Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any other university and it is entirely my own work. Due acknowledgements and references are given to the work of others.

I agree to deposit this thesis in the University's open access institutional repository or allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement.

Maria Luisa Aiello

Table of contents

Acknowledgements vi
Abstract vii
Abbreviation ix

1. Introduction. 1
1.1 Strategies for the synthesis of enantiopure compounds 1
1.1.1 Organocatalysis: a historical perspective 4
1.1.2 Advent of generic modes of action in organocatalysis 5
1.2 Hydrogen bonding catalysis mediated by (thio)ureas 8
1.2.1 Chiral (thio)urea organocatalysts 12
1.2.2 Chiral bifunctional (thio)ureas in organocatalysis 13
1.2.3 Chiral bifunctional organocatalysts containing squaramides moieties 16
1.3 Cinchona alkaloids as bifunctional organocatalysts. 18
1.3.1 Functionalisation of cinchona alkaloids: common modifications 22
1.3.1.1 Thiourea moieties introduced at C-9’. 23
1.3.1.2 Squaramide moieties introduced at C-9' 25
1.3.2 Modification at C-2 28
1.4 Cycloaddition reactions involving cyclic anhydrides 29
1.4.1 Anhydrides behaving as carbon based nucleophiles: a historical overview 29
1.4.2 Formal cycloaddition reactions between enolisable anhydride and aldehydes 32
1.4.2.1 Expansion of the scope of the reaction: the anhydride component 35
1.4.3 Formal cycloaddition reactions with other electrophiles 36
1.5 Catalytic asymmetric reactions involving enolisable anhydrides 40
1.5.1 Organocatalytic cycloaddition reaction between homophthalic anhydride and aldehydes for the synthesis of chiral dihydroisocoumarin cores 41
1.5.1.1 Stereochemical outcome: proposed mechanism 43
1.5.2 Organocatalytic cycloaddition reaction between phenyl succinic anhydride derivatives and aldehydes 44
1.5.3 Kavalactones as important building blocks in natural product 46
1.5.4 Accessing cis-dihydroisocoumarins. 47
1.5.5 Asymmetric cycloaddition reactions between Michael acceptors and enolisable anhydrides 48
1.6 Kinetic and dynamic resolution: a general introduction 50
1.6.1 Kinetic and dynamic resolution of racemic α-branched aldehydes: 52
1.7 Chiral iminophosphoranes as an emerging class of superbase catalysts 55
1.7.1 Bifunctional iminophosphorane organocatalysis: design features and common modifications 58
1.7.1.1 Synthetic applications of bifunctional iminophosphorane catalysis 60
2. The asymmetric organocatalytic formal cycloaddition of homophthalic anhydrides to Michael acceptors 64
2.1 Synthesis of Michael acceptors 65
2.2 Evaluation of Michael acceptors 67
2.2.1 Evaluation of Michael acceptors of general type $\mathbf{2 8 9}$ 69
2.2.1.1 The effect of temperature on the reaction between homophthalic anhydride and 289 71
2.2.2 Evaluation of the anhydride component 71
2.3 Conclusion 72
3. Cycloaddition reactions between homophthalic anhydride and 2- phenylpropionaldehyde 73
3.1 Preliminary experiments 73
3.2 Synthesis of α-branched aldehydes 75
3.3 Preliminary investigations on the DKR of aldehydes $\mathbf{3 1 4}$ and $\mathbf{3 1 9}$ 76
3.3.1 Investigations on KR of aldehyde $\mathbf{3 1 9}$ 77
3.4 Expansion of substrate scope 78
3.4.1 Kinetic studies involving aldehyde 331 80
3.5 Conclusion 81
4. The asymmetric organocatalytic formal cycloaddition of homophthalic anhydrides to aldehydes 82
4.1 Catalyst evaluation in the formal cycloaddition reaction between homophthalic anhydride and hydrocinnamaldehyde 83
4.1.1 Further optimisation of reaction conditions 87
4.2 Evaluation of substrate scope: aliphatic aldehydes 88
4.2.1 Stereochemical outcome: rationale 92
4.3 Evaluation of substrate scope: aromatic aldehyde 96
4.4 Evaluation of substrate scope: substituted homophthalic anhydride 99
4.5 Evaluation of substrate scope: p-nitrophenyl succinic anhydride 102
4.6 Evaluation of substrate scope: substituted phenyl succinic anhydrides 104
4.7 Synthesis of glutaconic anhydride derivatives 107
4.7.1 Catalytic cycloaddition between glutaconic anhydrides and aromatic aldehydes 108
4.7.1.1 Optimisation of esterification procedure 110
4.7.2 Catalytic cycloaddition between glutaconic anhydride derivatives and aliphatic aldehydes 111
4.8 Derivatisation protocol development 113
4.9 Conclusion 115
5. Use of iminophosphozanes in the cycloaddition reaction between enolisable anhydrides and aldehydes 116
5.1 Synthesis of iminophosphorane catalyst 459 116
5.2 Preliminary studies: evaluation of substrate $\mathbf{4 2 1}$ and $\mathbf{4 2 5}$ 117
5.3 Catalyst design 119
5.3.1 Evaluation of catalyst 464 121
5.4 Evaluation of chiral catalyst 474 123
5.4.1 Evaluation of aliphatic aldehydes 124
5.5 Conclusion 128
6. Experimental procedures and data 129
6.1 General 129
6.2 Experimental procedures and data for Chapter 2 130
6.3 Experimental procedures and data for Chapter 3 139
6.4 Experimental procedures and data for Chapter 4 157
6.5 Experimental procedures and data for Chapter 5 233
References 248
Appendix. 260

Acknowledgements

First I would like to express my sincere gratitude to my supervisor Professor Stephen Connon for giving me the opportunity to undertake research in his group. His continuous support and inspiration over the past four years has been invaluable. I would also like to thank a number of group members in particular Astrid, with whom I have shared many joys and frustrations, Aarón, Cris, Umar, Vikas, Ciara, Simon and Emiliano for all having made the lab an enjoyable place to work.

I'd like to especially acknowledge Bruce, to whom I express my most sincere gratitude for always being so patient with me, for the good times we shared both inside and outside the lab, and for his precious help in reading and correcting this thesis.

Thanks also to Stefany and Claudio for being such splendid friends and for their everlasting support and encouragement.

I would like to express my gratitude to all the staff within the School of Chemistry, in particular Prof. Mike Southern, Dr. John O’ Brien and Dr. Manuel Ruether for their constant help and support.

Finally, but by no means least, thanks to my family: my parents and my brothers for their constant encouragement. I dedicate this thesis to them.

Abstract

Expansion of the scope of catalytic cycloaddition reactions involving enolisable anhydrides to various Michael acceptors as electrophiles has been investigated. The reaction between homophthalic anhydrides and $\alpha-\beta$ unsaturated carbonyl compounds under mild conditions has furnished dihydroisocoumarin products bearing 3 stereocentres (one being quaternary) in good yield, excellent diastereoselectivity, however with poor enantiocontrol. Efforts were exhausted in the development of optimal catalytic conditions for this reaction and as such it was deemed impossible to achieve good stereocontrol without being able to reduce the rate of uncatalysed background reaction.

A novel reaction in which a racemic α-branched aldehyde is kinetically resolved by bifunctional cinchona alkaloid derived organocatalysts while simultaneously forming 3 stereocentre-containing dihydroisocoumarin acids with good diastereoselectivity and excellent enantiocontrol is also reported. Testing of various aldehydes in this reaction showed that the use of alkyl substituted α-branched aldehydes in the presence of bifunctional cinchona alkaloid-derived organocatalyst bearing a bulky aromatic substituent furnished good levels of $d r$ and $e e$.

Inspired by the success of the first catalytic asymmetric cycloaddition reaction between aldehydes and homophthalic anhydrides an investigation into the possibility of reversing the high levels of trans-diastereoselectivity previously observed was carried out by choice of a bulky substituted squaramide-based catalyst. This process provided one pot access to functionalised cis-dihydroisocoumarins in high yields and excellent optical purityproducts which are recognised as privileged core structures in natural compounds with diverse pharmacological activities. In order to rationalise the stereochemical outcome, computational studies in support of the experimental data were carried out by a collaborator. The methodology developed was later extended to the use of aryl succinic anhydrides as a means of accessing paraconic acid derivatives (another privileged core present in natural products exhibiting a broad spectrum of biological activity) in a highly enantioselective fashion.

The catalytic asymmetric cycloaddition between phenyl glutaconic anhydride and hindered branched aldehydes was also explored. The results obtained demonstrated the feasibility of the process which allows for the synthesis of 3,4-dihydropyrone derivatives bearing two stereocentres as potential precursors to natural products of the kavalactone family.

Finally, the synthesis and employment of bifunctional iminophosphorane catalysts in formal cycloaddition reactions involving less reactive anhydrides and aldehydes was examined. The catalytic cycloaddition between phenyl glutaconic anhydride and aromatic aldehydes was made possible for the first time, and further optimisation of the cycloaddition with aliphatic aldehydes is also reported.

Abbreviations

abs. config.	Absolute configuration
Ac	Acetyl
AcOH	Acetic acid
APCI	Atmospheric-pressure chemical ionization
app. t	Apparent triplet
Ar	Aryl
B	Base
b.p.	Boiling point
Bn	Benzyl
Boc	tert-Butoxycarbonyl
bs	Broad singlet
c-	cyclo-
cat.	Catalyst
CIP	Cahn-Ingold-Prelog
COD	1,5-Cyclooctadiene
conc.	Concentrated
conv.	Conversion
CSP	Chiral stationary phase
d	Days
d	Doublet
DABCO	1,4-diazabicyclo[2.2.2]octane
DCC	N,N'-dicyclohexylcarbodiimide
dd	Doublet of doublets
ddd	Doublet of doublet of doublets
DIAD	Diisopropyl azodicarboxylate
DIPAMP	Ethane-1,2-diylbis[(2-methoxyphenyl)phenylphosphane]
DIPEA	N,N-Diisopropylethylamine
DMAP	4-(Dimethylamino)pyridine
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
DPPA	Diphenylphosphoryl azide
Dr	Diastereomeric ratio
E	Electrophile
Ee	Enantiomeric excess
EI	Electron ionisation
equiv.	Equivalent
ESI	Electrospray ionization
Et	Ethyl
EtOAc	Ethyl acetate

EtOH	Ethanol
EWG	Electron withdrawing group
h	Hours
HNEt_{2}	Diethyl amine
HOMO	Highest occupied molecular orbital
HPLC	High Performance Liquid Chromatography
HRMS	High-resolution mass spectrometry
i -	iso-
IPA	iso-Propyl alcohol
$i-\mathrm{Pr}$	Isopropyl
$i-\mathrm{Pr}_{2} \mathrm{NEt}$	N, N '-Diisopropylethylamine (Hünig's base)
$i-\mathrm{PrOH}$	2-propanol
IR	Infrared
IUPAC	International Union of Pure and Applied Chemistry
KHMDS	Potassium bis(trimethylsilyl)amide
LA	Lewis acid
LDA	Lithium diisopropylamide
L-DOPA	L-3,4-DIHYDROXYPHENYLALANINE
LiHMDS	Lithium bis(trimethylsilyl)amide
lit.	Literature
LUMO	Lowest unoccupied molecular orbital
m	Multiplet
m -	meta-
m.p.	Melting point
m / z	Mass/Charge
Me	Methyl
MeOH	Methanol
min	Minutes
mol. sieves	Molecular sieves
MTBE	Methyl-tert-butyl ether
MW	Microwave
$n-$	normal-
NaOAc	Sodium acetate
NEt_{3}	Triethylamine
NMR	Nuclear magnetic resonance
NOE	Nuclear Overhauser Effect
Nu	Nucleophile
o -	ortho-
OAc	Acetate
p -	para-
Ph	Phenyl

Pr	Propyl
prod.	Product
q	Quartet
R_{f}	Retardation factor
rt	Room temperature
s	Singlet
t	Triplet
$t-$	tert-
t-Bu	tert-Butyl
t-BuOH	tert-Butyl alcohol
temp.	Temperature
$t e r t-$	tertiary-
TFA	Trifluoroacetic acid
TFAA	Trifluoroacetic anhydride
THF	Tetrahydrofuran
TLC	Thin layer chromatography
TMG	$1,1,3,3-$ Tetramethylguanidine
TMS	Trimethylsilyl
TMSCHN 2	Trimethylsilyl diazomethane
TMSCN	Trimethylsilyl cyanide
UV	Ultraviolet
v / v	Volume/Volume
w / v	Weight/Volume

1. Introduction

In recent years, interest in asymmetric synthesis as a method for obtaining enantiomerically enriched compounds has grown rapidily. The widespread demand for chiral molecules in areas ranging from medicine to materials science has stimulated intensive research into the development of various means of accessing single-enantiomer compounds.

The four main synthetic strategies ${ }^{1}$ are outlined below:

- Resolution of racemates
- Employment of chiral pool compounds
- The use of a chiral auxiliary
- Asymmetric catalysis

The resolution of a racemic mixture ${ }^{2}$ is one of the oldest methods used by chemists to obtain enantiopure compounds from an equimolar mixture of two enantiomers. It was performed in 1848 by the French chemist and microbiologist Louis Pasteur, ${ }^{3}$ who first manually separated two kinds of hemihedral crystals of racemic tartaric acid salts, leading to the discovery of chirality ${ }^{4}$ and spontaneous resolution. ${ }^{5}$ In more recent times, resolution of a racemic mixture typically involves the reaction of racemic substrate with a chiral resolving agent which leads to the formation of two separable diastereoisomers. The main disadvantages associated with this technique are the addition of two extra steps for the formation and cleavage of the diastereomeric pairs and a maximum theoretical yield of 50% for each enantiomer. Another common methodology is to employ chirally resolved starting materials (so called 'chiral pool ${ }^{6,7,8}$), which can be sourced from nature, such as amino acids, carbohydrates and alkaloids. They can be used as reagents in natural product synthesis and other synthetic strategies in which the final product and the chiral compound used are structurally similar. This approach affords products of high optical purity, in high yield, through an intramolecular transfer of chiral information. As chiral pool materials are required in stoichiometric amounts, it can be sometimes expensive.

