memory elements which were not modified by the scalar code. If the con-

tents of memory corresponding to unused lanes changes between the read and

write step of a sequence, data races and memory corruption can result. Broadly,

there are three scenarios for such races: races between accesses in the same

access group, races between different access groups, and thread-level races be-

tween multiple instances of the vectorized code operating on the same memory

region.

For the class of (static-affine) accesses we consider, the technique of Chatarasi

et al. [18] can be used to statically detect data races. The compiler may only
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correctly parallelize statements where doing so would not create a data race.

Our approach avoids the creation of races between accesses in the same ac-

cess group by composing all the resulting memory reads or writes into a single

mapped register set. Effectively, our technique coalesces vector memory op-

erations in the compiler. Since our approach produces only one sequence of

non-overlapping memory operations, we avoid introducing races between the

accesses in any one access group.

To avoid inter-access group races, implementations which cannot use pred-

icated writes may place read-modify-write sequences resulting from different

access groups into atomic sections or use memory fences to ensure exclusive

access to contested memory regions. The same approach may be used to avoid

thread-level races. Where the hardware does not provide a way to ensure

atomic execution of a group of instructions, or to create memory barriers, read-

modify-write cannot always be used safely in a multithreaded context.

3.3 Optimization

There is significant scope for optimization of the instruction sequences gener-

ated by the approach outlined in Section 3.2.2. In this section, we present four

optimizations which transform the permute/blend sequence programs gener-

ated by our technique.

These optimizations can be broken down into two categories: either re-

ducing the number of permutations in a program, or reducing the number of

blends. The optimizations concerning permutation follow from the realization

that we typically permute a register for one of two reasons: either we need to

eliminate a lane collision for blending, or we need to enforce matching element

order in two vector registers to ensure a legal vectorization. In both of these

scenarios, we can eliminate permute instructions under some conditions. Con-

cerning blends, we state a property of blend instructions assuming the informal

semantics in Section 3.2 which allows us to merge multiple blend instructions

into a single blend instruction. We also introduce a reassociation of blend in-
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struction sequences to increase the count of mergeable instructions under this

property.

3.3.1 Eliminating Permutations I:

Executing Original Loop Iterations Out-Of-Order

0 1 2 3

0 1 2 3

0 1 0 1 2 0 1 2 3* * *

(a) Algorithm 1. Memory access of the form a[3 * i] with VF = 4. * denotes a don’t-
care element in an output register. Elements are labelled with their index in original
program order.

0 12 3* 0 12

0 1 2 3

(b) Algorithm 3. Performing the deinterleaving step without first permuting the load-
mapped register set to eliminate lane collision under vertical composition with the
blend instruction. Memory access of the form a[3 * i] with VF = 4. Elements are la-
belled with their index in original program order.

Figure 3-4: Effect of reordering original loop iterations to match data layout.

The lane-collision removing permutation stage of Algorithms 1 and 2 is un-

neccesary when the data layout in a mapped register set is already free of lane-

collisions. When the data layout is collision-free, we can obtain a large savings

on data reorganization by skipping the permutation stage and directly blend-

ing mapped registers together (Figure 3-4). However, this approach can cause

packed results to be produced with elements out of order with respect to the

original loop (Figure 3-4b). If each iteration of the original loop was indepen-

dent, then it is permissible to reorder operations within a SIMD instruction.
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To obtain a legal vectorization of the original program, care must be taken to

maintain matching orders of operations within the SIMD instructions in the

vectorized loop. To ensure a legal vectorization, we must introduce a permu-

tation whenever the order of elements in different operands of the same SIMD

instruction do not match. We refer the reader to Figure 3-5 for a detailed exam-

ple.

Determining the order of execution of scalar loop iterations within a vec-

torized loop iteration to minimize the overall number of permutations is an

optimization problem which appears hard. The number of possible iteration

orderings is the factorial of the vectorization factor, and each ordering implies a

(possibly identity) permutation of every register which is the target of a gather

or the source of a scatter. We do not attempt to solve the problem in this chap-

ter. Instead, to keep the number of permutations reintroduced small, we apply

a simple, practical heuristic. We examine the data flow graph of the vectorized

program, and choose the most commonly observed element order of deinter-

leaved data elements as the order in which to execute the loop iterations. We

verify that this heuristic is sufficient to achieve significant speedup in practice

(Section 3.4.7). Having chosen this shared order, we apply Algorithms 3 and 4

to generate vectorized interleaving or deinterleaving code for each access, then

scan the vectorized program, reintroducing permutations where necessary to

enforce the chosen order of operation and ensure a legal vectorization.

ALGORITHM 3: Generate code to deinterleave a strided read without permuta-
tion
Input: A strided access a, load-mapped register set p, a collision free at VF
Output: Register s contains VF packed consecutive elements of a (out-of-order)
mask← ⟨VF× 𝐿⟩;
masks← stride copies of mask;
for 𝑖 = 0 to VF− 1 do

maskIdx← ((stride * 𝑖) + offset) mod VF;
laneIdx← ((stride * 𝑖) + offset) / VF;
masks[maskIdx][laneIdx]← 𝑅;

end
for 𝑖 = 1 to VF− 1 do

generate: blend s, p[i− 1], masks[i− 1], s;
end
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ALGORITHM 4: Generate code to interleave a strided write without permutation
Input: VF consecutive elements of a strided access a packed in register r, a

collision free at VF
Output: Store-mapped register set p contains the VF elements of a (in store order)
mask← ⟨VF× 𝐿⟩;
masks← stride copies of mask;
for 𝑖 = 0 to VF− 1 do

maskIdx← ((stride * 𝑖) + offset) mod VF;
laneIdx← ((stride * 𝑖) + offset) / VF;
masks[maskIdx][laneIdx]← 𝑅;

end
for 𝑖 = 1 to VF− 1 do

generate: blend p[i− 1], r, masks[i− 1], p[i− 1];
end

3.3.2 Eliminating Permutations II:

Simultaneously Resolving Collisions for Multiple Accesses

When the data layout in a mapped register set is not free of collisions, we can-

not apply the optimization detailed in Section 3.3.1 to skip the lane-collision

removing permutation stage of Algorithms 1 and 2. However, if we must per-

form some permutations to remove lane collisions, we can avoid permuting the

entire register set for each access, as in Algorithms 1 and 2.

The goal is to choose, for each colliding access, a unique lane number in

the range of VF lanes for each of the VF elements of the access. Let us say that

two registers collide if any access occupies the same lane in both registers. In

order to remove all collisions resulting from a strided mask, we can logically

rotate one register by increments until our unique lane numbering condition

is achieved for every contained access. If we extend this transformation to the

full register set, so that element-wise vertical collision between each register

and all registers with a lower index is removed, we have eliminated lane col-

lision for all accesses in the contained access group with only one rotation of

each register. As long as the group contains fewer than or exactly stride ac-
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cesses, each vector lane holds at most one accessed element, which ensures

that the transformation is possible. This property is ensured by our definition

of an access group from Section 3.2 which sets the upper bound on the num-

ber of grouped accesses to exactly stride. Logical rotation is achieved using

the permute instruction with a mask which arranges elements in rotated or-

der. Since the transformation ensures that the mapped register set is free of

lane collisions, it is always possible to apply Algorithms 3 and 4 immediately

afterwards. Algorithms 5 and 6 state this combined approach.

Figures 3-5 and 3-6 show graphically the action of Algorithms 5 and 6. If

the accesses are reads, then we can simply rotate each load-mapped register

immediately after it has been loaded. However, for writes, the transformation

is a little more subtle. For writes, rather than simply transforming a register set

from one order to another, we are creating a register set in transformed order by

combining registers with the blend instruction. To interleave a register result-

ing from computation into the store-mapped register set, we blend it with each

store-mapped register in turn, with each blend forming a new store-mapped

register by inserting one or more elements of the compute register. Since we

are composing registers with the blend instruction, we must ensure that the

access does not have lane collisions, which would require multiple stored ele-

ments to map to single lanes of the compute register.

Our approach runs as follows. We first compute what rotation of each store-

mapped register is required so that each element of every access occupies a

unique lane in the store-mapped register set. This gives us the rotated store

order we must produce. Next, for each access to be interleaved, we take the

lane number in our rotated store order of each element of that access. This

gives us the required order of elements in the source register so that it can be

blended into the store-mapped register set without collision.

Finally, each register resulting from computation is permuted into the re-

quired order before applying the blend sequence which combines it with each

store-mapped register. Figure 3-6 shows this graphically. Intuitively, blending

together these permuted registers results in the generation of a rotated image
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of the store-mapped register set. We then perform an inverse rotation of each

store-mapped register before storing to achieve the target store order. This

scheme guarantees the introduction of at most one permutation per mapped

register, plus at most one permutation per compute register to be stored, as op-

posed to the naive approach presented in Algorithms 1 and 2, which permutes

every mapped register at least once for every access which shares it.

0 1 2 32 3 0 1

2 30 1

Figure 3-5: Algorithm 5. Our transformation enables vertical composition with the
blend instruction of colliding memory accesses with a single transformation of the
mapped register set. One access is out-of-order under vertical composition with blend

after data layout transformation (left side). However, the vectorization can be legalized
with a single permute as shown, to ensure the order of elements in each register is the
same.

3.3.3 Statically Determining Lane Collisions

The presence or absence of lane collisions can be statically determined. To

see why this is the case, consider any scalar access 𝑎(i): the memory region

touched by the vectorized access is divided by our approach into buckets of VF

consecutive elements. The extent of the memory region is (stride*VF) scalar el-

ements, and the index within the region of element i of the scalar access is given

by (stride* 𝑖+offset). The corresponding vector lane number of the element

is found by floor modulo of this index by VF. It follows that the elements of

any access will repeat vector lane numbers, and would collide when composed

with the blend instruction, after 𝑙𝑐𝑚(VF, stride) scalar elements. Lane colli-
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→1 →2 →3

<2,3,0,1> <0,1,2,3> <1,2,3,0>

Figure 3-6: Algorithm 6. Accesses a[4 * i+ 2] (light dots), a[4 * i] (patterned dots), and
a[4 * i+ 1] (black dots). Desired store order at top with rotated store order underneath.
Required permutation of each access to obtain rotated store order indicated with per-
mute masks. Heavy arrows at bottom show the evolution of the store-mapped register
set as each access is interleaved in. Final store-mapped register set before inverse rota-
tion is shown at bottom right.

sion occurs when the length of the memory region touched by the vectorized

access is larger than this quantity, i.e. when (stride * VF) > 𝑙𝑐𝑚(VF, stride).

