
The Federated Event Service

Conor Ryan

A dissertation submitted to the University of Dublin,

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

September 2003

Declaration

I declare that the work described in this dissertation is, except where otherwise stated,

entirely my own work and has not been submitted as an exercise for a degree at this or

any other university.

Signed: ___________________

 Conor Ryan

 15th September 2003

ii

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation upon request.

Signed: ___________________

 Conor Ryan

 15th September 2003

iii

Acknowledgements

To my supervisor Prof. Vinny Cahill and to René Meier, for ideas, help, advice,

reviews, patience and guidance throughout this project, thank you.

To my wife Helen, for her unending love, encouragement and support, thank you.

Special thanks for reviewing my work.

I would like to thank my parents and parents-in-law for their love and support, during

this demanding year.

Finally, to the M.Sc. NDS class of 2003 – the nicest, friendliest bunch of people I’ve

ever had to work with, thank you. Please don’t ever change.

iv

Abstract

Event services provide asynchronous, decoupled, anonymous message-based

communication. This facilitates scalable distributed systems composed of

autonomous concurrently executing entities. There are several kinds of event services

in existence addressing wide ranging issues such as Internet scale, quality of service,

mobility and location awareness. When integrating systems that use disparate event

services it may be necessary to inter-work their event services to facilitate

communication between the systems. A federated service is a collection of

autonomous concurrent services that may be linked together to provide a single

logical service.

There is currently no standard solution available for heterogeneous event service

inter-working. In the absence of a standard solution, system developers are forced to

roll their own solutions. This is problematic as such solutions can cost time, money

and effort. These solutions may be sub-optimal since developers, unless they are

experts in event systems and event system inter-working, may not have considered or

understood all of the issues involved.

Primarily, this project examines the thesis that a standard mechanism for federating

heterogeneous event services is a valuable solution for addressing this event-service

inter-working problem. A secondary aim of the project is to investigate whether such

a mechanism is a viable alternative to bespoke solutions for building or extending

event-based systems, when requirements cannot be met by a single event service.

To this end, the design, implementation and evaluation of such a mechanism, called

the Federated Event Service (FES), was carried out. A test application that federates

three different kinds of event services was also built. It was determined that the FES

approach is an adequate and cost effective solution for many inter-working

requirements, but federation in general cannot address end-to-end event context

integrity.

v

Contents

Chapter 1. Introduction..1

1.1 The event service inter-working problem..1

1.2 Event service inter-working opportunities ..2

1.3 Event service federation ..2

1.4 Thesis...3

1.5 Goals..3

1.6 Achievements..4

1.7 Roadmap...5

Chapter 2. Overview ...6

2.1 Basic event service concepts..6

2.2 Taxonomy ...9

2.3 Event service survey ..12

2.4 Event service inter-working ..16

2.5 Event Service federation..17

2.6 Inter-working possibilities...18

2.7 Heterogeneous event service federation requirements...........................19

Chapter 3. State of the Art ...22

3.1 Notification/JMS Interworking RFP (OMG)...22

3.2 CNS/JMS Bridge (University of Mannheim) ..22

3.3 OpenFusion Notification Service Connectivity Bridges (PrismTech)...23

3.4 CES/CNS Federation (OMG) ...24

3.5 Analysis of the state of the art technology ...24

Chapter 4. Issues ...26

vi

4.1 Event model heterogeneity issues ...26

4.2 Distributed system issues...28

4.3 Other issues...31

4.4 Summary...33

Chapter 5. Design ..34

5.1 Overview ...34

5.2 The FES event model ...36

5.3 FES gateways..43

5.4 FES adapters ..49

5.5 Configuration ...51

5.6 Scalability..52

5.7 Request reliability and error handling ..52

5.8 Use Case – Traffic Monitoring System ..53

5.9 Gateway Interface..58

5.10 Adapter Interface...61

Chapter 6. Implementation ..65

6.1 Possible approaches ...65

6.2 Overview ...66

6.3 FES mapping ..68

6.4 Test application ..71

Chapter 7. Evaluation...74

7.1 FES benefits..74

7.2 Federation viability..76

7.3 Federation drawbacks ...78

7.4 Comments on other inter-working approaches79

vii

7.5 Summary...80

Chapter 8. Conclusion ..81

8.1 Achievements..81

8.2 Future work..82

References...85

viii

List of Abbreviations

CES CORBA Event Service

CNS CORBA Notification Service

JMS Java Message Service

FES Federated Event Service

COSMIC A real time event model for the CAN-Bus

QoS Quality of service

API Application Program Interface

ix

List of Figures

Fig 2.1 Basic Event System ...7

Fig 2.2 Event Types ...8

Fig 2.3 Taxonomy - Event Model Types ...11

Fig 2.4 The STEAM event service ..12

Fig 2.5 The SIENA event service ..13

Fig 2.6 The COSMIC event service...14

Fig 2.7 Event Service Inter-working..18

Fig 5.1 A simple FES system...34

Fig 5.2 FES Event type and example instance...37

Fig 5.3 FES Control event examples ...44

Fig 5.4 FES Gateway protocol – opaque subscription request46

Fig 5.5 FES Gateway protocol – Publication request ..47

Fig 5.6 FES Gateway protocol – transparent subscription request48

Fig 5.7 Traffic Monitoring System ..53

Fig 6.1 FES Implementation – UML Class Diagram ..66

Fig 6.2 Gateway Configuration..68

Fig 6.3 FES Implementation – Component Diagram – Traffic Monitoring Use Case 72

Fig 6.4 FES Implementation – FES Viewer application screenshot............................73

Fig 7.1 Addressing end-to-end event context issues..78

x

List of Tables

Table 4.1 – Event service summary...27

Table 5.1 – FES Identifiers ..41

Table 6.1 – Control Event Parameters ...44

Table 6.2 – Event service basic type mappings ...68

xi

Introduction

Chapter 1. Introduction

Event services provide asynchronous, decoupled, anonymous message-based

communication. This facilitates flexible, scalable distributed systems composed of

autonomous concurrently executing entities. Entities are decoupled and are not

required to operate in lockstep.

There are several kinds of event services in existence, addressing wide-ranging issues

including Internet scale [6], quality of service [8], mobility and location awareness

[5]. Event services are used in distributed systems development today in a number of

areas including [33]:

• Telecommunications network management systems. Event services are used to

route device alarm information and other information to network management

applications and other interested users.

• Financial stock-price information systems. Event services are used to

propagate stock quotes to financial applications.

1.1 The event service inter-working problem

When integrating systems that use event services it may be necessary to inter-work

their event services. For example, it may be required to inter-work one system’s Java

Message Service [9] based system with another system’s CORBA Notification

Service [8] based system so that events can flow between the two systems.

There is currently no standard solution available for heterogeneous event service

inter-working. In the absence of a standard solution, system developers are forced to

roll their own solutions. This is problematic as such solutions can cost time, money

and effort. These solutions may be sub-optimal since developers, unless they are

experts in event systems and event system inter-working, may not have considered or

understood all of the issues involved. This problem is compounded when inter-

working of multiple kinds of event-services is required because each event service has

different capabilities and interfaces.

 1

Introduction

1.2 Event service inter-working opportunities

If a standard mechanism were available for composing systems out of different kinds

of event services, then system developers would have a valuable tool at their disposal

for building and extending event-based systems.

For example, consider the requirement to extend the reach of a news propagation

system based on an event system to mobile clients. For such a requirement, it may be

viable and cheaper to inter-work the existing event service with a mobile event

service, rather than by extending the existing system with a bespoke mobility solution.

The standard event service composition approach might meet all or most of the

requirement. At a minimum it presents developers with an possible alternative to

bespoke solutions.

Novel systems may also be facilitated by such a mechanism. For example, mobile

proximity aware event services, such as STEAM [5] could be combined with real time

in-vehicle event services, such as COSMIC [3]. This would aid the creation of a new

kind of traffic safety system where critical information such as current position, speed

and braking status could be disseminated among vehicles within proximity of each

other. Such information could also be conveyed over a large area by adding a scalable

event service such as SIENA [6] to the mix.

1.3 Event service federation

This dissertation defines a federated service as a collection of autonomous concurrent

services that may be linked together to provide a single logical service. Federating

services can improve the scalability, load-balancing, fault tolerance and performance

capabilities of a system. This definition has been derived from information found in

[14, pp813].

Event services, due to their asynchronous, anonymous communication paradigm, are

very amenable to federation. Anonymity allows the services in the federation to

remain ignorant of the fact that they are federated. Asynchronous communication

allows each service to operate autonomously. Therefore a federation of event services

may be created transparently to the event services in the federation. The event
 2

Introduction

services may remain untouched. However, very little work has been done with respect

to federating heterogeneous event services. Federation may provide a viable means of

inter-working different kinds of event services.

1.4 Thesis

Primarily, this project examines the thesis that a standard mechanism for federating

heterogeneous event services is a valuable solution to the event service inter-working

problem.

A secondary aim of the project is to investigate whether such a mechanism can

provide system developers with a viable alternative to bespoke solutions for building

or extending event-based systems, when requirements cannot be met by a single event

service. Is it possible to address certain event system requirements by federating

different kinds of event services?

To this end, the design and implementation of such a mechanism, called the Federated

Event Service, was carried out. A test application that federates three different kinds

of event services, using the Federated Event Service was also built. An evaluation of

the design and implementation was then carried out to determine the benefits of this

solution. The evaluation also discusses the viability of federation for meeting certain

kinds of system event requirements.

1.5 Goals

The aims of this project were:

• To understand the range, applicability, properties and capabilities of various

important event models and services. Since there has been very little work

done on heterogeneous event service inter-working, this knowledge will help

to identify inter-working and federation requirements and issues.

• To determine a meta-model to classify these event models. This model will

classify common attributes and functions. This common model will facilitate

translation between different kinds of event models.

• To design a technology called the Federated Event Service that will allow the

development of systems that integrate disparate event services. The design will

 3

Introduction

use the meta-model to define how an arbitrary event model may be mapped to

and from the meta-model. Thus arbitrary event models may be mapped to and

from each other.

• As proof of concept, produce an implementation of the Federated Event

Service and a test/sample application to demonstrate its capabilities.

• Evaluation the design and implementation to determine the benefits of the

solution for event service inter-working and to determine the viability of

heterogeneous event service federation for meeting certain system event

requirements.

1.6 Achievements

This project has achieved the following:

• Identified and documented many heterogeneous event service inter-working

and federation issues and requirements.

• Designed the “Federated Event Service” - a mechanism for inter-working and

federating heterogeneous event services. Its event model could be classified as

a meta-model since it captures the necessary characteristics of many different

event models for inter-working purposes.

• Implemented a proof of concept version of the “Federated Event Service”.

• Implemented a test application that demonstrates federation of the CORBA

Notification Service, STEAM and SIENA.

• Provided an evaluation of federation as a valuable and realistic mechanism for

event service inter-working and extension. It was concluded that the federation

approach is an adequate and cost effective solution for many heterogeneous

event service inter-working requirements. It was also concluded that

federation is a viable alternative to bespoke solutions for meeting certain event

system requirements.

 4

Introduction

1.7 Roadmap

The remaining chapters of the dissertation are summarized here:

Chapter 2 - Overview

This chapter provides the necessary background information for this dissertation. This

information includes a discussion on event service concepts, an introduction to

different kinds of event services, and a discussion on event service inter-working and

federation.

Chapter 3 - State of the Art

This chapter covers the current state of the art for event service inter-working and

federation. Current solutions and approaches are analysing to determine their

characteristics, capabilities and limitations.

Chapter 4 - Issues

This chapter identifies and classifies many of the issues that must be addressed in the

design of a federation of heterogeneous distributed event services.

Chapter 5 - Design

This chapter describes the high level design of the Federated Event Service including

the design rationale based on an analysis of the issues identified in the previous

chapter.

Chapter 6 - Implementation

This chapter describes an implementation of the Federated Event Service and

discusses its features and its limitations.

Chapter 7 - Evaluation

This chapter provides an evaluation of the Federated Event Service. Strengths and

weaknesses of the Federated Event Service approach compared to other approaches

are discussed with respect to heterogeneous event service inter-working. The viability

of federation for addressing system event requirements is also discussed.

Chapter 8 - Conclusion

This chapter provides a conclusion to the dissertation, including a summary of

achievements and contributions. Areas for future work are also identified here.

 5

Overview

Chapter 2. Overview

This chapter provides the necessary background information for this dissertation. This

information includes a discussion on event service concepts; an overview of various

different kinds of event services; and a discussion on event service inter-working and

federation.

2.1 Basic event service concepts

An event system is a system where entities in the system communicate

asynchronously by producing and consuming events. A producer is an entity that

produces events; a consumer is an entity that consumes events. There may be many

producer and consumer entities. An event is a message that contains the data that

producers wish to distribute to consumers. A producer forwards events to an event

service in the system. The event service is responsible for distributing events to

interested consumers within the system. A consumer may specify to the event service

the subset of all events that it is interested in receiving by specifying a filter in a

filtering language to the event service. The event service will then only distribute the

events that match the filter to the consumer. Event-based communication is generally

anonymous since producers and consumers are unaware of each other – the event

service decouples producers and consumers.

An entity may be a producer of events, a consumer of events or both a producer and a

consumer of events. These are roles that an entity can take on at any time. The act of

forwarding an event to an event service is known as publishing an event. The act of

specifying a filter to an event service is known as subscribing for events. Hence the

producer is often known as a publisher and the consumer is often known as a

subscriber in event service terminology. An event service client is any software entity

that uses the event service. For the purposes of this dissertation, a system developer is

someone who develops systems that use event services and an administrator is

someone who administrates, manages and configures event-based systems and event

services.

 6

Overview

Some event services require and/or support event announcements/advertisements by

producers. Announcements notify the event service of event types that a producer may

publish in the future. The event service may propagate this information to consumers.

This facility allows event services and consumers to prepare resources, etc. for future

event arrival.

