
A Convex Optimisation Approach

to Optimal Control in Queueing Systems

Vı́ctor Valls

School of Computer Science and Statistics

Trinity College Dublin

Submitted for the Degree of Doctor of Philosophy

Supervised by Prof. Douglas Leith

2017

Abstract

Convex optimisation and max-weight are central topics in networking and control, and

having a clear understanding of their relationship and what this involves is crucial from

a theoretical and practical point of view. In this thesis we investigate how max-weight

fits into convex optimisation from a pure convex approach without using fluid limits or

Lyapunov optimisation. That is, we study how to equip convex optimisation with discrete

actions and allow it to make optimal control decisions without previous knowledge of the

mean packet arrival rate into the system.

Our results are sound and show that max-weight approaches can be encompassed

within the body of convex optimisation. In particular, max-weight is a special case of the

stochastic dual subgradient method with ǫk-subgradients and constant step size. We clarify

the fundamental properties required for convergence, and bring to the fore the use of ǫk-

subgradients as a key component for modelling problem characteristics apart from discrete

actions. One of the great advantages of our approach is that optimal scheduling policies

can be decoupled from the choice of convex optimisation algorithm or subgradient used to

solve the dual problem, and as a result, it is possible to design scheduling policies with a

high degree of flexibility. We illustrate the power of the analysis with three applications:

the design of a traffic signal controller; distributed and asynchronous packet transmissions;

and scheduling packets in networks where there are costs associated to selecting discrete

actions.

The work in this thesis brings clarity and a fresh outlook to network optimisation

problems, but also makes max-weight accessible from a convex optimisation perspective

and therefore to a wider audience beyond networking and control. We believe that making

max-weight accessible from a convex optimisation viewpoint will help to light the way to

discovering new applications currently not covered by either max-weight approaches or

convex optimisation.

Acknowledgements

A special thank you to my supervisor, Prof. Doug Leith, for his guidance and support

during these four years. I feel fortunate to have had him as a supervisor; his vibrant

approach to research has made a big impact on me on a professional and personal level. I

would also like to thank Dr. Xavier Costa for giving me the opportunity to visit the NEC

Laboratories in Heidelberg, and Prof. Boris Bellalta for his guidance during the early

stages of my career.

Thanks also to all my friends in Ireland, Germany, and Spain. To my friends and col-

leagues at Trinity College and the Hamilton Institute: Cristina Cano, Alessandro Checco,

Saman Feghhi, Andrés Garćıa-Saavedra, Naoise Holohan, Mohammad Karzand, Julien

Monteil and Giulio Prevedello; to my friends in Mannheim, Tim Schneider and Vita

Spanier, without whom I would have not had so much fun during my time in Germany;

and to all my friends in Girona and Barcelona that are too many to list, but hope to see

very soon.

Finally, I would like to thank my brother and parents for all their support and love.

My doctoral studies have been supported by Science Foundation Ireland under Grant

No. 11/PI/1177.

iii

Contents

Abstract . ii

Acknowledgements . iii

Chapter 1. Introduction . 1
1.1. Purpose of the Thesis . 2
1.2. Contributions . 3
1.3. Notation . 5
1.4. Related Work . 5
1.5. Thesis Outline . 8

Chapter 2. Sequences of Non-Convex Optimisations 10
2.1. Preliminaries . 10
2.2. Non-Convex Descent . 12

2.2.1. Non-Convex Direct Descent . 12
2.2.2. Non-Convex Frank-Wolfe-like Descent 16

2.3. Constrained Convex Optimisation . 19
2.3.1. Lagrangian Penalty . 19
2.3.2. Non-Convex Dual Subgradient Update 20
2.3.3. Generalised Update . 28

2.4. Using Queues as Approximate Multipliers 28
2.4.1. Weaker Condition for Loose Constraints 33
2.4.2. Queue Stability . 33
2.4.3. Optimal Actions Depend Only on Queue Occupancy 33

2.5. Max-Weight Revisited . 34
2.6. Numerical Example . 35

Chapter 3. Dual Subgradient Methods with Perturbations 38
3.1. Dual Subgradient Methods . 38

3.1.1. Classic Dual Subgradient Method 39
3.1.2. Computing a Subgradient of the Lagrange Dual Function 41
3.1.3. Stochastic Dual Subgradient Methods 43

3.2. Bounded Lagrange Multipliers and Feasible Solutions 46
3.3. Framework . 46

3.3.1. Parameterised Problem Setup . 47
3.3.2. Dual Subgradient Method with Perturbations 48
3.3.3. Convergence . 52

Chapter 4. Actions and Asynchronous Updates 60
4.1. Preliminaries . 60

4.1.1. Problem and Action Set . 60
4.1.2. Discrete Actions and Approximate Lagrange Multipliers 61

4.2. Asynchronous Dual Updates . 62

iv

CONTENTS v

4.2.1. Dual Decomposition . 63
4.2.2. Asynchronous Updates . 64

4.3. Sequences of Non-Convex Actions . 66
4.3.1. Blocks of Discrete Actions . 66
4.3.2. Online Sequences of Discrete Actions 71

Chapter 5. Applications . 76
5.1. Traffic Signal Control . 76

5.1.1. Preliminaries . 78
5.1.2. Convex Optimisation Approach . 80
5.1.3. Numerical Example . 85

5.2. Distributed and Asynchronous Packets Transmissions 91
5.2.1. Problem Setup . 91
5.2.2. Simulation . 92

5.3. Packet Transmissions with Constraints . 94
5.3.1. Problem Setup . 95
5.3.2. Simulations . 96

Chapter 6. Conclusions . 98

Appendix A. 99

Bibliography . 101

CHAPTER 1

Introduction

Convexity plays a central role in mathematical optimisation from both a theoretical

and a practical point of view. Some of the great advantages of formulating a problem as a

convex optimisation is that there exist numerical methods that can solve the optimisation

problem in a reliable and very efficient manner, and that a solution is always a global

optimum. When an optimisation problem is not of the convex type, then one enters into

the realm of non-convex optimisation where the specific structure of a problem must be

exploited in order to obtain a solution, often not necessarily the optimal one. Nevertheless,

there are some special cases of algorithms that can find optimal solutions to non-convex

problems. One is the case of max-weight scheduling, an algorithm for scheduling packets

in queueing networks which has received a lot of attention in the networking and control

communities over the last years.

In short, max-weight was proposed by Tassiulas and Ephremides in their seminal

paper [TE92]. It considers a network of interconnected queues in a slotted time system

where packets arrive in each time slot and a network controller has to make a discrete

(so non-convex) scheduling decision as to which packets to serve from each of the queues.

Appealing features of max-weight are that the action set matches the actual decision

variables (namely, do we transmit or not); that scheduling decisions are made without

previous knowledge of the mean packet arrival rate in the system; and that it is able to

stabilise the system (maximise the throughput) whenever there exists a policy or algorithm

that would do so. These features have made max-weight well liked in the community and

have fostered the design of extensions that consider (convex) utility functions, systems with

time-varying channel capacity and connectivity, heavy-tailed traffic, etc. When dealing

with utility functions, max-weight approaches usually start by formulating a fluid or convex

optimisation, and then use the solution to that problem to design a scheduler for a discrete

time system. One of the reasons for considering such an approach is that the fluid or

convex formulation provides the big picture of the problem, whereas max-weight deals

with the specific problem at a packet time scale [KY14, page 9]. Another reason used

in the literature is that the dynamics of the Lagrange multipliers (associated to linear

inequality constraints) in the dual subgradient method are like a queue update [SY13,

1

1.1. PURPOSE OF THE THESIS 2

Section 6.1]. However, the exact nature of the relationship between these two quantities

remains still unclear, and so the body of work on max-weight approaches is separate from

the mainstream literature on convex optimisation.

The connections between max-weight and convex optimisation are of much interest

in the networking and control communities. There are several reasons for this. First, a

better understanding of the structure of the problem. Encompassing max-weight within

convex optimisation would allow us to characterise the solutions (optimality conditions)

and to exploit this to improve the performance of queueing systems. An example of this is

the work in [HN11], where the Lagrange multipliers of a convex optimisation are used to

improve the delay of a max-weight scheduler. Second, it would allow the wealth of the well-

established theory in convex optimisation to be used to bring features to max-weight that

are currently not available. For example, asynchronous updates or packets transmissions.

Third, clarity and simplicity. The popularity of max-weight has produced so many variants

of the algorithm that the state of the art is becoming increasingly complex. There is a

need for abstraction and to put concepts in a unified framework. Fourth, accessibility

and dissemination. Convex optimisation is widely used in many fields, and making max-

weight features available in convex optimisation would allow us to bring its benefits to

other areas beyond networking and control. Fifth, a new outlook. On the way to finding

the connections between max-weight and convex optimisation, we might shed light on

properties in convex optimisation that might be otherwise obscured.

1.1. Purpose of the Thesis

Convex optimisation and max-weight are central topics in networking and control,

and having a clear understanding of their relationship and what this involves is crucial.

In this thesis we investigate how max-weight fits into convex optimisation from a pure

convex approach and without invoking Foster-Lyapunov theorem. Namely, how to equip

convex optimisation with discrete actions and allow it to make optimal decisions without

knowledge of the mean packet arrival rate in the network. One of the objectives of this

thesis is to provide a concise and comprehensive approach to max-weight in the terms

used in the mainstream literature in convex optimisation [BV04, Ber99, BNO03]. That is,

in the terms that somebody familiar with dual methods in convex optimisation should be

easily able to understand. We believe that making max-weight accessible from a convex

optimisation viewpoint will help to light the way to discovering new applications currently

not covered by either max-weight approaches or convex optimisation.

1.2. CONTRIBUTIONS 3

1.2. Contributions

(i) Generalising Max-Weight. Our analysis places max-weight firmly within the field

of convex optimisation, and rigorously shows it is a special case of the stochastic

dual subgradient method with ǫk-subgradients and constant step size. This is

shown in the optimisation framework presented in Chapter 3 in terms of elemen-

tary perturbations.

(ii) Unifying Theoretical Framework. In generalising max-weight and dual subgradi-

ent methods our analysis clarifies the fundamental properties required. In partic-

ular, that the objective function and constraints need only to be convex (probably

non-differentiable); that the stochastic “noise” in the dual update must be ergodic

and have finite variance; and that the ǫk perturbations on the multipliers must be

bounded. Furthermore, our analysis brings to the fore ǫk-subgradients as a key

ingredient for modelling discrete control problems, and capturing features such

as asynchronous dual updates in an easy manner.

(iii) Lagrange Multipliers, Approximate Lagrange Multipliers and Queues. We estab-

lish a clean and clear connection between queues and Lagrange multipliers. In

particular, α-scaled queue occupancies are quantities that stay close to the La-

grange multipliers in the dual subgradient method, and can be regarded as an

approximation of the true Lagrange multipliers. In some special cases α-scaled

queues are exactly Lagrange multipliers. This is first shown in Chapter 2, and

later abstracted in the form of perturbations or ǫk-subgradients in Chapter 3.

(iv) Decoupling Subgradients from Actions. By using ǫk-subgradients and the con-

tinuity of the Skorokhod map, we show that it is possible to design scheduling

policies (sequences of discrete actions) that are decoupled from a specific choice of

(sub)gradient. This is of fundamental importance because it separates the design

of scheduling policies from the characteristics of the optimisation algorithm or

type of “descent” (e.g. gradient, subgradient, newton, proximal, etc.). Another

great advantage of this approach is that it is possible to design scheduling policies

that allow some flexibility on the order in which actions can be selected, which is

key in systems that have constraints or penalties associated to selecting subsets

of control actions.

1.2. CONTRIBUTIONS 4

(v) Applications. In Chapter 5 we provide a range of examples that show the power

of the results in a concise and comprehensive manner. The examples provided

include the design of a traffic signal controller; distributed and asynchronous

packet transmissions; and scheduling of packets in networks where there are costs

associated to selecting discrete actions.

This thesis has contributed to the literature with the following publications:

• V. Valls and D. J. Leith, “A convex optimization approach to discrete optimal

control,” in IEEE Transactions on Automatic Control (accepted).

• V. Valls and D. J. Leith, “Max-weight revisited: Sequences of nonconvex op-

timizations solving convex optimizations,” in IEEE/ACM Transactions on Net-

working, vol. 24, no. 5, pp. 2676-2689, Oct. 2016.

• V. Valls and D. J. Leith, “Subgradient methods with perturbations in network

problems,” 54th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), Monticello, IL, 2016, pp. 482-487.

• V. Valls, J. Monteil and M. Bouroche, “A convex optimisation approach to traffic

signal control,” IEEE 19th International Conference on Intelligent Transportation

Systems (ITSC), Rio de Janeiro, Brazil, 2016, pp. 1508-1515.

• V. Valls and D. J. Leith, “Stochastic subgradient methods with approximate

Lagrange multipliers,” IEEE 55th Conference on Decision and Control (CDC),

Las Vegas, NV, USA, 2016, pp. 6186-6191.

• V. Valls and D. J. Leith, “Dual subgradient methods using approximate multi-

pliers,” 53rd Annual Allerton Conference on Communication, Control, and Com-

puting (Allerton), Monticello, IL, 2015, pp. 1016-1021.

• V. Valls and D. J. Leith, “On the relationship between queues and multipliers,”

52nd Annual Allerton Conference on Communication, Control, and Computing

(Allerton), Monticello, IL, 2014, pp. 250-255.

1.4. RELATED WORK 5

1.3. Notation

The notation used in this thesis is a blend of the notation used in standard reference

books in convex optimisation [BV04, BNO03, Roc84].

The sets of natural, integers and real numbers are denoted by N, Z and R. We use

R+ and Rn to denote the set of non-negative real numbers and n-dimensional real vectors.

Similarly, we use Rm×n to denote the set of m × n real matrices. Vectors and matrices

are usually written, respectively, in lower and upper case, and all vectors are in column

form. The transpose of a vector x ∈ Rn is indicated with xT , and we use 1 to indicate

the all ones vector. The Euclidean, ℓ1 and ℓ∞ norms of a vector x ∈ Rn are indicated,

respectively, with ‖x‖2, ‖x‖1 and ‖x‖∞.

Since we usually work with sequences we will use subscript to indicate an element in a

sequence, and parenthesis to indicate an element in a vector. For example, for a sequence

{xk} of vectors from Rn we have that

xk = [xk(1), . . . , xk(n)]
T

where xk(j), j = 1, . . . , n is the j’th component of the k’th vector in the sequence. For

two points x, y ∈ Rn we write x ≻ y when the x(j) > y(j) for all j = 1, . . . , n, and x � y

when x(j) ≥ y(j). For a constant p > 0 we will use operator [·][0,p] to denote the projection

of a vector x ∈ Rn onto [0, p]n, i.e.

[x][0,p] = [max{x(1), p}, . . . ,max{x(n), p}]T .

When p = ∞, to streamline notation we use [·]+ rather than [·][0,∞).

The rest of the notation will be defined as needed in each of the chapters.

1.4. Related Work

Max-Weight. Max-weight scheduling was introduced by Tassiulas and Ephremides

in their seminal paper [TE92]. They consider a network of queues with slotted time, an

integer number of packet arrivals in each slot and a finite set of admissible scheduling pat-

terns, referred to as actions. Using a Foster-Lyapunov approach, they present a scheduling

policy that stabilises the queues in the system provided the mean packet arrival rate is

strictly in the interior of the network capacity region. The scheduling policy consists of

selecting the action at each slot that maximises the queue-length-weighted sum of rates,

yk ∈ argmaxy∈Y −QTkAy where Y is the action set containing all the scheduling patterns,

and A an incidence matrix representing the interconnection between the queues in the

network.

1.4. RELATED WORK 6

Independently, [Sto05, ES05, NMR03] proposed extensions to the max-weight approach

to accommodate concave utility functions. In [Sto05] the greedy primal-dual algorithm is

introduced for network linear constraints and utility functions that are continuously dif-

ferentiable and concave. The previous work is extended in [Sto06] to consider general

nonlinear constraints. In [ES05] the utility fair allocation of throughput in a cellular

downlink is considered, where the utility function used can be tuned to obtain different

fairness criteria, but it is always twice differentiable. Queue departures are scheduled

according to xk ∈ argmaxx∈conv(Y)−QTkAx, and queue arrivals are scheduled by a conges-

tion controller such that E(bk(j)|Qk) = min{αjK/(Qk(j))m,M} and E((bk(j))
2|Qk) ≤ B

where αj , K, m, B, M are positive constants. The work in [NMR03] considers power

allocation in a multi-beam downlink satellite communication link with the aim of max-

imising throughput while ensuring queue stability. This is extended in a sequence of

papers [NMR05, Nee06, NML08] and a book [Nee10b] to develop the drift-plus-penalty

approach. In this approach, the basic strategy for scheduling queue departures is ac-

cording to yk ∈ argmaxy∈Y −QTkAy and utility functions are incorporated in a variety of

ways. For example, for concave non-decreasing continuous utility functions U of the form

U(x) =
∑n

j=1 Uj(x(j)) one formulation is for a congestion controller to schedule arrivals

into an ingress queue such that bk(j) ∈ argmax0≤b≤R V Uj(b) − bQk(j) where V , R are

sufficiently large design parameters and b ∈ R [GNT06]. More advanced versions of the

drift-plus-penalty algorithm make use of virtual queues to capture non-linear constraints,

and allow the utility function and constraints to be non-differentiable. The recent work in

[Nee14] presents a simplified convergence analysis of the drift-plus-penalty, and in [YN15]

the algorithm is used to solve strongly convex programmes in a deterministic setting.

Max-weight is not always able to stabilise a system. In [vdVBS09, vdVBY11] Van

de Ven showed that max-weight may fail to provide maximum stability with a dynamic

population of flows. The reason for this is that max-weight gets diverted to serving new

flows in the network while neglecting a persistent number of flows with relatively small

backlog. Similar issues are addressed by Çelik et al. in [ÇLM12, ÇM15], where they

show that max-weight fails to stabilise a system when there are reconfiguration delays

associated to selecting new actions/configurations. Their approach to solve the problem

is to use a variable frame size max-weight, where actions are allocated in frames in order

to minimise the penalties associated with configuration changes. A similar issue appears

in the work in [MSY12] by Maguluri in the context of cloud computing. However, in their

case they need to force “inefficiencies” or refresh times in order to choose a max-weight

schedule that can change the configuration in a server. The latter work was extended in

1.4. RELATED WORK 7

[MS14] to allow choosing a max-weight schedule without forcing refresh times. Another

case where standard max-weight approaches fail to stabilise a system is with heavy-tailed

traffic [NWZ13]. Markakis showed in [MMT14] that max-weight is unstable in the presence

of a single heavy-tailed flow, and developed a max-weight extension that stabilises a system

in the presence of heavy-tailed traffic for a single hop network. The latter work is extended

in [MMT16] to multi-hop networks. Meyn presented in [Mey09] a class of h-MaxWeight

policies that have the same desired properties than the classic max-weight, but also support

heavy-tailed traffic.

There are other works apart from max-weight in the literature of packet scheduling,

e.g. Maximal Scheduling [CKLS08] or distributed greedy approaches [WSP07]. However,

these only achieve a fraction of the network capacity region. A notable exception is the

Longest-Queue-First (LQF) algorithm [AD06], that under a local pooling condition (a

particular structure of the graph/network) is able to achieve the full capacity region.

Moreover, and unlike max-weight, LQF is not a centralised algorithm and can be used to

make distributed and asynchronous scheduling decisions. The LQF is extended to consider

packets with variable packet size in [MHS14], and to wireless networks in [LBX11]. Other

important algorithms include the Q-CSMA [NTS12], which schedules packets in Carrier

Sense Multiple Access (CSMA) networks while taking collisions explicitly into account;

and the work in [BC12] by Bonald, which considers asynchronous scheduling schemes for

input-queue packet switches with variable packet sizes.

With regard to the existence of a connection between the discrete-valued queue occu-

pancy in a queueing network and continuous-valued Lagrange multipliers, this has been

noted by several authors, see for example [LSS06], but we are aware of few rigorous re-

sults. A notable exception is [HN11], which establishes that in a deterministic setting

a discrete queue update tends on average to drift towards the optimal multiplier value.

Also, the greedy primal-dual algorithm presented in [Sto05] shows that asymptotically as

design parameter β → 0 and t → ∞ the scaled queue occupancy converges to the set of

dual optima.

Convex Optimisation. Subgradient methods for solving (non-differentiable) convex

problems have been studied extensively under various step size rules by Polyak [Pol77],

Ermoliev [Erm66] and Shor [Sho12], or more recently by Bertsekas [BNO03] and Nedić

[Ned02]. One of the main characteristics of the subgradient methods is that they require

to assume very little about the objective functions and constraints, and that they are

simple to implement in practice. However, on the other hand, they have slow convergence

rate.

1.5. THESIS OUTLINE 8

Primal averaging in a primal-dual subgradient method was firstly studied by Ne-

mirovski and Yudin in [NY78], and later by Shor [Sho85], Larson [LL97], and Nedić

[NO09a, NO09b]. The work in [NO09a] assumes that the dual function can be computed

efficiently, and the work in [NO09b] considers a sequence of primal-dual subgradient up-

dates. The inexact computation of the subgradient has been treated in previous work

in terms of ǫk-subgradients [Ber99, BNO03] or deterministic noise [NB10] in the dual

updates. Regarding stochastic (sub)gradients, these are well known in the literature of

unconstrained minimisation [Pre95, Mar05], and there is recent work by Ram [RNV09]

and Duchi [DHS11] with applications to distributed computing and machine learning.

Within the field of convex optimisation Lagrange multipliers have been regarded in

different ways,1 but the two main views are the following. The first one regards Lagrange

multipliers as (static) penalties or auxiliary variables used in iterative methods. This

approach is in spirit very similar to von Neumann’s minimax game approach in linear

programming, which was later generalised by Sion to quasi-concave quasi-convex games

[S+58, Kom88]. The second view is that Lagrange multipliers are dual variables arising

from a canonical perturbation on the constraints in conjugate duality (see Chapter 11 in

[RW98] or SIAM review [Roc74]). The second approach plays an important role in convex

optimisation algorithms such as ADMM [BPC+11] or proximal methods [PB14].

Selection of a sequence of actions in a discrete-like manner is also considered in the

convex optimisation literature. The nonlinear Gauss-Seidel algorithm, also known as

block coordinate descent [Ber99, BT89] minimises a convex function over a convex set by

updating one co-ordinate at a time. The convex function is required to be continuously

differentiable and strictly convex and, unlike in the max-weight algorithms discussed above,

the action set is convex. The classical Frank-Wolfe algorithm [FW56] also minimises a

convex continuously differentiable function over a polytope by selecting from a discrete

set of descent directions, although a continuous-valued line search is used to determine

the final update. We also note the work on online convex optimisation [Zin03, FKM05],

where the task is to choose a sequence of actions so to minimise an unknown sequence of

convex functions with low regret.

1.5. Thesis Outline

The structure of this thesis is organised in four major chapters. We start in Chapter 2

by studying how discrete actions fit into convex optimisation from a primal-dual approach

and by relating a sequence of convex optimisations with non-convex actions. The presented

approach is in spirit very similar to the dynamical system approach used by Kelly in

1See, for example, Rockafellar’s review in [Roc93] about Lagrange multipliers and optimality conditions.

1.5. THESIS OUTLINE 9

Chapter 3

Dual Subgradient

Methods with Perturbations

Chapter 4

Actions and

Asynchronous Updates

Chapter 5

Applications

Chapter 2

Sequences of Non-Convex

Optimisations

Figure 1.5.1. Structure of the thesis.

[KMT98], or Stolyar’s greedy primal-dual algorithm [Sto05]. In each iteration we aim

to find a discrete direction (a point selected from a non-convex set) that ensures primal

descent, and then control the ratio between the primal and dual step sizes in order to

have dual ascent. The major novelties in the chapter are the use of non-convex points

(actions) as descent directions and to establish a connection between Lagrange multipliers

and queue occupancies. The approach has however limitations. Unlike most max-weight

approaches (including Tassiulas’ [TE92]) it is deterministic and its extension to handle

stochasticity is not straightforward. Furthermore, the choice of discrete action used to

ensure descent turns out at the end to be unnecessary in terms of optimality conditions.

In other words, we realise that it is possible to capture max-weight features (including

stochasticity) from a simple dual approach with elementary perturbations: stochastic

updates and ǫk-subgradients.

Taking these two observations into account, we extend Chapter 2 via two chapters

(see Figure 1.5.1). Chapter 3 deals with the convergence of the dual subgradient method

with perturbations (δk and ǫk) in a general form, and Chapter 4 is devoted to studying

how the ǫk perturbations can be used to capture discrete actions in max-weight. Chapter

4 includes as well how to use perturbations on the Lagrange multipliers (approximate

Lagrange multipliers) in order to obtain asynchronous dual updates in an easy manner.

We conclude the thesis in Chapter 5 by putting together the results in Chapters 3 and

4 with some applications. In the first application we provide a summary (or simplified

version) of Chapters 3 and 4 while considering a traffic signal control example. The other

two applications are presented in a concise manner and show how the convex optimisa-

tion framework can be used to easily handle non-convex stochastic network optimisations

problems.

CHAPTER 2

Sequences of Non-Convex Optimisations

In brief, we consider a queueing network where the queue occupancy of the j’th queue

at time k is denoted by Qk(j) ∈ N, j = 1, 2, . . . , n, and we gather these together into

vector Qk ∈ Nn. Time is slotted and at each time step k = 1, 2, . . . we select action

yk ∈ Y ⊂ Nn, e.g. selecting j’th element xk(j) = 1 corresponds to transmitting one

packet from queue j and xk(j) = 0 to doing nothing. The connectivity between queues is

captured via matrix A ∈ {−1, 0, 1}n×n, whose j’th row has a −1 at the j’th entry, 1 at

entries corresponding to queues from which packets are sent to, and 0 entries elsewhere.

The queue occupancy then updates according to Qk+1 = [Qk+Ayk+ bk]
+, where the j’th

element of vector bk ∈ Nn denotes the number of external packet arrivals to queue j at

time k. The objective is to stabilise all of the queues in the system while maximising a

concave utility U : Rn → R of the running average of the discrete actions yi, i = 1, . . . , k.

In this chapter, we investigate the connections between max-weight approaches and

dual subgradient methods in convex optimisation, and show that strong connections do

indeed exist. We take as starting point the greedy primal-dual variant of max-weight

scheduling used by Stolyar [Sto05], which selects action yk ∈ argmaxy∈Y ∂U(xk)
T y −

βQTkAy with xk+1 = (1− β)xk + βyk and 0 < β < 1 is a design parameter.

2.1. Preliminaries

Recall the following convexity properties.

Lemma 2.1 (Lipschitz Continuity). Let ψ :M → R be a convex function and let X be

a closed and bounded set contained in the relative interior of the domain M ⊆ Rn. Then

ψ is Lipschitz continuous on X i.e. there exists a constant νψ such that |ψ(x1)−ψ(x2)| ≤
νψ‖x1 − x2‖2 ∀x1, x2 ∈ X.

Proof. See, for example, [RV74]. �

Lemma 2.2 (Bounded Distance). Let Y := {y1, . . . , y|Y |} be a finite set of points

from Rn. Then there exists constant y◦ such that ‖x1 − x2‖2 ≤ y◦ for any two points

x1, x2 ∈ X := conv(Y), where conv(Y) denotes the convex hull of Y .

10

2.1. PRELIMINARIES 11

Proof. Since x1, x2 ∈ X these can be written as the convex combination of points in

Y , i.e.

x1 =
∑|Y |

j=1 θ(j)yj, x2 =
∑|Y |

j=1 θ̃(j)yj

with θ, θ̃ � 0, and ‖θ‖1 = ‖θ̃‖1 = 1. Hence, ‖x1 − x2‖2 = ‖∑|Y |
j=1(θ(j) − θ̃(j))yj‖2 ≤

∑|Y |
j=1 ‖θ(j)− θ̃(j)‖2‖yj‖2 ≤ 2maxy∈Y ‖y‖2 := y◦. �

We also introduce the following definition:

Definition 2.1 (Bounded Curvature). Let ψ : M → R be a convex function defined

on domain M ⊆ Rn. We say ψ has bounded curvature on set X ⊂ M if for any points

x, x+ δ ∈ X

ψ(x+ δ) − ψ(x) ≤ ∂ψ(x)T δ + ρψ‖δ‖22(2.1)

where ρψ ≥ 0 is a constant that does not depend on x or δ.

Bounded curvature will prove important in our analysis. The following lemma shows

that a necessary and sufficient condition for bounded curvature is that the subgradients

of ψ are Lipschitz continuous on set X.

Lemma 2.3 (Bounded Curvature). Let ψ : M → R, M ⊆ Rn be a convex function.

Then ψ has bounded curvature on X if and only if for all x, x+δ ∈ X there exists a member

∂ψ(x) (respectively, ∂ψ(x+ δ)) of the set of subdifferentials at point x (respectively, x+ δ)

such that

(∂ψ(x + δ)− ∂ψ(x))T δ ≤ ρψ‖δ‖22

where ρψ does not depend on x or δ.

Proof. ⇒ Suppose ψ has bounded curvature on X. From (2.1) it follows that

ψ(x+ δ) − ψ(x) ≤ ∂ψ(x)T δ + ρψ‖δ‖22

and

ψ(x)− ψ(x+ δ) ≤ −∂ψ(x+ δ)T δ + ρψ‖δ‖22.

Adding the left-hand and right-hand sides of these inequalities yields 0 ≤ (∂ψ(x)−∂ψ(x+
δ))T δ + 2ρψ‖δ‖22 i.e.

(∂ψ(x+ δ)− ∂ψ(x))T δ ≤ ρψ‖δ‖22.