By definition, the condition is false when stride and VF are coprime.

3.3.4 Reassociation of Blend Instructions

Figure 3-8 demonstrates an important property of our blend instruction merg-

ing transformation. The effect of the transformation is greatest when the data

dependence structure in the blend reduction sequence forms a full binary tree,

where every node has either 0 or 2 children [70]. The tree structure of data

dependence is determined by the associativity of operations in the vectorized

progam.

However, the blend instruction sequences generated by the simple, canon-

ical form of our technique are reduction sequences with a linear chain of de-

pendence. That is, every instruction is of the form: blend a, b, mask, a. We
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ALGORITHM 5: Vectorize a group of shared-stride reads with lane collisions
Input: Load-mapped register set p, rotations for each mapped register.
Output: Compute register set c produced, with some registers out-of-order
span← stride * VF;
lanes← VF;
vectors← span/lanes;
for 𝑖 = 0 to vectors− 1 do

mask← {(𝑥+ rotations[i]) mod lanes | 𝑥← [0..(lanes− 1)]};
generate: permute p[i], mask, p[i];

end
foreach a in accesses do

ca← p0;
for 𝑗 = 1 to lanes− 1 do

left← 𝑗, right← lanes− 𝑗;
mask← 𝑟𝑜𝑡𝑎𝑡𝑒(rotations[𝑗], ⟨(left× L) + (right× R)⟩);
generate: blend ca, p[j], mask, ca;

end
end

ALGORITHM 6: Vectorize a group of shared-stride writes with lane collisions
Input: Register set c with n packed shared-stride accesses, with a common SIMD

lane order
Output: Store-mapped register set p contains all accesses in rotated store order
span← stride * VF;
lanes← VF;
vectors← span/lanes;
foreach a in accesses do

for 𝑖 = 0 to vectors− 1 do
mask← ⟨lanes× L⟩;
mask[(offseta + i) mod lanes]← R;
generate: blend p[i], ca, mask, p[i];

end
end
for 𝑖 = 0 to 𝑛− 1 do

mask← {(𝑥+ (lanes− 𝑖)) mod lanes | 𝑥← [0..(lanes− 1)]};
generate: permute p[i], mask, p[i];

end

begin with an empty register a, and accumulate lanes into it by repeatedly

combining other registers with the accumulator. The tree structure of data de-

pendences which results from this idiom has only a single operation at each

level. However, we can exploit the associativity of the blend instruction to

algebraically reassociate the blend operations in the vectorized program, trans-
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forming the dependence structure so that the entire left and right subtrees of

any one blend instruction are independent. Importantly, reassociation does not

change the number of instructions. Algebraic reassociation is described in de-

tail by Barik et al. [11]. Reassociation not only increases the count of blend

instructions which can be merged, but also significantly increases the available

instruction-level parallelism in blend reduction sequences.

Formally, our blend instruction can be represented as a binary operator ⊕𝑚,

denoting the result of blending left and right operands with the mask 𝑚. Un-

der this definition, the expression (((𝑎 ⊕𝑚 𝑏) ⊕𝑚′ 𝑐) ⊕𝑚′′ 𝑑) with initial masks

𝑚,𝑚′,𝑚′′, is equivalent to the reassociated expression ((𝑎⊕𝑛 𝑏)⊕𝑛′ (𝑐⊕𝑛′′ 𝑑)) for

some reassociated masks 𝑛, 𝑛′, 𝑛′′. Reassociation causes blend masks to change

because the operands of the individual blend instructions are exchanged. Fig-

ure 3-7 states the formal rewrite rule for blend instructions in the vectorized

code, with computation of reassociated blend masks 𝑛, 𝑛′, 𝑛′′.

(((𝑎⊕𝑚 𝑏)⊕𝑚′ 𝑐)⊕𝑚′′ 𝑑)

𝑛← 𝑚, 𝑛′′ ← {(𝑖, 𝐿) | (𝑖, 𝑥) ∈ 𝑟𝑖𝑔ℎ𝑡𝑠(𝑚′)} ∪ {(𝑖, 𝑅) | (𝑖, 𝑥) ∈ 𝑟𝑖𝑔ℎ𝑡𝑠(𝑚′′)}
𝑛′ ← {(𝑖, 𝐿) | (𝑖, 𝑥) ∈ 𝑎𝑐𝑡𝑖𝑣𝑒(𝑛)} ∪ {(𝑖, 𝑅) | (𝑖, 𝑥) ∈ 𝑎𝑐𝑡𝑖𝑣𝑒(𝑛′′)}

((𝑎⊕𝑛 𝑏)⊕𝑛′ (𝑐⊕𝑛′′ 𝑑))

Figure 3-7: Rewrite rule for reassociation of blend instruction sequences. The logical
operation 𝑟𝑖𝑔ℎ𝑡𝑠(𝑚) for some mask 𝑚 selects all mask lanes which contain the R selec-
tor. The logical operation 𝑎𝑐𝑡𝑖𝑣𝑒(𝑚) selects all mask lanes which contain either L or R
selectors.

Reassociation of a blend reduction sequence transforms the dependence

structure. The sequences initially produced by our approach use a single reg-

ister as an accumulator, blending in lanes from one register at a time to form a

packed result. This approach results in low register pressure, requiring only a

single live register to accomodate intermediate results, but requires sequential

execution even when blend instructions can be independent. Fully reassoci-

ated blend sequences contain the same number of instructions, but perform

the work as a parallel binary reduction. This approach has a high degree of in-
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struction level parallelism, but increased register pressure versus the sequential

reduction.

3.3.5 Eliminating Blends: Merging Multiple Blend Instructions

This section presents a novel optimization for blend reduction sequences of the

sort generated by our technique. The key observation is that one vector register

may hold the result of two different blend instructions if certain conditions are

met. This allows us to merge multiple blend instructions into a single blend

instruction, resulting in faster generated code with reduced register pressure.

Intuitively, two blend instructions with identical left and right sources may be

merged into a single blend instruction if the set of active output lanes of the

two instructions are disjoint. The resultant register simultaneously carries the

definition of both results of the initial pair of blend instructions. The resultant

merged blend instruction may itself be merged with other blend instructions,

and this merging may continue until all output lanes of the instruction are ac-

tive. The merging can be defined as the result of a simple algebraic rewrite rule

which may be applied repeatedly to the program to merge blend instructions.

When stating program transformations as rewrite rules, the top line repre-

sents the initial program fragment, which is the pattern that must be matched

to trigger the rule. The remaining lines represent necessary conditions which

must hold for the rule to be applied. The final line represents the modified pro-

gram fragment after the application of the rewrite rule. We represent masks in

rewrite rules as indexed sets of mask elements. We say that two blend masks

are disjoint iff everywhere there is an active lane in one, there is a correspond-

ing don’t-care lane in the other. Figure 3-8 shows graphically the action of this

blend-merging rewrite rule, which is stated formally in Figure 3-9.

3.4 Evaluation

In this section we give an analysis of our technique, present a comparison with

the technique of Nuzman et al., and present an experimental evaluation. In
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<L, R, *, *> <L, R, *, *><*, *, L, R> <*, *, L, R>

<R, R, L, L>

<L, L, R, R>

→1 →2 →3

(a) Before merging blends: 6 blend instructions, 4 temporary registers

<L, R, L, R> <L, R, L, R>

<R, R, L, L>

<L, L, R, R>

→1 →2 →3

(b) After merging blends: 4 blend instructions, 2 temporary registers

Figure 3-8: Graphical depiction of data flow before and after merging blend instruc-
tions. Two reads of the form a[4 * i] (dark dots) and a[4 * i+ 2] (light dots). The load-
mapped register set (top line of diagrams) is rotated as indicated to remove lane colli-
sions (second line of diagrams). Masks for blend instructions are indicated below each
result.
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blend r0, r1, mask1, r2 blend r0, r1, mask2, r3

{𝑖 | (𝑖, 𝑥) ∈ 𝑚𝑎𝑠𝑘1 ∧ 𝑥 ̸= *} ∩ {𝑗 | (𝑗, 𝑥) ∈ 𝑚𝑎𝑠𝑘2 ∧ 𝑥 ̸= *} = ∅
𝑚𝑎𝑠𝑘3← ({(𝑖, 𝑚𝑎𝑠𝑘2[𝑖]) | (𝑖, *) ∈ 𝑚𝑎𝑠𝑘1} ∪ {(𝑖, 𝑚𝑎𝑠𝑘1[𝑖]) | (𝑖, *) ∈ 𝑚𝑎𝑠𝑘2})

blend r0, r1, mask3, rNew

Figure 3-9: Rewrite rule for merging blend instruction pairs.

our experimental evaluation, we used a fixed phase ordering throughout. Our

phase ordering was as follows:

1. Group accesses by the criterion of shared spatial locality

2. Hoist all invariants out of the control structure to simplify optimization

3. Vectorize the control structure using one of the approaches from Sec-

tion 3.2, creating the program representation in our IR

4. Apply the blend reassociation transformation rule in Section 3.3.4 if re-

quested

5. Perform dead code elimination and squash register copies using copy

propagation

6. Repeated apply the blend-superimposition transformation from Section 3.3.5

until it is no longer applicable (the program converges to a fixpoint)

7. Generate native code and apply target-specific optimizations

3.4.1 Time Complexity of Generated Code

In Sections 3.2.1 and 3.3 we have presented three approaches for vectorization

of interleaved memory reads and writes with arbitrary constant strides. Each

approach results in the generation of a fixed number of permute and blend in-

structions. In order to facilitate compile-time decision making about which ap-

proach to use, we present an analysis of the time complexity of generated code

in terms of the number of instructions generated by each of these techniques.
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3.4.2 Simple Canonical Technique (Algorithms 1 and 2)

As described in Section 3.2.1, the size of the mapped register set for any access

is at most stride vector registers. When stride >= VF, at most VF registers are

required to be combined to vectorize any one access. In this case, each active

mapped register contains only a single data lane required by the vectorized

access. Proceeding according to Algorithms 1 and 2, each vectorized access

requires VF permutations (one per active mapped register). After reassociation,

each packed register resulting from interleaving or deinterleaving is at the root

of a full binary tree of blend operations with VF leaves. However, reassociation

does not change the number of blend operations, which remains at VF−1 blends

per access. The number of generated instructions for a single interleaved access

is therefore 2VF− 1 operations using this approach.