P

C

C

Event Service

Symbol =
“MSFT” and
value >= 50

Symbol =
“SUN”

“StockPrice”
“symbol” “SUN” (string)
“value” 30 (double)

“priority” 10 (int)

“StockPrice”
“symbol” ”MSFT” (string)
“value” 50 (double)

“priority” 9 (int)

Subject

Parameters

Attributes

Filter Events

Producer

Consumer

Fig 2.1 Basic Event System

Fig.2.1 shows an example of a basic event system. The system distributes stock prices

to interested consumers. In this example a producer publishes two stock price events

to the event service. There are two consumers, each of which has specified a different

filter to the event service. One of the events is delivered to one of the consumers; the

other event is delivered to the other consumer.

There are several kinds of event that may exist in an event system (see Fig. 2.2).

Event services may provide support for some or all of these kinds of events.

An un-typed event is an event that has no well-defined structure. Such an event is very

general and can contain any feasible application type and is therefore flexible to use.

Only the consumer and producer of the event need to understand how to put data into

the event and extract data from the event. It is opaque to the rest of the system. Such

events do not easily facilitate type checking by the application. The CORBA Event

Service (CES) [7] provides this kind of event.
 7

Overview

A typed event is an instance of an object oriented programming language class. It has

a set of attributes and a set of methods. A compiler may enforce its type statically.

Many graphical user interface models use this form of event communication, for

example, the Java AWT [19]. The CES is an example of a distributed event system

that provides this kind of event support.

A structured event is a well-defined data structure into which data can be placed.

Since the structure is well known any entity may examine the event to determine its

contents and type of its contents. The CORBA Notification Service (CNS) and

STEAM event services are examples of event services that provide this kind of event

support.

Structured Events provide the equivalent generality and ease-of-use of

un-typed event communication, while providing more strongly typed

event communication. [8, pp2-13]

interface StockPrice
{

string symbol;
int value;

}

Structured Event Un-typed Event Typed Event

subject (string)
Parameters: array
of {id (string),
value (any)}
Attributes: array of
{id (string), value
(any)}

Fig 2.2 Event Types

An event contains parameters and attributes. An event parameter specifies event data.

Attributes represent non-functional properties of an event such as the delivery priority

of an event.

Attributes are related to the context, in which an event is generated like

location, time, mode of operation, etc. and to quality aspects like a validity

 8

Overview

interval (expiration time) and a deadline. They represent non-functional

properties of the event. [3]

Parameters and attributes have a type and value associated with them. An event may

also contain a special subject parameter that indicates the type of the event. Generally

parameters and attributes may be accessed by identifier and/or by index.

For example, in Fig 2.1 there are two structured event instances. Both contain the

subject “StockPrice” of type string; two parameters – a “symbol” parameter and a

“value” parameter of types string and double respectively; and a priority attribute of

type integer. The values of the parameters and attributes are different in each event

instance. The event with the higher priority should be delivered to consumers before

the event with the lower priority.

There are two main kinds of filtering support that may be provided by an event

service. Subject based filtering allows events to be filtered based on an event subject

value. Content based filtering allows events to be filtered based on the parameters

values of an event.

There are two ways in which an event may be propagated from a producer to a

consumer. In the push propagation model the producer actively forwards the event to

the event service. The service then actively forwards the event to the consumer. The

consumer remains passive in this situation. In the pull propagation model the

consumer actively polls the event service for events. The event service then polls the

producer for events. The propagation model may be mixed in that producers may

actively push events to the event service and consumers may actively poll for those

events from the event service, or the event service may actively poll for events from

the producer and push these events to a passive consumer.

2.2 Taxonomy

The “Taxonomy of Distributed Event-Based Programming Systems” [1] provides a

formal hierarchical classification of the fundamental properties of event based

 9

Overview

systems. The taxonomy defines the following event system concepts that are used

throughout the rest of this dissertation.

An event system is an application that uses an event service to carry out event-

based communication.

An event service is middleware that implements an event model, hence

providing event-based communication to an event system.

An event model consists of a set of rules describing a communication model

that is based on events.

In the next section of this chapter, examples of various kinds of event services are

discussed. The discussion includes some concepts that are defined in the taxonomy.

This section will give a brief description of these concepts. For the complete

discussion please refer to the taxonomy.

The taxonomy defines three kinds of event models: peer-to-peer, mediator and

implicit. In the peer-to-peer model consumers directly subscribe to producers for

events. In the mediator model consumers subscribe to a mediator object for events

and producers deliver events to the mediator object. This allows anonymous

decoupled communication between producers and consumers. There may be a single

mediator or multiple mediators. If the mediators are functionally equivalent then

producers and consumers can use any of the mediators. If the mediators are non-

functionally equivalent then producers and consumers have to deliver to or subscribe

for events from the correct mediator. In the implicit event model consumers subscribe

for specific event types rather than to another mediator or entity. Fig 2.3 shows a

graphical depiction of these event model types by showing the producer-consumer

dependencies.

 10

Overview

P C

M CP

CP

Peer to peer
event model

Mediator event
model

Implicit event
model

Fig 2.3 Taxonomy - Event Model Types

The taxonomy divides the event service dimension into two categories: event service

organisation and event service interaction.

Event service organisation classifies an event service as either centralised or

distributed based on the location of the event system entities. Distributed implies that

the producers and/or consumers are located in different address spaces or physical

machines to each other. Centralised implies that all entities are located in the same

address space on the same physical machine. The event service middleware is

collocated if it reside in the same address space on the same physical machine as the

entities in the event system. The middleware is separated if it is at least partially

located in a separate address spaces, possibly on separate physical machines.

Separated middleware may be single if it is located in a single address space or

multiple if it is located in multiple address spaces.

Event service interaction classifies the communication path over which

communication between producer and consumer takes place. In the intermediate

classification, communication must take place over at least one event service

middleware component. In the implicit classification producers and consumers do not

use an intermediate component, but use some implicit means to map events to entity

addresses.

 11

Overview

2.3 Event service survey

2.3.1 The STEAM event service

Wireless range

STEAM peer

C STEAM

STEAM peer

STEAM P

Fig 2.4 The STEAM event service

STEAM [5] is an event service that is specifically designed for mobile computing on

wireless ad hoc networks. To exist in this environment the event service does not rely

on any centralised service or component and is thus inherently distributed. Its design

is based on that fact that entities are more likely to interact when they are in close

proximity. STEAM uses the structured event type. Events are propagated with best

effort reliability via the push propagation model.

STEAM employs the implicit event service interaction type. There is no intermediate

component used for communication. The subject of an event is mapped to a group.

Any consumer that subscribes for events with this subject (via a subject filter)

implicitly joins the group. Any event produced with this event subject is forwarded to

all members in the group.

In addition STEAM provides a proximity-based group communication service. To this

extent, publishers specify a proximity filter when announcing event types that

 12

Overview

specifies the area within which events of that type are valid. Event instances are

delivered to interested consumers in the area.

Finally STEAM provides content filters that allow consumers to perform event

selection based on event content. Subject and proximity filters are applied on the

producer side. Content filters are applied on the consumer side only. This reduces the

amount of work that producers have to perform and in conjunction with proximity

filtering improves the scalability of the system.

2.3.2 The SIENA event service

Siena
Server

Siena
Server

Siena
Server

Siena Client

C

Siena Client

P

Siena Client

P

Fig 2.5 The SIENA event service

SIENA [6] is a scalable event service that is based on a distributed architecture of

event services. It is specifically designed for wide area networks. SIENA provides

structured events (parameters only), content filtering, and push event propagation with

best effort event delivery.

SIENA implements the mediator event model. There may be one mediator or multiple

functionally equivalent mediators. An event service client may use the event service

through any one of its mediators.

 13

Overview

SIENA achieves its scalability through a number of methods. The SIENA service may

be distributed across a number of servers that may be organised in a hierarchical or

peer-to-peer fashion. Announcements in SIENA are used to optimize the routing of

subscriptions and publications. Filters are applied as physically close as possible to

producers. Events are replicated as physically close as possible to consumers by

means of multicast.

2.3.3 The COSMIC event service

COSMIC
Event

Channel

COSMIC
Event

Channel

COSMIC Client

C

COSMIC Client

P

COSMIC Client

C

COSMIC Client

P

Fig 2.6 The COSMIC event service

The COSMIC [3] event service is a distributed event service that features rigorous

hard real time event delivery guarantees with respect to time and reliability. It

achieves these guarantees through its close coupling to a real-time CAN-Bus network.

COSMIC provides un-typed events (based on the CAN 2.0B message class standard

that consist of a 29 bit identifier and 8 bytes of data) and push event propagation.

COSMIC supports different event channels. An event channel disseminates all events

of a certain subject. An event channel has certain non-functional attributes associated

with it such as latency, dissemination constrains and reliability. There are three

possible kinds of event channels. Hard real time event channels (HRTC) are

considered to meet all temporal requirements under specific fault assumptions. Soft

real time event channels (SRTC) are scheduled by their deadlines, but they are not

 14

Overview

guaranteed under transient overload conditions. Non real-time event channels (NRTC)

are used for events without any specified timeliness requirements in a best-effort

manner. While HRTC and SRTC distribute events of restricted length to meet the

responsiveness of real time systems, NRTCs may transfer bulk data in a sequence of

message fragments.

Producers and consumers must be connected to the correct event channel in order to

communicate. Hence, COSMIC employs the multiple, non-functionally equivalent

mediator event model.

2.3.4 Other Event Services

CORBA Event Service (CES) [7]

The Common Object Request Broker Architecture (CORBA) is a specification of the

Object Management Group (OMG) that defines how objects may be managed and

how they interoperate under a middleware composed of Object Request Brokers

(ORBs). The CORBA 2.0 specification defines a wide range of general-purpose

object services, one of which is the CORBA Event Service. This service defines an

event based communication mechanism for CORBA applications. The service is

completely distributed; there is no dependence on global, critical, or centralised

service. It uses standard IDL interfaces and does not require any extensions to

CORBA. It may be implemented in many different operating environments, for

example, environments that include threading and those that do not. The service is

composed of event channels that broker event messages, event suppliers that supply

event messages and event consumers that consume event messages.

COBRA Notification Service (CNS) [8]

The CORBA Notification Service is an extension of the CORBA Event Service. The

service preserves all of the semantics of the CORBA Event service and most

importantly adds filtering and quality of service facilities. The main design goal of the

CNS architecture is to provide important features that are required to satisfy a variety

of applications with a broad range of scalability, performance, and quality of service

requirements.

 15

Overview

Java Message Service (JMS) [9]

The Java Message Service is a specification that defines a common set of enterprise

messaging services and facilities. It attempts to minimise the set of concepts a Java

language programmer must learn to use enterprise messaging products. It strives to

maximize the portability of messaging applications. Two means of communication are

defined: point to point and publish/subscribe. An implementer of JMS need only

provide one of these mechanisms. Java 2 Enterprise Edition providers must

implement both mechanisms.

2.4 Event service inter-working

As explained in the introduction, system developers may be required to make different

kinds of event service work together (inter-work). Inter-working requirements might

include:

• Support the propagation and integrity of events between event services.

• Support the propagation of announcements and subscriptions request between

event services.

• Maintain the event context of an event between event services such as event

proximity, latest delivery time and priority.

Bilateral inter-working exists when two event services participate. Multilateral inter-

working exists when three or more event services participate. Requests and events

must be translated between event services in order for inter-working to occur. A one-

step translation process is only really feasible for bilateral inter-working. Multilateral

inter-working becomes more difficult to achieve with one step translation as the

number of participants increase. With N event services, the number of translation

possibilities is: . ∑
−

=

1

1

N

i
i

Therefore two-step translation is necessary for general multilateral inter-working.

With two-step translation only the ability to translate an event model to and from a

common model is required. To translate between two different kinds of event models,

requests and events are first translated from a source event model to the common

model. They then may be translated to the other event model. With N event services,

the number of translation possibilities is N.

 16

Overview

A desirable requirement for event service inter-working is that end-to-end event

context is maintained. This implies that the context of an event as defined by the

producer of that event is maintained by event services and between event services

until the event is delivered to the consumer(s) of that event. For example if a publisher

specifies that an event must be delivered within the next 5 seconds then the

participating event services and any inter-working infrastructure must ensure that that

event is received within 5 seconds by all interested consumer(s). This context cannot

be met if an event service does not provide such guarantees.

2.5 Event Service federation

This sub-section on federation and has been adapted from [14, pp813] to cover event

service federation. A federated event service provides a single logical event service to

clients but consists of a number of autonomous event services possibly located in

different remote locations. Federated services offer a number of advantages:

• Each service in the federation provides a subset of the complete service. This

arrangement improves reliability because if a single service fails, the rest of

the services are still available.

• Services in a federation share the processing load of the logical service. This

can improve performance and scalability because different services in the

federation can work in parallel handling different sets of producers and

consumers.

• Federation of a service permits you to maintain distinct administrative

domains while still providing a single logical service. This facilitates easier

management of a large service.

An important aspect of federation is that the services in the federation are either

ignorant of the fact that they are federated, or, alternatively, each service has

knowledge only of its immediate neighbouring servers and not of the federation as a

 17

Overview

whole. This allows event services in the federation to continue to operate when other

event services in the federation fail.

2.6 Inter-working possibilities

Event system JEvent system I

Event service
type A

Event service
type BP C

C P

?

A G B

A B

A G B

P C

P C

P C

Transport Inter-working

Inter-working via Extension

Inter-working via Federation

Inter-working - ?

Fig 2.7 Event Service Inter-working

Fig 2.7 outlines several ways to inter-work two heterogeneous event services.

2.6.1 Transport inter-working

This approach places a gateway between the two event services. This gateway

contains a producer/consumer entity. This entity subscribes to both event services for

certain event types or perhaps all event types. When the entity receives an event from

an event service it maps the event to the other event service’s event model and

publishes the event to that event service. Essentially this method provides event

 18

Overview

mapping and transport functionality only. For example, subscription requests are not

propagated between event services, so events may needlessly travel between event

services. Event context information such as event priority and deadlines may be

maintained between event services if there is a close match between both event

models (assuming the gateway maintains the context also). This approach does not

require modification of event services.

2.6.2 Inter-working via extension

Inter-working via extension extends one event service or both event services with the

facilities or a sub-set of the facilities of the other event service. What results is

essentially a new event service that can support both kinds of event service clients.

