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Summary 

 

Recent technological advances have allowed for the development and implementation 

of new methodologies in the investigation of the genetic epidemiology of schizophrenia. 

The study of the genetic aetiology underpinning schizophrenia has proven a challenging 

task for scientists for the last quarter century, with new methods developed in the last 

decade focusing on common variance that could help explain the genetic background of 

the disorder. Two of the most prominent methods in that field are the Polygenic Risk 

Scores (PRS) and the Genetic Restricted Maximum Likelihood (GREML) approach, 

applied through the GCTA (Genome-wide complex trait analysis) software. Three 

separate studies were carried out in the context of this thesis to investigate the means 

through which these methods operate and devise ways to optimise their function, as 

well as, improve their interpretability, in the context of schizophrenia research.  

 

The first study focused on extending a gene-set-based approach in PRS analysis, using 

experimentally derived gene-sets as a basis for polygenic scores, in an effort to improve 

the interpretability of PRS analysis results and translate results from this type of 

analysis into a tool of better comprehending the genetic architecture of the disorder. 

Results from that analysis indicated that this was indeed a viable way of analysis and 

managed to identify specific gene-sets that contributed in excess in the genetic 

background of the disorder.  

 

The second study investigated PRS application in the field, by utilising three of the 

most prominent PRS methodologies and comparing them in extended simulation 

scenarios with a range of different parameters. These simulations showed that no 



method was able to capture all the variability in the simulated scenarios, as noise 

seemed to significantly impair the polygenic signal. Further simulations also showed 

that increasing the sample twentyfold in the simulations did not improve the estimates. 

 

In the third study, GREML was applied in a population cohort to calculate heritability 

estimates for two polygenic characteristics. Subsequently, the GREML sensitivity to 

cryptic population substructure was investigated. Finally, a comparison between 

GREML and GREML-IBD, a recent extension of the original method, which takes into 

account rare variants to calculate heritability estimates, is made.  

 

This thesis highlighted potential methodological limitations of two of the most 

commonly used approaches in schizophrenia research and through their implementation 

on both population and clinical-based samples proposed novel means of improving 

them. As the field of psychiatric genetic enhances the current knowledge on the genetic 

architecture of schizophrenia, research focusing on the understanding of the strengths 

and caveats of its methodology is necessary towards the advancement of the field. 
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1. Introduction 

Severe mental illness, including schizophrenia, is a major public health issue due to its 

economic, psychological and social impact on the population. Despite the research 

interest in the study of the mechanisms behind schizophrenia genetics, a number of 

methodological issues in accounting for the genetic component of schizophrenia 

highlight the limitations of the current understanding of genetic architecture of 

schizophrenia.   

The main aim of this chapter is to explore the variations in measurement of 

schizophrenia symptomatology, epidemiology and genetics using a range of sources 

and approaches, through the investigation of the strengths and limitations of previously 

implemented procedures. The outline of this thesis will also be elaborated and the 

overall aims will be presented. 

 

1.1. Overview and Clinical Features 

Schizophrenia, or dementia precox, is a serious and extremely debilitating mental 

health disorder, characterised by persistent abnormal beliefs, hallucinations, 

disorganised thought and speech, as well as avolition and distorted emotional response 

(Plomin , 2008).  It is the one of the most severe forms of psychopathology and is 

considered to be the most debilitating among mental health disorders (Ustün 1999; 

Ustün et al, 1999). 

 

Defining schizophrenia and its diagnostic criteria has been an ongoing process with 

diagnostic manuals such as the International Classification of Disorders (ICD, 1992) 

and the Diagnostic and Statistical Manual of Mental Disorders (DSM) being constantly 
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updated to match current scientific knowledge. The main reason for this has been the 

heterogeneity of this disorder. Recent definitions of schizophrenia in the DSM (DSM 

IV-TR) have been shown to be reliable with a significant degree of validity (Tandon et 

al, 2009; Nasrallah et al, 2009).  This instrument has been shown to be highly stable, 

with 80-90 percent of individuals receiving a diagnosis based on these criteria retaining 

it for 1-10 years (Bromet et al, 2011). The success of that instrument was made evident 

by the fact that the new edition of the Manual (DSM V, 2013) retained essentially the 

same criteria for schizophrenia (Tandon et al, 2013). In detail, the diagnostic criteria 

that are currently required for a diagnosis of schizophrenia by the DSM-V manual are 

presented in Table 1.1 below. 
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Table 1.1 Criteria for Schizophrenia in DSM V (2013), adapted from DSM V and 

Tandon et al (2013). 

Criteria for Schizophrenia in DSM V (2013) 

Criterion A: 

Two (or more) of the following, each present for 

a significant portion of time during a 1-month 

period (or less if successfully treated) 

At least one of these should include 1 to 3: 

1. Delusions 

2. Hallucinations 

3. Disorganized speech 

4. Grossly disorganised or catatonic behaviour 

5. Negative symptoms, (i.e. diminished 

emotional expression or avolition) 

Criterion B: 

For a significant portion of the time since the 

onset of the disturbance, one or more major 

areas of functioning, such as work, interpersonal 

relations, or self-care, are markedly below the 

level achieved prior to the onset (or when the 

onset is in childhood or adolescence, failure to 

achieve expected level of interpersonal, 

academic, or occupational achievement). 

Criterion C: 

Continuous signs of the disturbance persist for at 

least 6 months. This 6-month period must 

include at least 1 month of symptoms (or less if 

successfully treated) that meet Criterion A (i.e., 

active-phase symptoms) and may include 

periods of prodromal or residual symptoms. 

During these prodromal or residual periods, the 

signs of the disturbance may be manifested by 

only negative symptoms or by two or more 

symptoms listed in Criterion A. 

Criterion D: 

Schizoaffective disorder and depressive or 

bipolar disorder with psychotic features have 

been ruled out because either 1.  no major 

depressive or manic episodes have occurred 

concurrently with the active phase symptoms; or 

2. if mood episodes have occurred during active-

phase symptoms, their total duration has been 

brief relative to the duration of the active and 

residual periods. 

Criterion E: 

Substance/general medical condition exclusion: 

The disturbance is not attributed to the direct 

physiological effects of a substance (e.g., a drug 

of abuse, medication) or another medical 

condition. 

Criterion F: 

If there is a history of autism spectrum disorder 

or other communication disorder of childhood 

onset, the additional diagnosis of schizophrenia 

is made only if prominent delusions or 

hallucinations are also present for at least 

1 month (or less if successfully treated). 
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1.1.1 Epidemiology of Schizophrenia 

Investigation on the epidemiological factors defining schizophrenia and psychosis-

spectrum disorders has been an ongoing process over the last century. Prevalence of 

schizophrenia seems to differ across different countries and, although migration seems 

to play a definitive role into it (Saha et al, 2005), countries from higher latitude tended 

to have significantly higher prevalence of schizophrenia, compared with countries of 

lower latitude. Lifetime risk of schizophrenia was estimated to have a median value of 

4 per 1000 persons (McGrath et al, 2008). 

 

A major meta-analysis (McGrath et al, 2004), including all studies reporting the 

incidence of schizophrenia from 1965 to 2001 was performed; urbanicity or gender did 

not seem to be statistically significant factors in terms of the incidence of the disorder. 

However, migration status appeared as an important factor, in terms of developing a 

mental disorder. A separate meta-analysis conducted by Cantor-Graae et al (2005), 

yielded a relative risk of 2.9 (95% CI=2.5-3.4) to develop schizophrenia for migrants, 

irrespective of whether they were first or second generation. 

 

There also seem to be distinct differences on the basis of gender in psychosis-spectrum 

disorders and the ways they manifest themselves. Age of onset of the disorder is the 

most distinct among these characteristics, with males typically developing symptoms in 

average 3-4 years earlier than females (Hafner et al, 1989; Hafner et al, 1992; Hafner et 

al, 1994), a finding independent of cultural background or definition of schizophrenia 

(Leung et al, 2000).  In terms of symptomatology, female patients tend to be more 

susceptible to affective psychosis-spectrum disorders (Amminger et al, 2000), while 

males tend to usually have a poorer prognosis (Goldstein, 1988; Tseliou et al, 2015) and 
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greater deficits in social ability both before first admission (Dworkin, 1990) and later 

on during the life course (Thorup et al, 2007; Hui et al, 2014). 

 

1.1.2 Environmental Risk Factors of Schizophrenia 

There has been a substantial body of research aiming to investigate which 

environmental insults might be detrimental to the development of schizophrenia and 

how these might have an influence on the disorder itself and subsequent 

symptomatology.  These studies are usually of retrospective nature and utilise record 

linkage and hospital records as a measure of the association between psychiatric 

outcomes and early life events. One of the most famous studies conducted in this 

manner was about the Dutch Famine that occurred during the Nazi occupation of 

Netherlands during World War II (Stein et al, 1975; Susser et al, 1996).  The Dutch 

Famine had a particularly devastating effect on children who were affected by it during 

their mother's pregnancy. Compared to a control matched cohort, those in the second 

trimester of pregnancy at the time of exposure to the famine had a twofold risk of 

developing schizophrenia (Susser et al, 1996; Hoek et al, 1998). Additionally, there was 

a similar effect size in the increase of non-clinical schizoid personality traits in the rest 

of the cohort born during that period (Hoek et al, 1996). These findings along with 

neurological defects in the sample, well above the population norm (Stein et al, 1975), 

provide a link between negative long-term outcomes and malnutrition in the prenatal 

period (Brown et al, 2008). 

 

Risk factors that have consistently been shown to be linked with the development of a 

psychosis-spectrum disorder in later life include: 1)season of birth, with a relative risk 

increase of 10 percent for children born in winter (Davies et al, 2003), 2) birth 
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complications  including complications of the pregnancy itself, abnormal foetal 

development, or delivery complications (Geddes et al, 1995), 3) paternal age (Zammit 

et al, 2003), with increased paternal age reported of raising the relative risk as much as 

3 times in comparison with younger parents (Brown et al, 2002), and 4) infection of the 

mother during the second trimester of the pregnancy (Yolken et al, 1995). 

 

There have also been a multitude of studies that have aimed to investigate how 

childhood conditions may play a role in later life mental health outcomes. Such studies 

have looked at how  environmental factors, both at household and at school level might 

influence mental health in later life;  such factors have included minority status in the 

community (Bourque et al, 2010) personal or family history of migration (Cantor-Graae 

& Selten, 2005), parental communication deviance (de Sousa et al, 2014), exposure to 

childhood adversity and trauma mediated by childhood abuse or neglect (Bendall, et al, 

2007; Morgan & Fisher, 2006). A recent meta-analysis has indicated that there is no 

specific type of childhood adversity that is stronger than the others, but it mostly the 

age of exposure and multi-victimization that seem to be more strongly related to 

psychosis risk (Varese et al, 2012). 

 

Finally, research on environmental factors of schizophrenia has branched at looking at 

proximal factors of schizophrenia; that is environmental insults occurring during or just 

before the onset of the disorder. These are insults that are not causal to the development 

of the disorder per se; rather they act as catalyst events that contribute to the onset of 

the disorder and are only important in the event of underlying susceptibility. These 

types of events have been shown to potentially be able to increase the risk almost three-

fold; however research on adult life events has been generally limited with very few 
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studies assessing their role in psychosis (Beards et al, 2013). 

 

Based on these findings and the extrapolated effect that the environment can play in the 

development of a mental disorder, there have been two key theories that have tried to 

explain this phenomenon; the Diathesis-Stress model, first developed in the 19th 

century and later considered and applied in mental health disorders (Monroe et al, 

1991) and the Differential Susceptibility model first proposed in 1997 (Belsky, 1997). 

The Diathesis-Stress model (Monroe et al, 1991; Zuckerman, 1999) proposes that some 

individuals, who have some predisposing factor, either behavioural, genetic or 

endophenotypic, are more vulnerable to environmental stressors which might 

subsequently culminate in the development of mental illness. Differential 

Susceptibility, which is an alternative hypothesis, builds on the Diathesis-Stress model 

(Belsky & Pluess, 2009), expanding on it on the basis of positive psychology (Diener & 

Biswas-Diener, 2008). It proposes an evolutionary approach according to which 

―vulnerable individuals‖ identified by the Diathesis-Stress model are simply individuals 

with greater developmental plasticity and therefore more likely to be influenced by 

their environmental influences (Ellis, 2011). This is consistent with the evolutionary 

model of development, which proposes that the environment regulates the individual's 

survival strategies in stressful conditions, although these strategies may prove 

counterproductive for the individual or the society in the long run (Hinde et al, 1990; 

Main, 2000). Such modes of plasticity have been observed in many studies including 

Gluckman et al (2008), which showed that foetal malnutrition resulted in insulin 

resistance, protective in an environment with scarce resources, while having the 

potential to increase the risk of cardiovascular attacks in a rich one. 
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It is important to consider both the Stress-Diathesis and Differential Susceptibility 

hypotheses not only from a purely psychological/behavioural framework but also on the 

basis of the underlying biology they are hinting at, given that both theories are 

essentially, at least partially, alluding to Gene-Environment interactions, which will be 

discussed later in this chapter and have been shown to be relevant on the manifestations 

of, at least some mental health disorders (Caspi et al, 2002). 

 

1.2 Genetic Epidemiology of Schizophrenia. 

While there has been on-going research investigating the underlying environmental 

factors that underpin psychosis-spectrum disorders, an equally large body of work has 

been trying to investigate the biological and genetic aetiology of the disorder. This 

section will review the different methods that have been used to understand the 

complex genetic architecture of the disorder. This will be discussed in detail and will be 

presented in chronological order beginning with family studies, factors including 

paternal age and inbreeding effects, as well as co-morbidity with other mental health 

disorders. Afterwards, twin and adoption studies will be elaborated upon. Subsequently, 

more contemporary genetic methods will be discussed: candidate gene studies, linkage 

studies as well genome-wide association studies. Finally, this part will conclude with 

description of epistatic effects (gene (x) gene and gene (x) environment), followed by a 

look at next generation sequencing. Polygenic Risk Scores as an approach to 

understand the underlying architecture of schizophrenia will not be included here as the 

second part of the introduction will focus solely on them. 

 

 

 



10 

 

1.2.1 Family Studies 

Family studies are often used as a means to identify the level of risk of relatives 

developing mental disorders that members of their family are suffering from. The most 

frequent type of experimental design in family studies are case-control family studies. 

These, are studies that measure the relative risk of a family member of a person with a 

mental illness to develop that disorder as opposed to a member of a family with no 

incidences of that mental disorder. Family studies have also, historically, been used to 

determine the risk of a disorder being inherited to the offspring. One of the hallmark 

characteristics of schizophrenia has been its complex inheritance pattern, first observed 

through this type of studies. Gottesman (1991) presents a comprehensive picture of 

familial inheritance in schizophrenia presented also here, adapted in Figure 1.1 below. 

 

Figure 1.1 Lifetime Risk for schizophrenia in relation to degree of genetic 

relatedness. The risk increases as the degree of relatedness increases. (Adapted 

from Gottesman, 1991). 
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In comparison to the risk of less than 1 percent in the general population, schizophrenia 

risk increases as the degree of familial relatedness increases: 4 percent for second 

degree relatives and 9 percent for first degree relatives. There seems to be some 

interesting differences between first degree relatives, with parents having a median risk 

of 6 percent, siblings 9 percent and offspring 13 percent (Plomin et al, 2008). The low 

percentage of parents could be attributed to the fact that individuals with a 

schizophrenia diagnosis are less likely to marry. In contrast, the high percentage of 

offspring showcases the fact that when patients with schizophrenia do marry their 

children are also highly likely to be suffering from the disorder. 

 

Additionally, family designs have allowed for retrospective studies of children whose 

mothers were suffering from the disorder and had been labelled as a ―high risk‖ group 

for developing the disorder. Such a study design by Parnas and colleagues (1993) 

followed up 200 children of such origin for more than 30 years and showed a risk of 16 

percent in comparison to a control group, as well as a higher likelihood of a perinatal 

event (Cannon et al, 1993) and attention deficit in childhood (Hollister et al, 1994). 

 

1.2.1.1 Paternal Age Effects/Inbreeding Effects 

Two additional factors closely linked with familial structure that have been well 

established as role-players in the development of schizophrenia are paternal age and 

inbreeding.  

 

There have been two major retrospective studies in the last decade that have thoroughly 

investigated the effects of paternal age. The first, a record linkage (Zammit et al, 2003) 
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of 50,000 adolescents for schizophrenia admissions between 1970 and 1996 highlighted 

that there was an increased risk for schizophrenia linked with advanced paternal age in 

a dose-response relationship. More specifically, with every 10-year increment of 

paternal age, there was also an increase in the odds for developing the disorder by 1.3 

times.  Another similar retrospective cohort (Malaspina et al, 2001) was also able to 

identify a similar pattern of risk increase in 88,000 Israeli-born individuals (658 cases), 

with risk increasing proportionally to the age of the father. This elevated risk on the 

basis of the age of the father has been attributed to de novo genetic mutations arising in 

the paternal germ cells with increasing frequency, as paternal age increases. 

Additionally, it is worth remarking here that such de novo mutations have been 

identified and linked to a host of other more rare neurological defects (Malaspina, 

2001). 

 

Inbreeding as a practice is regarded as a taboo and is generally socially frowned upon in 

Western societies. Thus, most data for inbreeding effects in the development of 

schizophrenia are derived from non-Western societies where this practice is more 

commonly observed and more socially accepted. Recently, two studies from Arabic 

nations were published on that matter; the first (Bener et al, 2012), was conducted as a 

case control recall design in Qatar and showed a considerably higher inbreeding 

coefficient among psychiatric patients in comparison to a matched control sample (41% 

consanguinity vs 29% in the control sample). The second study (Mansour et al, 2010) 

conducted in Egypt, showed similar estimates for consanguinity in that sample, adding 

self-reported measures of inbreeding in a case-control design. This is consistent with 

biological decline due to inbreeding and concentration of deleterious alleles in inbred 

populations. 
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1.2.1.2 Overlapping Aetiology with other Psychiatric Disorders 

There has been an extensive discussion on the overlap of schizophrenia with other 

psychiatric disorders and most prominently Bipolar Disorder (BPD) and Autism-

Spectrum Disorders (ASD), with a number of family studies investigating whether 

schizophrenia aggregates with those disorders in families and up to what extend there is 

a shared heritability element between those three broad categories of mental health 

disorders.  There has been no evidence of overlap in family studies between ASD and 

schizophrenia; despite that, there seem to be common molecular and genetic pathways 

between the two disorders (Carroll et al, 2009), which warrant further investigation as 

to the links between the two disorders. BPD and schizophrenia, on the other hand, not 

only share common clinical features (Hulshoff Pol et al, 2012) and a degree of genetic 

overlap (Carroll et al, 2009; Lencz et al, 2013) but also appear to share some familial 

features. Schizophrenia proband family members are at an increased risk of 

schizophrenia, schizoaffective disorder (an intermediate phenotype disorder with both 

psychotic and affective elements) and recurrent unipolar depressive episodes (Gershon 

et al, 1988; Maier et al, 1993). Bipolar proband family members are also at increased 

risk of the disorder itself but also of schizoaffective disorder and recurrent unipolar 

episodes (Gershon et al, 1982; Winokur et al. 1995). Thus, there seems to be a 

significant indirect overlap of schizophrenia and BPD in their propensity to increase the 

risk for schizoaffective disorder and recurrent unipolar episodes in proband families. 
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1.2.2 Twin Studies 

The next major study design that has been used to determine genetic influences and 

separate them from environmental influences is the twin study design. Identical 

(monozygotic) twins share 100 percent of their genetic make-up. Fraternal (dizygotic) 

twins, on the other hand share, on average 50 percent of their genes, similar to first 

degree relatives. Twin studies utilise the equal environments assumption, which 

assumes that both types of twins are roughly affected on the same level by the 

environment, when reared in the same family (Derks et al, 2006). The first study to 

utilise the twin design, comparing monozygotic and dizygotic twins was conducted in 

1924 by Merriman and aimed to estimate the genetic influence in intelligence quotient 

(Merriman, 1924). Although the twin study design has been extensively implemented in 

many fields, psychiatric genetics being one of them, there have been some criticisms 

pertaining to the equal environments assumption, regarding two main issues that arise 

from it. First, twins tend to be born about a month prematurely in comparison to non-

twin births (Phillips, 1993) and secondly twins tend to have a 30 percent lower birth 

weight than non-twin babies (MacGillivray et al, 1988). 

 

Schizophrenia studies on the basis of the twin design have been critical in establishing 

the level of heritability for the disorder. The concept of heritability was generated from 

the question of how much genetic influences contribute to a trait. Heritability is the 

statistic estimate of that genetic effect size and can be calculated as the proportion of 

phenotypic variance accounted by genetic differences. Sullivan and colleagues (2003) 

carried out a meta-analysis of 14 twin studies and through the use of a liability 

threshold model were able to establish a heritability of liability at 80 percent. In 

essence, this indicates that roughly 80 percent of variance can be solely attributed to 
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genetic factors. The liability threshold model is a classical model implemented in many 

disorders that posits that the genetic risk has a normal distribution, but manifests as a 

disorder only when a critical threshold of risk factors is accumulated (Smith et al, 

1974). 

Nevertheless, it is worth noting that schizophrenia has only ~50 percent concordance in 

monozygotic twins, providing a clear context where environmental effects also factor 

heavily in schizophrenia. Based on the twin design, there have also been additional 

research attempts to understand the factors behind the complementary non-genetic 

liability, that may lead to only one twin developing the disorder. Two studies focusing 

on pairs of discordant twins have demonstrated that differences in manifesting the 

disorder seemed to be linked to birth complications and subtle brain structure 

differences among them (Torrey et al, 1994; Mosher et al, 1971). 

 

1.2.3 Adoption Studies 

Adoption studies constitute another major type of study design that has been used 

extensively in psychiatric genetics. These studies were developed on the basis of 

improving understanding of whether characteristics and behavioural traits are inherited 

or acquired through shared environmental influences within the familial context. 

Adoption creates a two-fold opportunity for the researcher: Initially, this allows to 

examine individuals who, although genetically related, do not share a common 

environment and thus, to calculate an accurate estimate of genetic influence irrespective 

of environment. Additionally, it establishes family members that do share family 

environment, but are not genetically related. Similarity between those individuals and 

their adopted family constitutes a purely environmental influence. The first adoption 

study was conducted for schizophrenia (Heston, 1966), in an attempt to highlight the 
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importance of genetics in the aetiology of the disorder. In this study 47 adopted-away 

children of women that were hospitalised for schizophrenia were interviewed. Of those 

47, five had developed schizophrenia (10.6 %), an incidence markedly higher than the 

population average and the matched control group of that study (0 %).  These results 

have been elaborated further in two additional extensive studies. The first by Tienari 

and colleagues (2004), showed similar results to the initial study and followed a similar 

study design, demonstrating a 10 percent incidence of schizophrenia for adopted-away 

children of probands and about 1 percent incidence for control adoptees.  The second 

study by Kety (1987; Kety et al, 1994), implemented a reverse design focusing instead 

on adoptees that had been diagnosed with schizophrenia (N=47) and an equally sized 

non-psychiatric control group. The parents of the proband group had a 5 percent rate of 

schizophrenia (14/279 biological first degree relatives), while there were almost no first 

degree biological relatives with schizophrenia for the control group (1/234). For both 

groups there were no people with schizophrenia in their respective adopted families, 

highlighting the overwhelming importance of genetic influences over shared 

environment in the development of the disorder.  

 

1.2.4 Linkage Studies 

With the advent of new technological advances in the eighties, genetic linkage analysis 

was one of the initial tools used to localise genes linked to disorders in chromosomes. 

This approach is based on the initial observation that genes that reside physically close 

on a chromosome remain linked during meiosis. By following the segregation of alleles 

from affected individuals to offspring, loci relevant to a disorder could be identified 

(Riley, 2004). There were two types of analysis that tried to identify linkage, parametric 

and non-parametric analyses, on the basis of logarithm of odds (LOD) scores.  These 
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strategies proved very successful in identifying Mendelian inheritance disorder loci, but 

not in schizophrenia which, as is evident from figure 1.1, does not follow typical 

Mendelian patterns. Despite that, there were a number of regions where linkage was 

established in a subgroup of studies. However, as even the largest linkage studies 

(Badner & Gershon, 2002; Lewis et al, 2003; Segurado et al, 2003; Ng et al, 2009), 

failed to replicate significant findings and pinpoint specific loci implicated in the 

disorder, linkage analysis fell into disuse, although there has been a resurgence of the 

technique recently, in the wake of Whole Genome Sequencing technological advances 

(Ott et al, 2015).  Some of the most prominent regions of linkage that were proposed as 

loci of interest for schizophrenia during that era are discussed below. 

 

1.2.4.1 Chromosome 5q22-q31 

The first study that was successful in identifying a positive locus that had a link with 

schizophrenia was in 1988 by Sherrington and colleagues. Through the use of genetic 

linkage, they were able to identify a locus in the long arm of chromosome 5 that was 

linked to schizophrenia in seven Icelandic and British families that had multiple 

incidences of schizophrenia. However, the linkage was not replicated either by other 

groups or themselves (Kennedy et al, 1988; St Clair et al, 1989; Detera-Wadleigh et al, 

1989; Macciardi et al, 1992). In contrast to that, there have been two subsequent studies 

that have found some additional suggestive evidence of a potential linkage between that 

region and schizophrenia. Straub et al (1997) were able to identify high linkage with 

that region in an Irish sample of narrow defined cases. Nevertheless this result was not 

as significant when a broader psychosis diagnosis was considered. Schwab et al (1997) 

also found evidence of linkage from markers in the same region in 14 families from 

Germany, with an observed LOD score of 1.8 which was, however, decreased to 1.27 in 
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an independent sample of 40 families.  

 

 

1.2.4.2 Chromosome 6q21-q22 

Evidence for potential susceptibility in locus 6q21-q22 came from an initial study 

examining 53 US families (Cao et al, 1997). It is noteworthy that this result was 

replicated internally in an independent sample of 63 families from the National Institute 

of Mental Health (NIMH) Schizophrenia Genetics initiative. A follow-up study by the 

same group (Martinez et al, 1999) was also able to replicate the finding, albeit at a 

marginal significance level using 43 new pedigrees. However, later meta-analyses of 

genome scans of linkage found no evidence implicating that region with the disorder 

(Badner and Gershon, 2002; Lewis et al, 2003; Segurado et al, 2003; Ng et al, 2009). 

