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Abstract

This thesis concerns is about the analysis of textual sentiment using computational
approaches. Textual sentiment reflects the opinions and attitudes expressed through
textual communications. With the advent of the Internet and World Wide Web, individuals
are being exposed to an ever-growing amount of sentiment through various channels; such
information can have powerful effect on how people make decisions. Because of this,
computational approaches to sentiment analysis has attracted increasing interest from
researchers in the past two decades. The goal of sentiment analysis is to determine whether
a piece of text conveys a positive or negative evaluation on a certain topic. Being able to
identify and comprehend sentiment expressed by the public at a large scale can be very
useful to many applications. One such application is to use sentiment conveyed in business
news to explain the behaviours of financial markets. In this thesis, I have proposed an
extended model for describing the interactions between news sentiment and financial
markets. This extended model recognises two different types of news sentiment: (i) the
retrospective news sentiment, which refers to the sentiment that is associated with news
stories that recount past events in the market; and (ii) the prospective news sentiment,
which refers to the textual sentiment in business and financial news that is associated with
speculations and projections about the future developments of the market. A method that
can automatically extract sentiment-laden language patterns for the temporal sentiment
classes was developed. The method models the texts in news articles as a mixture of
lexical items distributions, where each distribution characterises one of the temporal
sentiment classes. A supervised maximisation expectation algorithm was derived to infer
these distributions given a corpus and a market performance measure as the target. The
supervision was enforced by implementing different conditional probability distributions
for returns given the underlying temporal sentiment class of the news article. The method
was implemented by a system comprising two components, CiCui and TSMiner, which
was used to conduct a case study on firm-level data. The results of the study suggested it is
mainly changes in the market that leads to changes in the news sentiment, and retrospective
news sentiment is in general more prevalent in business news. Also noted was that word
dependencies seem to be able to capture prospective sentiment than unigrams. It has
been shown that the method proposed in this thesis slightly outperforms content analysis
methods used with either the GI or Loughran and McDonald’s sentiment dictionary.
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Summary

The work presented in this thesis contributed to the body of knowledge in the following

areas:

1. Introduced the notion of temporality in the modelling of sentiment in business news.

It was proposed in this thesis that news sentiment can be categorised into two

classes: retrospective news sentiment and prospective news sentiment . Retrospective

news sentiment reflects the general attitude in the news towards what had already

happened in the market, whereas prospective news sentiment reflects the news’

general attitude towards the potential future development of the market. These two

types of news sentiment are collectively referred to as temporal news sentiment in

this thesis.

2. Developed a method that automatically compiles a sentiment dictionary that captures

the temporal sentiment orientations of lexical items from a corpus comprising

arbitrary business news articles about a certain company, provided that some

measure of the company’s performance is supplied (e.g. the stock prices of the

company).

3. Developed a strategy for evaluating the correlational performances of news sentiment

extraction procedures in a cross-validation setting using meta-analysis techniques.

4. Created two systems that implemented the method and the strategy developed

thereof:

� a text analysis system called CiCui, which builds a positional inverted index

for a corpus comprised of raw text documents;

� a system that takes the index built by CiCui as input and learns the lexical item

distributions for the temporal sentiment classes using a supervised expectation

maximisation algorithm.

5. Conducted a case study that:

(a) demonstrated the effectiveness of the method developed in this thesis in ex-

tracting sentiment orientations of the lexical items;
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(b) assessed the impact of the introduction of sentiment temporality on the predic-

tive performances of sentiment models;

(c) compared two lexical structures, the unigrams and the word dependencies , in

terms of their effectiveness in representing temporal news sentiment;

(d) compared the performances of the news sentiment extracted using the method

developed in this thesis with that extracted using content analysis methods.

6. The main findings of this thesis are:

(a) There is strong evidence that it were the changes in the market that led to the

changes of sentiment in news.

(b) In general, the usage of language patterns associated with retrospective senti-

ment is more prevalent than that associated with prospective sentiment.

(c) Introducing temporality into the modelling of news sentiment did not confer

significant improvements to the method’s ability to predict firm-level stock

price movements using news sentiment.

(d) Models trained with unigrams as features outperformed models trained with

unigrams as features when predicting future firm-level stock price movements

using sentiment found in business and financial news.

(e) Prospective sentiment orientations learnt for word dependencies are easier to

verify compared to those learnt for unigrams.

(f) The sentiment models produced by the method developed in this thesis outper-

formed content-analysis-based methods used with either the General Inquirer or

the Loughran and McDonald’s sentiment dictionary when predicting firm-level

stock price movements using sentiment found in business and financial news.



Acknowledgement

First of all, I would like to express my gratitude and special thanks to my supervisor

Professor Khurshid Ahmad. Without his support and guidance, I would never have finished

this thesis. I want to thank all my collogues — Dr. Stephen Kelly, Zeyan Zhao, Shane

Finan, Dr. Daniel Isemann, Jason Cook, Dr. Aaron Gerow, Barry Redmond, and all my

friends and families for their continued support throughout the course of my study.

Lastly, I am grateful to the financial support provided by Trinity College Dublin, En-

terprise Ireland grant #CC-2011-2601-B: GRCTC, and EU FP7 grant #607691: Slandail.

vii



viii



Contents

Declaration i

Abstract iii

Summary v

Acknowledgement vii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Original Contributions and Findings . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and Related Work 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A Computational Approach to Sentiment Analysis of Text . . . . . . . . . 12

2.2.1 Sentiment Analysis as Pattern Matching . . . . . . . . . . . . . . . 13

2.2.2 Sentiment Analysis as Supervised Machine Learning . . . . . . . . . 19

2.3 Textual Sentiment in Financial Contexts . . . . . . . . . . . . . . . . . . . 27

2.3.1 Document Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Sentiment Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Methods 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Temporality and Sentiment in Business News . . . . . . . . . . . . . . . . 37

3.2.1 The Additional Dimension: Temporality . . . . . . . . . . . . . . . 39

3.2.2 News Temporality and Tenses Information . . . . . . . . . . . . . . 41

3.2.3 Modelling News Sentiment and Temporality . . . . . . . . . . . . . 41

ix



x CONTENTS

3.3 Mixture Models and the EM Algorithm . . . . . . . . . . . . . . . . . . . . 45

3.4 Return-supervised Parameter Learning . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Parameter Learning for Standard Mixture Model . . . . . . . . . . 47

3.4.2 Supervised Parameter Learning with contemporaneous Returns . . 49

3.4.3 Supervised Parameter Learning with Past and Future Returns . . . 54

3.5 Derivation of the Supervised EM Algorithm . . . . . . . . . . . . . . . . . 58

3.6 Evaluating the Sentiment and Temporality for Unseen Documents . . . . . 67

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 System Implementation 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Text Preprocessing with the CiCui System . . . . . . . . . . . . . . . . . . 72

4.2.1 Preprocessing Workflow . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Inverted Positional Index . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.3 Constructing Term-Document Frequency Matrix . . . . . . . . . . . 77

4.3 Model Learning and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Brief Introduction to the KNIME Analytic Platform . . . . . . . . . 80

4.3.2 Design of the Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Model Comparison with Linear Correlation . . . . . . . . . . . . . . 95

4.3.4 Benchmarking with Meta-analysis . . . . . . . . . . . . . . . . . . . 98

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Case Study and Evaluation 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 The News Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 The Equity Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.1 Experiment 1: Non-temporal Sentiment and Stock Returns . . . . . 110

5.5.2 Experiment 2: Temporal Sentiment in Business News and Stock

Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5.3 Experiment 3: Sentiment Modelled by Unigrams . . . . . . . . . . . 132

5.5.4 Experiment 4: Benchmarking with Content Analysis . . . . . . . . 143

5.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Conclusion and Future Work 151

6.1 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.1 Interdependency between Sentiment . . . . . . . . . . . . . . . . . . 153



CONTENTS xi

6.2.2 Deriving EM Estimators for Stable Distributions . . . . . . . . . . . 154

6.2.3 Higher Data Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2.4 Back-testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Appendices 157

A Derivation of The EM Algorithm 159

A.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.2 Principle of the EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 162



xii CONTENTS



List of Figures

1.1 A schematic diagram illustrating the interactions between investor sentiment,

news sentiment, and market movements as assumed in this thesis . . . . . 2

1.2 News sentiment as a mixture of prospective and retrospective sentiment . . 4

1.3 Establishing the link between the linguistic realisations of news sentiment

and the movements of financial market while bypassing the ‘noisy’ retro-

spective sentiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Sentiment analysis formulated as a pattern matching procedure . . . . . . 13

2.2 Sentiment analysis formulated as supervised machine learning . . . . . . . 20

2.3 An example generative model for coin toss . . . . . . . . . . . . . . . . . . 25

2.4 Labelling news articles with contemporaneous market returns . . . . . . . 29

3.1 Flowchart for the method developed in this thesis . . . . . . . . . . . . . . 36

3.2 Target Space for Business News Classification . . . . . . . . . . . . . . . . 39

3.3 Projection from Temporal Sentiment Space to Return Scalar . . . . . . . . 40

3.4 An example univariate mixture distribution comprised of two normal distri-

butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Standard mixture of lexical items. . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Mixture of lexical items supervised by concurrent returns. . . . . . . . . . 49

3.7 The probability density functions of the stable distribution over various

configurations of the parameters. . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Distributions of returns for the four sentiment categories without the tem-

porality components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 A comparison between the approaches to the mapping between news senti-

ment and returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Example distributions of future and past returns for each of the four senti-

ment temporality categories. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.11 Mixture of lexical items supervised by past and future returns. . . . . . . . 57

4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Text Preprocessing Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 74

xiii



xiv LIST OF FIGURES

4.3 An Example Article in CiCui’s XML Format . . . . . . . . . . . . . . . . 75

4.4 Schema for the Inverted Positional Index Database . . . . . . . . . . . . . 78

4.5 Some node collections offered by the KNIME platform . . . . . . . . . . . 81

4.6 An example KNIME workflow . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Comparison among the autocorrelation functions of the interday return

series for The Boeing Company as treated by three different imputing methods. 85

4.8 Joining lexical item postings with their probability distributions over the

temporal sentiment categories . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Lexical item frequency distribution: before and after smoothing . . . . . . 91

4.10 The p.d.f. of the Dirichlet distribution at various parameter configurations 93

4.11 Schematic diagram illustrating the principle of correlation meta-analyses

for fixed effect models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 News-flow by company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Box plots summarising the correlational performances of the two non-

temporal sentiment models trained with the default and randomised settings

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 The impact of supervision weighting on the performances of learnt model . 115

5.4 Histograms depicting the distributions for raw and logarithmic sentiment

ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Summary of the correlational performances of the temporal sentiment

models (testing phase) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Histograms depicting the distributions of sentiment and temporality scores,

unweighted versus weighted by frequencies . . . . . . . . . . . . . . . . . . 132

5.7 Box plots summarising the correlational performances of the temporal

sentiment models trained with nouns, verbs, and adjectives (testing phase) 135

5.8 Box plots summarising the correlational performances of the temporal

sentiment models trained with verbs and adjectives (testing phase) . . . . . 136

5.9 Summary of the correlational performances of models built with Content

Analysis using the GI dictionary (testing phases) . . . . . . . . . . . . . . 145

5.10 Summary of the correlational performances of models built with Content

Analysis using the L&M’s sentiment word list (testing phases) . . . . . . . 146

A.1 A schematic visualisation of the lower bound function L (θ, q (·)) for the

log-likelihood function of the incomplete dataset p (X | θ) . . . . . . . . . . 164



List of Tables

2.1 Comparing two sentiment analysis method paradigms . . . . . . . . . . . . 12

2.2 An example document vector . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Example term-document matrix in sparse form produced by CiCui . . . . 79

5.1 Summary of experiment designs . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Summary of the composition of the corpus used in the case study . . . . . 107

5.3 Corpus breakdown by source . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Corpus breakdown by year . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Corpus breakdown by day of week . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Descriptive statistics for past and future returns series . . . . . . . . . . . 111

5.7 Testing for significant differences between the means of meta-correlations

achieved by the supervised EM algorithm on the ordered and the shuffled

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.8 The tallied results for the manual evaluation of the word dependencies

displayed in Table 5.10 and Table 5.11 . . . . . . . . . . . . . . . . . . . . 118

5.9 The tallied results for the manual evaluation of the word dependencies

displayed in Table 5.12a and Table 5.12b . . . . . . . . . . . . . . . . . . . 119

5.10 20 most frequent sentiment-salient word dependencies extracted from the

ordered dataset trained with lag 1 interday returns . . . . . . . . . . . . . 121

5.11 20 most frequent sentiment-salient word dependencies extracted from the

ordered dataset trained with lag −1 interday returns . . . . . . . . . . . . 122

5.12 Comparing word dependencies whose sentiment were classified differently

under various training settings . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.13 Testing for significant differences between the means of meta-correlations

achieved by sentiment models with and without the temporal aspect . . . . 125

5.14 The tallied results for the manual evaluation of the word dependencies

displayed in Table 5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.15 Most frequent temporality-salient word dependencies extracted using the

ordered dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xv



xvi LIST OF TABLES

5.16 The tallied results for the manual evaluation of the word dependencies

displayed in Table 5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.17 20 most frequent word dependencies whose temporality were classified

differently by models trained with ordered versus shuffled setting . . . . . . 131

5.18 ANOVA tests that compare the average meta-correlations achieved by

models trained with different lexical features. . . . . . . . . . . . . . . . . . 134

5.19 Results from Tukey HSD tests that compare the pairwise correlational

performances between each two of the three lexical features when predicting

future returns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.20 The tallied results for the manual evaluation of the unigrams displayed in

Table 5.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.21 The tallied results for the manual evaluation of the unigrams displayed in

Table 5.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.22 20 most frequent temporality-salient unigrams extracted from the ordered

dataset using all unigrams as features . . . . . . . . . . . . . . . . . . . . . 140

5.23 20 most frequent temporality-salient unigrams extracted from the ordered

dataset using only verbs and adjectives as features . . . . . . . . . . . . . . 141

5.24 20 most frequent temporality-salient unigrams extracted from the ordered

dataset using all unigrams as features (showing only verbs and adjectives) . 142

5.25 Testing for significant differences between the average meta-correlations

achieved by content analysis methods when the ordered dataset was used

and that achieved when the shuffled dataset was used. . . . . . . . . . . . . 147

5.26 Testing for significant differences between the average meta-correlations

achieved by the content analysis method when used with the GI dictionary

and that when the L&M dictionary was used . . . . . . . . . . . . . . . . 147

5.27 Testing for significant differences between the average meta-correlations

achieved by temporal sentiment models and that achieved by content analysis

methods used with GI and L&M dictionaries . . . . . . . . . . . . . . . . 148



Chapter 1

Introduction

1.1 Motivation

Sentiment analysis is a topic that has attracted increasing research interest over the past

decades. The Oxford Dictionary defines sentiment analysis as ‘the process of computa-

tionally identifying and categorising opinions expressed in a piece of text, especially in

order to determine whether the writer’s attitude towards a particular topic, product, etc.

is positive, negative, or neutral’1. It is an interdisciplinary field of study where techniques

from computational linguistics are brought to analyse the expression and understanding of

sentiment in written form, which is a process of psychological nature.

The analysis of sentiment in textual material pre-dated the advent of modern computers.

the method of content analysis developed in the early 20th century, for example, was

used to quantify attitude expressed in texts [Krippendorff, 2013, pg. 7]; though it was

the recent advancements in computing mechanisms that had made it possible for the

practice to be applied to large amounts of texts. Developments in computational theories

such as natural language processing and approximate Bayesian inference have enabled

computing systems to exploit complex and unstructured information in raw texts that

were previously understandable only by humans. The insights gained through large-scale

sentiment analyses on the ever increasing amount of information on the Web have powered

various applications, ranging from the summarisation of product and service reviews [Pang

et al., 2002, Turney, 2002, Turney and Littman, 2003, Gamon, 2004, Cui et al., 2006, e.g.

] to the prediction of political polls [Kermanidis and Maragoudakis, 2013, Rill et al., 2014,

e.g. ].

Using news sentiment to explain price movements in financial markets is one such

application that has gained much attention in recent years. The basic premise of the

practice is that investors, being not fully rational, can have their decisions influenced

1http://www.oxforddictionaries.com/definition/english/sentiment-analysis, accessed in
February, 2016.

1
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2 CHAPTER 1. INTRODUCTION

by investor sentiment, which represents the general attitudes of investors towards the

future development of the market. It follows that at least part of the price movements in

financial markets could be attributed to this investor sentiment [Baker and Wurgler, 2006].

However, investor sentiment itself is a quantity that is quite difficult to measure directly.2

It was nevertheless postulated that news sentiment — that is, the sentiment conveyed

in the text of news articles (sometimes also referred to as the tone of the news) — could

serve as a proxy to the intangible investor sentiment: optimistic news announcements may

correlate with positive investor sentiment, while pessimism in news announcements may

coincide with an increase of negative sentiment among the investors. The hope is that by

applying sentiment analysis techniques on large volumes of business and financial news,

one will be able to automatically extract and quantify news sentiment, which, as a proxy

to the hidden investor sentiment, can in turn be used to explain the behaviours of the

market (Figure 1.1).

Figure 1.1: A schematic diagram illustrating the interactions between investor sentiment,
news sentiment, and market movements as assumed in this thesis

The interactions between these variables in the real world is of course much more complicated; for example,
there would exist a feedback link from news sentiment to investor sentiment, reflecting the fact that
investors’ beliefs can be influenced by current news sentiment as well. However, discussions on such effects
are beyond the scope of this thesis, but may warrant further investigations.

A substantial body of literature has addressed the dynamics between news sentiment

and the movements of the financial markets. Many studies from the finance literature

used content analysis to gauge textual sentiment in the news, which mainly involves

(i) looking up the sentiment connotations of individual words in a document from a

2Investor sentiment could be measured directly by sending out questionnaires to investors asking their
opinions about the market.
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sentiment dictionary such as the General Inquirer, (ii) aggregating the sentiment of the

individual words into the daily level, and (iii) using the aggregated sentiment series as

explanatory variables to regress against the target response, e.g. the returns of a stock or a

market index. Studies from the computational linguistics discipline tend to take a different

approach by employing statistical machine learning techniques: instead of consulting

a dictionary for the sentiment orientations of the words in the text, an algorithm is

developed to learn from historical data the impact each word’s occurrences has on the

future movements of the market. This approach essentially formulates the analysis of news

sentiment as a supervised machine learning problem, where the inputs are the contents of

the news announcements, and the targets are the directions of the market’s movements.

Some previous studies have suggested that the impact of news sentiment on the market

is not universal, but only becomes salient during specific time periods [Ahmad et al., 2015,

Smales, 2015]; significant interactions between news sentiment and the stock market were

identified during recessions at the market index level [Garćıa, 2013] as well as IPOs (Initial

Public Offering) at the firm level [Koppel and Shtrimberg, 2004]. It was also understood

that the sources from which the news sentiment was gathered played an important role

— sentiment is often found where it is expected; Tetlock [2007] discovered that textual

sentiment extracted from the editorial column Abreast of the Market on The New York

Times had a significant impact on the returns of Dow Jones Industrial Average from the

subsequent days; Loughran and McDonald [2011a] found some links between the usage of

negative words in a company’s 10-K forms3 and the performance of the company’s stock.

What previous studies have not addressed, however, is why textual sentiment in

arbitrary business news has not contributed more, if not at all, to the price movements

in the market. Is it because the market is so efficient outside times of turmoil that, as

postulated by the Efficient Market Hypothesis [Fama, 1970], almost all the implications

carried by news sentiment had already been absorbed before they could be investigated?

Or is it because the sentiment signals were so distorted by the noise in the text that their

impacts became undetectable?

One observation made in this thesis about business and financial news is that much

of the information disseminated in the news is not ‘new’ — it is rather common to find

chunks of text in financial news articles that mainly report on what had already happened

in the market, e.g. fluctuations of market indices and stock prices. While such recounts

are useful in providing contexts to the readers of the news, they themselves do not convey

much information apart from what had already been told by the prices in the market

(i.e. the Efficient Market Hypothesis). This repetition (i.e. news repeats the information

entailed in prices) could become a source of noise that interferes with the analysis of news

3A Form 10-K is an annual report a company files that summarises its financial performances. The
filing of the form is required by the U.S. Securities and Exchange Commission.
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Figure 1.2: News sentiment as a mixture of prospective and retrospective sentiment

sentiment.

It is therefore proposed in this thesis that one of the reasons why traditional sentiment

analysis methods have had difficulty detecting the effects of news sentiment on the market

is due to the presence of retrospective sentiment : the retrospective sentiment reflects the

evaluative stance business news articles take when reporting on what had happened in the

market; its counterpart, the prospective sentiment, refers to the evaluative stance news

articles take when discussing future development of the market. The introduction of the

notions of retrospectivity and prospectivity brings a new temporality dimension to the

classic positive-versus-negative model of news sentiment; these two types of sentiment will

collectively be referred to as temporal sentiment in the rest of this thesis. It is argued in this

thesis that a business news article can convey both types of temporal sentiment at the same

time — the language usage in an article can be thought of as a mixture of the linguistic

realisations of the two types of temporal sentiment (Figure 1.2). Traditional approaches to

the analysis of news sentiment had sought to establish contemporaneous causal links from

news sentiment to market movements; however, such links can be difficult to obtain during

times periods when retrospective sentiment is prominent and prospective sentiment is weak,

in which case the majority of the news sentiment will be driven by market movements, not

the reverse; in other times, prospective sentiment becomes prevalent and its impact on the

market becomes perceivable to traditional analysis approaches. By separating prospective

news sentiment from its retrospective counterpart, it might be possible to construct a

more accurate model for the interactions between news sentiment and the behaviour of

the market.
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The main objective of this thesis is to develop a computational method that can

automatically learn from business news the lexicons used to express prospective and

retrospective sentiment; this objective is approached by separately modelling the causal

relationships between the two types of temporal sentiment and the behaviour of the market

(Figure 1.3). A second objective is to investigate whether making the distinction between

retrospectivity and prospectivity when modelling news sentiment improves to the method’s

ability to predict firm-level stock returns using news sentiment. The third objective is

to explore the effectiveness of word dependencies serving as the unit of meaning when

modelling news sentiment, and compare it with that of unigrams.

Figure 1.3: Establishing the link between the linguistic realisations of news sentiment and
the movements of financial market while bypassing the ‘noisy’ retrospective sentiment

By distinguishing between the language patterns used to express prospective and retrospective sentiment,
news sentiment analyses are able to bypass the ‘noisy’ retrospective sentiment patterns and work directly
on the more informative prospective sentiment.

1.2 Research Questions

The principal question this thesis attempts to answer is:

� Can a method be developed to computationally distinguish the language patterns

that realise retrospective and prospective news sentiment?
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Suppose the answer to it is positive, then a second question is asked:

� Does distinguishing between retrospective and prospective news sentiment help

improve the modelling of the interactions between news sentiment and the market

more effectively than news sentiment?

As discussed in the previous section, a method that is able to computationally distinguish

recounting language patterns from language patterns that prompt speculations may help

separating the underlying prospective sentiment signals from retrospective sentiment

signals. If such method can indeed be developed, it would be interesting to know whether

making such distinction actually improves the extraction of news sentiment from arbitrary

business news.

The third research question asked in this thesis is:

� Can word dependencies, as a unit of meaning, better capture sentiment than uni-

grams?

Noise may also arise during the analyses of sentiment due to the ambiguous nature of the

lexical structures that serve as the unit of meaning. Some previous studies represented

news sentiment based on word level connotations; in some cases, the different senses

of the same word could convey distinct sentiment connotations (e.g. the word ‘crude’

in ‘crude oil’ no longer possess a negative undertone); in other cases, the sentiment

orientation of a phrase or an expression cannot be inferred by simply combining the

sentiment connotations of its constituent words — that is, the sentiment of the phrase

cannot be compositionally computed. For example, if one consults the General Inquirer

dictionary, the news title ‘Microsoft earnings beat estimates’ would be considered to bear

negative sentiment by content analysis methods due to the word ‘beat’ being classified

as negative in the dictionary. Some linguists have argued that single words by their own

may be inadequate in representing meaning, and that lexical structures of higher orders

should be used as the unit of meaning [Sinclair, 1998, Stubbs, 2009]; among the candidates

proposed to substitute single words are collocations (co-occurrence of words), colligations

(the co-occurrence of grammatical phenomena), and semantic preferences (the restriction

of regular co-occurrence to items which share a semantic feature) [Sinclair, 1998]. In this

thesis, I explore the use of an alternative lexical structure called word dependency as

the unit of meaning when representing sentiment. According to dependency grammar, a

sentence can be represented as a series of dependency relations (or word dependencies);

each dependency relation describes the syntactical relation between a dependent word

and another governor word [Kübler et al., 2009, pg. 2]. Recent developments in natural

language processing have brought algorithms and tools that are capable of extracting word

dependencies from raw texts [Klein and Manning, 2003], making it possible to explore the

use of word dependency as the unit of meaning when analysing news sentiment.
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1.3 Original Contributions and Findings

The principal original contribution this thesis makes to the overall body of knowledge

is to have introduced the notion of temporality to the modelling of textual sentiment in

business and financial news. In addition to the positive and negative news sentiment, this

temporality dimension further divides news into two new categories: retrospective news,

which mainly describes what had already happened on the market, and prospective news,

which discusses and speculates on the future developments of the market. Through this

new mechanism, this thesis attempted to explore the reason behind the lack of discernible

impacts from news sentiment found in arbitrary business news on the movements of market.

It is hypothesised in this thesis that news sentiment’s influence over the market mainly

channels through prospective sentiment; trying to model the influence without discounting

the retrospective aspect of the sentiment could introduce noise that interferes with the

process. It is hoped that by treating retrospective and prospective sentiment separately,

one may be able to construct a more accurate model for news sentiment’s effect on the

financial market.

It is acknowledged that while the investigation of the prospective effect news sentiment

has on the market is not new [Généreux et al., 2011, Li, 2010], nor is the notion of two-way

feedbacks between news sentiment and the market [e.g. Mo et al., 2015], this thesis, to my

best knowledge, represents the first attempt to separate the effect of retrospective news

sentiment from that of the prospective news sentiment when examining the interactions

between news sentiment and the behaviour of the market.

A second contribution made by this thesis consists in the development and subsequently

the implementation of a method that computationally identifies linguistic realisations

of temporal sentiment from raw news articles without manually labelled training sets.

In this method, the overall sentiment of a news article is treated as a mixture of four

types of temporal sentiment, i.e. retrospective negative, retrospective positive, prospective

negative, and prospective positive. A probabilistic model was constructed to describe

the interactions between the temporal sentiment about a company found in business

news and the company’s stock price. The parameters in this model, i.e. the distribution

of the linguistic structures that realise the sentiment, were learnt using the expectation

maximisation algorithm. The method was implemented by two systems built by the author

of this thesis: the CiCui system which converts raw and unstructured textual data into a

structured form, and the TSMiner system which takes the structured output from the

CiCui system and carries out the calculations specified by the expectation maximisation

algorithm developed in this thesis.

To address the research questions, a case study was conducted using a dataset comprised

of news articles and the stock prices collected for 16 top-ranking publicly listed companies.
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The case study first established the effectiveness of the method developed in this thesis in

terms of its ability to learn the lexical item distributions for the four temporal sentiment

classes. It was then discovered that, in business and financial news, retrospective sentiment

is overall more prevalent than prospective sentiment; this implies that it is often the

movements of the market that led to the the changes in news sentiment. Subsequent

experiments found that introducing temporality into the modelling of news sentiment did

not seem to have improved the predictive performance of the method when forecasting

the daily returns of a company’s stock with the textual sentiment found in the news

stories pertinent to the company. Lastly, the thesis investigated the effectiveness of word

dependencies serving as units of meaning when representing news sentiment compared

to unigrams. The results suggest that using word dependencies as the textual features

conferred no increase in the predictive performance of the method; however, it was noted

that the prospective sentiment learnt for word dependencies are more interpretable than

those learnt for unigrams.

1.4 Thesis Outline

While the three research questions above are all raised in a linguistic context, this thesis

attempted to approach them from a computational point of view. Chapter 2 starts by

surveying some of the previous studies on computational sentiment analysis in general; it

then reviews related studies exploring news sentiment’s impact on the financial market so

that the work done in this thesis can be put into perspective. In Chapter 3, I first discuss

the theoretical and mathematical backgrounds for the method developed in this thesis. A

probabilistic model is then proposed to describe the interaction between temporal sentiment

and the market at the firm level. This is followed by the derivation of the maximum

likelihood estimators for the parameters in the model using the expectation maximisation

algorithm. Chapter 4 describes the design and implementation of two software systems

which perform the computations set out in Chapter 3. Using these two systems, Chapter 5

applies the method developed in Chapter 3 to conduct a case study on 16 publicly listed

companies to explore the role of temporal sentiment in the interactions between business

news and stock returns; the case study includes four experiments, each addressing a certain

aspect of the research questions. Finally, Chapter 6 concludes the thesis and discussed

areas in the method that could be improved in the future.

1.5 Publications

� Xiubo Zhang and Khurshid Ahmad. Affect Proxies and Ontological Change: A

finance case study. In Sivaji Bandyopadhyay and Okumura Manabu, editors, Pro-
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ceedings of the 2nd Workshop on Sentiment Analysis where AI meets Psychology,

pages 99-114, 2012.

� Xiubo Zhang and Khurshid Ahmad. Ontology and Terminology of Disaster Manage-

ment. In DIMPLE: DIsaster Management and Principled Large-scale information

Extraction Workshop Programme, 2014.
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Chapter 2

Background and Related Work

2.1 Introduction

In this chapter, I survey the literature on sentiment analysis in general as well as its

applications in financial and business contexts. Previous studies on the interactions

between news sentiment and the behaviour of the market have largely been motivated by

two reasons: (i) to gain a better understanding of the role news sentiment plays in the

financial market; and (ii) to exploit news sentiment as an instrument for managing risks in

financial activities. Such inquiry therefore represents an interdisciplinary endeavour that

exploits mainly two sets of techniques: text analytics methods developed in computational

linguistics are used to model textual sentiment in business news, while statistical methods

are brought to model the dynamics between news sentiment and the movements of the

financial market. This division of interest resulted in a separated body of literature —

researchers from the computational linguistic community tend to focus more on developing

more accurate models for news sentiment, whereas studies from the finance community

put emphasis on learning about the explanatory role of news sentiment in econometric

models.

It can be argued that the method developed in this thesis belongs to the former category

because its main goal is to find the distributions of lexical items for temporal sentiment. In

achieving this goal, however, the method also explores the causal relationships between news

sentiment and the movements of the market. This survey therefore starts by reviewing

sentiment analysis related literature from the standpoint of computational linguistics

(Section 2.2) and then moves on to examine related works in the finance literature that

contemplate the relationships between news sentiment and market behaviours (Section 2.3).

11
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2.2 A Computational Approach to Sentiment Analy-

sis of Text

The analysis of textual sentiment, being a special form of text analysis, has benefited

greatly from the rapid growth of computing capacities and the advances in natural

language processing methodologies. Procedures such as probabilistic language modelling

and statistical text classification have seen widespread use in sentiment analysis tasks.

In this section, I set out to review some of the key concepts and techniques used in

computational text analysis with an emphasis on their applications in sentiment analysis.

The process of computational sentiment analysis can be abstracted as a mathematical

function — one that maps a piece of text to its sentiment orientation 1, a numeric vector

that quantifies both the direction and the magnitude of the sentiment connotation the

text evokes. This survey organises previous studies by how they had approached the input,

mapping, and the output aspects of the sentiment analysis function.

Surveys of the literature have revealed two main paradigms of methods for sentiment

analysis [Pang and Lee, 2008, Liu, 2012, Cambria et al., 2013, Medhat et al., 2014].

The first approach, which is referred to as the pattern matching method in this survey,

treats input texts as streams of lexical items; an algorithm then searches the streams for

sentiment-bearing patterns; results from the search are aggregated to form the overall

sentiment orientation of the text using predefined rules and heuristics. The second approach

formulates the analysis of sentiment as a supervised machine learning task: the input text is

first transformed into document vectors; a statistical classifier is then trained using a set of

labelled documents whose sentiment orientations are known (i.e. training set); the trained

classifier can then be used to determine the sentiment orientations for unseen documents.

A key difference between the two methods lies in their utilisation of external knowledge

on sentiment — pattern-matching-based methods typically make use of prior information

about the sentiment connotations of words found in pre-compiled sentiment dictionaries,

whereas machine learning methods attempts to derive such information directly from the

labelled training data. A comparison between the two paradigms is listed in Table 2.1.

Paradigm Pattern Matching Machine Learning

Input lexical tokens and sentiment dictionaries Labelled document vectors
Mapping Scoring rules and heuristics Statistical classifiers

Output Sentiment orientation Sentiment orientation

Table 2.1: Comparing two sentiment analysis method paradigms

1The concept has many names; it is sometime also referred to as semantic orientation [Wilson et al.,
2009] or sentiment polarity, although the latter is mostly used to refer to only the direction of a sentiment
orientation.
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The remainder of this section is divided into two parts. The first part (Section 2.2.1)

reviews techniques used by the pattern matching paradigm, with an emphasis on the

development of sentiment dictionaries. The second part (Section 2.2.2) discusses some

of the most common techniques and methods used for machine-learning-based sentiment

analysis as well as their applications in sentiment analysis.

2.2.1 Sentiment Analysis as Pattern Matching

A key assumption made in sentiment analysis is that the writer’s opinion and attitude

towards a topic are reflected through her choice of words during writing2 — that is, a

writer prefers to use different sets of words when trying to deliver different attitudes;

readers infer the author’s attitude later by noting the word preferences.

In a sense, pattern-matching-based sentiment analysis methods attempt to mimic how

human readers understand textual sentiment. Systems that implement such methods first

identify the sentiment connotations of the individual words and phrases encountered in

the input text; it then aggregates the orientations associated to the individual occurrences

to form a summarising attitude expressed in the text according to some predefined rules

and heuristics (Figure 2.1).

Figure 2.1: Sentiment analysis formulated as a pattern matching procedure

This communication of sentiment is made possible by the sharing between the authors

and readers a common vocabulary for expressing opinions and attitudes; access to the

2As Sinclair [1965] pointed out: ‘Any stretch of language has meaning only as a sample of an enormously
large body of text; it represents the results of a complicated selection process, and each selection has
meaning by virtue of all the other selections which might have been made, but have been rejected.’
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vocabulary is thus vital for a heuristic-based system to be able to interpret the sentiment

connotations of words and phrases it encounters. In sentiment analysis, such vocabulary

is typically organised in the form of a sentiment dictionary. A sentiment dictionary

maintains a mapping from certain lexical items (words, phrases, patterns, etc.) to their

respective sentiment categories (i.e. ‘positive’ and ‘negative’; a lexical item belongs to

neither categories is sometimes considered as ‘neutral’).

A key challenge in sentiment analysis is therefore the compilation and utilisation of

sentiment dictionaries. The literature related to this topic is reviewed in Section 2.2.1.1.

One of the contributions of this thesis is a method that automatically infers the distributions

of lexical items for different sentiment categories, which could assist the compilation of

sentiment dictionaries.

The other aspect of heuristic-based sentiment analysis method is the aggregation of

the sentiment orientations obtained from the subordinate structures into a summarising

sentiment orientation for the encompassing lexical structure (i.e. sentence, paragraph,

document, etc.), a topic which is reviewed in Section 2.2.1.3. This task can be challenging

due to the non-compositional nature of the natural languages. This lack of compositionality

means that one cannot derive the sentiment orientation of a sequence of lexical items

by simply adding up the sentiment orientations of the constituent lexical items. As a

result, efforts must be put to compose specialised linguistic rules that account for this

‘non-compositionality’.

2.2.1.1 Sentiment Dictionaries

As discussed earlier, accesses to high quality sentiment dictionaries is crucial to heuristic-

based sentiment analysis methods. The compilation of sentiment dictionaries has therefore

attracted a considerable amount of research interest. There are generally two approaches

to the compiling of sentiment dictionaries: (i) to have experts measure the sentiment

connotations of the words through surveys and build the dictionaries manually, or (ii) to

use an algorithm to automatically determine the sentiment orientations of the words.

The work described in Osgood [1957]’s work The Measurement of Meaning represents

some of the earliest efforts in quantifying word sentiment. A psychological experiment was

conducted in which participants were asked to rate words across a number of semantic

scales. Using factor analysis, Osgood identified three semantic dimensions with which

the affective connotations of a word can be characterised: (i) the ‘Evaluative Factor’

dimension, whose most representative scales include good–bad, optimistic–pessimistic,

complete–incomplete, etc.; (ii) the ‘Potency’ dimension, which is associated with scales

such as hard–soft, heavy–light, etc.; and (iii) the ‘Oriented Activity’ dimension, which

is associated with scales such as active–passive, hot–cold, excitable–calm, etc.. In some

sense, the ‘Evaluative Factor’ dimension can be considered to have encoded the sentiment
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connotations of words to some extent.