The full functionality of both event services may be maintained.

2.6.3 Inter-working via federation

This kind of inter-working presents a single logical event service to event service

clients. Like transport inter-working it requires a gateway between event services that

contains a producer/consumer entity for mapping and propagating events between

event services. In addition additional intelligence is required in order to propagate

requests from one event service to the other event service. For example, a subscription

request made at event service A for all events should be propagated to event service

B. The federation should remain transparent so that existing event services and event

system do not require modification and so that the federation continues to operate

when any of the services in the federation fail. A general event service federation

may be multilateral with event services linked in an elaborate topology. The next

section outlines the requirements for such a federation.

2.7 Heterogeneous event service federation requirements

Existing examples of event service federation, as described in the state of the art

chapter, do not provide a single logical view of a set of event services. In addition

there are no current examples of heterogeneous event service federation. This section

attempts to define a minimal set of requirements that a federation of heterogeneous

event services should meet, so as to be considered a true federation. The design of the

“Federated Event Service” will address these requirements.

 19

Overview

1) The service must appear as a single logical service to the producers and

consumers in the system. Therefore clients of existing systems can continue to

work with little or no modifications. The service is transparent to them. They

are still essentially using the same single event service model. Yet they can

still use the services of any event service in the federation.

2) The service supports the propagation of event data (type data, parameter data,

attribute data and subject data) between and across heterogeneous event

services.

a. Where possible the service should maintain the integrity of that data.

This will not be possible to achieve in many situations:

i. It may not be possible for the service to map between different

kinds of event types to the satisfaction of the application - e.g.

mapping from un-typed to structured events or mapping from

one kind of structured event to another kind of structured event.

ii. Event services may not be able to facilitate the event data types

and sizes of another event service.

For situations like this it should be possible for the administrator or

system developer to specify how specific events may be mapped

between specific event services.

b. The service must maintain event data integrity when propagating

events across an intermediate event service to another event service.

This is necessary so that the event may be applied consistently at

different event services. It may be up to the system developer or

administrator to ensure that the intermediate event service(s) in their

system can cope with the event size.

 20

Overview

3) The service supports the propagation of announcement and un-announcement

requests between and across heterogeneous event services. The service must

also fabricate announcements if necessary for event services that require them

before event publication.

4) The service supports the propagation of subscription and un-subscription

requests between heterogeneous event services. This requirement is important

as it prevent events from needlessly traversing event systems and consuming

resources. It also improves the scalability of the system. An adequate

mechanism for handling the different kinds of filtering languages supported by

event models, and for mapping between these languages is required. Filters

should be maintained across event services so that they may be applied

consistently at each event service.

5) Where possible, the service maintains the event context between and across

heterogeneous event services. For example if event services support similar

capabilities then it may be possible to maintain that context. Event context

might include such diverse things as event priority, event proximity, event

delivery reliability and event expiration time. The data describing this context

is stored in the event attributes. Attribute data is maintained as described in

requirement 2 above.

 21

State of the Art

Chapter 3. State of the Art

This chapter discusses currently known technologies in the area of event service inter-

working and event service federation analysing characteristics, capabilities and

limitations.

3.1 Notification/JMS Interworking RFP (OMG)

Due to the popularity of CNS and JMS and the need to inter-work them, the Object

Management Group (OMG) has recognised the need to standardise CNS and JMS

inter-working. OMG is currently working on standardizing this and has issued a

request for proposal [16]. Vendors such as PrismTech and IONA have submitted

proposals for this [17], [18].

The mandatory points of this RFP include:

• The ability to maintain message content integrity across the JMS and CNS.

• The ability to maintain critical QoS across the JMS and CNS.

• The ability to support (optional) transactional semantics across the JMS and

CNS.

Optional points of the RFP include:

• The ability to choose between “simple” and “complex” filtering, e.g.. JMS

SQL92 or CNS ETCL.

Both IONA’s and PrismTech’s first proposals to OMG use the concept of a bridge to

connect a CNS event channel with a JMS topic. Message conversion is statically

defined. For filtering is has been proposed to extend the CNS to support JMS’s

SQL92 filtering language. It has also been proposed to extend the CNS with other

features of the JMS to allow it to support JMS point-to-point functionality.

3.2 CNS/JMS Bridge (University of Mannheim)

The CNS – JMS Bridge [11] is a Java based, flexible and easily configurable bridge

that enables event passing event systems based on JMS and CNS. The bridge registers

 22

State of the Art

as a producer and a consumer to both event services. The advantages of this approach

include:

• There is no need to modify or extend the event services.

• Existing event systems do not have to be recompiled.

• There is no need to convert filtering rules.

For event conversion to take place, it is necessary to identify the event types that

correspond to each other in both systems and to develop conversion routines that

perform the mapping of the respective types. Conversion in both directions may not

be necessary if all producers are connected to one event service and all consumers are

connected to the other event service and vice-versa.

The bridge covers mapping of structured event type information (the domain_name,

type_name, event_name in CNS and the type parameter in JMS); event priority and

persistence QoS characteristics; and conversion of event headers and event bodies.

The bridge does not cover conversion of CNS Any events (un-typed) or CNS Typed

Events.

The bridge’s implementation consists of a Converter class hierarchy for conversion of

event headers and bodies. A single class can generally manage event header

conversion. Multiple converters might be required for each body type. Classes are

further subdivided based on the direction of the conversion. Further classes determine

whether a particular Converter can convert a particular event or not. The bridge

derives its flexibility from this hierarchy and it can be extended with Java classes to

provide additional conversion support. The class to use is chosen at run time based on

the event type information. Java also gives the bridge good platform independence

and portability.

3.3 OpenFusion Notification Service Connectivity Bridges

(PrismTech)

These notification service connectivity bridges [20] can be used to create message

bridges between the OpenFusion Notification Service and IBM’s MQSeries [21] and

TIBCO Rendezvous [22] message oriented middleware products. Bridges may be
 23

State of the Art

created and administered either through a GUI or programmatically. Bridges may be

unidirectional or bi-directional. A default message mapping is provided but

developers may specify their own mapping by supplying appropriate Java code.

Message delivery QoS is supported.

The architecture consists of bridge factory objects that are responsible for creating

bridge objects. There is a bridge factory object for creating MQSeries bridges and a

bridge factory object for creating TIBCO bridges. Mapping is performed via a

mapping plug-in object that implements a specific mapping interface. Default

implementations are provided and the developer can supply their own

implementations Messages are tagged as they pass through a bridge. This is used to

prevent messages from endlessly cycling over bi-directional bridges.

3.4 CES/CNS Federation (OMG)

The design of the CES and CNS allow event channels to be easily plugged together

into a limited kind of event service federation. It does not address heterogeneous

event service federation. It is up to the application to plug channels together and to

assigned producers and consumers to the correct channels. It provides event transport

inter-working only. Its main use is to facilitate load-balancing and performance tuning

in event systems.

3.5 Analysis of the state of the art technology

Based on the state of the art study there seems to be little research into the area of

federating or inter-working heterogeneous event services. CNS/CES federation does

not address heterogeneity of event services. Most of the interest, for commercial

reasons, lies in the inter-working of CNS and JMS.

CNS and JMS inter-working is a less difficult problem than generic event service

inter-working. Firstly this is a bilateral integration issue where the inter-working of

two kinds of event services need only be considered. Secondly CNS and JMS support

similar event models, feature sets and event structure. Finally JMS is an abstract

interface only. It does not specify implementation details. It has been designed to

encapsulate the heterogeneity of event services.

 24

State of the Art

The OMG Notification/JMS inter-working RFP has provided allowances to extend the

CNS to support JMS requirements. The current proposals use static event mapping

and conversion. This may require modifications and rebuilding of client application

code, so that application events conform to the necessary structure. This solution

provides event transport inter-working only. Extensions are also required to the JMS

and CNS implementation to support the inter-working spec.

The University of Mannheim CNS/JMS Bridge provides very flexible event mapping

and conversion support and does not require any modifications to event services or

systems. Users of this bridge may need to write Java code to support their application

event types. This solution provides event transport inter-working only. This bridge

does not address filtering at all. Events may unnecessarily traverse the event systems

consuming resources. The PrismTech OpenFusion Notification Service Connectivity

Bridges is a similar solution to the University of Mannheim CNS/JMS Bridge with

similar issues.

 25

Issues

Chapter 4. Issues

This chapter identifies and structures many of the issues that must be considered in

the design of a system for the federation of heterogeneous event services. Some of

these issues face any system inter-working effort; others are particular to event service

inter-working.

4.1 Event model heterogeneity issues

Event models differ in the many ways. For a federated service to be valuable it must

cater for a wide variety of event models. The design of the service must take these

differences into account when prioritising features for inclusion. Table 4.1

summarizes the event services that were studied for this dissertation. Event model,

event service organisation, and event service interaction model are summarised here.

These concepts are discussed in the overview and in [1]. Important event service

features including propagation model support, event type support, filter support, and

event service specific features are summarised here. This is not an exhaustive feature

set - other features that event services may support include transaction support, event

batching and atomic delivery of events.

How can a federation design handle all of these different kinds of features? Variations

in propagation models may be worth supporting since there are few permutations

possible. Filtering poses a difficult problem. Endless filtering languages are possible.

In addition, other kinds of filtering such as proximity filtering are possible. Mobile

event services introduce issues such as frequent-disconnection and event services that

may connect to any point in the federation. Event services provide different QoS

features such as event deadlines, order, priority and reliability guarantees. Event

services may use different ranges and units to represent QoS features. These features

cannot be maintained by event services that do not provide these features.

 26

Issues

 STEAM SIENA CES CNS JMS COSMIC
Event
Model

Implicit Single or
multiple
functionally
equivalent
mediators.

Single or
multiple
non-
functionally
equivalent
mediators.

As CES. Single
mediator.

Single or
multiple
non-
functionally
equivalent
mediators.

Service
Organisation

Distributed.
Collocated
middleware.

Distributed.
Separated
middleware.
Single or
multiple.

Centralised
or
Distributed.
Collocated
or separated
middleware.

As CES. Distributed.
Separated
middleware.

Distributed.
Separated
middleware.

Service
Interaction

No
Intermediate
Implicit
addressing.

Intermediate.
Centralised
or
distributed.

Intermediate.
Centralised
or
distributed
(via
federation).

As CES. Intermediate.
Centralised.

Intermediate.
Centralised.

Propagation

Model
Support

Push
producer.
Push
consumer.

Push
producer.
Pull
consumer
(C++ API).
Push
consumer
(Java API).

Push
producer.
Pull
producer.
Push
consumer.
Pull
consumer.

As CES. Push
producer.
Push
consumer.
Pull
consumer.

Push
producer.
Push
consumer.

Event Type
Support

Structured Structured Un-typed
Typed

Un-typed
Typed
Structured

Structured

Un-typed
(29 bit id + 8
bytes data)

Filter
Support

Subject
Content
Proximity

Content None Content
(structured
events)

Header
properties

Subject
Attribute

Other
Features
Supported

Mobile, ad-
hoc
proximity
based.

Highly
scalable
(Internet
scale).

Standard
event
service.

As CES.
Event &
event
channel
QoS.

Standard
Java
interface for
event
services.
Transaction
Support.

Hard real
time event
delivery
guarantees.

Table 4.1 – Event service summary

 27

Issues

4.2 Distributed system issues

For inter-working two or more event services at a single physical location, an event

service federation system may not need to deal with many distributed system issues.

For example using such as system to integrate a CNS system and a SIENA system

could be achieved via a single process that interfaces to both the CNS and the SIENA

systems. Issues such as clock synchronisation, event routing and inter-process

communication do not exist. Indeed this sort of bilateral inter-working problem could

be a quite common usage of an event service federation system. However in the

general case an event service federation system has to deal with a myriad of network

and distributed systems problems. This section elaborates on these issues.

4.2.1 Communication

The communication requirements of a federated event service can be provided by its

events services. No other communication mechanism may be required. Obviously this

mechanism is perfectly suitable for distributing asynchronous on-way events across

processes in the system. However it may be difficult to implement the request-

response requirements of a subscription request for example on this kind of

communication layer. This distributed hop-by-hop communication mechanism is

more subjected to failure due to individual event service failure. Allowances also have

to be made for the fact that mobile event services such as STEAM may be involved in

the communication path.

4.2.2 Naming

There are various mechanisms in use by event services today to identify event types

and instances. The federated event service design must consider these different

naming mechanisms. For example:

• The CES and CNS use event channels to distinguish event types and instances.

• SIENA and CNS allow structured events to be identified via a subscription

filter.

• STEAM and COSMIC use a subject identifier to uniquely identify an event

type and instance.

 28

Issues

The design must also cope with the following naming issues:

• Ensuring that names, where necessary, are unique across the federation.

• Event services with case sensitive and case insensitive naming requirements.

• Varying maximum name lengths.

Event service federation introduces the requirements for individual event service

identification and addressing. This is necessary so that subscription and

announcement requests may be directed at a subset of the federation. This helps to

improve the scalability of the system. Otherwise requests and responses would have to

be blindly routed to all event services. Event service names must be unique to a

federated event service. It is also conceivable that event services could be part of two

or more federated event services. In this situation it is necessary to provide a known

(possible global) unique name for the federation. Ensuring the uniqueness of event

service identifiers and federation identifiers is the issue here. For federation control

and administration purposes it may be necessary to identify and address individual

gateways and access points to event services.

4.2.3 Time Synchronisation

To consistently apply time related QoS attributes across a distributed federation of

event services a time synchronisation mechanism is required. Ad hoc wireless event

service participation complicates this issue somewhat. Time synchronisation in

distributed systems is discussed in [27].

4.2.4 Transparency

For inter-working existing event services using a federation system it should be

possible that existing dependant event systems remain ignorant of the federation

system. Event services may have multiple client applications and it may not be

realistic or even possible to update them to provide support to the federation system

due to cost, time or unavailability of source code. Fortunately the anonymous,

decoupled communication nature of event models facilitates transparency somewhat.

