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Abstract

The cloud computing paradigm has recently become an increasing popular method for the

delivery of internet services. While the increased utilisation of the cloud has made it easier

for cloud operators to recover their capital investment further work can be done to maximise

profits. The cost of constructing a cloud is considerable (hundreds of millions of Euro) and

the operating cost is also significant (tens of millions of Euro annually). Cloud operators can

attempt to ensure that their capital investments are recovered by lowering operating costs and

using mechanisms which endeavour to maintain high utilisation.

In this dissertation we begin by examining methods which cloud operators can use to

control bandwidth utilisation to ensure high utilisation. Fixed cost pricing is more desirable to

enterprises and we examine the use of distributed rate limiting to achieve this in the cloud. In

addition, some clouds are public environments and as such mechanisms that ensure that each

user receives a fair share of the bandwidth available are useful in maintaining quality of service

levels. We propose the use of a dropping mechanism to achieve this and compare it with the

established token bucket mechanism.

We then shift our attention to investigate methods which cloud operators can use to

lower the operational costs. Firstly we propose algorithms to lower cooling costs while ensuring

all demand is serviced. Data centres generate a lot of heat and this must be removed to prevent

damage to equipment. Some data centres are excessively cooled to cater for worst-case airflows.

By equalising the inlet temperature of server racks within a data centre we attempt to lower

the cooling cost. Secondly we examine algorithms to lower carbon emissions while maintaining

a reasonable Quality of Service (QoS) level. The carbon intensity of electricity suppliers, which

is the carbon emitted to produce a given amount of electricity, varies in different geographical

regions. Our work formulates the operation of the cloud as an optimisation problem and

applies the subgradient method to minimise the combination of average service request time and

carbon emissions. Finally we propose an algorithm which uses Voronoi partitions to minimise

a function which encompases the electricity cost, carbon emissions and average service request

time. Both the electricity cost and carbon emissions are affected by the cooling design used

at the data centre and we also incorporate this in our simulations in this section. We gather

carbon intensity, electricity price and latency data for a cloud which has data centres in USA

and Europe (similar to a popular commercial cloud). Our work then utilises this data and

examines how this algorithm can be used to achieve a variety of goals such as minimising

carbon emissions, electricity cost and average service request time.
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Chapter 1

Introduction

Recently the cloud computing paradigm has become an increasingly popular method for the

delivery of internet services. Of particular interest is the establishment of large public clouds

with data centres in different geographical locations. A cloud service which services a globally

distributed user base and operates in different geographical regions has numerous advantages

such as reduced latency, increased data transmission rates and improved redundancy. The de-

sign of cloud computing architectures gives rise to a number of relatively new research questions

which are the subject of attention in the research community. The objective of this work is to

consider and provide solutions to some of these.

In order to function economically the cloud operator must ensure that cloud users are

receiving a reasonable quality of service (QoS). A basic question is how QoS can be delivered

while at the same time keeping costs low. Tuning knobs which are at the disposal of the designer

include: bandwidth allocation; geographical distribution of load; cooling; and many others, all

of which can be adjusted to keep costs low, subject to meeting a minimum QoS requirement.

Two basic tools which can aid the cloud operator to control the cloud are rate limiting and

load balancing. Rate limiting is the imposition of an artificial limit on the bandwidth of a user.

Rate limiting can be used to offer a fixed cost price for traffic by placing an artificial limit on

the rate of traffic. Load balancing is used to determine how to distribute load across multiple

resources to achieve various goals. In the following chapters we attempt to show how these

tools can be used with mathematical analysis to maintain a reasonable QoS, enforce desirable

pricing schemes and lower operational costs to allow the cloud to function economically.

In the first part of the thesis we consider how to enforce desirable pricing schemes for
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internet traffic. To do this we consider a recently proposed form of rate limiting known as dis-

tributed rate limiting (DRL) [143]. This is the imposition of an artificial limit on the bandwidth

of users at distributed locations. An algorithm which uses DRL to enforce a fixed-cost traffic

service must fairly distribute the fixed bandwidth to the distributed elements. It should also be

resilient to failure and able to adapt to the dynamic environment of the cloud. Our work details

the experimental evaluation of two DRL algorithms which are Cloud Control Constant Proba-

bilities (C3P) and Distributed Deficit Round Robin (D2R2), the good-neighbours enhancement

to improve performance in the event of failure and a method for augmenting the performance

of the algorithms with a dynamic bandwidth limit. Rate limiting is also an important concept

in the maintenance of a reasonable QoS inside the data centre. Some clouds are public environ-

ments and as such there is the potential for service interference between users, both malicious

and unintentional. We evaluate the dropping mechanism used in a recent proposed rate lim-

iting algorithm as part of a bandwidth management system to fairly distribute bandwidth to

the flows of cloud users.

In the second part of the thesis we consider how physical operational costs can be lowered

while sustaining a reasonable QoS. Firstly we consider thermal management inside a data centre.

Data centres generate a lot of heat and this must be removed to prevent damage to equipment.

The rate of equipment failure for servers increases as the temperature rises and as such most

data centres attempt to maintain the server inlet temperature below a certain “redline” value

to prevent unnecessary equipment failure. In this context we apply recent results of consensus

algorithms to develop a distributed control algorithm for heat balancing in certain types of data

centres.

In the final part of the thesis we consider electricity costs and carbon costs associated

with data centres. In the context of carbon we develop a subgradient algorithm to minimise a

combination of average service request time (QoS) and carbon emissions with a relative price

function used to reflect the relative importance of the factors to the cloud user. In the context

of electricity cost we develop a geographical load balancing tool based on Voronoi Partitioning

that allocates load, so as to minimise a combination of electricity price, carbon emissions and

average service request time (QoS).
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1.1 Key Contributions

The most significant contributions of our work are as follows:

• We design, build, and deploy, an implementation of recently proposed DRL algorithms

on a testbed. Some enhancements are also suggested.

• We extend a dropping mechanism in a DRL scheme for use in a data centre network

management system and compare its performance to previously applied schemes.

• We develop and evaluate a distributed algorithm to equalise the temperature of data

centre components while servicing the total demand of the data centre.

• We develop a framework which balances the trade-off between the carbon emissions and

QoS in a distributed manner for application in geographically distributed data centres.

• We detail a model which considers the carbon emissions, electricity price, and time re-

quired for the computational and networking components of a service request. We then

develop a distributed algorithm which minimizes the combination of average request time,

electricity cost and carbon emissions. We present data for the carbon intensity and elec-

tricity price of various geographical regions and experimentally determine the round trip

time between various geographical regions. We evaluate the performance of the distributed

algorithm using the obtained data.

1.2 Disertation Outline

The dissertation is structured as follows.

Chapter 2 presents an overall background on cloud computing, describing the models

which can be employed and the hardware of which the cloud is comprised.

Chapter 3 describes the operation of two DRL algorithms used to offer predictable,

incremental, fixed cost pricing policies, as well as enhancements to ensure their performance in

the dynamic environment of the cloud and in the event of hardware failure.

Chapter 4 details the use of the “fair-share” dropping mechanism for bandwidth man-

agement in data centres.

Chapter 5 reports on the use of implicit consensus algorithms to equalise the temperature

of server racks inlets for thermal management purposes.
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Chapter 6 describes an algorithm to minimise a cost function which represents trade-off

between carbon emissions and average service request time.

Chapter 7 presents the Stratus system which uses Voronoi partitions and a pairwise

partitioning rule to control a number of factors in the operation of cloud.

1.3 Publications arising from this work

• Joseph Doyle, Robert Shorten and Donal O’Mahony. ““Fair-Share” for Fair Bandwidth

Allocation in Cloud Computing”. IEEE Communications Letters, Vol. 16, No. 4, pp

550-553, 2012.

• Joseph Doyle, Florian Knorn, Donal O’Mahony, Robert Shorten. “ Distributed Thermal

Aware Load Balancing for Cooling of Modular Data Centres”. Accepted by IET Journal

of Control Theory and Applications, 2011.

• Joseph Doyle, Robert Shorten, Donal O’Mahony. “Stratus: Load Balancing the Cloud

for Carbon Emissions Control”. Submitted to Elseiver Computer Communications, 2012.

• Joseph Doyle, Donal O’Mahony and Robert Shorten. “Server Selection for Carbon Emis-

sion Control”. In Proceedings of ACM SIGCOMM Workshop on Green Networking, pp

1-6, Toronto, 19 August 2011

• Joseph Doyle, Robert Shorten and Donal O’Mahony.“An experimental evaluation of dis-

tributed rate limiting for cloud computing applications”. In proceedings of ACM ANCS,

pp 27:1-27:2, La Jolla, 25-26 October 2010.
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Chapter 2

Background

2.1 Introduction

Cloud computing is a new paradigm for the delivery of internet services. It refers to both the

hardware and software used in a data centre to provide a service and the actual program that

delivers the service across the internet. One central idea to a user in cloud computing is that

computational resources are offered as a utility. Resources can be used for a short period of time

and then released. This reduces the need for cloud users to obtain large amounts of capital to

launch internet services as computational resources are paid for on a usage basis. In addition,

it allows users of the cloud to dynamically alter the level of computational resources they are

using to react to the demand for the service, thereby eliminating a large portion of the financial

risk associated with launching an internet service. The owners of the cloud are therefore able

to provide a cheaper service and make a profit due to economies of scale and more efficient use

of resources. In terms of hardware, there are three key aspects to cloud computing [9] namely:

1. An illusion of on-demand infinite resources . A user of the cloud should be able to have

as much computational, networking and storage resources as they desire. A user should

be able to access these resources on-demand so that provisioning plans are not required.

2. The elimination of fixed cost investment in computational resources. This allows users of

the cloud to start with a small amount of resources and increase as their requirements

grow.

3. Resources should be available on a short-term basis (e.g. processors by the hour and
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storage by the day). Users of the cloud can then use and release the resources as needed

allowing them to save on operational costs. This aspect rewards conservation.

The control of a cloud is challenging task as the cloud owner must adhere to the three key

aspects while also considering other important factors such as latency, fairness among cloud

users, operating costs and the carbon emissions associated with the cloud. When attempting

to achieve these goals an understanding of the limitations of the hardware and the tools that

can be used to control the cloud are necessary.

In the next sections we further elaborate on the operation of the cloud, the hardware

involved, the load balancing and the rate limiting tools used to control the cloud.

In Section 2.2 we discuss the standard model of cloud computing. We then expand upon

this to discuss the varieties of cloud computing that can be found and the manner in which

their models work.

We describe the most common network architecture used in data centres and the problems

that are associated with it in section 2.3. We will then examine proposals which have been

published to tackle the problems associated with traditional data centre architecture and routing

protocols. Cooling is a significant portion of the operational cost of a data centre. Thus we

discuss the various types of cooling hardware and some of the proposals that have been made

to lower cooling costs. We then examine the manner in which cloud users can impinge upon

each other and the security techniques that are required to ensure that cloud users receive a

reasonable Quality of Service (QoS). Finally, we describe the various costs of constructing and

running a data centre so that importance of lowering the operational cost is highlighted.

We discuss the mathematical techniques that our work uses to improve the performance

of the data centre in Section 2.4. Firstly, we detail consensus algorithms and describe some

of the other applications of these techniques. We then examine Voronoi partitions and discuss

some of the other areas in which this technique has been used.

In Section 2.5 we describe the current techniques that are used in load balancing for

this application. We then detail some of the proposals which have been made to improve the

performance of the cloud using load balancing.

We examine the reasons that rate limiting is utilised and some of the techniques used

in rate limiting in section 2.6. We then discuss DRL and various algorithms which are used in

DRL.
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Figure 2.1: Illustration of a parties involved in public cloud computing and the products and
services that the parties provide.

2.2 Cloud Computing

2.2.1 Models

The first thing to consider in the cloud computing paradigm is whether the cloud is public or

private. A public cloud is one where the resource are sold to the general public on a usage

basis. A private cloud is the internal data centre of an organisation or business. In this work

we will deal primarily with public clouds but some of the techniques discussed could equally

be applied to private clouds. In addition, the barriers between public and private clouds are

blurring as some organisations are beginning to use hybrid clouds which consist of at least one

private cloud and at least one public cloud. Usually there are three parties involved in the

public cloud: namely, the cloud based service provider (CBSP), the cloud user and the service

user. The standard cloud service works as follows. A CBSP furnishes the cloud user with the

software and hardware so the cloud user can provide the service user with a particular service.

This is illustrated in Figure 2.1.

There are a number of cloud computing models. Three of the most popular are: (1)
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Software as a Service (SaaS), (2) Platform as a Service (PaaS) and (3) Infrastructure as a Service

(IaaS). In SaaS a service is hosted on the cloud and it is accessed through an interface, usually

delivered via a web browser. This reduces the complexity of software installation, upgrades,

maintenance, and of patching, as all of these tasks can be handled at a central location with

the overall goal of reducing the total cost of ownership (TCO).

In PaaS the CBSP offers a software platform on which cloud users can build services [140].

Google’s commercial offering (known as “AppEngine” [54]) is an example of PaaS. It is designed

as an engine to execute web services, and as such, the specifics of the hardware are abstracted

from the cloud user. Services must be written in specific languages, but the scaling of the

application is hidden from the user and dealt with by Google. Microsoft’s commercial offering

known as Azure [97] is another PaaS service which can be used to offer web services. This

product offers more freedom when compared with Google’s “AppEngine”. The application can

be written in any language but it must use the Microsoft .NET libraries. The use of a specific

language, or application program interface (API), makes it difficult to migrate services into the

cloud. PaaS, however, allows a greater degree of control than SaaS for the cloud user.

In IaaS the CBSP offers direct access to a Virtual Machine (VM) that is very similar to

physical hardware [140]. Amazon’s Elastic Compute Cloud (EC2) [6] is an example of an IaaS

service. This provides a lot of control to the cloud user at the cost of increased complexity.

For instance an additional tool is required for automatic scaling. This means that without the

use of additional software, a service hosted on EC2 cannot quickly alter the level of resources

(servers, storage etc) to react to a change in the demand. There is a potential problem that a

service could be under-provisioned, or over-provisioned.

2.3 Hardware

One of the focal points of this work is the reduction of operational costs and associated carbon

emissions. The specifics of electricity costs and carbon emissions are very dependant on the

hardware used in the cloud. In this section we will examine the various aspects of cloud hard-

ware that affect the operation of the cloud. We will examine current data centre architectures.

We also examine the limitations of conventional architectures and some new proposed cloud

architectures. Secondly, we will consider the cooling hardware used in data centres. Under-

standing the hardware is necessary to prevent excessive cooling and thereby lower operational
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Figure 2.2: A conventional data centre network architecture.

costs. Thirdly, we examine schemes currently used for bandwidth management as bad man-

agement of resources can lower QoS. This could discourage utilisation of the cloud and make it

difficult for cloud operators to recover capital costs.

2.3.1 Data Centre Architecture

In order to provide cloud services the CBSP creates facilities where huge numbers of computers

are concentrated in a single geographical location. There are data centres currently being built

with 400,000 to 500,000 physical servers in a single facility [100]. The size of these facilities

strains the conventional data centre network (DCN) architecture. An examination of data

centre network topology as well as current Routing and Data Link protocols; namely IP, and

Ethernet respectively, shows that several performance problems emerge as the number of servers

in the DCN increases.

The first of these problem is that the most commonly used topology of current DCNs

is such that the interconnective bandwidth between servers is insufficient. This is extremely

important in MapReduce applications [36]. This results in under-used servers in some parts of
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the DCN. The conventional topology consists of a tree like network illustrated in Figure 2.2 with

the highest parts of the tree requiring high cost hardware. The data centre network consists

of racks with 20 to 40 servers each connected to a Top of Rack (ToR) switch. ToRs are then

connected to aggregation switches. They are usually connected to more than one for redundancy

purposes. The aggregation switches then connect to access routers. The final connection is

between the access routers and the core routers which control traffic in and out of the data centre

and route traffic between access routers so that all-to-all communication is possible. In all-to-

all communication, such as traffic which occurs in MapReduce applications [36], each server

must communicate with every other server in the DCN. When there is insufficient bandwidth

oversubscription occurs. The term oversubscription is used to describe situation when the

desired level of traffic across a link is greater than the level that can be physically sent across

the link. There is no oversubscription in all-to-all communication between servers in the same

rack [58] as there are no bottlenecks for traffic. There can, however, be oversubscription of up

to 1:20 in all-to-all communication between servers using the same aggregate switch on the links

between the ToR switch and the aggregate switch [58]. The level of oversubscription increases

as the traffic moves up the hierarchy where it can reach levels of 1:240 at the paths connecting

to the core routers [58]. This would mean that a server is only obtaining 1
240 of its desired level

of traffic.

Another problem is that Ethernet will not function properly in today’s very large DCNs

for the following reasons:

• Ethernet bridges learn about the network topology by establishing entries for medium

access control (MAC) addresses in forwarding tables. These tables can grow very large.

The number of entries in a table is proportional to the number of hosts in the DCN as

flat addressing is used. By this we mean that each individual address must be stored

in the table with an associated port rather than a range of addresses being associated

with a port. This can result in the network bridges running out of memory and dropping

hosts from the tables. Missing entries give rise to unnecessary broadcasts as the address

resolution protocol (ARP) must be used to determine which port should be utilised.

• Ethernet creates a spanning tree between two network nodes to prevent loops in the

network [122]. This works well for small networks but introduces latency and availability

problems in large networks. The spanning tree protocol does not consider the bandwidth
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available on links when selecting a path from a source to a destination. As a result some

paths might be underused and thus bandwidth inefficiencies are introduced. Equal-cost

Multi-path (ECMP) can be used to alleviate these but there can be significant problems

in its deployment in practice [151].

• Other protocols associated with Ethernet such as the ARP and the Dynamic Host Con-

figuration Protocol (DHCP) use broadcasting which cause significant traffic in networks

of this size [76].

These problems can be alleviated somewhat by dividing the DCN into IP subnets and

thus achieving scale by assigning each server an IP addresses based on this logical topology.

The DCN is divided into smaller networks that are connected together to avoid the problem

of scale. VMs which are software implementations of physical machines are now being used

in some data centres. The use of virtualisation technology creates a problem with the subnet

division approach as virtual machines cannot migrate out of their original IP subnet while

maintaining the same IP address. VM Migration, which is the movement of a VM to a different

physical machine, can be viewed as a form of load balancing and consequently the subnet

division approach is somewhat limited as it constrains how load can be dynamically shared.

Further, the setup and maintenance of the subnets can be a long and laborious task. This is

sometimes referred to as the “Ethernet scaling” problem as the performance of Ethernet will

not scale to the number of hosts required in a large DCN.

Thirdly, there is nothing to prevent one service inflicting damage on other services which

share the same resources in a DCN. Users can attempt to consume all the bandwidth on shared

resources and current data centre architectures do not have a mechanism to prevent this [58].

This is referred to as the “Traffic flood” problem.

Lastly, the cost of the most oversubscribed parts of the DCN tree accounts for a large

portion of the cost of the DCN networking equipment. The reason for the high cost is that

these switches use highly specialised application specific integrated circuit (ASIC) hardware

with high development costs.

There have been a number of proposals to counteract the problems associated with con-

ventional data centre architecture and routing protocols [3, 58, 63, 62, 76, 107, 59, 48] and it is

likely that some of these will be, or have been, adopted in the industry. An understanding of
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these new architectures and associated protocols is advantageous in large data centre manage-

ment as any new control schemes implemented will have to adapt to these new architectures

and protocols to be useful in the near future.

2.3.2 Cooling

Cooling is crucial to the operation of a data centre and can represent a significant operational

cost to the cloud operator. Insufficient cooling can result in equipment failure which will lead to

further expense for the cloud operators. It has been reported that every 10 ◦C increase above

21 ◦C decreases the long-term reliability of electronics by 50% [148, 120]. In addition, it has

been shown that a 15 ◦C rise increases the failure rates of hard disk drives by a factor of two

[7], although recent studies suggest that the increase in the rate of failure may not be as severe

as this [42]. To prevent equipment damage, the inlets of all servers in the data centre must be

maintained in a safe operating range below the “redline” value of approximately 25 ◦C. There

is considerable debate over what exactly this “redline” value should be [11] as some proponents

suggest it should be considerably higher than current guidelines. The fact remains that there

is an upper limit to the safe operating range for the temperature of inlets to servers.

Cooling systems take a number of forms. The most popular is the use of computer room

air conditioning (CRAC) units and a raised floor plenum. In this system cold air is blown into

the plenum by CRAC units pressurising the plenum. Cold air exits through perforated tiles

that are placed in front of server racks. The cold air then flows through the server cooling the

components. As the cold air passes through the server it is warmed. This warm air exits the

back of the server where it is recirculated back to the intakes of the CRAC unit to cool the air.

The cycle then repeats. This is illustrated in Figure 2.3. Each CRAC unit consists of a number

of coils through which liquid coolant is pushed and a fan which pushes air through the coils

cooling the air. A pump circulates the coolant to a chiller which removes the heat from the

coolant so that the supply temperature of the CRAC unit is maintained at a constant level.

In this setup some of the hot air generated from the server outlets can mix with the cold

air from the CRAC units which causes complex air flow patterns leading to hotspots. This is

problematic as it requires the entire data centre be cooled sufficiently to prevent equipment

damage at the hotspots. This leads to a large portion of the data centre being over-cooled. A

variation of the previous system known as aisle containment is used to alleviate some of these

problems [121, 99]. In aisle containment the cold or hot aisles are segregated from the rest of
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Figure 2.3: Diagram of raised floor plenum CRAC unit cooling.

the data centre which prevents the airflows from mixing and consequently prevents hot spots.

The containment is constructed using physical barriers such as PVC curtains and Plexiglas [17].

There are two main variations of aisle containment namely “hot aisle containment” and “cold

aisle containment”. There is evidence that “hot aisle containment” may be a more efficient

design but it is recognised [121] that there are difficulties in retrofitting this solution which may

make “cold aisle containment” the more popular design in the short-term. In the models we

use in Chapters 5 and 7, we examine how the variation in cooling systems affect the cooling

costs.

Another variation is the use of air economizers instead of CRAC units [12, 17] or “Free Air

Cooling”. Air economizers draw in cool air from outside the data centre and expel hot air from

the servers back into the environment. It is also possible to use “Water-based Free Cooling”.

In this case the coolant supplied to the CRAC units also runs through a heat exchanger where

water absorbs heat from the coolant. Both of these methods depend on the ambient temperature

being sufficiently cold so that the supply temperature of the air entering the inlet of the servers

is below the “redline” value. In addition “Water-based Free Cooling” is difficult to use in very

cold climates as additional steps must be taken to prevent the formation of ice on the storage

towers. “Free Air Cooling” on has been shown to function for extended periods of time at

extremes of −20 ◦C [98]. A major disadvantage of “Free Cooling” is that it must be supported
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by CRAC units and chillers if there is a chance that the ambient temperature will exceed the

“redline” value as the data centre cannot operate without cooling for more than a few minutes.