3.4.3 Out-of-Order Technique (Algorithms 3 and 4)

When a strided access satisfies the alignment criterion of being collision free

at VF (Section 3.3.1) we may apply Algorithms 3 and 4 to vectorize it. We ex-

ploit the independence of original loop iterations to change the scalar iteration

order within a single vectorized loop iteration. This tactic allows us to choose

an iteration order which reduces the overhead of data layout transformation.

Following Algorithms 3 and 4, for any one strided access we generate the tree

of VF − 1 blend operations to combine the elements of the access into a single

register. We then inspect each packed register and determine the most common

iteration order implied by the results. In the worst case, we reintroduce a per-

mutation for every packed result to legalize the vectorization. The number of

generated instructions is VF for each vectorized access.

3.4.4 Collision Resolving Technique (Algorithms 5 and 6)

Although the asymptotic complexities of the simple canonical approach and

the out-of-order approach are both of order 𝑂(VF) for a single access, the num-

ber of generated permutes and blends for the out-of-order technique is approx-
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imately half that of the canonical technique (VF versus 2VF − 1). To reduce

the number of generated instructions, the compiler should attempt to apply

the out-of-order technique if it is applicable. Algorithms 5 and 6 introduce a

method for resolving relative alignment constraints for any access conform-

ing to Definition 1. As detailed in Section 3.3.2, the cost of the transformation

is amortized when an access group contains more than one access. The total

count of operations using Algorithms 5 and 6 for a group of 𝑛 shared-stride

accesses is stride permute operations to resolve lane collisions followed by VF

operations per access to perform vectorization, for a total of (𝑛 * VF) + stride

operations to vectorize 𝑛 shared-stride accesses. We summarize our analysis in

Table 3.1.

Technique Instructions Generated Order

Algorithms 1 and 2 𝑛 * (2VF− 1) 𝑂(𝑛 * VF)
Algorithms 3 and 4 𝑛 * VF 𝑂(𝑛 * VF)
Algorithms 5 and 6 (𝑛 * VF) + stride 𝑂(𝑛 * VF)

Table 3.1: Time complexity (number of generated instructions) of SIMD interleaving
and deinterleaving code generated by the proposed techniques, for a group of 𝑛 ac-
cesses at a shared stride of stride elements.

Table 3.1 omits the effect of our blend merging transformation from Section 3.3.5.

Arithmetic properties of the stride and offset of each access, and VF determine

the contents of masks in the tree of blend instructions generated by our ap-

proach. Because of this, the effect of blend merging is highly dependent on the

input program. However, accesses vectorized using our approach will often

result in trees of blend instructions with a high degree of compatibility. These

trees exhibit the property that blend instructions at corresponding locations in

two trees are pairwise mergeable. In such cases, the original pair of trees can be

merged up to the root instructions, which cannot be merged because they each

produce a full output register after merging their subtrees. Figure 3-8 shows

one of these programs. The original pair of trees have a combined count of

(2VF− 2) instructions before merging, and the merged tree contains VF instruc-
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tions. Real-world benchmark program cxdotp− 2D (Figure 3-15) exhibits this

property, and blend merging has a pronounced effect.

It is not possible to state the effect of blend merging on time complexity for

a single access, because blend merging amortizes the total cost of blending over

a group of accesses. We can characterize the effect of the transformation on an

access group with an extra assumption. When an access group is full, by defi-

nition, accesses with all 𝑛 distinct offsets are present. When 𝑛 is even, each tree

of blend instructions can be merged with exactly one other tree, and 𝑛/2 blend

sequences result from blend merging. When 𝑛 is odd, one instruction tree can-

not be paired, and 𝑛/2 + 1 sequences result. The number of blend instructions

required to interleave or deinterleave the entire group of 𝑛 accesses, for 𝑛 > 1,

is thus (𝑛/2) * VF for even 𝑛, and (𝑛/2 + 1) * VF for odd 𝑛. Blend merging does

not change the asymptotic complexity, which remains of order 𝑂(𝑛 * VF).

3.4.5 Comparison with Nuzman et al.

The technique of Nuzman et al. [53] generates extremely efficient code for in-

terleaved access with power-of-two strides. However, the approach can only

handle powers of two — when the stride is not a power of two, the technique

of Nuzman et al. is not applicable. We generalize the approach of Nuzman et

al. to arbitrary constant strides. Nuzman et al. use an intermediate representa-

tion with a small number of primitives, shown in Figure 3-10. These primitives

precisely express interleaving/deinterleaving where the stride is a power of

two. Our representation uses more generic primitives, which can express in-

terleaving/deinterleaving at any constant stride, but require a constant factor

more operations for power-of-two stride. This constant factor is demonstrated

by the direct correspondence between each of the primitives of Nuzman et al.

and a short, fixed sequence in our representation. The sequence corresponding

to each Nuzman primitive is indicated in Figure 3-10, for VF = 4. This corre-

spondence between representations often leads to identical native code after

instruction selection when the stride is a power of two, because the native in-
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structions implementing the primitives of Nuzman et al. are also selectable for

the corresponding sequence in our representation.

0 1 2 3

1 3 5 7

0 1 2 3 64 5 7

extract_even extract_odd

interleave_high interleave_low

0 2 4 6

64 5 7
permute b <3,0,1,2> b
blend a b <L,R,L,R> c
permute c <0,2,1,3> c

permute b <1,2,3,0> b
blend a b <R,L,R,L> c
permute c <1,3,2,0> c

permute a <0,*,1,*> b
permute a <2,*,3,*> c
blend x b <L,R,L,R> x
blend y c <L,R,L,R> y

permute a <*,0,*,1> b
permute a <*,2,*,3> c
blend x b <L,R,L,R> x
blend y c <L,R,L,R> y

Figure 3-10: Primitive operations of Nuzman et al. extract_even and
extract_odd extract sequential even or odd indexed lanes from two source registers.
interleave_high and interleave_low perform the inverse data movements. Corre-
sponding operations in our representation shown to the left and right of the diagram,
for VF = 4.

The number of generated instructions in vectorized code from the technique

of Nuzman et al. for power-of-two strided accesses is of the same order as

our proposed techniques. As detailed in Nuzman et al. [53], their technique

generates a perfect, complete binary tree of instructions of 𝑙𝑜𝑔2(𝛿) levels for a

vectorized interleaved memory access, where 𝛿 is the stride of access. The trees

generated are perfect and complete because the technique only considers pro-

grams where 𝛿 is a power of two, and each level is formed by combining pairs

of adjacent inputs from previous levels [70]. The 𝛿 − 1 generated instructions

correspond to the reassociated tree of blend operations produced by our ap-

proach. However, for any one vectorized access, the number of vector registers

which must be combined is bounded above by VF, by the same argument as

for our approach (Section 3.4.1). The maximal instruction count is thus VF − 1,

making the asymptotic complexity of extraction of a group of 𝑛 accesses order

𝑂(𝑛 * VF) using either technique.

3.4.6 Native Code Generation

In this chapter we address the problem of vectorizing interleaved access, and

propose an approach which can generate vectorized code for accesses with ar-

bitrary constant strides. However, generating correct vectorized programs is

only of use if vectorization improves the overall performance of the program.
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An important step in realizing a performance gain in practice is the generation

of fast native code.

In our implementation, we use a modified version of the “Bottom-Up Tree

Pattern Matching” approach [2, 10], with a simplified cost heuristic. For a sub-

set of the available native data reorganization instructions on our two exper-

imental platforms, we derived a table mapping each native instruction to the

corresponding tree of abstract operations in our IR. Driven by this table, we

perform the tree rewrite by greedily selecting the native instruction which cov-

ers the largest available subtree of our abstract operations at each step. It is

possible to improve on this approach to instruction selection [29], particularly

for vector instructions [11], but we found that even this simple approach was

sufficient to realize a practical speedup from our techniques in experimental

evaluation. Native instruction selection is a large topic, and is not the focus of

this chapter, but future work could involve the use of an optimal instruction se-

lection scheme to increase the performance of code generated by our approach.

Possibilities in this direction are discussed in Section 3.6. In particular, GCC’s

instruction selection for the primitives of Nuzman et al. is very efficient, as

can be seen by looking at the powers of two strides in Figures 3-11a and 3-

11b. However, our simple scheme sometimes makes a better selection even for

powers of two (Figure 3-11b, stride=4).

3.4.7 Experimental Evaluation

Our benchmarking was carried out on two experimental platforms: we used

an Intel Core i5-2500 (Sandy Bridge) system with 16GB of RAM as our 128-

bit “SSE” platform, and an Intel Core i5-4570 (Haswell) system with 32GB of

RAM as our 256-bit “AVX2” platform. Experiments were run on Linux (kernel

version 4.1). We followed the guidelines outlined in Paoloni [58] for bench-

marking short programs on our experimental architecture. Our baseline scalar

code was generated by running GCC on plain C code, with optimization level

-O3 and vectorization disabled. GCC implements Nuzman’s algorithm for vec-

torization of interleaved access. For comparison with Nuzman, we generated
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vectorized code using GCC -O3. We inspected the generated assembly and

verified that GCC applied Nuzman’s algorithm where the stride is a power of

two. We implemented our vectorization techniques in a simple compiler that

generates vector intrinsics, and compiled the resulting code with GCC -O3.

Figures 3-11 through 3-14 present the results of synthetic benchmarking of

programs performing data movement on SSE. We generated programs which

performed either a gathering operation (Figures 3-11 and 3-12) or a scattering

operation (Figures 3-13 and 3-14). We present the speedup achieved by our

simple, canonical approach using Algorithms 1 and 2 and our reordering ap-

proach using Algorithms 3, 4, 5 or 6 as appropriate. In all cases, the stride of

access was swept through the range [2, 16] — this choice was influenced by the

experimental architecture (SSE), which has 16-byte vector registers. Where the

stride of any individual gathering or scattering operation exceeds 16 bytes, it

must perform at least as many vector memory operations as there were scalar

memory operations in the original loop. On our SSE experimental platform,

regardless of the technique employed, we would expect the performance of

vectorized memory access to degrade as stride length increases.