 

1.2.4.3 Chromosome 6p24-p22 

Evidence for linkage in area 6p24-p22 first came up from Straub and colleagues (1995) 

that used 265 Irish pedigrees. The evidence for that linkage was stronger when ―broad‖ 

psychosis-spectrum diagnoses were included and even stronger when non-psychotic 

psychiatric diagnoses were considered in the analysis. Multiple reports implicating that 

region were published over the next years, after the initial linkage was established 

(Moises et al, 1995; Levinson et al, 1996; Maziade et al, 1997; Lindholm et al, 1999), 

with varying levels of success in replicating the initial finding; in most cases, the 

finding was replicated in parts of the sample but not in all pedigrees. From subsequent 

meta-analyses of genome scans of linkage, only one (Lewis et al, 2003) found some 

weak links to that region. 
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1.2.4.4 Chromosome 8p22-p21 

Region 8p22-p21 was first implicated to be in linkage with schizophrenia in the 

Maryland family sample (Pulver et al, 1995). In this study, they examined 520 loci for 

potential susceptibility loci for schizophrenia. The finding of this region as a potential 

locus connected to schizophrenia was further explored in a multi-site replication 

collaborative study (Levinson et al, 1996). However, despite positive replication results 

and later confirmation from a number of big meta-analyses (Badner & Gershon, 2002; 

Lewis et al, 2003), the evidence for linkage in the region was not as strong, in terms of 

LOD size and not  the same locus was linked in all studies that found evidence in the 

general region.  

 

1.2.4.5 Chromosome 13q14-q32 

The initial investigation where this chromosomal region was first pinpointed as a 

potential candidate for linkage was a mixed sample of British and Japanese pedigrees 

(Lin et al, 1995).  This linkage became of particular interest to researchers, as within it, 

there was the gene coding for a serotonin receptor (HTR2A). The follow-up study by 

the same group (Lin et al, 1997) was able to only partially replicate the initial finding, 

as only a European subset of the sample supported the linkage. Furthermore, the 

markers that were linked to the finding were too far apart in that sub-sample, with a null 

region between them. Further studies on that region by other research groups also found 

mixed results (Kalsi et al, 1996; Shaw et al, 1998; Brzustowicz et al, 1999), with no 

consensus regions and linkage reports positive results spreading over a wide region.  
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1.2.4.6 Chromosome 22q 

Initial discovery of potential linkage for chromosome 22q also came from the Maryland 

Family Sample (Pulver et al, 1994).  This finding yielded two positive replicates on the 

same year (Coon et al, 1994; Polymeropoulos et al, 1994) from Utah and 

England/Wales respectively. This linkage finding was of particular interest at the time, 

as that region has been notably linked with Velo-cardio-facial Syndrome (VCFS).  

VCFS, also known as DiGeorge syndrome is a syndrome caused by microdeletion of 

part of the long arm of chromosome 22, with genes being affected by that deletion 

ranging between 30 and 50 (Maynard et al, 2008). Prominent features of the disorder 

include cardiac defects, abnormal facial expression, aplasia of the thymus, palate 

abnormality and hypoparathyroidism. Additionally, 90 percent of those affected have 

learning difficulties (Lindsay, 2001) and a high percentage of people born with VCFS 

are also schizophrenia probands (Murphy et al, 1999).  Nevertheless, subsequent 

linkage studies in the region have failed to uncover any further strong evidence 

supporting linkage with that region (Jorgensen et al, 2002; Mowry et al, 2004). A meta-

analysis conducted for genome scans also failed to consistently implicate that region in 

any tangible manner (Lewis et al, 2003; Ng et al, 2009).  

 

1.2.4.7 The Present and Future of Linkage Studies 

With newer, faster and cheaper techniques for genome-wide association studies 

developed in the first decade of the 20
th

 century, linkage studies took a back seat in the 

developments of psychiatric genetics. A review of the meta-analyses of linkage genome 

scans for schizophrenia (Crow, 2007) demonstrated that even large meta-analyses failed 

to identify consensus sites of linkage. This period was a turning point for schizophrenia 
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research which shifted gears and instead of trying to identify rare variants with a large 

effect, became more interested in the identification of multiple common loci with small 

effects. Recently, there has been some resurgence in the interest for linkage analysis for 

the investigation of rare variants associated with complex traits that have a high degree 

of penetrance. This has been made possible with the combination of linkage with whole 

genome sequencing and has led to the identification of susceptibility genes for familial 

hypertension (Louis-Dit-Picard et al, 2012) and hearing impairment (Santos Cortez et 

al, 2013), among others. It remains to be seen whether this new resurgence of linkage 

will be extended into psychiatric genetics once more, and how this will further enable 

investigation of rare familial mutations that might be linked to psychosis-spectrum 

disorders. 

 

1.2.5 Association Analysis: The Candidate Gene Approach 

Back in the late 20
th

 century, as newer types of technology started to become available, 

there was an upsurge of research that aimed to investigate the genetic aetiology of 

schizophrenia and identify genes that could be implicated in the disorder, beyond 

linkage analysis. One of the initial approaches was the candidate gene approach. This 

approach, tested for heterogeneity in pre-determined small localised areas, usually in 

case-control designs on the basis of either a pre-existing theoretical framework or an 

initial linkage study, that implicated a region showing some promise. These were 

implemented in the general population and did not use family pedigrees, which was the 

hallmark of linkage studies. They were able to use a larger number of markers 

compared to linkage studies but were limited to small areas of the genome due to the 

technological and financial limits of the era before genome-wide association scans. 

Below some of the more prominent candidate genes from that era are presented along 
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with some additional later evidence regarding possible connections with schizophrenia. 

 

1.2.5.1 The HLA Region 

One of the first genomic areas that were investigated by the use of the candidate gene 

rationale was the Human Leukocyte Antigen (HLA) region of the human genome that 

had been implicated as having a critical role in the development of multiple disorders 

(McGuffin & Stuart, 1986). Initial investigation of the region was able to uncover 

associations of the region with Narcolepsy (Honda, 1988), Multiple Sclerosis (Hillert & 

Olerup, 1993) and other neurological or neuropsychiatric phenotypes. Pertaining to the 

psychiatric genetics of schizophrenia, in the last two decades of the last century more 

than 60 association studies between schizophrenia and that region were conducted. The 

association with the area had, on average a modest effect on risk (RR of 1.7-2.2) and 

despite multiple attempts no specific reasons for the implication of that region were 

identified.  This region remains an important focal point for psychosis studies to this 

day, as recent Genome-Wide Association Studies (GWAS) (Purcell et al, 2009; Ripke et 

al, 2011; Ripke et al, 2014) also did report Single Nucleotide Polymorphisms (SNPs) in 

that region in their findings. Explanation as to the reasons implicating this region with 

psychosis-spectrum disorders have focused on the commonality of pathways between 

inflammation and schizophrenia. There has been some evidence suggestive of a 

measure of neuro-inflammation in schizophrenia (Bechter et al, 2010, Muller and 

Schwarz, 2010; Meyer et al, 2011) and elevated level of cytokines in the blood of 

probands (Potvin et al, 2008) compared to controls. Additional evidence of the 

importance of the region was presented by Sekar and colleagues (2016) which  showed 

that the association of the disorder with the region is, in part driven from the gene C4 

(component 4) found within the region, which plays a critical role in human immune 



23 

 

response. These findings point towards a potential commonly shared pathway between 

inflammation and schizophrenia that even after almost four decades of looking at the 

HLA region bears further investigation.  

 

1.2.5.2 AKT1 

Active interest in the AKT/GSK3β signalling cascade for schizophrenia research did not 

materialise until 2004. Previously, it was well established that this signalling cascade 

was a molecular target of lithium and thus an important target in the research for mood 

disorders. Initial interest was generated from the findings of Emamian et al (2004), who 

reported evidence for reduced AKT1 levels and GSK3β phosphorylation in peripheral 

blood cells of individuals with schizophrenia. This was expanded in the same report 

with an association analysis on the locus of the gene where results of moderate 

significance were detected. This finding was further elaborated into a number of other 

association studies, and a total of 13 association studies with that gene were reported 

(Farrell et al, 2015).  Despite not showing up in the recent PGC mega-GWAS (Ripke et 

al, 2014), AKT1 signalling has remained of interest to psychiatric genetics, supported 

by a number of findings in addition to the original reports and the association analyses 

that followed. Tan et al (2008) linked the AKT1 variant from Emamian et al (2004) with 

cognitive abilities (IQ, executive functioning) in healthy controls, while Thiselton et al 

(2008) also found evidence of reduced AKT1 levels in the prefrontal cortex,  

hippocampus and peripheral blood of patients suffering from schizophrenia. 

 

1.2.5.3 BDNF 

Brain Derived Neurotrophic Factor (BDNF) was first implicated with schizophrenia on 

the basis of its critical role in neuronal development and in neuroplasticity (Green et al, 



24 

 

2011). It was initially implicated with schizophrenia in a study conducted by Sasaki and 

colleagues (1997) where they examined an association of a SNP site located in 

proximity to BDNF between 60 probands and an equal number of controls, with no 

significant evidence of association. Research on BDNF and possible connections to 

mental health continued on, mainly due to its central role in neural development, rather 

than some hallmark finding implicating it with psychosis. Eventually, such a finding 

was uncovered as Rosa et al (2006) implicated the Val66Met substitution 

polymorphism with schizophrenia risk in a family study.  This polymorphism, 

subsequently was very important to BDNF studies in psychosis and resulted in many 

studies investigating cognitive deficits in psychosis, (Egan et al, 2003; Ho et al, 2006, 

Baig et al, 2010; Zhang et al, 2012). In a recent meta-analysis of all studies examining 

the association of the polymorphism with aspects of cognition (Ahmed et al, 2015), 

there was no significant difference between carriers of the Met allele and Val 

homozygotes. 

 

1.2.5.4 DISC1 

Disrupted-in-Schizophrenia 1 (DISC1) was initially discovered in a Scottish family that 

was reported to present with a surprisingly increased incidence of schizophrenia and 

was followed up for 3 decades (Blackwood et al, 2001). The gene was first isolated and 

identified in 2000 (Millar et al, 2000) and a translocation at that locus was shown to be 

a major contributor to the development of schizophrenia or other mental disorders 

within that family (Porteous et al, 2011). However, this discovery was shown to be 

important only in rare familial variants of schizophrenia and not in population sporadic 

cases, as DISC1 was not prominent in either of the big GWAS conducted recently 

(Purcell et al, 2009; Ripke et al, 2014) and there have been questions over its overall 
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usefulness (Sullivan, 2013). Nevertheless, as its catalytic role in these rare sporadic 

cases of schizophrenia is indisputable, DISC1 has been used as a knockout target in 

mouse modelling of schizophrenia (Tomoda et al, 2016). Despite the obvious caveats of 

using a rare mutant as a truly representative model of schizophrenia (Wong et al, 2016), 

it still remains the most popular way to investigate schizophrenia in animal models 

(Tomoda et al, 2016). Further research into the biological functions of DISC1 have 

revealed a very broad spectrum of mechanisms that the DISC1 gene may be a part of, 

including neural development and neuronal signalling (Bradshaw & Porteous, 2012).   

 

1.2.5.5 Dopamine Hypothesis (DRD2, DRD3 & SLC6A3) 

The concept of a dopaminergic network that was a major contributor in schizophrenia 

started developing in the 1960s, when a study (Carlsson et al, 1963) uncovered that one 

of the actions of first generation antipsychotic drugs was the blocking of dopaminergic 

receptors. This generated the first hypothesis on the involvement of dopamine in 

psychosis (van Rossum, 1966). Essentially, it proposed that actions of dopaminergic 

receptors were central to the development of schizophrenia and that they could very 

well be one of the underlying causes for its manifestation. Since this initial report, there 

was a massive amount of research literature surrounding this hypothesis for the next 30 

years. In the era of  association analysis, it was natural that dopamine related genes 

would be among the first to be investigated regarding their link with schizophrenia, in 

order to investigate whether the Dopamine Hypothesis could be validated, in terms of 

genetic association. 

 

DRD2 (Dopamine Receptor D2) was among the first to be investigated, as a number of 

effective antipsychotic medications are antagonists of this receptor (Moriguchi et al, 
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2013). In terms of association studies, 3 SNPs were of particular interest to researchers, 

as they seemed to be linked with functional domains of the receptor, rs1799732, 

rs1801028 and rs1800497. Meta-analyses performed regarding the 3 SNPs (Glatt et al, 

2004; Glatt et al, 2003; Yao et al, 2014; respectively) did not show any association 

between these loci and schizophrenia, indicating that there was no common variation 

link between DRD2 and schizophrenia. 

 

DRD3 (Dopamine Receptor D3), was also investigated in connection to possible 

association with schizophrenia, with association being originally reported in 1992 by 

Crocq and colleagues. However since, there have been mixed results in a number of 

studies, with no significant evidence in larger samples that have subsequently been 

examined (for example, Nunokawa et al, 2010) with regards to that gene. 

 

Finally, SLC6A3 (Dopamine Transporter Gene) was also investigated, as it would be a 

good candidate to be affected in schizophrenia, on the basis of the dopamine 

hypothesis. However, even early reports regarding its possible involvement (Li et al, 

1994), failed to find any association. In the recent analysis of candidate genes, through 

the use of the PGC (Psychiatric Genomics Consortium) dataset (Farrell et al, 2015), 

consisting of 34,241 cases and 45,604 controls, none of the 3 aforementioned genes that 

were investigated due to their ties to the dopamine hypothesis showed any level of 

significance. 

 

1.2.5.6 DRD4 

Dopamine Receptor D4 (DRD4), despite being also a dopaminergic receptor was not 

implicated in the dopamine hypothesis. The initial association report on 115 
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schizophrenia cases and an equal number of matched controls did not show statistically 

significant results (Sommer et al, 1993). In spite the fact that the gene has not been as 

influential in schizophrenia genetics research as others described here, there have also 

been some positive results regarding its possible role in regulating the response to 

antipsychotic medication (Hwu et al, 1998).  Additionally, polymorphisms in DRD4 

have been shown to be related to other psychiatric conditions, including Attention 

Deficit Hyperactivity Disorder (ADHD), Substance Abuse and Stress (Ptacek et al, 

2011). 

 

1.2.5.7 HTR2A 

Serotonin Receptor 2A (HTR2A) was initially proposed as a candidate gene for 

schizophrenia on the basis of pharmacokinetics of a number of antipsychotics that were 

shown to be able to block HTR2A (Leysen et al, 1992).  An initial report from Inayama 

and colleagues (1996) seemed to have potential, as a polymorphism was identified, that 

was significantly positively associated with the development of schizophrenia in an 

initial cohort of 62 schizophrenia cases and 92 controls. A number of later reports 

looking at the HTR2A, localised a possible variant at the HTR2A–1354C/T SNP, as a 

potential confounder of schizophrenia and, additionally as a potential link between 

schizophrenia and bipolar disorder. A recent meta-analysis by Gu et al (2013) pooled 

together all studies that looked at the association of the polymorphism in schizophrenia 

and bipolar disorder and demonstrated that in the pooled sample, as well as most 

individual samples there was no significant association of the SNP with either disorder. 
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1.2.5.8 KCNN3 

KCNN3 (Small Conductance Calcium-Activated Potassium Channel 3) was initially 

considered as a candidate gene due to an initial report by Chandy et al (1998), that 

identified a number of CAG repeats in the KCNN3 gene. As such repeats had been 

demonstrated at the time to be causatively linked to other hereditary neuronal disorders, 

such as Huntington's disease (MacDonald et al, 1996) and some types of ataxia (Giunti 

et al, 1994), it was thought that a similar genetic construct might explain the underlying 

heritability of schizophrenia. This was further corroborated by some earlier evidence 

indicating the presence of potential excess CAG repeats in patients with schizophrenia 

(Morris et al, 1995; O' Donovan et al, 1996). This initial discovery was followed by a 

number of association (Bonnet-Brilhault et al, 1999; Joober et al, 1999; Wittekindt et al, 

1999; Laurent et al, 2003) and linkage studies (McInnis et al, 1999; Stober et al, 2000), 

but in both types of study, no evidence was found suggestive of a potential link between 

the disorder and the CAG repeats within KCNN3, despite the original hypothesis. 

 

1.2.5.9 TNF 

Initial interest in TNF (Tumor Necrosis Factor) was generated by the fact that its 

protein product is a pro-inflammatory cytokine, with neurotrophic or neurotoxic 

qualities that can potentially induce an inflammatory response in the nervous system 

(Loddick et al, 1999). This, coupled with the fact that there was evidence of 

inflammatory dysregulation in schizophrenia (Altamura et al, 1999), led to the 

preliminary investigations of TNF as a candidate gene. Indeed, in the first association 

study by Boin and colleagues (2001) it was reported that there were significant 

differences between cases and controls at the -G308A SNP, located within the TNF 
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gene, in their sample. Subsequent investigations of this polymorphism yielded mixed 

results. A meta-analysis was carried out by the group (Sacchetti et al, 2007) that 

published the initial report and included all studies that had investigated the 

polymorphism until then. The result of the meta-analysis was a weak association (p= 

0.05) between the variant and schizophrenia. In a more recent report of Farrell et al 

(2015), TNF was one of the few candidate genes that did show genome-wide 

significance. This does not necessarily validate TNF, however, as the gene is located 

within the MHC complex region which is significantly associated with schizophrenia 

but also has a very LD (Linkage Disequilibrium) - rich structure. Thus, although 

elements of the region might be genome-wide associated with schizophrenia, TNF does 

not necessarily have to be one of them. 

  

1.2.6 Association Analysis: Genome-Wide Association Studies 

The main problem of association studies up to before 2007, was the fact that they had to 

be limited to a region or a subset of regions due to technological and financial 

limitations, thus using the candidate gene approach described in the previous section. 

This changed in 2007, when the first GWAS for schizophrenia was published (Lencz et 

al, 2007), and such a type of analysis was made possible and widely available, owing to 

advances in technology. In this section, a review of all previously conducted GWAS 

relevant to schizophrenia from 2007 and beyond will be presented both independently 

as well as on the basis of their contribution to the progress of the field. For reference, 

Table 1.2, below, presents all GWAS studies that have been conducted by 2016 in 

schizophrenia and Table 1.3, other GWAS that have implicated psychosis-spectrum 

disorders in some manner. 
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Table 1.2 Schizophrenia Genome-wide Association Studies published up to 2017  

First Author Year Phenotype Sample Replicatio
n 

Max 
Significance 

Gene 

Schizophrenia Study 

Lencz, T 2007 Schizophrenia 178 Cases/ 144 Controls (N) 4x10
-7

 CSF2RA 

Shifman, S 2008 Schizophrenia (sex – specific) 660 Cases/ 2271 Controls (Y) 3x10
-5

 REELN 

Kirov, G 2008 Schizophrenia 574 Trios/ 605 Controls (N) 10
-6

 CCDC60 

Sullivan, PF 2008 Schizophrenia 738 Cases/ 733 Controls (N) 1.7x10
-6

 - 

O' Donovan, 
MC 

2008 Schizophrenia 479 Cases/ 2937 Controls (Y) 1.8x10
-6

 ZNF804A 

Need, AC 2009 Schizophrenia 871 Cases/ 863 Controls (Y) 1.3x10
-6

 ADAMTSL3 

Purcell, SM 2009 Schizophrenia 3332 Cases/3587 Controls (Y) 4.7x10
-8

 NOTCH4 (MHC) 

Shi, J 2009 Schizophrenia 2681 Cases/ 2663 Controls (Y) 4.6x10
-7

 CENTG2 

Stefansson, H 2009 Schizophrenia 2663 Cases/ 13498 Controls (Y) 10
-12

 PRSS16 (MHC) 

Athanasiu, L 2010 Schizophrenia 201 Cases/ 305 Controls (Y) 10
-5

 PCLO 

Ott, J 2010 Schizophrenia 14 Cases/ 23 Controls (N) NA NA 

Ikeda, M 2010 Schizophrenia 575 Cases/ 564 Controls (Y) 6x10
-6

 SULT6B1 

Yamada, K 2011 Schizophrenia 120 Trios (Y) 8x10
-4

 ELAVL2 

Alkelai A 2011 Schizophrenia 155 Cases/ 176 Controls (Y) 10
-7

 DOCK4 

Rietschel, M 2011 Schizophrenia 1169 Cases/ 3714 Controls (Y) 4.5x10
-7

 ARGHAP18(MHC) 

Chen , J 2011 Schizophrenia 1658 Cases/ 1655 Controls (Y) 10
-3

 PTPN21 

Alkelai A (2
nd

) 2011 Schizophrenia 189 Cases in 57 Families (Y) 10
-11

 LRRFIP1 

Ripke, S 2011 Schizophrenia 9394 Cases/ 12462 Controls (Y) 10
-11

 MIR137 

Yue, WH 2011 Schizophrenia 764 Cases/ 1599 Controls (Y) 4x10
-6

 ZKSCAN4 (MHC) 

Shi, Y 2011 Schizophrenia 3570 Cases/ 6468 Controls (Y) 3x10
-6

 - 

Liou, YJ 2012 Schizophrenia (treatment 
resistant) 

522 Cases/ 806 Controls (Y) 2x10
-7

 SLAMF1 

ISGC & 
WTCCC2 

2012 Schizophrenia 1606 Cases/ 1794 Controls (Y) 10
-9

 MHC 

Levinson, DF 2012 Schizophrenia (family based) 1218 Cases/ 990 Controls (N) NA - 

Betcheva, ET 2012 Schizophrenia 188 Cases/ 376 Controls (Y) 10
-7

 HHAT 
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Aberg, KA 2013 Schizophrenia (family based) 11185 Cases/ 10768 Controls (Y) 10
-7

 BRD1 

Ripke, S 2013 Schizophrenia 8832 cases/12067 controls (Y) 2x10
10

 22 loci 

Wong, EH 2013 Schizophrenia 481 Cases/ 2025 Controls (Y) 4x10
-8

 RENBP 

Ripke, S 2014 Schizophrenia 36989 Cases/ 113075 
Controls 

(Y) 10
-30

 108 loci 

Li, J 2014 Schizophrenia (treatment 
resistant) 

79 Cases (TR)/  95 Cases (Y) 5x10
-6

 DDC 

Goes, FS 2015 Schizophrenia 592 Cases/505 Controls (Y) 5x10
-6

 TBX1, GLN1, 
COMT 

Kim LH 2016 Schizophrenia 350 Cases/ 700 Controls (N) 6x10
-8

 MECR 

Yu, H 2016 Schizophrenia 4384 Cases/ 5770 Controls (Y) 10
-9

 6 Loci 

Li Z 2017 Schizophrenia 7,699 cases/ 18,327 controls (Y) 10
-30

 109 Loci 

 

 Notes: 
(1)

 First Author is the first author of the initial publication made using the sample described; 
(2) 

Only the initial sample of the GWAS 

is listed and not the replication samples (if any);
(3)

Includes the p-value of the most significant SNP in the study sample GWAS. 
(4) 

This 

column reports best linked gene on the basis of the results; for the largest GWAS sample, the number of genome-wide associated SNPs are 

reported. 
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Table 1.3 Schizophrenia-Related Genome-wide Association Studies published up 

to 2016 (non-exhaustive) 

First Author Year Phenotype 

Volpi S 2008 Antipsychotics effect on QT after 14 days 

Potkin SG 2008 Mean oxygen level of DPFC (Recall) 

Alkelai A 2009 Response to Antipsychotic Treatment 

Aberg K 2009 Extrapyramidal Side Effects (Antipsychotics) 

Kim, S 2010 Brain Architecture of Psychiatric Disorders 

Huang, J 2010 Cross-Disorder GWAS of Psychatric Disorders 

Wang, KS 2010 Schizophrenia – Bipolar Disorder Comparison 

Aberg K 2010 Antipsychotics effect on QT 

Greenbaum, L 2010 Tardive Dyskinesia 

Curtis, D 2010 Schizophrenia – Bipolar Disorder Comparison 

McClay, JL 2010 Neurocognition and Treatment Response 

Kendler, KS 2011 Alcohol Dependence and Schizophrenia 

Ma, X 2011 Fluid Intelligence in Schizophrenia 

Wang, KS 2011 Age of Onset in Schizophrenia 

Bakken, TE 2011 Cortical Thickness in Schizophrenia 

Le Blanc, M 2011 Neurocognition in Schizophrenia 

Athanasiu, L 2012 BMI and Antipsychotic Treatment 

Wang, KS 2012 Thought Disorder in Schizophrenia 

Bergen, SE 2012 Schizophrenia – Bipolar Disorder Comparison 

Fanous, AH 2012 Symptom Dimensions in Schizophrenia 

Clark, SL 2012 Symptom Severity in Antipsychotic Treatment 

Borgium, AD 2013 Interaction with maternal Cytomegalovirus 

Xu, C 2013 Negative Symptoms in Schizophrenia 

Smoller, JW 2013 Cross-Disorder GWAS of Psychatric Disorders 

Ikeda, M 2013 Schizophrenia and methamphetamine psychosis 

Hashimoto, R 2013 Cognitive Decline in Schizophrenia 

Hass, J 2013 Hippocampal Volume in Schizophrenia 

McGrath, LM 2013 Cross-Disorder GWAS of Psychatric Disorders 

Wang, Q 2013 Grey Matter Volume in First Episode Psychosis 

Sleiman, P 2013 Cross-Disorder Meta-analysis of Psychatric Disorders 

Lencz, T 2013 Cross-Disorder GWAS of Psychatric Disorders 

Ruderfer, DM 2013 Cross-Disorder GWAS of diagnosis and symptoms 

Hashimoto, R 2014 Brain Volume in Schizophrenia 

Avramopoulos, D 2015 Infection in Schizophenia and Bipolar Disorder 

Hatzimanolis. A 2015 Neurocognition of Healthy Individuals 

Chavarria-Siles, I 2016 White Matter Intergrity in Schizophrenia 

 

QT: QT interval; DLPFC: Dorsolateral Prefrontal Cortex; BMI: Body Mass Index. 