2.2. NON-CONVEX DESCENT 12

⇐ Suppose (∂ψ(x + δ)− ∂ψ(x))T δ ≤ ρψ‖δ‖2 for all x, x+ δ ∈M . It follows that

∂ψ(x+ δ)T δ ≤ ∂ψ(x)T δ + ρψ‖δ‖22.

By the definition of the subgradient we have that ψ(x+ δ)− ψ(x) ≤ ∂ψ(x+ δ)T δ, and so

we obtain that ψ(x+ δ) − ψ(x) ≤ ∂ψ(x)T δ + ρψ‖δ‖22. �

2.2. Non-Convex Descent

We begin by considering the minimisation of convex function F : Rn → R on convex

set X := conv(Y), the convex hull of set Y := {y1, . . . , y|Y |} consisting of a finite collection

of points from Rn (so X is a polytope). Our interest is in selecting a sequence of points

{yk}, k = 1, 2, . . . from set Y such that the running average xk+1 = (1 − β)xk + βyk

minimises F for k sufficiently large and β sufficiently small. Note that set Y is non-convex

since it consists of a finite number of points, and by analogy with max-weight terminology

we will refer to it as the action set.

Since X is the convex hull of action set Y , any point s∗ ∈ X minimising F can be

written as convex combinations of points in Y i.e. s∗ =
∑|Y |

j=1 θ
∗(j)yj , θ

∗(j) ∈ [0, 1],

‖θ‖1 = 1. Hence, we can always construct sequence {yk} by selecting points from set Y in

proportion to the θ∗(j), j = 1, . . . , |Y |—that is, by a posteriori time-sharing (a posteriori

in the sense that we need to find minimum s∗ before we can construct sequence {yk}). Of

more interest, however, it turns out that when function F has bounded curvature then

sequences {yk} can be found without requiring knowledge of s∗.

2.2.1. Non-Convex Direct Descent. The following two fundamental results are

the key to establishing Theorem 2.1.

Lemma 2.4. Let Y := {y1, . . . , y|Y |} be a finite set of points from Rn and X :=

conv(Y). Then, for any point x ∈ X and vector z ∈ Rn there exists a point y ∈ Y such

that zT (y − x) ≤ 0.

Proof. Since x ∈ X := conv(Y), x =
∑|Y |

j=1 θ(j)yj with
∑|Y |

j=1 θ(j) = 1 and θ(j) ∈
[0, 1]. Hence,

zT (y − x) =

|Y |
∑

j=1

θ(j)zT (y − yj).

Select y ∈ argminw∈Y z
Tw. Then zT y ≤ zT yj for all yj ∈ Y and so zT (y − x) ≤ 0. �

Lemma 2.5 (Non-Convex Descent). Let F (x) be a convex function and suppose points

z, x ∈ X = conv(Y) exist such that F (z) ≤ F (x) − ǫ, ǫ > 0. Suppose F has bounded

2.2. NON-CONVEX DESCENT 13

curvature on X with curvature constant ρF . Then, there exists at least one y ∈ Y such

that

F ((1− β)x+ βy) ≤ F (x)− γβǫ

with γ ∈ (0, 1) provided 0 < β ≤ (1− γ)min{ǫ/(ρF y2◦), 1}.

Proof. By convexity,

F (x) + ∂F (x)T (z − x) ≤ F (z) ≤ F (x)− ǫ.

Hence, ∂F (x)T (z − x) ≤ −ǫ. Now observe that for y ∈ Y we have (1− β)x+ βy ∈ X and

by the bounded curvature of F on X

F ((1− β)x+ βy)

≤ F (x) + β∂F (x)T (y − x) + ρFβ
2‖y − x‖22

= F (x) + β∂F (x)T (z − x) + β∂F (x)T (y − z) + ρFβ
2‖y − x‖22

≤ F (x)− βǫ+ β∂F (x)T (y − z) + ρFβ
2‖y − x‖22

By Lemma 2.4 we can select y ∈ Y such that ∂F (x)T (y − z) ≤ 0. With this choice of y it

follows that

F ((1− β)x+ βy) ≤ F (x)− βǫ+ ρFβ
2‖y − x‖22

≤ F (x)− βǫ+ ρFβ
2y2◦(2.2)

where (2.2) follows from Lemma 2.2, and the result now follows. �

The following theorem formalises the above commentary, also generalising it to se-

quences of convex functions {Fk} rather than just a single function as this will prove

useful later.

Theorem 2.1 (Greedy Non-Convex Convergence). Let {Fk} be a sequence of convex

functions with uniformly bounded curvature ρF on set X := conv(Y), action set Y a finite

set of points from Rn. Let {xk} be a sequence of vectors satisfying xk+1 = (1−β)xk+βyk
with x1 ∈ X and

yk ∈ argmin
y∈Y

Fk((1 − β)xk + βy), k = 1, 2, . . .(2.3)

Suppose parameter β is sufficiently small that

0 <β ≤ (1− γ)min{ǫ/(ρF y2◦), 1}(2.4)

2.2. NON-CONVEX DESCENT 14

with ǫ > 0, γ ∈ (0, 1), y◦ := 2maxy∈Y ‖y‖2 and that functions Fk change sufficiently

slowly that

|Fk+1(x)− Fk(x)| ≤ γ1γβǫ, ∀x ∈ X

with γ1 ∈ (0, 1/2). Then, there exists a k̄ ∈ N such that for all k ≥ k̄ we have that

0 ≤ Fk(xk+1)− Fk(s
∗
k) ≤ 2ǫ

where s∗k ∈ argminx∈X Fk(x).

Proof. Since Fk has bounded curvature for any k it is continuous, and as X is closed

and bounded we have by the Weierstrass theorem (e.g. see Proposition 2.1.1 in [BNO03])

that minx∈X Fk(x) is finite. We now proceed considering two cases:

Case (i): Fk(xk)− Fk(s
∗
k) ≥ ǫ. By Lemma 2.5 there exists yk ∈ Y such that

Fk((1− β)xk + βyk)− Fk(xk) = Fk(xk+1)− Fk(xk) ≤ −γβǫ.

Further, since Fk+1(xk+1)− Fk(xk+1) ≤ γ1γβǫ and Fk(xk)− Fk+1(xk) ≤ γ1γβǫ it follows

Fk+1(xk+1)− Fk+1(xk) ≤ 2γ1γβǫ− γβǫ < 0.(2.5)

That is, Fk and Fk+1 decrease monotonically when Fk(xk)− Fk(s
∗
k) ≥ ǫ.

Case (ii): Fk(xk)−Fk(s∗k) < ǫ. It follows that Fk(xk) < Fk(s
∗
k)+ ǫ. Since Fk is convex

and has bounded curvature,

Fk(xk+1) ≤ Fk(xk) + β∂Fk(xk)
T (yk − xk) + β2ρF y

2
◦

≤ Fk(s
∗
k) + ǫ+ β∂Fk(xk)

T (yk − xk) + β2ρF y
2
◦.

The final term holds uniformly for all yk ∈ Y and since we select yk to minimise Fk(xk+1)

by Lemma 2.4 we therefore have Fk(xk+1) ≤ Fk(s
∗
k)+ ǫ+β

2ρF y
2
◦. Using the stated choice

of β and the fact that Fk+1(xk+1)− γ1γβǫ ≤ Fk(xk+1) yields

Fk+1(xk+1)− Fk(s
∗
k) ≤ γ1γβǫ+ ǫ+ β(1− γ)ǫ.(2.6)

Finally, since Fk(s
∗
k) ≤ Fk(s

∗
k+1) ≤ Fk+1(s

∗
k+1) + γ1γβǫ we obtain

Fk+1(xk+1)− Fk+1(s
∗
k+1) ≤ 2γ1γβǫ+ ǫ+ β(1− γ)ǫ

≤ 2ǫ.

We therefore have that Fk+1(xk) is strictly decreasing when Fk(xk) − Fk(s
∗
k) ≥ ǫ

and otherwise uniformly upper bounded by 2ǫ. It follows that for all k sufficiently large

Fk(xk+1)− Fk(s
∗
k) ≤ 2ǫ as claimed. �

2.2. NON-CONVEX DESCENT 15

(a) Example where F does not possess
bounded curvature. None of (1 − β)x + βy,
y ∈ Y are descending.

(b) Example where F has bounded curvature.
For β sufficiently small, for at least one (1 −
β)x + βy, y ∈ Y descent is possible.

Figure 2.2.1. Illustrating how bounded curvature allows monotonic descent. Set
Y consists of the marked points y1, y2, y3. Level set {F (z) ≤ F (x) : z ∈ X} is
indicated by the shaded areas. The possible choices of (1 − β)x + βy, y ∈ Y are
indicated.

Observe that in Theorem 2.1 we select yk by solving non-convex optimisation (2.3) at

each time step. This optimisation is one step ahead, or greedy, in nature and does not look

ahead to future values of the sequence or require knowledge of optima s∗k. Of course, such

an approach is mainly of interest when non-convex optimisation (2.3) can be efficiently

solved, e.g. when action set Y is small or the optimisation separable.

Observe also that Theorem 2.1 relies upon the bounded curvature of the sequence

of functions Fk. A smoothness assumption of this sort seems essential, since when it

does not hold it is easy to construct examples where Theorem 2.1 does not hold. Such

an example is illustrated schematically in Figure 2.2.1a. The shaded region in Figure

2.2.1a indicates the level set {F (z) ≤ F (x) : z ∈ X}. The level set is convex, but

the boundary is non-smooth and contains “kinks”. We can select points from the set

{(1 − β)x + βy : y ∈ Y = {y1, y2, y3}}. This set of points is indicated in Figure 2.2.1a

and it can be seen that every point lies outside the level set. Hence, we must have

F ((1 − β)x + βy) > F (x), and upon iterating we will end up with a diverging sequence.

Note that in this example changing the step size β does not resolve the issue. Bounded

curvature ensures that the boundary of the level sets is smooth, and this ensures that for

sufficiently small β there exists a convex combination of x with a point y ∈ Y such that

F ((1−β)x+βy) < F (x) and so the solution to optimisation (2.3) improves our objective,

see Figure 2.2.1b.

2.2. NON-CONVEX DESCENT 16

Theorem 2.1 is stated in a fairly general manner since this will be needed for our later

analysis. An immediate corollary to Theorem 2.1 is the following convergence result for

unconstrained optimisation.

Corollary 2.1 (Unconstrained Optimisation). Consider the following sequence of

non-convex optimisations {Pk}:

yk ∈ argmin
y∈Y

f ((1− β)xk + βy)

xk+1 = (1− β)xk + βyk

with x1 ∈ X := conv(Y), action set Y ⊂ Rn finite. Then 0 ≤ f(xk) − f⋆ ≤ 2ǫ for

all k sufficiently large, where f⋆ = minx∈X f(x), provided f has bounded curvature with

curvature constant ρF and 0 < β ≤ (1 − γ)min{ǫ/(ρF y2◦), 1} with γ ∈ (0, 1), ǫ > 0,

y◦ := 2maxy∈Y ‖y‖2.

Figure 2.2.2 illustrates Corollary 2.1 schematically in R2. The sequence of non-convex

optimisations descends in two iterations f(x1) > f(x2) > f(x3) (using points y3 and y4

respectively) and f(xk)− f⋆ ≤ 2ǫ for k > 3 (not shown in Figure 2.2.2).

Note that the curvature constant ρF of function f need not be known, an upper bound

being sufficient to select β. Next we present two brief examples that are affected differently

by constant ρF .

Example 2.1 (Linear Objective). Suppose f(x) := ATx with A ∈ Rn. The objective

function is linear and so has curvature constant ρF = 0. It can be seen from (2.4) that

we can choose β independently of parameter ǫ. Hence, for any β ∈ (0, 1) we have that

f(xk+1) < f(xk) for all k, and since we could always “choose” a smaller ǫ (because β does

not depend on it) we must have that f(xk) → f⋆.

Example 2.2 (Quadratic Objective). Suppose f(x) := 1
2x

TAx where A ∈ Rn×n is

symmetric and positive definite. Then ρF = λmax(A) > 0 and in contrast to Example 2.1

the bound (2.4) on parameter β now depends on ǫ. Further, the convergence is into the

ball f(xk)− f⋆ ≤ 2ǫ for k ≥ k̄ and finite k̄.

2.2.2. Non-Convex Frank-Wolfe-like Descent. It is important to note that other

convergent non-convex updates are also possible. For example:

Theorem 2.2 (Greedy Non-Convex FW Convergence). Consider the setup in Theorem

2.1, but with modified update

yk ∈ argmin
y∈Y

∂Fk(xk)
T y, k = 1, 2, . . .(2.7)

2.2. NON-CONVEX DESCENT 17

Figure 2.2.2. Illustrating unconstrained convergence in R2. The sequence of
non-convex optimisations converges with k = 2. The function average decreases
monotonically and then remains in level set f(xk) ≤ f⋆ + 2ǫ for k ≥ 3.

Then, there exists a k̄ ∈ N such that for all k ≥ k̄ we have that

0 ≤ Fk(xk+1)− Fk(s
∗
k) ≤ 2ǫ

where s∗k ∈ argminx∈X Fk(x).

Proof. Firstly, we make the following observations,

argmin
x∈X

Fk(xk) + ∂Fk(xk)
T (x− xk)

(a)
= argmin

x∈X
∂Fk(xk)

Tx

(b)

⊇ argmin
y∈Y

∂Fk(xk)
T y

where equality (a) follows by dropping terms not involving x and (b) from the observation

that we have a linear program (the objective is linear and set X is a polytope, so defined

by linear constraints) and so the optimum lies at an extreme point of set X i.e. in set Y .

We also have that

Fk(xk) + ∂Fk(xk)
T (yk − xk)

(a)

≤ Fk(xk) + ∂Fk(xk)
T (s∗k − xk)

(b)

≤ Fk(s
∗
k) ≤ Fk(xk)

where s∗k ∈ argminx∈X Fk(x), inequality (a) follows from the minimality of yk in X noted

above and (b) from the convexity of Fk. It follows that ∂Fk(xk)
T (yk − xk) ≤ −(Fk(xk)−

Fk(s
∗
k)) ≤ 0. We have two cases to consider. Case (i): Fk(xk) − Fk(s

∗
k) ≥ ǫ. By the

bounded curvature of Fk,

Fk(xk+1) ≤ Fk(xk) + β∂Fk(xk)
T (yk − xk) + ρFβ

2y2◦

≤ Fk(xk)− βǫ+ ρFβ
2y2◦ ≤ Fk(xk)− γβǫ.

2.2. NON-CONVEX DESCENT 18

Hence,

Fk+1(xk+1) ≤ Fk(xk+1) + |Fk+1(xk+1)− Fk(xk+1)|

≤ Fk(xk)− γβǫ+ γ1γβǫ,

and since Fk(xk) ≤ Fk+1(xk) + γ1γβǫ we have that Fk+1(xk+1)−Fk(xk+1) < 0. Case (ii):

Fk(xk)− Fk(s
∗
k) < ǫ. Then

Fk(xk+1) ≤ Fk(xk) + β∂Fk(xk)
T (yk − xk) + ρFβ

2y2◦

≤ Fk(s
∗
k) + ǫ+ βǫ,

and similar to the proof of Theorem 2.1 we obtain that Fk+1(xk+1)−Fk+1(s
∗
k+1) ≤ 2ǫ. We

therefore have that Fk(xk) is strictly decreasing when Fk(xk)− Fk(s
∗
k) ≥ ǫ and otherwise

uniformly upper bounded by 2ǫ. Thus for k sufficiently large Fk(xk+1)−Fk(s
∗
k) ≤ 2ǫ. �

The intuition behind the update in Theorem 2.2 is that at each step we locally approx-

imate Fk(xk+1) by linear function Fk(xk) + ∂Fk(xk)
T (xk+1 − xk) and then minimise this

linear function. Since Fk is convex, this linear function is in fact the supporting hyperplane

to Fk at point xk, and so can be expected to allow us to find a descent direction. Similar

intuition also underlies classical Frank-Wolfe algorithms for convex optimisation [FW56]

on a polytope, and Theorem 2.2 extends this class of algorithms to make use of non-convex

update (2.7) and a fixed step size (rather than the classical approach of selecting the step

size by line search).

Note that when the function is linear Fk(x) = cTk x, ck ∈ Rn, then

argmin
y∈Y

Fk((1− β)x+ βy) = argmin
y∈Y

cTk y(2.8)

and

argmin
y∈Y

∂Fk(xk)
T y = argmin

y∈Y
cTk y.(2.9)

That is, updates (2.3) and (2.7) are identical. Note also that

argmin
y∈Y

∂Fk(xk)
T y ⊆ argmin

x∈X
∂Fk(xk)

Tx.(2.10)

This is because the RHS of (2.10) is a linear programme (the objective is linear and set

X is a polytope, so defined by linear constraints) and so the optimum set is either (i)

an extreme point of X and so a member of set Y , or (ii) a face of polytope X with the

extreme points of the face belonging to set Y . Hence, while update (2.7) is non-convex it

can nevertheless be solved in polynomial time.

2.3. CONSTRAINED CONVEX OPTIMISATION 19

2.3. Constrained Convex Optimisation

We now extend consideration to the constrained convex optimisation P:

minimise
x∈X

f(x)

subject to g(x) � 0
(2.11)

where g(x) := [g1, . . . , gm]
T and f, gj : R

n → R, j = 1, . . . ,m are convex functions with

bounded curvature with, respectively, curvature constants ρF and ρgj . As before, action set

Y consists of a finite set of points in Rn and X := conv(Y). Let X0 := {x ∈ X | g(x) � 0}
denote the set of feasible points, which we will assume has non-empty relative interior

(i.e. a Slater point exists). Let X⋆ := argminx∈X0
f(x) ⊆ X0 be the set of optima and

f⋆ := f(x⋆), x⋆ ∈ X⋆.

In the next sections we introduce a generalised dual subgradient approach for finding

approximate solutions to optimisation P which, as we will see, includes the classical convex

dual subgradient method as a special case.

2.3.1. Lagrangian Penalty. As in classical convex optimisation we define Lagrangian

L(x, λ) := f(x) + λT g(x) where λ = [λ(1), . . . , λ(m)]T with λ(j) ≥ 0, j = 1, . . . ,m. Since

set X0 has non-empty relative interior, the Slater condition is satisfied and strong duality

holds. That is, there is zero duality gap and so the solution of the dual problem D:

maximise
λ�0

h(λ) := min
x∈X

L(x, λ)

and primal problem P coincide. Therefore, we have that

min
x∈X

max
λ�0

L(x, λ) = max
λ�0

min
x∈X

L(x, λ) = h(λ⋆) = f⋆

where λ⋆ := argmaxλ�0 h(λ).

2.3.1.1. Lagrangian Bounded Curvature. As already noted, bounded curvature plays

a key role in ensuring convergence to an optimum when selecting from a discrete set of

actions. For any two points x, x+ δ ∈ X we have that

L(x+ δ, λ) ≤ L(x, λ) + ∂xL(x, λ)
T δ + ρL‖δ‖22,

where ρL = ρF + λTρg with ρg := [ρg1 , . . . , ρgm]
T . It can be seen that the curvature

constant ρL of the Lagrangian depends on the multiplier λ. Since set λ � 0 is unbounded,

it follows that the Lagrangian does not have bounded curvature on this set unless ρg =

0 (corresponding to the special case where the constraints are linear). Fortunately, by

constraining λ(j) ≤ λ◦, j = 1, . . . ,m for some λ◦ ≥ 0 resolves the issue, i.e. now L(·, λ)

2.3. CONSTRAINED CONVEX OPTIMISATION 20

has uniform bounded curvature with constant

ρ̄L = ρF + λ◦‖ρg‖1.

For bounded curvature we only require constant λ◦ to be finite, but as we will see later in

Lemmas 2.7 and 2.9 in general it should be chosen with some care.

2.3.2. Non-Convex Dual Subgradient Update. In this section we present a

primal-dual-like approach in which we use discrete actions to obtain approximate solu-

tions to problem P. In particular, we construct a sequence {xk} of points in X such that

f(1k
∑k

i=1 xi+1) is arbitrarily close to f⋆ for k sufficiently large.

We start by introducing two lemmas, which will play a prominent role in later proofs.

Lemma 2.6 (Minimising Sequence of Lagrangians). Let {λk} be a sequence of vectors

in Rm
+ such that λk � λ◦1, λ◦ > 0 and ‖λk+1 − λk‖2 ≤ γ1γβǫ/(mσc) with γ ∈ (0, 1),

γ1 ∈ (0, 1/2), β, ǫ > 0, σc := maxx∈X ‖g(x)‖∞. Consider optimisation problem P and

updates

yk ∈ argmin
y∈Y

L((1− β)xk + βy, λk),(2.12)

xk+1 = (1− β)xk + βyk.(2.13)

Then, for k sufficiently large (k ≥ k̄) we have that

L(xk+1, λk)− h(λk) ≤ L(xk+1, λk)− f⋆ ≤ 2ǫ

provided β is sufficiently small, i.e. 0 <β ≤ (1−γ)min{ǫ/(ρ̄Ly2◦), 1} where y◦ := 2maxy∈Y ‖y‖2,
ρ̄L = ρF + λ◦‖ρg‖1.

Proof. Observe that since

|L(x, λk+1)− L(x, λk)| = |(λk+1 − λk)
T g(x)|

≤ ‖λk+1 − λk‖2‖g(x)‖2
≤ ‖λk+1 − λk‖2mσc
≤ γ1γβǫ

and L(·, λk) has uniformly bounded curvature by Theorem 2.1 we have that for k suffi-

ciently large (k ≥ k̄) then

L(xk+1, λk)− h(λk) ≤ 2ǫ

2.3. CONSTRAINED CONVEX OPTIMISATION 21

where h(λ) := minx∈X L(x, λ). Further, since h(λ) ≤ h(λ⋆) ≤ f⋆ for all λ � 0 it follows

that

L(xk+1, λk)− f⋆ ≤ 2ǫ

for k ≥ k̄. �

Lemma 2.7 (Lagrangian of Averages). Consider optimisation problem P and update

λk+1 = [λk + αg(xk+1)]
[0,λ◦]

where α > 0 and {xk} is a sequence of points from X such that L(xk+1, λk)− h(λk) ≤ 2ǫ

for all k = 1, 2, Let λ1(j) ∈ [0, λ◦] where λ◦ ≥ λ⋆(j), j = 1, . . . ,m, where λ⋆ ∈ Λ⋆

(the set of dual optima). Then,

|L(x̄k, λ̄k)− f⋆| ≤ 2ǫ+
α

2
mσ2c +

mλ◦2

αk
(2.14)

where x̄k :=
1
k

∑k
i=1 xi+1, λ̄k :=

1
k

∑k
i=1 λi and σc := maxx∈X ‖g(x)‖∞.

Proof. Let θ ∈ Rm
+ such that θ(j) ≤ λ◦ for all j = 1, . . . ,m and see that

‖λk+1 − θ‖22 = ‖[λk + αg(xk+1)]
[0,λ◦] − θ‖22

≤ ‖[λk + αg(xk+1)]
+ − θ‖22(2.15)

≤ ‖λk + αg(xk+1)− θ‖22
= ‖λk − θ‖22 + 2α(λk − θ)T g(xk+1) + α2‖g(xk+1)‖22
≤ ‖λk − θ‖22 + 2α(λk − θ)T g(xk+1) + α2mσ2c ,(2.16)

where (2.15) follows since λ◦ ≥ θ(j) and (2.16) from the fact that ‖g(x)‖22 ≤ mσ2c for all

x ∈ X. Applying the latter argument recursively for i = 1, . . . , k yields ‖λk+1 − θ‖22 ≤
‖λ1− θ‖22+2α

∑k
i=1(λi− θ)Tg(xi+1)+α2mσ2ck. Rearranging terms, dividing by 2αk, and

using the fact that ‖λk+1 − θ‖22 ≥ 0 and ‖λ1 − θ‖22 ≤ 2mλ◦2 we have

−mλ
◦2

αk
− α

2
mσ2c ≤

1

k

k∑

i=1

(λi − θ)T g(xi+1)(2.17)

=
1

k

k∑

i=1

L(xi+1, λi)− L(xi+1, θ).(2.18)

Next, see that by the definition of sequence {xk} we can write 1
k

∑k
i=1 L(xi+1, λi) ≤

1
k

∑k
i=1 h(λi) + 2ǫ ≤ h(λ̄k) + 2ǫ where the last inequality follows by the concavity of

2.3. CONSTRAINED CONVEX OPTIMISATION 22

h. That is,

−mλ
◦2

αk
− α

2
mσ2c − 2ǫ ≤ h(λ̄k)−

1

k

k∑

i=1

L(xi+1, θ)(2.19)

By fixing θ to λ⋆ and λ̄k and using the fact that 1
k

∑k
i=1 L(xi+1, λ̄k) ≥ L(x̄k, λ̄k) for all

k = 1, 2, . . . and 1
k

∑k
i=1 L(xi+1, λ

⋆) ≥ f⋆ we have that

−mλ
◦2

αk
− α

2
mσ2c − 2ǫ ≤ h(λ̄k)− f⋆ ≤ 0(2.20)

and

−mλ
◦2

αk
− α

2
mσ2c − 2ǫ ≤ h(λ̄k)− L(x̄k, λ̄k) ≤ 0.(2.21)

Multiplying (2.20) by −1 and combining it with (2.21) yields the result. �

Note that by selecting α sufficiently small in Lemma 2.7 we can obtain a sequence

{λk} that changes sufficiently slowly so to satisfy the conditions of Lemma 2.6. Further,

by Lemma 2.6 we can construct a sequence of primal variables that satisfy the conditions

of Lemma 2.7 for k ≥ k̄ and it then follows that (2.14) is satisfied.

Lemma 2.7 requires that λ⋆(j) ≤ λ◦ for all j = 1, . . . ,m, so it naturally arises the

question as to when λ⋆(j) (and so λ◦) is bounded. This is clarified in the next lemma,

which corresponds to Lemma 1 in [NO09a].

Lemma 2.8 (Bounded Multipliers). Let Qδ := {λ � 0 : h(λ) ≥ h(λ⋆) − δ} with δ ≥ 0

and let the Slater condition hold, i.e. there exists a vector x̂ ∈ X such that g(x̂) ≺ 0.

Then, for every λ ∈ Λδ we have that

‖λ‖2 ≤ 1

υ
(f(x̂)− h(λ⋆) + δ)(2.22)

where υ := minj∈{1,...,m} −gj(x̂).

Proof. First of all recall that since the Slater condition holds we have strong duality,

i.e. h(λ⋆) = f⋆, and f⋆ is finite by Proposition 2.1.1. in [BNO03]. Now observe that when

λ ∈ Λδ then

h(λ⋆)− δ ≤ h(λ) = min
x∈X

L(x, λ) ≤ f(x̂) + λT g(x̂),

and rearranging terms we obtain

−λT g(x̂) = −
m∑

j=1

λ(j)gj(x̂) ≤ f(x̂)− h(λ⋆) + δ.

2.3. CONSTRAINED CONVEX OPTIMISATION 23

Next, since λ � 0 and −gj(x̂) > 0 for all j = 1, . . . ,m, let υ := minj∈{1,...,m}−gj(x̂) and

see that υ
∑m

j=1 λ(j) ≤ f(x̂) − h(λ⋆) + δ. Finally, dividing by υ and using the fact that

‖λ‖2 ≤
∑m

j=1 λ(j) the stated result follows. �

From Lemma 2.8 we have that it is sufficient for X0 to have non-empty relative interior

in order for Λδ to be a bounded subset in Rm
+ , and since by definition λ⋆ ∈ Λδ then λ⋆ is

bounded. The bound obtained in Lemma 2.8 depends on h(λ⋆) = f⋆, which is usually not

known. Nevertheless, we can obtain a looser bound if we use the fact that −h(λ⋆) ≤ −h(λ)
for all λ � 0. That is, for every λ ∈ Λδ we have that

‖λ‖2 ≤
1

υ
(f(x̄)− h(λ0) + δ),

where λ0 is an arbitrary vector in Rm
+ .

Hence, when the Slater condition is satisfied the upper and lower bounds in (2.14) are

finite and can be made arbitrarily small as k → ∞ by selecting the step size α sufficiently

small. Convergence of the average of the Lagrangians does not, of course, guarantee that

f(x̄k) → f⋆ unless we also have complementary slackness, i.e. (λ̄k)
T g(x̄k) → 0. Next we

present the following lemma, which is a generalisation of Lemma 3 in [NO09a].

Lemma 2.9 (Complementary Slackness and Feasibility). Let the Slater condition hold

and suppose {xk} is a sequence of points in X and {µk} a sequence of points in Rm
+ such

that

(i) L(xk+1, µk)− h(µk) ≤ 2ǫ for all k;

(ii) |λk(j) − µk(j)| ≤ ασ0, j = 1, . . . ,m

where λk+1 = [λk + αg(xk+1)]
+, ǫ ≥ 0, α > 0, σ0 ≥ 0. Suppose also that λ1(j) ∈ [0, λ◦]

with

λ◦ ≥ 3
υ (f(x̂)− h(λ⋆) + δ) + αmσc

where δ := α(mσ2c/2 + m2σ0σc) + 2ǫ, σc := maxx∈X ‖g(x)‖∞, x̂ a Slater vector and

υ := minj∈{1,...,m}−gj(x̂). Then, λk(j) ≤ λ◦ for all k = 1, 2, . . . ,

−mλ
◦2

2αk
− α

2
mσ2c ≤ (λ̄k)

T g(x̄k) ≤
mλ◦2

αk
(2.23)

and

gj(x̄k) ≤
λ◦

αk
(2.24)

where x̄k :=
1
k

∑k
i=1 xi+1 and λ̄k :=

1
k

∑k
i=1 λi.