Chiral auxiliaries gained tremendous popularity 30 years ago when E. J. Corey and coworkers carried out an asymmetric Diels-Alder ${ }^{9}$ cycloaddition involving 8phenylmentholacrylate ester Lewis acid complex 3 and 5benzyloxymethylcyclopentadiene (4) in the preparation of prostaglandin intermediate 6
(Scheme 1.1). ${ }^{10}$ The chiral auxiliary $\mathbf{2}$ plays a key role in the formation of the endo adduct $\mathbf{5}$, by blocking the re-face of acrylate ester $\mathbf{1}$, which forces the cycloaddition to occur at the $s i$-face of the olefin.

Scheme 1.1 Employment of 8-phenylmenthol (2) in the synthetic route of prostaglandin intermediate 6.

Since then, Evans' oxazolidinones ${ }^{11}$ and Oppolzer's sultams ${ }^{12}$ have been employed extensively in the synthesis of bioactive compounds. Chiral auxiliaries are enantiopure molecules that are temporarily incorporated into an achiral substrate prior to the asymmetric synthetic pathway in order to control the diastereoselectivity of the reaction and then removed to afford the required enantiomer. For this reason they should be easily attached to the substrate, removed without racemisation of the newly-created stereogenic center(s), and be separable from the cleaved product after the desired bound-construction has been achieved.

Asymmetric catalysis is one the most important and widely used methods to directly furnish a broad range of molecules in enantiomerically pure form and quantitative yield. A chiral catalyst ${ }^{13,14}$ promotes the conversion of prochiral molecule to the chiral product with a preference for one enantiomer. Since the interaction between the catalyst and the substrate is reversible, the catalyst is not consumed during the process and can be introduced in a new catalytic cycle, minimising the cost and the waste generated. Catalysts are generally categorised as being either metal-based, enzymatic or, the more recently popularised, organocatalysts.

Biocatalysis utilises enzymes or live microbial culture to accelerate specific reactions. ${ }^{15}$ Due to their complex three-dimensional structure, biocatalysts provide high chemo-, regio-, diastereo- and enantioselectivity in a large range of processes. Such high selectivity is potentially useful in chemical synthesis as it may provide several benefits, such as reduced use of or avoidance of protecting groups, minimised rates of side reactions, easier separation, and lower environmental impact. However, this strategy suffers from some drawbacks in terms of the availability of biocatalysts in both enantiomeric forms, limitations with regard to substrate scope, and use of mild conditions to avoid the formation of side products. ${ }^{16}$

Organometallic catalysis has been employed in a wide variety of oxidations, reductions and reactions catalysed by Lewis acids. ${ }^{17}$ The success of this technology is due to the affinity of metals for chiral ligands to form metal-organic ligand complexes which are involved in asymmetric induction.

An important contribution to this field was made in 1970, when following Wilkinson's work on the catalytic hydrogenation with triphenylphosphine complexes of rhodium chloride, Knowles ${ }^{18}$ at Monsanto developed an industrial process for the enantioselective synthesis of the anti-Parkinson drug, l-Dopa 9 (Scheme 1.2). They demonstrated that rhodium-chiral phosphine complex (R, R-DIPAMP) ${ }^{19}$ was able to catalyse the hydrogenation of the prochiral olefinic substrate 7, generating a chiral center $\mathbf{8}$ with high enantioselectivity. In recognition of his achievement, Knowles shared the 2001 Nobel Prize in chemistry with Ryoji Noyori, for their work on asymmetric catalytic hydrogenation, and with K. Barry Sharpless ${ }^{20}$ for his work on asymmetric catalytic oxidation.

Scheme 1.2 The Monsanto synthesis of L-DOPA using asymmetric catalytic hydrogenation.

1.1.1 Organocatalysis: a historical perspective

In the last decade, the use of small chiral organic molecules as catalysts has emerged as a valid alternative to metal-ion catalysis ${ }^{21}$ and as a powerful method of stereoselective synthesis.

Organocatalysis is described as the acceleration of the rate of an organic reaction induced by the addition of a substoichiometric amount of a low-molecular weight organic compound. Many of the catalysts used are inexpensive to prepare and readily available from natural sources as single enantiomers (e.g. proline, cinchona alkaloids). They are usually non-toxic, environmentally friendly and more stable than enzymes or other bioorganic catalysts. Because of their general insensitivity to air and moisture, ${ }^{22}$ in comparison to many metal-based complexes, the execution of these reactions does not usually require special conditions such as an inert atmosphere or the use of anhydrous solvents and/or reagents.

A remarkable breakthrough in organocatalysis came about in the early 1970s, when Eder, Sauer and Wiechert, ${ }^{23}$ together with Hajos and Parrish, ${ }^{24}$ found that L-proline 11 catalyses the aldol cyclisation of triketone $\mathbf{1 0}$ in a highly enantioselective fashion. This discovery has long been recognised as one of the earliest examples of asymmetric catalysis applied to synthetic organic chemistry. As shown in Scheme 1.3, chiral enedione 12 was obtained in high yield and excellent enantiomeric excess, and was shown to be a useful intermediate in the total synthesis of steroids.

Scheme 1.3 The Hajos-Parrish-Eder-Sauer-Wiechert reaction.
In the late 1990s, Yang, ${ }^{25}$ Shi, ${ }^{26}$ Denmark, ${ }^{27}$ Miller, ${ }^{28}$ Jacobsen, ${ }^{29}$ Corey ${ }^{30}$ and their respective co-workers showed for the first time that organocatalysis can be adapted to multiple reaction types and used to address some common challenges in asymmetric synthesis. Shortly after, work on enamine catalysis undertaken by Carlos Barbas, Richard

Lerner and Benjamin List, ${ }^{31}$ followed by MacMillan ${ }^{32}$ and co-workers'studies on iminium ion catalysis demonstrated that small molecules could catalyse the same chemical reactions as enzymes by similar mechanisms. Since then, interest in organocatalysis has peaked, making way for an intense period of research into the elucidation of generic modes of catalyst activation, induction and reactivity.

1.1.2 Advent of generic modes of action in organocatalysis

The two most popular organocatalytic activation modes to date are identified: iminium ion and enamine based catalysis. ${ }^{31,32}$ Both are based on the formation of reactive species arising from reversible interactions, in a highly organised transition state, between a chiral catalyst and a functional group of the substrate.

Iminium ion catalysis involves the activation of an α, β-unsaturated carbonyl moiety (13) by an amine catalyst such as $\mathbf{1 4}$ via reversible generation of an iminium ion intermediate $\mathbf{1 5}$, which results in a lowering of the energetic potential of the lowest unoccupied molecular orbital (LUMO) (Scheme 1.4). ${ }^{33,34}$ As a consequence, the carbonyl group is more activated towards nucleophilic addition such as Knoevenagel ${ }^{35}$ condensation and Michael additions. ${ }^{36}$ With respect to a system such as 16, the formation of the iminium salt increases the acidity of the α-proton (17), which facilitates tautomerisation to the enamine intermediate 18. In this case, the resulting activated species presents a higher energy occupied molecular orbital (HOMO), which promotes the reaction of the substrate with electrophiles (Scheme 1.4). ${ }^{31,32}$

Scheme 1.4 Carbonyl activation via iminium and enamine based catalysis.
Although the aforementioned Hajos-Parrish-Eder-Sauer-Wiechert reaction ${ }^{24}$ was widely appreciated for its fundamental and practical significance, a precise understanding of a mechanism had remained elusive for years, until recently. Theoretical and experimental
investigations carried out by List et al. ${ }^{31}$ have provided a rational basis for proline's mode of action. The authors reported the first study on the amine-catalysed asymmetric intermolecular aldol reaction (Scheme 1.5). ${ }^{31}$ They found the reaction between aldehyde 20 and an excess of acetone 19 proceeded in the presence of a catalytic amount of (S)proline 11 (20-30 mol\%) in DMSO, to give the desired product 21 in good yield and enantioselectivity (Scheme 1.5). ${ }^{31}$

Scheme1.5 Proline-catalysed direct asymmetric intermolecular aldol reaction.
The reaction involves the formation of an enamine intermediate, similarly to the mechanism proposed for class I aldolases. ${ }^{37,38}$ Initially, (S)-proline acts as a general Brønsted acid co-catalyst, by activating the carbonyl groups towards nucleophilic attack by the amine moiety (22). Subsequent loss of water leads to the formation of the iminium species 23, which after deprotonation by the carboxylate of (S)-proline, provides 24. At this stage, enamine 24 attacks aldehyde 20 via the highly organised pre-transition state assembly (25) to furnish 26.

Scheme 1.6 Proposed mechanism of the proline-catalysed intermolecular aldol reaction.

Within the transition state, protonation of the H -bond acceptor occurs by the acid functionality of the (S)-proline, which is anti with respect to the enamine double bond. This rationalises the stereochemistry of the aldol reaction product 27 , which is released along with the catalyst during the hydrolysis step (Scheme 1.6).

Shortly after, MacMillan and co-workers described the first organocatalytic Diels-Alder reaction between dienes and α, β-unsaturated aldehydes, the chiral imidazolidinone catalyst $\mathbf{3 0}$ was found to activate dienophile 28 to react with 29 via an iminium ion intermediate (Scheme 1.7), ${ }^{32}$ furnishing the cyclic endo and exo adducts 31 (in a ratio 14:1) in good yield and excellent enantiomeric excess.

Scheme 1.7 Enantioselective Diels-Alder reaction via iminium ion intermediate.
Computational models revealed the E iminium ion $\mathbf{3 2}$ to be conformationally favoured over the corresponding Z intermediate $\mathbf{3 3}$, in which the α-hydrogen atom resides on the same side as the geminal methyl groups in the catalyst, thereby reducing unfavourable steric interactions (Scheme 1.7). In addition, the benzyl group sterically blocks the 'top' face, which facilitates the approach of the diene to the $s i$ face of the intermediate. ${ }^{32,39,40}$

Another activation mode widely explored in organocatalysis employs small chiral molecules bearing hydrogen-bond donor moieties. ${ }^{41,42}$ By analogy to classical Lewis acids, these catalysts activate Lewis bases such as carbonyl groups, via H-bonding interactions (general acid catalysis), rendering them more reactive towards nucleophilic
species. In particular, hydrogen bonding can effectively stabilise a developing negative charge on the oxygen heteroatom within a transition state of the rate determining addition step, bringing about LUMO lowering activation and accelerated reaction rates.

1.2 Hydrogen bonding catalysis mediated by (thio)ureas

Hydrogen bonding is one of the most common molecular recognition and activation mechanisms exploited by enzymes and antibodies in living organisms for the promotion of various biological transformations (e.g. amide hydrolysis catalysed by serine proteases). ${ }^{43}$ Pioneering studies conducted by Hine et al., demonstrated the catalytic ability of 1,8-biphenylenediol (34, Figure 1.1) in the aminolysis of epoxides, and proposed that the increased reactivity observed resulted from the simultaneous formation of two strong hydrogen bonds to the same oxygen atom of the electrophile. ${ }^{44}$

This theory was further developed by Kelly et al., ${ }^{45}$ who showed that biphenyldiol (35, Figure 1.1) bearing electron-withdrawing substituents at the para-positions, was capable of promoting the Diels-Alder reaction by establishing a double hydrogen bond interaction with the dienophile. Later, Etter and co-workers reported that N, N '-diarylureas with electron-withdrawing groups (EWG) in the meta positions (36, Figure 1.1) can form hydrogen bonds with a wide number of Lewis base molecules (such as nitroaromatics, ethers, ketones and sulfoxides $)^{46,47}$ by co-crystallisation. This work along with the previously mentioned studies inspired the design of many more diaryl(thio)ureas organocatalysts. ${ }^{48}$

35

36

Figure 1.1 Models of double hydrogen bond donation developed by Kelly, Etter.
The application of (thio)urea in general acid-catalysed reactions was first reported by Curran and co-workers. ${ }^{48}$ They demonstrated the ability of diarylurea 39, bearing EWGs
and a lipophilic octyl ester in each phenyl ring to act as a powerful H -bond donor in the allylation of cyclic sulfinyl radicals (37, Scheme 1.8). This study showed stoichiometric amounts of $\mathbf{3 9}$ to promote the reaction in higher yield and diastereoselectivity than when other strong Lewis acids were employed - furnishing 41a,b in a trans:cis ratio of 7:1.

Scheme 1.8 Allylation of cyclic sulfinyl radicals promoted by catalyst 39.
The same catalyst (39) was later found to accelerate the rate of the Claisen rearrangement of $\mathbf{4 2}$ to $\mathbf{4 3}$ up to 22 -fold when used in stoichiometric amounts. Further evidence for Hine's hydrogen bonding activation model arose when 44, devoid of hydrogen bond donors, failed to promote the reaction (Scheme 1.9). ${ }^{49}$

Scheme 1.9 Claisen rearrangement catalysed by diaryl(thio)urea catalysts.
Some time later, inspired by Curran's findings, Schreiner et al. ${ }^{50}$ reported the ability of thiourea $\mathbf{4 7}$ to catalyse the Diels-Alder cycloaddition between cyclopentadiene (46) and methacrolein 45, affording 48 as a mixture of endo and exo products - exhibiting a complementary mode of action to strong Lewis acids such as AlCl_{3} and $\mathrm{TiCl}_{4}{ }^{51}$ (Scheme 1.10). Among the various thiourea analogues under investigation, catalyst 47 was found to satisfy the steric and electronic requirements for optimal catalytic efficiency, along with a range of other desirable properties.

Scheme 1.10 Diels-Alder reaction catalysed by diaryl(thio)urea catalyst 47.

Firstly, thioureas generally possess greater solubility in a range of organic solvents, and the lower electronegativity of sulfur makes self-association far more limited compared to the corresponding urea derivatives. Moreover, the higher acidity of $\mathrm{N}-\mathrm{H}$ protons due to the presence of a sulfur heteroatom and extra trifluoromethyl group on the aromatic ring increases the hydrogen-bond donating power of thiourea derivatives.