 29

Issues

4.2.5 Scalability

In addition to the event sizing issues outlined in the event model heterogeneity section

event services may scale size-wise in other ways:

• Number of producers and consumers

• Number of middleware components

• Number of events that may be queued for delivery to a consumer

• Number of events that must be processed over a particular time period

Since the federation system will have to act as gateways between two or more event

services it could conceivably be expected to handle the scaling requirements of these

event services combined. This is a very difficult requirement to achieve without

knowing in advance what scalability requirements should be provided. Therefore the

system must provide mechanisms under user control to control the work that it is

expected to perform. The federation system may also need to scale geographically.

This may not be an important issue as it would be more prudent to address

geographical scale by adding a scalable event service such as SIENA to the

federation.

4.2.6 Security

When federating event system of different types, one may inadvertently expose a

secure event system over an insecure event system. For example imagine that an

insecure SIENA system or STEAM system was federated with a secure sensitive CNS

system. An intruder could subscribe for all CNS events via the SIENA system or

wirelessly via the STEAM system. Security in federated event services unveils many

issues such as system wide authentication and authorisation issues. These issues will

not be examined further in this thesis, and are left for future work. For a very good

introduction to network security, please see [30]. For a good overview of security

issues as they pertain to event services, please refer to [31].

4.2.7 Routing

Where a federated system is composed of one gateway or a set of gateways connected

in a chain, no routing decisions need be made. In this situation, requests and responses

 30

Issues

(messages) on the single input line may only ever by forward on the single output

line. Routing in an event service federation raises many more issues including:

• Which routing protocol should be used? Flooding? Something better? What

about routing around failed gateways?

• Can event proximity and/or a time to live value be combined with routing to

decide when events and requests can be dropped?

• A diagnostics protocol may be required to allow administrators to pinpoint

failed gateways and bottlenecks in the system.

4.2.8 Management/Administration/Configuration

A small federation of event services can be easily managed manually. If the federation

grows to a large size then problems can arise. How can such a network be created,

monitored, controlled and configured? Especially considering some of the event

service clients may be mobile and widely distributed. Gateways may need substantial

configuration information to be supplied to them, depending on the number of events

that they need to handle and/or the kinds of mapping they need to perform and/or the

number of event services they need to inter-work. Ideally configuration information

should be structured in an easy to comprehend object-oriented form. Ideally a tool

should be available to create and manage this information, as this is likely to be an

error prone task if done manually. A standard open format such as XML should be

used to record this information.

4.2.9 Fault tolerance

The remaining services in a federation should continue to operate in the presence of

failure of any of its event services. However the event system may no longer be

usable, if a critical event service goes down. Such failures could be masked by

redundancy in software and/or hardware and the transparency of federation may

facilitate such redundancy.

4.3 Other issues

4.3.1 Platform and language heterogeneity

 31

This is a common problem in distributed systems. The federated service is expected to

work with heterogeneous event services so it must cope with event services that run

Issues

on different platforms (e.g. LINUX [32] or Win32 [26]) and provides different

interface languages (e.g. C++ [25], Java [15], CORBA IDL [14]).

4.3.2 Threading support

Event services may have different threading requirements. For example, they may

expect all requests to be made on the same thread or they may support requests on

different threads and deliver events on different threads. The federated service will

have to deal with these differences.

4.3.3 Event Size

Event size limits are not often specified for event services. The system developer may

not be able to determine these limits from API documentation and may have to

experiment with the event service to determine its limits. The scalability section above

covers more sizing issues. Things that should be specified include maximum

parameter identifier length, maximum number of parameters, maximum event size,

integer value range and floating-point value range. It is not possible to map an event

to an event service that cannot cope with the dimensions of that event without data

loss. Such an event service could not be used as an intermediate event service without

the use of fragmentation in an event service federation.

4.3.4 Event Mapping

Event mapping could be user defined and/or automatic. Application developers could

provide pluggable code and/or configuration information to support flexible event

mapping. Different kinds of event services may have different mapping rules and may

require different mapping information. Event mapping may be one to one, one to

many, many to one, unidirectional an/or bi-directional.

4.3.5 Performance

The overhead of a generic federation solution including the protocol mapping and

translation work may be unacceptable for certain time critical application types.

Perhaps tools could be used to optimise translation work.

 32

Issues

4.3.6 Testing

Adequately testing a federation of event services requires a large amount of test

scaffolding, including test consumers and producers for the event services in the

federation. Good debugging/logging facilities are required to debug and monitor the

system.

4.3.7 Error Handling

How are errors handed by the system? Can the application be notified of errors in the

system? What about event services that do not provide event delivery guarantee

and/or acknowledgement?

4.3.8 Deployment

Accessing different kinds of event services from the same process or physical

machine may lead to problems such as competition for resources such as memory,

ports, processor, etc. Other problems include incompatible libraries dependencies.

4.4 Summary

This chapter throws up a lot of issues related to event service inter-working,

integration and federation. This is not an exhaustive set of issues. It is interesting to

note that the Internet Protocol (IP) encapsulates and addresses many of these issues to

present a unified layer to the transport layer. IP deals with such issues as different

kinds of networks (including fixed and wireless), routing issues, different protocols,

different messages sizes, naming, different QoS and so forth. For more information on

general internetworking issues and solutions please see [13, pp418].

 33

Design

Chapter 5. Design

The chapter documents the design of a system for federating heterogeneous event

services – the “Federated Event Service” (FES). The design is centered on the FES

event model. The FES is realized by a set of gateways and adapters that implement

the model. The next section provides an overview of the design. The FES event mode,

the FES gateways and the FES adapters are each described in their own sections. The

Configuration section defines mandatory configuration information that is required for

a FES system. The Use Case section illustrates the design in terms of a potential real-

world use of the FES. Finally precise definitions of the gateway and adapter interfaces

are given at the end of the chapter.

5.1 Overview

Ad
ap

te
r

A

Ad
ap

te
r

B

G
at

ew
ayEvent Service

Type A
Event Service

Type B

Fig 5.1 A simple FES system

A FES system consists of two or more event services and one or more gateways that

bridge them. A gateway propagates requests between event services. A gateway

interfaces to each event service by means of an adapter. An adapter maps generic FES

requests to specific event service requests and vice-versa. An adapter is required for

each kind of event service in a FES system. The gateways in a FES system form a

completely distributed system. Each gateway is an equal peer in the system. There are

no centralized points of control or failure and gateways do not maintain any global

state.

A request specifies the event service where it originated from (the source event

service), the event service(s) at which the request should be applied (destination event

service(s)), and the request parameters. For example, a subscription request specifies

 34

Design

the filter that should be applied. A publication request specifies the event that should

be published.

Fig 5.1 shows a static view of a simple FES system. Here event service type A is

connected to event service type B by means of a gateway. If for example, the gateway

receives a subscription request from event service A for event service B, it applies that

subscription to event service B via adapter B. Later if the gateway receives a

publication request from event service B for event service A, it then publishes that

event to event service A via adapter A.

A request is encapsulated in an asynchronous control event. Control events are the

only means by which requests may be communicated to gateways and by which

gateways communicate. A gateway acts as a producer and a consumer of control

events for each of the event services that it is connected to. Therefore a request may

be forwarded to a gateway by publishing the relevant control event to an event service

to which the gateway is connected. A request may be propagated over many gateways

and event services in this fashion to reach a particular event service. In addition

control events may be passed to a gateway by other means such as user input or via

command line parameters.

An event service that a gateway, or any event service client, is directly connected to is

known as a direct event service. An event service that a gateway, or any event service

client, is not directly connected to is known as an indirect event service. The terms

local and remote are not used, as process-wise gateway may be remotely or locally

connected to an event service. An event service that is used to route a request is

known as an intermediate event service.

 35

Design

5.2 The FES event model

This section presents the FES event model. The event model acts as a common

language between event services. The FES design uses a two-step translation process

to translate requests between event services. The first step involves translating the

source event service request to a FES request. The second step involves translating the

FES request to a destination event service request. FES adapters are required to

translate event service specific requests to and from FES specific request. New kinds

of event services may be added without affecting the existing system or existing

adapters. This is how the FES supports multilateral heterogeneous event service inter-

working.

The basic types section defines a useful set of primitive types. The event section

defines the FES structured event type. The propagation model and filtering model of

the FES are discussed in the next two sections. Finally the requests that are support by

the FES are defined.

5.2.1 Basic Types

Good basic type support reduces the work that applications have to perform when

mapping to an event model and reduces the chances of error and ambiguity. However

increasing basic type support increases the size and mapping complexity of FES

components. This overhead may not be required for a lot of applications. The FES

event model defines the following set of basic types. This is a useful set that is

sufficient to capture the basic type needs of the FES for proof of concept. These basic

types are based on CORBA basic IDL types as described in [14].

 Description

string An unbounded, null terminated string composed of ISO Latin-1 characters.

double IEEE double precision floating point number.

long Integer, range –231 to 231 –1.

 36

Design

5.2.2 Event

A FES event is a structured event that is composed of a subject, a set of parameters

and a set of attributes, as shown in Fig. 5.2. The FES allows parameter and attribute

access by index as well as by identifier. Identifiers are case sensitive.

“StockPrice”

0 -> (string) “symbol” “MSFT”
1 -> (double) “value” 50

0 -> (long) “priority” 10

subject

parameters

attributes

FES Event Type Example FES
Event Instance

Fig 5.2 FES Event type and example instance

The structured event type was chosen as this type is commonly supported in event

models. It allows flexible filtering. It is relatively easy to map an un-typed event to a

structured event. The CNS specification [8] defines how CES un-typed events should

be mapped to CNS structured events. The CES/CNS typed events are rarely used, as

they are difficult to understand and implement [8, pp212]. STEAM and CNS

structured events allow parameter access by index. Parameter access by identifier is

necessary to support event services such as SIENA that do not provide parameter

access by index. Identifiers are case sensitive, as this requirement will support both

case sensitive and case-insensitive event services.

Subject

The subject identifies the application event type, e.g. “DiskFull”, “DeviceOffline”. It

is of type string. To distinguish between events in a FES System the user must

provide a unique event subject. The subject is case-sensitive.

Parameters

Parameters specify event data. An event may contain 0 or more parameters. A

parameter consists of an event unique parameter index of type long; an event unique

 37

Design

parameter identifier of type string; a type identifier of type long that specifies the

type of the parameter (can be string(1), long(2), double(3) or

Event(4)); and the parameter data. Note: Events may contain other events. This is a

useful feature that is used by control events.

Attributes

Attributes, as explained in the overview chapter, contain information pertaining to the

context in which an event is generated such as priority, location, proximity, etc.

Attributes have the same structure as parameters.

5.2.3 Attribute Support

The FES supports any event service attribute that may be applied on an event-service-

by-event-service basis (hop-by-hop) by adapters. Adapters may ignore attributes that

they do not recognise or attributes that their event services do not support. This

allows support for new features to be readily added in the future without breaking

existing code. The potential set of features is open-ended. Here is an example set of

attributes.

Attribute Event Delivery Priority

Attribute Identifier Priority

Attribute Type long

Description

This attribute is based on the QoS priority attributes as supported by CNS. This

attribute defines the order in which events are delivered to a consumer. Range is -

32767 for lowest priority to 32767 for highest priority.

Attribute Event Delivery Proximity

Attribute Identifier Proximity

Attribute Type string

Description

This attribute is based on the proximity attributes as provided by STEAM. The

proximity attribute defines the range in which the event is valid. If an event has

exceeded its proximity then it should be discarded.

 38

Design

It consists of a proximity range reference point, specified as latitude and longitude

values of type double. The shape of the range is also specified. It may be circular in

which case a radius is supplied or it may be rectangular in which case a longitude and

latitude dimension is supplied. The shape is identified by a long value. 0 = Circular,

1 = Rectangular. Ranges may be absolute or relative to the specified range reference

point. A long value is used to identify the type of range. 0 = absolute, 1 = relative.

For circular proximities the attribute value takes the form "type, sub-type,

latitude, longitude, radius". For rectangular proximities the attribute

value takes the form "type, sub-type, latitude, longitude, dimx,

dimy" where:

type = 0 for circular shape and 1 for rectangular shape.

sub-type = 0 for absolute proximity, 1 for relative proximity

latitude,longitude = reference point for proximity (origin).

radius = radius of a circular shape.

dimx,dimy = dimension of a rectangular shape.

5.2.4 Propagation Model

The adapter must push events to the gateway. For event services that don’t support

push, the adapter will have to pull events from the event service in a separate thread

and then push these events to the gateway.

5.2.5 Filtering Model

The FES supports event filtering via the FES filtering language. At a minimum the

FES filtering language must support subject based filtering. Subject based filtering is

enough filtering support for the FES proof of concept. STEAM, COSMIC and CNS

have the concept of a subject and provide subject-based filtering. SIENA mapping can

easily define one of its parameters as a subject. The approach to filtering taken by the

FES as described here does not depend on the extent of it filtering prowess and adding

support to the FES for every conceivable filtering requirements dilutes the thesis of

this project.

 39

Design

The FES makes use of two filters whenever a consumer makes a subscription request

to an indirect event service: the subscription as made by the consumer at the direct

event service in the direct event service filtering language (direct filter) and the

subscription as made by a gateway on behalf of the consumer at an indirect event

service in the indirect event service filtering language (indirect filter).

Filtering information may be lost when mapping to and from the FES filtering

language. However the indirect filter must always define the same set of events or a

superset of the events that was defined by the direct filter. In the case where a superset

of events is specified at the indirect event service, unwanted events will cross the FES

system to the direct event service. However these events will not reach the consumer,

as the direct event service filter will filter them out.

The FES filtering language may be a perfect match for some event services, but may

be less expressive/coarser for other event services. At all times a widening conversion

may be applied but never a narrowing conversion. The original filter in the FES

filtering language must be preserved at all times so that it may be applied consistently

at all indirect event services.

5.2.6 Event Size

The FES does not place any limit on event size. This includes subject length, number

of parameters, parameter name length, number of attributes, attribute name length,

parameter value length and attribute value length. This version of the FES does not

support event fragmentation.

5.2.7 Naming

The following elements in a FES system require identification. These identifiers are of

type string. It is up to the user (or possibly a tool) to ensure that identifiers are

unique. All of these identifiers are specified via FES configuration information.