While it is possible to redirect load to another data centre and shutdown the data centre during

peaks of ambient temperature this is a challenging prospect for most cloud operators.

Liquid based cooling [130, 5] can also be used to provide cooling for data centres. In this

method a heat exchanger is typically attached to the back of the rack so that hot air from the

server outlet flows over coils that are cooled by water. Essentially this method involves placing

a small heat exchanger at the back of each server rack. This form of cooling can be used as the

only source of cooling or in conjunction with the larger CRACs where only some of the heat is

removed by the liquid based cooling solution. In the former case it must completely remove all

the heat from the server outlets and thereby replace the large CRACs. In addition, it is also

possible to liquid cool the Central Processing Unit (CPU) directly and greater efficiencies can

be achieved through this method [130]. All forms of liquid cooling increase the cost of plumbing

as coolant must be brought to each rack and cause concern over the risk of leaks.

In additional to hardware, software can also have a large effect on cooling costs. There

has been some recent research which quantify this effect and we will examine their work in

further detail here. Sharma et al. [134] presents an algorithm to lower the difference between

the outlet temperature of the server racks to prevent hot spots. This was done by adjusting the

power that the server rack consumes (by adjusting the number of requests the server services)

so that it is inversely proportional to the difference between the exhaust temperature and a

reference temperature (i.e. the supply temperature of the air). This techniques results in server

racks with hot exhausts being given less work which will cool the exhaust of these servers and

prevent hot spots.

Moore et al. [103] use a calibration phase to determine which server racks cause the

most recirculation. In this calibration phase the power consumed by the servers and cooling

equipment is recorded. The power for a pod (a group of servers) is adjusted and the power

consumed by the servers and cooling equipment is recorded. This is repeated for each server

rack. A Heat Recirculation Factor (HRF) is then calculated for each server. The HRF is then

used to determine where to assign load to minimise the cooling costs. Moore et al. [102] also

propose a method for determining the temperature of a server inlet without a sensor to allow

this software to function without further instrumentation.

Parolini et al. [116] examines controlling the supply temperature of the CRAC units,
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the power state of the servers and assignment of jobs to servers as a Markov decision process

(MDP) with the goal of minimising the integrated weighted sum of the power consumption

and computational performance . The power states of the servers can be adjusted using the

TEAPC [155] system. Parolini et al. also consider the problem of excessive cooling as a cyber

physical problem [117]. These problems consider cyber resources (the computational resources)

and physical resources (the cooling resources) which are joined via a network model. A control

strategy to lower cooling costs while considering load distribution is also presented.

Weissel et al. propose a system which determines the temperature of servers using infor-

mation from event monitors which are embedded in modern processors and throttles requests

to meet the thermal requirements of the system [161]. Das et al. consider controlling the fan

speed of CRAC units in order to control a utility function which incorporates the energy con-

sumed and the temperature of the inlets of the rack servers [35]. There are also a number of

tools [28, 67, 34] which have been proposed to simulate the performance of these algorithms

and examine how the layout of a room affects the temperature of the inlets of servers. Heath

et al. propose the Freon tool to prevents equipment damage by shutting off hot servers in the

event that they cross the “redline” value [67]. Faraz et al. [47] considers a combination of the

cooling power for CRAC units and the idle and dynamic power of servers in a load balancing

scheme to lower overall energy costs.

2.3.3 Bandwidth Management

A public cloud is an environment where resources are shared by multiple users. If these resources

are not carefully managed, service interference (both malicious and unintentional) can occur

between cloud users. Service interference is already affecting cloud users on current clouds.

The throughput of medium instances on Amazon’s EC2 can vary by 66% [87, 159] and it has

been postulated, based on anecdotal evidence, that the cause of this is a lack of bandwidth

management algorithms between users [136].

There are numerous techniques for the control and management of computational, mem-

ory and disk resources [27, 61]. It is, however, generally accepted that current techniques for

network management cannot prevent “service interference”. We define “service interference” as

the actions of one user on the cloud negatively affecting another user. One of the most widely

deployed network management techniques is Transmission Control Protocol (TCP) congestion

control. It is largely responsible for the “fair” allocation of network resource in addition to its
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other functions. It manages the bandwidth of all flows passing through networking equipment.

A malicious user can circumvent this to prevent the “fair” allocation of network resources and

cause “service interference” by using non-compliant protocol implementations or by opening

more flows than normal. For example, attacks could be carried out that are similar to Denial

of Service (DoS) by malicious users. By seeking out a server on the same switch as the server

they wish to attack, flooding the link with traffic thereby blocking traffic from other sources,

malicious users can carry out attacks on victim’s servers. This attack is difficult to detect as

no traffic is sent to the victim’s server.

The utilisation of non-compliant protocol implementations can be defined as manipula-

tion attacks [80]. The aim of these attacks is to improve the performance experienced by a

malicious user to the detriment of honest users. There are a variety of manipulation attacks

which can be employed. Three of these attacks are described by Savage et al. [131]. The first

type is ACK division. In this attack the receiver of a data segment of N bytes divides the

resulting acknowledgements into M acknowledgements, where M ≤ N . Each acknowledgement

is a distinct piece of the received data segment. The congestion window increases in size upon

receipt of an acknowledgement and ACK division results in the sender growing their congestion

window at a rate that is M times faster than usual and the congestion window of honest users

is smaller as packet loss occurs faster than normal. M can be set to an arbitrary level by

the receiver up to one acknowledgement per byte received (M = N) allowing the congestion

window to grow extremely quickly.

The second type of attack is DupACK spoofing. Some TCP congestion control algorithms

such as TCP Reno [81] use fast retransmit. Fast retransmit is used to retransmit the missing

segment only if loss is detected. Thus, everything from the last correctly received packet

does not have to be retransmitted. When a TCP receiver acknowledges a packet it sends the

sequence number of the package it expects to receive. If it receives a packet with a different

sequence number it sends a duplicate acknowledgement requesting the correct packet again.

Loss is detected by observing three duplicate acknowledgements. Fast retransmit operates

by controlling the congestion windows. Upon detection of loss the control window is set to

the threshold of the congestion avoidance stage plus three times the maximum segment size.

Fast retransmit then increases the congestion window by the maximum segment size for each

additional acknowledgement packet received. The DupACK spoofing attack exploits this by

sending a long stream of acknowledgements for the last sequence number received upon receipt
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of a data segment thereby artificially increasing the congestion window. This attack allows the

receiver to dictate the speed at which the sender transmits as the rate at which the receiver

sends acknowledgements is direct proportional to this.

The final type of attack described by Savage et al. [131] is optimistic ACKing. In this

attack the receiver acknowledges data it has not yet received. Normally the growth of the

TCP congestion window is dictated by the round trip between the sender and the receiver. The

receiver emulates a shorter round-trip time and increases the data transfer rate by optimistically

acknowledging data it has not received. This attack allows the receiver to increase the congestion

window to the bottleneck rate immediately and hold it there in spite of losses. It can then use

other application layer retransmissions available in the HTTP-1.1 protocol [50] to obtain lost

segments. These attacks are detrimental to honest users as the sum of the rates can be no

greater than the limits of the physical medium and if one flow rate is disproportionately large,

segments from other flows will be dropped earlier and their transfer rate will be less than it

should be.

There have been a number of proposals to prevent manipulation attacks which we will

discuss here. One of these by Shieh et al. at Microsoft Research is Seawall [136]. In this

system local entities (VMs, processes, etc) are assigned a network weight and each local entity

receives a share of the bandwidth proportional to its network weight along all network links.

The network weight functions as a metric for the priority rating of the traffic of the local entity.

A local entity with a higher network weight will obtain a greater bandwidth. The Seawall

system uses a rate limiting tool known as token bucket to ensure that each local entity obtains

a fair allocation of bandwidth.

Another proposal is Gatekeeper [128] by Rodrigues et al.. It is similar to Seawall but in

Gatekeeper the bandwidth of a link is divided among the tenants of the link rather than among

local entities which wish to send traffic across the link. We define the tenants of a switch as

the servers which are connected to the switch by a single link. A local entity can be anywhere

in the data centre while a tenant must be connected to a switch by a single link. Gatekeeper

divides bandwidth among tenants rather than local entities so that it prevents users with a

large number of VMs in the cloud from obtaining an unfair proportion of the bandwidth by

having a large number of servers send data to a specific tenant on a switch.

Wilson et al. proposed the D3 system [166]. In this proposal deadlines are assigned to

some flows. For example an online service which has a specified latency target in the service
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level agreement (SLA) would be given a deadline. The rate required to reach the deadline

is calculated by the sender and this is sent with the packets. A greedy algorithm is used by

switches to assign rates to the flows. The router will also divide any remaining bandwidth fairly

among the flows. In the event that the router does not have enough bandwidth available to

meet a deadline it assigns all that remains to the request when the next flow is received.

Ghowdhury et al. proposed a system called Orchestra [29]. In this, the operation of

MapReduce [36] and similar systems is improved by considering the length of data transfer and

assigning more TCP connections to longer data transfers. In doing this all transfers complete

simultaneously. Another proposal is Oktopus by Ballani et al. [16]. In this system a greedy

algorithm is used to attempt to find the smallest number of links required to form a virtual

network of N nodes with bandwidth B connecting all the nodes in a tree structure. Kothari

et al. proposed a tool which examines a protocol implementation to check if it is vulnerable to

manipulation attacks [80].

There are a number of ways non-compliant protocols can be used to exploit the underlying

hardware and obtain an unfair share of bandwidth. There have also been a number of proposals

to prevent this. Each of these proposals is designed to prevent a specific type of “service

interference” and each has its advantages. For example Orchestra is particularly useful if

MapReduce type applications are the focus of the cloud while it is not as strong if content

delivery is the focus. Some of these programs will use dropping mechanisms to ensure a fair

share of bandwidth is received by users. It is important that the dropping mechanism used

also ensure that the fair share of bandwidth is divided reasonably among the flows that use

this share. In Chapter 4 we will propose a mechanism which builds upon the Seawall system

[136] by ensuring fairness between the flows of the local entities and lowering the overhead cost

associated with the system.

2.3.4 Data Centre Costs

Throughout this work we propose algorithms which lower the operational costs and increase the

utilisation of the cloud. In this section the breakdown of the cost of the cloud will be examined.

We will illustrate the importance of optimising the operational cost of the cloud so owners can

recover their capital investment. Greenberg et al. present such a breakdown [57]. The first

interesting thing to note about this breakdown is that operational staff costs are so low (< 5%

) and can omitted from the calculation. This is unusual as they are usually the leading cost in
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enterprises [57]. The breakdown assumes that the cloud consists of a data centre with 50,000

servers. Each server costs $3,000. At a 5% cost of money and a 3 year amortisation regime

servers have an annual cost of $52.5 million dollars. The data centre requires facilities for power

delivery and evacuating heat. This requires investment in large scale generators, transformers,

uninterruptible power supply (UPS) systems and cooling equipment. The breakdown assumes

a cost of $200 million for these facilities. At a 5% cost of money and a 15 year amortisation

regime the facilities have an annual cost of $18.4 million. The capital cost of networking is

significant as a large number of switches, routers and load balancers need to be purchased for

the data centre network to function effectively. In addition to the capital expenditure, there

are additional networking costs such as peering where traffic is handed off to internet service

providers (ISPs), inter-data centre links which carry traffic between geographically distributed

data centres and regional facilities needed to reach wide area network interconnection sites.

These costs are difficult to calculate as they vary from site to site and with time, but we

can assume an annual networking cost of approximately $9.3 million [57]. This includes the

amortised cost of the capital equipment such as switches, routers and load balancers.

Finally a cloud needs power to operate. A metric to describe the total power required

for the facility is the relation between the power required for the faculty and power required

for the IT equipment is provided by the Green Grid [56]. Power Usage Efficiency (PUE) is

calculated as (Total Facility Power)/(IT Equipment Usage). The PUE of inefficient enterprise

facilities ranges from 2.0 to 3.0 [152]. A state of the art facility typically attains a PUE of ∼1.7

and leading facilities such as Facebook data centres can obtain a PUE of 1.08 as of 2012 [44].

To estimate the cost of power the breakdown we assume a PUE of 1.7, a reasonable electricity

price of $.07/kWh and that each server draws an average of 180 W. This results in an annual

electricity cost of $9.3 million which coincidentally is the same as the network cost.

The percentage breakdown of the cost of the cloud is depicted in Table 2.1. From this

breakdown we can establish that the greatest cost is the capital cost of the servers. This

illustrates the need to encourage utilisation as substantial revenue must be obtained to recover

the capital investment. There are high capital costs that need to be covered and running costs

are relatively low as servers have a high idle power which is between 60% and 75% of the peak

power [25, 45]. Owners are therefore motivated to keep the system running in order to generate

revenue.
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Component Annual Cost over Lifetime
Servers ∼45%

Infrastructure ∼25%
Network ∼15%
Power ∼15%

Table 2.1: Percentage breakdown of cost of cloud [57].

2.4 Applicable Theory

In this section we discuss the mathematical techniques we will use to control the operation of

the cloud. In the Section 2.4.1 we examine various consensus algorithm and how they are used.

In Section 2.4.2 we examine Voronoi partitions and the applications of this technique.

2.4.1 Consensus Algorithms

We use two types of consensus algorithms and the particulars of the systems are described in

Chapters 3 and 5. In consensus algorithms a group of distributed nodes attempt to reach a

common goal by exchanging information with their neighbouring nodes and adjusting their state

according to an algorithm. This can be represented as a graph where edges exist between nodes

if the nodes exchange information. Consensus and agreement algorithms were first examined

in the context of management science and statistics [41, 108, 167, 37]. While they have been

applied in a number of disciplines such as the fusion of sensor data [92, 20, 43, 114], medicine

[162], decentralised estimation [85, 106, 111], simulation of flocking behaviour [127, 158] and

clock synchronisation [132, 24], it is the application of these ideas to dynamic networked systems

that is of primary interest to us.

The initial work in this area [22, 154, 127, 158] had a variety of goals and focused on

a system in which bi-directional information exchange between neighbouring nodes occured

(leading to undirected communication graphs). Rigourous convergence proofs for such systems

were given in [71]. This work was then extended to consider variations on these problems which

include whether the topology of the graph representing node communication remains fixed or

changes over time, whether there are delays in the information exchange and if all nodes update

in a synchronous fashion or if nodes update at their own pace. Other variation include if the

graph is directed or undirected, if the node’s state is scalar or multidimensional, whether the

node can manipulate the state directly or only implicitly and if the node can manipulate the

state on which to reach consensus instantly or only within certain dynamics. A system with
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directed communication graphs is examined in [19, 113, 104, 126, 46]. The effect of asynchronous

updates, where each node does not have to update its state at the same time, is examined in

[113, 66, 21, 46, 23]. A changing graph topology is considered in [71, 149, 19, 126, 110].

Generalisations of the problem which allow the inclusion of node dynamics in the consensus

problem are investigated in [150, 149, 112, 110]. A system where the state of a node can only

be changed implicitly is examined in [143, 144]. In Chapters 3 and 5 we examine the use of

such algorithms in the context of controlling the resources of the cloud.

In addition to this work, which focuses on unconstrained consensus applications, there

has been much research in applications of consensus to systems which should fulfil external

conditions. By this it is meant that the goal the distributed nodes are attempting to achieve

is constrained in some way. An example of such a system can be found in behaviour based

animation. A group of nodes (birds in a flock) should have a common heading and the heading

must also be in a particular direction. There are three approaches which are usually taken in

such a system namely, leader-following [160, 96, 137, 49, 74], virtual structure based [86, 18, 135]

and behaviour based [14, 8, 82, 115, 26, 157]. In the leader-following approach one of the nodes

is designated the “leader” node and other nodes adjust their state to follow this “leader” node.

In the virtual structure based method the graph of nodes is treated as a single structure and the

desired behaviour is assigned to the virtual structure relative to each node which controls its

own behaviour. In the behaviour approach the node’s behaviour is based on a combination (e.g.

weighted sum) of desired behaviours. In Chapter 5 we investigate the application of a behaviour

based consensus algorithm [77] to the thermal management of the data centres that contain

cloud resources. Consensus algorithms can be used to represent a large variety of systems and

the related work described in this section allows us to analyse the various systems described in

Chapters 3 and 5.

2.4.2 Voronoi Paritions

Voronoi partitions are the decomposition of a set of points into subsets. These subsets are

centred around points known as sites, generators or seeds. Each point in the set is added to

a subset consisting of a site and all other points associated with this site. An abstract notion

of distance between a point and the sites is used to determine with which subset a point is

associated. A point is assigned to a subset if the distance to the site is less than or equal to

the distance to the other sites. In our work the set of points consist of sources of requests
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Figure 2.4: Example of how sources of requests are partitioned between two data centres.
Colour indicates that the node is part of a particular partition and numbers on the edges are
weights.

for cloud services and data centres which service these. Voronoi partitions are then used to

determine where requests are serviced. A subset represents which sources of requests a data

centre is servicing at a given time. An example of a group of sources of requests which have been

partitioned between two data centres can be seen in Figure 2.4. In this figure each source of

requests has a path to both data centres. The partition that the source of requests is a part of,

depends on the paths to the two data centres. The partitions are made up of sources of requests,

which have paths available to them with lower distances than the paths available to the other

data centre. Voronoi partitions also known as Voronoi Diagrams or Dirichlet tessellations, are

used in a variety of areas. While there was some early work in Voronoi diagrams by Gauss

[13] and Dirichlet [13] which used quadratic forms, the generalization to higher dimensions was

provided by Voronoi [13] in 1908. The earliest application of Voronoi partitions was in the fields

of crystallography and more specifically geometric crystallography [13, 129]. It has also been

applied to metallurgy [165, 51], precipitation estimation [153, 69], urban planning [13, 138],

cartography [10] and recently robotics [39] (other applications are discussed in [13]).

Voronoi diagrams also have a number of applications in the field of computer science.

Shamos [133] proposed applying Voronoi diagrams to the associative file searching problem (or

post-office problem) [78]. The goal in the problem, given a subset of points, is to find the closest

of these to a given query point. This is analogous to determining which partition the query

point belongs to if Voronoi diagrams are used. Another application is authomatic data clustering
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which dividing the data into subsets which have similar in-class members and dissimilar cross-

class member [65]. Voronoi partitions can also be used in scheduling record access to retrieve a

batch of records in the minimum time. An exact solution has been shown to be NP-complete but

a satisfactory approximation can be obtained quickly using Voronoi diagrams [83]. In Chapter

7 we use Voronoi partitions to control various aspects of the operation of the cloud.

2.5 Load Balancing

The final area in this chapter concerns the tools which cloud operators can use to control the

operation of the cloud. The goal of these sections is to examine the state-of-the-art in control

technology so that it can be compared with our work. Load balancing is the distribution of a

workload among multiple resources to achieve various goals. It is a critical tool in the operation

of the cloud and our work in Chapters 5, 6 and 7 are forms of load balancing. In this section

we examine the current schemes available to a commercial load balancer and recent proposals

which have been made to use load balancing to achieve new goals such as lower electricity cost

or carbon emissions.

2.5.1 Current Methods

We will now examine the capabilities of a popular commercial load balancer known as the Citrix

NetScaler [31] to investigate the options available to a state-of-the-art load balancing system.

This service is capable of balancing load at the local level, where it assigns connections to servers

in a data centre, and also at the global level, where it assigns connections to data centres in the

cloud. Firstly, we examine the overall operation of the NetScaler. This is depicted in Figure

2.5. Clients request services which generate Domain Name System (DNS) requests if their local

DNS does not contain a record of the service. The NetScaler can function as a DNS server

and responds to the request. The response is controlled by the global load balancing service

which exchanges metrics with other NetScalers via the proprietary metrics exchange protocol

(MEP). A request is then generated by the client and sent to the assigned data centre. This

request is sometimes recorded by the global load balancing service so that metrics are updated

and is forwarded to the local load balancing where it is recorded and sent to a server. Monitor

programs sometimes examine various aspects of the server and send this information to the

local load balancing service so that metrics are updated.
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Figure 2.5: Example of how NetScaler functions in a cloud with two data centres.

Next we examine the load balancing mechanisms which are available at the local level.

Least Connection Method: In this method connections are sent to the servers with the

smallest numbers of active connections. The NetScaler maintains a record of the number

of active connections at each server and alters this as connections are opened or closed.

This method can be modified with weights so that more powerful servers receive more

connections.

Round Robin Method: This is the simplest method of load balancing and it is frequently

used by other load balancing methods if the metric used is tied between two servers or

when the NetScaler is starting operation. Servers are ordered in a list and a pointer which

starts at the top of the list is used to determine which server an incoming connection will

be sent to. After the incoming connection is sent the pointer is moved to the next server

in the list and the process continues. If the pointer reaches the end of the list, it returns

to the start of the list. This method can also be modified with weights.

Least Response Time Method: This method uses a combination of the response time and

the number of active connections to determine where load is sent. A number of methods
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can be used to establish the response time. The simplest is to use the Time to First

Byte (TTFB) as the response time. TTFB is the time between sending a request packet

to a server and receiving a response packet from the server. It is also possible to use

monitors to establish the response time. Monitors are programs which run on the servers

and periodically report to the NetScaler. Monitors can examine a variety of things such

as the time difference between the Internet Control Message Protocol (ICMP) ECHO

request and the ICMP ECHO response in PING or the time difference between the SYN

request and the SYN+ACK response in TCP to calculate the response time. Once the

response time is established, a value N is calculated by multiplying the number of active

connections by the response time and incoming connections are sent to the server which

has the lowest N value. This method can also be modified with weights.

Hash Methods: The NetScaler can utilize a number of Hash methods [31] such as URL hash,

Domain hash, source IP hash and destination IP hash. These methods are mainly used

for caching. Each service is assigned a hash value which is generated using a method

which depends on the particular configuration and this value is assigned to a server. Hash

values are generated from incoming requests and requests are sent to the server which

has the same hash value provided it is online. If the server is offline, new hash values are

generated using the last log of the number of services and the IP address and port of the

services and the request is sent to the server with the highest hash value.

Least Bandwidth Method: In this method an incoming request is sent to the server which

is servicing the smallest amount of traffic. The NetScaler records the number of bytes

transmitted and received per 14 seconds as a bandwidth value for each server. Incoming

requests are send to server with the smallest bandwidth value. This method can also be

modified with weights.

Least Packets Methods: In this method the number of packets that a server has sent and

received is used as a load balancing metric. The NetScaler records the number of packets

transmitted and received as a number of packets value N every 14 seconds. Incoming

requests are sent to the server with the smallest N value. This method can be modified

with weights.