In addition, computational studies have underlined that the installation of electronwithdrawing substituents (such as $-\mathrm{CF}_{3}$) in meta-positions rigidifies the polar interactions between hydrogen atoms with the Lewis-basic sulfur atom (see Scheme 1.10), which increases the energetic rotational barrier of the catalyst, minimising entropy loss upon binding with the substrate. ${ }^{51}$

These pivotal works had the merit to highlight the huge potential of diaryl(thio)ureas as hydrogen bond donors, turning researchers' attention towards the extension of catalyst scope with respect to a variety of chemical transformations - a number of which will be discussed below.

In 2003, Takemoto ${ }^{52}$ and co-workers described the nucleophilic addition of trimethylsilyl cyanide to nitrones mediated by a variety of thiourea catalysts. In line with Schreiner's study, the high yield and the acceleration of the rate of reactions were achieved by efficient H -bonding between the catalyst and nitrones.

More recently, our group has shown for first time that the N, N^{\prime}-diarylurea 51 can efficiently catalyse the sulfonium ylide-mediated (50) epoxidation reaction of aromatic aldehydes ${ }^{53}$ such as 2-methylbenzaldehyde (49) (Johnson-Corey-Chaykovsky reaction), ${ }^{54}$
to afford the corresponding product 52 in high yield. As a rationale of this outcome it was postulated that within the transition state, hydrogen bond donation by the catalyst stabilised the arising negative charge on the oxygen heteroatom during the addition of the ylide to the aldehyde -the rate-determining step (Scheme 1.11).

Scheme 1.11 Diarylurea (51) promoted Corey-Chaykovsky reaction.
In 2015, inspired by Schreiner's report ${ }^{55}$ on the use of catalyst 47 to promote the protection of alcohols with dihydropyran (DHP), McGarrigle et al. reported an efficient catalytic glycosylation of galactals (e.g. 54) with a wide range of glycosyl acceptors such as 53 (Scheme 1.12). ${ }^{56}$ This reaction proceeds with excellent yield and high selectivity for the α-anomer (e.g. 55), and is well tolerated by most commonly used alcohol protecting groups such as benzyl, silyl ethers, benzoyl esters, and acetals. The versatility of this process was highlighted by its successful application in a one-pot stereoselective synthesis of a trisaccharide.

Scheme 1.12 Glycosylation of galactals mediate by thiourea 47.

1.2.1 Chiral (thio)urea organocatalysts

During studies on the evaluation and design of ligands for the metal-catalysed version of the asymmetric Stecker reaction, Jacobsen et al. observed that one of the (thio)ureaderived ligands screened was unexpectedly able, in absence of metal additives, to furnish the desired product with a higher degree of enantiocontrol. ${ }^{57}$ Further optimisation from a parallel synthetic library led to the identification of Schiff-base thiourea 58 as an efficient catalyst for the highly enantioselective synthesis of Strecker adducts $\mathbf{5 9}$ by the addition of HCN (57) to aromatic N-benzyl aldimines 56 (Scheme 1.13).

Scheme 1.13 Asymmetric Strecker reaction catalysed by Schiff base catalysis.
According to computational and mechanistic studies, thiourea catalyst 58 binds to the (Z) isomer of the imine preferentially via double hydrogen-bond donation to the nitrogen lone pair in order to minimise unfavourable steric interactions between the catalyst and the large imine substituents. This interaction activates the substrate in a chiral environment and directs the addition of HCN over the diaminocyclohexane moiety of the catalyst and away from the amino acid/amide side. ${ }^{57}$

In the following years, the versatility of this new type of chiral thiourea organocatalyst was investigated by Jacobsen's group in a variety of stereoselective processes such as Mannich reactions, ${ }^{58}$ imine hydrophosphonylations, ${ }^{59}$ acyl-Pictet-Spengler reactions ${ }^{60}$ and Baylis-Hillman reactions. ${ }^{61}$ Interesting to note was the discovery that some of these transformations could be catalysed by simpler derivatives of $\mathbf{5 8}$ such as $\mathbf{6 0}, \mathbf{6 1}$ and $\mathbf{6 2}$ (Scheme 1.14) in which the Schiff base moiety was removed from the main framework, without compromising enantioselectivity.

Scheme 1.14 Simplified chiral (thio)urea catalysts.
Inspired by these findings, in 2011 Seidel et al. developed an asymmetric Steglich rearrangement of O-acylated azlactones (e.g. 63) to C-acylated products (e.g 64), promoted by catalyst $\mathbf{6 2}$ in combination with DMAP. ${ }^{62}$

Scheme 1.15 Asymmetric Steglich rearrangement catalysed by 62.
Seidel's proposed mechanism for this reaction states that catalyst 62 initially activates the azalactone towards nucleophilic attack by DMAP via hydrogen bonding with the carbonyl group of $\mathbf{6 3}$. The azlactone anion generated is then stabilised by hydrogen-bond donation from the thiourea moiety, followed by nucleophilic addition to the acylpyridinium cation (Scheme 1.15). ${ }^{62}$

1.2.2 Chiral bifunctional thioureas in organocatalysis

Although chiral thiourea derivatives have demonstrated their potential as general acids in several types of enantioselective reactions, their application is somewhat limited with respect to substrate scope. In order to overcome this limitation a nucleophilic Lewis basic moiety was incorporated into the catalyst structure making dual activation of the electrophile and nucleophile possible (via a similar mode of action to natural enzymatic
systems, Figure 1.2). These systems can be adapted to asymmetric reactions involving various electron-deficient substrates, whilst guaranteeing excellent reaction rates and high levels of stereocontrol over the addition step. The two main structural features of the majority of these novel organocatalysts are represented by the presence of a tunable aromatic moiety connected to one thiourea nitrogen atom, which effects the catalyst's rigidity and the hydrogen-bond donor's proficiency, and at the other a chiral Brønsted base functionality.

Figure 1.2 Design of bifunctional thioureas.
The first thiourea-based bifunctional catalyst was designed in 2003 by Takemoto et al., who replaced one of the aryl rings of Schreiner's diaryl thiourea with a cyclic-($N, N-$ dimethylamino) hexane as a chiral scaffold (e.g. 67, Scheme 1.16). ${ }^{63}$ They then demonstrated that a catalytic amount of $\mathbf{6 7}$ could promote the Michael type addition of diethyl malonate $\mathbf{6 5}$ to β-nitrostyrene 66, forming 68 in excellent ee under optimised conditions (Scheme 1.16). ${ }^{63}$

Scheme 1.16 Takemoto's bifunctional thiourea catalyst 67 promoting Michael addition.
In order to rationalise the stereoinduction observed, a mechanism and transition state model was proposed. As shown in Figure 1.3, the tertiary amine is responsible for deprotonation of the diethyl malonate and consequent formation of a highly nucleophilic enolate species which attacks one face of the nitroolefin, which is activated by dual hydrogen-bond donation from the thiourea moiety. ${ }^{64}$

Figure 1.3 Transition state models proposed by Takemoto (left) and Sòos (right).

However, later an alternative mechanism was postulated by Soòs et al., ${ }^{65}$ in which the carbonyl groups of the deprotonated malonate ester interact with the $\mathrm{N}-\mathrm{H}$ groups of the thiourea and activation of the nitroolefin occurs via interaction with the protonated amino group (Figure 1.3). Both mechanisms claimed that in order to achieve high yield and selectivity, the thiourea moiety and tertiary amino group must be present on the same chiral scaffold.

The catalytic activity of $\mathbf{6 7}$ was also evaluated with a range of 1,3-dicarbonyl substrates such as γ, δ-unsaturated β-ketoesters (69), which were shown to be compatible in Michael additions with nitrolefins 70, (Scheme 1.17). This reaction has shown great potential for its synthetic utility in the preparation of chiral cyclohexanones (e.g. enol 71), one having being used as a precursor in the stereoselective total synthesis of (-)-epibatidine, a potent nicotinic acetylcholine receptor agonist. ${ }^{66}$

Scheme 1.17 Bifunctional thiourea-catalysed Michael addition of 1,3-dicarbonyl compounds to nitroolefins.

Based on these pioneering works, the synthetic potential of chiral thiourea-amine organocatalysts and their derivatives were explored rigorously by several groups in a
broad range of transformations, such as asymmetric Mannich reactions, ${ }^{67}$ Henry reactions ${ }^{68}$ and thio-Michael cyclisations. ${ }^{69}$

A noteworthy application of Takemoto's catalyst was reported in 2009 by Xu and coworkers, who developed the asymmetric Morita-Baylis-Hillman reaction of nitroalkene 72 to N-tosylimine 73 promoted by catalyst 67 (Scheme 1.18). ${ }^{70}$ This transformation renders easy access to β-nitro- γ-enamines such as 74, which are valuble intermediates in the synthesis of biologically active compounds, in high diastereo- and enantioselectivities.

Scheme 1.18 Asymmetric Morita-Baylis-Hillman reaction mediated by catalyst 67.

1.2.3 Chiral bifunctional organocatalysts containing squaramides moieties

Over the past several years, chiral (thio)urea derivatives ${ }^{71}$ have largely dominated the general acid/base bifunctional asymmetric catalysis, ${ }^{72}$ proving their capability as powerful hydrogen-bond donors in a wide array of useful enantioselective processes. However, more recently, among the pool of H-bond donor groups, squaramides have emerged as a valid alternative to the highly efficient (thio)urea-based systems due to their peculiar physical and structural features, which form the basis of their rise in popularity. ${ }^{73}$

Squaramides were first synthesised in $1966,{ }^{74}$ starting from squaric acid. Since then, intense research has been carried out into understanding their particular H-bonding ability and distinguishing their main structural differences ${ }^{75}$ from (thio)urea analogues.

Squaramides are four membered ring systems possessing duality in hydrogen-bonding and have the capacity to form up to three hydrogen-bonds. ${ }^{73,75}$ The two N-H moieties can act as hydrogen-bond donors to anionic species, while the two carbonyl functionalities can be engaged in cationic recognition and as hydrogen bond acceptors (Figure 1.4). Squaramides are considered a vinylogous amide with a rigid structure as both nitrogen lone pairs can be delocalised through the carbon-oxygen double bound (Figure 1.4), ${ }^{73,75}$ generating a cyclobutenediolate system with two positive charges, bearing aromatic character according to Hückel's rules (e.g. $4 \mathrm{n}+2, \mathrm{n}=0$). Consequently, more rotational
restrictions around C-N bonds are observed in squaramide structures than in (thio)ureas, which cause both carbonyl and amine groups to be coplanar. ${ }^{76}$

Figure 1.4 Dual hydrogen-bonding and resonance structures of squaramides.

While hydrogen-bond duality allows for binding to a broad range of substrates, the rigidity reduces entropy loss on substrate binding. Another significant difference between thioureas and squaramides is the relative distance and spacing between the two $\mathrm{N}-\mathrm{H}$ groups. According to some calculations conducted by the Takemoto and Rawal groups, the distances for N, N^{\prime}-dimethylthiourea and N, N^{\prime}-dimethylsquaramide were found to be approximately $2.13 \AA$ and $2.72 \AA$ respectively. ${ }^{73}$

Moreover, the square structure of the cyclobutenedione ring also induces a convergent orientation (6°) of the $\mathrm{N}-\mathrm{H}$ groups (Figure 1.5), a property not found in thioureas, which confers to these molecules different binding properties during the transition state (Figure 1.5). ${ }^{75}$

Figure 1.5 Difference in H-bond spacing distances and H-bond orientation between squaramides and thioureas.

Based on this information, in 2010 Rawal et al. ${ }^{77}$ developed a bifunctional catalyst (77) containing a squaramide moiety and a chiral amine, which successfully catalysed the conjugate addition of diphenylphosphite (76) to nitroalkene 75. The nitrophosphonate 78,
which is a precursor to biologically active β-amino phosphonic acids, was obtained in excellent yield and enantioselectivities (Scheme 1.19). ${ }^{77}$

Scheme 1.19 Michael addition promoted by bifunctional squaramide catalyst.
The utility of catalyst 77 was not confined to the reaction illustrated in Scheme 1.19, but also extended to other types of transformations such as enantioselective Friedel-Crafts ${ }^{78}$ reactions and the α-amination of 1,3 dicarbonyl compounds. ${ }^{79}$ Furthermore, inspired by Rawal's studies, squaramides structurally similar to 77 and new squaramide-based Hbonding catalysts have been designed for several other applications. ${ }^{80,81,82}$

1.3 Cinchona alkaloids as bifunctional organocatalysts

Cinchona alkaloids are abundant natural products present in the bark of South-American trees of the genus Cinchona. ${ }^{83}$ Renowned for their antimalarial properties, they were introduced to the European market in the seventeenth century, and have since played a pivotal role in the field of medicine, having emerged as effective anticancer and analgesic agents. ${ }^{84}$ The four main alkaloids isolated are quinine (79), cinchonidine (80) and their pseudoenantiomers quinidine (81) and cinchonine (82), which are considered 'privileged ${ }^{85}$ chirality inducers in the area of asymmetric catalysis. ${ }^{86}$ They possess relatively rigid structures in which the bulky basic quinuclidine and Brønsted acidic hydroxy functionality at the $\mathrm{C}-9$ position are in close proximity to one another within a defined chiral environment.