Notes: 
(1)

 First Author is the first author of the study described.  
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One of the big hurdles that GWAS faced was finding effects with power significant 

enough to be detected in smaller samples; this issue was amplified by the fact that 

because GWAS performed associations for hundreds of thousands or even millions of 

SNPs, their results needed to be corrected for multiple testing. This led to the 

significance level for genome-wide studies to be set at 10
-8

, to account for testing for all 

SNPs that were available in each study. The first published GWAS for schizophrenia by 

Lencz and colleagues (2007) included a relatively small sample (300 people in total) 

and failed to detect genome-wide significant results. However, it was very important for 

the field for showcasing the feasibility of a schizophrenia GWAS and at the same time 

highlighting a problem that would become one of the hallmark characteristics of future 

GWAS: the search for increasingly bigger sample sizes, in order to detect the small 

effects of individual SNPs that needed to be exceedingly significant to be considered 

valid. The next schizophrenia GWAS by Shifman and colleagues (2008) also failed to 

find genome-wide significant results. However, it was able to detect an interesting 

interaction of a SNP in the REELN gene with gender that showed some promise. In the 

same year (2008), three more GWAS for schizophrenia were published. The first, by 

Kirov and colleagues, utilised a family-based design (trios design), where cases' family 

members are used as the control sample, in essence, transforming the initial family 

design into a case-control study. This study failed to find any SNPs with genome-wide 

significance, reaching a maximum level of significance of 10
-6

. The second, by Sullivan 

and colleagues, also failed to find any genome-wide significant SNPs and reached a 

maximum level of significance similar to those in the Kirov study. The final GWAS 

published in 2008 was another important milestone for genome-wide association 

studies in schizophrenia. This study, by O' Donovan and colleagues, did not reach 
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genome-wide significance, but was the first to use an independent replication sample, a 

standard practice in schizophrenia GWAS nowadays. It was able to replicate its most 

significant findings which included a hit in ZNF804A. This gene has since been 

strongly implicated as a schizophrenia candidate gene with strong ties to cognitive 

constructs (Lencz et al, 2010; Nicodemus et al, 2014), and has also been suggested as a 

candidate gene in a large consortium study (Ripke et al, 2013). In 2009, another 4 

schizophrenia GWAS were published, all of which had additionally some form of 

replication of their findings in other datasets. Two of these studies (Purcell et al, 2009; 

Stefansson et al, 2009) implicated a SNP found in, or near, genes within the MHC 

region of the genome, a region with a lot of genomic information and very complex 

architecture. Out of the four studies, none found a SNP with genome-wide significance 

and only after meta-analysing their original study with the replication sample, were the 

p-values significant enough to exceed the threshold of 10
-8

. In 2010, there were another 

3 GWAS studies (Athanasiu et al, 2010; Ott et al, 2010; Ikeda et al, 2010), that 

performed a GWAS in three distinct and very different populations; Athanasiu and 

colleagues studied a sample from Sweden and used a larger cohort as his ―test‖ set; Ott 

and colleagues reported on an initial pilot cohort of a Sardenian isolated population, 

while Ikeda et al was the first publication in a Japanese population. Later on in 2011, 8 

GWAS of schizophrenia were published, including the first GWAS of schizophrenia in 

Chinese populations (Yue et al, 2011; Shi et al, 2011), as well as two studies in Arab-

Israeli populations (Alkelai et al, 2011a; Alkelai et al, 2011b). In 2012, 4 GWAS were 

published, with a genome-wide hit in the MHC region from the Irish Schizophrenia 

Genomics Consortium (ISGC & WTCCC2, 2012). This year, a GWAS for treatment-

resistant schizophrenia was also published (Liou et al, 2012), reporting possible genetic 

differences among cases with a treatment-resistant phenotype, further investigated in Li 
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et al (2015).  On the same year, an additional GWAS on Ashkenazi Jews was also 

published (Goes et al, 2015). Following these, two further studies were published on 

Chinese populations (Yu et al, 2016; Li et al, 2017) as well as a smaller GWAS on a 

Korean population that yielded surprisingly positive results (Kim et al, 2016).   

 

During these years of GWAS implementation in the field of schizophrenia research, it 

became increasingly apparent that in order to detect significant genome-wide effects, 

larger sample sizes were needed. As this was also true for the investigation of other 

psychiatric disorders as well, the PGC (Psychiatric Genomics Consortium) was formed 

to enable researchers to pool their resources together and come up with larger sample 

sizes than any individual research group would be able to. This led to the inflation of 

populations in studies progressively, as the years went on. The first publication by the 

Consortium (Ripke et al, 2011), though having a relatively large study population, 

failed to implicate any gene with genome-wide significance. The same was true for the 

interim study of the Consortium (Ripke et al, 2013), that while reaffirming the 

ZNF804A hit from O'Donovan et al (2008), again failed to produce genome-wide 

significant results. Finally, a mega analysis by the PGC in 2014, was successful at 

pinpointing 108 susceptibility loci (Ripke et al, 2014), in the largest study of 

schizophrenia genetics to date with more than 35,000 cases and 100,000 controls. 

 

At the same time as all the studies described above, there were additional investigations 

of schizophrenia genetics, performed not by GWAS of the disorder itself, but rather, in 

studies that either directly or indirectly implicated schizophrenia (Table 1.3). These 

investigations included studies that focused on whether different response to 

medication is genetically driven (Volpi et al, 2008; Aberg et al, 2010; Greenbaum et al, 
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2010; Athanasiu et al 2012), genetic differences of cognitive (McClay et al, 2010; Ma 

et al, 2011; Hashimoto et al. 2013), clinical (Wang et al, 2011; Fanous et al, 2012; 

Clarck et al, 2012; Xu et al, 2013) or brain (Potkin et al, 2008; Kim et al, 2010; Bakken 

et al, 2011; Hass et al, 2013, Wang et al, 2013; Hashimoto et al, 2014; Chavarna-Siles 

et al, 2016) endophenotypes and, finally, cross-disorder studies (Huang et al, 2010; 

Curtis et al, 2010; Bergen et al, 2012; Sleiman et al; 2013; McGrath et al, 2013; Lencz 

et al, 2013; Ruderfer et al, 2013). All these studies helped in developing an appreciation 

of the genetic background of schizophrenia and led increasingly to the realisation that 

the genetics of schizophrenia were not driven by variants with large effects; rather it is 

theorised that it is driven by the accumulation of small genetic effects that contribute 

toward the disorder in a liability-threshold model along with additional burden by 

possible epistatic effects, either through gene-gene or gene-environment interactions. 

 

1.2.7 Epistatic Effects 

In this section, current evidence and hypotheses for the possibility of epistatic 

interactions in schizophrenia will be briefly described; the polygenic risk score (PRS), 

which is an important aspect of the current understanding of schizophrenia genetics, 

will be described in more detail in the second part of the introduction. 

 

Since the advent of modern age genomics, there have been several studies aiming to 

look at gene-gene interactions and how these might factor in psychosis. The initial 

approach to these interactions has been to examine epistasis on the basis of previously 

known gene interactions and thus aim only at a small subset of SNP-SNP terms. Within 

the boundaries of that initial pre-requisite, there has been a significant body of research 

that has found interactions that might influence schizophrenia or cognitive sub-domains 
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of the disorder such as the MAPK – CNR1 interaction on brain volume abnormalities on 

marijuana dependent patients with schizophrenia (Onwuameze et al, 2013), the BDNF - 

NTRK2 interaction in the heritability of  schizophrenia with paranoid elements in a 

Chinese population (Lin et al, 2013),  and  three-way interactions between NRG1, 

AKT1 and ERBB4 in schizophrenia heritability (Nicodemus et al, 2010a), among 

others.  Additionally, there have been attempts to expand this line of research by trying 

to include multiple candidate genes within interactions; these include a study by 

Nicodemus et al (2010b) that investigated for epistasis among DISC1 and 5 of the 

genes whose products interact directly with the DISC1 protein, and another by 

Andreasen et al (2012) looking for epistasis among 14 previously implicated candidate 

genes. 

 

One of the biggest caveats of searching for epistasis among genes without prior 

knowledge of a specific interaction is the dimensionality of the problem. 2-SNP 

interactions in a dataset of all SNPs are vast, even if there is a very moderate number of 

SNPs, making it simply not possible to reach statistical significance when testing for 

every possible 2-SNP combination. Machine Learning approaches such as the Random 

Forest algorithm, allow for an alternative and not as computationally or statistically 

inefficient method.  An alternative model of searching for gene – gene interaction was 

put forward in Nicodemus et al (2014), where, after detecting a strong additive 

heritability element within a pathway of genes regulated by ZNF804A, all possible 2-

SNP iterations were investigated in an initial ―training‖ dataset. Then the top interaction 

terms were tested for significance in an additional cohort. 

 

Finally, there has been a separate effort in investigating the interaction of genetic 
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factors with environmental influences in psychosis-spectrum disorders (van Os et al, 

2008; van Os et al, 2009; EU-GEI, 2014). However, there has not been any concrete 

evidence about gene-environment interactions to date in that regard, although there is 

an increasing talk on how current methodologies might shape up new ways of hunting 

for these interactions (Geoffroy et al, 2013;  EU-GEI, 2014; Vinkhuyzen & Wray, 

2015). 

 

1.2.8 Copy Number Variants (CNV) 

Copy number variants can be described as large deletions and duplications of the 

genome with a varying number of copies among individuals in the populations These 

variations can be observed in the general population and are considered to be a source 

of individual genetic variation (Redon et al, 2009). In 2008, a number of studies 

examined the hypothesis that CNVs can contribute to the burden of disease of 

schizophrenia. ISC(2008) found that cases had an increase of 1.15 times to have a CNV, 

a result reaffirmed by two further studies (Stefansson et al, 2008, Walsh et al, 2008) that 

showed a significant increase of microdeletions and microduplications in individuals 

with schizophrenia. These results indicated that rare variants also contribute to the 

heritability of schizophrenia, even if only in a small number of cases (Sebat et al, 

2009).  These results were further corroborated (Kirov et al, 2009, 2011), but CNV 

studies‘ sample size remained small compared to larger GWAS. This was addressed 

when the largest CNV analysis to date (Marshal et al, 2017) was recently published 

(21,094 cases and 20,227 controls), with the results mirroring the initial investigations 

(CNV odds ratio for cases = 1.11) , while reaffirming the role of CNVs in the aetiology 

of schizophrenia. 
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1.3 The Polygenic Risk Score (PRS) 

 

1.3.1 Initial Concept and implementation 

The concept proposing that the genetic liability of schizophrenia lies in a polygenic 

complex inheritance pattern is not new; in fact, the foundations for a polygenic model 

of schizophrenia were first laid by a 1967 report by Gottesman and Shields. In that 

report, they proposed that schizophrenia should be biologically viewed as a liability-

threshold characteristic, in which, a sufficient accumulation of genetic factors that 

individually were not necessarily deleterious, could lead to the manifestation of the 

disorder. In the late 00s, as GWAS attempted and failed to identify single common 

variants that were Genome-wide significant, while the effect size of these that were 

detected was quite low, a new construct was introduced by Purcell and colleagues in 

2009; a polygenic score construct that would try to integrate all common SNP 

inheritance in a single metric. In that initial report, they proposed a polygenic risk score 

(PRS) comprised of all (almost) independent SNPs (74,062 SNPs) in their discovery 

sample, which was their male subpopulation (2176 cases and 1642 controls) that was 

subsequently applied in a target ―test‖ sample of the female subpopulation (1146 cases 

and 1945 controls) of the sample. PRS was positively correlated with schizophrenia, 

with a R
2
 value of 3%. The same construct with corrections for population 

stratification, was later applied in independent samples from other studies, serving as 

test sets, while the discovery sample was redefined as the entirety of the initial cohort. 

Again, the PRS from the discovery sample of the group was significantly associated 

with schizophrenia in these independent cohorts, with R
2 

values increasing in parallel 

with the inclusion p-value threshold of the polygenic score. In addition, when the 

construct was applied in a bipolar disorder case-control sample, it was associated with 
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bipolar disorder caseness, albeit with a lower R
2 

value, but not with caseness of non-

psychiatric disorders, such as heart disease, diabetes and hypertension. This application 

demonstrated not only the relevance of the polygenic score as a construct to capture all 

the common SNP additive heritability from a given sample, but also its potential 

usefulness in examining genetic commonality between multiple disorders.  This initial 

successful application of PRS in schizophrenia and the relative ease of use in applying 

it through the PLINK software (Purcell et al, 2007), gave subsequently rise to an 

increasing number of scientific reports that included PRS, both in the field of 

psychiatric genetics of schizophrenia and elsewhere.  

A polygenic score is usually constructed from the following formula: 

 

PRS =  ∑(𝑤𝑖 ∗ 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑙𝑙𝑒𝑙𝑒𝑠)

𝑖

 

, where PRS is the polygenic risk score, wi are the weights assigned from the discovery 

set and are usually either regression betas in continuous traits or the natural logarithm 

of the odds ratio in binary traits. Afterwards, two regression models are calculated: 

𝑀1: 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 =  𝑃𝑅𝑆 + 𝐶𝑜𝑣 

𝑀2: 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 =  𝐶𝑜𝑣  

 

, where outcome signifies the disorder of interest and Cov other covariates that are 

included in the model beyond the polygenic score itself (for example the count of 

missing SNPs for each individual).  Finally, the amount of phenotypic variance 

explainable by common variation is explained by subtracting the R
2 

of M2 (reduced 

model) from that of M1 (full model). 

Next, a number of studies using PRS will be presented, both in the context of 

schizophrenia and other psychiatric disorders. 
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1.3.2 PRS Applications in Schizophrenia, Psychiatric Genetics and other Complex 

Traits 

As described above, PRS were initially applied in the schizophrenia sample described 

in the 2009 Purcel study. The method was immediately influential on reporting and 

investigating GWAS results in schizophrenia and other complex genetic disorders or 

traits. Below in Table 1.4 is a brief overview of selected publications since the first 

implementation of PRS that have used the method on a number of different traits with 

varying degrees of success. This is not meant to be an exhaustive list of publications 

that have applied a PRS as part of their methodology; rather it is meant as a 

demonstration of the diversity of research in which PRS have been applied. 
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Table 1.4 Major Polygenic Risk Score Studies since 2009 

 

 PRS: Polygenic Risk Score; SCZ: Schizophrenia; BPD: Bipolar Disorder; MDD: 

Major Depressive Disorder; ASD: Autism-Spectrum Disorders; ADHD: Attention 

Deficit Hyperactivity Disorder; PTSD: Post-Traumatic Stress Disorder. 
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What is evident from Table 1.4, is that PRS have been extremely useful as tools in 

multiple fields. Their main uses have been to either investigate additive SNP heritability 

or as predictive constructs in possible genetic cross-disorder implications. A very good 

example of the latter use is in the investigation published by the Cross-Disorder Group 

of the Psychiatric Genomics consortium (2013) whereby the authors created polygenic 

scores for 5 different psychiatric conditions to investigate possible cross-diagnostic 

genetic factors. 

 

1.3.3 Challenges, Criticism and Alternative Approaches 

 

As this method has been integral to several high profile publications, it has also become 

the subject of scrutiny, especially in recent years (Dudridge, 2013). There have been, 

mainly, three major points of criticism as to the application of PRS.  

 

The first point of criticism has highlighted the fact that as a method it undermines the 

sample size by forcing a split into discovery and test cohorts. Ripke et al (2014) 

proposed an alternative approach to that, which would add power to the score. The 

sample at their disposal was comprised of 49 studies of European Ancestry. In this 

sample, they performed a leave-one study out polygenic score analysis where the score 

coefficients were calculated from 48 of these and then applied to the odd study out. 

This process was repeated 49 times, essentially running 49 different PRS analyses and 

then meta-analysed to produce the final PRS estimates. By going through this process, 

they strengthened the pooled coefficient of significance and were able to observe 

heritability estimates independently on each of the samples. 
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The second point, of contention stems from the fact that as a method, polygenic scores 

require from the scientist applying it multiple parameters that may have an impact to 

the end result of the analysis. These include SNP selection on the basis of Linkage 

Disequilibrium and p-value thresholds of inclusion. 

 

For the first, a few recent studies have been published, aiming to either perform pruning 

in a different way or to eschew the process all-together, in favour of applying a form of 

statistical weight to the polygenic score. On the subject of LD pruning, LD-based 

clumping has been proposed as an alternative process, which is also able to conciliate 

between datasets that are genotyped on slightly different platforms by combining SNP 

results that are in perfect LD (Shi et al, 2011). Additionally, there has recently been a 

novel method, LDpred, which has been proposed by Vilhjalmsson et al (2015) whereby 

all SNPs are used with weights that are calculated on the basis of LD information from 

exterior information. This method showed a moderate improvement in prediction in 

larger datasets, but was not able to outperform LD pruning under specific conditions. 

An additional methodological approach has been put forward by Mak et al (2016) 

objecting to the inferences made by LDpred. Instead, they are proposing a mode of 

weighing SNPs on the basis of either local true discovery rate based on Kernell density 

estimation. Again this method seems to be working on par with LD pruning in most 

cases, without either having necessarily an advantage over the other.  The second 

parameter which has been a point of debate is the p-value threshold of inclusion of 

SNPs as there is the danger of adding too many SNPs in the polygenic scores, resulting 

in excess noise in the model. A recent development in that regard is PRSice, a tool 

developed by Euesden J et al (2015), which can calculate the optimal p-value threshold 
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for a polygenic score and generate graphics representing polygenic scores at various 

different thresholds. This tool could solve the matter of PRS p-value thresholds, 

however, as the PRSice is able to identify the most significant model among an 

arbitrarily large number of potential model, there exists the very real danger of over-

fitting. 

 

A third point of contention concerning polygenic scores is based on the fact that there 

are additional methods to calculate additive heritability beyond the PRS construct. A 

recent publication by Pan et al (2015) proposes such a method by introducing the aSPU 

(adaptive Sum of Power Score), an alternative construct that uses exponents of weights 

to the polygenic score and subsequently selects the most appropriate one. 

An additional alternative approach has been proposed over the last few years over 

polygenic scores and has been  demonstrated to be a reliable  alternative way to account 

for additive heritability:  LD Score regression (Bulik Sullivan et al, 2015) and, more 

specifically, Stratified LD Score Regression for Partitioned Heritability (Finucane et al, 

2015). LD Score regression (Bulik Sullivan et al, 2015)  was modelled on the premise 

that variants with elevated linkage disequilibrium with their neighbouring SNPs, the 

more likely it is to be tagging a causal variant and by regressing the χ
2
 of each snp 

against their LD Score,  the authors were able to account for bias due to inflation in 

each SNP.   Stratified LD Score Regression for Partitioned Heritability (Finucane et al, 

2015) built on that and demonstrated a way to apply LD Score regression to look for 

specific enrichments of polygenic contribution in functional and cell-specific elements 

using only summary GWAS statistics and LD Scores. 

 

The upsurge of different methodologies, trying to investigate a common theme (the 
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correct application of PRS) from different angles, has caused some confusion in the 

field. Due to the absence of a singular consensus as to whether there is an optimal 

method to create a polygenic score, more scientific teams either default to the original 

method (Purcel et al, 2009) or implement the method that fits their data best, producing 

potentially spurious results. 

 

1.4 GREML applied through GCTA 

 

1.4.1 Overview 

The origins of the GREML (Genetic-relatedness-matrix Restricted Maximum 

Likelihood) method that the GCTA (Genome-wide Complex Trait Analysis) tool uses 

can be traced back to the original research by Patterson and Thompson (1971), that 

introduced a method for estimating inter-block weights by maximizing the likelihood of 

a subgroup of points. GCTA (Yang et al, 2011) utilises a refined version of GREML 

(Gilmour et al, 1995) taking into account average information from a matrix, in 

conjunction with a Best Linear Unbiased Prediction (BLUP) (Henderson, 1975; 

Meuwissen et al, 2001) to fit a linear model either on the trait of interest or on the basis 

of a liability-threshold model, for a binary polygenic trait, as is the proposed case with 

schizophrenia (Gottesman, 1967). Through this process, the authors posit that all 

genetic contribution to phenotypic variance by common SNPs is quantified. The 

original group that developed the initial method, made a novel application of  it the 

following year (Benjamin et al, 2011) by examining how the method might be applied 

on continuous social behaviour phenotypes and further expanded on its use (Lee et al, 

2012a), using it as a tool of estimation of genetic correlation between disorders. 

Visscher et al (2014) also published a theoretical background for the method developed, 
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providing insight on means for optimally designing experimental protocols that would 

facilitate the use of this method. Finally in 2012, the research group collaborated with 

the Psychiatric Genomics Consortium and the International Schizophrenia Consortium 

to demonstrate how this method might be applicable in the large consortium 

schizophrenia databases to accurately predict schizophrenia common SNP heritability 

estimates. Since then, there has been an upsurge of published research reports that have 

used the GCTA tool in order to estimate the proportion of phenotypic variance captured 

by all SNPs. Recently, an extension of GREML, GREML-IBD(Identity-by-Descent) 

was released, that tries to reconcile common and rare variant research through the use 

of similarity matrices for IBD segments  using whole-genome sequencing data and can 

potentially be of use in detecting rare previously unreported variants (Evans et al, 

2017). 

 

1.4.2 GREML applied through GCTA applications 

As the application of the methodology is fairly straightforward and the software is 

openly available to everyone, a number of studies in every aspect of psychiatric 

genetics have attempted to incorporate this method in their research. In the field of 

schizophrenia genetics, it was initially applied in Lee et al (2012b), as it was already 

described above. Subsequently, it was incorporated as part of the main investigation in 

all subsequent GWAS reports by the Psychiatric Genomics Consortium as a measure of 

the level of variability explained by all the SNPs incorporated in the sample (Ripke et 

al, 2013; Ripke et al, 2014). Beyond psychosis, it has also been used in research 

relevant to psychiatric genetics, with the aim to quantify missing common SNP 

heritability in Parkinson's disease (Keller et al, 2012)  as well as the proportion of 

differences in antidepressant response (Tansey et al, 2013). Davis et al (2013) also put 
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the method to use as a means of calculating the common heritability in Tourette 

Syndrome and Obsessive-Compulsive Disorder, and additionally found a degree of 

correlation between the two disorders. Trzaskowski et al (2013) by applying GREML 

through GCTA calculated the amount of variability conferred by common SNPs in 

anxiety traits manifested in childhood. In the same year, a report that used it to calculate 

common SNP heritability was published, thus quantifying the amount of variability in 

five addiction-related behaviours (McGue et al, 2013). Plomin et al (2013) also 

demonstrated that a huge amount of variability on cognitive abilities was attributable to 

common SNP variation. During that year, two more relevant reports were published 

calculating common SNP heritability for childhood callous-unemotional behaviour 

(Viding et al, 2013) and the likelihood of reporting life-events (Power et al, 2013).  

2014 was another year where the popularity of the method continued to grow and was 

featured in studies including Borderline Personality traits (Lubke et al, 2014) and Social 

Communication traits in Autism-Spectrum Disorders (Pourcain et al, 2014). In 2015, 

reports that incorporated GREML through GCTA were also numerous including ADHD 

in a Norwegian population (Zayats et al, 2015), Alcohol Dependence (Mbarek et al, 

2015) and Cannabis use age of onset (Genome of the Netherlands Consortium, 2015). 

Additionally, a study by Palmer and colleagues (2015) utilised GREML to examine co-

heritability of common SNPs among multiple common addiction disorders. Finally, 

Davies and colleagues (2016) further examined possible co-heritability between 

cognitive ability and educational attainment.  

 

In addition to the its numerous applications in the field of psychiatric genetics,  GCTA 

has been linked in a significant amount of scientific output in other areas, aiming to 

estimate the common SNP heritability in paediatric obesity (Llewellyn et al, 2013), 
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self-reported subjective well-being (Rietvield et al, 2013), the cross-section family 

socio-economic status and intelligence (Trzaskowski et al, 2014; Marioni et al, 2014), 

the cross section of education level and health behaviours (Boardman et al, 2015), age-

related macular degeneration (Hall et al, 2015), drug response in arthritis (Umicevic-

Mirkov et al, 2015), epigenetic age acceleration (Levine et al, 2015), Multiple System 

Atrophy (Federoff et al, 2016) and a host of social-demographic outcomes (Domingue 

et al, 2016).  

 

 

1.4.3 Challenges and Criticism 

As it can be surmised from the above narrative, GREML applied through GCTA has 

become a mainstay in many fields and considered in many cases a de facto way of 

accounting for common SNP heritability. However, the method has recently come 

under scrutiny and a recent report by Kumar et al (2015) heavily criticised the method 

as a given for any problem of missing SNP heritability. Additionally, they pointed out 

that GCTA is very sensitive to even small changes in the initial matrix and highly 

susceptibility to population stratification, as well as highly sensitive to sample and SNP 

selection and measurement errors in the phenotype. The group that is responsible for 

the development of GCTA and the application of GREML, responded to that initial 

report, dismissing most of the critique that was expressed in the Kumar report, but 

stressing that GREML estimates of binary disease traits, and not quantitative traits, 

must be used with caution (Yang et al, 2011). 
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1.5 Thesis Rationale 

 

1.5.1 Thesis Outline 

In this thesis, three different projects were carried out in an effort to investigate the 

current methods used in the genetic epidemiology of schizophrenia and determine ways 

they could be improved. The first project focused on the use of pathway analysis of 

schizophrenia through polygenic scores, carrying out analyses similar to what has been 

previously described in Nicodemus et al (2015). The main difference in this study is 

that this method is applied on a binary outcome rather being extended to a larger 

database (PGC2); that has been previously used in the Nicodemus et al (2015) 

publication. In addition, an attempt was made to use multiple pathways, compare them 

and evaluate their biological validity in the context of schizophrenia. The second 

project focused on different methodologies that have been previously used to construct 

a polygenic score aiming to compare them, first on a simulated dataset derived from GS 

and subsequently in a more extensive simulation environment to examine under what 

conditions each method operates optimally. Finally, in the third study, the main aim was 

to investigate the GREML methodology as applied through GCTA in the context of 

binary characteristics.  In the conclusion, the findings from these studies are evaluated 

in the context of recent developments in the field and steps forward to further current 

understanding of the genetic architecture of schizophrenia are proposed. 
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1.5.2 Aims of the Thesis 

The overarching aim of this PhD Thesis was to investigate current methodologies that 

are being applied currently in schizophrenia genetics, and more specifically, polygenic 

scores and GREML. The study-specific aims were as follows: 

 

I)           To discern whether specific molecular pathways are major contributors to 

the polygenic score of schizophrenia. 

 

II)            To determine whether there is an optimally powerful method of 

constructing a polygenic score or if various different methods are more 

advantageous on the basis of the dataset/ the characteristics of the disorder. 

 

III) To determine whether GREML applied through the GCTA software is a 

viable way to measure heritability in psychiatric disorders and the effect of 

population stratification in its function. 

 

 

 

 

 

 

 

 

 

 



52 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2: 

The Role of Polygenic Molecular Gene-Sets in the Schizophrenia Working Group 

Genome-Wide Study of the Psychiatric Genomics Consortium (PGC2) 
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2.1 Introduction 

Genome-wide association studies (GWAS) have been used to investigate the genetic 

underpinnings of schizophrenia, highlighting putative biological pathways at play. 