3.5 Discussion of Results

3.5.1 Performance Limits

Performance degradation with increasing stride is visible in Figures 3-13 and

3-14, but only up to the length of an architectural vector register. Note that the

stride of access in each graph is given in units of the word size, so a stride of 16

bytes is exceeded very quickly for wider types. In each case, when the stride

exceeds 16 bytes, the performance of vectorized memory access is reduced to

parity or near-parity with the scalar code, but does not further degrade with

increasing stride, up to a stride of 128 bytes (the largest experimental value).

Further, the experiments show that in general, large speedups are possible for

single strided accesses where the stride is shorter than a vector register. The

performance drop at strides longer than a vector register is significantly less
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pronounced for gathering operations than for scattering operations. For ex-

ample, our approach achieves 1.66x speedup versus scalar code performing a

64-bit stride 7 gather operation (Figure 3-12b). The stride of this operation is 56

bytes, much longer than a 16-byte vector register on our SSE experimental plat-

form. The strategy of tiling a memory region with vector loads and composing

required elements into results with SIMD instructions appears particularly ef-

fective on SSE. For 8-bit stride 3 gather operations (Figure 3-11a) our approach

results in more than 4x speedup over scalar code, but GCC cannot vectorize the

program (the approach of Nuzman et al. is not applicable). This case of data

movement is ubiquitous in image and video processing applications, where

formats using packed 8-bit triples are common.

3.5.2 Effect of Reordering

The most pronounced difference between gathering (Figures 3-11 and 3-12) and

scattering (Figures 3-13 and 3-14) results is in the effect of reordering loop it-

erations to reduce permutation overhead of interleaved access. When scalar

data elements are positioned so that there is no lane collision while blending,

we can apply Algorithms 3 and 4 and forego the permutation phase which re-

moves lane collisions, resulting in a shorter program. Although analytically

the reduction in number of generated instructions is equivalent for both Algo-

rithm 3 and 4, a key semantic difference is that vector loads with unused lanes

do not require different treatment from loads without, whereas vector stores

with unused lanes must preserve the contents of memory between stored ele-

ments. We implemented such stores using a read-modify-write sequence, using

our load, blend and store instructions. For stores, the relatively long latency of

read-modify-write memory access acts to smooth the speedup obtained from

improvements in data reorganization.
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Figure 3-11: Synthetic benchmark results: 8-bit and 16-bit gathering operations
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Figure 3-12: Synthetic benchmark results: 32-bit and 64-bit gathering operations
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Figure 3-13: Synthetic benchmark results: 8-bit and 16-bit scattering operations
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Figure 3-14: Synthetic benchmark results: 32-bit and 64-bit scattering operations
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3.5.3 Relation of Speedup to Stride

When performing vectorized interleaved memory operations, there is often a

pronounced difference between our simple canonical approach and reordered

approach at neighbouring strides. At any fixed vectorization factor, accesses at

a given stride will either exhibit lane collision or will not, determining whether

permutations must be introduced to resolve these lane collisions. The presence

of lane collisions can be statically determined — lane collisions are not present

when stride and VF are coprime (Section 3.3.2). On our SSE experimental plat-

form, the natural vectorization factors for the four machine types with distinct

bit-width are powers of two (VF = 16 for 8-bit data, VF = 4 for 32-bit data,

and so on), meaning that lane collisions are generally present at even but not

odd strides, once stride exceeds VF. This pattern is observed in the simple os-

cillation of speedup across neighbouring strides in our synthetic benchmarks,

though smoothed in the case of stores as previously noted.

3.5.4 Variability of Scalar Code

We would expect to see the oscillation previously mentioned throughout syn-

thetic benchmarking, but it is often obscured by variability in the scalar code.

The performance of the scalar code produced by GCC at any two neighbouring

strides can be significantly different. In particular, GCC does very well when

optimizing gathering operations for locality, and incorporates several patterns

which produce fast code for common or idiomatic memory access patterns. In

our synthetic benchmarking, GCC sometimes produces code which is faster

than the best vectorized code produced from our approach. We investigated

the performance difference and found that GCC chose to vectorize the data

movement using Nuzman’s algorithm. However, post-pass instruction selec-

tion emits scalar code for the abstract operations of Nuzman et al. Performing

this devectorization step requires a very detailed cost model, and we did not

attempt to replicate it in our experimental compiler. Apart from these cases, the

performance of the best vectorized code produced by our approach matched or

exceeded the performance of code generated by GCC at optimization level -O3.
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In Figures 3-11 and 3-12, for some power-of-two strides, the speedups achieved

by GCC and our approach are identical. In these cases, both our technique and

the technique of Nuzman et al. result in identical native code after instruction

selection.

3.5.5 Real-World Benchmarking (SSE)

Our real-world benchmarking uses a selection of BLAS Level 1 [43] routines

with varying access patterns. Figure 3-15 (page 81) presents the results on our

SSE experimental platform. We display speedup over scalar C code obtained

by GCC using optimization level -O3, and also using each of the techniques

we propose. Details of each benchmark program are listed in Table 3.2. We

vectorize computation by simple scalar expansion.

BLAS L1 Routine Benchmark Instantiation

Loads Stores GCC Applies

Type Name Dim. Stride # Stride # C Type SIMD Nuzman

cx axpy 1D 2 4 2 2 float Yes No
cx mul 1D 2 4 2 2 float Yes Yes
cx dotp 2D 4 8 2 2 float Yes Yes
cx dotp 3D 6 12 2 2 float No N/A

s dotp 2D 2 4 1 1 float Yes Yes
s dotp 3D 3 6 1 1 float No N/A
s dotp 5D 5 10 1 1 float No N/A
s norm 2D 2 2 1 1 float Yes Yes
s norm 3D 3 3 1 1 float No N/A
s norm 5D 5 5 1 1 float No N/A

Table 3.2: Summary of dimensions, strides, underlying C types, and vectorization re-
alized for each instantiation of the BLAS Level 1 routines used in benchmarking in
Figure 3-15. For example, cxdotp-3D is the dot-product of 3-dimensional vectors of
complex numbers. The memory access pattern consists of 12 stride 6 loads, and 2 stride
2 stores, and the underlying C type is float. GCC does not vectorize this program, and
the approach of Nuzman et al. is not applicable.

Of the 10 programs, 5 can be vectorized using the technique of Nuzman et

al., and GCC applies it in 4 of 5 cases. In the case of caxpy, GCC uses a combina-

tion of classical optimizations to transform the program so that memory access
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becomes consecutive, and vectorizes using scalar expansion. This results in ex-

tremely compact code, which achieves a speedup of over 2x versus scalar code.

Applying the techniques we have described results in a speedup of 1.8x using

reassociation and reordering.

The additional effect of applying reordering, reassociation, and blend merg-

ing is visible in many of the benchmarks, particularly cxdotp− 2D. Generally

speaking, our simple canonical approach produces code that performs slightly

worse than scalar code. However, for benchmarks dominated by computation,

such as the vnorm programs, the overall speedup from vectorization is large, de-

spite suboptimal data movement. For vnorm− 3D and vnorm− 5D, applying our

simple canonical approach results in a program which is more than 2.5x faster

than scalar code. GCC requires the -ffast-math option to vectorize the compu-

tation in the vnorm benchmarks, which contains a floating point square root

operation. GCC generates a reciprocal square root operation followed by some

iterations of the Newton-Raphson method for approximation of square roots.

In order to fairly represent the effect of our techniques, we precisely duplicated

this instruction selection. Applying our optimization techniques improves the

speedup factor on data movement, bringing the overall speedup to more than

3x. In the vnorm programs, the interleaved access pattern is the principal im-

pediment to vectorization. Once it is removed, significant performance gain is

possible.

In each of the 4 cases where GCC applies the technique of Nuzman et al.

— cxmul, cxdotp− 2D, vdotp− 2D, and vnorm− 2D — we generate programs

which run faster on our SSE experimental platform, with the exception of vnorm− 2D

where the error bars overlap. This gain is primarily due to our optimization

techniques, particularly reordering, which can eliminate permutation instruc-

tions from the program. The effect of merging blends is particularly visible

in cxdotp− 2D. The program contains 16 mergeable blend operations, each

of which has two inactive lanes. Blend merging reduces this to 8 blend op-

erations where every lane is active. Even though blend merging does not
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change the asymptotic complexity of the generated code, it can lead to sig-

nificant speedups in practice.

3.5.6 Real-World Benchmarking (AVX2)

Figure 3-16 (page 82) presents the results of real-world benchmarking on our

AVX2 experimental platform. The figure demonstrates that our approach yields

portable performance improvements across these two platforms. For most of

the benchmarks, doubling the vectorization factor by moving from 128-bit to

256-bit vectorization yields a significant performance improvement. However,

the benchmark caxpy is an exception. Our cost heuristic for instruction selec-

tion (Section 3.4.6) does not take into account fine-grained microarchitectural

differences between the Haswell and Sandy Bridge platforms. Several 256-

bit AVX2 versions of 128-bit SSE data reorganization instructions have either

longer latency or require exclusive access to functional units where the SSE in-

struction does not. In addition, AVX2 instructions which reorganize data across

the 128-bit boundary in a 256-bit register are subject to performance penalties

relative to instructions which do not. In order to account for these differences,

a detailed cost model would be required for instruction selection. However,

for 9 out of 10 benchmarks, our technique results in efficient native AVX2 code.

The caxpy benchmark exhibits a performance decrease relative to SSE in part

because the instruction count is small, magnifying the effect of architectural

differences.

Another significant difference from the SSE results is that the performance

of the code generated by GCC is typically worse — GCC’s code generation for

AVX2 is not as mature as for SSE. On our SSE experimental platform, GCC

achieves a geometric mean speedup of 1.43x over scalar code on this set of

benchmark programs, but on AVX2 this is reduced to 1.30x. However, our ap-

proach achieves very good performance portability, represented by an increase

in geometric mean speedup from a maximum of 1.77x on SSE to 2.53x on AVX2.
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3.5.7 Comparison with Hand-Tuned and Reference BLAS

We performed some benchmarking of our generated code versus an open source

reference BLAS implementation and Intel’s MKL. The results are presented in

Figure 3-17 on page 83. For small problem sizes (in the range of 1K to 64K

data elements) which exhibit dense interleaved data access, the code generated

by our approach significantly outperforms both BLAS implementations exper-

imented with.

Single-core execution was used throughout. The performance gap begins

to close only when the working set size grows so large that cache and memory

effects come into play, i.e. at sizes which are ill-suited for single-core SIMD

execution. Our approach could be used to produce optimized vector code for

the individual single-core portions of a larger multi-core BLAS operation when

the data access is interleaved.