Token Method: This method is similar to the Hash Methods. When a client request is

received a token value is extracted from the request and the request is forwarded to a
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server. Further requests which generate the same token are forwarded to the same server.

This method will store different values for requests to the same service which use different

protocols and the token can be generated in a variety of ways.

Custom: This method uses monitor programs to examine metrics such as CPU and memory

usage to determine where incoming requests are sent. Monitor programs send CPU and

memory usage data to the NetScaler. The NetScaler then uses this to send incoming

requests to the server with the most available memory or least utilised CPU. This method

can be modified with weights.

When load balancing at the global level most of the mechanisms available are similar

to local level ones. Of course, incoming requests are directed to data centres via DNS rather

than servers and further load balancing takes place to determine which server they are sent to.

There are, however, some mechanisms which are unique to global load balancing. The following

is a list of global level mechanisms available to the NetScaler. Descriptions are omitted if they

have already been described at the local level.

Round Robin

Least Connections

Least Response Time

Least Bandwidth

Least Packets

Source IP Hash

Custom

Dynamic This is similar to Least Response Time. The DNS servers are probed at regular

intervals to gather response time metric data and incoming requests are sent to the data

centres with the smallest response time.

Static Proximity This method uses a GeoIP database to direct incoming requests. The

GeoIP database contain ranges of IP addresses and the geographical region to which these

requests should be sent. The NetScaler examines the IP address of incoming requests and

sends it to the data centre which is closest geographically to the region specified in the

GeoIP database.
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2.5.2 Current Research

In addition to the options available from commercial packages there has been considerable

recent research which uses load balancing to achieve other goals. For example, recent research

has focused on lowering electricity costs and carbon emissions for computing clouds. In this

section we examine this and discuss its relation to our work.

Qureshi et al. [123] proposed a distance-constrained energy price optimiser and presented

data on energy price fluctuations and simulations illustrating the potential economic gain.

Stanojevic et al. [146] detail a distributed consensus algorithm which equalises the change in

the cost of energy. This is equivalent to minimising the cost of energy while maintaining QoS

levels. Rao et al. [125] formulate the electricity cost of a cloud as a flow network. A flow

network is a directed graph were each edge has a capacity and receives a flow. It is used to

model fluid in pipes and electricity in circuits. Rao at al. then attempt to find the minimum

cost of sending a certain amount of flow through this network. This work is similar to the work

in Chapter 7 but they focus solely upon electricity costs.

Mathew et al. [95] propose an algorithm which controls the number of servers online in

the cloud to reduce energy consumption. It also maintains a sufficient number of servers at each

data center to handle current requests as well spare capacity to handle spikes in traffic. This

work is complimentary to the work in Chapters 6 and 7 and both can be used in conjunction

with it to lower electricity costs and carbon emissions.

Liu et al. [90] propose distributed algorithms which minimize the sum of an energy

cost and a delay cost using optimization techniques such as gradient projection to minimise the

overall cost of operating the data centre. In addition, they expand their formulation to consider

minimizing the sum of the social impact cost and delay cost. They define the social impact

cost as a metric for environmental impact of the data centre. By examining the availability of

renewable energy and directing load to the appropriate data centres they attempt to reduce the

environmental impact of the data centre. Liu et al. [89] expand the model proposed in [90] to

subtract locally generated clean energy from the energy cost calculation to allow data centres

which have clean energy generation facilities to service more load. Moghaddam et al. [101]

attempt to use a genetic algorithm-based method with virtual machine migration to lower the

carbon footprint of the cloud. This work is similar to our work in Chapter 7 as both works use

load balancing to lower carbon emissions but different metrics are used to lower carbon emission.

This work uses weather data as a metric and this can be inaccurate if locally generated power

27



is not used since other factors affect the carbon emissions. This is discussed in greater detail

in Chaper 7.

Gao et al. [53] propose the FORTE system which allows the users to consider the three

way trade-off between electricity cost, carbon emissions and latency. This is similar to the work

in Chapter 7 but it considers a static carbon intensity for data centres while dynamic carbon

intensity data is examined in Chapter 7.

Wendell et al. [163] propose a general framework for the mapping of traffic between

clients and servers. This framework allows for a variety of mapping policies to be implemented

to allow the mechanism which controls the traffic to aim for different objectives. This could be

used to implement a system similar to that described in Chapter 7 but this is not investigated

in this work.

2.6 Rate Limiting

Rate limiting is the control of the rate of traffic sent or received on a network interface. If the

traffic exceeds the rate it is dropped or delayed by a device known as a rate limiter. Recently

a form of rate limiting known as distributed rate limiting (DRL) has been proposed for use

in harmonising the throughput of multiple parallel TCP links [124]. This can be applied to

cloud computing as a mechanism which controls the amount of load being assigned to each

data centre in the cloud for a given service. DRL can be used to implement fixed cost traffic

pricing which is desirable to cloud users and can help to improve utilisation. We discuss its use

in Chapter 3.

2.6.1 Distributed Rate Limiting

When DRL is used in cloud computing, an artificial network bandwidth limit is maintained

for a service across the cloud. The local link bandwidth at each data centre can then change

depending on the demand, provided that the sum of the local link bandwidths does not exceed

this limit. In order to achieve this goal, devices known as limiters exchange information to

allow aggregate network bandwidth for the service to be enforced, while trying to give equal

QoS to the flows passing through the limiters to obey the following fairness postulate [124, 143].

Fairness postulate: Flows arriving at different limiters should achieve the same rates as they
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Figure 2.6: Simple example of DRL.

would if they were traversing a single, shared rate limiter.

An example of this is illustrated in Figure 2.6. The initial load distribution is such that there

is a large amount of traffic at limiter 2. The three limiters exchange configuration information

with their neighbours to balance the load distribution. This exchange of information causes

the local service rate of limiter 2 to increase, thereby reducing the traffic levels to reach an

equilibrium as seen in the third section of Figure 2.6. The local capacity of limiters 1 and 3

are reduced at the same time but since the level of traffic passing through these limiters is

comparatively light this goes unnoticed.

A general framework for the monitoring and control of distributed systems which resulted

in an early DRL-like scheme, using Planet Lab as an example is presented in [72]. The Global

Random Drop (GRD) and Flow Proportional Share (FPS) algorithms proposed by Raghavan

[124] were the first DRL algorithms used for the control of services in the cloud. GRD works by

broadcasting the demand at the limiter using a gossip based algorithm described by Kempe [75].

The total demand is calculated at each limiter and packets are dropped randomly if the total

demand is greater than the agreed upon capacity. GRD however fails to work for large numbers

of limiters as it is dependent on the estimated arrival rates of all the limiters propagating swiftly.
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In FPS each limiter utilizes a token bucket with a Service Rate Ci which is initialised as C/N

where C is the aggregate capacity and N is the number of limiters. A weight wi is calculated

by dividing the service rate by the flow rate arriving at the limiter. This weight is broadcast

to all of the limiters. The service rate is then set to be:

Ci =
wi∑N
j=1 wj

C. (2.1)

The wi value is utilized as an estimate of the number of unbottlenecked flows at the limiter.

In practice, however, wi is not a good indicator of the number of unbottlenecked flows at a

limiter and this results in the poor performance of FPS as a DRL algorithm [143]. In order to

ensure good performance in the key metrics of DRL, a rigorous mathematical framework and

two new algorithms Cloud Control with Constant Probabilities (C3P) and Distributed Deficit

Round Robin (D2R2) were proposed in [143]. This work was expanded upon in [145, 144]. C3P

and D2R2 are discussed in greater details in Chapter 3 and our work experimentally evaluates

these algorithms and proposes enhancements to the operation of these DRL algorithms.

2.7 Summary

The cloud computing paradigm in the delivery of internet services requires a large capital

investment and current control technologies are unable to operate it in the most cost effective

manner. There are several models of cloud computing and this can affect how the cloud is

operated. The cloud is comprised of physical hardware which is housed in facilities known as

data centres and the specifics of the hardware used and manner in which it is operated will

greatly effect the operating costs. Another important aspect of the hardware of the data centre

is cooling which is required to prevent equipment damage. There are a number of cooling

systems which can be utilised such as aisle containment and “Free Air Cooling”. In addition,

there are a number of proposals which use load balancing mechanisms to lower cooling costs.

Both of these can be exploited to lower cooling costs while servicing the demand of a data

centre. Hardware resources are connected with links and the management of the bandwidth

of these links is crucial to the operation of the data centre. There a number of weaknesses

in bandwidth management used today but this can be rectified by placing mechanisms which

ensure the fair division of this bandwidth. The capital cost of a data centre is considerable and
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the operational cost is also significant. An examination of the cost of a data centre illustrates

the importance of lowering the costs.

There are mathematical techniques that can be applied to control the data centre. Con-

sensus algorithms involve distributed nodes exchanging information and adjusting their state

according to an algorithm. This technique is useful as it is distributed which prevents bottle-

necks and it can be used in a variety of scenarios. Voronoi partitions are the decomposition of

a set of points into subsets. It can be used to divide clients among data centres in the cloud to

achieve a variety of goals such as lower electricity costs and carbon emissions.

There are tools which cloud operators utilise to control the cloud. We examined these

state-of-the-art tools as it provides a comparison to our work. Load balancing is the distribution

of a workload among multiple resources to achieve various goals. Rate limiting is the control

of the rate of traffic sent or received on a network interface. A recently proposed form of

rate limiting known as distributed rate limiting can be used to harmonise the throughput of

TCP flows at various data centres in a cloud. Our work models a cloud system and uses

the mathematical tools previously discussed to create algorithms for the control of the cloud.

We propose the implementation of these algorithms which function in a similar fashion to

load balancing algorithms. When evaluating these we establish a model which considers the

hardware of the cloud. We also examine the operation of state-of-the-art algorithms in our

model so that comparisons can be made.
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Chapter 3

DRL Pricing

3.1 Abstract

In order to recover the construction costs of the data centre, the owner of the cloud must

endeavour to have high utilization in the cloud while maintaining performance levels for the users

of the cloud. DRL is a mechanism that can be used to attack this problem. A mathematical

framework and the convergence and stability properties of two DRL algorithms were proposed in

previous work. In this chapter we build upon that work by evaluating the performance of these

algorithms on a testbed against the results of a simulation carried out in previous work. We

also evaluate the algorithms resistance to failure and propose the good-neighbours enhancement

to improve its performance. Finally, we propose a method of augmenting the performance of

the algorithms in a dynamic environment and evaluate its performance in the cloud.

3.2 Introduction

It is desirable for cloud operators to have high utilisation levels with a rental cost for resources

greater than the running cost. This helps operators to recover their capital investment. It

has been found that levels can be quite low e.g. 10% for a variety of reasons [57]. One of

the reasons for this could be that traffic pricing is mostly usage based [6, 124]. In a usage

based traffic policy the more traffic a service attracts the greater the cost will be to the cloud

user. Enterprises, however, tend to prefer when an IT service is a fixed cost rather than an

unpredictable usage-based cost [68, 109]. The development of a predictable, incremental, fixed
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cost policy for traffic could be useful in encouraging users to migrate to the cloud and hence,

increase utilisation levels and revenue.

There are examples of services which could benefit from the use of a cloud platform at

certain times when there is a large need for bandwidth to improve performance. These include

the mass distribution of updates for operating systems, patches for video games and video

streaming sites such as Youtube. In all of these examples there is a huge demand for bandwidth

and the QoS experienced by users could be improved by using cloud services. In addition, the

bandwidth required for all of these services varies with time. To encourage utilisation of the

cloud for these services, the price for the additional bandwidth must be attractive to the service

providers at the time they need it. A market-based mechanism for bandwidth in the cloud [147]

could be useful for this. Amazon’s EC2 already provides a facility which uses a market-based

mechanism to allocate computational resources by offering spot instances. These instances

allow customers to bid on unused EC2 computational resources and use these until the instance

spot price exceeds the bid the customer originally made.

The cost of traffic, however, remains usage based, and service providers may only be

willing to spend a certain amount of money on utilising the cloud platform. To accommodate

these services a cloud operator must utilise a mechanism to limit the bandwidth to marketable

quantities which have a definite fixed price. We define the quantities as marketable as the

price should fluctuate depending on utilisation levels in the cloud. A simple example of this is

that the price of bandwidth should fall as utilisation levels drop to encourage more use. DRL

mechanisms can be used to achieve this in the cloud as they limit the bandwidth consumed

by a service and divide the contracted bandwidth fairly among the data centres which make

up the cloud. This helps to improve the QoS experienced by the users. In this chapter we

discuss the experimental evaluation of two DRL algorithms, the good-neighbours enhancement

which improves the resilience of the algorithms to failure and an enhancement which allows

the bandwidth consumed to alter dynamically without affecting the QoS for other users of the

service.

In Section 3.3 we discuss the framework mathematics behind the DRL algorithms and the

specifics of the operation of the C3P and D2R2 algorithms, the good-neighbours enhancement

and the enhancement which allows the bandwidth utilised to alter dynamically. In Section

3.4 we detail the experimental setup used to evaluate the performance of the algorithms and

enhancements. In Section 3.5 we present the results of the experimental evaluation and the
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1 UpdateCapacities()
2 Once every ∆ units of time do
3 for i = 1 : N
4 Ci ← Ci + η

∑
(i,j)∈E(pi − pj)

5 endfor
6 enddo

7 InitializeCapacities()
8 for i = 1 : N
9 Ci ← C

N
10 endfor

Figure 3.1: Pseudo Code of C3P [143].

evaluations of the two enhancements. In Section 3.6 we summarise how DRL mechanism can

be used to make operating the cloud more economically viable.

3.3 Mathematical Framework

In order to understand how the algorithms work the mathematical framework must be described

briefly. A CBSP has N data centres. Each data centre i ∈ 1,2, . . . ,N is able to locally limit

the bandwidth of a particular service with a flow population of Fi to the local capacity Ci, by

using the functionality of the limiter. The sum of the service rates at the N data centres must

sum to the aggregate capacity C. This is the first constraint enforced by DRL algorithms [143].

N∑
i=1

Ci = C. (3.1)

The capacity of the local limiter can be adjusted and it can exchange information with its

neighbouring limiters j. The connections between limiters form a connected undirected graph

G = (N,E) where N is the set of the limiters and E is the set of edges that connect the limiters.

For a limiter i, j is the set of limiters which share an edge with i in the communication graph

G.

3.3.1 Cloud Control With Constant Probabilities (C3P)

Here we detail the specifics of the C3P algorithm which allocates networks resources tp equalise

the loss rate of local limiters. In this algorithm each limiter is capable of measuring its loss rate

pi directly. The loss rate is the amount of packets dropped as a fraction of the total packets

passing through the limiter for a given time interval. pi is dependent on the traffic passing
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through the limiter but in general the more flows that pass through the limiter the higher the

loss rate will be. Figure 3.1 displays the pseudo code for the C3P algorithm. Each limiter is

initialized to have an equal portion of the overall capacity. At each time interval ∆ the capacity

of the local limiter is updated using the following Ci ← Ci + η
∑

(i,j)∈E(pi − pj). The loss rate

is a good indicator of the QoS of the flows at the limiter. So when a neighbouring limiter j

has a higher loss rate this means that more bandwidth should be assigned to the neighbouring

limiter j, by increasing the capacity Cj at the neighbouring limiter and reducing the capacity

Ci at the limiter i so that the aggregate capacity is maintained. This will reduce the loss rate

at the neighbouring limiter j. The η > 0 parameter controls how responsive the algorithm is.

If ni is the number of flows passing through a local limiter, RTT
(i)
j is the round trip time of

these flows and θ is a constant,1 then Bi is defined as the following for ease of notation.

Bi =

ni∑
j=1

θ

RTT
(i)
j

. (3.2)

The limiters are connected to a number of neighbours to allow information on loss rates to be

communicated. If di is the degree2 of node i in the communication graph G, then η must satisfy

the following condition so that the described system would converge [143].

0 < η <
1

3

(
C

N

)3
1

max1≤i≤N Bi
min

1≤i≤N

Bi

di
. (3.3)

When C3P converges, the loss rates at each limiter will be equalised giving reasonable QoS to

all the users of the service in most cases.

3.3.2 Distributed Deficit Round Robin (D2R2)

The setup for this algorithm is similar to that of C3P. In D2R2, however, the limiters are mea-

suring “fair-share” which is the maximal throughput of flows at the limiter. It is measureable

directly and dependant on the traffic pattern, but in most cases the more flows at a limiter for

a given bandwidth the lower the “fair-share” will be. Let us define u
(i)
s as the demand of the

number of flows ni passing through limiter i. We can assume u
(i)
1 ≤ u

(i)
2 ≤ . . . ≤ u

(i)
ni without

a loss of generality. We use the v symbol to denote “fair-share”. We define the throughput

1For TCP flows that do not have delayed acknowledgement θ = 1.3098. θ = 0.87 if there is delayed acknowl-
edgement [38].

2The degree is the number of neighbouring limiters that the limiter i is connected to.
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1 UpdateCapacities()
2 Once every ∆ units of time do
3 for i = 1 : N
4 ṽi ← v0(Ci,Fi)
5 Ri ← Ci − gi(ṽi)
6 vi ← ṽi + αRi

7 Ci ← Ci + η
∑

(i,j)∈E(vj − vi)
8 endfor
9 enddo

10 InitializeCapacities()
11 for i = 1 : N
12 Ci ← C

N
13 endfor

Figure 3.2: Pseudo Code of D2R2 [143].

passing through limiter i for a given v as a piecewise linear concave function:

gi(v) =

ni∑
s=1

min(u(i)s ,v). (3.4)

The “fair-share” v0(Ci,Fi) is then either:

1. the unique solution of the equation gi(v) = Ci, if the
∑ni

s=1 u
(i)
s > Ci or

2. v0(Ci,Fi) = u
(i)
ni , if

∑ni

s=1 u
(i)
s ≤ Ci

The Residual bandwidthRi(Ci)is defined as the capacity of the limiter minus the through-

put of the flows passing through the limiter [143].

Ri(Ci) = Ci − gi(v0(Ci,Fi)) (3.5)

We note that the residual bandwidth is strictly positive if the demand
∑ni

s=1 u
(i)
s is strictly

smaller than the capacity. Otherwise the residual bandwidth is zero.

The pseudo code for D2R2 is presented in Figure 3.2. It has two parameters α ≥ 1 and

η > 0. The accuracy of the algorithm is determined by the α parameter while the responsiveness

and stability of the algorithm is established by the η parameter. In order for the described

system to converge the η parameter must satisfy [143]:

0 < η < min
1≤i≤N

1

2αdi
. (3.6)
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The limiters are initialized with an equal share of the overall aggregate capacity. At each

time interval the “fair-share” and residual bandwidth are calculated at each limiter and the

augmented “fair-share” defined as vi = ṽi + αRi(Ci) is calculated and sent to neighbouring

limiters along the edges of the communication graph G. The capacity of the limiter is then

adjusted using Ci ← Ci +η
∑

(i,j)∈E(vj−vi). Augmented “fair-share” is a good indicator of the

QoS of the flows passing though a limiter. If a neighbouring limiter j has a lower augmented

“fair-share” more capacity should be assigned to that limiter by decreasing the capacity at

limiter i. D2R2 will converge to equalised augmented “fair-share” giving equal QoS to all the

users of the service.

3.3.3 Improving Resilience to Failure

DRL is very robust in the event of failure as the loss of a limiter will not affect performance of

the TCP flows at the other limiters. The other limiters will continue to function and equalise

performance among the remaining users. There would be a loss in the aggregate capacity as

the limiters would not be aware that one of their number has failed, but this can be prevented

through the use of the best-friend enhancement. In the best-friend enhancement each local

limiter i has a best-friend limiter bi among the neighbouring nodes in the communication graph

G and each node informs bi of its local limit rate Ci. In the event of the failure of the i node

bi inherits its bandwidth by adjusting its bandwidth using [143]:

Cbi = Cbi + Ci (3.7)

The algorithm then relies on the consensus algorithm to redistribute the capacity. This al-

gorithm will work well in the event of single limiter failure but it may not be able to handle

multiple limiter failure since the best-friend bi of the local limiter i may have failed before

the local limiter failed, resulting in a loss of aggregate bandwidth. Also, while the consensus

algorithm will eventually redistribute the capacity in the event of limiter failure, this may take

some time.

In order to address these issues we present the good-neighbours solution. Each local

limiter records the number of neighbours γi it possesses. When communicating the loss rate or

“fair-share” to neighbouring limiters j along the edges of the communication graph G it also
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sends the number of neighbours γi as well as its local capacity Ci
3. In the event of limiter

failure4 the capacity of the neighbouring limiter is updated as follows.

Cj = Cj +
Ci

γi
. (3.8)

The number of neighbours at the neighbouring limiter γj is updated to reflect the loss of a

neighbour. This algorithm offers significant improvements by attempting to spread the lost ca-

pacity more evenly among the remaining limiters while endeavouring to ensure that no capacity

is lost. This is achieved with very little cost in terms of communication overhead. Only five

bytes needs to be added to the configuration messages. It can be seen that as the connectivity

in the communication graph G increases and G moves towards a complete graph, the better

the performance of the good-neighbours solution will be. A higher γi means that the capacity

Ci is spread more evenly throughout the communication graph G, resulting in more equalised

QoS. Orphaned nodes are also less likely.

3.3.4 Updating Aggregate Capacity

In order for DRL to be used to control bandwidth as a marketable quantity, the overall aggregate

capacity must be able to change frequently without unintentionally negatively affecting the QoS

of the users of the service. While it would be possible to simply reinitialise the algorithm with the

new aggregate capacity, this would mean that all previous updates to move towards a consensus

would have to be repeated5. In order to avoid this we present a method of updating the local

capacities to reflect the change of aggregate capacity while considering previous movements

towards consensus. In this method the local limiters would know the old aggregate capacity

and the new aggregate capacity and use these so that the local limiter has the same fraction of

the new aggregate capacity as it did the old. It does this by using the following to update the

local capacity when a new aggregate capacity is set:

C
(t+1)
i =

C
(t)
i

C(t)
C(t+1). (3.9)

3A list of the identification numbers of configuration packets it receives as well as the total number it has
received is maintained at each limiter.

4Limiter failure is detected by checking when the last configuration packet from a neighbour was received. If
it was more than 5∆, then failure has occurred.

5It is assumed that the new capacity, would either be sent to the local limiter by a centralised authority or
propagated through the network of local limiters from a single point.
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1 2 3 4 5 6 7 8 9 10

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1 TCP
Flow
RTT=
38ms

2 TCP
Flows
RTT=
76ms

3 TCP
Flows
RTT=
114ms

4TCP
Flow
RTT=
152ms

5 TCP
Flows
RTT=
190ms

6 TCP
Flows
RTT=
228ms

7 TCP
Flows
RTT=
266ms

8 TCP
Flows
RTT=
304ms

9 TCP
Flows
RTT=
342ms

10 TCP
Flows
RTT=
380ms

Legend

A

= Apache server

= CLICK limiter

= httperf server

Figure 3.3: Topology of Experiment.

