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Volume data is widely used in scientific and medical research, and volume visu-
alization techniques aim to provide effective and flexible methods for analyzing and
exploring complex structures in such data. However, obtaining clear visualization of
features of interest in volume data is still a major challenge. One time-consuming and
unitintuitive part of the process is the specification of an appropriate transfer function,
which determines the classification and visibility of features. In practice, this is typi-
cally achieved using a trial-and-error approach: modifications are made to the transfer
function and changes in the resulting visualization are carefully observed in order to

inform further modifications to the transfer function.

X



This thesis proposes and investigates novel automated optimization techniques for
transfer functions, in order to emphasize features of interest. These techniques exploit
information content associated with volume data and objective measures based on
visual saliency and visibility in volume visualization.

We describe a global optimization and two user-driven refinement methods for mod-
ulating transfer functions in order to assist the exploration of volume data. This op-
timization is dependent on the distribution of the scalar values of the volume data
set and is designed to reduce general occlusion and improve the clarity of layers of
structures in the resulting images.

In addition to view-independent information, we propose a novel view-dependent
measure called visibility-weighted saliency in order to assist users in choosing suitable
viewpoints and designing effective transfer functions to visualize the features of interest
in a volume rendered images. This measure is based on a computational measure of
perceptual importance of voxels and the visibility of features in volume rendered images.

Subsequently, we present an automated transfer function optimization method
based on the visibility-weighted saliency metric. This method takes into account the
perceptual importance of voxels and the visibility of features, and automatically ad-
justs the transfer function to match the target saliency levels specified by the user. In
addition, a parallel line search strategy is presented to improve the performance of the
optimization algorithm.

Finally, we describe a multivariate visualization approach which modulates focus,
emphasizing important information, by adjusting saturation and brightness of voxels

based on an importance measure derived from temporal and multivariate information.
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Glossary

Entropy
Entropy (or Shannon entropy) is a basic concept in information theory to measure
the uncertainty of a random variable.

Feature
A feature in a volume is a subset of voxels in the volume. In this thesis, features
are specified by intensity ranges in transfer functions.

Multivariate volume data

Multivariate volume data are volume data that contain multiple variables in each
voxel, e.g. a data set containing variables from multiple modalities such as CT,
MRI, and PET.

Saliency

Saliency (or visual saliency), for images, is the distinct subjective perceptual
quality which makes some regions in an image stand out from their neighbors
and immediately grab the user’s attention.

Saliency field

A saliency field for a volume data set represents the saliency (see above) of each
voxel in the volume data set. This field itself could be represented in the form of

a volume data set.

Saliency model

xxi



A saliency model (or saliency map) is a computational model that integrates the
normalized information from feature filters for visual properties such as color,
intensity and orientation into one global measure of visual saliency.

Saturation
Saturation is a concept in color theory, which refers to the perceived purity or
vividness of a specific color.

Time-variant volume data
Time-variant volume is a form of data that typically consists of a series of time-
steps (frames) of volume data representing how a system of model changes over
time.

Transfer function
Transfer functions are mappings that assign visual properties to volume data.
This is a recurrent component of most volume visualization techniques.

Visibility
The visibility of a voxel is the contribution of a voxel to the volume rendered
image, which is determined by both the opacity of this voxel and the opacity of
those voxels in front of the current voxel in the view direction.

Visibility field
A visibility field for a volume data set represents the visibility of each voxel in
the volume data set. This field itself could be represented in the form of a volume
data set.

Visibility histogram
Visibility histograms summarize the distribution of visibility of voxels from a
given viewpoint. They are feedback mechanisms of volume visualization.

Volume data

Volume data are discretely sampled along 3D grids and contain scalar values that
are usually acquired from medical imaging devices such as CT or MRI machines

or computed from scientific simulations such as fluid simulations.

xxii



Voxel

Elements in volume data sets are called voxels, which are analogues to pixels in

2D images.
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Chapter 1
Introduction

Volume visualization is an active branch of scientific visualization concerned with ex-
tracting meaningful information from volume data (3D discretely sampled data sets)
using interactive graphics and imaging. The study of volume visualization involves
volume data representation, modeling, manipulation and rendering [8] and it aims,
in particular, to facilitate visual exploration of 3D structures allowing users to more
deeply understand and analyze volume data sets. First introduced by Levoy [9] in
1988, volume visualization has been widely used in various sciences to create insightful
visualizations from both simulated and measured data. However, recent advances in
volume data acquisition and scientific simulations have led to dramatic increases in
both size and complexity of data sets, which present new and ongoing challenges to be
addressed [10].

The rendering of volume data requires every sample value (also called voxel, which
is a volume element or volumetric pixel) to be mapped to visual properties (e.g. opacity
and color). This mapping is done with a transfer function, which can be a simple ramp,
a piecewise linear function or an arbitrary table. The design of an effective transfer

function (see Section 2.2 for details) is essential for visualizing volume data.

With volume rendering, both the exterior and interior of a volume data set can
be revealed semi-transparently by specifying appropriate transfer functions. However,
because of 3D occlusion between structures and the indirect control over the final visu-
alization, it is time-consuming and unintuitive for users to specify appropriate transfer

functions. In practice, this is typically achieved using a trial-and-error approach: mod-



ifications are made to the transfer function and changes in the resulting visualization
are carefully observed in order to inform further modifications to the transfer func-
tion [11]. The adjustments users make in transfer function specification are based on

subjective perception of important features in a certain viewpoint.

1.1 Motivation

Objective measures such as voxel information [12], visibility histograms [13] [5], fea-
ture visibility [14], and visual saliency models [15] such as saliency maps [16] [17] for
2D images and saliency fields [18] for volumetric data, provide the basis for powerful
feedback mechanisms in volume rendering. In current volume rendering systems, ap-
propriate transfer functions are often obtained by trial-and-error [19]. It is desirable
to take advantage of these objective measures in order to automate the specification of
transfer functions for emphasizing features of interest in volume visualization.

The main goal of our research is to investigate the optimization of visualization
parameters (in particular transfer functions) with information derived from volume
data based on feedback mechanisms from the volume rendering process. We hypothe-
size that the importance of voxels (sample values in volume data) are associated with
their information content. Therefore, the transfer functions of volume visualization
can be optimized based on the information inherent within the data sets and user in-
put which indicates the user’s interest. Furthermore, we hypothesize that combining
automated optimization techniques with feedback mechanisms such as visibility and
visual saliency can provide a more intuitive means for obtaining clear visualization of

features of interest in volume data.

1.2 Scope

The focus of this thesis is on methods for enhancing user understanding of features of
interest in volume visualization by optimizing transfer functions based on information
derived from volume data (e.g. entropy and saliency of voxels). In addition to the
information inherent in the volume data, view-dependent information (e.g. visibility of

voxels) obtained in the volume rendering process is also exploited in the optimization



of transfer functions.

In this research, we focus on the visualization of volume data sets, particularly
the scalar field data acquired from medical imaging (e.g. CT and MRI scans) and
generated from flow simulations (e.g. computational fluid dynamics).

The features of interest in a volume data set are specified by initial user-defined
transfer functions. Therefore, manual segmentation by domain experts or computation-
ally expensive automatic segmentation techniques are not in the scope of this thesis.
Moreover, this thesis focuses on direct volume rendering techniques. Indirect volume
rendering techniques, which require the reconstruction of 3D surfaces, are not in scope
of this thesis.

1.3 Contributions

We present a transfer function refinement approach, which exploits the entropy of
voxels derived from volume to equalize the opacity transfer function, in order to reduce
general occlusion and improve the clarity of layers of structures in the resulting images.
Moreover, this approach assists the user in exploring and enhancing features of interest
by interactively specifying different priority intensity ranges.

In addition to view-independent information (i.e. entropy of voxels), we propose
visibility-weighted saliency for measuring the view-dependent saliency of features of
interest for volume visualization. This metric aims to assist users in choosing suitable
viewpoints and designing effective transfer functions to visualize the features of interest.
(The formal definition of a feature is provided in Section 4.3.1.)

Subsequently, we describe an automated transfer function optimization method
based on the visibility-weighted saliency metric. This method takes into account the
perceptual importance of voxels and the visibility of features, and automatically adjusts
the transfer function to match the target saliency levels specified by the user. In
addition, a parallel line search strategy is presented to improve the performance of the
optimization algorithm.

Finally, we develop a novel visualization approach which modulates focus, empha-
sizing important information, by adjusting saturation and brightness of voxels based

on an importance measure derived from temporal and multivariate information.



1.4 Summary of Chapters

The rest of this thesis is structured as follows:

Chapter 2 provides an overview of the background and related work in the field of
volume visualization, with particular focus on the design and optimization of transfer
functions.

Chapter 3 presents a novel approach for transfer function refinement, which is an
optimization of transfer functions based on the distribution (i.e. the histogram) of the
volume data. This optimization also allows the user to prioritize specific regions by
generating weightings for transfer function components based on user-selected regions.
The work described in this chapter has been published as a short paper in Eurographics
2014 [20] and as a full paper in Eurasia 2014 [21].

Chapter 4 describes visibility-weighted saliency as an important measure of visual
saliency of features in volume rendered images, in order to assist users in choosing
suitable viewpoints and designing effective transfer functions to visualize the features of
interest. Visibility-weighted saliency is based on a computational measure of perceptual
importance of voxels and the visibility of features in volume rendered images. The
visibility-weighted saliency metric has been published as a full paper in Computer
Graphics & Visual Computing (CGVC) 2015 [22].

Chapter 5 provides a detailed description of an automated transfer function op-
timization approach based on the visibility-weighted saliency metric, which indicates
the perceptual importance of voxels and the visibility of features in volume rendered
images. The work described in this chapter has been presented as a poster at EG /
VGTC Conference on Visualization (EuroVis) 2016 [23].

Chapter 6 outlines a novel visualization approach which modulates focus, empha-
sizing important information, by adjusting saturation and brightness of voxels based on
an importance measure derived from temporal and multivariate information. The work
described in this chapter has been presented as a poster at EG / VGTC Conference
on Visualization (EuroVis) 2015 [24].

Chapter 7 summarizes our contributions and provides a discussion of possible av-

enues of future work.
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Chapter 2

Related Work

In this chapter, we present a brief review of the literature related to the concepts that

we discuss in this thesis.

2.1 Volume Rendering

Volume rendering is used to display a two-dimensional (2D) image of three-dimensional
(3D) data set. It can be considered as a process of projecting a 3D volumetric data set
to a 2D image [25]. The majority of volume data sets are discretely sampled along 3D
grids and contain scalar values usually acquired from medical imaging devices such as
CT or MRI machines or computed from scientific simulations such as fluid simulation.
Volume data sets have the form of 3D arrays and elements in the data sets are called
voxels, which are analogues to pixels in 2D images. Figure 2.1 illustrates how voxels
(cubic elements) constitute a volume data set. An example of volume rendering is
provided in Figure 2.4, which shows a sliced image and a volume rendered image of a
head data set.

Traditionally, volume rendering techniques are categorized as either direct volume
rendering or indirect volume rendering. Indirect volume rendering is actually surface
rendering. It is done by extracting surfaces (polygon meshes) from volume data sets
and rendering these surfaces to the screen. A typical method for extracting polygonal
meshes from volume data is Marching Cubes [26].

In contrast to surface rendering, direct volume rendering displays images of a 3D

7



Figure 2.1: Voxels (cubic elements) constituting a volume data set [2].

Figure 2.2: A sliced image Figure 2.3: Volume ren-
of the data set dering of the data set

Figure 2.4: The VisMale data set [3]



volume data set as a complete block of data without extracting geometric surfaces from
the data [9]. Direct volume rendering consists of a variety of techniques for generating
images from 3D scalar fields. Since indirect volume rendering is not in the scope of this
thesis, direct volume rendering is henceforth referred to as volume rendering within
this thesis.

Volume rendering was initially used in medical imaging, and later became an es-
sential technique in many sciences for portraying complex phenomena such as clouds,
water flows, and molecular and biological structure [27]. Volume visualization is a
synonymous term for volume rendering, sometimes with emphasis on the effective ex-
pression of data rather than the realism of rendering.

Motivated by scientific visualization and medical imaging, where volume data is
often acquired by devices such as CT and MRI scanners, or numerical simulation of
natural phenomena, researchers have developed a wide variety of techniques to improve

the performance and enhance the perception of volume visualization [28].

2.1.1 Volume Ray Casting

Volume ray casting is a volume rendering technique that can produce very high quality
results. Since the advent of programmable graphics processing units (GPU) and 3D
textures, volume ray casting techniques have been able to exploit the power of GPUs to
achieve real-time performance. GPU-based volume ray casting has become one of the
most popular techniques for visualizing volume data [29]. However, the sizes of volume
data are increasing much faster than the sizes of memory available on GPUs [10].
Various scalable volume rendering methods [30] [31] have been proposed to address the

challenge of dramatically increasing volume data sizes.

2.1.2 Splatting

Splatting is a volume rendering technique that trades quality for speed by combining
volume projection with a sparse data representation [32]. In splatting, only voxels
within certain intensity ranges need to be projected and the projection is done with
efficient rasterization schemes [33].

Typical splatting approaches classify and shade voxels before the projection. Subse-

quently, each shaded voxel is projected to the screen using a 3D interpolation kernel. A



2D projection of the kernel is called a splat or footprint. Each voxel’s splat is weighted
by its color and opacity specified by the transfer function. Because of the pre-shaded
scheme, projecting these fuzzy splats leads to a blurry appearance of object boundaries

in the resulting image.

2.1.3 Shear Warp

The shear warp technique [34] consists of three steps. Firstly, a 3D shear is applied to
the volume data in directions parallel to the data slices. Secondly, the sheared data
is projected to a distorted intermediate image in 2D. Lastly, the intermediate image is

warped to produce the final rendered volume image.

Shear warp is relatively fast in software implementation. However, compared to
volume ray casting, shear warp has less accurate sampling and potentially worse image

quality.

2.1.4 Texture-Based Volume Rendering

Texture-based volume rendering techniques render slices in the volume as texture-
mapped polygons with the opacity and color of voxels determined by the transfer
function and interpolation and then merge the polygons from back to front in com-
positing operations support by the hardware [35]. Because graphics cards are fast at
texturing, texture-based volume rendering [36] can efficiently render slices of volume

data with the texturing capability of graphics cards.

In 2D texture mapping approaches, slices are aligned with the original volume data.
While in 3D texture mapping approaches, slices are aligned with the viewing plane and
directly sampled from the 3D volume, which requires graphics hardware support for
3D textures [37].

Texture-based volume rendering techniques can produce images of reasonable qual-
ity. However, there may be noticeable transitions when the volume is rotated interac-
tively [38]. Artifacts may also be noticeable at the edge of the image if the field-of-view

angle is relatively large and the proxy geometry is based on planar slices [39].
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2.1.5 Illustrative Volume Visualization

[lustrative visualization, as a novel category of visualization, aims to visualize data in
a clear and understandable way using techniques from traditional hand-crafted illus-

trations. Illustrative visualization has been successfully employed in medical visualiza-

tion [40] [41] [42].

[ustration-based styles are believed to be effective in conveying information. Re-
searchers in the field of computer graphics and visualization have applied illustration-
based styles in order to produce effective and expressive visualization. Stompel et
al. [43] introduced feature enhancement techniques, such as strokes-based, temporal
domain enhancement, to enhance time-varying data obtained from the field of compu-
tational fluid dynamics (CFD).

In scientific visualization, features of interest may often comprise inner structures of
the data sets, e.g. visualizing internal organs in anatomical data. In addition, depicting
only the features of interest is not sufficient, because the user is often interested in

exploring the features within the context of the whole volume data.

Inspired by techniques from illustration, various approaches have been proposed to
reveal different levels of structures simultaneously in volume data sets. Two-level vol-
ume rendering [44] [45] [46], also related to focus and context visualization [47] [48] [49],
is a method of merging two volume rendering techniques into a single rendering. A
more detailed rendering method is used to emphasize the features of interest while the
background information is kept in a de-emphasized form for contextual reference. This
method can be useful when inner structures need to be rendered along with semitrans-
parent outer parts. Cutaway techniques [50] [51], similar to those used by technical
illustrators, involve selectively removing a spatial segment of the volume and can be
used make inner structures clearly visible while preserving a sense of their spatial rela-
tionship with the surrounding material. In exploded views [52], the occluding objects
are decomposed and displaced so that the internal details are visible. In contrast,
structure extrusion techniques [53] make features of interest visible by extruding them

off the clipping plane and preserving the context by adapting the extruded region.
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Figure 2.5: Slight changes in the transfer function causes significant difference in the
resulting images [4]

2.2 Transfer Functions

Volume data are 3D entities with information inside them, but the data might not
consist of surfaces and edges. Because of the lack of explicit geometric information,
it is a major challenge to provide clear visualizations of the structures contained in a
volume data set. Volume data may be rendered directly by mapping scalar values to
visual properties (e.g. opacity and color), or an intermediate geometric representation
may be extracted using techniques like Marching Cubes [26] and then rendered as
geometric surfaces. The mapping, which assigns visual properties to volume data, is
called a transfer function.

Transfer function specification is an essential part in volume visualization. A simple
one-dimensional transfer function is a mapping from scalar values to RGB and alpha
values. The resulting visualization largely depends on how well the transfer function
captures features of interest [54]. However, it is non-trivial to obtain an effective
transfer function. The specification is often achieved by a trial-and-error process,
which involves a significant amount of tweaking of color and opacity. Figure 2.5 shows
how slight changes in the transfer function lead to significant changes in the resulting
images. The adjustment of transfer functions is unintuitive and often difficult.

In practice, major factors that have a great influence on transfer function set-

ting are: partial volume effect !, non-uniform distribution of materials and noise [56].

'During the acquisition of data, the finite resolution causes contributions of different materials
combined into the value of a single voxel. This is generally referred to as the partial volume effect,
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Among these, two challenging problems that need to be tackled could be elaborated
as follows: firstly, for volume data sets, e.g. those obtained by MRI and CT, different
tissues are represented in similar or even overlapping ranges of scalar values; secondly,
interesting interior structures are often partly or completely occluded by surrounding
tissue. Consequently, feature detection and understanding volume data become a big
challenge.

These problems are handled by transfer functions, which have played a crucial role
in volume visualization. Good transfer functions reveal important structures in the
data without obscuring them with less important regions. The design of transfer func-
tions to generate informative visualizations has been a significant challenge addressed
by a number of researchers [19]. Various strategies have been proposed for transfer
function design [39]. However, features with overlapping intensity intervals are dif-
ficult to extract and visualize with 1D transfer functions. When one intensity value
or interval is associated with multiple boundaries, a 1D transfer function is unable to
render them in isolation [54].

Classical approaches to this problem try to detect boundary information between
tissues by introducing derived attributes such as first and second-order derivatives to
isolate materials [57] [54]. In this case, the transfer functions are extended to multi-
dimensional feature spaces. The introduction of multidimensional transfer functions
alleviates the material separation problem. Instead of classifying a voxel based on a
single scalar value, multidimensional transfer functions allow a voxel to be classified
based on a combination of values. Multidimensional transfer functions are very effec-
tive means to extract materials and their boundaries for both scalar and multivariate
data. Multidimensional transfer functions are discussed in more detail in the next
subsection.