Stone et al. [1966] later extended the work by Osgood and developed the General

Inquirer system. The General Inquirer (abbreviated as GI hereafter) is a content analysis

system that automatically codes and classifies texts using an affect dictionary and a set of

disambiguation rules. The affect dictionary is essentially a generalised sentiment dictionary

— it categories words and phrases with respect to not only their sentiment connotations, but

also their affect connotations; example affect categories include positive versus negative

(i.e. sentiment), activity versus passivity, pleasure versus pain, overstatement versus

understatement, etc. The disambiguation rules specify how the affect of a word should

be determined given its surrounding context. The affect dictionary came with the GI

dictionary was obtained by merging two other dictionaries: the Harvard IV-4 psychological

dictionary, which incorporates Osgood’s three semantic dimensions, and the Lasswell value

dictionary [Namenwirth and Weber, 1987]. The GI dictionary covers 17788 words and

182 affect categories; four of the categories are directly related to sentiment: Pstv, Ngtv,

Positiv, and Negativ. The Pstv and Ngtv categories were derived based on the word’s

position on the ‘Evaluative Factor’ scale. The Positiv and Negativ categories are improved

versions of the Pstv and Ngtv categories respectively, and are often used in place of the

Pstv and Ngtv categories.

The General Inquirer dictionary had been used in a number of studies as the source of

sentiment orientations for words and phrases. Yi et al. [2003] included words filed under

the Positive, Negative, and Hostile categories from the GI dictionary when constructing a

combined sentiment lexicon from three existing lexical resources (GI, DAL, and WordNet).

In a similar note, Wilson et al. [2009] referred to the GI dictionary when determining the

prior sentiment orientations for single words, which were then used to infer the sentiment

orientations of the enclosing phrases. Kennedy and Inkpen [2006] enhanced the sentiment

word categories by taking into account valence shifters, which are modifier terms that can

change the sentiment orientation of another word. Turney and Littman [2003] and Kamps

et al. [2004] used the GI dictionary as an benchmark to evaluate the performances of their

sentiment lexicon expansion algorithms. Tetlock [2007] and Tetlock et al. [2008] made use

of the GI dictionary when measuring news’ impact on financial market performances. Das

and Chen [2007] exploited the difference between the counts of pessimistic and optimistic

words as defined in the GI dictionary as a disambiguation method.

Several sentiment dictionaries were developed following the model of the GI dictionary

while addressing some of its limitations. One such limitation is that the entries in the GI

dictionary are defined over finite categorises — that is, the dictionary only records whether

or not a word belongs to a certain category, but not the intensity of its membership [Ann

and Khurshid, 2008]. Later sentiment dictionaries, such as Cynthia Whissell’s Dictionary

of Affective Language [Whissell et al., 1986] and Senti-WordNet [Baccianella et al., 2010],
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quantify the intensity of the sentiment orientations on continuous scales, allowing more

fine-grained representation of textual sentiment.

Another limitation of the GI dictionary and many other sentiment dictionaries is that

they only contain affect definitions for unigrams (i.e. single words). While content analysis

systems are in general agnostic to the type of the lexical structures they process (i.e. they

are able to utilise dictionaries developed for lexical structures other than unigrams like

bigrams or even multi-word phrases), most affect dictionaries were built at the unigram

level; as such, it is sometimes difficult for content-analysis-based methods to resolve

sentiment orientation for certain types of phrases due to the non-compositional nature of

textual sentiment. The root of this limitation may lie in the inadequacy of unigram’s ability

to serve as the unit of meaning. Sinclair [1991, pg. 6] observed that meanings in language

tend to manifest through phrases rather than single words. If Sinclair’s proposition is

correct, then textual sentiment, being a special form of meaning, will be better captured

through lexical structures of higher orders.

Several later studies have explored the possibility of defining sentiment dictionaries for

lexical structures other than unigrams. Popular alternatives considered include bigrams

and n-grams [Pang et al., 2002, Dave et al., 2003, Matsumoto et al., 2005, Cui et al., 2006,

Butler and Kešelj, 2009, Abbasi et al., 2008, Bespalov et al., 2011] and word dependencies

[Wilson et al., 2009, Di Caro and Grella, 2013, Poria et al., 2014, Agarwal et al., 2015].

Lastly, the GI dictionary and some other psychological sentiment dictionaries were

designed to measure the sentiment orientations of words appeared in the general language

register, and may thus fail to reflect domain-specific connotations that become prominent

only in certain sublanguages [Khurshid and Rogers, 2001, Li et al., 2014a]. A sublanguage is

‘a specialized language or jargon associated with a specific group or context’3. The problem

with sublanguages is particularly relevant to the analysis of news sentiment because

business news often cover various specialised domains (e.g. aerospace, energy, motoring,

finance, etc.). Later studies have attempted to address this problem by either introducing

pre-defined domain-specific sentiment dictionaries [e.g. Loughran and McDonald, 2011a]

or resorting to automatic expansion of sentiment dictionaries to construct ad hoc domain

dictionaries, a technique elaborated in Section 2.2.1.2.

2.2.1.2 Automatic Compilation of Sentiment Dictionary

Compiling sentiment dictionaries can prove difficult. The quality of sentiment dictionary

is dependent on the consensus it receives — the more people agree with the definitions

a dictionary gives, the more reliable the dictionary becomes. For manually compiled

dictionaries, there often exists a trade-off between quality and cost — considerable amount

3http://www.oxforddictionaries.com/definition/english/sublanguage, accessed in January
2016

http://www.oxforddictionaries.com/definition/english/sublanguage
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of manual work is required to produce a sentiment dictionary of satisfactory quality;

furthermore, verifying the quality of the dictionary requires additional resources. All these

hinder the wider application of the pattern-matching-based method.

A number of studies have attempted to overcome the difficulties by introducing

algorithms that are able to automatically derive the sentiment polarities for words based

on their usages in a corpus. Such methods typically start with a list of ‘seed words’

whose sentiment orientations are taken as known; some pre-defined rules and heuristics

are then applied to infer the sentiment polarities for the other words seen in the corpus.

Hatzivassiloglou and McKeown [1997], in their pioneering work, noted that words linked by

the conjunctions like ‘and’ tend to have similar sentiment orientations, while words linked

by ‘but’ tend to possess opposite sentiment orientations. The authors then developed

a logistic regression model that attempts to predict the types of the conjunctions, and

used it to cluster adjectives into positive and negative groups. Kanayama and Nasukawa

[2006] extended Hatzivassiloglou and McKeown [1997]’s method by introducing more

sophisticated inference rules; the resulting sentiment pattern database were later used by

[Yi et al., 2003]. Turney and Littman [2003] described a method that infers sentiment

orientations of words based on their statistical association with a handful of seed words.

The method evaluates the ‘statistical distances’ between the words using metrics such as

point-wise mutual information (PMI), as well as the cosine distances between the word

vectors produced by latent semantic analysis (LSA): words that are ‘close’ to each other

in such metric space are considered to bear similar sentiment orientations. Also using the

PMI metric, Yu et al. [2013] developed a ‘contextual entropy model’ to expand emotion

words and their intensities from a list of seed words for classifying sentiment in stock

market news. Kamps et al. [2004] and Hu and Liu [2004] both exploited the synonyms

and antonyms information supplied in WordNet [Miller, 1995] to construct sentiment

dictionaries from a list of seed word; Shaikh et al. [2016] extended this approach to creating

sentiment lexicons for other language by employing Google’s translation service.

Another approach to the automatic building of sentiment dictionaries involves the

use of the weights/coefficients assigned to the features by statistical classifiers when

learning sentiment form text. Bayesian text classifiers, for example, produce probability

distributions over the words in the vocabulary for each sentiment class; the probabilities

assigned to the words can be interpreted as the intensities of the words’ sentiment in

the corresponding sentiment category. The method developed in this thesis follows the

Bayesian paradigm, and the distributions over words learnt for each of the temporal

sentiment categories can be construed as sentiment dictionaries. It is worth nothing that

while this method mostly applies to generative models; weights assigned to features (i.e.

lexical items) in certain discriminative classifiers, support vector machines in particular,

may also be interpreted as the contributions of the features make to the classification of
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sentiment [Matsumoto et al., 2005].

2.2.1.3 Sentiment Classification via Aggregation Heuristics

Once the sentiment orientations of the underlying lexical items have been determined using

a sentiment dictionary, the overall sentiment orientation of the encompassing structures

can be acquired by aggregating the individual orientations from the subordinate lexical

items.

Naive Classifier The simplest and perhaps most intuitive strategy for combining

sentiment from individual lexical items is perhaps the so-called ‘naive classifier’ [Das

and Chen, 2007]. In this strategy, each sentiment-bearing word or phrase is assigned

a sentiment score (e.g. −1 for negative, 0 for neutral, and +1 for positive); the overall

sentiment orientation of a sentence or document is then the sum or mean of the sentiment

scores of its constituent words and phrases [Turney, 2002, Dave et al., 2003, Kim and

Hovy, 2004, Hu and Liu, 2004, Das and Chen, 2007].

The drawback of this strategy is that it has difficulties handling non-compositionality,

where the overall sentiment orientation of an phrase cannot be derived by simply adding

up the sentiment orientations of its constituent words. One example of such phrases is

the ‘beat estimates’ demonstrated in Section 1.2. Another example would be negations,

where a word is modified with a negator such as ‘not’, ‘hardly’, etc.; consider the phrase

‘not bad’: the word ‘bad’ falls in the Negativ category of the GI dictionary; the word

‘not’ is categorised as neither positive nor negative, and is thus considered neutral by

most sentiment dictionaries; a sentiment classifier that naively combines the sentiment

orientations of the two words will classify the phrase as negative. For the sentiment

orientation of this phrase to be classified correctly, the algorithm needs to be able to

identify the negation, invert the contribution the adjective ‘bad’ makes to the overall

sentiment orientation of the phrase, and conclude that the overall sentiment borne by

the phrase is positive or at least non-negative. In other cases, adverbs could be used

to modify the intensities of evaluative phrases (e.g. quite good, very bad); Polanyi and

Zaenen [2006], Kennedy and Inkpen [2006] recognised such usages as contextual valence

shifters. In these scenarios, the intensifiers (or diminishers) themselves do not invoke any

affective connotation; they instead alter the intensity of the sentiment orientations of the

words that follow them. The most problematic constructs are perhaps the metaphors —

neither ‘kick’ nor ‘bucket’, for instance, are considered evaluative, yet the phrase ‘kick

the bucket’ exhibits negative connotation. The interpretation of metaphors, however, is

beyond the scope of traditional sentiment analysis, so I will not discuss this further in this

thesis.
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Heuristic-based Classifier Heuristic-based classifiers build on the basic principle of

the naive classifiers discussed above, but introduce rules and heuristics that specify how

the aggregations should be handled in certain scenarios. This strategy recognises the non-

compositional nature of textual sentiment. When tasked to summarise the overall sentiment

of a sentence or document, it combines the sentiment orientations of the subordinate

words and lexical items following manually developed rules and heuristics. Yi et al. [2003]

and Nasukawa and Yi [2003], for example, compiled dictionaries comprising hundreds of

so-called sentiment patterns, which are essentially heuristics and rules that define how the

sentiment of a certain phrase should be determined (e.g. ‘some feature prevents trouble’

will be marked as a positive review). Liu [2010] developed a set of rules using BNF-like

grammar for inferring sentiment orientations; an example rule is:

POSITIVE := P

| PO

| sentiment shifter N

| sentiment shifter NE

where P and PO represent atomic and compound positive sentiment expressions respec-

tively, whereas N and NE represent atomic and compound negative sentiment expressions

respectively; the grammar states that an expression is positive if it is an atomic posi-

tive expression or a compound positive expression or a negative expression (atomic or

compound) modified by a sentiment shifter such as ‘not’ and ‘hardly’. The previously

mentioned contextual valence shifters by Polanyi and Zaenen [2006] operates on a similar

fashion: (i) a sentiment-laden expression is initially assigned a sentiment value (e.g. 2

for the adjective ‘clever’); (ii) if expression is modified by a intensifier (e.g. ‘very’) or a

diminisher (e.g. ‘hardly’) then its sentiment value is scaled accordingly (‘very clever’ will

yield a value of 3 while ‘barely clever’ will be assigned a value of 1); (iii) if the expression

is modified by a negation (e.g. ‘not clever’), then the sign of its value is inverted (‘not

clever’ will have a sentiment value of −2).

2.2.2 Sentiment Analysis as Supervised Machine Learning

For the heuristic-based methods, the ‘mapping’ component of the sentiment analysis

function is implemented through human expertises — the heuristics that direct the

inferring of sentiment orientations are supplied by human experts. The gathering of

such knowledge, be it the definitions for sentiment dictionaries or rules for sentiment

aggregation, is a non-trivial endeavour. In contrast, for machine learning based methods,

the mapping from lexical structures to their sentiment orientations are established by the

algorithm itself with little to no human intervention.
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Figure 2.2 illustrates the workflow of a typical machine-learning-based sentiment

analysis. The process makes use of two sets of data: (i) the training documents, which

could be product reviews or business news, and (ii) the targets of the learning, which

could be the customer ratings or market movements. The running texts in the news

are transformed into structured form and converted into numeric forms before they can

be consumed by the machine learning algorithms; the conversion of textual documents

into numeric vectors (i.e. document vectorisation) is addressed in Section 2.2.2.1. For

classification tasks, continuous targets are mapped into discrete variables (e.g. numeric

ratings are mapped into ‘favourable’ versus ‘unfavourable’ binary classes using a cut-off

threshold); missing values are also treated at this time. Lastly, the target labels are

assigned to the training documents — this step is relatively straightforward for some

applications, e.g. product reviews, whereas for the learning of textual sentiment in financial

news, it can involve an additional grouping of articles by dates when daily returns are used

as the targets. The categorisation of classifiers (discriminative versus generative model)

used in sentiment analysis are briefly discussed in Section 2.2.2.2. Once the training is

complete, the sentiment orientations of unseen documents can be determined using the

trained classifier.

Figure 2.2: Sentiment analysis formulated as supervised machine learning

Machine-learning-based sentiment analysis inherits many of the key concerns seen in

general machine learning tasks: feature representation (e.g. representing running texts

as document vectors), feature selection (e.g. dropping infrequent words and stop words),

choice of classifiers (e.g. discriminative versus generative models), and validations (e.g.

setting up cross-validations). The remainder of this section reviews the literature that

address some of these aspects in context of sentiment analysis. Section 2.2.2.1 first examines
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the mathematical representations of textual materials; Section 2.2.2.2 then contemplates

the different types of machine learning algorithms commonly used in sentiment analysis.

2.2.2.1 The Vector Space Model

Computational approaches to sentiment analysis require the input text be ‘computable’ —

that is, the input textual material must be represented in such a way that an algorithm is

able to evaluate its sentiment orientation automatically. To this end, the de facto practice

is to represent the input text as a document vector using the vector space model [Salton

et al., 1975]. In the vector space model, a piece of raw input text is treated as a sequence

of lexical tokens; the set of all unique lexical tokens collected from the documents in a

corpus constitutes the vocabulary of the corpus. Given a vocabulary of size V , a document

d is represented by a V -dimensional document vector d = (w1, w2, . . . , wi, . . . , wV ), with

wi representing the weight assigned to the i-th entry in the vocabulary for document d.

As an example, the vectorised representation of the following sentence

A rout in tech stocks — highlighted by LinkedIn Corp.’s massive drop after

the business-oriented social network delivered a poor outlook — helped U.S.

equities post their largest weekly drop in a month.4

is illustrated in Table 2.2.

Word Weight Word Weight

drop 2 outlook 1
poor 1 post 1

massive 1 highlighted 1
stocks 1 social 1

network 1 tech 1
Corp. 1 equities 1

rout 1 weekly 1
delivered 1 U.S. 1

business-oriented 1 largest 1
helped 1 LinkedIn 1

Table 2.2: An example document vector

Stop words were removed from when vectorising the document.

The Bag-of-words Model In the above example (Table 2.2), the vocabulary is defined

over single words (i.e. unigrams), and the weights used are the raw frequencies of the words’

4This is an excerpt taken from the news article Nasdaq slammed as rout in tech drives stocks to largest
weekly drop in a month published on MarketWatch’s website: http://www.marketwatch.com/story/

wall-street-gets-the-jitters-ahead-of-key-jobs-data-2016-02-05

http://www.marketwatch.com/story/wall-street-gets-the-jitters-ahead-of-key-jobs-data-2016-02-05
http://www.marketwatch.com/story/wall-street-gets-the-jitters-ahead-of-key-jobs-data-2016-02-05
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occurrences in the text. This particular configuration for representing document is also

known as the bag-of-words model [Manning et al., 2008], and is a widely used document

representation schema in text analysis literature.

An important property of the bag-of-words model is that the ordering of the words in

the document becomes lost when it is represented as a document vector — so the phrase

‘Microsoft beat estimation’ will result in the same document vector as ‘estimation beat

Microsoft’. This is not necessarily true for vector space model in general though: if the

vocabulary is defined for bigrams (i.e. two consecutive words), for example, the relative

ordering of the words will be preserved to some extent. For sentiment analysis applications,

the relative ordering of words can sometimes be important when negations and valance

shifters are involved: the sentiment orientation of the phrase ‘not good’ (negative) will

be different when the words ‘not’ and ‘good’ are considered separately; in such cases, the

modification effects between the two words are destroyed when representing the text in the

bag-of-words model. This drawback of the bag-of-words model has often been remedied

by using alternative lexical features such as bigrams, n-grams, or word dependencies to

represent input text [Pang et al., 2002, Dave et al., 2003, Matsumoto et al., 2005, Cui

et al., 2006, Wilson et al., 2009, Bespalov et al., 2011, Di Caro and Grella, 2013, Poria

et al., 2014, Agarwal et al., 2015].

Stop Words The vocabulary used to model the text may contain only a subset of

all the unique words occurred in the corpus. A common practice when performing

natural language processing tasks is the removal of stop words from the vocabulary before

constructing document vectors. Stop words are often short closed-class words that serve

mainly auxiliary and structural functions in languages. Typical stop words include the

articles (e.g. a, an, and the), certain prepositions (e.g. of, in, at, etc.), certain conjunctions

(e.g. and, or, nor, etc.), and sometimes auxiliary verbs such as the variants of have (i.e.

has, had, etc.). There has yet been a standard stop word list — the words to be included

in a stop word list will most likely vary depending on the application; for example, text

classifications for Twitter messages might want to include a few special entries such as

‘RT’, which stands for ‘retweet’; though there exist several popular stop word lists from

which custom lists can be derived, such as the one in the R package tm [Feinerer et al.,

2008] and the list provided in the Snowball stemmer project.

Negations The treatment of negations in machine learning settings has been discussed

in a number of studies. It has been noted in the previous sections that the sentiment

orientation of an phrase can be inverted when modified by a negation word such as ‘not’,

‘hardly’, ‘little’, etc.; however, it is often difficult to enforce special rules that account for

such behaviour in statistical models. A common technique used to overcome this issue is to



2.2. A COMPUTATIONAL APPROACH TO SENTIMENT ANALYSIS OF TEXT 23

replace negated words with a special tokens that are different from the original words [Pang

et al., 2002, Das and Chen, 2007, Smailović et al., 2014]. For example, instead of being

treated as two separate words, the phrase ‘not bad’ can be replaced with a special token

‘NOT bad’. This treatment is particularly suitable for machine learning methods because

the negated tokens can simply be treated as a separate feature in the document vectors.

Smailović et al. [2014] noted that applying negation replacement improved sentiment

classification performance of their system significantly.

Alternative Weighting Schemas It is sometimes desirable to use weightings other

than raw frequencies when constructing document vectors. A commonly used alternative

is the relative frequency. The relative frequency of a term t in a document d is defined as

the ratio between the raw frequency of the term in that document (freqt) and the total

number of terms in document d:

r.freqt =
freqt∑
t∈d freqt

. (2.1)

The advantage of using relative frequencies over raw frequencies is that the former is

normalised relative to the total length of the document, so that the relatively less frequent

words in a very long document will not overshadow the relatively more frequent words in

a shorter document.

Another popular alternative is the tf-idf metric, which stands for term frequency –

inverse document frequency. It is a weighting schema that weights words based on thier

‘importance’ within a corpus. Formally, the tf-idf is a function of three arguments: a term

t, a document d, and a corpus D which contains the document d:

tfidf (t, d,D) = tf (t, d)× idf (t,D) . (2.2)

The term frequency tf (t, d) is a function of both the term t and the document d; the function

evaluates the prominence of term t in document d. A common choice for this function

is the aforementioned relative frequency. The inverse document frequency, idf (t,D), is a

function of the term t and the corpus D; formally, it is defined as:

idf (t,D) = log
N

df (t,D)
= log

N

|{d ∈ D | t ∈ d}| . (2.3)

The document frequency function df (t,D) returns the number of documents in corpus D

that contain the term t; the inverse document frequency, being the logarithmic inverse of

the relative document frequency, would approach zero as the document frequency of term

t approaches N , i.e. the total number of documents in corpus D. The significance of the

inverse document frequency was originally established by Jones [1988] — intuitively, the
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idf component states that a word is more ‘important’ if its occurrences are concentrated

within a small subset of the corpus, since its usage may be an sign of the presence of

subtopics; from an information retrieval point of view, a word with high idf can be thought

of to have yielded greater distinguishing power and thus contributes more to the relevancy

of a document with a certain topic.

2.2.2.2 Learning and Predicting Sentiment with Statistical Classifiers

Traditionally, statistical classification models are generally divided into two categories:

the generative models and the discriminative models [Bishop, 2007, Murphy, 2012, pg. 43

and 267 respectively]. While both kinds of models achieve the same goal, they represent

two different schools of thought about the relationships between data and models. This

distinction between generative and discriminative models also led to two different sets of

approaches in sentiment analysis. The section discusses briefly the two different paradigms

and their corresponding manifestations in the sentiment analysis literature.

Generative Models The generative models have their root in probability theory. Gener-

ative models assume the observable data were ‘generated’ or drawn from a joint probability

distribution that is governed by a set of hidden parameters. To learn the model is essentially

to obtain the estimates for the hidden parameters that govern the underlying distributions

from which the observations were drawn. The application of the generative model requires

some level of understanding on how the observed data could have been ‘sampled’ by the

model from the distribution. In particular, the practitioners of this technique need to

specify the relations between the hidden parameters as well as the probability distribu-

tions of the variables that generate the data. The model can be defined purely through

mathematical description, as in the case of hierarchical Bayesian modelling [Gelman, 2014],

or represented as a graph of interconnected random variables as in probabilistic graphical

models [Koller and Friedman, 2009].

An example generative model for tossing a potentially biased coin is illustrated in

Figure 2.3. In this example, it is assumed that a potentially biased coin is tossed for four

times. The meaning of the elements in the graph is explained as follows:

� π denotes a random variable which follows a Beta distribution; it describes the

probability of the coin showing a head after a toss (i.e. the bias of the coin).

� w1 to w4 are random variables that represent the actual outcomes of each tosses;

these random variables follow Bernoulli distributions whose rates of successes are

governed by π; the shades on the nodes indicate that the values for these random

variables are observed and known.
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(a) A graph depicting a generative model for tossing coins

(b) The same model represented using plate notation

Figure 2.3: An example generative model for coin toss

Conventionally in probabilistic graphical models, a circle represents a random variable; a shaded circle
indicates the value of the variable is observed. The arrows specifies the governing relationship between
the variables: the random variable at the destination end of the arrow depends on the variable at the
source end. The plate notation exhibited in Figure 2.3b abbreviates Figure 2.3a by collapsing repeated
structures into a box.

� The random variables α and β are hyper-parameters that govern the shape of the

prior distribution of π.

Probabilistic models like this are often described in a generative story. For this example,

the generative story starts from the top of the graph in Figure 2.3a. The random variables

α and β characterise a Beta distribution which reflects the observer’s prior belief on the

biases of coins in general; it could then be assumed that the four outcomes w1 to w4 were
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generated by tossing a particular coin whose bias is represented by the random variable of

π four times; the observed values for the tosses become the data for this experiment. The

model can be equivalently described with a full-joint distribution as:

p (w1, w2, w3, w4, π;α, β) = Beta (π | α, β)
4∏
i=1

p (wi | π) (2.4)

Given the data and the prior belief on the biases of coins in general, the goal of a

learning algorithm is to infer the posterior distribution of π using Bayes’ theorem:

p (π | w1, w2, w3, w4;α, β) =
p (π,w1, w2, w3, w4;α, β)

p (w1, w2, w3, w4;α, β)
(2.5)

=
Beta (π | α, β)

∏4
i=1 p (wi | π)∫ 1

0
Beta (π′ | α, β)

∏4
i=1 p (wi | π′)dπ′

(2.6)

Solving analytically for the posterior distribution, as will be demonstrated in later

chapters, can prove difficult.

The naive Bayes classifier represents one of the simplest form of generative models.

For naive Bayes classifiers, it is assumed that given the class of an observation, all its

features are independently distributed. Technically, naive Bayes classifiers produce, for

each observation (e.g. a document, or any object that is to be classified), a distribution

describing the probability that the observation belongs to a certain class. Most applications

of the classifier choose the class with the highest probability as the predicted class for an

observation.

In text analysis, generative models had been adopted to model topics in texts. Hofmann

[1999] proposed the probabilistic latent semantic analysis (PLSA); in PLSA, each topic

is represented as a multinomial distribution of words; a document is thus modelled as

a mixture of the words drawn from such distributions. Blei et al. [2003] later extended

the idea of PLSA and developed a more sophisticated topic model called latent Dirichlet

allocation (LDA); in LDA, each document is allowed to have its own topic distribution

whereas in PLSA an overall distribution of topics is applied to all documents. From

a mathematical point of view, the goal of topic modelling is to estimate the posterior

distributions of the words for each topic as well as the posterior distributions of the topics

for the documents given the input data.

The flexibility of the generative models has inspired a number of studies where sentiment

was incorporated [Wu et al., 2006, Hu et al., 2007, Mei et al., 2007, Lin and He, 2009,

Bespalov et al., 2011, Salter-Townshend and Murphy, 2014]; these methods generally

extend the LDA model and introduced sentiment as additional random variables in the

model.
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Discriminative Models The discriminative models follow a rather different approach

than the generative models. Instead of trying to ‘understanding’ the training data, it

attempts to find a boundary that best separates instances of one class from the others.

The basic principle of discriminative model is find a set of parameters for the model that

will minimise the error of the classification. Examples of discriminative classifiers include

Support Vector Machine (SVM), logistic regressions and artificial neural networks.

Discriminative classifiers, particularly SVM, have enjoyed widespread use in text

analysis in the past two decades. SVM works by constructing a hyperplane in the feature

space that optimally separates the two classes of instances; the hyperplane is optimal

in the sense that it is the hyperplane that has the largest margin from the nearest

data points. Previous research has suggested that SVM is particularly suitable for text

classification tasks [Joachims, 1998]. A substantial number of studies used the SVM

or other discriminative classifiers for sentiment analysis [Pang et al., 2002, Dave et al.,

2003, Mullen and Collier, 2004, Koppel and Shtrimberg, 2004, Antweiler and Frank, 2004,

Matsumoto et al., 2005, Prabowo and Thelwall, 2009, Wilson et al., 2009, Cecchini et al.,

2010, Zhao et al., 2010, Bai, 2011, Généreux et al., 2011, Smailović et al., 2014, etc. ].

One important difference that sets the generative classifier apart from its discriminative

counterpart is that it requirement of a well defined statistical language model being imposed

on the texts. A language model is ‘a function that puts a probability measure over strings

drawn from some vocabulary’ [Manning et al., 2008, pg. 238]. In mathematical terms, it

is required that: ∑
w∈V

p (w) = 1 (2.7)

where w is a lexical unit in vocabulary V , and p (w) is the probability the word w occurs

in the texts. Assuming a probabilistic language model on the texts therefore implies

that the vocabulary must contain homogeneous lexical items — for example, uni-grams,

bi-grams, or, in general, n-grams. This constraint theoretically precludes the application

of probabilistic classifiers in cases where the feature set is comprised of lexical units of

different types (e.g. uni-grams mixed with patterns or n-grams of different orders) because

the lexical units in such vocabularies will not form a proper probability distribution.

2.3 Textual Sentiment in Financial Contexts

The Efficient Market Hypothesis posited by Fama [1965a, 1970] states that financial

markets are efficient, meaning that it reflects all publicly available information:

In an efficient market, competition among the many intelligent participants

leads to a situation where, at any point in time, actual prices of individual

securities already reflect the effects of information based both on events that
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have already occurred and on events which, as of now, the market expects to

take place in the future. [Fama, 1965b]

Furthermore, the Random Walk Theory suggested that:

Most simply the theory of random walks implies that a series of stock price

changes has no memory — the past history of the series cannot be used to

predict the future in any meaningful way. The future path of the price level

of a security is no more predict-able than the path of a series of cumulated

random numbers. [Fama, 1965b]

The implication of these two theories is two-fold: (i) it should not be possible to predict

future changes in the market based on historical ‘patterns’ (e.g. technical analysis); and

(ii) it should not be possible to predict future changes in the market based on existing

publicly available information, since they have already been absorbed by the market and

reflected in the prices (i.e. the semi-strong form of the efficient market hypothesis [Fama,

1970]).

The recent advent of behavioural finance has posed a challenge to the classic assumption

which states markets are efficient. Contrary to classic belief, the behavioural finance theory

contends that traders and participants in the market are not fully rational. Investors

sometimes over-react or under-react to news events and may not always make the optimal

decision; furthermore, the presence of herding behaviour suggested the investors as a whole

can be driven by emotions and behave irrationally [Shiller, 2000].

Most studies that explore the interactions between news sentiment and the market

movements assume the market is at least weakly efficient, which implies that (i) the prices

in the market had not incorporated all publicly available information; and (ii) sentiment

of the investors can influence the the movements of the market; it is therefore hoped that

the investor sentiment could be approximated using the textual sentiment conveyed in

financial and business texts.

A large body of literature exists on the relationship between the evaluative sentiment

found in business news and the performances of stocks on the market. The discussion in

this section is formed mainly based on three literature reviews by Kearney and Liu [2014],

Nassirtoussi et al. [2014], and Loughran and McDonald [2014]. Previous studies on the

interactions between news sentiment and the market have generally concluded that news

sentiment, be it expressed in news, corporate filings, or user generated content, does have

an impact on future movements of the market, with Das and Chen [2007] and Kim and

Kim [2014] being two exceptions.

Early studies on this subject that originated from financial backgrounds attempted to

evaluate news sentiment independently from the texts. In these studies, the sentiment

of a piece of text is often quantified using content analysis with the help of a sentiment
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dictionary. The overall sentiment of a document is either determined using a naive classifier

or represented as the number of positive and negative words (as defined in the sentiment

dictionary) it contains. The sentiment representations are then aggregated to form a time

series (e.g. daily, weekly, monthly, etc.) by aligning the articles with market data according

to the publication dates of the articles. Finally, the sentiment series are inserted into

regression models as independent variables with the market performance metric of interest

acting as the dependent variable [e.g. Tetlock, 2007, Henry, 2006, Tetlock et al., 2008,

Loughran and McDonald, 2011a, Garćıa, 2013, Ahmad et al., 2015]. The effects of news

sentiment on the performance metric are captured by the estimated coefficients associated

with the sentiment series.

Recent years have seen a surge of interest in the application of machine learning

methods to the measuring of sentiment in business and financial text. Early studies such

as [Antweiler and Frank, 2004, Das and Chen, 2007, Yu et al., 2013] took an indirect

approach, where a machine learning algorithm is first used to classify postings from

on-line message boards into buy, hold, or sell categories before evaluating the interactions

between the classifications and the behaviour of the stock market. Wuthrich et al. [1998],

Koppel and Shtrimberg [2004] and later Schumaker and Chen [2009b], Bollen et al. [2011],

Généreux et al. [2011], Schumaker et al. [2012, etc. ] attempted to establish a direct link

between language usage in financial news and the movements of market. In these methods,

performance measures of the market were used to automatically label the text documents.

A common strategy for labelling documents was to link the contents of the documents

with the contemporaneous stock or index returns (Figure 2.4) based on the times of their

publication.

Figure 2.4: Labelling news articles with contemporaneous market returns
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2.3.1 Document Labelling

While the performance of the market is often measured on continuous scales, it was

noted that most machine learning based studies labelled the documents with discretised

categories [Nassirtoussi et al., 2014]. Koppel and Shtrimberg [2004], Généreux et al. [2011]

used manually picked threshold: (i) a news article is marked as positive if price of the

corresponding stock rose 10 % or more on the next day of its publication; (ii) a news article

is marked negative if the stock declined 7.8% or more on the next day after its publication.

Zhai et al. [2007] combined text and technical market indicators and used SVM to predict

the directions of future market movements; the classification outputs a binary category

(−1 for it predicts a fall and 1 otherwise). Butler and Kešelj [2009] examined corporate

annual reports and labelled them as either over or under performing the S&P 500 index

based on the historical returns of the companies’ stocks in the previous year. Hagenau

et al. [2013] labelled financial news articles about a company based on the sign of the

open-to-close return of its stock on the day the articles were published. On a similar note,

Li et al. [2014b] discretised the open-to-close return of a company on day t into three

categories (positive, negative, and neutral) by two thresholds which are symmetric around

zero; the discretised return is then used to label the financial news articles released on day

t accordingly; an interesting practice in their method is that the thresholds were calibrated

on historical data, albeit the thresholds were still crisp boundaries. Bollen et al. [2011]

made use of the OpinionFinder system [Wilson et al., 2005] to measure sentiments in

Twitter messages; the output of the classification is a binary label indicating whether the

input message is positive or negative.

Some exceptions in this regard are the studies that used support vector regression

(SVR), a variant of SVM, as the classifier. In these cases, continuous performance measures

such as daily returns can be used directly to label contemporaneous documents without

the need to first discretise them. Schumaker and Chen [2008, 2009a,b], Schumaker et al.

[2012] used their AZFinText system to extract news sentiment; the system used a SVR

implementation in the Weka toolkit. Hagenau et al. [2013] used both SVM and SVR in

their study to predict stock prices using financial news; they used classification accuracy

to evaluate the binary classifications output by SVM and the R2 measure to evaluate the

performance of SVR-based models.

It is likely that the prevailing practice of using discretised returns to label documents

is not by choice, but by the limitations in the existing implementations of the classifiers —

support vector machine is by nature a binary classifier, and most existing naive Bayes clas-

sifier implementations produce categorical outputs. Labelling documents with discretised

returns, however, may be suboptimal for three reasons:

1. Emotion is hardly a binary phenomenon. Using a binary output for sentiment
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classification can lead to the omission of ‘the rich, multi-dimensional structure of

human mood’ [Bollen et al., 2011].

2. The selection of the thresholds or cut-points for discretisation can introduce subjec-

tivity.

3. With a threshold of 10%, a news article accompanied by a daily return of 10.1% will

classified as positive, while another article accompanied by a daily return of 9.9%

will be labelled as negative, which is arbitrary.

These observations partly motivated the work in this thesis. As will be demonstrated in

later chapters, instead of using a threshold, the method developed in thesis models the

correspondence between sentiment classes of a document and the accompanying returns

using a probability distribution, which alleviates some of the problems mentioned above.

2.3.2 Sentiment Sources

Kearney and Liu [2014], Nassirtoussi et al. [2014] identified and compared three sources

for textual sentiment in financial contexts:

Financial and Business News This represents perhaps the most intuitive source of

news sentiment and is the main subject of study for this thesis. Financial and

business news articles are widely available through various sources: newspapers,

websites, newswires, etc. Popular sources include The Wall Street Journal, New

York Times [Tetlock, 2007, Tetlock et al., 2008, Garćıa, 2013, Engelberg, 2008], and

The Financial Times Ferguson et al. [2012].

Corporative Filings Corporative filings include reports and announcements disclosed by

companies. Annual or interim reports such as 10-Ks and 10-Qs are popular subject

of study [Feldman et al., 2008, Li, 2010, Loughran and McDonald, 2011a,b]. Other

studies focused on earning announcements [e.g. Davis et al., 2011, Henry, 2006].

Such reports and announcements are released much less frequently than business

news (e.g. quarterly or annually).

User Generated Contents These include discussions made by investors and Internet

users about the market. Early studies by Antweiler and Frank [2004], Das and Chen

[2007] looked at the postings on message boards such as Yahoo Finance. In recent

years, social media has become a major source for user generated discussions; studies

by Bollen et al. [2011], Ghiassi et al. [2013], Qasem et al. [2015] investigated the role

of Twitter messages in the interactions between sentiment and market.
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It has been noted by Kearney and Liu [2014] that financial and business news can be

more credible than corporative disclosures because company managements who compose

reports and make announcements have the incentive to publish only favourable content; on

the other hand, corporative disclosures can contain insider information that is not available

elsewhere, which can prove valuable. More importantly, it is observed that news articles

are generally recount what has happened in the past rather than what might happen in

the future, whereas corporative disclosures contains more forward-looking information [Li,

2010, Kearney and Liu, 2014]. This observation is particularly relevant to this work — it is

hypothesised in this thesis that the news sentiment associated with recounts of past events

should be modelled separately from the sentiment expressed in forward-looking news.