These studies have identified multiple individual genes and can be used to locate 

classes of variants that show an excess in schizophrenia cases. A recent GWAS study 

(Ripke et al, 2014) has identified over a hundred unique common single nucleotide 

polymorphisms (SNPs) that occur at higher frequency in cases versus controls with 

consistent genome-wide significance levels. However, the increased disease risk 

associated with any one of these SNPs is very small. 

 

Despite multiple loci being individually weakly associated with schizophrenia, the 

underlying genomic architecture, as defined by additive or interaction effects between 

variants in any individual, remains unclear (Mitchell, 2015). A number of methods have 

been applied in an attempt to capture cumulative common variation that might confer 

vulnerability to the disorder. Among the most prominent of these methods, polygenic 

risk scores (PRS; Purcell et al, 2009) have been shown to be capable of measuring most 

common additive variation and have also been able to pinpoint specific gene-sets that 

might be underlying cognitive traits (Nicodemus et al, 2014).  

 

An additional measure of gene-set involvement in polygenic variance that has been 

consistently implemented is gene-set enrichment analysis (Subramanian et al, 2005). 

However, despite the prominence of the application of enrichment analysis in GWAS 

(O‘Dushlaine et al, 2015; Pouget et al, 2016) and exome-sequencing studies (Curtis, 

2016), these analyses in general lack the means of estimating the level of contribution 
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of these gene-sets to the amount of variance explained; instead their main function is to 

provide an indication of whether the gene-set of interest is more enriched, in terms of 

GWAS p-values than it would be expected by chance alone. This allows for a general 

estimation of a gene-set involvement, but is neither an able nor a sufficient measure to 

quantify such an involvement.  

 

This study aimed to explore how the application of a gene-set focused polygenic score 

analysis might uncover gene-sets functionally driving the polygenic score and quantify 

their contribution. For this purpose, the focus was on eight gene-sets, six of which are 

centred on neuronal genes previously implicated in schizophrenia genetics or biology. It 

was hypothesised that at least some of these sets would be associated with 

schizophrenia case-control status. The remaining two were non-neuronal gene-sets 

associated with cancer and cardiac disease, were hypothesised as not being associated 

with schizophrenia case-control status. The rationale behind the choice of each included 

gene-set is presented below. For comparison, the behaviour of the polygenic risk score 

under H0 was also examined. 
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2.1.1 Neuronal Gene-sets 

The criteria for the choice of the six neuronal gene-sets included being experimentally 

derived, for example genes previously implicated in schizophrenia and being 

sufficiently large in size. In detail, gene-sets were selected from recent studies (Forrest 

et al, 2013; Steinberg et al, 2013; Hill et al, 2014; Sugathan et al 2014) that are based 

on a single gene with strong evidence for association with schizophrenia. SNPs in the 

gene TCF4 (Transcription Factor 4) have been shown to be genome-wide significantly 

associated with risk for schizophrenia (Ripke et al, 2011; Ripke et al, 2014), and 

haploinsufficiency of this gene causes Pitt-Hopkins syndrome, with associated severe 

cognitive deficits (Amiel et al, 2007; Sweatt et al, 2013) as well as risk of psychosis 

(Stefansson et al, 2009). The TCF4 gene-set was created on the basis of the differential 

expression of genes in neuroblastoma cells after the knockdown of TCF4 from Forrest 

and colleagues (2013). A total of 1052 autosomal genes (5652 SNPs) demonstrating 

differential expression were included in the gene-set.  

FMR1 (Fragile X Metal Retardation 1) is a gene coding for FMRP (Fragile X Mental 

Retardation Protein), whose loss of function results in the Fragile X syndrome (Verheij 

et al, 1993), a very serious developmental disorder, often co-morbid with autism 

spectrum disorders (ASD). Additionally, FMR1 mutations have been shown to be 

linked with cognitive impairment and earlier age of onset in schizophrenia (Kovacs et 

al, 2013). The FMRP gene-set was created on the basis of functional gene-sets based on 

developmental expression of genes contingent on FMRP expression (Steinberg et al, 

2013). For the purpose of this analysis, all four gene-subsets described were combined 

into one all-encompassing gene-set which was used for this analysis, containing 680 

autosomal genes (5833 SNPs).  
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miR-137 is a microRNA with high levels of expression in the brain and in neural stem 

cells (Guella et al, 2014). Transcriptional targets of miR-137, such as ZNF804A and 

CACNA1C, as well as the gene itself, have been implicated with schizophrenia, thus 

increasing the appeal of studying regulation gene-sets stemming from changes in 

expression of miR-137 (Kim et al, 2012; Kwon et al, 2011, Ripke et al, 2011). The third 

and fourth molecular gene-sets were chosen on the basis of the findings from Hill et al 

(2014), where two gene-sets were generated on the basis of upregulated (817 genes, 

7796 SNPs) and down-regulated (761 genes, 8533 SNPs) genes after overexpression of 

miR-137 in neural progenitor cells in vitro.  

CHD8 (Chromodomain Helicase DNA Binding Protein 8) codes for a DNA helicase 

that suppresses gene expression by affecting chromatin restructure. It has been found to 

be a significant contributor in autism susceptibility (Wilkinson et al, 2015) and a key 

component of the CHARGE syndrome (a congenital deaf-blindness syndrome), through 

its interaction with CHD7 (Batsukh et al, 2010). It has also recently been shown that 

through a rare variant it may be contributing to schizophrenia risk (Kimura et al, 2016).  

The two final neural gene-sets were generated from the findings of Sugathan et al 

(2014), where CHD8 reduction in neural progenitor cells led to the creation of two 

gene-sets, one of upregulated (1140 genes and 8807 SNPs) and one of down-regulated 

(616 genes, 4986 SNPs) genes. For the latter two gene-sets the decision to split them 

into down-regulated and upregulated gene-sets was undertaken on the basis of the 

findings from their respective experimental reports (Sugathan et al, 2014; Hill et al, 

2014) that described a more pronounced response under one of the conditions. 
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2.1.2 Non-Neuronal Gene-sets 

As null ―control‖ gene-sets, two gene-sets that were related to coronary artery disease 

and cancer were selected. The list of genes for these was curated in the coronary artery 

disease database (http://www.bioguo.org/CADgene/) and the Atlas of Genetics and 

Cytogenetics in Oncology and Haematology (atlasgeneticsoncology.org). Those gene-

sets had in them 534 and 459 genes, respectively (with 8078 and 7316 SNPs). The 

rationale for using these non-neuronal gene-sets was mainly to serve as null ―control‖ 

gene-sets of roughly equal size to their neuronal counterparts. 

 

2.1.3 Aims  

The main aim of the study was to identify and test polygenic scores based on the 

biologically-validated neuronal gene-sets that were expected to show genetic links with 

schizophrenia; an additional aim was to compare them with polygenic scores using 

non-neuronal gene-sets that were hypothesised as not showing significant association 

with schizophrenia. A major question was whether polygenic scores based on these 

biologically-based gene sets would be able to account for more variation explained than 

randomly-selected SNPs. Statistical and bio-informatic approaches were also used to 

examine the behaviour of these gene-sets in the PGC data.  

 

 

 

 

http://www.bioguo.org/CADgene/
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2.2 Methods 

 

2.2.1 The Schizophrenia Working Group of the Psychiatric Genomics Consortium 2 

Case-Control GWAS 

Sample composition and selection is described in detail in Ripke et al (2014). In brief, 

cases were mainly selected based on a diagnosis of either schizophrenia or 

schizoaffective disorder, as the two disorders tend to aggregate together in family 

studies (Kendler et al, 1993) and there is a low inter-rater reliability across the two 

groups on the basis of their initial diagnosis (Faraone et al, 1996). The quality of 

diagnosis for cases was assessed through a questionnaire that examined quality control 

and structured diagnosis procedures for each study (Ripke et al, 2014). Studies with 

different case ascertainment procedures were also considered and included in the final 

sample (Hamshere et al, 2012). For 2 of the studies that were included in the sample, 

cases were included on the basis of clozapine uptake and a prior diagnosis of treatment-

resistant schizophrenia (Ripke et al, 2013). 

 

In total, 39 different studies were included in the final sample, which constitutes the 

largest sub-sample of the PGC2 that was available for secondary data analysis. The 

sample, in which this research was conducted, was composed of 29,125 cases and 

34,836 controls of European ancestry. In that sample, there were 36,318 males, 22,061 

females and 5,582 participants with no sex information. In the interest of having the 

largest possible sample possible, individuals with missing sex information were kept in 

the analysis. Details of subject composition for each individual study and how these 

were collected can be found in Ripke et al. (2014). Details of the individual studies can 
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be found in the appendix (Appendix 2.1). Genotypes were imputed using the 1000 

Genomes project dataset (August 2012, 30,069,288 variants, release ―v3.macGT1‖) as a 

reference for the imputation process, through the use of the IMPUTE2/SHAPEIT 

software (Howie et al, 2011). In terms of quality control, the following were considered 

as essential: SNP missingness < 0.05 (before sample removal); subject missingness < 

0.02; autosomal heterozygosity deviation (|Fhet| < 0.2); SNP missingness < 0.02 (after 

sample removal); difference in SNP missingness between cases and controls < 0.02; 

and SNP Hardy-Weinberg equilibrium (p-value > 10
-6 

in controls or p-value > 10
-10

 in 

cases). The quality control was performed before the data were handed to the 

researcher. 

Figure 2.1 Leave-One Out Cross-Validation Process 

 

Example of leave one out cross-validation process for a sample containing 4 datasets. The same process 

was followed with the 39 PGC datasets. 
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2.2.2 Leave-One-Out (LOO) Polygenic Risk Score Analysis 

For the implementation of the main analysis, two datasets were created for each of the 

39 studies; one with every dataset but the one held out, serving as the training set and 

one with only the participants from the study of interest which would be used as the 

independent testing set, similar to the study design for polygenic risk scores in the 

original PGC2 manuscript (Ripke et al, 2014). Figures 2.1 and 2.2 illustrate (a) the 

process of leave-one out cross-validation and (b) the flowchart that was followed in 

each iteration of the cross-validation process. For each study, first a GWAS was 

performed in the training set to calculate the p-value and natural logarithm (odds ratio) 

of each individual SNP relative to case-control status in all datasets except the one that 

was left out as the test data set for the polygenic score. Subsequently, in order to make 

sure that SNPs in the training set were coding the same reference allele as the risk allele 

in the test study; all SNPs were coded as risk by selecting in every instance the allele 

which had an odds ratio larger than 1. Afterwards, polygenic scores were created for 

nine different p-value cut-off thresholds (0.0001, 0.001, 0.01, 0.05, 0.10, 0.20, 0.30, 

0.40, 0.50). These were generated for the training set in order to reduce the need of 

correction for multiple testing on the held-out test set. A logistic regression model was 

fitted for each of these 9 polygenic scores in each of the 39 training sets that included 

38 studies, including covariates (count of missing genotypes, principal components and 

study indicators, as in the original PGC2 study (Ripke et al, 2014)).  In each study, the 

largest test statistic from the nine polygenic scores in the training set was used to select 

the single polygenic score to be tested on each of the 39 held-out test sets. 

Subsequently, a single polygenic score was created on each of the held-out test sets, on 

the same p-value cut-off that was able to produce the most significant results in the 

respective training set. (See also appendix 2.2) 
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Figure 2.2 Flowchart for Polygenic Score Generation in Each Leave-One-Out 

Iteration 

 

 

Flowchart of the process followed in each iteration of the leave-one-out cross-validation. PRS input files 

are the polygenic scoring file and the individual SNP p-value file. PRS: Polygenic Risk Score; LRT: 

Likelihood Ratio Test 
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2.2.3 Statistical Analysis 

All analyses were performed in PLINK 1.90 (Chang et al, 2015) for polygenic score 

generation and genetic data manipulation and in R 3.2.4 (R Core Team, 2016) for the 

generation of regression models and additional analysis. Additionally, the R package 

fmsb (Nakazawa, 2015) was used to calculate Nagelkerke's R
2
. MetaP (Dongliang G, 

Duke Institute For Genome Sciences & Policy, NC, USA) was used to calculate 

Stouffer's z p-value meta-analysis estimates (Stouffer et al, 1949). For the gene-sets 

described above, first, all available SNPs within 20Kb of genes within the gene-sets 

were identified and extracted from the overall dataset. Afterwards, the SNP set was 

linkage disequilibrium (LD) pruned in PLINK. LD pruning uses a sliding window 

process, where LD between SNPs is examined and, for every pair of SNPs that are in 

LD above some user-defined threshold within that window, one is removed. A sliding 

window of 50 SNPs was used, a sliding step of 5 SNPs and an r
2
 threshold of inclusion 

at 0.25. For the regression analysis, the same principal components as the ones 

originally used in Ripke et al (2014) were utilised, to control for population 

stratification, also adding the study indicators as covariates. Finally, likelihood ratio 

tests between nested regression models in R were used and calculated the Nagelkerke 

R
2
 as well as the p-value for the polygenic score in each of the 39 held-out test datasets. 

 

2.2.4 Meta-Analysis 

To estimate the significance of the results in the overall sample, a meta-analysis of the 

39 results from the test sets only was performed, collected from all the studies through 

the use of Stouffer's z p-value in metaP, also accounting for directionality of effect and 

sample size. Because each training set would have different natural logarithm(odds 

ratios) and p-values, each polygenic score based on the training sets were different; for 
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this reason, a standard meta-analysis is not strictly appropriate, thus p-values were 

combined across held-out test sets. For the R
2 

values the median, interquartile range and 

range were chosen from the held-out test sets as the metrics that would be able to 

accurately depict the performance of the gene-sets in the overall dataset.  

 

2.2.5 Simulation and Validation Studies 

Two additional studies were performed to examine the performance of the methodology 

used and the influence of genic versus non-genic SNPs. The use of genic SNPs has 

been demonstrated before to produce slightly inflated results (Schork, 2013). The first 

analysis was a standard experiment-wise permutation test that was conducted on the 

TCF4 gene-set, consisting of permuting the phenotype 100 times and rerunning the 

entire experimental pipeline, leaving a single study out at a time, on these randomly 

generated phenotypes. If the pipeline is robust to type I error, only 5 percent of these 

permuted experiment-wise results should show a significant result with the gene-set at 

α = 0.05, as would be expected by chance. For the second analysis, 10 random subsets 

of genic SNPs were selected, defined as SNPs found either a) within genes, b) 5 Kb 

upstream of genes or c) 1 Kb downstream of genes, of a mean size of 5, 000 SNPs and 

an equal number of non-genic SNP subsets, defined as SNPs not included in the genic 

subset. The pipeline was run with the main outcome variable, using all methods as 

previously outlined. The purpose of performing this analysis was to establish if there is 

a systematic enrichment of genic SNPs sets showing significant results, regardless of 

the gene or gene-set in which they were embedded. 
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2.3 Results  

Figure 2.3 Overlap of gene-sets. 

A                B      

 

     C 

 

A: neuronal gene-sets; B: non-neuronal gene-sets; C: Combination of the two. 

Percentages in the graph indicate the percentage of the total genes found in each 

overlapping segment. miR-137 and CHD8 indicate all the genes for both the down- and 

the up-regulated gene-sets as there was no overlap between the two. 
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2.3.1 Gene-Set Characteristics 

Initially, the analysis investigated if there was any significant overlap among the 

neuronal and non-neuronal gene-sets. Little overlap was found among the gene-sets, 

indicating that potentially significant results would not be driven by similar sets of 

SNPs and would therefore be independent of each other (Figure 2.3). In the neuronal 

gene-sets, there was an overlap of 15 percent between FMRP and the three other gene-

sets combined, an overlap of 19.7 percent between miR137 and the other gene-sets, an 

overlap of 22.1 percent between CHD8 and the other gene-sets and an overlap of 20.8 

percent between TCF4 and the other gene-sets. Non-neuronal gene-sets showed 

minimal overlap between them, with only 31 genes being shared among all of them 

(less than 10%). Finally neuronal and non-neuronal sets had an overlap of a total of 261 

genes (5.3% of genes used in the study). In addition, it was investigated whether any of 

the gene-sets that were selected were enriched for any specific Gene Ontology Term 

(Gene-Ontology Consortium, 2015) (Appendix 2.3), which would indicate a possible 

implication of specificity for a cellular process. From the six neuronal gene-sets that 

were investigated only the FMRP gene-set showed an enrichment for neuronal 

processes and more prominently for nervous system development enrichment (p-value 

= 10
-60

) and generation of neurons (p-value = 10
-43

). For the remaining five gene-sets 

that were used, the broad terms ―biological process‖ and ―cellular process‖ were those 

that came as the top GO terms for them, indicating that these gene-sets were implicated 

in multiple biological processes.  
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2.3.2 Polygenic Risk Score Analysis 

Table 2.1 Nested R
2
 results for all individual studies for each gene-set.  

Study details Gene-sets 

Study 

ID 

Case 

(N) 

Control 

(N) 
TCF4 FMRP MIR137 

(up) 

MIR137 

(down) 

CHD8 (up) CHD8 

(down) 

Cancer Heart 

disease 

clm2 3426 4085 0.00400 0.00132 0.00266 0.00034 0.00046 0.00000 0.00470 0.00130 

mgs2 2638 2482 0.00840 0.00741 0.00534 0.00596 0.00469 0.00415 0.00401 0.00515 

clo3 2105 1975 0.01693 0.01226 0.01090 0.01455 0.01039 0.04791 0.01627 0.00143 

s234 1980 2274 0.00584 0.00232 0.00207 0.00084 0.00258 0.00113 0.00053 0.00179 

swe5 1764 2581 0.00636 0.00761 0.00618 0.00397 0.00498 0.00379 0.00333 0.00325 

irwt 1291 1006 0.00980 0.01104 0.00764 0.00005 0.00312 0.01148 0.01386 0.00609 

gras 1067 1169 0.00820 0.00433 0.00765 0.00230 0.00407 0.00965 0.00044 0.00246 

swe6 975 1145 0.00970 0.00366 0.02518 0.00414 0.00202 0.00305 0.00175 0.00221 

ajsz 894 1594 0.00434 0.00592 0.00172 0.00850 0.00249 0.00154 0.00227 0.00001 

aber 719 697 0.00623 0.00832 0.00314 0.00093 0.00171 0.01189 0.00026 0.00070 

ucla 700 607 0.00835 0.00573 0.00251 0.00266 0.00005 0.00174 0.00007 0.00327 

uktr 649 649 0.00911 0.00047 0.03779 0.03675 0.00208 0.00358 0.00690 0.00031 

pewb 574 1812 0.00603 0.00211 0.00317 0.00158 0.00100 0.00565 0.00686 0.00108 

cou3 530 678 0.00725 0.00817 0.01952 0.00010 0.00551 0.00599 0.00131 0.00455 

lemu 516 516 0.00011 0.00023 0.00017 0.00935 0.00013 0.00001 0.00182 0.00425 

uclo 509 485 0.00528 0.01287 0.00618 0.01092 0.00459 0.00105 0.00000 0.00158 

lie5 497 389 0.00912 0.00144 0.00028 0.00018 0.00125 0.00495 0.00101 0.00638 

denm 471 456 0.00068 0.01327 0.00062 0.00025 0.00001 0.00010 0.00220 0.00312 

asrb 456 287 0.00402 0.00187 0.00745 0.00503 0.00061 0.00010 0.00183 0.00249 

munc 421 312 0.00558 0.01080 0.00006 0.00737 0.00234 0.00158 0.00397 0.00134 

cati 397 203 0.01392 0.01451 0.02506 0.00855 0.00108 0.02120 0.00005 0.00137 

caws 396 284 0.00268 0.00539 0.00722 0.00231 0.00011 0.00994 0.00153 0.00613 

top8 377 403 0.00772 0.01392 0.00601 0.00016 0.00024 0.00394 0.00003 0.00363 

edin 367 284 0.00528 0.04107 0.00202 0.01422 0.00085 0.01435 0.00378 0.00280 

port 346 215 0.00016 0.00135 0.00185 0.00487 0.00000 0.00586 0.00038 0.00021 

umeb 341 577 0.00684 0.00864 0.00409 0.01769 0.00659 0.00752 0.00195 0.00122 

msaf 325 139 0.00026 0.00064 0.00169 0.00080 0.00009 0.00335 0.00158 0.00009 

ersw 265 319 0.00635 0.00846 0.00327 0.00351 0.00085 0.00003 0.00015 0.00675 

dubl 264 839 0.00921 0.00025 0.00434 0.00224 0.00141 0.01166 0.02123 0.00845 

egcu 234 1152 0.00291 0.00213 0.00041 0.00047 0.00449 0.00037 0.00520 0.00027 

swe1 215 210 0.00133 0.00027 0.00237 0.00326 0.00221 0.03613 0.00243 0.01048 

buls 195 608 0.00579 0.00950 0.01389 0.00028 0.00979 0.00280 0.00821 0.00119 

umes 193 704 0.01759 0.00096 0.00041 0.00078 0.00084 0.00155 0.00026 0.00156 

zhh1 190 190 0.00023 0.00111 0.01705 0.00005 0.00063 0.00041 0.00031 0.00195 

lacw 157 245 0.02095 0.02732 0.00884 0.01177 0.02024 0.01505 0.00536 0.00354 

pews 150 236 0.00076 0.00004 0.00038 0.01161 0.00008 0.00192 0.00126 0.00095 

lie2 133 269 0.00948 0.00167 0.01504 0.00286 0.01548 0.00407 0.00096 0.00015 

butr 70 70 0.00577 0.00397 0.00210 0.00075 0.00495 0.00218 0.00251 0.00005 

cims 67 65 0.00005 0.00006 0.00602 0.00830 0.02008 0.00455 0.00226 0.00164 

Table of results in each individual study; the first column indicates the PGC2 label used for each study. 

The table is sorted by the number of cases. Highlighted boxes had a level of significance p<0.05. Details 

for each study and their respective size can also be found in Appendix 2.1 and the original PGC2 (Ripke 

et al, 2014) study. 
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Figure 2.4 R
2
 and p-values from meta-analysis of all gene-sets. 

 

Numbers on top of the bars denote the meta-analysed Stouffer's z p-value for the gene-set and the 

number of polygenic scores that were significant in independent, held-out test studies. For the genic and 

non-genic sets, the statistics represent the median of 50 sets; the line above the box represents the range 

of these sets for the 50 iterations of each. The final box is the median results for 100 permuted phenotype 

iterations 

 

Results of the polygenic score analyses are presented in Table 2.1 and Figure 2.4. TCF4 

gene-set-weighted polygenic scores reached the highest level of significance in the 

meta-analysis of studies (Stouffer's z p-value = 10
-46

). This particular gene-set was also 

the one where most of the individual studies, as independent test sets in the LOO, were 

significant (29/39), showing evidence for association at p-value < 0.05 (uncorrected, as 

only one polygenic score was tested in each of the held-out test sets; Table 2.1). This 

gene-set was able to explain the highest percentage of variability among the studies 

described (Nagelkerke R
2 

= 0.6%; Figure 2.4). As in the original PGC2 study (Ripke et 

al, 2014), TCF4 itself was found to be genome-wide-significantly associated with 

schizophrenia and thus may be driving the results. To test this, 12 SNPs within TCF4 

were removed and the analysis was repeated, with results in the same level of 

magnitude in terms of significance (Stouffer's z p-value = 10
-40

) and effect size 
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(Nagelkerke R
2 

= 0.6%). FMRP gene-set-weighted polygenic scores were also highly 

significant (Stouffer's z p-value = 10
-33

) with 23/39 individual independent test set 

results showing evidence for association; it explained 0.43 percent of the variability of 

schizophrenia case-control status. For the two miR-137-regulated gene-sets, there were 

also consistent levels of significance, albeit lower than for either TCF4 or FMRP, with 

Stouffer's z p-value = 10
-23

 for the gene-set upregulated in the overexpression of miR-

137 and Stouffer's z p-value = 10
-11

 for the gene-set down-regulated in the 

overexpression of miR-137. These gene-sets explained 0.4 percent and 0.28 percent of 

the variability of schizophrenia case status. For the CHD8 gene-set polygenic scores, 

the gene-set of down-regulated genes in the absence of CHD8 was highly significant 

(Stouffer's z p-value = 10
-33

) and explained 0.37 percent of the variability. The 

polygenic scores created from genes that were upregulated in the absence of CHD8 

were also significant (Stouffer's z p-value = 10
-11

), but only a small number of 

individual held-out test sets were individually significant (7/39) and the overall effect 

explained 0.2 percent of the variability.  

 

Interestingly, gene-sets that were created from the non-neuronal sources were weakly, 

but still statistically significantly, associated with the outcome (Stouffer's z p-value = 

10
-4, 

and 10
-3

, respectively). Six and four out of the 39 polygenic scores were significant 

at p-value < 0.05, uncorrected, in those analyses, respectively.  To address this issue and 

to examine the distribution of p-values across all of the gene-sets investigated, p-value 

bins corresponding to deciles under the null hypothesis were created, where p-values 

are distributed ~U(0,1). For all the gene-sets investigated, there seemed to be a similar 

distribution of SNPs among individual SNP p-value bins. Additionally, there seemed to 

be an increased proportion of SNPs in the top ten percent bin for all of the gene-sets, 
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consistent with the quantile-quantile (Q-Q) plot from the PGC2 mega-analysis (Ripke 

et al, 2014) and the Q-Q plot demonstrating a strong deviation from the expected 

(Figure 2.5). 

 

Figure 2.5 Q-Q Plot of -log10 P-value in the PGC2 Sample of 39 studies 

 
Expected versus Observed P-values in the selected sample which included 39 studies from the PGC2 

original sample. 
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2.3.3 Simulation and Validation Studies 

In the simulation study, for the 100 runs with permuted phenotypes, the type I error rate 

at α = 0.05 was as expected under the null hypothesis of no association, with 4 of 100 

of them having a Stouffer's z p-value value of less than 0.05 (i.e., type I error of 4%). 