In addition, various user interfaces were proposed to simplify the design of mul-
tidimensional transfer functions [58] [59]. However, the parameter spaces of multidi-
mensional transfer functions are more complex (compared to 1D transfer functions)
and thus introduce problems such as requirement for large amount of user interaction,
missing precision or the interaction being complex and unintuitive [60].

Another strategy is based on the selection of rendered images. This strategy lets

the user select one or more favorite images to guide the further search of transfer

which results in blurred boundaries and hampers the detection of small or thin structures. [55]
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functions [61] [62]. More recent approaches introduced visibility [5] [63] or measures
derived from information theory [64] [65] [66] [67]. Zhou et al. studied the combination
of 2D transfer functions with occlusion and size-based transfer functions [68].

Bruckner and Groller introduced the concept of style transfer functions [69], which
aim to produce more comprehensible images by using transfer functions that map input
values to different non-photorealistic rendering styles.

Despite the advances of these methods, transfer function design for volume render-
ing is still an open research problem. The creation of transfer functions needs to be
simplified and the functionality of transfer functions needs to be extended in order to
realize the full potential of volume rendering. For instance, more sophisticated transfer
functions are required in medical imaging, in order to address various domain specific
visualization problems [70].

Moreover, transfer function specification in general is an unintuitive or even monotonous
task for average users, because it usually involves an iterative process of trial and error.
For instance, there are skin and fat tissues around the brain, and their intensities lie
in the same range as the brain. If we want to visualize the brain by setting the scalar
value range of the brain to opaque, the surrounding skin and fat tissue will also become
opaque. Then the brain will be occluded by the surrounding soft tissues which make
it difficult to explore the brain structure. Common approaches to this problem are to
introduce explicit segmentation of structures of interest before the volume rendering
process [71]. In fact, the process of applying the transfer function could be interpreted

as a segmentation problem.

Multidimensional Transfer Functions

Multidimensional transfer functions [11], which are mappings from intensity and other
variables, such as first and second derivatives to color and opacity, have demonstrated
their effectiveness in distinguishing boundaries between materials in volume data.

In volume data, boundaries are regions between areas of relatively homogeneous
material. It is difficult to detect boundaries because different materials often consist
of overlapping intensity intervals. To address this problem, multidimensional transfer
functions used derived attributes such as gradient magnitudes and second derivatives

along with scalar values, in order to detect transitions between relatively homogeneous
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areas [57] [4]. In this case, the transfer functions are extended to multidimensional
feature spaces. For higher-dimensional transfer functions, the generation of transfer
functions could be memory intensive and costly to compute, and the interaction of
transfer functions are more complex and unintuitive as the dimensionality becomes
higher.

Therefore, two-dimensional (2D) histograms are often used in multidimensional
transfer functions [72]. An example is a 2D histogram with axes representing a subset
of the feature space (e.g. scalar value vs gradient magnitude), with each entry in the
2D histogram being the number of voxels for a given feature space pair. Even in the
case of two-dimensional transfer functions, a considerable amount of user interaction
is required in order to come up with meaningful results [60].

As one of the most common representations of voxel distributions, histograms are
used in transfer function design to assign visual properties to voxels [19]. Bajaj et al.
[73] introduced the contour spectrum to determine voxels corresponding to important
isosurfaces in the volume. To overcome the difficulty of using one-dimensional transfer
functions (solely based on scalar values stored in the voxels) to extract inner structures
of interest from the volume data, Levoy [9] proposed the use of gradient magnitude to
emphasize strong boundaries between different tissues.

The introduction of gradient magnitude as a data metric aims to detect voxels that
are of large deviation compared with other voxels by approximating gradient magni-
tude at each sample point in the volume, because the exact distribution of data is
unknown due to information lost in the discrete sampling process. Kindlmann and
Durkin [57] extended Levoy’s work [9] by introducing a higher dimensional transfer
function domain based on gradient magnitudes and second derivatives. To emphasize
different structures, Kniss et al. [11] presented a technique for interactively manipu-
lating 2D histograms of gradient magnitudes and data values. In their work, material
boundaries appear as arcs in the 2D histogram and can be selected with interactive
widgets [54]. Kniss et al. [74] presented Gaussian transfer functions, which are suitable
for the classification of narrow features in multidimensional domains.

Kindlmann et al. [75] proposed curvature-based transfer function to enhance the
expressive and informative power of volume rendering. In their approach, volume data
is rendered with contours to exhibit constant thickness in image space.

Sereda et al. [76] proposed LH histograms for improving the identification and selec-
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tion of boundaries in 2D intensity-gradient transfer functions. Subsequently, Sereda et
al. [77] presented a clustering method based on the LH histograms for semi-automatic
transfer function design.

Haidacher et al. [78] described the statistical transfer function space, which is based
on statistical properties such as mean and standard deviation of the data values (e.g.
intensity and gradient magnitude for 2D transfer functions) in the neighborhood of each
voxel. This approach can reduce the influence of noise and enhance visual appearance
in volume rendering.

Wang et al. [79] described a clustering approach on 2D density plots for automatic
transfer function design. Their approach allows the user to interactively explore the
pre-computed clusters in the feature space and merge or remove uninterested features
to improve visualization quality. Ip et al. [80] described a multilevel segmentation
technique that mimics user exploration behaviors by recursively segmenting intensity-
gradient histograms.

There are other multidimensional transfer function approaches, such as spatialized
gradient-based transfer functions [81], distance-based transfer functions [82], size-based
transfer function [83], texture-based transfer functions [84] [85].

In addition, parallel coordinates and dimensionality reduction algorithms (e.g. prin-
cipal component analysis) have been employed to support the design of transfer func-

tions in multidimensional parameter spaces [86] [87] [88].

2.3 Automated Transfer Function Generation

Researches have proposed various approaches to automate the design of transfer func-
tions and provide acceptable suggestions which can be further edited by users. How-
ever, the usefulness of a transfer function mostly depends on the underlying question
the user wants to answer. Moreover, users’ tasks vary drastically from one domain to
another. Therefore, most techniques work semi-automatically and very few techniques
consider domain knowledge in the design process [89].

He et al. [90] addressed transfer function exploration as a parameter optimization
problem and presented an approach to assist the user in exploring appropriate transfer
functions using stochastic search techniques starting from an initial population. An-

other strategy is further tuning transfer functions based on user selection of favorable
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rendered images as feedback, in order to achieve desired results. Marks et al. [61] pre-
sented Design Gallery, which lets the user select one or more favorite images to guide
the further search of transfer functions. Rezk-Salama et al. [91] presented high-level
semantics to abstract parametric models of transfer functions in order to automatically
assign transfer function templates.

Wu and Qu [62] developed a method that uses editing operations and stochastic
search of the transfer function parameters to maximize the similarity between volume-
rendered images given by the user. Maciejewski et al. [72] described a method to
structure attribute space in order to guide users to regions of interest within the transfer
function histogram. Chan et al. [92] developed a system to optimize transparency
automatically in volume rendering based on Metelli’s episcotister model to improve
the perceptual quality of transparent structures. Correa and Ma [5] proposed the
visibility histogram to guide the transfer function design.

Zhou and Takatsuka [93] presented an automated approach for generating transfer
functions, which can depict inclusion relationships between structures in the volume,
and maximize opacity and color differences among the structures. This approach uses a
residue flow model based on Darcy’s Law to differentiate the distribution of opacity be-
tween branches of a contour tree. Selver and Giizelig [94] introduced a semi-automatic
method for transfer function initialization and optimization using volume histogram
stacks and radial basis function networks.

Inspired by how physicians interact with volume data to extract clinically relevant
information, Lathén et al. [95] proposed an optimization method for shifting transfer
function presets, in order to better visualize contrast enhanced blood vessels.

Maciejewski et al. proposed a non-parametric method to generate transfer functions
[72]. In their later work [96], instead of using the attributes, metrics representing

relationships and correlations in the underlying data were used in the method.

2.4 Visibility Histograms and Visibility-Driven Trans-

fer Functions

Visibility has been studied in measuring viewpoint quality [12] and enhancing ghost

and cutaway views [97] in volume visualization.
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In traditional transfer function design, the visibility of structures revealed in vol-
ume rendering is a consequence of adjusting transfer function parameters, rather than
a design parameter [98]. Correa and Ma [5] introduced visibility histograms to guide
transfer function design for both manual and automatic adjustment. Visibility his-
tograms (Figure 2.6), which summarize the distribution of visibility of voxels from a
given viewpoint, are powerful feedback mechanisms of volume visualization [13]. Vis-
ibility histograms encode the information required to measure the efficacy of transfer
functions and are advantageous in guiding and automating the manipulation of transfer
functions.

Wang et al. [6] extended the previous work on visibility histograms and proposed
a feature visibility metric, in order to measure the influence of each feature to the
volume rendered image. As shown in Figure 2.7, their approach allows the user to
directly specify the desired visibility for the features of interest, and subsequently the
opacity transfer function is optimized using an active set algorithm [99].

Ruiz et al. [66] proposed an information-theoretic framework which obtains opacity
transfer functions by minimizing the Kullback-Leibler divergence between the observed
visibility distribution and a target distribution provided by the user. Later, Bramon
et al. [67] extended this approach to visualize multimodal volume data.

Cai et al. [100] described a method to derive opacity transfer functions by minimiz-
ing the Jensen-Shannon divergence between the observed visibility distribution and a
user-defined target distribution. The target distribution can be defined using Gaussian
function weighting.

In addition, various methods were proposed regarding the use of visibility for en-
hancing different aspects of volume visualization. Marchesin et al. [101] introduced
a volume rendering technique that manipulates the voxel opacity values in a view-
dependent way, in order to enhance visibility of internal structures in the volume data
set. Bronstad et al. [102] described local opacity transfer functions with feature de-
tection along the ray profile implemented on the GPU. In their approach, visibility
histograms are employed to access the performance of the feature detection algorithm.

Jung et al. [103] presented a dual-modal visualization method, which uses visibility
metrics to provide visual feedback regarding the occlusion caused by the volume data
in one modal on the other modal. Jung et al. [104] extended visibility histograms to

multimodal volume visualization. They demonstrated the use of visibility histograms
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together with region of interest segmentation was effective in visualizing PET-CT vol-
ume data sets.

Instead of computing the visibility of all voxels, Zheng et al. [105] employed local
visibility histograms to ensure both the features of interest and contextual information
are visible in multimodal volume visualization. Schlegel and Pajarola [106] proposed a
visibility-difference entropy metric. They presented an automated approach using this
metric for generating a set of transfer function candidates with high ratings and are
strongly distinct in what they reveal.

Qin et al. [107] presented the voxel visibility model as a quality metric for transfer
function design. The voxel visibility model is a mapping function from data attributes
of voxels to their visibility attributes. Instead of specifying transfer functions, this
approach allows users to directly adjust the visibility of each voxel, and then the
corresponding opacity transfer functions can be obtained by minimizing the distance
between the desired voxel visibility distriubtion and the actual voxel visibility distri-

bution.

2.5 Multivariate Volume Visualization

Analyzing multivariate data is an importance and challenging topic in many scientific
disciplines. For instance, applications in medicine, engineering and meteorology often
require analyzing multivariate data. However, multivariate volume data sets are usually
mapped to a scalar dimension and visualized separately with standard volume rendering
techniques. Because of the disparity in data resolutions and higher computation and
storage requirements, simultaneous visualization of multiple variables in volume data
is more challenging than standard volume visualization [108].

Stompel et al. [43] demonstrated feature enhancements using non-photorealistic ren-
dering and hardware-accelerated techniques to generate perceptually effective visual-
ization of multidimensional and multivariate volume data sets. Kniss and Hansen [109]
applied volume rendering with multidimensional transfer function to visualize multi-
variate weather simulations. In their approach, they combined the temperature and
humidity as a multivariate field in order to assist the meteorologists in identifying the
frontal zones.

Akiba et al. [110] presented the use of time histograms for simultaneous classifica-
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tion of time-varying data in order to find transfer functions that classify all the time
steps of the data set. Woodring and Shen [111] presented a method for the compari-
son of different data fields through the expression of a volume shader that composes
data fields together with set operations. Wang et al. [112] introduced an importance
measure based on conditional entropy and categorize temporal behaviors by clustering
the importance curves over time.

Lee and Shen [113] introduced dynamic time warping (DTW) to measure the shape
similarity between two time series with an optimal warping of time in order to ac-
count for the phase shift of the feature in time. Subsequently, they extended DTW to
SUBDTW [114], in order to estimate when a trend appears and vanishes in a given
time series. They modeled the temporal relationships as a state machine based on the
beginning and ending times of the trends.

Khlebnikov et al. [115] described a novel method that allows simultaneous rendering
of multivariate data by redistributing the opacity within a voxel. This method uses
procedural texture synthesis [116] for opacity redistribution pattern and is similar in
spirit to color weaving.

Data analysis techniques for high dimensional spaces, such as parallel coordinates
[117] [118] and principal component analysis [119], were also investigated for exploring

multivariate time-varying data sets.

2.6 Time-Varying Volume Visualization

Although researchers have developed a great number of visualization techniques for
static volume data [19], how to effectively explore and understand time-varying volume
data remains a challenging problem. Finding good transfer functions for time-varying
volume data is more difficult than for static volume data, as data value ranges and

distributions change over time.

2.6.1 Transfer Functions for Time-Varying Volume Visualiza-
tion

Coherence is an important issue in transfer function design for time-varying volume

data. Ideally, a single transfer function should be used for the whole time-varying data
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set in order to obtain coherent visualization. More than one color or opacity map
can be misleading or physically meaningless, because the transition from one transfer
function to another may cause sudden changes in the resulting images. However, the
practice of using a single transfer function is not always applicable to general time-
varying data sets. In some cases, the intensity distributions change significantly over
time, thus applying a single transfer function to all frames becomes ineffective.

Volume data sets are inherently 3D representations. Automated analysis meth-
ods, such as temporal trends or statistical aggregates e.g. mean values and standard
deviations, are often applied in order to abstract dynamic characteristics of the data
sets [120]. Jankun-Kelly and Ma [121] examined how to combine transfer functions
for different time-steps to generate a coherent transfer function. Woodring et al. [122]
considered time-varying volume data as four-dimensional data field and provided a
user interface to specify hyperplanes in 4D. Woodring and Shen [123] introduced an
alternative approach to render multiple time-steps in a sequence with different colors
into a single image. This approach provides the context of surrounding time steps but
coherence of color among time-steps is hard to maintain.

Tikhonova et al. [124] presented an exploratory approach based on a compact rep-
resentation of each time step of the data set in the form of ray attenuation functions.
Ray attenuation functions are subsequently used for transfer function generation. Ak-
iba et al. [110] introduced the time histogram which allows simultaneous classification
and specification of temporal transfer functions for the entire time series.

A time-varying volume data set can be considered as a 3D array where each voxel
contains a time-activity curve (TAC). Fang et al. [125] described an approach for classi-
fying time-varying volume data based on the temporal behavior of voxels and three dif-
ferent similarity measures that can be used in their approach. Woodring and Shen [126]
presented a method that filters time-varying volume data into several time scales using
a wavelet transform and classifies the voxels by clustering the entire time series by
time scale. Lee and Shen [113] proposed a method for classifying time-varying features
using time activity curves with the dynamic time warping distance metric.

A single static transfer function may be able to capture dynamic features whose
intensities change over time. To address this problem, Woodring et al. [127] utilized a
method called temporal clustering and sequencing to find dynamic features and create

dynamic transfer functions through time-series analysis (Figure 2.8).
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Figure 2.8: A single static transfer function cannot capture dynamic features. In the
two images at the top, the features appear to vanish over time. On the other hand, the
features are visible over time if a dynamic transfer function is used (the two images at
the bottom) [127].
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Ward and Guo [128] presented a method for visualizing time-series data that re-
veals a wide variety of features in the data, by mapping short sub-sequences of the
time-varying volume data into a high-dimensional shape space, and then performing a
dimension reduction process to allow projection into screen space.

Gu and Wang [129] proposed an approach to organize a time-varying data set into
a hierarchical graph, which captures the transition relationships in the data set. This
approach assists the user in comprehending the correspondence between volume regions
over time and allows interaction of the graph through brushing and liking.

In order to create coherent and feature-prominent animations of time-varying vol-
ume data, Peng et al. [130] described an optimal color mapping strategy, which uses a

two-phase optimization method with bilateral filtering and energy minimization.

2.6.2 Visualizing Time-Varying Volume Data with

Non-Photorealistic Rendering

In contrast to traditional computer graphics, which has focused largely on creating
photorealistic images of synthetic objects, non-photorealistic rendering is an area of
computer graphics that focuses on creating abstract images with a wide variety of ex-
pressive styles [131]. In certain situations, non-photorealistic renderings are considered
more effective and expressive than an equivalent photograph [132].

An essential problem in time-varying volume visualization is to visualize temporal
variation and analysis of features. Traditionally, time-varying data has been visualized
as snapshots of individual time steps or as an animation of snapshots of a sequence of
time steps. These techniques are effective in making time-varying data understandable,
however, they struggle when the complexity of data sets increased dramatically in
recent years [133].

Compared to flow visualization, which is a well established branch of scientific vi-
sualization [133], general time-varying volume visualization is still a relative young
field. Tllustrations for time-varying rendering could be divided into two categories, one
is to enhance time-invariant features and the other is to enhance temporal features
of time-varying volume data. The techniques in the first category focus on enhanc-
ing structural perception of volume models through the amplification of features and

the addition of illumination effects [134] [135]. Examples of these techniques include
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boundary enhancement, oriented feature enhancement (silhouettes, fading, and sketch
lines). The techniques in the second category focus on illustrating dynamic aspects
such as movement of features. A number of techniques have been proposed for this
purpose. For example, there are speed lines, flow ribbons and strobe silhouettes, which
are inspired by traditional animation [135] [136] [137]; and there are extended silhou-
ette and boundary enhancement domains, which are inspired by the techniques used
by illustrators and other artists [40]. Nevertheless, illustrations of temporal features of
time-varying data requires more attention from researchers in the visualization com-
munity. The usefulness of illustrative approaches in time-varying volume visualization

has not been studied as thoroughly as in other areas.

2.6.3 Vector Field Visualization

The visualization of vector fields plays a crucial role in visual interpretation and under-
standing of the underlying flow features and patterns [138] [139]. Since flow patterns
also exist in time-varying volume data, certain techniques for visualizing vector fields
could be incorporated into time-varying volume visualization, in order to depict the
dynamic aspects of time-varying data.

Line drawings are effective ways to depict complex information with simple means
[140]. Among vector field visualization techniques, streamline visualization is a simple
but common way to convey the structure of 3D vector fields [141]. Streamlines have
proven to be expressive in vector field visualization if they are combined with appro-
priate seeding strategies [142]. Texture patterns generated by line integral convolution
are used in 2D vector field visualization. Rezk-Salama et al. [143] introduced volume
rendering as a means to efficiently render 3D line integral convolution for visualizing

3D vector fields.