2.4 Summary

In this chapter, I reviewed some of the common themes in computational sentiment

analysis. Two major schools of methods were recognised. First is the pattern-matching

based methods, where externally compiled sentiment dictionaries are used to annotated

texts and aggregation heuristics are used to derive the sentiment orientations of sentences

and documents. Second is the machine learning based methods, where classification

algorithms where used to mine and establish the latent relationships between textual

features and sentiment.

Also surveyed were the methods previous studies used to investigate the interactions

between news sentiment and the financial market. Both pattern-matching-based methods

and machine-learning-based methods have seen widespread applications in this regard.

Pattern-matching-based methods, when combined with regression analysis, produces

relatively easy-to-interpret results. Overall, it has been noted that machine learning based

sentiment analysis is becoming increasingly popular in this domain as it is free from the

need of sentiment dictionaries, whose compilation can be difficult and expensive. While

these approaches have proved successful, it was recognised that the machine learning based

methods developed by previous studies have suffered from two problems:

1. Business and financial news, as noted by Kearney and Liu [2014] and others, tend

to contain reports on what had already happened in the market. In this thesis, I

identified news that is mainly driven by the changes in the market as retrospective

news. It is reasonable to assume that retrospective news would provide limited insight

into future development of the market because it conveys not much information

beyond what had already been ‘said’ by the prices. Including such news, therefore,

might ‘dilute’ the effect of forward-looking information in the news, preventing

learning algorithms from discovering predictive associations.
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2. When preparing the training dataset for machine learning algorithms, many previous

studies used contemporaneous stock returns or index returns to label news documents.

For most types of classifiers, the process involves discretising continuous returns into

binary (i.e. positive versus negative) or ternary (i.e. positive, negative, and neutral)

categories. This is often achieved by applying thresholds or by simply using the

signs of returns to derive labels, which can be suboptimal and unintuitive.

3. Most studies have assumed a bag-of-words language model when representing textual

content of the news, which can be limiting for sentiment analysis purposes.

The work done for this thesis is largely motivated by attempts to remedy some of these

drawbacks identified in these studies — it is hoped that these problems can be mitigated

by introducing a more sophisticated model for news sentiment.
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Chapter 3

Methods

3.1 Introduction

This chapter outlines the method developed in this thesis. The method performs the

following three tasks:

1. Given an arbitrary collection of business news on a company, learn the temporal

sentiment orientations of the lexical items in the vocabulary, where the learning is

supervised by the historical performances of the company’s stock.

2. Once the estimates are obtained, evaluate the temporal sentiment distributions for

unseen validation documents.

3. Given the predicted temporal sentiment distributions for unseen validation documents,

evaluate how well the predictions are.

The method developed in this chapter belongs to the machine-learning family in terms

of its place in the sentiment analysis methodology taxonomy — the sentiment orientations

of the elemental lexical units are derived with statistical methods from historical data

without resorting to any expert knowledge. It follows the general framework for machine-

learning-based sentiment analysis outlined in Section 2.2, and is divided into three phases:

learning, classification and evaluation, each corresponds to one of the aforementioned tasks

(Figure 3.1).

The learning phase takes two inputs: (i) the inverted positional index database built

from the training documents containing news articles on a company of interest, and (ii) the

historical prices of the company’s stock on some stock exchange. The construction of this

index database is covered in Chapter 4. The historical prices of the company’s stock were

downloaded from Yahoo Finance using the quantmod library in R; five price series were

retrieved for each company, namely the open, highest, lowest, close, and the adjusted

close prices per trading day. The adjusted close prices supplied by Yahoo Finance are

35



36 CHAPTER 3. METHODS

Figure 3.1: Flowchart for the method developed in this thesis

The diagram describes the procedures and resources involved in the method developed in this thesis.
The entire process is divided into three sub-processes: (i) learning, where the probability distribution
over the four sentiment classes is estimated for each lexical unit in the vocabulary and a sentiment
dictionary is produced; (ii) classification, which evaluates the sentiment for any given piece of news using
the distributions obtained thereof; (iii) evaluation, where the methodology’s predictive performance is
compared with other methods.
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derived from the original close prices with corrections made to account for stock splits and

dividends; it is worth noting that with Yahoo’s correction, historical adjusted close prices

will change every time a new split or dividend payout happens, therefore it is important

to keep note of the date on which the price data are retrieved.

The notion of temporality in the context of sentiment analysis in business news has

been introduced in Section 1.1 and will be further developed in Section 3.2. The method

described in this chapter accounts for this temporal aspect of the sentiment by bringing

one new dimension to the classification’s target space: the temporality dimension — a

piece of news can be categorised into two classes with respect to its temporality: a news

article can be considered as retrospective, where the content of the news mainly concerns

the event happened in the past, or prospective, where the article may inspire projections

and speculations about the future of the company.

What follows is a brief introduction to the expectation maximisation algorithm, which

the method developed in this thesis used to estimate the parameters in the proposed

model. The algorithm is used to derive the maximum likelihood estimators for the word

distributions for each of the temporal sentiment classes. The EM algorithm has been so

adopted such that it can take advantage of the continuous nature of the stock returns that

supervise the learning. The derivation of the EM algorithm is presented in Section 3.5.

The sentiment orientations of unseen documents can be evaluated using standard Bayesian

methods based solely on the text it contains (i.e. without market data).

This chapter aims to define a methodological framework for approaching the two tasks

set forth earlier this section rather than to describe a system that implements the methods;

instead, the implementation details of such a system is presented in Chapter 4.

3.2 Temporality and Sentiment in Business News

In this thesis, I argue that the need for distinguishing between retrospective and prospective

sentiment arises due to the inadequacy in discretising equity returns to derive the class

labels for the training set when developing statistical classifiers. Recall that in Section 2.2,

it has been noted that the application of machine-learning-based sentiment analysis requires

a training set — a collection of news articles whose true sentiment orientations have been

provided. The advantage of using financial indicators to approximate news sentiment is

that the returns would provide the information necessary for an algorithm to automatically

derive the labels for the training set. Previous studies, as noted in Section 2.3, have

attempted to discretise continuous returns into sentiment classes by applying pre-defined

thresholds [Koppel and Shtrimberg, 2004, Généreux et al., 2011, Enric et al., 2014, Li

et al., 2014b, Geva and Zahavi, 2014, Nassirtoussi et al., 2015] — news articles are labelled

‘positive’ if they are published on a day on which the return of the equity of interest is
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above the ‘positive threshold’ and are labelled ‘negative’ if the return is below the ‘negative

threshold’, and the articles published on a day whose associated stock return falls between

the positive and negative thresholds are either discarded or marked ‘neutral’.

The challenge here is that the discretisation procedure becomes less confident about

its designation of sentiment classes as the return value approaches zero; the occurrence

of a small return, regardless of its direction, could merely be the work of stochasticity in

the financial market — in fact, the magnitudes of the aforementioned thresholds set by

the practitioner of the discretisation reflect how confident she is when interpreting — the

lower the threshold, the more ascertainable the relationship between the two quantities.

Discounting articles accompanied by smaller returns also implies the assumption of

simultaneity: there exists an contemporaneous response between news sentiment and the

market’s behaviour — if the return on a particular day is under the confidence threshold, it

must be the case that the sentiment of the news released on that day is neutral. In reality,

however, the assumption of simultaneity rarely holds: news that mirrors the market’s

movements are not uncommon, and the editorial columns in major business newspapers

sometimes speculate on the future prospects of the market. Adding news temporality

to the process relaxes the assumption, making it possible to accommodate the smaller

returns without discarding articles — that is, news articles released on days with trivial

returns (and would otherwise be discarded) are given a ‘second chance’ by allowing them

to re-align with the returns from neighbouring days.

Distinguishing between the two types of temporality can also add to the robustness

of the model against inconsistencies found in news data. It has been observed that in

some cases the publication dates on news articles collected from popular news repositories

can deviate from their actual release dates as found on the websites of their sources. In

particular, the publication dates of certain news articles on Financial Times and Wall

Street Journal as collected from the ProQuest and LexisNexis databases appear to be

one-day late compared to the corresponding dates found on their respective websites. This

discrepancy would affect the correctness of any analysis that requires proper alignment

between the release dates of the news and the market indicators. By incorporating news

temporality, the articles whose publication dates were wrongly registered would be treated

as retrospective and are aligned with the returns from further back in time; in this way,

impacts resulted from the inaccuracies can be mitigated. Another scenario which poses a

similar challenge relates to the ‘news updates’, where a news article is in fact an updated

or follow-up version of a previously published news piece. These articles are retrospective

by nature as the events they describe had already happened — whatever impact they had

on the market must have been absorbed in the prices.
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Figure 3.2: Target Space for Business News Classification

This diagram visualizes the target space for classifying business news after being extended by the added
temporality dimension. The horizontal axis represents temporality while the vertical axis represents the
classic sentiment dimension. The two axes therefore divide the document class space into four partitions,
retrospective negative, retrospective positive, prospective negative, and prospective positive.

3.2.1 The Additional Dimension: Temporality

The addition of the temporality dimension to the modelling of news sentiment expands

the target domain for news sentiment classification. Instead of categorising a piece of

news article as either positive or negative, the article’s class is now considered among

four categories1: retrospective negative, retrospective positive, prospective negative, and

prospective positive (Figure 3.2). The semantics of each category can be derived by

combining the semantics of its sentiment and temporality components — a retrospective

negative article on a certain company, for example, reports events happened before the

publication of the article (retrospective) and is considered to have negative impacts on the

company’s performance (negative).

From a mathematical point of view, the expansion to the target class space represents

an attempt to restore the original positions of the news articles in a sentiment space

of higher dimensions. The model assumes a news article’s accompanying return to be

the projection of its position in a two-dimensional temporal sentiment space onto a one-

1Or six categories in the case with three-way sentiment classification, with the additional two categories
being retrospective neutral and prospective neutral.
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Figure 3.3: Projection from Temporal Sentiment Space to Return Scalar

This schematic diagram provides an intuitive visualisation of the effect the added temporal dimension has
on the sentiment classification of business news. Square-shaped points represents instances of positively-
toned news for a particular company while dot-shaped points represents negatively-toned news articles for
the same company. The horizontal axis is a scale that measures the return of the said company’s stock
on the day the news article is published — a point positioned to the right-end of the scale, for example,
represents an article published on a day when the return of the company’s stock is more positive. The two
diagonal axes each corresponds to one of the two sentiments decorated by the temporal modifier. What
the diagram demonstrates is that news articles placed on the stock return scale are in fact projections
from a point located in a space of higher dimension. An article discussing a major plummet seen in some
company’s stock price from yesterday (i.e. retrospective negative) could be published the next day when
the return of the stock is positive (e.g. point A); in other scenarios, progress in a company’s long-term
strategic plan may fail to attract immediate interests from the investors, and its announcement may
coincide with a minor drop in the company’s stock price due to other reasons (e.g. point B). In other
words, the stock returns accompanying the releases of news can be an inadequate indicator to the affective
nature of the news articles.

dimensional return scale (Figure 3.3); like in most projections from a higher to a lower

dimension, information is inevitably lost during the process. The goal for the methodology

developed in this thesis, therefore, is to recover the lost information as much as possible by

iteratively forming informed guess about news articles’ true position in the original space.
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3.2.2 News Temporality and Tenses Information

It can be tempting to equate news temporality with language tenses. The correspondence

between the two are hard to ignore — accounting events in past tenses indicates the events

happened in the past, while sentences composed in future tense often convey expectations;

however, the correspondence between the two is not absolute. It is noted that language

tenses are a phenomenon at the grammatical level and are thus dependent on the properties

of the language; news temporality, on the other hand, exists independently of languages

and is a phenomenon at the semantic level. One way to see this is to consider an example

where a piece of retrospective news in English written in past tense; now imagine the

same news is translated into Chinese where a formal notion of tense is lacking: the news

would still be retrospective, but its tense has become undefined — the thought experiment

exemplifies how the notion of temporality exists independently of language tense.

Despite the independence between tense and temporality, it is recognised in this thesis

that the tense used to compose a sentence does hint at the temporality of the writing

when tenses are defined for the language used. Past tenses and retrospectivity are closely

related, while the correlation between future tense and prospectivity is much subtler —

prospective news may be delivered by writings in both future and past tense. The signing

of a contract, for example, is typically reported in past tense, but it may yield long-term

effects that extend beyond the current time on the operations of the companies involved.

3.2.3 Modelling News Sentiment and Temporality

It is worth noting that the four temporal sentiment categories are not mutually exclusive.

A single piece of news may address several issues in different parts of the article, each

invoking a different type of temporal sentiment; as such, the article can be thought of to

belong to more than one temporal sentiment categories. This is especially true for longer

articles which typically discuss more than one aspects of a topic.

To reflect this ‘mixture’ nature of temporal sentiment in news, this thesis proposes

that news articles be modelled as mixtures of lexical items drawn from four lexica, each

characterising one of the four temporal sentiment categories. Such models have traditionally

been approached from a probabilistic perspective — the overall probability of seeing a

particular document given a language model is calculated as a weighted sum of the

probabilities of seeing the article sampled from the lexical distribution for each of the

temporal sentiment categories. Mathematically, the probability mass function for a mixture

distribution made of finite components is described as:

p (x) =
K∑
k=1

πkp (x | θk) (3.1)
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Figure 3.4: An example univariate mixture distribution comprised of two normal distribu-
tions

The curve in dashed line represents the p.d.f. (probability density function) for N (x | −2, 1), weighted by
0.4, and the curve in dotted line represents the p.d.f. for N (x | 1, 1), weighted by 0.6. The solid curve is
the p.d.f. for the resulting distribution mixture: p (x) = 0.4 · N (x | −2, 1) + 0.6 · N (x | 1, 1).

where x represents a sample from a random variable whose distribution is characterised

by a mixture of K distributions; θk denotes the parameters of the probability distribution

for the k-th component. p (x | θk) is the probability of drawing x from the distribution of

the k-th component; πk represents the k-th distribution’s contribution to the mixture, and

is subjected to the following constraint:

K∑
k=1

πk = 1. (3.2)

An example univariate mixture distribution comprised of two normal distributions is

illustrated in Figure 3.4.

When modelling text, x in Equation 3.1 represents a document, and k indexes the

class the document belongs to. The probability of seeing a particular document given

its document class (i.e. p (x | θk)) is often interpreted in a generative narrative, where

each document is viewed as a sequence of lexical tokens and each token is drawn from a

multinomial distribution defined over the vocabulary. For a document represented as a

sequence of tokens t = (t1, t2, . . . , tN), the probability of seeing this particular sequence,
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assuming independence between the tokens, can be defined as:

p (t | θ) =
N∏
n=1

p (tn | θ) (3.3)

where N is the number of tokens in the document; θ is the set of parameters governing the

probability distribution from which the tokens in the text were drawn. When the tokens

are drawn independently from a multinomial distribution, the set of parameters can be

written as θ = (pe1 , pe2 , . . . , peV ), with ei denoting the i-th element in the vocabulary of

the corpus which the document belong to and pei denoting the probability of encountering

the i-th lexical item in the vocabulary in the text; V is the size of the vocabulary of the

corpus.

An alternative view to the formulation of the model is to treat each document as a

frequency vector (fe1 , fe2 , . . . , feV ), where fei represents the raw frequency for the lexical

entry ei in the text (i.e.
∑V

i=1 fei = N). For a document whose vector representation is

(fe1 , fe2 , . . . , feV ), the probability of observing a token t given the underlying parameters

being θ is:

p (t | θ) =
V∏
i=1

p (ei | θ)fei . (3.4)

In the case where the token generation process follows a multinomial distribution

whose parameters are given by (pe1 , pe2 , . . . , peV ), the probability of observing a document

represented as a frequency vector (fe1 , fe2 , . . . , feV ) is:

p (fe1 , fe2 , . . . , feV | pe1 , pe2 , . . . , peV ) =
V∏
i=1

pei
fei . (3.5)

Equation 3.1 can now be rewritten as:

p (t) =
K∑
k=1

πk

N∏
n=1

p (tn | θ) (3.6)

=
K∑
k=1

πk

V∏
i=1

p (ei | θ)fei (3.7)

=
K∑
k=1

πk

V∏
i=1

pk,ei
fei (3.8)

where t is the token sequence for a document of interest; K is the total number of

components in the mixture; πk denotes the overall probability of encountering documents

from the k-th class; pk,ei is the probability of generating the i-th element ei when the

document belongs to class k. When the lexical items being considered are unigrams, the
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model is called ‘mixture of unigrams’ [Nigam et al., 2000], and had been commonly used

for topic modelling before the more sophisticated Latent Dirichlet Allocation became

popular. The topics are mapped to the components in the mixture and each topic’s theme

is reflected by the distribution of unigrams for that topic. It should be noted that the

model itself is agnostic to the type of lexical items — it is possible to define ‘mixture of

bi-grams’ or ‘mixture of word dependencies’, etc.

When exploited as a topic modelling tool, the number of the topics, K, does not have

a definite value since the researcher would not know how many topics there are in advance.

The practitioners of the method therefore will have to assign a value to K based on the

his or her understanding of the application. In this case of this thesis, the number of

components is fixed at exactly 4. Each of the four components will map to the temporal

sentiment categories introduced in Section 3.1. Formally, a token sequence (i.e. document)

modelled under this scheme can be expressed as the following:

p (t) = πretneg

V∏
i=1

pretneg,ei
fei + πretpos

V∏
i=1

pretpos,ei
fei

+ πproneg

V∏
i=1

pproneg,ei
fei + πpropos

V∏
i=1

ppropos,ei
fei (3.9)

with retneg, retpos, proneg and propos denoting ‘retrospective negative’, ‘retrospective

positive’, ‘prospective negative’, and ‘prospective positive’ respectively.

During the training phase of the method where the actual texts are observed, both

the elements in the vocabulary (i.e. e1, e2, . . . , eV ) and the raw frequencies of the elements

(i.e. fe1 , fe2 , . . . , feV ) in the texts are known values, and the model is fully specified by the

parameters. In this case, the parameter space consists of five distributions: (i) the prior

distribution for the four temporal sentiment classes: πretneg, πretpos, πproneg and πpropos (or

p (z) according to the Bayesian view developed in subsequent sections); (ii) then, there are

the four probability distributions of lexical items for the four temporal sentiment categories,

where each distribution contains V parameters. The goal of the learning algorithm is to

obtain the estimators for all the five distributions from historical data. Direct estimation

of the parameters in mixture models can be difficult; fortunately, methods that are capable

of iteratively obtaining these estimators are available. In the next section, I present a brief

introduction to the expectation maximisation algorithm which is a framework for obtaining

the maximum likelihood estimations for the parameters in models with latent structures.
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3.3 Mixture Models and the EM Algorithm

This section aims to set forth the background knowledge necessary to obtain maximum

likelihood estimates of the parameters in mixture distributions. I will first look at the

challenges mixture models pose to the estimation of their parameters; a brief introduction

to the expectation maximisation algorithm follows, which is a framework for developing

iterative procedures which produce the maximum likelihood estimations for the parameters

in mixture models. The expectation maximisation algorithm (EM algorithm) serves as

the foundation for the methodologies being developed in this thesis. The discussion in

this section largely follows that presented in [Bishop, 2007], but is complemented with

additional details and comments emphasizing its relevancy to the application in this thesis.

In the machine learning and text mining literature, mixture models are often related

with unsupervised learning — clustering in particular — where observations that share

similar characteristics are grouped together. The parameters in such models can be

obtained using the maximum likelihood estimation procedure; intuitively, this procedure

seeks the particular configuration of the parameters that maximises the likelihood function

of the model ‘generating’ the observations. Formally, the maximum likelihood estimation

for θML is given by:

θML = argmax
θ

p (X | θ) (3.10)

where X denotes the observations; θ represents the parameters that govern the behaviour

of the model and p (X | θ) is the likelihood function. Note that the likelihood function is a

function of θ, not of the data X. Solution to this optimisation problem can be obtained by

taking the derivative of the likelihood function with respect to the parameters, setting it

to zero, then solving for the roots. In cases where the observations in X are independent,

the maximum likelihood estimator for θ can be factorised as follows:

θML = argmax
θ

∏
x∈X

p (x | θ). (3.11)

In practice, most problems that feature independent data samples can be translated

into forms similar to the one described by Equation 3.11. Direct optimisation of a product

of functions involves recursive applications of the chain rule, which can be cumbersome;

it can also lead to numerical instability for even moderately large dataset because the

product of a large number of probabilities can cause overflow. A widely used alternative

that greatly simplifies the calculation exploits the fact that maximising the likelihood

function is equivalent to maximising the logarithm of the likelihood function due to the
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monotonic nature of the logarithm function:

θML = argmax
θ

∏
x∈X

p (x | θ) (3.12)

= argmax
θ

ln

{∏
x∈X

p (x | θ)

}
(3.13)

= argmax
θ

{∑
x∈X

log p (x | θ)

}
(3.14)

which leads to a solution with better numerical stability as the algorithm is now operating

with sums rather than products of small numbers.

For complex models, however, direct maximisation of the likelihood functions may not

yield closed form estimators for the parameters. The proof for the correctness of the EM

algorithm is not presented here but is attached as Appendix A. The procedures for the

general EM algorithm is summarized as follows:

1. Choose an initial (usually random) settings for the parameters θold.

2. The E Step: evaluate the posterior distribution p
(
Z | X,θold

)
.

3. The M Step: compute θnew as

θnew = argmax
θ
Q
(
θ,θold

)
(3.15)

where

Q
(
θ,θold

)
=
∑

Z

p
(
Z | X,θold

)
ln p (X,Z | θ). (3.16)

4. Check for convergence of either the log-likelihood or the parameter values. The

algorithm can be considered to have converged if the relative increase in the log-

likelihood between two iterations is smaller than a pre-defined threshold2. If the

convergence criterion (e.g. the relative increase in the log-likelihood is greater than

the threshold) is not satisfied, then update

θold ← θnew (3.17)

and go to step 2. If the algorithm successfully converges, exit the process.

The next section, I apply the EM algorithm to solve the parameters in the modelling of

sentiment and temporality in business news using the procedures developed in this section.

2Other convergence criteria can be used, e.g., the relative changes in the parameters being smaller
than a threshold.
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3.4 Return-supervised Parameter Learning

In Section 3.2, I have demonstrated how temporality and sentiment in business news

can be modelled as a mixture of four probability distributions over lexical items; also

introduced in Section 3.3 was the expectation maximisation algorithm, which provides the

means necessary for estimating the parameters in mixture models. In this section, I will

contemplate the role of equity returns in the learning of the parameters for the temporal

sentiment mixture model.

3.4.1 Parameter Learning for Standard Mixture Model

Before proceeding, it is helpful to recount the generative story associated with the mixture

model proposed in Section 3.2.3. The original mixture model is illustrated in Figure 3.5

using the plate notation. The plate notation is a common method for representing the

structures of probabilistic models. In plate notation, the circles represent random variables

in the model, and the rectangles or plates specify the indices. If a circle is placed within a

plate, the random variable represented by the circle is then indexed by the counter shown

in the said plate. Plates can also intersect or nest; in such cases, if a circle lies within

multiple plates, then the random variable it represents would be indexed by the counters

specified by all the enclosing plates. Arrows between the circles represent conditional

dependencies between the random variables — for example, an arrow pointing from node

X to node Y would correspond to the conditional probability distribution P (Y | X).

The diagram shows that the generation process begins with π, which represents the

overall distribution of the topics in the corpus. For each of the N documents in the corpus,

a topic is chosen from the multinomial distribution whose parameter is given by π and the

binary vector representation of that topic is denoted by zi (as discussed in the previous

section). For each position j inside the document, a lexical item is again drawn from a

multinomial distribution over the vocabulary in the corpus; parameters of this multinomial

distribution are given by βk where k is index of the active topic chosen for the position (i.e.

the k-th component of zi is 1). The shaded nodes, in this case tij, are observed variables,

while the unshaded nodes represent unknown random variables to be estimated.

Estimation of the parameters using the EM algorithm typically begins with the

specification of the Q
(
θ,θold

)
function. Recall that in Section 3.3, it had been defined:

Q
(
θ,θold

)
=
∑

Z

p
(
Z | X,θold

)
ln p (X,Z | θ) (3.18)

For the the model described in Figure 3.5, the complete-data likelihood function,
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π zi tij βk

j = 1 : Mi

i = 1 : N

k = 1 : K

Figure 3.5: Standard mixture of lexical items.

This diagram describes the relationships between the variables in a standard topic mixture model for
texts using the plate notation. In this diagram, zi is the hidden ‘topic’ variable governing the generation
of the lexical tokens (i.e. tij) for each position in document j. N is the total number of documents; Mi is
the total number of running terms in document i.

p (X,Z | θ), can be written as:

p (D,Z | π,β1, . . . ,βK) = p (Z | π) p (D | Z,β1, . . . ,βK) (3.19)

=
N∏
i=1

p (zi | π)

Mi∏
j=1

p (tij | zi,β1, . . . ,βK) (3.20)

where D represents the entire collection of documents in the corpus of interest. The

probability distribution over the possible configurations of the hidden variable Z can be

expressed through the use of Bayes’ theorem:

p
(
Z | D,πold,βold

1 , . . . ,βold
K

)
=
p
(
D,Z | πold,βold

1 , . . . ,βold
K

)
p
(
D | πold,βold

1 , . . . ,βold
K

) (3.21)

=
p
(
D,Z | πold,βold

1 , . . . ,βold
K

)∑
Z p
(
D,Z | πold,βold

1 , . . . ,βold
K

) (3.22)

The algorithm can then commence as specified in Section 3.3.

Intuitively, the model attempts to capture the clustering of lexical items based on

their co-occurrences in the documents — it is assumed that lexical items in the same

document tends to be generated by a common set of themes found in the document, and

lexical items which hallmark a topic are assigned higher probability in the distribution

that characterise the said topic. According to this interpretation, the learning process is

completely unsupervised because no information about the targets is presented in the model,

and the estimation of the parameters is influenced only by the observed variable t, namely

the lexical items in the documents. Without supervision, the themes or topics extracted

will not reflect any of the four temporal sentiment categories defined in Section 3.2.
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Figure 3.6: Mixture of lexical items supervised by concurrent returns.

3.4.2 Supervised Parameter Learning with contemporaneous Re-

turns

Sentiment proxies are used to enforce supervision in the learning of the parameters; in

this case, stock returns are used to approximate news sentiment. One option, as discussed

earlier this chapter, is to approximate the sentiment carried in a news article with respect

to a particular company with the daily return of the company’s stock on the day the

article is published. For the sake of clarity, I will begin with a strategy that considers

only the sentiment aspect of the supervision first, and move to a more complex model

that incorporate both sentiment and temporality when estimating the parameters. The

integration of supervision over the learning of sentiment results in a model which is slightly

more sophisticated than the unsupervised version and is illustrated by Figure 3.6.

Two new variables, ri and τ k, are introduced into the model. The variable ri denotes the

equity return associated with the i-th news article and constitutes part of the observations.

τ k represents the set of parameters for the probability distribution of returns given that

the underlying temporal sentiment category is k.

The generative story associated with this model now includes an additional process:

once a temporal sentiment category zi is chosen for a news article, the process generates

the return for that article according to some distribution of returns. The particular

distribution used for generating the returns varies based on the active temporal sentiment

category, much like the case when drawing the lexical tokens — it would be more likely

to see a positive return being generated if the underlying category come from one of the

positive categories, namely the retrospective positive and prospective positive categories;

likewise, if zi is chosen to be either the retrospective negative or the prospective negative,

the return generated will bias towards the negative side. In other words, each of the four

temporal sentiment categories is assigned a probability distribution over the returns that is

consistent with its semantics, and the return distribution together with the actual return

observation supervise the learning of the parameters in this model.
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The selection of the family of the probability distributions over the daily returns is

therefore crucial to the development of this method. Unfortunately, there has not been

any conclusive evidence with respect to the shape of the distribution of returns when

the market is being influenced by news sentiment, but previous research did suggest

that the distribution of unconditional daily returns of stocks follows the Stable Paretian

Distribution [Fama, 1965a]. A Stable Paretian Distribution, according to Fama [1965a],

is ‘any distribution that is stable or invariant under addition. That is, the distribution

of sums of independent, identically distributed, stable Paretian variables is itself stable

Paretian and, except for origin and scale, has the same form as the distribution of the

individual summands’. The distribution is favoured for modelling returns because its

property conforms with that of logarithmic equity returns — the return of a equity during

a longer period of time can be regarded as a sum of returns for the shorter periods which

constitute the longer interval3.

The shape and properties of a stable distribution are controlled by four parameters

[Nolan, a]: (i) the stability parameter α, which must be in the range 0 < α ≤ 2; the stable

distribution corresponds to a Gaussian distribution when α = 2, and a Cauchy distribution

when α = 1. (ii) the skewness parameter β, which must be in the range −1 ≤ β ≤ 1;

(iii) γ is a positive number that determines the scale of the distribution; (iv) a location

parameter δ, which shifts the distribution to the right if δ > 0, and left if δ < 0. Further

discussion on the theoretical properties of the distribution is beyond the scope of this

thesis; instead, I will be focusing on applied aspects of the distribution.

The stable distribution is particularly appealing when modelling asset returns for a

practical reason: it allows for asymmetric skewness through the adjustment of the parameter

β, which makes it suitable to modelling the biases seen in the return distribution for the

temporal sentiment categories. The distribution is symmetric when β = 0, skewed towards

the right if β > 0, and skewed towards the left when β < 0. A visualisation to stable

distributions’ probability density functions (p.d.f.) at various parameter configurations

is presented in Figure 3.7. The p.d.f. of the stable distribution will be referred to as

S (x | α, β, δ, γ) hereafter.

Unlike other parameters in this model, the parameters of the distributions for the

returns given the temporal sentiment categories (i.e. τ rn, τ rp, τ pn, τ pp) shall remain

unchanged during each iteration of the EM algorithm, and it is exactly by keeping these

parameters constant that the learning process is made supervised — the algorithm would

‘encourage’ the remaining parameters (i.e. for the distribution over the categories as well

as the distributions for the lexical items for each category) to be configured in such a

way that it would generate texts and returns that show better ‘affinity’ with the actual

3Note that the stable distribution is not the only choice when modelling returns. Another distribution
family that shares similar properties (i.e. fat-tailed and allows for asymmetric skewness) with the stable
distribution is the Skewed Normal Distribution.
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Figure 3.7: The probability density functions of the stable distribution over various
configurations of the parameters.
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observations, and penalise the configurations which are more likely to generate texts and

returns that contradict with the actual observations.

Since the distributions of returns fulfil the role of the supervisor, the values for the

parameters in these distributions have to be determined before the learning process can

proceed. Ideally, only the value for the position parameter δ will have to be fixed — for

example, a positive temporal sentiment category will be assigned a return distribution

that is shifted to the positive side to reflect the intuition that it is more likely to see

positive returns when positive sentiment prevails — and leave the estimations of α, β,

and γ to the EM algorithm. In practice, however, the maximum likelihood estimators for

the parameters in stable distribution do not yield closed form solutions and can only be

approximated through numerical methods, making the application of the EM framework

on these parameters impractical4. It is therefore necessary to specify the values for the

parameters for each of the categories explicitly. For the method developed in this thesis,

the parameter values were selected to reflect the following properties:

1. It should be more likely to observe moderate returns than extreme ones (for both

positive and negative sentiment categories).

2. The distribution should accommodate extreme values with fat tails on the side

consistent with the sentiment component of the category it is representing; that is,

a fat tail on the positive side if the distribution is for positive categories and the

opposite for negative categories.

3. It should be possible to observe small positive returns when the underlying category

is one of the negative categories; the same applies for negative returns when the

underlying sentiment category is positive. This is to account for the situation where

a news article is seen published on a day with negative return while its text strongly

suggests positive tone. In this case, the document should still have a good chance of

being categorised into one of the positive categories.

4. The chance for observing negative returns when the underlying sentiment is positive

should decrease rapidly as the magnitude of the return increases; the same applies

for positive returns when the underlying sentiment is negative.

Figure 3.8 illustrates the probability density functions for the four return distributions

with an example set of parameters selected following the aforementioned guidelines.

Temporality was not considered when modelling the returns, so the retrospective and

prospective return distributions within the same sentiment category share the same set of

parameters.

4It may be possible to utilise the numerical ML estimators when maximizing the parameters during
the M step when applying EM.
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Figure 3.8: Distributions of returns for the four sentiment categories without the tempo-
rality components

The p.d.f. for the return distributions associated with retrospective and prospective positive categories is
generated with the following parameters: α = 0.9, β = 1.0, δ = 0.1, and γ = 0.1; the parameters for the
negative categories are: α = 0.9, β = −1.0, δ = −0.1, and γ = 0.1. It is worth noting that when a positive
return distribution is combined with a mirrored negative return distribution, the resulting distribution
will be a symmetric stable distribution.

The EM algorithm for this iteration of the model operates much like the one developed

for the standard mixture model but with a few modifications made to Equation 3.20 to

incorporate the newly added return distributions:

p (D,R,Z | π,β1, . . . ,βK) = p (Z | π) p (R | Z) p (D | Z,β1, . . . ,βK) (3.23)

=
N∏
i=1

p (zi | π) p (ri | zi)
Mi∏
j=1

p (tij | zi,β1, . . . ,βK) (3.24)

where R represents the series of returns from all documents (i.e. r1, r2, . . . , rN). Similarly,

the posterior distribution for the configuration of the hidden variable Z needs to be updated

to include the return variable:

p
(
Z | D,R,πold,βold

1 , . . . ,βold
K

)
=
p
(
D,R,Z | πold,βold

1 , . . . ,βold
K

)
p
(
D,R | πold,βold

1 , . . . ,βold
K

) (3.25)

=
p
(
D,R,Z | πold,βold

1 , . . . ,βold
K

)∑
Z p
(
D,R,Z | πold,βold

1 , . . . ,βold
K

) (3.26)

It should be noted that the contributions made to the complete-data likelihood by the

textual component of the observation (i.e. p (D | Z,β1, . . . ,βK)) overweight that made

by the returns (i.e. p (R | Z)). This has profound implications on the outcomes from

the parameter learning process; in particular, this means that the penalty a parameter

configuration receives for generating ‘wrong’ returns tends to be much smaller compared

with that received for generating ‘wrong’ texts. The difference between the two contri-

butions depends on the number of terms in the textual component in the observations
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— the more terms the text contains, the less the returns contribute to the likelihood.

Another way to see this is to think the observed returns as ‘pseudo-terms’, only that the

‘vocabulary’ consists of an infinite number of such ‘pseudo-terms’. According to this view,

the temporal sentiment category of a document governs the generation of both the real

terms and pseudo-terms in the dataset. However, as one can see from Equation 3.24, the

real terms in most cases will outnumber the pseudo-terms due to the fact that Mi ≥ 1 —

the pseudo-terms’ influence on the training process will be overwhelmed by that exerted

by the real terms. In practical terms, the imbalance would cause the term distributions

learnt from the dataset to mainly reflect the co-occurrences between the terms rather than

their associations with the sentiment proxies, thus diminishing the effectiveness of the

supervised learning.

One way to redress this issue is to adjust the weighting of the pseudo-terms to a

scale that is comparable to that of the real terms — instead of generating exactly one

pseudo-term per document, an equal number of real terms and pseudo-terms are generated

for the same document. More specifically, the generative process is modified to produces

Mi copies of the original pseudo-term for each document. Let R′ denote the set of returns

associated with the documents with their values replicated Mi times for each document,

the updated version of the complete-data likelihood function now becomes:

p (D,R′,Z | π,β1, . . . ,βK) = p (Z | π) p (R′ | Z) p (D | Z,β1, . . . ,βK) (3.27)

=
N∏
i=1

p (zi | π) p (ri | zi)Mi

Mi∏
j=1

p (tij | zi,β1, . . . ,βK) (3.28)

In practice, the amount of the scaling on returns’ contribution to the log-likelihoods

does not have to match that of the texts. The optimal value for the weighting may have

to be determined empirically.

In the following section, I discuss the learning of the parameters for the temporal

components of the model. This is achieved by evolving the supervision process described

in this section to account for the asynchrony between news sentiment and its proxies.

3.4.3 Supervised Parameter Learning with Past and Future Re-

turns

Having considered contemporaneous returns, I now move to address the temporal aspect

of the model. In this case, it is necessary to consider not just the returns of the equity on

the same day as the news is released, but also the returns before and after the publication

of the news (Figure 3.9). The rationale is that the distributions for the future returns will

be asymmetrically skewed if and only if the underlying temporality of the sentiment is
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(a) Contemporaneous approach to the mapping between news articles and market returns

(b) The mapping approach proposed for this method

Figure 3.9: A comparison between the approaches to the mapping between news sentiment
and returns

prospective; likewise, the asymmetry in the distributions of the past returns responds only

to retrospective sentiments. In light of this, two sets of return distributions are developed,

one for the past returns (Figure 3.10a) and the other for the future returns (Figure 3.10a).