2.3. CONSTRAINED CONVEX OPTIMISATION 24

Proof. We start by showing that updates [λk +αg(xk+1)]
+ and [λk +αg(xk+1)]

[0,λ◦]

are interchangeable when L(xk+1, µk) is uniformly close to h(µk). First of all see that

‖λk+1 − λ⋆‖22 = ‖[λk + αg(xk+1)]
+ − λ⋆‖22

≤ ‖λk + αg(xk+1)− λ⋆‖22
= ‖λk − λ⋆‖22 + α2‖g(xk+1)‖22 + 2α(λk − λ⋆)T g(xk+1)

≤ ‖λk − λ⋆‖22 + α2mσ2c + 2α(λk − λ⋆)T g(xk+1).

Now observe that since ‖λk − µk‖2 ≤ ‖λk − µk‖1 ≤ αmσ0 we can write

(λk − λ⋆)T g(xk+1) = (µk − λ⋆)T g(xk+1) + (λk − µk)
T g(xk+1)

≤ (µk − λ⋆)T g(xk+1) + ‖λk − µk‖2‖g(xk+1)‖2
≤ (µk − λ⋆)T g(xk+1) + αm2σ0σc

= L(xk+1, µk)− L(xk+1, λ
⋆) + αm2σ0σc.

Furthermore, since L(xk+1, µk) ≤ h(µk) + 2ǫ and −L(xk+1, λ
⋆) ≤ −h(λ⋆) it follows that

‖λk+1 − λ⋆‖22 − ‖λk − λ⋆‖22
≤ α2(mσ2c + 2m2σ0σc) + 2α(h(µk) + 2ǫ− h(λ⋆)).(2.25)

Now let Λδ := {λ � 0 : h(λ) ≥ h(λ⋆)− δ} and consider two cases. Case (i) (µk /∈ Qδ).

Then h(µk)− h(λ⋆) < −δ and from (2.25) we have that ‖λk+1 − λ⋆‖22 < ‖λk − λ⋆‖22, i.e.

‖λk+1 − λ⋆‖2 − ‖λk − λ⋆‖2 < 0

and so λk converges to a ball around λ⋆ when µk ∈ Λδ. Case (ii) (µk ∈ Qδ). Observe that

‖λk+1 − λ⋆‖2 = ‖[λk + αg(xk+1)]
+ − λ⋆‖2

≤ ‖λk + αg(xk+1)− λ⋆‖2
≤ ‖λk‖2 + ‖λ⋆‖2 + αmσc.

Next recall that when the Slater condition holds by Lemma 2.8 we have for all λ ∈ Λδ

then ‖λ‖2 ≤ 1
υ (η + δ) where η := f(x̄)− h(λ⋆) and x̄ a Slater vector. Therefore,

‖λk+1 − λ⋆‖2 ≤
2

υ
(η + δ) + αmσc.

From both cases, it follows that if

‖λ1 − λ⋆‖2 ≤
2

υ
(η + δ) + αmσc

2.3. CONSTRAINED CONVEX OPTIMISATION 25

then ‖λk −λ⋆‖2 ≤ 2
υ (η+ δ)+αmσc for all k ≥ 1. Using this observation and the fact that

‖λ1 − λ⋆‖2 ≥ |‖λ1‖2 − ‖λ⋆‖2| ≥ ‖λ1‖2 − ‖λ⋆‖2

we obtain that when ‖λ1‖2 ≤ 3
υ (η+δ)+αmσc then ‖λk‖2 ≤ 3

υ (η+δ)+αmσc for all k ≥ 1.

That is, if we choose λ1(j) ≤ 3
υ (η + δ) + αmσc ≤ λ◦ then λk(j) ≤ λ◦ for all j = 1, . . . ,m,

k ≥ 1 and so updates [λk + g(xk+1)]
+ and [λk + g(xk+1)]

[0,λ◦] are interchangeable as

claimed.

Now we proceed to prove the upper and lower bounds in (2.23). For the lower bound

see first that

‖λk+1‖22 = ‖[λk + αg(xk+1)]
+‖22

≤ ‖λk + αg(xk+1)‖22
= ‖λk‖22 + α2‖g(xk+1)‖22 + 2αλTk g(xk+1)

≤ ‖λk‖22 + α2mσ2c + 2αλTk g(xk+1)

Rearranging terms and applying the latter bound recursively for i = 1, . . . , k yields

2α
k∑

i=1

λTi g(xi+1) ≥ ‖λk+1‖22 − ‖λ1‖22 − α2mσ2ck ≥ −‖λ1‖22 − α2mσ2ck.

The bound does not depend on sequence {xk}, hence, it holds for any sequence of points

in X. Fixing xi+1 to x̄k for all i = 1, . . . , k we can write

2α

k∑

i=1

λTi g(x̄k) = 2αk(λ̄k)
T g(x̄k)

Dividing by 2αk and using the fact that ‖λ1‖22 ≤ mλ◦2 yields

−mλ
◦

2αk
− α

2
mσ2c ≤ (λ̄k)

T g(x̄k).

For the upper bound see that λk+1 = [λk + αg(xk+1)]
+ � λk + αg(xk+1) and so we can

write

α

k∑

i=1

g(xi+1) �
k∑

i=1

(λi+1 − λi) = λk+1 − λ1 � λk+1.

Next, by the convexity of g we have that

1

k

k∑

i=1

αg(xi+1) � αg(x̄k)

2.3. CONSTRAINED CONVEX OPTIMISATION 26

and so it follows that g(x̄k) � λk+1/(αk). Multiplying the last equation by λ̄k and using

the fact that 0 � λk+1 � λ◦1 and 0 � λ̄k � λ◦1 yields the upper bound. Finally, the

constraint violation bound (2.24) follows from the fact that g(x̄k) � λ◦2/(αk)1. �

Lemma 2.9 is expressed in a general form where µ may be any suitable approximation

to the usual Lagrange multiplier. Evidently, the lemma also applies in the special case

where λk = µk in which case σ0 = 0. Note from the lemma as well that the running average

x̄k is asymptotically attracted to the feasible region as k increases, i.e. limk→∞ g(x̄k) � 0

We are now in a position to present one of our main results:

Theorem 2.3 (Constrained Optimisation). Consider constrained convex optimisation

P and the associated sequence of non-convex optimisations {P̃k}:

yk ∈ argmin
y∈Y

L((1− β)xk + βy, µk)(2.26)

xk+1 = (1− β)xk + βyk(2.27)

λk+1 = [λk + αg(xk+1)]
[0,λ◦](2.28)

Let the Slater condition hold and suppose that |λk(j)− µk(j)| ≤ ασ0 for all j = 1, . . . ,m,

k ≥ 1 with σ0 ≥ 0. Further, suppose parameters α and β are selected sufficiently small

that

0 < α ≤ γ1γβǫ/(m
2(σ2c + 2σ0σc))(2.29)

0 < β ≤ (1− γ)min{ǫ/(ρ̄Ly2◦), 1}(2.30)

with ǫ > 0, γ ∈ (0, 1), γ1 ∈ (0, 1/2), y◦ := 2maxy∈Y ‖y‖2, ρ̄L = ρF + λ◦‖ρg‖1 and λ◦ as

given in Lemma 2.9. Then, for k sufficiently large (k ≥ k̄) the sequence of solutions {xk}
to sequence of optimisations {P̃k} satisfies:

− 2mλ◦2

αk
− α(mσ2c/2 +m2σ0σc)− 2ǫ

≤ f(x̄k)− f⋆ ≤ 2ǫ+ α(mσ2c +m2σ0σc) +
3mλ◦2

2αk
(2.31)

where x̄k :=
1
k

∑k̄+k
i=k̄

xi+1, µ̄k :=
1
k

∑k̄+k
i=k̄

µi and σc := maxx∈X ‖g(x)‖∞.

2.3. CONSTRAINED CONVEX OPTIMISATION 27

Proof. First of all observe that since λk+1(j) = [λk(j)+αgj(xk+1)]
[0,λ◦] we have that

|λk+1(j)− λk(j)| ≤ ασc for all k. Further, since |λk(j)− µk(j)| ≤ ασ0 then

|µk+1(j) − µk(j)| = |µk+1(j)− µk(j) + λk+1(j) − λk+1(j) + λk(j)− λk(j)|

≤ |µk+1(j)− λk+1(j)|+ |λk+1(j) − λk(j)|+ |λk(j)− µk(j)|

≤ α(2σ0 + σc).

That is,

‖µk+1 − µk‖2 ≤ αm(2σ0 + σc) k = 1, 2, . . .(2.32)

Next, observe that since L(·, λk) has uniform bounded curvature and

|L(x, µk+1)− L(x, µk)| ≤ ‖µk+1 − µk‖2‖g(xk+1)‖2
≤ ‖µk+1 − µk‖2mσc
≤ αm2(2σ0σc + σ2c)

≤ γ1γβǫ,

it follows by Lemma 2.6 that for k sufficiently large (k ≥ k̄) then L(xk+1, µk)−h(µk) ≤ 2ǫ

and therefore by Lemma 2.7

− mλ◦2

αk
− α

2
mσ2c − 2ǫ ≤ L(x̄k, µ̄k)− f⋆ ≤ 2ǫ+

α

2
mσ2c +

mλ◦2

αk
.

Next, see that since

|L(x̄k, λ̄k)− L(x̄k, µ̄k)| = (λ̄k − µ̄k)
T g(x̄k)

≤ ‖λ̄k − µ̄k‖2‖g(x̄k)‖2
≤ αm2σ0σc

we have that

− mλ◦2

αk
− α(mσ2c/2 +m2σ0σc)− 2ǫ

≤ L(x̄k, λ̄k)− f⋆ ≤ 2ǫ+ α(mσ2c/2 +m2σ0σc) +
mλ◦2

αk
.

Finally, by using the complementary slackness bound of Lemma 2.9 the stated result

follows. �

Theorem 2.3 says that by selecting step size α and smoothing parameter β sufficiently

small then the average of the solutions to the sequence of non-convex optimisations {P̃k}
can be made arbitrarily close to the solution of constrained convex optimisation P.

2.4. USING QUEUES AS APPROXIMATE MULTIPLIERS 28

2.3.2.1. Alternative Update. Note that, by replacing use of Theorem 2.1 by Theorem

2.2 in the proof, we can replace update (2.26) by its non-convex Frank-Wolfe alternative,

yk ∈ argmin
y∈Y

∂xL(xk, µk)
T y(2.33)

= argmin
y∈Y

(∂f(xk) + µTk ∂g(xk))
T y.

That is, we have:

Corollary 2.2 (Constrained Optimisation Using Frank-Wolfe Update). Consider the

setup in Theorem 2.3 but with update (2.26) replaced by (2.33). Then, there exists a finite

k̄ such that the bound given in (2.31) holds.

2.3.3. Generalised Update. Let X ′ ⊆ conv(Y) be any subset of the convex hull of

action set Y , including the empty set. Since

min
y∈X′∪Y

L((1− β)xk + βy, µk) ≤ min
y∈Y

L((1 − β)xk + βy, µk),

we can immediately generalise update (2.26) to

yk ∈ argmin
y∈X′∪Y

L((1− β)xk + βy, µk)(2.34)

and Theorem 2.3 will continue to apply. Selecting X ′ equal to the empty set we recover

(2.26) as a special case. Selecting X ′ = conv(Y) we recover the classical convex dual

subgradient update as a special case. Update (2.34) therefore naturally generalises both

the classical convex dual subgradient update and non-convex update (2.26). Hence, we

have the following corollary.

Corollary 2.3 (Constrained Optimisation Using Unified Update). Consider the

setup in Theorem 2.3 but with update (2.26) replaced by (2.34). Then, there exists a

finite k̄ such that the bound given in (2.31) holds.

2.4. Using Queues as Approximate Multipliers

In Theorem 2.3 the only requirement on the sequence of approximate multipliers {µk}
is that it remains close to the sequence of Lagrange multipliers {λk} generated by a dual

subgradient update in the sense that |λk(j) − µk(j)| ≤ ασ0 for all k. In this section we

consider the special case where sequence {µk} additionally satisfies the following,

µk+1 = [µk + δ̃k]
[0,λ◦](2.35)

with δ̃k ∈ Rm and µ1 = λ1.

2.4. USING QUEUES AS APPROXIMATE MULTIPLIERS 29

We begin by recalling the following lemma, which is a direct result of [Mey08, Propo-

sition 3.1.2].

Lemma 2.10. Consider sequences {λk}, {µk} in R given by updates λk+1 = [λk +

δk]
[0,λ◦] and µk+1 = [µk + δ̃k]

[0,λ◦] where δ, δ̃ ∈ R. Suppose λ1 = µ1 and |∑k
i=1 δi − δ̃i| ≤ ǫ

for all k. Then, for all k we have that |λk − µk| ≤ 2ǫ.

Proof. First of all observe that |λk+1 − µk+1| = |[λk + δk]
[0,λ◦] − [µk + δ̃k]

[0,λ◦]| ≤
|[λk + δk]

[0,λ◦] − [µk + δ̃k]
+| = |[µk + δ̃k]

+ − [λk + δk]
[0,λ◦]| ≤ |[µk + δ̃k]

+ − [λk + δk]
+|. We

now proceed to bound the RHS of the last equation. Let ∆k := −min(λk + δk, 0), i.e.

λk+1 = λk + δk +∆k so that we can write

λk+1 = λ1 +

k∑

i=1

(δi +∆i)

Note that when λk+1 > 0 then ∆k = 0, and that when λk+1 = 0 then
∑k

i=1∆i =

−λ1 −∑k
i=1 δi. Next, note that since ∆k is nonnegative for all k by construction we

have that
∑k

i=1 ∆i is non-decreasing in k. Using the latter observation it follows that
∑k

i=1∆i = [−λ1 −min1≤j≤k
∑j

i=1 δi]
+ and therefore

λk+1 =

k∑

i=1

δi +max {Θk, λ1}

where Θk := −min1≤j≤k
∑j

i=1 δi. Now, let Θ̃k := −min1≤j≤k
∑j

i=1 δ̃i and see that

|λk+1 − µk+1| =
∣
∣
∣
∣
∣

k∑

i=1

δi +max{Θk, λ1} −
k∑

i=1

δ̃i −max{Θ̃k, λ1}
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

k∑

i=1

δi − δ̃i

∣
∣
∣
∣
∣
+
∣
∣
∣max{Θk, λ1} −max{Θ̃k, λ1}

∣
∣
∣

(a)

≤
∣
∣
∣
∣
∣

k∑

i=1

δi − δ̃i

∣
∣
∣
∣
∣
+
∣
∣
∣Θ̃k −Θk

∣
∣
∣

=

∣
∣
∣
∣
∣

k∑

i=1

δi − δ̃i

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
min
1≤j≤k

j
∑

i=1

δ̃i − min
1≤j≤k

j
∑

i=1

δi

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

k∑

i=1

δi − δ̃i

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
max
1≤j≤k

j
∑

i=1

−δ̃i − max
1≤j≤k

j
∑

i=1

−δi
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

k∑

i=1

δi − δ̃i

∣
∣
∣
∣
∣
+ max

1≤j≤k

∣
∣
∣
∣
∣

j
∑

i=1

δi −
j
∑

i=1

δ̃i

∣
∣
∣
∣
∣

where (a) follows easily from enumerating the four cases. Finally, since |∑k
i=1 δi − δ̃i| ≤

maxi≤j≤k |
∑j

i=1 δi − δ̃i| and |∑k
i=1 δi − δ̃i| ≤ ǫ for all k = 1, 2, . . . the result follows. �

2.4. USING QUEUES AS APPROXIMATE MULTIPLIERS 30

Applying Lemma 2.10 to our present context it follows that |λk(j)− µk(j)| ≤ ασ0 for

all k (and so Theorem 2.3 holds) for every sequence {δ̃k} such that |∑k
i=1 αgj(xi)−δ̃i(j)| ≤

ασ0 for all k.

Of particular interest is the special case of optimisation P where the constraints are

linear. That is, gj(x) = a(j)x−b(j) where (a(j))T ∈ Rn and b(j) ∈ R, j = 1, . . . ,m. Gath-

ering vectors a(j) together as the rows of matrix A ∈ Rm×n and collecting additive terms

b(j) into vector b ∈ Rm, the linear constraints can then be written as Ax � b. Therefore,

the dual subgradient Lagrange multiplier update in the sequence of optimisations {P̃k} is

given by

λk+1 = [λk + α(Axk+1 − b)][0,λ
◦](2.36)

with xk+1 = (1−β)xk+βyk, yk ∈ Y . Now suppose that in (2.35) we select δ̃k = α(Ayk−bk)
where {bk} is a sequence of points in Rm. Then,

µk+1 = [µk + α(Ayk − bk)]
[0,λ◦](2.37)

with µ1 = λ1.

Observe that in (2.37) we have replaced the continuous-valued quantity xk with the

discrete-valued quantity yk. We have also replaced the constant b with the time-varying

quantity bk. Further, letting Q := µ/α then (2.37) can be rewritten equivalently as

Qk+1 = [Qk +Ayk − bk]
[0,λ◦/α](2.38)

which is a discrete queue length update with increment Ayk − bk. The approximate

multipliers µ are therefore scaled discrete queue occupancies.

Using Lemma 2.10 it follows immediately that Theorem 2.3 holds provided

|∑k
i=1 a(j)(xi − yi) + (bi(j) − b(j))| ≤ ασ0(2.39)

Since update xk+1 = (1−β)xk+βyk yields a running average of {yk} we might expect that

sequences {xk} and {yk} are always close and so uniform boundedness of |∑k
i=1(bi(j) −

b(j))| is sufficient to ensure that (2.39) is satisfied. This is indeed the case, as established

by the following theorem.

Theorem 2.4 (Queues as Approximate Multipliers). Consider updates (2.36) and

(2.37) where {yk} is an arbitrary sequence of points in Y , xk+1 = (1 − β)xk + βyk,

β ∈ (0, 1), x1 ∈ X := conv(Y). Further, suppose that {bk} is a sequence of points in Rm

2.4. USING QUEUES AS APPROXIMATE MULTIPLIERS 31

such that |∑k
i=1(bi(j)− b(j))| ≤ σ2 for all j = 1, . . . ,m, k = 1, 2, Then,

‖µk − λk‖2 ≤ 2mα(σ1/β + σ2), k = 1, 2, . . .

where σ1 := 2maxx∈X ‖Ax‖∞.

Proof of Theorem 2.4. By Lemma 2.10 we require |∑k
i=1 a(j)(xi+1− yi)+ bi(j)−

b(j)| to be uniformly bounded in order to establish the boundedness of |µk(j)− λk(j)| for
all k ≥ 1. However, since

∣
∣
∣
∣
∣

k∑

i=1

a(j)(xi+1 − yi) + bi(j) − b(j)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

k∑

i=1

a(j)(xi+1 − yi)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

k∑

i=1

bi(j)− b(j)

∣
∣
∣
∣
∣

and |∑k
i=1 bi(j)−b(j)| ≤ σ2 by assumption, it is sufficient to show that |∑k

i=1 a(j)(xi+1−
yi)| is bounded. Now observe that since xi+1 = (1 − β)xi + βyi we have xi+1 − yi =

(1− β)(xi − yi). That is,

k∑

i=1

(xi+1 − yi) = (1− β)

k∑

i=1

(xi − yi).

Further, since

k∑

i=1

(xi − yi) =

k−1∑

i=1

(xi+1 − yi) + (x1 − yk) = (1− β)

k−1∑

i=1

(xi − yi) + (x1 − yk)

it follows that

k∑

i=1

(xi+1 − yi) = (1− β)2
k−1∑

i=1

(xi − yi) + (1− β)(x1 − yk).

Applying the preceding argument recursively we obtain that

k∑

i=1

(xi+1 − yi) = (1− β)(x1 − yk) + (1− β)2(x1 − yk−1) + · · ·+ (1− β)k(x1 − y1),

i.e.

k∑

i=1

(xi+1 − yi) =
k∑

i=1

(1− β)k+1−i(x1 − yi).(2.40)

Using (2.40) it follows that

2α

∣
∣
∣
∣
∣

k∑

i=1

a(j)(xi+1 − yi)

∣
∣
∣
∣
∣
≤ 2α

∣
∣
∣
∣
∣

k∑

i=1

(1− β)k+1−ia(j)(x1 − yi)

∣
∣
∣
∣
∣

≤ 2ασ1

k∑

i=1

(1− β)k+1−i(2.41)

2.4. USING QUEUES AS APPROXIMATE MULTIPLIERS 32

0

5

10

15

20

25

30

0 200 400 600 800 1000

time slot k

λ
µ

Figure 2.4.1. Example realisations of µk (thin line) and λk (thicker line) given
by updates (2.36) and (2.37).

where σ1 := 2maxx∈X ‖Ax‖∞. Next, observe that

k∑

i=1

(1− β)k+1−i = (1− β)k+1
k∑

i=1

(1− β)−i

and that

k∑

i=1

1

(1− β)i
=

1− (1− β)k+1

β(1− β)k
.

Therefore,
∑k

i=1(1− β)−i < (1− β)−k/β and so

(1− β)k+1
k∑

i=1

(1− β)−i <
(1− β)

β
<

1

β
.

Finally, using the latter bound in (2.41) the stated result now follows. �

Observe that the difference between λk and µk can be made arbitrarily small by se-

lecting α small enough. The requirement that |∑k
i=1(bi(j)− b(j))| ≤ σ2 is satisfied when

sequence {bk(j)} converges sufficiently fast to b(j) (dividing both sides by k, the require-

ment is that | 1k
∑k

i=1 bi(j) − b(j)| ≤ σ2/k).

In the special case when bk(j) = b(j) then Theorem 2.4 is trivially satisfied. This

is illustrated in Figure 2.4.1, which plots λk and µk for a simple example where A = 1,

bk = b = 0.5, α = 1, β = 0.1 and sequence {xk} takes values independently and uniformly

at random from set {0, 1}. It can be seen that the distance between λk and µk remains

uniformly bounded over time.

In summary, we have arrived at the following corollary to Theorem 2.3.

Corollary 2.4 (Constrained Optimisation Using Approximate Multipliers). Con-

sider the setup of Theorem 2.3, suppose the constraints are linear Ax − b � 0 and

2.4. USING QUEUES AS APPROXIMATE MULTIPLIERS 33

µk+1 = [µk + α(Ayk − bk)]
[0,λ◦], bk ∈ Rm. Suppose | 1k

∑k
i=1 bi(j) − b(j)| ≤ σ2/k for

all j and k. Then, the bound (2.31) in Theorem 2.3 holds with σ0 = 2(σ1/β + σ2) where

σ1 := 2maxx∈X ‖Ax‖∞.

2.4.1. Weaker Condition for Loose Constraints. Suppose constraint j is loose at

an optimum, i.e. gj(x
⋆) < 0 for x⋆ ∈ X⋆. Then by complementary slackness the associated

Lagrange multiplier must be zero, i.e. λ⋆(j) = 0, and we can select λk(j) = λ⋆(j) = 0 for

all k. Since µk(j) is non-negative, to apply Theorem 2.3 it is enough that µk(j) ≤ ασ0 for

k = 1, 2, Assuming, for simplicity, that µ1(j) = 0, from the proof of Lemma 2.10 we

have

µk(j) =

[

max
1≤l≤k−1

k−1∑

i=l

α(a(j)yi − bi(j))

]+

and so a sufficient condition for µk(j) ≤ ασ0 is that max1≤l≤k−1
∑k−1

i=l (a(j)yi − b(j)) −
(bi(j)−b(j)) ≤ σ0 for all k. The advantage of this condition is that −∑k−1

i=l (bi(j)−b(j)) is
now not bounded below and so a wider class of sequences {bi(j)} is potentially admissible.

The disadvantage is that to exploit this we need to know in advance that constraint j is

loose at the optimum—which is something that we usually do not know in advance.

2.4.2. Queue Stability. Recall that by Lemma 2.9 sequence {λk} in Theorem 2.3

(and respective corollaries of the theorem) is bounded for all k ≥ k̄. Therefore, since

‖µk − λk‖2 is uniformly bounded it follows that {µk} is also bounded and therefore the

associated discrete queue is stable (although the occupancy Q of the discrete queue scales

with 1/α since Q = µ/α).

2.4.3. Optimal Actions Depend Only on Queue Occupancy. In network re-

source allocation problems where the linear constraints can be identified with link queues

we can use the scaled queue occupancies directly in the optimisation. That is,

yk ∈ argmin
y∈Y

L((1− β)xk + βy, αQk)(2.42)

= argmin
y∈Y

f((1− β)xk + βy) + αβQTkAy(2.43)

where update (2.43) is obtained from (2.42) by retaining only the parts of L((1− β)xk +

βy, µk) which depend on y i.e. dropping constant terms which do not change the solution

to the optimisation. We could also consider Corollary 2.2 and so have a Frank-Wolfe like

2.5. MAX-WEIGHT REVISITED 34

update:

yk ∈ argmin
y∈Y

∂xL(xk, αQk)
T y(2.44)

= argmin
y∈Y

∂f(xk)
T y + αQTkAy(2.45)

Importantly, note that neither (2.43) nor (2.45) involve b or bk. Therefore, we can generate

a sequence of discrete actions by simply looking at the queue occupancies at each time

slot.

2.5. Max-Weight Revisited

Recall the formulation of a queueing network given at the beginning of the chapter,

where matrix A defines the queue interconnection, with j’th row having a −1 at the j’th

entry, 1 at entries corresponding to queues from which packets are sent to queue j, and 0

entries elsewhere. Hence, the queue occupancy evolves as

Qk+1 = [Qk +Ayk + bk]
[0,λ◦/α].

As shown in Section 2.4 updates

yk ∈ argmin
y∈Y

∂f(xk)
T y + αQTkAy,

xk+1 = (1− β)xk + βyk

leads to xk converging to a ball around the solution to the following convex optimisation,

minimise
x∈X

f(x)

subject to Ax+ b � 0

whereX = conv(Y), {bk} is any sequence of points fromRm such that limk→∞
1
k

∑k
i=1 bi =

b and |(1k
∑k

i=1 bi(j))− b(j)| ≤ σ2/k, j = 1, . . . ,m for some finite σ2 > 0.

Observe that this update is identical to the greedy primal-dual max-weight schedule

once we identify utility function U with −f . However, we have arrived at this from a

purely convex optimisation viewpoint and by elementary arguments, without recourse to

more sophisticated Lyapunov drift, stochastic queueing theory, etc. Further, our analy-

sis immediately generalises the max-weight analysis to allow arbitrary linear constraints

rather than just the specific constraints associated with a queueing network, and beyond

this to convex nonlinear constraints with bounded curvature.

In our analysis, the key role played by bounded curvature in non-convex descent is

brought to the fore. This property is of course present in existing max-weight results, in the

2.6. NUMERICAL EXAMPLE 35

form of a requirement for continuous differentiability of the utility function, but insight into

the fundamental nature of this requirement had been lacking. One immediate benefit is the

resulting observation that any non-convex update with suitable descent properties can be

used, and strong connections are established with the wealth of convex descent methods.

For example, by Theorem 2.3 we can replace update yk ∈ argminy∈Y (∂f(xk) + AQk)
T y

(which is now seen to be a variant of the classical Frank-Wolfe update) with the direct

Lagrangian update

yk ∈ argmin
y∈Y

f(xk + β(y − xk)) + βQTkAy

to obtain a new class of non-convex algorithms.

2.6. Numerical Example

Consider the convex optimisation problem

minimise
x∈X

n · exp(V x)

subject to b � x

where V := diag(1, . . . , n), X := conv(Y), Y := {y ∈ Rn : x(j) ∈ {0, s}, j = 1, . . . , n},
s > 0 and b = (s/

∑n
i=1 2i)[1, . . . , n]

T . Observe that the Slater condition holds. Consider

the following sequence of non-convex optimisations for k = 1, 2, . . . ,

yk ∈ argmin
y∈Y

n · exp(V ((1− β)xk + βy))

+ µTk (b− ((1− β)xk + βy))(2.46)

xk+1 = (1− β)xk + βyk(2.47)

λk+1 = [λk + α(b− xk+1)]
[0,λ◦](2.48)

with x1 = s1, λ1(j), µ1(j) = 0, j = 1, . . . ,m and parameters α and β are selected as

indicated in (2.29) and (2.30), with parameters n = 3, s = 1/
√
nρ̄L, ρ̄L = 0.6, γ = 0.5,

λ◦ = 0.7, σc = 0.6211 and y◦ = s
√
n.

Convergence into 2ǫ-ball in finite time. To begin with, suppose µ = λ. For ǫ = 0.05

(so α = 7.29 · 10−5). Figure 2.6.1 plots the convergence of L(xk+1, λk) into an 2ǫ-ball

around f⋆. It can be seen that this convergence occurs within finite time, k̄ = 81 and that

L(xk+1, λk) then stays within this ball at times k ≥ k̄.

Upper and lower bounds from Theorem 2.3. Now suppose that µ(j) = λ(j) + αYkσ0

where Yk is uniformly randomly distributed between −1 and 1. For σ0 ∈ {0, 1, 4} (so

α ∈ {7.29 · 10−5, 1.85 · 10−5, 5.74 · 10−6}), Figure 2.6.2 plots f(x̄k) and the upper and

2.6. NUMERICAL EXAMPLE 36

2.8

3

3.2

3.4

3.6

3.8

4

0 20 40 60 80 100 120 140 160 180 200

time slot k

L(xk, λk)

f⋆

h(λk)

Figure 2.6.1. Illustrating the convergence of L(xk+1, λk) to a ball around h(λk)
for ǫ = 0.05 and σ0 = 0. Shaded area (k < 81) indicates that L(xk+1, λk)−h(λk) >
2ǫ.

2

2.5

3

3.5

4

0 100000 200000 300000 400000 500000

σ0 = 0

σ0 = 1

f⋆

time slot k

(a)

2.9

2.95

3

3.05

3.1

3.15

3.2

0 100000 200000 300000 400000 500000

σ0 = 0

σ0 = 1
σ0 = 4

f⋆

time slot k

(b) Detail of 2.6.2a.