2.6.4 Feature Tracking

Feature extraction and tracking is an established technique for the analysis of time-
varying data in various research fields, such as video analysis, computer vision and flow
visualization [144]. In time-varying data, features are objects that evolve over time.
Feature tracking aims to determine the correspondence between features in successive

time steps and describe the evolution of features through time [145].
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In practice, feature extraction and tracking are often employed in the exploration
and analysis of time-varying volume visualization in order to better understand the dy-
namic nature of the underlying phenomena [146] [126] [113]. Feature extraction meth-
ods are often based on an analytic description of the feature of interest. Consequently,
feature extraction and tracking could become manual-driven and trial-and-error pro-

cesses when properties cannot be easily defined or unknown [147].

Tzeng and Ma [148] proposed an intelligent feature extraction and tracking al-
gorithm, which applies machine learning to extract and track time-varying fluid flow
features in volume data. They investigated the use of both neural networks and support

vector machines in their approach and obtained promising results.

Based on the observation that regions in time-varying volume data present specific
pattern and textural features, Caben et al. [149] introduced a texture-based feature
tracking technique which analyzes local textural properties and finds correspondent
features in the time series. Caban and Rheingans [84] extended this technique for
transfer function design, in which the voxels’ resulting opacity and color are based on

local textural properties instead of intensity values.

Gu and Wang [150] described the TransGraph, which is a graph-based representa-
tion for visualizing hierarchical state transition relationships. This approach provides
an occlusion-free overview map and allows controllable interaction to help users to

track data transition over space and time.

Hsieh et al. [151] introduced a particle swarm method for transfer function design.
This method maps the frequency of particle occurrences to color and opacity values,

and extracts features after the particles finish searching for features in the volume data.

Johnson and Huang [152] introduced the use of local frequency distribution of in-
tensity values in broader neighborhoods around each voxel to define features and found
frequency distributions to contain meaningful information relevant to various feature
queries. Cai et al. [153] presented a rule-enhanced transfer function generation method
to separate and highlight important structures in volume visualization. They defined
a set of rules based on the frequency distribution of data attributes and employed a
genetic algorithm to select a set of rules that are most effective in distinguishing the

target tissue from other tissues.
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2.7 Information Theory in Visualization

Information theory [154] was originally introduced to study the fundamental limit of
reliable transmission of messages through a noisy communication channel. In infor-
mation theory, information is considered as a set of possible messages, where the goal
is to send the messages through a noisy communication channel and then to have the
messages reconstructed with low probability of error.

Traditional applications of information theory, such as data compression and data
communication, focus on the efficient throughput of a communication channel, while
visualization focuses on the effectiveness in aiding the perceptual and cognitive process
for data understanding and knowledge discovery [155].

In recent years, there is an emerging direction towards using the principles of infor-
mation theory to solve challenging problems in scientific visualization [14]. These prob-
lems include view selection [12] [156] [157], streamline seeding and selection [158] [159],
transfer function for multimodal data [160], representative isosurface selection [161],
time-varying and multivariate data analysis [112] and information channel between
objects and viewpoints [162].

Chen and Jénicke [163] presented an information-theoretic framework for visual-
ization. Examining the theoretical aspect of information and its relation to data com-
munication, they interpreted different stages of the visualization pipeline using the
taxonomy of information.

Haidacher et al. [64] proposed an approach for transfer function specification for
multimodal data visualization. They considered the joint occurrence of multiple fea-
tures from one or multiple variables in order to separate statistical features that only
occur in a single variable from those that are present in both.

Wang et al. [112] introduced an approach to characterize the dynamic temporal
behaviors of spatial blocks using importance curves, which are based on conditional
entropy. Clustering is performed on the importance curves of all the spatial blocks to
classify the underlying volume data set.

Bruckner and Moller [65] presented isosurface similarity maps as a similarity mea-
surement of two isofurfaces based on the mutual information of their respective distance
transforms. Furthermore, they developed an automatic method for identifying repre-

sentative isovalues using isosurface similarity maps.
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Ruiz et al. [66] presented an approach to generate transfer functions from a target
distribution provided by the user. Their approach is based on a communication channel
between a set of viewpoints and a set of bins of a volume data set, and supports both
1D and 2D transfer functions including the gradient information.

Bramon et al. [67] proposed an automatic method to visualize multimodal data by
combining several information-theoretic strategies to define colors and opacity values
of the multimodal transfer function. They set an information channel between two
registered input data sets to define the fused color and minimize the informational
divergence between the visibility distribution captured by a set of viewpoints and a

target distribution proposed by the user to obtain the opacity.

2.8 Computational Saliency in Visualization

Predicting salient regions in images [164] can be exploited as useful feedback for im-
proving visualizations. Inspired by mechanisms of the human visual system, various
computational models of visual saliency have been proposed to predict gaze allocation
in an image [16] [165] [17] [166] [167] [168].

Janicke and Chen [169] described a quality metric for analyzing the saliency of
visualization images and demonstrated its usefulness with examples from information
visualization, volume visualization and flow visualization. Corcoran et al. [46] com-
pared the effectiveness of various stylized volume visualization techniques on the basis
of shape perception.

Kim et al. [170] extended their previous work on detecting salient regions in images
[171] to detect salient regions in both images and videos. Both approaches use the self-
ordinal resemblance measure to compute the spatial saliency. Then the spatiotemporal
saliency map is generated by combining the spatial saliency with the temporal saliency,
which is the sum of absolute differences of temporal gradients of the center and the
surrounding regions.

Lee et al. [172] presented mesh saliency, which is defined in a scale-dependent
manner using a center-surround operator on Gaussian-weighted mean curvatures. They
observed that their approach was able to capture the most visually interesting regions
on a mesh. Kim and Varshney [18] introduced the use of center-surround operators

to compute saliency fields of volume data. In their user study, they found that their
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approach was better at eliciting viewer attention than the traditional Gaussian regional
enhancement approaches.

Shen et al. [173] proposed the use of saliency to assist volume exploration. They
described a method for inferring interaction position in volume visualization, in order to
help users pick focused features conveniently. Shen et al. [174] described spatiotemporal

volume saliency, which extended the saliency field [18] to time-varying volume data.

2.9 Perceptual Evaluation

Traditional, visualization research has an emphasis on solving problems with modeling
and optimization using engineering and mathematics tools. A recent focus in visual-
ization has become measuring the effectiveness of a proposed method with adequate
user studies [175]. Due to the complex nature of the data being studied, simply dis-
playing all available information does not adequately meet the demands of domain
scientists [176]. User studies can be used to evaluate the strengths and weaknesses of
visualization methods [177]. The evaluation of visualization methods that focus on hu-
man factors often employ user studies or expert evaluations to determine their effects
on interpretation and usability.

There are a number of different evaluation strategies, such as measuring user per-
formance, accuracy and experience [178]. Laidlaw et al. [179] compared six methods
for visualizing 2D vector fields and measured user performance on three flow-related
tasks for each of the six methods. They used the evaluation results to identify what
makes a 2D vector fields visualization effective. Joshi and Rheingans [136] evaluated
the effective of their illustrative techniques by measuring user accuracy, time required
to perform a task and user confidence.

Lu [180] described a method for automatically selecting rendering parameters to
simplify user interaction and improve usability. Subsequently, a user study was con-
ducted to evaluate the effectiveness of this method. Two data sets were rendered in
three styles with three predefined portions of the data sets were highlighted respec-
tively. The users’ eye gaze patterns were analyzed to determine if they were able to
accurately identify the highlighted areas in the images.

Kersten-Oertel et al. [181] presented empirical studies on the effect of six different

perceptual cues for enhancing depth. In the user study, the subjects were asked to
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determine which one of two indicated vessels was closer to them, and were asked to
respond as accurately and quickly as possible. Both the percentage of correct answers
and response times were analyzed.

Also for depth perception, Diaz et al. [182] conducted a user study to investigate the
impact of well-known volumetric shading models [183] in stereoscopic desktop-based
environments. In the results, the average time spent and average correctness of answers

were analyzed.

2.10 Summary

We have presented a review of literature in the field of volume visualization. Specific
areas which were reviewed in detail include transfer functions, automated transfer func-
tion generation, visibility histograms, information theory and computational saliency.
Transfer functions are relevant to all of the following chapters as transfer function
optimization is a central theme of this thesis. Information theory is relevant to Chap-
ter 3. Visibility and computational saliency are relevant to Chapter 4 and Chapter 5.
Transfer functions for time-varying volume visualization relates to Chapter 6

The review suggests that it is feasible to optimize the parameters of volume visual-
ization based on the information within volume data. Existing research on automated
transfer function generation, information theory, visibility histograms and computa-
tional saliency of volume data provides us the foundation to explore and understand
how this optimization may be achieved. Further studies are required in order to better
integrate visibility and computational saliency of volume data into the visualization
pipeline and enhance the expressiveness by exploiting the information within volume

data sets.
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Chapter 3

Information-Guided Transfer
Function Refinement for Exploring

Volume Data

In this chapter, we describe a global optimization and two user-driven refinement meth-
ods for modulating transfer functions in order to assist the exploration of volume data.
This optimization is dependent on the distribution of scalar values of the volume data
set and is designed to reduce general occlusion and improve the clarity of layers of
structures in the resulting images. The user can explore a volume by interactively
specifying different priority intensity ranges and observe which layers of structures are
revealed. In addition, we show how the technique can be applied to time-varying vol-
ume data sets by adaptively refining the transfer function based on the histogram of
each time-step. Experimental results on various data sets are presented to demonstrate

the effectiveness of our method.

3.1 Introduction

Volume visualization is a powerful technique for depicting layered structures in 3D
volume data sets. Transfer functions play an essential role in volume visualization.
Through the assignment of visual properties, including color and opacity, to the vol-

ume data being visualized, transfer functions impact the final rendering of the data
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set and thus affect which structures will be visible to the user. However, obtaining
an effective transfer function is a non-trivial task, which often entails time-consuming
tweaking until a desired aesthetic quality is achieved in the resulting rendering. Al-
though a number of automatic or semi-automatic approaches have been developed,
transfer function design remains a challenging problem [19] [60].

For end users, such as physicians, who may not have much experience in volume
rendering and transfer function design, a user-friendly approach that allows them to
intuitively explore volume data sets is very desirable. As fully automatic approaches
cannot currently guarantee satisfactory results in every case, exploratory approaches
with simple and efficient interaction are highly desirable.

We propose a novel approach to refine the transfer function based on the distribution
of the scalar values of the volume data set. Firstly, we propose an automatic step to
refine the transfer function that improves the rendering of volume data by reducing
overall occlusions with no previous assumptions of the data set. Furthermore, we
propose two interactive methods that extend on the optimization technique in order to
enhance specific intensity ranges within the data as identified by the user. The process
is fast and intuitive and allows the user to provide customized views of the data to aid

in visual exploration of the volume data set.

3.2 Related Work

A number of approaches have been proposed to automate the design of transfer func-
tions, and these are discussed in detail in Section 2.2. Here, we briefly discuss the most
closely related previous works to the contribution of this chapter.

Maciejewski et al. [72] described a method to structure attribute space in order
to guide users to regions of interest within the transfer function histogram. Chan et
al. [92] developed a system to optimize transparency automatically in volume rendering
based on Metelli’s episcotister model to improve the perceptual quality of transparent
structures. Correa and Ma [5] proposed the visibility histogram to guide the transfer
function design. In a later work [63], they generalized the visibility histogram and
proposed a semi-automatic method for generating transfer functions by maximizing the
visibility of important structures based on the visibility histogram, which represents

the contribution of voxels to the resulting image. Ruiz et al. [66] also used visibility
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air fat soft tissue bone (cancellous/dense)
-1000 -100 to -50 +100 to +300 4700 to +3000

Table 3.1: Hounsfield units of some typical substances [1]

as a main parameter for the transfer function specification. Their method obtains
the opacity transfer function by minimizing the informational divergence between the
visibility distribution captured by a set of viewpoints and a target distribution defined
by the user. Later, Bramon et al. [67] extended this approach to deal with multimodal

information.

3.3 Background

3.3.1 Transfer Function Specification

In the specification of a 1D (intensity-based) transfer function, the user essentially
assigns a color and/or opacity to a certain point in the histogram of scalar values in
the data set. In practice, the user would be presented with an interface that allows
them to set up several control points which corresponds to a certain kind of material
or structure. The user then defines a mapping from each control point to some visual
property (e.g. color) resulting in voxels of the corresponding intensity to be rendered in
that color. Figure 3.1 displays four typical shapes used in transfer function design. If a
volume data set contains complex structures, tent-like shapes are desirable in revealing
isosurfaces of structures and seeing through inner structures. Otherwise, the ramp
shape and other shapes can also reveal structures effectively.

In order to design transfer functions effectively, it is commonly required that users
have prior knowledge about which intensity ranges are relevant or which regions should
be emphasized in the data. This is especially the case in medical visualization. For
instance, in computed tomography (CT) data the intensity ranges are determined by
the Hounsfield scale (Table 3.1). The user may expect the constituent’s intensity of
CT data to follow the Hounsfield scale and thus set up control points accordingly.

Another consideration is that interior structures are likely to comprise far fewer
voxels and are often occluded by the surrounding material. Consider the transfer

function in Figure 3.2. The user finds three intensity intervals of interest and then sets
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Figure 3.1: Typical transfer function shapes [7]
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Figure 3.2: A transfer function with tent-like shapes
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up three sets of control points in order to visualize these intensity intervals. The opacity
of the three peak control points are assigned equally as they are equally important.
However, if the distribution of voxels follows p(z) (the blue curve), the voxels of the
leftmost intensity intervals may completely occlude voxels of the other two intensity
intervals in the resulting image. The global optimization in our approach aims at
reducing this kind of occlusion by modulating the opacity of the transfer function based
on the entropy of volume data, which is described in Section 3.3.2. Although many
shapes can be used in transfer function design, tent-like shapes are often sufficient to
model the user’s intent [7]. In this chapter, results of both transfer functions of tent-like

shapes and continuous transfer functions are used as input of the optimization.

3.3.2 Entropy of Volume Data

In computer graphics, information-theoretic measures, such as entropy and mutual
information, have been applied to solve multiple problems in areas such as view selec-
tion [12] [184], flow visualization [158], multi-modal visualization [64] [67] and transfer
function design [65] [80]. Information theory provides a theoretic framework to measure
the information content (or uncertainty) of a random variable represented as a distri-
bution [14]. Consider a discrete random variable X which has a set of possible values
{ag, ay, ..., a,_1} with probabilities of occurrence {pg, p1, ..., Pn_1}, We can measure the

uncertainty of the outcome with the entropy H(X), which is defined by

H(X)=—-3_ p(z)logp(z) (3.1)
zeX

where the summation is over the corresponding alphabet and the convention 0log(0 = 0
is taken. The term —logp(x) represents the information content associated with the
result x. If the entire volume data set is treated as a random variable, I(a,) = — log p(z)
represents the information content of a voxel a, with intensity x, and the entropy gives
us the average amount of information of a volume data. The probability p(x) is defined
by p(x) = %=, where n, is the number of voxels with intensity x and n is the total
number of voxels in the volume data.

Bordoloi and Shen [12] described a noteworthiness factor to denote the significance

of the voxel to the visualization. The noteworthiness should be high for the voxels
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which are desired to be seen, and vice versa. The noteworthiness of voxel j is defined
as W; = a;1; = —ajlogf; , where o is the opacity of voxel j looked up from the
transfer function, I; is the information carried by voxel j, which can be derived from
the frequency of its histogram bin f;. -log f; represents the amount of information

associated with voxel j.

3.4 Method

In this section, we present a transfer function refinement approach for modulating
the opacity associated with the control points in a transfer function and combine it
with user interaction to specify priority areas or intensity values of importance in the
resulting image. In addition, an interaction widget (as in Figure 3.8) is introduced to
allow users to explore the data sets by emphasizing certain intensity values and see the
optimized output immediately.

In our approach, the user has control of the transfer functions by setting up control
points as input for the optimization or tweaking the resulting transfer functions after
the optimization. For example, the user can leave out less relevant data ranges by not
covering the data ranges with shapes formed by control points (as in Figure 3.1). In
the case of refining existing transfer functions, users also have the flexibility to refine
the input transfer functions partially and keep certain control points constant during

the optimization.

3.4.1 Weighting of Transfer Function Components

The goal of our transfer function refinement approach is to balance the opacity set-
tings so that voxels of more significance contribute more and voxels of less signifi-
cance contribute less to the resulting images. Given control points vy, vs, ..., v, of the
transfer function with intensity values zq, xs, ..., x, and corresponding opacity values
a(zy), a(xs), ..., a(z,), the intensity range of the transfer function is normalized to
[0,1]. For the convenience of discussion, two control points vy and v, are added to
the lower bound and the upper bound respectively, and xzo = 0, a(zg) = 0, z,11 = 1
and a(z,1) = 0.

Similar to the noteworthiness factor by Bordoloi and Shen [12], opacity and proba-

38



bility (derived from the intensity histogram) are also used in our weighting. We define

the significance factor of the intensity x as
s(z) = —a(z)p(x)log p(z),x € [0, 1] (3.2)

In the significance factor s(x), p(z) is computed from the histogram of the data set,
and «(z) is the opacity function that we want to modulate. The significance factor
should be high for the voxels which are desired to be seen, and vice versa. Then we

define the weight of the i-th edge (the segment between v; and v;,1) as
e(i) = / s(w)dz (3.3)
xe[mi,zi+1}

where ¢ € [0,n] and z € [0, 1].
Hence, the energy function of the transfer function can be defined as the variance

of edge weights
= Y(ei) — e(0))? (3.4)

Consequently, minimizing the energy function is equivalent to flattening the curve

of the edge weights.

3.4.2 Optimizer

Constraints are introduced in the search of the parameter space. Control points would
only be moved vertically in the transfer function domain. In other words, only the
opacity associated with control points would be changed. The intensity of control
points remains the same. Also, those control points that are marked as constant
would not be updated in the optimization process. These constraints are based on our
assumption that the intensity intervals associated with control points are the user’s
intensity intervals of interest. The user has explored the volume data and set up the

transfer function according to his/her needs. Our algorithm aims to help the user
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data set  transfer function (TF) time for 500 iterations time for 1000 iterations

CT-Knee TF in Figure 3.6 (b 0.002 0.005

VisMale TF in Figure 3.6 (b 0.002 0.005

(
(b)
CT-Knee TF in Figure 3.4 (b) 0.005 0.009
(b)
(b)

VisMale TF in Figure 3.4 (b 0.005 0.008

Table 3.2: Computation time (seconds) for optimizations

reduce occlusion while preserving the user’s knowledge or judgments of the data set.
A greedy strategy is employed in our algorithm to minimize the energy function.

In each iteration, two operations are performed:

e Find the edge with the highest weight in the transfer function and reduce the
opacity of the control point at its upper end (the vertex with a larger significance

factor in the edge’s two adjacent vertices).

e Find the edge with the lowest weight in the transfer function and increase the
opacity of the control point at its lower end (the vertex with a smaller significance

factor in the edge’s two adjacent vertices).