It should be clarified that, at the conceptual level, the definition of prospective news

sentiment only specify what it is (news sentiment that can potentially influence the future

development of the market), but is not dependent on how the sentiment language patterns

are learnt. As such, the fact that historical “future” stock market movements are used

to help identifying language patterns that indicate historical prospective sentiment does

not in any way imply that stock market movements determine or define prospective news

sentiment — this precludes the possibility of circularities in the definition of prospective
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(a) Example distributions of past returns for the four sentiment-temporality categories
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(b) Example distributions of future returns for the four sentiment-temporality categories

Figure 3.10: Example distributions of future and past returns for each of the four sentiment
temporality categories.

In Figure 3.10a, it is assumed that prospective sentiments impose no influence on the past returns; as
a result, the return distributions are designed to be symmetric for prospective sentiment categories.
Similarly, in Figure 3.10b, the distributions of future returns depend mostly on prospective sentiments.
However, it may be argued that retrospective sentiments can have some influence on the returns from
subsequent days, in which case the distributions of returns for the retrospective sentiments would skew
slightly.

sentiment.

The updated structure of this new model is shown in Figure 3.11. Two return variables

are generated for each document i instead of just one as the case in the previous iteration

of the model, and their values are determined by the hidden variable zi and the parameters

τ which governs the shape of the return distributions for each of the temporal sentiment

categories. The complete-data likelihood function for this temporality-enabled model can
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Figure 3.11: Mixture of lexical items supervised by past and future returns.

be written down along the same lines as in Equation 3.28:

p (D,R′,Z | π,β1, . . . ,βK) = p (Z | π) p (R′ | Z) p (D | Z,β1, . . . ,βK) (3.29)

=
N∏
i=1

p (zi | π) p (rf,i | zi)Mi/2p (rp,i | zi)Mi/2 (3.30)

Mi∏
j=1

p (tij | zi,β1, . . . ,βK) (3.31)

Again, the weightings for the returns are rescaled so that their contributions to the

supervision process become comparable to that of the texts.

Note that the two terminologies used to describe the concepts of ‘past returns’ and

‘future returns’ are carefully chosen. Notations like rt−1 and rt+1 have been deliberately

avoided when specifying the model because such symbols may lead to the misconception

that it were the returns at precisely t − 1 and t + 1 time that supervised the learning.

Although one can certainly use the returns at t− 1 and t+ 1 time as the past and future

returns respectively for time t, they may not be the most appropriate choice. Ideally, the

past and future returns, as proxies of news sentiment, should capture as much as possible

the influence of news sentiment in terms of both its magnitude and span of effect. The

former is reflected by the absolute values of the returns; the latter, however, is difficult

to represent with a single return at a specific time. That said, it can be argued that the

Efficient Market Hypothesis implies that it may be appropriate to represent the past return

of an equity at time t with the return of the equity at time t− 1 since most innovations

before time t− 1 would have already been absorbed in the prices, thus possessing limited

value for news reporters. An appealing alternative scheme for constructing future returns

rf is to consider a weighted average of the returns after time t, namely:

rf = w1rt+1 + w2rt+2 + · · ·+ wNrt+N =
N∑
i=1

wirt+i (3.32)
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where w1, w2, . . . , wn are the weights and N is the length of the averaging window. The

selection of weights reflects the diminishing nature of new sentiment’s impact on the

market suggested again by the Efficient Market Hypothesis. One way to achieve this is

to apply the so called exponential moving average (EMA) to the return series and use

the smoothed returns for future returns rf . Applying exponential moving average on the

return series involves the calculation of a new smoothed return st, for each t in the series

using the following formula (adapted from Roberts [1959]):

st+n = α · rt+n + (1− α) · st+n+1 (3.33)

st+N = rt+N (3.34)

where α is the smoothing coefficient that encodes the impact of the more recent returns on

the smoothed value st+n. The closer α is to 1, the greater the influence assigned to the more

recent returns on the resulted smoothed value st+n, and the stronger the diminishing effect.

The choices of the values for α and N mostly rely on the practitioners’ understanding

of the model. In some cases, it may be desirable to capture the medium- and long-term

relationships between prospective news sentiment and daily equity returns; Tetlock [2007]

found statistically significant correlations between the negative news sentiment at day t and

the equity returns at day t+4; Généreux et al. [2011]’s method reported the highest accuracy

at t+ 2. However, it is worth noting that as N increases, the marginal contributions made

by returns from distant future diminish due to the exponential weighting. One can therefore

use a relatively small N since it is simplifies the computation without compromising the

effectiveness of the model too much.

In the next section, I am to present the derivation of the maximum likelihood estimators

for the parameters in the final iteration of the model developed in this section using the

EM algorithm described earlier this chapter. The parameters of interest are (i) the overall

distribution of the four temporal sentiment categories, namely π = (πrn, πrp, πpn, πpp) and

(ii) the four vectors: βrn,βrp,βpn,βpp, with each vector characterising the distribution of

lexical items for the corresponding temporal sentiment category.

3.5 Derivation of the Supervised EM Algorithm

The goal of this section is to present a detailed derivation of the return-supervised

expectation maximisation algorithm for obtaining the maximum likelihood estimators for

the parameters in the temporal sentiment model developed in the previous section. The

practice follows the general EM framework outlined in Section 3.3 and Appendix A. The

key procedures of the algorithm are summarised at the end of this section (page 66).

I start with the Q
(
θ,θold

)
function, which is the target function for the optimisation
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in the M step. For the sake of simplicity, the βs are recoded with integer indices to enable

easy indexing as follows:

β1 = βrn (3.35)

β2 = βrp (3.36)

β3 = βpn (3.37)

β4 = βpp (3.38)

where rn, rp, pn, and pp refer to retrospective negative, retrospective positive, prospective

negative, and prospective positive respectively. Also, let B denote the collection of the βs,

namely:

B = (β1,β2,β3,β4) . (3.39)

I will use sp and sf to denote the two collections of parameters that govern the stable

distributions modelling the past returns and future returns respectively:

sp = (srn,p, srp,p, spn,p, spp,p) = (s1,p, s2,p, s3,p, s4,p) (3.40)

sf = (srn,f , srp,f , spn,f , spp,f) = (s1,f , s2,f , s3,f , s4,f) . (3.41)

Similar to B, S is used to denote the collection of the sp and sf . Using this notation,

Q
(
θ,θold

)
can be written as follows:

Q
(
θ,θold

)
=
∑

Z

p
(
Z | D,R′,πold,Bold,S

)
ln p (D,R′,Z | π,B,S) (3.42)

Note that S in the posterior distribution of Z does not have the superscript old attached

to it because the parameters for the return distributions take part in the supervision

of the learning process and would remain unchanged during the iterations. Assuming

independence between observations:

=
∑

Z

p
(
Z | D,R′,πold,Bold,S

) N∑
n=1

ln p (dn, rn, zn | π,B,S) (3.43)
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where rn denotes a vector containing both rp and rf .

=
∑

Z

p
(
Z | D,R′,πold,Bold,S

) N∑
n=1

ln p (zn | π) p (dn, rn | zn,B,S) (3.44)

=
∑

Z

p
(
Z | D,R′,πold,Bold,S

)
(3.45)

N∑
n=1

ln p (zn | π)S (rn,p | sp)S (rn,f | sf)p (dn | B) (3.46)

Note that the actual value p (zn | π) takes depends on which of the K elements in zn is

1. As a result, p (zn | π) can be rewritten as
∏K

k=1 p (znk | π)znk =
∏K

k=1 π
znk
k where znk is

the instance of zn whose k-th element is 1 and znk = 1 if and only if the k-th element of

zn is 1; similar rewrites apply to S (rn,p | sp), S (rn,p | sp) and p (dn | B):

=
∑

Z

p
(
Z | D,R′,πold,Bold,S

)
(3.47)

N∑
n=1

ln
K∏
k=1

{πznk
k S (rn,p | sk,p)znkS (rn,f | sk,f)znkp (dn | βk)znk} (3.48)

=
∑

Z

p
(
Z | D,R′,πold,Bold,S

)
(3.49)

N∑
n=1

K∑
k=1

znk {lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)}

(3.50)

The only two terms that are governed by Z are znk and p
(
Z | D,R′,πold,Bold,S

)
, therefore

they can be pushed into the summation over Z:

=
N∑
n=1

K∑
k=1

{lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)} (3.51)∑
Z

znkp
(
Z | D,R′,πold,Bold,S

)
(3.52)
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Again, assuming independence between observations in the inner most summation over Z

(3.52). A new symbol m is used as the index to avoid any confusion with n:

=
N∑
n=1

K∑
k=1

{lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)} (3.53)

∑
z1

· · ·
∑
zn−1

∑
zn

∑
zn+1

· · ·
∑
zN

znk

N∏
m=1

p
(
zm | dm, rm,πold,Bold,S

)
(3.54)

The only term that are indexed by n and k inside the summation over Z is the one with

m = n, i.e. znkp
(
zn | dn, rn,πold,Bold,S

)
. It can be separated from the other terms:

=
N∑
n=1

K∑
k=1

{lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)} (3.55)∑
zn

znkp
(
zn | dn, rn,πold,Bold,S

)
(3.56)

∑
z1

· · ·
∑
zn−1

∑
zn+1

· · ·
∑
zN

n−1∏
m=1

p
(
zm | dm, rm,πold,Bold

)
(3.57)

N∏
m=n+1

p
(
zm | dm, rm,πold,Bold,S

)
(3.58)

=
N∑
n=1

K∑
k=1

{lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)} (3.59)∑
zn

znkp
(
zn | dn, rn,πold,Bold,S

)
(3.60)∑

Z\zn

p
(
Z\zn | D\dn,R′\rn,πold,Bold,S

)
(3.61)

where Z\zn means Z excluding zn; D\dn and R′\rn are similarly defined. By the addition

rule of probability, the summation
∑

Z\zn p
(
Z\zn | D\dn,R′\rn,πold,Bold,S

)
is equal to

1:

=
N∑
n=1

K∑
k=1

{lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)} (3.62)∑
zn

znkp
(
zn | dn, rn,πold,Bold,S

)
(3.63)
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Among all K terms in summation
∑

zn
znkp

(
zn | dn, rn,πold,Bold,S

)
, only one will have

znk = 1, and all other terms are reduced to zero.

=
N∑
n=1

K∑
k=1

{lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)} (3.64)

p
(
znk | dn, rn,πold,Bold,S

)
(3.65)

Applying Bayes’ theorem on p
(
znk | dn, rn,πold,Bold,S

)
:

=
N∑
n=1

K∑
k=1

{lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)} (3.66)

p
(
dn, rn, znk | πold,Bold,S

)
p
(
dn, rn | πold,Bold,S

) (3.67)

=
N∑
n=1

K∑
k=1

{lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)} (3.68)

p
(
znk | πold,Bold,S

)
p
(
dn, rn | znk,πold,Bold,S

)∑K
j=1 p

(
dn, rn, znj | πold,Bold,S

) (3.69)

First note that p
(
znk | πold,Bold,S

)
= p

(
znk | πold

)
= πold

k ; Bold and S are dropped since

znk only depends on πold as is demonstrated in Figure 3.11. Also note that the term

p
(
dn, rn | znk,πold,Bold,S

)
actually means the probability of seeing dn, rn when the k-th

category is active. The expression may then be rewritten as p
(
dn, rn | βold

k , sk,p, sk,f
)
;

similar rewrites can be performed on p
(
dn, rn, znj | πold,Bold,S

)
:

=
N∑
n=1

K∑
k=1

{lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)} (3.70)

πold
k p

(
dn, rn | βold

k , sk,p, sk,f
)∑K

j=1 π
old
j p

(
dn, rn | βold

j , sj,p, sj,f
) (3.71)
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Recall that
πold
k p(dn,rn|βold

k ,sk,p,sk,f)∑K
j=1 π

old
j p(dn,rn|βold

j ,sj,p,sj,f)
corresponds to the responsibility term γnk introduced

in Section 3.3. It is worth noting that γnk is defined in terms of the observations and the

parameters from the previous iteration of the EM algorithm, and its value should therefore

be treated as a constant in the M step. The final expression for the Q
(
θ,θold

)
function

now becomes:

Q
(
θ,θold

)
=

N∑
n=1

K∑
k=1

γnk {ln πk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)}

(3.72)

I now show the derivation of the expressions for updating the parameters of interest,

namely πk and βk. As discussed earlier, sk,p and sk,f are parts of the supervision process,

and as such they will remain unchanged through out the learning process.

The target function Q
(
θ,θold

)
is optimised with respect to the mixture coefficient πk

under the linear constraint
∑K

m=1 πm = 1. The constraint is enforced with a Lagrange

multiplier: λ
(∑K

m=1 πm − 1
)

. Taking the derivative of Q
(
θ,θold

)
+ λ

(∑K
m=1 πm − 1

)
with respect to πk and set it to zero:

0 =
∂Q
(
θ,θold

)
+ λ

(∑K
m=1 πm − 1

)
∂πk

(3.73)

0 =
∂
∑N

n=1

∑K
k=1 γnk {lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)}

∂πk
(3.74)

+
∂λ
(∑K

m=1 πm − 1
)

∂πk
(3.75)

0 = λ+
N∑
n=1

γnk
∂ ln πk
∂πk

(3.76)

0 = λ+
N∑
n=1

γnk
πk

(3.77)

Mutiply both sides with πk:

0 = λπk +
N∑
n=1

γnk (3.78)
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Such expression can be obtained for each possible k. Summing over k to solve for λ:

0 = λ

K∑
k=1

πk +
N∑
n=1

K∑
k=1

γnk (3.79)

Note that
∑K

k=1 πk = 1 and
∑N

n=1

∑K
k=1 γnk = N :

λ = −N (3.80)

Substituting λ back into 3.78 and solve for πk:

πk =

∑N
n=1 γnk
N

(3.81)

I now move to derive the ML estimators for updating βk. Recall that βk consists of V

parameters for the multinomial distribution from which the terms for the k-th temporal

sentiment category are drawn; let parameters in βk be denoted by αk,e1 , αk,e2 , . . . , αk,eV ,

where αk,ej is the probability for the j-th lexical entry ej to occur in the text when the

text is generated by the k-th temporal sentiment category. The Q
(
θ,θold

)
function listed

in 3.72 now needs to be expanded in the same manner as in Equation 3.8:

Q
(
θ,θold

)
=

N∑
n=1

K∑
k=1

γnk

{
lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln p (dn | βk)

}
(3.82)

=
N∑
n=1

K∑
k=1

γnk

{
lnπk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln

V∏
j=1

αk,ej
fn,ej

}
(3.83)

where fn,ej is the raw frequency of lexical item ej occurring in the text of document

n. Deriving the ML estimator for βk is effectively equivalent to deriving the ML esti-

mator for αk,ej with K additional linear constraints, i.e.
∑V

j=1 α1,ej = 1,
∑V

j=1 α2,ej =

1, . . . ,
∑V

j=1 αK,ej = 1. Taking the derivative of the expanded Q
(
θ,θold

)
function together
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with the Lagrange multipliers
∑K

k=1 λk

(∑V
j=1 αk,ej − 1

)
with respect to αk,ej :

0 =
∂Q
(
θ,θold

)
+
∑K

k=1 λk

(∑V
j=1 αk,ej − 1

)
∂αk,ej

(3.84)

0 =

∂
∑N

n=1

∑K
k=1 γnk

{
ln πk + lnS (rn,p | sk,p) + lnS (rn,f | sk,f) + ln

∏V
j=1 αk,ej

fn,ej

}
∂αk,ej

(3.85)

+
∂
∑K

k=1 λk

(∑V
j=1 αk,ej − 1

)
∂αk,ej

(3.86)

0 = λk +
N∑
n=1

γnk · fn,ej
∂ lnαk,ej
∂αk,ej

(3.87)

0 = λk +
N∑
n=1

γnk · fn,ej
αk,ej

(3.88)

Mutiply both sides with αk,ej :

0 = λkαk,ej +
N∑
n=1

γnk · fn,ej (3.89)

The linear constraints can be exploited to rid of αk,ej by summing over V instead of K as

in the case for πk:

0 = λk

V∑
j=1

αk,ej +
N∑
n=1

V∑
j=1

γnk · fn,ej (3.90)

Making use of the fact that
∑V

j=1 αk,ej = 1:

λk = −
N∑
n=1

V∑
j=1

γnk · fn,ej (3.91)
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Substituting λ back into 3.89 and solve for αk,ej :

αk,ej

N∑
n=1

V∑
j=1

γnk · fn,ej =
N∑
n=1

γnk · fn,ej (3.92)

αk,ej =

∑N
n=1 γnk · fn,ej∑N

n=1

∑V
j=1 γnk · fn,ej

(3.93)

A key concept in interpreting the expression for updating αk,ej is the notion of ‘soft

counts’ — whenever a lexical item ej occurs in the n-th document, only a ‘portion’ of

the occurrence is attributed to the k-th sentiment category, which is accounted by the

responsibility term γnk. The term γnk · fn,ej , therefore, represents the partial counts of

the lexical item ej’s occurrences in the n-th document weighted by the k-th sentiment

category’s contribution to the responsibility term. The expression 3.93 can then be

interpreted as the percentage of the total soft counts for ej that are attributed to category

k in all documents among the total soft counts for all the lexical items in the vocabulary

that are attributed to category k in all documents.

The supervision enforced by the sentiment proxies is propagated through the responsi-

bility terms γnk during the parameter updates. The better a temporal sentiment category

explains a set of observations, the greater the category’s responsibilities will be for that

set of observations in the next iteration.

Once the updating expressions for πk and αk,ej are derived, the EM algorithm can be

formulated to obtain the ML estimators for the model developed in this chapter following

the same structure as outlined in Section 3.3:

1. Choose an initial (usually random) settings for the parameters πold, and the four

βolds, each containing V probabilities. Also choose a set of parameters for the

distributions of past and future returns, namely sk,p and sk,f .

2. The E Step: evaluate the responsibility term γnk =
πold
k p(dn,rn|βold

k ,sk,p,sk,f)∑K
j=1 π

old
j p(dn,rn|βold

j ,sj,p,sj,f)
where

p
(
dn, rn | βold

k , sk,p, sk,f
)

= S (rn,p | sk,p)S (rn,f | sk,f) p
(
dn | βold

k

)
(3.94)

= S (rn,p | sk,p)S (rn,f | sk,f)
V∏
j=1

αk,ej
fn,ej (3.95)

3. The M Step: compute

πnew
k =

∑N
n=1 γnk
N

(3.96)

αnew
k,ej

=

∑N
n=1 γnk · fn,ej∑N

n=1

∑V
j=1 γnk · fn,ej

(3.97)
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as described earlier in this section.

4. Check for convergence of either the log-likelihood or the parameter values. The

log-likelihood for the incomplete-dataset is computed as:

L (π,B,S | D,R′,S) = ln p (D,R′ | π,B,S) (3.98)

=
N∑
n=1

ln
K∑
k=1

πnew
k S (rn,p | sk,p)S (rn,f | sk,f) p (dn | βnew

k ) .

(3.99)

The convergence can be verified by comparing the improvement of the log-likelihood

relative to the last iteration with a pre-defined threshold — if the improvement is

lower than the threshold for a sufficient number of iterations, the process is considered

to have converged. If the convergence criterion is not satisfied, then update the

parameters:

πold
k ← πnew

k (3.100)

αold
k,ej
← αnew

k,ej
(3.101)

βold
k ←

(
αold
k,e1

, . . . , αold
k,eV

)
(3.102)

and go to step 2. If the algorithm successfully converges, exit the process.

The methods described in this section tackle the learning of the temporal sentiment

model as outlined at the beginning of this chapter. The degree and direction of the influence

a particular lexical item ej’s occurrences has on the sentiment proxy when encountered in

news text is quantified by its probability assigned in the four lexical item distributions, i.e.

αk,ej . The next section addresses the evaluation of the sentiment and temporal orientation

of a new document based solely on the document’s textual content.

3.6 Evaluating the Sentiment and Temporality for

Unseen Documents

Once the estimates for the parameters are obtained, new documents’ coordinates in the

temporal sentiment space can be evaluated. For this task, the quantity of interest is

p (zn | dn,π,β1,β2,β3,β4) (3.103)

that is, the probability distribution for document dn’s temporal sentiment given the

parameter estimates obtained from the previous sections. It can be seen from the above

equation that the evaluation of the probabilities relies on the information contained in the
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texts of the documents alone, and no sentiment proxies such as equity returns are involved

in the process. The probabilities can be evaluated with the Bayes’ theorem:

p (zn | dn,π,β1,β2,β3,β4) =
p (zn,dn | π,β1,β2,β3,β4)

p (dn | π,β1,β2,β3,β4)
(3.104)

=
p (zn,dn | π,β1,β2,β3,β4)∑K

k=1 p (znk,dn | π,βk)
(3.105)

For each document, evaluating Equation 3.105 produces a vector consisting of four

probabilities, each describing the overall probability of one of the four temporal sentiment

categories. In a document classification setting where exactly one category is assigned to

a single document, the category with the highest probability assigned to it is typically

chosen as the category for the document.

An alternative application of the probabilities mined this way, as has been briefly

mentioned at the beginning of Section 3.1, is to collate them into temporal sentiment time

series. More specifically, the probabilities for each of the temporal sentiment categories

associated with the documents published on the same day may be aggregated to form the

news temporal sentiment orientations for that day. This view to the temporal sentiment

orientations is particularly useful when evaluating the predictive performances of the

model. The parameters of the model are estimated using a training dataset where both the

texts and sentiment proxies are available; the trained model, with its parameters learnt, is

then used to evaluate the temporal sentiment orientations of the new documents in the

test set; the resultant orientations are grouped into four times series, each quantifies the

intensity and polarity of the fluctuations of one of the temporal sentiment. The linear

correlation between each temporal sentiment series extracted from the test dataset and

the sentiment proxies — especially the future equity returns — can be used to measure

how well the temporal sentiment in the news predict the trending of the sentiment proxies.

3.7 Summary

In this chapter, I first introduced the notion of news temporality in the context of

sentiment analysis of business news. Traditional sentiment analysis of business news

typically positions a news document on a one-dimensional scale on which the document’s

evaluative stance is measured; the practice is often followed by an attempt to establish a

predictive correspondence between the extracted news sentiment and the performances of

equities, usually for the purpose of explaining the movements of the market. In this thesis, I

propose the addition of a new temporality scale to the original single-dimensional sentiment

scale. The added temporality dimension measures the retrospectivity/prospectivity of the

narratives in business news — news that recounts the events already happened to the
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market is considered as retrospective news while news that speculates on or hints at the

possible developments of events in the future in the market is considered as prospective

news.

The introduction of this new scale is motivated by both theoretical and practical reasons.

The Efficient Market Hypothesis implies that all publicly (and privately if the strongest form

of the hypothesis is assumed) available information must have already been incorporated

into the market and reflected in the current prices on the market. It may therefore be

beneficial to distinguish retrospective news from its prospective counterparts since such

news mainly accounts for events whose impact has already been absorbed into the prices

and thus yields limited predictive power. The practical reason concerns with the use of

equity returns as sentiment proxies to label training dataset when approaching the analysis

of sentient as a supervised machine learning task. Relying solely on contemporaneous

equity returns when labelling training data could lead to misclassification of documents’

sentiment orientation. The addition of the news temporality dimension makes it possible

for the documents to be aligned with past or future returns, which would accommodate

the delays between the release of information and market’s responses and alleviate the

issues thereof to some extent.

The modelling of sentiment and temporality in business news is then presented. The

textual content in news articles is treated as a mixture of lexical items drawn from four

term distributions, each characterises the linguistic realisations for one of the four temporal

sentiment categories. Obtaining the maximum likelihood estimators for mixture models’

parameters, however, proves to be a challenging task. The EM algorithm is introduced to

overcome this difficulty; the algorithm works by iteratively approaching a local maximum

in the log-likelihood function of the model while producing the maximum likelihood

estimators of the parameters as side products.

The standard mixture model together with the EM algorithm alone are not enough

for tackling the task of learning temporal sentiment orientations of business news. The

learning process will have to be supervised by some form of extrinsic sentiment proxies —

in this case, the daily returns of the related company’s stock on the market. Additional

structures were put in place to accommodate the past and future returns; The designs of the

distributions for the two types of returns reflected the fact that past returns are associated

mainly with retrospective news while future returns are governed by prospective news.

The extended model was subjected to analysis and the maximum likelihood estimators for

the parameters in the model were derived through the EM algorithm. The implementation

of the methods detailed above will be presented in Chapter 4.
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Chapter 4

System Implementation

4.1 Introduction

In this chapter, I present the design and implementation of a system which (i) realises the

methods described in Chapter 3, and (ii) provides the infrastructure for evaluating and

benchmarking the method’s performance. This system consists of two components. The

first component is CiCui, a general purpose text analysis platform I had developed over

the course of this study; the CiCui system serves as the entry point for textual data — it

collects news documents from online sources, transforms the unstructured text in those

documents into structured form using natural language processing techniques and creates

an inverted index for the structured texts with a relational database management system.

The second component I created is the TSMiner system (Temporal Sentiment Miner),

which is a data analytic workflow built within a third-party data analytic environment

called KNIME; the TSMiner implements the calculations in the methods described in

Chapter 3 as well as the evaluation of the method’s performances described in Chapter 5.

Figure 4.1 gives an overview of the system’s architecture, illustrating the input and the

output of the system as well as the interconnection between the two components. The

main tasks of the system are:

1. To fit the model developed in Chapter 3 on training data, namely to obtain the

maximum likelihood estimates for the parameters in the model given the term-

document matrix and the related historical equity returns;

2. To evaluate the sentiment-temporal orientations for unseen documents given the

model parameter estimates obtained from the training process;

3. To compare the predictive performance of the method developed in this thesis with

those of other benchmarking methods.

71
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Figure 4.1: System Architecture

This diagram gives an overview of the architecture of the system presented in this chapter. The system
as a whole takes three inputs: (i) News articles about a particular company of interest, retrieved as
unstructured texts from online news repositories or the original websites; (ii) A sentiment proxy for the
company; in this case the returns of the company’s stock on a exchange, where the returns are calculated
using historical Open-Close-High-Low data found on Yahoo Finance; (iii) External sentiment dictionaries
which are used by some of the benchmarking methods when evaluating the performances of the system.
The principal outputs of the system include: (i) Four term lists, each containing the distribution of the
terms for one of the four temporal sentiment categories; (ii) The probabilities for the documents to belong
to each of the four categories; (iii) The overall proportions of the document classes in the corpus; (iv) The
probabilities for an unseen document to belong to each of the four categories as classified by the trained
model. As can be seen from the overlap between the two systems’ boundaries, the two components form
a coalition through the sharing of the inverted index — the TSMiner component utilizes the inverted
index produced by the CiCui system as the textual input for model training and validation.

4.2 Text Preprocessing with the CiCui System

The goal of the text preprocessing phase is to extract from unstructured input texts

the information needed for computing the quantities used in the return-regularised EM

algorithm presented in Section 3.5. More specifically, one needs to calculate three quantities

during each iteration of the algorithm: the responsibility term γnk in the E step and the
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expressions for updating πk and αk,ej in the M step. Observe that the evaluation of the

expressions 3.95, 3.96 and 3.97 requires the following information be extracted from the

text:

The vocabulary a set containing all the lexical items that will be entertained by the

analysis, i.e. {e1, e2, . . . , eV }.

The size of the vocabulary namely V .

The total number of documents which is the quantity N used when calculating πnew
k ,

as defined in Equation 3.96.

The term-document frequency matrix which captures fn,ej . The rows in the matrix

represents the documents and its column space represents the vocabulary; the entry

whose coordinate in the matrix is (n, j) corresponds to the number of times ej

occurred in document dn.

Among the four quantities, the size of the vocabulary V can be derived from the

vocabulary once it is constructed; the vocabulary is essentially the column space of the

term-document frequency matrix. The total number of documents N can be obtained

by counting the number of rows in the term-document frequency matrix. So the key

computation task in the implementation of the EM algorithm is to construct the term-

document matrix. In the CiCui system, the construction of the term-document frequency

matrix is implemented as a SQL query issued against the inverted index database. The

discussion in this section shall present the various steps that lead to the building of the

inverted index.

Before diving deeper into the details, it is helpful to clarify what constitute a vocabulary

in this thesis. Note that prior to this point through out the thesis, the phrase ‘lexical

items’ and sometimes ‘terms’ have been used in placed of ‘words’ when referring to the

basic constituting units in a vocabulary. Specifying the method this way makes it agnostic

with regard to the actual lexical items used. In this thesis, two choices for lexical items

are contemplated: the unigrams and the word dependencies. The inverted index created

by the CiCui system covers the postings for both unigrams and word dependencies, which

makes it easier to produce term-document frequency matrix for either lexical item choices.

4.2.1 Preprocessing Workflow

The flowchart in Figure 4.2 illustrates the workflow for creating term-document frequency

matrices from raw texts. News articles in various formats are imported into the system

using specialised importers and converted into CiCui’s custom XML format; this XML
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Figure 4.2: Text Preprocessing Workflow

format records the title, source, link, publication date and the actual text of an article (an

example document is shown in 4.3).

A number of natural language processing tasks are carried out to convert the texts

into a more structured form before the lexical items can be registered with the index. The

Running texts are first subjected to tokenisation and sentence segmentation where word

and sentence boundaries are recognised. Each token is then tagged with part-of-speech

information based on its surrounding tokens using sequential modelling techniques such as

the hidden Markov model or conditional random fields. Lemmatisation1, which strips a

word of its inflections and reduces it to its root form, is applied to the tokens to extract

their lemmas — e.g. the word ‘better’ is reduced to ‘good’ and ‘rose’, ‘risen’ and ‘rises’

are all mapped to ‘rise’; by grouping words by their semantics, the procedure effectively

reduces the dimensionality of the resulting term-document matrix, which helps alleviating

the over-fitting problem in the subsequent learning of the model’s parameters. Lastly,

the token stream is put through a process called dependency parsing (using the parser

developed by Klein and Manning [2003]), which extracts relational dependencies between

words based on the concept of dependency grammar. Each dependency instance contains

1An alternative procedure is the stemming process. Stemming removes the inflections from a word by
either looking it up in a dictionary or stripping it from suffixes that often hallmark inflections, such as
-ed, -ing, -ly, etc. The disadvantage of this method compared with lemmatisation is that it does not take
contextual information into consideration; this could cause over-stemming — the proper name Boeing, for
example, would be converted into Boe due to the -ing suffix.
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<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<article>

<attributes>

<key>company</key>

<value>company</value>

</attributes>

<content>Boeing Co. is on track to outsell Airbus for the first time

since 2006, reporting that it had booked more than 1,000 net new

orders this year. (more text ...) </content>

<id>840e3954-126e-4ce7-bf0e-bd7babdff4f4</id>

<link>http://www.wsj.com/articles/

SB10001424127887324894104578106671355062146</link>

<publishedDate>2012-11-08T00:00:00Z</publishedDate>

<source>Wall Street Journal (Online)</source>

<title>Boeing Is on Track to Outsell Airbus</title>

</article>

Figure 4.3: An Example Article in CiCui’s XML Format

Most tags in CiCui’s custom XML format are self-explanatory (‘title’, ‘source’, ‘publishedDate’). The
‘id’ tag contains a unique UUID (universally unique identifier) string which is automatically generated
and assigned to the article as a global identifier. The ‘attributes’ tag can contain multiple key-value style
attributes; it is introduced to accommodate situational information which does not consistently present in
all documents.

the governor, the dependent, and thetyped relation between the governor and the dependent;

in addition, the parser also gives the token positions of the governor and the dependent in

the sentence, without which the entry cannot be uniquely identified. The CiCui system

internally delegates all these tasks to the Stanford CoreNLP tool-kit [Manning et al., 2014];

CiCui enhances the efficiency of the procedures by wrapping the executions in a pipeline

that enables parallel processing.

After these steps, the unigrams tokens are subjected to additional filtering to reduce

noise before they are put into the index. Punctuation and tokens containing digits are

omitted. Part-of-speech tags belonging to the same family are collapsed: NNS and NNPS

which represent the plural forms of nouns and proper nouns, for example, will be mapped

to their singular counterparts (NN and NNP) respectively; this procedure, not unlike the

lemmatisation process, aims to consolidate tokens whose semantics are the similar.

One additional treatment is the recognition of negations. The reversal effect negation

has on the sentiment orientation of expressions has been noted by a number of previous

studies [Dave et al., 2003, Yi et al., 2003, Kennedy and Inkpen, 2006, Wilson et al.,

2009, Smailović et al., 2014]. In the CiCui system, the negations are accounted for using

manually crafted rules. A token modified by expressions like ‘not’, ‘not going to’, ‘not

seem to’, etc. is indexed as a separate token that is different from the original; the token
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‘omitted’ in the expression ‘not to be omitted’, for example, will be considered as a new

‘not omitted’ token.

4.2.2 Inverted Positional Index

Once the preprocessing completes, an inverted positional index for the corpus is built.

While an inverted index maintains a mapping from individual lexical items to the enclosing

lexical structure (e.g. sentences, documents, etc.) in which they occurred, an inverted

positional index records the additional pieces of information with respect to the positions

of the token at which the lexical items occurred in the enclosing structures.

The CiCui system manages the index in a relational database using the H2 Database

Engine2. The schema for the database is presented in Figure 4.4. Some of the key tables

to the analysis include:

DOCUMENT A table that registers the meta-information about documents indexed

during the pre-processing: the title, the source, the URL link (if available) and the

publication date. A unique ID string is automatically generated and assigned to

each document. The full text of the documents are not stored in this table but can

be reconstructed from the texts indexed in SENTENCE table.

DICTIONARY The DICTIONARY table, as its name suggests, keeps a catalogue of all

the distinct tokens encountered in the texts. The index records the original inflected

form as occurred in the text, the lemma and the part-of-speech tag of each of the

tokens in the text if it has not been recorded already. Again, a unique identifier is

assigned to each entry in the dictionary.

SENTENCE The sentences segmented during the pre-processing are kept in this table.

The full text for each sentence is retained so that reconstruction of the original

document is possible.

WORD POSTING and SENTENCE POSTING These two tables together serve

as the ‘ledger’ for the tokens in the corpus: for each token in a sentence, the

WORD POSTING table registers the ID of the token, the ID of the sentence, and the

token-level position at which the token appeared in the sentence; similarly, the

SENTENCE POSTING table, for each sentence, records the ID of the sentence, the ID

of the document as well as the relative position of the sentence in the document.

DEPENDENCIES This table essentially keeps the postings for word dependencies,

much like the WORD POSTING and SENTENCE POSTING tables. The IDs for the governor

and the dependent tokens together with their token positions are associated with the

2http://www.h2database.com/, accessed in February 2016

http://www.h2database.com/
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sentences. Note that the primary key for this table contain all the attributes because

it is possible for the same governor-dependent-relation triplet to occur multiple times

in a sentence at different token positions.

The arrows that link the tables represent foreign key constraints; in practice, how-

ever, these constraints are honoured but not enforced3 due to performance consider-

ations. Note that not all tables were used by the analyses performed in this the-

sis — the TERMINOLOGY DICTIONARY and TERMINOLOGY POSTING tables are used to in-

dex multi-word expressions and named entities; the CONTENT ANALYSIS DICTIONARY and

CONTENT ANALYSIS POSTING tables record of the occurrences of terms and expressions as

defined in some supplied dictionaries; the META INFO maintains a key-value map for storing

configurations and parameters for the indexation.

4.2.3 Constructing Term-Document Frequency Matrix

After the indexation is completed, the term-document frequency matrix can be constructed

by issuing the following SQL query against the index database:

SELECT D.TEXT AS TEXT,

D.LEMMA AS LEMMA,

D.POS AS POS,

DOC.ID AS ARTICLE ID,

DOC.TITLE AS ARTICLE TITILE,

FORMATDATETIME(DOC.PUBLISHED DATE,

'YYYY−MM−DD') AS DATE,

CAST(COUNT(*) AS DOUBLE) AS

WEIGHT

FROM DICTIONARY AS D

INNER JOIN WORD POSTING AS WP

INNER JOIN SENTENCE POSTING AS SP

INNER JOIN DOCUMENT AS DOC

WHERE D.ID = WP.WORD ID

AND WP.SENTENCE ID = SP.SENTENCE ID

AND DOC.ID = SP.DOCUMENT ID

AND ( D.POS LIKE 'VB%' OR D.POS LIKE 'NN' OR D.