Figure 2.6.2. Illustrating the convergence of f(x̄k) to a ball around f⋆ (straight
line) of Example 2.6 when ǫ = 0.05 and σ0 ∈ {0, 1, 4}. Dashed lines indicate f(x̄k)
with k̄ = 81 while thick lines indicate upper and lower bounds of Theorem 2.3.

lower bounds from Theorem 2.3 vs k. Figure 2.6.2b shows detail from Figure 2.6.2. It can

be seen that, as expected, f(x̄k) is indeed upper and lower bounded by the values from

Theorem 2.3. It can also be seen that the upper and lower bounds are not tight, but they

are not excessively loose either.

Violation of upper bound. Let µk(j) = [λ(j)k + αeke−105][0,λ
◦]. With this choice the

difference between λk(j) and µk(j) is uniformly bounded by ασ0 with σ0 = 1 for k ≤ 105

but after that increases exponentially with k. Figure 2.6.3 plots f(x̄k) and the upper and

lower bounds from Theorem 2.3 when parameter α is selected according to Theorem 2.3

assuming σ0 = 1. It can be seen that the upper and lower bounds hold for k ≤ 105, but

as the difference between multipliers increases f(x̄k) is not attracted to f⋆ and it ends up

violating the bounds.

2.6. NUMERICAL EXAMPLE 37

2

2.5

3

3.5

4

0 100000 200000 300000 400000 500000

f⋆

time slot k

Figure 2.6.3. Illustrating the violation of the bounds of Theorem 2.3 when

µk(j) = [λk(j) + αeke−105][0,λ
◦]. Dashed line indicates f(x̄k), k̄ = 81, while

thicker lines indicate upper and lower bounds around f⋆ (straight line).

CHAPTER 3

Dual Subgradient Methods with Perturbations

In this chapter we aim to step back from the non-convex descent approach presented

in Chapter 2, and revisit the essentials required for convergence in dual subgradient meth-

ods. Primarily, our motivation is to build a framework for addressing network scheduling

problems that can handle discrete actions and general stochastic processes, but also in de-

veloping the intuition behind the convergence of the iterative method. For example, why

averages are important for recovering approximate primal solutions, and how different

types of perturbations affect convergence. We start by presenting the classic subgradient

method for the Lagrange dual problem, including ǫk-subgradients and stochastic updates;

and then put these two concepts together to develop a framework based on elementary

perturbations. The main novelty of the framework is to see stochastic updates as solv-

ing a convex optimisation problem where the constraints are partially unknown, and in

establishing the statistical properties that perturbations should have in order to obtain

different types of convergence.

3.1. Dual Subgradient Methods

We start by recalling our problem setup. We have convex optimisation problem P

minimise
x∈X

f(x)

subject to gj(x) ≤ 0 j = 1, . . . ,m
(3.1)

where f, gj : X → R are convex functions, and X ⊆ Rn is a convex set. Now we do not

assume that the objective function and constraints have bounded curvature, and X does

not need to be the convex hull of an action set Y . As in the previous chapter, an essential

assumption is that the relative interior of X0 := {x ∈ X | gj(x) ≤ 0, j = 1, . . . ,m} is

non-empty, i.e. the Slater condition is satisfied and strong duality holds. Recall we define

the Lagrange dual function as

h(λ) = inf
x∈X

L(x, λ) = inf
x∈X

{
f(x) + λT g(x)

}
,

38

3.1. DUAL SUBGRADIENT METHODS 39

where g = [g1, . . . , gm]
T , and λ ∈ Rm

+ is a vector of Lagrange multipliers. Since h is

concave we can cast the following (dual) maximisation problem D

maximise
λ�0

h(λ)

Problem D is an unconstrained maximisation problem that can be solved using the

subgradient method, which needs to assume very little about the objective function and

constraints. Namely, only that they are convex and closed, and does not require stronger

assumptions such as differentiability or strict convexity. In Chapter 2, one of the under-

lying motivations for using a dual subgradient method was that the update of the dual

variables resembled a queue update in communications networks. However, since we have

now stepped back from specific applications, one might reasonably ask why we are inter-

ested in formulating the Lagrange dual problem instead of solving the primal problem P
directly, e.g. using projected subgradient descent or similar methods [BT03]. Our mo-

tivation for considering the Lagrange dual problem in this chapter is that with the dual

subgradient methods we can generate a sequence {xk} that converges to x⋆ (or a nearby

point) without requiring that xk is feasible at every iteration. As we will show in Section

3.3, this will be useful to “relax” the knowledge of set X0.

Next we briefly review the essentials of the convergence of the dual subgradient method

with constant step size. The ideas we present are not new, and can be found, for example,

in the classic works of Polyak [Pol77] and Shor [Sho12]. Our interest is in building the

intuition behind the dual subgradient method, which will be essential for the development

of the subgradient method with perturbations framework in Section 3.3.

3.1.1. Classic Dual Subgradient Method. The subgradient method for the La-

grange dual problem consists of the following update:

λk+1 = [λk + α∂h(λk)]
+, k = 1, 2, . . .

where λ1 ∈ Rm
+ , ∂h(λk) is the subgradient of h at point λk, and α > 0 is a constant

step size. A standard assumption made in the subgradient method is that the (dual)

subgradients ∂h(λ) are bounded for all λ � 0, which can be ensured by making the

following assumption.

Assumption 3.1. X is bounded.

Observe that since ∂h(λ) = g(x) for some x ∈ X we then have that

‖∂h(λ)‖2 ≤ max
x∈X

‖g(x)‖2 := σg,

3.1. DUAL SUBGRADIENT METHODS 40

and σg is finite because g is a closed convex function (and so continuous) andX is bounded.

The basic idea behind the convergence of the dual subgradient method is that

(i) the Euclidean distance between λk and a vector λ⋆ ∈ Λ⋆ := argmaxλ�0 h(λ)

decreases monotonically when λk is sufficiently “far away” from Λ⋆;

(ii) when λk is sufficiently close to Λ⋆, it remains in a ball around it.

Important characteristics of the dual subgradient method are that Λ⋆ is a bounded subset

from Rm
+ (by [NO09a, Lemma 1]); that the size of the ball to which λk converges depends

on α; and λk will converge to an α-ball around Λ⋆ in finite time. Selecting α sufficiently

small we can make the α-ball arbitrarily small. It is important to note that the monotonic

convergence of λk to a ball around Λ⋆ does not imply that the value of the dual function

improves in each iteration.1 However, since the Lagrange dual function is Lipschitz contin-

uous for λ � 0 (from Assumption 3.1)2, we can expect that h(λk) converges also to a ball

around h(λ⋆). Next we show that this is actually the case. Let xk ∈ argminx∈X L(x, λk)

and observe that

h(λk)− h(λ⋆) = L(xk, λk)− L(x⋆, λ⋆)

(a)

≤ L(x⋆, λk)− L(x⋆, λ⋆)

= (λk − λ⋆)T g(x⋆)

≤ ‖λk − λ⋆‖2‖g(x⋆)‖2

and

h(λk)− h(λ⋆) = L(xk, λk)− L(x⋆, λ⋆)

(b)

≥ L(xk, λk)− L(xk, λ
⋆)

= (λk − λ⋆)T g(xk)

≥ −‖λk − λ⋆‖2‖g(xk)‖2

where (a) and (b) follow from the saddle point property of the Lagrangian. Further, since

‖g(x)‖2 ≤ σg for all x ∈ X by Assumption 3.1 we have

|h(λk)− h(λ⋆)| ≤ ‖λk − λ⋆‖2σg,(3.2)

and so now it is easy to see that if difference ‖λk − λ⋆‖2 decreases then the difference

|h(λk) − h(λ⋆)| must eventually also decrease. The convergence of the dual subgradient

1By monotonic convergence we mean that the Euclidean distance between λk and Λ⋆ decreases.
2In fact, the Lagrange dual function is uniformly Lipschitz continuous [Die13, Chapter 3] with constant
σg, i.e. for any λ1, λ2 � 0 we have that |h(λ1)− h(λ2)| ≤ ‖λ1 − λ2‖2σg.

3.1. DUAL SUBGRADIENT METHODS 41

Figure 3.1.1. Illustrating the convergence of the subgradient method for the
dual problem with constant step size.

method is schematically illustrated in Figure 3.1.1. Observe that h(λk) converges to a

α(3/2)σ2g ball around h(λ⋆), and that h(λk) → h(λ⋆) as α→ 0.

3.1.2. Computing a Subgradient of the Lagrange Dual Function. In order to

use the dual subgradient method one must obtain a subgradient of the dual function, which

can be obtained by first minimising L(x, λk) and then evaluating xk ∈ argminx∈X L(x, λk)

on the constraints, i.e. ∂h(λk) = g(xk). Note that minimising L(x, λk) is an unconstrained

convex optimisation that can be carried out with a variety of methods, and using one

method or another will depend on the assumptions made on the objective function and

constraints. Nevertheless, we will always assume that an xk ∈ X such that L(xk, λk) −
h(λk) ≤ ξ (an ξ-approximate minimum) can be efficiently calculated for some ξ ≥ 0.

An important observation is that an ξ-approximate minimisation can be equivalently

regarded as exactly minimising the Lagrangian when an approximate Lagrange multiplier

µk is used instead of λk. This fact is well known and is usually regarded as using ǫk-

subgradients in dual iterative methods—see for example Bertsekas [Ber99, pp. 625]. To

see this, let xk ∈ argminx∈X L(x, µk) and µk = λk + ǫ for some ǫ ∈ Rm, and observe that

h(µk) = L(xk, µk)

= L(xk, λk + ǫ)

= f(xk) + (λk + ǫ)T g(xk)

≤ f(xk) + λTk g(xk) + ‖ǫ‖2‖g(xk)‖2
≤ f(xk) + λTk g(xk) + ‖ǫ‖2σg

where the last inequality follows since σg := maxx∈X ‖g(x)‖2. Hence,

h(µk)− L(xk, λk) ≤ ‖ǫ‖2σg.(3.3)

3.1. DUAL SUBGRADIENT METHODS 42

We now proceed to show that |h(µk) − h(λk)| is bounded. Consider two cases. Case (i)

h(µk) < h(λk). From the concavity of h we have that

h(λk) ≤ h(µk) + ∂h(µk)
T (λk − µk)

= h(µk) + ∂h(λk + ǫ)T ǫ

= h(µk) + g(xk)
T ǫ,

and therefore

0 ≤ h(λk)− h(λk + ǫ) ≤ ‖ǫ‖2σg.

Case (ii) h(λk) > h(µk). Following the same steps than in the first case we obtain h(µk) ≤
h(λk)− g(xk)

T ǫ, and therefore

0 ≤ h(µk)− h(λk) ≤ ‖g(xk)‖2‖ǫ‖2 ≤ ‖ǫ‖2σg.

Combining both cases yields

|h(λk)− h(µk)| ≤ ‖ǫ‖2σg,

and using (3.3) we finally obtain

0 ≤ L(xk, λk)− h(λk) ≤ 2‖ǫ‖2σδ := ξ,

where the lower bound follows immediately since h(λk) ≤ L(x, λk) for all x ∈ X. Hence,

the error obtained by selecting xk to minimise L(x, µk) is proportional to the difference

between λk and µk. We could also consider the case where L(x, µk) is approximately

minimised, but for the sake of clarity and to streamline notation, we will always assume

that L(x, µk) is exactly minimised and that the errors are captured in the approximate

Lagrange multipliers.

One of the interesting properties of using approximate Lagrange multipliers to compute

a subgradient of the dual function, is that the ball around Λ⋆ to which λk converges cannot

be made arbitrarily small by selecting parameter α small since

|h(λk)− h(λ⋆)| ≤ ‖λk − λ⋆‖2σg + 2‖ǫ‖2σg,(3.4)

and therefore decreasing ‖λk − λ⋆‖2 is not sufficient to have h(λk) → h(λ⋆) when α → 0.

Figure 3.1.2 schematically shows the convergence of h(λk) to a ball around h(λ⋆) when

the subgradient method is computed using an approximate Lagrange multiplier. Compare

Figures 3.1.1 with 3.1.2, and observe that the ball to which h(λk) converges depends now

3.1. DUAL SUBGRADIENT METHODS 43

Figure 3.1.2. Illustrating the convergence of the subgradient method for the
dual problem with constant step size when the subgradients are obtained using
nearby (dual) points or approximate Lagrange multipliers. Observe from the figure
that the approximate Lagrange multiplier µk (dashed line) is always close to the
Lagrange multiplier λk (solid line).

on parameter ξ = 2‖ǫ‖2σg. Note also from the figure that the Lagrange multiplier and the

approximate Lagrange multiplier stay (ǫ) close for all k.

3.1.3. Stochastic Dual Subgradient Methods. The subgradient method for the

dual problem can be extended to consider stochastic subgradient updates, i.e.

λk+1 = [λk + α∂h̃(λk)]
+(3.5)

where h̃(λk) is a random variable with E(∂h̃(λk)) = ∂h(λk). For example, we could have

∂h̃(λ) = ∂h(λk)+Nk where Nk is a random variable with E(Nk) = 0 for all k. Stochastic

subgradient methods have usually been treated in unconstrained convex optimisation, and

are usually thought to arise as unbiased errors when computing the subgradient of the

objective function. Here, we apply the same concepts, but to the Lagrange dual problem

in constrained convex optimisation.

The convergence in the stochastic dual subgradient method is (usually) not intuitive,

especially when random variable Nk has unbounded support, e.g. Nk is normally dis-

tributed. In order to show the convergence of the stochastic subgradient method one

needs to show that the expected difference

E(‖λk+1 − λ⋆‖22 − ‖λk − λ⋆‖22)

decreases monotonically until E(λk) converges to an α-ball around a vector λ⋆ ∈ Λ⋆. Fig-

ure 3.1.3 schematically shows the convergence of the stochastic dual subgradient method

with approximate Lagrange multipliers. Observe that now E(λk) converges monotonically

to a ball around λ⋆, and that the size of the ball depends on the variance σ2δ of the noise

in the dual subgradient, i.e. the noise in the stochastic subgradient method must have

finite variance for the ball to have finite radius.

3.1. DUAL SUBGRADIENT METHODS 44

Figure 3.1.3. Illustrating the convergence of the stochastic subgradient method
with approximate Lagrange multipliers. In contrast to the deterministic case (see
Figure 3.1.2), we now have that E(λk) converges to a ball around λ⋆.

In general, in the stochastic subgradient method we cannot say anything about a

particular value of λk since this will depend on the sample path of the noise in the dual

variable update. However, since its increments are bounded and controlled by parameter

α, one could expect λk to be close to its expected value, i.e. the sequence of Lagrange

multipliers generated by the deterministic subgradient method. We illustrate this in the

following example.

Example 3.1. We compare the convergence of the Lagrange multipliers in the deter-

ministic and stochastic dual subgradient methods. Consider optimisation problem

minimise
x∈X

‖x− 1‖22

subject to g(x) := (x+ b) � 0

where X = {x ∈ R2 | 0 � x � 1} and b = [−1/4,−1/2]T , and subgradient method updates

xk ∈ argmin
x∈X

{‖x− 1‖22 + λTk (x+ b)}

λk+1 = [λk + α(g(xk) +Nk)]
+

with Nk = 0 for all k in the deterministic case, and Nk(j) ∼ N (0, 1) in the stochastic case.

We run a simulation with α ∈ {1, 10−1, 10−2, 10−3} and show the convergence of the dual

variables in Figure 3.1.4. Observe from the figure that with stochastic noise, when α = 1

we can hardly tell that λk converges to a ball around λ⋆; but as the step size decreases,

then the Lagrange multipliers in the stochastic subgradient method starts to mimic the

behaviour of their deterministic counterpart.

In order to show that the variance of the noise affects the size of the ball, we run

the simulation again with Nk ∼ N (0, 5). Observe from Figure 3.1.5 that now the larger

variance of Nk increases the distance between E(λk) and λk for all step sizes.

3.1. DUAL SUBGRADIENT METHODS 45

0

1

2

3

4

5

6

7

0 20 40 60 80 100

iteration k

(a) α = 1

0

0.5

1

1.5

2

0 50 100 150 200

iteration k

(b) α = 10−1

0

0.5

1

1.5

2

0 200 400 600 800 1000

iteration k

(c) α = 10−2

0

0.5

1

1.5

2

0 2000 4000 6000 8000 10000

iteration k

(d) α = 10−3

Figure 3.1.4. Illustrating the convergence of the Lagrange multipliers to a ball
around λ⋆ = [3/2, 1]T for the deterministic and stochastic dual subgradient meth-
ods, and different step sizes α. The noise in the dual variable update is normally
distributed with mean 0 and variance 1. Thicker and thinner lines correspond,
respectively, to the deterministic and stochastic subgradient methods. Lagrange
multiplier λk(1) is indicated using a solid line, and λk(2) with a dashed line.

0

5

10

15

20

25

30

35

0 20 40 60 80 100

iteration k

(a) α = 1

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500

iteration k

(b) α = 10−1

0

0.5

1

1.5

2

0 200 400 600 800 1000

iteration k

(c) α = 10−2

0

0.5

1

1.5

2

0 2000 4000 6000 8000 10000

iteration k

(d) α = 10−3

Figure 3.1.5. As in Figure 3.1.4, but now the noise in the dual variable update
is normally distributed with mean 0 and variance 5.

3.3. FRAMEWORK 46

3.2. Bounded Lagrange Multipliers and Feasible Solutions

A primal solution can always be recovered in the dual subgradient method by min-

imising L(·, λ), but there is no guarantee that the primal variable obtained is feasible,

neither it is possible to provide bounds on the violation of the constraints. However, as

shown by Nedić and Ozdaglar in [NO09a], by using a primal averaging scheme it is possible

to recover approximate primal solutions that are asymptotically feasible, and to provide

bounds on the optimality gap and constraints violation. The averaging scheme used in

[NO09a] consists of

x̄k :=
1

k

k∑

i=1

xi(3.6)

where xi ∈ argminx∈X L(x, λi). The intuition behind this sort of averaging is that the

Lagrange multipliers in the dual subgradient method capture the accumulated infeasibility

throughout the iterations. Hence, if λk is bounded when k → ∞ (which is the case in the

subgradient method) then limk→∞
∑k

i=1 g(xi) must also be bounded. This can be verified

from

λk+1 = [λk + αg(xk)]
+ � λk + αg(xk) � λk−1 + α(g(xk−1) + g(xk))

� λ1 + α
∑k

i=1 g(xi),

and rearranging terms, dividing by αk and using the convexity of g yields

g(x̄k) �
1

k

k∑

i=1

g(xi) �
λk+1

αk
.

Hence, if the Lagrange multipliers remain bounded, we will have g(x̄k) � 0 when k → ∞,

i.e. x̄k is asymptotically feasible.

3.3. Framework

A key observation from the subgradient method is that we can use stochastic sub-

gradients to tackle problems that have a priori unknown perturbation on the constraints.

That is, problem P(δ)

minimise
x∈X

f(x)

subject to g(x) + δ � 0
(3.7)

where δ ∈ Rm is a perturbation on the constraints. Since the optimisation problem

is not known a priori we cannot use standard iterative methods in constrained convex

optimisation—such as interior point methods [NN94]—to solve the problem. In fact, it

3.3. FRAMEWORK 47

is actually strange to think of using any iterative method to solve a convex optimisation

problem that is not known a priori. However, if perturbation δ represents the (unknown)

mean of a stochastic process in a system, and this stochastic process has certain statistical

properties, it is possible to use the stochastic dual subgradient method to solve problem

P(δ)3. The latter can be regarded as trying to solve the kind of problems that max-

weight tries to solve: resource allocation problems where the resources that need to be

allocated change over time and are not known in advance. However, the meaning of the

perturbations will depend on the type of problem where the subgradient method is applied.

Similarly, and unlike max-weight, Lagrange multipliers or approximate multipliers do not

have to be queues, and if the Lagrange multipliers are associated with equality constraints

they can even be negative.

In this section we present our main results on the subgradient method with perturba-

tions on the computation and the update of the dual variable. Because perturbation δ is

not known in advance, it will be useful to parameterise all of the elements in the problem

setup with δ.

3.3.1. Parameterised Problem Setup. We consider the problem of minimising

a known convex function f : Rn → R subject to a set of partially unknown convex

constraints gj : R
n → R, j = 1, . . . ,m. Unlike previous problem setups (2.11) and (3.1),

here we also consider linear equality constraints, but in order to keep notation short we

write linear equality constraints as two inequality constraints4, and collect all constraints

in vector g = [g1, . . . , gm]
T . Even though problem P(δ) is not known a priori, we will

assume that X0(δ) := {x ∈ X | g(x) + δ � 0} is non-empty, and using standard notation

we define f⋆(δ) = minx∈X0(δ) f(x), and x
⋆(δ) to be a solution of problem P(δ). Naturally,

we also parameterise the Lagrangian

L(x, λ, δ) = f(x) + λT (g(x) + δ),(3.8)

and the dual function h(λ, δ) := infx∈X L(x, λ, δ), and define dual problem D(δ)

maximise
λ�0

h(λ, δ)(3.9)

Similarly, we let λ⋆(δ) be a vector in the set of dual optima Λ⋆(δ) := argmaxλ�0 h(λ, δ).

In order to ensure that Λ⋆(δ) is bounded and

f⋆(δ) := inf
x∈X0(δ)

f(x) = sup
λ�0

h(λ, δ) =: h(λ⋆(δ), δ)(3.10)

3We will “learn” δ through the iterations in the dual subgradient method.
4A hyperplane can always be defined as the intersection of two halfspaces [BV04, pp. 27]

3.3. FRAMEWORK 48

we make the following assumption.

Assumption 3.2 (Slater Condition with Linear Equality Constraints). X0(δ) is non-

empty and there exists a point x ∈ X0(δ) such that all the non-linear constraints are

strictly feasible.

Next, we present a general version of the subgradient method where errors in the

computation of a (dual) subgradient, and in the update of the dual variables are captured

as

xk ∈ argmin
x∈X

L(x, µk, 0)(3.11)

λk+1 = [λk + α(g(xk) + δk)]
+(3.12)

where δk ∈ Rm, and µk = λk + ǫk for some ǫk ∈ Rm. Note that in update (3.11) we have

used a 0 instead of δ in order to emphasise that the argminx∈X L(x, λ, ·) does not depend
on δ, i.e. recall that

argmin
x∈X

L(x, λ, δ) = argmin
x∈X

{f(x) + λT (g(x) + δ)}

= argmin
x∈X

{f(x) + λT g(x)}.

For the subgradient method we still make the standard assumption that set X is bounded

(Assumption 3.1) and therefore the dual subgradients are bounded. Note that we have

that ‖∂λh(λ, δ)‖ := maxx∈X ‖g(x)+δ‖2 where δ is unknown, but since δ ∈ Rm there exists

a constant σg such that ‖∂λh(λ, δ)‖2 ≤ σg for all λ � 0, and that is sufficient.

3.3.2. Dual Subgradient Method with Perturbations. We are now in position

to present the following lemma.

Lemma 3.1 (Dual Subgradient Method). Consider optimisation problem P(δ) and

updates (3.11) and (3.12) where µk = λk + ǫk, with λ1 ∈ Rm
+ and ǫk ∈ Rm. Suppose {δk}

is a stochastic process from Rm such that limk→∞
1
k

∑k
i=1 δi = δ. Then,

− ‖λ1 − θ‖22
2αk

− 1

k

k∑

i=1

(
(λi − θ)T (δi − δ) + 2‖ǫi‖2‖g(xi) + δ‖2

)

− α

2k

k∑

i=1

(
‖g(xi) + δ‖22 + ‖δi − δ‖22 + 2(δi − δ)T (g(xi) + δ)

)

≤ 1

k

k∑

i=1

h(λi, δ) − h(θ, δ)(3.13)

where θ is any vector from Rm
+ .

3.3. FRAMEWORK 49

Proof. For any vector θ ∈ Rm
+ we have

‖λk+1 − θ‖22 = ‖[λk + α(g(xk) + δk)]
+ − θ‖22

≤ ‖λk + α(g(xk) + δk)− θ‖22
= ‖λk − θ‖22 + α2‖g(xk) + δk‖22 + 2α(λk − θ)T (g(xk) + δk)

= ‖λk − θ‖22 + α2‖g(xk) + δ‖22 + α2‖δk − δ‖22
+ 2α2(δk − δ)T (g(xk) + δ) + 2α(λk − θ)T (g(xk) + δk)(3.14)

where in the last equation we have used the fact that

α2‖g(xk) + δk‖22 = α2‖g(xk) + δk − δ + δ‖22
= α2‖g(xk) + δ‖22 + α2‖δk − δ‖22 + 2α2(g(xk) + δ)T (δk − δ).

Similarly, observe that

(λk − θ)T (g(xk) + δk) = (λk − θ)T (g(xk) + δ + δk − δ)

= (λk − θ)T (g(xk) + δ) + (λk − θ)T (δk − δ)

and since

(λk − θ)T (g(xk) + δ) = (λk − θ)T (g(xk) + δ) + f(xk)− f(xk)

= L(xk, λk, δ) − L(xk, θ, δ)

≤ L(xk, λk, δ) − h(θ, δ),(3.15)

we have

‖λk+1 − θ‖22 ≤ ‖λk − θ‖22
+ α2‖g(xk) + δ‖22 + α2‖δk − δ‖22 + 2α2(δk − δ)T (g(xk) + δ)

+ 2α(λk − θ)T (δk − δ) + 2α(L(xk, λk, δ) − h(θ, δ))(3.16)

where (3.15) follows from the fact that h(θ) = minx∈X L(x, θ) ≤ L(xk, θ). Applying the

expansion recursively for i = 1, . . . , k we have

‖λk+1 − θ‖22 ≤ ‖λ1 − θ‖22

+ α2
k∑

i=1

(
‖g(xi) + δ‖22 + ‖δi − δ‖22 + 2(δi − δ)T (g(xi) + δ)

)

+ 2α

k∑

i=1

(
(λi − θ)T (δi − δ) + L(xi, λi, δ) − h(θ, δ)

)
(3.17)

3.3. FRAMEWORK 50

Next, observe that since

L(xk, λk, δ) = L(xk, λk, δ) − L(xk, µk, δ) + L(xk, µk, δ)

≤ |L(xk, λk, δ) − L(xk, µk, δ)| + L(xk, µk, δ)

= h(µk, δ) + |L(xk, λk, δ) − L(xk, µk, δ)|

= h(µk, δ) + |(λk − µk)
T (g(xk) + δ)|

= h(µk, δ) + |ǫTk (g(xk) + δ)|

≤ h(µk, δ) + ‖ǫk‖2‖g(xk) + δ‖2
= h(µk, δ) − h(λk, δ) + h(λk, δ) + ‖ǫk‖2‖g(xk) + δ‖2
≤ |h(µk, δ) − h(λk, δ)| + h(λk, δ) + ‖ǫk‖2‖g(xk) + δ‖2
≤ h(λk, δ) + 2‖ǫk‖2‖g(xk) + δ‖2,

we have that

L(xk, λk, δ) − h(λk, δ) ≤ 2‖ǫk‖2‖g(xk) + δ‖2,(3.18)

and therefore

‖λk+1 − θ‖22 ≤ ‖λ1 − θ‖22(3.19)

+ α2
k∑

i=1

(
‖g(xi) + δ‖22 + ‖δi − δ‖22 + 2(δi − δ)T (g(xi) + δ)

)

+ 2α

k∑

i=1

(
(λi − θ)T (δi − δ) + 2‖ǫi‖2‖g(xi) + δ‖2

)

+ 2α

k∑

i=1

(h(λi, δ) − h(θ, δ))

Rearranging terms and dividing by 2αk yields the stated result. �

Lemma 3.1 establishes a lower bound on 1
k

∑k
i=1 h(λi, δ)−h(θ, δ), where θ is any vector

from Rm
+ , but note that when θ = λ⋆(δ) then we can upper bound (3.13) by zero. We

proceed to analyse the terms in the LHS of (3.13). Firstly, since by Assumption 3.1 λ⋆(δ)

is a bounded vector then

‖λ1 − λ⋆(δ)‖22
2αk

(3.20)

goes to zero as k → ∞. An important characteristic of (3.20) is that since it is divided

by α, the convergence rate is inversely proportional to the step size used (the impact of α

on the convergence rate can be observed in Figures 3.1.4 and 3.1.5 of Example 3.1). The

3.3. FRAMEWORK 51

second term on the RHS of (3.13) can be written as

−α









1

2k

k∑

i=1

‖g(xi) + δ‖22
︸ ︷︷ ︸

(a)

+
1

2k

k∑

i=1

‖δi − δ‖22
︸ ︷︷ ︸

(b)

+
1

k

k∑

i=1

(δi − δ)T (g(xi) + δ)

︸ ︷︷ ︸

(c)









(3.21)

When terms (a), (b) and (c) are bounded above then (3.21) can be made arbitrarily small

by selecting α sufficiently small. Term (a) is the sum of the dual subgradients. Since

X is bounded we have that ‖g(x) + δ‖2 is bounded by σg, and so (a) is bounded by

σ2g/2. The characteristics of terms (b) and (c) depend on the characteristics of stochastic

process {δk}. We consider two cases. Case (i) δk, k = 1, 2, . . . are uniformly bounded

random variables. Then, term (b) is trivially uniformly upper bounded for all k; and since

(δi − δ)T (g(xk) + δ) ≤ ‖δk − δ‖2‖g(xk) + δ‖2 ≤ ‖δk − δ‖2σg by Cauchy-Schwarz, we have

that term (c) is also uniformly upper bounded. Case (ii) δk, k = 1, 2, . . . are independent

and have finite variance and kurtosis, but they do not necessarily have to be bounded. In

this case, we can upper bound terms (b) and (c) with probability one asymptotically as

k → ∞ using Hoeffding’s inequality [Hoe63]. Hoeffding’s bound can be applied to term

(b) directly, and for term (c) it is sufficient to note that

−1

k

k∑

i=1

m∑

j=1

(δi(j) − δ(j))(gj (xk) + δ(j)) ≥ −
m∑

j=1

∣
∣
∣
∣
∣

1

k

k∑

i=1

(δi(j) − δ(j))

∣
∣
∣
∣
∣
σg(3.22)

where δ(j) is the j’th component of vector δ ∈ Rm.