The use of this equation will minimise the effect to the QoS of the service users when the

aggregate capacity is changed.

3.4 Experimental Setup

In this section we describe a series of experiments we carried out to evaluate the performance

of the DRL algorithms in terms of the metrics of DRL, the algorithms robustness to failure and

performance in a dynamic system. The first set of experiments compares the performance of

the implementation of the algorithms with that of the simulation carried out in [143]. The same

performance metrics and experimental setup are used, so that a clear comparison can be made.

In order to properly test the algorithms a topology with ten limiters connected to ten traffic

generators with greatly varying round trip times was used, as shown in Figure 3.3. The details

of the experimental setup are as follows. We created N = 10 local limiters 1,2,. . . ,10. Each

local limiter i is connected to its neighbours (i − 1) mod 10 and (i + 1) mod 10. The limiters

try to enforce an overall aggregate limit of 40Mbps. Each local limiter i serves i TCP flows

(there are 55 TCP flows in total since 1+2+. . . +10=55) which are generated at 10 other nodes

labelled s1,s2, . . . ,s10 in Figure 3.3. These TCP flows are serviced by the node A. The packet

sizes were 1500bytes and the round trip times were calculated as:

RTT
(i)
j = (8i̇+ 30j̇)ms for j ∈ 1,2,...,i. (3.10)
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The parameter ηC3P = 200000bps was set to be just below the upper bound determined in

(3.3) for stability in the C3P algorithm. We used α = 1 and ηD2R2 = 0.1 for similar reasons in

D2R2. The limiters exchange information every 2 seconds (∆ = 2s). The discrete RTT values

for each limiter can be seen in Figure 3.3.

This topology was used so that the simulation and experimentation are directly compa-

rable. It is also a diverse workload and tests the convergence and stability properties of the

algorithms with extreme workloads. In the experiment each limiter represents a data centre.

The number of flows in the experiment represents the proportion of traffic travelling to the data

centre. The performance of the DRL algorithms will scale if the number of nodes servicing the

flows and number of TCP flows are increased in the proportions detailed. We do not compare

the algorithms with related methods of distributing load as the metrics used to evaluate the

performance are different as data centres do not currently market fixed capacity to cloud users.

It has been shown that the performance of the other DRL algorithms is inferior to the DRL

algorithms examined in these experiments [143] so comparisons were not carried out.

This experiment was carried out on the Emulab testbed [164]. Each of the nodes ran

the Ubuntu 7.04 operating system and used TCP Reno. Most of the Emulab machines used an

Intel 64 bit Xeon processor and 2Gb of RAM while a few used an Intel Pentium III processor

and 256MB of RAM. The limiters were implemented using the CLICK [79] platform. CLICK

is a software architecture for prototyping network components. Each of these limiters ran on

a separate Emulab node running CLICK 1.7.0rc1. The traffic was generated using the httperf

[105] 0.9.0. The web server used at node A was Apache Web server 2.0.63.

3.5 Experimental Results

There are three overall goals to the experiments in this section. The first goal is to establish if

the implementation of the DRL algorithms performs correctly. To perform correctly, the DRL

algorithm should maintain the aggregate forwarding rate at the specified value and obey the

fairness postulate. The second goal is to establish how well the algorithm performs in the event

of limiter failure. The failure of limiters could result in the violation of SLAs. There are severe

consequences if cloud operators do not adhere to these and mechanisms must be put in place

to prevent this. The last goal is to establish how well the DRL algorithms function when the

aggregate bandwidth limit changes. The cloud is a dynamic environment and mechanisms need
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to perform satisfactorily in these conditions.

The results of the first section were determined in a single experiment for each algorithm.

The goal of these experiments is to determine if the performance of the DRL algorithms is

as good as the performance simulated in [143]. The performance is evaluated by examining

how well the algorithm emulates a centralised limiting system and how well it maintains the

aggregate capacity. It is also important that the algorithm adheres to the fairness postulate.

The topology described in Section 3.4 is used and the flows are run for 1000 seconds.

The results of three experiments per algorithm are shown in Section 3.5.2. The same

topology is used with some minor additions which are described in Section 3.4. The length of

the experiments varies but this can be seen in the figures that display the results. The goal

of these experiments is to examine the performance of the algorithms in the event of limiter

failure. The performance of the algorithms with the good-neighbours enhancement is compared

with the performance of the algorithms without the enhancement. A single experiment for

each algorithm is carried out in the last section. The same topology is used with some minor

additions that are described in Section 3.5.3. The flows are also run for 1000 seconds in this

experiment. The goal of these experiments is to determine how well the algorithms maintain

equalised QoS while varying the aggregate capacity.

3.5.1 Comparison with Simulation

In order for the distributed limiters to closely resemble a centralized limiter, the loss rates of

the local limiters must be equal. Since the loss rate at the local limiter is also a measure of

performance, it is important that the loss rates are equalised in order to equalise the QoS.

Figure 3.5 presents time on the x axis and loss rate on the y axis. Each line represents the

loss rate at one of the local limiters for the C3P algorithm. The loss rates at the local limiters

converge quickly with little variation once equilibrium has been reached. These simulation

results presented in [143] also demonstrate that the loss rates converge to equilibrium quickly

and maintain that equilibrium once it is reached. This shows that C3P algorithm emulates the

behaviour of a centralised limiter well. Since D2R2 uses “fair-share” to enforce its aggregate

capacity, loss rate at the local limiter is not a meaningful metric for D2R2.

An important performance metric for a DRL algorithm is its ability to maintain the

aggregate forwarding rate at the specified value. Table 3.1 shows the mean and standard

deviation of the aggregate forwarding rate for each of the algorithms. The accuracy of both
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Table 3.1: Mean and Standard deviation of aggregate forwarding rates in C3P and D2R2.

C3P D2R2
Mean(Mbps) 39.92 39.65
std(Mbps) 2.5 1.83
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Figure 3.4: Forwarding rates achieved by 55 concurrent flows.
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Figure 3.5: Loss Rate of C3P.

algorithms is good as the aggregate forwarding rates of both are within 99% of the specified

aggregate capacity of 40Mbps. The simulation results presented in [143] also show a high degree

of accuracy in maintaining the aggregate capacity. The mean aggregate capacity maintained

in the simulation is slightly closer to the prescribed value of 40Mbps but the accuracy of the

mean aggregate capacity obtained in the experiment is still high.

DRL algorithms must also obey the fairness postulate. The forwarding rates of the 55

individual TCP flow passing through the 10 limiters using the C3P and D2R2 algorithms are

depicted in Figure 3.4. Each of the points on the graphs in Figure 3.4 represents the forwarding

rate of an individual TCP flow. From this figure we can see that the difference in the forwarding

rates of the flows is much smaller in the D2R2 algorithm. The figure shows that the distribution

of the capacity is fairer in the D2R2 algorithm. The well established Jain’s Fairness Index (JFI)

[73] is a measure of the fairness of the r flows achieving sending rates x = (x1,x2, . . . ,xr). It is

given using the following:

JFI(x) =
(
∑r

i=1 xi)
2

r
∑r

i=1 x
2
i

(3.11)

The JFI of the flows of the two algorithms is given in Table 3.2. We can see that the D2R2 has

a higher JFI than C3P. In the simulation results presented in [143] D2R2 also has a higher JFI

than C3P. The JFI of both algorithms is slightly higher in the simulation but the experiment

confirms that D2R2 is fairer than C3P. We also note that since the JFI of D2R2 is close to 1,

the QoS of service among the flows is equalised.
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Table 3.2: Jain’s Fairness index [73] for C3P and D2R2.

C3P D2R2
JFI 0.634 0.978

3.5.2 Failure Tolerance

In this section a number of different types of failure were induced in order to determine how

resilient the algorithms are. The same setup is used in all the experiments with the addition of

a variety of limiter failures and use of enhancements. In the first experiment no enhancement

to the DRL algorithms is used and a limiter fails every 200s. Figure 3.6 shows the aggregate

forwarding rate of all the local limiters on the y axis and time on the x axis for both of

the algorithms. From Figure 3.6 we can see that at 200s, 400s, 600s and 800s the aggregate

forwarding for both algorithms decreases. The decrease is smaller in D2R2 at 200s, 400s and

600s as the limiters which failed had small local limits. From this we can determine that

each failure results in a reduction in the aggregate forwarding rate in both algorithms. The

distribution of the aggregate capacity among the local limiters is more even in C3P, which is why

the decrease in the aggregate forwarding rate is more linear than D2R2. The loss of capacity

and the corresponding reduction in aggregate forwarding means that the first constraint of DRL

(3.1) is being violated in the event of limiter failure which could result in the violation of an

SLA.

Figure 3.7 shows the loss rate on the y axis and time on the x axis. Each line represents

the loss rate for a local limiter utilizing the C3P algorithm. From Figure 3.7 we can determine

that the loss rate is not affected by the failure of the limiters. The x axis of Figure 3.8 is time

and the y axis is augmented “fair-share”. Each line represents the augmented “fair-share” of a

local limiter using the D2R2 algorithm. From Figure 3.8 we can see the augmented “fair-share”

is also not affected by the failure. The loss rate and augmented “fair-share” of the operating

limiters remains at the equilibrium. This means that although aggregate bandwidth is lost the

fairness postulate is not violated and fair QoS is still received by users. We note that Figure 3.7

is similar to Figure 3.5, which demonstrates that the QoS remains the same despite the failure

of the limiters.

In the next experiment the good-neighbours enhancement is used and there is a single

limiter failure at 200s. This experiment is carried out in order to determine how quickly the

algorithms will converge to equilibrium in the event of the capacity being unevenly distributed
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Figure 3.6: Aggregate forwarding rate during limiter failure without good-neighbours.
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Figure 3.7: Loss rates of operating C3P limiters during limiter failure without good-neighbours.

45



0

100000

200000

300000

400000

500000

600000

0 200 400 600 800 1000

A
ug

m
en

te
d 

"F
ai

r 
sh

ar
e

"

Time (s)

Figure 3.8: Augment “fair-share” of operating C3P limiters without good-neighbours.
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Figure 3.9: Augmented “fair-share” of operating D2R2 limiters during limiter failure with
good-neighbours.
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Figure 3.10: Loss Rate of C3P limiters during limiter failure with good-neighbours.
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Figure 3.11: Aggregate forwarding during failure of limiters with good-neighbours.

due to the failure of a limiter. Figure 3.9 shows time on the x axis and augmented “fair-share”

on the y axis. Each line is the augmented “fair-share” of a local limiter employing the D2R2

algorithm. In the figure we can see that the augmented “fair-share” of two local limiters spikes

briefly at 200s. This occurs when the capacity of the local limiter that failed is transferred to

the two local limiters. It, however, quickly returns to equilibrium and remains there. The x

axis of Figure 3.10 is time and the y axis is the loss rate. Each line in the figure represents

the loss rate of a local limiter running the C3P algorithm. From the figure we can see that the

failure of the limiter causes the loss rate of two limiters to drop as they accept the increased

capacity. We also see that loss rates converge to equilibrium as the C3P algorithm adjusts the

capacities throughout the cloud to account for the failure. In comparing the performance of

the two algorithms we can see that D2R2 converges to equilibrium much faster than C3P. We

note that D2R2 maintains a fairer QoS than C3P in the event of limiter failure
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In the last experiment the good-neighbours enhancement is used and there is a limiter

failure every 200s. The goal of this experiment is to show that the good-neighbours enhancement

will maintain the first constraint of DRL in the event of multiple limiter failures. Figure 3.11

shows the aggregate forwarding rate of the limiters on the y axis and time on the x axis for

both of the algorithms. We can see that the aggregate forwarding rate is maintained at the

prescribed level despite the failure of four of the ten limiters. In comparing the performance

of the two algorithms we can see that D2R2 fluctuates at the third limiter failure at 600s. We

note that C3P maintains the aggregate forwarding rate more smoothly in the event of node

failure.

We can compare the performance of the algorithms with the good-neighbours enhance-

ment with the performance of the algorithms without the good-neighbours enhancement by

comparing Figure 3.6 and Figure 3.11. We can see that the use of the good-neighbours enhance-

ment prevents the loss of 37.5% of the aggregate capacity in the case of C3P and 30% of the

aggregate capacity in the case of D2R2 after the failure of the four limiters. This is achieved

with an additional 5 bytes in each configuration message which are sent every two minutes

which is a negligible overhead. This allows cloud operators to adhere to SLAs in the event of

hardware failure with little additional cost.

3.5.3 Changing Aggregate Capacity

The aim of these experiments is to determine how well the algorithms reacts to changes in the

specified aggregate capacity using the formula detailed in Section 3.3.4. In this experiment the

same setup is used with the exception that the aggregate capacity changes to 60Mbps at 250s,

15Mbps at 500s and 30Mbps at 750s. The y axis of Figure 3.13 show the aggregate forwarding

rate of all the local limiters and the x axis shows time. We can see that both algorithms reach

the new capacities and stabilise around the new aggregate capacity quickly. We see that C3P’s

transition to the new aggregate capacity is smoother than D2R2 as the aggregate forwarding

rate varies somewhat when the local limiters switch to the new aggregate capacity. Figure

3.12 shows the loss rate on the y axis and time on the x axis. Each line represents the loss

rate of a local limiter running the C3P algorithm. From the figure we see that the loss rates

remain equal throughout the whole experiment and move to the new equilibrium together. This

means that there is no negative unintentional affect to the QoS of the Service Users. The y

axis of Figure 3.14 is the augmented “fair-share” and the x axis is time. Each line represents
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Figure 3.12: Loss Rate of C3P limiters with changing aggregate capacity.

the augmented “fair-share” of a local limiter using the D2R2 algorithm. We can see that the

change in aggregate capacity does cause the augmented “fair-share” to fluctuate somewhat. It

does, however, converge to equilibrium quickly. This means that there will be little or no effect

to the QoS of the Service Users. In comparing the two algorithms we see that C3P performs

better than D2R2 when changing its aggregate capacity as the transition in terms of QoS and

aggregate forwarding rate is smoother.

3.6 Summary

In this chapter we examined DRL algorithms that can be used to implement a predictable,

incremental, fixed cost policy for traffic. We postulated that such a policy could be useful in

encouraging users to migrate services to the cloud and hence, increase utilisation levels and rev-

enue. DRL algorithms operate by enforcing an overall aggregate capacity limit across different

locations by adjusting local capacity limits at devices known as limiters in accordance with a

fairness metric. We described the operation of the C3P and D2R2 algorithms and discussed po-

tential flaws in these algorithms. The cloud is a dynamic environment and operators are bound

by SLAs which makes the failure of limiters which utilise the algorithms unacceptable. We

proposed the good-neighbours enhancement to handle component failure and an enhancement

to handle a changing aggregate capacity to address these flaws.
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Figure 3.13: Aggregate forwarding rate with varying aggregate capacity. The specified aggregate
capacity begins at 40Mbps and changes to 60Mbps at 250s, 15Mbps at 500s and 30Mbps at
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Figure 3.14: Augmented “fair-share” of D2R2 limiters with changing aggregate capacity.
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We then examined a number of aspects of the performance of the algorithms. We first

examined how our implementation of the algorithm performs using the two main DRL per-

formance metrics. The first is that the difference between the sum of the forwarding rates at

limiters and the specified aggregate capacity is as small as possible and does not vary signifi-

cantly over time. The second is that the algorithms adhere as closely as possible to the fairness

postulate. We examined how our implementation of the algorithm performs using these metrics

and compared the performance to simulation results previously obtained in [143]. Our results

show that both algorithms perform well in ensuring that the difference between the sum of

the forwarding rates and the specified aggregate capacity is small. They also show that D2R2

distributes the bandwidth to flows in a fairer manner than C3P. These results are similar to

the simulation results.

Next we examine how the algorithms perform in the event of limiter failure with the

good-neighbours enhancement. The performance metrics are the same as the previous metrics.

In the event of limiter failure the spare capacity should be absorbed by neighbouring limiters

and then redistributed by the normal operation of the algorithms so that the algorithms adhere

as closely as possible to the fairness postulate. We compared the performance of algorithms

with the good-neighbours enhancement algorithm with the normal operation of the algorithms.

Our results show that the good-neighbours enhancement maintains the aggregate capacity at

the specified level in the event of limiter failure and the effect on the distribution of bandwidth

to flows is minimal.

Finally, we examined the performance of algorithms with a changing aggregate capacity

with an enhancement designed to accommodate this. In this case the performance metric

used was how quickly the algorithms move to the new aggregate capacity, how stable the new

aggregate capacity is once it has been reached, and how the well the fairness postulate is

obeyed when the change occurs. Our results show that both algorithms move towards the new

aggregate capacity relatively quickly. They also show that the C3P algorithm is more stable

once the aggregate capacity has been reached.
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Chapter 4

Bandwidth Management in Data

Centres

4.1 Abstract

Current mechanisms for controlling network resources cannot prevent users from interfering

with each other in a shared cloud environment. Proposals made to rectify this, use mechanisms

which require interrupts with high timing precision, and usually unevenly distribute bandwidth

to TCP flows. We propose the use of an alternative mechanism originally used in the DRL

algorithm D2R2 to manage network resources and compare the performance of both.

4.2 Introduction

A public cloud is an environment where multiple users share various computational and network

resources. Hence there is potential for both malicious and unintentional service interference

where the resource usage of one user impacts the service received by another. Service interfer-

ence can already been seen on clouds that are in operation today. The throughput of medium

instances on Amazon’s EC2 can vary by 66% [87, 159] and it has been conjectured, based on

anecdotal evidence that the cause of this is a lack of mechanisms to prevent service interfer-

ence [136]. There are numerous mechanisms which can be used for controlling and managing

computational, memory and disk resources [27, 61]. However, it is generally accepted that the
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current mechanisms for managing network resources are not capable of preventing “service in-

terference”. A cloud operator needs to prevent service interference as it lowers the QoS received

by cloud users. This could lead to lost customers and low utilisation levels as users may decide

to implement alternate methods of service delivery.

Other proposals such as Seawall by Shieh al. have concentrated on maintaining the fair

divisions of bandwidth among servers, VMs or processes. While this is important it is also

crucial that the bandwidth be divided among the flows of the VM or process in a fair manner

as each flow could represent an individual service user. The principle focus of this chapter is to

detail a mechanism which not only divides bandwidth fairly between servers or VMs but also

among the flows connected to these. To this end we propose the use of a “fair-share” dropping

mechanism in Seawall rather the token bucket mechanism originally used. Recall that Shieh et

al. proposed Seawall [136] to manage bandwidth of the links in a data centre. Seawall used

the token bucket mechanism which has two flaws. Firstly, it requires high precision interrupts1

to operate correctly and efficiently at high rates. To generate high precision interrupts Seawall

uses one core per rack of servers to generate a heartbeat packet. A heartbeat packet is defined

as a packet that is used to synchronise the token bucket mechanism on a network scale. A core

which is generating heartbeat packets cannot be used for anything else and represents a wasted

capital investment. A second flaw results from the manner in which bandwidth is assigned. In

Seawall a local entity (e.g. Virtual Machine, process) is assigned a network weight which is

simply a measure of the portion of bandwidth the local entity should receive. A higher network

weight results in a local entity receiving a greater proportion of the bandwidth. While the

token bucket mechanism does ensure that the local entity receives a a share of the bandwidth

that is proportional to its network weight along the network links, it does not ensure that the

individual flows of the local entity obtain a fair allocation of the bandwidth assigned to the

local entity. As a result certain flows can receive significantly more bandwidth than others.

This could lead to lost customers.

Inspired by the DRL mechanism [143, 124, 144], the performance of the bandwidth man-

agement algorithm is considered, with a specific view to protecting honest users. In this chap-

ter we compare the performance of the token bucket mechanism and the “fair-share” dropping

mechanism used in the D2R2 algorithm [143] in dividing the bandwidth among flows.

In Section 4.3 we examine the operation of the “fair-share” dropping mechanism. In

1The ideal token bucket updates every 1
r

seconds where r is desired rate.
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1 UpdateFairShare()
2 Once every ∆ units of time do
3 if T > 0.7C
4 v ← 0.9v + 0.1(C − T )
5 else
6 v ← 0.9v + 0.1(C)
7 enddo

8 PacketArrival()
9 if R < ti−v

v
10 DropPacket

Figure 4.1: Pseudo Code of “fair-share” dropping mechanism.

Section 4.4 we detail the experimental setup used to evaluate the performance of the dropping

mechanisms. In Section 4.5 we present the results of the experimental evaluation of the“fair-

share” dropping mechanisms and compare it with token bucket. In Section 4.6 we summarise

how the “fair-share” dropping mechanism can be used to prevent service interference while

ensuring that service users receive a reasonable QoS.

4.3 “Fair-share” Dropping Mechanism

In this section we describe the operation of the “fair-share” dropping mechanism originally

used in [143]. The “fair-share” v of the flow population of a local entity can be defined as

the maximum forwarding rate of all the flows of the local entity. In order to ensure that the

aggregate throughput T of the local entity matches the bandwidth share dictated by the network

weight C, the “fair-share” v must be adjusted at a time interval ∆. The difference between the

bandwidth share C and the aggregate throughput T is used to update the “fair-share” v if the

aggregate throughput T is closer to, or is greater than the bandwidth share C. Otherwise the

“fair-share” v is increased so that the aggregate throughput T matches the bandwidth share

C. Packets from a flow are dropped if a random number R between 0 and 1 is less than the

difference between the throughput ti of flow i and the “fair-share” v divided by the “fair-share”

v. This is illustrated in Figure 4.1. Fairness is achieved here as packets will not be dropped

from a flow until it has reached the “fair-share” v value. At this point the flow is receiving a

fair amount of the capacity and packets which are received after this will begin to drop with

increasing probability as the throughput of the flow increases beyond the “fair-share” value v.

Randomness is used to ensure that all flows do not scale back together and consequently to
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  Apache server
  using TCP Cubic

  CLICK Dropping
    Mechanism

  httperf server
  using TCP Cubic

100 TCP Flows

Figure 4.2: Diagram of the experimental setup.

ensure that T matches the bandwidth share C.

4.4 Experimental Setup

In order to evaluate the performance of the proposed “fair-share” dropping mechanism, we

implemented both this algorithm, and for comparison, a token bucket mechanism using CLICK

[79]. We then used the httperf [105] traffic generator to generate a hundred requests to fetch

a large file. Large files were used so that a constant number of TCP flows would persist for

the experiment. The traffic pattern generated is similar to that generated by a group of people

accessing a service like YouTube. TCP Cubic was used to control the flows [64] as it is the

default implementation of TCP on many modern Linux kernels. Cubic allows the examination

of the throughput of each flow and the comparison of the performance of the two mechanisms.