 40

Design

 Description

FES System Identifier Name is globally unique

Event Service

Identifier

Name must be unique among event services in a FES

System.

Event Subject Name must be unique among events in a FES System. Case

sensitive to support both case insensitive and case sensitive

event services. Names with the prefix “FES_” are reserved

for use by the FES.

FES Gateway Identifier Name must be unique among gateways in a FES System.

FES Adapter Identifier Name must be unique among gateways in a FES System.

Table 5.1 – FES Identifiers

Distribution Lists

A client of a FES system may specify the event services that a request is sent to. For

example, a client may require that only a subset of the event services in the FES

system receive announcements or subscription requests. This is an important

requirement as it improves the scalability of the system. Otherwise requests would

have to be propagated to all event services.

A distribution list provides functionality that is not part of normal event services, i.e.

clients may target specific sets of subscribers and publishers. However clients need

not be bound to certain event service instances. Instead they may specify the type of

event service, or a range of event services to send a request to. This requirement helps

to preserve the advantages that decoupling provides in event services. It is up to the

application developer to name event service instances appropriately to the application

in hand.

A distribution list is a comma-separated string composed of event service identifiers.

The wildcard characters '*' and ‘?’ are supported.

Examples:

 There are 10 event services in a FES system, ES1 to ES10.
 41

Design

 The distribution list:

 "ES1, ES2, ES3" specifies ES1, ES2 and ES3

 "ES*" specifies ES1 to ES10.

 “ES?” specifies ES1 to ES9.

 “*” specifies all event services.

 “” specifies no event services.

5.2.8 Requests

Requests define the functions that are supported by the FES. All requests except

publication requests emanate from a single event service client. Publication requests

are generated by the FES on receipt of events from event services. Requests may be

distributed to one or more destination event services by the FES. The naming section

defines how destination event services may be identified. The FES does not return the

status of requests back to the caller. Requests are one-way functions that may be

applied at most once to each destination event service. The following fundamental

event service requests are supported by the FES.

Announcement Request

An announcement requests specifies a particular event type that may be published by

an event service producer. Event services may propagate this information to

consumers. This facility allows event services and consumers to prepare for future

event arrival. The request takes a FES Event as a parameter.

Un-Announcement Request

A un-announcement request specifies an event type that will no longer be published

by an event service producer in the future. This facility allows event services and

consumers to tear down resources that are will no longer be required to handle events

of a certain type. The request takes a FES Event as a parameter.

Subscription Request

A subscription request defines the events that a consumer of an event service is

interested in. The consumer supplies a filter to specify this. The FES filtering model

is described above. The request takes a FES string as a parameter.

 42

Design

Un-Subscription Request

A un-subscription request defines the events that a consumer of an event service is no

longer interested in. The consumer supplies a filter to specify this. The FES filtering

model is described above. The request takes a FES string as a parameter.

Publication Requests

A publication request defines an event that a producer of an event service has

published to an event service. These requests are different from the other kinds of

requests as they are generated automatically by the FES whenever it receives an event

from an event service. The request takes a FES Event as a parameter.

5.3 FES gateways

The FES is realized by a set of event services that are connected by gateways. This

section describes the gateway protocol in detail, including the various ways of issuing

a request to the FES.

5.3.1 Control Events

As described in the overview section, gateways use asynchronous control events as a

communication mechanism. Gateways subscribe to their direct event services (via

adapters) for control events. Fig 5.3 shows some control event examples. A control

event is a FES event with the subject “FES_ControlEvent” and with the following

parameters:

 43

Design

Identifier Type Description

Type long Indicates the type of request. Announcement = 1, Subscription

= 2, Publication = 3, Un-subscription = 4, Un-announcement =

5.

DistList string Specifies the distribution list of event services where the

request should be applied.

Source string The identifier of the event service from which the request was

made.

Filter string For subscription requests this parameter contains the

subscription filter.

Event Event For announcements, un-announcements and publications this

parameters contains a serialised FES event.

Table 6.1 – Control Event Parameters

FES Publication control
event. Announcement/
Un-announcment differ
by “Type” value only.

“FES_ControlEvent”

(long) “Type” 3
(string) “DistList” “es1,es2”
(string) “Source” “es3”
(event) “Event” {...}

FES Subscription
control event.
Unsubscribe control
event differs by “Type”
value only.

“FES_ControlEvent”

(long) “Type” 2
(string) “DistList” “es1,es2”
(string) “Source” “es3”
(string) “Filter” “symbol =
‘MSFT’ and price > 50”

Fig 5.3 FES Control event examples

When an adapter receives an event it packages it up into a publication request and

forwards the request (push) in a control event to its gateway for processing.

 44

Design

5.3.2 The Gateway Protocol

When a gateway receives a control event it examines the event’s distribution list to

determine whether the request contained within should be applied at a direct event

service and/or whether the event should be forwarded to other gateway(s) for

application at indirect event service(s).

If the request should be applied at a direct event service then the gateway unwraps the

request details and carries out the necessary request. For example if the request is a

subscription request, then the control event contains a filter. The subscription request

is then made via the event service’s adapter. If for example the request is a publication

request then the control event contains an event. This event is extracted and published

to the event service via the adapter.

If the request should be applied at an indirect event service(s) then the gateway must

make a routing decision to decide which of its directly connected event services it

should publish the control event to in order to route the request to the correct

gateway(s). Please see the Routing section below for more details on this.

The gateway must manage some local state information regarding the requests that it

has made to its direct event services. This includes information pertaining to the

events that have been announced at a direct event service. This allows the gateway to

announce event types when necessary, before publishing events of that type. This is

necessary, as some event services don’t provide event announcements while others

do. This information also includes the subscription filters that were applied at each

direct event service and the source of the subscription request. When a publish request

is then received from an adapter, the gateway can determine the distribution list for

the event. The gateway must examine the event to determine which filter it applies to,

and thus determine which event service issued the original request. Subject based

filtering simplifies this event–filter-matching process.

 45

Design

5.3.3 Example

C subscribe

P

A G1 B CG2

G3

D EG4 subscribe

Direct filter

Indirect filter
Control Event
Source = “A”,
Distribution
list = “E”

Fig 5.4 FES Gateway protocol – opaque subscription request

Fig 5.4 shows how a subscription request is routed from a consumer at event service

A to event service E over three intermediate event services and three gateways. Note:

It is assumed that an intelligent routing algorithm is used (not flooding).

The consumer issues a subscription request to event service A through event service

A’s interface. The consumer then issues the same subscription request to event service

E from event service A by publishing a control event to event service A. When G1

receives the control event, it extracts the distribution list to determine that the request

should be applied to event service E. It therefore forwards the control event by

publishing it to event service B. Likewise Gateway G3 then receives this control event

and publishes it to event service D. Finally gateway G4 receives the control event,

extracts the filter and makes a subscription request to event service E after making a

note of the filter and the source of the request.

 46

Design

C

P

A G1 B CG2

G3

D EG4

publish

Control Event
Source = “E”,
Distribution
list = “A”

Fig 5.5 FES Gateway protocol – Publication request

If G4 should subsequently receive an event from event service E for that subscription,

it then encapsulates that event in a publication request with the distribution list

calculated as event service A. This request is sent by publishing it as a control event to

event service D. As shown in Fig. 5.5 the request follows the reverse path of the

original subscription request. G1 finally receives the request and applies it to event

service A, i.e. it extracts the event and publishes it to event service A. The consumer

receives the event since it has made a relevant subscription directly to event service A.

5.3.4 Transparent Requests

As shown above, publication requests are handled transparently by the FES. In

addition announcement, un-announcement, subscription, and un-subscription requests

may be injected into a FES system at a gateway. This kind of interaction is transparent

to existing event systems in the federation. Transparent requests have a number of

advantages. Existing event systems do not need to be touched. Events may be mapped

to event types that existing clients expect. It is also very suited to FES systems with

static routing and filtering requirements. This might be a common situation for FES

systems that contain real time event services. Figure 5.6 shows a transparent

subscription request that is equivalent to the opaque request shown in 5.4.

 47

Design

C subscribe

P

A G1 B CG2

G3

D EG4 subscribe

Control Event
Source = “A”,
Distribution
list = “E”

Fig 5.6 FES Gateway protocol – transparent subscription request

5.3.5 Opaque Requests

Many uses of the FES will require that event system clients are aware of the FES. For

example to propagate event service client announcements and subscriptions as they

occur to the FES, the client must inject the relevant control event into the event

service. This is necessary as event services do not generally expose these requests and

certainly do not support FES concepts such as distribution lists. Since the event

service adapter already knows how to map to and from the FES event model, its code

should be reused to perform the necessary conversion at the event service client. Fig

5.4 shows an example of an opaque subscription request.

5.3.6 Routing

This version of the FES does not define how routing is performed. Flooding could be

employed as a first step – i.e. control events are output on all lines except the line that

they arrived on. Quite elaborate routing mechanisms and optimisations could be

employed based on the requests and events received at a gateway. For a good

introduction to routing issues in computer networks see [13].

The user defines the topology of a FES system via the FES system configuration (see

below). It is up to the user to ensure that there are no loops in this topology, i.e. the

topology defines an acyclic graph.

The system developer must be aware of the fact that STEAM entities are mobile, are

frequently out of range and could interface to a fixed event service from many points.
 48

Design

For example, with the current design, it may not always be possible to route a

subscription request to a STEAM client. One way around this problem is to inject a

subscription request into a gateway located with each STEAM client. When the

mobile STEAM client/gateway comes within range of a fixed STEAM client/gateway,

events may be propagated as normal to the fixed network. The demo application as

described in the implementation chapter takes this approach.

5.4 FES adapters

The adapter pattern [12] is used to encapsulate heterogeneity among event services in

the FES. This includes encapsulating event service requests and the mapping of FES

requests to event service specific requests and vice-versa. This has a number of

advantages. It is easy to add support for new kinds of event services and new kinds of

event mapping functionality in the future without breaking existing systems. There is

a danger that a badly designed adapter interface may impose too much work on

implementers. Implementers may then decide not to use the FES and to roll their own

inter-working solutions. Therefore this design aims to minimize the complexity, work

and responsibility of an adapter.

5.4.1 Event Mapping

The FES design does not mandate how adapters perform event mapping. However the

mapping support provided by adapters may be classified as follows:

User-defined event mapping

With user defined event mapping the adapter allows the user (system developer or

administrator) to define how events are mapped from an event service event model to

the FES event model and vice-versa. The user could supply this information on an

event basis via configuration file(s). The adapter would then process this information

whenever an event of a certain type was received to map to the FES event model. The

user could also supply plug-in code to map events of a specific type. The adapter

would load this code to process certain events (as done in [11]). User-defined event

mapping can give the user complete control over the event mapping process.

Automatic event mapping

Here the adapter automatically processes and maps events it receives from its event

service to FES events. The FES event type readily facilitates automatic event mapping
 49

Design

since this type is a structured event that can be queried at run time for parameter,

attribute, and subject identifiers, types and values. This approach can work well for

the structured event type. However this cannot be used for un-typed event mapping

(e.g. CES, COSMIC), or where event services cannot support the size of the event to

be mapped. Automatic event mapping can cater for such structured event events types

where they are created dynamically at run time. Considering the number of event

services that may be involved, the rules for automatic event mapping must be simple

and well-understood otherwise subscribers will not know what kind of events to

expect.

Combined automatic and user-defined event mapping

The adapter can implement a combination of automatic and user-defined event

mapping. This is a flexible approach. It allows the adapter to automate as much of the

event mapping process as possible, with the user supplying the necessary mapping

information where required. It also allows the user to over-ride automatic event

mapping if necessary, for example where automatic event mapping would not

generate the ‘right’ event structure with respect to an existing application.

Control event mapping

It is up to adapters to decide how to represent control events on their event service.

The integrity of a control event must be maintained at all times so that requests may

be applied consistently at event services. Control event size can vary dynamically

since they may contain serialized FES events. Therefore depending on the maximum

event size in a FES system, event services with limited event size may not be suitable

as intermediate event services. It is the responsibility of the application developer to

ensure that application requests can propagate as control events across all intermediate

event services in a FES system.

 50

Design

5.5 Configuration

Configuration information is required to identify the event services instances, event

service types and gateways in a FES system. It specifies the event services which each

gateway bridges. Where user-defined mapping is used it specifies the mapping

between FES events and event service events. This information could be provided by

many means including a configuration file (using XML perhaps), command line

parameters, a user interface, or hard-wired into a gateway. A tool could be employed

to manage configuration information, especially for large FES systems or where a

large amount of event mapping is required. The information could be manually

deployed at each gateway. A future enhancement could provide for the distribution of

this information automatically to all gateways via the FES.

At a minimum a FES system requires the following configuration information:

Event Services - An event service is an instance of a particular event service type and

version. To distinguish between event service instances the user must provide a

unique event system instance identifier and event service type identifier. Each

instance may have a set of parameters that are required to connect to it and/or to

configure the connection. These parameters are event service type specific.

Gateways - A gateway bridges two or more event service instances. The user must

specify these instances by listing their unique event service identifiers. To distinguish

between gateways the user must provide a unique gateway identifier. Based on the

event service type the gateway can locate and load the relevant adapter. For example

the event service type could identify a particular component that implements the

adapter interface.

 51

Design

5.6 Scalability

The FES addresses scalability issues as follows:

• It is a federation of event services. There is no central point of control or

failure. There is no global state to manage.

• Distribution lists allow targeting of a subset of event services in a FES system

• Subscription filters across event services are supported. This reduces the

amount of events that potentially would have to cross the federation.

• A scalable event service such as SIENA may be used to create a large

geographical scale FES event system.

5.7 Request reliability and error handling

This version of the FES does not facilitate the return of request status information to

the caller. This is difficult to achieve for the following reasons: requests may

propagate across a wireless or a ad-hoc wireless network with little guarantee of a

return path; event services, many of which have best effort event delivery semantics

are used to propagate requests; events services within the federation may be down at

any time; a request may propagate successfully to many event services and not

successfully to other event services. The FES offers ‘at most once per event service’

delivery semantics, i.e. the request will be delivered to each event service in the

distribution list at most once.

At a minimum each gateway should log diagnostic information and error information

to help locate the source of an error.