In our implementation, the optimizer terminates when the energy function becomes
stable, i.e. further iterations do not change the resulting transfer function. For the
sample data sets we have tested, we observed that there is no further change to the
resulting transfer function after 500 iterations. In addition, we measured the compu-
tation time of the optimization on two data sets with a continuous transfer function
and a transfer function of tent-like shapes respectively. The tests in Table 3.2 all fin-
ished within 0.01 seconds, which shows that our approach is very lightweight. This
suggests that, in practice, it would be viable to let the optimization continue to a con-
servatively high iteration count to ensure reasonable chance of convergence, without
affecting interactivity.

The two step sizes in reducing opacity and increasing opacity can both be user-
specified, or the first one is user-specified and the second one is computed based on
the first one and the ratio of the significance factors of the two chosen control points.
The ratio of the two step sizes affects the overall opacity of the resulting image, for
instance, the image becomes more opaque or translucent. See Section 3.5.1 for results

of this global refinement.
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3.4.3 Prioritizing Intensity Ranges

The above described optimizer is an approach to balance the global opacity and thus
reduce occlusions in the rendered images. In other words, we de-emphasize the most
prevalent voxels, which are considered to have a high probability of occluding the rest
of the scene and in particular interior structures of the data.

Although global optimization can help deliver images with better overall visibility,
small details may be under-enhanced in the global optimization and certain structures
in the image may have to be further enhanced for specific purposes. For instance, in
an anatomical data set, the global optimization may guarantee that all structures of
materials such as skin, bone and flesh are all visible however if the task of the user
is specifically to study skin, this may be counter-productive. Thus, it is clear that a
flexible method guided by user interactions is necessary to achieve various visualization
goals.

In this section, we describe two alternative methods for prioritizing specific intensity
ranges in the volume data. The first approach allows the user to interactively select a
specific intensity range target that they are interested in and a hue-based distance factor
is used to emphasize different intensity ranges based on the target identified by the user.
Secondly, we describe a region-based optimization to provide an intuitive method of
interaction by choosing regions of interest in the image that are then enhanced in the

final rendering.

Distance Factors for User-Selected Intensity Values

We introduce distance factors for intensity values to prioritize the specific intensity
ranges. In our implementation, users can select intensity values that they would like to
enhance by clicking on a color palette, which uses the same color map in the transfer
function. Assume each control point is assigned a unique intensity value, we can get
the difference between a specific intensity value and the intensity value of a control
point.
Given the selected intensity xj, we define the distance factor of the i-th control
point x(i) as
Dy (i) = |zg — x(3)|,7 € [0,n + 1] (3.6)

Linear interpolation is used to obtain the distance factor d,(x) for the intensity = €
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[% $i+1)

r — T

dp(z) = Dp(i) + (Dp(i 4+ 1) — Dp(4)) (3.7)

Tiy1 — Tl
Therefore, we define the weight of the i-th edge (the segment between v; and v;1)

with the distance factors as
en(i) = / dn(2)s(x)d (3.8)
G[Ii,xprl]

where s(z) = —a(x)p(x)logp(x),z € [0,1],7 € [0,n].
Hence, the energy function with distance factors for the intensity xy of the transfer

function can be defined as the variance of edge weights with the distance factors

n

Ep =3 (en(i) — en(i))* (3.9)

=0

where e, (i) is the mean of edge weights ey, ().
To use the energy function Ej, described in this section, we simply need to replace
the original energy function (mentioned in Section 3.4.1) with £} in the previously

described optimization algorithm.

Distance Factors for User-Selected Regions

Selecting a specific target intensity value as in the previous section provides a means
of prioritizing the visualization towards the user’s requirement. However, in practice,
the user often has an imprecise idea of the exact intensity range that he/she wishes to
focus on. Thus, we provide a more intuitive option that allows the user to prioritize
the visualization by selecting a region on the screen containing voxels in the intensity
range of interest to the user.

We introduce region-based distance factors to prioritize the user’s region of interest.
Assume each control point is assigned a unique color, we can get the difference between
the color of a pixel in the region (which is selected in image space) and the color of a
control point (HSV color space is used in our implementation).

Given the color of the i-th control point is ¢(7), the distance between the color of a

pixel 7 in the region R and the color of the i-th control point is denoted by d(r, ¢(7)). In

42



our approach, the sum of the distances D between each pixel in the region R and the
i-th control point is used to measure the difference between the region and the control
point.

D(R,i) = Z};d(r, c(i)),i € [0,n + 1] (3.10)

Given the selected region R, we define the distance factor of the ¢-th control point as

D(R, )

Wh(i) = ST DR,

ie0,n+1] (3.11)
Linear interpolation is used to obtain the distance factor wg(x) for the intensity = €
(i, Tit1)

r — I;

Tiy1 — Xl

Therefore, we define the weight of the i-th edge (the segment between v; and v;1)

with the distance factors as
enli) = / wr(2)s(z)dz (3.13)
IE[CCZ‘7I¢+1]

where s(z) = —a(z)p(x)logp(x),z € [0,1],i € [0,n].
Hence, the energy function with distance factors for the region R of the transfer

function can be defined as the variance of edge weights with the distance factors

n

Ep =) (er(i) — er(i))? (3.14)

=0

where eg(i) is the mean of edge weights er(i).

Similarly, in order to use the energy function Eg, we need to replace the original

energy function with Er in the previously described optimization algorithm.

The distance factors described in this section measure the dissimilarity between a
selected region and a control point. Therefore, the distance factor would be small if
the region has an overall color similar to the color of the control point. Since we are
minimizing the energy function, which is the variance of the edge weights, reducing the

distance factors of those control points, which are related to the selected region, will
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result in their opacity values being increased. As a result, the features (in this case,
the intensity intervals) in the selected regions will be enhanced and other features will
be de-emphasized in the rendered image. See Section 3.5.3 for sample results of this

optimization.

3.4.4 Adaptive Transfer Functions for Time-Varying Data Sets

In time-varying data sets, the data value ranges and distributions change among time-
steps. A single global transfer function may not be able to adequately catch the details
of the data set. Therefore, we exploit the transfer function optimizer (as discussed
in Section 3.4.2) to locally refine the transfer function for each time-step in the data
set. In this case, the user specifies a transfer function for a single time-step of the
time-varying data set and using either of the two interaction methods (as discussed in
Section 3.4.3) to specify priority intensity ranges. The transfer function designed for
this time-step is taken as an input transfer function and optimized again based on the
histogram of the next time-step. Subsequently, the output of next time-step is taken

as input of the time-step after it and so forth.

3.5 Results and Discussions

In this section, we present some results to demonstrate the effectiveness of our approach
on the CT-knee (379 x 229 x 305) and VisMale head (128 x 256 x 256) data sets [3]
and a time-varying data set of a simulated turbulent vortex flow (128 x 128 x 128, 100
time-steps) [185]. Results were generated in our volume rendering system (Figure 3.3)
on a computer equipped with an Intel Core i5-2410M CPU, 8GB of RAM and an
NVIDIA GeForce GT 540M graphics card.

Automatically generated transfer functions with ramps and tent-like shapes are
provided as initial input to the optimizer. Figure 3.4 displays a continuous transfer
function. The ramps are formed by a series of control points with corresponding colors
from the color map. Figure 3.6 displays a transfer function with several evenly dis-
tributed tent-like shapes. Each tent-like shape consists of a peak control point and two

bottom control points. The peak control points are movable while the bottom control
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Figure 3.3: A screenshot of our volume rendering system

points are marked as constant to maintain the tent-like shapes.

Note that the transfer functions consisting of equidistant and equal height tent-
like shapes (as in Figure 3.6) are just provided as naive examples of user designed
transfer functions and used as input to the optimizer. In practice, users would design
transfer functions (which consist of ramps, tent-like or other shapes) according to the

characteristic of the data sets and the intensity ranges that they are interested in.

The initial opacity values of control points will affect the overall opacity level of
the resulting image after optimization. Because there are omitted intensity ranges (the
gaps) in transfer functions with tent-like shapes, the initial opacity values should be
higher in transfer functions with tent-like shapes than in continuous transfer functions.
In transfer functions with tent-like shapes (as discussed in Section 3.3), the opacity of
the top control points are set to 1/2 (medium level of opacity) and the opacity of the
bottom control points are set to 0. The bottom control points are fixed to 0 in order
to keep the tent-like shapes in the transfer functions. By contrast, all control points in
continuous transfer functions are movable vertically except that control points vy and

vn+1 are fixed and serve as the boundary. The opacity of control points are set to 1/6
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(an empirical value to make the volume rendering images to be of similar opacity level
to tent-like transfer functions with opacity of 1/2) in continuous transfer functions.
The color maps used in the transfer functions in our system are evenly sampled from
a spectrum (with hue from 0° to 360° in HSV color space). In the optimization, the

two step sizes for reducing opacity and increasing are both set to 1/256.

3.5.1 Automatic Transfer Function Refinement

Firstly, we demonstrate the global optimization discussed in Section 3.4.1 and Sec-
tion 3.4.2 with continuous transfer functions. In Figure 3.4, the CT-Knee data set is
rendered with a naive transfer function consisting of 6 tent-like shapes of various colors
with equal opacity. Figure 3.5 shows the resulting image rendered with the optimized
transfer function. We tested this specific example as joints are popular regions of in-
terest in medical visualization. The knee in particular is a commonly studied joint.
In Figure 3.4, only parts of the skeleton are visible. The rest is occluded by the sur-
rounding material (such as the skin and muscles). After optimization (Figure 3.5), the
surrounding tissues become translucent, hence the skeleton is exposed and the knee
joint is visible, while the overall context is preserved. We argue that in the absence
of any previous assumptions on what the user is looking for, the global optimization

provides a more balanced initial view before deeper exploration of the data.

Although the continuous transfer function is useful in automatic transfer function
generation, in typical volume visualization programs, users often prefer much more
simplified transfer functions, e.g. a few control points such as in transfer functions
with tent-like shapes. Figure 3.6 is the CT-Knee data set rendered with the transfer
function. We show in Figure 3.7 that our optimization can also benefit such simpler

transfer functions.

In practice we observed that the energy function usually converges to a small but
non-zero value. As the number of control points increases, it takes more iterations for
the optimization to achieve a stable state - a number of tent-like shapes ranging from

4 to 16 was found to be the most effective.
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(a) (b)

Figure 3.4: Before optimization: CT-Knee with a continuous transfer function (a) Pre-
liminary view of data set (b) A continuous transfer function with a ramp (c) Histogram
of the data set

Figure 3.5: The transfer function from Figure 3.4 after optimization: (a) Optimized
transfer function) (b) Optimized output
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Figure 3.6: Before optimization: CT-Knee rendered with a transfer function consisting
of tent-like shapes (a) Preliminary view of data set (b) A transfer function with 6
tent-like shapes

A\

I.i ._'q_ g
(a) (b)

Figure 3.7: The transfer function from Figure 3.6 after optimization: (a) Optimized
transfer function (b) Optimized output
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3.5.2 Transfer Function Refinement with User-Selected Inten-
sity Values

Figure 3.9 shows three images of a CT-Knee data set where different colors are selected
for optimization based on the approach discussed in Section 3.4.3. Since the colors of
the transfer function are generated in HSV color space by varying the hue component,
the difference of intensity values are mapped to the difference of hue in HSV color
space. By clicking on the color palette (Figure 3.8), the transfer function is instantly

optimized for the corresponding intensity values.

3.5.3 Transfer Function Refinement with User-Selected Re-

gions

Figure 3.10a shows the VisMale data set with a generated transfer function of 4 tent-
like shapes. Figure 3.10c shows the intensity histogram of the data set. After the
optimization (Figure 3.10b) based on Section 3.4.2, the outside of the head is less
opaque so the inner structures are revealed to the user. However, the intermediate
material (i.e. the skull) also becomes less clear. If the goal is to make the skull more
visible, the user could select a region consisting of parts of the skull to generate a
weighting and perform further optimization of the transfer function based on the ap-
proach discussed in Section 3.4.3. If the material of interest is occluded by surrounding
materials, the user could use an axis-aligned clipping plane in order to accurately select
voxels of the skull while minimizing the accidental tagging of the surrounding mate-
rial (Figure 3.10d). As shown in Figure 3.10e, the skull becomes more clear after the

region-based optimization.

3.5.4 Adaptive Transfer Functions for Time-Varying Data Sets

We demonstrate our approach on a turbulent vortex data set [186], which consists of
100 time-steps. Our optimizer adaptively propagates transfer functions for the time-
varying data set. Specifically, the transfer function of the previous time-step is taken as

input to generate the transfer function for the next time-step. Therefore, the transfer
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Figure 3.8: The 3 chosen colors (corresponding to different intensity values) and the
transfer functions after optimization for each intensity value. The same transfer func-
tion as shown in Figure 3.4 is used as input to the optimizer. Note how the transfer
functions are enhanced for the specific intensity ranges as compared to the result of
global optimization in Figure 3.5.

(a) (b) ()

Figure 3.9: The CT-Knee data with transfer functions optimized for the 3 colors in
Figure 3.8. (a) The materials with intensity values mapped to red are enhanced.
Similarly, the materials in green and magenta are enhanced respectively in (b) and (c).
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Figure 3.10: (a) Preliminary view of the VisMale data set. (b) Optimized output. (c)
Histogram of the data set. (d) The user selects a region on the skull under a clipping
plane. (e) Optimized output: skull is enhanced and the outer layer is de-emphasized.
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functions are locally optimized for each time-step of the time-varying data set, but
as the input transfer function comes from the immediate preceding time-step, the
resulting transfer functions also exhibit reasonable temporal coherency assuming the
data set is also coherent. As the difference of intensity histograms among consecutive
time-steps is hard to notice, only the images of the first time-step and a time-step
in the middle of the data set are displayed here. Figure 3.12 shows three images of
the vortex data set at time-step 0 while optimized for the three colors chosen in the
color palette in Figure 3.11. Figure 3.13 displays the vortex data set at time-step 50
with the transfer functions optimized for the three chosen colors. Figure 3.14 shows
the intensity histograms of the two time-steps discussed above and the corresponding

optimized transfer functions for the colors selected in Figure 3.11.

3.6 Conclusions

In this chapter, we presented a global optimization technique which aims to allevi-
ate excessive occlusion problems in volume rendering. However, instead of comput-
ing the view-dependent visibility of each voxel as is necessitated in other similar ap-
proaches [63] [66], we achieve this by balancing the opacity of voxels based on the dis-
tribution of intensity values. Our view-independent approach is relatively lightweight
and should have better performance in contrast to other techniques. In addition, we
propose two interactive methods that extend on the optimization technique in order
to enhance specific intensity ranges within the data as identified by the user. This
mechanism provides the ability for users to intuitively specify priority intensity ranges,

thus facilitating the exploration of both static and time-varying volume data sets.
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Figure 3.11: The 3 chosen colors (corresponding to different intensity values) for op-
timization. Note how different parts of the data set are enhanced respectively in
Figure 3.12 and Figure 3.13.
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Figure 3.12: The vortex data at time-step 0. (a) The materials with intensity val-
ues mapped to red are enhanced. Similarly, the materials in green and magenta are
enhanced respectively in (b) and (c).
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(a) (b) (c)

Figure 3.13: The vortex data at time-step 50. These images show similar results as
those for time-step 0, because there are only limited changes among the histograms of
different time-steps.
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(f) (h)

Figure 3.14: (a) Histogram of time-step 0. (b) Transfer function (TF) for Figure 3.12a.
(c¢) TF for Figure 3.12b. (d) TF for Figure 3.12¢c. (e) Histogram of time-step 50. (f)
TF for Figure 3.13a. (g) TF for Figure 3.13b. (h) TF for Figure 3.13c.
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Chapter 4

Visibility-Weighted Saliency for

Volume Visualization

In volume visualization, the clarity of features depends on the transfer function, the
viewpoint and spatial distribution of features in the volume data set. In this chapter,
we propose visibility-weighted saliency as a measure of visual saliency of features in
volume rendered images, in order to assist users in choosing suitable viewpoints and
designing effective transfer functions to visualize the features of interest. Visibility-
weighted saliency is based on a computational measure of perceptual importance of
voxels and the visibility of features in volume rendered images. The effectiveness of

this scheme is demonstrated by test results on two volume data sets.

4.1 Introduction

A crucial step in volume visualization is transfer function specification. Transfer func-
tions assign visual properties, including color and opacity, to the volume data being
visualized. Hence, transfer functions determine which structures will be visible and
how they will be rendered. An appropriate transfer function can quickly reveal large
amounts of information of the data set to the viewer. However, obtaining an effective
transfer function is a non-trivial task, which involves a significant amount of tweaking
of color and opacity. A cause of this problem is the lack of an objective measure to

quantify the quality of transfer functions [63].
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Although user studies are useful in evaluating some fundamental characteristics of
visualization techniques, it is not possible to conduct a user study for each individual
visualization every time it is created. Several computational measures of visual saliency
that model human attention have been developed [16] [17]. Kim and Varshney [18]
introduced the saliency field, which measures visual saliency of voxels using the center-
surround operator based on the difference of Gaussian-weighted averages at a fine
and a coarse scale. However, salient voxels may be occluded by other voxels close to
the viewer in certain viewpoints and thus these salient voxels become invisible in the
volume rendered image. In order to measure the visual saliency of features in volume
rendered images, it is necessary to consider both the saliency and the visibility of the
voxels which form the feature.

In this chapter, we propose visibility-weighted saliency as an improved measure of
the visual saliency of features in volume rendered images. Visibility-weighted saliency
is a combination of feature visibility [6] and saliency fields [18]. Feature visibility mea-
sures the contribution of each feature to the volume rendered image and saliency fields
measure how strongly each voxel stands out in its local neighborhood. The visibility-
weighted saliency is presented in two different ways, i.e. visibility-weighted saliency
fields and feature saliency histograms. Visibility-weighted saliency fields display the
spatial distribution of visual saliency of features and feature saliency histograms pro-
vide quantitative information about the perceptual importance of the features. With
visibility-weighted saliency, the saliency of features rendered in different viewpoints
with different transfer functions can be measured in a quantitative and fully auto-
mated way. Thus, this technique can be used to guide users in choosing appropriate
viewpoints and designing effective transfer functions for the features of interest in vol-
ume visualization. This technique is also useful for understanding how much different
parts of the volume contribute to the final image and how different tissues occlude each

other and interfere with each other’s visibility.

4.2 Related Work

Several computational models of visual saliency for modeling human attention have
been developed. Itti et al. [16] developed a computational model of visual attention

based on the center-surround operators in an image. This center-surround mechanism
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has the intuitive appeal of being able to identify regions that are different from their
surrounding context. Based on the perceptual principles, Chen et al. [92] introduced
several image quality measures to enhance the perceived quality of semitransparent
features. Janicke and Chen [169] described a quality metric for analyzing the saliency
of visualization images and demonstrated its usefulness with examples from information
visualization, volume visualization and flow visualization.