POS LIKE 'JJ%')

GROUP BY WP.WORD ID, SP.DOCUMENT ID;

The above query produces a term-document matrix in sparse form, capturing the

relations between major open-class words (i.e. nouns, verbs and adjectives) and the

documents in which they occurred. An example output is illustrated in Figure 4.1. It is

3Efforts were made in the indexation process to ensure the consistency between the keys, but no actual
table constraints were put in place in the database.
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Word ID Text Lemma POS Article ID Pub. Date Weight

2045 long-term long-term JJ 5a5878a3-03e3-4c86-979f-7098ee9779c3 31/08/2006 1

2169 state state NN d376b3f1-638a-4885-91a4-088d049960d3 26/09/2013 1

14199 hole hole NN e7ac88f2-c5de-4334-ac65-71de1578138e 16/10/2008 2

938 seen see VBN 9c4a4dbb-8701-4b48-9b11-3053c3d48837 19/12/2012 1

2628 payment payment NN 6f74a3d1-809d-4231-a39f-c44431f3605c 08/12/2012 5

9188 attempted attempt VBD 7846e03d-af69-480a-bee3-dbc0e27273dd 12/08/2009 1

545 moved move VBD c216345f-fa4b-4b7e-84e0-c1c34858e514 24/05/2008 1

5444 jpmorgan jpmorgan NN d3df4a25-16b2-4f82-9142-cbf027b1358f 15/06/2011 4

5580 told tell VBN 34df6229-eda8-47a7-b35e-924e4c4d949e 15/05/2012 1

6494 participant participant NN 9d3631fc-130b-4c3b-95de-e2a50df238e3 30/01/2007 1

Table 4.1: Example term-document matrix in sparse form produced by CiCui

In the most succinct form, the term-document matrix contains only three columns, namely WORD ID,
ARTICLE ID, and WEIGHT, which record the IDs of the tokens, the IDs of the articles and the number of
times said tokens occurred in said documents. The other columns in this example are included to improve
readability. The ARTICLE TITLE column is hidden to save page space.

convenient for the program to produce and parse the term-document matrix in this sparse

form, but it also has its problems; in particular, the ARTICLE ID column will not register

‘empty’ documents that contain no lexical items (e.g. unigrams or word dependencies) of

interest4. One simple solution is to ignore such documents because they do not contain

any information of interest. Another options is to retain these ‘empty’ documents, but set

the frequencies of all lexical item in these documents to zero, leaving the stock market

returns associated with these documents their sole contributions to the training process.

One can see from Equation 3.97 that the stock price returns affect the estimation of lexical

item distributions only through the responsibility term γnk; for a document n that is

‘empty’, the frequency for a lexical entry ej for n is zero, i.e. fn,ej = 0; as a result, the

returns associated to ‘empty’ documents cannot affect the estimation of αnew
k,ej

s during the

learning process. For the distribution of the temporal sentiment classes, however, it can

be seen from Equation 3.96 that the estimation of πnew
k can actually be affected if ‘empty’

documents are ignored — for example, when there exists a tendency for documents from a

certain temporal sentiment class are more likely to be ‘empty’.

For the implementation in this thesis, I chose the former solution based on the

observation that (i) the presence of empty document does not affect the estimation of the

distributions of lexical items for the temporal sentiment categories, and (ii) such ‘empty’

documents are rare in general and their impacts should be minimal compared to the other

‘non-empty’ documents.

4If it is decided that closed class words are to be ignored, then a document containing only closed class
words will still be considered ‘empty’.
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4.3 Model Learning and Evaluation

4.3.1 Brief Introduction to the KNIME Analytic Platform

The second component of the system, i.e. TSMiner, is implemented in the KNIME

Analytic Platform5. Built upon the Eclipse application framework and Java, KNIME

is a ‘modern data analytics platform that allows you to perform sophisticated statistics

and data mining on your data to analyse trends and predict potential results. Its visual

workbench combines data access, data transformation, initial investigation, powerful

predictive analytics and visualisation’6.

There are several advantages using the KNIME platform to build analyses compared

to starting from scratch:

� The platform provides the facilities to import and manage data from a variety of

sources (e.g. database, structured files, etc.) in an uniformed data structure. The

platform’s infrastructure takes care of most of the rudimentary but critical data

management tasks (e.g. off-heap on-demand data serialisation and de-serialisation),

and also makes it easy to enable concurrent parallel processing when needed.

� It is possible to have data analytic procedures developed in heterogeneous languages

collaborating in the same workflow. For example, one may combine scripts written

in Java, R and Python when composing analyses.

� In KNIME, common data manipulation tasks such as joining, grouping, pivoting,

and rule-based filtering, etc., are all packaged in atomic units called nodes, and the

platform offers a large collection of readily usable nodes (Figure 4.5). The use of

modular computation components significantly reduces development time.

Nodes can be connected with each other to form a workflow; data are represented as

structured tables and passed along the paths that link the nodes. In general, a node has

two sets of ports: a set of input ports which accept input data tables from other nodes,

and a set of output ports to which the outputs of this node can be accessed. Each node

type defines a certain operation on the data it accepts from the input ports; the output

resulted from the operation is then passed to all the nodes that are connected to its output

ports. Nodes also provide configuration interfaces through which the behaviours of the

nodes can be fine-tuned. An sample workflow and its output is demonstrated in Figure 4.6.

Equipped with this new tool, I now proceed to describe the implementation of the

algorithms developed in this thesis using the KNIME analytic platform in the following

subsections.

5Version 2.12.0 of KNIME was used for the implementations described in this thesis.
6https://www.knime.org/knime, accessed in February 2016

https://www.knime.org/knime
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Figure 4.5: Some node collections offered by the KNIME platform

4.3.2 Design of the Workflow

4.3.2.1 Imputing Missing Interday Returns

The calculation of the daily logarithmic returns to be used as the sentiment proxies

during the learning phase can prove to be a challenge. The raw time series returned by

quantmod functions are irregular, meaning there exist periods during which the prices are

not available (e.g. weekends and public holidays); a direct consequence of this is that the

daily returns calculated from these prices are also irregular. Sometimes, news articles are

seen to be published on days when no returns are available, leaving them unaccounted for

by sentiment proxies. For firm-level analysis, in general, textual data are not as abundant

and thus more ‘valuable’ than price data, therefore it may be desirable to keep news

articles which do not have accompanying sentiment proxies by assigning them imputed
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Open connection to
CiCui index database

Parse date/time
strings

Group by
pub. date

Retrieve documents Rename columns Call R to
plot the time series

Database Connector String to Date/Time GroupByDatabase Reader Column Rename R View (Table)

Open connection to
CiCui index database

Parse date/time
strings

Group by
pub. date

Retrieve documents Rename columns Call R to
plot the time series

Database Connector String to Date/Time GroupByDatabase Reader Column Rename R View (Table)

(a) Sample workflow

(b) Configuring the GroupBy node (c) Configuring the R script node

Figure 4.6: An example KNIME workflow

This example workflow (4.6a), when executed, opens an inverted index database produced by the CiCui
system, retrieves the meta-information on the documents stored in the database, count the number of the
documents released on each day (i.e. number of announcements) and plot the time series in R language
using the ggplot library. Figure 4.6b and 4.6c showcase the configuration interfaces for the GroupBy node
and the R scripting node.

returns.

Imputing missing equity returns itself can be complicated. Consider an example price

series with N consecutive observations; the close prices are denoted by p1, p2, . . . , pN and

the interday logarithmic returns are denoted by r2, . . . , pN where rt = log pt − log pt−1

— note that r1 is not available (i.e. missing) since at least two close prices are needed

to compute the interday returns. If the the close prices pt, pt+1, . . . , pt+n are all absent,

then there will be n+ 1 return values missing in the series (i.e. rt, rt+1, . . . , rt+n+1). The

following imputing options were considered:

1. Substitute missing returns with the empirical mean of the observed returns, namely

rt = rt+1 = · · · = rt+n+1 =
∑t−1

i=2 ri+
∑N

i=t+n+2 ri
N−n−1

.

2. Substitute the missing returns with log differences between the two nearest close

prices, namely rt = rt+1 = · · · = rt+n+1 = log pt+n+1 − log pt−1.

3. Apply linear interpolation on the missing close prices, and calculate the missing

returns based on the interpolated prices: a line is first fitted between pt−1 and pt+n+1



4.3. MODEL LEARNING AND EVALUATION 83

by solving the α and β in the following system:

pt+n+1 = α (t+ n+ 1) + β (4.1)

pt−1 = α (t− 1) + β (4.2)

which leads to

α =
pt+n+1 − pt−1

n+ 2
(4.3)

β =
(n+ 1) pt−1 − pt+n+1

n+ 2
(4.4)

for any day m that has t ≤ m ≤ t+ n, the interpolated price pm becomes:

pm =
pt+n+1 − pt−1

n+ 2
m+

(n+ 1) pt−1 − pt+n+1

n+ 2
. (4.5)

The calculations of the imputed values for the missing returns may then proceed as

normal.

Using the mean of the observed values to replace the missing values (i.e. option 1) is

a commonly used scheme for imputation in many applications; it has the benefit of not

changing the mean of the returns after the imputation. However, as have been noted,

equity return series are generally considered to have zero unconditional means — the

method is therefore equivalent to replacing missing returns with close-to-zero returns.

While statistically sound, adopting this method would defeat the purpose of the imputation

as articles would be marked as if they are ‘neutral’ in sentiment, thus providing little new

information.

The rationale behind option 2 is that the imputed sentiment proxies should reflect the

news’ contributions to the changes in prices, and since no trading was commenced during

the period from t to t+ n, whatever news released during that period will only have its

effect manifested in the price fluctuations on the next trading day (i.e. day t + n + 1).

Under this scheme, the news article released from day t to day t+ n+ 1 are attributed

with all the change in prices from pt−1 to pt+n+1. In contrast, option 3 spreads the change

in prices across the n+ 2 days where the interday returns were not available; each article

published on those days are attributed
1

n+ 2
of the changes in price between time t and

time t+ n.

For imputing missing sentiment proxies, method 2 and 3 are equally applicable. However,

the effects they have on the autocorrelation properties of the imputed series can differ greatly.

More specifically, adopting option 2 introduces a significant amount of autocorrelation

into the imputed series. This is not unexpected since consecutive duplicated returns

are inserted into the series. Figure 4.7 compares the autocorrelation functions for three
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return series. In 4.7c, the autocorrelation function considers only the correlations between

non-missing returns and it shall serve as the baseline for the comparison; as can be seen in

the diagram, the return series show slightly significant autocorrelation at first four lags.

Figure 4.7a shows that the adoption of option 2 inflates the autocorrelations in the return

series, while in 4.7b, calculating missing returns from interpolated close prices results in

only a minor increase in the autocorrelations.

The increase in autocorrelations itself does not affect the training of the model, but may

pose a problem when evaluating the methods’ performances with econometrics techniques

that involve autoregressive components (ARIMA and some GARCH models, for example),

because greater than normal autocorrelations would trick such models into believing

returns from previous times can predict the future returns.

Another factor to consider when choosing between the treatments for missing returns

is the weekend effect (also known as the Monday effect, the day-of-the-week effect), which

states that stock returns on Mondays (i.e. difference between the close price on Friday

and the close price on the subsequent Monday) tend to be significantly lower than that

on other weekdays [French, 1980]. When option 2 is adopted, all articles released during

non-trading days are equally responsible for the full amount of the effect; in the case of

option 3, the weekend effect’s influence is diluted by the non-trading days. To account for

the greater price changes around the non-trading days, it is decided in this implementation

that missing returns in the training phase are treated with option 2, and option 3 is used

when analysing the performances of the method.

4.3.2.2 Setting Up Cross-validation

Next, a cross-validation is set up so that the method can be tested multiple times and a

more reliable conclusion can be drawn about the its performance. The cross-validation

procedure tests how well the method generalises to new data. During a cross-validation

process, the model of interest is repeatedly trained and tested on two separate datasets

(i.e. the training set and the test set), with the training set and test set being changed

each time; the accuracies and recalls of the model during the test phases are averaged to

form a more reliable measure of the model’s performance. By repeating the experiments

multiple times

A typical cross-validation design used in machine learning literature is the k-fold

cross-validation; a k-fold cross-validation first divides the complete dataset into k sub-

datasets; the validation process then iterates through each sub-dataset, and uses the

current sub-dataset as the test set while combining the remaining k − 1 sub-datasets as

the training set. One drawback of the k-fold cross-validation is that it can be difficult

to obtain statistically significant conclusions during the test phases when the amount of

the data available is relatively small or when k is large. In my method, an alternative
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cross-validation scheme called the repeated random sub-sampling validation is implemented.

A repeated random sub-sampling validation behaves much like the k-fold cross-validation

except that the split between the training set and the test set is random in each iteration

of the validation; with this cross-validation method, one is able to specify a fixed ratio

between the size of the training set and the test set and repeat validations as many time

as necessary, with each iteration receiving a reasonably sized test set. The disadvantage

of this repeated random sub-sampling validation is that the some data points may never

appear in the training/test sets due to the randomness in the splitting of the complete

dataset.

Precautions are taken to prevent ‘cheating’ during the cross-validation process that

have presented in some previous studies [Koppel and Shtrimberg, 2004, Généreux et al.,

2011]. Features selection were performed strictly within the training set.

The results obtained from each fold of the cross-validation procedure are aggregated

into a single metric using the technique of meta-analysis, which will be elaborated in

Section 4.3.4.

4.3.2.3 Preparing Past and Future Returns

Within the cross-validation framework, the news articles in the training set will be joining

with the past and future returns whose definitions were discussed in Section 3.4.3. To

obtain the past return series, the imputed return series is first lagged forward by 1 day so

that today’s news is matched with yesterday’s return; the exponential moving average is

calculated from the lagged series using KNIME’s Moving Average node; the coefficient

α is defined by
2

k + 1
where k is the size of the averaging window. In this case, k is set

to 1 for the calculation of past returns, which is equivalent to using yesterday’s return

as today’s past return. For future returns, the original return series must be sorted in

descending order before the moving average transformation can be applied since the MA

node provided by KNIME support only backwards moving averaging; k is set to 3 when

calculating the exponential moving average for the future returns.

4.3.2.4 Calculation of the Responsibility Term

Each iteration in the EM algorithm implementation begins with a SQL-style join between

the lexical item postings and the probabilities of those lexical items in all four temporal

sentiment categories from the previous iteration (i.e. the βolds); this process essentially

looks up the probabilities distributions for the lexical items and attaches them to the

postings list. An example for this procedure is illustrated by Figure 4.8. During the

first iteration of the algorithm where probability distributions for the lexical items are

unavailable, a set of randomly initialised distributions are used instead.
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Dependency Tuple Article ID Pub. Date Weight

agree,pay,xcomp e20288a7-ac0a-4d5b-a1bd-f4b1db93b730 17/03/2005 5

agree,pay,xcomp 03a4a368-6521-4de7-b3bf-dc7de42571c4 08/07/2011 4

allow,borrow,xcomp 2a1a45ea-9b31-4a3e-b4ab-270d3d4fe6e3 16/04/2002 4

beat,forecast,dobj 426eeeae-d61f-43be-836b-6e987a1275dd 14/04/2000 4

buy,bond,dobj 8e2f1ca5-eb42-47f5-b8f2-1deba65d4e46 13/12/2011 4

buy,share,dobj 9e1f8342-1915-40bf-b5d4-62a2b028e98f 22/04/2006 4

buy,warrant,dobj 2d8b53bb-3d2d-4211-b0fe-03e3cd677986 10/07/2009 4

change,divisor,nsubj 83ce3834-5c0c-4ceb-9f9e-1fd17d5cb288 02/01/2001 10

charge,individual,dobj b66d7b19-280f-41d9-bce2-37d264dc32b4 12/11/2012 4

decline,comment,xcomp 564918da-5f3b-4851-b302-e52c977357aa 19/09/2002 7

raise,money,dobj 0f38c316-6608-41c9-b1ef-df87c9a0e7be 27/06/2012 5

report,result,dobj eaad4000-b2e0-4258-9718-eb5ff2b0fdc3 19/10/2000 6

rise,cent,dobj e1b97041-52ad-47dc-a3af-5f4737ae7306 09/01/2003 5

sell,convertible,dobj b5101da6-324c-45e0-94f9-04887e06195b 02/03/2000 6

sell,share,dobj 414f4ddc-9d5c-422e-83cc-f40451dcec75 13/09/2000 8

take,position,dobj 9d3631fc-130b-4c3b-95de-e2a50df238e3 30/01/2007 6

(a) Sample word dependency postings

Dependency Tuple retneg retpos proneg propos

agree,pay,xcomp 0.0005 0.0005 0.0010 0.0012

allow,borrow,xcomp 0.0000 0.0001 0.0000 0.0002

beat,forecast,dobj 0.0001 0.0002 0.0002 0.0002

buy,bond,dobj 0.0001 0.0001 0.0002 0.0001

buy,share,dobj 0.0004 0.0001 0.0003 0.0003

buy,warrant,dobj 0.0000 0.0000 0.0001 0.0001

change,divisor,nsubj 0.0005 0.0000 0.0000 0.0000

charge,individual,dobj 0.0000 0.0000 0.0001 0.0000

decline,comment,xcomp 0.0030 0.0018 0.0035 0.0028

raise,money,dobj 0.0002 0.0000 0.0004 0.0002

report,result,dobj 0.0006 0.0008 0.0003 0.0006

rise,cent,dobj 0.0008 0.0021 0.0003 0.0004

sell,convertible,dobj 0.0000 0.0000 0.0002 0.0000

sell,share,dobj 0.0006 0.0000 0.0001 0.0003

take,position,dobj 0.0002 0.0001 0.0002 0.0003

(b) Sample probability distributions for
word dependencies

Dependency Tuple retneg retpos proneg propos Article ID Pub. Date Weight

sell,convertible,dobj 0.0000 0.0000 0.0002 0.0000 b5101da6-324c-45e0-94f9-04887e06195b 02/03/2000 6

beat,forecast,dobj 0.0001 0.0002 0.0002 0.0002 426eeeae-d61f-43be-836b-6e987a1275dd 14/04/2000 4

sell,share,dobj 0.0006 0.0000 0.0001 0.0003 414f4ddc-9d5c-422e-83cc-f40451dcec75 13/09/2000 8

report,result,dobj 0.0006 0.0008 0.0003 0.0006 eaad4000-b2e0-4258-9718-eb5ff2b0fdc3 19/10/2000 6

change,divisor,nsubj 0.0005 0.0000 0.0000 0.0000 83ce3834-5c0c-4ceb-9f9e-1fd17d5cb288 02/01/2001 10

allow,borrow,xcomp 0.0000 0.0001 0.0000 0.0002 2a1a45ea-9b31-4a3e-b4ab-270d3d4fe6e3 16/04/2002 4

decline,comment,xcomp 0.0030 0.0018 0.0035 0.0028 564918da-5f3b-4851-b302-e52c977357aa 19/09/2002 7

rise,cent,dobj 0.0008 0.0021 0.0003 0.0004 e1b97041-52ad-47dc-a3af-5f4737ae7306 09/01/2003 5

agree,pay,xcomp 0.0005 0.0005 0.0010 0.0012 e20288a7-ac0a-4d5b-a1bd-f4b1db93b730 17/03/2005 5

buy,share,dobj 0.0004 0.0001 0.0003 0.0003 9e1f8342-1915-40bf-b5d4-62a2b028e98f 22/04/2006 4

take,position,dobj 0.0002 0.0001 0.0002 0.0003 9d3631fc-130b-4c3b-95de-e2a50df238e3 30/01/2007 6

buy,warrant,dobj 0.0000 0.0000 0.0001 0.0001 2d8b53bb-3d2d-4211-b0fe-03e3cd677986 10/07/2009 4

agree,pay,xcomp 0.0005 0.0005 0.0010 0.0012 03a4a368-6521-4de7-b3bf-dc7de42571c4 08/07/2011 4

buy,bond,dobj 0.0001 0.0001 0.0002 0.0001 8e2f1ca5-eb42-47f5-b8f2-1deba65d4e46 13/12/2011 4

raise,money,dobj 0.0002 0.0000 0.0004 0.0002 0f38c316-6608-41c9-b1ef-df87c9a0e7be 27/06/2012 5

charge,individual,dobj 0.0000 0.0000 0.0001 0.0000 b66d7b19-280f-41d9-bce2-37d264dc32b4 12/11/2012 4

(c) The table resulted from a joining between 4.8a and 4.8b on Dependency Tuple

Figure 4.8: Joining lexical item postings with their probability distributions over the
temporal sentiment categories

Once the two tables are joined together, lexical items from the same documents are

grouped together, after which the corresponding future and past returns as calculated in

4.3.2.3 are attached to each article.

With the aggregated table in place, I then proceed to evaluate the responsibility terms

for the temporal sentiment categories as outlined in the E step in Section 3.5. Recall that

the responsibility from the k-th category to the n-th document is

γnk =
πold
k p

(
dn, rn | βold

k , sk,p, sk,f
)∑K

j=1 π
old
j p

(
dn, rn | βold

j , sj,p, sj,f
) (4.6)

where

p
(
dn, rn | βold

k , sk,p, sk,f
)

= S (rn,p | sk,p)S (rn,f | sk,f) p
(
dn | βold

k

)
(4.7)

= S (rn,p | sk,p)S (rn,f | sk,f)
V∏
j=1

αk,ej
fn,ej (4.8)
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The calculation of this quantity proves particularly challenging due to risk of arithmetic

underflow — more specifically, the product of large quantities of probabilities (in this

case p
(
dn, rn | βold

k , sk,p, sk,f
)
) can become so small that its value cannot be represented

accurately by the standard floating point notation used in modern computers. Arithmetic

underflow during the calculation of posterior probabilities is a common difficulty faced

by Bayesian methods. A widely adopted strategy to tackle the problem is to preform the

multiplications in logarithmic space and then convert the result back to linear space —

with the logarithmic function applied, products of probabilities become sums of logarithmic

probabilities, which is much safer to handle by computer programmes; the workaround

bypasses the issue by delaying any direct operations on small probabilities in linear scale

as much as possible until the magnitude of the calculations become manageable when

converted back in linear scale.

To demonstrate, consider the responsibility term γnk presented above. Observe that

while the individual terms in the numerator and denominator can be very small, the

fraction itself represents a normalized probability and thus can be handled safely in linear

scale, which indicates there might be an opportunity to transform the ratio in such a

way that the underflow-prone calculations can be evaluated in logarithmic spaces before

transforming the intermediate results back to linear spaces. To leverage this observation,

rewrite the responsibility term as:

γnk = exp

{
log

πold
k p

(
dn, rn | βold

k , sk,p, sk,f
)∑K

j=1 π
old
j p

(
dn, rn | βold

j , sj,p, sj,f
)} (4.9)

= exp

{
− log

K∑
j=1

πold
j p

(
dn, rn | βold

j , sj,p, sj,f
)

πold
k p

(
dn, rn | βold

k , sk,p, sk,f
)} (4.10)

= exp

{
− log

K∑
j=1

exp

{
log

πold
j p

(
dn, rn | βold

j , sj,p, sj,f
)

πold
k p

(
dn, rn | βold

k , sk,p, sk,f
)}} (4.11)

The inner most logarithm

log
πold
j p

(
dn, rn | βold

j , sj,p, sj,f
)

πold
k p

(
dn, rn | βold

k , sk,p, sk,f
) (4.12)

can be evaluated safely as additions of negative real numbers instead of multiplications

of less-than-one probabilities without risking underflow, resulting in better numerical



4.3. MODEL LEARNING AND EVALUATION 89

stability:

γnk = exp

{
− log

K∑
j=1

exp

{
log πold

j + logS (rn,p | sj,p) + logS (rn,f | sj,f) (4.13)

+

(
V∑

m=1

fn,em logαj,em

)
− log πold

k − logS (rn,p | sk,p)− logS (rn,f | sk,f) (4.14)

−
(

V∑
m=1

fn,em logαk,em

) } }
(4.15)

Technically it is possible to compute the inner most fraction 4.12 without using the

exp {log . . . } transformation — instead of computing the numerator and the denominator

as a whole first and then process the division, one can breakdown the whole fraction into

products of smaller fractions, each of which contains a numerator and a denominator

that are of comparable magnitude. While this approach is feasible, special care has to

be taken to ensure the computation is carried out in correct orders, making the exp-log

transformation a more appealing option.

4.3.2.5 Smoothing Lexical Item Probability Distributions

Another issue that requires special attention is the smoothing of the probability distri-

butions that characterise the lexical items for each temporal sentiment category. For

very large corpora, the relative frequencies for some of the rarely occurring lexical items

can become so small that their probabilities in the distributions are practically zero.

Such near-zero probabilities can cause trouble when evaluating γnk as in Equation 4.15:

the logarithms for near-zero probabilities are numerically unstable. In practice, taking

logarithms of the relative frequencies of rare lexical item produces a NaN (which stands for

Not-a-Number) value in most numerical computation languages, and even worse the NaN

values would then also poison any subsequent calculations.

One solution to this issue is to apply smoothing to the probability distributions for the

lexical items in the vocabulary. Smoothing of lexical item distributions is often employed to

deal with the sparseness in data that arises when modelling texts with n-grams [Manning

and Schütze, 1999, pg. 199]. Such sparseness is a side product of corpus sampling: a

corpus can be considered as a ‘sample’ drawn from a population which contains all the

texts humans have ever written; due to the stochastic nature of sampling, some rare lexical

items will be inevitably overlooked by the process. As a result, the training corpus will

not cover every possible language usage, and models trained from such language samples

will have problem dealing with unseen usages. The smoothing process assigns estimated

probabilities to lexical items that were not encountered during the training phases. The

rationale behind such practice is to transfer some of the probability mass that was assigned
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to frequent lexical items to the rare ones in an attempt to better represent their usages in

the population texts when only incomplete samples (i.e. corpora) are available.

A widely adopted method for smoothing lexical item frequencies is Laplace smoothing

(also called add-one smoothing). This procedure operates by adding 1 to each and all

lexical items’ raw frequencies as occurred in the corpus. Let fej denote the raw frequency

of lexical item ej in the entire corpus, the maximum likelihood estimator αej for the

probability of a lexical item ej occurring in the text when no smoothing is applied is

αej =
fej∑V

m=1 fem
; (4.16)

the smoothed probability α′ej is given by

α′ej =
fej + 1∑V

m=1 fem + V
(4.17)

where the V is the size of the vocabulary. By adding 1 to each lexical item’s frequency,

Laplace smoothing assumes each lexical item occurred at least once in the corpus; an

alternative interpretation of the assumption is that each lexical item occurred at least 1
N

times in each of the N documents. Figure 4.9 illustrates the effect of Laplace smoothing

on the distribution of frequencies over single words. Other more sophisticated smoothing

techniques include Good-Turing smoothing [Good, 1953] and Witten-Bell smoothing

[Witten and Bell, 1991]. The implementation of these methods can be complicated and

it has been suggested that applying them resulted in classification performances inferior

than Laplace smoothing [Dave et al., 2003].

For the temporal sentiment mixture model developed in this thesis, the smoothed

probability for lexical item ej in the distribution charactering the k-th category is defined

similarly to the expression given above. In particular, α′k,ej , namely the smoothed version

of αk,ej , can be written as

α′k,ej =
1 +

∑N
n=1 γnk · fn,ej∑V

m=1

(
1 +

∑N
n=1 γnk · fn,em

) (4.18)

=
1 +

∑N
n=1 γnk · fn,ej

V +
∑N

n=1

∑V
m=1 γnk · fn,em

(4.19)

The expression 4.19 essentially adapts estimator given by 4.17 to use soft counts —

instead of making the assumption that each lexical item occurred at least 1
N

times in each

document, the smoothed estimator 4.19 entertains only the portion of occurrences for

which the k-th category is responsible.

An alternative and perhaps more general solution is to incorporate a prior distribution
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Figure 4.9: Lexical item frequency distribution: before and after smoothing

This chart visualises the effect Laplace smoothing has on the frequencies distributions over lexical items.
The horizontal axis (i.e. Lemma) displays 21 lemmas sampled from the vocabulary of a corpus; the words
in the vocabulary were first sorted according to their raw frequencies in the text in descending order; the
21 lemmas were obtained by sampling every 1000th record from the sorted vocabulary. The vertical axis
is transformed to logarithm scale to better illustrate the differences between the frequencies before and
after the smoothing.

for the lexical items’ probabilities of occurrence in the texts; this solution effectively

leads to the derivation of the maximum a posteriori (referred to as MAP hereinafter)

estimator for the lexical item distributions instead of the maximum likelihood estimator.

The MAP of a parameter returns the parameter value that maximises the p.d.f. of the

posterior probability distribution, that is, the conditional distribution of the parameter

after observing new data. Formally:

θMAP = argmax
θ

P (θ | X) (4.20)

= argmax
θ

P (X | θ)P (θ)

P (X)
(4.21)

∝ argmax
θ

P (X | θ)P (θ) (4.22)

where P (X | θ) is the usual likelihood function for observing X, and P (θ) is prior

distribution for the parameter θ.

The derivation of the MAP version of the EM algorithm is discussed in detail in

Appendix A. Some changes have to be made to both the E and the M steps to accommodate
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the prior distributions for the βs. In particular, the responsibility term γnk is evaluated as

the following during the E step:

γnk =
πold
k p

(
dn, rn | βold

k , sk,p, sk,f
)
p
(
βold
k

)∑K
j=1 π

old
j p

(
dn, rn | βold

j , sj,p, sj,f
)
p
(
βold
j

) (4.23)

where p
(
βold
k

)
represents the p.d.f. of the prior distribution for βold

k ; theQ
(
θ,θold

)
function

to be maximised in the M step becomes

Q
(
θ,θold

)
=
∑

Z

p
(
Z | D,R′,πold,Bold,S

)
ln {p (D,R′,Z | π,B,S) p (B)} . (4.24)

In theory, one may choose any valid distribution over β to be p (βk), yet the popular

choice is the Dirichlet distribution. The Dirichlet distribution is a family of continuous

multivariate probability distributions over vectors comprised of K random variables,

µ1, . . . , µK , subjecting to the following constraint:

0 ≤ µk ≤ 1 and
K∑
k=1

µk = 1. (4.25)

The Dirichlet distribution is parameterised by another vector consisting of K positive

reals: α = (α1, . . . αK). Formally, the p.d.f. for a Dirichlet distribution is given by

Dir (µ | α) =
Γ
(∑K

k=1 αk

)
∑K

k=1 Γ (αk)

K∏
k=1

µαk−1
k (4.26)

where Γ (·) denotes the Gamma function:

Γ (t) =

∫ ∞
0

xt−1e−xdx (4.27)

which is an extension of the factorial function for real numbers, that is, Γ (t) = t · Γ (t− 1)

for any real number t.

Intuitively, the Dirichlet distribution defines a distribution over multinomial distribu-

tions — in other words, a sample drawn from a Dirichlet distribution effectively represents a

multinomial distribution. Its parameter α, therefore, determines how probable it is to draw

a multinomial distribution of a certain type. For example, when α1 = α2 = · · · = αK < 1,

it is more probable to draw from the Dirichlet distribution uneven multinomial distributions

in which one component’s probability dominates the others; with α1 = α2 = · · · = αK > 1

and increasing, it is more and more probable to draw multinomial distributions that assign

even probabilities to each of its K components (Figure 4.10).
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(a) α = (0.9, 0.9, 0.9) (b) α = (1.0, 1.0, 1.0) (c) α = (2.0, 2.0, 2.0)

Figure 4.10: The p.d.f. of the Dirichlet distribution at various parameter configurations

These plots illustrates the p.d.f. for Dirichlet distributions with K = 3 at different parameter configurations.
For clarity, the same value is used for all three components in the parameter vector α. Note that when
α = (1.0, 1.0, 1.0), all multinomial distributions, even or uneven, are assigned equal probabilities. With
αk < 1, it is more probable to encounter multinomial distributions with extreme probabilities assigned to
one single component, and when αk > 1, it is more probable for the Dirichlet distribution to generate
multinomial distributions with even probabilities assigned among its components.

One of the most appealing reasons for choosing the Dirichlet distribution as the prior for

the βs is that the Dirichlet distribution constitutes the conjugate prior for the multinomial

distributions that govern the generation of the lexical items. A probability distribution

p (θ) is considered a conjugate prior to a likelihood function p (X | θ) if the posterior

distribution p (θ | X) is from the same distribution family as the prior distribution.

Choosing a distribution that conjugates with the likelihood function as the prior

distribution has the benefit of leading to closed-form solutions for the maximum a posteriori

estimators:

0 =
∂Q
(
θ,θold

)
+
∑K

k=1 λ
(∑V

j=1 µk,ej − 1
)

∂µk,ej
(4.28)

0 =

∂
∑N

n=1

∑K
k=1 γnk

{
ln
∏V

j=1 µ
fn,ej

k,ej
+ ln

Γ(
∑V

j=1 αj)∑V
j=1 Γ(αj)

∏V
j=1 µ

αj−1
k,ej

}
∂µk,ej

(4.29)

+
∂
∑N

n=1

∑K
k=1 γnk {ln πk + lnS (rn,p, rn,f | sk,p, sk,f)}

∂µk,ej
(4.30)

+
∂
∑K

k=1 λk

(∑V
j=1 µk,ej − 1

)
∂µk,ej

(4.31)

0 = λk +
N∑
n=1

γnk
∂ lnµ

fn,ej +αj−1

k,ej

∂µk,ej
(4.32)

0 = λk +
N∑
n=1

γnk
(
fn,ej + αj − 1

) ∂ lnµk,ej
∂µk,ej

(4.33)
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Note that 4.33 is of similar form as 3.87, only that fn,ej + αj − 1 replaced fn,ej inside

the summation term. It can be shown that the resulting MAP estimator is given by the

following expression:

µk,ej =

∑N
n=1 γnk ·

(
fn,ej + αj − 1

)∑N
n=1

∑V
j=1 γnk ·

(
fn,ej + αj − 1

) (4.34)

By comparing 4.19 with 4.34, it can be seen that Laplace smoothing is in fact a special

case for this approach — it is equivalent to applying a Dirichlet prior whose parameters

comply with the following constraint:

α1 = α2 = · · · = αV = 2. (4.35)

Note that applying an uninformed prior (i.e. α1 = α2 = · · · = αV = 1) is equivalent to

applying no smoothing, in which case µk,ej reduces to the maximum likelihood estimator.

4.3.2.6 Calculating Log-Likelihood with the Log-Sum-Exp Technique

As mentioned earlier, the algorithm shall be considered converged when the relative

increase in the log-likelihood (i.e. p (X | θ)) between two iterations of the algorithm falls

below a set threshold. The computation of the log-likelihood involves the evaluation of

the following:

ln p (X | θ) = ln
∑

Z

p (X,Z | θ) (4.36)

= ln
∑

Z

N∏
n=1

p (xn, zn | θ) (4.37)

The computation of the likelihoods from the individual components (i.e. p (X,Z | θ) =∏N
n=1 p (xn, zn | θ)) poses a challenge similar to that encountered during the evaluation of

the responsibility terms — for any non-trivial-sized dataset, numerical underflow can occur

when calculating products of a large amount of probabilities. Unlike the responsibility

terms, it is not possible to transform the products to sums in logarithmic space and have

them cancel each other out before converting them back into linear space as was done

for the responsibility terms. The safe evaluation of the likelihoods requires an alternative

method called the log-sum-exp technique.
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The log-sum-exp technique states that the following transformation applies:

log
N∑
n=1

exn = log
N∑
n=1

exn−a · ea (4.38)

= a+ log
N∑
n=1

exn−a (4.39)

where a can be any real number. The rationale behind the technique is that by subtracting

a from the xn, the magnitudes of the exponents on e are reduced to such a level that the

term exn−a can be evaluated safely without overflowing. One common choice for a for this

purpose is to let a = max (x1, . . . , xN).

Utilising the transformation described above, 4.37 can be re-written as:

ln p (X | θ) = ln
∑

Z

N∏
n=1

p (xn, zn | θ) (4.40)

= ln
∑

Z

eln
∏N

n=1 p(xn,zn|θ) (4.41)

= a+ ln
∑

Z

e−a+
∑N

n=1 ln p(xn,zn|θ) (4.42)

with a being the maximum value among all possible
∑N

n=1 ln p (xn, zn | θ) configurations

relative to Z. After the transformation, ln p (xn, zn | θ) can be evaluated fairly easily for

each document within logarithmic space, and by subtracting a, it is possible to calculate

e−a+
∑N

n=1 ln p(xn,zn|θ) without risking numerical underflow.

4.3.3 Model Comparison with Linear Correlation

Once the training of the model is complete, the model is ready to be evaluated on the

test set. The evaluation of the method developed in this thesis mainly focuses on its

predictive performances when classifying unseen news articles with respect to the four

temporal-sentiment categories.