Typically, BLAS implementations are tuned to take advantage of multicore

parallelism and the memory hierarchy to achieve good performance when deal-

ing with large amounts of data [82]. While BLAS implementations deal with

both sparse and dense data representations, non-stride-1 (interleaved) dense

data access is difficult to optimize in a library context.

It would be possible to provide a small number of hand-tuned kernels spe-

cialized for common strides, but doing so for every possible stride is implausi-

ble. Automated tuning systems such as ATLAS [84] perform install-time code

generation to automatically create an optimized library for the target platform.

To avoid the need to generate an optimized kernel for every possible stride,

a complementary compile-time specialization of operations using an approach

similar to SPIRAL [27] could be used. This seems like a promising direction for

future work.
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3.6 Related Work

Much of the related work presented here is also discussed in our literature re-

view in Chapter 2. Here we discuss more specific relationships between our

work and related works in terms of the techniques presented in this chapter.

A key difference with much existing work discussed in Section 2.3 is that

we do not take a fixed permutation and try to generate fewest instructions to

perform it. Rather, our techniques synthesize SIMD instruction sequences to

perform interleaved memory access, which may contain permutations. The

most closely related work, that of Nuzman et al. [53] is discussed in depth

in Section 3.4.5. Kudriavtsev and Kogge [40] propose to reorder operations

within SIMD instructions to minimize the number of permutations in the pro-

gram. Using their vectorization approach, permutations can occur when mul-

tiple scalar operations read a common subexpression, or as a result of permu-

tation in the source program. While the aim of minimizing permutations is

similar to the aim of our reordering approach (Section 3.3.1) the key difference

is that Kudriavtsev and Kogge require memory access to be consecutive, and

reorder operations to minimize permutations resulting from computation. We

reorder operations specifically to minimize permutations resulting from inter-

leaving/deinterleaving. Future work could consider a combined approach, but

the resulting multi-objective optimization problem appears hard.

Ren et al. [68] optimize straight-line code by merging, propagating, and de-

composing permutations within a basic block. Although their work does not

address vectorization of interleaved memory access, they note that it often in-

troduces permutations, using a power-of-two stride example which can be vec-

torized by Nuzman et al. [53]. They further note that producing optimal code

(that is, with fewest permutations) for an arbitrary basic block maps to the NP-

hard multiterminal cut problem, and propose a practical heuristic solution. The

approach of Ren et al. could be applied to further optimize the permutations

in our synthesized programs.

Karrenberg and Hack [35] propose a holistic approach to vectorization of

whole functions, encompassing control and data flow. However, their approach
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assumes consecutive memory access. If combined with the approach to vector-

izing interleaved access which we propose, that restriction would be lifted for

programs where the stride of access is known at compile time, enabling broader

application of their approach.

Park et al. [59] propose a “SIMD Defragmentation” approach which tries

to extract parallelism at the level of subgraphs of operations within the pro-

gram, similar to SLP. Where vectorization using their approach results in inter-

leaved memory accesses, our techniques could be applied to synthesize opti-

mized SIMD code sequences to perform the access.

Barik et al. [11] propose an approach for efficient selection of vector instruc-

tions for straight-line code sections, which is tightly integrated with register

allocation and instruction scheduling. Although their cost model formulation

includes parameters for the cost of packing or unpacking data in vector regis-

ters, they do not propose a technique for generating the code which performs

interleaved access.

Their experimental evaluation compares their approach to a prototype of

SLP [42] using benchmark programs with restricted memory access patterns

of the type discussed in Section 3.6.1. However, our techniques and their op-

timization approach are synergistic — if both were available in the compiler,

their cost model could be extended to incorporate the costs of interleaved ac-

cess vectorized using our approach. Similar to the work of Karrenberg and

Hack [35], this would enable broader application of both techniques.

3.6.1 Superword Level Parallelism

Vectorization techniques based on SLP [42] incorporate a tactic which can han-

dle a restricted case of interleaved memory access. SLP attempts to transform

programs so that interleaved memory accesses become consecutive, by search-

ing for an unrolling factor for scalar loops which results in a dense memory ac-

cess pattern in the vectorized loop. Such an unrolling factor can only be found

if the scalar loop touches every element of each accessed array region within a
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fixed number of loop iterations, that is, if the access pattern of the loop has no

gaps.

Previous work on SLP [75] has incorporated blending operations. The work

extends SLP to enable it to vectorize control flow by converting conditional ex-

pressions in the scalar loop into predicated vector expressions (if-conversion),

making use of blending operations to represent predicated results. However,

we apply blending operations in a very different way, using them to perform

interleaving/deinterleaving.

An recent extension to SLP [48] uses the polyhedral model [21] to gener-

ate a non-SIMD data movement phase which gathers nonconsecutive memory

elements in compact temporary arrays in the prologue of the vectorized loop,

allowing computations within the loop to access them as though they were

consecutive in memory. This approach sidesteps the need to generate vector-

ized code to perform data movement, and is sufficient to achieve speedup over

scalar code for some programs.

However, the approach assumes read-only array references, does not at-

tempt to deal with interleaved writes, and requires accessed data to be copied

to a temporary array before every loop iteration. Our approach synthesizes

vectorized code to perform interleaved reads and writes in the vectorized loop,

where instruction-level parallelism between data movement and computation

can offset the overhead of memory access.

3.6.2 Alignment

Eichenberger et al. [24], propose an approach to solve alignment issues while

vectorizing. However, the focus of that work is reducing the cost of misaligned

vector accesses resulting from unit-stride code. The operation of the initial per-

mutation phase in our approach is similar to realignment using the dominant

shift policy of Eichenberger et al., but our objective is not to reduce the cost of

realignment, but of interleaving/deinterleaving. Our approach locally realigns

accesses within a set of vector registers acting as a compiler-controlled cache,

reducing the number of instructions required for interleaving/deinterleaving.
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However, because accessed data is cached in vector registers, the misalignment

does not translate into misaligned memory accesses.

3.6.3 SPIRAL

The initial version of the SPIRAL system [27] vectorized certain classes of inter-

leaved memory access by translation to C macros. A set of handwritten imple-

mentations of these macros using SIMD intrinsics was included for each target

platform. However, the class of interleaved access vectorized by SPIRAL is

distinct from that vectorized by our approach, which is specifically targeted at

affine interleaving (Definition 1). Subsequently the authors proposed an ap-

proach to automatic generation of vectorized code for their class of interleaved

memory access [28], but their approach differs from ours in two key respects.

The authors show that their technique produces a locally optimal code se-

quence for any one data permutation in a class they consider. However, locally

optimal treatment of individual permutations does not guarantee a global op-

timum. In fact, both our work and the work of Nuzman et al. [53] have shown

that optimizing multiple simultaneous permutations with spatial locality as a

group allows further optimization and sharing of overheads.

Furthermore, the approach proposed [28] considers only shuffling opera-

tions. A key innovation of our approach is the decomposition of the problem

into separate permutation and blending phases. We have shown in Section 3.3

that this leads to the amortization of overhead across multiple interleaved ac-

cesses, and exposes opportunities for optimizations like our blend merging

technique (Section 3.3.5). Using blending operations can lead to the elimina-

tion of permutations entirely (Section 3.3.1).
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Chapter 4

Vectorization of Multibyte Floating

Point Data Formats

The IEEE Standard for Floating-Point Arithmetic (IEEE-754), standardized a

computer representation of real numbers. The most recent version of the stan-

dard was published in 2008 [91]. The standard specifies a number of finite

representations of real numbers to allow them to be stored in a computer mem-

ory, as well as operations on these representations. Since its initial publication

in 1985, the majority of hardware implementations of floating-point arithmetic

conform to the standard, providing a portable environment for floating-point

computation.

To provide programmers with an interface to hardware facilities for floating-

point computation, programming languages such as Fortan and C, among oth-

ers, provide numeric types which correspond to the types defined in IEEE-754,

as well as operations to manipulate the floating-point environment for com-

putation. For example, the Fortran 90 type REAL * 4 and the C type float cor-

respond to the IEEE-754 type binary32, which represents a real number as a

32-bit binary floating-point value.
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4.1 IEEE-754 Floating Point

The IEEE-754 2008 standard [91] defines a number of finite binary representa-

tions of real numbers at different resolutions (16, 32, and 64 bits, among others).

Each format encodes floating-point values using three binary integers: sign, ex-

ponent, and mantissa, which uniquely specify a point on the real number line

following a general formula.

𝑣 = (−1)𝑠 × (1 +
𝑀∑︁
𝑖=1

(𝑚𝑖2
−𝑖))× 2𝑒−𝑏𝑖𝑎𝑠

𝑣 is the real number obtained by the evaluation of the formula for a normalized

floating-point value with sign 𝑠, mantissa 𝑚 of length 𝑀 bits, and exponent 𝑒.

The value 𝑏𝑖𝑎𝑠 is an integer constant which differs for each format. The formats

all use a single bit to represent the sign, but different numbers of bits for the

exponent and mantissa components.

The exponent determines a power of two by which the rest of the number

is multiplied, while the mantissa represents a fractional quantity in the interval

[1, 2) obtained by summing successively smaller powers of two, starting from

2−1 and continuing up to the length of the mantissa. If the 𝑖th mantissa bit is

set, the corresponding power of two is present in the sum, and if it is unset,

the power of two is not present. For normalized numbers, the leading 1 is not

explicitly stored in the mantissa, but is implied.

A key feature of the representations defined in IEEE-754 is that their width is

fixed. This can lead to scenarios where the full precision of a standard floating-

point type is not required in the normal operation of the application.

4.2 Thought Experiment: 24-bit float

Consider an application which produces results in IEEE-754 single-precision

binary floating-point format but requires only 15 stored mantissa bits to pre-

cisely represent any result. The binary32 format provides 23 bits. An example
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scenario might be the collision detection calculations in a video game where

the player’s movement is in coarse steps, and a distance calculation involving

square roots is involved. Square roots can be calculated using an iterated algo-

rithm which starts with a guess for the value of the square root, and repeatedly

refines the guess, increasing the accuracy of the result. In order to speed up the

calculation, the developer, knowing that distances need only be accurate to a

few decimal places in this scenario, might use a faster root finding algorithm

which performs fewer iterations, but gives a less accurate result.