Lee et al. [172] proposed saliency for meshes based on a multi-scale center-surround
mechanism that operates on local curvature. Kim and Varshney [18] presented the
use of a center-surround operator using the Laplacian of Gaussian-weighted averages
of appearance attributes to enhance selected regions of a volume and validated their
work using an eye-tracking user study. Shen et al. [174] extended this technique to
spatiotemporal volume saliency to detect both spatial and temporal changes.

Visibility measures the impact of individual voxels on the image generated by a vol-
umetric object and visibility distribution can be utilized as a measure on the quality of
transfer functions as users explore the transfer function space. Visibility has been stud-
ied to measure the quality of a given viewpoint [12] [97] and to enhance the rendering
process with cutaway views. Correa and Ma [63] introduced visibility histogram, which
describes the accumulated visibility of each intensity value in the transfer function.

Ruiz et al. [66] proposed an automatic method to generate a transfer function by
minimizing the Kullback-Leibler divergence between the observed visibility distribution
and a target distribution provided by the user. Wang et al. [6] extended the idea of the
visibility histogram to feature visibility and introduced an interaction scheme where
the opacity of each feature was generated automatically based on user-defined visibility
values. Visibility distribution is also used in automating color mapping [100] and 2D

transfer functions [107].

4.3 Method

For 2D images, intensity and color are the most important attributes. In volume
visualization, the intensity and color in the final images result from the blending of
alpha and color determined by user-specified transfer functions in a specific viewpoint.
The saliency field is a view-independent scalar field that contains the visual saliency of

each voxel in the volume data. The visual saliency of voxels represents the perceptual
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importance in 3D space, however it does not reflect how visible the voxels are in the
final 2D images.

In order to take into account both the visual saliency of voxels in 3D space and the
contribution of the voxels to the final 2D images of the rendered data set, we propose
a visibility-based saliency metric, which attempts to measure the impact of individual
voxels as well as user-specified features on volume rendered images. This technique
aims to assist users in gaining insight into the internal structure of the data set and
understanding the contribution of different features to the final image.

In this section, we describe in detail the concepts of visibility fields, saliency fields,
visibility-weighted saliency fields and visibility-weighted saliency. In order to better
illustrate the effects of these techniques in our discussion, we present the results of

applying these techniques to a synthetic data set from two different viewpoints.

4.3.1 Feature Definition

Before discussion of the proposed methods, we first define a feature F' as a subset
of voxels in the volume V', i.e. F C V. In the case of intensity-based 1D transfer

functions, a feature can also be defined using an intensity interval, which is
F={a<I(v)<blveV} (4.1)

where I(v) is the intensity of voxel v and [a, b) is the intensity interval that contains

all the voxels of feature F'.

4.3.2 Visibility Fields

Direct volume rendering (e.g. ray-casting) is a technique that renders a 2D projection
of a 3D volume data set. The rendering of a volume, which essentially is a block of 3D
data, involves alpha blending and color composition of voxels. The resulting 2D image
is acquired by blending the color and opacity of voxels along the view direction. The
transfer function determines the color and opacity of individual voxels based on their
data attributes such as intensity. However, the contribution of a voxel to the rendered
image is determined by both the opacity of this voxel and the opacity of those voxels

in front of the current voxel in the view direction. This mechanism is described in the
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front-to-back compositing equations.
Ci = (1 — Ai,1>Ci -+ C’ifl (42)

Ai = (]_ — Ai_l)ai + Ai—l (43)

where a; and ¢; are opacity and color of voxel i, and A; and C; are the accumulated

opacity and color at voxel 1.

Therefore, the visibility of voxel ¢ [13] can be calculated as
V; = Al - Ai—l = (1 — Ai_l)ai (44)
and the visibility field is simply the visibility of all the voxels in the volume V'

V={v|icV} (4.5)

The visibility field is dependent on both the viewpoint and the transfer function,
therefore it can be used to analyze the visualization of the volume data. The visibil-
ity field is particularly useful for understanding what parts of the data set are being

rendered and how different tissues occlude each other (Figure 4.1).

In terms of implementation, the computation of visibility fields can be performed
in real-time on a GPU. Correa and Ma [63] employed a scattering approach for GPU-
assisted computation of the visibility histogram, which scatters the pixel points to the
right bin in the histogram. Wang et al. [6] used the multiple rendering targets (MRT)
extension of OpenGL 2.0 and above to achieve the computation of visibility for up to
32 features. Instead of grouping visibility values into intensity bins to acquire visibility
distribution over intensity ranges (histograms), we are interested in the actual spatial
visibility distribution, i.e. visibility field. We perform slice-based rendering on a GPU
by rendering a series of quads which are parallel to the viewing plane, one for each slice.
The fragments which do not belong to the volume are discarded. Then the visibility
values are computed by subtracting the accumulated opacity of the previous slice from
that of the current slice. After collecting the visibility values of all voxels, the visibility

field can be constructed.
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Figure 4.1: A synthetic volume data set consisting of three solid disk-like features is
shown. The images in the first row show the final image and the corresponding visibility
field from a viewpoint on the left. The images in the second row shows the final image
and visibility field from a viewpoint on the right. The visibility fields display what
parts of the volume contribute most to the images and how tissues in the front occlude
those in the back.
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4.3.3 Saliency Fields

Because viewers pay greater visual attention to regions that they find salient [187],
many models of visual attention and saliency have been evaluated by their ability to
predict eye movements. The saliency for a volume can be computed either by using
eye-tracking data or through computational models of human perception. Once the
saliency for a volume is acquired, it can be used to better inform the visualization

process.

We use a center-surround operator that is similar to the work by Shen et al. [174]
to compute the saliency field. Let the neighborhood N(i, o) for a voxel i be the set of
voxels within a distance . Thus, N(i,0) = {j | || —i|| < o }, where j is a voxel. Let

G(0O,i,0) denote the Gaussian weighted average, then we have

G(O,'é,O’) = Z O(])g(lajv U) (46)

JEN (i,0)

where (=117 — ill*/(20)]
9(i,j,0) S rentio) €p[— [k — i[|2/(20)?

and O is a field of appearance attributes of every voxel in the volume and O(j) is the

(4.7)

appearance attribute of voxel j.

Then the saliency field is defined as the absolute difference of Gaussian-weighted

averages

L(O,i,0) = |[unG(O,i,0) — wG(O,1,20)| (4.8)

where w; and w9 indicate the weights of the Gaussian-weighted averages at a fine scale

and a coarse scale respectively.

Visual properties such as opacity and color values (e.g. brightness, saturation, hue)
can be used as appearance attributes in the computation of a saliency field. Figure 4.2
displays the saliency fields computed from brightness and saturation of voxels respec-
tively. Although opacity is an important visual property, the visibility field described in
the previous section is derived from alpha blending, which has already taken the opac-
ity of voxels into account. Therefore, we compute the saliency fields using brightness
and saturation instead of opacity. Brightness and saturation are also the appearance

attributes Kim and Varshney [18] used in their saliency-based enhancement operator.
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(a) (b)

Figure 4.2: The saliency fields computed from brightness (a) and saturation (b) of
voxels respectively.

The saliency field is acquired by applying the center-surround operator to appearance
attributes of voxels. The effect of the center-surround operator is to emphasize the cen-
ter and de-emphasize the surroundings of voxels. This is shown in the exploded view
of the saliency field (computed from brightness) and the volume data in Figure 4.3.
In our implementation, we use perceptually uniform color spaces, e.g. CIELab
and CIELCh. In CIELCh, instead of Cartesian coordinates a*, b*, the cylindrical
coordinates C* (chroma, relative saturation) and h (hue angle in the CIELab color
wheel) are specified, and the brightness L* remains the same. The advantage of using
perceptually uniform color spaces is that the relative perceptual differences between
two colors can be approximated by the Euclidean distance between the two colors in a

three-dimensional space consisting of the three color components [188].

4.3.4 Visibility-Weighted Saliency Fields of Features

The visibility field indicates the contribution of voxels, which is how much each voxel
contributes to the final image, and the saliency field indicates the conspicuity of voxels,
which is how much each voxel stands out from its surroundings. The conspicuity in a

3D volume is similar to that in a 2D image and can be measured by the difference of

62



(a) (b)

Figure 4.3: The saliency fields emphasize the center and de-emphasize the surroundings
of voxels. As in the clipped views of the saliency field (a) and the volume data set (b),
the three solid disks are represented as hollow shapes in the saliency field.

visible properties between each location (voxel) and its surroundings [168]. It would
be desirable to have an indicator that represents both the contribution and conspicuity
of the voxels. Therefore, we propose a visibility-weighted saliency field, by weighting
the saliency of voxels by their visibility, given the volume is rendered with a transfer

function from a specific viewpoint. The visibility-weighted saliency for voxel 7 is
$i(0,i,0) = v; L(O,i,0) (4.9)
Hence we define S as the visibility-weighted saliency field of the volume V.
S ={s(0,i,0)|ieV} (4.10)

Therefore, we define visibility-weighted saliency field of a feature F' in the volume V
(FCV) as.
Srp={s(0,i,0) i€ F} (4.11)
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Then we define visibility-weighted saliency of feature F' as

Yiersi(0,i,0)
ZieV Si(()? ia U)

We(O,i,0) = (4.12)
Since F' is a subset of V, Wg(O,i,0) must be in the interval [0, 1]. Sr can be used as
a score to indicate the saliency of feature F' in terms of the appearance attribute O.
Features can be defined by user-specified transfer functions or segmentation of the
volume data. Figure 4.4 illustrates the visibility-weighted saliency fields of the three

disk-like features.

4.3.5 Visibility-Weighted Saliency (VWS) Histograms

As mentioned in Section 4.3.3, the saliency field can be computed from different appear-
ance attributes. Multiple saliency fields computed from different appearance attributes
can be combined together in order to represent different aspects of the visual saliency
of voxels. In our implementation, we use brightness and saturation respectively to
compute visibility-weighted saliency fields and define the weighted sum of the two sets

of feature saliency as visibility-weighted saliency:.

WF = U1WF(Ob,i7J) +u2WF(OS,i,0) (413)

where u; and uy are weights of different appearance attributes. u; and uy are both
in the interval [0,1] and uy + ug = 1. Wg(Oy,i,0) is the visibility-weighted saliency
of feature F' computed using brightness of voxels and similarly Wg(Os,7,0) is the
visibility-weighted saliency of feature F' from saturation of voxels.

Figure 4.5 and Figure 4.6 display bar charts of our visibility-weighted saliency of the
three features and the feature visibility by Wang et al. [6] for comparison. We compute
the saliency fields using brightness and saturation respectively and thus acquire two
sets of feature saliency of the three features in the synthetic data set. In Figure 4.5
and Figure 4.6, the feature saliency based on the brightness component shows similar
patterns as the feature visibility. However, the feature saliency based on the saturation
component gives the highest score to the middle disk (magenta color), which indicates
the middle disk is significantly more salient than the other two (light green and dark

green) in terms of saturation. The visibility-weighted saliency combines the feature
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(a) (b) ()

(d) (e) (f)

Figure 4.4: Visibility-weighted saliency fields of the three disks. The first column ((a)
and (d)) shows the saliency fields of the top disk in the two viewpoints in Figure 4.1.
The second column ((b) and (e)) and the third column ((c) and (f)) show the saliency
fields for the middle disk and the bottom disk in the two viewpoints respectively.

saliency from brightness and saturation with user-specified weights. The visibility-
weighted saliency can be used as a measure to indicate the saliency of features in volume
rendered images. Equal weights of appearance attributes are assumed for now in our
implementation, which is an equivalent assumption to that made in 2D saliency [16].

However, more detailed perceptual studies may determine more ideal weights.
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Figure 4.5: (a) The feature visibility [6] histogram shows the sum of visibility values
of all the voxels belonging to each feature. (b) & (c¢) The two histograms of visibility-
weighted saliency based on brightness and saturation respectively show the sum of
visibility-weighted saliency of all the voxels belonging to each feature (Wg(O,i,0) in
Section 4.3.4). (d) The histogram of visibility-weighted saliency shows the visibility-
weighted saliency with equal weights of brightness and saturation (Wg in Section 4.3.5).
Feature visibility (a) and visibility-weighted saliency from brightness (b) both suggest
that the top disk is the most visible and the bottom disk is the least visible. However,
the middle disk with magenta color is significantly more salient than the other two
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disks (light green and dark green) in terms of saturation (c).
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Figure 4.6: Similar to Figure 4.5, in the viewpoint on the right in Figure 4.1, the bottom
disk is the most visible according to feature visibility (a) and most salient according
to feature saliency from brightness (b). However, feature saliency from saturation (c)
suggests that the middle disk (magenta color) is significantly more salient than the
other two (light green and dark green) in terms of saturation. The histogram (d) is
the visibility-weighted saliency with equal weights of brightness and saturation.
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4.4 Use Case: Measuring Feature Saliency Result-

ing from Different Transfer Functions

In this section, we present results of using our approach to measure visual saliency of
features of a volume data set with two different transfer functions.

A tooth data set [3] is rendered with two different transfer functions to demonstrate
the effectiveness of our approach. The first transfer function (Figure 4.7) assigns equal
opacity to the three features. The second transfer function (Figure 4.10) is designed
to emphasize the enamel (the yellow material), thus it assigns high opacity the enamel
and low opacity to the other two features (cementum & pulp chamber and dentine).

By observation, it is clear that the transfer function in Figure 4.10 is better in
terms of visualizing the enamel than Figure 4.7. The purpose of our approach is to
provide an automated objective measure to make this comparison. This is demon-
strated through the output of the visibility-weighted saliency fields of the two transfer
functions (Figure 4.8 and Figure 4.11).

In the visibility-weighted saliency fields of the first transfer function (Figure 4.8),
all three features are reasonably salient. On the other hand, the visibility-weighted
saliency fields of the second transfer function (Figure 4.11) suggest the enamel has
significantly higher visual saliency in the volume rendered image. The feature visibility
and visibility-weighted saliency in Figure 4.9 and Figure 4.12 summarize the visibility

and visual saliency of the three features specified by the transfer functions.

4.5 Experiment

An experiment was performed to investigate how the visual saliency of objects in volume
visualization was perceived by human users. A typical objective in volume visualization
is to provide a clear impression of a certain part (i.e. a feature) of a volume data set
while showing the rest of the data set for reference [178]. For this reason, it is necessary
to test how well the shapes of features are perceived by human users. The aim of this
experiment is to gather subjective opinion scores regarding how clear and distinct the
features are in the images shown to the participants, and then compare the user opinion

scores against the proposed computational visual saliency metric.
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(b)

(a)

Figure 4.7: A tooth data set (a) with a transfer function (b) revealing three features:
cementum & pulp chamber (blue), dentine (red) and enamel (yellow). Equal opacity
is assigned to the three features in the transfer function.

(a) (b) ()

Figure 4.8: Visibility-weighted saliency fields of the three features, computed with the
transfer function in Figure 4.7. From left to right, the features are cementum & pulp
chamber (a), dentine (b) and enamel (c).
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Figure 4.9: Feature visibility [6] (a) and visibility-weighted saliency (b) of the three
features, computed with the transfer function in Figure 4.7.
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Figure 4.10: A tooth data set with a transfer function particularly highlighting the
enamel (the yellow feature)
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Figure 4.11: Visibility-weighted saliency field of the three features, computed with the
transfer function in Figure 4.10. From left to right, the features are cementum & pulp
chamber (a), dentine (b) and enamel (c).
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Figure 4.12: Feature visibility (a) and visibility-weighted saliency (b) of the three
features, computed with the transfer function in Figure 4.10.
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Figure 4.13: Volume data sets used in the experiment

4.5.1 Source Images and Participants

The images used for the study were rendered by Voreen [29] using a variety of transfer
functions of tent-like shapes, e.g. the transfer function in Figure 5.1 (b), highlighting
different features. Eight publicly available volume data sets were used to produce
images for the experiment. Two of these data sets (CThead ! and lobster ') were only
used in a brief training session at the beginning of the experiment. The remaining six

2 engine block !, foot !, tooth !,

volume data sets comprised the following: nucleon
VisMale ! and MRbrain ® as shown in Figure 4.13. For these, we empirically modulated
the transfer function to achieve varying degrees of emphasis on individual features. It
should be noted that relatively simple transfer functions were used in order to simplify
the explanation of the task to participants; for instance, in order to associate a feature

with an easily identifiable color.

30 participants (20 male and 10 female) took part in the experiment. All par-
ticipants were aged between 22 and 39 years old and consisted of postgraduates, un-
dergraduates and researchers. Over half of the participants had a computer science
background. One of the male participants reported that he had slight red-green color
blindness and his results were excluded from the study; thus the scores of 29 partici-

pants were used in the final data analysis.

Wolume Library: http://www9.informatik.uni-erlangen.de/External /vollib/
ZVoreen data sets: http://www.uni-muenster.de/Voreen/
3Stanford volume data archive: https://graphics.stanford.edu/data/voldata/
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4.5.2 Methods and Measurements

Participants were asked to sit in front of a computer display viewing the images gen-
erated from volume visualization. The participants’ task was to score the images on
a scale of 1 to 5 by keyboard input, based on how conspicuous a particular feature
appeared. In each trial, a screen identifying the feature of interest using a textual task
description e.g. “How clear and distinct is the RED feature?” was first shown to the
participant for 3 seconds, followed by a screen displaying a volume rendered image
for 17 seconds (See Appendix B for a sample questionnaire of the experiment). The
duration of the full experiment was approximately 20 minutes.

Some images were shown more than once in the experiment in order to detect
whether the participants’s scores were consistent during the experiment. We analyzed
the sum of differences of the repeated images’s scores and noticed that the scores by
the participant with slight red-green color blindness were significantly less consistent
than other participants. Hence, the scores by this participant were excluded and the
other 29 participants’s scores were used in the data analysis.

Our intention was to validate whether the VWS is able to predict how users perceive
relative conspicuity of individual features. If VWS is valid, the ordering of features by
user scores should correspond to ordering with VWS. The efficacy of the metric was

compared to two other approaches from existing literature:

4.5.3 2D Feature Saliency (2DFS)

A widely used saliency model is the saliency map by Itti et al. [16], based on prop-
erties of early primate vision. Three visual attributes, i.e. intensity contrast, color
opponency and orientation, are considered in the model in order to determine whether
an image pixel stands out from its surroundings. The output from this model is a 2D
view-dependent map indicating the visual saliency of pixels in the full rendered image
and thus can not directly be used to estimate the visual saliency of 3D voxels. How-
ever, using an inverse distance weighting [189] between pixels of the final image and
individual 2D feature images (rendered from the same view but each isolating only the
individual features), we can estimate the visual saliency of each feature as the weighted
total saliency of each 2D feature saliency map (see Appendix A for details). We refer
to this as 2D Feature Saliency (2DFS) in the rest of the thesis.
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4.5.4 Feature Visibility (FV)

Similar in objective to VWS, Wang et al. [6] proposed a scheme that measures the
influence of individual features on the volume rendered image. Their approach al-
lows the user to directly specify the desired visibility for the features of interest, and
subsequently the opacity transfer function is optimized using an active set algorithm
towards this target. We refer to their measure as Feature Visibility (FV) and use it as

an additional basis to compare against VWS.