Traditionally, the performance of a classifier is evaluated using metrics like accuracy

and error rate. Such metrics are best illustrated with the help of a confusion matrix ;

in its simplest form, a confusion matrix tabulates the number of cases in the test set

that were correctly classified by the model along side with the number of cases that

were misclassified. The accuracy metric measures the percentage of the cases that were

classified correctly among all cases when the classifier of interest is applied. The higher the

accuracy from the evaluation phase the greater the predictive power of the model when

dealing with unseen data. The error rate is simply the complement of accuracy, namely:

error rate = 1− accuracy.
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One limitation with accuracy/error-rate based evaluations is that it only applies to

scenarios where the domain of the classification target is discrete. For regression models

where the target is continuous, the mean squared error (MSE) is often used in lieu of

accuracy/error-rate to evaluate the quality of the models. The MSE for predictor is defined

as

MSE =

∑N
i=1 (ŷi − yi)2

N − 2
(4.43)

where ŷi is the prediction from the model while the yi is the corresponding observed value

in the test set. The MSE measures the average ‘deviation’ of the predicted values from

the actual observations — the greater the MSE, the less accurately the model predicts

out-of-sample inputs.

In the case of this thesis, however, neither of the above two metrics are directly

applicable due to the semi-supervised nature of the algorithm. The predicted probabilities

over the temporal sentiment categories for each article constitute four continuous variables,

which makes evaluation with accuracy/error-rate inapplicable. In many applications where

Bayesian classifiers are involved, the probability distributions assigned to each case are

often ‘discretised’ into a single outcome as a way to circumvent the problem. Usually,

the most probable class for a observation case, that is, the class assigned the highest

probability by the classifier, is chosen as the classification outcome for that particular

case. However, even with discretisation, the lack of actual temporal-sentiment series which

would serve as the golden standard still precludes the use of both the accuracy/error-rate

and the MSE as evaluation measures — the only extrinsic references available are the

past and future returns, which are merely proxies to the news’ actual temporal sentiment

orientations, not the true labels.

To overcome these difficulties, one may use the correlation between the return series

and the temporal sentiment probability series as a measure for the predictive performance

of the model. The simplest form of such correlation measure is the Pearson’s linear

correlation coefficient. The linear correlation between two variables X and Y measures the

direction and strength of the linear relationship between the two variables. Mathematically,

the coefficient, often denoted by ρX,Y , is defined as

ρX,Y =
cov (X, Y )

σXσY
(4.44)

where σX and σY are the variances of X and Y respectively; cov (X, Y ) is the covariance

between X and Y :

cov (X,Y) = E [(X − E [X]) (Y − E [Y ])] . (4.45)

In reality where only sampled observations are available for X and Y , the linear
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correlation coefficient between the two datasets rxy can be estimated as:

rX,Y =

∑N
n=1 (xn − x̄) (yn − ȳ)√∑N

n=1 (xn − x̄)
√∑N

n=1 (yn − ȳ)
(4.46)

where x1, x2, . . . , xN and y1, y2, . . . , yN are the samples for X and Y respectively while x̄

and ȳ are the sample means calculated for x1, x2, . . . , xN and y1, y2, . . . , yN respectively.

Specific to this case, X would be the temporal sentiment probabilities associated with

each of the new documents about a certain company, and Y would be the daily returns of

the company’s stock; the calculation of the former was elaborated in Section 3.6, and the

preparation of the latter was described in Section 4.3.2.3.

It is worth noting that an alternative approach to using Pearson’s linear correlation

coefficient is to fit a simple linear regression model to the datasets (i.e. Y = β1X + β0)

and use the fitting of the model (e.g. R2 or MSE) to compare the predictive performances

of different models. Statistically, this should produce results equivalent to that acquired

by using Pearson’s linear correlation coefficient. For example, the mean squared error is

defined as:

MSE =

∑N
i=1 (ŷi − yi)2

N − 2
. (4.47)

By the definition of simple linear regression, the following is also true:

ŷi =
cov (X, Y )

cov (X,X)
xi + ȳ − cov (X, Y )

cov (X,X)
x̄ (4.48)

ŷi =
cov (X, Y )

cov (X,X)
(xi − x̄) + ȳ (4.49)

=
cov (X, Y )√

var (X)
√

var (Y )

√
var (Y )√
var (X)

(xi − x̄) + ȳ (4.50)

= rXY
σY
σX

(xi − x̄) + ȳ (4.51)

Substitute ŷ into the definition of MSE gives:

MSE =

∑N
i=1

(
rXY

σY
σX

(xi − x̄) + ȳ − yi
)2

N − 2
(4.52)

=

∑N
i=1 r

2
XY

σ2
Y

σ2
X

(xi − x̄)2 +
∑N

i=1 (ȳ − yi)2 − 2
∑N

i=1 rXY
σY
σX

(xi − x̄) (yi − ȳ)

N − 2
(4.53)

=
r2
XY σ

2
Y (N − 1)

N − 2
+

(N − 1)σ2
Y

N − 2
− 2 (N − 1)σ2

Y r
2
XY

N − 2
(4.54)

=
(N − 1)

(N − 2)
σ2
Y

(
1− r2

XY

)
(4.55)
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In other words, the MSE for a simple linear regression model fitted with independent

variable X and dependent variable Y is essentially a function of Pearson’s linear correlation

coefficient and the variance of Y . Since I will be comparing the models on the same set of

test data, the σ2
Y (i.e. the variance of the return series) will be the same for all the models.

The only factor that affects the MSE therefore is rXY , i.e. the linear correlations between

X and Y — the larger the magnitude of rXY , the lower the mean squared error. Also,

the expression for the coefficient β1 can also be written as a function of rXY and the ratio

between σY and σX , so the direction (i.e. sign) of the correlation coefficient is consistent

with the regression coefficient.

One issue that requires some consideration when calculating the linear correlations is

the treatment of incomplete observations where the temporal sentiment probabilities are

missing. It can be the case that no news are announced for a company of interest during

the majority of the days in the test set. Since the calculation of the linear correlation

coefficient requires that no missing values is present in the dataset, one has to either

discard the incomplete cases from the dataset or impute the missing values. For this case

study, the missing values in the series were imputed using the same method as discussed

in Section 4.3.2.1.

4.3.4 Benchmarking with Meta-analysis

The set-up of cross-validation using repeated random sub-sampling validation was discussed

in Section 4.3.2.2. The cross-validation procedure is conducted for each of the models

to be compared. For every model, the procedure produces k correlation coefficients, one

from each fold; these correlation coefficients are then combined into a single aggregated

correlation using a technique called correlation meta-analysis [McDonald, 2015, pg. 264].

The aggregated correlations are used to compare and benchmark the performances of the

models.

Meta-analysis is a collection of statistical methods and techniques that summarises the

effect sizes (e.g. linear correlations, mean differences, or any measure of a phenomenon’s

strength) obtained from multiple experiments into a aggregated effect size. The rationale

behind meta-analysis techniques follows that of the classical statistics: each experiment

is considered to have been performed against dataset sampled from the population; the

effect sizes estimated from the multiple samples (for each experiment) would follow a

distribution, with the true effect size of the population being the mean of the sample

effect size distribution. This enables statistical inference on the distributional properties

of the effect sizes from the samples as to how close they are to the true effect size of the

population.

Before applying meta-analysis techniques, it is necessary to distinguish between two

types of models: the fixed effect models and the random effect models. A ‘fixed effect’
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Figure 4.11: Schematic diagram illustrating the principle of correlation meta-analyses for
fixed effect models

Each fold of the cross-validation procedure produces a sample correlation coefficient, i.e. rn; these
correlation coefficients are then subjected to the Fisher z-transformation, which turn them into z-scores,
i.e. zn = 1

2 ln 1+rn
1−rn . The transformed zn would approximately follow a normal distribution with their mean

being a function of the true population correlation (ẑ = 1
2 ln 1+ρ

1−ρ ); the standard error of the mean is a

function of the sample size N (standard error = 1√
N−1 ). The mean and variance of zn can then be used

to make statistical inferences on the true population correlations.

4.4 Summary

The design and implementation of TSMiner, a software system which realises the methods

developed in Chapter 3, is described in detail. TSMiner is comprised of two components:

(i) a self-contained text analysis system called CiCui; and (ii) a workflow developed in the

data analytic platform KNIME. The first component, CiCui, makes use of the natural

language processing functions provided by the Stanford CoreNLP toolkit to preprocess

(e.g. tokenisation, POS-tagging, dependency parsing, etc.) the raw running text in the

news articles and transform them into structured format. The results are stored in a

relational database to form an inverted positional index. The second component was

built on top of KNIME, an open-source data analysis platform that offers visualised

programming, modularised computation routines and integrated access to functionalities

from heterogeneous computation environments such as R, Python and Java; TSMiner

leverages this interoperability and was able to utilise several statistical functions that are

available exclusively from R. The KNIME workflow that constitutes the second component

connects to the index database created by the CiCui system and carries out the learning

and the benchmarking of the models.

Some of the practical issues emerged from the learning and evaluation of the sentiment-

temporality model have been addressed in the later sections of the chapter. These issues

include the treatment of missing stock prices in the dataset, numerical stabilities when

calculating responsibility terms, smoothing of frequencies for lexical items that did not

present in the test set, and the calculation of log-likelihood using log-sum-exp technique

Figure 4.11: Schematic diagram illustrating the principle of correlation meta-analyses for
fixed effect models

Each fold of the cross-validation procedure produces a sample correlation coefficient, i.e. rn; these
correlation coefficients are then subjected to the Fisher z-transformation, which turn them into z-scores,
i.e. zn = 1

2 ln 1+rn
1−rn . The transformed zn would approximately follow a normal distribution with their mean

being a function of the true population correlation (ẑ = 1
2 ln 1+ρ

1−ρ ); the standard error of the mean is a

function of the sample size N (standard error = 1√
N−1 ). The mean and variance of zn can then be used

to make statistical inferences on the true population correlations.

model assumes that the samples gathered from the different studies were all drawn from

the same distribution governed by a single set of parameters, and a ‘random-effects’ model

assumes that parameters that governed the underlying distributions from which the samples

were drawn themselves follow some distribution [Higgins et al., 2009]. The difference

becomes relevant when meta-analysis is applied in clinical and medical meta-reviews since

studies of homogeneous nature are relatively rare in these fields. For this case, the set-up of

the experiments can be considered a fixed effect model since each fold operates on a subset

of a single population comprised of news articles, and the procedures followed by each

fold are exactly the same. The general principle of a meta-analysis on linear correlation

coefficients is illustrated by Figure 4.11.

The meta-analysis on the correlation coefficients obtained from each fold is performed

using the metacor package in R. The package offers routines that test the null hypothesis

that the true correlation coefficient for the population does not differ significantly from

zero against the alternative hypothesis that the true correlation coefficient differs from

zero. The output of the procedure includes both the aggregated rXY from the sample

correlation coefficients and the associated p-value for the test. These statistics are collected

for all benchmarked models and presented as the result of the evaluation process.
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4.4 Summary

The design and implementation of TSMiner, a software system which realises the methods

developed in Chapter 3, is described in detail. TSMiner is comprised of two components:

(i) a self-contained text analysis system called CiCui; and (ii) a workflow developed in the

data analytic platform KNIME. The first component, CiCui, makes use of the natural

language processing functions provided by the Stanford CoreNLP toolkit to preprocess

(e.g. tokenisation, POS-tagging, dependency parsing, etc.) the raw running text in the

news articles and transform them into structured format. The results are stored in a

relational database to form an inverted positional index. The second component was

built on top of KNIME, an open-source data analysis platform that offers visualised

programming, modularised computation routines and integrated access to functionalities

from heterogeneous computation environments such as R, Python and Java; TSMiner

leverages this interoperability and was able to utilise several statistical functions that are

available exclusively from R. The KNIME workflow that constitutes the second component

connects to the index database created by the CiCui system and carries out the learning

and the benchmarking of the models.

Some of the practical issues emerged from the learning and evaluation of the temporal

sentiment model have been addressed in the later sections of the chapter. These issues

include the treatment of missing stock prices in the dataset, numerical stabilities when

calculating responsibility terms, smoothing of frequencies for lexical items that did not

present in the test set, and the calculation of log-likelihood using log-sum-exp technique

when testing convergence of the EM algorithm.

The predictive performance of the model is evaluated based on how much the temporal

sentiment series outputted by the model correlates (linearly) with the future/past returns.

A repeated random cross-validation schema was set up to reduce the uncertainty from single-

fold validation: multiple training-testing cycles are conducted on repeatedly randomly

split dataset and the Pearson’s linear correlation coefficients calculated from each fold are

aggregated into a single correlation coefficient using meta-analysis techniques.

In the next chapter, I present a case study conducted using the methods developed in

Chapter 3 and its implementation described in this chapter.



Chapter 5

Case Study and Evaluation

5.1 Introduction

In this chapter, I present a case study through which the learning method and its

implementation developed in Chapter 3 and Chapter 4 respectively are put to test on real

world data. The case study aims to answer the following three questions:

1. Is the supervised EM algorithm developed in this thesis effective? i.e., can it learn

models that are able to capture the correlations present in the data?

2. Can stock price movements be better explained by introducing the distinction

between prospective and retrospective news sentiment?

3. Do word dependencies better reflect news sentiment than unigrams?

Four experiments were designed to attempt to answer these questions. In these

experiments, the questions were first formulated into statistical hypotheses; the learning

algorithm developed in Chapter 3 was then configured to produce the data required to

test the hypotheses. The testing of the statistical hypotheses proposed in the experiments

is based on the correlational performances achievable by the different configurations of the

models over the dataset collected for this case study; the correlational performance of a

model configuration is measured by how well the predictions the model makes on news

sentiment can correlate with stock price movements for the test set in a cross-validation

set-up.

The absolute effectiveness of the learning algorithm (i.e. ‘Can the algorithm actually

learn any association from the data at all?’) is evaluated by comparing the correlational

performances between two models: one is trained over the original dataset and the other

over a shuffled dataset ; this helps to determine whether the algorithm developed in this

thesis is able to find correlations from the dataset. The relative effectivenesses of the

different model configurations and linguistic features with respect to each other were also

101
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evaluated by forming comparisons between the correlational performances achieved by the

corresponding model configurations. Benchmarking models against baselines and each

other was chosen over human evaluation because proper surveys that would produce valid

results can be difficult to design given the resources available with the amount of data

involved in the study; yet it is admitted that the lack of human benchmarking is a weak

point to the evaluation of this thesis.

The rest of the chapter is organised as follows. Section 5.2 outlines the designs of the

experiments conducted in the case study as well as the rationales behind their designs.

Section 5.3 and 5.4 describes the news and market data used for this case study — how

they were collected, and the pre-processing procedures that were applied to them before

they were used in the experiments. Section 5.5 displays the results from the experiments

and discusses their implications. Section 5.6 concludes the case study and summarises the

findings.

5.2 Experiment Design

In this case study, four experiments were designed to investigate the questions set out

earlier in this Chapter:

1. Experiment 1 sets out to demonstrate the effectiveness of the algorithm developed

in this thesis by showing it is capable of establishing significant associations between

language patterns seen in business news and firm-level stock prices movements. Since

the goal of the experiment is to verify the algorithm’s learning capability rather

than the effects of temporality on the modelling of news sentiment, no sentiment

temporality will be modelled in this experiment.

2. With the effectiveness of the algorithm established by Experiment 1, Experiment 2

will attempt to answer the second research question by examining the behaviours of

the extended models where sentiment temporality is introduced.

3. To address the third research question, Experiment 3 tests whether word dependencies,

when used as lexical features, can better capture news sentiment than unigrams

when used with the method developed in this thesis.

4. Finally, experiment 4 evaluates the correlational performances from using words

defined in two sentiment dictionaries as linguistic features: the General Inquirer

affect dictionary, and the Loughran and McDonald Sentiment Word Lists. Their

correlational performances will be compared to those achieved by the method

developed in this thesis.
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Exp. # Method Linguistic Feature Temporality

1 Supervised EM Word dependencies Excluded

2 Supervised EM Word dependencies Included

3 Supervised EM Single Words Included

4 Content Analysis Single Words Included

Table 5.1: Summary of experiment designs

A summary of the configurations for the experiments are listed in Table 5.1.

The effectiveness of the EM learning algorithm proposed in Chapter 3 was evaluated

by benchmarking its correlational performance with that achieved by a baseline design.

More specifically, for a model learnt by the algorithm on the original ordered dataset in

which the business news and the prices movements were temporally aligned, the baseline

design for the model is created by training the same model on a shuffled dataset. The

shuffled dataset is created by independently shuffling the date-time information attached

to the stock returns as well as the publication dates associated with the news articles;

the shuffling should destroy any correlation that had previously existed between the news

sentiment and the price movements became lost. Comparing the correlational performance

the method achieved with the ordered dataset with that achieved over the shuffled dataset

enables the evaluation of the absolute effectiveness of the learning method — that is, it

answers the question: ‘if there exists correlations in the data, can the method find it’?

The rationale behind this strategy is illustrated by the following grid:

Learning

algorithm

effective?

Relationship between

news sentiment and

market movements exist?

Correlational performance from models trained over

ordered dataset significantly better than that from

models trained over shuffled dataset?

Yes Yes Yes

Yes No No, due to correlations being destroyed by shuffling

No Yes No, due to ineffective learning algorithm

No No No, due to both destroyed correlation and ineffective

algorithm

As a result, if one can demonstrate that the correlational performances obtained by

models trained with the ordered dataset is significantly greater than that obtained with

models trained with the shuffled dataset, it can then be argued that (i) there must exist

certain correlations between news sentiment and movements of the market, and (ii) the

learning algorithm used is effective in learning correlations between news sentiment and
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market movements.

The correlational performances for each of the model configurations were measured

and benchmarked using the meta-correlations obtained through the meta-analysis of the

correlations between the models’ predictions and the actual price movements during the

validation phases of the cross-validation procedures as described in Section 4.3.4.

The main lexical units investigated in this case study are word dependencies and

unigrams. Experiment 1 and 2 use word dependencies produced by the Stanford CoreNLP

package as text features; Experiment 3 and 4 also evaluate models that use unigrams (i.e.

single words) as the lexical unit for capturing sentiment and temporality.

The dependency grammar parser in the Stanford CoreNLP package recognises about

50 grammatical relations. Including all of them when preparing the vocabularies for the

learning, however, would be inappropriate from both a theoretical and a practical point

of view. Many of the dependency relations can be considered as closed class relations

(analogous to closed class words). Examples include determiner (abbreviated as det), a

type of dependencies that captures the relations between a determiner article (i.e. a(n),

the) and its corresponding head word, or auxiliary (aux ), which connects non-main verbs

(e.g. between ‘have’ and ‘done’ in sentences with perfect tenses). In practice, a vocabulary

comprised of unfiltered word dependencies would often requires the algorithm to estimate

tens of thousands of parameters, a number too large for the amount of data available to

this case study; it is therefore decided that only word dependencies containing verbs are

to be included in the feature vocabulary.

For this case study, the vocabulary was limited to the following five grammatical

relations: nsubj, nsubjpass, dobj, xcomp, and ccomp. Their meanings are explained as

follows:

nsubj represents the nominal subject relation. For example, in the sentence ‘the stock of

the company fell 5 percent’, the word ‘stock’ is the nominal subject of ‘fell’. Such

a relation is noted in this section as a triplet, following the notation: ‘dependent

governor relation’ (e.g. ‘stock fell nsubj’).

nsubjpass refers to passive nominal subject relation, which is the counterpart of the

nsubj relation for passive voices.

dobj is for the direct object relation. The dependent of this relation is usually a verb,

and its governor typically a noun. The relation states that the governor word is

the direct object of the dependent verb. For example, the pattern ‘technology use

dobj’ can emerge from a scenario like ‘[the cellphone] use next-generation cellphone

technology [. . . ]’.

ccomp denotes clausal complement. The manual of the Stanford dependency parser

states that: ‘A clausal complement of a verb or adjective is a dependent clause with
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an internal subject which functions like an object of the verb, or adjective’. The

definition of the relation is rather complex. An example of the relation from the

manual is ‘I am certain that he did it’, which gives the dependency ‘certain did

ccomp’.

xcomp denotes open clausal complement. An open clausal complement of a verb or an

adjective is defined as ‘a predicative or clausal complement without its own subject.’.

An example of this relation is ‘pay agree xcomp’, which translates to ‘agree to pay’.

Lemmatised base-forms of the words were used to represent both the dependent and

governor in the relation triplet. Inflections were stripped from the words so that the tense

information that would give hints about the temporality of the language patterns are

removed. This is to ensure that the categorisation of the language patterns’ temporality is

derived only from the supervising returns rather than the tenses of the language patterns.

A list of stop words was used to further filter the word dependencies from entries that do

not convey significant meaning. Word dependencies that have the following words as either

its dependent or governor were excluded from the analysis: ‘he’, ‘she’, ‘who’, ‘it’, ‘that’,

‘which’, ‘they’, ‘we’, ‘i’, ‘what’, ‘this’, ‘you’, ‘said’, ‘say’, ‘says’, ‘have’, ‘has’, ‘is’, ‘rights’,

‘reserved’. After this treatment, secondary patterns like ‘he said nsubj’, ‘rights reserved

nsubjpass’ (as in ‘all rights reserved’), etc. were excluded from the analysis. Additionally,

a low-pass filter was applied to remove entries that are too rare from the vocabulary before

further analysis; the low-pass filter removed any dependency that occurred less than 16

times in the corpus.

5.3 The News Corpus

The corpus used in the case study includes business news articles on 16 companies. Some

basic information about the news corpus is summarised in Table 5.2. The documents were

systematically retrieved from the ProQuest database using a custom CiCui plug-in. The

search to the ProQuest database was set to cover articles published between 1st Jan, 2000

to 31st Dec, 2014. The articles were collected from a set of selected sources which represent

some of the most established news agencies to ensure the quality of the text retrieved. A

breakdown of the corpus by the sources from which the articles are retrieved is presented

in Table 5.3. Once collected, the documents were preprocessed and transformed into an

positional inverted index using the CiCui system, as detailed in Section 4.2.1.

The diachronic property of the corpus, namely, the news-flow, is summarised in

Table 5.4; the annual number of articles published has seen a minor increase in the

recent years, while the average length of the articles remained largely unchanged. The

news-flows vary greatly among individual firms (Figure 5.1). It would seem companies
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in manufacturing and IT sectors (e.g. Microsoft, Ford, Apple, etc.) tend to attract more

media coverage than those operating in financial sectors (e.g. BRK-B, WFC).

The volume of news articles published varies depending on the day of the week

(Table 5.5). On average, more articles were published during weekdays than on weekends.

That being said, about 10% of the articles are published on weekends. Among the weekdays,

the number of articles published increases with each day passing starting from Monday

before dropping on Friday. The average length of the articles is slightly longer for those

published on Saturdays, which could be due to the articles published on the weekend

editions being written in a different style than the regular editions1.

5.4 The Equity Data

The EM algorithm for learning news sentiment developed in this thesis requires that

target returns be provided to enforce the supervision during the training phase. In a

contemporaneous setting where the temporal aspects are omitted (as in Experiment 1), the

algorithm makes use of one set of returns to supervise the learning of sentiment. Where

the temporality in sentiment is included in the model, two sets of supervising returns are

needed: a future return series that supervises the learning of prospective sentiment, and a

past return series that supervises the learning of retrospective sentiment.

For this case study, interday logarithmic returns (sometimes also called ‘total return’)

of the companies’ stocks were used to derive the supervising returns series. Such returns

were calculated from linearly interpolated adjusted close prices. Interpolated adjusted

close prices were used to derive the returns so that non-trading days were also covered with

return data — as having been shown in Section 5.3, a considerable amount of news was

published on weekends (and potentially other non-trading days); the textual data for these

days would otherwise be wasted if raw returns were used. The preparation of the interday

return series as well as the subsequent calculation of future and past returns followed

the discussion in Section 3.4.3. The logarithmic returns were calculated as log-differences

between consecutive stock prices:

rt = log (pt)− log (pt−1) (5.1)

where rt is the stock return at time t and pt is the stock price at time t.

The market data collected for this study spans from 1st January, 2000 to 31st December,

2014, which coincides with the dates covered by the corpus. Table 5.6 presents some

descriptive statistics for the past and future returns calculated from the interday returns

1The Financial Times and The Wall Street Journal each has a weekend edition, which are published
on Saturdays.
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Source Document Count Word Count

Wall Street Journal, Eastern edition 15419 8725163
Financial Times 12789 5094826
FTcom 7739 3475880
Wall Street Journal Online 7001 3798937
Business Week 616 7
The Economist 281 248853
The Economist Online 112 55934

Table 5.3: Corpus breakdown by source

The abnormally low word count for Business Week was due to the fact that ProQuest registers only the
URL to the original article on Business Week ’s website, not the actual full text. This issue should not
affect any subsequent analyses though as they do not depend on this information on sources in any way.
The number of articles published on traditional paper media has been decreasing over recent years; the
online versions of the publication titles were included to compensate for this trend.

Year Document Count Word Count Average Length

2000 2596 1203010 463.41
2001 2579 1140137 442.08
2002 2864 1233839 430.81
2003 2389 1193901 499.75
2004 2704 1345511 497.60
2005 3247 1547145 476.48
2006 3312 1584828 478.51
2007 2569 1282985 499.41
2008 2817 1368715 485.88
2009 2278 1091570 479.18
2010 3368 1614979 479.51
2011 3430 1693585 493.76
2012 3180 1632756 513.45
2013 3512 1879716 535.23
2014 3112 1586923 509.94

Table 5.4: Corpus breakdown by year

Weekday Document Count Word Count Average Length

Monday 6065 3005201 495.50
Tuesday 8018 3824034 476.93
Wednesday 8921 4315949 483.80
Thursday 8676 4212548 485.54
Friday 7861 3820003 485.94
Saturday 3085 1656462 536.94
Sunday 1331 565403 424.80

Table 5.5: Corpus breakdown by day of week
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for each of the companies covered in the corpus. The difference between the distributional

properties of these two types of returns are minimal due to the relative small windows used

by the smoothing procedure. The average returns over this time period for all companies

are close to 0, with the highest found for Hewlett-Packard (about 0.001 for both future and

past returns) and the lowest found for the Ford Motor Company (at around −0.002 for

both types of returns). The standard deviation of the returns of most companies fluctuates

between 0.01 and 0.02, with the exception of Ford, whose returns yield a standard deviation

of about 0.023. The standard deviation of historical returns are sometimes used as a

measure of volatility. The skewness statistic measures the asymmetry of a probability

distribution: a negative skewness indicates that the left tail of the distribution is longer

while a positive skewness indicates the right tail of the distribution is longer. The kurtosis

of the series measures the ‘peakness’ of its distribution; distributions with large kurtosis

will have a more pointy peak. The past and future returns for Berkshire Hathaway and

Royal Dutch Shell exhibit exceptional skewness and kurtosis. Excess skewness and kurtosis

are often attributed to extreme outlier [Taylor, 2007, pg. 69].

5.5 Results and Discussion

5.5.1 Experiment 1: Non-temporal Sentiment and Stock Re-

turns

Before presenting the results from the temporality-enabled models, it can be helpful to

study the behaviours of non-temporal sentiment classification models trained using the

methods described in Section 3.4.2. By presenting the analysis of such models, it is hoped

that the reader is convinced that the supervised EM algorithm is indeed able to identify

associations between the use of language in business news and the movement of firm-wise

stock prices to some extent. The discussion in this section begins with an investigation into

the correlational performances of the models learnt by the algorithm, which is followed by

an examination of the sentiment connotations of the language patterns extracted through

the learning procedure. Observations and insights that would become useful for subsequent

analyses will be noted during the process.

For the purpose of this experiment, no smoothing was applied to the returns, so the

model is trained on interpolated interday returns. The weighting of the returns during the

training phase is so configured that returns’ contribution to the learning is equal to that

provided by the textual features.
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5.5.1.1 Correlational Performances

I shall first look at the correlational performances of the models to gain overall under-

standing of the behaviour of the learning algorithm. The box plots shown in Figure 5.2

summarise the correlational performances from an experiment where the learning algorithm

was tasked to find associations between language usage seen in company business news on

day t = 0 (which I will refer to as ‘today’ or ‘current day’ for the ease of interpretation)

and the interday logarithmic returns of their respective stocks, lagged at various days

ranging from −5 to 5. The two plots are displayed side-by-side to facilitate easy visual

comparison; columns in the sub-plot summarises the results obtained using the ordered

and shuffled dataset respectively. Negative lags indicate the returns in the future are

aligned with current day’s language patterns; similarly, with positive lags, the past returns

are aligned with today’s language patterns; when the lag is zero, the model attempts to

find contemporaneous associations between the language patterns and the interday returns

on day t. At each lag, the meta-analysis procedure is applied to each of the 16 companies;

the meta-correlations between the sentiment series and the market returns produced from

the meta-analysis are summarised and plotted as one box component in the box plot.

The results from the experiment using the ordered dataset is illustrated by the box plot

in Figure 5.2a, while the benchmark results based on the shuffled dataset are summarised

by Figure 5.2b. The first thing to note is that the models were able to consistently achieve

positive correlations when predicting returns in both default and randomised settings.

Among the meta-correlations for the ordered dataset, a noticeable peak can be identified

at lag 1. Further tests showed that for certain lags, applying the method to the ordered

dataset had resulted in better correlation performances than when it was applied to the

shuffled dataset; the differences in means are greatest at 0.05 level of significance for lags

−5, −3, 0, and 1; weaker differences are also observed for lag −2 and 2 (Table 5.7).

Lag -5 -4 -3 -2 -1 0 1 2 3 4 5

t-stat. 3.07 -0.85 3.05 1.01 1.53 2.09 3.48 1.54 -0.37 0.91 0.41
p-value 0.00 0.80 0.00 0.16 0.07 0.02 0.00 0.07 0.64 0.18 0.34

Table 5.7: Testing for significant differences between the means of meta-correlations
achieved by the supervised EM algorithm on the ordered and the shuffled dataset

The table summarises the results from the one-side t-tests that were designed to test whether the EM
algorithm developed in Chapter 3 is able to achieve better correlational performances on the ordered
dataset than on the shuffled dataset. One test is performed for each of the 11 lags shown in 5.2. In each
test, the null hypothesis is that the mean of the meta-correlations achieved by the EM algorithm with
the ordered dataset is no greater than that achieved with the shuffled dataset. the ‘Lag’ row indicates
the number of days the return series was lagged for each test; The ‘t-stat’ and ‘p-value’ rows display the
t-statistic and p-value for the tests respectively.

It is important to note that the positive correlation found by the algorithm between the



5.5. RESULTS AND DISCUSSION 113

●

●

●

●

0.00

0.05

0.10

0.15

−5 −4 −3 −2 −1 0 1 2 3 4 5
Lags (Interday Return)

M
et

a−
co

rr
el

at
io

n

(a) Meta-correlations produced from the ordered dataset
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(b) Meta-correlations produced from the randomised setting

Figure 5.2: Box plots summarising the correlational performances of the two non-temporal
sentiment models trained with the default and randomised settings respectively.

Box plots such as these two are used across the case study to summarise the correlational performances
of the models. Each box in the plot summarises a group of 16 meta-correlations, one for each of the
16 companies covered by the corpus. The upper and lower whisks attached to each box indicates the
maximal and minimal meta-correlations for that group respectively. The body of the box indicates the
second and third quantiles of the meta-correlation distribution. The horizontal line in the middle indicates
the median of the meta-correlations. The ticks on the x-axis indicates how many days the interpolated
interday return series was lagged to form the future return series, which is in turn used to train the model.

language patterns and the price movements does not necessarily entail that such relation

truly exists — the algorithm can be very ‘aggressive’ when set to find associations when

none existed. A typical vocabulary in the experiments can contain hundreds of patterns —

the weights of which but one can all vary freely; with this many degrees of freedom, the

algorithm will almost surely be able to find a distribution of lexical items that leads to

positive correlational performances; this theory is supported by the fact that the average

meta-correlations achievable by the algorithm on the shuffled dataset are statistically

different from zero for all lags.
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The presence of background correlation is likely a symptom of over-fitting, which is

an unfortunate weakness of maximum likelihood estimation. One factor that affects the

magnitude of this ‘background’ correlation is the weighting of the return series that is

used to supervise the learning process. Recall that in Section 3.4.2, it was noted that the

returns in the model can be thought of as ‘pseudo-terms’, and the strength of supervision

from the returns can be affected by adjusting weighting of such pseudo-terms. During the

learning process, the distribution of the lexicon items will evolve in such a way that positive

language patterns are more likely to co-occur with positive pseudo-terms (i.e. positive

returns) while negative language patterns are more aligned with negative pseudo-terms

(i.e. negative returns). As a result, the greater the weightings assigned to the returns

(i.e. pseudo-terms), the higher the background correlation the learning algorithm will be

able to achieve (Figure 5.3). It should become clear that model evaluation based solely

on association measures can be inadequate because of the aggressiveness of maximum

likelihood estimators — algorithm is effective in learning some associations from the data,

but it is difficult to tell whether such associations are attributable to the interactions

between news sentiment and the market. It is therefore important to examine the actual

distributions of the language patterns learnt for each sentiment classes by the algorithm;

in order to gain a better understanding of the behaviour.

With the above observation in mind, I now attempt to interpret the outstanding

positive correlations around lag 1 and 0. Intuitively, the peak indicates that the correlation

between the interday returns of companies from ‘yesterday’ and the language patterns seen

‘today’ is, on average, statistically stronger than the ‘background’ correlations achievable

when the learning algorithm was applied to the shuffled dataset. Such excess suggests that

the learning algorithm was able to find a stronger-than-average association between stock

price movements and language usages at this particular configuration; in other words, it

must be the case that there truly exists some correlation between the two quantities which

cannot be explained by the aggressiveness of the maximum likelihood methods for the

learning algorithm to pick up.

The peak in the correlations provides some empirical evidence to the existence of a

link between the textual news sentiment and stock price movements in the dataset; it

is worth noting that the timing also provides important information: the fact that the

peak is situated at lag 1 suggests it is the market movements from ‘yesterday’ that have

influenced current day’s change in news sentiment — that is, the sentiment featured in the

news is mostly retrospective. In comparison, no abnormal meta-correlation is immediately

recognisable in the baseline results generated from the shuffled dataset.
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(b) Meta-correlations from the testing phase

Figure 5.3: The impact of supervision weighting on the performances of learnt model

These plots compare the meta-correlations obtained when models learnt with varying supervision weighting
were tasked to predict the returns in the training set and test set respectively. Each sub-plot is divided
into two columns; the left sub-plot summarises the meta-correlations produced using the ordered dataset
while the sub-plot to the right is for results under the randomised setting. Figure 5.3a shows that when
the learnt sentiment was used to predict lag 1 interday returns in the training set, the average correlation
achievable by the algorithm increases as the supervision weighting increases for both the default and the
randomised setting. The fact that the increase is seen in both the default and randomised settings implies
that it must be the background correlation that is responding to the change. The marginal increase in the
average background correlation declines as the magnitude of weighting increases, which may indicate that
weightings greater than 1.0 is actually excessive and the model over-fitted the data; this is confirmed by
what is shown in Figure 5.3b, where the meta-correlations when predicting returns increases when the
weighting moves from 0.5 to 1, but decreases as the weighting becomes larger.

5.5.1.2 Distribution of Language Patterns

As stated in the previous section, the correlational performance of the model alone can

be unreliable when determining the effectiveness of the learning algorithm due to its

aggressiveness in finding associations even when little or none existed; it is therefore

necessary to examine the distributions of the language patterns extracted for the sentiment
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classes.

In this experiment where the temporal aspects of the sentiment are omitted, each fold

of the cross-validation procedure would output two language pattern distributions from its

training phase: one for the positive sentiment class and the other for the negative sentiment

classes. Each cross-validation procedure contains 35 folds, and the procedure is repeated

for each of the 16 companies surveyed in this experiment. It is impractical to examine

and compare over all 1120 distributions; instead these distributions were aggregated into

two ‘meta-distributions’, one for each of the two sentiment classes. This aggregation is a

two-step process:

1. The first step is to obtain two aggregated distributions (one for positive and neg-

ative classes each) for each company, which involves merging the 35 distributions

produced by the cross-validation procedure for each sentiment class. For this matter,

the aggregated distributions for both the positive and negative vocabularies were

constructed by averaging over the 35 sets of distributions collected during the folds

of the cross-validation process. Where a language pattern is absent in a training set,

its probability in the vocabulary for that fold is treated as 0. Since the probabilities

associated with the entries in each distribution by definition sum to 1, the averages

of the probabilities distributions over the same set of entries will sum to 1 as well.

2. The second step is to further aggregated the positive and negative distributions from

each company into two summarising distributions. The aggregation method differs

slightly from that used to aggregate the distributions within each company: for every

entry that is indexed in all the corpora, instead of simply taking the average of the

probabilities gathered for all the companies, an weighted mean was calculated from

the probabilities, with the frequencies of the entry in the firm-wise distributions

as weights. The weighted average approach is adopted to alleviate the issue where

the frequencies of certain patterns occurring in one or two corpora are quite low,

but for those occurrences the patterns would yield relatively extreme probabilities

compared to their presences in the other corpora. Weighting vocabulary entries

by their frequencies prevents such outlier occurrences from distorting the resulting

distributions.