Even though the results produced do not need the full precision of the

binary32 type, they must still be manipulated, loaded, and stored using that

type, since it is the only corresponding floating-point type the machine pro-

vides. However, this leaves the developer in an unfortunate scenario: because

their program does not require the full precision available, the last 8 bits of each

floating point value resulting from a collision detection calculation will contain

garbage. Effectively, one of every four bytes in the resulting data stream is un-

used. The application can therefore only properly utilize a maximum of 75% of

the memory used for storing these values. Figure 4-1 shows the memory layout

of floating point values indicating the unused area due to reduced accuracy of

results.

Sign Exponent Mantissa

float precision (32 bits)

Unused

reduced precision (24 bits)

Figure 4-1: Unused bit positions in reduced-accuracy results

Eliminating this waste factor could be beneficial in several ways. On plat-

forms with limited available memory, such as consoles and handheld games

systems, a 25% reduction in memory required to store these reduced accuracy

values may be valuable. It could allow the developer to increase the amount

of memory allocated to other resources, such as higher-resolution textures, or
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even reduce memory requirements so that the application can run in the first

place.

In a more general computing context, since fewer bytes need to be trans-

ferred for any given number of data elements, the use of a lower precision

representation can have several potential benefits due to reduced use of the

memory subsystem. Data transfer typically consumes a significant amount of

power, so a reduction in the application’s memory bandwidth requirements

can reduce the application’s overall power consumption. Memory-bound parts

of the application can also see a reduction in transfer latency since the quanti-

ties being transferred are now smaller.

Instead of being required to use the fixed-width types provided by IEEE-

754, regardless of the accuracy of the results being represented, being able to

choose the size of the representation along a continuum would be very helpful,

particularly when developing applications for constrained platforms.

4.3 A Scheme for Reduced-Precision Floating Point

Representation

The structure of the IEEE-754 encoding of floating point numbers means that

a change in an exponent bit strongly influences the resulting value, while a

change in a mantissa bit has less influence. Furthermore, a change in any bit

of the mantissa has exponentially greater effect on the resulting value than a

change in the next-least-significant bit. These observations lead naturally to a

scheme for representing values at resolutions between those specified by the

IEEE-754 standard: truncation of the low-order mantissa bits.

Our 24-bit floating point thought experiment (Figure 4-1) is one of these

short representations. By getting rid of the unused low 8 bits of the man-

tissa, we can store low accuracy results in a compact representation and free

up 25% of the memory which would have been used if we stored results in full

IEEE-754 single-precision format. Figure 4-2 displays some possible reduced-

precision representations for IEEE-754 32-bit floating point.
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Sign Exponent Mantissa

float

f24

f16

Figure 4-2: Layout of alternative multibyte floating point formats

A straightforward scheme for the use of reduced-precision storage formats

is to convert values from the reduced-precision storage format into the appro-

priate IEEE-754 type when they are loaded. These values can then be used

in computation as normal, producing results in a natively supported IEEE-754

format. If we need to store a value in reduced-precision format, we can perform

a similar conversion while writing the data, encoding it in our desired storage

format in memory. The principal difference between the reading and writing

stages are that the datatype widens on reads, and narrows on writes.

To use this scheme in a practical application, some challenges need to be

overcome. The native facilities provided by the hardware for floating-point

computations will typically support only the IEEE-754 types binary32 and

binary64, which correspond to the C types float and double. Since we must

use these types to perform computations, we have two challenges: reading and

writing of our reduced precision representations.

4.3.1 Practical Multibyte Representations for IEEE-754

Our approach discards low order mantissa bits, which encode only a small

portion of a represented value, keeping the sign and exponent intact.

By preserving the exponent of the existing value and adjusting only the

mantissa, we can avoid having to perform a complicated conversion between

number formats with different exponent sizes. Furthermore, while we could in

theory discard any number of bits, by choosing to shorten the number format

by multiples of 8 bits, we can represent floating point values with precision
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along a continuum between the standard IEEE-754 formats without the use of

complicated sub-byte data movement.

We propose a set of non-standard floating point multibyte types that we

refer to as flytes. Rather than emulating computation on flytes in software, we

convert them to/from the next largest natively supported type. Thus, a 24-bit

flyte (flyte24) is converted to binary32 before computation, and the binary32

result is converted back to flyte24 after. Table 4.1 summarizes our flyte storage

formats and their memory layouts.

Table 4.1: Supported flyte storage formats for IEEE-754 types.

Layout (bits)

IEEE-754 format Storage format Sign Exp. Mant.

binary32 16-bit 1 8 7
. 24-bit 1 8 15
. 32-bit 1 8 23

binary64 40-bit 1 11 28
. 48-bit 1 11 36
. 56-bit 1 11 44
. 64-bit 1 11 52

4.3.2 Simple Scalar Code Approach

Figure 4-3 shows a simple implementation of the flyte24 type in C++. It relies

on the bit field facility in C/C++ to specify that the num field contains a 24-bit

integer. It also uses the GCC packed attribute to indicate to the compiler that

arrays of the type should be packed to exactly 24 bits, rather than padded to 32

bits. Figure 4-3 also shows a routine for converting from flyte24 to float (i.e.

binary32). The 24-bit pattern stored in the flyte24 variable is scaled to 32 bits

and padded with zeros. The resulting 32-bit pattern is returned as a float.

The code that is sketched in Fig. 4-3 can be used to implement programs with

arrays of flyte24 values, but it is very slow. Figure 4-6a shows a comparison

of the execution time of several BLAS kernels using flyte24 and other flyte

and IEEE-754 types. The order of magnitude difference in execution time be-
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class flyte24 {
private:

unsigned num:24;
public:

operator float() {
u32 temp = num << 8;
return(cast_u32_to_f32(temp));

};
...

} __attribute__((packed));

Figure 4-3: Simple implementation of flyte24 in C++

tween flyte24 and binary32 is the result of (1) the cost of converting between

flyte24 and binary32 before and after each computation; and (2) the cost of

loading and storing individual 24-bit values. In particular, storing data to suc-

cessive elements of packed flyte24 arrays can result in sequences of overlap-

ping unaligned stores. Load/store hardware in GPPs is not designed to deal

with such operations, which results in extraordinarily slow execution.

4.4 Reading from Reduced-Precision Representations

Reading from reduced-precision representations might be expected to incur a

significant performance penalty due to the overhead of data format conversion,

in addition to potentially awkward memory access to datatypes which do not

correspond to any native word size.

For example, if the data format consists of packed 3-byte quantities, as in

the 24-bit floating point format from our thought experiment, the sequence of

operations required to load and convert one datum into a 32-bit register might

run as follows.

First, load 4 consecutive bytes from the leading (byte) address of the datum,

with the trailing byte belonging to the next datum. Next, shift the register if

required, so that the 3-byte portion occupies the correct bit positions.

Finally, zero the trailing 8 bits of the register to encode the represented value

in the corresponding IEEE-754 binary32 number for computation. Note that
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the loads will also most likely be unaligned, since the data format consists of

packed 3-byte quantities.

While the overhead of conversion is indeed significant when performed in

scalar code, a vectorized implementation benefits in several ways. Due to the

width of vector loads, several reduced precision data values can be loaded with

a single memory movement. Further, with vector reorganization instructions,

we can both rearrange and zero-pad the loaded data values with very little

overhead.

The scalar code versions of our BLAS Level 1 benchmarks which perform

mainly reading operations, (Figure 4-6a) show the overhead incurred by reduced-

precision reads in scalar code. However, as demonstrated in the vectorized

versions of these benchmarks, (Figure 4-6b) the overhead of reading reduced-

precision data using vector instructions to perform the conversion is of the or-

der of a few cycles per data element.

4.5 Writing to Reduced-Precision Representations

The task of storing data to a reduced precision format is more complex than that

of loading data from a reduced precision format, both in terms of the memory

movement and due to the fact that while storing, we must convert values from

a wider to a narrower representation. In this section, we first discuss the vec-

torization of the data movement, and then the task of data conversion, which

chiefly involves the issue of rounding of values from larger to smaller number

formats.

4.5.1 Vectorized I/O with Multibyte Representations

A vectorized floating point computation may require VF reduced-precision el-

ements to be loaded into or stored from a single vector register. As previously

outlined, these quantities may not correspond to any native type, but must

be loaded from memory, converted, and packed consecutively in the lanes of

a vector register for operation. Similarly, after computation has produced a
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vector containing VF packed results, they must be rounded to the appropriate

format and packed consecutively for storage.

Loading and storing of data in a multibyte representation which does not

correspond to any native machine type presents some challenges. Typically,

loads can be performed as normal, using the next largest native type, followed

by the discarding of some loaded data, and the mapping of the remaining data

to a legal value in the representation being used for computation. However,

storing is a more difficult issue.

Since stored values do not correspond to native machine types, we cannot

simply use native store instructions and reorganize later, as we can with loads,

but must first pack the data to be stored into native types. This often leads to the

splitting of data elements across separate store operations, where the leading

bytes of an element are stored by one operation, and the trailing bytes are stored

by the next.

f24 f24 f24 f24

f24 f24 f24 f24

f24 f24 f24 f24

f24

f24

f24 f24

f32 f32 f32 f32 f32 f32 f32 f32

rounding

packing

128 bits

Figure 4-4: Layout of data in SSE vector registers before format conversion (top), after
rounding to the desired size (center) and the desired layout in memory (bottom).

Figure 4-4 shows graphically the arrangement of data in registers in 32-bit

floating point format after computation. The figure shows how data can be

rearranged into compact 24-bit representation. Note that the desired memory

layout requires data elements to straddle the boundary between vector regis-

ters.
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Our approach to storing values in reduced precision format works by pack-

ing all the rounded data elements to be stored consecutively in a set of vec-

tor registers, which are mapped to a set of consecutive, non-overlapping vector

memory movements. There are many approaches which can be used to accom-

plish this packing, but we follow in the vein of the previous chapter in using a

two-phase permute and blend approach. This approach is shown graphically

in the example in Figure 4-4. Vector permute instructions are used in the initial

phase to arrange the data in each register into the required compact memory

order. Next, the compacted vector registers are combined using vector blend

instructions until a number of fully packed vector registers result. These regis-

ters hold the packed data to be written with non-overlapping vector stores. The

trailing register of any such sequence of stores may not be full, in which case

various methods such as predicated writes or a read-modify-write sequence

can be used to ensure that the data is stored correctly.