Finally, in (3.13) we have the terms

−









2

k

k∑

i=1

‖ǫi‖2‖g(xi) + δ‖2
︸ ︷︷ ︸

(d)

+
1

k

k∑

i=1

(λi − λ⋆(δ))T (δi − δ)

︸ ︷︷ ︸

(e)









which do not depend on α. Since term (d) depends on sequence ǫk, the boundedness of

the term will depend on the assumptions we make on ǫk. We consider three cases. Case (i)

‖ǫk‖2 ≤ ǫ for all k for some ǫ > 0. In this case we have that (d) can be upper bounded by

2ǫσg and therefore it is uniformly upper bounded. Case (ii) limk→∞
1
k

∑k
i=1 ‖ǫi‖2 = ǫ. We

cannot say anything about term (d) for finite k, but we will have that (d) is upper bounded

by 2ǫσg when k → ∞. An interesting observation is that differently from stochastic process

{δk}, if {ǫk} were a stochastic process, it would not need to have finite variance in order

that limk→∞
1
k

∑k
i=1 ‖ǫi‖2 exists and is finite. Case (iii) {‖ǫk‖2} is a random variable with

3.3. FRAMEWORK 52

finite variance and mean ǫ. In this case we can use Hoeffding’s inequality to give a bound

on (d) with probability one asymptotically as k → ∞.

Term (e) is perhaps the term for which the analysis is more delicate. In the determin-

istic subgradient method we have that δk = δ for all k and so the term is equal to zero

for all k. Observe that when (e) is nonnegative, then we can ignore the term since this

would still leave a lower bound on the LHS of (3.13). However, since λ⋆(δ) is not known

(we only know it is finite), it is not possible to determine the sign of (e), and so the term

could be unbounded below when k → ∞. As we will show in Theorem 3.1, it will often

be useful to assume that {δk} is an ergodic process (i.e. E(δk) = δ for all k), and make

use of the fact that λk and δk are independent for all k, in which case

E

(

1

k

k∑

i=1

(λi − λ⋆(δ))T (δi − δ)

)

=
1

k

k∑

i=1

E(λi − λ⋆(δ))TE(δi − δ) = 0

and the expected value of the lower bound in Lemma 3.1 does not depend on term (e).

In summary, from the study of the LHS of (3.13) we have obtained that {δk} needs to be
uniformly bounded or have finite variance, whereas ǫk only needs limk→∞

∑k
i=1 ‖ǫi‖2 ≤ ǫ

for some ǫ > 0 for the LHS of (3.13) to be bounded asymptotically. However, assuming

that ‖ǫk‖2 is uniformly upper bounded is useful to give bounds that are not asymptotic.

We will make this assumption for the rest of the thesis.

3.3.3. Convergence. We are now in position to present one of our main theorems,

which establishes the convergence to an optimum.

Theorem 3.1. Consider problem P(δ) and updates (3.11) and (3.12) where µk =

λk + ǫk with {ǫk} a sequence of points from Rm, and λ1 ∈ Rm
+ . Suppose that ‖ǫk‖2 ≤ ǫ

for all k and some ǫ ≥ 0, and that δk is an ergodic stochastic process with expected value

δ and E(‖δk − δ‖22) = σ2δ . Further, suppose Assumptions 3.1 and 3.2 hold. Then,

(i) E(f(x̄k)− f⋆(δ)) ≤
α(σ2g + σ2δ)

2
+

‖λ1‖22
2αk

+ 2ǫσg

(ii) lim
k→∞

|E(f(x̄k)− f⋆(δ))| ≤ α

2
(σ2g + σ2δ) + 2ǫσg

(iii) lim
k→∞

E (g(x̄k) + δ) � 0

(iv) E

(

1

k

k∑

i=1

λi

)

≺ ∞ k = 1, 2, . . .

where x̄k =
1
k

∑k
i=1 xi.

3.3. FRAMEWORK 53

Proof. Let θ = λ⋆(δ) in Lemma 3.1. From (3.13) and (3.18) we can write

h(λ⋆(δ), δ) ≥ 1

k

k∑

i=1

h(λi, δ)

≥ 1

k

k∑

i=1

(L(xi, λi, δ)− 2‖ǫi‖2‖g(xi) + δ‖2)

=
1

k

k∑

i=1

(f(xi) + λTi (g(xi) + δ)− 2‖ǫi‖2‖g(xi) + δ‖2)

≥ f(x̄k) +
1

k

k∑

i=1

(λTi (g(xi) + δ) − 2‖ǫi‖2‖g(xi) + δ‖2),

where the last equation follows from the convexity of f . Rearranging terms

f(x̄k)− h(λ⋆(δ), δ) ≤ −1

k

k∑

i=1

(
λTi (g(xi) + δ)− 2‖ǫi‖2‖g(xi) + δ‖2

)
(3.23)

Now, let θ = 0 in (3.14) to obtain

‖λk+1‖22 ≤ ‖λk‖22 + α2‖g(xk) + δ‖22 + α2‖δk − δ‖22
+ 2α2(δk − δ)T (g(xk) + δ) + 2αλTk (g(xk) + δk)

Using the fact that ‖g(xk)+δ‖22 ≤ σ2g for all k and applying the latter expansion recursively

‖λk+1‖22 ≤ ‖λ1‖22 + α2σ2gk + α2
k∑

i=1

‖δi − δ‖22

+ 2α2
k∑

i=1

(δi − δ)T (g(xi) + δ) + 2α

k∑

i=1

λTi (g(xi) + δi)(3.24)

Rearranging terms, dropping ‖λk+1‖2 since it is non-negative, and dividing by 2αk yields

−1

k

k∑

i=1

λTi (g(xi) + δi) ≤
‖λ1‖22
2αk

+
ασ2g
2

+
α

2k

k∑

i=1

‖δi − δ‖22 +
α

k

k∑

i=1

(δi − δ)T (g(xi) + δ)

Combining the last bound with (3.23), and using the fact that h(λ⋆(δ), δ) = f⋆(δ) (by

strong duality, c.f. Assumption 3.2) yields

f(x̄k)− f⋆(δ) ≤‖λ1‖22
2αk

+
ασ2g
2

+
α

2k

k∑

i=1

‖δi − δ‖22 +
α

k

k∑

i=1

(δi − δ)T (g(xi) + δ)

+
1

k

k∑

i=1

2‖ǫi‖2‖g(xi) + δ‖2

3.3. FRAMEWORK 54

Taking expectations with respect to δi, i = 1, 2, . . . , k we have E(‖δi − δ‖22) = σ2δ , and

E((δi − δ)T (g(xi) + δ)) = 0 since by construction of (3.11) and (3.12) xi and δi are

independent. Therefore,

E(f(x̄k)− f⋆(δ)) ≤
α(σ2g + σ2δ)

2
+

‖λ1‖22
2αk

+
2

k

k∑

i=1

‖ǫi‖2σg.(3.25)

Using the fact that ‖ǫk‖ ≤ ǫ for all k in (3.25) we obtain claim (i).

We now proceed to lower bound (3.25). Taking expectations with respect to δi, i =

1, 2, . . . , k in Lemma 3.1, and using the fact that λi and δi are independent so E((λi −
θ)T (δi − δ)) = 0 and E((δi − δ)T (g(xi) + δ)) = 0, we have

−‖λ1 − θ‖22
2αk

−
α(σ2g + σ2δ)

2
− 2

k

k∑

i=1

‖ǫi‖2σg ≤ E

(

1

k

k∑

i=1

h(λi, δ) − h(θ, δ)

)

.(3.26)

Next, by the convexity of −h(·, δ) we can write

1

k

k∑

i=1

E(h(λi, δ)) = E

(

1

k

k∑

i=1

h(λi, δ)

)

≤ E(h(λ̄k), δ)

and letting θ = λ⋆(δ)

− ‖λ1 − λ⋆(δ)‖22
2αk

−
α(σ2g + σ2δ)

2
− 2

k

k∑

i=1

‖ǫi‖2σg ≤ E
(
h(λ̄k, δ) − h(λ⋆(δ), δ)

)
≤ 0,(3.27)

where the upper bound follows from the fact that h(λ⋆(δ), δ) = supλ�0 h(λ, δ). Next, from

the saddle point property of the Lagrangian

E(h(λ̄k), δ)
(a)

≤ E(L(E(x̄k), λ̄k, δ))

= E(f(E(x̄k)) +E(λ̄k)
T (g(E(x̄k)) + δ)))

(b)

≤ E(f(x̄k)) +E(λ̄k)
TE(g(x̄k) + δ),

where the expectation on x̄k in the RHS of (a) is taken with respect to δi, i = 1, . . . , k;

and (b) follows from the convexity of f and g. Therefore,

− ‖λ1 − λ⋆(δ)‖22
2αk

−
α(σ2g + σ2δ)

2
− 2

k

k∑

i=1

‖ǫi‖2σg −E(λ̄k)
TE(g(x̄k) + δ)

≤ E(f(x̄k)− f⋆(δ)).(3.28)

3.3. FRAMEWORK 55

We need to show that E(λ̄k)
TE(g(x̄k) + δ) is upper bounded. Observe first that for any

sequence {xk} from X we can write

λk+1 = [λk + α(g(xk) + δk)]
+ � λk + α(g(xk) + δk),

and applying the latter recursively we have that

λk+1 � λ1 + α

k∑

i=1

(g(xi) + δi).

Dropping λ1 since it is non-negative, dividing by αk, and using the convexity of g it follows

that

g(x̄k) +
1

k

k∑

i=1

δi �
λk+1

αk
,

and taking expectations with respect to δi, i = 1, . . . , k

E(g(x̄k) + δ)) � E(λk+1)

αk
.(3.29)

Multiplying both sides by E(λ̄k) (where the expectation is with respect to δi, i = 1, . . . , k)

and using Cauchy-Schwarz

E(λ̄k)
TE(g(x̄k) + δ) ≤ E(λ̄k)

TE(λk+1)

αk
≤ ‖E(λ̄k)‖2‖E(λk+1)‖2

αk
.(3.30)

We proceed to show that ‖E(λ̄k)‖2 is bounded using Lemma 6 in [VL16]. This lemma

says that for any χ ≥ 0 then Qχ := {λ � 0 | h(λ, δ) ≥ h(λ⋆(δ), δ) − χ} is a bounded

set. Further, for any λ ∈ Qχ we have that ‖λ‖2 ≤ 1
υ (f(x̂)− h(λ⋆(δ), δ) + χ) where x̂ is a

Slater point, and υ > 0 a constant that does not depend on χ. Now, observe that since

E(h(λ̄k, δ)) ≤ h(E(λ̄k), δ), from (3.27) we can write

− ‖λ1 − λ⋆(δ)‖22
2αk

−
α(σ2g + σ2δ)

2
− 2

k

k∑

i=1

‖ǫi‖2σg ≤ h(E(λ̄k), δ) − h(λ⋆(δ), δ) ≤ 0.(3.31)

Hence, if we identify −χ with the LHS of (3.31) we obtain that ‖E(λ̄k)‖2 is bounded.

We continue by giving a bound on ‖E(λk+1)‖2. Taking expectations in (3.19) with

respect to δi, i = 1, . . . , k, letting θ = λ⋆(δ), ‖ǫk‖2 ≤ ǫ, ‖g(xk) + δ‖2 ≤ σg, and using the

fact that λk and δk are independent for all k, we have

E(‖λk+1 − λ⋆(δ)‖22) ≤ ‖λ1 − λ⋆(δ)‖22 + α2(σ2g + σ2δ)k + 2αǫσgk

+ 2α

k∑

i=1

(h(λi, δ)− h(λ⋆(δ), δ))

3.3. FRAMEWORK 56

Next, observe that since (h(λi, δ) − h(λ⋆(δ), δ)) ≤ 0 for all i = 1, . . . , k we can write

E(‖λk+1 − λ⋆(δ)‖22) ≤ ‖λ1 − λ⋆(δ)‖22 + α2(σ2g + σ2δ)k + 2αǫσgk

and by using the convexity of ‖ · ‖22

‖E(λk+1)− λ⋆(δ)‖22 ≤ ‖λ1 − λ⋆(δ)‖22 + α2(σ2g + σ2δ)k + 2αǫσgk.

That is, E(λk+1) is within a ball around λ⋆(δ). Next, since ‖λ⋆(δ)‖22 is bounded we can

write

‖E(λk+1)‖22 ≤ ‖λ⋆(δ)‖22 + ‖λ1 − λ⋆(δ)‖22 + α2(σ2g + σ2δ)k + 2αǫσgk

≤ (‖λ⋆(δ)‖22 + ‖λ1 − λ⋆(δ)‖22 + α2(σ2g + σ2δ) + 2αǫσg)k

and therefore

‖E(λk+1)‖2 ≤
√
k
√

‖λ⋆(δ)‖22 + ‖λ1 − λ⋆(δ)‖22 + α2(σ2g + σ2δ) + 2αǫσg.(3.32)

Hence,

E(λ̄k)
TE(g(x̄k) + δ) ≤

‖E(λ̄k)‖2
√

‖λ⋆(δ)‖22 + ‖λ1 − λ⋆(δ)‖22 + α2(σ2g + σ2δ) + 2αǫσg

α
√
k

(3.33)

and so we can use (3.28) to lower bound (3.25). Taking limits we obtain

lim
k→∞

|E(f(x̄k)− f⋆(δ))| ≤ α

2
(σ2g + σ2δ) + 2ǫσg

as claimed in (ii).

Claim (iii) follows from (3.29) and (3.32), i.e.

E(g(x̄k) + δ) ≤

√

‖λ⋆(δ)‖22 + ‖λ1 − λ⋆(δ)‖22 + α2(σ2g + σ2δ) + 2αǫσg

α
√
k

.(3.34)

Claim (iv) follows from (3.31) and the Lipschitz continuity of the dual function. �

Theorem 3.1 establishes that E(f(x̄k)) converges to a ball around f⋆(δ), and that x̄k

converges asymptotically to a feasible point. An important observation is that the upper

bound on E(f(x̄k)− f⋆(δ)) obtained in claim (i) is not asymptotic, and that if we select

λ1 = 0, then the second term in the upper bound can be dropped, i.e.

E(f(x̄k)− f⋆(δ)) ≤
α(σ2g + σ2δ)

2
+ 2ǫσg.(3.35)

3.3. FRAMEWORK 57

The idea behind the latter is that if λ1 = 0 then update (3.11) becomes

x1 ∈ argmin
x∈X

L(x, 0, 0)

= argmin
x∈X

f(x),

i.e. minimising f without taking into account the constraints. Note that then x1 may be

an infeasible point5 and so x̄k is attracted to x⋆(δ) from the exterior (X \X0(δ)).

In Chapter 2 we restricted the stochastic processes that could be admitted in the

optimisation by requiring that ‖∑k
i=1 δi − δ‖2 be uniformly bounded. This requirement

seems now too restrictive and a special case of Theorem 3.1. We summarise this with the

following corollary.

Corollary 3.1. Consider problem P(δ) and updates (3.11) and (3.12). Instead of

assuming that {δk} is an ergodic stochastic process with E(δk) = δ for all k, suppose that

it is a sequence that satisfies ‖∑k
i=1(δi − δ)‖2 ≤ e1 for all k = 1, 2, . . . and some ǫ1 ≥ 0.

Further, suppose that ‖λk − µk‖2 ≤ e2 for all k = 1, 2, . . . and some constant e2 ≥ 0, and

that Assumptions 3.1 and 3.2 hold. Then,

(i) − ‖λ1 − λ⋆(δ)‖22
2αk

−
ασ2g
2

− 2ǫσg −
λ̄Tk λk+1

αk
≤ f(x̄k)− f⋆(δ) ≤

ασ2g
2

+
‖λ1‖22
2αk

+ 2ǫσg

(ii) g(x̄k) + δ � λ̄Tk λk+1

αk

where ǫ = 2αe1 + e2, λ̄k =
1
k

∑k
i=1 λi.

Proof. We start by showing that condition ‖∑k
i=1 δi − δ‖2 ≤ e1 implies that ‖δk −

δ‖2 ≤ 2e1 for all k. Let γk :=
∑k

i=1(δi−δ) and note that since ‖·‖∞ ≤ ‖·‖2 then |γk(j)| ≤ e1

for all j = 1, . . . ,m. Next, observe that we can write |γk(j) + δk+1(j) − δ(j)| ≤ e1 and

|δk+1(j) − δ(j)| = |γk(j)− γk(j) + δk+1(j) − δ(j)|

= |γk(j) + δk+1(j) − δ(j)| + |γk(j)|

≤ e1 + |γk(j)|

≤ 2e1.

Now, for all j = 1, . . . ,m we can write

λk+1(j) = [λk(j) + α(gj(xk) + δk(j))]
+

= [λk(j) + α(gj(xk) + δk(j) + δ(j) − δ(j))]+,

5If at least one of the constraints is active at the optimum.

3.3. FRAMEWORK 58

and observe that we either have that

λk+1(j) ≥ [λk(j) + α(gj(xk) + δ(j))]+ + δk(j) − δ(j)

or

λk+1(j) ≤ [λk(j) + α(gj(xk) + δ(j))]+ + α(δk(j)− δ(j)).

Hence,

|λk+1(j) − [λk(j) + α(gj(xk) + δ(j)]+| ≤ α|δk(j)− δ(j)|

and therefore

‖[λk + α(g(xk) + δ)]+ − λk+1‖2 ≤ α‖δk − δ‖2 ≤ 2αe1.(3.36)

That is, condition ‖∑k
i=1 δi − δ‖2 ≤ e1 is equivalent to regarding λk+1 as an approximate

Lagrange multiplier that stays uniformly close to update [λk + α(g(xk) + δ)]+, i.e. the

deterministic version of the subgradient method. Further, since µk = λk + ǫk for some

ǫk ∈ Rm such that ‖ǫk‖2 ≤ e2 for all k, we have that

‖[λk + α(g(xk) + δ)]+ − µk+1‖2 ≤ 2αe1 + e2.(3.37)

That is, we could consider the deterministic version of the subgradient method with an

approximate Lagrange multiplier that is 2αe1 + e2 close to multiplier [λk +α(g(xk)+ δ)]+

generated by the deterministic subgradient method.

Using this observation, we can let θ = λ⋆(δ) in Lemma 3.1 and write

− ‖λ1 − θ‖22
2αk

− 2ǫσg −
α

2
σ2g ≤

1

k

k∑

i=1

h(λi, δ) − h(λ⋆(δ), δ)

Using the same steps that in Theorem 3.1 one can show that

f(x̄k)− f⋆(δ) ≤
ασ2g
2

+
‖λ1‖22
2αk

+ 2ǫσg(3.38)

and

− ‖λ1 − λ⋆(δ)‖22
2αk

−
ασ2g
2

− 2ǫσg −
λ̄Tk λk+1

αk
≤ f(x̄k)− f⋆(δ).(3.39)

where λk is bounded since it is monotonically attracted to a ball around a vector λ⋆(δ) ∈
Λ⋆(δ). The boundedness of λ̄k follows from the boundedness of λk. �

3.3. FRAMEWORK 59

Corollary 3.1 says that requirement ‖∑k
i=1 δi − δ‖2 ≤ ǫ1 is equivalent to considering

the deterministic version of the dual subgradient method with approximate Lagrange mul-

tipliers. When, ǫ = 0 we recover the result by Nedić and Ozdaglar in [NO09a, Proposition

3].

CHAPTER 4

Actions and Asynchronous Updates

In this chapter, we show how the perturbations ǫk in the optimisation framework in

Chapter 3 can be used to (i) equip the dual subgradient method with discrete actions, and

(ii) make asynchronous dual updates. In Chapter 2 we usually regarded a discrete action

as a packet transmission, but it does not need to be always the case. To avoid confusion,

we make the following definitions:

Discrete Action: A point from a finite collection of points from Y ⊂ Rn.

Continuous Action: A value from X ⊆ conv(Y).

Meta-Action: A finite (sub)sequence of discrete actions.

For example, if a discrete action represents transmitting a bit then a meta-action could be

a packet transmission. The distinction between action and meta-action might seem unnec-

essary, but as we will show later, it will be very useful to model distributed asynchronous

systems, and problems that have constraints on how discrete actions can be selected.

The structure of the chapter is as follows. We start by presenting the problem setup and

how actions fit in the optimisation framework presented in Chapter 3. Next, in Section

4.2, we show how approximate Lagrange multipliers can be used to have asynchronous

updates in the dual subgradient method, and motivate the importance of differentiating

actions from meta-actions. Finally, in Section 4.3, we present the main results of the

chapter: how to select actions in order to model meta-actions.

4.1. Preliminaries

4.1.1. Problem and Action Set. Consider the optimisation problem P(δ) pre-

sented in Section 3.3, and suppose that X ⊆ conv(Y) where Y is a finite collection of

points from Rn. Note that a point x ∈ X can be written as the convex combination of

the points in Y , and that differently from Chapter 2, now we allow X to be a subset from

conv(Y). This is not just made for the sake of generality. We will show in the example

in Section 5.3 that it is useful for capturing the characteristics of some problems. Figure

4.1.1 shows examples of such sets.

We will usually think of set Y as a collection of points without any special structure,

but sometimes Y might be the result of the cartesian product of K orthogonal sets Yκ,

60

4.1. PRELIMINARIES 61

(a) (b)

Figure 4.1.1. Illustrating two sets Y consisting of finite collection of points from
R2, their respective convex hulls (dashed lines), and sets X ⊆ conv(Y).

κ = 1, . . . ,K, i.e. Y =
∏K
κ=1 Yκ, and n =

∑K
κ=1 dim(Yκ) so that Y ⊂ Rn. Similarly, convex

set X can also be the result of the cartesian product of convex subsets Xκ ⊆ conv(Yκ),

κ = 1, . . . ,K, i.e. X =
∏K
κ=1Xκ and so we have X ⊆ conv(Y).

4.1.2. Discrete Actions and Approximate Lagrange Multipliers. As in Chap-

ter 2, we consider that approximate Lagrange multipliers have a queue-like form and are

associated with linear inequality constraints. We recall the following lemma, which is a

restatement of [Mey08, Proposition 3.1.2].

Lemma 4.1 (Continuity of the Skorokhod Map). Consider updates

λk+1 = [λk + α(Axk + δk)]
+(4.1)

µk+1 = [µk + α(Ayk + δk)]
+(4.2)

where λ1 = µ1 ≥ 0, α > 0, A ∈ Rm×n, δk ∈ Rm, and {xk} and {yk} are two sequences of

points from X and Y such that ‖∑k
i=1 xi − yi‖2 ≤ ǫ. Then,

‖λk − µk‖2 ≤ 2α‖A‖2ǫ, k = 1, 2, . . .(4.3)

Lemma 4.1 says that if ‖∑k
i=1 xi − yi‖2 is uniformly bounded then the difference

‖λk − µk‖2 is also bounded, i.e. µk is an approximate Lagrange multiplier and so we

will be able to use it in Theorem 3.1. Importantly, note that the difference between the

multipliers in (4.3) depends now on α. This is important because in Theorem 3.1, the

bounds on E(f(x̄k) − f⋆(δ)) can then be made arbitrarily small by selecting α small.

Another important observation from (4.3) is that it does not depend on perturbation δk

4.2. ASYNCHRONOUS DUAL UPDATES 62

since any term that appears in both the Lagrange and approximate multiplier updates

gets cancelled.

When Y is the cartesian product of K orthogonal sets, condition ‖∑k
i=1 xi − yi‖2 can

be split in K different terms. To see this, observe that by using the triangle inequality we

can write
∥
∥
∥
∥
∥

k∑

i=1

xi − yi

∥
∥
∥
∥
∥
2

≤
K∑

κ=1

∥
∥
∥
∥
∥

k∑

i=1

xκ,i − yκ,i

∥
∥
∥
∥
∥
2

,(4.4)

where xκ,k ∈ Xκ, yκ,k ∈ Yκ. Hence, if ‖∑k
i=1 xκ,i − yκ,i‖2 is uniformly bounded for all k

and κ ∈ {1, . . . ,K}, then ‖∑k
i=1 xi− yi‖2 will also be uniformly upper bounded. This will

be important in terms of scalability when set Y is large (on the order of several hundred of

thousands or millions of points) because the construction of sequences of discrete actions

can be divided in subproblems.

4.2. Asynchronous Dual Updates

When the Lagrange dual problem allows decomposition1 we can split it into subprob-

lems that can be solved in a distributed but coordinated manner2. Decomposing the

dual problem into smaller subproblems is particularly useful in large scale problems that

cannot be solved in a centralised manner, but also in problems that are distributed in

nature. This is the case for communication networks [Ber98], consensus [SJR16, CNS14],

games [YJ10], auctions [IGHT15], etc., where a set of interconnected agents solve a local

subproblem, and then communicate the solution to their neighbours in order to solve a

global problem. Asynchronous updates are not new and have been extensively studied

by Tsitsiklis for a variety convex optimisation algorithms [Tsi84], and later by Bertsekas

[BB87], Tseng [Tse91], Nedić [SN11], amongst many others. Here, we apply the totally

asynchronous model in [BT89, Chapter 6] to the dual problem via the use of approximate

Lagrange multipliers. The important part in this section is not to show that we can make

asynchronous updates, but that we can use approximate multipliers to model the charac-

teristics of a problem/system. As we will show later, this point motivates differentiating

discrete actions from meta-actions. We start by presenting the problem setup that allows

the dual problem to be decomposed in multiple subproblems.

1This is usually the case when the objective function is separable and the constraints are linear.
2See [PC06] for a tutorial on decomposition methods.

4.2. ASYNCHRONOUS DUAL UPDATES 63

4.2.1. Dual Decomposition. Consider the following problem

minimise
x∈X

f(x) =
∑n

s=1 fs(x(s))

subject to gj(x) =
∑n

s=1 gj,s(x(s)) ≤ 0 j = 1, . . . ,m
(4.5)

where fs, gj,s : R → R, s = 1, . . . , n, j = 1, . . . ,m are convex functions, X :=
∏n
s=1Xs

with Xs a bounded convex subset from R. The problem can be generalised to cases

where the dimension of Xs is larger than one, but for sake of readability and simplicity of

exposition, here we consider the case where X is element-wise decomposable. Note that

each constraint gj depends on all of the x(s), s = 1, . . . , n, and so constraints and primal

variables are coupled. The Lagrangian can be written as

L(x, λ) =
n∑

s=1

Ls(x(s), λ) =
n∑

s=1






fs(x(s)) +

m∑

j=1

λ(j)gj,s(x(s))






,

and if we let hs(λ) = minx∈Xs Ls(x, λ) the Lagrange dual function can be expressed as the

sum of n concave functions. Thus, the dual problem is

maximise
λ�0

n∑

s=1

hs(λ)

Importantly, a (dual) subgradient can be obtained in a distributed manner by minimising

Ls(x, λ) over Xs. We can write the dual subgradient method with approximate Lagrange

multipliers associated to problem (4.5) as follows

xk(1) ∈ arg min
x∈X1

L1(x, µ1,k)

xk(2) ∈ arg min
x∈X2

L2(x, µ2,k)

...

xk(n) ∈ arg min
x∈Xn

Ln(x, µn,k)

λk+1 = [λk + αg(xk)]
+

where α > 0, g = [g1, . . . , gm]
T , xk = [xk(1), . . . , xk(n)]

T , and note we have used a different

approximate Lagrange multiplier µs,k, s = 1, . . . , n for each xk(s). Observe that even

though xk(s) can be obtained in a distributed manner, the Lagrange multiplier update

requires a full vector xk = [xk(1), . . . , xk(n)]
T in order to obtain an ǫk-subgradient g(xk).

That is, if we associate xk(s) with an agent and its value with a continuous action3, we

have that each agent must make exactly one continuous action every time the dual variable

is updated.

3A value x ∈ X is the convex combinations of the points in Y .

4.2. ASYNCHRONOUS DUAL UPDATES 64

4.2.2. Asynchronous Updates. Approximate Lagrange multipliers can be used to

capture asynchronous updates/continuous actions. To begin with, suppose that all agents

have access to the exact Lagrange multiplier in the system and that the time in the system

is divided in time slots of equal duration.4 All the agents have to make an update in each

time slot, but not all of them want to change their continuous action (a new update).

Let Sk ⊆ {1, . . . , n} denote the subset of agents that want to make a new update in time

slot k, and S ′
k ⊆ {1, . . . , n} \ S the subsets of agents that do not want to. In order to

capture asynchronous updates, we allow agents in set S ′
k to use an approximate Lagrange

multiplier at iteration k. Namely, if an agent wants to make a new update at time k it uses

the true Lagrange multiplier in the system; otherwise an approximate Lagrange multiplier

that is equal to the last Lagrange multiplier used to make a new update, i.e.

xk(s) =







arg min
x∈Xs

Ls(x, λk) s ∈ Sk

arg min
x∈Xs

Ls(x, λk−τs,k) s ∈ S ′
k

(4.6)

where τs,k ∈ Z+ captures the number of consecutive iterations an agent s ∈ S ′ has

“skipped” making a new update. Note that update xk(s) ∈ argminx∈Xs Ls(x, λk−τs,k)

is equivalent to selecting

xk(s) = xk−1(s),

which can be regarded as doing “nothing”. The updates in (4.6) are just standard sub-

gradient updates where the approximate multipliers are used to model a specific kind of

behaviour, and if the difference ‖λk − λk−τs,k‖2 is uniformly bounded for all k, then from

Theorem 3.1 we have that the dual subgradient method with asynchronous updates will

converge. We have the following corollary.