An Apache web server was used to service the requests. This is illustrated in Figure 4.2. All

flows which are directed towards a destination in the data centre will pass through the same

final link in the path from source to destination. Since latency in a data centre is so low in

ideal conditions and the flows converge to use this single link, the setup is representative of

a simulation which has multiple sources in the data centre as flow control is applied on a per

connection basis and the difference in latency between the flows is negligible. Both mechanisms

are attempting to enforce a bandwidth share C of 40Mbps. We selected 40Mbps as it seems

likely bandwidth share given the number of VMs likely to be found on a physical server. The

“fair-share” dropping mechanism updates every 2s (∆ = 2s). The token bucket updates every
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Figure 4.3: The forwarding rates of the individual TCP flows using (a) “fair-share” and (b)
token bucket.

10ms. Seawall updates the token bucket every 0.1ms but this requires the use of a processor

core for timing only, which as we have mentioned is inefficient. 10ms was selected as it is a small

enough value that the token bucket will operate reasonably efficiently without the requirement

of a heartbeat packet.

Both “dropping mechanism” implementations also record data that can be used to quan-

tity their performance. The performance of the mechanism can be characterized using a few

criteria. The first criterion is that the average aggregate throughput should match the band-

width share. The aggregate throughput T was recorded at each update interval to investigate

this criterion. In addition a criterion to establish the fairness of the division of bandwidth

among the TCP flows was required. In this work we use the well known Jain’s Fairness In-

dex (JFI) [73] as a measure for quantifying the performance of both algorithms as a criterion

for fairness. Recall that JFI is a measure of the fairness of r flows achieving sending rates

x = (x1,x2, . . . ,xr) and is given by the following:

JFI(x) =
(
∑r

i=1 xi)
2

r
∑r

i=1 x
2
i

A JFI value of 1 indicates that the bandwidth has been distributed fairly. The throughput of

each individual flow ti is recorded at every update interval to evaluate this criterion.

4.5 Experimental Results

The goals of these experiments are to examine the performance of the “fair-share” and token

bucket dropping mechanisms in dividing bandwidth fairly among flows and as rate limiting
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mechanism as this is their core function. We compare the performance of the two mechanisms

as the bandwidth that cloud and service users receive is dependent on these. We first examine

how close the achieved average throughput of the local entity matches the bandwidth share.

Both mechanisms perform well, with an average throughput within 1% of the bandwidth share

of 40Mbps. Token bucket, however, achieves this performance at a much higher cost than the

proposed algorithm as it must update 200 times more often in order to achieve this level of

performance.

The second criterion is the fairness of the division of bandwidth among the TCP flows.

The JFI of the “fair-share” dropping mechanism is 1 and the JFI of the token bucket mechanism

is 0.9578. From this we can say that the “fair-share” dropping mechanism is better at dividing

the bandwidth among the TCP flows fairly again at a much lower network management over-

head. This can be illustrated further. Figure 4.3 depicts the flow identifier of the TCP flows on

the x axis and the average forwarding rate of the flows on the y axis. Each point represents the

average forwarding rate of an individual TCP flow. From Figure 4.3 we can see that the TCP

flows have a equal forwarding rate when the “fair-share” dropping mechanism is used. This

illustrates that a fair distribution of the bandwidth share has been achieved, and consequently

for users of the local entity equal QoS has been achieved. In contrast we can see the forwarding

rate of the TCP flows using token bucket ranges from 0.23Mbps to 0.73Mbps. This is clearly

not a fair distribution as one user of the local entity is receiving more than three times the

bandwidth of another user.

4.6 Summary

In this chapter we examine how the “fair-share” dropping mechanism can be used to improve

bandwidth management in data centres. Recently there has been considerable attention given to

the implementation of bandwidth management protocols in public data centres. The principal

reason for this is to prevent users from exploiting weaknesses in the TCP protocol and using

other methods to obtain an unfair share of bandwidth. Proposals which have been made to

address this enforce bandwidth limits using the token bucket mechanism which has two flaws.

Firstly to function effectively it requires a steady stream of high precision interrupts. A core per

server rack is required to achieve this and this represents a significant overhead. Secondly it does

not divide the bandwidth among the flows passing through the dropping mechanism fairly which
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could cause QoS problems. To address this we propose the use of the “fair-share” dropping

mechanism in bandwidth management systems rather than the token bucket mechanism.

Firstly we detailed the operation of the “fair-share” dropping mechanism. Next we de-

signed an experiment so that the two mechanisms can be compared. The two performance

metrics used to evaluate the algorithm are investigated. Our results showed that both mecha-

nism perform well in ensuring that achieved average throughput is close to assigned bandwidth

share. They also showed that the distribution of bandwidth to flows is significantly fairer if the

“fair-share” dropping mechanism is used.

58



Chapter 5

Thermal Management of Data

Centres

5.1 Abstract

Thermal management in data centres requires a complicated trade-off between cooling costs and

thermally induced equipment failure rates. Using ideas from cooperative control and distributed

rate limiting, we describe a distributed architecture that can be used for thermal aware load

balancing for a common type of modular data centre. The benefit of shifting load based on

thermal considerations is that significant gains in cooling cost can be achieved.

5.2 Introduction

One of the most significant components of the operating costs for a cloud is the energy required

for cooling. Consider a 30,000 ft2 data centre with 1000 standard computing racks, each con-

suming 10 kW. If we assume an average electricity price of $100/MWh and a PUE of 1.5-2, the

annual cooling cost would be of the order of $4–$8 million [118]. The specific cost depends on

the layout of the data centre and the particulars of the cooling system used.

Cooling, however, is of considerable importance to the long-term reliability of operations.

It has been reported that every 10 ◦C increase above 21 ◦C decreases the long-term reliability

of electronics by 50% [148, 120]. In addition, it has been shown that a 15 ◦C rise increases the

failure rates of hard disk drives by a factor of two [7], although more recent studies suggest that
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the increase in the rate of failure may not be as severe as this [42]. It is possible, however, to

lower the operational cost required for cooling through the use of the load balancing algorithms

while preventing equipment damage. This allows cloud operators to lower their cost and helps

them recover their capital investment.

The temperatures of server rack inlets in a data centre are not equal due to complex

airflows. The cooling cost of a data centre is dependent on hottest inlet as this must be

cooled to prevent equipment damage. This results in some server racks being over-cooled.

There have been a number of proposals to improve the thermal management of data centres

[134, 103, 35, 117] using load balancing. All of these proposals, however, use a central scheduler

which is both a single point of failure and a bottleneck for control messages. They also focus

on a traditional data centre architecture. In this chapter we examine thermal management in

a data centre which uses modular data centre components. Modular data centres have become

increasingly popular in recent years and we can examine their operation accurately as each

component has little effect on its neighbouring components. We propose, a robust, distributed

algorithm, which attempts to reduce cooling costs, prevent equipment damage and ensure that

all service requests are satisfied without the need for detailed calibrations. The algorithm

operates by adjusting the load a cloud component is servicing based upon the temperature of

that component and its neighbours. Our work allows cloud operators to lower their operational

costs while maintaining QoS and hence utilisation levels.

In Section 5.3 we describe the distributed algorithms we use for thermal management. In

Section 5.4 we detail the simulation setup used to examine the performance of the algorithm. We

present the results of the simulation in Section 5.5. In Section 5.6 we describe the experimental

setup used to investigate the performance of the algorithm. In Section 5.7 we evaluate the

performance of the algorithm in the experiment. Finally in Section 5.8 we summarise how our

distributed algorithm can be used to lower operational costs while maintaining QoS for users

of the service.

5.3 Preliminaries

We will study thermal management in the context of a large scale data centre. In the following,

we use the term “machine” in a rather abstract sense in that we assume that each “machine”

60



Load Balancer

Machine 1

Machine 2

Demand
Configuration
Messages

Load Redirected
Via HTTP Redirect

Data Centre

Inlet Temperature
Sensors

Figure 5.1: Illustration of how the thermal management algorithms operate.

actually consists of a housing that contains a large number of individual servers which, collec-

tively, have a cooling facility associated with them. This assumption is particularly applicable

in the case of the increasingly popular modular data centres, where large clusters of servers are

housed in shipping containers that are all connected to a common chilled water supply which

feeds the computer room air conditioner (CRAC) units, [32]. Such a container would then be

considered a “machine” in the context of this work.

5.3.1 Problem setting

To use algorithms to attempt to equalise the temperature of machines in a data centre we need

to formulate the operation of the data centre mathematically. We consider a data centre that

is constructed using n machines. Each machine i ∈ {1,2, . . . ,n} has, at time k = 0,1,2, . . . , an

inlet temperature (or just “temperature”) of Ti(k), which represents the temperature of the

air sucked into the servers for cooling. Additionally, each machine is servicing a demand (also

referred to as “work load”) of Di(k), so that the total demand serviced by the data centre at

time k is

D(k) :=
∑
i

Di(k) (5.1)

An important feature of our work is that the total demand D(k) is regulated to some desired

value D∗, which may be time-varying (for notational convenience, we omit the dependence of
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D∗ on k). Hence, the value of the total demand serviced and its deviation from D∗ must be

known either implicitly or explicitly by at least one machine in the data centre. D∗ represents

the demand entering the data centre through the access network. The algorithm must know

this value so that all requests are serviced.

Given a constant amount of cooling energy supplied to each machine, the temperatures

inside each machine will be a direct function of the demand serviced by that machine (since the

heat energy dissipated by the CPUs is roughly proportional to the amount of work done by the

CPUs). Borrowing from the terminology established in [77], this interdependency is described

by the “utility functions” which relates the “physical state” (demand) Di of machine i to its

“utility value” (temperature):

Ti = fi(Di) (5.2)

Note that fi is typically non-linear and is used to model complicated fluid dynamic effects as

well as natural cooling within the machines. Using this relationship our algorithms can adjust

the demand to attempt to equalise the temperature of the machines. This is depicted in Figure

5.1. Demand is spread among the machines by a load balancer and the sensors are used to

monitor the temperature. Machines exchange information using configuration messages. If a

neighbour is colder than the machine HTTP redirects can be used to lower its demand and

hence its temperature.

We assume that the workload is distributed uniformly inside the machines. We also as-

sume that the temperature of all server inlets is the same inside a given machine; this assumption

is justified in particular when suitable cold aisle containment is used inside the machine (In our

simulations we found that the largest difference in temperature between the inlets of servers is

0.3 ◦C). In addition, one of our simulations (simulation 3) examines how much the demand ser-

viced by neighbouring server racks affects the temperature. Furthermore, even in the presence

of this assumption the algorithm works well. Note our simulations are based on Flovent [34],

an industry standard computational fluid dynamics simulator, and these indicate that even in

the presence of these temperature variations, the algorithm is effective. Finally, we assume that

there is sufficient distance between the machines so that heat exchanges can be neglected and

that these are cased and isolated from each other. Recall that “machines” refer to housings

that contain a large number of individual servers.

Machines must exchange information on their temperature for the algorithms to function.
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We assume that a limited information exchange between machines is possible. Specifically, at

time k, machine i can provide information about itself (in particular its current temperature)

to another machine j if and only if (i,j) is an arc in the directed communication graph G(k) =(
N ,E(k)

)
, which thus describes the topology of the possible information exchange between

machines. This graph is allowed to change over time. The algorithm will not work if a node

becomes isolated and it is therefore assumed that the graph is jointly strongly connected over

a given, fixed time horizon m ≥ 11. A graph is defined as strongly connected if for every pair

of nodes possible in the graph there is a path from the first node to the second and vice versa.

A graph is jointly strongly connected over a a given fixed time horizon if every union of the m

graphs that occur during the time yield a strongly connected graph. This assumption is crucial

as machines need to be able to receive the updates on the overall desired demand D∗ to update

their demand accordingly.

We would now like to find an algorithm that will attempt to equalise the temperatures

among machines, while ensuring that some total demand D∗ is being serviced by the data

centre.

5.3.2 Global Demand and Local Temperature Exchange (GDLTE)

In this section we describe an algorithm which can be used to equalise the temperature of

machines servicing a demand which is time variant. We call this algorithm Global Demand

and Local Temperature Exchange (GDLTE). Related work described in [77] gives an in-depth

discussion of three iterative algorithms and variations thereof that are designed to allow a

network to achieve a common goal cooperatively, while satisfying certain local constraints.

The data centre load balancing problem fits into this framework and we shall now reproduce,

for convenience, some of the mathematical statements from this publication (in particular the

theorem which deals with stability and convergence).

To apply these results, we must assume that the utility functions are continuous, mono-

tone functions with bounded growth rates (to guarantee feasibility of the solution) and that

each machine has knowledge of the total demand being serviced by the complete data centre.

It is also assumed that the update law for the algorithm uses a time scale that is larger than

that of the dynamics of the settling time for the temperatures; namely that the relationship

1The union of a set of graphs on a common vertex set is defined as the graph consisting of that vertex set
and whose edge set is the union of the edge sets of the constituent graphs.
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between Di and Ti can be adequately modelled using a static map. Given these assumptions,

the following theorem (adapted from Theorem 4.1 in [77]) provides a stable update law to it-

eratively refine the demands being serviced by the individual machines so that the data centre

converges to the desired behaviour:

Theorem 1. For some initial condition Di(k = 0) and any sequence of strongly connected

communication graphs, suppose that the machines iteratively update their work load according

to

Di(k+1)=Di(k) +
∑

(j,i)∈E(k)

ηij(k)
(
Tj(k)− Ti(k)

)
+ µ(k)σ(k) (5.3)

where

σ(k)=


D∗−

n∑
i=1

Di(k+1−M) if k+1 is a multiple of M

0 otherwise

(5.4)

with M :=n−1. If the gains satisfy

0 < µ ≤ µ(k) ≤ µ̄ and 0 < ηi ≤ ηij(k) ≤ η̄i (5.5)

then — provided µ̄ > 0 and η̄i > 0 are sufficiently small — the demands Di(k) converge

asymptotically to values D∗i for which fi
(
D∗i
)

= T ∗ for all i = 1, . . . ,n and
∑

iD
∗
i = D∗.

η(k) and µ(k) are stability parameters and determine how quickly the algorithm moves

towards convergence. σ(k) is a parameter used to determine if the local demand should be

updated due to a change in the total demand. The proof of convergence only holds if the

algorithm does not alter the total demand due to a change in the total demand at each time

interval and σ(k) is used to account for this. For a proof of the Theorem and detailed description

of the mathematical assumptions therein, please refer to [77].

Comment. Explicit bounds on η̄i and µ̄ are also given in [77]. While for the purpose

of proving convergence in the theorem small values of these constants are required, in practical

situations it is found that they can be significantly larger. Mathematical details on bounds of

η̄i and µ̄ are given in [77]. These are quite involved and are beyond the scope of this work. In

short, the stability conditions are based on connectivity arguments in graphs. As the graphs

become large, then these conditions give small controller gains. This approach does not account

for structural properties of the graph and consequently may be quite conservative.
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1 UpdateDemand()

2 Once every ∆ units of time do

3 for i = 1 : n

4 Di ← Di + η
∑

(i,j)∈E
(
Tj − Ti

)
5 if mod(k + 1 , n− 1) == 0

6 Di ← Di + µσ

7 endif

8 endfor

9 if mod(k + 1 , n− 1) == 0

10 σ ←
(
D∗ −

∑n
i=1Di

)
11 endif

12 k ← k + 1

13 enddo

14 InitialiseDemand()

15 k ← 0

16 σ ← 0

17 for i = 1 : n

18 Di ← D∗/n

19 endfor

Figure 5.2: Pseudocode for GDLTE.

The update law (5.3) from the Theorem, which we will refer to as GDLTE, thus provides

a rule specifying how to iteratively update the load on the machines to balance the temper-

atures among the machines in the network. It consists of two parts: The first part, which

sums the differences in temperatures between neighbours, is aimed at reducing the temperature

differences; if, for instance, all neighbouring machines of machine i are operating cooler than

machine i, then it should reduce its own demand in order to approach the temperature level of

the surrounding machines. The second part in the equation is to ensure that the global demand

is satisfied. It can be seen that if the total demand serviced by all the machines is below the

required quantity, then each machine should increase their own work load somewhat so that

the network, collectively, increases the demand serviced until it reaches the desired level.

The pseudocode shown in Figure 5.2 describes an implementation of this algorithm.

5.3.3 Local Demand and Local Temperature Exchange(LDLTE)

In situations where the communication graph is undirected, where the total required demand is

not subject to change, and where the utility functions satisfy stronger assumptions, then consid-

erable simplifications are possible and the algorithms given in [144] apply. Specifically, suppose

that: (a) the communications graph is undirected; (b) the desired demand D∗ is constant; (c)
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1 UpdateDemand()
2 Once every ∆ units of time do
3 for i = 1 : n
4 Di ← Di − η

∑
(i,j)∈E(Ti − Tj)

5 endfor
6 k ← k + 1
7 enddo

8 InitialiseDemand()
9 k ← 0
10 for i = 1 : n
11 Di ← D∗/n
12 endfor

Figure 5.3: Pseudocode for LDLTE.

the utility functions fi : R → R are increasing, concave, differentiable functions, and have

continuous first derivatives. These conditions hold in some data centres. The utility function

is increasing because a higher demand will result in a higher temperature. It is differentiable

and has continuous first derivatives as the changes are relatively smooth and do not result in

either steps or a lack of change with demand. The function can be assumed as concave as the

complex airflows will introduce some nonlinearity but as the function is increasing the function

can be assumed to be concave rather than nonlinear. As two way communication is standard

in the data centre the assumption that the communication graph is undirected is justified. The

desired demand cannot be considered constant for some data centres as user traffic varies with

time. In other data centres the demand can be controlled and a static constant demand is

used as these data centres are focused on high performance computing or similar tasks.. As a

result of these assumptions the algorithm which we call Local Demand and Local Temperature

Exchange (LDLTE) described by the pseudocode in Figure 5.3 may be used to equalise the

temperature of machines in a data centre.

The basic idea encapsulated above is as follows. Initially, the demand is divided evenly

among the server racks. The demand Di of each machine i is then iteratively updated with a

term that is proportional to the sum over the differences between its own temperature and that

of neighbouring racks, that is

D1(0) = D2(0) = . . . = Dn(0) (5.6a)

Di(k + 1) = Di(k)− η
∑

(i,j)∈E

(
Ti(k)− Tj(k)

)
(5.6b)
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The gain parameter η determines the responsiveness and stability of the algorithm and the

choice is discussed in [144]. The stability and convergence properties are captured by the

following theorem, cf. [144]. Before stating this theorem, we need to establish some further

terminology. Denote by gi = f−1i the inverse functions of the fi, which must exist given the

convexity and differentiability assumption above. Note also, due to symmetry, the system given

by (5.6) satisfies the demand constraint (5.1) for all k = 0,1,2, . . . .

Theorem 2. Let di be the degree of node i in the communication graph. If η satisfies:

0 < η <
1

2
min

1≤i≤n

[
− g′i

(
Ti(0)

)]
min

1≤i≤n

1

di
, (5.7)

then the system given by (5.6) will converge to

lim
k→∞

Di(k) = D∗i

with
∑

iD
∗
i = D, and

lim
k→∞

Ti(k) = T ∗

for all i = 1, . . . ,n.

Proof. See [144].

∆ is the time interval between updates and is related to the settling time associated

with the fi() functions. In the original work on this topic [77], these functions are static maps

whereas in this application this is not entirely true. Our assumption is, that the dynamics

associated with the fi() functions are fast when compared with the update law. Of course

this assumption has to be validated experimentally and the step size determined empirically.

For our simulation ∆ was chosen to be much larger than the dynamics associated with the

fi() functions. The objective of this work was to illustrate the use of a new and innovative

distributed control algorithm developed in [77] for thermal management purposes. In our CFD

simulations each iteration of the Flovent software was run every ∆ seconds.

5.4 Simulation Setup

To evaluate the performance of our algorithms we first needed to generate utility functions re-

lating temperature to load for different types of machines. To do this we created computational
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Figure 5.4: Geometry of the server rack as well as the air velocity, pressure and turbulence
conditions in front of the server racks
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fluid dynamics models and simulated the operation of these data centres at different demand

levels. Once the simulation was completed the temperature was recorded for use in the utility

functions. Our simulation setup is similar to that used by Sharma et al. and Moore et al. in 2005

[134, 103]. Each machine (data centre) used in this study has dimensions 11.7 m×8.5 m×3.1 m

with a 0.6 m raised floor plenum that supplies cool air through perforated floor tiles. There

are four rows of servers with seven 40 U racks in each case, resulting in a total of 1120 servers.

The dimensions of the server racks are depicted in Figure 5.4(a). Note the front and rear doors

where removed to allow the air to flow freely. The servers simulated were based on Hewlett-

Packard’s Proliant DL360 G3s model, which consumes 150 W of power when idle and 285 W

at 100% utilization. From this we could determine that the total power consumption of the

data centre is 168 kW (40 × 28× 150 W) when idle and 319.2 kW (40 × 28× 285 W) at full

utilisation. The flow rate of the server rack was 1,500 ft3/min representing 40 servers with a

flow rate of 37.5 ft3/min. We also used an ideal energy proportional version of said server, [91].

These represent advanced servers where the idle power is virtually zero.

For cooling, the data centre is equipped with four CRAC units “A”, “B”, “C” and “D”

whose locations are also indicated in Figure 5.5. Each CRAC unit pushes air chilled to 15 ◦C

into the plenum at a rate of 10,000 ft3/min. The cooling capacity of each CRAC unit is

limited to 90 kW. Flovent uses the popular k-ε turbulence model; (see documentation describing

mathematical modelling given as part of [34]). The air velocity, pressure and turbulence at the

front boundary of the server racks are depicted in Figure 5.4(b), 5.4(c) and 5.4(d). CFD

simulations are used routinely in data centre design and have been found be to very useful for

thermal management purposes by practising engineers. There is, however, a need for detailed

validation against experimental data. These concerns, however, are not addressed in this work

and CFD simulations are carried out using the popular commercial package Flovent. Given

this simple setting, we now describe three basic variations that may arise. In the first case,

the machine is exactly as described above with standard HP servers. This type does not use

containment and utilises normal servers. It is hereafter referred to as “NC-NP”. For the second

case, the machine was modelled using a “cold aisle containment” assumption, [99] with CRAC

unit D offline. Recall that cold aisle containment refers to the segregation of the cold aisle from

the rest of the data centre using physical barriers such as PVC curtains or Plexiglas [17]. This

type of data centre is likely to become a more popular option in the future, [121]. This type

uses containment and normal servers. It is hereafter referred to as “C-NP”. It is also possible
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Figure 5.5: Layout of simulation setup. To illustrate the communication graphs used in simu-
lation 3, the dotted lines indicate which other machines the racks 1 and 13 from the left cold
aisle can exchange temperature information with. Server racks in adjacent aisles are connected
to lower temperature differences between aisles.

to use “hot aisle containment” which is the segregation of the hot aisle from the rest of the

data centre. While there is some evidence that “hot aisle containment” may be a more efficient

design, it is recognised [121] that there are difficulties in retrofitting this solution which may

make “cold aisle containment” the more popular design, at least in the short-term. The third

case is identical to the second case, but servers of the energy proportional type were used. This

type use containment and energy proportional servers. It is hereafter referred to as “C-P”.