4.5.2 Rounding

When numbers represented in IEEE-754 floating point format are used in com-

putations (such as addition and subtraction), the natural result of computation

is often a real number which is not exactly representable in the finite representa-

tion. In these cases, the standard specifies a way to round these numbers to the

nearest representable value using the encoding scheme previously outlined.

G R

S

Sign Exponent Mantissa

1 0 0

1 0 1

1 1 0

1 1 1

0 X X

P

Down

Tie

Up

Up

Up

Figure 4-5: Rounding to nearest even. Marked bit positions correspond to Preguard,
Guard, Round, and Sticky bits.
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Typically, floating point calculations are performed using more bits than

are present in the respresentation, and results are rounded to fit within the

constraints of the number format. With some care, we can exploit the native

capabilities of the hardware to perform rounding of any number of bits.

Figure 4-5 shows a 32-bit floating point number being rounded to our 24-

bit representation. As a measure to reduce error resulting from rounding of

results, the IEEE standard specifies rounding of the mantissa to the nearest even

number as the default rounding mode. Rounding to nearest even is expressed

in terms of particular bits around the boundary where bits are discarded. The

bit position which becomes the new least significant bit is known as the guard

bit, while the first bit lost is known as the round bit.

When the guard bit is zero, the number for which it is the least significant

bit is already even, and nothing needs to be done - the round bit and all less

significant bits are discarded. When the guard bit is one, if either or both of

the round or sticky bits are one, we must round up. The round bit is a single

position, but the sticky bit is the logical OR of all lower bits. In the case where

the round and sticky bits are both zero and the guard bit is one, we have a tie,

and must inspect the bit preceding the guard bit to decide whether to round up

or down.

This rounding mechanism is part of the IEEE-754 standard, and is therefore

implemented in all IEEE-754 compliant hardware systems. While we could

use a software implementation of this rounding approach, we can also utilize

the existing hardware facilities to perform rounding of any number of bits by

performing some simple arithmetic operations which have no effect other than

causing the desired rounding to happen. Some of these operations are summa-

rized in Appendix A.

Prior work on reduced-precision floating point data storage by Jenkins et

al. 2012 does not perform an explicit rounding step, but directly truncates val-

ues. This is equivalent to another standard IEEE-754 rounding mode, namely,

rounding towards zero. Jenkins et al. evaluate the error introduced by round-

ing towards zero and find it acceptable for their purposes. However, using
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our approach, the rounding step in Figure 4-4 can be implemented in any way

which is suitable for the needs of the application, including rounding towards

zero, and rounding to nearest even.

4.5.3 Treatment of Special Values

The IEEE-754 floating point standard has special values and ranges as previ-

ously outlined in Section 4.1. Rounding interacts in different ways with these

values and ranges, and behaviour which may be appropriate for some scenar-

ios may not be for others.

NaN values

NaN values represent the result of expressions of indeterminate form, which can-

not be computed, such as ∞−∞. The expected behaviour of format conver-

sion of a NaN value is a NaN value in the target format. However, NaN is not

a singular value, but a value range. NaN values occupy a range of bit patterns

distinguished by an exponent which is all 1s and any nonzero value in the man-

tissa. Since the mantissa is truncated by conversion to a shorter format, some

NaN values cannot be represented after down-conversion.

NaNs may be either signalling or non-signalling. Signalling NaNs cause an

invalid operation exception to be raised when they are produced, while quiet

NaNs do not raise any additional exceptions. However, in IEEE-754 binary

floating point formats, quiet NaNs are distinguished from signalling NaNs by

the value of the most significant bit of the mantissa, which is preserved by trun-

cation of up to 𝑀 − 1 bits.

Infinities

Positive and negative infinities are encoded with an exponent which is all 1s

and a zero mantissa. There are only two values in this class, which are distin-

guished by their sign. The expected behaviour of format conversion for infini-

ties is a correctly signed infinity in the target format.

96



Subnormal numbers

Subnormal numbers are distinguished by a zero exponent, and lack the implied

leading 1 in their mantissa. They represent numbers very close to zero. The ex-

pected behaviour of format conversion for subnormal numbers is slightly com-

plicated due to the issues of overflow and underflow. The closest value in the

target representation for a very large subnormal number may be a very small

normalized number (overflow), while the closest value for a very small subnor-

mal number may be zero (underflow). For subnormal numbers, rounding may

validly cause the class of the value to change, either by underflow to zero, or

by overflow to a small normalized number.

Normalized numbers

When a normalized number is being rounded, overflow to infinity occurs when

the rounded value is so large that the exponent is all ones after rounding (over-

flow). This is a natural consequence of conversion from a larger to a smaller

finite representation. However, when a normalized number is so small that its

exponent is all zeros after rounding (underflow), it does not get rounded di-

rectly to zero, but instead to a subnormal number. Underflow is gradual, and

a number will underflow to zero only when it is so small that both exponent

and mantissa are all zeros after rounding. Normalized numbers may therefore

naturally be rounded to several different classes of value. Very large positive or

negative numbers may go to infinity when rounded, and very small numbers

may become subnormal.

4.6 Performance Evaluation

This section presents the results of performance evaluation of vectorized code

generated by the technique presented. The approach we proposed in this chap-

ter for vectorized conversion to and from multibyte floating point representa-

tions was implemented in a library of pseudo-intrinsic functions, which inter-

nally use the platform’s vector intrinsics to perform the conversions.

97



We vectorized a selection of BLAS operations by hand, and evaluated their

performance when using reduced-precision memory representations versus na-

tive memory representations. Our objective is to assess the overheads of con-

version to and from reduced precision formats, and determine whether they

outweigh the overall performance gains from reducing memory traffic.

The rounding method used in these benchmarks was round towards zero.

4.6.1 BLAS Level 1 Evaluation

We vectorized several BLAS Level 1 programs using our approach to apply the

BLAS kernel operation to data in each of the supported multibyte floating point

representations presented in Table 4.1. Computation is performed using 32-bit

float for formats flyte16 and flyte24, and using 64-bit double for formats

f40, f48, and f56. We measured the total running time of programs perform-

ing the same number of internal float or double operations, with conversion

on loads and stores. In the figures, input size on the x-axis is the number of

elements in a BLAS vector (not to be confused with SIMD vectors).

We produced two version of every program, one “library version” which is

scalar code, and one “SSE version” which is vectorized using SSE operations.

For float the vectorization factor is always 4, while for double it is 2. Both

the scalar and vector versions of benchmarks perform exactly the same round-

ing operations. We would expect the vectorized double code to perform more

slowly than the vectorized float code, due to the difference in the vectorization

factor. This expectation is borne out in practice.

One feature which immediately becomes clear from experimentation is that

conversion is very costly when performed in scalar code using scalar data

movement (Figure 4-6a). For the scalar code versions of benchmarks, the over-

head of conversion is large enough to completely negate the performance gains

from the reduction in memory traffic for all the BLAS Level 1 kernels we used

in experiments.
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In-Place Operations

The BLAS Level 1 scal operation is an in-place transformation, which requires

format conversion on both loads and stores when using our approach. How-

ever, when vectorized, the availability of vector data reorganization instruc-

tions gives a significant boost to the performance of format conversion opera-

tions. Figure 4-6b displays this clearly, with the performance of BLAS in-place

vector scale on our flyte16 representation very nearly matching the perfor-

mance of BLAS vector scale on native double arrays.

Reductions

The min, max, and magnitude benchmarks perform a horizontal reduction. Due

to the access pattern, which reduces an array to a single value, format conver-

sion is only required on the load side, and the result is produced as a single

float or double value. The min and max benchmarks display a clear separa-

tion between the performance of float and double operations in the vectorized

code, which were only narrowly separated in the scal benchmark. In both of

these benchmarks, the performance of the vectorized code for our flyte16 and

flyte24 types exceeds the performance of native double operations, but is still

slower than native float operations.

The magnitude benchmark computes the 2-dimensional Euclidean norm of

the input vector, which is computationally a much heavier operation than min

and max. This benchmark shows a very tight clustering of execution times for

each of the representations corresponding to double and each of the represen-

tations corresponding to float, with error bars overlapping in many places.

This kernel performs enough computation to effectively hide the overheads of

format conversion, allowing us to perform the operation on arrays of flyte16

and flyte24 data as quickly as if they were stored in the native float repre-

sentation.

The dot− product benchmark also performs a reduction, but reduces two

arrays as opposed to the single array reduced in min, max, and magnitude. This

causes the program to create twice as much memory traffic as the other re-
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ductions. Even though the program is not computationally as heavy as the

magnitude benchmark, the savings on memory traffic from the use of reduced

precision data representations is enough that only a small penalty is incurred

for flyte16 and flyte24 representations versus float. The penalty incurred

for double representations is larger due to the increased overall memory traffic

and the decrease in vectorization factor from 4 to 2 due to the constraints of the

native hardware operations available.

4.6.2 BLAS Level 2 Evaluation

We evaluated our approach when applying the BLAS Level 2 matrix-vector

kernel SGEMV to data in our proposed multibyte floating point representations.

Similar to the experimental data for the Level 1 kernels, when format conver-

sion is performed in scalar code, the overheads very quickly offset the savings

on memory transfer (Figure 4-6a).

Using our vectorized approach, the performance gap is closed. Figure 4-6b

shows that the data formats corresponding to double result in such a large sav-

ings on memory transfers that the application runs faster despite the overheads

of format conversion. The data formats corresponding to float also show an

improvement, although it is less pronounced due to the lower overall volume

of data transferred.

Unrolling

Unrolling in combination with vectorization can be used to achieve even more

performance gain when the vectorized program is not making full use of the

memory system. Benchmark gemv− unroll2 from Figure 4-6b demonstrates

the result of unrolling the gemv benchmark so that two vectorized loop iter-

ations are performed together. The benchmark shows a clear separation be-

tween the datatypes, with the execution time for each datatype increasing with

the size of the type. This demonstrates that the saving on memory transfer time

is more than enough to compensate for the overhead of the format conversion

operations.
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Figure 4-6: Real-world benchmarks
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4.7 Related Work

4.7.1 The Approach of Jenkins et al.

A variant of this scheme has previously been outlined by Jenkins et al. 2012,

who introduce the notion of a component vector representation, which treats a

floating point number as a vector of multibyte components, which, when con-

catenated, form the original full-precision value.

Jenkins et al. treat an array of floating point numbers as a matrix, where

each row holds a single floating point number, and the columns of the matrix

partition the value along byte boundaries. By storing the matrix in transposed

order, truncated versions of every number are kept close together in memory,

enabling faster access to reduced precision variants of each number.