Corollary 4.1 (Asynchronous Convex Updates). Consider problem (4.5) with the

setup of Theorem 3.1 and updates

xk(s) ∈ arg min
x∈Xs

Ls(x, µs,k) s = 1, . . . , n

λk+1 = [λk + αg(xk)]
+

where xk = [xk(1), . . . , xk(n)]
T and µs,k = λk−τs,k , s = 1, . . . , n for some τs,k ∈ Z+.

Suppose τs,k+t = 0 for all s ∈ {1, . . . , n} and k and some t ∈ {1, . . . , τ̄} and τ̄ ∈ Z+.

Then, the bounds in Theorem 3.1 hold with ǫ := α
√
mτ̄σg where σg := maxx∈X ‖g(x)‖2.

4A slot is equivalent to an iteration in the dual subgradient method.

4.2. ASYNCHRONOUS DUAL UPDATES 65

Proof. To start, note that the requirement that τs,k+t = 0 means that the time

between two any new updates is upper bounded by τ̄ . To prove the corollary it is sufficient

to show that ‖λk−τs,k − λk+1‖2 ≤ α
√
mτ̄σg for all k. Observe that

λk+1 = [λk + g(xk)]
+ � λk + g(xk) � λk−τs,k + α

k∑

i=k−τs,k

g(xi)

� λk−τs,k − α1

k∑

i=k−τs,k

σg

where the last equation follows since ‖g(x)‖2 ≤ σg for all x ∈ X and ‖ · ‖∞ ≤ ‖ · ‖2.
Similarly, we can write λk+1 � λk−τs,k + α1

∑k
i=k−τs,k

σg, and therefore

‖λk−τs,k − λk+1‖∞ ≤ α

k∑

i=k−τs,k

σg

≤ ατs,kσg

≤ ατ̄σg

Finally, since for a vector λ ∈ Rm we have that ‖λ‖2 ≤ √
m‖λ‖∞, the stated result now

follows. �

Corollary 4.1 can be generalised in many ways, for example, we could consider that

the agents do not have access to the true Lagrange multiplier in the system but to an ap-

proximate Lagrange multiplier when making an update; stochastic dual variables updates;

perturbations on the constraints, etc. However, what is really important is that we have

regarded making asynchronous updates as choosing an approximate Lagrange multiplier

in the iterations of the dual subgradient method.

A simple example of when the updates in (4.6) are useful is the following. Suppose

that we have a linear programme and that Xs = [0, 1], i.e. xk(s) takes values {0, 1}
in each iteration k. If selecting xk(s) = 1 means transmitting a bit from agent s, then

agents/nodes in a network could use approximate Lagrange multipliers as indicated in

(4.6) to model asynchronous packet transmissions. However, this approach to modelling

discrete actions using continuous actions only works in special cases, and only allows to

choose the action selected in the previous iteration. For more general cases we will need

to use the results in the next section.

4.3. SEQUENCES OF NON-CONVEX ACTIONS 66

4.3. Sequences of Non-Convex Actions

Here, we present how to construct sequences of discrete actions in order to model meta-

actions that capture the behaviour of a system. While the characteristics of meta-actions

depend on the details of the problem, we will focus on the construction of sequences of

discrete actions that provide some flexibility in the order in which actions can be selected.

All the results presented in this section can be applied when Y is decomposable, but to

streamline notation, we will work with sequences {xk} and {yk} from X and Y .

In short, we want to show that for an arbitrary sequence of points {xk} from X,

we can select a sequence {yk} of points from Y that keeps difference ‖∑k
i=1 xi − yi‖2

uniformly bounded, since by Lemma 4.1 this ensures that the exact and approximate

Lagrange multipliers (λk and µk) are close. In general, it is not straightforward to show

this directly, and it will be more convenient to apply a transformation and write each point

x ∈ X as the convex combination of points from Y . Collect the points in Y as columns in

matrix W and define

E :={v1, . . . , v|Y |},

U :=conv(E) = {u ∈ [0, 1]|Y | | 1Tu = 1},

where vj is an |Y |-dimensional standard basis vector, i.e. all elements of vector vj are

equal to 0 except the j’th element that is equal to 1. Next, note that since we can always

write a vector xi ∈ X as the convex combination of points from Y , there must exist at

least one vector ui ∈ U such that xi = Wui.
5 Similarly, there exists a vector ei ∈ E such

that yi =Wei. Hence,
∥
∥
∥
∥
∥

k∑

i=1

xi − yi

∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥

k∑

i=1

Wui −Wei

∥
∥
∥
∥
∥
2

≤ ‖W‖2
∥
∥
∥
∥
∥

k∑

i=1

ui − ei

∥
∥
∥
∥
∥
2

,(4.7)

and therefore showing that ‖∑k
i=1 ui− ei‖2 is uniformly bounded is sufficient to establish

the boundedness of ‖∑k
i=1 xi − yi‖2.

4.3.1. Blocks of Discrete Actions. Now, we present a class of sequences that works

with blocks or groups of discrete actions. The special characteristic of these sequences is

that the actions in the blocks can be rearranged/shuffled in order to match the meta-

actions of a system. Consider the following lemma.

Lemma 4.2. Let E be a set containing the |Y |-dimensional standard basis vectors,

U := conv(E), and D := {δ ∈ R|Y | | δT1 = 0, ‖δ‖∞ ≤ 1}. For any vector δ ∈ D, and

5A vector ui can be obtained by minimising minu∈U ‖xi − Wu‖22. The non-uniqueness of the solution
comes from Carathéodory’s theorem—see, for example, [Ber60].

4.3. SEQUENCES OF NON-CONVEX ACTIONS 67

sequence {ui}|Y |
i=1 of points from U , there exists at least one sequence {ei}|Y |

i=1 of points from

E such that

(
δ + z − z′

)
∈ D,(4.8)

where z :=
∑|Y |

i=1 ui and z
′ :=

∑|Y |
i=1 ei. That is, 1T (δ+ z − z′) = 0 and ‖δ + z− z′‖∞ ≤ 1.

Proof. To start, let V = |Y | and note we always have 1T (z + δ) = V since z is

the sum of V elements from U , uT1 = 1 and δT1 = 0 for all u ∈ U , δ ∈ D. Further,

(z + δ) � −1 since δ � −1 and z � 0. Now, let r := (z + δ) and define

a = −[−r]+, b = ⌊r − a⌋, c = r − a− b,

where the floor in b is taken element-wise. That is, a ∈ [−1, 0]V , b ∈ {0, 1, . . . , V }V , c ∈
[0, 1)V . For example, if r = [2.2,−0.2]T then a = [0,−0.2]T , b = [2, 0]T and c = [0.2, 0]T .

Observe,

1T r = 1T (a+ b+ c) = V,

and since b is integer valued 1T b ∈ Z+, which implies 1T (a + c) ∈ Z+. Next, let 1T b =

V − 1T (a+ c) := V ′, and observe b can be written as the sum of V ′ elements from E, i.e.

b =

V ′

∑

i=1

ei.

Next, since −1 � a + c ≺ 1 and 1T (a + c) = V − V ′ := V ′′, there must exist at least

V ′′ elements in vector (a + c) that are nonnegative. If we select V ′′ elements from E

that match the non-negative components of vector (a+ c) we can construct a subsequence

{ei}V ′′

i=1 such that

−1 � (a+ c)−
V ′′

∑

i=1

ei ≺ 1.

Finally, letting z′ =
∑V ′

i=1 ei +
∑V ′′

i=1 ei yields the result. �

Lemma 4.2 says that for any vector δ1 ∈ D and sequence {u(1)i }|Y |
i=1 of points from

U , there exists at least one sequence {e(1)i }|Y |
i=1 of points from E such that the sum of

the elements in the sequences and an “offset” δ1 lies in D. That is, if we let z1 and z′1

be, respectively, the sum of the elements in the sequences from U and E we have that

(δ1+z1−z′1) = δ2 ∈ D. Similarly, for another sequence {u(2)i }|Y |
i=1 of points from U , we can

construct another sequence {e(2)i }|Y |
i=1 of points from E such that the sum of the elements

in the sequences and an “offset” δ2 lies again in D. That is, (z2 − z′2 + (δ1 + z1 − z′1)) ∈ D

4.3. SEQUENCES OF NON-CONVEX ACTIONS 68

where z2 and z′2 are, respectively, the sum of the elements in sequences {u(2)i }|Y |
i=1 and

{e(2)i }|Y |
i=1. Hence, for any sequence {u(τ)}|Y |

i=1, τ = 1, 2, . . . we can construct a sequence

{e(τ)i }|Y |
i=1 such that their sum plus an offset δτ lies in D. That is,

(
((· · · ((δ1 + z1 − z′1) + z2 − z′2) + · · ·+ zK−1 − z′K−1) + zK − z′K)

)

=

(

δ1 +

K∑

τ=1

zτ − z′τ

)

∈ D.(4.9)

where zτ and z′τ are the sum of the elements in sequences {u(τ)}|Y |
i=1 and {e(τ)}|Y |

i=1, τ =

1, 2, . . . ,K. It follows that ‖∑k
i=1 ui − ei‖∞ ≤ 1 for k ∈ τ |Y |, τ ∈ Z+.

One can note from (4.9) the inherited “renewal” property of these types of sequences,

where the construction of a (sub)sequence can be carried out independently of the previous

(sub)sequences since the resulting offset always lies in D. Furthermore, since all we care

about is the sum of the subsequences, the elements in {e(τ)}|Y |
i=1 can be reordered in order

to match or model a meta-action in a system. It is important to highlight that Lemma 4.2

does not say how to construct such sequences, it only establishes the existence of sequences

with such properties. However, update

e
(τ)
i ∈ argmin

e∈E

∥
∥
∥
∥
∥

(

δτ + zτ −
i−1∑

κ=1

e(τ)κ

)

− e

∥
∥
∥
∥
∥
∞

i = 1, . . . , |Y |,(4.10)

with δτ = δ1 +
∑K−1

τ=1 (zτ − z′τ), K = 1, 2, . . . yields a sequence {e(τ)i }|Y |
i=1 that satisfies the

properties of Lemma 4.2.6 We show this is the case with the following lemma for a single

iteration, but the argument can be applied recursively.

Lemma 4.3. Consider the setup of Lemma 4.2 and select ei ∈ argmine∈E ‖(δ + z −
∑i−1

κ=1 eκ)− e‖∞, i = 1, . . . , |Y |. Then, −1 � δ + z − z′ � 1, where z′ =
∑|Y |

i=1 ei.

Proof. First of all, recall from the proof of Lemma 4.2 that 1T (δ + z − z′) = 0,

δ+z � −1 and that V := 1T (z+δ) where V := |Y |. Next, define ri := δ+z−∑i−1
κ=1 eκ, i =

1, 2, . . . and note that update ei ∈ argmine∈E ‖ri − e‖∞ decreases the largest component

of vector ri, i.e. in each iteration a component of vector ri decreases by 1, and therefore

1T ri = V − i+ 1 with i = 1, . . . , |Y |+ 1.

For the lower bound observe that if ri+1(j) < −1 for some j = 1, . . . , |Y | we must

have that ri ≺ 0 since the update ei ∈ argmine∈E ‖ri− e‖∞ selects to decrease the largest

component of vector ri. However, since 1T ri ≥ 0 for all i = 1, . . . , |Y | + 1 we have that

vector r|Y | has at least one component that is nonnegative. Therefore, r|Y |+1 � −1 and

δ+ z− z′ � −1. For the upper bound define ai = −[−ri]+, bi = ⌊ri− ai⌋, ci = ri− ai− bi,

6The update is in spirit very similar to update (4.16) in Theorem 4.2.

4.3. SEQUENCES OF NON-CONVEX ACTIONS 69

i = 1, . . . , |Y |+1 and note that −1 � ai � 0 and 0 � ci ≺ 1 for all i = 1, . . . , |Y |+ 1, and

that 1T bi decreases by 1 in each iteration if 1T bi ≥ 1. Hence, b|Y |+1 = 0 and therefore

−1 � r|Y |+1 = a|Y |+1 + c|Y |+1 = δ + z − z′ � 1 and we are done. �

An important observation from this lemma is that it only allows the construction of

a sequence {e(τ)i }|Y |
i=1 when a sequence {u(τ)i }|Y |

i=1 is known. Hence, a sequence {e(τ)i }|Y |
i=1

cannot be constructed in an online manner. Nonetheless, our interest now is not to give a

specific algorithm that satisfies the properties of Lemma 4.2, but to develop the notion of

a block of discrete actions, that will later allow us to construct sequences of actions in a

flexible manner. Consider the following example.

Example 4.1. We show using a simulation that by using update (4.10) we can gen-

erate a sequence {ek} that keeps ‖∑k
i=1 ui − ei‖2 uniformly bounded. We let |Y | ∈

{10, 100, 1000, 5000} and generate a sequence of points from U uniformly at random. Up-

date (4.10) is used to generate subsequences of points from E of length |Y |. The results

from the simulations are shown in Figure 4.3.1. Observe from the figure that as we in-

crease the number of points in Y , it is easier to see that ‖∑k
i=1 ui − ei‖2 is attracted to a

smaller ball when k = τ |Y |, τ ∈ N. This behaviour is a consequence of Lemma 4.2 and

the concatenation of (sub)sequences as shown in (4.9). We will consider this behaviour in

more detail shortly.

We are now in position to present the following theorem, which establishes a bound

on ‖∑k
i=1 ui − ei‖2 for a sequence of (sub)sequences that comply with the conditions of

Lemma 4.2.

Theorem 4.1. Consider the setup of Lemma 4.2 with δ = 0, and suppose we have

sequences {uk} and {ek} from U and E such that

(
k∑

i=1

ui − ei

)

∈ D k ∈ τ |Y |, τ = 1, 2, . . . ,

Then,

• ‖∑k
i=1 ui − ei‖2 ≤

√

|Y | when k = τ |Y |, τ ∈ N

• ‖∑k
i=1 ui − ei‖2 ≤

√

|Y |+ 2|Y | for all k = 1, 2, . . .

Proof. Recall that zτ and z′τ are, respectively, the sum of the elements in subse-

quences {u(τ)}|Y |
i=1 and {e(τ)}|Y |

i=1. Since (
∑K

τ=1 zτ − z′τ) ∈ D we have that

∥
∥
∥
∥
∥

K∑

τ=1

zτ − z′τ

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥
∥

K∑

τ=1

(τ−1)|Y |+|Y |
∑

i=(τ−1)|Y |+1

ui − ei

∥
∥
∥
∥
∥
∥
∞

≤ 1(4.11)

4.3. SEQUENCES OF NON-CONVEX ACTIONS 70

0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

5000 5250 5500 5750 6000

(a) |Y | = 10

2.6
2.65
2.7
2.75
2.8
2.85
2.9
2.95

3
3.05
3.1
3.15

5000 5500 6000 6500 7000

(b) |Y | = 100

0

2

4

6

8

10

12

14

16

0 2500 5000 7500 10000

(c) |Y | = 1000

0

5

10

15

20

25

30

35

40

0 2500 5000 7500 10000

(d) |Y | = 5000

Figure 4.3.1. Illustrating bound ‖∑k

i=1 ui − ei‖2 of Example 4.1.

and therefore
∥
∥
∥
∥
∥
∥

K∑

τ=1

(τ−1)|Y |+|Y |
∑

i=(τ−1)|Y |+1

ui − ei

∥
∥
∥
∥
∥
∥
2

≤
√

|Y | K = 1, 2, . . .(4.12)

Next, observe that
∥
∥
∥
∥
∥
∥

K∑

τ=1

(τ−1)|Y |+|Y |
∑

i=(τ−1)|Y |+1

ui − ei

∥
∥
∥
∥
∥
∥
2

≤
∥
∥
∥
∥
∥

K−1∑

τ=1

zτ − z′τ

∥
∥
∥
∥
∥
2

+

∥
∥
∥
∥
∥
∥

K|Y |
∑

i=(K−1)+1

ui − ei

∥
∥
∥
∥
∥
∥
2

≤
√

|Y |+

∥
∥
∥
∥
∥
∥

K|Y |
∑

i=(K−1)+1

ui − ei

∥
∥
∥
∥
∥
∥
2

≤
√

|Y |+
K|Y |
∑

i=(K−1)+1

‖ui − ei‖2(4.13)

≤
√

|Y |+ |Y | max
u∈U,e∈E

‖u− e‖2

≤
√

|Y |+ 2|Y |

where the last equation follows since

max
u∈U,e∈E

‖u− e‖2 ≤ max
u∈U,e∈E

(‖u‖2 + ‖e‖2) ≤ 2.

4.3. SEQUENCES OF NON-CONVEX ACTIONS 71

To conclude that the bound holds for any k ∈ N, it is sufficient to note in (4.13) that

‖u1 − e1‖2 ≤
2∑

i=1

‖ui − ei‖2 ≤ · · · ≤
|Y |−1
∑

i=1

‖ui − ei‖2 ≤
|Y |
∑

i=1

‖ui − ei‖2

and we are done. �

Important observations from Theorem 4.1 are that the bound depends on the number

of points in set Y , and that the difference between sequences is periodically attracted to

a ball around
√

|Y | when k = τ |Y |, τ ∈ N.

The selection of a sequence {ei}|Y |
i=1 for each sequence {ui}|Y |

i=1 in Lemma 4.2 can be

generalised to selecting a sequence {ei}T |Y |
i=1 for every sequence {ui}T |Y |

i=1 with T ∈ N. To

see this is always possible, it is sufficient to note that if we know a full sequence {ui}T |Y |
i=1 ,

the problem can be split in a sequence of T subproblems. We have the following corollary.

Corollary 4.2. Consider the setup of Lemma 4.2 with δ = 0, and suppose we have

sequences {uk} and {ek} from U and E such that

(
k∑

i=1

ui − ei

)

∈ D k ∈ τ |Y |, T ∈ N, τ = T, 2T, 3T, . . .

Then,
∥
∥
∥
∥
∥

k∑

i=1

ui − ei

∥
∥
∥
∥
∥
2

≤
√

|Y |+ 2T |Y |.(4.14)

The most important point from this section is that we can always construct a sequence

of discrete actions that breaks free from the past every T |Y | iterations, and that the bound

on that sequence depends on the number of points in set |Y |. These two points are key

when designing sequences of actions that keep the difference ‖∑k
i=1 ui − ei‖2 bounded.

The construction of sequences of discrete actions using blocks (groups of actions) will

be very useful in some cases, but in others, might be over complicated, especially when the

number of actions is large. In the next section, we present some algorithms that do not

depend on blocks, and allow sequences of discrete actions to be constructed in an online

manner.

4.3.2. Online Sequences of Discrete Actions. We start by presenting the follow-

ing theorem, which shows how a sequence can be constructed using a “greedy” update.

4.3. SEQUENCES OF NON-CONVEX ACTIONS 72

Theorem 4.2. Let {xk} be a sequence of points from X ⊆ conv(Y) where Y is a finite

collection of points from Rn. Select

uk ∈ argmin
u∈U

‖Wu− xk‖22,(4.15)

ek ∈ argmin
e∈E

‖sk−1 + uk − e‖∞,(4.16)

yk =Wek,(4.17)

where sk =
∑k

i=1(ui − ei). Then, we have that −1 � sk � (|Y | − 1)1, and

∥
∥
∥
∥
∥

k∑

i=1

xi − yi

∥
∥
∥
∥
∥
2

≤ C(4.18)

where C :=
√

|Y |(|Y | − 1)‖W‖2.

Proof. We begin by noting that since 1Tuk = 1 = 1T ek then 1T sk = 0 for all

k = 1, 2, Also note that since uk ∈ U all elements of uk are non-negative and at least

one element must be non-zero since 1Tuk = 1.

We now proceed by induction to show that there always exists a choice of ek+1 such

that sk � −1, k = 1, 2, When k = 1 let element u1(j) be positive (as already noted, at

least one such element exists). Selecting e1 = vj then it follows that −1 < u1(j)−e1(j) ≤ 0

and so −1 ≺ u1− e1 ≺ 1. That is, s1 � −1. Suppose now that sk ≻ −1. We need to show

that sk+1 � −1. Now sk+1 = sk+uk+1−ek+1. Since sk � −1, sk(j) ≥ −1 ∀j = 1, . . . , |Y |.
Also, 1T sk = 0, so either all elements are 0 or at least one element is positive. If they are

all zero then we are done (we are back to the k = 1 case). Otherwise, since all elements

of uk+1 are non-negative then at least one element of sk + uk+1 is positive. Let element

sk(j) + uk+1(j) be the largest positive element of sk + uk+1. Selecting ek+1 = vj then it

follows that sk(j) + uk+1(j)− ek+1(j) ≥ −1. That is, sk+1 � −1.

We now show that sk is upper bounded. Recall ek+1 can always be selected such that

sk � −1, and also 1T sk = 0. Since 1T sk = 0 either sk is zero or at least one element is

positive. Since sk � −1 and at most |Y | − 1 elements are negative, then the sum over the

negative elements is lower bounded by −(|Y | − 1). Since 1T sk = 0 it follows that the sum

over the positive elements must be upper bounded by |Y | − 1. Hence, ‖sk‖∞ ≤ (|Y | − 1).

Finally, observing that
∥
∥
∥
∥
∥

k∑

i=1

xi − yi

∥
∥
∥
∥
∥
2

≤ ‖W‖2
∥
∥
∥
∥
∥

k∑

i=1

ui − ei

∥
∥
∥
∥
∥
2

≤
√

|Y |‖W‖2
∥
∥
∥
∥
∥

k∑

i=1

ui − ei

∥
∥
∥
∥
∥
∞

≤
√

|Y |(|Y | − 1)‖W‖2

we are done. �

4.3. SEQUENCES OF NON-CONVEX ACTIONS 73

Theorem 4.2 guarantees that by using updates (4.15)-(4.17) the difference (4.7) is

uniformly bounded. Observe that update (4.16) actually corresponds to selecting a vector

e ∈ E that decreases the largest component of vector sk, and does not provide any degree of

flexibility as to how to select other actions in Y . Regarding the complexity of the update,

note that (4.17) consists of selecting a column of matrix W and so it is computationally

inexpensive. However, updates (4.15) and (4.16) involve solving a convex programme

and using exhaustive search, so some care is required to ensure that the updates can be

efficiently performed in each time slot. Hence, if Y andX can be decomposed in orthogonal

subsets will play an important role in terms of scalability.

Next we present the following corollary to Theorem 4.2, which allows us to select an

action yk for a consecutive sequence of time slots.

Corollary 4.3. Consider the setup of Theorem 4.2 where update (4.15) is performed

in each iteration. Updates (4.16)-(4.17) are performed in time slots {τ1, τ2, . . . } := T ⊆ N;

otherwise, ek and yk are selected equal to ek−1 and yk−1. Then, we have that −τ̄1 � sk �
τ̄(|Y | − 1)1, for all k where τ̄ = maxj∈{1,2,...}{τj+1 − τj} and

∥
∥
∥
∥
∥

k∑

i=1

xi − yi

∥
∥
∥
∥
∥
2

≤ τ̄C.(4.19)

Proof. Since sk has at least one component that is non-negative, and update (4.16)

selects the largest component of vector sk when k ∈ T , we have that a component of

vector sk can decrease at most by τ̄ in an interval {τj − τj+1} for all j = 1, 2, Hence,

sk � −τ̄1 for all k. Next, since sTk 1 = 0 for all k and the sum over the negative components

is at most −τ̄(|Y | − 1), we have that sk � τ̄(|Y | − 1)1. The rest of the proof follows as in

Theorem 4.2. �

Corollary 4.3 says that the difference sk in Theorem 4.2 will be bounded when the

difference between the times when updates (4.15)-(4.17) are performed is bounded. This

corollary will be useful when taking an action implies that it has to be held for a number

of iterations. For example, if we want to model the meta-action of transmitting a packet

and a discrete action represents transmitting a bit, this corollary ensures that a sequence

of bits can be transmitted until the whole packet has been sent. The condition that τ̄

must be finite corresponds in this case to requiring that packets have finite length. Figure

4.3.2 shows an example of Corollary 4.3 with τ̄ ∈ {1, 5}. In the example Y is a set of

10 points generated uniformly at random from R5, X = conv(Y) and {xk} a random7

sequence from X. Observe from the figure that ‖sk‖∞ is bounded for all values τ̄ .

7For simplicity, we generate a sequence {uk} uniformly at random. Recall xk = Wuk.

4.3. SEQUENCES OF NON-CONVEX ACTIONS 74

0

1

2

3

4

5

0 50000 100000

‖s
k
‖ ∞

iteration k

τ̄ = 5
τ̄ = 1

(a)

Figure 4.3.2. Illustrating Corollary 4.3 with τ̄ ∈ {1, 5}. Action set Y consists
of 10 points generated uniformly at random from R5.

We are interested in obtaining general sequences of actions that are flexible and can

be easily adapted to the requirements of different problems. It is difficult to give a specific

algorithm without specifying a problem, nevertheless, we can establish the conditions that

a generic algorithm should check when selecting a sequence of actions. As shown in the

previous section, for finite |Y | it is possible to construct a sequence of actions that breaks

free from the past for a subsequence that is sufficiently large. The exact same concept can

be applied in this case, but now we must ensure that ‖sk‖∞ is bounded for all k. This

motivates the following theorem.

Theorem 4.3. Let {xk} be a sequence of points from X ⊆ conv(Y) where Y is a finite

collection of points from Rn. For any sequence {yk} of points from Y we have that

∥
∥
∥
∥
∥

k∑

i=1

xi − yi

∥
∥
∥
∥
∥
2

≤ γkC(4.20)

where γk = −minj∈{1,...,|Y |} sk(j), sk =
∑k

i=1 ui − ei, uk ∈ argminu∈U ‖Wu − xk‖2, and
C =

√

|Y |(|Y | − 1)‖W‖2.

Proof. Recall that since 1Tuk = 1 = 1T ek then 1T sk = 0 for all k = 1, 2, . . . , and

therefore sk is either 0 or at least one of its components is strictly positive. Next, observe

that since γk = −minj∈{1,...,|Y |} sk(j) we have that maxj∈{1,...,|Y |} sk(j) ≤ γk(|Y | − 1),

which corresponds to the case where |Y | − 1 components of vector of vector sk are equal

to γk. The rest of the proof continues as in the proof of Theorem 4.2. �

Theorem 4.3 says that when we can construct a sequence of actions {yk}, such that γk

is bounded then the difference ‖∑k
i=1 xi−yi‖2 will be bounded. In order to make sure that

γk is bounded we need to compute vector sk at each iteration, which involves obtaining a

vector uk (solving a quadratic programme) and a vector ek. However, now ek does not need

4.3. SEQUENCES OF NON-CONVEX ACTIONS 75

to be obtained as in (4.16) as long as it is done with some “care”. Namely, by not selecting

actions that decrease lower bound γk “excessively”. For example, selecting a vector ek that

decreases a positive component of vector sk will be enough. The implications of this are

important in terms of scalability, because when action set Y is large, we do not need to

do exhaustive search over all the elements to select a vector from E.

CHAPTER 5

Applications

5.1. Traffic Signal Control

Traffic signal control is an active area of research with a high social impact in urban

areas. In short, the problem consists of designing a policy for the traffic control system

in a city/area that reduces the network congestion while considering all the actors of

the transportation system (pedestrians, vehicles, etc.). Many cities currently use adap-

tive traffic signal control systems such as SCATS [Low90], SCOOT [HRBW81], OPAC

[Gar83], RHODES [MH01], etc. that adapt their behaviour depending on the network

conditions and a set of predefined parameters. Although these systems have been shown

to obtain a better performance than traditional systems [Pap80] (which adapt their be-

haviour depending on the time of the day), their performance is still poorly understood

since it depends greatly on the network structure and parameters used.

In recent there has been increasing attention to model urban traffic networks as a

network of interconnected queues, and to view traffic signal control decisions as akin to

packet scheduling decisions in communication networks [WUW+12]. This change of para-

digm has been mostly motivated by the fact that (i) it is then possible to characterise the

capacity of a network (i.e. the maximum flow of vehicles that a network can handle), and

(ii) it is possible to use existing scheduling algorithms from communications networks for

traffic signal control. Amongst those algorithms stands out max-weight scheduling [TE92]

(also known in the literature as backpressure routing) because it can maximise the net-

work throughput without previous statistical knowledge of the underlying “randomness”

in the network. Further, max-weight scheduling makes decisions based only on the current

network state and does not require any set of predefined parameters.

Besides the strong similarities between communication and urban traffic networks,

there are some well-known issues that arise in urban traffic networks that are not present

in communications networks. For instance, queues (roads) in traffic networks have limited

length, traffic lights can give the right of way but cannot make routing decisions, and

traffic network controllers might not have perfect information about how many vehicles

are in each traffic light waiting to be served. The aforementioned issues are well known

by the community and have been addressed in previous work (see for example [GQF+15]

76

5.1. TRAFFIC SIGNAL CONTROL 77

start-up loss time clearance loss time

Figure 5.1.1. Schematic illustration of the number of vehicles per second that
can get through a intersection during a phase.

and [GFDLFW13]). However, there are still some issues that remain open. For example,

max-weight approaches do not integrate the notion of traffic light cycle in intersections,

which is fundamental in many operational traffic signal control strategies. As a result, it

is poorly understood how max-weight approaches compare to classic traffic signal control

approaches.

Another important issue that has not been considered in previous work is that the order

in which traffic control actions are taken affects the performance of the network. In brief,

suppose the time in the system is divided into time slots of equal duration, and that at each

time slot the network controller decides which phase to activate in an intersection. Namely,

which traffic lights in an intersection should be red or green. During a phase, a certain

number of vehicles go though the intersections, however, the rate of vehicles is not constant.