To further investigate these results, it was examined whether the small effect that was 

detected in the non-neuronal gene-sets might be related to either some small number of 

genes in those gene-sets that were linked to schizophrenia, or if the effect was due to 

the inclusion of genic SNPs versus non-genic SNPs. To that end, 50 random subsets of 

5000 SNPs from genic and non-genic SNPs were generated, respectively, and 

implemented the same experimental protocol of 39 leave-one-out analyses and 

combining p-values as with the gene-set analysis described before. On average, all sets 

of SNPs that were tested had a level of significance ranging from 10
-2 

to 10
-7

 with no 

individual set exceeding significance of that observed among neuronal sets in this 

study. Genic sets were consistently but only slightly more significant than non-genic 

sets (median Stouffer‘s z p-value = 10
-4 

versus 10
-3

). The R
2 

values were also higher in 

the genic set with a median value of 0.0021 against a 0.0016 value for the non-genic 

set. Finally, a full polygenic score of the sample was run to have a measure of 

comparison of the full gene-set versus the gene-specific gene-sets that were used. A 

total of 3,848,785 SNPs were used to generate the polygenic score which yielded a 

median nested R
2 

value of 0.24. 
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2.4 Discussion 

In this study, polygenic risk scores were used to investigate whether a number of 

neuronal gene-sets of interest play a significant role in the common genetic architecture 

of schizophrenia. There was significant heterogeneity among the gene-sets that were 

used, with a number of them, including the TCF4 gene-set, the FMRP gene-set, the 

gene-set upregulated in the presence of excess MIR-137 and the gene-set down-

regulated in the absence of CHD8 shown to be associated with schizophrenia. In 

contrast, the apparently significant effects that were observed in the non-neuronal gene-

sets (cancer and coronary artery disease), as well as the gene-set down-regulated in the 

presence of excess miR-137 and the gene-set upregulated in the absence of CHD8, were 

not actually higher than a floor effect observed with random sets of genic SNPs.  

 

2.4.1 Gene-Set Analysis 

The TCF4 gene-set was the most significant among those investigated, with a 

Stouffer‘s z p-value of 10
-46

. The nested R
2
 effect observed was three times that of any 

set of random SNPs of the same size. The result retained its significance and magnitude 

of effect size even after removing SNPs within the TCF4 gene itself, indicating that the 

observed relationship exists between genes of the gene-set and the phenotype above 

and beyond the effect that TCF4 by itself might also exert. There is consistent evidence 

for the role of TCF4 itself in the common polygenic background of schizophrenia 

(Ripke et al, 2011; Ripke et al, 2014) and due to the nature of SNPs implicated (non-

coding genetic elements) to the pathway of genes influenced by TCF4 expression 

(Harrison, 2015). 
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The FMRP gene-set was also very strongly associated with schizophrenia. This is an 

intriguing finding, as FMRP has primarily been implicated in autism spectrum 

disorders. There are commonalities among both the clinical features and genomics of 

major psychiatric disorders and a recent cross-disorder Mega-GWAS (Smoller et al, 

2013) that indicated that common variation pre-disposing to mental illnesses might be 

shared to some degree among major psychiatric disorders. Additional evidence of the 

involvement of FMRP targets to schizophrenia can be observed from rare variant 

studies that have consistently implicated FMRP pathways with schizophrenia (Purcell 

et al, 2014; Fromer et al, 2014; Richards et al, 2016). 

 

In the two miR-137 gene-sets that were investigated, there was a strong and positive 

effect only on the gene-set that was up-regulated after miR-137 over-expression. The 

down-regulated gene-set, although reaching levels of nominal significance, did not 

show an effect stronger than what would be expected by chance on a similar set of 

genic SNPs. This result is consistent with findings of other studies of miR137 

expression, that seem to indicate that up-regulation of the gene seems to be linked with 

pathways suspected of being implicated with psychosis (such as the Major 

Histocompatibility Complex) (Collins et al, 2014). 

 

Finally, from the CHD8 gene-sets created on the basis of knockdown, the down-

regulated gene-set was the one that showed evidence of significance. CHD8 has not 

previously been centrally implicated in psychosis as it is associated with a congenital 

disorder (CHARGE syndrome) and linked to autism (Wilkinson et al, 2015). However, 

there is a reasonable argument to be made on the basis of common susceptibility to 

mental health disorders that genes that are central to other major mental health 
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disorders might also affect, on a lesser scale, schizophrenia. There has been recent 

evidence on rare variants on the gene itself (Kenny et al, 2014; Kimura et al, 2016) 

being implicated in psychosis, which adds to the pre-existing notion of the cross-

disorder nature of CHD8 and pathways associated with it.  The down-regulated gene-

set that was strongly associated with schizophrenia in the present study was also the 

one that Sugathan and colleagues (2014), from where the initial genetic gene-set was 

taken, reported to be significantly enriched in autism-related genes.  

 

2.4.2 Floor Effect 

In addition to the investigation of specific gene-sets with schizophrenia, a systematic 

floor effect in polygenic scores was observed. This observation is consistent with 

predictions that would be made based on the recently proposed omnigenic model of 

complex traits (Boyle et al, 2017).  This model states that most genes expressed in cells 

that are relevant to the biology of an illness contribute to heritability and PRS because 

of the likely interaction of multiple signaling pathways within cells that support their 

biological functions. In light of this hypothesis, implicating a greater number of SNPs 

than the ordinary polygenic model would suggest, the results support the hypothesis by 

demonstrating a weak polygenic effect extant in every random subset of genes. This 

omnigenic effect is also supported by Figure 2.5, which demonstrates a marked overall 

increase in SNP test statistics versus expected values, as well as the Q-Q plot in the 

original PGC2 report(Ripke et al, 2014) that also showed a very similar effect across an 

increased number of observations. Finally, the enrichment analysis conducted for the 

gene-sets investigated indicated an enrichment for broadly expressed genes, which also 

corroborates the principle finding of the omnigenic model(Boyle et al, 2017) for 

schizophrenia. 
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Genic SNP sets seemed to explain slightly more variation than their non-genic 

counterparts. This indicates that studies implementing a pathway stratagem should be 

mindful of both these effects when trying to assess whether their gene-set explains 

more variation than a random subset of genic SNPs, with significant differences being 

observed on the basis of SNP localization (Schork et al, 2013). 

 

This study showed that several of the target putative core gene-sets investigated were 

highly significantly associated with schizophrenia, with the strongest effect being 

observed for the TCF4 core gene-set. Even though most of the genes in these sets are 

not associated with risk in current GWAS datasets, they may be pheripheral genes, part 

of the network suggested by the omnigenic model. These findings strongly indicate 

that, despite a very widespread, possibly even omnigenic contribution to risk, it is 

possible to identify subsets of genes making relatively larger contributions - putative 

core genes - which may implicate specific biochemical pathways or molecular 

processes with selectively greater roles in pathogenesis. Our analyses were based on a 

somewhat arbitrary selection of target gene-sets, in that they relied on prior discoveries 

and appropriate experimental datasets. The findings of this study do not exhaustively 

reveal the underlying molecular architecture of schizophrenia risk. More generally, 

though, the method developed here allows a quantification of the contribution of 

specified core gene-sets as well as potentially identifying pheripheral genes, and should 

be practically applicable in the selection of sets of SNPs that yield the greatest signal to 

noise in the construction of a PRS. 
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2.4.3 Limitations 

There are some aspects of the study presented in this chapter which limits its 

applicability. First of all, as has been indicated in the introductory chapter as well as 

Chapter 3, there are a number of different ways to approach the generation of a 

polygenic score (for example Shi et al, 2011 or Mak et al, 2016). As the focus of this 

study  was to apply specific gene-set generated polygenic risk scores in the PGC 

Schizophrenia data-set and the amount of analysis required for each was quite resource 

intensive, I did not include further methods of polygenic score generation in the 

analysis, beyond the original methodology (Purcell, 2009). Despite that, the results 

presented, should be quite precise with regards to the pathways examined, given the 

high level of confidence that the Stouffer‘s z p-value indicated. However the exact level 

of variance explained by those pathways may fluctuate from method to method used, so 

it should be thought of more as a clear indication of the pathways working above and 

beyond the omnigenic effect.  

An additional limitation to this study is that although we did examine a number of 

different biologically validated pathways, there are still other similar pathways that also 

merit investigation in a similar manner but due to time and computational power 

limitations. These could include pathways from prominent candidate genes described in 

the introductory chapter such as DISC1 (Blackwood et al, 2001).  or BDNF  (Green et 

al, 2011) or they could also include gene-sets derived from genes implicated in other 

psychiatric disorders, in order to investigate their cross-disorder properties. 
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2.5 Conclusions 

The main aim of this study was to create polygenic scores from a number of different 

gene-sets that have been previously implicated experimentally in schizophrenia and 

subsequently test them in the context of the PGC schizophrenia data-set. Subsequently 

those gene sets were tested against each other, against random subsets of genic and 

non-genic SNPs and against two sets taken from unrelated disorders (cardiac disease 

and cancer). The results from this study indicate that:  

1) A number of the gene-sets investigated were significantly associated with 

schizophrenia. The strongest effect was linked to the TCF4 gene-set, while 

significant effects were observed for the FMRP, MIR137 upregulated and CHD8 

downregulated gene-sets. 

2)  A floor effect of R
2 

values was discovered in the PGC2 cohort as any set of random 

SNPs would give a low but significant estimate of variance explained.  

3)  A difference between genic and non-genic SNPs, in terms of both p-value and R
2 

was observed, with genic SNPs explaining more variance in any given subset.  

These latter two points should be taken into account when investigating cohorts 

with Q-Q plots that deviate from expected. 
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CHAPTER 3:  

Comparison of Current Methods of Polygenic Score Generation 
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3.1 Introduction 

 

3.1.1 Background 

Genome-Wide Association studies, despite identifying a number of common variants 

that contribute genome-wide to the increase of risk, have thus far not been able to 

account for the majority of common additive variance. One of the reasons for that is 

that many common SNPs are very weakly associated with the phenotype and thus 

unable to reach a nominal genome-wide significance that would single them out. 

Indeed, expanded GWAS studies conducted by consortia that increased sample sizes 

have been able to expand upon initial findings and detect multiple significant loci, 

where almost none were present before (Ripke et al, 2014). However, even these 

genome-wide studies have a large proportion of common variation missing. 

 

Polygenic risk scores (PRS) were introduced as constructs that would be able to 

account for variability explainable by additive common variation that, on its own, 

would be of too small of an effect to sufficiently detect with current sample sizes and 

statistical methodologies. The score is expressed itself as linear additive sum for each 

individual with: 

PRS =  ∑ (𝑤𝑖 ∗ 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑙𝑙𝑒𝑙𝑒𝑠)𝑖 , 

 

where 𝑤𝑖 is a weight calculated on the basis of the natural logarithm of the odds ratio or 

the regression coefficient of each SNP in an independent discovery sample (Purcell et 

al, 2009). 
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Since then, the polygenic score construct has been effectively implemented in a range 

of different traits and conditions ranging from asthma (Belsky et al, 2013) to body mass 

index (Peterson et al, 2011), and from cognition (Kirkpatrick et al, 2014) to psychiatric 

conditions such as bipolar disorder (Aminoff et al, 2015) and schizophrenia (Ripke et 

al, 2014). As the use of polygenic scores has increased over the last decade, there have 

been several proposed improvements suggested on how to optimally build a polygenic 

score and to best account for the maximal amount of variance explainable by additive 

common SNP variation.  

 

The first suggested improvement on the basis that the initial process used to account for 

SNP linkage disequilibrium, Linkage Disequilibrium (LD) pruning (Purcell et al, 2009), 

did not take an informed approach to how SNP pruning was performed. This method, 

using a sliding window technique would look at the first SNP within its window, then, 

find which SNPs were in LD with it and discard them, before moving to the next SNP 

window. This process did not take into account the functionality of the SNPs and could 

potentially lead to loss of useful genetic information. Thus, an alternative process of LD 

clumping on the basis of the most prominent SNPs within a region was proposed (Shi 

et al, 2011). This process clumped together SNPs on the basis of a previous genome-

wide association study (GWAS), taking into account the p-values of all SNPs within 

the clump and selecting the strongest signals, in an effort to rationalise selection. This 

process of clumping has also been demonstrated to be very useful when combining 

studies on different genotyping platforms on a meta-analysis, as to combine the 

statistical power of all SNPs found within a clump (Shi et al, 2011).  Figure 3.1 further 

demonstrates how SNP selection would occur for each of the two methods in a sample 

chromosomal window. 
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Figure 3.1 Example of LD pruning and Clumping 

 

Figure 3.1: SNP selection on the basis of a) LD pruning or b) LD clumping.When pruning is used, 

the first SNP in LD with others for  each window is used (here SNP 1) , whereas in clumping is 

SNP with the higher p-value among those in LD are selected (here SNP 2).  

 

Finally, Mak et al (2016) proposed a different method of SNP weighing that would 

retain more information by including all of the SNPs and weighting them. The basis of 

these weights was the true discovery rates which were obtained by either (a) maximum 

likelihood of the z-values distribution or (b) kernel density estimation of the z-values 

distribution. These methods have an advantage over typical weighting methods such as 

those put forward by Vilhamson et al (2015) of being non-parametric and therefore 

independent from the nature of the data. Detailed scripts of how these weights were 

calculated can be found in the appendix of the original report and in Appendix 3.1. 
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These methods, including different parameter settings of the original LD pruning 

methodology, have never been tested against each other on a number of different 

simulated sample scenarios before. This comparison between these methodologies will 

provide researchers with a guideline as to under what conditions polygenic risk scores 

might optimally work, how effective the measurement would be compared to the real 

underlying variation and what method to use under each condition. 

 

3.1.2 Aims  

The aim of this study was to examine how different polygenic score methods would 

behave under a number of different conditions in a simulation study using real 

genotyping data. More specifically, a comparison of methods was implemented in 

terms of (i) sample size, (ii) LD structure and (iii) underlying polygenic architecture. 

This methodological approach was undertaken aiming to observe how each method 

would operate on a given pre-decided set of conditions as well as observe how different 

thresholds of pruning and thresholding would affect those results. A second aim was to 

investigate how these methods would operate in a larger sample that is similar to those 

from current biobanking efforts. 
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3.2 Methods 

 

3.2.1 Initial Sample 

The initial sample comprised of 7,372 unrelated individuals from the Generation 

Scotland (GS) cohort (Smith et al, 2013). Generation Scotland is a family based study 

that collected sociodemographic and genetic data from about 24,000 volunteers across 

Scotland between 2006 and 2011. DNA from 20,000 of those individuals has been 

analysed by high density genome-wide genotyping (Illumina OmniExpress SNP 

GWAS (700k)). Quality Control (QC) analyses have been performed. To select only 

unrelated individuals, GCTA (Yang et al, 2011) was used to remove individuals with a 

similarity of more than 0.025. The quality control was performed before the data were 

handed to the researcher. 

 

In order to study the effect of differing population size on the polygenic score, three 

random subsamples of varying size were selected (500, 1000 and 2500 individuals). 

These sizes were selected as to represent a small, a medium and a large individual 

GWA study. Furthermore, as it has been previously reported that different LD 

structures may affect GWAS estimates and consequently PRS results (Laurie et al, 

2010),  three chromosomes with different density in genes and therefore LD (Smith et 

al, 2005) were selected; chromosome 13, which has been characterised as gene-poor 

(327 protein-coding genes in 114 Mb), chromosome 19, which has been previously 

described as gene-rich (1472 protein-coding genes in 58 Mb), and chromosome 15 

which would serve as middle point between the two (613 genes in 102 Mb) (Farrel et 

al, 2014).  



83 

 

 

 

3.2.2 Simulation of Phenotypes 

For each of the nine sample/chromosome combinations described, three distinct 

phenotypes were generated. To generate the phenotypes, independent SNPs for each 

chromosome were randomly selected in each iteration of the simulations. Initially the 

three chromosomes were LD pruned at a pair-wise LD value of 0.01 (1 percent) leaving 

only SNPs independent of each other in each chromosome. For each iteration, 3 subsets 

of 20, 100 and 200 SNPs were randomly selected. As these would be the source of 

variation between simulations, there was no thresholding of the SNPs on the basis of 

their Minor Allele Frequency (MAF). Subsequently, phenotypes were simulated using 

the LDAK software (Speed and Balding, 2014). LDAK simulates polygenic phenotypes 

by computing genetic contributions and subsequently drawing effect sizes from a 

Gaussian distribution. Afterwards, LDAK adds noise to produce phenotypes with the 

predefined amount of variance explained by the sum of the additive variance. In order 

for the results between the three phenotypes to be comparable, the total variation 

explained by the sum of SNPs in each phenotype was set to be 0.5. Thus, SNPs 

individually would be explaining 0.025, 0.005, and 0.0025 of the total variance. Figure 

3.2 demonstrates the process of selecting the datasets and creating the simulated 

phenotypes for each dataset.  The process was repeated 500 times with random SNPs 

selected each time to ensure variation between iterations. 
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Figure 3.2 Process of Sample selection and simulation of phenotypes. 

 

 

Figure 3.2: Tree diagram of the process followed; the sample was subsampled for 500, 

1000 and 2500 individuals. For each subsample, 3 chromosomes were selected as 

separate datasets: chromosome 13, 15 and 19. Finally, in each of these chromosomes 3 

phenotypes were created, each one containing 20, 100 and 200 SNPs. This yielded a 

total of 27 phenotypes for each iteration of the process which were tested on the three 

methods. The process was repeated 500 times. 
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3.2.3 Polygenic Score Creation 

Polygenic scores for all methods described below were generated through the use of 

Plink 1.9 (Chang et al, 2014). For the purposes of calculating the R
2 

values, regression 

models were fitted with the simulated phenotype as an outcome and the polygenic score 

and the count of missing phenotypes as covariates. To calculate nested R
2 

estimates, the 

R
2 

of a reduced model that did not include the polygenic score was subtracted from the 

R
2 

of the full model such as:  

 𝑅 = 𝑅       𝑅
 
        

 

3.2.4 Linkage Disequilibrium Pruning and Thresholding 

The first method that was applied on the simulated datasets was linkage disequilibrium 

(LD) pruning, implemented in Plink 1.9 (Chang et al, 2014). To do this, equal sized 

discovery and target datasets were created. The discovery samples were LD pruned at 3 

different LD r
2
 thresholds (0.1, 0.25 and 0.5). The sliding window size and step were 

kept constant at 50 SNPs and 5 SNPs, respectively. Afterwards, polygenic scores were 

generated on the basis of 11 different p-value thresholds (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9 and 1) on the target sets.  

 

3.2.5 Linkage Disequilibrium Clumping 

The second method applied on the simulated datasets was Linkage Disequilibrium (LD) 

clumping that operates by creating clumps of SNPs and then selecting the ones with the 

higher degree of significance in each clump on the basis of prior GWA statistic. 
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Clumps were created in three r
2 

thresholds in the discovery set (0.1, 0.25 and 0.5) to be 

consistent with the LD pruning thresholds. Subsequent polygenic scores generated were 

applied to the target samples. 

 

3.2.6 True Discovery Rate Weights 

The third method that was applied on the simulated datasets was local True Discovery 

Rate (TDR) weights, as originally proposed by Mak et al (2016), where their 

application was able to approximate the results of the best possible p-value threshold, 

which would be very advantageous in studies when this would not be easily estimated.  

Both methods that have been put forward by Mak et al (2016) were applied to the 

datasets: weighing by the maximum likelihood of z-values distribution and weighing by 

kernel density estimation of the z-value distribution. The R scripts originally provided 

by the authors to generate these weights were used for this analysis and can be found in 

Appendix 3.1. 

 

3.2.7 Extended Simulation Application Sample 

To create an extended sample, the most informative chromosome on the basis of the 

results (which was chromosome 19)  and a number of SNPs approximating those 

observed in a real polygenic situation (N=200) were selected. Using the shapeit 

(Delaneau et al, 2012) software, phased haplotypes were created from the available data 

of 7372 individuals who were then randomly combined to generate a cohort of 100,000 

individuals. From this new sample, a random subsample of 40,000 individuals was 

selected as the discovery GWAS and a separate subsample of an equal number was 

selected as the target polygenic score application sample. The phenotype was once 

again created using LDAK (Speed and Balding, 2014). Causal SNPs were selected on 
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the basis of their Minor Allele Frequency (MAF) ranging between 0.4 and 0.5 and were 

kept constant between simulations, while phenotypic variance between simulations was 

ensured by adding a different distribution of the noise vector to each iteration of the 

simulations. In total, 500 such iterations were created. The reasoning behind creating 

this larger sample was to create a situation similar to recent bio-banking studies with 

sample sizes exceeding 20,000 individuals and to investigate whether application in 

such a sample would influence the results. 
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3.3 Results 

 

First, to check that this phenotype simulation was working correctly, the polygenic 

scores for all 27 different scenarios that were created were calculated, using only the 

SNPs assigned as causative in the model each time. The results were within the range 

of 0.48 to 0.51, indicating a high validity of the simulated models, given the true value 

of 0.50.   

 

Initially, the results on the basis of the 3 conditions that were set out are presented, 

irrespective of method. Thus, the results on the basis of (1) LD structure /chromosome 

selection, then (2) on the basis of sample sizes and finally (3) on the basis of phenotype 

are presented. Afterwards the least predictive and most predictive scenarios are 

presented for discussion. In the next section, a comparison across the methods that were 

tested is presented, before finally the methods are compared again in the larger sample. 

Detailed tables of the median of all simulated conditions are available in Appendices 

3.2 and 3.3. 

3.3.1 Effect of different LD structure in PRS estimates 

Figure 3.3 demonstrates how different LD structure, determined by the three 

chromosomes with different genic content that were used (Chromosome 13, 

Chromosome 15, Chromosome 19) affected Polygenic Risk Score estimates. Greater 

genic content and, as a result increasing Linkage Disequilibrium, resulted in an increase 

in R
2
.  When all methods were taken in consideration, the median R

2
 value for 

chromosome 13 was 0.033, 0.035 for chromosome 15 and 0.0415 for chromosome 19. 

These differences indicate that a more conserved structure with higher amounts of LD 
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may lead to better detection of true effects, regardless of method, as when SNP 

dimensionality is reduced, a portion of the effect will still remain due to linkage 

disequilibrium effects. 

 

Figure 3.3 Violin Plot of Median PRS Nested R
2
 by chromosome. 

 

 

 

Comparison of median R
2 

by chromosome using all methods and irrespective of sample size and target 

phenotype.  
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3.3.2 Effect of Increasing Sample Size 

There was a very sharp increase of PRS estimates on the basis of increasing sample 

size. Figure 3.4 demonstrates how the median variation explained by the polygenic 

effect was almost tripled (from 1.3 to 3 percent) when the sample size was increased 

from 500 individuals to 1000. It was doubled again to 7 percent when the sample was 

further increased to 2500 individuals, showing a steady linear increase of variation 

explained which parallels the sample size increase. When examining individual 

methods, the same trend is true univocally for all methods that were investigated, 

demonstrating an effect of sample size to estimates that is independent of the method 

used.  

 

Figure 3.4 Violin plot of Median PRS Nested R
2
 by sample size. 
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Comparison of median R
2 

by sample size using all methods and irrespective of chromosome and target 

phenotype.  

 

3.3.3 Effect of Different Number of Causal SNPs 

There was no overarching effect due to SNP size affecting R
2
 in all instances.  Table 

3.1 below shows the mean and median values of R
2
 on the basis of the number of 

causative SNPs.  Both mean and median tendencies were investigated for a pattern but 

none was evident. To better understand how the three different phenotypes operated, p-

value thresholding was investigated using all three different phenotypes.  

 

Table 3.1 Median and Mean of PRS Nested R
2 

by number of causative SNPs. 

Causative SNPs Median Nested R
2 

Mean Nested R
2 

200 SNPs 0.05 0.05 

100 SNPs 0.03 0.05 

20 SNPs 0.04 0.05 

 

3.3.4 Effect of Differing P-Value Threshold Levels 

Overall, 10 different threshold levels were applied to the polygenic score at 3 different 

LD pruning levels, resulting in 30 different pruning/thresholding results per scenario. In 

Figures 3.5 and 3.6, the effects of thresholding are presented in the datasets were the 

lowest and the highest level of R
2 

were recorded. Figure 3.5 demonstrates the results for 

the sample that that had the worst predictive power of the true variation. Consistent 

with the results described above, that was the sample consisting of 500 individuals at 

chromosome 13. In this threshold, the scenario with 200 SNPs performed consistently 
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better than 20 or 100 SNPs throughout the process with a maximum nested R
2
 of 0.043, 

while both 100 and 20 SNPs reached a maximum at a little over 0.02. Regarding 

thresholding in this scenario, the sample with 200 causative SNPs tended to perform 

better between 0.1<p-value<0.6 while the other two methods performed better at the 

highest thresholds (0.8<p-value<1).   

 

Figure 3.5 Median PRS nested R 
2 

across P-value thresholds at the scenario with 

the least predictive power  

 

 

The results in that threshold were in stark contrast with those in the ―best‖ scenario, that 

is, where the best results, in terms of outcome were produced (Figure 3.6).  Here, the 

sample where 20 SNPs were used outperformed the other two, with R
2
 reaching 0.35, 

while the other two reached a maximum nested R
2
 of 0.15 (100 SNPs) and 0.1 (200 

SNPs) respectively. Regarding thresholding, the lowest threshold used (p-value<0.01) 

was where the maximum level of R
2 

was recorded for both the 20 and 100 SNP 

phenotypes, while the 200 SNP phenotype maximised its nested R
2
 at p-value<0.2. It is 

0
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of note that although in this scenario the 20 SNP phenotypes worked better in the 

lowest thresholds, it goes down and follows the results of the other 2 phenotypes in 

higher inclusion p-value thresholds. 

 

Figure 3.6 Median PRS nested R 
2 

across P-value thresholds at the scenario with 

the most predictive power. 

 

3.3.5 Comparison of methods 

Figure 3.7 displays the results for the methods that were used in these simulations 

ranked from least to most successful in detecting the true outcome across all sample 

combinations.  Weighted PRS had a median nested R
2 

of 0.0025, LD clumping had a 

median nested R
2 

of 0.028 (irrespective of clumping threshold), while LD pruning had a 

median nested R
2 

between 0.028 and 0.04 (depending on the pruning threshold). 

Comparison of the three LD pruning thresholds showed that more aggressive pruning 

enabled better predictability for the model with pruning = 0.1 outperforming the other 

two at almost all of the scenario. 
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None of the methods were able to approximate the true R
2 

value of 0.5 with a 

substantial difference between the true value and the results that on average any single 

method was able to produce.  