 52

Design

5.8 Use Case – Traffic Monitoring System

5.8.1 Overview

A use case is presented here to illustrate and test the design of the FES. This use case

describes a traffic monitoring system, set in the not too distant future. This system

monitors traffic speeds at various locations in a city and logs the license number and

speed of cars that exceed speed limits. Offending drivers are automatically issued with

speeding fines. The system is outlined in Fig. 5.7.

Siena Server

Traffic MonitorVehicle

P

Traffic Control App

COSMIC
cosmic-i G1 STEAM

steam-i
STEAM
steam-j

G2

SIENA
siena-m

C

Ad hoc wireless
link

Fixed link

Traffic Monitor

Vehicle

Vehicle

Traffic Monitor

Vehicle is not within wireless range of any
traffic monitor

Fig 5.7 Traffic Monitoring System

 53

Design

The system assumes that all cars (due to regulations) are fitted with tamperproof

components that broadcast various events over an ad hoc wireless STEAM event

system. These events include current location, current speed, breaking status and so

on. The current speed of the car is published every second on the car’s onboard real

time network via a COSMIC event system. A “Speed” event is used to contain the

car’s current speed and its license number. A FES gateway is used to inter-work the

COSMIC and STEAM event services.

Fixed roadside traffic monitors located at or near speed limit signs subscribe for these

speed events and publish them on a wide area fixed SIENA event service. Each

monitor contains a FES gateway inter-working the STEAM and SIENA event

services. The subscription filter employed at the STEAM event service in each

monitor depends on the speed limit in the area. For example “subject = ‘Speed’ and

rate > 30” would apply in a 30mph area.

In the city traffic control office there exists a traffic control application. This

application allows the operator to set the speed limits for various areas in the city. The

roadside signs dynamically display the current speed limit. In addition, setting a speed

limit changes the corresponding subscription to the STEAM event service at the

roadside monitor.

The following notation will be used to identify event service requests and control

events.

 Meaning

s(f) Subscribe for events with filter f.

us(f) Un-subscribe for events with filter f

p(x) Publish event x

c(es,x,d) Control event encapsulating event service request x to be applied at event

service instance(s) specified in distribution list d. Request originated from

event service es. For example: c(k,s(f),{i,j}) = subscribe for events with

filter f at event services i and j. Request originated from event service k.

 54

Design

5.8.2 System configuration

There exists in each car a COSMIC producer producing “Speed” events on the

COSMIC event service. The traffic control application in the city traffic control

office subscribes to SIENA for all “Speed” events on start-up.

A FES event is required to represent the COSMIC speed event. The FES “Speed”

event is quite simple, consisting of a “license_no” parameter of type string and a

“rate” parameter of type double. This is a simple event type and no user-defined

mapping information is required for the STEAM and SIENA adapters to handle

events of this type. The event will be delivered on a best effort basis over STEAM and

SIENA. The event will be propagated over STEAM with the default proximity of

absolute circular proximity (centred at the car) of maximum wireless range.

The COSMIC adapter does require user-defined mapping information. For this

example: COSMIC event id 12345 represents a “Speed” event. The license number is

contained in the first 7 data bytes of this event and the speed of the car is contained in

the last data byte. Therefore the following parameter mapping information could exist

for COSMIC to FES conversion: {12345 subject ”Speed”, 0..6 parm. 0

“license_no” string,7 parm 1 “rate” double}. This mapping information

could be statically supplied by the car control system.

The STEAM/COSMIC gateway in each car is configured with a FES subscription via

the following control event: c(“steam-i”, s(“subject = Speed”), “cosmic-i”). This

subscription is static – it is injected into the gateway by the car’s control system. On

starting the gateway thus subscribes to the COSMIC event service cosmic-i for all

speed events. The STEAM event service steam-i is the source of the subscription.

The event service identifiers in each car need not be unique in this example because

the only output from the car that matters is the “Speed” event. In other use cases a

way of ensuring uniqueness for car event service identifiers may be required (it may

not be feasible to statically configure identifiers for each car) – perhaps by using the

car license number in event service identifiers. The SIENA event service identifier,

siena-m, is unique as there is only one instance in this example. The STEAM event

 55

Design

service identifier must be unique at each gateway – each STEAM access point is

treated as a separate event service. Identifiers could be statically configured.

5.8.3 Setting a speed limit

The Traffic Monitor gateways are dynamically configured with subscription requests

that are sent from the traffic control application over the SIENA event service as

SIENA control events.

When the controller changes a speed limit in an area, an unsubscribe SIENA control

event c(“siena-m”, us(“subject = Speed and rate > s1”), i) followed by a subscribe

SIENA control event c(“siena-m”, s(“subject = Speed and rate > s2”, i) are injected

into the SIENA event service by the traffic control application, where s1 represents

the old speed limit, s2 represents the new speed limit and i is the identifier of the

STEAM event service where the subscription should be made.

If the operator wished to set the speed limits of a set of traffic monitors then a

wildcard or a list of event STEAM event services could be specified in the control

event distribution list.

5.8.4 Catching offending drivers

When a car’s speed is published on the COSMIC event service the COSMIC adapter

receives the event and maps it to a FES event, p(x), via the supplied “Speed” mapping

information. This event is forwarded as a FES publish control event to the gateway in

the car. This gateway announces and publishes the event to the STEAM event service

via the STEAM adapter. The STEAM adapter automatically maps the announcement

and publication to STEAM specific requests.

If the car is within range of any traffic monitor, then the STEAM event service applies

its proximity and content filtering. If the car is travelling over the designed speed limit

then the STEAM adapter in the traffic monitor gateway receives the event. It then

maps this event into a FES publish control event, and forwards it to the gateway. The

gateway announces and publishes the event on the SIENA event service via the

SIENA adapter.

 56

Design

The traffic control app then receives the “Speed” event and logs the offending driver's

details to a file.

5.8.5 Synopsis

This use case demonstrates the following features of the FES design:

• User-defined event parameter mapping to map restricted COSMIC events to

FES events.

• Automatic event parameter mapping used elsewhere in the system.

• Event Service Transparency. All event services remain unmodified and

unaware of the federation. The traffic control application is FES aware as it

needs to inject control events into the federation each time a subscription

changes. There is a trade-off here: filtering events closer to the source and

some loss of transparency vs. filtering events at destination and complete

transparency.

• Dynamic subscription routing across an event service. Subscriptions are routed

by the FES to the appropriate event services (SIENA to STEAM).

• Event routing across a real time event service and a mobile location aware

event service to a fixed event service. QoS features are not covered here and

all work is best effort. Proximities are defaulted to a max. circular wireless

range.

The implementation of the FES includes a demonstration/test application that

implements this use case. This is described in the next chapter.

 57

Design

5.9 Gateway Interface

The section defines the interface of a FES gateway. A simple CORBA IDL like

syntax is used. The forward method provides a more precise statement of the

gateway protocol as defined in the FES gateways section.

5.9.1 start

void start(
[in] string gatewayId,
[in] string configInfo

)

Loads the adapters as specified in the configuration information. Connect

these adapters to their event services by calling their connect methods.

Parameters

 gatewayId Gateway identifier.

configInfo Configuration information. At a minimum the

configuration information should specify the

adapters that must be loaded, specify their

identifiers and specify the configuration

information for those adapters. It is up to the

implementation to determine what other

configuration information is required and how it

is accessed. For example this parameter may

contain a reference to an XML file that contains

configuration information.

Throws

 Exception if an error occurs.

5.9.2 stop

void stop()

 58

Design

Disconnect all adapters from their event services via their disconnect methods.

Unload all adapters.

Throws

 Exception if an error occurs.

5.9.3 forward

void forward(ControlEvent e, string adapterId)

If control event e contains a publication request and the distribution list is

empty then determine the distribution list – it is the set of original subscribing

event services. Update e with this distribution list.

For all the adapters in this gateway (except the adapter from which this source

event came (i.e. adapterId)), check control event e’s distribution list to see if

the request is applicable to the adapter’s event service.

If the request is applicable to the adapter’s event service

Then

If this is an announcement request and the event type has not been

announced before at this event service

Then

Announce the event via the adapter announce method. Make a

note of the fact that the event has been announced at this event

service by the source event service.

End If

If this is a un-announcement request and the event type has been

announced at this event service before by the source event service

Then

Un-announce the event via the adapter un-announce method.

Remove the announcement note.

End If

 59

Design

If this is a subscription request

Then

Make a note of the subscription filter and request source so that

received events may be routed back to the correct subscribing

event services. Note: it is straightforward to map received

events to filters for simple subject filtering. More complex

filtering may be more difficult to handle.

Make a subscription request via the adapter subscribe method.

End If

If this is an un-subscription request

Then

Make a un-subscription request via the adapter subscribe

method. Remove the subscription node.

End If

If this is a publish request

Then

If this event type has not been announced before at this event

service then announce the event via the adapter unannounce

method.

 Publish the event via the adapter publish method.

End If

End If

If the event is applicable to other event services then forward the control event

by passing it to the adapter’s publish method (flooding used).

Parameters

 e A control event.

 adapterId Identifier of directly connected adapter .

 60

Design

Throws

 Exception if an error occurs.

5.10 Adapter Interface

To support request mapping adapters must implement the following interface:

5.10.1 connect

void connect(
[in] Gateway g,
[in] string eventServiceId,
[in] string adapterId,
[in] string connectionParms

)

Connect to the event service using the supplied connection parameters

(connectionParms). This is a logical connection request only, required for the

adapter to set up the necessary resources to accept further requests for the

event service. Event services may not have the concept of a connection.

If the event service requires announcements then announce that this adapter

intends to publish control events to the event service. Subscribe to event

service for control events where the source of the event is not this adapter

(remember this adapter is also publishing events to the event service).

All received control events should be passed to the gateway via the gateway

forward function for processing. All other events received should be

converted to publication control events and forwarded to the gateway.

Parameters

 g This adapter’s gateway.

 eventServiceId The identifier of the event service that

 this adapter is connect to.

 61

Design

 adapterId The identifier of this adapter.

 connectionParams Opaque string, containing adapter and

event service specific connection and

configuration information.

Throws

 Exception if an error occurs.

5.10.2 disconnect

void disconnect()

Disconnect from the event service. Tear down any resources if necessary (e.g.

unannounce, unsubscribe).

Throws

 Exception if an error occurs.

5.10.3 getId

string getId ()

Returns this adapters identifier.

5.10.4 getEsId

string getEsId ()

Returns this adapters event service identifier.

 62

5.10.5 announce

void announce([in] Event e)

Maps event to the event service event model. Announce event. If the event

service does not support announcements then do nothing.

Parameters

 e The event to announce.

Design

Throws

 Exception if an error occurs.

5.10.6 unannounce

void unannounce([in] Event e)

Maps event to the event service event model. Un-announce event. If the event

service does not support announcements then do nothing.

Parameters

 e The event to un-announce.

Throws

 Exception if an error occurs.

5.10.7 publish

void publish(Event e)

Maps event to the event service event model. Publish event.

Parameters

 e The event to publish.

Throws

 Exception if an error occurs.

5.10.8 subscribe

void subscribe([in] string filter)

Map filter to event service filtering language. The mapped filter must specify

the same set or a superset of the events as specified in the original filter.

Make a subscription to the event service with the mapped filter.

If the event service does not support subscriptions then do nothing.

Parameters

 filter Filter in FES filtering language.

 63

Design

Throws

 Exception if an error occurs.

5.10.9 unsubscribe

void unsubscribe([in] string filter)

Map filter to event service filtering language. The mapped filter must specify

the same set or a superset of the events as specified in the original filter.

Make a un-subscription to the event service with the mapped filter.

If the event service does not support subscriptions then do nothing.

Parameters

 filter Filter in FES filtering language.

Throws

 Exception if an error occurs.

 64

Implementation

Chapter 6. Implementation

This chapter describes an implementation of the FES. The aim of this implementation

is to show that the FES design is coherent and viable. The implementation includes a

generic gateway component and an adapter for the SIENA, STEAM and CNS event

services. An implementation of the use case presented in the previous chapter,

produced as proof of concept, is also described here.

6.1 Possible approaches

Two approaches were considered for implementation of the FES:

6.1.1 Compiled Approach

With this approach, a configuration file that describes event, event mappings, event

services and gateways is input into a tool that generates FES systems. This tool

produces the necessary FES system code including gateways and adapters. It should

be possible to plug in support for different types of event services to the tool without

affecting the existing tool code. The configuration file could be created manually or

via some other tool. Therefore implementing the FES involves implementing this tool

and the necessary tool plug-ins for participating event services.

This approach will produce efficient run-time translation and mapping code, as there

is no need to look up and interpret this information at run time. This approach can also

produce closer mappings to event service APIs and interface languages. However a

change in the configuration will require a re-build of the system or parts of the system

and a reinstallation.

6.1.2 Interpreted Approach

This approach requires the development of a generic gateway component and an

adapter for each event service. Gateways and adapters read event mapping and

configuration information on startup and apply this information when translating and

mapping data. Therefore implementing the FES involves implementing a generic

gateway component and an adapter for each participating event services.

 65

Implementation

This method produces slower run-time code than the compiled approach as

configuration information is accessed and interpreted at run time for each event and

request. However a change in the configuration will only require a restart of the

relevant FES components.

It was decided to implement the interpreted approach. This method is easier to

develop, test and debug. A future enhancement would provide the compiled approach

as an optimization enhancement.

6.2 Overview

+connect()
+disconnect()
+announce()
+unannounce()
+subscribe()
+unsubscribe()
+publish()
+getId()
+getEsId()

Adapter

+start()
+stop()
+forward()
+getId()

Gateway

CnsAdapter SteamAdapter SienaAdapter

AdapterImpl

* 1

GatewayImpl

+subject
+parms
+attrs

Event

ControlEvent

Exception

DiagDistList

FesOs

Value

Fig 6.1 FES Implementation – UML Class Diagram

To test the FES design and the traffic monitoring use case sufficiently, the STEAM,

SIENA and CNS event services were chosen as FES participants. CNS was used

instead of COSMIC as the COSMIC event service was not available at

implementation time. CNS provides a standard event service and QoS capabilities. As

shown in the Issues chapter, these event services have sufficiently different event
 66

Implementation

models, event services, feature sets and implementations to test the FES design

sufficiently. The development platform was Visual C++ 6.0 on Windows 2000

Professional [26]. The Win32 TAO CNS implementation was used [23].