When a traffic light changes from red to green, vehicles need a certain time to reach the

desired speed (start-up loss time); and when the traffic light changes back to red, some time

is required to clear the intersection (clearance loss time). Figure 5.1.1 schematically shows

how the rate of vehicles that go through an intersection depends on time. Observe from

the figure that the start-up and clearance loss times are in fact an overhead that reduces

the average rate of vehicles that can go through the intersection. Note, however, that

when the same phase is selected consecutively, the start-up and clearance time overheads

remain constant since there is no need of stopping/resuming the flow of vehicles in the

intersection. This observation motivates the design of traffic signal control policies where

phases are selected consecutively, or equivalently, that reduce the frequency in which traffic

lights change state. The design of such policies is however not possible with the current

max-weight approaches in the literature since these strongly link the stability of the system

to the use of a specific policy.

In this section, we present a new approach to traffic signal control based on convex

optimisation. Our approach is simpler than other approaches in the literature, and allows

us to separate the stability of the system from the construction of a traffic control policy.

5.1. TRAFFIC SIGNAL CONTROL 78

As a result, we can design a range of policies that maximise the network throughput, and

that at the same time can capture urban traffic networks characteristics more accurately.

With an example, we show how a traffic signal control policy affects the network capacity

region and the delay distribution of the vehicles.

5.1.1. Preliminaries.

Model. We model a traffic network as a directed graph of n nodes and l links, where

a node represents a queue/road1 and a link is a connection between two roads in, for

example, an intersection. The time in the system is slotted and each time slot k = 1, 2, . . .

has equal duration. The dynamics of the queues in our system are given by update

Qk+1 = [Qk + δk]
+, k = 1, 2, . . . where Qk ∈ Zn+ and δk ∈ Zn is a vector that contains

the queues net increments. That is, δk(j) ∈ Z, j = 1, . . . , n contains the difference of

vehicles that get put in and taken out of Qk(j) from time slot k to time slot k + 1. We

will represent the connection between queues using incidence matrix A ∈ {−1, 0, 1}n×l

where −1 indicates that a link is leaving a node; 1 that a link is entering a node; and

0 that a node and a link are not connected. For example, a −1 in the j’th element of

the i’th row of matrix A indicates that link j is leaving node i. An intersection in a

network is represented as a collection of nodes and links, and a phase in an intersection

is a set of non-conflicting links (which connect the roads in the intersection) that can be

simultaneously active. Importantly, phases in different intersections are always sets of

non-conflicting links, i.e. a phase in an intersection can be activated independently of

the phase selected in another intersection. Figure 5.1.2 shows an example of a standard

intersection of 8 nodes (roads), 8 links (connections between roads) and two phases (set

of non-conflicting links that can be simultaneously active).

The operation of the network is as follows. Vehicles can arrive and leave the network

in every queue/road (e.g. arriving or leaving a parking space), and at each time slot

k = 1, 2, . . . the network controller selects which links in the network can be active.

More precisely, the network controller selects a vector y ∈ Y ⊆ {0, 1}l where a 1 in the

i’th element of the vector indicates that the i’th link is active and 0 that it is not. For

example, phase 1 and 2 in the intersection shown in Figure 5.1.2 correspond, respectively,

to selecting actions [1, 1, 0, 0, 1, 1, 0, 0]T and [0, 0, 1, 1, 0, 0, 1, 1]T . Hence, at each time slot

we have the update Qk+1 = [Qk+Ayk+Bk]
+, where Ayk captures how vehicles move from

one queue/road to another, and Bk ∈ Zn is the net increment of vehicles that arrive/leave

1As presented in [GFDLFW13], a road can contain multiple queues, however, we will use only one queue
per road for simplicity of exposition since the extension is straightforward.

5.1. TRAFFIC SIGNAL CONTROL 79

(a) Phase 1 (b) Phase 2

Figure 5.1.2. Illustrating two typical phases in an intersection. Phase 1 gives
the right of way to Q(1) and Q(2); and phase 2 gives right of way to Q(3) and
Q(4).

the system. For simplicity we will assume that in each time slot exactly one vehicle moves

from one queue to another.

Stability and Capacity Region. Before considering the traffic signal policy design, we

need to first define the concepts of stability and capacity region, which will allow us

to determine whether a traffic signal control policy is optimal or not. Stability can be

informally regarded as all the “work” that gets put into a queue gets eventually serviced,

which, in the context of urban traffic networks, is equivalent to saying that a vehicle

will reach its destination in finite time. There are different definitions of stability in the

literature, however, by stability we will mean strong stability2 [Nee10a], which we define

next.

Definition 5.1 (System Stability). We say that a queuing system is stable if

lim
k→∞

E

(

1

k

k∑

i=1

Qi

)

≺ ∞(5.1)

where Qk ∈ Zn+.

The network capacity region relates the network traffic load with the existence of a

policy that can stabilise the system.

Definition 5.2 (Network Capacity Region). Set of mean vehicle arrival/departure

rates in the system such that there exists a traffic signal control or scheduling policy that

can keep a queuing system stable.

Figure 5.1.3 schematically shows the capacity region of the intersection depicted in

Figure 5.1.2 for two policies. Observe from the figure that we have added a ‘phase 0’ to

2Under some boundedness assumption strong stability implies also the other forms of stability [Nee10a].

5.1. TRAFFIC SIGNAL CONTROL 80

Policy A

Policy B

Figure 5.1.3. Schematic illustration of the capacity region of two policies.
Policy A uses phases 0, 1 and 2, respectively, 10%, 60% and 30% of the time,
whereas Policy B uses phases 1 and 2, respectively, 30% and 70% of the time.

the intersection to capture the fact that neither phase 1 nor phase 2 are active, i.e. there

is no flow of vehicles in the intersection3. A policy in an intersection selects which fraction

of time each phase is selected. In this example Policy A uses phases/actions 0, 1 and 2,

respectively, 10%, 60% and 30% of the time, whereas Policy B uses actions/phases 1 and

2, respectively, 30% and 70% of the time. Each policy can stabilise the system when

the mean vehicle arrival/departure rate in the system is within their respective “capacity

regions” (shaded areas). For example, if an activated phase corresponds to serving one

vehicle per time slot, Policy B stabilises the system when the mean vehicle arrival rate to

Q(1) and Q(2) is less than or equal to 0.3 vehicles per time slot, and less than or equal to

0.7 vehicles for Q(3) and Q(4).

In the next section, we present our convex optimisation approach with stochastic

vehicles arrivals and discrete actions.

5.1.2. Convex Optimisation Approach. Consider the model presented in Section

5.1.1 and the following convex optimisation problem P:

minimise
x∈X

1

subject to Ax � b

where A ∈ Rn×l, b ∈ Rn, X a convex subset from conv(Y), and Y := {y1, . . . , y|Y |} ⊆
{0, 1}l is a set that contains which links in the network can be simultaneously selected.

Recall that as defined in Section 5.1.1 matrix A represents the interconnection between

nodes (roads) and links, and b is the mean vehicle arrival/departure rate of the system in

each of the roads. We will always assume that X0 := {x ∈ X | Ax � b} has non-empty

3In Section 5.1.3 we will show that phase 0 can be used to capture the time loss when changing between
phases.

5.1. TRAFFIC SIGNAL CONTROL 81

relative interior4, i.e. the Slater conditions is satisfied (Assumption 3.2) and strong duality

holds.

Optimisation problem P can be solved using standard convex optimisation methods if

b were known, however, this is not typically the case in real networks. We aim to design

a traffic signal control policy that can stabilise the system and does not require to know

b as long as X0 has a non-empty relative interior. This will be possible by using the dual

formulation of problem P shown in the framework in Section 3.3.

Consider the following maximisation problem D:

maximise
λ�0

h(λ)(5.2)

where h(λ) is the Lagrange dual function defined as

h(λ) := min
x∈X

L(x, λ)(5.3)

= min
x∈X

{1 + λT (Ax− b)},(5.4)

and λ ∈ Rn
+ is a vector of Lagrange multipliers. Since h(λ) is concave (see [BV04, Chapter

5]) we can use the subgradient method to solve the dual problem [Ber99], which consists

of the following update:

λk+1 = [λk + αk∂h(λk)]
+ = [λk + αk(Axk − b)]+,(5.5)

where λ1 ∈ Rn
+, ∂h(λk) is the subgradient of the dual function at point λk, and α > 0 is

a step size. In this case, since we have a feasibility problem (no objective function) it will

be sufficient to fix α = 1 and work with simpler update

λk+1 = [λk +Axk − b]+.(5.6)

A key characteristic of the subgradient method is that the value xk used in (5.6) can be

obtained independently of b. In particular, by solving the following linear (so convex)

optimisation problem

xk ∈ argmin
x∈X

L(x, λk)(5.7)

= argmin
x∈X

{1 + λTk (Ax− b)}

= argmin
x∈X

{λTkAx}.

4This assumption is known in convex optimisation as the Slater condition (see [Ber99, Proposition 3.3.9]),
and in max-weight it is equivalent to requiring that the mean arrival rate is in the interior of the network
capacity region.

5.1. TRAFFIC SIGNAL CONTROL 82

We now proceed to relax the use of b in update (5.6). Observe that the Lagrange

multiplier update (5.6) resembles a queue update, however, with the difference that the

input/output of the queue is real valued instead of discrete. Informally, instead of having

vehicles moving from one queue to another or arriving/leaving the system at each time

slot, we have that fractions of vehicles move from one queue to another and arrive/leave

the system. We can consider a stochastic version of the subgradient method for the dual

problem and change b in (5.6) for a random variable Bk ∈ Zn with mean E(Bk) = b, i.e.

we have update

λk+1 = [λk +Axk −Bk]
+.(5.8)

As a result, now vehicles (and not fractions of vehicles) arrive/leave the system at each

node in each time slot.

We are now in position to present the following corollary to Theorem 3.1.

Corollary 5.1. Consider the setup of problem D with X ⊆ conv(Y) and the following

updates:

xk ∈ argmin
x∈X

L(x, λk)(5.9)

λk+1 = [λk +Axk −Bk]
+,(5.10)

where Bk is a bounded and i.i.d. random variable with mean b. Suppose the arrival rate

into the system is in the interior of the capacity region, that is, there exists a point x ∈ X

such that Ax− b ≺ 0. Then, we have that

lim
k→∞

E

(

1

k

k∑

i=1

λi

)

≺ ∞.(5.11)

Proof. The corollary follows directly from claim (iv) in Theorem 3.1, but we prove

it in order to provide a simplified version of the theorem for feasibility problems.

First of all observe that E(‖[λk+1]
+‖22 | λk) = E(‖[λk +Axk −Bk]

+‖22 | λk) ≤ E(‖λk +
Axk − Bk‖22 | λk) = ‖λk‖22 + E(‖Axk − Bk‖22 | λk) + 2E(λTk (Axk − Bk) | λk) where the

expectation is taken with respect to Bk. Rearranging terms we can write

E(‖λk+1‖22 | λk)− ‖λk‖22 ≤ E(‖Axk −Bk‖22 | λk) + 2E(λTk (Axk −Bk) | λk).

5.1. TRAFFIC SIGNAL CONTROL 83

Now, sinceX is a bounded set andBk a bounded random variable we have that maxx∈X ‖Axk−
Bk‖22 := σ2g is finite, and therefore

E(‖λk+1‖22 | λk)− ‖λk‖22 ≤ σ2g + 2E(λTk (Axk −Bk) | λk)

= σ2g + 2λTk (Axk − b),(5.12)

where the last step follows since λk and Bk are independent. We now proceed to up-

per bound the second term in the RHS of the last equation. First, observe that since

relint(X0) is non-empty by assumption, we have that for any vector w ∈ relint(X0)

there exists a constant γ > 0 such that (Aw − b) � −γ1. Now, observe that since

xk ∈ argminx∈X{λTk (Ax− b)} we have that λTk (Axk − b) ≤ λTk (Aw − b), and therefore

λTk (Axk − b) ≤ −γλTk 1 = −γ‖λk‖1.

Using the last equation in (5.12) and rearranging terms it follows that 2γ‖λk‖1 ≤ σ2g +

‖λk‖22 − E(‖λk+1‖22 | λk). Taking expectations with respect to Bi, i = 1, . . . , k, and using

the fact that Bi and λi are indpendent

2γE(‖λk‖1) ≤ σ2g +E(‖λk‖22)−E(‖λk+1‖22)(5.13)

Applying the expansion of λk recursively yields

2γ

k∑

i=1

E(‖λk‖1) ≤ σ2gk + ‖λ1‖22 −E(‖λk+1‖22).(5.14)

Dividing both sides by 2γk and dropping E(‖λk+1‖22) because it is non-negative

1

k

k∑

i=1

E(‖λi‖1) ≤
σ2g
2γ

+
‖λ1‖22
2γk

.(5.15)

Finally, since λ(j) ≤ ‖λ‖1 for all j = 1, . . . , n we have that limk→∞E(1k
∑k

i=1 λi(j)) ≤
σg/(2γ) <∞, which concludes the proof. �

Corollary 5.1 says that when the mean vehicle arrival/departure rate is in the interior

of the capacity region then the expected value of the average of the Lagrange multipliers

is bounded. Note the similarities between (5.11) and (5.1) in the definition of system

stability. However, λk here is not a queue.

Now consider the special case where X = conv(Y), and observe that since (5.7) is a

linear programme and X a polytope, for every λ ∈ Rn
+ we have that

argmin
y∈Y

L(y, λ) ⊆ argmin
x∈X

L(x, λ).(5.16)

5.1. TRAFFIC SIGNAL CONTROL 84

That is, there exists a point y ∈ Y that minimises L(·, λ) for every λ ∈ Rn
+, and therefore

we can use a value y ∈ Y in update (5.5) to obtain

λk+1 = [λk +Ayk −Bk]
+.(5.17)

Since all the elements in update (5.17) are discrete, we can clearly identify a Lagrange

multiplier with a real queue, i.e. λk = Qk. Hence, if the mean vehicle arrival/departure

rate is in the interior of the capacity region, by Corollary 5.11 we have that

lim
k→∞

E

(

1

k

k∑

i=1

Qi

)

≺ ∞(5.18)

and so the system is stable.

Note that the choice of discrete action used in (5.17) depends exclusively on vector

Qk, and not on other factors such as network constraints. However, we can have flexibility

on how to select discrete actions by using results in Chapter 4. In short, we now suppose

X ⊆ conv(Y) and consider updates

λk+1 = [λk +Axk −Bk]
+,(5.19)

Qk+1 = [Qk +Ayk −Bk]
+,(5.20)

where λ1 = Q1 � 0. Recall that if we construct a sequence of discrete actions {yk} such

that ‖∑k
i=1(xi − yi)‖2 ≤ ǫ we then have

‖λk −Qk‖2 ≤ 2ǫ‖A‖2 k = 1, 2, . . .(5.21)

Next, we present an algorithm that is based on Theorem 4.1 and update (4.10) that

allows us to choose the order in which the discrete actions are made. As explained in

Chapter 4, for the construction of such sequences we need to define

W := [y1, . . . , y|Y |],(5.22)

E := {v1, . . . , v|Y |},(5.23)

U := conv(E),(5.24)

where vj is an |Y |-dimensional standard basis vector, i.e. all elements of vector vj are

equal to 0 except the j’th element that it is equal to 1.

Algorithm 1 selects actions in blocks of Tc elements, which in a traffic control context

can be regarded as the duration of a traffic light cycle. A particular characteristic of the

algorithm is that there are no restrictions on the order in which actions must appear,

and therefore the actions in a block can be reordered in order to capture specific problem

5.1. TRAFFIC SIGNAL CONTROL 85

Define parameters:

T ∈ N;
Tc ∈ T |Y |; # block length
δ = 0;
Let Ê = [ê(1), . . . , ê(Tc)] where ê(j) ∈ E, j = 1 . . . , Tc.

At each time slot k do:

(i) Obtain vector uk solving convex optimisation

uk ∈ argmin
u∈U

‖Wu− xk‖22
δ = δ + uk

(ii) At the end of every interval of Tc slots (i.e. if mod(k, Tc) = 0) do:

for j = 1, . . . , Tc do
ê(j) ∈ argmine∈E ‖δ − e‖∞;

δ = δ − ê(j);

end

Reorder columns of matrix Ê; # optional

(iii) Recover discrete action:

j = mod(k, Tc)

yk =Wê(j)

Algorithm 1: Block Algorithm

characteristics (i.e. meta-actions). We show how this algorithm is useful in practice in

the following example.

5.1.3. Numerical Example. We consider a simple example in which the average

rate of vehicles that can go through an intersection depends on the order in which traffic

signal control actions are taken. Consider the intersection shown in Figure 5.1.2, but for

simplicity we do not allow right or left turns in the intersection (i.e. links 5, 6, 7 and 8

do not exist). The network incidence matrix in the intersection is given by

A =










−1 0 0 0 1 0 0 0

0 −1 0 0 0 1 0 0

0 0 −1 0 0 0 1 0

0 0 0 −1 0 0 0 1










T

.(5.25)

Time is divided into slots of duration 2 seconds, and in each time slot the network controller

activates one of the phases in the intersection.5 Phase 1 gives the right of way to queue

5Since there is only one intersection in the network activating a phase in the intersection is equivalent to
selecting a network action.

5.1. TRAFFIC SIGNAL CONTROL 86

*

Figure 5.1.4. Schematic illustration of the intersection capacity region. The
asterisk in the figure indicates the mean vehicle arrival rate to queues 1, 2, 3 and
4. Phase 1 corresponds to giving right of way to queue 1 and 2; and phase 2 to
giving right of way to queue 3 and 4.

1 and 2, which corresponds to activating links 1 and 2; and phase 2 gives right of way to

queue 3 and 4, which corresponds to activating links 3 and 4. We also include a phase 0

or “null action”, which corresponds to not activating any of the links. The action set in

this example is given by

Y = {y0, y1, y2},(5.26)

where y0 = [0, 0, 0, 0]T , y1 = [1, 1, 0, 0]T , y2 = [0, 0, 1, 1]T correspond, respectively, to phase

0, 1 and 2.

We will assume that exactly one vehicle moves from one queue to another in a time slot,

and to capture the overhead of changing between phase 1 and 2 (start-up and clearance

loss times) we will add constraints on the order in which actions can be selected by the

network controller. In particular, the network controller cannot change between phase 1

and phase 2 without selecting phase 0 in Td ∈ N consecutive slots. For example, if Td = 2

then {y0, y0, y1, . . . , y1, y0, y0, y2, y2, . . . } is a valid sequence of control actions.

The network capacity depends on the order in which control actions are selected. To

characterise the network capacity region observe that if phase 1 and 2 both appear in an

interval of Tc slots, then, phase 0 should appear in at least 2Td time slots. However, if phase

1 and 2 are selected consecutively in an interval, then, phase 0 would only need to appear in

exactly 2Td time slots (which maximises the vehicle rate through the intersection). Hence,

the network capacity region is a function of Tc and Td, and it is given by X = η conv(Y)

where η = 1 − 2Td/Tc. Figure 5.1.4 shows, schematically, the network capacity region as

a function of Tc. Observe from the figure that X is a subset of conv(Y), and that the

network capacity region increases as Tc gets larger, i.e. the impact of the start-up and

clearance loss time overheads is reduced.

5.1. TRAFFIC SIGNAL CONTROL 87

0

5

10

15

20

25

30

101 102 103 104 105 106

av
g.

ve
h
ic
le
s

time (s)

20
25
30
60
90

(a) Queue 1

0

5

10

15

20

25

30

101 102 103 104 105 106

av
g.

ve
h
ic
le
s

time (s)

20
25
30
60
90

(b) Queue 3

Figure 5.1.5. Illustrating the average queue length (i.e. average number of
vehicles) of queues 1 and 3 as a function of time for different values of Tc ∈
{20, 25, 30, 60, 90}; queues 2 and 4 have, respectively, similar behaviour than queue
1 and 3.

Simulation. We run a simulation (i.e. updates (5.9) and (5.10)) with

Bk = [−B̃k(1),−B̃k(2),−B̃k(3),−B̃k(4), 1, 1, 1, 1]

where B̃k(j), j = 1, . . . , 4 are i.i.d. Bernoulli random variables taking values in {0, 1}
with mean 0.44, 0.44, 0.22, 0.22. In all simulations we use initial condition λ1 = Q1 = 0,

and Td = 4 slots. Traffic control actions yk are selected using Algorithm 1. Actions are

reordered within a block of Tc time slots so that phase 1 and 2 appear consecutively, but

selecting first phase 0 for a total of Td slots.

Figure 5.1.5 shows the evolution of the average of the queue lengths for queue 1 and

queue 3 for Tc ∈ {20, 25, 30, 60, 90}. When Tc = 20 slots, the set of arrival rates lies outside

of the capacity region (see Figure 5.1.4), and as a result the occupancies of the queues

in the system grow unbounded. When Tc ∈ {25, 30, 60, 90}, the mean vehicle arrival rate

is in the interior of the network capacity region and our optimisation (Theorem 5.1 and

Algorithm 1) stabilises the system. Observe from Figure 5.1.5 that the averages of the

queue occupancies remain bounded.

An important observation is that the average queue occupancy depends on Tc, however,

there is not a direct relationship. Observe from Figure 5.1.5 that the largest average

queue occupancy happens when Tc = 25, the lowest when Tc = 30, and when Tc ∈
{60, 90} the average queue occupancies lie in between. When Tc = 25, the large average

queue occupancy is a result of the mean arrival rate in the system being close to the

boundary of the network capacity region. In contrast, when Tc = 90 the large average

queue occupancies are a consequence of how actions are reordered in Algorithm 1. Namely,

5.1. TRAFFIC SIGNAL CONTROL 88

phases/actions are selected consecutively independently of whether there are vehicles to

be served. Figure 5.1.6 shows the occupancies of queue 1 and 3 for a time period of 500

slots. Observe that when Tc = 25 slots the queues are never empty, but as Tc increases,

the queues tend to get larger and are also empty for longer intervals of times. This kind

of behaviour will affect not just the mean but also the distribution of the vehicle waiting

times in the intersection. This can be observed in Figure 5.1.7, which shows the delay

distribution of queue 1 and queue 3 for different values of Tc. The impact of Tc on the delay

distribution is important if, for example, we want to provide guarantees on the maximum

amount of time that a vehicle will have to wait in an intersection. Similarly, since the

delay distribution is related to the size of a queue, we have that Tc will play a fundamental

role in preventing deadlocks. In this example, the optimal value of Tc is 30, but in real

networks Tc will need to be adjusted dynamically in order to obtain both, stability and

good delay performance.

We could also design an algorithm based on Theorem 4.3 where actions are selected

in order to keep γk bounded. For example, a possible strategy would be to change phase

when either (i) one queue in an active phase is empty, or (ii) when both queues in an active

phase are empty—and so avoiding selecting phases in which there are no vehicles waiting

to be served. We do not characterise the network capacity region of the algorithms and

just evaluate them experimentally. We run a simulation using the algorithms and show the

results in Figures 5.1.8 and 5.1.9. Observe that now there is a notable difference between

the treatment that flows have, in particular, the occupancy of queue 1 is significantly

larger than the occupancy of queue 3; and consequently, the delay distribution of the

vehicles waiting times in queue 3 is drastically affected. The results suggest that these

traffic policies are not fair, and that making traffic control decisions based only on queue

occupancies may not be enough if we want to capture metrics apart from the stability of

the system. This fairness issue could be tackled by either adding an utility function in the

optimisation, or by designing scheduling policies directly that consider other parameters

apart from the occupancy of queues.

5.1. TRAFFIC SIGNAL CONTROL 89

0

5

10

15

20

25

30

2500 2600 2700 2800 2900 3000

ve
h
ic
le
s

time (s)

Q(1)
Q(3)

(a) Tc = 25

0

5

10

15

20

25

30

2500 2600 2700 2800 2900 3000

ve
h
ic
le
s

time (s)

Q(1)
Q(3)

(b) Tc = 30

0

5

10

15

20

25

30

2500 2600 2700 2800 2900 3000

ve
h
ic
le
s

time (s)

Q(1)
Q(3)

(c) Tc = 60

0

5

10

15

20

25

30

2500 2600 2700 2800 2900 3000
ve
h
ic
le
s

time (s)

Q(1)
Q(3)

(d) Tc = 90

Figure 5.1.6. Illustrating the queue occupancies depending on Tc. The start of
phase 1 and 2 can be identified, respectively, by the peaks of queue 1 and 3.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140

time (s)

Q(1)
Q(3)

(a) Tc = 25.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140

time (s)

Q(1)
Q(3)

(b) Tc = 30.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140

time (s)

Q(1)
Q(3)

(c) Tc = 60.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140

time (s)

Q(1)
Q(3)

(d) Tc = 90.

Figure 5.1.7. Illustrating the distribution of the waiting times (delay) depending
on Tc.

5.1. TRAFFIC SIGNAL CONTROL 90

0

5

10

15

20

25

30

2500 2600 2700 2800 2900 3000

ve
h
ic
le
s

time (s)

Q(1)
Q(3)

(a)

0

5

10

15

20

25

30

2500 2600 2700 2800 2900 3000

ve
h
ic
le
s

time (s)

Q(1)
Q(3)

(b)

Figure 5.1.8. Illustrating the queue sizes when a phase change is performed
when a queue in an active phase is empty (5.1.8a), or when both queues in an
active phase are empty (5.1.8b).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140

time (s)

Q(1)
Q(3)

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140

time (s)

Q(1)
Q(3)

(b)

Figure 5.1.9. Illustrating the delay distribution of Q(1) and Q(3) when a phase
change is performed when a queue in an active phase is empty (5.1.8a), or when
both queues in an active phase are empty (5.1.8b).

5.2. DISTRIBUTED AND ASYNCHRONOUS PACKETS TRANSMISSIONS 91

Figure 5.2.1. Illustrating the network of Example 5.2.

5.2. Distributed and Asynchronous Packets Transmissions

We now present a classic network flow problem and show that (i) scaled queue occu-

pancies can be used as surrogates for the Lagrange multipliers in the subgradient updates,

(ii) that the optimisation does not require the statistics of the arrival process in the net-

work to be known in advance, and (iii) nodes make decisions as to whether to transmit

packet or not in a distributed and asynchronous manner.

5.2.1. Problem Setup. Consider the network illustrated in Figure 5.2.1 with m = 5

nodes and n = 7 links.6 Packets arrive in the system at nodes 1 and 2, and they must be

transmitted through the network until they reach node 5, where the packets will leave the

system. The incidence matrix of the network is given by

A =












−1 −1 0 0 0 0 0

1 0 −1 −1 0 0 0

0 1 1 0 −1 −1 0

0 0 0 1 1 0 −1

0 0 0 0 0 1 1












.

The time in the system is divided in slots of equal duration, and each time slot corresponds

to transmitting a fraction of a packet. For simplicity, we will assume that all the packets

in the network have a duration of 10 slots, and so an action yk corresponds to transmitting

a tenth of a packet. The network action set is Y =
∏n
j=1{0, 1} and so nodes can select a

discrete action in each time slot independently of the discrete actions selected by the other

nodes. The goal of the problem is to design a distributed scheduling policy that minimises

the cost of allocating data to links—for example, suppose that a network operator charges

for a link usage.

6The network is taken from the flow example in [BXMM07]

5.2. DISTRIBUTED AND ASYNCHRONOUS PACKETS TRANSMISSIONS 92

Fluid Formulation. The convex formulation of the problem is

minimise
x∈X

f(x) =
∑n

j=1 fj(x(j))

subject to Ax+ b � 0
(5.27)

where X :=
∏n
j=1Xj, Xj := conv(Yj), Yj = {0, 1} for all j = 1, . . . , n, b ∈ Rm is a vector

containing the mean packet arrival/departure rate in the network at each of the nodes,

and fj : R → R are convex functions that capture the cost of using each link j = 1, . . . , n.

Optimisation (5.27) can be solved with the dual subgradient method, and since the

objective function is fully separable and constraints are linear, the computation of a (dual)

subgradient can be carried out in a distributed manner. In particular, in each iteration

we have updates

xk(j) ∈ arg min
x∈Xj

{fj(x) + αrk(j)x}, j = 1, . . . , n(5.28)

Qk+1 = [Qk +Ayk +Bk]
+,(5.29)

where yk ∈ Y , rk = QTkA, and Qk ∈ Rm is a vector of queue occupancies, and Bk ∈
Rm is a random variable that captures the packet arrival/departure from the system

in each of the nodes. Recall that in order to use Theorem 3.1 we need αQk to be an

approximate Lagrange multiplier; that strong duality holds in the fluid problem; and that

E(Bk) = b for all k. Interesting observations from updates (5.28)-(5.29) are that we never

compute the Lagrange multipliers in the optimisation since using approximate Lagrange

multipliers is enough, and that update (5.28) does not require us to know the mean packet

arrival/departure rate of packets in the system.

5.2.2. Simulation. We run updates (5.28) and (5.29) with fj(x(j)) = x(j)2 for every

link j = 1, . . . , n, b = [0.02, 0.06, 0, 0,−0.1]T , Bk(j), j = 1, 2 are Bernoulli with E(Bk(j)) =

b(j), and Bk(j) for j = 3, 4, 5 are equal to b(j) for all k, i.e. nodes 3 and 4 do not receive

exogenous packets, and the service of node 5 is deterministic. The sequence {yk} of

discrete actions is obtained with Corollary 4.3 and τ̄ = 10, i.e. the transmission of a

packet (meta-action) takes exactly 10 time slots and cannot be interrupted.

Figure 5.2.2 shows the convergence of f(x̄k) to a ball around the optimum for α =

{10−1, 10−2, 10−3}, and how the average of the (scaled) queue occupancies remains bounded.