 

Figure 3.7 Violin Plot of Median PRS nested R
2
 by method 

 

Comparison of median R
2 

by method irrespective of chromosome, phenotype and   

sample    size 
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3.3.6 Extended simulation application 

For the extended simulation application, as the target was to approximate conditions of 

a real-life GWAS, a population of 100,000 was created through random pairs of 

haplotype combination and a sample of 80,000 was drawn from it. Half of those 

individuals were used as a discovery sample and half as a test sample. A total of 500 

iterations of simulations were run, with a random distribution from a noise vector 

applied in each. Results of these simulations are presented in Figure 3.8a, compared to 

the real outcome. No method achieved a median nested R
2
 greater than 0.1 and thus, 

despite reaching high levels of statistical significance (p-value<10
-10 

on average) failed 

to capture the true amount of variation. In the comparison among the methods, 

maximum dimensionality reduction in the simulations seemed to yield the best results 

with the maximum pruning and thresholding approach (pruning all SNPs in LD of more 

than 0.1 and from those remaining taking only the SNPs with a p-value of less than 

0.01 in the initial GWAS) finding a median R
2
 result of 0.052 (or 5.2%), which was the 

maximum amount of variation that any of the methods was able to explain in the 

extended simulations. 
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0 0.1 0.2 0.3 0.4 0.5 0.6

Pruning 0.1

Pruning 0.25

Clumping

PRS Weights

True Value

Pruning 0.1 Pruning 0.25 Clumping PRS Weights True Value

Figure 3.8 Plot of Median PRS nested R 
2 

in the extended sample model 

(N=40,000) by method including the true value of 0.50 

Comparison of median R
2 

by method in the extended sample size simulation in  

chromosome 19.  

 

3.4 Discussion 

The aim of these simulations was to compare between methods currently being 

employed in polygenic score analysis across a number of different conditions. 

Additionally, those methods were implemented in an extended sample with a size 

equivalent to a modern day GWAS under optimal conditions. None of the methods 

were able to give optimal results in the conditions that were initial set. In the initial set 

of simulations, only the model where 20 SNPs were causative to the polygenic 

characteristic in the most stringent conditions of LD pruning (0.1) and thresholding 

(p<0.01) was able to yield results approximating the true value (0.35 versus 0.5). This 
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was achieved in the scenario where the population size (N=2500) was maximised in the 

most LD-rich of the three chromosomes that were selected (Chromosome 19).  

However, in the extended simulation where the population size was increased to 

100,000 individuals and created a cohort of 40,000 as the discovery sample and an 

equal-sized cohort as the target sample, there was no improvement in the nested R
2 

in 

any of investigated methods. Moreover, the result was swamped by the noise that the 

increased sample size seemed to amplify at the expense of the true signal.  

 

These results are consistent with the models presented in Purcell (2009), which 

suggested that variants get swamped by noise as more SNPs are included in the model 

for most of the performed simulations. Indeed, these simulations are advantaged by the 

fact that they were simulated on samples that have larger number of people and markers 

than those examined in the initial PRS simulations by Purcell et al (2009). Additionally, 

a number of markers were used on a single chromosome in each simulation, as opposed 

to the whole genome. In the analysis, all the SNPs were taken into consideration; 

whereas models presented in the original report were only based on SNPs in linkage 

equilibrium (however the authors report a similar result pattern when all SNPs that 

were available to them were included). Finally, in the original report, the point was not 

to see whether risk scores would be able to detect results in a given sample; rather it 

was to select from a range of models (which included a range of options such as 

exponential models in it) and select the one that would best discern the underlying 

polygenic construct. This report does not contradict that a model along the lines of the 

original report is a viable solution to account for additivity; if only causative SNPs are 

included in the model, the correct nested R
2
 value can be very reliably found. The 

problem comes from very high amounts of noise in data and the fact that current 
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methods fail to amplify the noise to signal ratio in such a way as to permit to draw 

meaningful conclusions from PRS results. This is amplified by the fact that, as 

surmised by Dudbridge et al (2013): ―polygenic risk score analyses are performed 

opportunistically‖. This leads to results that are inconsistent between studies and offer 

additive variance estimates that ultimately can be contradicted even within the same 

datasets with tweaks in PRS parameters.   

 

As polygenic scores have become integral to today‘s genetic research, there is a 

question as to how to maximise their efficacy. The set of simulations presented here 

indicates that increased sample sizes that will help with the identification of genome-

wide significant hits in GWAS will not help improve the overall polygenic score 

modelling if all the information is included in it. This conclusion may seem 

counterintuitive given the fact that gradual increase of the PGC-schizophrenia sample 

has led to better results (Ripke et al, 2011; Ripke et al, 2013; Ripke et al, 2014). 

However, this might not be due to the sample size increase in the PRS application set, 

but, rather, due to bigger and better discovery sets which have led to more accurate 

GWAS estimates, These, in turn, enable the creation of better informed PRS, that 

although capturing a larger percentage of the true effect, still cannot come close to the 

true effect estimates.  On the basis of the results presented here, different approaches 

are warranted if polygenic scores are to remain relevant in future genetic studies. One 

such approach would be to implement stricter cut-off criteria and only select SNPs that 

are genome-wide significant or at least in close proximity to that, which would 

substantially reduce noise in model. However, this approach would possibly endanger 

the loss of potentially useful information in SNPs with lower MAFs which would not 

be within the top ranked ones in a given GWAS. Another alternative approach would 
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be that suggested in Nicodemus et al (2014), proposing the inclusion of only specific 

molecular pathways in the score that are thought to be implicated in the disorder, thus 

keeping only information that is already known to be biologically meaningful. In this 

manner more precise conclusions could be drawn from polygenic score analysis and 

thus help in applying the results of modern genetic epidemiology in a translational 

manner. 

 

3.4.1 Limitations 

Despite the wide range of simulations undertaken in this chapter, there is a number of 

issues that need to be taken into consideration when considering these results. 

First of all, as reported in the introduction there are other methods that could have been 

also been used in comparison to the ones proposed here, allowing for an even broader 

overview. These include but are not limited to methods such as LDPRED (Vilhjalmsson 

et al, 2014), LD Score Regression (Bullik-Sullivan et al, 2015) and PRSice (Eusden et 

al, 2015). 

Next, the simulations themselves could also be designed to include the whole genome 

instead of (or in addition to) focusing on a single chromosome at a time. The reason this 

was not selected was twofold; first, there were concerns about the computational time 

and power that simulations including all chromosomes would take.  Additionally, as LD 

is confined within the same chromosome and it was not within the scope of this project 

to take into account long range linkage disequilibria. 

Finally, regarding the simulations themselves, although the simulated models strive to 

be as close to real-life conditions, there are two closely linked parameters that are 
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inflated in the simulations presented. The first one has to do with the amount of R
2 

 that 

can be explained by each SNP individually, as due to having a low number of SNPs in 

only one chromosome at a time, the individual R
2 

 values were well above those 

expected to be found in a realistic polygenic trait. Additionally, the maximum nimber 

of SNPs included in the models (200 SNPs) may be overly conservative given that the 

omnigenic model of schizophrenia (Boyle et al, 2017) proposes a very expansive 

polygenic background. 

  

3.5 Conclusions 

The main aim of the research presented here was to provide a comparison between 

methods that are currently being used for generating polygenic risk scores and 

determine which one would yield better results under a number of different conditions. 

These included different chromosomal linkage equilibrium and genic structure, 

different sample size and different underlying genotype. Finally, the methods under 

investigation were re-examined in a larger sample which would resemble recent large 

scale GWAS samples. All simulation conditions were repeated 500 times with variation 

stemming (a) from SNP selection in the first set of simulations or (b) from a random 

noise vector stemming in the secondary large simulation. 
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The main findings of the simulations that were conducted under the above conditions 

suggest that: 

1. Sample size increase in the initial simulations increased the estimated median nested 

R
2 
in a linear fashion 

 2. More complex LD patterns also resulted in an increase of the estimated median 

nested R
2
.  

3. Underlying genotypic variance did not yield consistent results, with R
2 

not following 

a specific pattern under all simulated conditions. The underlying genotype with 200 

SNPs was the one that yielded the best results under the majority of simulated models.  

4. Direct comparison of methods showed that weighted and clumped scores 

underperformed when compared with scores pruned under the most stringent 

thresholds. However, even that method was unable to detect that the polygenic score 

was able to explain more than 10 percent of variance, on average, across simulations. 

Additionally, when looking at the scenario with the most predictive power, LD pruning 

at the lowest threshold was able to explain between 10 and 30 percent of the variance, 

depending from the underlying genotype of the trait.  

 6. In the secondary large simulation, all methods underperformed well below the linear 

improvement that could be predicted on the basis of the initial simulations on the basis 

of the sample size.  
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CHAPTER 4: 

Can possible cryptic population stratification affect GCTA GREML estimates?  

Examination of two traits in the Generation Scotland cohort. 
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4.1 Introduction 

4.1.1 Background 

The proportion of phenotypic variance explainable by common additive genetic 

variation has been the focus of multiple studies in the field of genetics (Sullivan et al, 

2008; O‘Donovan et al, 2008). Through constructs such as the polygenic risk scores 

(Purcell, 2009), there have been attempts to quantify this narrow sense heritability but a 

large amount predicted by earlier twin studies was still missing. The GREML (Genetic-

relatedness-matrix Restricted-Maximum-Likelihood) application by Yang et al (2011) 

managed to reconcile the genetic data with previous studies, producing estimates that 

appear to be closer to the true heritability estimates of traits, and thus explaining away 

some of the missing heritability previously reported (Yang et al, 2011). Through the use 

of GWAS-sized samples consisting of thousands of individuals, GCTA attempts to 

extract an extremely small signal of genetic similarity among the noise from hundreds 

of thousands of SNPs. GCTA: a) generates a genetic relatedness matrix (GRM) from 

GWAS case and control genome-wide SNP data, b) prunes all pairwise comparisons for 

relatedness greater than approximately third cousins, c) checks how many more SNPs 

in common the ostensibly ‗unrelated‘ cases have relative to controls and subsequently 

d) attributes any observed increased average genetic similarity of the case cohort 

relative to the control cohort to the underlying characteristic or disorder. Through a 

mixed-linear-model and restricted-maximum-likelihood approach, GREML 

extrapolates from the observed difference in average similarity between cases and 

controls an estimate for the total contribution of common variants to heritability of the 

disorder.  
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GCTA estimates have been used as evidence of the need for GWAS to expand in 

sample size and quality, in order to reveal the identities of a large number of common 

causal variants that may be hidden below genome-wide significance thresholds. This 

issue has prompted a closer inspection of GCTA to determine whether the extrapolation 

of GCTA results to such strong conclusions is justified. It has also brought some level 

of criticism to GCTA with some questioning the stability and reliability of these 

estimates (Krishna Kumar et al, 2015) and others proposing alternatives such as a 

Principal Component Analysis (PCA) to overcome shortcomings of the initial method 

(Dadousis et al, 2014).  

 

Although GCTA allows for the implementation of a variety of methods to control for 

potentially confounding issues, such as the removal of related individuals through the 

exclusion of one member of every pair with relatedness greater than 0.025 (thought to  

be approximately equivalent to third cousins) and the inclusion of twenty principal 

components to control for within-sample population stratification, there are still 

potential confounding issues; as the GCTA signal could in fact be driven by an 

increased number of clusters of distantly related individuals among cases. The presence 

of cryptic population substructure differences between cases and controls would not be 

controlled by the PCA which could only attempt to reconciliate differences within 

populations but not across.  

 

Recently, Evans et al (2017) also proposed a novel approach for GCTA, the GREML-

IBD (Identity By Descent) which attempts to reconcile the previously established 
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GREML methodology with rare variant research through the use of similarity matrices 

for IBD segments across whole-genome sequencing data, in order to detect previously 

unreported rare variants in the population. However, they also reported that their 

inclusion thresholds for relatives could have been insufficient and that inclusion criteria 

merit further investigation.  

 

4.1.2 Aims 

The aim of this project was to investigate whether there is potential cryptic clustering 

within case and control populations after removal of relatives from GCTA and whether 

this could affect GREML estimates of GCTA.  To achieve that, a number of clustering 

approaches was applied to both a GRM and a GRM-IBD and clustered individuals were 

removed to examine whether these might be driving the overall signal. The 

characteristics selected for this study were height and g (general intelligence 

coefficient). These were chosen due to the previously established polygenic nature of 

both traits (Lango Allen et al, 2010 – height; Davies et al, 2011 – intelligence, 

respectively). Additionally, g is of particular interest to the psychiatric genetics field as 

it has been demonstrated that schizophrenia polygenic scores are associated with g and 

that, in turn, g polygenic scores are associated with schizophrenia (Hubbard et al, 

2016). Finally, the GRM IBD was included in this analysis to investigate its usefulness 

and its potential to explain the heritability in the same manner as the SNP-wise 

analysis. 
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4.2 Methods 

4.2.1 Generation Scotland 

The subsample from the Generation Scotland (GS) cohort used for this analysis 

included 7,372 unrelated individuals (Smith et al, 2013). Socio-demographic and 

genetic data were collected from about 24,000 volunteers across Scotland since 2006 

with the data collection phase ending in 2011. DNA samples from 20,000 of those 

individuals was analysed through the use of high density genome-wide genotyping 

(Illumina OmniExpress SNP GWAS (700k)) and subsequently went through Quality 

Control (QC) analyses. The quality control was performed before the data were handed 

to the researcher. 

 

4.2.2 Outcome Variables 

Height and g were selected as outcome variables of choice due to their established 

polygenic nature (Allen et al, 2010; Davies et al, 2011, respectively). Cognitive abilities 

for the generation of the g variable were assessed using four tests. Verbal ability was 

assessed using the Mill Hill Vocabulary Scale (Raven 1965). Immediate and delayed 

scores from the recall section of the Wechsler Logical Memory test were summed to 

provide a measure of verbal declarative memory (Wechsler 1997). The Wechsler Digit 

Symbol Coding test was used to measure processing speed (Wechsler 1997). Finally, 

executive function was measured using the letter-based phonemic verbal fluency test 

(Lezak 1995). The intelligence coefficient was extrapolated by performing a PCA on 

these four domains and taking the first unrotated principal component as an indicator of 

general intelligence (Smith et al, 2013). Height measurements were available for 6,390 

individuals from unrelated individuals with genetic data. Cognitive measurements were 
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available for 6,413 unrelated individuals with genetic data. For the purposes of this 

analysis, both variables needed to be binarised.  Towards that end, the variables were 

split as binary variables in the top and bottom third of their distribution to create a 

binary variable which would act as a proxy of the underlying continuous trait. 

Individuals with height above 172 cm were selected to be the in the ―high‖ height group 

and individuals under 163 cm to be in the ―low‖ height group. The splits for the g 

variable high and low groups were above 0.46 and below -0.35 accordingly.  

 

4.2.3 Analysis Plan 

Upon the definition of the two characteristics, two different approaches were chosen to 

investigate potential cryptic population stratification:  a frequency-based ―raw‖ 

approach and an agnostic clustering algorithm that could potentially identify subtle 

clustering differences between cases and controls. The process of analyses implemented 

is demonstrated in Figure 4.1 and described in detail below.  
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Figure 4.1 Flowchart of analysis for GCTA-GREML sensitivity 
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4.2.3.1 Software Used 

R 3.3.1(R Core Team, 2016), plink 1.9 (Chang et al, 2015) and GCTA (Yang et al, 

2011) were used for the main analysis, data preparation and manipulation. 

 

As the genetic data were initially in genotype form, they were converted to phased 

haplotypes in SHAPEIT V2 (Delaneau et al, 2011) and segments were calculated using 

FISHR2 (Bjelland et al, 2017). The R statistical package was used for the 

implementation of the raw approach.  GCTA-IBD (Evans et al, 2017) was used for the 

analysis and discovery of clusters in the haplotype data. Finally, R and the package 

dbscan (Hahsler & Piekenbrock, 2017) were used for the DBSCAN analysis in both the 

chromosomal block and the genotype SNP analysis. 

 

4.2.3.2 Basic Analysis 

One basic analysis and two types of clustering were implemented for each data type. 

After each clustering implementation, individuals in distinct clusters were removed and 

the GREML analysis was rerun without them.  Before the implementation of the 

analyses, GCTA was used to remove from the sample individuals with a degree of 

relatedness above 0.025. Although a more relaxed parameter has been suggested (0.05), 

recent evidence (Evans et al, 2017) suggests that more stringent criteria may be 

necessary. 
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For the basic analysis, the SNP data from the cohort were used to create a genetic 

relatedness matrix, as described by GCTA (Yang et al, 2011). Subsequently, from this 

matrix the amount of variance explained by additive common variation was calculated. 

This was used as a base measure of variance explained by the outcome measures and a 

means of comparison as to whether subsequent removal of population substructure 

affected GCTA estimates. In the same manner, a GREML-IBD was created as 

described by Evans et al (2017) and the amount of variance explained by IBD segments 

was calculated as a baseline. In detail, to calculate phased data SHAPIT2 (Delaneau et 

al, 2013) was used. Subsequently, FISHR2 (Bjelland et al, 2017) was used to identify 

shared segments across all pairs of individuals. The parameters used were the same that 

Evans and colleagues (2017) had used (err_hom  4  -­err_het  1  --min_snp  128  --

min_cm_initial  1  --min_cm_final  1  --window  50  --gap  100  -­h_extend  -

­w_extend  –homoz  -­emp-­ma-­threshold  0.06  -­emp-­pie-­threshold 0.015  --

count.gap.errors  TRUE), as they reported that at that length (1 centiMorgan) and above 

the false positive rate of segments  was low (<0.05).  Finally, the length of all segments 

shared by each pair was summed in Mb (Megabases) and divided by the total length of 

the genome. This created a GRM whose elements would represent the amount of IBD 

variance shared between individuals. 

 

4.2.3.3 Clustering Analyses 

In the first clustering analysis, the GRM was split into a ―case‖ and a ―control‖ GRM. 

On the basis of those new matrices, the top 5 percent of frequencies was isolated. 

Within that percentage the instances that each individual ID appears were calculated. 

This provided a measure of representation of each individual, in terms of the top 5 

percent of similarity. From that measure of representation at the top percentage, 
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individuals that were distributed beyond the 99
th

 percentile were selected and 

subsequently removed. The process was repeated for both case and control matrices. 

Subsequently REML was rerun. This approach was used for both SNP and IBD 

matrices. 

 

In the second clustering analysis, the DBSCAN algorithm was used. The DBSCAN 

family of clustering algorithms (Simoudis et al, 1997) have been used for k-nearest 

neighbour search through the use of a k-dimensional tree. The DBSCAN clustering 

process begins from an arbitrary starting point, examining the epsilon neighbourhood of 

that point (points within a set ―ε‖ area). If the number of points found within the epsilon 

neighbourhood is greater to the value initially set as ―minPts‖, a cluster is created. Once 

the creation of the cluster is established, DBSCAN expands the cluster to include all the 

points in the epsilon neighbourhoods of each other cluster member as well. The process 

stops once there are no more points within the ε vicinity of any of the cluster points. 

This process continues for the whole sample until all points have been either assigned 

to a cluster or classified as noise (i.e. no minimum points found within their epsilon 

neighbourhood). In this analysis, the DBSCAN algorithm was implemented in the case 

and the control GRMs separately. The parameters used in this analysis were a minPts 

value of 3 (as the algorithm suggests to empirically use a minPts value equal to the 

number of dimensions of the data plus one) and a epsilon neighbourhood of 0.118-

0.120 (SNP GRMs) and 0.41-0.42 (IBD GRMs), on the basis of the knee of the k-

nearest neighbour distance plot (Appendix 4.1). Members of clusters identified were 

removed before the REML analysis was re-run.  This approach was also used for both 

SNP and IBD matrices. As DBSCAN needs half matrices to be implemented, a 
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transformation process was implemented in the GRMs to convert them in the ideal 

format for the DBSCAN analysis (Appendix 4.2). 

 

4.3 Results 

4.3.1 GRM REML 

Initially REML analysis was performed in the GRM of the sample for both the 

binarised new traits as well as the initial continuous traits to ensure that there was a 

similar (or increased) amount of variance explained in both instances.  

 

Table 4.1 Initial GRM REML Analysis 

Characteristic Sample Size Variance 

explained 

Standard Error P-Value 

Height 6390 0.375 0.055 1.15 x 10
-13 

Height Binarised 4131 0.492 0.084 6.1 x 10
-10 

G 6413 0.404 0.054 3.3 x 10
-16

 

g Binarised 4337 0.494 0.079 1.2 x 10
-11 

  

As it can be observed in Table 4.1, the differences between cases and controls are even 

more pronounced in the binarised sample; this is due to the fact that the binary 

characteristic has a clearer separation (as all middle values were discarded from the 

sample), therefore making the differences among the top and the bottom of the sample 

more pronounced. The binarised results are less significant than the continuous traits, 
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but that is expected due to the fact that the samples were reduced by one third to create 

the binary traits.  

 

4.3.1.1 Raw Approach 

For the raw approach, the top 5% of the GRM for case-case and control-control 

comparisons were isolated. A frequency chart from those was generated and the 1% top 

hits were kept.  These individuals had an above-average amount of similarity with a 

high percentage of their peers within their binarised allocated group and were removed 

from the cohort before rerunning the REML analysis, to investigate how that would 

affect the amount of variance explained.  As the analysis was performed equally in the 

balanced high and the low matrices, the same number of individuals was removed from 

each (15 ―cases‖ and 15 ―controls‖ for g and 13 ―cases and 14 ―controls‖ for height). 

 

Table 4.2 GRM REML “Raw” Analysis 

Characteristic Sample Size Variance 

explained 

Standard Error P-Value 

Height Binarised 4131 0.492 0.084 6.1 x 10
-10 

Height Binarised (Top 

Individuals Removed) 

4104 0.491 0.085 8.8x 10
-10 

g Binarised 4337 0.494 0.079 1.2 x 10
-11 

g Binarised (Top 

Individuals Removed) 

4307 0.498 0.080 

 

1.2 x 10
-11 

  

There was no shift in either variance explained or significance of results from the 

removal of those individuals in either of the two characteristics examined. 
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4.3.1.2 DBSCAN 

Using the pre-specified epsilon neighbourhood and minimum points, DBSCAN was 

run in both case-case and control-control similarity sub matrices. For height, no 

clustering was detected at either the high or low groups with all points within defined as 

noise points from the algorithm. For g, 1 cluster of 6 individuals was identified in the 

low g group while no clustering was observed in the high g group.  

 

Table 4.3 GRM REML DBSCAN Analysis 

Characteristic Sample Size Variance 

explained 

Standard Error P-Value 

g Binarised 4337 0.4939 0.079 1.2 x 10
-11 

g Binarised (Cluster 

Removed) 

4331 0.4943 0.079 

 

1.2 x 10
-11 

 

Again, as with the raw approach above no specific change was observed for g when the 

cluster of individuals from the low group was removed, indicating a robustness of 

GRM-REML to the types of clusters detected by DBScan. 

 

4.3.2 GRM-IBD REML 

From the IBD similarity lists, GRM-IBD matrices were generated. As these were 

similar to GRMs for regular REML analysis, REML was implemented using GCTA.  

For this estimation, only the binary variables were used. Below is a table of these 

results (Table 4.4).  
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Table 4.4 GRM-IBD Initial Analysis (1 cM) 

Characteristic Sample Size Variance 

explained (IBD) 

Standard Error P-Value 

Height Binarised 4131 0.524 0.144 4.2 x 10
-5 

g Binarised 4337 0.515 0.221 1.05x10
-6 

 

These results indicate that IBD variation within segments accounts for 52% of the 

variance explained in height and 51% of the variance explained in g.  There is a 

significant decrease in p-value and an increase of the standard error of those 

calculations, indicating a lower amount of certainty in these. Indeed, as Evans et al 

(2017) indicated, these varied on the basis of the cM length of chunk definition with 

increase of minimum chunk length resulting in more erratic prediction results with 

lower degrees of confidence.    

 

4.3.2.1 Raw Approach 

The raw analysis followed a similar process to the one implemented for the GRM 

matrix, with the top 5% of the GRM-IBD for case-case and control-control 

comparisons isolated.  Subsequently, a frequency chart from those was generated and 

the 1% top hits were kept.  High percentage similar individuals were removed from the 

sample and REML was rerun in the reduced matrices.  

 

 



116 

 

Table 4.5 GRM-IBD “Raw” Analysis 

Characteristic Sample Size Variance 

explained (IBD) 

Standard Error P-Value 

Height Binarised 4131 0.524 0.144 4.2 x 10
-5 

Height Binarised (Top 

Individuals Removed) 

4097 0.502 0.165 4.17x10
-5 

g Binarised 4337 0.515 0.221 1.05x10
-6 

g Binarised (Top 

Individuals Removed) 

4298 0.486 0.231 1.05x10
-6 

 

The removal of a small proportion of individuals in this analysis had a bigger effect 

than in the SNP GRM. However, overall estimates remained high while the standard 

errors remained consistently high.  

 

4.3.2.2 DBSCAN 

Finally, using the pre-specified epsilon neighbourhood and minimum points, the 

DBSCAN algorithm was applied in both case-case and control-control IBD similarity 

sub-matrices. In the height data, no clusters were observed in the low height matrix of 

individuals. In the ―high‖ height matrix, 2 and 3 clusters with a total of 15 and 24 

individuals were observed. These individuals were removed and REML was run two 

times, for 2 and 3 clusters removed, accordingly. In the g analysis, one cluster was 

detected at all times for both the low and high g matrices (a total of 16 individuals). 

These clusters were removed and REML was run for the reduced sample.  
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Table 4.6 GRM-IBD DBSCAN Analysis 

Characteristic Sample Size Variance 

explained (IBD) 

Standard Error P-Value 

Height Binarised 4131 0.524 0.144 4.2 x 10
-5 

Height Binarised (2 

Clusters removed) 

4116 0.519 0.152 4.2 x 10
-5 

Height Binarised (3 

Clusters removed) 

4107 0.510 0.149 4.2 x 10
-5 

g Binarised 4337 0.515 0.221 1.05x10
-6 

g Binarised (1+1 

clusters removed) 

4321 0.513 0.229 1.05x10
-6

 

 

Removal of the clusters did not alter the estimate significantly with estimates of the 

new REML-IBD analyses being very close to the ones from the initial analysis. 
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4.4 Discussion 

Two polygenic characteristics within the Generation Scotland cohort were investigated 

using REML and REML-IBD, and the proportion of variance explained by common 

and rare variants within those two characteristics was determined. Subsequently, two 

different clustering approaches were implemented on the common and the rare variant 

matrices to determine if population patterns detected from these methods could have an 

effect on the initial estimates. No method used in either REML or REML-IBD analysis 

significantly altered the results. However, IBD GRMs were more unstable and more 

likely to be influenced by such subtle structural changes than SNP GRMs. This is the 

first analysis to date attempting to compare and test those two types of matrices under 

different conditions and the first to test IBD-GRM for binary characteristics. Finally, 

the algorithm of DBSCAN is presented here as a useful tool for genetic analysis.   