$79 \mathrm{R}=\mathrm{OMe}$ quinine
$80 \mathrm{R}=\mathrm{H}$ cinchonidine

$81 \mathrm{R}=\mathrm{OMe}$ quinidine
$82 R=H$ cinchonine

Figure 1.6 Structures of catalytically important cinchona alkaloids.
The first use of cinchona alkaloids dates back to 1853 , when Pasteur ${ }^{87}$ used them as resolving agents for the separation of a racemic mixture of tartaric acid. Besides classical resolution methods, the most interesting application of cinchona alkaloids in synthetic chemistry resides in their ability to promote enantioselective transformations. The first asymmetric reaction carried out using cinchona alkaloids was the addition of HCN to benzaldehyde, described in 1912 by Breding and Fiske. ${ }^{88}$ Although the enantioselectivities achieved were low for this transformation ($\sim 10 \% e e$), this work had the merit of exemplifing the possibility of obtaining enantioenriched products of opposite chirality when performed using either quinine or its pseudoenantiomer quinidine. Pracejus was the first to obtain useful levels of enantioselectivity when he employed O acetylquinine (85) as a catalyst in the reaction between methanol $\mathbf{8 4}$ and phenylmethylketene 83, affording (-)- α-phenylmethylpropionate (86) in 76\% ee (Scheme 1.20). ${ }^{89}$

Scheme 1.20 Pracejus' enantioselective synthesis of (-)- α-phenylmethylpropionate.
Inspired by this seminal work, Wynberg and co-workers ${ }^{90}$ embarked on a series of studies into the use of various cinchona alkaloids as Lewis-basic/nucleophilic catalysts in asymmetric Michael additions of aromatic thiols (88) to conjugated cycloalkenones (87). They found that the presence of a free C-9 hydroxyl functionality is essential for
furnishing products (e.g. 89) with significant levels of enantiocontrol (Scheme 1.21). Futhermore, they speculated that these alkaloids generally act as bifunctional catalysts in which the hydroxy group activates the enone by hydrogen bonding, while the chiral base moiety deprotonates the pronucleophile (thiol) in the transition state. ${ }^{90}$

Scheme 1.21 Enantioselective addition of thiols to cyclic enones catalysed by cinchonidine $\mathbf{8 0}$.

Since this discovery, the use of cinchona alkaloids has grown exponentially and much research has been directed towards investigating the versatility of Cinchona alkaloids on a wide range of enantioselective transformations. Selected examples of which are reported below.

In 2006, Melchiorre et al. ${ }^{91}$ reported the first asymmetric Michael addition of β-ketoester compounds such as $\mathbf{9 0}$ to maleimides (e.g. 91) catalysed by natural cinchona alkaloids (Scheme 1.22). The reaction promoted by quinine allowed for an one step synthesis of highly functionalised succinimide products such as 92, bearing two contiguous stereocentres, one of which is quaternary, with very high diastereo- ($d r$ up to $>98: 2$) and enantioselectivities (up to $92 \% \mathrm{ee}$). This method is a powerful tool for the construction of quaternary stereogenic centres which normally pose a challenge to create due to steric considerations, and provides a synthetically attractive structural motif found in a broad range of medicinally active natural products and pharmaceutical compounds.

Scheme 1.22 Highly stereoselective Michael addition of 1,3-dicarbonyl compounds to maleimides catalysed by quinine.

Inspired by the aforementioned study by Melchiorre, Zhao and co-workers ${ }^{92}$ investigated a double Michael addition between β, γ-unsaturated α-ketoesters such as $\mathbf{9 3}$ to malonates such as $\mathbf{9 4}$, furnishing rearrangement products 98 .

$$
\begin{aligned}
95 \mathrm{R}^{1} & =4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4} \\
\mathrm{R}^{2} & =\mathrm{C}_{6} \mathrm{H}_{5} \\
\mathrm{R}^{3} & =\mathrm{Bn}
\end{aligned}
$$

Scheme 1.23 Quinine catalysed enantioselective Michael addition-oxa nucleophilic rearrangement reaction of β, γ-unsaturated α-keto-esters.

Various catalysts were evaluated, yet quinine was found to promote the reaction most efficiently, affording 98 in yields ranging from 68 to 98%, and enantioselectivities of up to 82% (Scheme 1.23). ${ }^{92}$ According to the proposed mechanism the catalyst activates both electrophile and nucleophile simultaneously (95), leading to the formation of 96, which then undergoes an oxanucleophilic attack to the ketone carbonyl group of $\mathbf{9 6}$, generating
the intermediate 97. Subsequent collapse of the tetrahedral intermediate followed by protonation leads to the formation of the product 98 (Scheme 1.23). ${ }^{92}$

1.3.1 Functionalisation of cinchona alkaloids: common modifications

Over time, several modifications to the structure of natural cinchona alkaloids have been reported in order to improve the catalysts' performance in a wider range of reactions. ${ }^{84,93}$ There are six positions at which the structures may be modified in order to tune the catalytic activity - transformation of the alcohol at the C-9' position into another moiety being the most common. The secondary alcohol can be substituted and/or derivatised into highly valuable (thio)ureas, squaramides, amides etc., with either retention or inversion of the 'natural' absolute configurations. In addition, conversion of the $9-\mathrm{OH}$ into a free amino group provides access to a class of catalysts used preferentially in enantioselective aminocatalysis, which involves the formation of enamine ${ }^{31}$ or iminium ion intermediates ${ }^{32}$ for the activation of nucleophiles and electrophiles respectively.

Figure 1.7 Positions most frequently modified in cinchona alkaloids.
The 6'-methoxy group of quinine and quinidine can also be readily derivatised to a phenolic free OH group, which can serve as an effective H -bond donor in asymmetric processes such as Henry reactions and Michael additions. Further fine tuning of the catalytic performance of cinchona alkaloids can be achieved by introduction of aryl or alkyl substituents at the C-2' position of the quinoline moiety. These modifications are thought to influence the steric and electronic properties of cinchona alkaloids, and can also lead to changes in the reactivity of the adjacent nitrogen atom. In the following Sections, modifications at C-9'/C-2' positions will be discussed. Aspects related to modifications at other positions will not be analysed in this thesis, however an excellent review has appeared in recent years which summarises this topic comprehensively. ${ }^{84}$

1.3.1.1 Thiourea moiety introduced at $\mathbf{C - 9}{ }^{\prime}$

Based on Takemoto's findings, ${ }^{63}$ along with the widespread use of cinchona alkaloids in asymmetric organocatalysis, several research groups across the world designed more powerful H -bond donating cinchona alkaloid derivatives by combining the (thio)urea motif with a cinchona alkaloid core. This approach came with the advantages of enhancing the Brønsted acidity, rigidity and hydrogen-bond donating capacity of the natural alkaloids, which can be easily modulated by choosing appropriate substituents on the (thio)urea moiety. Additionally, this strategy allowed for access to (thio)urea derivatives of cinchona alkaloids with both 'natural' and 'unnatural' absolute configurations at $\mathrm{C}-9$, leading to investigations on the effect of the stereochemistry at C 9 on the catalysts activity.

Chen and co-workers ${ }^{94}$ were the first to probe those structures, employing thioureasubstituted cinchona alkaloids such as cinchonine $\mathbf{1 0 0}$ in the conjugate addition reaction of thiophenol (88) to α, β-unsaturated imide 99 (Scheme 1.24). Despite the high yields observed, the product 101 was isolated in low enantiomeric excess ($<20 \%$ ee).

Scheme 1.24 The first Michael addition reaction mediated by thiourea-substituted cinchona alkaloid.

Later on, Soós et al. ${ }^{95}$ developed four thiourea-substituted cinchona alkaloid catalysts, which were evaluated in the enantioselective addition of nitromethane (103) to (E) chalcone (102, Scheme 1.25). Catalysts $\mathbf{1 0 6}$ and $\mathbf{1 0 8}$ were synthesised from the readily available alkaloids quinine and quinidine respectively ($\mathbf{7 9}$ and 81, Figure 1.4) in two steps with overall epimerisation of the C-9 stereocentre. Unexpectedly, the thiourea derivative of quinine (105) with natural stereochemistry at C-9 failed to promote the reaction, just as quinine itself. Meanwhile, both epi-thiourea $\mathbf{1 0 6}$ and its pseudoenantiomer $\mathbf{1 0 8}$ proved to be active, furnishing products such as $\mathbf{1 0 4}$ with opposite absolute configurations. A
further improvement in both enantiocontrol and yield was achieved when catalyst 107, synthesised from dihydroquinine with inversion of configuration, was employed in the same reaction under identical conditions (Scheme 1.25).

Scheme 1.25 Asymmetric addition of nitromethane to chalcone mediated by thiourea cinchona organocatalysts.

These results indicated that the appropriate relative stereochemistry of catalysts at C-8/C9 is critical to obtain satisfactory levels of activity and selectivity in bifunctional catalysis. ${ }^{95}$

Shortly after, Connon et al. ${ }^{96}$ designed a range of (thio)urea-substituted derivatives of dihydroquinine (DHQ) and dihydroquinidine (DHQD) and evaluated them in the asymmetric Michael addition of dimethylmalonate (109) to nitrostyrene (66, Scheme 1.26)

Scheme 1.26 Michael addition promoted by thiourea cinchona alkaloid catalyst 107 reported by Connon et al.

In particular, it was found that epi-dihydroquinine-derived thiourea catalyst $\mathbf{1 0 7}$ promoted the reaction at a very low loading ($0.5 \mathrm{~mol} \%$), providing access to synthetically useful
enantioenriched nitroalkanes (R)-110 in $\mathbf{9 9 \%}$ enantiomeric excess and 98% isolated yield (Scheme 1.26). ${ }^{96}$ Almost simultaneously, a similar study by Dixon et al. ${ }^{97}$ investigated the use of a small library of catalysts bearing different hydrogen-bond donating moieties in the Michael addition of $\mathbf{1 0 9}$ to $\mathbf{6 6}$.

Scheme 1.27 Michael addition promoted by thiourea cinchona catalyst $\mathbf{1 0 0}$ reported by Dixon et al.

Of all the catalysts screened, epi-cinchonine-derived thiourea catalyst $\mathbf{1 0 0}$ favoured the formation of Michael adduct (S) $\mathbf{- 1 1 0}$, with inverted absolute configurations, albeit with yields and enantioselectivities comparable to those reported by Connon et al. ${ }^{96}$ Later, Dixon et al. demonstrated the synthetic power of this process by employing it as the key step in both the total asymmetric synthesis of antidepressant (R)-rolipram and the formal total asymmetric synthesis of ($3 S, 4 R$)-paroxetine (Scheme 1.27). ${ }^{98}$

1.3.1.2 \quad Squaramide moiety introduced at C-9’

Since Rawal and co-workers' seminal studies on squaramides, ${ }^{77}$ their incorporation into the cinchona alkaloid scaffold for the development of organocatalysts has gained immense popularity.

In 2008, they designed a squaramide C-9 substituted cinchona alkaloid organocatalyst 112 and evaluated it in the Michael addition between 1,3-dicarbonyl compound $\mathbf{1 1 1}$ and nitroolefin 66, (Scheme 1.28). ${ }^{99}$ At exceptionally low loadings ($0.5 \mathrm{~mol} \%$), $\mathbf{1 1 2}$ was found to promote the addition smoothly, furnishing Michael adduct 113 in high yield and excellent enantioselectivity (Scheme 1.28).

Scheme 1.28 Michael addition promoted by squaramide cinchona catalyst $\mathbf{1 1 2}$.

Afterwards, various publications emerged documenting the applications of squaramidederived cinchona alkaloids, not only in one step C-C and carbon-heteroatom bond formations but also in various cascade reactions, which allow for rapid access to complex molecular structures. ${ }^{100}$

In particular, readily accessible quinine and (dihydro)quinine derived catalysts 114 and 115, (Scheme 1.29) have received a considerable amount of attention. A select few enantioselective transformations employing these catalysts are outlined below.

Scheme 1.29 Squaramide substituted derived-cinchona alkaloid catalysts.

More recently, Du et al. have developed an efficient enantioselective Strecker reaction between imines bearing a benzothiazole moiety (e.g, 116a,b) and TMSCN 118, mediated by cinchona-based squaramide catalyst 114. ${ }^{101}$ Electron-poor and electron-rich benzothiazole imines were tested and in most the cases the desired products (117a,b)
were obtained with yields ranging from $80-99 \%$ and $e e$ of up to 98%. As shown in the transition state assembly in Scheme 1.30, the squaramide moiety of $\mathbf{1 1 4}$ behaves as a Brønsted acid via dual hydrogen bond donation - activating the exocyclic imine (116a, 116b). Meanwhile, the basic quinuclidine moiety deprotonates HCN (generated in situ from TMSCN and EtOH) and the resulting cyanide anion attacks the imine carbon from the most favored re-face, affording amino nitrile products $\mathbf{1 1 7} \mathbf{a}$ and 117b with excellent enantioselectivity. ${ }^{101}$

Scheme 1.30 Squaramide cinchona catalyst 114 mediates Strecker reaction.
In 2015, the same authors, employed squaramide substituted catalyst $\mathbf{1 1 5}$ for the first time in a cascade aza-Michael/Michael addition of tosylaminomethyl enone $\mathbf{1 2 0}$ to 3ylideneoxindole $\mathbf{1 1 9}$ for the enantioselective synthesis of $\mathbf{1 2 1}$ (Scheme 1.31). ${ }^{102}$ Although the asymmetric preparation of this scaffold would normally pose a great challenge, due to the presence of multiple stereocentres, this strategy allows for facile entry into highly functionalised spiro-compounds - a common scaffold in a range of bioactive products. ${ }^{103}$

Scheme 1.31 Aza-Michael reactions mediated by catalyst $\mathbf{1 1 5}$.
A similar stereoselective cascade aza-Michael/Michael addition was later proposed as a powerful method for the construction of chiral pyrrolidines containing three contiguous stereocentres. The catalyst 115, once again proved to promote the cascade reaction between tosylaminomethyl enone $\mathbf{1 2 0}$ and nitrostyrene 66, furnishing the desired product 122 in 85% yield and 99% ee (Scheme 1.32). ${ }^{104}$

Scheme 1.32 Enantioselective cascade aza-Michael/Michael reaction for the synthesis of chiral pyrrolidines.