Each case has a utility function associated with it that describes the relationship be-

tween load and maximum inlet temperature found inside the machine. These utility functions,

which we will use later in our simulations, were generated by implementing a CFD model in

Flovent and running simulations. The power consumed by the server racks were set to reflect

the utilisation level. The simulation was then executed and the maximum inlet temperature

indicated by the Flovent software was recorded. This was repeated in 10% intervals from idle

to full power. The utility functions are depicted in Figure 5.6. From the figure we can see that

the NC-NP and C-NP variations operate at a higher temperature when idle. This is expected

as the C-P variation does not consume power when idle and hence will be cooler under similar

cooling conditions. The temperature of the NC-NP variation rises faster than the C-NP initially

as it does not use containment. The temperature of the C-NP variation spikes at around 80%
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Figure 5.6: Utility functions.

utilisation as the operating CRAC units are unable to remove all of the heat being generated

by the servers. The temperature of the C-P variation rises quicker than C-NP as the increases

in power with each utilisation level are higher.

In order to evaluate the performance of the algorithms we need to calculate the cooling

costs. Let Q be the amount of power the servers consume, Tsup the temperature of the air that

the CRAC units supply, Tsafe = 25 ◦C the maximum permissible temperature at the server inlets

in order to prevent equipment damage, Tmax the maximum temperature at the server inlets of

the machine and Pfan the power required by the fans of the CRAC units. The “coefficient of

performance” (COP) is the ratio of heat removed to the work necessary to remove that heat.

It is a function of the temperature Tsup of the air supplied to the CRAC. There is considerable

debate over the maximum temperature that should be permitted at the inlet in order to prevent

equipment damage. While there are guidelines in this area they have changed recently [11] as

the recommended maximum operating temperature has been set at a higher value. We selected

the value Tsafe = 25 ◦C as it is a well established value which has been used in other systems

[134, 103]. The cooling cost C can then be calculated as:

C =
Q

COP(Tsup)
+ Pfan (5.8)

If the highest temperature found at any inlet in the data centre is significantly less than the “red-

line” temperature, then the CRAC is cooling the data centre excessively. In such a situation,

the supply temperature can be raised by Tsafe−Tmax (by reducing the amount of cooling) to
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reduce costs while still observing Tsafe.

Comment. While other factors such as complex nonlinear flow effects and the cost of

pumping air to difficult-to-reach parts of the data centre affect the cooling cost, the highest

machine temperature is the major driver of cost. This observation is what motivates us to

equalise temperatures. By equalising the temperatures we lower the highest temperature of the

machines which allow us to increase the temperature of the air supplied to the CRAC units

and lower cooling costs.

If, in turn, Tsafe−Tmax is negative the equipment is in danger of being damaged and the

supply temperature must be lowered in order to cool down the machine responsible for Tmax. In

our simulations, to determine this maximum inlet temperature, we used the commercial CFD

simulator Flovent. Each of the four CRAC fan units consumed a constant 10 kW so that for

each machine Pfan = 40 kW and Tsup = 15 ◦C. The COP curve used to calculate the cooling

costs is a standard curve for a water chilled CRAC and is given in [103].

Once we had established the utility function for the different modular data centres we

constructed a number of simulations to examine the performance of different aspects of the

algorithms. The first two sets of experiments were carried out using Matlab. The particulars

of the simulation relating to the number of machines, total demand and the communication

graph were programmed into the simulation. The update rule was executed at each machine for

a number of iterations and the temperature and local demand of the machines were recorded

at each interval. In the final simulation Flovent was used for greater accuracy. In this case the

update rule of LDLTE was run at each machine. The demand and temperatures were recorded.

The demand was then altered and the CFD simulation was executed again. This was repeated

for a number of iterations.

5.5 Simulation Results

In this section we examine three aspects of the algorithms. Firstly we look at the operation of

GDLTE with varying demand. Some data centres are dynamic environments and any algorithm

designed to lower operational costs must function correctly in changing circumstances. Not all

data centres have dynamic demands as they may be used for high performance computing

or similar work and hence the operator can specify the demand. For this reason we look at

the performance of LDLTE with a static demand. We also investigate how the algorithm
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reacts in the event of a network link breaking. Hundreds of links exist in data centres and

failure is common so algorithms should be able to handle these failures accordingly. Finally

we inspect the performance of the algorithm when we remove the assumption regarding lack

of heat exchange between machines. This was achieved by examining how LDLTE performs

in a scenario where the machine abstraction represents server racks rather than modular data

centres. Heat exchange can occur in some data centres and an examination of how the algorithm

performs can be used to determine if it can be used in this scenario.

5.5.1 Simulation 1
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Figure 5.7: Performance of GDLTE at three demand levels D∗ = {40%, 55%, 25%}, which are
indicated by the dashed line in the top plot, using η = 0.1, µ = 1/3.

The setup for this simulation consists of a modular data centre site housing twelve ma-

chines (containers), four of each type described in the simulation setup. Our objective in the

following is to regulate the aggregate CPU load to three levels: 40%, 55% and finally 25%

in a situation where the resulting communication network is strongly connected, but chosen

randomly. A random network was chosen to show that the algorithm can function in a variety
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of networks. The resulting evolution over time of the aggregate demand
∑
Di, individual de-

mands Di and individual temperatures Ti are given in Figure 5.7. Each line in the middle and

bottom graph represents the demand and temperature of one machine. The simulations are

measured in terms of iterations for reasons which are discussed in Section 5.3.3. If we examine

the last graph in Figure 5.7 we can see that the temperature of the hottest machines cools as

the simulation progresses during the first one hundred iterations. This drop in temperature

occurs when applying the algorithm with 40% utilisation. The cost saving achieved are signif-

icant when compared to the data centre when demand is distributed equally. The maximum

rack inlet temperature drops by approximately 1 ◦C and consequently the cooling cost drops

from 1.514 MW to 1.416 MW, yielding a 6.5% reduction in the cooling costs. This represents

a saving of tens of thousands of dollars annually.
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Figure 5.8: Performance of GDLTE with demand varying in a periodic fashion, using η = 0.1,
µ = 1/3.

Comment. As the equilibrium state is achieved for any randomly connected graph, these

cost savings are robust with respect to changes (such as link failures) in the communication

topology.

Finally, Figure 5.8 depicts the aggregate demand
∑
Di, individual demands Di and
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Figure 5.9: Performance of LDLTE with constant demand of 40%, using η = 0.1.

individual temperatures Ti in a scenario where the demand is varying in a periodic fashion; for

example daily demand patterns are often assumed to be periodic. Each line in the middle and

bottom graph represents the demand and temperature of each machine respectively. The dotted

line in the top graph of Figure 5.8 represents the demand entering the data centre and solid

line is the demand being serviced by the machines. The reason that it lags is that changes in

the total demand must be communicated to the servers so that they can accept more demand.

If we inspect the first and last graphs shown in Figure 5.8 we can see the temperature of the

machines remain equal for the most part and satisfactorily tracks the aggregate demand even

though GDLTE is designed for fixed point regulation only.

5.5.2 Simulation 2

The setup is exactly as before. However, we now enforce the additional assumptions made

in Sec. 5.3.3; recall particular the assumption that the communication graph is undirected

and hence there is symmetry in the information exchange. This means that both nodes can

send and receive information from each other. Figure 5.9 depicts the aggregate demand
∑
Di,
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Figure 5.10: Performance of LDLTE with a single broken link and constant demand of 40%,
using η = 0.1.

individual demands Di and individual temperatures Ti while LDLTE is equalising temperatures

for a constant total load of 40%. Again we can see from the last graph in Figure 5.9 that

temperature of the hottest machines cools as the simulation progresses during the first one

hundred iteration lowering the cooling cost. Note, however, that breaking a single link so that

two nodes can no longer exchange information result in a drop in the total demand. Figure 5.10

depicts the aggregate demand
∑
Di, individual demands Di and individual temperatures Ti

while LDLTE is operating with a broken link in the communication graph. As can be seen

in top graph in Figure 5.10, the aggregate demand falls which means that the total demand

constraint can no longer be satisfied and the site cannot satisfy the most basic quality of service

requirement, namely that all requests are answered. This result was expected as the algorithm

was never designed to operate in such a scenario and enhancements similar to the best-friend

and good-neighbours discussed in Chapter 3 could be used to prevent this.
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Figure 5.11: η = 13. The temperature of inlets of the server racks at each iteration of LDLTE
inside a modular data centre.

5.5.3 Simulation 3

A basic criticism of the discussion thus far may concern the type of data centre site considered.

The simulations thus far have worked under the assumption of containment. This is not always

valid. Namely, that Ti of machine i depends not only onDi but also potentially onDj (j 6= i). In

Simulation 3 we remove the assumption regarding the lack of heat exchange between machines.

The algorithm works well in this case also. To conclude this section, we briefly apply LDLTE

to one such situation. Similar results can be expected for GDLTE also.

Let us now consider a single machine as described above, in particular of type C-F. Then

assume that the server racks inside are labelled in pairs “1” to “14” as shown in Figure 5.5.

While any connected communication graph could be used in our algorithm, we chose the fol-

lowing topology for G: Let each server rack be connected to its immediately adjacent server

racks and to the server rack with same label in the other cold aisle. Server racks labelled “1”

and “7” are connected to server racks directly opposite them across the cold aisle (that is, “8”

and “14” respectively). This results in G being a connected, undirected (3-regular) graph which

is a resilient graph as all nodes are of equal importance in terms of connectivity. This topology

was selected as it allows servers to equalise the temperatures inside the enclosure and accept

demand from the other enclosure if there is a temperature difference between them. As can be

seen from Figure 5.11, even in this non-ideal scenario where heat exchange is possible, LDLTE

still manages to, more or less, equalise the temperatures across server racks. It is important to
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Figure 5.12: Diagram for the experimental setup used to evaluate LDLTE.

note that this simulation is not Matlab based but is a full scale Flovent CFD simulation. In

this case a CFD model with the initial conditions was set up. The simulation was then executed

and the temperature of the server inlets was recorded. These were used to adjust the power

consumed by the server racks and the simulation was run again. This was repeated until the

temperatures converged.

5.6 Experimental Setup using Real Hardware

In this section we examine a small scale experiment devised to evaluate the performance of

LDLTE on real hardware. We only experimentally evaluated LDLTE as GDLTE is designed

for use with a large number of nodes and the resources were not available to examine this.

There were two main goals to this experiment. The first was to examine how to implement

the algorithms in data centres. The CFD simulation provides data on the performance of the

algorithm, further work needed to be done to design protocols which could control the demand

using HTTP redirects. The second goal was to examine how the experimental results compare

with the simulation results. CFD simulations are usually very accurate but airflows can be

extremely complex and can deviate from the models used by the CFD simulations.

78



To achieve these goals we put together the testbed depicted in Figure 5.12. We built

two wooden enclosures each housing three Dell R300 servers with Intel 64 bit Xeon processors

and 2GB of RAM. Each enclosure represents a “machine” abstraction discussed in Section 5.3.

The dimensions of the enclosures were 122cm×82cm×82cm. The servers were placed in the

wooden enclosures to contain their heat output. Three servers do not generate enough heat to

significantly change the temperature of a room. The temperature difference between idle and

full power inside the enclosure, however, is significant. Each enclosure was built with vents to

allow the wooden enclosures to be quickly cooled between experiments. They also contained a

USB temperature sensor which could be used to measure the temperature at the inlets of the

servers.

A packet processing component (implemented as a CLICK [79] element) was created to

control the demand according to the specifics of the algorithm. At each ∆ interval the packet

processor obtains the temperature at the server inlets and sends this data in a configuration

message to the other server enclosure. Upon receipt of this configuration message the packet

processor determines how much demand it should service using the update rule of LDLTE which

is depicted in Figure 5.2. It then uses HTTP redirects to send demand it should not service to

the other machine. If it should service all of its demand then the element does nothing as the

redirects issued by the other machine will increase its demand as LDLTE dictates. In Figure

5.12 we can see that a load generator is used to generate demand for the machines. The traffic

generator used was httperf [105] 0.9.0. This traffic generator does not respond to http redirects

so another CLICK element was used at the load generator to detect HTTP redirects and issue

commands to httperf to re-issue the request.

Before we carried out the experiment to examine the performance of LDLTE we examined

the relationship between temperature and demand for a single wooden enclosure. This is needed

to generate a η value. To do this we recorded a temperature and then ran the three servers

at various utilisation levels for 30min and recorded the temperature again. We allowed the

enclosure to return to a stable temperature before running it at another utilisation level. The

utility function of the enclosures is depicted in Figure 5.13. It should be noted that the y

axis of the figure shows the temperature difference between the start temperature and end

temperature and rather than the absolute. The reason for this is that the experiments were

carried out in an environment where the ambient temperature outside the enclosures could

vary slightly. As such the temperature difference is a more accurate measure of the relationship
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Figure 5.13: Utility function for machines in experiment.

between temperature and demand. The relation between absolute temperature and demand

could be inferred by adding the temperature difference to a constant temperature value. From

Figure 5.13 we can see that the temperature rises as the percentage demand increases. An η

value could be calculated from the figure and the bounds given in [144] which would guarantee

stability. We decided, however, to set it to an artificially high value for the experiment to

increase the speed of convergence.

5.7 Experimental Results

In this experiment we directed load to one enclosure for an hour to create a temperature

difference between the enclosures and then sent enough requests to achieve 50% utilisation at

each enclosure and activated the algorithm. The performance of the algorithm is depicted in

Figure 5.14. From this figure we can see that the temperature of the hottest machines drops

from 35.62◦C to 33.5◦C and that the temperature of the colder machine increases from 27.88◦C

to 31.06◦C. This compares favourably with the simulation results as both cause a drop in the

temperature of the highest machine which could be used to lower cooling costs. After an hour

the system saturates and the lack of demand at the hot machine does not cause its temperature

to drop any further. It is possible that the convergence seen in the simulation was not present
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Figure 5.14: Temperature of machines while LDLTE is operating.

here because heat exchange was occurring between the enclosures as they were both in the same

room.

5.8 Summary

In this chapter we evaluated several algorithms to lower the cooling costs of data centres without

causing equipment damage. By equalising the temperature of the machines and lowering the

highest of these temperatures the supply temperature can be lowered to lower cooling costs

while still preventing equipment damage. To this end we evaluated two algorithms to equalise

temperature while servicing the demand.
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Chapter 6

Carbon Emissions Control

6.1 Abstract

The carbon emissions of electricity suppliers can vary greatly between different geographical

regions. The traffic for a given service can come from anywhere on the planet and the further

the request has to travel the greater the negative effect on quality of service (QoS). It is desirable

to route traffic to the resources which cause the lowest carbon emissions but this can affect the

QoS. We propose an algorithm that minimises the total cost of the trade-off described. Our

results imply that carbon emissions can be reduced with little effect on the QoS.

6.2 Introduction

A public cloud can consist of several data centres located in different geographical regions. If

this is the case, data centres will use different electricity suppliers which in turn utilise different

types of power plants to generate electricity. The carbon emissions associated with powering

data centres has become an important factor in the operation of the cloud. Greenpeace report

[60] on the carbon emissions of selected data centres and the percentage of electricity used

which is generated by power plants that utilize fuels which emit a relatively large amount of

carbon. This report has been used to exert political and popular pressure on the companies to

improve their environmental policies.

The carbon intensity of a power generation plant is defined as the carbon emitted for

a given amount of energy generated. The carbon intensity of power plants which utilise a

82



particular fuel is presented in [52, 84]. While there is currently little financial motivation to

utilise green or clean energy, there are two reasons to consider using load balancing to lower the

carbon emissions emitted by the cloud. Firstly, there has been an increase in the regulation of

carbon emissions and schemes like the European Union Emissions Trading Scheme (EU ETS)

[2] are in operation. It is probable that the right to emit carbon into the atmosphere will be

traded as a commodity in the future. If this is the case it will directly contribute to lowering

costs for the cloud operator. Secondly cloud users may prefer to utilise the cloud service which

has the smallest environmental impact and the use of load balancing which considers carbon

emissions will encourage utilisation of the cloud and help the cloud operator to recover their

capital investment.

In this chapter we examine carbon emissions control in the cloud. Lowering carbon

emissions is a desirable goal but a reasonable QoS must be simultaneously maintained as some

services will have time constaints. Anecdotal evidence suggests that increasing the latency of

a web service by half a second has been found to lead to a 20% drop in traffic and revenue

[88]. We propose that there can be a trade-off between average service request time and carbon

emissions. In our work we model the trade-off as a cost function with a relative price function

to represent the relative importance of the two factors. A similar approach is used in active

queue management (AQM) [142]. We then use the subgradient method to minimise the cost

function. We use the subgradient method as it is a well established method for minimising

functions.

In Section 6.3 we detail our algorithm to minimise the cost function which represents

the trade-off between carbon emissions and average service request time. We described the

simulation setup we utilised to investigate the performance of the algorithm in Section 6.4 .

We will then evaluate the results of the simulation in Section 6.5. In Section 6.6 we summarise

how our algorithm can be used to lower operational costs while maintaining QoS for users of

the service.

6.3 Mathematical Preliminaries

6.3.1 Problem Formulation

We begin by examining the cost function for a scenario where a cloud user opts to use servers

in a single data centre. The cloud user can vary the number of servers n that are providing
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a service. A cost function can then be established to represent the average job time T (n),

the carbon emissions G(n), and the relationship between them. The average job time will

decrease as the number of servers increases, but the amount of carbon emitted will increase as

the number of servers increase. The cloud user would like to minimize the average job time and

carbon emissions or some combination thereof. The cost function can be defined as:

C(n) = T (n) + P (G(n)),

where P (G(n)) is the relative price function reflecting the importance of short job time versus

carbon emissions. A relative price function is used to represent the fact that carbon emissions

G(n) have the same importance as an average job time P(G(n)) to the cloud user. We assume

that C(n) is a convex function of n so that convex optimisation techniques can be used to

minimize the cost function. This is a reasonable assumption as the average job time will

decrease as the number of servers increases until a point is reached where the carbon emissions

will cause the cost function C(n) to increase.

We can incorporate multiple data centres (DCs) in this framework. If n = {ni} is the

vector of the number of servers at each DC and N is the total number of DCs, the cost function

can be redefined as:

C(n) =

N∑
i=1

(
Ti(ni) + P (Gi(ni))

)
.

The goal of the problem is to minimize C(n) and it can be stated as an optimisation problem

as follows:

minimize C(n) =

N∑
i=1

(
Ti(ni) + P (Gi(ni))

)
subject to ni ≥ 0 ∀i

6.3.2 Algorithm

The subgradient method can be used to solve this problem and the pseudo-code for the algorithm

is presented in Figure 6.1. The subgradient method is an iterative method for solving convex

minimisation problems. The number of servers operating at each DC is initially set to be S
N .

Where S is the total number of servers operating initially. The cloud user will set the S value
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1 UpdateServerNumber()
2 Once every ∆ units of time do
3 for i = 1 : N
4 g(k) = Subgradient of C(ni) in ni(k)
5 ni ← ni − αkg(k)
6 endfor
7 k ← k + 1
8 enddo

9 InitializeServerNumbers()
10 for i = 1 : N
11 ni ← S

N
12 endfor

Figure 6.1: Pseudo-code for algorithm

based upon an estimate of the number of servers required to provide the service. Initially an

equal fraction of the estimated number of servers is activated at each DC. The subgradient of

C(ni) at each DC will then be calculated and used to update the number of servers operating

at the DC. The goal of this update is to gradually move toward the optimal point of the cost

function. αk is the step size. It determines the stability and responsiveness properties of the

algorithm. k is the iteration number and is used in the calculation of the step size. The use of

k is required to ensure convergence, as a diminishing step size is usually required to reach the

optimal point.

6.4 Simulation Setup

In this section we describe the experiments used to establish realistic average job time Ti(ni) and

carbon emission Gi(ni) functions and the setup for the simulation of the algorithm described in

Section 4. In order to simulate the operation of the algorithm we needed to establish realistic

average job time Ti(ni) and carbon emission Gi(ni) functions. To do this we used the httperf

[105] traffic generator to generate load for an Apache web server. Our test load involved the

fetching of a dynamic webpage which required 50ms of computation, and the transfer of 300kB of

data. This load was selected as it is equivalent to the average size of a webpage in experiments

carried out by Google [55] and it contains a computation component which consumes more

power than data transfer alone. The server used was a Dell R300 with an Intel 64 bit Xeon

processor and 2Gb of RAM. A number of webpage requests were directed to the server and the

average job time was recorded. The number of webpage requests was gradually increased while
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recording the average job time. This is depicted in Figure 6.2. It is seen in the figure that

the average job times remain effectively constant until a point where the server can no longer

handle the number of requests is reached and the requests are then queued. This causes the

increase in average job time. We then used these results to establish a Ti(ni) function for a

given number of requests for a service.

We assume that the sources of load are globally distributed. This mean that the clients

of the service are distributed evenly across the globe. If a large portion of the load is directed

to a single DC there will be a negative effect on the average job time. There are two reasons

for this:

• The internal network topology of some DCs means that links become more oversubscribed

in terms of bandwidth as overall traffic increases [58].

• The average job time is affected by the computation time, the length of the links between

the client and the server [141] and the time spent in router buffers before being forwarded

to the next link. If the load is globally distributed, the average distance between the client

and server along the links will increase as more load is sent to a single DC.

This negative effect was incorporated into Ti(ni) function by increasing the average job time

when a large portion of the load is assigned to a single DC.

We connected the server to an electricity usage monitor and its power consumption was

recorded under the same load conditions used to establish the average job time function. This

86



60

70

80

90

100

110

0 200 400 600 800 1000 1200 1400 1600 1800

E
(D

) 
W

D req/s

Figure 6.3: Power with various Demand.

is depicted in Figure 6.3. From the figure we can see that the power consumption increases

steadily until it is operating at full power. At this point, requests are queued as they cannot be

processed directly, and the processor cannot consume any more power. This data was used to

establish a carbon emission function for a specific number of requests for a service. Our results

found that idle power is ∼70% of the server’s peak power. This is consistent with the results

from the literature which indicate that the idle power of servers is between 60% and 75% of the

peak power [25, 45]. In order to establish a realistic carbon emission function we need to know

the carbon emissions per kilowatt hour. This is dependent on the electricity supplier used by

each DC.