 

4.4.1 Limitations 

There are several methodological aspects that may limit the applicability of these 

results. First of all, although the objective of this study was to observe the behaviour of 

GCTA-GREML in a binary characteristic with a clear polygenic background and an 

underlying liability threshold model, no such characteristic was found in the data 

available, with a sufficient sample size to produce reliable REML estimates. Thus the 

characteristics chosen, although polygenic and heritable, do not present the underlying 

structure and possibly population segregation characteristics that a trait such as 

schizophrenia might demonstrate. 
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This project demonstrated the application of the DBSCAN algorithm as a tool for 

detecting clusters within genetic relationship matrices. The parameters used were 

chosen on the basis of the dbscan R package manual. However, the algorithm is very 

sensitive to changes in its parameters and when run on different epsilon neighbourhood 

parameters, the number of clusters in its output can significantly vary.  

 

There are other approaches to clustering that could have been used and have shown 

potential in detecting subtle patterns in dense matrices such as GRMs or IBD GRMs. 

MCLTribe (van Dongen, 2000; Enright et al, 2002) is a fast scalable clustering 

algorithm that identifies cluster structure in graphs through a random walk process, 

followed by matrix squaring, inflation and scaling until equilibrium is reached, at which 

point the graph is separated in clusters. In the field of genetics it has been previously 

successfully used in the detection of families of genes and proteins (Dolan et al, 2007; 

Bibollet-Bahena et al, 2017) and its random walk pattern-finding approach could be a 

useful way of navigating through a GRM. Additionally, Random Forest (Breiman, 

2001) approaches to clustering individuals through the use of SNP data (but not 

similarity matrices) could provide an alternate way to find stable clusters of individuals 

with specific shared genetic background. Random Forest is a known machine-learning 

tool for genomic research (Chen and Ishwaran, 2012), so applying it in this type of 

analysis should be relatively straightforward. 

 

 Furthermore, it is worth noting that although GRM-IBD was one of the types of dataset 

that was used here, there are several other ways to build GRMs that attempt to integrate 

common SNP information with rare variation. In the original GRM-IBD report, the 
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authors propose LD-stratified GRMs (LDMS), as well as combinations of GRM-SNP 

and GRM-LDMS with GRM-IBD as ways to evaluate common and rare variation. The 

combined construct comprised of GRM-LDMS and GRM-IBD seemed to be the most 

accurate in predicting common and rare variation partitions of the total variance (Evans 

et al, 2017). Given its success in that report it would be useful to also include it in 

future comparisons of common and rare variation.  

 

Finally, the GRM-IBD method was extremely prone to overestimate results and 

increase in variance when bigger chunks (>1cM) were used as a cut-off for IBD 

segments. This was also referenced in the original report with authors discussing the 

possibility of stricter initial cut-off points for family members (instead of 0.05 which 

was the value used in that study) as a way to reduce false positives which are bound to 

increase in IBD studies (Evans et al, 2017). 
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4.5 Conclusions 

The main aim of the research presented in this Chapter was to examine two polygenic 

characteristics from the GS cohort using GREML and the novel GREML-IBD methods 

and investigate whether predictions of the two methods would remain stable when two 

different approaches to detect subtle population substructure were implemented.  

 

The results of this study indicate that: 

1) Both characteristics were highly polygenic in nature with common SNPs explaining 

37 percent of height variability and 40 percent of g variability. 

2) The two approaches that were implemented to detect population substructure did not 

alter the results significantly of either GREML or GREML-IBD. 

3) When compared with its common variance counterpart, GREML-IBD produced 

more unstable estimates and was likely to change on the basis of original chunk length 

results. 
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CHAPTER 5:  

Conclusion 
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5.1 Rationale and Aims of the Thesis 

The investigation of the genetic architecture of schizophrenia has been at the forefront 

of psychiatric research for the last quarter of the century. Remarkable advancements 

have been made, however the particulars of its genetic structure remain unknown. Two 

of the most prominent methods currently employed in the quest to uncover how 

common variants might contribute to it, are the polygenic score (Purcell et al, 2009) 

and GREML applied by GCTA (Yang et al, 2011). Both these methods rely on a 

number of different parameters which may affect their results profoundly. It is therefore 

critical to examine their function and to illuminate the strengths and caveats of each 

method, thus enhancing the current understanding of schizophrenia genetics.  

 

This PhD thesis makes an original contribution to the field in terms of investigating and 

testing primarily polygenic risk scores (Purcell et al, 2009) and secondarily GREML as 

applied through GCTA (Yang et al, 2011) in different scenarios and employing different 

parameters. The overall aim of the thesis was to optimise prediction of polygenic scores 

and GREML and define parameters under which they might optimally operate, in order 

to inform on current methodological applications on the field. The specific study aims 

were to: 

 Apply these methods in real and simulated datasets as to ascertain their use 

under different conditions and 

 Investigate the use of variation in the methodologies in improving the 

prediction and accuracy of the methods themselves. 
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5.2 Synopsis  

In this thesis three separate and distinct research projects were undertaken with the aim 

to investigate the genetic architecture of schizophrenia as well as the current methods 

that are employed in common variance analyses. Two of these research projects 

investigated polygenic risk scores and one investigated GREML applied through 

GCTA. 

 

For the first research project, polygenic risk scores (PRS) were investigated in the 

context of specific molecular pathways that could inform as to how these might be 

implicated in the architecture of schizophrenia. A number of different gene-sets were 

used to create polygenic risk scores on that basis, including genes regulated from 

FMRP (Steinberg et al, 2013), miR137 (Hill et al, 2013), TCF4 (Forrest et al, 2013) and 

CHD8 (Sugathan et al, 2014). The data were analysed within the PGC2-schizophrenia 

dataset for secondary analysis, which included 29,125 cases and 34,836 controls from 

39 different centres (Ripke et al, 2014 describes the initial cohort). A leave-one-out 

approach was employed as a means of maximising the usefulness of the data available.  

Results indicated that a number of these pathways were implicated in the disorder, more 

so than the floor effect that was detected to implicate any random subset of SNPs of 

roughly equal size, as well as, the inflation of the floor effect that seemed to be present 

in random subsets of genic SNPs. The existence of this effect further indicates a 

possible omnigenic genetic background for schizophrenia (Boyle et al, 2017). 

 

The second investigation was implemented with the aim to carefully examine polygenic 
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risk scores and investigate current approaches and parameters being employed at 

constructing them. The methods that were tested were Linkage Disequilibrium pruning 

and p-value thresholding (Purcell et al, 2009), LD clumping (Shi et al, 2011) and the 

weighing scheme proposed by Mak et al (2016). The Generation Scotland cohort 

(Smith et al, 2013) was used as the basis for constructing simulated phenotypes under 

different conditions to examine the behaviour of these approaches. Results of this 

investigation indicated that while all methods were able to detect that the effect was 

present, none of them could capture all the effect and most, grossly underestimated the 

contribution of common variance in the R
2 

of the simulated traits. This was further 

demonstrated in a larger simulation that was conducted in a sample size similar to 

current biobanking efforts, emphasising the need for more precise and noise-resistant 

tools of polygenic score measurement. 

 

In the third and final investigation of this thesis, an investigation of the other method 

currently employed to account for the sum of additive common variance effects, 

GREML, as applied through the GCTA software (Yang et al, 2011) was conducted. 

More specifically, the effect of population substructure in its estimates was explored 

through the application of two different approaches, a ―raw‖ frequency-based approach 

and a clustering algorithm approach (DBSCAN in Simoudis et al, 1997). Furthermore, 

these clustering approaches were investigated in the context of the novel GREML-IBD 

approach that incorporates elements of the GREML approach to detect effects of rare 

variation. Again, the Generation Scotland cohort (Smith et al, 2013) was the basis for 

this investigation, with the characteristics of height and g (general intelligence), utilised 

as outcomes due to their inherent polygenic nature. Results of this investigation 

suggested that the GREML and GREML-IBD estimates remained relatively stable 
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when these sub-structures were removed.    

  

5.3 Sources of Data  

For the three analyses that were performed in the present thesis, two main sources of 

data were employed:  The PGC2-schizophrenia cohort for secondary analysis (Ripke et 

al, 2014) and the Generation Scotland cohort (Smith et al, 2013). Both cohorts had 

strengths and limitations which are presented below. Furthermore, alterative 

contemporary data sources and their usefulness in the context of schizophrenia research 

are discussed. 

 

5.3.1 PGC2-schizophrenia 

The first dataset that was used was the PGC2-schizophrenia cohort. The PGC 

(Psychiatric Genomics Consortium) was created in 2007 with the aim to gather genetic 

data for psychiatric disorders for the purpose of conducting mega-analyses of genome-

wide association studies for psychiatric disorders. The consortium has contributed 

significant results not only in the field of schizophrenia (Ripke et al, 2014) but also in 

the fields of a range of psychiatric disorders,  recently including diagnoses as diverse as 

post-traumatic stress disorder (Logue et al, 2015) and anxiety (McGrath et al, 2013).  

The cohort that the aforementioned research project was implemented in constitutes a 

subsample of the initial cohort that was presented in Ripke and colleagues (2014); made 

available to researchers for secondary data analysis. Thirty-nine different studies were 

combined to make up the final cohort. Case ascertainment was implemented differently 

in many of these studies and the process of recruitment was assessed by as subgroup of 

investigators from the PGC Schizophrenia Working Group. Cases included had either 

schizophrenia or schizoaffective disorder, due to the fact that inter-rater reliability for 
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the two disorders is often low between groups (Faraone et al, 1996). Controls were 

collected from the same countries as the cases, with a large number of controls not 

screened for schizophrenia due to the fact that its prevalence in population samples is 

low. 

 

The usefulness of this dataset for the current research project is self-evident, given that 

it would allow for a direct investigation of the genetic architecture of schizophrenia in 

the largest schizophrenia sample reported to date. To better utilise the sample structure 

and maximise the fact that it comprised of 39 different samples, a leave-one-out 

replication process was employed. This allowed for a more effective analysis than a 

simple singular split of the sample in discovery/target partitions. Additionally, the use 

of Meta-P (Ge, 2012) which takes into account sample size and effect directionality, 

allowed for a meta-analysed significance value that showed an effect of the gene-sets 

investigated that spread across the included populations. 

 

However, there were a number of caveats that occur during the utilisation of a 

consortium sample from multiple study centres. Initially, there was the issue of the 

resulting mega-sample having an amplified population stratification effect, due to 

differing population with varied population size. For the purposes of this thesis, this 

was addressed through the use of a Principal Component Analysis (PCA) and the 

application of these Principal Components in both the polygenic score and GWAS 

processes that were implemented in the samples.  Additionally, controls were selected 

from the same population but were not matched to cases on the basis of demographic 

characteristics. This may lead to other factors beyond the disorder itself to factor in the 

genetic differences between cases and controls. Again this was addressed, in part, 
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through the PC analysis, but as a number of those covariates were not known, it could 

not be further explored. Additionally, case ascertainment was not the same for all 

studies, with different criteria (DSM-IV, ICD-10) being used, while in other studies, 

specific endophenotypes were exclusively included. One such example is the CLOZUK 

sample, whose cases derived from a Clozapine trial where they were recruited on the 

basis of a diagnosis of treatment-resistant schizophrenia (Hamshere et al, 2013).  

 

5.3.2 Generation Scotland 

The Generation Scotland (GS) cohort, which was first conceptualised back in 2003, is a 

population cohort implemented in Scotland. Participants were identified and invited to 

participate from lists made available through GP practices. The initial wave of the 

cohort included individuals aged 35-65 from the Glasgow and Tayside areas, while the 

2010 follow-up wave also included individuals from the Ayrshire, Arran and Northeast 

Scotland aged 18-65. Each participant was also required to invite a first degree relative 

aged 18-65 in order to participate. A total of 23,960 individuals were recruited in the 

study, but only a small subsample of those was unrelated. Beyond the genetic data, 

clinical measurements were taken from the participants; these included standardised 

physical and cognitive measurements. Finally, the data of the participants were linked 

to their medical records, giving researchers access to previously reported health or 

mental health issues.  

 

For the purpose of this thesis, the GS cohort was used in the implementation of the 

second and third core analyses.  In the polygenic score comparisons analyses (Chapter 

3), random subsamples from the unrelated individuals were selected and subsequently 

simulated phenotypes were fit on the basis of the genotypes of these individuals. In the 
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second part of that investigation, the haplotypes from the GS cohort were randomly 

combined to create a larger independent cohort, to allow further investigation to the 

claims that PRS estimates would improve as sample sizes increased.  In the third 

analysis (Chapter 4), the GS cohort of unrelated individuals was used to investigate the 

effect of population substructure in the estimates of GREML and IBD-GREML as those 

are applied by the GCTA software (Yang et al, 2011).  The two variables that were 

selected for this analysis (height and g) were measured as part of the physical and 

cognitive assessment of the GS cohort and were chosen on the basis of their polygenic 

nature (Allen et al, 2010; Davies et al, 2011). 

 

Unfortunately, there can be caveats in the use of a population cohort towards the 

investigation of a rare polygenic disorder. Schizophrenia, which was the main 

characteristic of interest in this thesis could not be directly investigated in the context of 

this cohort, as the prevalence of schizophrenia in the general population is quite low 

(McGrath et al, 2008) and therefore not present in sufficient numbers in the sample. 

Furthermore, the questionnaire of schizotypy that was completed by the cohort 

members, as a means to assess schizotypal traits in the general population (Raine, 

1995), has since been revised (Fonseca-Pedrero et al, 2017) and shown to yield 

inconsistent results on the basis of cultural constructs (Liu et al, 2017). Finally, 

regarding the representativeness of the sample, despite the fact that the cohort was 

designed to capture the population of Scotland in terms of key demographic 

characteristics, there was considerable variation between the cohort respondents and the 

general population of Scotland in terms of age, gender, employment status and self-

reported depression (Smith et al, 2013), as it true in most voluntary cohort studies.   
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5.3.3 Potential Future Sources of Data 

Beyond the data sources that were described above, a range of other data sources could 

be potentially useful for similar investigations. There are two types of Data Biobanks 

that are currently being organised worldwide: a) Population Biobanks, which are large 

scale prospective studies, with multiple phenotypes and measurement points, aiming to 

investigate not only disorders but also determinants of those disorders over time and on 

the basis of environmental insults, and b) Clinical Biobanks, which focus on specific 

disorders and try to establish a consistent sampling process across disorders, as well as, 

create matched control cohorts for them. Below one example from each category will 

be briefly described in the context of its potential in terms of schizophrenia research. 

 

5.3.3.1 Population Biobank: UK Biobank  

The UK Biobank sample was recruited between 2006 and 2010 and includes 500,000 

individuals aged between 40 and 69 (Allen et al, 2012).  The aim of UK Biobank is to 

create a resource that will be available for all researchers and allow for the investigation 

of multiple phenotypes within its cohort, as well as, allow for the longitudinal 

investigation of outcomes, using detailed follow-ups on health and mental health 

outcomes of the participants. In terms of research relevant to this thesis, despite not 

being able to conduct schizophrenia-focused research in the same manner as in the 

Consortium sample, due to only having 1078 individuals with the disorder included, 

there are a number of other analyses that can only be performed in UK Biobank, purely 

due to the large number of phenotypes available in it. A new study published in 2017 

investigated the relationship between a diagnosis of schizophrenia and lifestyle 

characteristics in UK Biobank (Firth et al, 2017). Another study used polygenic scores 

for schizophrenia derived from the PGC-2 (Ripke et al, 2014) to investigate how risk 
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for schizophrenia may be linked with other UK Biobank cohort characteristics 

(Smeland et al, 2017). 

 

5.3.3.2 Clinical Biobank: The String of Pearls Initiative 

The Parelsnoer Institute (PSI; http://www.parelsnoer.org) is a collaboration of the eight 

Dutch University Medical Centers (UMCs). It aims to create an infrastructure for 

collection of clinical and biological data from patients with chronic diseases. Each one 

of the diseases that are investigated constitutes one of the ―Pearls‖ of the initiative. 

Within each pearl multiple phenotypes are quantified, including imaging and biometric 

results, and all resources are made available for the institutes participating in the 

initiative. The PSI does not have a dedicated branch for mental health yet; however, a 

similar initiative for mental health disorders could offer researchers a plethora of 

phenotypes and facilitate research into psychiatric cognitive and clinical 

endophenotypes. 

 

 

5.4 Methodological Implications and Future Directions 

Two methods were investigated in the context of this thesis; the polygenic risk score 

(Purcell et al, 2009) and GREML applied through GCTA (Yang et al, 2011). Below the 

implications deriving from the findings of this thesis for the two methodologies are 

elaborated. Furthermore, current methodological developments in the field are 

discussed in the context of how they may be incorporated in future research.  
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5.4.1 Polygenic Risk Scores 

In Chapter 2, the potential of Gene-set specific polygenic risk scores was demonstrated. 

This thesis reaffirmed the role of a number of gene-sets, by using new experimentally 

evaluated sets of genes regulated by FMRP, TCF4, miR137 and CHD8 and 

demonstrated the effect of these gene-sets in predicting schizophrenia, above and 

beyond similarly-sized sets of genes related to heart disease and cancer. Future work 

regarding the incorporation of biological information in polygenic scores could lead to 

a weighing scheme on the basis of biological information derived from experimental 

conditions to bolster the polygenic signal and decrease noise.  

 

Moreover, a floor effect for schizophrenia risk scores was demonstrated through the 

selection of subsets with random SNPs. This ties conceptually with the newly proposed 

omnigenic model for schizophrenia and its theoretical framework, proposing that 

thousands of genes contribute to the common polygenic background of the disorder 

(Boyle et al, 2017). An alternative explanation of the floor effect could indicate some 

sort of artificial inflation of the sample and would stress the need for rigorous re-

evaluation of the samples on the basis of unexplored systematic bias in the existing 

samples. The floor effect observed, is reaffirmed by the Q-Q plot presented in the study 

(Figure 2.5), as well as the Q-Q plot of the original PGC2 study (Ripke et al, 2014) 

which indicate an inflation of p-values at all thresholds above 0.01.  

 

Regarding the comparison of methods conducted in the third Chapter, none of the 

methods examined were able to optimally detect the true polygenic signal. Future work 

in the field of refining polygenic risk score methodology would also test some of the 

additional methods currently in use for the generation of polygenic risk scores; PRSice 
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(Eusden et al, 2015) and LDPRED (Vilhjalmsson et al, 2014). Both methods are 

described in Chapter one and would be valuable additions in future comparative 

simulations. Finally, the models that were created operated under a conservative 

polygenic model. Given current considerations (Boyle et al, 2017) and the results from 

the second Chapter, which indicate a broader polygenic background, an additional 

model with 1000-5000 causative SNPs of very low effect sizes per chromosome could 

be proposed as an additional simulated condition.  

 

5.4.2 GREML 

In Chapter 4, the idea behind population cryptic relatedeness was explored in the GS 

cohort through the use of a ―raw‖ frequency-based approach and DBSCAN for the 

purpose of detecting clustering. There are a number of future directions for this study 

going forward. First of all, despite the fact that the analysis did not demonstrate 

significant differences, it was performed on a truly continuous characteristic and not on 

a binary construct such as schizophrenia. Therefore, the analysis conducted here should 

be replicated in a case-control psychiatric cohort to test the hypothesis of this analysis 

on a differentially structured sample. The idea behind the analysis would be better 

suited for such a cohort, as recruiting would be conducted in a different manner in 

psychiatric cases and controls and thus account for further genetic differences between 

the two. Furthermore, there are other clustering algorithms that could be investigated 

within the context of this analysis, previously summarised in Chapter 4.  Finally, it is of 

note that the new GREML-IBD report by Evans and colleagues (2017) presents a 

number of different approaches in the construction of a GRM which merit further 

investigation, with regards to the optimal way a similarity matrix could be created in 

order to maximise use of the available genetic information.  
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In conclusion, the potential of current genetic analysis methods is demonstrated 

throughout this thesis. The results presented here highlight the fact that, if understood 

and applied cautiously, these methods can be valuable research tools, contributing 

towards an in depth understanding of the genetic architecture of schizophrenia. 
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Appendix 2.1 Individual PGC Study Details 

 

Site QC score  Array Cases Controls Male 
Umeå, Sweden 9 omni 341 577 0.503 
Umeå, Sweden 9 omni 193 704 0.475 
Norway (TOP) 9 A6.0 377 403 0.533 
Edinburgh, UK 8 A6.0 367 284 0.633 
Seven countries (PEIC, WTCCC2) 6 I1M 574 1812 0.557 
Spain (PEIC, WTCCC2) 6 I1M 150 236 0.585 
New York, US & Israel 7 A6.0 325 139 0.614 
Ireland 9 A6.0 264 839 0.394 
Ireland (WTCCC2) 9 A6.0 1291 1006 0.617 
Germany (GRAS) 9 AXI 1067 1169 0.642 
Estonia (EGCUT) 2 omni 234 1152 0.268 
US, Australia (MGS) 9 A6.0 2638 2482 0.588 
London, UK 8 A6.0 509 485 0.572 
Sweden (Hubin) 3 omni 265 319 0.618 
Bulgaria 8 A6.0 195 608 0.474 
Israel 8 I1M 894 1594 0.701 
Six countries, WTCCC controls 4 I550 157 245 0.918 
New York, US 8 A500 190 190 0.577 
Australia 9 I650 456 287 0.601 
Cardiff, UK 9 A500 396 284 0.589 
UK (CLOZUK) 0 I1M 3426 4085 0.88 
UK (CLOZUK) 0 omni 2105 1975 0.629 
Netherlands 7 I550 700 607 0.628 
Portugal 9 A6.0 346 215 0.521 
Boston, US (CIDAR) 9 omni 67 65 0.757 
Munich, Germany 8 I317 421 312 0.569 
Aberdeen, UK 9 A6.0 719 697 0.693 
US (CATIE) 7 A500 397 203 0.767 
Sweden 3 A5.0 215 210 0.527 
Sweden 3 A6.0 1980 2274  
Sweden 3 omni 1764 2581 0.553 
Sweden 3 omni 975 1145 0.543 
Cardiff, UK (CogUK) 9 omni 530 678 0.554 
NIMH CBDB 5 O25 133 269 0.547 
NIMH CBDB 5 I550 497 389 0.627 
Denmark 8 I650 471 456 0.583 
Bulgaria (trios) 8 A6.0 649 649 0.502 
Six countries (trios) 4 I650 516 516 0.556 
Bulgaria (trios) 8 omni 70 70 0.595 
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Appendix 2.2 Graphic representation of the LOO permutation process 
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Appendix 2.3 Gene ontology Enrichment 

 

TCF4 P-value 

biological process  

cellular process 

single-organism process  

metabolic process 

cellular component organization or biogenesis  

single-organism cellular process  

organic substance metabolic process  

cellular metabolic process 

cellular component organization  

biological regulation 

4.10E-16 

7.01E-15 

6.32E-10 

1.06E-09 

2.93E-09 

1.77E-08 

5.30E-08 

1.36E-07 

2.72E-07 

7.78E-07 

FMRP  

nervous system development 

generation of neurons 

neurogenesis  

neuron projection development  

synaptic transmission 

trans-synaptic signalling  

synaptic signalling  

signalling 

cell communication 

single organism signalling  

3.36E-60 

6.97E-44 

2.79E-42 

2.02E-39 

2.40E-36 

2.40E-36 

2.40E-36 

6.91E-36 

1.06E-35 

4.63E-35 

MIR 137 (downregulated)  

cellular process 

biological process 

metabolic process 

cellular metabolic process 

organic substance metabolic process 

primary metabolic process 

cellular component organization or biogenesis 

cellular component organization 

single-organism process 

cellular protein metabolic process 

7.51E-14 

9.37E-13 

1.59E-10 

3.94E-10 

7.84E-09 

1.03E-08 

1.09E-07 

1.30E-07 

2.37E-07 

1.04E-06 

MIR 137 (upregulated)  

cellular process 

biological process 

cellular metabolic process 

metabolic process 

organic substance metabolic process 

primary metabolic process 

single-organism process  

cellular macromolecule metabolic process 

cellular component organization or biogenesis 

single-organism cellular process  

2.23E-13 

5.31E-10 

2.33E-08 

2.57E-07 

5.43E-06 

2.22E-05 

4.62E-05 

8.22E-05 

1.55E-04 

2.03E-04 

CHD8 (downregulated)  

biological process  

single-organism developmental process 

nervous system development  

1.16E-08 

9.85E-08 

1.48E-07 
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anatomical structure development 

developmental process  

single-multicellular organism process 

multicellular organism development 

system development  

single-organism process  

multicellular organismal process  

1.73E-07 

2.09E-07 

2.14E-07 

2.73E-07 

1.29E-06 

1.98E-06 

9.68E-05 

CHD8 (upregulated)  

cellular process  

biological process 

cellular metabolic process 

cellular component organization or biogenesis 

metabolic process  

primary metabolic process 

cellular macromolecule metabolic process 

single-organism cellular process 

organic substance metabolic process 

sensory perception of chemical stimulus 

5.23E-10 

1.53E-09 

2.55E-09 

6.37E-07 

1.82E-06 

2.76E-06 

6.37E-06 

9.59E-06 

9.96E-06 

1.83E-05 

Cancer  

positive regulation of macromolecule metabolic process  

regulation of nucleobase-containing compound metabolic 

process  

regulation of macromolecule metabolic process  

regulation of nitrogen compound metabolic process  

regulation of nucleic acid-templated transcription  

regulation of biosynthetic process 

regulation of RNA biosynthetic process 

regulation of cellular biosynthetic process  

positive regulation of metabolic process 

regulation of metabolic process  

1.65E-81 

1.99E-81 

4.46E-80 

4.57E-80 

4.64E-80 

1.33E-79 

1.64E-79 

2.69E-79 

2.70E-79 

1.56E-78 

Cardiac disease  

 response to chemical 

response to stress  

response to organic substance  

response to stimulus  

regulation of biological quality  

response to oxygen-containing compound 

response to external stimulus  

regulation of multicellular organismal process  

single-multicellular organism process  

multicellular organismal process  

9.31E-130 

6.66E-120 

4.90E-117 

1.97E-115 

2.25E-111 

1.20E-109 

1.32E-107 

8.07E-105 

7.11E-101 

4.23E-95 
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Appendix 3.1 Script for weight generation taken from Mak et al. 