To facilitate the comparison of the sentiment polarities between the language patterns,

a sentiment score was computed for each pattern by taking the log difference between its

aggregated positive probability and its aggregated negative probability, namely:

sentej = log p (ej | pos)− log p (ej | neg) . (5.2)

The measure is essentially the logarithm of the ratio between an entry’s probability in the

distribution for positive sentiment and its probability in the negative sentiment distribution.
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Figure 5.4: Histograms depicting the distributions for raw and logarithmic sentiment ratios

The metric is positive for a language pattern that is relatively more likely to appear in

positive context than in negative context, and is negative when the reverse is true. The

distribution of the raw ratio itself is highly skewed, with about half of the entries falling

between 0 and 1 and the other half falling between 1 and ∞ (Figure 5.4a); applying

logarithm to the raw ratios balances the distribution of the metric into a symmetric shape

(Figure 5.4b).

Table 5.10 and 5.11 display the 20 most frequent salient positive and negative language

patterns mined by the algorithm from the ordered dataset using two different sets of

parameters respectively; the former shows the lexical items extracted when lag-1 interday

returns where used to supervise the learning while the latter depicts the lexical items

extracted using lag-−1 returns. To evaluate how well the language pattern distributions

extracted by the algorithm capture the connotations of the patterns, I manually examined

the lists in the two tables and marked each entry into three categories:

� An entry is marked with a X if I could identify a reason as to why the language

pattern could be said to bear the sentiment or temporality score assigned to it by

the algorithm.

� An entry is marked with a × if I considered the sentiment or temporality score

assigned to the pattern by the algorithm is wrong — that is, I could identify a reason

as to why the language pattern could be said to bear a sentiment or temporality

score that is opposite to the one assigned by the algorithm.

� An entry is marked with a ? if the sentiment connotation of the language pattern

cannot be sufficiently determined without further context, and thus the algorithm’s

scoring of the pattern can be neither validated nor invalidated.

The manual evaluations for Table 5.10 and Table 5.11 are tallied in Table 5.8. The

tallies suggest that:
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Lag 1 (Table 5.10) Lag −1 (Table 5.11)

Eval. Negative Positive Negative Positive

X 8 15 7 7
? 9 5 11 13
× 3 0 2 0

Table 5.8: The tallied results for the manual evaluation of the word dependencies displayed
in Table 5.10 and Table 5.11

1. The sentiment orientations of the word dependencies were classified correctly more

often than incorrectly.

2. The algorithm identified positive word dependencies more reliably than negative

word dependencies as it made fewer mistakes assigning scores to positive word

dependencies.

3. The algorithm identified retrospective sentiment more reliably than prospective sen-

timent as it produced fewer ‘uncertain’ (?) entries for Table 5.11 than for Table 5.10.

It appears that the sentiment polarities inferred for most of the word dependencies

shown in Table 5.10 align with common perceptions about their sentiment connotations.

In particular, word dependencies such as ‘share/stock/index/average/sale fall/drop’ domi-

nated negative vocabularies, while ‘stock/index/share rise/jump/gain’ along with ‘sign

deal’, ‘expect to rise’, ‘rise/add some per cent’ are all found in the positive vocabulary,

which largely conforms with the general expectation on their sentiment connotations in busi-

ness contexts. It also appears that many of these expressions can be construed to encode

retrospective sentiment even though their tense had been erased during lemmatisation.

As a comparison, Table 5.11 displays the most frequent word dependencies that are

sentiment-salient extracted using the same experiment setting as that used for 5.10, but the

supervising returns were constructed by lagging the original return series by −1; in other

words, the algorithm attempted to associate the current day’s language usage with the

next day’s price movements. The first thing to note in this list is perhaps the absence of

the retrospective expressions that were once captured in Table 5.10 (e.g. phrases containing

‘rise’ and ‘fall’). While some of the patterns may be associable to their corresponding

sentiment classes, such associations for many of the patterns may not be immediately

obvious to human examiners.

Table 5.12a shows the 20 most frequent language patterns whose sentiment classes were

classified differently (i.e. the signs of the two sentiment scores contradict) by models trained

with the original dataset and by models trained using the shuffled dataset respectively.

Similar to what I did before, I examined the entries in the table and marked into three

categories:
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Eval. Count

og. 12
? 6
sf. 2

(a) Ordered dataset versus shuffled dataset

Eval. Count

P. 10
? 7
F. 3

(b) Past return versus future return

Table 5.9: The tallied results for the manual evaluation of the word dependencies displayed
in Table 5.12a and Table 5.12b

� An entry is marked with og. if I consider the classification given to it by the model

trained over the original dataset is correct.

� An entry is marked with sf. if I consider the classification given to it by the model

trained over the shuffled dataset is correct.

� An entry is marked with a × if the sentiment connotation of the language pattern

cannot be sufficiently determined without further context, and thus I could not

determine whether a model’s classification is correct or incorrect.

Table 5.12b shows the 20 most frequent language patterns whose sentiment classes

were classified differently by models trained with lag-1 past return as the supervising series

and by models trained with lagged-−1 future return as the supervising series. Again, I

marked each of the entries in the table into three categories:

� An entry is marked with P. if I consider the classification given to it by the model

supervised by the past returns is correct.

� An entry is marked with F. if I consider the classification given to it by the model

supervised by the future returns is correct.

� An entry is marked with a × if the sentiment connotation of the language pattern

cannot be sufficiently determined without further context, and thus I could not

determine whether a model’s classification is correct or incorrect.

The results from the above two evaluations are tallied in Table 5.9. Table 5.9a suggests

that when sentiment class assignments differ, the classifications made by the models

trained over the original dataset are more likely to be correct than that made by those

produced by the models trained with the shuffled dataset, providing evidences that the

learning algorithm performs better than uninformed guessing. Table 5.9b suggests that

when a language pattern is assigned different sentiment orientations by the model trained

to find retrospective sentiment and the model trained to identify prospective sentiment, it

is more likely that the pattern is in fact retrospective. This may indicate that prospective
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patterns are in general much rarer than retrospective patterns (i.e. the prior probability

of prospective sentiment class is lower than that of retrospective sentiment class). It is

also observed from Table 5.9b that the magnitudes of the sentiment scores assigned to

the salient retrospective expressions are generally greater than that of assigned to their

prospective counterparts; this may imply that prospective patterns are generally harder to

identify.

5.5.1.3 Summary

The principal goal of the discussion in this subsection is to show (i) there exists certain

causal links between the language usages in business news about companies and the returns

of their stocks on the market, and (ii) the supervised EM algorithm developed in this

thesis is effective. The assumption behind the design of this experiment is that if a model

can be trained to use business news to predict stock returns better than random guesses,

then it must be because some association between news and returns truly exists, and the

model can be considered to have captured the sentiment polarities or orientations of the

language patterns of the news in terms of their effects on the movements of stock prices.

In practice, it was demonstrated that the supervised EM learning algorithm behaves

aggressively when tasked to find associations — that is, the algorithm will find some

association even when none actually exist in the data. As a result, when fed with shuffled

datasets where the dates are shuffled (thus any causal link between news and returns

presumably destroyed), the learning algorithm is still able to consistently find distributions

of language patterns that significantly better predict returns than guessing randomly.

Consequently, one must be careful when interpreting the correlations or other metrics of

association produced by the models. Assertions on the existence of an association should

only be made when the model trained is able to perform better than the ‘background

performances’, which can be achieved solely through the aggressiveness of maximum-

likelihood estimators.

With the above observation in mind, subsequent analyses revealed that for the dataset

collected for this case study, lexical distributions obtained by models supervised with the

stock returns from the previous day significantly outperformed the baseline in predicting the

stock returns for the current day. Further examination of the distributions of vocabularies

for each sentiment classes learnt reaffirmed the link. It may be argued that the findings

provide additional evidences for the Efficient Market Hypothesis, which states that all

publicly available information about the market are already reflected in the prices; however,

the other results from the experiment seem to suggest that certain language patterns

correlate significantly with price movements in the future.
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5.5.2 Experiment 2: Temporal Sentiment in Business News and

Stock Returns

In Experiment 1, I have demonstrated the effectiveness of the supervised EM algorithm

for learning textual sentiment from business news and stock price movements. In this

experiment, I explore the temporal aspects of news sentiment by adopting the extended

model introduced in Section 3.4.3. The design of this experiment mimicked that of

the previous one, only this time incorporating temporalities into the sentiment model.

The temporal aspect of the sentiment is introduced by splitting each of the original

two sentiment classes into two, one representing retrospective sentiment and the other

representing prospective sentiment. To keep the notations concise, the temporal sentiment

class names in the equations are abbreviated as the following hereafter:

retneg representing retrospective negative

retpos representing retrospective positive

proneg representing prospective negative

propos representing prospective positive

As in Experiment 1, I first inspected the performances achieved by temporality-

enabled models in cross-validation settings. As having been discussed in Section 3.4.3,

the incorporation of the temporal aspects of the news sentiment requires that a past and

a future return series be provided to enforce the supervision functions of the learning

procedure. The past and the future return series used in this study were constructed from

interpolated interday logarithmic returns of the stocks of the companies of interest. The

interday returns were smoothed with weighted averaging; the past return for time t: rt,past

was calculated by taking the average of the two returns at time t− 1 and t− 2, weighted

exponentially:

rt,past =
21

21 + 20
rt−1 +

20

21 + 20
rt−2 (5.3)

=
2

3
rt−1 +

1

3
rt−2. (5.4)

Similarly, the future return at time t is calculated as

rt,future =
21

21 + 20
rt+1 +

20

21 + 20
rt+2 (5.5)

=
2

3
rt+1 +

1

3
rt+2. (5.6)

5.5.2.1 Correlational Performances

Similar to what were done for the previous experiment, a set of box plots (Figure 5.5) is

used to summarise the correlational performances of the models when predicting market
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returns. It is immediately recognisable that the algorithm was able to consistently learn

language patterns that could be used to produce sentiment predictions that correlate

significantly with both past and future returns (shown via the ‘retneg’/‘retpos’ versus ‘Past

Return’ sub-plots and the ‘proneg’/‘propos’ versus ‘Future Return’ sub-plots, respectively).

It is also observed that the retrospective positive sentiment correlates with past returns

stronger than retrospective negative sentiment, though no such differences were observed

among the prospective sentiment series and future returns.

To test whether the introduction of temporality helps improve the correlational perfor-

mances of the models, a series of two-sample t-tests were conducted to compare the means

of meta-correlations obtained from this experiment and those acquired from the previous

experiment where no temporality was included in the model. The results for the tests are

summarised in Table 5.13. The p-values suggested that none of the null hypotheses for the

four tests could be rejected; in other words, a model that tries to capture sentiment and

temporality at the same time does not predict future or past returns significantly better

(nor worse) than a sentiment model which is trained to predict future or past returns

separately.

Return Type Sent.-Temp. Class t-stat. p-value

Past.Return retneg -1.17 0.25
Past.Return retpos 0.24 0.81

Future.Return proneg -0.04 0.97
Future.Return propos -0.39 0.70

Table 5.13: Testing for significant differences between the means of meta-correlations
achieved by sentiment models with and without the temporal aspect

The table summarises the results for the four t-tests that were used to determine whether introducing
temporality into the sentiment learning model helps improve its correlational performance. Four tests
were conducted, the result for each was summarised by one row in the table. The ‘Return Type’ and
‘Sent.-Temp. Class’ columns indicate from which two series the meta-correlations were calculated. The
‘t-stat’ and ‘p-value’ columns display the t-statistic and p-value for the test respectively. For each test,
the null hypothesis is that there is no difference between the correlational performances achievable by a
mixture model that exploits sentiment and temporality at the same time (as in Experiment 2) and that
by a sentiment model that is trained to predict past and future returns separately (as in Experiment 1).

An anomaly in the correlation patterns is noted when the learning was supervised by

zero-lag returns: the model was able to achieve better performance predicting past returns

using prospective sentiment, and also when predicting future returns using retrospective

sentiment (Figure 5.5); in other words, if the current day’s price movements were used to

supervise the learning of prospective sentiment, then the resultant language patterns also

correlate with ‘yesterday”s returns (the same is true for retrospective sentiment and future

returns). This counter-intuitive behaviour is likely a result of strong autocorrelations seen

in news coverages — it is often the case that an event is covered by the media for several
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days, a period during which key language patterns are reused; this may have made it

difficult for the algorithm to distinguish between prospective and retrospective language

patterns as their usage become mixed and distorted.

5.5.2.2 Distribution of Language Patterns

The aggregated probability distribution for the language patterns for each of the temporal

sentiment classes were computed following the same procedure used in Experiment 1,

except that four classes (i.e. ‘retrospective negative’, ‘retrospective positive’, ‘prospective

negative’, and ‘prospective positive’) were included instead of the original two. The

summaries of the resultant distributions are tabulated in Table 5.15. An additional

temporality score is calculated for each entry in the vocabularies due to the incorporation

of temporalities into the sentiment (shown in the table as column ES). This score is

defined as:

tempej = log {p (ej | proneg) + p (ej | propos)}
− log {p (ej | retneg) + p (ej | retpos)} . (5.7)

An lexical entry will yield a positive temporality score if its sentiment, be it positive or

negative, is more indicative of the market movements in the future than of what had

happened in the past; a negative temporality score suggests the related lexical entry is

mostly used to described the past incidences on the market.

At this point, it is worth noting that standalone evaluations of the algorithm’s assign-

ments of the temporality scores without in-depth domain knowledge can prove difficult.

The main problem here is that it is often possible to find explanations that justify the

assigning of both prospective and retrospective sentiment for many lexical patterns in the

vocabulary. For example, the phrase ‘analysts expect’ could be understood as emphasising

either the analysts’ act of expecting, hence an expression indicating retrospective senti-

ment, or the details of their expectation, which leads to prospective interpretations of its

potential impact on the future movements of the market. In such cases, the evaluation

method employed in the previous experiment could not be properly applied to evaluate

temporality score assignments because many of the patterns would have to be classified

into the ‘uncertain’ category.

To overcome this problem, I decided to verify the temporality score assignments by

way of contradiction — that is, instead of approaching the difficult problem of evaluating

the temporality score assignment of a language pattern directly, I would first assume the

temporality score the algorithm assigned to that language pattern were in fact correct,

and then attempt to determine whether an explanation could be found to justify the

sentiment assignment of the said pattern; the temporality class originally proposed by
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the algorithm would be considered (i) correct if such an explanation can be found;

(ii) incorrect if an explanation that would justify the opposite sentiment assignment can

be identified; (iii) neither correct nor incorrect if no explanation could be found to support

either the current sentiment assignment or the opposite sentiment assignment. The

rationale behind this strategy is the observation that evaluating sentiment is much easier

a task than to directly evaluate temporality. To implement this strategy, I introduced two

additional conditional sentiment scores as the main devices used to evaluate the algorithm’s

classifications of a pattern’s sentiment given its temporality class: the prospective sentiment

scores and the retrospective sentiment scores. These two scores are defined in a similar

manner as the sentiment scores previously introduced in Experiment 1 (Eq. 5.2), but

were adapted to be based on only the prospective positive/negative and retrospective

positive/negative scores respectively. More specifically:

sent | proej = log p (ej | propos)− log p (ej | proneg) (5.8)

sent | retej = log p (ej | retpos)− log p (ej | retneg) . (5.9)

Table 5.15 displays the 20 most frequent word dependencies extracted by the algorithm

that yielded outstanding temporality scores for each of the retrospective and prospective

sentiment classes respectively. Appropriate conditional sentiment scores were computed

for the outstanding retrospective and prospective patterns respectively. The Eval. columns

present the manual evaluations I made towards the correctness of the conditional sentiment

scores assigned by the algorithm. The markings given to the entries bear the same

semantics as those used in the previous experiment. Table 5.14 tabulates the results of

the manual evaluation.

Eval. Retrospective Prospective

X 13 3
? 5 17
× 2 0

Table 5.14: The tallied results for the manual evaluation of the word dependencies displayed
in Table 5.15

The results in Table 5.15 show that I could find explanations that justify the algo-

rithm’s sentiment classifications for more retrospective patterns than prospective patterns.

According to the discussion described above, this seem to suggest that the algorithm

is better at mining retrospective language patterns than mining prospective language

patterns.

Table 5.17 compares the sentiment and temporality scores of the language patterns

produced by models trained over the ordered dataset with those produced by models
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trained over the shuffled dataset. The manual evaluation of the results follows the same

strategy developed above: for each entry in the table, I evaluated the conditional sentiment

scores assigned to it by the algorithm given their respective temporality classifications.

The results are tabulated in Table 5.16. These results showed that the algorithm was

able to generate more reliable ‘opinions’ about the sentiment connotations of the language

patterns conditioned on their respective temporality classification when trained with the

ordered dataset than when trained with the shuffled dataset.

Both results from Table 5.15 and Table 5.15 seem to suggest that the extended model

is able to identify retrospectivity-laden sentiment patterns better than their prospective

counterparts. One possible explanation to this asymmetry is that the dominating narrative

in business and financial news conveyed over traditional media is retrospective — in other

words, the algorithm’s inferior performance in extracting prospective sentiment patterns

compared to retrospective ones may be due less to the incapacity of the algorithm to

detect them, but more to the fact that prospective signals in news are generally weak

when delivered through traditional media.

Eval. Count

ordered 11
? 9

shuffled 0

Table 5.16: The tallied results for the manual evaluation of the word dependencies displayed
in Table 5.15

The results from this experiment also seem to suggest that the magnitudes of the

temporality scores are overall greater than the magnitudes of the sentiment scores. When

weighted by the frequencies of the associated language patterns, the distribution of the

temporality scores exhibits a negative skew compared to a non-weighted distribution

(Figure 5.6c versus 5.6d), which suggests that retrospective usage of language, as identified

by the learning algorithm developed in this thesis is more prominent than prospective usage

of language in business news published by formal media. The histogram for the sentiment

scores remains largely symmetric after being weighted by the frequencies (Figure 5.6a

versus 5.6b), which implies the uses of positive and negative language patterns were about

equally common in the text.

5.5.2.3 Summary

In this experiment, I used the EM algorithm to learn word dependency distributions for

the temporality-sentiment model developed in Section 3.4.3 and manually evaluated parts

of the resultant distributions. The general set-up of the experiment is similar to that used
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Figure 5.6: Histograms depicting the distributions of sentiment and temporality scores,
unweighted versus weighted by frequencies

in Experiment 1; the difference being that instead of classifying language patterns into

dichotomous positive-versus-negative categories, the word dependencies were categorised

into four temporal sentiment classes, namely retrospective negative, retrospective positive,

prospective negative, and prospective positive. My main findings are:

1. Overall, the supervised EM algorithm was able to identify the temporal sentiment

categories associated word dependencies better than random guessing.

2. Retrospective language usage is in general more prevalent than prospective language

usage in business and financial news published on formal media.

3. There was no significant difference between the correlational performances achieved by

a temporality-enabled sentiment model that captures the sentiment and temporality

all at once and that achieved by a sentiment model trained with contemporaneous

sentiment and returns.

5.5.3 Experiment 3: Sentiment Modelled by Unigrams

In the sentiment analysis literature, most studies on the interrelations between news

sentiment and the market movements had focused on approximating news sentiment using
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the raw or relative frequencies of certain unigrams (i.e. single words) that are deemed to

convey sentiment. It has been hypothesised in this thesis that sentiment, as a form of

meaning, might be better captured by lexical units that are more specific than single words,

e.g. bigrams, trigrams, word dependencies, etc. To test whether this hypothesis holds for

this case study, I conducted empirical comparisons between the effectiveness of the learning

algorithm when using word dependency as features and that of the algorithm when using

different sets of unigrams as features. More specifically, I compared the correlational

performances achieved by models trained using word dependencies as features against

those achieved by models trained using the following lexical items as features: (i) all

unigrams; (ii) unigrams containing just verbs and adjectives.

The correlational performances achieved by models trained with word dependencies

had already been explored in Experiment 2; the correlational performances for the models

trained with unigrams were obtained in a similar way as in Experiment 2, except that

unigrams were used as linguistic features in lieu of word dependencies. For the experiment

configurations that used unigrams as features, each entry in the vocabulary is represented

as a tuple in the form of ‘lemma part-of-speech’; for example, ‘fall VB’ represents the verb

‘fall’ (i.e. not the season ‘autumn’). Similar to the previous two experiments, the inflections

that could potentially signify the tenses of the words were erased; however, the tense

information could sometimes also be captured in the part-of-speech tags — the Stanford

CoreNLP package produces different POS tags for verbs of different forms, e.g. the verb

‘fell’ will show up as ‘fall VBD’, indicating it is the past tense form of ‘fall’. I therefore

mapped all verb tag variants (‘VBD’ for past tense, ‘VBG’ for present participle, ‘VBN’

for past participle, ‘VBP’ for non-3rd-person singular present, and ‘VBZ’ for 3rd-person

singular present) into a single ‘VB’ tag. The vocabulary was filtered further to remove

words whose length are shorter than three characters to eliminate possible noises due to

ill-formatted text. A low-pass filter like the one used in previous experiments was also

applied to remove word entries that occurred 16 times or less2 for each cross-validation

fold.

5.5.3.1 Correlational Performances

Similar to the previous experiments, the meta-correlations between the predicted sentiment

series and the future and past returns are summarised with box plots in Figure 5.8 and

5.7. A visual comparison between the plots thereof and the plot obtained when word

dependencies were used as features (Figure 5.5) seems to suggest that the sentiment series

predicted by the models learnt from unigrams correlate more strongly with the future and

past returns than those predicted using models learnt with word dependencies, especially

2This threshold was determined empirically, and it could be improved in future developments of this
work.
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Return Type Sentiment Class F Statistic p-value

Future.Return proneg 6.305 0.004
Future.Return propos 4.811 0.013
Past.Return retneg 2.070 0.138
Past.Return retpos 0.428 0.654
Past.Return propos 0.339 0.714
Future.Return retneg 0.130 0.878
Past.Return proneg 0.107 0.899
Future.Return retpos 0.040 0.961

Table 5.18: ANOVA tests that compare the average meta-correlations achieved by models
trained with different lexical features.

Each row in this table summaries the result from one ANOVA test whose null hypothesis was that
the means of the meta-correlations achieved by the three model designs (word dependencies, verbs and
adjectives, and all unigrams) are the same when the models were used to predict the returns of a given
type (shown by the ‘Return Type’ column) using the temporal sentiment series whose class is specified by
the ‘Sentiment Class’ column. The F statistics used by the ANOVA tests are displayed in the ‘F Statistic’
column, and the associated p-values are shown in the column of the same name.

for negative sentiment.

Also observed in Figure 5.8 is the same kind of anomaly as found in Figure 5.5

where when 0-lag interday returns were used to derive the future return series that

supervised the learning, the algorithm seemed to be able to find unigram distributions for

retrospective/prospective sentiments that predict future/past returns better compared to

the other lags. This observation suggests that the stock price movments on day t are a

mixture of responses to news sentiment released previously and potential causes that may

influence the news sentiment in the future.

A visual comparison between Figure 5.5, 5.7 and 5.8 suggests that the algorithm was

able to achieve slightly better correlational performances with unigrams as features than

with word dependencies as features. Additional statistical tests confirmed this observation.

Table 5.18 summaries the results from eight Analysis of Variances (ANOVA) procedures,

each testing the null hypothesis that the means of the meta-correlations achieved by the

three designs (word dependencies, verbs and adjectives, and all unigrams) are the same

when predicting the returns of a given type (past or future returns) using the temporal

sentiment series specified; the rows are sorted by the p-values resulted from the tests

in ascending order. The results show that the null hypothesis, i.e. meta-correlations

achieved by the three designs share the same mean, can be rejected at a 0.05 critical

level only when prospective sentiment series were used to predict future returns. In other

words, no significant differences in the correlational performances of the three designs

could be detected when capturing the relationships between the market movements and

retrospective news sentiment.
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class comparison estimate conf.low conf.high adj.p.value

proneg Verbs & Adj. vs. Word Dep. -0.03 -0.05 -0.01 0.00
proneg All Unigrams vs. Word Dep. -0.02 -0.04 -0.00 0.02
proneg All Unigrams vs. Verbs & Adj. 0.00 -0.02 0.03 0.84
propos Verbs & Adj. vs. Word Dep. 0.03 0.00 0.05 0.02
propos All Unigrams vs. Word Dep. 0.03 0.00 0.05 0.03
propos All Unigrams vs. Verbs & Adj. -0.00 -0.03 0.02 0.99

Table 5.19: Results from Tukey HSD tests that compare the pairwise correlational perfor-
mances between each two of the three lexical features when predicting future returns.

The ‘class’ column shows the temporal sentiment class of the sentiment series used to predict the future
returns. The ‘comparison’ column indicates the null hypotheses for each pairwise test; the null hypothesis
for each test is that the average meta-correlation obtained by models using the former feature (i.e. before
the ‘vs.’) is neither greater nor lower than that obtained by models trained using the latter feature. The
‘estimate’ column contains the statistics of the tests. The ‘conf.low’ and ‘conf.high’ columns show the lower
and upper bounds for the confidence intervals. The ‘adj.p.value’ column display the adjusted p-values
output by the tests.

Tukey Honest Significant Differences tests were conducted to determine the uses of

which features had resulted the differences observed in the ANOVA tests. The outcomes

from the Tukey HSD tests (Table 5.19) indicate that (i) both models trained using unigram

as features outperformed the model trained with word dependencies as features, and

(ii) there are not enough evidence to reject the null hypothesis that the correlational

performances of the models trained using verbs and adjectives are different from that

achieved by the models trained using all unigrams as features. When interpreting the

pairwise tests in Table 5.19, it should be noted that positive estimates indicate the

difference between the two mean meta-correlations are positive, and negative estimates

indicate the opposite. For designs involving positive sentiment series (i.e.propos) therefore,

positive estimates indicate that the former design in the ‘comparison’ column achieved

greater correlational performances than the latter design in that column; for designs

involving negative sentiment series (i.e.proneg), however, the more negative a design’s

meta-correlation with the return series is, the better its correlational performance — and

thus it is negative estimates that indicate that the former design in the ‘comparison’

column performed better than the latter.

Similar to before, I now move to examine the actual distributions of the words learnt

by the model using the ‘all unigrams’ and ‘verbs and adjectives’ configurations.

5.5.3.2 Distribution of Language Patterns

Table 5.22 summarises the word distributions for each of the four temporal sentiment classes

learnt with models trained using all the unigrams seen in the training set. The exposition

of the distributions follows the same format used in the previous two experiments. It
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can be seen from the table that nouns dominated the most frequent unigrams for both

retrospective and prospective sentiment classes. The results of the manual evaluations of

the conditional sentiment score assignments for Table 5.22 are tabulated in Table 5.20. It

is noted that the nouns in the vocabulary are in general less interpretable than the verbs

— among all the confirmed assignments, all but one are for verbs. Another observation is

that the algorithm’s conditional sentiment score assignments for prospective distributions

are relatively less reliable than those made for retrospective distributions.

For the third configuration where only verbs and adjectives were used to train the

models, the resultant distributions of the unigrams for the four temporal sentiment classes

are summarised in Table 5.23; the results of the corresponding manual evaluation on

conditional sentiment scores assignments are tabulated in Table 5.21.

The first thing to note is that the assignments of the conditional sentiment scores for

verbs and adjectives in the retrospective sentiment classes are more interpretable than

those in the prospective sentiment classes, as more entries were classified correctly in the

retrospective word distribution than in the prospective word distribution. It is difficult

to compare the evaluations in this configuration (as in Table 5.23) with that from the

previous configuration (as in Table 5.22) due to the overwhelming presence of nouns.

To investigate whether including unigrams other than verbs and adjectives affect the

assignments of the conditional sentiment scores, an additional Table 5.24 was produced

using the ‘all unigrams’ configuration; this table shows only the verbs and adjectives from

all the unigrams. It can be seen that there is virtual no difference between the assignments

of conditional sentiment scores in Table 5.24 and in Table 5.23. Combined with the finding

from the previous subsection that there is no significant difference in the correlational

performances between models learnt using all unigrams as features and those learnt using

only verbs and adjectives as features, it can be argued that including unigrams other than

verbs and adjectives does not contribute significantly to the method’s ability to capture

temporal sentiment.

Another observation is that the conditional sentiment score assignments for the word

dependencies in Experiment 2 are easier to interpret than those assigned to the unigrams.

However, it would seem that much of word dependencies’ superior interpretability is owing

more to the fact that the word dependencies used to train the model were pre-selected

to reflect verb-like relations (i.e. ‘direct object’ of a verb, ‘nominal subject’ of a verb,

etc.) than they being more specific lexical units compared to unigrams. This is perhaps

especially true for retrospective word dependencies — note how all the governor verbs in

the word dependencies displayed in Table 5.15a also appeared in Table 5.23a, and how

the word dependencies’ conditional sentiment assignments always align with that of their

governor verbs. For prospective sentiment, word dependencies do seem to be slightly more

interpretable than unigrams; this may suggest that word dependencies are able to better
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capture prospective sentiment than unigrams, especially considering prospective language

usages are in general much less prevalent as implied by previous results.

Eval. Retrospective Prospective

X 4 0
? 16 20
× 0 0

Table 5.20: The tallied results for the manual evaluation of the unigrams displayed in
Table 5.22

Eval. Retrospective Prospective

X 10 0
? 10 20
× 0 0

Table 5.21: The tallied results for the manual evaluation of the unigrams displayed in
Table 5.23

5.5.3.3 Summary

The main goal of this experiment is to evaluate how well unigrams can be used to capture

the sentiment and temporality of the language patterns used in business news compared

to alternative unit of meaning word dependencies.

I first compared the correlational performances achieved by models learnt using three

different lexical features: (i) word dependencies, (ii) all unigrams, (iii) verbs and adjectives.

The results from a series of statistical tests suggest that the models trained using single

words as features outperformed the model trained over word dependencies when predict-

ing future returns with prospective sentiment; no significant differences in correlational

performances were observed otherwise.

Within the unigram configurations, it was found that the learning method developed

in this thesis were able to identify the sentiment and temporality connotations for verbs

and adjectives more reliably than for words of other part-of-speeches; also, the method

was able to identify retrospective sentiment connotations more accurately than prospective

sentiment connotations. Combined with the finding that there is no significant difference

between the correlational performances of the models trained over all the unigrams and

that of the models trained over only verbs and adjectives, it is reasonable to argue that

verbs and adjectives are the main bearer of retrospective sentiment in English business

and financial news.
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Another observation was that, while models trained using unigrams were able to

achieve superior correlational performances, models trained with word dependencies seem

to have excelled at capturing the prospective temporal sentiment in the news. It was

also recognised that word dependencies owe much of their sentiment and temporality

interpretability to their verbal components.

5.5.4 Experiment 4: Benchmarking with Content Analysis

The previous three experiments were designed to demonstrate the effectiveness of the

supervised EM algorithm under various settings. In this experiment, I compare the

correlational performances of the methods developed in this thesis to that obtained from

content-analysis-based methods. Such methods are typically used in combination with

domain dictionaries. Two affect dictionaries were examined in this comparison: the

General Inquirer [Stone et al., 1966] affect dictionary, as well as the more recent Loughran

and McDonald Sentiment Word Lists [Loughran and McDonald, 2011a]. Both dictionaries

have seen widespread use in previous studies on textual sentiment and market.

Several preprocessing treatments were performed on the raw GI dictionary before it

was used to conduct content analysis:

1. Words in all the entries were converted into lower cases.

2. When multiple senses are defined for a word, the categories that are associated

with the most commonly-used sense were used. The most commonly-used sense

of a word in this case was identified as the sense that possesses the highest usage

probability3 among all the senses for the word. This served as a form of word sense

disambiguation procedure.

3. Only the ‘Positiv’ and the ‘Negativ’ categories were retained. Entries that belong to

neither categorises were discarded.

The above treatment leaves 3468 entries in the dictionary, of which 1559 were classified as

positive terms and the other 1909 were classified as negative terms.

The original master L&M dictionary contains 85131 entries. Preprocessing procedures

similar to the ones performed on the GI dictionary were applied to the L&M dictionary

except for the second step — the L&M dictionary does not distinguish among different

senses of the words, so the entries in the dictionary were taken as is. After the preprocessing,

there are 2709 entries in the dictionary, of which 354 are marked as positive terms and the

other 2355 marked as negative terms.

3The usage probabilities are supplied in the ‘Defined’ column of the raw dictionary table.
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5.5.4.1 Correlational Performances

In this section, I try to evaluate how well the GI and the L&M dictionaries capture the

sentiment of the words in a business news context compared to the methods developed in

this thesis. The idea behind the experiment design is comparable to that of the previous

experiments. The more accurate a sentiment proxy derived from the words defined in the

dictionary is able to correlates with the returns using news text, the better the sentiment

of the words are defined.

Unlike the approach developed in this thesis where statistical learning is used, the

content-analysis-based methods do not exploit the potential associations between the

language patterns and the target of prediction (i.e. returns) that exist in the data; instead

they relies solely on the external knowledge it is meant to capture (i.e. expert knowledge on

the sentiment connotations of the words). As such, predictions made from content analysis

with sentiment dictionaries are immune to over-fitting, so the correlational performances

obtained from such methods would better reflect the quality of the sentiment definitions

for the dictionaries.

The two sentiment dictionaries were used to annotate the texts in the news articles. A

word in a document was tagged as either ‘positive’ or ‘negative’, or omitted all together

if the word is not defined in the dictionary; the number of words fell into each category

is then counted and used as a proxy of sentiment. The correlational performance of the

sentiment proxy derived using content analysis was evaluated in the same way as in the

previous experiments, where a repeated random split cross-validation was conducted and

the correlations for each of the companies were then summarised using meta-analysis. The

set of feeds for random number generation used in this experiment is the same as the one

used in previous experiments so that the splits of training and validation sets for this

experiment are identical to that from the previous experiments.

The analyses of the correlational performances of the settings, similar to previous

experiments, are exhibited in box plots. As a baseline, the box plots in Figure 5.9b and

5.10b both seem to suggest that in general no significant correlation can be established

between the usage of sentiment-bearing words as defined in either of the two dictionaries

and the prices movements of the companies’ stocks when the shuffled dataset was used.

Several observations can be made based on the box plots:

1. For the ordered dataset (Figure 5.9a and 5.10a), it can be argued that usage of

negative words correlates significantly with past returns for both dictionaries, while

the impact of positive textual sentiment on past returns is marginal at best.

2. For both dictionaries, the negative sentiment series seem to correlate better with

past returns than with future returns (Figure 5.9a and 5.10a), which conforms

with the previous finding that retrospective language usage is more prominent than
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Figure 5.9: Summary of the correlational performances of models built with Content
Analysis using the GI dictionary (testing phases)

The two sets of box plots summarise the correlational performances of CA-based sentiment analysis
methods when the GI dictionary was used to extract the features for learning. Figure 5.9a shows the
results obtained with the ordered dataset; Figure 5.9b shows the results obtained by applying the same
procedure on the shuffled dataset.

prospective usage. Further statistical tests reveal that (Table 5.25).

3. A visual comparison between the two sub-plots for the Negative versus Past Return

configuration in Figure 5.9a and Figure 5.10a seems that sentiment proxies derived

from the L&M dictionary predicts past returns more reliably than the sentiment

series produced using GI’s definitions, as the meta-correlations are more concentrated

around −0.05. In comparison, the difference between the two sub-plots for Positive

versus Future Return does not seem to be significant.

Additional t-tests were conducted to examine both the absolute (i.e. versus baseline)

and relative correlational performances of the models trained with using words defined in

both dictionaries.

Table 5.25 summarises the t-tests used to verify the absolute effectiveness of the

content-analysis-based method when combined with either the GI or L&M dictionary

against shuffled baselines. It can be seen from results that the use of either dictionary can

produce models that outperform baseline models constructed with the shuffled dataset

when predicting past returns with negative sentiment series (p− value ≈ 0.00 for models

trained with GI and p− value ≈ 0.01 for models trained with L&M). The models trained
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(b) Shuffled dataset

Figure 5.10: Summary of the correlational performances of models built with Content
Analysis using the L&M’s sentiment word list (testing phases)

The two sets of box plots summarise the correlational performances of CA-based sentiment analysis
methods when using Loughran and McDonald’s sentiment word list was used to extract the features.
Figure 5.10a shows the results obtained with the ordered dataset; Figure 5.10b shows the results obtained
by applying the same procedure on the shuffled dataset.

with the L&M dictionary could also achieve significantly better correlational performances

than baseline models when associating future returns with negative sentiment series

(p− value ≈ 0.05); the models trained with the GI dictionary did not perform as well as

the one trained with the L&M dictionary on the same task, but the result in this case is

quite suggestive (p− value ≈ 0.11).

Table 5.26 shows the results from a set of t-tests that compare the average meta-

correlations achieved by models trained with words defined in the GI dictionary and those

achieved by models trained with the words defined in the L&M dictionary. The results

show that there is insufficient evidence to reject the null hypothesis that the average

meta-correlations achieved by models trained with the two dictionaries are the same. This

suggests that no significant difference in the two dictionaries’ ability to capture sentiment

from financial news were found.