1.3.2 Modification at C-2'

In 2006, Gaunt and co-workers published a series of studies which aimed to improve the catalysis of an intramolecular cyclopropanation reaction by developing C-2' modified cinchona alkaloids. ${ }^{105}$ They noticed that the use of quinine and quinidine derivatives such as $\mathbf{1 2 6}$ (Scheme 1.33) in the cyclopropanation of halogenated ketone $\mathbf{1 2 3}$ furnished product $\mathbf{1 2 4}$ with high enantiomeric excesses but poor yields. They attributed the unsatisfactory yields observed to the formation of the unreactive ammonium ylide intermediate $\mathbf{1 2 5}$ (Scheme 1.33) generated by alkylation of the quinoline nitrogen with the α-haloketone. Thus, in order to prevent this side reaction, they rendered the nitrogen atom more sterically hindered by installing a methyl substituent at the C 2 ' position. The resulting catalyst $\mathbf{1 2 7}$ was found to provide the desired product in higher yield and excellent enantioselectivity. ${ }^{105}$

Scheme 1.33 Asymmetric intramolecular cyclopropanation promoted by cinchona alkaloid derivatives.

More recently, Deng et al. ${ }^{106}$ developed a series of C-2' substituted cinchona alkaloid derivatives and investigated their catalytic activity in asymmetric isomerisation reactions
of the aromatic trifluoromethyl imine 128. The study demonstrated that the stereocontrol of the process is influenced by the electronic properties of the substituents at C-2', as the replacement of the methyl group with a bromine or chlorine atom resulted in an increase in enantiomeric excess. Accordingly, catalyst $\mathbf{1 2 9}$ efficiently promoted the isomerisation of both aromatic and aliphatic imines to give $\mathbf{1 3 0}$ in good yield and high enantiomeric excess. Subsequent acid hydrolysis allowed access to the corresponding chiral amines 131 in high ee (Scheme 1.34).

Scheme 1.34 Asymmetric isomerisation of imine $\mathbf{1 2 8}$ promoted by the C-2' substituted cinchona alkaloid 129.

Other C-2' substituted cinchona alkaloid derivatives have appeared in the literature, these have found applications in different areas of asymmetric catalysis such as aminocatalysis ${ }^{107}$ and organometallic chemistry, where they are used as ligands. ${ }^{108}$

1.4 Cycloaddition reactions involving cyclic anhydrides

Historically, the use of anhydrides in synthesis has been dominated by their ability to act as electrophiles. A relatively small number of reactions involving the participation of enolisable anhydrides as nucleophiles in aldol-like coupling processes have been reported. ${ }^{109}$ Although reactions of enolisable cyclic anhydrides as carbon-based nucleophiles in formal cycloadditions are hystorically rare, they can be extremely useful as a one-step synthesis of carbo- and heterocycles, and generate densely functionalised products (with the formation of multiple new stereocentres) including compounds of medicinal/pharmaceutical interest. ${ }^{109}$

1.4.1 Anhydrides behaving as carbon based nucleophiles: a historical overview

Enolisable anhydrides have long been known to react as carbon-based nucleophiles with electron deficient π-systems such as aldehydes, imines, ketones and alkenes or alkynes. The first example of an anhydride reacting as a nucleophile was reported by Perkin in
1868. ${ }^{110} \mathrm{He}$ found that heating enolisable anhydrides of general type 133 with salicylaldehyde $\mathbf{1 3 2}$ in the presence of a weak base afforded coumarins $\mathbf{1 3 4}$ (Scheme 1.35). ${ }^{110,111}$

Scheme 1.35 Reaction between aliphatic anhydrides and salicylaldehyde.
One year later, he extended this work, by using cyclic enolisable anhydrides, reacting succinic anhydride (136) with benzaldehyde (135) at high temperature in the presence of sodium succinate (137) forming 138 after decarboxylation of the intermediate (Scheme 1.36). ${ }^{112}$ In 1883, Fittig and co-workers repeated these reactions at lower temperatures in order to clarify the mechanism. At $100^{\circ} \mathrm{C}$ they observed an initial aldol-like addition of the anhydride to the aldehyde, followed by lactonisation of the intermediate hydroxy acid 139 to give γ-butyrolactone 140 , which when heated at temperatures above $150{ }^{\circ} \mathrm{C}$, furnished the α, β-unsaturated acid $\mathbf{1 3 8}$ upon loss of CO_{2} (Scheme 1.36). ${ }^{113}$

Scheme 0.36 Addition of succinic anhydride to benzaldehyde (135).
Besides the synthesis of γ-lactones involving succinic anhydride reported above, in 1931 Müller described the first condensation of the sodium enolate of homophthalic anhydride 141 with benzaldehyde $\mathbf{1 3 5}$ to form bicyclic dihydroisocoumarin derivative 144 (Scheme 1.37). ${ }^{114}$ Much later, Pinder et al. confirmed the reactivity observed by Müller when they reacted $\mathbf{1 4 1}$ with piperonal (142) at room temperature to obtain the dihydroisocoumarin derivative 143 (Scheme 1.37). ${ }^{115}$

Scheme 1.37 Homophthalic anhydride enolate in a formal cycloaddition reaction with aldehydes as reported by Pinder et al. and Müller et al. respectively

In 1969, Castagnoli et al. reported the first examples of formal cycloaddition reactions between cyclic anhydrides and imines as a strategy for the synthesis of the the alkaloid nicotine. They observed that succinic anhydride 136 reacted under thermal conditions with aromatic N-benzylidenemethanamine (145) to form γ-lactam 146, as a mixture of trans-146 (major) and cis-146 (minor) diastereomers in good yield (Scheme 1.38). ${ }^{116}$ The substrate scope of this reaction was then explored employing glutaric anhydrides to form a diastereomeric mixture of δ-lactams in significant yield and diastereoselectivity. ${ }^{117,118,119}$

Scheme 1.38 Cycloaddition reaction between succinic anhydride and imine 145.
Shortly after, Haimova et al. ${ }^{120}$ and Cushman et al. ${ }^{121}$ almost simultaneously reported the use of homophthalic anhydride (147) and derivatives in the cycloaddition reaction with imines such as $\mathbf{1 4 8}$ at room temperature as an efficient method for the synthesis of diastereomeric mixtures of dihydroisoquinolonic acids $\mathbf{1 4 9}$ (Scheme 1.39), ${ }^{121}$ Cushman was also responsible for proposing the mechanism of the reaction in a subsequent study. ${ }^{122}$ This process was widely explored with respect to various homophthalic anhydrides and imines, which were found to be well tolerated affording the respective products in good yields and in some cases with good diastereocontrol.

Scheme 1.39 Homophthalic anhydride in formal cycloaddition reactions with imines as reported by Cushman and Haimova.

However, some differences regarding the diastereoselectivity of the reaction were evident upon comparison of Cushman's and Haimova's reports. A few years later, Cushman explained this discrepancy by demonstrating that $c i s$-isomers were kinetically favoured and could epimerise to trans-isomers upon heating in either xylene or acetic acid, and also during the basic extraction employed by Haimova et al. in their study. ${ }^{120}$

Cycloaddition reactions involving homophthalic anhydride were futher explored by Tamura et al. in 1981. They described that unsaturated (di)enones and enynes are able to react with homophthalic anhydride under thermal conditions to furnish fused aromatic products in low to moderate yield. ${ }^{123,124}$

1.4.2 Formal cycloaddition reactions between enolisable anhydride and aldehydes

As described in preliminary reports by Fittig, ${ }^{113}$ Müller ${ }^{114}$ and Pinder, ${ }^{115}$ enolisable anhydrides, in particular homophthalic anhydride, can react with aromatic aldehydes in the presence of stoichiometric amounts of either base ${ }^{126,127,129}$ or Lewis acid. ${ }^{128}$ Aldehydes are not nucleophilic enough to attack the anhydride, thus the reaction is believed to proceed by initial enolisation of the anhydride 147 , (promoted by a base or Lewis acid) followed by addition of the reactive enolate species $\mathbf{1 5 0 a}, \mathrm{b}$ to the benzaldehyde (135) to form a tetrahedral intermediate (151a,b), which rapidly lactonises in an intramolecular process to furnish the dihydroisocoumarin product $\mathbf{1 4 4}$ as a mixture of two diastereomers, with the trans-isomer generally being favoured (Scheme $1.40, \mathbf{A}$ and \mathbf{B}). ${ }^{109}$ The rate limiting step of both processes is in the formation of the enolate species - which is favoured when aromatic anhydrides are employed (e.g. homphthalic anhydride), as the negative charge can be stabilised by delocalisation through the fused aromatic ring.

Scheme 1.40 Proposed mechanism of the annulation between homophthalic anhydride and benzaldehyde in the presence either base (A) or Lewis acid (B).

Inspired by Pinder's report, ${ }^{116}$ Girotra et al. ${ }^{125}$ and Nakajima et al. ${ }^{126}$ independently demonstrated the application of acid/base-promoted cycloadditions in the synthesis of lactones which serve as intermediates to natural products. However, these publications lack insight with respect to both the reaction mechanism and stereochemical outcome.

In 1991, Kita and co-workers ${ }^{127}$ first examined the possibility of promoting the cycloaddition of $\mathbf{1 4 7}$ to aldehydes via base-mediated reaction. They carried out a series of experiments to evaluate the effect of temperature on the reaction between homophthalic anhydride (147) and $\mathbf{1 3 5}$ in the presence of different bases (Scheme 1.41). The use of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, as previously documented by Nakajima, formed the cycloadducts 152 and the C-4 condensed product 153 (a Perkin-type product), isolated as methyl esters after derivatisation with diazomethane.

Scheme 1.41 Effects of base and temperature on the cycloaddition reaction.

Their focus then shifted to the use of a stronger base to promote the reaction, such as sodium hydride. As shown in Scheme 1.41, at low temperature the kinetic cycloadduct

152 was formed exclusively, while at higher temperature, under thermodynamic control, the C-4 condensed adduct $\mathbf{1 5 3}$ dominated. ${ }^{127}$

Gesquierre et al. ${ }^{128}$ later demonstrated that stoichiometric quantities of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ could mediate formal cycloadditions between aldehydes or ketones such as $\mathbf{1 3 5}$ and 19 and homophthalic anhydrides 147 and 154. It was thought that the Lewis acid plays a dual role in activating the aldehyde by coordination to the oxygen atom, and inducing enolate formation by binding to the anhydride. This approach proved to be extremely efficient as it affords the desired products (e.g. 144 and 155) as a mixture of cis and trans diastereomers in good yields by suppressing the formation of the C-4 condensed adduct which dominates product mixtures when the reaction is not conducted at low temperature (Scheme 1.42).

Scheme 1.42 Cycloaddition reaction between homophthalic anhydrides and aldehydes $/$ ketones promoted by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

A similar transformation was subsequently reported by Palmavera and co-workers, ${ }^{129}$ who investigated the catalytic performance of 4-dimethylaminopyridine (DMAP) under mild conditions. The authors evaluated the reaction of homophthalic anhydride with a wide variety of aromatic and heteroaromatic aldehydes in the presence of stoichiometric amounts of DMAP at room temperature (Scheme 1.43). The reaction proceeded swiftly, affording a mixture of two diastereomers with a general preference for the formation of the trans-isomers. Unlike the previous studies, diastereoselectivities were measured by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude mixture after work up.

As shown in Scheme 1.43, the use of either benzaldehyde (135) or substituted benzaldehydes bearing electron-widrawing groups (e.g. 156) formed cycloadducts $\mathbf{1 4 4} \mathbf{a}, \mathbf{b}$ and $\mathbf{1 5 9 a}, \mathbf{b}$ respectively in yields of up to 98% with an approximate $d r$ of $2: 1$. In cases where the aldehyde is substituted with a heterocyclic ring, such as furan-2-yl 158,
the C-4 methylene condensed product 161c was detected in quantities of up to 30% along with the diastereomeric mixture of $\mathbf{1 6 1 9}, \mathbf{b}$. Formation of the side product $\mathbf{1 6 0 c}$, albeit at low quantities ($<10 \%$), was also observed when the electron-rich aldehyde 157 was employed. ${ }^{129}$

Scheme 1.43 Cycloaddition between homophthalic anhydride (147) and aldehydes catalysed by DMAP.

1.4.2.1 Expansion of the scope of the reaction: the anhydride component

Aldehydes have been employed in formal cycloaddition reactions in conjunction with several cyclic anhydrides, however the substrate scope of these reactions is considerably limited, largely being restricted to aromatic aldehydes and succinic or homophthalic anhydrides. As mentioned in Section 1.4.2, structurally simpler anhydrides devoid of a stabilising group (e.g. succinic anhydride) generally require strong acids/bases or harsh reaction conditions to allow for the synthesis of lactones in moderate yields and diastereoselectivities.

In 1983, Lawlor et al. ${ }^{130}$ carried out a series of studies aiming to optimise the reaction between succinic anhydride and aromatic aldehydes, just carried out by Fitting et al. some years earlier. ${ }^{113}$ They developed a strategy in which a series of aromatic aldehydes/ketones such as $\mathbf{1 5 6}$ and $\mathbf{1 6 2}$ reacted with $\mathbf{1 3 6}$ in the presence of a Lewis acid (e.g. ZnCl_{2}) and triethylamine (Scheme 1.44). This methodology furnished derivatives of paraconic acid ${ }^{131} 165$ and 166 respectively, via intermediates 163 and 164, in greater yields compared to those achieved in the Perkin-Fittig condensation itself. ${ }^{12,113}$

Scheme 0.44 Lewis acid/base-catalysed cycloaddition reaction of succinic anhydride (136) to aldehydes and ketones.

The use of weak bases (e.g. sodium acetate) under thermal conditions was also investigated, however low yields and poor stereoselectivities were reported. ${ }^{132,133,134}$ Formation of the enolate of substituted succinic anhydrides in the cycloaddition reaction with aldehydes can also be promoted by strong hindered bases such as lithium alkoxides ${ }^{135}$ or LiHMDS (and $\mathrm{Na}^{+} / \mathrm{K}^{+}$salts thereof), ${ }^{136,137,138}$ which furnishes products in greater yield and diasterocontrol.