Fig 6.1 shows a UML [24] class diagram of the implementation. One aim of the

implementation was to keep it as portable as possible. To this end standard C++ [25]

was used as the implementation language, with the class FesOs used to wrap

operating system specific details. A CNS adapter, a SIENA adapter and a STEAM

adapter were implemented via the classes CnsAdapter, SienaAdapter and

SteamAdapter respectively. AdapterImpl is a base class that provides common

adapter functionality such as consistent diagnostic logging and error handling.

The Event class encapsulates an event in the implementation. It contains the event

subject (standard C++ string), a parameter map and an attribute map. The maps are

standard C++ library maps that map string identifiers to a Value type. Value is

a union type that can contain a string, a long, a double or an Event (events

may contain other events). It is similar to the CORBA type any [14]. This class also

contains methods to serialise and un-serialise events to and from a string. These

methods are used to package an Event into an event service control event.

ControlEvent inherits from Event and provides some helper functions for

setting and getting control event parameters.

DistList encapsulates distribution list processing. FesOs wraps operating specific

details such as loading dynamic link libraries , thread management, and thread critical

sections. Diag provides diagnostic logging functionality. Finally Exception is a

simple exception class for containing FES exception information.

The FES gateway is realised as a Win32 [26] executable that accepts configuration

information via command line parameters. This information specifies the gateway

identifier, the adapters to load, the adapter identifiers and the configuration

information for each adapter. In addition, test GPS location information may be

specified on the command line. This information is passed to the STEAM location

service. For example the following command line in Fig 6.2 creates a gateway with
 67

Implementation

identifier “G3” at GPS position (0.032,0.004). The gateway has two adapters: a

SIENA adapter with identifier “Siena-2” and a STEAM adapter with identifier

“Steam-3”. “localhost 9001 senp://localhost:6000” is SIENA

specific configuration information. “20 20 0” is STEAM specific configuration

information.

Gateway G3 "0.032 0.004" "Siena Siena-2

localhost 9001 senp://localhost:6000 Steam

Steam-3 20 20 0"

Fig 6.2 Gateway Configuration

Each adapter implementation is realised as a Win32 dynamic link library that is

loaded at run time by the gateway. Control events may also be passed to the gateway

via command line user input. Fig 6.3 shows how these components may be arranged

to address the traffic monitoring use case.

6.3 FES mapping

The use case event type is quite simple and all of the event services support structured

events. Therefore the adapters need only implement automatic event mapping for

proof of concept.

6.3.1 Basic Type Mapping

The following table specifies the mapping between FES basic event types and event

service basic types.

 STEAM SIENA (C++ API) CNS

string S_STR std::string string

long S_INT Int long

double S_DBL Double double

Table 6.2 – Event service basic type mappings

 68

Implementation

6.3.2 STEAM to FES Mapping

The range of the STEAM proximity discovery service, the default proximity type and

the default proximity range may be passed to the STEAM adapter via its connect

method. For testing, test GPS locations may also be passed to the STEAM adapter.

STEAM provides a location service that may be configured with test data.

The subject filtering of STEAM easily maps to the FES filtering requirement.

The STEAM adapter publishes and receives control events. To distinguish control

events that the adapter has produced from other control events, the adapter must put

its identifier in the content of the event. Unfortunately, because content filtering is

applied at the consumer in STEAM, this means that the STEAM adapter has to filter

all of the control events that it is producing.

The STEAM structured event allows querying at run time for parameter type and

value information. It is easy to therefore map between FES events and STEAM events

at run time. STEAM proximity information is mapped to the FES “Proximity”

attribute as described in the design chapter. The defaults passed to the connect

method are used if this attribute is not specified.

STEAM separates event types, event data and proximity information into separated

classes. Producers and consumers also use separate classes to access an event. This

makes mapping to and from FES events more awkward than it could be.

STEAM does not support variable length string parameters. STEAM event type must

specify the exact type and number of parameters. However control event data can

vary in length. Therefore a STEAM control event consists of a fixed maximum

number of string parameters. The control event data is serialised into the required

number of parameters with the remaining parameters set to empty strings.

 69

Implementation

6.3.3 CNS to FES Mapping

The CNS adapter does not process any configuration information. It connects to a

‘hard coded’ event channel name. A basic improvement on this implementation would

allow different event channels to be specified in the connection parameters.

CNS supports a powerful filtering language (trader constraint language) that allows

filtering on any part of a CNS structured event. The FES event subject is mapped to

the event_name field of a CNS structured event header.

The CNS structured event allows querying at run time for parameter and attribute type

and value information. It is easy to therefore map between FES events and CNS

structured events at run time. The adapter maps the priority attribute to the FES

“Priority” attribute if present. It defaults it to 0 if not present (as described in the

design chapter).

6.3.4 SIENA to FES Mapping

The SIENA adapter requires connection parameters that specify the SIENA server

host and port plus connection parameters that specify the receiver host and port

(required to receive events from SIENA). These are passed to the adapter’s connect

method.

The SIENA C++ API does not support the event pull propagation model. Therefore

the SIENA adapter manages a separate thread to pull events from SIENA and push

these events to the gateway.

The SIENA structured event maps well to the FES event. However SIENA has no

concept of an event subject. Therefore for automatic event mapping the SIENA

parameter “FES_Subject” is used by the adapter implementation to specify the subject

of the event. User-defined event mapping could allow other SIENA event parameters

to be specified. SIENA filtering supports filtering on any parameter in the event.

 70

Implementation

The SIENA C++ API uses the ‘-‘ character as a delimiter when marshalling event

parameter identifiers. Therefore this character cannot be used for event parameter

identifiers in SIENA. This is probably a flaw with the SIENA C++ implementation.

However this is the sort of real-world issue that a FES system has to deal with.

Possible solutions include: (1) Do not use ‘-‘ in event parameter/attribute names when

a SIENA system is participating in the FES. (2) Use the Java API. (3) A better

solution might be to allow user configuration to specific a substitute character. This

implementation uses option (1).

6.3.5 Other Issues

This implementation does not have to deal with event service language heterogeneity

or event service platform heterogeneity since interfaces to the chosen event services

are available for the same language (C++) and the same platform (Win32). A more

comprehensive solution would employ CORBA interfaces to encapsulate this

heterogeneity.

6.4 Test application

A test/demo application was developed to realise the traffic monitoring use case for

proof of concept. Fig 6.3 outlines the components involved in this application. There

are 8 processes involved: 3 gateways, a CNS publisher, a SIENA subscriber, a SIENA

server, a CNS server and a CORBA name server [14]. The STEAM event service is

collocated with the relevant gateways. 6 adapters are required – 2 per gateway. For

the demo all processes were run on the same physical Win32 based machine.

Gateway’s G2 and G3 are fixed traffic monitors that inter-work SIENA and STEAM

event services. In the ‘vehicle’ is a ‘mobile’ gateway G1 that inter-works CNS and

STEAM event services. It is passed simulated GPS locations to ‘move’ it between

traffic monitors. CNS PUB is a CNS publisher in the ‘vehicle’ that publishes “Speed”

events every second to the CNS event service. This rate varies between 20 and 90

mph. SIENA SUB is a SIENA subscriber, subscribing for “Speed” events where the

speed is > 40 mph.

 71

Implementation

A static subscription request is injected into G1 by the user to specify a filter of

“Speed”, with a distribution list of “Cns” and with the source specified as “Siena”.

The gateway G1 then receives “Speed” control events from the CNS event service

every second via its CNS adapter. The gateway determines the distribution list to be

“Siena”. These control events are then mapped to and published to the STEAM event

service every second via the gateway’s STEAM adapter. Whenever a traffic monitor

is within range the gateway in the traffic monitor receives these events via its STEAM

adapter. “Speed” events are extracted from the control events. These are then mapped

to and propagated to the SIENA event service via the SIENA adapter. If the rate is >

40 mph then the subscriber SIENA SUB receives the event.

Siena Server

Traffic Monitor

Traffic Monitoring App

Traffic Monitor

Vehicle

fes_steam.dll

fes_cns.dll

gateway G1

Adapter

Adapter

CNS
CORBA
Naming
Service

Siena

fes_steam.dll

fes_siena.dll

gateway G2

Adapter

Adapter

fes_steam.dll

fes_siena.dll

gateway G3

Adapter

Adapter

CNS PUB

SIENA SUB

Ad-hoc wireless link

Fixed Internet links

Fig 6.3 FES Implementation – Component Diagram – Traffic Monitoring Use Case

 72

Implementation

Each gateway, the CNS publisher and the SIENA subscriber log diagnostic

information to separate log files (via the Diag class). This information may be used

to verify that events and being propagated and mapped correctly. It may also be used

for debugging purposes.

A log viewer application was written in Java, for viewing this information

graphically. This is useful when multiple concurrent entities are involved and when

entities have spatial relationships. This reads in the diagnostic information from the

log files and sorts this information based on time (this is straightforward since the

demo runs on a single machine). The user may assign an image to each entity in the

system. The user may then step forward and back through the log information and the

viewer displays the relevant information on screen. Fig 6.4 shows a screenshot of this

application.

Fig 6.4 FES Implementation – FES Viewer application screenshot

 73

Evaluation

Chapter 7. Evaluation

This chapter evaluates the FES design and implementation to determine the benefits

of the solution for addressing the event service inter-working problem. The chapter

also discusses the viability of federation in general for meeting certain kinds of system

event requirements.

7.1 FES benefits

7.1.1 General solution

For the FES to truly claim that it addresses event service heterogeneity, it must

support a wide variety of event models.

The FES can easily work with a mediator event model. An adapter may be connected

to any mediator of a functionally equivalent mediator event model such as SIENA or

an adapter may be connected to each mediator in a non-functionally equivalent

mediator event model such as CNS. Adapters may be collocated with or separated

from event service middleware. The FES can work with an implicit event model such

as STEAM, by collocating an adapter and gateway with a STEAM client and by

issuing subject based filtering requests to STEAM.

The FES requires the push event model. An adapter can easily convert a pull

consumer event model to a push consumer as demonstrated by the SIENA adapter in

the previous chapter. Other event service propagation models requirements could be

handled in a similar fashion.

For parameter mapping requirements the FES solution is more than adequate.

Parameters are just data that may be easily transformed and translated between event

services by adapters. The FES works best with structured event types. This facilitates

automatic event mapping. Un-typed events and typed events may also be catered for

but this requires extra effort on behalf of the adapter implementer. The FES does not

support parameter mapping for event types that are created dynamically at run time

and whose parameters cannot be automatically mapped.

 74

Evaluation

The FES supports subject based filtering. This is adequate for SIENA, STEAM and

CNS. When direct and indirect filters do not match events may unnecessarily cross

the system only to be filtered out at the direct event service. Some applications may

not be able to afford this overhead. Therefore a stronger filtering language would

benefit a general FES solution (e.g. the CNS trader constraint language). Another

improvement would allow the support of multiple concurrent filtering languages. This

would allow adapters to chose and apply the most descriptive filter at event services.

The FES approach works well for handling attribute requirements that can be

encapsulated in events and processed on a hop-by-hop basis. For example, in the FES,

the proximity semantics of STEAM can be encapsulated in an event attribute and

applied on a hop-by-hop basis. All that is required is a location service at each adapter

(such as STEAM’s location service). Therefore events can be easily dropped if they

exceed their proximity. The federation viability section below describes discusses this

aspect further.

7.1.2 Low-risk solution

To allow an event service to participate in a FES system, the developer need only

develop and test an event service adapter. The developer is exposed to the event

service API only. There is no need to make any modifications to event services. Event

service clients need only be modified when opaque requests are required. This is a

decoupled development effort. The intellectual complexity of the system is reduced.

The developer need not be an expert in event services and event service inter-

working. Therefore event services may be adapted and tested quickly and cheaply.

7.1.3 Straightforward solution

The FES design is a straightforward solution. With a flooding and subject based

filtering implementation, the gateway is quite simple to implement. There is very little

burden placed on adapter implementers. The adapter interface is intended to be as

complete and minimal as possible. By completeness, the interface aims to support a

wide range of useful event service functionality. The interface is minimal in that there

are few methods to implement, understand and there is no overlapping functionality.

 75

Evaluation

These factors allow implementers to develop and test FES based solutions quickly and

cheaply.

7.1.4 Flexible solution

The flexibility of the FES design gives developers a lot of choices when employing it

to address event service inter-working problems. Since event mapping is hidden

behind the adapter interface, system developers can employ whatever kind of

mapping solution necessary to meet requirements. This could range from a simple

adapter that is hard coded to handle a single event type to a combined user-defined

and automatic event mapping solution.

The adapter approach allows systems to be composed dynamically and transparently

at run time. This allows event services to be substituted for other event services, if

necessary, without breaking the existing system. Event services could be upgraded to

newer versions without breaking the existing system. For example, in the traffic

monitoring use case, the SIENA event service could be replaced with a more reliable

CNS event service if necessary. Only the traffic monitoring application would need to

be modified – the rest of the system remains unchanged.

Finally the FES implementation may take the ‘interpreted’ or ‘compiled’ approach as

explained in the implementation chapter. This allows better performing ‘compiled’

gateways to be substituted for ‘interpreted’ gateways if necessary.

7.2 Federation viability

This section discusses the viability of federation in general for meeting certain system

event requirements.

Heterogeneous event service federation allows an event system to be dynamically

composed of different kinds of event services. The event services may be chosen and

connected so that they adequately address a particular event system requirement.

Services may be selected in isolation, with the knowledge that the choice will not

affect the rest of the federation. This transparency gives the system developer good

scope when addressing requirements. For example, the FES test application offers a

 76

Evaluation

realistic solution for inter-working ad hoc mobile event services such as STEAM with

fixed event services such as SIENA and/or CNS. The choice of fixed network event

service may be based on reliability (e.g. use CNS) or scalability requirements (e.g. use

SIENA) and this decision is independent of the mobile event service choice.