 

##### CODE FOR THE MAIN FUNCTIONS USED ##### 

 

library(boot) 

 

 

mixture.halfnormal <- function (pvals , p, var , logp =T) { 

z <- qnorm ( pvals /2, lower.tail =F) 

sd <- sqrt ( var ) 

logf <- dnorm (z, sd=sd , log =T) - dnorm (z, log =T) 

f <- exp( logf ) 

# print (f) 

f2 <- p*f + (1-p) 

logf2 <- log (f2) 

if( logp ) return ( logf2 ) 

else return (exp( logf2 )) 

} 

ml.mixture.halfnormal <- function (pvals , init =c(0, 0) ,...) { 

optimum <- optim ( par =init , fn= function (pars , pvals ) { 

p <- inv.logit ( pars [1]) 

var <- 1 + exp( pars [2]) 

loglik <- sum( mixture.halfnormal (pvals , p=p, var = var )) 

return (- loglik ) 

}, 

pvals =pvals ,...) 

best.p <- inv.logit ( optimum$par [1]) 

best.var <- 1 + exp ( optimum$par [2]) 

return ( list (p= best.p, var= best.var , value =- optimum$value , optim = optimum )) 

} 

 

##### CALCULATING DATASETS ##### 

###fdr=fdr by kernel density estimation of z-values distribution 

###fdr2=fdr by maximum likelihood of z-values distribution 

 

for (i in 1:20){  

 

a1=paste("pfile", i, sep="") 

b1=paste("orfile",i, sep="") 

a<-read.table(a1, head=T) 

b<-read.table(b1, head=T) 

b<-(b[,-3]) 

pvals<-a$V2 

ml <- ml.mixture.halfnormal (pvals , init = rnorm (2, sd =10)) 

pi1 <- ml$p 

mix.var <- ml$var 

fp <- list () 

fp$pvals.order <- order (pvals) 

fp$eval.points <- pvals [ fp$pvals.order ] 

fp$fp <- mixture.halfnormal (fp$eval.points , p=pi1 , var = mix.var , log=F) 
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pi0 <- 1 - pi1 

fdr2 <- pi0 / fp$fp 

 

 

library ( stats ) 

library ("qvalue") 

z <- qnorm ( pvals / 2) 

z2 <- sort (c(z, -z)) 

pi0 <- pi0est (pvals , 0.5) 

len <- length (z) 

den.obj <- density (x=z2) 

den.fun <- splinefun (den.obj$x , den.obj$y ) 

fp <- den.fun (z2) 

zden <- dnorm (z2) 

fdr <- zden * pi0$pi0 / fp 

fdr <- fdr [1: len ] 

 

tt1<-cbind(b,fdr) 

tt2<-cbind(b,fdr2) 

e1=paste("orfile1.",i, sep="") 

e2=paste("orfile2.", i, sep="") 

write.table(tt1,e1 ,quote=F, row.names=F, col.names=F) 

write.table(tt2, e2 ,quote=F, row.names=F, col.names=F) 

} 
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Appendix 3.2A Table of all median nested R
2
 of simulations for all conditions on the N= 500 samples 

Methods n500.chr13.100 n500.chr13.200 n500.chr13.20 n500.chr15.100 n500.chr15.200 n500.chr15.20 n500.chr19.100 n500.chr19.200 n500.chr19.20 

PRS Pruning 0.1 - Thresholding 
0.01 

0.002 0.03 0.05 0 0.004 0 0.037 0 0 

PRS Pruning 0.1 - Thresholding 
0.1 

0.015 0.03 0.04 0 0.015 0.01 0.025 0.005 0.024 

PRS Pruning 0.1 - Thresholding 
0.2 

0.025 0.05 0.02 0.023 0.04 0.007 0.032 0.014 0.01 

PRS Pruning 0.1 - Thresholding 
0.3 

0.008 0.05 0.03 0.016 0.049 0.008 0.034 0.029 0.02 

PRS Pruning 0.1 - Thresholding 
0.4 

0.013 0.05 0.03 0.014 0.047 0.011 0.029 0.018 0.018 

PRS Pruning 0.1 - Thresholding 
0.5 

0.011 0.04 0.03 0.018 0.036 0.004 0.018 0.012 0.022 

PRS Pruning 0.1 - Thresholding 
0.6 

0.011 0.04 0.03 0.016 0.038 0.004 0.016 0.005 0.023 

PRS Pruning 0.1 - Thresholding 
0.7 

0.014 0.04 0.03 0.017 0.035 0.006 0.016 0.007 0.02 

PRS Pruning 0.1 - Thresholding 
0.8 

0.014 0.03 0.03 0.016 0.035 0.005 0.015 0.008 0.02 

PRS Pruning 0.1 - Thresholding 
0.9 

0.015 0.04 0.03 0.016 0.035 0.005 0.015 0.009 0.009 

PRS Pruning 0.1 - Thresholding 
1 

0.015 0.04 0.03 0.015 0.036 0.005 0.015 0.009 0.009 

PRS Pruning 0.25 - 
Thresholding 0.01 

0.005 0 0.01 0 0 0 0.04 0 0.02 

PRS Pruning 0.25 - 
Thresholding 0.1 

0.015 0.019 0.008 0 0.02 0.026 0.034 0.003 0.042 

PRS Pruning 0.25 - 
Thresholding 0.2 

0.019 0.029 0.008 0.001 0.04 0.012 0.042 0.008 0.041 

PRS Pruning 0.25 - 
Thresholding 0.3 

0.012 0.028 0.008 0.001 0.038 0.015 0.047 0.018 0.046 

PRS Pruning 0.25 - 
Thresholding 0.4 

0.013 0.036 0.01 0.002 0.048 0.015 0.036 0.019 0.054 

PRS Pruning 0.25 - 
Thresholding 0.5 

0.013 0.026 0.012 0.004 0.046 0.021 0.032 0.013 0.048 

PRS Pruning 0.25 - 
Thresholding 0.6 

0.014 0.025 0.011 0.001 0.039 0.018 0.03 0.009 0.052 

PRS Pruning 0.25 - 
Thresholding 0.7 

0.015 0.025 0.012 0.001 0.034 0.016 0.028 0.01 0.054 
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PRS Pruning 0.25 - 
Thresholding 0.8 

0.015 0.022 0.014 0 0.035 0.017 0.025 0.011 0.052 

PRS Pruning 0.25 - 
Thresholding 0.9 

0.015 0.024 0.015 0 0.033 0.018 0.025 0.013 0.052 

PRS Pruning 0.25 - 
Thresholding 1 

0.015 0.024 0.016 0 0.033 0.018 0.025 0.013 0.052 

PRS Pruning 0.5 - Thresholding 
0.01 

0 0 0 0 0 0.01 0.02 0 0.02 

PRS Pruning 0.5 - Thresholding 
0.1 

0.004 0.04 0.01 0 0.01 0 0.03 0 0.05 

PRS Pruning 0.5 - Thresholding 
0.2 

0.009 0.05 0.004 0 0.02 0 0.03 0 0.05 

PRS Pruning 0.5 - Thresholding 
0.3 

0.007 0.04 0.005 0 0.03 0 0.03 0 0.05 

PRS Pruning 0.5 - Thresholding 
0.4 

0.014 0.05 0.003 0 0.04 0 0.02 0 0.06 

PRS Pruning 0.5 - Thresholding 
0.5 

0.012 0.04 0.004 0 0.04 0 0.02 0 0.05 

PRS Pruning 0.5 - Thresholding 
0.6 

0.014 0.04 0.002 0 0.04 0 0.02 0 0.05 

PRS Pruning 0.5 - Thresholding 
0.7 

0.013 0.04 0.003 0 0.04 0 0.02 0 0.05 

PRS Pruning 0.5 - Thresholding 
0.8 

0.013 0.03 0.004 0 0.04 0 0.02 0 0.05 

PRS Pruning 0.5 - Thresholding 
0.9 

0.013 0.03 0.004 0 0.04 0 0.02 0 0.05 

PRS Pruning 0.5 - Thresholding 
1 

0.013 0.03 0.004 0 0.04 0 0.02 0 0.05 

PRS Clumping  - 0.1 Clump 0 0.06 0.001 0.004 0 0.001 0.02 0.002 0.03 

PRS Clumping  - 0.25 Clump 0 0.05 0.002 0.004 0 0.001 0.02 0.002 0.03 

PRS Clumping  - 0.5 Clump 0 0.06 0.003 0.004 0 0.001 0.022 0.002 0.03 

PRS weighted by kernel 
density estimation of z-values 
distribution 

0 0 0 0 0 0.012 0 0.012 0.006 

PRS weighted by maximum 
likelihood of z-values 
distribution 

0 0 0 0 0 0.012 0 0.013 0.006 
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Appendix 3.2B Table of all median nested R
2
 of simulations for all conditions on the N= 1000 samples 

Methods n1000.chr13.100 n1000.chr13.200 n1000.chr13.20 n1000.chr15.100 n1000.chr15.200 n1000.chr15.20 n1000.chr19.100 n1000.chr19.200 n1000.chr19.20 

PRS Pruning 0.1 - 

Thresholding 0.01 

0.02 0.01 0.14 0 0 0.21 0.05 0 0.14 

PRS Pruning 0.1 - 

Thresholding 0.1 

0.02 0.05 0.04 0.03 0.04 0.09 0.05 0.03 0.07 

PRS Pruning 0.1 - 

Thresholding 0.2 

0.02 0.07 0.03 0.04 0.06 0.06 0.04 0.03 0.04 

PRS Pruning 0.1 - 
Thresholding 0.3 

0.02 0.07 0.02 0.04 0.04 0.06 0.05 0.02 0.04 

PRS Pruning 0.1 - 

Thresholding 0.4 

0.02 0.08 0.02 0.04 0.04 0.05 0.05 0.03 0.04 

PRS Pruning 0.1 - 

Thresholding 0.5 

0.03 0.08 0.02 0.04 0.04 0.04 0.05 0.04 0.04 

PRS Pruning 0.1 - 

Thresholding 0.6 

0.02 0.08 0.02 0.04 0.04 0.04 0.05 0.04 0.04 

PRS Pruning 0.1 - 

Thresholding 0.7 

0.02 0.08 0.02 0.04 0.04 0.04 0.05 0.04 0.04 

PRS Pruning 0.1 - 
Thresholding 0.8 

0.02 0.07 0.02 0.04 0.04 0.04 0.05 0.05 0.04 

PRS Pruning 0.1 - 
Thresholding 0.9 

0.02 0.07 0.02 0.04 0.04 0.04 0.05 0.05 0.04 

PRS Pruning 0.1 - 

Thresholding 1 

0.02 0.07 0.02 0.04 0.04 0.04 0.05 0.05 0.04 

PRS Pruning 0.25 - 

Thresholding 0.01 

0.02 0.02 0.16 0 0 0.15 0.04 0.01 0.09 

PRS Pruning 0.25 - 

Thresholding 0.1 

0.013 0.054 0.059 0.02 0.03 0.043 0.026 0.04 0.06 

PRS Pruning 0.25 - 

Thresholding 0.2 

0.018 0.064 0.03 0.025 0.04 0.025 0.033 0.047 0.036 

PRS Pruning 0.25 - 
Thresholding 0.3 

0.021 0.065 0.033 0.021 0.03 0.022 0.035 0.042 0.043 

PRS Pruning 0.25 - 
Thresholding 0.4 

0.021 0.071 0.03 0.021 0.03 0.02 0.032 0.048 0.034 

PRS Pruning 0.25 - 

Thresholding 0.5 

0.022 0.07 0.028 0.022 0.035 0.02 0.03 0.052 0.033 

PRS Pruning 0.25 - 

Thresholding 0.6 

0.022 0.068 0.029 0.021 0.035 0.02 0.032 0.06 0.033 

PRS Pruning 0.25 - 

Thresholding 0.7 

0.022 0.067 0.029 0.019 0.033 0.02 0.03 0.06 0.034 
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PRS Pruning 0.25 - 

Thresholding 0.8 

0.02 0.065 0.027 0.02 0.032 0.02 0.03 0.066 0.033 

PRS Pruning 0.25 - 

Thresholding 0.9 

0.02 0.066 0.027 0.02 0.031 0.024 0.032 0.067 0.032 

PRS Pruning 0.25 - 
Thresholding 1 

0.019 0.066 0.026 0.02 0.031 0.024 0.032 0.067 0.032 

PRS Pruning 0.5 - 
Thresholding 0.01 

0.02 0 0.1 0 0.02 0.11 0.03 0.03 0.1 

PRS Pruning 0.5 - 
Thresholding 0.1 

0.016 0.05 0.02 0.03 0.04 0.03 0.02 0.05 0.06 

PRS Pruning 0.5 - 

Thresholding 0.2 

0.014 0.06 0.02 0.03 0.04 0.02 0.02 0.05 0.04 

PRS Pruning 0.5 - 

Thresholding 0.3 

0.02 0.06 0.02 0.03 0.04 0.02 0.02 0.04 0.04 

PRS Pruning 0.5 - 

Thresholding 0.4 

0.02 0.07 0.02 0.03 0.04 0.02 0.02 0.05 0.03 

PRS Pruning 0.5 - 
Thresholding 0.5 

0.02 0.06 0.02 0.03 0.04 0.01 0.02 0.05 0.03 

PRS Pruning 0.5 - 
Thresholding 0.6 

0.02 0.06 0.02 0.03 0.04 0.01 0.02 0.06 0.03 

PRS Pruning 0.5 - 
Thresholding 0.7 

0.02 0.06 0.02 0.03 0.04 0.01 0.02 0.06 0.03 

PRS Pruning 0.5 - 

Thresholding 0.8 

0.02 0.06 0.02 0.03 0.04 0.01 0.02 0.06 0.03 

PRS Pruning 0.5 - 

Thresholding 0.9 

0.02 0.06 0.02 0.03 0.04 0.01 0.02 0.06 0.03 

PRS Pruning 0.5 - 

Thresholding 1 

0.02 0.06 0.02 0.03 0.04 0.01 0.02 0.07 0.03 

PRS Clumping  - 0.1 Clump 0.01 0.03 0.04 0.02 0.02 0.03 0.02 0.04 0.04 

PRS Clumping  - 0.25 
Clump 

0.013 0.03 0.04 0.02 0.02 0.03 0.02 0.04 0.04 

PRS Clumping  - 0.5 Clump 0.013 0.032 0.041 0.017 0.018 0.033 0.019 0.04 0.042 

PRS weighted by kernel 

density estimation of z-
values distribution 

0.001 0.022 0.016 0 0.012 0 0.006 0.002 0 

PRS weighted by maximum 

likelihood of z-values 
distribution 

0 0.023 0.016 0 0.013 0 0.007 0.002 0 
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Appendix 3.2C Table of all median nested R
2
 of simulations for all conditions on the N= 2500 samples 

Methods n2500.chr13.100 n2500.chr13.200 n2500.chr13.20 n2500.chr15.100 n2500.chr15.200 n2500.chr15.20 n2500.chr19.100 n2500.chr19.200 n2500.chr19.20 

PRS Pruning 0.1 - 

Thresholding 0.01 

0.17 0.05 0.26 0.12 0.06 0.24 0.19 0.06 0.35 

PRS Pruning 0.1 - 

Thresholding 0.1 

0.12 0.08 0.15 0.14 0.08 0.12 0.17 0.12 0.2 

PRS Pruning 0.1 - 

Thresholding 0.2 

0.1 0.08 0.13 0.11 0.09 0.1 0.16 0.14 0.16 

PRS Pruning 0.1 - 

Thresholding 0.3 

0.1 0.08 0.1 0.1 0.1 0.08 0.15 0.13 0.15 

PRS Pruning 0.1 - 
Thresholding 0.4 

0.1 0.08 0.1 0.09 0.11 0.08 0.14 0.14 0.15 

PRS Pruning 0.1 - 
Thresholding 0.5 

0.1 0.09 0.1 0.09 0.11 0.08 0.14 0.15 0.14 

PRS Pruning 0.1 - 

Thresholding 0.6 

0.1 0.09 0.1 0.09 0.11 0.07 0.14 0.15 0.14 

PRS Pruning 0.1 - 

Thresholding 0.7 

0.1 0.09 0.1 0.09 0.11 0.07 0.14 0.15 0.14 

PRS Pruning 0.1 - 

Thresholding 0.8 

0.1 0.09 0.1 0.09 0.11 0.07 0.14 0.14 0.14 

PRS Pruning 0.1 - 

Thresholding 0.9 

0.1 0.09 0.1 0.09 0.11 0.07 0.14 0.14 0.14 

PRS Pruning 0.1 - 
Thresholding 1 

0.1 0.09 0.09 0.09 0.11 0.07 0.14 0.14 0.14 

PRS Pruning 0.25 - 
Thresholding 0.01 

0.14 0.05 0.28 0.14 0.06 0.25 0.16 0.04 0.36 

PRS Pruning 0.25 - 

Thresholding 0.1 

0.084 0.064 0.14 0.06 0.064 0.11 0.14 0.08 0.17 

PRS Pruning 0.25 - 

Thresholding 0.2 

0.069 0.068 0.12 0.053 0.068 0.08 0.14 0.09 0.14 

PRS Pruning 0.25 - 

Thresholding 0.3 

0.067 0.075 0.1 0.047 0.075 0.07 0.13 0.08 0.13 

PRS Pruning 0.25 - 

Thresholding 0.4 

0.068 0.073 0.08 0.042 0.08 0.064 0.12 0.08 0.12 

PRS Pruning 0.25 - 
Thresholding 0.5 

0.068 0.074 0.084 0.038 0.077 0.063 0.113 0.09 0.11 

PRS Pruning 0.25 - 
Thresholding 0.6 

0.067 0.077 0.081 0.038 0.074 0.061 0.113 0.09 0.108 

PRS Pruning 0.25 - 

Thresholding 0.7 

0.068 0.078 0.078 0.039 0.07 0.061 0.113 0.09 0.106 
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PRS Pruning 0.25 - 

Thresholding 0.8 

0.067 0.078 0.076 0.039 0.07 0.06 0.112 0.086 0.105 

PRS Pruning 0.25 - 

Thresholding 0.9 

0.066 0.077 0.076 0.039 0.07 0.06 0.111 0.086 0.103 

PRS Pruning 0.25 - 
Thresholding 1 

0.066 0.077 0.076 0.038 0.07 0.06 0.11 0.086 0.103 

PRS Pruning 0.5 - 
Thresholding 0.01 

0.13 0.05 0.24 0.06 0.05 0.23 0.15 0.04 0.27 

PRS Pruning 0.5 - 
Thresholding 0.1 

0.08 0.05 0.11 0.04 0.06 0.12 0.11 0.07 0.12 

PRS Pruning 0.5 - 

Thresholding 0.2 

0.07 0.05 0.1 0.04 0.06 0.1 0.11 0.07 0.1 

PRS Pruning 0.5 - 

Thresholding 0.3 

0.06 0.05 0.08 0.03 0.06 0.08 0.1 0.06 0.09 

PRS Pruning 0.5 - 

Thresholding 0.4 

0.06 0.05 0.08 0.03 0.06 0.07 0.1 0.07 0.09 

PRS Pruning 0.5 - 
Thresholding 0.5 

0.05 0.05 0.07 0.03 0.06 0.07 0.09 0.07 0.08 

PRS Pruning 0.5 - 
Thresholding 0.6 

0.05 0.05 0.07 0.03 0.06 0.06 0.09 0.07 0.08 

PRS Pruning 0.5 - 
Thresholding 0.7 

0.05 0.05 0.07 0.03 0.06 0.06 0.09 0.07 0.08 

PRS Pruning 0.5 - 

Thresholding 0.8 

0.05 0.05 0.06 0.03 0.06 0.06 0.09 0.07 0.08 

PRS Pruning 0.5 - 

Thresholding 0.9 

0.05 0.05 0.06 0.03 0.06 0.06 0.09 0.07 0.07 

PRS Pruning 0.5 - 

Thresholding 1 

0.05 0.05 0.06 0.03 0.06 0.06 0.09 0.07 0.07 

PRS Clumping  - 0.1 
Clump 

0.07 0.04 0.09 0.02 0.05 0.1 0.05 0.02 0.06 

PRS Clumping  - 0.25 
Clump 

0.07 0.04 0.09 0.02 0.04 0.1 0.05 0.02 0.06 

PRS Clumping  - 0.5 
Clump 

0.07 0.04 0.086 0.015 0.047 0.105 0.05 0.022 0.06 

PRS weighted by 

kernel density 
estimation of z-values 

distribution 

0.006 0.004 0 0.003 0.003 0 0.015 0.01 0.006 

PRS weighted by 
maximum likelihood 

of z-values 

distribution 

0.006 0.004 0 0.003 0.003 0 0.015 0.01 0.006 



178 

 

Appendix 3.3 Table of median nested R
2
 of simulations in the 50,000 samples 

Methods n50,000.chr19.200NPs 

PRS Pruning 0.1 - Thresholding 0.01 0.052390011 

PRS Pruning 0.1 - Thresholding 0.1 0.035909842 

PRS Pruning 0.1 - Thresholding 0.2 0.031066906 

PRS Pruning 0.1 - Thresholding 0.3 0.02855628 

PRS Pruning 0.1 - Thresholding 0.4 0.028082561 

PRS Pruning 0.1 - Thresholding 0.5 0.025842275 

PRS Pruning 0.1 - Thresholding 0.6 0.024296134 

PRS Pruning 0.1 - Thresholding 0.7 0.024296134 

PRS Pruning 0.1 - Thresholding 0.8 0.023326912 

PRS Pruning 0.1 - Thresholding 0.9 0.021465242 

PRS Pruning 0.1 - Thresholding 1 0.019438226 

PRS Pruning 0.25 - Thresholding 0.01 0.02517382 

PRS Pruning 0.25 - Thresholding 0.1 0.01957765 

PRS Pruning 0.25 - Thresholding 0.2 0.01752328 

PRS Pruning 0.25 - Thresholding 0.3 0.01619387 

PRS Pruning 0.25 - Thresholding 0.4 0.01519918 

PRS Pruning 0.25 - Thresholding 0.5 0.01434611 

PRS Pruning 0.25 - Thresholding 0.6 0.01361167 

PRS Pruning 0.25 - Thresholding 0.7 0.01293208 

PRS Pruning 0.25 - Thresholding 0.8 0.01232271 

PRS Pruning 0.25 - Thresholding 0.9 0.01165571 

PRS Pruning 0.25 - Thresholding 1 0.01078922 

PRS Clumping  - 0.1 Clump 0.0139 

PRS Clumping  - 0.25 Clump 0.0113 

PRS Clumping  - 0.5 Clump 0.0113 

PRS weighted by kernel density estimation of z-values 

distribution 

0.0043 

PRS weighted by maximum likelihood of z-values 

distribution 

0.0045 
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Appendix 4.1A K-nearest neighbour distance plots for DBSCan ε neighbourhood 

detection. SNP GRMs K-nearest neighbour distance plots 

         Height (group A > 1.72)    Height (group B < 1.63) 

 
               g (group A > 0.46)    g (group B < -0.35) 
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Appendix 4.1B K-nearest neighbour distance plots for DBSCan ε neighbourhood 

detection.  IBD GRMs  K-nearest neighbour distance plots 

       Height (group A > 1.72)    Height (group B < 1.63) 

 
              g (group A > 0.46)    g (group B < -0.35) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



181 

 

Appendix 4.2 Script to convert GRMs from GCTA into a meaningful input for 

DBSCAN. 

 

#### Create function to read GCTA GRM in R #### 

readGRM <- function(rootname) 

{ 

bin.file.name <- paste(rootname, ".grm.bin", sep="") 

n.file.name <- paste(rootname, ".grm.N.bin", sep="") 

id.file.name <- paste(rootname, ".grm.id", sep="") 

cat("Reading IDs\n") 

id <- read.table(id.file.name, colClasses="character") 

n <- dim(id)[1] 

cat("Reading GRM\n") 

bin.file <- file(bin.file.name, "rb") 

grm <- readBin(bin.file, n=n*(n+1)/2, what=numeric(0), size=4) 

close(bin.file) 

cat("Reading N\n") 

n.file <- file(n.file.name, "rb") 

N <- readBin(n.file, n=n*(n+1)/2, what=numeric(0), size=4) 

close(n.file) 

cat("Creating data frame\n") 

l <- list() 

for(i in 1:n) 

{ 

l[[i]] <- 1:i 

} 

col1 <- rep(1:n, 1:n) 

col2 <- unlist(l) 

grm <- data.frame(id1=col1, id2=col2, N=N, grm=grm) 

ret <- list() 

ret$grm <- grm 

ret$id <- id 

return(ret) 

} 

 ##### Merge GRM and phenotype file #### 

a1<-readGRM("grm") 

a2<-read.table("phenotypefile") 

a44<-merge(a1$id, a2, by=c("V1","V2")) 

a44$V2.y=NULL 

a44$V2.x=NULL 

id1<-rep(1:7873) 

a5<-cbind(a44,id1) 

names(a5) <- sub("^V3$", "pheno1", names(a5)) 

a6<-a5 

names(a6) <- sub("^pheno1$", "pheno2", names(a6)) 

names(a6) <- sub("^id1$", "id2", names(a6)) 

a6$V1=NULL 

a5$V1=NULL 

b1<-merge(a1$grm, a5, by="id1") 

b2<-merge(b1, a6, by="id2") 
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comparison<-b2$pheno1+b2$pheno2 

comparison<-sub("2", "control/control", comparison) 

comparison<-sub("4", "case/case", comparison) 

c1<-cbind(b2,comparison) 

c2<-subset(c1, subset=id1!=id2) 

write.table(c2, "grm.txt", col.names=T, row.names=F, quote=F) 

#### Extract case/case and control/control data #### 

d1<-subset(c2, subset=c2$comparison=="case/case") 

d2<-subset(c2, subset=c2$comparison=="control/control") 

dim(d1) 

dim(d2) 

write.table(d1, "casescomparison.txt", quote=F, col.names=T, row.names=F) 

write.table(d2, "controlscomparison.txt", quote=F, col.names=T, row.names=F) 

d11<-cbind (d1$id1, d1$id2) 

d111<-cbind (d11, d1$grm) 

head(d111) 

d21<-cbind (d2$id1, d2$id2) 

d211<-cbind (d21, d2$grm) 

head(d211) 

write.table(d111, "cases", quote=F, col.names=F, row.names=F) 

write.table(d211, "controls", quote=F, col.names=F, row.names=F) 

q() 

 

#### Generating half-matrix input for DBSCAN ##### 

x<-read.table('cases', head=F) 

x.names <- sort(unique(c(x[[1]], x[[2]]))) 

x.dist <- matrix(0, length(x.names), length(x.names)) 

dimnames(x.dist) <- list(x.names, x.names) 

x.ind <- rbind(cbind(match(x[[1]], x.names), match(x[[2]], x.names)), 

cbind(match(x[[2]], 

x.names), match(x[[1]], x.names))) 

x.dist[x.ind] <- rep(x[[3]], 2) 

 

 

 

 

 