1.4.3 Formal cycloaddition reactions with other electrophiles

In 1981, Tamura et al. ${ }^{123,124}$ demonstrated for the first time that homophthalic anhydride 147 reacts readily with activated alkynes (e.g. 169), and unsaturated carbon-carbon multiple bond moieties (167) at high temperature, leading to the formation of fused aromatic products such as $\mathbf{1 6 8}$ and $\mathbf{1 7 0}$ in a regioselective manner, although in low to moderate yields (Scheme 1.45).

Scheme 1.45 Cycloaddition of homophthalic anhydride to carbon-carbon multiple bonds.

Later on, a base promoted version of this reaction was developed by the same authors, who demonstrated that the use of strong bases such a lithium diisopropylamide (LDA) or sodium hydride (NaH) allowed the reaction to proceed smoothly under milder conditions to furnish products (e.g. 172, 174) in greater yields compared to those obtained under thermal conditions (Scheme 1.46). ${ }^{139}$ This strategy was extended to a variety of alkenes (e.g. 173) and alkynes such as 171, generally requiring electron-withdrawing groups at both termini to render highly functionalised products in good yields. ${ }^{139}$

Scheme 1.46 Cycloaddition reaction between homophthalic anhydride and different electrophiles promoted by strong bases.

In order to explain the mechanism of the reaction and its observed regioselectivity, Tamura et al. initially proposed two possible pathways, ${ }^{123}$ followed by a third mechanism two years later. ${ }^{124}$

The first proposed mechanism speculated that the intermediate 175, generated via decarboxylation of 147, undergoes an electrocyclic ring opening and subsequent concerted thermal $[4+2]$ cycloaddition with the dienophile $\mathbf{1 7 7}$, to form the cycloadduct 178, which undergoes elimination of molecular hydrogen and tautomerisation to the aromatic product $\mathbf{1 7 9}$ (A, Scheme 1.47). ${ }^{123}$

However, this mechanism was deemed improbable when prolonged heating of the reaction mixture containing 147 in dichlorobenzene failed to form $\mathbf{1 7 5}$ or 176, and homophthalic anhydride was recovered from the process unchanged. ${ }^{123}$

Scheme 1.47 (A) Proposed [4+2] cycloaddition mechanism (B) Diels-Alder cycloaddition. (C) Step-wise Michael addition/ring closure mechanism.

The second pathway postulated that C-C bond formation may proceed via an initial Diels Alder cycloaddition between the conjugated dienol tautomer of 147 (e.g. 180) and the electrophile 177 to afford 181, which after decarboxylation and tautomerisation affords $\mathbf{1 7 9}$ (B, Scheme 1.47). ${ }^{123}$ The formation of $\mathbf{1 8 0}$ was supported by the isolation of adduct 186, formed by the cycloaddition of N-phenylmaleinimide 184 with the conjugate enol intermediate 185, which was derived from to the dienol tautomer intermediate 180 (Scheme 1.48). ${ }^{124}$

Scheme 1.48 Evidence favouring the Diels-Alder cycloaddition pathway.
The third postulated mechanism involves the Michael addition of the enol of 147 (e.g. 150b) to dienophile $\mathbf{1 7 7}$ to furnish Michael adduct 182, which undergoes intramolecular cyclisation to the cycloadduct 183. Subsequent decarboxylation and elimination of molecular hydrogen followed by tautomerisation affords the product $\mathbf{1 7 9}$ (C, Scheme
1.47). ${ }^{124}$ However, a brief mechanistic study by Tamura et al. later rejected this pathway when the lithium enolate of homophthalic anhydride failed to react with several well known Michael acceptors. ${ }^{139 \mathrm{~b}}$ Thus, all evidence reported by Tamura et al. to date strongly supports the Diels-Alder mechanism, however the stepwise route C cannot be totally excluded. ${ }^{139 b}$

In regiochemical agreement with the Diels-Alder model, 170 was formed exclusively in the cycloaddition between 180 and 169 , with no formation of regioisomer 187 under the reported conditions (Scheme 1.49). ${ }^{123}$ The most efficient orbital overlap occurs between the nucleophilic carbon of the diene $\mathbf{1 8 0}$ (bearing the largest HOMO coefficient) and the unsubstituted alkyne carbon of $\mathbf{1 6 9}$ (possessing the largest LUMO coefficient). ${ }^{140,141}$

Scheme 1.49 Regioselective cycloaddition reaction between 180 and dienophile 169.
Over the years the versatility of this protocol has been exploited by Tamura and several other groups in the total synthesis of natural products, namely antracyclinones- precursors of antibiotics which have also proven medicinally valuable in the treatment of a range of human cancers. ${ }^{142,143,144}$

This process has also been utilised in the construction of highly functionalised aromatic systems, and was successfully employed by Danishefsky and co-workers in the synthesis of 191 as an aglycone intermediate of the antibiotic lactonamycin (192). ${ }^{145}$ The reaction of homopthalic anhydride derivative $\mathbf{1 8 8}$ with 2 equiv. of quinone $\mathbf{1 8 9}$ in the presence of sodium hydride afforded the tetracyclic intermediate 190 in moderate yield and high regiocontrol due to hydrogen-bond activation from the unprotected hydroxyl group on the side chain of $\mathbf{1 8 9}$ (Scheme 1.50). ${ }^{146}$

Scheme 1.50 Lactonamycinone synthesis developed by Danishefsky and co-workers.
Although strong bases were widely employed in most total syntheses involving this process, in 1991, Smith et. al. ${ }^{147}$ demonstrated that a 15% loading of triethylamine could promote the reaction between 3-methoxyhomophthalic anhydride and substituted alkynes to provide naphthalene derivatives in good yields.

1.5 Catalytic asymmetric reactions involving enolisable anhydrides

Over the past several decades, formal cycloaddition reactions of enolisable anhydrides to various electrophiles have been investigated extensively, having been employed in key transformations in the total syntheses of natural products ${ }^{109}$ and drug leads. ${ }^{148}$ Despite the fact that these annulation reactions generally form two stereocentres, and in spite of the high synthetic potential of the densely functionalised heterocyclic core formed (which is present in a broad range of natural products and other molecules of medicinal/pharmaceutical interest), ${ }^{149,150}$ until very recently ${ }^{151,167}$ no asymmetric variant of formal cycloaddition reactions with aldehydes or other electrophiles had been reported The recent studies which aimed to develop asymmetric variants of these reactions will be discussed in the next Section.

1.5.1 Organocatalytic cycloaddition reaction between homophthalic anhydride and aldehydes for the synthesis of chiral dihydroisocoumarin cores

3,4-Dihydroisocoumarins are a structurally diverse class of natural lactones exhibiting a broad spectrum of biological activity. A considerable amount of work has been published detailing their chemistry and biology, and a number of natural and synthetic molecules containing the 3,4-dihydroisocoumarin cores have been shown to exhibit significant pharmacological activities ranging from antimicrobial to anticancer ${ }^{152,153,154}$ and antiHIV. ${ }^{155}$ The majority of these natural products share common structural feautures such as a hydroxyl group at the $\mathrm{C}-8$ position, and a chiral center at the $\mathrm{C}-3$ ' which generally bears alkyl, alkenyl or aryl groups. The structures of some of the members belonging to this class of compounds are depicted in Figure 1.8.

Figure 1.8 Selected natural products containing the 3,4-dihydroisocoumarin framework.

As with other classes of natural products, several novel asymmetric methodologies ${ }^{156,157,158}$ have been developed during the course of synthesis of these compounds. However, most procedures suffer numerous drawbacks such as having too many steps, low yields due to formation of side products, and/or a requirement for harsh reaction conditions.

In 2012, Connon and co-workers reported the first asymmetric cycloaddition reaction of enolisable anhydrides to aldehydes in the presence of a chiral bifunctional organocatalyst, yielding a one-step synthesis of the dihydroisocoumarin structure with the formation of two adjacent stereocenters. The screening of a range of (thio)urea and squaramide cinchona alkaloid-derived catalysts demonstrated that the reaction between homophthalic anhydride (147) and benzaldehyde (135) catalysed by a novel squaramide 200 generated the lactone 152 with a preference for the trans-stereoisomer in 98% yield, good diastereoselectivity and 97% ee under mild conditions (Scheme 1.51). ${ }^{151}$

Scheme 1.51 Asymmetric cycloaddition reaction between homophthalic anhydride and benzaldehyde under optimal conditions.

Using these above conditions, the scope of the reaction with respect to the aldehyde component was investigated. Electron-deficient and electron-rich aromatic aldehydes, as well as hindered and heterocyclic aldehydes were all well tolerated. In addition, the effect of substitution on the homophthalic anhydride's aromatic ring was also investigated (NO_{2}, - Br and -OMe). As expected, electron-withdrawing, as opposed to electrondonating groups on the ring brought about faster reactions, as electron-withdrawing groups would stabilise the enol - leading to greater concentrations in solution. This observation supports the idea that the anhydride - enol tautomeric equilibrium has a key
influence on the reaction rate in the catalytic process. It is noteworthy that while the diastereoselectivity is uniformly excellent in the case of aromatic aldehydes, the use of both more hindered and straight-chain aldehydes such as $\mathbf{2 0 1}$ and $\mathbf{2 0 2}$ leads to decreased levels of the trans-diastereomers (e.g. 203, 204) over the cis-diastereomers (e.g. 203, 204), which were both obtained in remarkable enantiomeric excess. ${ }^{151}$

1.5.1.1 Stereochemical outcome: proposed mechanism

In order to explain the mechanism and the stereochemical outcome observed in the previous studies, the authors initially proposed two plausible pathways for the reaction between homophthalic anhydride and benzaldehyde in the presence of catalyst 200. ${ }^{151}$ One possibility is a specific catalysis-like mechanism in which the quinuclidine moiety deprotonates the homophthalic anhydride to form the enolate (Figure 1.9). This species, once stabilised through double H -bonding by the squaramide unit, reacts with the aldehyde which has been activated by the protonated quinuclidine in the key stereocentre forming step. In the second possible catalyst binding mode, the catalyst promotes the reaction via general acid/base catalysis, in which the enol tautomer of the anhydride is held in place by a hydrogen bonding interaction with the quinuclidine nitrogen atom, while the aldehyde is activated by hydrogen bond donation from the squaramide moiety (Figure 1.9). Computational studies later carried out by Connon et al. ${ }^{159}$ were able to discriminate between these mechanisms on the basis of there being a higher energetic barrier associated with enol formation and $\mathrm{C}-\mathrm{C}$ bond formation in a concerted generalcatalysis scenario, which allowed the authors to rule out this route.

Specific acid/base catalysis

General acid/base catalysis

Figure 1.9 Proposed generic mechanisms: specific acid/base catalysis and general acid/base catalysis.

In agreement with experimental results, computational studies revealed the pathway leading to formation of the major trans- (R, R) diastereomer to be favoured. The stereochemical outcome was found to be controlled by the attractive interactions between the catalyst's quinuclidine/C'-2 quinoline rings and the anhydride oxygen atoms, which facilitate the binding of the enolate to the squaramide moiety in a selective fashion. Thus, only a single enolate face is available to attack the aldehyde, which directs its phenyl moiety into empty space away from the squaramide moiety in order to minimise steric clashes with either the catalyst quinuclidine/quinoline rings or the anhydride itself (Figure 1.10). It is important to note that the C-2' phenyl ring stabilises the hydrogen-bonding interactions between the squaramide moiety and the anhydride through an attractive $\mathrm{C}-\mathrm{H}$ interaction between the aryl unit and anhydride oxygen atom - pointing out a key role that this modification may play in cinchona-based catalysis.

Figure 1.10 Proposal stereochemical outcome.

1.5.2 Organocatalytic cycloaddition reaction between phenyl succinic anhydride derivatives and aldehydes

Another common building block present in many natural products is that of γ butyrolactones ${ }^{160,161}$ - being particularly abundant in fungi, lichens and bacteria. A wide variety of these compounds are naturally occurring as mono-, di- and trisubstituted monocyclic paraconic acids, but are also found as part of more complex frameworks especially within bi- and tricyclic ring systems as shown in Figure 1.11. A broad biological profile including antibiotic, antihelmitic, antifungal, antitumor, antiviral, antiinflammatory and cytostatic properties ${ }^{162}$ make γ-butyrolactones interesting lead structures for the discovery of new pharmaceutical compounds.

callitrin (205)

(-)-muricatacin (208)

xanthatin (206)

(+)-methylenolactocin (209)

encelin (207)

(+)-phaseolinic acid (210)

Figure 1.11 Selected natural products containing the γ-butyrolactone unit.

Consequently, a number of stereoselective syntheses have been developed which allow for the construction of a variety of paraconic acids in their racemic and enantiopure forms. Most of the asymmetric approaches involve the use of chiral pool (especially carbohydrates and sesquiterpene lactones), ${ }^{163,164}$ chiral auxiliaries (e.g. acyloxazolidinone), ${ }^{165}$ and catalytic asymmetric strategies such as Sharpless epoxidations. ${ }^{166}$ Although all the aforementioned strategies afford the desired enantioenriched γ-butyrolactones in good yield, they generally suffer limitations such as reduced functional diversity of products and involvement of complex multi-step procedures.

Retrosynthetic disconnection of a lactone shows that their synthesis may be achieved via a formal cycloaddition between enolisable cyclic anhydrides and aldehydes. Due to a lack of any effective asymmetric methodology for this transformation, recently Connon et al. went about an intense investigation into the development an efficient and versatile asymmetric organocatalytic protocol able to furnish densely functionalised lactones with the simultaneous formation of up to two new stereocentres in a single step. ${ }^{167}$

In 2012, it was demonstrated that under mild conditions, catalyst $\mathbf{2 0 0}$ can provide onepot access to functionalised γ-butyrolactones in high yield and good-excellent stereocontrol by promoting the cycloaddition between phenyl succinic derivatived anhydrides and aldehydes (Scheme 1.52). ${ }^{167}$

Scheme 1.52 Aymmetric cycloaddition reaction between p-nitrophenyl succinic anhydride and benzaldehyde under optimal conditions.