I now move to compare the correlational performances achieved by content-analysis-

based methods with those achieved by the learning-based method developed in this thesis.

Table 5.27 summarises the results from a series of t-tests that are designed to compare

the correlational performances from models trained with word dependencies as features

and those obtained by content-analysis-based methods using the words defined in GI and
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Return Type Sent. Class t-stat. p-value

Past.Return pos -0.32 0.75
Future.Return pos -0.56 0.58
Future.Return neg -1.65 0.11

Past.Return neg -3.78 0.00

(a) GI: ordered versus shuffled

Return Type Sent. Class t-stat. p-value

Past.Return pos 1.17 0.26
Future.Return pos -0.90 0.38
Future.Return neg -2.07 0.05

Past.Return neg -2.89 0.01

(b) L&M: ordered versus shuffled

Table 5.25: Testing for significant differences between the average meta-correlations
achieved by content analysis methods when the ordered dataset was used and that
achieved when the shuffled dataset was used.

The null hypothesis in each of the test settings (i.e. rows) is that there is no significant difference between
the average meta-correlations achieved by the content-analysis-based method when used in conjunction
with the specified dictionary on an ordered dataset and that achieved with the same dictionary applied to
the shuffled dataset when predicting the corresponding return type (shown in the ‘Return Type’ column)
using the specified sentiment series (shown in the ‘Sentiment Class’ column).

Return Type Sent. Class t-stat. p-value

Future.Return neg 0.64 0.53
Future.Return pos 0.14 0.89

Past.Return neg -0.04 0.97
Past.Return pos -1.61 0.12

Table 5.26: Testing for significant differences between the average meta-correlations
achieved by the content analysis method when used with the GI dictionary and that when
the L&M dictionary was used

The null hypothesis in each of the test settings (i.e. rows) is that there is no significant difference between
the average meta-correlations achieved by the content analysis method when used with the GI dictionary
and that achieved with the L&M dictionary for predicting the corresponding return type (shown in the
‘Return Type’ column) using the specified sentiment series (shown in the ‘Sentiment Class’ column).

L&M as features respectively. From the results of the tests, one can see that the learning

method developed in this thesis was able to outperform content-analysis-based methods

combined with either dictionary in all tasks, except for when predicting past returns with

negative sentiment series.

5.5.4.2 Summary

In this experiment, I explored the correlational performances of content-analysis-based

methods for predicting past and future returns when used in conjunction with the GI and

the L&M sentiment dictionaries; I also compared the correlational performances achieved

by content-analysis-based methods with that achieved by the temporal sentiment learning

method developed in this thesis. My findings are:

1. For both the GI and the L&M dictionaries, the sentiment series derived from

negative word counts predicted past and future returns better than the baselines,
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Return Type Sent. Class t-stat. p-value

Future.Return propos 6.60 0.00
Past.Return retpos 6.14 0.00
Past.Return retneg -1.49 0.15

Future.Return proneg -3.18 0.00

(a) Temporal Sentiment Models versus GI

Return Type Sent. Class t-stat. p-value

Future.Return propos 5.05 0.00
Past.Return retpos 3.12 0.00
Past.Return retneg -1.25 0.22

Future.Return proneg -2.14 0.04

(b) Temporal Sentiment Models versus L&M

Table 5.27: Testing for significant differences between the average meta-correlations
achieved by temporal sentiment models and that achieved by content analysis methods
used with GI and L&M dictionaries

The null hypothesis in each of the test settings (i.e. rows) is that there is no significant difference between
the average meta-correlations achieved by the temporal sentiment learning method developed in this
thesis and that achieved by content-analysis-based method when used with the GI or L&M dictionary
for predicting the corresponding return type (shown in the ‘Return Type’ column) using the specified
sentiment series (shown in the ‘Sentiment Class’ column). Note that since content-analysis-based methods
produce only contemporaneous sentiment series (i.e. no distinction between ‘retrospective’ and ‘prospective’
sentiment), the positive sentiment series produced by the content-analysis-based methods served as both
the ‘retrospective positive’ and the ‘prospective positive’ series during the comparisons; likewise, the
negative sentiment series produced by the content-analysis-based methods served as both the ‘retrospective
negative’ and the ‘prospective negative’ series during the comparisons.

whereas the correlations between positive sentiment series and the movements of the

market are statistically insignificant.

2. For both the GI and the L&M dictionaries, the negative sentiment series predicted

past returns better than future returns. This could be due to biases in the designs

of the dictionaries (e.g. the L&M dictionary registers about 7 times more negative

words than positive words); the difference may also indicate that retrospective usage

of language is in general more prevalent than prospective usage of language.

3. The negative sentiment series derived from the words defined in the L&M dictionary

correlated with past returns more strongly than with the sentiment series derived

from the words defined in the GI dictionary. This may be due to the fact that the

L&M dictionary was originally built to target texts released under business and

financial contexts (i.e. analysing 10-K annual reports filed by listed companies, which

summarise the companies’ financial performances in the previous year), and thus

paid additional attention to the accuracy of retrospective language patterns.

4. On average, the supervised EM learning algorithm developed in this thesis outper-

formed content-analysis-based methods when used together with either the GI or

the L&M dictionary in terms of their correlational performances.

While it had been demonstrated that the algorithms and systems developed in this

thesis outperformed content-analysis-based methods in predicting firm-level stock price

movements, it should be recognised that content-analysis-based methods have their own
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advantages. Unlike machine-learning-based methods which require large volumes of data

to operate, small and domain-specific dictionaries used in content-analysis-based methods

can be compiled relatively easily when expert knowledge is available. Automatic learning

of sentiment-laden language patterns can complement dictionary-based content analysis

methods by providing an approach to enable fast extension of specialised dictionaries

using domain corpus; such dictionaries may then be used to override the general sentiment

dictionaries such as the GI or improve existing manually complied specialised dictionaries.

5.6 Summary of Results

In this case study, I first explored the behaviour of the supervised EM learning algorithm

under various settings. It has been shown that the algorithm was able to learn word

distributions that reflect the sentiment connotations of lexical items in terms of their

impacts on or responses to firm-level stock price movements (Experiment 1). It was also

understood that the supervised EM algorithm is susceptible to the problem of over-fitting

— the algorithm can be so aggressive in establish associations that it will find correlations

where none existed. To overcome this issue, I evaluate the correlational performances of

the trained models not on absolute baselines (i.e. neutral correlations), but on ‘background

correlations’ that are achievable by the same model trained on shuffled datasets. It was

shown in Experiment 1 that the method developed in this thesis was able to produce

models that outperform the baselines when correlating predicted sentiment with returns.

This suggests that the method developed in this thesis is effective in learning sentiment

orientations of language patterns in business and financial contexts. It was also found that

better correlational performances could be achieved when stock returns from the previous

days were used to supervise the learning. This suggest that it is often the movements of

stock prices that influence news sentiment rather than the other way around.

When the temporal aspects of sentiment were introduced into the models, it was

found that the retrospective usage of language is more prevalent than prospective usage

of language in business news reporting (Experiment 2). Modelling news articles as

a mixture of retrospective and prospective sentiment, however, neither improved nor

diminished the correlational performances of the models compared to those trained only

with contemporaneous returns.

Another question raised at the beginning of the case study was whether word depen-

dencies could capture sentiment and temporality in the news text better than unigrams. In

Experiment 3, it was found that no significant differences were observed when comparing

the correlational performances achieved by models trained over word dependencies and

models trained with unigrams, except for cases where prospective sentiment series were

used to predict future returns of the stock prices. When predicting future returns of
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firm-level stocks, models trained using unigrams as features outperformed models trained

over word dependencies. It was also noted that, in such cases, models trained with only

verbs and adjectives performed as well as models trained with unigrams of all part-of-

speech classes, which suggests verbs and adjectives are the main contributors of language

sentiment in English. In additional, it was argued that much of sentiment connotations

for retrospective word dependencies comes from their verbal component. Lastly, it was

recognised that while word dependencies lead to inferior correlational performances when

used to predict future returns, using them as features tend to produce in more interpretable

language pattern distributions for prospective sentiment classes.

In the last experiment, I compared the correlational performances between the sen-

timent learning algorithms with content-analysis-based sentiment classification method

(Experiment 4). Two popular sentiment dictionaries were tested. One is the General In-

quirer affect dictionary (abbreviated as GI) and the other is the Loughran and McDonald’s

sentiment word list (abbreviated as L&M). Meta-analysis of correlations revealed that

content analyses using either dictionary yielded was able to produce sentiment series that

correlates significantly with past returns, reaffirming the findings from previous studies by

Tetlock [2007]. In addition, the L&M sentiment word list was able to capture retrospective

sentiment more reliably than the GI dictionary; this may be due to the fact that the

L&M dictionary was specially designed to analyse retrospective materials (i.e. 10-K forms).

The correlational performances obtained from content analysis methods using either two

dictionary was compared with that achieved by models learnt using the supervised EM

algorithm developed in this thesis. It was noted that the models learnt by the methods

developed in this thesis were able to achieve superior correlational performances than that

content-analysis-based methods when used with either dictionary.
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Conclusion and Future Work

6.1 Concluding Remark

In this thesis, I introduced a new notion called sentiment temporality to the traditional

modelling of textual sentiment in business and financial news. Traditional methods that

explore the interactions between news sentiment and market behaviours have attempted

to establish a causal link between news sentiment and market behaviours. This study

builds on the existing methods and hypothesise that it is possible to distinguish between

two types of news sentiment: (i) the retrospective news sentiment, which refers to the

textual sentiment that is associated with recounts of past events in the market; (ii) the

prospective news sentiment, which refers to the textual sentiment in business and financial

news that is associated with speculations and projections about the future developments

of the market. The news sentiment space is therefore expanded to contain four possible

values: retrospective negative, retrospective positive, prospective negative, and prospective

positive.

It was argued in this thesis that the dynamics between news sentiment and the market

can be better captured through the introduction of this new notion of news sentiment

temporality. I theorise that retrospective news sentiment should pose limited effects on

the future development of the market due to the fact that (i) it reflects information that

had already been in the prices, and (ii) the market is so efficient to the extent that past

prices cannot be used to predict future prices. Prospective news sentiment, on the other

hand, should be largely independent from historical prices; instead, it may have a potential

impact on the future movements of the market.

The main contribution of this research is a method for the automatic discovery of

linguistic realisations of the different types of temporal news sentiment from raw business

and financial news texts. In this method, it is assumed that (i) each of the four temporal

sentiment classes is characterised by a distribution over lexical items, which represent the

linguistic realisations of the corresponding temporal sentiment; (ii) an news article can be

151
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modelled as a mixture of the four lexical item distributions; (iii) if a news article expresses

primarily retrospective sentiment, it should be labelled using the market performances in

its past; similarly, if a news article expresses primarily prospective sentiment, then it should

be labelled using the market performances in its future. To infer the distributions of lexical

items for each temporal sentiment class, the method adopts a supervised expectation

maximisation algorithm, where the supervision is enforced by market data such as stock

and index returns.

Another contribution from this thesis is a software system that implements the method.

This system is comprised of two components. The first component is a general text

analytic platform named CiCui, which uses Stanford CoreNLP toolkit to prepares raw

documents with natural language processing techniques (e.g. tokenisation, part-of-speech

tagging, dependency parsing, etc.) and transform a corpus into a positional inverted index.

The second component, TSMiner, is a workflow implemented in the KNIME analytic

platform. The TSMiner system takes the index built by CiCui and carries out the actual

computations as specified by the algorithms.

Finally, a case study was conducted utilising the system to answer the research questions

raised at the beginning of the thesis. The case study explored firm-level interactions between

temporal news sentiment and the stock prices using a corpus containing business news

articles on 16 of the S&P 500 companies were collected.

In general, it was concluded that the method developed in this thesis is indeed capable

of extracting the linguistic realisations for the different types of temporal news sentiment.

The extracted distributions can have many applications. It may be used to quickly gain

insight into the operation of specific companies, or be used to automatically compile

domain-specific sentiment dictionaries for use with content analysis.

Further analysis found there is significant evidence that it is the changes in the market

that led to the changes in news sentiment. This is evidenced by the fact that the usage of

language patterns associated with retrospective sentiment is more prevalent than those

associated with prospective sentiment. Additional experiments were conducted to compare

the effectiveness of two lexical structures, word dependencies and unigrams, in their

abilities to capture temporal news sentiment. Analysis showed that the word dependencies

seem to be able capture prospective sentiment better than unigrams, while models trained

from unigrams were able to produce sentiment predictions for unseen documents that

better correlated with returns. It was also found that the sentiment models produced by

the method developed in this thesis slightly outperforms content analysis methods using

either the GI or the L&M dictionary in terms of their ability to predict news sentiment

for unseen news articles.
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6.2 Limitations and Future Work

6.2.1 Interdependency between Sentiment

A major assumption made in this thesis regarding the relationship between business news

and market behaviour is that the news articles are all considered independently in terms

of their impact on the market — that is, it was assumed:

1. that news articles published on the same date are independent. More specifically, the

sentiment conveyed in the text of a news article is responsible for all the price changes

happened in the day it was published, disregarding the fact that other news (if any)

released on the same day may also influence the market. Also, the sentiment signals

predicted for each of the news articles published on the same day are aggregated

in a linear fashion; in reality, it is conceivable that the marginal contribution an

additional news article makes to the overall sentiment of that day will decreases (e.g.

when two news articles are published on a certain story on the same day or in a

short time window, the second article may impact the overall sentiment less than

the first news article).

2. that the news articles published on consecutive days are independent, namely, the

news sentiment today will have no effect on the news sentiment tomorrow. In reality

this may not always be the case; a series articles may cover the same story for several

days or even weeks. That being said, subsequent news coverage may not have the

same level of influence on the market than the initial report.

One way to lift the first limitation may be to introduce an additional daily sentiment

variable into the model. This daily sentiment variable would present an aggregation of the

day’s overall news sentiment, and it describes the a priori belief about how probable a

news article published on that day would belong to the sentiment classes of interest. The

generation of past and future returns shall be governed directly by the daily sentiment

rather than by the sentiment class of each individual article.

The second limitation can be resolved by introducing Markov properties into the model.

A system is said to possess Markov property if the conditional probability distribution of

the future state of the system depends only on its current state. With the introduction of

daily sentiment, it is possible to specify in the model such interday dependency between

daily sentiments from consecutive days.

The theoretical aspects of the above two solutions may be specified using Bayesian

hierarchical modelling, or more generally, Bayesian networks. The computational aspects

of the solution, which involves inference over complex Bayesian networks, is typically

approached through Markov Chain Monte Carlo methods.
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6.2.2 Deriving EM Estimators for Stable Distributions

Another problem with the current specification of the algorithm is that the parameters

for the stable distributions which govern the ‘generation’ of past and future returns from

sentiment have to be determined manually beforehand. While this practice does reflect

the ‘supervised’ nature of the algorithm, it can cause a number of problem. Specifically,

as Table 5.6 has shown, the distributional properties of the stock returns vary significantly

among different companies; using a single set of distributions to supervise the learning of

sentiment for all companies will lead to reasonable solutions, but the estimated parameters

(e.g. vocabulary distributions) will not be optimal.

One solution would be to manually examine the distribution properties of the return

series for each company and determine the parameters for the distributions using heuristics.

A better solution, however, would require the maximum likelihood estimators for the

parameters be derived analytically. Literature on the derivation of maximum likelihood

estimators for stable distributions is sparse [DuMouchel, 1973, Nolan, a,b]. Theoretically,

it is possible to approximate the posterior distributions for the parameters within the

Bayesian inference framework using Markov Chain Monte Carlo methods (e.g. through

Metropolis-Hastings sampling, as the p.d.f. for stable distribution can be derived from its

characteristic functions for specific cases), but the computational cost for large dataset

may prove prohibiting.

6.2.3 Higher Data Frequency

The rate at which news announcements are absorbed into the prices is important as well.

Past studies have suggested that news is absorbed in stock prices in a matter of hours

[Muntermann and Guettler, 2007, Koppel and Shtrimberg, 2004]. The results from the

experiments have suggested that prospective sentiment at daily level is very weak when

compared to retrospective sentiment. It is hoped that by exploiting high frequency news

and market data, the algorithm will be able to reveal more prospective usages of the

language.

The difficulty in moving to high frequency dataset is mainly that such data is not

widely available. High frequency market data (e.g. 5-minute or even bid-ask price data)

can be acquired or purchased from credible sources, yet the stories published on most

newspapers are often delayed for hours if not days; whatever effect the news had would

have already been absorbed into the price. One possible news source for this purpose

would be commercial newswires (e.g. Business Wire, Marketwire, PR Newswire, etc.).

Since these agencies usually have access to first-hand information and also profit on

the time-sensitivity of their news stories, it is likely that they would release news more
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promptly than newspapers1. Social media platforms such as Twitter and Facebook can

also be used as real-time news source. Certain literature has investigated the relation

between the sentiment conveyed in Twitter messages and the performance of stock market

[e.g. Bollen et al., 2011, Zhang et al., 2011, Oliveira et al., 2013, Qasem et al., 2015]2.

6.2.4 Back-testing

Systems that implement the methods developed in this thesis for trading purposes are likely

to achieve prediction performances lesser that presented in Chapter 5 due to the nature

of statistical machine learning. While the repeated random cross-validation procedure

is useful for evaluation purposes, it hardly reflects what happens in real world trading

scenarios. In many cases, incidents that sway the market can be unprecedented and unique,

rendering statistical learning based on such events ineffective; even the occurrences from

recurring events (e.g. singing contract, employee strike, merges and acquisition, etc.) may

differ from each other in profound ways, making it difficult for the learning algorithm to

track correlation patterns.

However, it would be interesting to see a trading strategy can be constructed exploiting

the news sentiment extracted by the methods developed in this thesis — the effectiveness

of the method can be further validated if such strategy is able to achieve improved

performance compared to benchmarks.

1In fact, newspapers and other news media sometimes directly purchase first-hand news from commercial
newswire services.

2While the statistical methods used and claims made in the study by Bollen et al. [2011] had been
widely criticised and thus deemed controversial, it is still noted here for comprehensiveness.
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Appendix A

Derivation of The EM Algorithm

This appendix aims to explain the mechanism that underlies the expectation maximi-

sation algorithm. The discussions in this chapter are mainly inspired by Minka, Neal

and Hinton [1999], Bishop [2007] as well as a number of other sources. The math-

ematical notations used in this chapter inherits that used in Section 3.3. For the

sake of convenience, some of the notations developed in Section 3.3 are reiterated here:

X the incomplete dataset containing only the observations

Z the hidden values, which governs the ‘generation’ of the observations

X,Z the complete dataset with the observations and hidden values combined

θ the parameters that govern the model of interest

A.1 Motivation

The overall goal of the algorithm is to find the θ that maximises the likelihood function

p (X | θ) — that is, the maximum likelihood estimator for θ. The challenge here is that

direct optimisation of the likelihood function p (X | θ) with respect to the parameters may

not yield closed-form solutions as was shown for the case of Gaussian mixture model. To

see this, consider the example of a mixture distribution comprised of multivariate Gaussian

distributions. The log-likelihood function for a sequence of identically and independently

distributed observations X drawn from a such a mixture can be written as:

ln p (X | π,µ,Σ) = ln
N∏
n=1

K∑
k=1

πkN (xn | µk,Σk) (A.1)

=
N∑
n=1

ln

{
K∑
k=1

πkN (xn | µk,Σk)

}
(A.2)

where πk, µk and Σk are the weight, mean vector and variance matrix for the k-th

constituent Gaussian distribution respectively; N and K are the total number of observa-

tions and mixture components respectively. The probability density function for the k-th

159
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Gaussian distribution, namely, N (xn | µk,Σk), is defined as:

N (xn | µk,Σk) =
1

(2π)D/2
1

|Σk|1/2
exp

{
−1

2
(xk − µk)

T Σ−1
k (xk − µk)

}
(A.3)

To obtain the maximum likelihood estimator for µk, first take the derivative of

Equation A.2 with respect to µk:

∂ ln p (X | π,µ,Σ)

∂µk

=
∂
∑N

n=1 ln
{∑K

k=1 πkN (xn | µk,Σk)
}

∂µk

(A.4)

=
N∑
n=1

∂ln
{∑K

k=1 πkN (xn | µk,Σk)
}

∂µk

(A.5)

=
N∑
n=1

1∑K
j=1 πjN

(
xn | µj,Σj

) ∂∑K
k=1 πkN (xn | µk,Σk)

∂µk

(A.6)

=
N∑
n=1

1∑K
j=1 πjN

(
xn | µj,Σj

) ∂πkN (xn | µk,Σk)

∂µk

(A.7)

=
N∑
n=1

πkN (xn | µk,Σk)∑K
j=1 πjN

(
xn | µj,Σj

) ∂ − 1
2

(xk − µk)
T Σ−1

k (xk − µk)

∂µk

(A.8)

=
N∑
n=1

πkN (xn | µk,Σk)∑K
j=1 πjN

(
xn | µj,Σj

)Σ−1
k (xn − µk) (A.9)

The transition from Equation A.6 to equation A.7 exploited the fact that all the terms

in the sum except for πkN (xn | µk,Σk) become zero after the differentiation since they

do not contain µk. This observation will be used again when deriving the maximum

likelihood estimators for the temporality-enhanced model in later sections.

Set Equation A.9 to zero:

0 =
N∑
n=1

πkN (xn | µk,Σk)∑K
j=1 πjN

(
xn | µj,Σj

)Σ−1
k (xn − µk) (A.10)

and trying to solve for µk would yield:

µk =
1

Nk

N∑
n=1

πkN (xn | µk,Σk)∑K
j=1 πjN

(
xn | µj,Σj

)xn (A.11)

where

Nk =
N∑
n=1

πkN (xn | µk,Σk)∑K
j=1 πjN

(
xn | µj,Σj

) (A.12)
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The maximum likelihood estimators for Σk and πk can be derived in a similar fashion:

Σk =
1

Nk

N∑
n=1

πkN (xn | µk,Σk)∑K
j=1 πjN

(
xn | µj,Σj

)(xn − µk) (xn − µk)
T (A.13)

πk =
Nk

N
(A.14)

None of the expressions A.11, A.13, and A.14 do not constitute a closed-form solution

to the parameters due to (i) their inter-dependency between the parameters through the
πkN (xn|µk,Σk)∑K

j=1 πjN(xn|µj ,Σj)
term which is commonly referred to in the literature as the responsibility

mixture component k takes when generating the observation xn; this term will be denoted

by γnk hereafter; (ii) the lack of closed-form solution to equations of form x = ex.

In the case of mixture models, the complexity deriving the maximum likelihood

estimator may be sometimes reduced significantly by introducing a hidden variable z

for each observation x. The variable governs which component distribution has actually

generated the observation x. z takes binary vectors of dimension K as its values; among

the K elements in z, exactly one of them equals 1 and all the other elements are 0 (i.e.

zk ∈ {0, 1} and
∑K

i=1 zk = 1, where zk denotes the k-th element in z); z can be therefore

seen as an indicator random variable with K possible states; also, z is defined in such a

way that:

p (zk = 1) = πk (A.15)

In other words, the value of x is generated from the k-th component of the mixture if

and only if the k-th element in z equals 1.

With the newly defined variable x, it is time to revisit the maximisation problem of

the log-likelihood function for mixture models. Using basic identities of probability, the

log-likelihood function of a model whose parameters are denoted by θ can be expanded as

follows:

ln p (X | θ) = ln

{∑
Z

p (X,Z | θ)

}
where Z represents one particular realisation of the KN possible configurations of

the hidden states for the entire dataset; K is the total number of components in the

mixture, N is the total number of observations in X. As have been shown earlier, the

difficulty with the optimisation of this function arises because the summation over all the

possible configurations of Z prevents the logarithm from being applied directly on the

likelihood functions for each individual components. Now suppose that the particular

configuration of the hidden variables for each observation is known, then it is possible to rid
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of the summation over Z and work directly on the log-likelihood of the complete-data (i.e.

{X,Z}) ln p (X,Z | θ). Take the previously discussed Gaussian mixture as an example,

the maximum likelihood estimates for a particular component’s parameters can be derived

by first collecting all the observations that was ‘generated’ by that component and then

applying the usual maximum likelihood estimators to those observations only, while the

prior probability distribution over the components can be derived simply by computing

the relative percentages of the observations assigned to each of the components.

In practice, however, the particular configuration of the hidden variable that generated

x is unknown, so it is not possible to work directly on the complete-data log-likelihood

function. The expectation maximisation algorithm overcomes this problem by itera-

tively approximating a local maximum of the incomplete-data log-likelihood function

(i.e. ln p (X | θ)). The algorithm alternates between two steps: the E step (expectation

step) and the M step (maximisation step), thus the name. In the E step, the algorithm

prepares the expected complete-data log-likelihood with respect to the posterior distri-

bution for Z given the data and the parameters from the previous iteration, namely,

p
(
Z | X,θold

)
. More specifically, the expectation of the complete-data log-likelihood, often

denoted Q
(
θ,θold

)
, is defined by

Q
(
θ,θold

)
=
∑

Z

p
(
Z | X,θold

)
ln p (X,Z | θ) (A.16)

The subsequent M step involves the maximisation of this expectation with respect to

the parameters in the model:

θnew = argmax
θ
Q
(
θ,θold

)
(A.17)

The updated maximum likelihood estimates θnew become the θold for the next E step.

A.2 Principle of the EM algorithm

The basic principle of the EM algorithm is to iteratively construct a lower bound for the

likelihood function p (X | θ) and improving it until the θ that maximises the lower bound

function would also locally maximises the target likelihood function.

The lower bound of the original likelihood function p (X | θ) is derived through the use

of Jensen’s inequality. The Jensen’s inequality states that, for a real continuous concave

function f , there is:

f

(∑
x∈X

p (x) g (x)

)
≥
∑
x∈X

p (x) f (g (x)) (A.18)
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provided that

p (x) > 0 and
∑
x∈X

p (x) = 1 (A.19)

Note that A.19 implies that function p (·) defines a probability distribution over x.

For the derivation of the EM algorithm, consider the case where f (·) corresponds to the

natural logarithm function ln (·) while g (x) has a positive range:

ln
∑
x∈X

p (x) g (x) ≥
∑
x∈X

p (x) ln g (x) (A.20)

The inequality in A.20 has an intuitive interpretation. Pulling the logarithm function out

from the summation in the right hand side of the inequality:

ln
∑
x∈X

p (x) g (x) ≥ ln
∏
x∈X

g (x)p(x) (A.21)∑
x∈X

p (x) g (x) ≥
∏
x∈X

g (x)p(x) (A.22)

which states that the arithmetic mean is always greater or equal to the geometric mean

for a certain dataset. The key insight that relates to the EM algorithm here arises

from Equation A.20. More specifically, consider the following decomposition for the

log-likelihood function of the incomplete dataset:

ln p (X | θ) = ln
∑

Z

p (X,Z | θ) (A.23)

= ln
∑

Z

q (Z)
p (X,Z | θ)

q (Z)
(A.24)

where q (Z) defines an arbitrary probability distribution over Z. If one corresponds q (Z)

and p(Z,X|θ)
q(Z)

to p (x) and g (x) in A.20 respectively, then one can apply Jensen’s inequality

to the above expression and get:

≥
∑

Z

q (Z) ln
p (X,Z | θ)

q (Z)
(A.25)

which constitutes the lower bound for the log-likelihood function.

Note that this lower bound is a function of both θ and q (·) (i.e. a functional of q) —

that is, the value of the lower bound varies not only depending on the value of θ, but

also the choice of the distribution q (·) over Z. The lower bound function can be seen as a

surface on a 3-dimensional space, which is illustrated by Figure A.1.
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Figure A.1: A schematic visualisation of the lower bound function L (θ, q (·)) for the
log-likelihood function of the incomplete dataset p (X | θ)

The x and y axes represent the domains for q (·) and θ respectively. The paths originate from the q (·)
axis visualise schematically the choices of q (·) that corresponds to p (Z | X,θ) — the paths constituting
the mesh on the surface are in fact functions of θ: for different instances of θ, the q (·) which maximises
the lower bound function varies; similarly, the θ that maximises the lower bound also vary based on the
q (·) chosen.

The lower bound function A.25 possesses two important properties. First is that

for a given θ, the equality holds if and only if q (Z) = p (Z | X,θ). This can be shown

by optimising the lower bound with a Lagrange multiplier enforcing the constraint that∑
Z q (Z) = 1 with respect to the q (·) function:

∂λ (1−∑Z q (Z)) +
∑

Z q (Z) ln p(X,Z|θ)
q(Z)

∂q (Z)
= −λ+ ln p (X,Z | θ)− ln q (Z)− 1 (A.26)

Setting the derivative to 0:

0 = −λ+ ln p (X,Z | θ)− ln q (Z)− 1 (A.27)
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Re-arrange the terms and apply the exponential function to both sides:

eλ+1q (Z) = p (X,Z | θ) (A.28)

Sum over all possible configurations of Z to elinimate q (Z):

eλ+1
∑

Z

q (Z) =
∑

Z

p (X,Z | θ) (A.29)

Applying logarithms to both sides:

λ+ 1 = ln
∑

Z

p (X,Z | θ) (A.30)

Substitue λ+ 1 back into the equation:

0 = − ln
∑

Z

p (X,Z | θ) + ln p (X,Z | θ)− ln q (Z) (A.31)

Re-arrange the terms, apply the exponential function on both sides and one reaches the

solution for q (Z) that maximises the lower bound function:

q (Z) =
p (X,Z | θ)∑
Z p (X,Z | θ)

(A.32)

= p (Z | X,θ) (A.33)

which essentially states that the maximal value of the lower bound function for a specific

θ occurs when q (Z) = p (Z | X,θ); if both the (hyper-)surfaces corresponding to the

lower-bound function A.25 and the likelihood function are plotted, the former shall touch

the later when this maximum is achieved (i.e. the equality holds).

The second property is that, if the lower bound function has a local maximum at a

particular pair of θ and q (Z), then the (log-)likelihood function also has a local maximum

at θ. This can be shown by noting the following:

1. If the lower bound reaches a local maximum at (θ, q (Z)), then it must be the case

that q (Z) = p (Z | X,θ) as has proved by the first property — if q (Z) 6= p (Z | X,θ)

then there must exist another θ, q (Z) pair which maximises the lower bound.

2. When the equality holds (i.e. q (Z) = p (Z | X,θ)), it can be shown that the derivative

of the lower bound function with respect to θ is identical to that of the actual (log-
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)likelihood function. For the log-likelihood function for the incomplete dataset:

∂ ln p (X | θ)

∂θ
=
∂ ln

∑
Z p (X,Z | θ)

∂θ
(A.34)

=

∑
Z

∂p (X,Z | θ)

∂θ∑
Z p (X,Z | θ)

(A.35)

=

∑
Z p (X,Z | θ)

∂ ln p (X,Z | θ)

∂θ∑
Z p (X,Z | θ)

. (A.36)

=
∑

Z

p (Z | X,θ)
∂ ln p (X,Z | θ)

∂θ
(A.37)

And for the lower bound when q (Z) = p (Z | X,θ):

∂
∑

Z q (Z) ln p(X,Z|θ)
q(Z)

∂θ
=
∑

Z

∂ {q (Z) ln p (X,Z | θ)− q (Z) ln q (Z)}
∂θ

(A.38)

=
∑

Z

q (Z)
∂ ln p (X,Z | θ)

∂θ
(A.39)

=
∑

Z

p (Z | X,θ)
∂ ln p (X,Z | θ)

∂θ
. (A.40)

In other words, when the equality holds, the tangent of the lower bound func-

tion equals that of the likelihood function’s. It then follows that the local max-

imums/minimums of both functions should occur at the same θs provided that

q (Z) = p (Z | X,θ).

3. It follows that when the lower bound reaches a local maximum at (θ, p (Z | X,θ)),

the value of the derivative of the (log-)likelihood function with respect to θ must be

the same as that of the lower bound function — which equals zero; this implies that

the original likelihood function also reaches its local maximum.

With the two properties combined, the optimisation of the (difficult-to-optimise) log-

likelihood function for the incomplete dataset with respect to θ can be re-formulated

into the optimisation of the (easier-to-optimise) lower bound function with respect to θ

and q (Z). Traditionally, such multi-variable maximisation can be carried out by taking

taking the partial derivatives for each variable, setting them to zero and solve for the

roots; however, in our case, taking the first-order partial derivatives and setting them to

zero result in a non-linear system, whose closed-form solutions are not available. It is

therefore necessary to resort to other optimisation methods — in this case, coordinate

ascent. Coordinate ascent (or descent, if the target function is to be minimised rather than

maximised) attempts to find the local extrema of a function by iteratively updating each
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of the variables with values that maximises/minimises the target function while holding

the other variables’ values fixed, beginning with randomly initialised variable values; every

time such a new value is obtained for the variable being updated, it replaces the previous

value of that variable and the procedure is repeated for the next variable in line. Formally,

the algorithm is described by the following pseudo-code:

1: procedure CoordinateAscent(a continuous function f)

2: t← 1

3: Randomly initialise θt1,θ
t
2, . . . ,θ

t
K

4: repeat

5: for i← 1, K do

6: θt+1
i ← argmaxθi

f
(
θt+1

1 ,θt+1
2 , . . . ,θt+1

i−1,θi,θ
t
i+1, . . . ,θ

t
K

)
7: end for

8: t← t+ 1

9: until θt1,θ
t
2, . . . ,θ

t
K or f

(
θt1,θ

t
2, . . . ,θ

t
K

)
converges

10: end procedure

Specifically to the EM algorithm, there are only two variables (i.e. K = 2): θ and q (·);
applying coordinate ascent to the lower bound function gives rise to the E and M steps in

each iteration of the algorithm:

E Step Maximise the lower bound function with respect to q (Z):

q (Z)t+1 = argmax
q(Z)

L
(
θt, q (Z)

)
(A.41)

= p
(
Z | X,θt

)
(A.42)

M Step Maximise the lower bound function with respect to θ:

θt+1 = argmax
θ
L
(
θ, q (Z)t+1) (A.43)

= argmax
θ

∑
Z

q (Z)t+1 ln
p (X,Z | θ)

q (Z)t+1 (A.44)

It is not difficult to see that the lower bound function (i.e. L (θ, q (Z))) of the incomplete

dataset is guaranteed to increase monotonously with every iteration of the EM algorithm;

as a result, the lower bound will eventually converge at a local maximum, and thus

locally maximising the (log-)likelihood function as well, as dictated by the second property

described above.

In practice, the maximisation in the M step is usually carried out by taking derivatives

of the lower bound function with respect to θ, setting it zero and solving for roots.
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Observed that:

∂
∑

Z q (Z)t+1 ln p(X,Z|θ)

q(Z)t+1

∂θ
=
∑

Z

∂q (Z)t+1 ln p (X,Z | θ)

∂θ
− ∂q (Z)t+1 ln q (Z)t+1

∂θ
(A.45)

=
∂
∑

Z q (Z)t+1 ln p (X,Z | θ)

∂θ
(A.46)

meaning that the M step can be simplified as:

θt+1 = argmax
θ

∑
Z

q (Z)t+1 ln p (X,Z | θ) (A.47)

= argmax
θ

∑
Z

p
(
Z | X,θt

)
ln p (X,Z | θ). (A.48)

The expression
∑

Z p
(
Z | X,θt

)
ln p (X,Z | θ) is referred to as the Q

(
θ,θold

)
function

in Chapter 3.

The EM algorithm that has been developed so far produces maximum likelihood

estimators for models with hidden variables. It is also possible to derive maximum a

posteriori estimators (MAP estimators for short) for the models. For MAP estimations, a

prior distribution over the model’s parameter p (θ) is introduced; instead of maximising

the likelihood function p (X | θ), the algorithm is adapted to maximise the posterior

distribution with respect to the parameter θ:

θMAP = argmax
θ

p (θ | X) (A.49)

= argmax
θ

p (X | θ) p (θ)∑
θ p (X | θ) p (θ)

(A.50)

= argmax
θ

p (X | θ) p (θ) (A.51)

With this view, the parameter of the model (i.e. θ) can itself be considered a random

variable. It can be shown that the E step and the M step should be modified for the MAP

version of the algorithm accordingly:

E Step Maximise the lower bound function with respect to q (Z):

q (Z)t+1 = argmax
q(Z)

L
(
θt, q (Z)

)
(A.52)

= p
(
Z | X,θt

)
p
(
θt
)

(A.53)
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M Step Maximise the lower bound function with respect to θ:

θt+1 = argmax
θ
L
(
θ, q (Z)t+1) (A.54)

= argmax
θ

∑
Z

q (Z)t+1 ln
p (X,Z | θ) p (θ)

q (Z)t+1 (A.55)

In the MAP case, the Q
(
θ,θold

)
function for the M step would also contain the prior

distribution for θ:

Q
(
θ,θold

)
=
∑

Z

p
(
Z | X,θt

)
{ln p (X,Z | θ) + ln p (θ)} . (A.56)
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