In our simulations we constructed a scenario where the traffic is being divided among

two DCs. The first data centre uses relatively clean energy with associated emissions of 100

grams of carbon per kilowatt hour 100g/kWh. The second DC uses relatively dirty energy with

associated emissions of 500 grams of carbon per kilowatt hour 500g/kWh.

In selecting these values we attempted to pick contrasting but realistic carbon emission

profiles. A DC using the cleanest energy possible would cause approximately 20 grams of carbon

per kilowatt hour 20g/kWh [52, 84]. Such a figure is difficult to achieve currently as it would

require energy from purely renewable sources. A DC using the dirtiest energy possible would

produce approximately 900 grams of carbon per kilowatt hour 900g/kWh [52, 84]. Electricity

suppliers, however, will rarely use coal and oil only, as hydro and gas power plants are the best

to react to sudden changes in demand.
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To simulate the algorithm we have assumed static traffic conditions but the algorithm

easily extends to dynamic conditions. The service receives 96,000 requests every minute. We

chose this level of requests as it is a reasonable demand for a service offered by a relatively large

content provider such as a news website. We also assumed that the requests and servers in the

DCs are homogeneous. By homogeneous requests we mean that all requests require the same

amount of computation and data to be transferred. By homogeneous servers we mean that all

servers have identical processors, RAM and network cards. This means that the servers will

complete a computation in the same amount of time and use the same power to complete it.

As a result T1(n1) = T2(n2).
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In order to establish a value for the relative price function we must examine the cost

function at one DC. Under initial conditions the average job time at the first DC is 85ms

T1(n1) = 85ms, and the carbon emissions are 6.6g/min; namely G1(n1) = 6.6g/min. This

yields a total cost of C1(n1) = T1(n1) + G1(n1) = 85 + 6.6 = 91.6 if average service request

time and carbon emissions are equally important (P (G(n)) = G(n)). In this case a drop of

10ms in the average job time would justify an additional 9g/min of carbon emissions. This is

not a reasonable trade-off between carbon emissions and QoS as users will not notice a 10ms

delay while the increase in carbon emissions is significant. The relative price function was then

scaled to P (G(n)) = 10G(n) to provide a more reasonable trade-off between carbon emissions

and QoS.

The requests are distributed evenly among all the servers and a server runs at peak power

when it is receiving 1200 requests a minute or more. This means that 80 servers running at

peak power are able to service the static traffic conditions of 96,000 requests every minute.

We set the initial number of servers to 80 (S = 80). The algorithm updates every minute

(∆ = 1min). This value was selected to allow enough time for the servers to switch on or

off before another update occurs. Using the established functions we can plot the overall cost

functions for different numbers of servers at the two DCs using the relative price function for

the static traffic conditions. Figure 6.4 depicts the number of servers operating at the first DC,

n1, on the x axis, the number of servers operating at the second DC, n2, on the y axis and the

corresponding cost C(n) on the z axis . Figure 6.5 is a close-up of Figure 6.4 and from this we

can see that the optimal point is when n1 = 50 and n2 = 30 or n = (50,30).

6.5 Simulation Results

The goal of the simulations is to show that the algorithm converges to the optimal point of the

cost function. Figure 6.6 depicts time on the x axis and the number of servers operating at the

DC on the y axis as the algorithm operates. Each line represents the number of servers operating

at a DC. The number of servers in each DC moves steadily from the initial configuration of

n = (40,40) to the optimal point of n = (50,30). This results in the carbon emissions dropping

from 39.6g/min to 33g/min. This represents a drop of 16% in carbon emissions with little effect

to the QoS.

The rate of convergence to the optimal point is quite slow. The optimal point is reached
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Figure 6.6: Number of servers at the DCs with ak = 1√
k||g(k)||2

. The number of servers at each

data centre moves steadily from the initial conditions to the optimal point.

after 750 minutes. One reason for this is that the step size was chosen to ensure convergence

to the optimal point and prevent large movements in the number of servers operating. In this

case the step size was:

ak =
1√

k||g(k)||2
.

The absolute value of the subgradient ||g(k)||21 is used to provide a constant step length. We

can use a step size that contains an estimate of the optimal cost C(n∗) to improve the rate of

convergence. The step size we used to improve the rate of convergence was:

ak = −0.1(C(n∗)− C(n))

||g(k)||2 + 1
.

Figure 6.7 depicts time on the x axis and the number of servers operating at the DC on

the y axis as the algorithm operates. Each line represents the number of servers operating at a

DC. Using the later step size the number of servers operating at each DC converges from the

initial configuration to the optimal point more quickly. There are large jumps in the number

of servers operating but the optimal point is reached after 10 minutes. Using this step size

the rate of convergence is more 70 times greater then that the other step size. This allows the

algorithm to perform well in the dynamic environment of the cloud.

1The value of ||g(k)||2 is calculated as ||g(k)||2 =
√
g(k)2.
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6.6 Summary

A cloud can consist of several data centres in different geographical regions. Each data centre

can be powered by an electricity supplier with a different carbon intensity. This can be exploited

using load balancing to lower carbon emissions of the cloud. This can, however, have a negative

effect on QoS as it can cause the average distance a service request has to travel to increase.

In this chapter we formulated this trade-off as a cost function with a relative price function to

indicate the importance of the factors to the operator. We then used the subgradient method

to minimise this trade-off by directing service requests to the appropriate data centre. Our

simulations showed that in particular scenarios carbon emissions can be significantly reduced

with little disruption to QoS.
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Chapter 7

Unified Global Load Balancing

7.1 Abstract

It is desirable, for latency purposes, to route the traffic to the data centre that is closest in terms

of geographical distance, costs the least to power and emits the smallest amount of carbon for

a given request. It is not always possible to achieve all of these goals so we model both the

networking and computational components of the infrastructure as a graph and propose the

Stratus system which utilises Voronoi partitions to determine which data centre requests should

be routed to based on the relative priorities of the cloud operator.

7.2 Introduction

Recently the carbon emissions associated with powering DCs have become important due to

an increased concern in the carbon footprint of all industries. There have been some proposals

to use locally generated clean energy [89] or employ load balancing based upon the carbon

intensity of the electricity supplier [90]. These proposals, however, use weather data a metric

for load balancing. While this is a useful metric when using locally generated electricity it

can be inaccurate when electricity is obtained from an external supplier as other factors also

affect their carbon intensity. This is discussed in greater detail in Section 7.4.2. In addition,

the proposals do not consider the carbon emitted as a result of packets travelling across the

network from the client to the server. While the energy consumed by the networking equipment

as part of the cloud computing has been analysed [15], additional analysis is required to examine
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the total carbon emission caused by a cloud computing system. This load balancing can be

achieved with protocol-level mechanisms which are in use today such as dynamically generated

DNS responses, HTTP redirection and the forwarding of HTTP requests. All of these have

been evaluated thoroughly [33, 94, 119].

Carbon emissions are seldom the sole concern of cloud operators and other factors must

be considered. The electricity cost can vary considerably between different geographical regions

and this fact can be exploited by cloud operators to lower the overall operational cost.

The manner in which a data centre is cooled can affect both the electricity cost and

carbon emissions as certain schemes such as “Free Air Cooling” require less energy and hence

emit less carbon. Finally, cloud operators are usually bound by a service level agreement (SLA)

and therefore must maintain a minimum QoS for service users.

It is not always possible to achieve the best case scenario for all of these factors as they

sometimes conflict, so we formulate a graph-based approach which we call Stratus that can be

used to examine and control the operation of the cloud. Stratus uses Voronoi partitions which

are a graph-based approach which have been used to solve similar problems in other areas such

as robotics [39]. In this chapter we examine how Stratus can be used to achieve a variety of

goals.

7.3 Mathematical Preliminaries

7.3.1 Problem Formulation

In this section we formulate the problem. Let |J | be a set of J geographically concentrated

sources of requests and |N | be a set of N data centres. Let |Q| be a finite set of points that

represent either sources of requests or data centres. These points are connected by E edges

in an undirected weighted graph G = (|Q|,|E|,|w|). The weights are calculated as functions of

the time required to service a fraction of the request Ti, the carbon emissions associated with

servicing the fraction Gi and the electricity cost Ei if any associated with servicing the request

along the edge.

wi = f(Ti,Gi) = Ti +R1(Gi) +R2(Ei) ∀i ∈ |w|

where R1, R2 are the relative price functions which are used to specify the relative importance

of the factors. It should be noted that the weights of the graph represent the networking and
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1 U := Pi(t) ∪ Pj(t)
2 for x ∈ U
3 Wi := {x ∈ U : d(x,i) ≤ d(x,j)}

Wj := {x ∈ U : d(x,i) > d(x,j)}
4 endfor
5 Pi(t+ 1) := Wi

Pj(t+ 1) := Wj

Figure 7.1: Pseudocode for pairwise partitioning rule

computational aspects of servicing a request.

The set |Q| is partitioned into N subsets representing the regions serviced by each data

centre. This results in a collection P = {Pi}Ni=1 of N subsets of |Q| such that:

1.
⋃N

i=1 Pi = Q

2. Pi ∩ Pj = ∅ if i 6= j

3. Pi 6= ∅ ∀i ∈ {1, . . . ,N}

4. Pi is connected for all i ∈ {1, . . . ,N}

Two subgraphs Pi and Pj are connected if there are two vertices qi, qj belonging, respectively,

to Pi and Pj such that (qi,qj) ∈ |E|.

We can use Voronoi partitions to establish a collection of subsets which minimises the

combination of carbon emissions, electricity cost and average request time. In this case the

Voronoi partition Pi associated with data centre i ∈ |N | can be defined as the set of points

whose distance to data centre i is less than or equal to the distance to another data centre

j ∈ |N |. In order to compute this we need to define how the distance between two points is

calculated. A standard notion of distance between two points d(i,j) in a weighted graph is the

lowest weight of a path between the two points (i,j). The weight of a path is the sum of the

weights of the edges in the path. The goal of using the Voronoi partitions in this scenario is

to minimise the distance between the sources of requests and the data centres. This can be

defined as:

min

N∑
i=1

∑
j∈Pi

d(i,j)

Note if a source is equidistant to more than one data centre the point is assigned to the Voronoi

partition that has the least members to attempt to balance the load on the data centres.
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Figure 7.2: Peak Daily price of electricity for suppliers in the regions of the three data centres
studied.

7.3.2 Pairwise Partitioning Rule

At time t data centre i and data centre j communicate by exchanging the partitions Pi and Pj

so that each data centre can examine all the regions associated with the two data centres to

determine if there is a better route available between a data centre and a region. We assume

without a loss of generality that i < j. Each data centre then performs the actions depicted

in the pseudocode in Figure 7.1. The paths between each region and the two data centres are

examined. If the path between the data centre i and a region is shorter than the path between

the region and the data centre j then the region is added to a temporary partition associated

with data centre i. Otherwise it is added to a temporary partition associated with data centre

j. The partitions of the two regions are then updated with the appropriate temporary partition.

In order to generate the initial partitions the distance between each node in the graph and all

the data centres is calculated. The nodes are then added to the partition which yields the

minimal distance between the nodes and the data centre.

7.4 Analysis

In this section we examine the variation in the costs that exist between data centres as a

consequence of the source of electricity and the cooling architecture used in the cloud.
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Figure 7.3: Price of electricity for suppliers in the regions of the three data centres studied.

7.4.1 Electricity Cost

The price of electricity on the wholesale market depends on a number of factors. The wholesale

electricity market is administered by an authority known as a Regional Transmission Organ-

isation (RTO) in the United States and the Single Market Operator (SEMO) in Ireland. In

this market, power producers present supply offers, consumers present bids and an authority

determines how the electricity should flow and sets prices. The price is determined based on the

bids and offers as well as other factors such as reliability and grid connectivity. The variation

of local electricity prices in different geographical regions can be exploited by cloud operators

to lower operational costs [123]. To illustrate this we examine the potential savings that can

be made by a cloud provider operating a subset of the data centres in Amazons’s EC2 [6]

cloud. We examine the local prices of electricity suppliers located at the California, Virginia

and Ireland data centres. Pacific Gas and Electric (PG&E) is one supplier in the California

region and Dominion (DOM) is a supplier in the Virginia region. Ireland uses a single market

for electricity known as SEMO and this sets a single price for wholesale electricity. The peak,

daily, day-ahead electricity price from these suppliers from January 2011 through April 2011 is

depicted in Figure 7.2.

It is interesting to note that the maximum price can approach $550/MWh and that the

peak price for the electricity is nearly always greatest in the Ireland region. This would suggest

that little traffic would be routed to the Ireland data centre if a load balancing scheme designed

to minimise electricity prices was utilised. If, however, we examine the hourly variation of
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Figure 7.4: Daily peak carbon intensity of electricity supplier in the region of the Ireland data
centre studied.

electricity prices we can see that this is not the case. The day-ahead electricity price for the

electricity suppliers from the 22nd January 2011 through the 29th January 2011 (an arbitrarily

chosen time period) is depicted in Figure 7.3. From this we can see that peaks in electricity

price in the Ireland region tend to be very sharp and that at non-peak times the variation in

price between geographical regions is much smaller.

7.4.2 Carbon Emissions

An analysis of the carbon intensity of electricity suppliers in various geographical regions is

useful when attempting to minimise the environmental impact of a cloud. To illustrate this we

examine the carbon emitted by a service which has users in a number of different geographical

regions accessing the EC2 infrastructure. The carbon intensity data for the data centres and

sources of requests were obtained from the CARMA website [1] and can be seen in Table 7.1.

The data for states in the United States were in agreement with data from the US EPA [156].

The carbon intensity of an electricity supplier is calculated using the weighted average (where

the power generated by the power plant is the weight used) of the carbon intensity of the power

plants operated by the electricity supplier.

The demand for electricity changes over the course of a day and electricity suppliers turn

power plants on and off to react to the changes in the demand. A consequence of this is that

the carbon intensity of an electricity supplier varies over time. To the author’s knowledge, the
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Figure 7.5: Carbon intensity and generated wind power of electricity supplier in the region of
the Ireland data centre studied.

realtime carbon intensity of all the geographical regions in Table 7.1 is not publicly available. It

is, however, available for the Ireland region. Figure 7.4 depicts the daily peak carbon intensity

of the electricity supplier in Ireland from January through April 2011. This data was obtained

from the Ireland Transmission System Operator Eirgrid [40]. We can see that there is a large

variation with time. This suggests that the data can be exploited to minimise the environmental

impact of the cloud. Figure 7.5 depicts the carbon intensity of the SEMO suppliers from the

22nd January 2011 through the 29th January 2011. The interval between data points is fifteen

minutes. From Figure 7.5 we can see that the carbon intensity is not as volatile as the electricity

market price but varies enough to allow the cloud operator to utilise the realtime data to

minimise the environmental impact.

A novel aspect of our approach to minimising carbon emissions when compared with

other approaches [90, 101] is that we use carbon intensity data rather than weather data when

determining where to route load. This does not affect schemes where power is generated locally

by the cloud operator but it can have a significant effect when cloud operators draw power from

an external electricity supplier for two reasons. Firstly it is not always possible to utilise solar

and wind power. An electricity network must carefully balance supply and demand and ideally

the market authority would use the cleanest power plants available to meet the demand. This,

however, cannot be achieved in reality as it would required power plants to be able to turn on

or off in very short spaces of time and some power plants (e.g. coal) take a long time to turn
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Figure 7.6: Layout of cooling cost simulations with (a) cold aisle containment and (b) no cold
aisle containment.

on or off. The result of this is that they are very rarely turned off and if there is insufficient

demand power is wasted.

The second reason that weather data can be an inaccurate metric is that even if there

is sufficient demand and solar and wind power is utilised the changes in the operation of other

power plants can affect the carbon intensity. As a result there is not a direct correlation between

availability of wind and solar power and carbon emissions. For example if a pumped storage

plant is turned on and the wind speed drops carbon intensity may still go down as the reduction

in carbon emissions caused by the use of the pumped storage plant may be greater than the

increase in carbon emissions which is caused by other power plants supplying the electricity

which is no longer delivered by the wind turbines. If we examine Figure 7.5 we can see an

example of this. There is some correlation between the wind power generated and carbon

intensity but it is not direct. Sometimes when the wind power generated increases the carbon

intensity also increases.

7.4.3 Cooling Cost

Cooling costs for a data centre are dependent on its design and the local climate in addition to

the load placed upon it. If a data centre uses aisle containment [99] it can significantly reduce

the cost of cooling the data centre. Aisle containment is the separation of the inlets and outlets

of servers with a barrier such as PVC curtains or Plexiglas [17] in order to prevent air migration

which adversely affects cooling costs.

In addition “Free Air Cooling” can be used. This is the use of air economizers to draw
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Table 7.1: Average round trip time between data centres and sources of requests, carbon
intensity of data centres and sources of requests and daily number of requests at source

Region California
(ms)

Ireland
(ms)

Virginia
(ms)

Carbon
Intensity
(g/kWhr)

Number of
Requests
(Millions)

Austria (AUS) 177.98 47.67 159.07 870 7.038
Belgium (BEL) 171.98 28.45 158.09 317 11.736

California (CAL) 384
Colorado (COL) 42.77 155.36 101.27 903 6.76

Connecticut (CON) 88.05 117.65 75.73 392 4.293
Finland (FIN) 188.47 55.77 176.72 99 5.418
Florida (FLO) 54.26 171.87 98.21 762 26.365
France (FRA) 192.44 21.24 184.75 96 61.355

Georgia (GEO) 58.91 115.12 77.43 694 1.968
Germany (GER) 177.74 40.89 157.68 612 58.76

Illinois (ILL) 63.81 142.78 102.08 544 18.049
Indiana (IND) 69.65 151.05 83 986 7.803
Ireland (IRE) 655
Italy (ITA) 188.71 44.71 167.3 473 55.372

Kansas (KAN) 50.48 148.4 85.2 817 4.545
Kentucky (KEN) 71.98 146.85 87.29 968 5.169
Maryland (MAR) 99.71 140.46 88.05 641 6.69

Massachusetts (MAS) 89.33 98.02 72.1 603 9.602
Minnesota (MIN) 62.09 147.74 85.79 744 6.724

Netherlands (NET) 163.93 19.71 138.79 548 15.527
New York (NEW) 96.45 78.71 134.11 386 27.604

North Carolina (NCA) 72.32 72.45 31.12 604 11.817
Norway (NOR) 194.82 48.84 183.08 6 6.69

Ohio (OHI) 83.81 132.08 69.17 873 14.828
Oklahoma (OKL) 46.42 159.96 98.22 819 4.378
Ontario (ONT) 90.84 142.81 97.12 224 16.64
Oregon (ORE) 27.66 213.48 153.28 246 4.807

Pennsylvania (PEN) 71.99 118.53 52.78 597 16.097
Portugal (POR) 222.69 64.11 190.02 550 10.925

Spain (SPA) 194.55 35.83 172.47 487 40.633
Sweden (SWE) 186.01 48.79 170.28 19 11.887

Tennessee (TEN) 235.61 276.43 311.61 661 7.891
Texas (TEX) 37.61 151.93 98.96 763 31.015

UK (UK) 175.59 17.62 163.25 614 78.647
Virginia (VIR) 559

Washington (WAS) 29.57 192.11 126.53 938 10.119
Wisconsin (WIS) 67 146.49 94.03 834 7.025
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in cold air from the environment into the data centre when the climate conditions are suitable,

displacing the use of computer room air conditioner (CRAC) chiller units and lowering the

cooling costs [12]. Water cooling [130, 5] is an option but it is rarely used in data centres at

present.

In order to examine how data centre cooling cost varies with demand we constructed two

models of data centres in the computational fluid dynamics (CFD) simulation software Flovent

[34]. These represent typical data centres which have been examined in previous research

[134, 103]. One data centre used cold aisle containment and the other does not. Apart from

this the data centres were of similar construction. Each data centre has dimensions 11.7m ×

8.5m × 3.1m with a 0.6m raised floor plenum that supplies cool air through perforated floor

tiles. There are four rows of servers with seven 40U racks in each case, resulting in a total

of 1120 servers. The servers simulated were based on Hewlett-Packard’s Proliant DL360 G3s

model, which consumes 150kW of power when idle and 285kW at 100% utilization. From this

we can determine that the total power consumption of the data centre is 168kW when idle and

319.2kW at full utilisation. For cooling, the data centre is equipped with four CRAC units.

Each CRAC unit pushes air chilled to 15◦C into the plenum at a rate of 16,990m3

h . The cooling

capacity of the each CRAC unit is limited to 90kW, and the fans of each CRAC unit consume

10kW.

The layout of the two data centres modelled is shown in Figure 7.6. Racks of servers are

represented as boxes with the letter “S” and CRAC units can be identified as boxes with the

letter “C”. The simulations are used to establish the maximum inlet temperature of a server

rack Tmax under different load conditions. We can use this to establish the cooling costs C

which can be calculated as follows:

C =
Q

COP (Tsup + (Tsafe − Tmax))
+ Pfan (7.1)

Where Q is the amount of power the servers consume, Tsup the temperature of the air that the

CRAC units supply, Tsafe the maximum permissible temperature at the server inlets in order

to prevent equipment damage, Tmax the maximum temperature of the server inlets in the data

centre, Pfan the power required by the fans of the CRAC units and COP is the “coefficient of

performance” (COP). Recall that the COP is the ratio of heat removed to work necessary to

remove the heat and it is a function of the temperature of the air being supplied by the CRAC
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Figure 7.7: Typical model of the Coefficient of Performance (COP) curve for a chilled water
CRAC unit.

unit. The COP of a typical chilled-water CRAC unit used in the calculations of cooling costs

is depicted in Figure 7.7. We assume a Tsafe value of 25◦C.

Figure 7.8 depicts the results of the cooling cost simulations. The percentage utilisation

of the data centre is shown on the x axis and the cooling cost in kilowatts is shown on the y

axis. Each line represents a different system. The CAC-CRAC line is a system which uses cold

aisle containment and CRAC cooling. The FAC line is a system uses “Free Air Cooling”. The

NCAC-CRAC line is a system which does not use cold aisle containment and CRAC cooling.

“Free Air Cooling ” only consumes fan power and is therefore constant.

7.4.4 Average Job Time

The previous sections establish that electricity cost and carbon emissions can be lowered. It

is likely, however, that there will be an increase in the average service request time which the

cloud operator will have to take into account when determining its load balancing policy. The

average service request time is determined by a combination of resource usage and latency which

is the time required for packets to travel along the links from the client to the server and back

again. Anecdotal evidence suggests that traffic levels can be seriously affected by latency [88]

so cloud operators should monitor this carefully to ensure user satisfaction. To establish the

round trip time data we conducted an experiment on PlanetLab [30] which established a server

at each node location by requesting a PlanetLab slice on servers at locations from Austria to
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Figure 7.8: Cooling cost of various data centre cooling systems at various levels of demand

Wisconsin. We wrote scripts causing nodes in the same region as our three data centre locations

to ping the other geographical regions at fifteen minute intervals for approximately two days.