Consistent with the observations made in the cycloaddition reaction with homophthalic anhydride derivatives, it was reported that introduction of electron-withdrawing and donating groups on the aromatic ring of phenylsuccinic anhydride resulted in a significant variation in reactivity, and allowed the identification of 4-nitrophenyl succinic anhydride (200) as an optimum substrate for the subsequent investigation of the reaction scope with respect to the aldehyde component. Reactions involving simple aromatic and heteroaromatic aldehydes furnished the desired products (e.g. 212) with moderate to excellent diastereo- and enantioselectivity, whereas hindered and aliphatic aldehydes such as 201, 202 led to increased amounts of the cis-diastereomer being isolated (e.g. 213, 214).

1.5.3 Kavalactones as important building blocks in natural products

Kavalactones are a class of natural products isolated from the roots and rhizomes of the kava plant Piper methysticum - widespread in the South Pacific islands. ${ }^{168}$ The extract of this plant contains several active compounds known as kavapyrones, ${ }^{169}$ which exhibit significant biological activity including sedative, anticonvulsive, anaesthetic, and anxiolytic properties. ${ }^{170}$ These compounds present a common 3,4-dihydropyrone core (Figure 1.12), usually bearing a methoxy-group at $\mathrm{C}-5$ ', and a lipophilic chain or heteroaromatic ring at $\mathrm{C}-3^{\prime}$. Hydroxyl functionalities substituted with a glycoside unit at C-4' have also been observed. Although a number of the kavalactones are achiral, the majority of them possess a single stereogenic centre at C-3'.

Figure 1.12 Selected natural products containing the 3,4 dihydropyrone unit.
The valuable pharmacological activity of kavalactones mentioned previously has sparked the development of several synthetic procedures for their synthesis, such as aldol reactions of N-acetyl thiazolidinethiones followed by a malonate displacement/decarboxylation, ${ }^{171}$ asymmetric hydrogenation of β-ketoesters mediated by a Ru-(+)-BITIANP catalyst, ${ }^{172}$ and enantioselective hydrogenation of 4-alkoxy and 4methyl derivatives of 2-pyrones to the corresponding dihydro analogues by cinchonamodified $\mathrm{Pd} / \mathrm{TiO}_{2},{ }^{173}$ to name a few.

A retrosynthetic disconnection of the kavalactone functionality shows that synthesis of the 3,4 dihydropyrone unit, may again be achieved by formal cycloadditions between cyclic anhydrides and aldehydes (see Chapter 4, Section 4.7).

1.5.4 Accessing cis-dihydroisocoumarins

As previously mentioned in Sections 1.5 .1 and 1.5 .2 , it has been observed that the diastereoselect ivity of the anhydride-aldehyde cycloaddition process is effected in favour of the cis-product when sterically hindered or linear aliphatic aldehydes were employed. Despite cis-dihydroisocoumarin being a fundamental unit found in many compounds possessing a wide range of biological activity ${ }^{149-155}$ (see Section 1.5.1), only one asymmetric synthesis of the cis-diastereomer had been reported in the literature.

Scheme 1.53 Bromocyclisation of styrene-type carboxylic acids promoted by catalyst 221.

In 2011, Yeung and co-workers ${ }^{174}$ reported an enantioselective approach to the synthesis of cis-3,4-dihydroisocoumarins via a bromocyclisation of styrenyl carboxylic acid 220 promoted by amino-thiocarbamate cinchona alkaloid-derived catalyst 221. This procedure allowed for the formation of $\mathbf{2 2 2}$ in 92% ee in which the bromine atom can be readily converted to other functional groups, affording cis configured products such as 224 and 225 -core structures present in an inhibitor of cyclooxygenase-2 and an aldosterone synthase inhibitor respectively (Scheme 1.53). Although this methodology rendered a synthesis of biologically active molecules, several limitations, such as the need for low temperature, poor regioselectivity (as the 5-exo product $\mathbf{2 2 3}$ was also observed), intolerance to aliphatic substituents, and a need for late stage nucleophilic substitution of bromine to obtain the cis-diastereomer were evident. Very recently the same authors were able to control the regioselectivity of the process by using catalytic amounts of trifluoroacetic acid, giving an 6-endo:5-exo ratio of up to 99:1. ${ }^{175}$ However, no regioselective asymmetric synthesis of these products was developed via this method.

1.5.5 Asymmetric cycloaddition reactions between Michael acceptors and enolisable anhydrides

As documented in Section 1.4.3, the reaction between homophthalic anhydride and carbon based electrophiles has been widely studied by Tamura et al., ${ }^{124-125}$ however neither efficient catalytic nor asymmetric variants of this process were developed until 2013.

In that year, Ye and co-workers ${ }^{176}$ reported a cinchona alkaloid-catalysed enantioselective [4+2] cycloaddition between α, β-unsaturated acyl chlorides and electron-deficient alkenes derived from oxindole to give the corresponding spirocarbocyclic oxindoles in good yields with high diastereo- and enantioselectivities.

Around this time, based on the results obtained from their seminal studies on the asymmetric cycloaddition between homophthalic anhydrides and aldehydes, Connon et al. ${ }^{177}$ hypothesised a similar process, in which a Michael acceptor takes the role of the electrophile, may be developed.

This later came into fruition when they reported the asymmetric Tamura cycloaddition between phenyl glutaconic anhydride $\mathbf{2 2 6}$ and substituted alkylidene-2-oxindole $\mathbf{2 2 7}$ in the presence of tert-butyl-substituted squaramide-based catalyst $\mathbf{2 2 8}$ to give one-step access to densely functionalised 3,3-spirooxindole 229 (Scheme 1.54), which are recognised as a privileged core given their wide and promising biological activity in various therapeutic areas. ${ }^{103}$

Scheme 1.54 Asymmetric Tamura cycloaddition between phenyl glutaconic anhydride 226 and substituted alkylidene-2-oxindoles 227.

More recently, Connon and co-workers were able to extend the scope of the electrophile in this process to a range of trisubstituted nitroalkenes. In the presence of the bulky squaramide-based bifunctional catalyst 228, anhydride $\mathbf{2 3 0}$ reacted with $\mathbf{2 3 1}$ to afford bicyclic structures $\mathbf{2 3 2}$ bearing three contiguous stereogenic centres, including one allcarbon quaternary in good yield and enantiocontrol, however in poor $d r$ (Scheme 1.55). ${ }^{178}$ A subsequent computational study of this reaction was able to elucidate an epimerisation process which was observed in methanol in the absence of catalyst 228 (via proton
transfer at the α-carbon to the ester functionality) which converts the cis-diastereomer to the trans with concomitant improvement in enantioselectivity. ${ }^{178}$

Scheme 1.55 Enantioselective cycloaddition reaction between anhydride 230 and trisubstituted nitroalkene 231.

1.6 Kinetic and dynamic resolution: a general introduction

Kinetic resolution is defined as a process in which the enantiomers of a racemic substrate (S) react with a chiral reagent (e.g. catalyst, solvent) at different rates, forming two diastereomeric transition states. ${ }^{179}$ The difference in energy between the transition states $\left(\Delta \mathrm{E}_{\mathrm{a}}\right)$ associated with the slow and the fast reacting enantiomers (R and S respectively, Figure 1.13) determines the preferential reaction of one enantiomer over the other to give a separable mixture of enantioenriched starting material and product.

Figure 1.13 Theoretical free energy diagram for kinetic resolution.

The efficiency of a kinetic resolution is expressed in terms of selectivity factor (S), which is a ratio of the rate constants for the reaction of each substrate enantiomer with the chiral agent $\left(k_{\text {rel }}=k_{\text {fast }} / k_{\text {slow }}\right)$, and is directly related to $\Delta \Delta \mathrm{G}^{\mathrm{TS}}$ according to eq. 1.1. ${ }^{180}$

$$
\begin{equation*}
\mathrm{S}=k_{\mathrm{rel}}=\mathrm{k}_{\mathrm{fast}} / \mathrm{k}_{\mathrm{slow}}=\mathrm{e}^{\Delta \Delta \mathrm{G} / \mathrm{RT}} \tag{eq.1.1}
\end{equation*}
$$

Conveniently, S can be calculated by eqs. 1.2 or 1.3 , where C stands for conversion $(0 \leq$ $\mathrm{C} \leq 1)$ while $e e$ and $e e^{\prime}\left(0 \leq e e\right.$ and $\left.e e^{\prime} \leq 1\right)$ are the enantiomeric excesses of recovered starting material and product respectively. ${ }^{180}$

$$
\begin{equation*}
\mathrm{S}=\frac{\ln [(1-\mathrm{C})(1-e e)]}{\ln [(1-\mathrm{C})(1+e e)]} \tag{eq.1.2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{S}=\frac{\ln \left[1-\mathrm{C}\left(1+e e^{\prime}\right)\right]}{\ln \left[1-\mathrm{C}\left(1-e e^{\prime}\right)\right]} \tag{eq.1.3}
\end{equation*}
$$

Under normal conditions, enantioselective reactions of prochiral substrates yield products with constant $e e$, however in a kinetic resolution process the $e e$ of both starting material and product changes as a function of conversion (Figure 1.14). ${ }^{181}$

Figure 1.14 Plot of substrate $e e$ vs. conversion for different S values. ${ }^{181}$
As the reaction proceeds, the $e e$ of the starting material increases with the opposite observed for the product. The $k_{\text {rel }}$ value determines the extent of substrate conversion necessary to obtain a target $e e$, for instance $\mathrm{S}=10$ allows the isolation of unreacted substrate in 98% ee with a quite reasonable 30% recovery. ${ }^{181}$ In contrast, high selectivity factors ($\mathrm{S}>50$) afford significant amounts of enantioenriched materials ($>98 \% e e, 45 \%$
yield). However, this procedure has the limitation of having a maximum theoretical yield of 50%, which can be improved if the undesired enantiomer can be racemised or otherwise converted back to the desired one. ${ }^{182}$ Efforts devoted to overcoming this drawback to afford compounds with the same high enantiomeric purity but with much improved yields has led to the evolution of classical kinetic resolution into dynamic kinetic resolution (DKR).

DKR combines the resolution step of kinetic resolution with an in situ equilibration or racemisation of the substrate enantiomers. ${ }^{182}$ In order for the DKR to be efficient, the rate constant for the racemisation process should be greater than the rate of reaction of the slow reacting enantiomer with the chiral reagent (e.g. $k_{\text {fast }} \gg k_{\text {slow }}$ and $k_{\text {rac }} \gg k_{\text {slow }}$, Figure 1.15). This process is governed by the continuous equilibrium between the two antipodes through the racemisation of the substrate itself, thus ideally the non-reacting enantiomer is transformed into the reacting one to afford one single stereoisomer of the product with a theoretical yield of 100%. ${ }^{183}$

Figure 1.15 Dynamic kinetic resolution.

In contrast to KR, the levels of enantioselectivity required for DKR are lower, this means that even a modest S value of 20 allows for the preparation of product in $>90 \%$ ee and $>$ 90% yield. This is due to the fact that there is no dependence of the $e e$ of the product on conversion. ${ }^{183}$

1.6.1 Kinetic and dynamic resolution of racemic α-branched aldehydes

KR involving α-branched aldehydes remains relatively undiscovered in the scientific literature, with only a few examples involving these substrates having been reported.

In 1991, Oguni ${ }^{184}$ and co-workers reported the KR of α-branched aldehydes by enantioselective alkylation using diethyl zinc (234) with a catalytic amount of chiral β amino alcohol 235 to furnish enantioenriched alcohol 236 (Scheme 1.56).

Scheme 1.56 KR of aldehydes by enantioselective alkylation with chiral β-amino alcohol 235 .

Preliminary experiments to this study showed that when $(R)-\beta$-amino alcohol $\mathbf{2 3 5}$ was employed, the R enantiomer of the racemic aldehyde $\mathbf{2 3 3}$ reacted faster than the S, thus the S-enriched aldehyde could be recovered unchanged. The enantioselective ethylation proceeds via a dinuclear zinc complex 237a, in which the ethyl group attacks from the less hindered side of the carbonyl group, forming a stereocentre with R configuration.

In 2006 Maruoka and co-workers found that axially chiral organoaluminium Lewis acid 239 could promote an asymmetric 1,2-rearrangement of α, α-disubstituted α-siloxy aldehyde 238 under mild conditions to form enantiomerically enriched chiral α-siloxy ketones 240, while kinetically resolving the starting aldehyde 238 (Scheme 1.57). ${ }^{185}$

Scheme 1.57 KR of α-siloxy aldehydes using a chiral Lewis acid $\mathbf{2 3 9}$ with concomitant acyloin formation.

Alternatively, dynamic kinetic resolution of α-branched aldehydes of general type 241 has been widely investigated, presumably due to their facile racemisation to $\mathbf{2 4 3}$ under acidic or basic conditions via the enolate intermediate $\mathbf{2 4 2}$ as depicted in Scheme 1.58. ${ }^{186}$

Scheme 1.58 Racemisation via tautomerisation.
In 2007, a prime example of α-branched aldehyde DKR was reported by List and coworkers, ${ }^{187}$ who showed that racemic α-arylaldehydes (e.g. 233) could provide the corresponding primary alcohols (e.g. 245) via dynamic kinetic resolution in excellent enantioselectivities and yields upon hydrogenation, promoted by Noyori ruthenium catalyst 244 (Scheme 1.59). ${ }^{188}$

Scheme 1.59 DKR of $\mathbf{2 3 3}$ by hydrogenation using Noyori Ruthenium catalyst.
Around the same time, Zhou ${ }^{188}$ published the same reaction carried out using a similar approach, with 50 atm of H_{2} and a spirocyclic diphosphine ligand. The (S) enantiomer 245 was furnished in 78\% ee from 233.

List and co-workers also described the DKR of $\mathbf{2 3 3}$ in an asymmetric reductive amination reaction with p-anisidine (246) to give α-branched amine 249 in good yield and excellent enantiomeric excess. Under the conditions depicted in Scheme 1.60, the R-branched aldehyde undergoes rapid racemisation in the presence of Hantzsch ester $\mathbf{2 4 8}$ (an organic hydride source) and Brønsted acid catalyst 247 via an imine/enamine tautomerisation. ${ }^{189}$

Scheme 1.60 Catalytic asymmetric reductive amination of aldehydes via dynamic kinetic resolution.