4.5.5 Data Analysis

Because we are interested in the monotonic relationships between the variables, Spear-
man’s rank correlation [190], which does not assume normality of the variables, would
be suitable for evaluating the strength of monotonic associations of the observed scores
(mean opinion scores) and scores calculated from computational metrics.

We applied the Spearman’s rank correlation to analyze the monotonic association
between the mean opinion scores (MOS) and three computational metrics, i.e. our
visibility-weighted saliency (VWS) metric, feature visibility (FV) [6] and 2D feature
saliency (2DFS) discussed in Section 4.5.3.

As shown in Figure 4.14, there are strong positive correlations between MOS and
VWS (0.67508), and MOS and FV (0.678626) respectively. On the other hand, there is
a moderate positive correlation between MOS and 2DFS (0.550472). Both VWS and
FS are more monotonically correlated to MOS than 2DFS, and FV is slightly better
than VWS by about 0.0036.

The p-values indicate statistical significance of the associations. In our results, the
p-values for all the three cases are very small (below 2 x 107°). Therefore, we can reject
the null hypothesis (there is no association between each pair of variables) and conclude
that there are associations between MOS and VWS, FS and 2DFS respectively.

In addition, we group MOS by features to provide a more detailed view of the
correlation between MOS and VWS across individual data sets. Figure 4.15 displays
line plots of MOS versus VWS for each feature of the data sets separately, with the
data points sorted by VWS on the x axis. Because some images were shown more than
once in the experiment, the resulting data points have the same VWS and very similar
MOS in the line plots. Although the line plots are not strictly monotonic (i.e. MOS

74



MOS vs VWS MOS vs FV MOS vs 2DFS

MOS MOS MOS
5 . 5¢ S 5
4 4r i 4
3 3 . 3 .
2 2 2
1 1} 1 -
02 04 06 08 10°° 02 o024 06 o8 1dY 02 04 06 08 2DFS
(a) Spearman’s p = 0.67508, (b) Spearman’s p = 0.678626, (¢) Spearman’s p = 0.550472,
P-value= 2.16005 x 10_8 P-value= 1.70738 x 10—8 P-value= 1.61418 x 10_5

Figure 4.14: Spearman’s rank correlation of 54 opinion scores against the correspond-
ing visibility-weighted saliency (VWS), feature visibility (FV) and 2D feature saliency
(2DFS) respectively. There are strong positive correlations between MOS and VWS
(a) and between MOS and FV (b). There is a moderate positive correlation between
MOS and 2DFS (c).

and VWS are not strictly monotonically correlated), we notice that they have loose

monotonic associations.

Figure 4.16 and Figure 4.17 display two features of the VisMale data set repre-
sented by the data points in Figure 4.15 (g) and (h) respectively. In Figure 4.16 and
Figure 4.17, (a), (c), (e) and (g) are the volume rendered images and (b), (d), (f)
and (g) are the corresponding visibility-weighted saliency histograms respectively. The
curve in Figure 4.16 is strictly monotonic, which indicates that VWS and MOS are well
correlated for Feature 2 (the green feature) of the VisMale data set. Figure 4.17 shows
a case where VWS and MOS are not completely correlated. Figure 4.17 (e) and (g) are
represented by the third and the fourth (from left to right) data points respectively in
Figure 4.15 (h). For Feature 1 (the red feature) of the VisMale data set, Figure 4.17
(g) received a higher score than (e) from VWS, but MOS gave the opposite ranking of

the two volume rendered images.

The analysis of the experiment results indicates that our VWS is better than 2DFS
and equivalent to FV in terms of predicting human perception of visual saliency of

features in volume rendering images.
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Figure 4.15: Line plots of MOS versus VWS for each feature of the data sets separately
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Figure 4.16: Visibility-weighted saliency values of the green feature are represented by
the data points in Figure 4.15 (g)
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Figure 4.17: Visibility-weighted saliency values of the red feature are represented by
the data points in Figure 4.15 (h)

4.5.6 Varying Saturation and Brightness in Transfer Func-

tions

A major difference between our visibility-weighted saliency and the feature visibility is
that our approach reflects two aspects of the resulting visualization, i.e. voxel visibility
and visual saliency, while the feature visibility only reflects voxel visibility. Figure 4.18
displays an image of the tooth data set and its feature visibility and visibility-weighted
saliency. In Figure 4.19, the saturation of the red feature is reduced. Our visibility-
weighted saliency is aware of the saturation change, thus the red feature has lower
VWS and the yellow feature has higher VWS in Figure 4.19 (c¢). On the other hand,
the feature visibility is not aware of the saturation change, thus the feature visibility
in Figure 4.19 (b) is the same as that in Figure 4.18 (b).
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Figure 4.18: (a) The tooth data set; (b) Feature visibility; (c) Visibility-weighted

saliency
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Figure 4.19: (a) The saturation of the red feature is reduced; (b) The feature visibility
is the same as Figure 4.18 (b); (c¢) The visibility-weighted saliency of (a): the red
feature has lower VWS and the yellow has higher VWS.
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4.6 Conclusions

In this chapter, we propose visibility-weighted saliency as an improved measure of
the visual saliency of features in volume rendered images, in order to assist users
in choosing suitable viewpoints and designing effective transfer functions to visualize
the features of interest. According to the results of our experiment, the proposed
visibility-weighted saliency metric is as effective as feature visibility and better than
2D feature saliency at predicting the visual saliency of features in volume data. Our
visibility-weighted saliency also captures changes in saliency due to brightness/contrast,
which is not taken into account by feature visibility. With visibility-weighted saliency,
the perceptual importance of features rendered in different viewpoints with different

transfer functions can be measured in a quantitative and fully automated way.
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Chapter 5

Transfer Function Optimization
Using Visibility-Weighted Saliency

In this chapter, we present a transfer function optimization approach using the visibility-
weighted saliency metric discussed in Chapter 4. This is an automated approach
that adjusts transfer functions to match the visibility-weighted saliency towards user-
specified targets. In addition, a parallel line search strategy is presented for exploiting
the computing power of multi-core processors to improve the performance of the trans-

fer function optimization approach.

5.1 Introduction

Volume visualization is an effective means of discovering meaningful features in vol-
ume data sets. Both exterior and interior of structures can be revealed simultaneously
in a semi-transparent manner by specifying opacity values for the features in trans-
fer functions [6]. Features could include intensity intervals in 1D transfer functions,
rectangular or other shapes in 2D or higher-dimensional transfer functions.

In the specification of transfer functions for volume visualization, users often have a
rough idea of how clear and opaque each feature should be and then adjust the opacity
value of the features accordingly. However, the relationship between the opacity of
features and the saliency of the features in the final image is not linear. The saliency

of a feature in the final image depends on the opacity value assigned to the feature as
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well as the neighborhood of the feature and view-dependent occlusion of the feature.
Therefore, it is desirable to have an automated method to assist the user in the
design of transfer functions that match target saliency levels specified by the user.
In this chapter, we propose an optimization approach that supports this requirement
by automatically refining a user-defined transfer function towards any given saliency
distribution. Moreover, we present a parallel line search strategy to improve the per-

formance of the transfer function optimization.

5.2 Related Work

Transfer function specification is a non-trivial and unintuitive task in volume visual-
ization. Compared to typical transfer function approaches, which are often subjective,
it is desirable to have objective feedback regarding the clarity of features in volume
visualization.

Correa and Ma [5] introduced visibility histograms to guide transfer function design
for both manual and automatic adjustment. Visibility histograms (Figure 2.6), which
summarize the distribution of visibility of voxels from a given viewpoint, are a powerful
feedback mechanism for volume visualization [13]. Wang et al. [6] extended visibility
histograms to feature visibility histograms, in order to measures the influence of each
feature to the resulting images. They described a scheme that allows users to specify a
desired visibility for features of interest and subsequently the opacity transfer function
is optimized using an active set algorithm [99].

Researchers have developed a variety of parallel strategies to accelerate sequential
optimization algorithms [191]. Phua et al. [192] proposed a parallel extension to quasi-
Newton methods [193]. Their approach generates several search directions at each
iteration and then applies different line search and scaling strategies in parallel along
each search direction. Peachey et al. [194] presented another approach to parallelize
the quasi-Newton methods. In their applications, the objective function evaluation
typically requires minutes or hours of processing time. Therefore, they introduced an
approach that evaluates the objective function in parallel over a cluster of computers
and continues to the next iteration before all evaluations finish in order to accelerate

convergence.
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5.3 Method

In Chapter 4, visibility-weighted saliency was proposed as a measure of visual saliency
of features in volume visualization. This metric indicates the perceptual importance of
voxels and the visibility of features in volume rendered images and can be utilized to
assist users in choosing suitable viewpoints and designing effective transfer functions
to visualize the features of interest. In this chapter, we describe a transfer function
optimization approach based on the visibility-weighted saliency metric in order to au-
tomatically adjust the volume visualization to satisfy user-specified targets set on the
visibility-weighted saliency for the features.

The approach described in Chapter 3 is an automated method of optimizing transfer
functions, based on the intensity distribution of voxels in the volume data set. However,
this approach does not take into account the spatial distribution of voxels and the
viewpoint of the visualization. Visibility-weighted saliency, on the other hand, takes
into account both of these two aspects. The visibility-weighted saliency consists of two
component fields, i.e. saliency field and visibility fields. Saliency fields are essentially
difference of Gaussians, which include the information of local neighborhoods of voxels.
Visibility fields are computed from opacity contribution of voxels to volume rendered
images, which indicate viewpoint dependent occlusions of the voxels.

Constraints are introduced in the search of the parameter space. Only the opacity
of features are changed in the transfer function domain. The definition of features (e.g.
intensity ranges on 1D transfer functions) and the colors of features remain the same.
These constraints are based on the assumption that the user has explored the volume
data and done the classification of features. Our approach aims to help the user adjust
the saliency distribution and reduce occlusion while preserving the user’s knowledge or
judgments of the data set. While the approach discussed in Chapter 3 was designed
for exploration and visual search of volume data, the approach in this chapter could

aid in analysis, understanding or closer inspection of the data.

5.3.1 Objective Function

Users define target importance values for each feature in the transfer function domain.

Our transfer function optimizer adjusts the transfer function to match the visibility-
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weighted saliency with the user-defined target saliency values. Multiple saliency fields
computed from different appearance attributes can be combined together in order to
represent different aspects of the visual saliency of voxels. In our implementation,
brightness and saturation are used respectively to compute visibility-weighted saliency
fields and define the weighted sum of the two sets of feature saliency as visibility-
weighted feature saliency. The objective function F' is defined as the root mean square

of the differences of the visibility-weighted saliency and target importance of each

F— \/Z?—I(VZZ _ ti)2 (51>

where Wp = u1Wg(Oy,i,0) + usWg(Os, i, 0) is the visibility-weighted saliency of fea-

feature.

ture ¢, and t; is the user-defined importance of feature 7. These user-defined saliency
values are normalized and they add up to 1, in other words, ¢; € [0.1] and Y7 ; ¢; = 1.

As previously described in Section 4.3.5, multiple saliency fields computed from
different appearance attributes can be combined together in order to represent different
aspects of the visual saliency of voxels. In our implementation, Wr = uyWg(Oy,i,0) +
usWr(Os, 1, 0) is a weighted sum of visibility-weighted saliency values computed using
brightness and saturation of voxels respectively, and u; and us are weights of the two

appearance attributes.

However, the visibility-weighted saliency W; is not a variable that can be directly
modified. Instead, W; is a complicated function of the color and opacity of voxels in
feature ¢ and is also influenced by the viewpoint of rendering. A visibility-weighted
saliency field is a combination of a visibility field and a saliency field. The saliency
field is a view-independent field based on the color of every voxel in the volume data
set, while the visibility field is a view-dependent field computed from the opacity con-

tribution of every voxel to the final image when rendered from a certain viewpoint.

The computation of visibility fields is non-trivial. In order to compute a visibility
field, a slice-based rendering is performed on a series of quads which are parallel to the
viewing plane, one for each slice. Subsequently, the visibility values are computed by
subtracting the accumulated opacity of the previous slice from that of the current slice.
After collecting the visibility values of all voxels, the visibility field can be constructed.

The details of visibility fields were previously described in Section 4.3.2.

The evaluation of the objective function is computationally expensive. However, in
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an iterative optimization, the visibility field and visibility-weighted saliency have to be

recomputed at each step after the feature opacity values are updated.

5.3.2 Parameter Space

We use a nucleon data set [195] to demonstrate how the visibility-weighted saliency of
features change when the feature opacity values change. As displayed in Figure 5.1,
three features are defined in the transfer function for the nucleon data set.

The dimension of the parameter space is the same as the number of features defined
by the user. In this case, three features are defined for the nucleon data set. The opacity
of each feature is mapped to an axis in the parameter space. Therefore, the opacity
values of the 3 features are mapped to x,y, z axes of a 3D scalar field respectively.
Figure 5.2 displays a visualization of three 3D scalar fields representing this parameter
space. One field is presented for each feature to provide an intuitive overview of the
relationship between the feature opacity values and the visibility-weighted saliency
values. In order to avoid confusion, please note that this has no spatial relationship to
the actual 3D volume data (which is itself a 3D scalar field).

Feature 1 (the purple structure in Figure 5.1) is the exterior of the nucleon data
set, the visibility-weighted saliency of this feature is shown in the 3D scalar fields in
the same color at the left in Figure 5.2. The visibility-weighted saliency of Feature 1
increases as its opacity increases, as demonstrated by the fact that both the brightness
and opacity of the corresponding 3D field increases along the x-axis. Similar patterns
also appear in the other 2 scalar fields, the visibility-weighted saliency of Feature 2
(the red structure in Figure 5.1) and Feature 3 (the green structure in Figure 5.1) also
increase as their opacity values increase.

Moreover, Feature 1 is the exterior of the nucleon, its visibility-weighted saliency
is almost not influenced by the opacity of other features. On the other hand, the
visibility-weighted saliency of Feature 2 is influenced by both the opacity of Feature 1
and Feature 2. In addition, the visibility-weighted saliency of Feature 3 is drastically
influenced by the opacity of Feature 1, Feature 2 and Feature 3, as Feature 3 is an
interior structure and can be easily occluded by the other 2 features.

In order to demonstrate the distribution of the objective function in the parameter

space x € [0,1], y € [0,1] and z € [0, 1], we sample the parameter space with sampling
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Figure 5.1: (a) A nucleon data set [195]; (b) A user-specified transfer function with
3 features (c¢) The feature visibility histogram [6]; (d) The visibility-weighted saliency
histogram

interval 0.1, from 0 to 1 along each axis. There are 11 sampling points along each
axis, which results in 1331 sampling points in the parameter space. In Figure 5.3,
the parameter space is rendered as a density plot with a color function resembling a

temperate map which gradually changes from orange to blue.

5.3.3 Optimization Algorithm

The gradient descent algorithm is employed in our transfer function optimizer. Gradi-
ent descent is a first-order optimization algorithm. It is based on the observation that
if a function f(z) is defined and differentiable in a neighborhood of a point z;, then
f(z) decreases fastest in the direction of the negative gradient of the function [196].
Given a continuously differentiable function f(x) with x € R", let 2, be the current
iteration point and g, = g(xx) = V f(xy) be the gradient of f(z) at xp. The gradient

descent method defines the next iteration point by
Thy1 = T — QgGr, kb >0

for oy small enough, then f(xgi1) < f(zx). The gradient varies as the iteration pro-
ceeds, tending to zero as it approaches a local minimum. When the gradient decreases,
the iteration step sizes also decrease. So hopefully the sequence x, converges to the
desired local minimum after performing the iteration.

In gradient descent methods, we can either take very small step sizes and reevaluate
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(a) VWS of feature 1 (b) VWS of feature 2 (c) VWS of feature 3

Figure 5.2: Visibility-weighted saliency of the 3 features are mapped to brightness and
opacity of the 3D fields in (a), (b) and (c) respectively. The visibility-weighted saliency
of Feature 2 (red) is affected by both the opacity of Feature 1 (purple) and Feature
2. The visibility-weighted saliency of Feature 3 (green) is affected by the opacity of
Feature 1, Feature 2 and Feature 3.

Objective function in parameter space

Figure 5.3: Each position (x, y, z) in the parameter space represents 3 features with
opacity values (x, y, z). The value of the objective function (with {0.1, 0.3, 0.6} as
target) is mapped to the color in the parameter space (with sampling interval 0.1). For
clarity, only the high and low values are visible and the data range in the middle is set
to transparent.
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the gradient at every step, or take large steps each time. If the step size is too small, it
may end up in a laborious situation that the objective function converges very slowly.
If the step size is too large, it results in a more zigzag path and may have the risk of

missing the local minimum and thus cannot converge.

5.3.4 Estimating Descent Directions

In each step of the optimization, the descent direction g, has to be updated. As
previously discussed, the visibility-weighted saliency of a feature increases as its feature
opacity increases. However, the relationship between the visibility-weighted saliency
and the opacity of a feature also depends on the viewpoint of rendering and the spatial
distribution of voxels of every feature in the volume data set. An exact derivative of
the visibility-weighted saliency with respect to the opacity of the feature cannot be
determined in advance.

In the following subsections, two methods for estimating descent directions are
described.

Gradients with Backward Difference

The partial derivative of the objective function F' with respect to x; is

OF  OF OW;

where z; is the opacity and W; is the visibility-weighted saliency of feature i. The

aamc can be solved from the objective function F. However, %‘g"

cannot be determined without knowledge of the actual volume data set.

partial derivative

For a function f(x), its first-order derivative can be estimated by a backward dif-

ference divided by a small step.

Valfl(z) _ f(z) = f(z = d)
d d

where d is a nonzero number. When d is small, the backward difference divided by

d approximates the derivative. Assuming that f is differentiable, the error in this
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approximation can be derived from Taylor’s theorem.
— — f'(x) =0(d) =0, asd — 0

The backward difference is used here to approximate

%‘;Vi, hence we have
1

The evaluation of the objective function F' is very computationally expensive. In our
implementation, a small step size d is adopted, therefore the backward difference can be
calculated from values of the objective function, visibility-weighted saliency and steps
of the previous iteration. In this case, no extra evaluation of the visibility-weighted
saliency and the objective function is required.

Furthermore, if the function W; of x; is approximately a linear function, the partial
derivative %—IZ_" becomes constant and could be replaced by an empirical constant b;. In
this case, the gradient of the objective function with respect to the visibility-weighted

saliency is used instead, which should be more computationally efficient.

OF _ OF
ox;  OW;

bi

Descent Directions with Second-Order Derivatives

Newton’s method, which is an iterative method for finding the roots of a differentiable
function, can be used to find a minimum or maximum of a function. Because the
derivative is zero at a minimum or maximum, minima and maxima can be found by

applying Newton’s method to the derivative.