The average latency established from this experiment can been seen in Table 7.1.

Average service request times could be reduced by routing load from a geographical

region to the data centre region using lowest latency as a criterion to route load. From Table

7.1 we can see that if such a load balancing scheme was used, each data centre region will have

some of the load routed to it as each data centre has the lowest latency for some of the regions.

From this we can conclude that any reduction in carbon emissions or electricity cost will likely

cause an increase in the average latency as load will not be routed with latency as the sole

metric.

Figures 7.9, 7.10 and 7.11 depict the measured latency between the 34 regions and the

California, Ireland and Virginia data centres respectively. It is interesting to note that the

latencies remain mostly constant over time at the California and Ireland data centres but vary

frequently at the Virginia data centre. We postulate that this is a result of congestion at the

Virginia region. In addition, we can see that there is some variation in the latency between

the other regions and the California and Ireland data centres. Thus we can conclude that

latency varies with time particularly in regions where congestion takes place and it should

be monitored so that the increase in average service request time caused by reducing carbon

emissions or electricity cost can be measured correctly. Indeed there may be times, where there

is no increase in average service request time associated with a reduction in carbon emissions
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Figure 7.9: Latency between California and different geographical regions at fifteen minute
intervals.
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Figure 7.10: Latency between Ireland and different geographical regions at fifteen minute in-
tervals.
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Figure 7.11: Latency between Virginia and different geographical regions at fifteen minute
intervals.
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Figure 7.12: Diagram of the simulation setup. The colour of the node indicates that the node
is part of a particular partition.

or electricity cost.

7.5 Simulation Setup

In this section we describe the setup for the simulation of the algorithm described in Section

7.3.2 and our methodology for establishing the weights of the graph described in Section 7.3.1.

We simulate three data centres. One of these is in Ireland and the other two are in the United

States in Virginia and California. We chose these locations to mimic Amazon’s EC2 platform

[6] which currently has major data centres at these locations. We model 34 sources of requests

in the simulation which represent certain countries in Europe, states in the United States and

provinces in Canada. Each source is connected to each data centre by a single edge. This is

illustrated in Figure 7.12.

To calculate the weights of the edges of the graph we needed to determine the time,

carbon emissions and electricity cost associated with servicing the networking and computa-

tional portions of a request. For the networking portion of a request, we firstly assume that

each service request requires the transfer of relatively small amount of data and therefore the

duration of the connection can be approximated by the round trip time. To calculate the time

associated with the computational portion of the request we assume that each request requires

50ms of computation.

In order to calculate the carbon emissions and electricity cost of serving a request we

assume that the data centre uses Hewlett-Packard’s Proliant DL360 G3s. This type of server
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consumes 150W at 0% utilisation and 285W at 100% utilization. This yields dynamic power of

135W for each server. This is then multiplied by the time required to service the computational

portion of the request (50ms) to yield the energy required to service a request.

We must then consider the energy required for the additional cooling required by servicing

the requests. We assume that the Ireland data centre uses “free air cooling”, the Virginia data

centre uses cold aisle containment and the California data centre uses a standard cooling system

with no cold aisle containment. The cooling energy required by the data centre when it is not

processing the request is subtracted from the energy required when it is processing the request

to give the cooling energy caused by the request. This is added to the energy already calculated

to yield the total computational energy. The total computational energy is then multiplied by

the electricity price to yield the electricity cost Ei. The energy is also multiplied by the carbon

intensity of the data centre to yield the computational carbon emitted.

The networking aspect of the weights must also be considered. The power consumed by

a switch can be altered by powering off (disabling) ports when they are not in use and powering

on (enabling) ports when they need to be used. In order to calculate the carbon emissions

associated with servicing the networking portion of the request we assumed that only two ports

would open during the duration of the request. To calculate the carbon emitted we first obtain

the energy consumed by multiplying the duration of the round trip by a power value required to

open a port (0.7W). This value was an intermediate value of those presented in [93]. The energy

consumed is then multiplied by the average carbon intensity at the source of the request and

at the data centre to obtain the network carbon emitted. This is added to the computational

carbon to give the total carbon emitted and the carbon weight Gi. While regulation is likely to

hold cloud operators at least partially responsible for the carbon emissions of the networking

equipment, current modes of operation suggest that they are not held responsible for the vast

majority of the electricity cost of this component and as such it is ignored.

In all simulations the algorithm runs for a two day period using the latency, electricity

price and carbon intensity data described in Section 7.4. The latency between the sources of

requests and the data centre is as seen in Figure 7.9, 7.10 & 7.11. The electricity price is as

seen in the first two days of Figure 7.3 for the three data centres. The carbon intensity data is

as seen in Table 7.1 for all the regions except Ireland which uses the data seen in the first two

days of the January period shown in Figure 7.5. The algorithm updates every fifteen minutes.

It should be noted that we assume that the bandwidth which connects the data centres to
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the internet is such that redirecting additional requests to each data centre does not cause

congestion or affect the average service request time.

In order to examine the overall costs to the cloud we must consider the number of

requests coming from each source. We used figures from the websites [139, 70] which estimated

the number of Facebook users in each source location and assumed that the daily average

number of service requests from a single user was 2.6. We used Facebook as it is representative

of a broad range of cloud applications. The daily number of requests for each source can be

seen in Table 7.1. We also needed to establish the number of requests at each source during

each fifteen minute interval over the two day period. It has previously been found that realistic

workloads have a diurnal cycle with a trough at approximately 6:00am and a peak of roughly

four times the trough value at approximately midnight [123]. We divided the daily number

of requests at each source into this diurnal pattern and adjust the peaks to match the time

difference of the region. The total demand can be seen in Figure 7.13.

In the first set of simulation we examine the extremes of the algorithm by looking at

four scenarios. In the first scenario we set the relative price functions to zero. This represents

a situation where time is crucial and the operator is attempting to minimise the time taken to

service a request with no regard for electricity cost and associated carbon emissions R1(Gi) =

0,R2(Ei) = 0 and the weights of the edges of the graph become wi = Ti. We shall hereafter

refer to this scenario as “Time Focused”.

In the second scenario we set the first relative price function to ten thousand times the

carbon emissions. This essentially functions by making the carbon emission the solely important

factor. This represents a scenario where time and electricity cost are unimportant and all efforts

can be made to reduce the associated carbon emissions R1(Gi) = 10000Gi,R2(Ei) = 0. The

weights of the edges of the graph become wi = Ti + 10000Gi. We shall hereafter refer to this

scenario as “Carbon Focused”.

In the third scenario we set the second relative price function to ten thousand time the

electricity cost. This represents a scenario where time and carbon emissions are unimportant

and all efforts must be made to lower the electricity costs R1(Gi) = 0,R2(Ei) = 10000Ei.

The weights of the edges of the graph become wi = Ti + 10000Ei. We shall hereafter refer to

this scenario as “Electricity Focused”. In the final scenario we examine a baseline for current

load balancing operations by examining a round robin scheme. This is the default option

in many commercial load balancing solutions. We shall hereafter to refer to this scenario as

107



Table 7.2: Average Service Request time, Daily Carbon Emission and Number of Requests
Serviced at Each DC for Various Scenarios

Scenario Average
Service
Request
Time (ms)

Carbon
Emissions
(kg)

Electricity
Cost ($)

Number of
Requests
Serviced by
California
(million)

Number of
Requests
Serviced
by Ireland
(million)

Number of
Requests
Serviced
by Virginia
(million)

Time
Focused

90 1378 240 241 822 302

Carbon
Focused

132 1200 195 0 1365 0

Electricity
Focused

177 1567 100 1276 0 89

RoundRobin 170 1522 257 455 455 455

“RoundRobin”.

In the second set of simulations we explore scenarios where the cloud operator needs to

strike a balance between the three factors. In this set of simulations we examine the performance

of the algorithm under scenarios which attempt to balance the various factors by adjusting

(α,β) R1(Gi) = αGi,R2(Ei) = βEi in intervals of 100 from 0 to 10000 and examining the total

electricity cost, carbon emissions and average service request time of each scenario to examine

what savings in electricity cost and carbon emissions can be made when there are constraints

on the average service request time.

7.6 Simulation Results

It this section we examine the results of the two sets of simulation carried out. Subsections 7.6.1

to 7.6.3 examine the first set of simulations while the results of the second set of simulations

are dealt with in subsection 7.6.4. Subsection 7.6.1 investigates the overall performance of

the algorithm under the various scenarios. In the subsection 7.6.2 we examine the request

distribution under the various scenarios to inspect how performance improvements are achieved.

Subsection 7.6.3 examines how the performance of the algorithm changes over time. Subsection

7.6.4 examines the performance of the algorithm when the cloud operator is attempting to strike

a balance between the three factors.
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Figure 7.13: Number of requests serviced at each data centre when the “Time Focused” scenario
is used. It shows the UTC+0 time zone.

7.6.1 Overall Performance

The key performance metrics for the simulations are the average service request time, the

electricity cost and the carbon emissions associated with servicing requests for the two day

period studied. We examine these key performance metrics for the first set of simulations.

They are shown for each scenario in Table 7.2. When comparing the carbon focused scenario

with the roundrobin baseline we can see that carbon emissions for a service can be reduced by

21%. If we examine the electricity focused scenario and the roundrobin baseline we can see

that the electricity cost can be reduced by 61%. There is, however, a corresponding increase

in the average service request time of 7ms. If we investigate the time focused scenario and the

roundrobin baseline we can see that the average service request time can be reduced by 47%.

It is also interesting to compare the three focused scenarios. If we compare the time focused

scenario and the carbon focused scenario we see that the latter emits 13% less carbon but has

an average service request time that is 42ms higher. If we examine the time focused scenario

and the electricity focused scenario we can see that the latter costs 58% less but has an average

service request time that is 87ms higher. These comparisons are useful for the cloud operator

as it allows them to see if the scenarios are feasible under SLAs and whether it is more desirable

to concentrate on lower electricity costs or carbon emissions.
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Figure 7.14: Number of requests serviced at each data centre when the “Carbon Focused”
scenario is used. It shows the UTC+0 time zone.

7.6.2 Request Distribution

From Table 7.2 we can also see the number of requests sent to each data centre under the

various scenarios. We can see that under the carbon focused scenario all of the requests go to

the Ireland data centre. This is interesting as the carbon intensity for the California region is

relatively low. The additional carbon caused by the cooling setup used in the data centre is

sufficiently high that all the requests go to the Ireland data centre. We can also see that under

the electricity focused scenario most of the load goes the California data centre. The additional

electricity cost of the cooling setup at California is insufficient to overcome the local electricity

price differential and the requests are driven to the California data centre. We also examine the

number of requests serviced at the data centres at each time interval in Figure 7.13. We can see

that the number of requests serviced in Ireland follows the change in demand relatively steadily

while the number of service requests for Virginia and California fluctuates. The reason for this

that Ireland will attract most requests from the European regions because the latency remains

relatively steady. California is likely to attract requests which would otherwise go to Virginia

if there is congestion as the latency between these regions and the California data centre is

lower than that between the regions and Ireland. Figure 7.14 depicts the number of requests

serviced at each data centre during the time period studied for the carbon focused scenario.

From Figure 7.14 we can see that the all requests go to Ireland for all the time intervals. Figure

7.15 depicts the number of requests serviced at each data centre during time period studied for
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Figure 7.15: Number of requests serviced at each data centre when the “Electricity Focused”
scenario is used. It shows the UTC+0 time zone.

the electricity focused scenario. From Figure 7.15 we can see that California services all the

requests for the first part of the time period studied and in second part the electricity costs of

the Ireland and California become almost equal so that some of the requests go to the California

data centre and some go to the Ireland data centre. Finally, all the requests get serviced by

California as the prices diverge.

7.6.3 Performance Variance

Figure 7.16 depicts the carbon emitted under each scenario over the same time period. From

Figure 7.16 we can see that the carbon emitted is greatly affected by overall number of service

requests at a given time under all scenarios. This is as we expected as more service requests

require more energy which increases the carbon emissions. We can also see there are no spikes

in the emissions which is as we expected since Figure 7.5 shows that the change in carbon

intensity over time is gradual. Finally, we can see that the difference between the schemes is

quite small. The carbon intensities of the three data centres are relatively similar. Ireland’s

ranges from 369g/kWhr to 522g/kWhr, Virginia has a carbon intensity of 559g/kWhr and

California comes in at 384g/kWhr but this is offset by the cooling setup we chose for that

location. The difference in carbon intensities between regions can be dramatic. For example

Norway with its high level of hydropower has a carbon intensity of 6g/kWhr while Austria has

a carbon intensity of 870g/kWhr.
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Figure 7.16: Carbon Emitted at each time interval under a variety of scenarios. It shows the
UTC+0 time zone.

Figure 7.17 depicts the electricity cost under each scenario over the time period. We can

see that the difference between scenarios can be quite large particularly when there are peaks

in the electricity cost at the data centre where requests are being serviced. The difference can

also be quite small as we can see that the electricity cost of the carbon focused scenario and

the electricity focused scenario are effectively the same towards the end of the time period. It

should be noted that the while the overall electricity cost is quite low it is the relative differences

in the electricity price that are the most important. In our model we assumed that a single

server performs all the computation required for a single request. While it is possible for cloud

services to use this approach, latency considerations frequently result in a Partition/Aggregate

design pattern being used [4]. In this approach a request is broken into pieces which are then

farmed out to worker servers. The responses of the workers are combined together by aggregator

servers to yield the result responses. In this design tens or even hundreds of servers can be used

to process a single request. Energy consumption for a request is significantly higher as tens

of servers are operating simultaneously and the overall electricity cost would be significantly

higher. We chose not to model the requests in this fashion as without trace data it is difficult

to simulate this design accurately. Each worker server frequently operates for different lengths

of time and therefore the individual energy consumed will be different.

Figure 7.18 depicts the average service request time under the various scenarios. From

Figure 7.18 we can see that the carbon focused and electricity focused scenarios have average
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Figure 7.17: Electricity Cost at each time interval under a variety of scenarios. It shows the
UTC+0 time zone.

service request times that fluctuate smoothly. This is a result of not using the Virginia data

centre to service the load as its congestion causes the average service request time to change

frequently. The reason for the change in average service request time for the carbon focused and

electricity focused scenarios is the changes in demand in the regions. If there are more requests

in from a region with high latency at a given time interval this will increase the average service

request time. This does not occur in the roundrobin and time focused scenarios as the requests

are spread among the three data centres and the effect is diluted. It is important that the cloud

operator considers this so that SLAs are not violated.

7.6.4 Balanced Performance

We now examine the second set of simulations. Figure 7.19 depicts the total carbon output

as we vary α and β. From Figure 7.19 we can see that as we increase α the carbon emissions

decrease and that as we increase β the total carbon emissions increase. The total electricity cost

as we vary α and β is depicted in Figure 7.20. We can see that as we increase α the electricity

cost increases and as we increase β the electricity cost decreases in Figure 7.20. Figure 7.21

depicts the average service request time as we vary α and β. From Figure 7.21 we can see

that as we increase α and β we increase the average service request time. The increase is more

severe in β’s case but this is a result of the particulars of the simulations as the average latency

between all the regions and California is higher than the average latency between all the regions
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Figure 7.18: Average service request time at each time interval under a variety of scenarios. It
shows the UTC+0 time zone.

and Ireland.

The selection of α and β are of crucial importance to the operation of this algorithm.

Ultimately the selection of these values will depend on the SLAs the cloud operator has agreed

to. Savings in electricity cost and reductions in carbon emissions can only be achieved if SLAs

can still be maintained. The selection of whether to lower carbon emissions or electricity cost

will depend on whether the cloud operator is under any regulation to limit its carbon emissions,

public relations pressures or the price of carbon on carbon trading schemes. Our first set of

simulations has shown the average service request time will vary with time. From this we can

conclude that α and β will also vary with time. It would, however, be relatively simple to alter

the algorithm so that α and β are adjusted at each time interval and this is left for future work.

7.7 Summary

A cloud can consist of several data centres in different geographical regions. There are several

factors which will affect the operational costs. The electricity price and associated carbon

emission can vary significantly. These factors are also affect by the cooling system used. Finally,

the latency between the data centres and clients will differ at each location. In our Stratus

system we modelled these factors using Voronoi partitions and use a pairwise partitioning rule

as a distributed algorithm to attempt to lower electricity prices, carbon emissions and average
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service request time. It is not always possible to achieve the best case scenario for all of these

factors as they sometimes conflict but operators can specify their relative importance to allow

the operator to improve the performance of the salient factor.

We investigated electricity prices, carbon emission, cooling system and latency of a cloud

similar to part of Amazon’s EC2 cloud. From this we saw that there is a significant difference

between electricity prices, carbon intensity and latencies which can exploited to improve overall

performance of the cloud. In our first set of simulations we inspected three scenarios where the

operators were attempting to achieve the lowest carbon emissions, electricity cost and average

service request time respectively. We compared this with a standard load balancing technique.

In all cases significant improvements were made. Finally, we examine the performance of

the algorithm when the operator is attempting to strike a balance between the three factors.

A balance between the three factors can be achieved by setting the relative price function

appropriately.
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Chapter 8

Conclusions and Future Work

Large public clouds with data centres in different geographical locations can provide reduced

latency, increased data transmission rates and improved redundancy. The data centre must be

operated correctly to achieve these goals as mismanagement can lead to the opposite effect.

The construction of a cloud is a substantial cost and the operating cost is also large.

The goal of this work is to show how cloud operators can lower their operational cost and use

predictable, incremental fixed cost pricing policies to recover their capital investment. Load

balancing and rate limiting can be used by the cloud operator to achieve these goals. Rate

limiting can be used to offer a predictable incremental fixed cost policy by placing an artificial

limit on the rate of traffic. Load balancing can be used to lower operating costs by directing

load to the data centre which lowers the overall cost.

In this dissertation we firstly examined a proposal for enforcing predictable, incremental

fixed cost pricing schemes for traffic using DRL. The aim of this investigation was to show that

the algorithms enforced the bandwidth limit and divide bandwidth fairly among the flows of

the cloud user. The algorithms also needed to be resilient to failure and able to function in the

dynamic cloud environment so that cloud operators could adhere to SLAs. Our results showed

that our implementation of the algorithms and the enhancements performed well at all of these

goals. The algorithms could be used to implement a incremental, predictable fixed cost pricing

policy and hence increase utilisation.

Secondly, we proposed the use of the “fair-share” dropping mechanism in a bandwidth

management system to distribute bandwidth fairly to both the users of the clouds and the users

of the services provided from the cloud. Our experimentation clearly demonstrated that the
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“fair-share” dropping mechanism distributes the bandwidth fairly and uses less resources than

other dropping mechanisms. This makes it a superior dropping mechanism for use in bandwidth

management schemes in data centres.

In this dissertation we examined three ways in which load balancing can be used to lower

operating costs. Firstly, we considered thermal management in data centres. Cooling costs

are dependent on the highest server inlet temperature inside the data centre. This results in

some servers being excessively cooled. In this work we proposed a consensus algorithms which

equalises temperatures by altering the demand serviced by a machine. Our simulations and

experimentation showed that power required for cooling and hence the cost can be reduced

using these algorithms.

Secondly, we inspected the carbon emissions of clouds. The carbon intensity of electricity

suppliers varies in different geographical regions. We proposed an algorithm to minimise a cost

function which represents trade-off between average service request time and carbon emissions.

Our results showed that the carbon emission can be reduced by 16% with little effect on the

average service request time. This algorithm could be used to lower operational costs if carbon

trading schemes have been implemented

Lastly, we investigated a unified model which utilises a number of factors to determine

where to direct service requests. The price of electricity and carbon intensity of different

electricity supplier varies in different geographical regions. The total electricity cost and carbon

emissions will also be affected by the cooling architecture used in the data centre and average

service request time must also be considered. In this dissertation we presented an algorithm

to control the load distribution in the cloud to achieve a variety of goals. Our work shows

that if a cloud operator considers one factor the most important the algorithm can be used to

improve the performance of that factor. Our work also showed that it is possible to balance

the performance of the algorithm so that all factors are considered.

In this dissertation we have demonstrated how load balancing and rate limiting can be

used to improve the performance of a cloud. In recent years there has been considerable focus

on improving the efficiency of the data centres which comprise the cloud. As a result the PUE

of new data centres has fallen considerably to levels where little improvement is possible in

some cases. For example Facebook report that they have achieved a PUE of 1.08 [44]. Much

of this work, however, focuses on directing load to the best data centre to achieve a certain

goal. Differences in PUE between new and old data centres will help the algorithms to lower
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electricity costs and carbon emissions and differences in electricity prices and carbon intensities

are likely to remain as they are dependant on weather conditions. As such the possibility of

exploiting difference in carbon intensities and electricity prices will remain a prospect in the

near future.

In addition, new applications are migrating to the cloud. Both HPC and cloud gam-

ing present a number of new challenges to cloud operators. For example, unlike conventional

video streaming cloud gaming requires both high constant downlink bandwidth and low latency.

Cloud operators will still have to consider the electricity and carbon emissions of these appli-

cations. Thus, the algorithms discussed in this work can still be applied to the changing cloud,

albeit, with different constraints. New areas of research in cloud computing are beginning, but,

there will still be a need to manage both electricity costs and carbon emissions for the best

performance.

Large public clouds with data centres in different geographical locations can provide

a number of benefits to operators and the design of such centres gives rise to a number of

questions some of which have been addressed in this thesis. While the questions that we have

we considered are important, perhaps even most important some other issues have not be

addressed and could provide the basis for future work. For example, we have only consider

one type of data centre in the context of thermal management. Future work should and must

consider more general data centres. On a technical level, much work also remains to be done in

this direction. For example, we have ignored the dynamics of heat equalisation, the effects of

communication delays, and no formal stability proof were given. All of this must be considered

in future work. A further issue arises due to the nature of our simulations. Throughout we

have considered homogeneous workloads. A more complete work would have evaluated the

techniques with heterogeneous and rapidly time varying workload distributions. An interesting

future direction also concerns the use of compression algorithms for new applications in the

cloud such as cloud gaming. Here the idea is to investigate the trade-off between bandwidth

consistency and latency for gaming applications. Similar issues are likely to arise when the

cloud is used in a connected mobility context (Intelligent Transportation Systems). Finally, the

installation of renewable energy power sources on the same sites as data centres gives rise to

new areas of research. Energy storage must be installed at these sites to allow their operation in

various weather conditions and the load distribution must be managed to prevent data centres

from running out of energy. Despite these omissions we hope that we have demonstrated that
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smart management of data centres can lead to significant cost reduction in their operation, and

conversely, not so smart management can lead to significant waste.
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