Observe from Figure 5.2.2a that the convergence of the utility improves as parameter α

is reduced, however, the convergence time increases as α gets smaller. The latter can be

clearly seen in Figure 5.2.2b. Observe from the figure that the sum of the scaled queue oc-

cupancies converge to a ball around 1Tλ⋆(δ) = 4.25, and that the size of the ball depends

on parameter α. Also, note that since a queue occupancy is inversely proportional to step

5.2. DISTRIBUTED AND ASYNCHRONOUS PACKETS TRANSMISSIONS 93

10−3

10−2

10−1

100

0 250000 500000

|f
(x̄
k
)
−
f
⋆
|

time slot k

α = 10−1

α = 10−2

α = 10−3

(a)

0

1

2

3

4

5

6

7

0 50000 100000 150000

α
∑

m j=
1
Q̄
k
(j
)

time slot k

α = 10−1

α = 10−2

α = 10−3

(b)

Figure 5.2.2. Illustrating the convergence of the utility function and the (scaled)
mean queue occupancies in Example 5.2.

link 1

link 2

link 3

link 4

link 5

link 6

link 7

250 300 350 400 450 500

time slot k

Figure 5.2.3. Illustrating the packet transmissions for each link in the network
for an interval of 250 time slots.

size α, we obtain the typical tradeoff between optimality and delay. Figure 5.2.3 shows the

link’s usage for an interval of 250 time slots. Observe from the figure that all the packet

transmissions have a duration of 10 slots, and that they are asynchronous, i.e. a node can

start a new packet transmission in any slot without coordinating with the other nodes.

5.3. PACKET TRANSMISSIONS WITH CONSTRAINTS 94

Figure 5.3.1. Illustrating the network in the example of Section 5.3. The Access
Point (AP) sends packets from Q(1) to node 1, and from Q(2) to node 2.

5.3. Packet Transmissions with Constraints

This problem is in spirit like the traffic signal control example, but we put it into a

networking context and consider an utility function.

Consider the network shown in Figure 5.3.1, an Access Point (AP) that transmits to

two wireless nodes. Time is slotted and in each time slot packets arrive at the queues of

the AP, Q(1) and Q(2). In each time slot the AP takes an action from action set Y :=

{y(0), y(1), y(2)} = {[0, 0]T , [1, 0]T , [0, 1]T }, where each action corresponds, respectively,

to not transmitting, to transmitting one packet from Q(1) to node 1, and to transmitting

one packet from Q(2) to node 2.

The transmission protocol of the AP has constraints on how actions can be selected.

In particular, it is not possible to select action y(1) after y(2) without first selecting y(0).

In the same way, it is not possible to select y(2) after y(1) without first selecting y(0).

However, y(1) or y(2) can be selected consecutively. An example of an admissible sequence

is

{y(1), y(1), y(1), y(0), y(2), y(0), y(1), y(1), y(0), y(2), y(2), . . . }.

These type of constraints appear in different areas, and are usually known in the literature

as reconfiguration or switchover delays [ÇM15]. In this example, such constraints on how

to select actions might correspond to asking for the Channel State Information (CSI) in

order to adjust the transmission parameters.7

Our goal is to design a scheduling policy for the AP (select actions from set Y) in

order to minimise a convex cost function of the average throughput x̄k, and ensure that

the system is stable, i.e. the queues do not overflow and so all traffic can be served.

7The CSI in wireless communications is in practice requested periodically, and not only at the beginning
of a transmission, but we will assume this for simplicity. The extension is nevertheless straightforward.

5.3. PACKET TRANSMISSIONS WITH CONSTRAINTS 95

Figure 5.3.2. Network capacity region of the example in Section 5.3. X =
η conv(Y) with η = 1− 2/(T |Y |).

5.3.1. Problem Setup.

Fluid Formulation: The convex or fluid formulation of the problem is

minimise
x∈X

f(x)

subject to b � x

where f : R2 → R, b ∈ R2
+ and X is a bounded convex subset from conv(Y) ⊂ R2 that

depends on the protocol constraints, i.e. on how actions can be selected. If there were no

constraints on the order in which actions could be selected we would have X := conv(Y),

however, this is not the case. Nonetheless, characterising X is as simple as noting that

if we have a subsequence of actions of length T |Y |, T ∈ N where y(1) and y(2) appear

(each) consecutively, then y(0) should appear at least twice in order to have a subsequence

that is compliant with the transmission protocol. Conversely, any subsequence of length

T |Y | in which y(0) appears at least twice can be reordered to obtain a subsequence that

is compliant with the transmission protocol. Since from Section 4.3.1, we know we can

always choose a subsequence of discrete actions and then reorder its elements, we just need

to select set X such that y(0) can be selected twice in a subsequence of T |Y | elements.

This will be the case when a point x ∈ X needs to use action y(0) at least 2/(T |Y |).
Hence, we have that

X := η conv(Y),(5.30)

where η := 1 − 2/(T |Y |). Observe from Equation (5.30) that as T increases η → 1 and

therefore X → conv(Y), i.e. the network capacity region increases. Figure 5.3.2 illustrates

the network capacity region of the example.

5.3. PACKET TRANSMISSIONS WITH CONSTRAINTS 96

Dual Subgradient Updates. At each time slot we have updates

xk ∈ argmin
x∈X

{f(x)− αQTk x},(5.31)

λk+1 = [λk − xk +Bk]
+,(5.32)

Qk+1 = [Qk − yk +Bk]
+,(5.33)

where λk, Qk ∈ R2
+, Bk are i.i.d. random variables that take values {0, 1} with mean

[b(1), b(2)]T . Action yk = Wek, and ek is obtained with (4.10) and the elements in a

subsequences are reordered in order to meet the transmission protocol constraints.

5.3.2. Simulations. We run a simulation for 10000 iterations with objective function

f(x) = ‖x‖22, b = [0.25, 0.5]T , α ∈ {5 · 10−2, 10−2, 10−3, 10−4}, λ1 = αQ1 = 0, T = 3 (so

the number of elements in a subsequence is 9 since |Y | = 3). Figure 5.3.3 shows the

convergence of the Lagrange multipliers to a ball around λ⋆ = [0.5, 1]T for different step

sizes. Note that the size of the ball depends on the step size used, and that for α = 10−4

the Lagrange multipliers do not have time to reach the ball in 10000 iterations. The

slow convergence of the Lagrange multipliers also affects the convergence of the objective

function. Observe in Figure 5.3.4 that this is actually the case, and that surprisingly,

with step size α ∈ {5 · 10−2, 10−2} we obtain a relatively fast convergence with moderate

accuracy.

5.3. PACKET TRANSMISSIONS WITH CONSTRAINTS 97

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

λ
k
(2
)

λk(1)

(a) α = 5 · 10−2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

λ
k
(2
)

λk(1)

(b) α = 10−2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

λ
k
(2
)

λk(1)

(c) α = 10−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

λ
k
(2
)

λk(1)

(d) α = 10−4

Figure 5.3.3. Illustrating the convergence of λk to a ball around λ⋆ = [0.5, 1]T .

10−4

10−3

10−2

10−1

100

0 2500 5000 7500 10000

|f
(x̄
k
)
−
f
⋆
|

iteration k

α = 5 · 10−2

α = 10−2

α = 10−3

α = 10−4

Figure 5.3.4. Illustrating the difference |f(x̄k)− f⋆| for different step sizes.

CHAPTER 6

Conclusions

In this thesis we have studied how max-weight can be encompassed within the body

of convex optimisation, and shown it is a special case of the stochastic dual subgradient

method with ǫk subgradients. Our analysis clarifies the fundamental properties required

for convergence, and brings to the fore the use of ǫk-subgradients as a key component for

modelling problem characteristics, including discrete actions. One of the great advantages

of our approach is that scheduling policies can be decoupled from the choice of convex

optimisation algorithm or subgradient used to solve the dual problem. As a result, it is

possible to design scheduling policies with a high degree of flexibility. Other consequences

of our approach are that scaled queue occupancies can be used directly as surrogates for

the Lagrange multipliers in the optimisation, and that it is possible to obtain bounds that

are not asymptotic.

The work in this thesis brings clarity and a fresh outlook to network optimisation

problems, but also makes max-weight accessible from a convex optimisation perspective

and therefore to a wider audience beyond networking and control. We believe this will

lead to new applications currently not covered by either max-weight approaches or convex

optimisation. We would also like to emphasise that we have focused on max-weight’s main

features (discrete actions and optimal decisions without previous knowledge of the under-

lying randomness in the system) because of their importance in the literature. However,

the perturbations in the optimisation framework can be used to model a wider range of

problems’ features. An example of this is the asynchronous dual updates presented in

Section 4.2, where approximate Lagrange multipliers are chosen in each iteration in order

to model a specific kind of behaviour.

Natural extensions to this work include weakening the requirements on the perturba-

tions ǫk and δk in the optimisation framework, and applications that further illustrate the

power of the results.

98

APPENDIX A

Lagrange Dual Function

We show how to obtain the Lagrange dual function using conjugate duality. We start

by recalling the definition of the (convex) conjugate function.

Definition A.1 (Convex Conjugate). For any function ψ : Rn → R, the function

ψ∗ : Rn → R defined by

ψ∗(y) := sup
x∈Rn

{yTx− ψ(x)}

is the convex conjugate of ψ, and

ψ∗∗(x) = sup
y∈Rn

{xT y − ψ∗(y)}

is the biconjugate of ψ.

One the important properties of the conjugate function is that it is always convex,

even though ψ is not. Further, when ψ is convex, proper and lower semi continuous we

have that ψ = ψ∗∗, and otherwise ψ ≥ ψ∗∗. The conjugate function can be thought of as

representing a convex function in a different form, and one can take the conjugate of the

conjugate to recover the original function.

The Lagrange dual function arises through the partial dualisation of a problem for

a specific choice of perturbation. Similar ideas can be found in [ET99, Chapter 3] and

[RW98, Chapter 11]. Consider optimisation problem

minimise
x∈X

f(x)

subject to g(x) � 0

where X is a convex set but not necessarily bounded. We use inequality constraints for

simplicity, but similar steps can be used for equality constraints. Define

l(δ) := inf
x∈X

{f(x) + I(g(x) + δ)}(A.1)

where δ ∈ Rm is a perturbation on the constraints, and I is the indicator function, i.e.

l(δ) =







f(x) g(x) + δ � 0

+∞ otherwise.
(A.2)

99

A. LAGRANGE DUAL FUNCTION 100

Observe that l might not be continuous but it is still convex in δ. We can write the convex

conjugate of l with respect to perturbation δ as follows

l∗(λ) = sup
δ∈Rm

{λT δ − inf
x∈X

l(x, δ)},

= sup
δ∈Rm

{λT δ − inf
x∈X

{f(x) + I(g(x) + δ)}},

= sup
δ∈Rm

{λT δ + sup
x∈X

{−f(x)− I(g(x) + δ)}},

= sup
x∈X, δ∈Rm,
g(x)+δ�0

{λT δ − f(x)}(A.3)

where the last equation follows from the fact that −I(g(x) + δ) = −∞ if g(x) + δ ≻ 0.

Note we can always do that since for any x ∈ X there always exists δ ∈ Rm such that

g(x) + δ � 0. Next, we can write (A.3) as

l∗(λ) = sup
x∈X, δ∈Rm,
δ�−g(x)

{λT δ − f(x)}

Now, observe that since we require that δ(j) � −gj(x), if λ(j) < 0 for some j then δ(j)

will be selected equal to −∞ and therefore l∗(δ) = ∞. Also, if λ(j) ≥ 0 then δ will be

chosen as large as possible, i.e. δ(j) = −gj(x) independently of the x ∈ X. Hence,

l∗(λ) =







sup
x∈X

{−f(x)− λT g(x)} λ � 0

+∞ λ ≺ 0

(A.4)

Importantly, we are just having another representation of our original function l(δ), we

are not changing the optimisation problem. In fact, we can solve the original problem by

minimising l∗(λ) for λ � 0, or equivalently

sup
λ�0

−l∗(λ).(A.5)

It is enlightening to see that

h(λ) := −l∗(λ) =







inf
x∈X

{f(x) + λT g(x)} λ � 0

−∞ λ ≺ 0

i.e. we have obtained the Lagrange dual function. From the latter one can easily obtain

sup
λ�0

inf
x∈X

{f(x) + λT g(x)} ≤ inf
x∈X

sup
λ�0

{f(x) + λT g(x)}

where equality will hold when the Slater condition is satisfied—which is one of the condi-

tions in Fenchel’s duality theorem [Roc97, Theorem 31.1].

Bibliography

[AD06] J. W. Antonis Dimakis. Sufficient conditions for stability of longest-queue-first scheduling:
Second-order properties using fluid limits. Advances in Applied Probability, 38(2):505–521,
2006.

[BB87] D. P. Bertsekas and D. E. Baz. Distributed asynchronous relaxation methods for convex
network flow problems. SIAM Journal on Control and Optimization, 25(1):74–85, 1987.

[BC12] T. Bonald and D. Cuda. Rateoptimal scheduling schemes for asynchronous inputqueued
packet switches. SIGMETRICS Perform. Eval. Rev., 40(3):95–97, January 2012.

[Ber60] B. Bernstein. Proof of caratheodory’s local theorem and its global application to thermo-
statics. Journal of Mathematical Physics, 1(3):222–224, 1960.

[Ber98] D. P. Bertsekas. Network optimization: continuous and discrete models. Citeseer, 1998.

[Ber99] D. P. Bertsekas. Nonlinear Programming: Second Edition. Athena Scientific, 1999.

[BNO03] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex analysis and optimization.
Athena Scientific, 2003.

[BPC+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and
Trends R© in Machine Learning, 3(1):1–122, 2011.

[BT89] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: numerical
methods. Prentice hall Englewood Cliffs, NJ, 1989.

[BT03] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31(3):167–175, 5 2003.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[BXMM07] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley. Notes on decomposition methods,
2007.

[CKLS08] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar. Throughput and fairness guaran-
tees through maximal scheduling in wireless networks. IEEE Transactions on Information
Theory, 54(2):572–594, Feb 2008.

[ÇLM12] G. D. Çelik, L. B. Le, and E. Modiano. Dynamic server allocation over time-varying
channels with switchover delay. IEEE Transactions on Information Theory, 58(9):5856–
5877, Sept 2012.

[ÇM15] G. D. Çelik and E. Modiano. Scheduling in networks with time-varying channels and
reconfiguration delay. IEEE/ACM Transactions on Networking, 23(1):99–113, Feb 2015.

[CNS14] T. H. Chang, A. Nedić, and A. Scaglione. Distributed constrained optimization by
consensus-based primal-dual perturbation method. IEEE Transactions on Automatic Con-
trol, 59(6):1524–1538, June 2014.

[DHS11] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159,
2011.

[Die13] J. Dieudonné. Foundations of modern analysis. Read Books Ltd, 2013.

[Erm66] Y. M. Ermoliev. Methods of solution of nonlinear extremal problems. Cybernetics, 2(4):1–
14, 1966.

[ES05] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless networks using queue-
length-based scheduling and congestion control. In Proceedings IEEE 24th Annual Joint

101

BIBLIOGRAPHY 102

Conference of the IEEE Computer and Communications Societies., volume 3, pp. 1794–
1803. IEEE, 2005.

[ET99] I. Ekeland and R. Témam. Convex Analysis and Variational Problems. Society for In-
dustrial and Applied Mathematics, 1999.

[FKM05] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the
bandit setting: Gradient descent without a gradient. In Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 385–394, Philadelphia, PA,
USA, 2005. Society for Industrial and Applied Mathematics.

[FW56] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research lo-
gistics quarterly, 3(1-2):95–110, 1956.

[Gar83] N. H. Gartner. Opac: A demand-responsive strategy for traffic signal control. In 62nd
Annual Meeting of the Transportation Research Board, 1983.

[GFDLFW13] J. Gregoire, E. Frazzoli, A. De La Fortelle, and T. Wongpiromsarn.
Back-pressure Traffic Signal Control with Unknown Routing Rates. arXiv preprint
arXiv:1401.3357, 2013.

[GNT06] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and cross-layer
control in wireless networks. Foundations and Trends R© in Optimization, 1(1):1–144, 2006.

[GQF+15] J. Gregoire, X. Qian, E. Frazzoli, A. de La Fortelle, and T. Wongpiromsarn.
Capacity-Aware Backpressure Traffic Signal Control. Control of Network Systems, IEEE
Transactions on, 2(2):164–173, 2015.

[HN11] L. Huang and M. J. Neely. Delay reduction via lagrange multipliers in stochastic network
optimization. IEEE Transactions on Automatic Control, 56(4):842–857, April 2011.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American statistical association, 58(301):13–30, 1963.

[HRBW81] P. Hunt, D. Robertson, R. Bretherton, and R. Winton. SCOOT - A Traffic Re-
sponsive Method of Coordinating Signals. Technical report, Transport and Road Research
Laboratory, 1981.

[IGHT15] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas. A double-auction mechanism for
mobile data-offloading markets. IEEE/ACM Transactions on Networking, 23(5):1634–1647,
Oct 2015.

[KMT98] P. F. Kelly, K. A. Maulloo, and H. D. K. Tan. Rate control for communication
networks: shadow prices, proportional fairness and stability. Journal of the Operational
Research Society, 49(3):237–252, 1998.

[Kom88] H. Komiya. Elementary proof for sion’s minimax theorem. Kodai mathematical journal,
11(1):5–7, 1988.

[KY14] F. Kelly and E. Yudovina. Stochastic Networks. Cambridge University Press, 2014.

[LBX11] B. Li, C. Boyaci, and Y. Xia. A refined performance characterization of longest-queue-
first policy in wireless networks. IEEE/ACM Transactions on Networking, 19(5):1382–1395,
Oct 2011.

[LL97] T. Larsson and Z. Liu. A lagrangean relaxation scheme for structured linear programs
with application to multicommodity network flows. Optimization, 40(3):247–284, 1997.

[Low90] P. Lowrie. SCATS, Sydney Co-ordinated Adaptive Traffic System: A Traffic Responsive
Method of Controlling Urban Traffic, 1990.

[LSS06] X. Lin, N. B. Shroff, and R. Srikant. A tutorial on cross-layer optimization in wireless
networks. IEEE Journal on Selected Areas in Communications, 24(8):1452–1463, Aug 2006.

[Mar05] K. Marti. Stochastic optimization methods. Springer, 2005.

[Mey08] S. Meyn. Control techniques for complex networks. Cambridge University Press, 2008.

[Mey09] S. Meyn. Stability and asymptotic optimality of generalized maxweight policies. SIAM
Journal on Control and Optimization, 47(6):3259–3294, 2009.

[MH01] P. Mirchandani and L. Head. A Real-Time Traffic Signal Control System: Architec-
ture, Algorithms, and Analysis. Transportation Research Part C: Emerging Technologies,
9(6):415–432, 2001.

BIBLIOGRAPHY 103

[MHS14] S. T. Maguluri, B. Hajek, and R. Srikant. The stability of longest-queue-first schedul-
ing with variable packet sizes. IEEE Transactions on Automatic Control, 59(8):2295–2300,
Aug 2014.

[MMT14] M. G. Markakis, E. Modiano, and J. N. Tsitsiklis. Max-weight scheduling in queueing
networks with heavy-tailed traffic. IEEE/ACM Transactions on Networking, 22(1):257–270,
Feb 2014.

[MMT16] M. G. Markakis, E. Modiano, and J. N. Tsitsiklis. Delay stability of back-pressure
policies in the presence of heavy-tailed traffic. IEEE/ACM Transactions on Networking,
24(4):2046–2059, Aug 2016.

[MS14] S. T. Maguluri and R. Srikant. Scheduling jobs with unknown duration in clouds.
IEEE/ACM Transactions on Networking, 22(6):1938–1951, Dec 2014.

[MSY12] S. T. Maguluri, R. Srikant, and L. Ying. Stochastic models of load balancing and
scheduling in cloud computing clusters. In INFOCOM, 2012 Proceedings IEEE, pp. 702–
710, March 2012.

[NB10] A. Nedić and D. P. Bertsekas. The Effect of Deterministic Noise in Subgradient Meth-
ods. Mathematical Programming, 125(1):75–99, 2010.

[Ned02] A. Nedić. Subgradient Methods for Convex Minimization. PhD thesis, Massachusetts In-
stitute of Technology, 2002.

[Nee06] M. J. Neely. Energy optimal control for time-varying wireless networks. IEEE Transactions
on Information Theory, 52(7):2915–2934, July 2006.

[Nee10a] M. J. Neely. Stability and Capacity Regions or Discrete Time Queueing Networks. ArXiv
e-prints, March 2010.

[Nee10b] M. J. Neely. Stochastic Network Optimization with Application to Communication and
Queueing Systems. Morgan and Claypool Publishers, 2010.

[Nee14] M. J. Neely. A Simple Convergence Time Analysis of Drift-Plus-Penalty for Stochastic
Optimization and Convex Programs. ArXiv e-prints, December 2014.

[NML08] M. J. Neely, E. Modiano, and C. P. Li. Fairness and optimal stochastic control for het-
erogeneous networks. IEEE/ACM Transactions on Networking, 16(2):396–409, April 2008.

[NMR03] M. J. Neely, E. Modiano, and C. E. Rohrs. Power allocation and routing in multibeam
satellites with time-varying channels. IEEE/ACM Transactions on Networking, 11(1):138–
152, Feb 2003.

[NMR05] M. J. Neely, E. Modiano, and C. E. Rohrs. Dynamic power allocation and routing
for time-varying wireless networks. IEEE Journal on Selected Areas in Communications,
23(1):89–103, 2005.

[NN94] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Pro-
gramming. Society for Industrial and Applied Mathematics, 1994.

[NO09a] A. Nedić and A. Ozdaglar. Approximate primal solutions and rate analysis for dual
subgradient methods. SIAM Journal on Optimization, 19(4):1757–1780, 2016/07/09 2009.

[NO09b] A. Nedić and A. Ozdaglar. Subgradient Methods for Saddle-Point Problems. Journal of
Optimization Theory and Applications, 142(1):205–228, 2009.

[NTS12] J. Ni, B. Tan, and R. Srikant. Q-csma: Queue-length-based csma/ca algorithms for
achieving maximum throughput and low delay in wireless networks. IEEE/ACM Transac-
tions on Networking, 20(3):825–836, June 2012.

[NWZ13] J. Nair, A. Wierman, and B. Zwart. The fundamentals of heavy-tails: Properties,
emergence, and identification. SIGMETRICS Perform. Eval. Rev., 41(1):387–388, June
2013.

[NY78] A. Nemirovskii and D. Yudin. Cezare convergence of gradient method approximation of
saddle points for convex-concave functions. Doklady Akademii Nauk SSSR, pp. 1056–1059,
1978.

[Pap80] M. Papageorgiou. A New Approach to Time-Of-Day Control Based on a Dynamic Freeway
Traffic model. Transportation Research Part B: Methodological, 14(4):349–360, 1980.

[PB14] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends R© in Optimization,
1(3):127–239, 2014.

BIBLIOGRAPHY 104

[PC06] D. P. Palomar and M. Chiang. A tutorial on decomposition methods for network utility
maximization. IEEE Journal on Selected Areas in Communications, 24(8):1439–1451, Aug
2006.

[Pol77] B. Polyak. Subgradient methods: A survey of soviet research. In Nonsmooth optimization:
Proceedings of the IIASA workshop March, pp. 5–30, 1977.

[Pre95] A. Prekopa. Stochastic Programming. Kluwer Academic Publishers, 1995.

[RNV09] S. S. Ram, A. Nedić, and V. V. Veeravalli. Incremental stochastic subgradient algo-
rithms for convex optimization. SIAM Journal on Optimization, 20(2):691–717, 2009.

[Roc74] R. T. Rockafellar. Conjugate duality and optimization, volume 16. Siam, 1974.

[Roc84] R. T. Rockafellar. Network flows and monotropic optimization. Wiley, New York, NY,
1984.

[Roc93] R. T. Rockafellar. Lagrange multipliers and optimality. SIAM Review, 35(2):183–238,
1993.

[Roc97] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1997.

[RV74] A. Roberts and D. Varberg. Another proof that convex functions are locally lipschitz.
The American Mathematical Monthly, 81(9):1014–1016, 1974.

[RW98] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317. Springer:
Grundlehren der Math. Wissenschaften., Berlin, 1998.

[S+58] M. Sion et al. On general minimax theorems. Pacific J. Math, 8(1):171–176, 1958.

[Sho85] N. Shor. Minimization methods for nondifferentiable functions. Translated from Russian
by K.C. Kiwiel and A. Ruszczynski, Springer, Berlin, 1985.

[Sho12] N. Z. Shor. Minimization methods for non-differentiable functions, volume 3. Springer
Science & Business Media, 2012.

[SJR16] A. Simonetto and H. Jamali-Rad. Primal recovery from consensus-based dual decompo-
sition for distributed convex optimization. Journal of Optimization Theory and Applications,
168(1):172–197, 2016.

[SN11] K. Srivastava and A. Nedic. Distributed asynchronous constrained stochastic optimiza-
tion. IEEE Journal of Selected Topics in Signal Processing, 5(4):772–790, Aug 2011.

[Sto05] A. L. Stolyar. Maximizing queueing network utility subject to stability: Greedy primal-
dual algorithm. Queueing Systems, 50(4):401–457, 2005.

[Sto06] A. L. Stolyar. Greedy primal-dual algorithm for dynamic resource allocation in complex
networks. Queueing Systems, 54(3):203–220, 2006.

[SY13] R. Srikant and L. Ying. Communication networks: an optimization, control, and sto-
chastic networks perspective. Cambridge University Press, 2013.

[TE92] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans-
actions on Automatic Control, 37(12):1936–1948, 1992.

[Tse91] P. Tseng. On the rate of convergence of a partially asynchronous gradient projection
algorithm. SIAM Journal on Optimization, 1(4):603–619, 1991.

[Tsi84] J. N. Tsitsiklis. Problems in Decentralized Decision making and Computation. PhD thesis,
Massachusetts Institute of Technology, 1984.

[vdVBS09] P. van de Ven, S. Borst, and S. Shneer. Instability of maxweight scheduling algorithms.
In INFOCOM 2009, IEEE, pp. 1701–1709, April 2009.

[vdVBY11] P. van de Ven, S. Borst, and L. Ying. Spatial inefficiency of maxweight scheduling.
In Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2011
International Symposium on, pp. 62–69, May 2011.

[VL16] V. Valls and D. J. Leith. Max-weight revisited: Sequences of nonconvex optimizations
solving convex optimizations. IEEE/ACM Transactions on Networking, 24(5):2676–2689,
October 2016.

[WSP07] X. Wu, R. Srikant, and J. R. Perkins. Scheduling efficiency of distributed greedy sched-
uling algorithms in wireless networks. IEEE Transactions on Mobile Computing, 6(6):595–
605, June 2007.

BIBLIOGRAPHY 105

[WUW+12] T. Wongpiromsarn, T. Uthaicharoenpong, Y. Wang, E. Frazzoli, and D. Wang.
Distributed Traffic Signal Control for Maximum Network Throughput. In Intelligent Trans-
portation Systems (ITSC), 2012 15th International IEEE Conference on, pp. 588–595.
IEEE, 2012.

[YJ10] B. Yang and M. Johansson. Distributed Optimization and Games: A Tutorial Overview,
pp. 109–148. Springer London, London, 2010.

[YN15] H. Yu and M. J. Neely. On the Convergence Time of the Drift-Plus-Penalty Algorithm
for Strongly Convex Programs. ArXiv e-prints, March 2015.

[Zin03] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
Technical report, School of Computer Science, Carnegie Mellon University, 2003.

	Abstract
	Acknowledgements
	Chapter 1. Introduction
	1.1. Purpose of the Thesis
	1.2. Contributions
	1.3. Notation
	1.4. Related Work
	Max-Weight
	Convex Optimisation

	1.5. Thesis Outline

	Chapter 2. Sequences of Non-Convex Optimisations
	2.1. Preliminaries
	2.2. Non-Convex Descent
	2.2.1. Non-Convex Direct Descent
	2.2.2. Non-Convex Frank-Wolfe-like Descent

	2.3. Constrained Convex Optimisation
	2.3.1. Lagrangian Penalty
	2.3.2. Non-Convex Dual Subgradient Update
	2.3.3. Generalised Update

	2.4. Using Queues as Approximate Multipliers
	2.4.1. Weaker Condition for Loose Constraints
	2.4.2. Queue Stability
	2.4.3. Optimal Actions Depend Only on Queue Occupancy

	2.5. Max-Weight Revisited
	2.6. Numerical Example

	Chapter 3. Dual Subgradient Methods with Perturbations
	3.1. Dual Subgradient Methods
	3.1.1. Classic Dual Subgradient Method
	3.1.2. Computing a Subgradient of the Lagrange Dual Function
	3.1.3. Stochastic Dual Subgradient Methods

	3.2. Bounded Lagrange Multipliers and Feasible Solutions
	3.3. Framework
	3.3.1. Parameterised Problem Setup
	3.3.2. Dual Subgradient Method with Perturbations
	3.3.3. Convergence

	Chapter 4. Actions and Asynchronous Updates
	4.1. Preliminaries
	4.1.1. Problem and Action Set
	4.1.2. Discrete Actions and Approximate Lagrange Multipliers

	4.2. Asynchronous Dual Updates
	4.2.1. Dual Decomposition
	4.2.2. Asynchronous Updates

	4.3. Sequences of Non-Convex Actions
	4.3.1. Blocks of Discrete Actions
	4.3.2. Online Sequences of Discrete Actions

	Chapter 5. Applications
	5.1. Traffic Signal Control
	5.1.1. Preliminaries
	5.1.2. Convex Optimisation Approach
	5.1.3. Numerical Example
	Simulation

	5.2. Distributed and Asynchronous Packets Transmissions
	5.2.1. Problem Setup
	5.2.2. Simulation

	5.3. Packet Transmissions with Constraints
	5.3.1. Problem Setup
	5.3.2. Simulations

	Chapter 6. Conclusions
	Appendix A. Lagrange Dual Function
	Bibliography