Federation may also meet requirements through event service synergy. For example,

STEAM/CNS inter-working provides a mechanism to extend the proximity

capabilities of STEAM across a fixed event service and also a mechanism of

providing fixed event services with support for mobile clients. SIENA could be added

to this mix, to extend the scale of the system geographically.

Federation allows systems to grow gracefully. So long as a requirement can be met

through federation, then new features may be quickly, cheaply and transparently

added to a system without modifying the existing system.

End-to-end event context integrity requirements cannot be facilitated in a general

federated system because event services and the FES infrastructure (gateways,

adapters) do not provide the same capabilities. However in some situations end-to-end

event context integrity may be maintained. For example in Fig 7.1(a), the priority

attribute of an event may be preserved across a FES system composed of a CNS event

service and a JMS event service. Here this is only one input event service and one

output event service in each direction. Events are delivered in priority order from one

event service to the FES. The FES processes these events in the same order and

forwards them to the other event service in the same order with the priority attribute

mapped to the same relative priority. Such bilateral inter-working of similar event

services might be a common usage of the FES (e.g. CNS/JMS). Fig. 7.1(b) is a logical

extension of (a). Gateways could be extended to maintain event context integrity

between event services of similar capabilities for common event attributes.

 77

Evaluation

CNS G JMS CNS
1 G JMS G CNS

2

(a) (b)

Fig 7.1 Addressing end-to-end event context issues

As described in the overview chapter, federation can meet scalability, load-balancing,

fault tolerance and performance requirements. This might be the compelling reason to

choose a federated solution, as these requirements may be difficult to meet using other

methods, especially in very large systems.

“Typically, this situation arises in very large systems in which there are

simply too many clients and objects for a single server to handle. In these

situations, you have no choice except to distribute the processing load over a

number of federated servers” [14, pp1013].

7.3 Federation drawbacks

Heterogeneous event service federation cannot generally provide end-to-end event

context support. The federation is only as strong as its weakest link. However, in

some common situations end-to-end event context may be maintained as discussed in

the viability section above.

Heterogeneous multilateral federation imposes a two-step translation process for event

service inter-working – e.g. translating to the FES event model and translating from

the FES event model. This may introduce a performance overhead that some inter-

working requirements cannot afford.

As explained in section 5.7, it is difficult to provide a reliable request-response

mechanism in a general federated system. Therefore subscribers can never be sure of

the status of their subscription requests. Using an additional communication

 78

Evaluation

mechanism is probably not feasible since event services exist to solve deficiencies in

these other mechanisms.

Regarding event service transparency, the only time the FES solution needs to

impinge on an existing event system is to discover subscription and un-subscriptions

requests at run time (see section 5.3.5). Therefore the simple requirement that event

services should expose these requests at run time would provide complete

transparency to a federated solution such as the FES.

Lack of security mechanisms is a major drawback of a general federated solution. It

would not be prudent to expose an event service in a federated system outside an

organisation firewall.

The CNS specification [8, ppC-3] identifies unique message identification as an issue

in event service federation. It is not clear what this means. Events could be qualified

by using the identifier of their source event service. In addition to security, transaction

support is also identified as complex issue.

Note that a conscious decision was made to not address the Notification Service

RFP requirement related to Federated Channels. Essentially, satisfaction of

that requirement encompasses the specification of interfaces that support

creation and management of networks of connected notification channels.

During the authors’ discussion of that topic, we determined that it raises many

complex issues related to transactions, security, and unique message

identification.

7.4 Comments on other inter-working approaches

7.4.1 Inter-working via extension

Inter-working via extension offers the possibility of one step translation, which will

result in faster and more accurate translation. Because a new event service is being

created, it is possible to provide all the features of the old event services. As there is

only one event service, end-to-end event context integrity can be maintained.

 79

Evaluation

The development effort for this approach is much more complex, time consuming and

costly compared to the FES adapter approach, as the developer is exposed to the entire

code base of the old event services and requires intimate knowledge of the

participating event services and event service inter-working. Such a solution is also

much more difficult to test, since black box and white box testing of the new event

service is required. The resulting solution may be overkill for many requirements. It

may be difficult to implement, use, understand, maintain and extend. Multi-lateral

event service inter-working is difficult with this approach. This kind of development

comes with a high risk factor.

7.4.2 Transport inter-working

Transport inter-working is a subset of the FES solution, providing event service

transparent event mapping and transport. The FES solution shows how transport inter-

working may be extended further to provide request mapping support, event context

support and federation support.

7.5 Summary

The FES approach is an adequate and cost effective solution for many heterogeneous

event service inter-working requirements.

Generally, heterogeneous event service federation, because of the flexibility and

synergy gained through event service composition, can address certain system event

requirements more easily and cheaply than bespoke solutions. However a general

federated solution is only as strong as its weakest link. Therefore end-to-end event

context integrity is impossible to maintain in a general federation.

It is very likely due to legacy issues, new technologies and new platforms that there

will always be different kinds of event services with different features that may

require inter-working. It is unlikely that a ‘one-hat fits all’ event service will ever

emerge. Therefore an approach like the FES is vital to provide a model to interconnect

these event services (derived from a discussion on internetworking in [13]).

 80

Conclusion

Chapter 8. Conclusion

This chapter describes the achievements and contributions of this dissertation. Areas

for future work are also outlined.

8.1 Achievements

The main aim of this project was to determine whether a standard mechanism for

federating heterogeneous event services is both a valuable and realistic solution to the

event service inter-working problem.

There is very little prior work regarding or defining event service federation and

especially heterogeneous federation. Therefore the first achievement of this project

was to determine a realistic, logical set of requirements for event service federation,

based on general concepts of service federation. These requirements are outlined in

the overview chapter.

Another achievement of this project was to discover and document many event

service inter-working and federation issues. These issues are listed in the issues

chapter.

The main achievement of this project was the design and implementation of a

federation system called the “Federated Event Service”. The design and

implementation was tested for proof of concept, by implementing a realistic traffic

monitoring use case that demonstrates the inter-working and federation of three

disparate event services: the CORBA Notification Service, the STEAM event service

and the SIENA event service.

The final achievement of this project was an evaluation of the federation design and

implementation to determine its benefits. In addition the viability of federation as an

alternative mechanism for building and extending event systems was examined. The

conclusion from the evaluation is that the FES approach is an adequate and cost

effective solution for many heterogeneous event service inter-working requirements

 81

Conclusion

and that federation is viable alternative to bespoke solutions for certain system event

requirements.

8.2 Future work

Some possible directions for future work are listed here.

8.2.1 Tunnelling

If the source and destination event services are of the same type then the FES may be

able to perform a tunnelling operation. Event service specific requests and events are

wrapped into opaque packets by adapters and are transported by the FES between

event services of the same type. Only the source and destination event service

adapters know how to interpret the packets. There is no need to translate the request

and events into the FES event model. Therefore much of the functionality of the event

service may be preserved. Furthermore this method is more efficient as the data does

not have to be translated as it crosses intermediate event services. Tunnelling could

also be used as a short cut between intermediate event services of the same type.

8.2.2 End to end event context support

The FES cannot provide end-to-end event context support when intermediate event

services do not support the necessary capabilities. FES gateways may also hinder end-

to-end event context support. The current FES gateway implementation forwards

events between event services without attempting to preserve the context of those

events requests. FES gateways could be upgraded to recognise and maintain common,

important event attribute contexts such as event reliability and priority.

8.2.3 Naming

Names are currently manually assigned within the FES. Ideally these identifiers could

be determined via some automated mechanism. Perhaps something similar to DHCP

[28] would work.

8.2.4 Configuration

Future versions of the FES could employ tools to create and maintain FES systems

and configurations. A configuration protocol to route information to remote gateways

would be quite valuable for large FES systems.
 82

Conclusion

8.2.5 Monitoring

Diagnostic support is required to monitor a FES system. ICMP [29] provides this kind

of support in IP networks. Maybe something similar could be applied to the FES

through control events.

8.2.6 Routing

The FES could employ many IP like routing protocols to address its routing

shortcomings. Automatic network configuration via spanning trees could be employed

to prevent loops in the topology. A mobile IP like solution could be employed for

addressing fixed to mobile event service inter-working issues. For example, use a

mobile IP like solution to route requests through the nearest fixed gateway to a mobile

client. The SIENA paper [6] discusses routing with respect to large-scale event server

networks. Perhaps some of these ideas could be employed in the FES.

8.2.7 Event Flow Control

The FES could allow an administrator to define the allowable flow of events in a FES

system. This is a desirable feature as it gives the administrator control over the inputs

to and the outputs from event services in much the same way as a firewall is used to

control Internet traffic. Administrators can also prevent event services from being

swamped with requests and events. This feature is essential for bounded event

services such as real time event services to ensure they don’t get swamped with events

or requests.

8.2.8 Discovery Service

A discovery service could leverage the capabilities of a federated event service by

facilitating automatic load balancing and fault tolerance. Such information that could

be discovered and used include event service capabilities, event service load and event

service usage cost.

8.2.9 Event type repository

An event type repository could be used to facilitate automatic event mapping. It could

also be used to perform type checking.

 83

Conclusion

8.2.10 Security

Security has not been covered by this dissertation. For a very good introduction to

network security, please see [30]. For an overview of security issues as they pertain to

event services, please refer to [31].

 84

References

[1] R. Meier, V. Cahill, "Taxonomy of Distributed Event-Based Programming

Systems", in Proceedings of the International Workshop on Distributed

Event-Based Systems (ICDCS/DEBS'02), Vienna, Austria, 2002, pp. 585-

588.

[2] J. Kaiser, C. Brudna, "A Publisher/Subscriber Architecture Supporting

Interoperability of CAN-Bus and the Internet", Proceedings of the 4th IEEE

International Workshop on Factory Communication Systems (WFCS'2002),

Västeras, Sweden, 2002.

[3] J. Kaiser, C. Brudna, C. Mitidieri, “A Real-Time Event Channel Model for

the CAN-Bus”, Dept. of Computer Structures, University of Ulm, Germany,

2003.

[4] J. Kaiser, M. Mock, "Implementing the Real-Time Publisher/Subscriber

Model on the Controller Area Network (CAN)", 2nd Int'l Symposium on

Object-Oriented Distributed Real-Time Computing Systems, San Malo,

May 1999.

[5] R. Meier and V. Cahill, "STEAM: Event-Based Middleware for Wireless

Ad Hoc Networks", in Proceedings of the International Workshop on

Distributed Event-Based Systems (ICDCS/DEBS'02), Vienna, Austria,

2002, pp. 639-644.

[6] A. Carzaniga, D. Rosenblum, A. Wolf, “Design of a scalable event

notification service: Interface and architecture”, Technical Report CU-CS-

863-98, University of Colorado, USA, August 1998.

[7] OMG, “CORBA Event Service Specification, version 1.1”, March 2001.

[8] OMG, “CORBA Notification Service Specification, version 1.0.1”, August

2002.

[9] Sun Microsystems, “Java Message Service, version 1.1”, April 12th 2002.

[10] Steve Trythall, "JMS and CORBA Notification Interworking",

http://www.onjava.com/pub/a/onjava/2001/12/12/jms_not.html, December

2001.

[11] M. Aleksy, M. Schader, A. Schnell, "Design and Implementation of a

 85

Bridge Between CORBA’s Notification Service and the Java Message

Service", University of Mannheim, Germany, Proceedings of the 36th

Hawaii International Conference on System Sciences, 2003.

[12] E. Gamma, R Helms, R. Johnson, J. Vlissides, “Design Patterns: Elements

of Reusable Object Oriented Software”, Addison-Wesley, 1995.

[13] A. Tanenbaum, “Computer Networks”, Prentice Hall, 4th Edition, 2003.

[14] M. Henning, S. Vinosky, “Advanced CORBA Programming with C++",

Addison Wesley, 1999.

[15] Java Programming Language, Sun Microsystems, http://www.java.sun.com

[16] OMG, “Request For Proposal: Notification / Java Message Service

Interworking”, OMG Document: ab/2001-07-01, 2001.

[17] P.Russell, “Unified Enterprise Messaging - Seamlessly Bridging J2EE and

CORBA Platforms” (presentation), IONA Technologies,

http://www.iona.com, 2002.

[18] T.Urqhart, “Notification / Java Message Service Interworking Request for

Proposal” (presentation), PrismTech, http://www.prismtechnologies.com.,

2001.

[19] Sun Microsystems, Java Abstract Window Toolkit,

http://www.java.sun.com

[20] PrismTech, OpenFusion Notification Service Connectivity Bridges,

http://www.prismtechnologies.com.

[21] IBM, MQSeries, http://www-3.ibm.com/software/integration/mqfamily

[22] TIBCO, Rendezvous, http://www.tibco.com.

[23] TAO, http://www.cs.wustl.edu/~schmidt/TAO.html

[24] G. Booch, J Rumbaugh, I. Jacobson, “The Unified Modeling Language User

Guide”, Addison-Wesley, 1999.

[25] ISO, “ISO/IEC 14882 Standard for the C+++ Programming Language”,

Geneva, 1998.

[26] Microsoft Corporation, http://www.microsoft.com

[27] A. Tanenbaum, “Distributed Systems Principles and Paradigms”, Prentice

Hall, 2002.

[28] DHCP - Dynamic Host Configuration Protocol, Internet RFC 2131, RFC

2132.

 86

[29] ICMP – Internet Control Message Protocol, Internet RFC 792.

[30] C. Kaufman, R.Perlman, M. Speciner, “Network Security. Private

Communication in a PUBLIC World”, Second Edition, Prentice Hall, 2002.

[31] C. Wang, A. Carzaniga, D. Evans, and A.L. Wolf, "Security Issues and

Requirements for Internet-scale Publish-Subscribe Systems", in Proceedings

of the Thirty-Fifth Annual Hawaii International Conference on System

Sciences (HICSS-35), Big Island, Hawaii, January 2002.

[32] LINUX, http://www.linux.org

[33] PrismTech, “OpenFusion in Financial Services”, “OpenFusion Notification

Service Datasheet”, “EMS – NMS Integration using the OpenFusion

Notification Service”, http://www.prismtechnologies.com.

 87