If access to the full precision version of data is required, an inverse transpose

operation can reconstruct the original data, though the cost of this operation

grows with the data set size.

By varying the width in bytes of each matrix column, Jenkins et al. can

statically vary the precision at which data is available. Dynamically altering

the precision is possible, but expensive, requiring an inverse transpose of the

data, followed by a subsequent transpose choosing different byte widths for

each column.

Jenkins et al. implement their transposed approach to reduced-precision

storage using MPI [32], and evaluate it in an extreme-scale computing context,

using large-scale scientific applications GTS [83], S3D [19], and XGC-1 [39].

Our approach has some material differences from the approach proposed

by Jenkins et al. First, we do not store data in column-transposed order, but

instead store the reduced precision values packed consecutively in memory in

the same order as in the original data layout.

Second, we support several different methods for reducing the precision

of data. The truncation approach of Jenkins et al. is equivalent to a standard

IEEE-754 round-towards-zero rounding mode. However, depending on the

needs of the application, different rounding strategies may be required. For
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example, fixed rounding (either always rounding up or rounding down) or

other standard modes such as rounding to nearest even. Our approach allows

the programmer to select the method for reducing precision according to their

needs.

Third, and perhaps most importantly, our approach does not use MPI, but

has a low-level vectorized implementation. Jenkins et al. identify a low-level

vectorized approach as a promising direction for future work. We demonstrate

that with this approach, we can obtain performance improvements from re-

duced precision representations using single-core SIMD execution on a general

purpose processor.

4.8 Conclusion

In this chapter, we propose a method for conversion of floating-point data be-

tween different resolutions that uses vectorization to accelerate the conversion

and amortize overheads across multiple data accesses. Our proposed approach

supports the use of fine-grained multibyte data formats, and is not limited to

the available native machine types. We also demonstrate that native hardware

capabilities can be used to support format conversions on non-native multibyte

data formats with very little overhead.

We show experimentally that reduced precision data representations can

be leveraged to improve the performance of floating-point computations out-

side of a supercomputing context using single-core SIMD operation on modest

shared memory multiprocessor systems. Our experimental evaluation is car-

ried out using a modified implementation of BLAS Level 1 and 2 to support

operation on reduced-precision floating point types. Internally, all operations

are performed using regular IEEE-754 floating point types, but inputs are con-

sumed and outputs produced in several reduced-precision representations. We

find that this approach can be supported with very low overhead, and in some

cases, can result in a speedup from the use of reduced precision types for stor-

age.
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Chapter 5

Conclusion and Final Thoughts

In this thesis, we have demonstrated that significant speedup can be obtained

from automatic vectorization of interleaved accesses at a variety of strides,

many of which have previously been considered to require irregular or hand-

tailored solutions. We have also shown that efficient vectorized code can be

generated to accelerate conversions between native datatypes and custom data

formats. Both of these pieces of research demonstrate that careful vectorization

of memory access can result in significant performance gain.

5.1 Future Work

Several directions for future work present themselves on foot of the research

presented in earlier chapters.

5.1.1 Generalized Interleaved Access

Possible extensions to our approach to interleaved access include relaxing the

constraint on equivalent unit sizes in an access group (Section 3.2). This would

enable our approach when dealing with complex array-of-structures memory

layouts where adjacent structure fields are of different widths. Analysis and

code generation for this use case appears significantly more involved, but it

seems plausible that performance gain in this scenario is possible. When deal-

ing, for example, with complex audio and video data formats, a robust compile-
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time mechanism for generating SIMD data layout transformations would re-

lieve programmers of a lot of implementation effort and hand-optimization.

5.1.2 Runtime Code Generation

It would also be interesting to investigate the potential for using our techniques

to generate code at run-time, for accesses whose stride is constant, but is not

known at compile time. As more and more high-level interpreted languages

add explicit SIMD features to their programming model [34], the demands

placed on JIT compilers regarding vectorization will surely grow. Systems have

already been proposed for generating vectorized code in JIT compilers [69, 56]

which could be extended with a run-time implementation of our code gen-

eration techniques to generate SIMD code for accesses with arbitrary stride.

Whether an implementation of the techniques proposed would be fast enough

for the Just-In-Time context is an open question.

5.1.3 Finer Granularity of Storage Formats

Although for practical reasons we restricted the storage formats we consider in

Chapter 4 to multiples of 8 bits in length, it is possible in principle to support

formats where any number of bits have been truncated, from a single bit up

to the length of the mantissa. It would be interesting to investigate support

for bit-granularity storage formats to increase the flexibility of the approach.

However, whether efficient vectorized code can be generated to support sub-

byte precision formats remains an open question.
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5.2 Final Thoughts

As the SIMD capabilities available on general purpose processors become more

advanced, and the SIMD width increases, it will become even more important

that compilers exploit these features to accelerate programs. In their review

of the capabilities of vectorizing compilers, Maleki et al. lament the fact that

many of the difficulties they encountered have published solutions, but those

solutions are not all present in any one compiler [49]. Frameworks like the

polyhedral model, which are designed to bring together many different trans-

formations within a single representation, seem like a step in the right direction

to reduce this fragmentation of techniques between different implementations.

Schaub et al. have found that as SIMD width increases, memory access,

which is already expensive in terms of time and energy, becomes less uniform

and less consecutive [72]. As processor manufacturers continue to add more

SIMD features, and programming languages add more explicit-SIMD program-

ming constructs, applications will place increasing demands on SIMD hard-

ware. Although many patterns of memory access beyond strided array ac-

cess are already handled by special-purpose compilation systems such as SPI-

RAL [27], given the findings of Schaub et al. and the global trend of increasing

SIMD width, it seems likely that general-purpose vectorizing compilers will be

expected to generate performant SIMD code for increasingly difficult memory

access patterns.
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Appendix A

Identities for Rounding

We state several identities on floating point numbers represented in IEEE-754

binary formats which have the effect of rounding a floating point value 𝑣 to the

nearest representable value 𝑣𝑟 with the same exponent, but a mantissa trun-

cated by a given number of bits, 𝑏. These identities make use of the fact that

an implementation of IEEE-754 naturally performs rounding after certain arith-

metic instructions to obtain a representable result. Although algebraically they

are identities, these computations have the side-effect of causing results to be

rounded to a particular bit position.

None of the identities presented are totally correct, but the mode of their

incorrect behaviour is described in the Behaviour subsection for each identity.

All of the identities work correctly for regular normalized and subnormal num-

bers, but they may mistreat infinities and NaN values. In addition, some of the

identities cause more overflows than others; this is also addressed in the de-

scription of the identities.

A.0.1 Arithmetic Rounding I

𝑣𝑏 = 𝑣 × 2𝑏

𝑣𝑟 = 𝑣 + 𝑣𝑏 − 𝑣𝑏
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This identity hinges on the requirement that, specifically, the upper 𝑀 − 𝑏 bits

of the 𝑀 -bit mantissa, which will form the truncated mantissa, are correctly

rounded. The structure of the IEEE-754 binary floating point representation

means that to multiply a number by a power of two, only the exponent of the

value (which encodes a power of two by which to multiply the mantissa) needs

to be changed. When two values are added which differ only in their exponent,

the mantissa of the smaller value is effectively shifted to the right by a number

of bits equivalent to the difference in exponents during addition. When the

result is rounded, some bits are lost to round-off error. By choosing 𝑏 as the

power of two, we ensure that the addition 𝑣 + 𝑣𝑏 loses at most as many bits as

we plan to truncate. After addition, the correctly rounded, normalized value

𝑣 + 𝑣𝑏 then has 𝑣𝑏 subtracted from it, which has the effect of shifting the radix

point to the left so that the high bits of the original mantissa, which are now

correctly rounded, are back in their original place. We obtain a value close

to the original value, but with 𝑏 mantissa bits rounded off, and the remaining

mantissa bits correctly rounded by the implementation.

Behaviour

While this approach handles subnormal numbers well, the multiplication by

2𝑏 causes large positive and negative normalized numbers to overflow to in-

finity. Although correct, if overflows are a concern for the application, other

approaches proposed may result in fewer overflows. The approach also causes

infinities to be rounded to a NaN value, since the operation, when 𝑣 = ±∞,

causes the mantissa to become nonzero after rounding.

A.0.2 Arithmetic Rounding II

To reduce the space of values for which overflow occurs at the multiplication

step, we can choose a different identity which multiplies by a much smaller

number than 2𝑏.
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𝑣𝑏 = 𝑣 × (1 + 2−𝑏)

𝑣𝑟 = (𝑣𝑏 − 𝑣)× 2𝑏

This approach exploits the fact that underflow is gradual in IEEE-754, meaning

that a number which underflows will become subnormal, and finally under-

flow to zero, as opposed to overflow, which causes the result to immediately

become infinity. It is acceptable that a very small number may underflow dur-

ing rounding and be rounded to a large subnormal number. Such a number

can still be used in computation to produce a result. However, a number which

overflows to infinity during rounding cannot be used to produce a meaningful

result from computation.

Behaviour

Although this approach causes fewer overflows at the multiplication step, due

to the factor used being much smaller than 2𝑏, it still causes infinities to be

rounded to NaN values.

A.0.3 Arithmetic Rounding III

To avoid the overflow of numbers entirely, we can make sure that we initially

multiply by a number which is less than 1, and so the original value is never

increased. This biases the rounding process towards underflow, and leads to

higher underestimation error than the previously proposed approaches. How-

ever, we can avoid infinities resulting from rounding.

𝑣𝑏 = 𝑣 × (1− 2−𝑏)

𝑣𝑟 = (𝑣 − 𝑣𝑏)× 2𝑏
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Behaviour

Although this approach results in fewer overflows than the two approaches

previously stated, it causes more underflows. In addition, it still mistreats in-

finities, causing them to be rounded to NaN values.

A.0.4 Arithmetic Rounding IV

A very simple rounding approach is to perform an unsigned integer addition of

a constant consisting of 𝑏− 1 1s in the low order bits and 0 in all higher bits.

𝑣𝑟 = 𝑣 + (2𝑏 − 1)

Behaviour

This approach is attractive because of its simplicity. However, unlike the pre-

viously proposed approaches, we are not exploiting the native floating point

hardware to perform rounding to nearest even, which results in ties being

rounded down. In addition, infinities are still incorrectly rounded to NaN val-

ues by the approach.
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