R )
k+1 k F7(er)
This iteration equation gives a similar form of gradient descent, thus %15 can be adopted

in our optimization algorithm as the descent direction.
The first-order derivative can be estimated by backward difference of the objective

function F', and the second-order derivative F” can be estimated by backward difference
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Figure 5.4: The two methods for estimating descent directions are applied to transfer
function optimization on the nucleon data set (a) and a tooth data set (b) respectively.
Note that the steps of the two methods overlap most of the time.

of the first-order derivative F".

orp YR ()
oz Vd[F;KIi) V[ F](z)

Comparison of Descent Directions

We have tested the descent directions discussed above with several volume data sets

with various step sizes. All the above described methods worked with small step sizes.

OF Va[Wil(zi)
d

As the step size increases, using as descent directions would be unstable.

ow;
While using a%ibi and % as descent directions would be still stable even when

the step sizes are large. In our implementation, b; = 1 is used and this yields desirable
results.

Gradient descent was performed on several volume data sets with various transfer
functions, using the two normalized descent directions computed from [;T}[;lbl"';WFnbn]
(Method 1) and [VV:[%(("Z))...vvdd[%(é*;))] (Method 2). In the preliminary results, the con-
vergence speeds of the two methods were very similar. Figure 5.4 shows that the steps

made by the two methods overlap most of the time.

5.3.5 Line Search and Parallel Line Search

Performing gradient descent with a small step size may result in converging too slowly
and require a lot of evaluations of the objective function, which is rather expensive

to compute in our situation. Various approaches have been proposed regarding the
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Figure 5.5: The steps of gradient descent methods with fixed step size and adaptive
step size are shown in the parameter space in Figure 5.3 (the step size is 0.1)
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choices of step sizes, which lead to various gradient algorithms [197].

Line Search

The line search strategy is an iterative approach that adapts the step size in gradient
descent in order to achieve a reduction in the objective function while still making

sufficiently fast progress.
h(v) = f(zk +v9r)

where g, is the descent direction and xj is the current point at the k-th iteration.

There are two type of approaches of line search, exact line search and inexact line
search [198]. Exact line search chooses the next iteration point by achieving the least
objective function value. However, despite the optimal properties, exact line search
often behaves poorly and tends to zigzag in two orthogonal directions, which usually
implies deteriorations in convergence [199]. In contrast, inexact line search only loosely
finds a sufficient decrease of the objective function along the descent direction.

The inexact line search we used in our implementation is as follows.
1. Set initial iteration count i = 0 and set n to the maximum iteration count.
2. Check whether f(&?k + 7i+lgk) < f(xk —+ %gk) where Y = Qi

3. If soand i < n—1,7 =17+ 1 and repeat Line 2, otherwise terminate the line

search.

The step size 7, is chosen after the above line search procedure. This strategy does
not find the exact minimum along the line direction, instead it yields reasonable results
and descends much faster than using fixed step sizes.

With line search approaches, the optimization algorithm can converge much faster
than using fixed step sizes. Figure 5.5 displays the paths of two gradient descent
methods, one progresses regularly with fixed step sizes, the other progresses aggressively

with line search. It takes fewer steps for the latter to reach a local minimum.

Parallel Line Search

The classical gradient descent is a sequential algorithm. In its iterative procedure,

the next iteration takes the result from the previous iteration as input. However, the
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line search at each iteration can be computed in parallel to accelerate the optimiza-
tion. This idea is particularly useful in our transfer function optimization, because the
most expensive computation in our transfer function optimization is the evaluation of
visibility-weighted saliency, which is required in the evaluation of the objective function
at each iteration.

Thus, we propose a parallel line search strategy, which evaluates the objective
function at different candidate points in parallel along the line search direction. Instead
of sequentially searching for a desirable step size, parallel line search simultaneously
evaluates the candidate step sizes and choose the best one for the current iteration.
With this parallel approach, the computing power of modern multi-core processors
can be better exploited to accelerate the transfer function optimization. Specifically,
parallel line search launches multiple threads to perform the line search. Each thread
computes the visibility-weighted saliency and the objective function at a candidate
point. Subsequently, the results at all the candidate points are aggregated and the
candidate point with the minimum objective function value is chosen as the next step.

The parallel line search is shown as follows.

1. Generate a list of step sizes S = {70,71, .-, Yn_1} Where 7; = 2¢

2. Evaluate f(zj + 7;9x) in parallel for each ~; in S

3. Find the index ¢ of the minimum f(xy + 7;gx), then ~; is the chosen step size.

The mechanism of the parallel line search is sightly different from the sequential
line search. In the sequential line search, if the current candidate point does not meet
the condition, the line search is terminated and the next candidate point would not be
evaluated. By contrast, the parallel line search would always evaluate all the candidate
points and pick the one with least value of the objective function. However, these two
methods would have the same behavior if the objective function is a convex function.

The parallel line search strategy would introduce extra overhead of starting and
terminating threads. Moreover, the number of threads should not exceed the number
of cores of the processor, otherwise multiple threads have to share the same core and
this would cause performance impact. The parallel line search is beneficial only when
the evaluation of the objective function is more expensive than the parallel overhead. In

our case, the evaluation of the objective function is very computationally expensive. It
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Figure 5.6: The line search and parallel line search are applied to transfer function
optimization on the nucleon data set (a), the tooth data set (b), the CT-Knee data set
(c) and the first time step of the vortex data set (d) respectively. Note the curves of
line search and parallel line search overlap most of the time, as they made the same
step choices in most cases.

requires computing the visibility fields, which in turn requires that a pass of slice-based
volume rendering is performed.

Figure 5.6 displays results of applying the two line search methods in optimizing
transfer functions. The two curves of objective functions are mostly overlapping, which

indicates the two methods acts almost the same in choosing step sizes.

5.4 Results and Discussions

In this section, we present some results to demonstrate the effectiveness of our approach
on the nucleon data set (41 x 41 x 41), a tooth data set (140 x 120 x 161), a CT-knee
(379 x 229 x 305) data set [3] and one time-step of a simulated turbulent vortex flow
(128 x 128 x 128, 100 time-steps) [186]. Results were obtained in our experimental
programs written in Wolfram Mathematica 11 on a computer equipped with an Intel
Xeon E3-1246 v3 processor, 16GB of RAM and a NVIDIA Quadro K4200 graphics

card.
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In the results, we examine the transfer functions and volume rendered images before
and after transfer function optimization, as well as the evolution of visibility-weighted
saliency and opacity values of features due to the optimization. The feature visibility
histograms [6] are displayed along with the visibility-weighted saliency histograms for
comparison.

The two optimization methods shown in the results are gradient descent with fixed
step size and gradient descent with parallel line search, both using the Method 1
discussed in Section 5.3.4 for estimating descent directions.

Figure 5.7 shows the optimization results of Figure 5.1. In Figure 5.7 (a), the three
features from outside to inside appear in different transparency levels, from weak to
strong. This reveals a clear perspective of the three structures. Figure 5.7 (b) to (d)
are the optimized transfer function, the feature visibility histogram and the visibility-
weighted saliency histogram respectively. Figure 5.7 (e) and (f) are the evolution of
visibility-weighted saliency of each feature in gradient descents with fixed step sizes
and parallel line search respectively. Figure 5.7 (g) and (h) show the evolution of the
opacity of each feature (opacity of the peak control point) in gradient descents with
fixed step sizes and parallel line search respectively.

Figure 5.8 (a) to (h) display the volume rendered image and the transfer function,
the feature visibility histogram and the visibility-weighted saliency histogram of the
tooth data set before and after optimization respectively. Figure 5.8 (i) and (j) are the
evolution of visibility-weighted saliency of each feature in the gradient descent with
fixed step sizes and parallel line search respectively. Figure 5.8 (k) and (1) illustrate
the opacity of features in the gradient descent with fixed step sizes and parallel line
search respectively.

Figure 5.9 ((a) to (h)) shows the volume rendered images of a CT-Knee data set,
the transfer functions, and the feature visibility histograms and the visibility-weighted
saliency histograms before and after optimization respectively.

Figure 5.10 ((a) to (h)) shows the volume rendered images of the first time-step of
a vortex data set, the transfer functions, and the feature visibility histograms and the
visibility-weighted saliency histograms before and after optimization respectively.

The evolution of visibility-weighted saliency and opacity of each feature, in gradient
descents with fixed step sizes and parallel line search, are displayed in Figure 5.9 (i)
to (1) and Figure 5.10 (i) to (1) for the CT-Knee data set and the vortex data set
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respectively.

In the optimized results of the 4 data sets, the visibility-weighted saliency values of
the 3 features are very close to the user-specified targets, as shown in Figure 5.7 (d),
Figure 5.8 (h), and Figure 5.9 (h).

Moreover, performance tests of the optimization approaches were conducted on the
4 data sets. In the tests, 0.05 is used as the step size and the objective function F
falling below 0.03 is regarded as convergence. For the 4 data sets we generated an
“ideally optimized” image using a large number of iterations and compared this, using
the SSIM metric [200], to images at different progressive stages of optimization. We
noted, across the 4 data sets, that for values of the energy function below 0.03, the
SSIM scores settled consistently at over 0.99, which was taken as an indicator that
further iterations lead to an almost imperceptible change to the rendered image. In
practice this threshold can be chosen as demanded by the application or determined

using a perceptual study.

Table 5.1 displays the number of iterations and the time taken for the objective
function to converge. We noticed the two line search methods require much fewer steps
to converge than the fixed step-size method and they made the same choices of adaptive
step sizes during the iterations (the two curves completely overlapped). In addition,
although the two line search methods use the same numbers of steps, the parallel line

search is significantly faster than the sequential line search.

Figure 5.11 shows the convergence time of the parallel line search approach on
the 4 data sets over 1, 2, 4 and 8 CPU threads respectively. We observed that the
computation time decreased as the number of threads increased. However, the speedup
from 4 threads to 8 threads is minor, which may due to the fact that the CPU of the

experiment computer only has 4 cores.

For the sake of clarity of presentation and convenience of the user study, the results
in this section are includes cases of transfer functions with three features and three
distinctive feature colors. See Section 5.4.2 for details of applying the transfer function

optimization approach to other transfer functions and other color schemes.
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Figure 5.7: Optimization results of nucleon. After optimization to target {0.1, 0.3, 0.6},
all the 3 features are visible and the green feature inside is particularly emphasized.
(a) The optimized volume rendered image of the nucleon data set; (b) The optimized
transfer function; (c¢) The feature visibility histogram [6]; (d) The visibility-weighted
saliency histogram; (e) & (f) VWS of features for gradient descent with fixed step
sizes and parallel line search respectively; (g) & (h) Opacities of features (opacities of
peak control points) for gradient descent with fixed step sizes and parallel line search
respectively.
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Figure 5.8: Optimization results of tooth. After optimization to target {0.1, 0.3, 0.6},
all the 3 features are visible and the yellow feature inside is particularly emphasized.
(a) & (b) Initial volume rendered image and transfer function; (c) & (d) Optimized
volume rendered image and transfer function; (e) & (f) Feature visibility and VWS of
features before optimization; (g) & (h) Feature visibility and VWS of features after
optimization; (i) & (j) VWS of features for gradient descent with fixed step sizes and
parallel line search respectively; (k) & (1) Opacities of features for gradient descent
with fixed step sizes and parallel line search respectively.
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Figure 5.9: Optimization results of CT-Knee. After optimization to target {0.1, 0.3,
0.6}, all the 3 features are visible, and the green and the purple features inside become
clearer. (a) & (b) Initial volume rendered image and transfer function; (c¢) & (d)
Optimized volume rendered image and transfer function; (e) & (f) Feature visibility and
VWS of features before optimization; (g) & (h) Feature visibility and VWS of features
after optimization; (i) & (j) VWS of features for gradient descent with fixed step sizes
and parallel line search respectively; (k) & (1) Opacities of features for gradient descent
with fixed step sizes and parallel line search respectively.
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Figure 5.10: Optimization results of vortex. After optimization to target {1/3, 1/3,
1/3}, all the 3 features are visible and the green feature inside is particularly more
emphasized in comparison to the unoptimized result. (a) & (b) Initial volume rendered
image and transfer function; (c) & (d) Optimized volume rendered image and transfer
function; (e) & (f) Feature visibility and VWS of features before optimization; (g) &
(h) Feature visibility and VWS of features after optimization; (i) & (j) VWS of features
for gradient descent with fixed step sizes and parallel line search respectively; (k) & (1)
Opacities of features for gradient descent with fixed step sizes and parallel line search
respectively. 100
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Figure 5.11: Performance of parallel line search (seconds taken to converge) over dif-
ferent number of CPU threads
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Fixed step size Line search Parallel line search

nucleon | Steps to converge | 17 2 2
Time (seconds) 1.07 0.59 0.38

tooth Steps to converge | 21 2 2
Time (seconds) 7.56 3.25 1.57

CT-Knee | Steps to converge | 17 2 2
Time (seconds) 33.84 17.81 9.26

vortex | Steps to converge | 33 13 13
Time (seconds) 14.00 15.22 8.40

Table 5.1: Performance of the 3 optimization approaches showing steps and time (sec-
onds) taken to converge (F' < 0.03 is regarded as convergence.)

5.4.1 Transfer Function Optimization For Time-Varying Data
Sets

Similar to the approach discussed in Section 3.5.4, we apply our transfer function
optimization on all the time steps of the vortex data set. Our optimizer dynamically
optimizes the transfer function to the same user-specified target (equal weights i.e.
(1/3, 1/3, 1/3) were set as target in this test) for each time step of the time-varying

data set.

Figure 5.12 displays the temporal curves of the visibility-weighted saliency (VWS)
and 2D feature saliency (2DF'S, discussed in Section 4.5.3) of the visualization with
a static transfer function (optimized for the first time step) respectively. Similarly,
Figure 5.13 displays the temporal curves of the VWS and 2DFS of the visualization
with a dynamic transfer function (optimized for each time step) respectively. The VWS
curves in Figure 5.13 (a) are more converged than the VWS curves in Figure 5.12 (a)
because the dynamic transfer function is constantly optimized towards the target (1/3,
1/3,1/3).

The 2DF'S curves in Figure 5.12 (b) and Figure 5.13 (b) are provided as comparison
for the fact that 2DFS is an image space technique independent from VWS. We notice
that there are more small changes in the 2DFS curves in Figure 5.12 (b) and the three
curves (representing the 2DFS of the three features) cross each other more often than
the 2DF'S curves in Figure 5.12 (b).

Time step 30 and 80 rendered with the static transfer function and the dynamic
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Figure 5.12: (a) VWS and (b) 2DFS of the vortex data set with a static transfer
function only optimized for the first time step
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Figure 5.13: (a) VWS and (b) 2DFS of the vortex data set with a dynamic transfer
function optimized for each time step

transfer function are displayed in Figure 5.14 and Figure 5.15 respectively. As coherence
can be an important factor in time-varying visualization, we notice the dynamic transfer
function can maintain similar level of visual saliency for the purple feature when the

sizes and proportions of the features change over time.

5.4.2 Generality of Transfer Functions

We have provided examples of transfer functions with three features and three distinc-
tive feature colors. However, this was purely for the sake of clarity of presentation as
well as to be able to specify, for the user study, tasks that could be easily explained to
the user. In this section, we provide some examples to demonstrate that the approach
can, in fact, be applied equally well to other transfer functions and other color schemes.

Furthermore, we wish to examine if the iterative optimization is reasonably robust to
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Figure 5.14: Time step 30 (a) and time step 80 (b) rendered with a static transfer
function only optimized for the first time step

(a) (b)

Figure 5.15: Time step 30 (a) and time step 80 (b) rendered with a dynamic transfer
function optimized for each time step
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changes in initial conditions. We present results of the CT-Knee data set rendered
using transfer functions with a color mapping that is more likely to be used in a real-
world application. Specifically, we chose the C'T-Bone transfer function provided with
the medical imaging tool, 3D Slicer 1. For the opacity channel, two types of initial
transfer functions are used in this section, namely a function with peaks of equal opac-
ities and another with peaks of linearly increasing opacities. The transfer functions are
optimized towards two different VWS targets, i.e. equal VWS and linearly increasing

VWS.

Figure 5.16 displays a visualization of the CT-Knee data set before and after op-
timization to the two VWS targets. In this example, the transfer function is initially
set to have equal peak opacity values for all five features. The top row (Figure 5.16
(a) - (c)) shows the volume rendered image, the initial transfer function, and the VWS
graph respectively. The second row (Figure 5.16 (d) - (f)) shows the rendered image,
transfer function and the VWS graph after optimizing towards a target with equal con-
spicuity for all features. The bottom row (Figure 5.16 (g) - (h)) shows the results after
optimizing towards a VWS target with linearly increasing values for each subsequent

feature.

Similarly, Figure 5.17 displays a similar set of examples for the same data set,
however the initial transfer function in this case is set to linearly increasing peak

opacities, in order to test how the initial conditions impact the resulting optimization.

Although, we observe, by comparing Figure 5.16(e), (h) and Figure 5.17 (e), (h)
respectively, that the optimized transfer function for the corresponding targets are
slightly different, the final volume rendered images turn out to be very similar in ap-
pearance. We also ran tests with the four data sets and opacity transfer functions
with differing number of features, ranging from 3 to 9 tent-shaped peaks. We ob-
served similar behavior to the CT-Knee examples above, indicating that the process
is not significantly sensitive to initial conditions in terms of both output quality and

performance.

Lwww.slicer.org
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Figure 5.16: CT-knee: (a), (b) and (c) are the volume rendered images, transfer
functions and VWS graphs respectively; (d), (e) and (f) are the images after VWS-
optimization to a even VWS target, where all features have similar VWS; (g), (h)
and (i) are the images after VWS-optimization to a diagonal VWS target, where the

internal features are clearer.
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Figure 5.17: CT-knee: (a), (b) and (c) are the volume rendered images, transfer
functions and VWS graphs respectively; (d), (e) and (f) are the images after VWS-
optimization to a even VWS target, where all features have similar VWS; (g), (h)
and (i) are the images after VWS-optimization to a diagonal VWS target, where the

internal features are clearer.
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5.5 Conclusions

This chapter proposes a novel transfer function optimization approach using the visibility-
weighted saliency metric. With this approach, the design of transfer functions becomes
more intuitive. This approach allows the user to directly set target visibility-weighted
saliency for features of interest and then the transfer function is automatically refined
to match the visibility-weighted saliency of the features with user-defined targets. In
addition, a parallel line search strategy is presented for exploiting the computing power
of multi-core processors to improve the performance of the transfer function optimiza-
tion approach. This approach has proven to be effective over several volume data

sets.

108



Chapter 6

Selective Saturation and Brightness
for Visualizing Time-Varying

Volume Data

6.1 Introduction

Time-varying volume data is used in many areas of science and engineering, however,
visualizations of such data are not easy for users to visually process due to the amount
of information that can be presented simultaneously. In this chapter, we propose a
novel visualization approach which modulates focus, emphasizing important informa-
tion, by adjusting saturation and brightness of voxels based on an importance measure
derived from temporal and multivariate information. By conducting a voxel-wise anal-
ysis of a number of consecutive frames, we acquire a volatility measure of each voxel.
Subsequently, the opacity, saturation and brightness are used to represent intensity,
volatility and additional multivariate information in the data set. The method was
tested in visualizing a multivariate hurricane data set and a smoke data set. The re-
sults suggest that our method can give the user a more detailed understanding of the
data by presenting multivariate information variables, including time-variant charac-

teristics, in one self-contained visualization.
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6.2 Related Work

The visualization of time-varying data is an important and active topic in the visu-
alization community. Transfer function specification for static volume data has been
widely studied over the years [19]. However, much less work has been done for transfer
function design of time-varying data.

Jankun-Kelly and Ma first studied transfer function specification for time-varying
data [121]. Kniss and Hansen applied the techniques from multidimensional transfer
function based volume rendering to the visualization of multivariate data from weather
simulations [109]. Akiba et al. [117] described three approaches for the data-fusion
problem in multivariate data visualization. One approach, which is to use one variable
for each color channel in RGB space, is popular because of its simplicity but is limiting
due to the difficulty for viewers to interpret the resulting color. The second approach,
is to use one of the values based on some criterion e.g. [201] use alternating sampling
for rendering two volumes and this has been shown to work well for medical imaging
but not for fluid flow visualization. The third approach is to compute a weighted sum
of all the values. This approach is more flexible however this may not be guaranteed to
lead to an effective visualization as blending different colors might lead to ambiguous

mixing of different hues.

6.3 Method

In this section, we propose an intuitive approach of using color mappings in the HSB
color space to effectively represent multivariate time-variant data. We use opacity to
represent the main variable and saturation to represent the volatility (a temporal char-
acteristic) of the main variable. In addition, brightness can be used to represent other
information such as an additional variable from a multivariate or multidimensional
data set. This allows constraining hues, which are sometimes chosen based on some
domain knowledge and changing hues across different time steps could be unintuitive.

For a multivariate data set with two variables X, Y, we use variable X of voxels
for the alpha channel and modulate the saliency of voxels by adjusting saturation and
brightness based on the volatility of variable X and the values of variable Y respectively.

The volatility is measured by temporal standard deviation std(i), which is the standard
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deviation of the i-th voxel in the recent n consecutive frames, where n is a user specified
number. The hue, saturation, brightness and alpha of the i-th voxel (an element in a

volume data set) in the HSB color space are defined as follows:

Hue(i) = C(1)

Saturation(i) = Clip(a X std(i))
Brightness(i) = 1 — Clip(b x Y (i))
Alpha(i) = X (i) (6.1)

where std(i) is the volatility and C(i) can be either a user-specified constant hue or
mapped to a variable such as X(i). Clip is a function that clips the value to the range
[0, 1]. a and b are scale factors for saturation and brightness respectively, which are
determined by the user based on the distribution of variables X and Y in the data set.
Variables X(i) and Y(i) are normalized to the range [0, 1].

6.4 Results

We tested our method on the hurricane data set from the National Center for Atmo-
spheric Research provided for the IEEE Visualization 2004 Contest. The hurricane
model is Hurricane Isabel, which was a very strong hurricane in the west Atlantic re-
gion in September of 2003. The resolution of the data set is 500 (longitude) x 500
(latitude) x 100 (height) x 48 (time). One time-step is one hour in the simulation. The
variables we used in the tests are cloud moisture mixing ratio (kg water /kg dry air) and
total precipitation mixing ratio (sum of mixing ratios of graupel, rain and snow). The
ground in the hurricane data set, which is a height field of the surface topography, is
rendered with relief mapping and presented as background in the visualization results.

The cloud, precipitation and volatility of cloud of frame 40 are displayed in Fig-
ure 6.1 and Figure 6.2 for reference. Figure 6.1 shows the cloud and precipitation,
and Figure 6.2 shows the volatility of cloud over 5 frames, 10 frames and 20 frames
respectively. Figure 6.3 shows images of 3 frames of the hurricane rendered with cloud,
volatility of cloud and precipitation. Cloud is used as variable X and precipitation as

variable Y. The temporal standard deviation is calculated using the recent 10 frames.
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Figure 6.1: Cloud (a) and precipitation (b) at frame 40

Figure 6.4 (a) displays a 3D perspective view of the visualization in Figure 6.3 (b). The
strong red color near the hurricane eye indicates where the hurricane was in previous

several frames and the clouds with more precipitation are darker in the images.

Figure 6.4 (b) displays a 3D perspective view of the frame 40 of the hurricane in
a cyan hue with both saturation and brightness representing the precipitation. Note

how parts of the hurricane are desaturated and darkened based on the precipitation.

In addition, Figure 6.5 displays an alternative visualization, where the variables
X and Y are swapped, i.e. precipitation is used as variable X and cloud as variable
Y. Note the precipitation is desaturated based on its volatility over 10 frames and
darkened based on the cloud.

We also tested our method on a time-varying smoke simulation based on an im-
plementation of the approach by Fedkiw et al. [202]. Figure 6.6 shows the smoke
density, volatility of smoke density and gradient magnitude of smoke density rendered
in grayscale for comparison. The gradient magnitude is the Euclidean norm of the
gradient at a voxel position, and the temporal standard deviation is calculated using
the recent 10 frames. In Figure 6.7, the smoke density was used as variable X and
gradient magnitude as variable Y and the parameters were a = 10 and b = 5. The hue
was mapped to the smoke density in Figure 6.7 (a) and a constant red hue was used
in Figure 6.7 (b).
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(a) (b) ()

Figure 6.2: Volatility of cloud over 5 frames (a), 10 frames (b) and 20 frames (c) at
frame 40

Figure 6.3: Adjusting saturation and brightness of frame 35 (a), frame 40 (b) and
frame 45 (c)
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Figure 6.4: (a) A 3D perspective view of Figure 6.3 (b); (b) A 3D perspective view of
the hurricane at frame 40 rendered with both saturation and brightness representing
the precipitation, the hue is cyan, a=10 and b=10

(a) (b) ()

Figure 6.5: An alternative visualization of the hurricane at frame 35 (a), frame 40 (b)
and frame 45 (c)
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(a) (b) ()

Figure 6.6: Smoke density (a), volatility of density (b) and gradient magnitude of
density (c) at frame 160

(a) (b)

Figure 6.7: (a) Smoke density as variable X and gradient magnitude as variable Y at
frame 160. Hue is X(i), a=10 and b=>5; (b) Hue is red. Note how parts of the smoke
are desaturated and darkened based on the volatility and gradient magnitude
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6.5 Conclusions

Our main contribution is a mechanism for exploiting saturation and brightness to mod-
ulate focus in time-variant volume visualization using an importance measure that is
based on volatility. In addition, we demonstrate how additional variables in a multi-
variate data set could be communicated simultaneously through the brightness channel.
Preliminary results indicate that the approach can provide more visual information for
the test data sets.

Clearly, more research is warranted in this area including a generalization of the ap-
proach to different multivariate characteristics, perceptual evaluation with user studies
and integrating this form of optimization with the other results reported in this thesis.
However, this was felt to be too far outside of the core scope of this thesis thus this
is left for future work. Nevertheless, we present the preliminary results here as we feel

they represent noteworthy results in a closely related area of research.
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Chapter 7
Conclusions

This chapter provides an overview of the contributions of this thesis and directions for

future work on visualizing volume data with automated techniques.

7.1 Summary of Contributions

Volume visualization is a broad field covering many subtopics. The goal of this thesis
was to provide a framework of automated transfer function techniques for obtaining
clear visualization of features of interest in volume data. This thesis proposed and in-
vestigated novel automated optimization techniques for emphasizing features of interest
in volume visualization using entropy, visual saliency and visibility of voxels.

We have presented a transfer function refinement approach, which exploits the en-
tropy of voxels to equalize the opacity transfer function, in order to reduce general
occlusion and improve the clarity of features of interest in the resulting visualization.
Furthermore, this approach assists the user in exploring and enhancing features of in-
terest by interactively specifying either priority intensity ranges in the transfer function
domain or regions of interests in the resulting visualization. Our approach is different
from Ruiz et al. [66], where the transfer function is adjusted towards a user-defined
target distribution by minimizing the informational divergence between the transfer
function and the user-defined target distribution.

In addition to view-independent information, we have proposed visibility-weighted

saliency for measuring the view-dependent saliency of features of interest for volume
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visualization. This metric aims to assist users in choosing suitable viewpoints and
designing effective transfer functions to visualize the features of interest. Compared
to existing approaches such as visibility histogram [63] and feature visibility [6] which
only measure the visibility of voxels, our approach reflects two aspects of the resulting
visualization, i.e. voxel visibility and visual saliency. Our approach is aware of the
change of other appearance attributes, i.e. saturation and brightness, while existing
approaches do not take into account this information. A user study was conducted to
evaluate the efficiency of our metric in comparison to feature visibility and 2D feature
saliency:.

Subsequently, we have described an automated transfer function optimization method
based on the visibility-weighted saliency metric. This method takes into account the
perceptual importance of voxels and the visibility of features, and automatically ad-
justs the transfer function to match the target saliency levels specified by the user. In
addition, a parallel line search strategy is presented to improve the performance of the
optimization algorithm.

Finally, we have developed a novel visualization approach which modulates focus,
emphasizing important information, by adjusting saturation and brightness of voxels
based on an importance measure derived from temporal and multivariate information.
By conducting a voxel-wise analysis of a number of consecutive frames, we acquire
a volatility measure of each voxel. We then use intensity, volatility and additional

multivariate information to determine opacity, saturation and brightness of the voxels.

7.2 Limitations and Future Work

7.2.1 Automated Transfer Function Approaches

The main limitation of our automated transfer function approaches (Chapter 3 and
Chapter 5) is that the variations to transfer functions are limited to color and opacity,
and an initial setup of control points over the intensity ranges has to be defined by
the user. Therefore, prior knowledge of the data sets may be necessary in choosing the
most ideal intensity ranges for placing the control points.

In future work we plan to develop transfer function generation methods which

identify important features in volume data sets and combine them with our automated
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transfer function optimization approaches. A promising direction would be the rule-
enhanced transfer function generation method [153], which defines features with rules
based on the frequency distribution of data attributes (e.g. intensity and gradient
magnitude) and employs machine learning algorithms to select a set of rules that are
most effective in distinguishing the target tissue from other tissues. We would also
like to examine the feasibility of optimizing other color components such as saturation,
brightness and even hue.

The initial choice of intensity ranges, number of control points and color mapping
across the histograms can affect the quality of the final output and some prior knowl-
edge of the data sets may be of benefit for optimal results. On the other hand the
simple and straightforward techniques presented in this paper should be fully compat-
ible with independent mechanisms for choosing optimal combinations of other visual
parameters or indeed if the user wishes to combine these with more manual choices of
parameters such as the color map. In addition, the transfer functions in our proposed
system are intuitive and easy to use. Users may benefit from the flexibility of being
able to further tweak the intensity or opacity of the control points after the application

of the automated optimization techniques discussed in this thesis.

7.2.2 Visibility-Weighted Saliency

The major limitation of the visibility-weighted saliency metric presented in Chapter 4 is
that it cannot currently detect changes in hue and orientation in volume visualization.
The saliency field used in the metric is computed using the center surround mechanism
based on saturation and brightness of voxels, but other factors such as hue of the
voxels and orientation of the local neighborhoods around the voxels are not taken into
account.

The center-surround operator [18] we used in computing saliency fields of volume
data is essentially a Laplace differential operator. This operator can handle scalar fields
of data attributes such as opacity, saturation and brightness. However, computing
the difference between colors and orientations is more complicated, we have not yet
integrated it in our model.

In the future, we would like to examine the feasibility of using other appearance

attributes such as hue and orientation, as well as the weighting between these attributes.
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The difference between colors could be computed for each pair of voxels in a color space,
e.g. the perceptually uniform LAB color space. The orientations of voxels could be
estimated using the Gabor filter, which would be similar to the construction of the
orientation conspicuity map [16].

In addition to transfer function optimization, we would like to implement an auto-

matic viewpoint optimization technique based on the proposed metric.

7.2.3 Selective Saturation and Brightness

We have not applied the visibility-weighted saliency metric to the work in Chapter 6.
One reason is that the work in Chapter 6 was done before Chapter 4 and Chapter 5.
On the other hand, it is difficult to apply the proposed metric to measure the features
in Chapter 6’s work, because the feature definition and transfer functions are very
different from those in the previous chapters. Instead of defining features on intensity
ranges, volatility (temporal standard deviation) is used in the feature definition in
Chapter 6.

In the future, we would like to investigate how to apply the visibility-weighted
saliency metric to other types of feature definitions and how automated optimization
techniques can be exploited to better visualize time-varying and multivariate volume
data sets. Automatic color scheme generation [93] for transfer functions would also be
studied in the future work. We would also like to conduct perceptual experiments to
quantitatively evaluate the mechanism and determine the optimal parameters for the

approach.
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Appendix A

Estimating Feature Saliency Using

2D Saliency Maps

A saliency map is a model of visual attention using bottom-up features such as intensity,
color and orientation of an image. However, the traditional map provides an indication
of saliency for a points on an image and not the saliency of a particular object or 3D
feature. In order to use 2D saliency maps [16] to estimate visual saliency of 3D features
in volume visualization, an inverse distance weighting [189] can be applied to divide a
2D saliency map into several feature saliency maps, one for each feature. Subsequently,
the visual saliency of each feature can be estimated with the total intensity of each

feature saliency map.

The distance between a pixel of each feature and the pixel in the final image is
necessary in computing the inverse distance weighting. Hence, we perform volume
rendering of each feature separately, i.e. other intensity ranges in the transfer function
are set to zero except for the feature. These feature images P;(i € {1,...,n}) are
rendered with the same settings (viewpoint, screen size etc.) as the final image. In
addition, a 2D saliency map S of the final image P is computed using the model by
Itti et al. [16].

Let w; be the weight of a pixel p in the i-th feature

1
ar
n L
=1 gm
J dj

w; =
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where d; is the color distance between the pixel p in the final image and the corre-
sponding pixel p; in the i-th feature image, n is the number of features, and m is
a user-defined coefficient for controlling the bias of the weighting. Pixels with small
distances would have larger weights when m increases. m = 1 is used and the color

distance d; is computed in the LAB color space in our implementation

Then the corresponding pixel s; in the i-th feature saliency map S; is
S; — W;S

where s is the pixel in the 2D saliency map S of the final image.

Therefore, we can obtain n feature saliency maps by performing the above a pixel-
wise operation using the 2D saliency map S and the final image P along with each

feature images P; respectively.

Figure A.1 shows an engine block (P) and its two features (P;, P,). Figure A.2
shows the 2D saliency map S and the two feature saliency maps(Si, Se) obtained using
the above operation. The saliency maps in Figure A.2 are enhanced (multiplied by 8)
for better contrast in illustrations. However, the original (i.e. not enhanced) saliency

maps are used in the actual computation.

In practice, saliency resulting from a visual feature is not sharply delimited by
the boundary of the feature, instead strong feature edges tend to attract attention
increasing saliency in a small distribution around the edge. After distributing the 2D
saliency map S into feature saliency maps S;(i € {1,...,n}) using the inverse distance
weighting, a small amount of bright pixels around the boundary of the engine block
remain in the residual saliency image S’, as shown in Figure A.3 (a). Let the residual

saliency image be S’.

We distribute this residual saliency image S’ to the features according to their
influence in the region. The influence of the features are approximated by Gaussians
of the feature saliency images, as shown in (b) and (c) of Figure A.3. Firstly, we apply
a Gaussian filter with kernel size k to each feature saliency map S; and get a Gaussian
image G;. In practice, the kernel size k£ should be large enough in order to allow the

resulting Gaussian images to have non-zero pixels cover most of the bright pixels in
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the residual saliency image S’. Let g; be a pixel in the Gaussian image G;. Secondly,
we distribute the residual saliency image S’ into n images (57, ..., S}).
gi /

/
7 n
> =19

where s’ is a pixel in S’. Figure A.4 displays the residual saliency images (57, S5) of
the two features on the engine block.

Thirdly, we pixel-wisely add the image S! to the feature saliency map .S; and obtain
the total feature saliency map T; of the i-th feature.

T, =5+ 5]

Figure A.5 (a) and (b) display the total feature saliency maps of the red feature
and the green feature respectively.

Finally, as shown in Figure A.5 (c), we compute the 2D feature saliency using the
sum of intensity values of the total feature saliency maps, i.e. T; for i € {1,....n}.

Hence, the 2D feature saliency of the i-th feature is

Intensity(T;)
iy Intensity(T})

FS, =

A histogram of the 2D feature saliency of the two features of the engine block is

shown in Figure A.5 (c).
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(b) P

Figure A.1: (a) An engine block; (b) and (c) isolated volume rendering images of the
red feature and the green feature

(b) S1

Figure A.2: (a) The 2D saliency map; (b) and (c) the feature saliency maps of the
two features. The saliency maps are enhanced (multiplied by 8) for better contrast in
illustrations.
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(a) S’ (b) G (c) Go

Figure A.3: (a) The residual saliency image; (b) and (c) the Gaussians of the two
feature saliency maps with a kernel size of one eighth of the image width

(a) S1 (b) S}

Figure A.4: The residual saliency images of the two features
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0.256854

B Feature 1
D Feature 2

(c) 2D feature saliency

(a) Ty

Figure A.5: (a) and (b) The total feature saliency maps of the two features; (c) 2D
feature saliency of the two features
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Appendix B

Experiment Questionnaire

This is the questionnaire given to the participants in the experiment described in
Section 4.5.
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Example Questionnaire

The following parts are entered on paper before and after the experiment.

To be Completed Before Experiment

Each question is optional. Feel free to omit a response to any question; however the researcher would
be grateful if all questions are responded to.

Before you begin, you will be shown some example videos. Please do not hesitate to ask the
experimenter if you have any questions before the experiment begins. It will last approximately 20
minutes.

Your results will be kept strictly confidential, stored using a unique ID number and the experimenter
will not be able to identify your data or link them with your personal details. You are also free to
withdraw from this study at any time without any penalty. If you have any further questions, please
do not hesitate to ask the experimenter.

Please help us by filling in the below information:

Sex: MaIeD FemaIeD Age: ..........
Familiarity with scientific visualization:

None |:|

Medium (e.g. student) |:|

High (e.g. expert)

Do you have any type of colour blindness (colour vision deficiency)?
No

Yes |:|

If yes, please specify the type of colour blindness (e.g. red-green, blue-yellow):

To be Completed After Experiment
Please note any comments you have below, making sure not to identify or
name any individuals. (Filling this form is optional and you may skip it without
any penalty.):



During the Experiment

Below are examples of the question the user is presented with on a computer screen at the end of
each trial which consists of, being shown for 15 seconds, an image created using a computer
visualisation technique.

Questionnaire for each image shown (sample)
Each question is optional. Feel free to omit a response to any question; however the researcher
would be grateful if all questions are responded to.

How clear and distinct is the green object in relation to the rest of the image?
(Please enter a score on a scale of 1-5 using the keyboard.)

1 2 3 4 5

Not at all Neutral Very clear



Sample Images from the Experiment

(Each image will be shown full screen for approximately 15 seconds after the above questions are
presented.)
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