1.7 Chiral iminophosphoranes as an emerging class of superbase catalysts

For many years cinchona alkaloid derivatives have dominated the field of bifunctional organocatalysis, being widely regarded as a privileged system for carrying out basepromoted organic transformations in an asymmetric fashion. ${ }^{84}$ However, these catalysts have been known to fall short with respect to the scope of the pronucleophile - limited by the basicity of the quinuclidine moiety (79, Figure 1.16), which can lead to impractically lengthy reaction times. In recent times, a novel group of chiral base catalysts incorporating a 'superbase'moiety has emerged in response to this shortcoming. The term superbase refers to bases with pkbH+ values comparable to, or greater than, that of trimethylguanidine derivatives such as guanidine 250, cyclopropenimine 251 and iminophosphorane 252. ${ }^{190,191}$

quinine (79)
$\mathrm{p} k_{\text {BH+ }}(\mathrm{DMSO})=\cong 11$

guanidines
$\mathrm{pk}_{\mathrm{BH}+}(\mathrm{MeCN})=\cong 23.6$
$\mathbf{2 5 0} \mathrm{R}^{1}=\mathrm{Ph}$

$$
250 R^{1}=P h
$$

cyclopropenimines $\cong 26.9$
$\begin{aligned} 251 R^{1} & =\text { alkyl } \\ R^{2} & =(C y)_{2}\end{aligned}$

iminophosphoranes $\cong 27.0$
$252 \mathrm{R}^{1}=\mathrm{tBu}$ $\mathrm{R}^{2}=\left(\mathrm{CH}_{3}\right)_{2}$

Figure 1.16 Comparison of organosuperbases and their $\mathrm{pk}_{\mathrm{BH}+}$ values.

Iminophosphoranes, commonly named phosphazenes, were introduced by Schweinger in 1987^{192} as iminophosphoric acid derivatives, in which the pentavalent phosphorus atom bonds to four nitrogen atoms belonging to three amines and one imine group. These compounds are much stronger bases than the well known diazabicycloundecene (DBU, $\left.\mathrm{pk}_{\mathrm{BH}+}(\mathrm{MeCN})=24.3\right)$ or methyl-triazabicyclodecene $\left(\mathrm{MTBD}, \mathrm{pk}_{\mathrm{BH}+}(\mathrm{MeCN})=25.5\right)$, and their basicity increases with the number of phosphazene units incorporated into the molecules (P_{n}, Figure 1.17) ${ }^{193}$ due to more delocalisation of the positive charge in the protonated molecule. The high pkBr^{+}of these strong organic bases is directly associated with their reactivity in catalytic reactions as they are able to deprotonate a wide range of weak acids under milder reaction conditions, allowing the reaction to proceed at a higher rate. Furthermore, the use of iminophosphoranes in organocatalysis is associated with additional advantages over other organic bases, such as high solubility in nonpolar organic solvents, easy handling, low sensitivity to moisture and oxygen, and the possibility of operating at lower temperature. ${ }^{193}$

Figure 1.17 Comparison of phosphazene bases and their basicity $\left(\mathrm{pk}_{\mathrm{BH}+}\right.$ in MeCN$)$.

Recognising the potential of iminophosphoranes in organocatalysis, several groups synthesised a variety of chiral iminophosphoranes, classified by three main groups based on their structural features (Figure 1.18), and demonstrated their reactivity in a variety of enantioselective transformations.

Chiral iminophosphoranes Type 3

Figure 1.18 Classification of chiral iminophosphoranes.

Compounds of 'Type 1' have a general structure bearing a central phosphorus atom surrounded by a chiral spirocyclic scaffold - chirality deriving from the parent amino acid. Of this type, the [5,5]-P-spirocyclic scaffold represents the most widely explored to date. These motifs were introduced by Ooi and co-workers in 2007, ${ }^{194}$ who synthesised them starting from a readily available L-valine derivative, a library of chiral tetraaminophosphonium salts, as potential precursors of phosphazene organocatalysts.

Initially, Henry reactions between a range of aldehydes and various nitroalkenes were used to test the efficacy of this catalyst, affording products in high yields and enantiomeric excess (Scheme 1.61). ${ }^{194 \mathrm{a}}$

Scheme 1.61 Henry reaction mediated by Type 1 chiral iminophosphoranes.

The authors postulated that the reaction involves intial N-H deprotonation of $\mathbf{2 5 4}$ by potassium tert-butoxide to furnish the active iminophosphorane catalyst 256 in situ, which subsequently deprotonates the nitroalkane 253 to yield nitronate anion 257. This bidentate hydrogen-bond acceptor interacts with the phosphonium cation of $\mathbf{2 5 4}$ via double H-bonding, providing a chiral environment in which the highly stereoselective
addition of nitronate anion 257 to benzaldehyde (135) takes place, furnishing the corresponding β-nitroalcohol 255 with excellent diastereo- and enantiocontrol (Scheme 1.61). ${ }^{194 \mathrm{a}}$

In the following years, the same group developed 'free' triamino-iminophosphorane derivatives of $\mathbf{2 5 4}$ which were directly used as strong bases in a broad range of stereoselective processes such as Pudovik reactions, ${ }^{195}$ hydrophosphonylations of aldehydes, ${ }^{196}$ oxidations of N-sulfonyl imines ${ }^{197}$ and Michael additions to nitroalkenes. ${ }^{198}$

Type 2 iminophosphorane organocatalysts are bifunctional systems, bearing a H -bonding moiety alongside the basic functionality, which allows for simultaneous activation of both pronucleophile and electrophile. Their structural features and mode of action will be discussed in the next Section.

In 2006, Anders and co-workers ${ }^{199}$ reported the synthesis of a new class of chiral phosphazene bases (Type 3), possessing three (S)-2-(dialkylaminomethyl)-pyrrolidine units. The basicity of these systems was estimated at approximately $\mathrm{pk}_{\mathrm{BH}+}(\mathrm{MeCN})=35-$ 37 (Figure 1.18). ${ }^{199}$ Very recently, Suna et al. demonstrated that Type 3 iminophosphoranes can be obtained via a three-step sequential one-pot approach starting from tetraaminophosphonium tetrafluoroborates possessing an enantiomerically enriched 1,2-diamine moiety. ${ }^{200}$ However, no information on their application as chiral bases in asymmetric synthesis has yet been reported.

1.7.1 Bifunctional iminophosphorane organocatalysis: design features and common modifications

Although Brønsted base/H-bond donor bifunctional organocatalysts have been shown to promote a wide range of enantioselective reactions, ${ }^{101}$ they possess certain limitations such as long reaction times (even with more reactive reagents) and low catalytic activity in the presence of weak pronucleophiles and/or electrophiles. Brønsted base moieties found in traditional bifunctional organocatalysts are typically tertiary amines, with relatively low pk BH^{+}values, rendering them unable to activate less reactive pronucleophiles. In an effort to overcome these issues, Dixon et al. ${ }^{201}$ developed a new class of bifunctional iminophosphorane organocatalyst (abbreviated as BIMP), possessing much stronger and more tunable Brønsted base groups capable of increasing the concentration of the nucleophilic conjugate base and therefore the rate of the
nucleophilic addition reaction with substrates of relatively low electrophilicity. In addition, by acting in synergy with an effective H -bond donor, these bases are able to render high levels of diastereo- and enantiocontrol in challenging asymmetric transformations.

Figure 1.19 Structure elucidation and retrosynthesis of BIMP catalyst.

BIMP catalysts are easily prepared in one step via a Staudinger reaction between an enantiopure organoazide precursor bearing H-bond donor group and triarylphosphine (Figure 1.19). This simple synthetic approach allows steric and electronic modifications to be made at the iminophosphorane moiety by choice of substituted triarylphosphine reagents allowing for the design of catalysts with enhanced Brønsted basicity and reactivity.

Figure 1.20 Comparison of $\mathrm{pK}_{\mathrm{BH}}+$ values of TMG, DBU and iminophosphorane $\mathbf{2 6 0}$ and 261.

For instance, comparison of the $\mathrm{pK}_{\mathrm{BH}}+$ of triaryliminophosphorane derivatives 260 and 261 (in MeCN) showed 261 to be more basic than its unsubstituted counterpart, having a $\mathrm{pK} \mathrm{K}_{\mathrm{BH}}+$ value of 25.0 which is comparable to other superbases such as guanidines and amidines (e.g. 258, 259). This proved that the basicity of the triarylaminophosphorane moiety can be readily modulated by varying the electronic properties of the triarylphosphine component. ${ }^{202}$

Further optimisation of these catalysts can also be achieved by variation of the chiral backbone scaffold, which derives from amino acids such as l-tert-Leucine, d-phenyl glycine, L -valine. This variable framework, coupled with a choice of H -bond donor groups including (thio)urea, amide, sulphonamide and carbamate moieties bearing stereoelectronically tunable aryl groups, provides an additional handle for optimisation. The hydrogen-bond donor substituents may also be replaced by an additional amino acid residue which can impart enhanced levels of enantiocontrol in the reactions, while maintaining excellent reactivity. ${ }^{204,208}$

1.7.1.1 Synthetic applications of bifunctional iminophosphorane catalysis

In 2013, the synthetic potential of this new class of bifunctional organocatalysts was investigated by Dixon and co-workers ${ }^{201}$ in the first metal-free enantioselective nitroMannich reaction of nitromethane 103 with N-diphenylphosphinoyl ketimine 262.

Scheme 1.62 Bifunctional iminophosphorane-catalysed asymmetric nitro-Mannich reaction of N-diphenylphosphinoyl ketimines.

This transformation remained unexplored for years, due mainly to the low electrophilicity of ketimines and the difficulties associated with poor catalyst-substrate activation and enantiofacial discrimination which generally makes necessary the use of metal ion
catalysts, stoichiometric additives or the use of activated ketimines. ${ }^{202} \mathrm{An}$ evaluation of a library of BIMP catalysts synthesised from chiral azide precursors containing amino acid residues and various triarylphosphines revealed catalyst $\mathbf{2 6 4}$ to be superior, exhibiting excellent catalytic activity and furnishing the desired product $\mathbf{2 6 3}$ in good yield and excellent enantiomeric excess under optimised conditions (Scheme 1.62). ${ }^{202}$ It is noteworthy that the reaction rate is directly correlated to the electronic effect of aryl substituents of the iminophosphorane moiety. For instance, the reaction promoted by catalyst 266 was far slower than that catalysed by either 264 or 265 (Scheme 1.62), due to the electron deficient triarylphosphine which renders the iminophosphorane nitrogen less basic. As evidence for this, the authors conducted the reaction in the presence of the cinchonine-derived bifunctional organocatalyst $\mathbf{1 0 0}$ and observed that the catalyst failed to promote the reaction even after prolonged periods of time. This result further confirmed that the enhanced basicity of iminophosphoranes compared to traditional tertiary amines is responsible for the increase in catalytic activity. ${ }^{203}$

Based on these studies, the same group demonstrated that the asymmetric Mannich reaction involving N-diphenylphosphinoyl ketimine 262 can be extended to diethyl phosphite in the presence of catalyst $\mathbf{2 6 5}$, which delivers the respective product in excellent yield and moderate enantiomeric excess. ${ }^{203}$

BIMP organosuperbases were also employed in a Michael addition of aliphatic thiols to unactivated α-substituted acrylate esters (Scheme 1.63). ${ }^{204}$ Despite this transformation being synthetically useful for the asymmetric construction of chiral sulphides, ${ }^{205}$ no catalytic enantioselective metal-free version of had been reported previously. ${ }^{206}$

Catalyst 270, obtained by introduction of an additional amino acid residue (L -tertLeucine) next to the H-bond donor promoted the Michael addition of propanethiol 268 to methyl methacrylate 267 smoothly, providing enantioriched product 269 in excellent yield under optimised conditions (Scheme 1.63). ${ }^{206}$ Both stereocentres were found to contribute to the enantiocontrol in the formation of product 269, however, experiments carried out with catalyst 271 demonstrated that the stereogenic centres within the amide/thiourea substituent were less influential on enantiofacial control than the stereogenic centres proximal to the iminophosphorane, as both catalysts led to the formation of the desired product with the same absolute configuration (Scheme 1.63). ${ }^{206}$

Scheme 1.63 Enantioselective sulfa-Michael addition to α-substituted acrylate esters promoted by iminophosphorane organocatalysts.

Very recently, a catalyst analogous to $\mathbf{2 7 0}$ possessing a phenylglycine on the iminophosphorane scaffold and a tert-leucine residue on the amide-thiourea motif as found to efficiently promote the asymmetric Michael reaction of alkyl thiols to various β -substituted- α, β-substituted-unsaturated esters with high levels of activity and enantioselectivity across a range of linear, branched, cyclic alkyl and benzylic thiols. ${ }^{207}$ An immobilised variant of this bifunctional iminophosphorane superbase catalyst was also developed and employed in the conjugate addition of substituted malonates to nitrostyrenes. ${ }^{208}$

In 2017, application of an iminophosphorane derived catalyst was demonstated in the first enantioselective total synthesis of natural product (-)-himalensine. ${ }^{209}$ Catalyst $\mathbf{2 7 4}$ was able to promote the enantioselective prototropic shift/IMDAF (furan Diels-Alder) cascade reaction of $\mathbf{2 7 2}$ which allowed the construction of the three fused ring system 273 as a precursor of (-)-himalensine in 86% yield and 90% ee (Scheme 1.64). ${ }^{210}$

Scheme 1.64 Application of iminophosphorane catalyst in total synthesis of (-)himalensine.

Results and discussion

2. The asymmetric organocatalytic formal cycloaddition of homophthalic anhydrides to Michael acceptors

As mentioned previously (Section 1.5.5), in recent times the Connon group has been focused on the development of the first catalytic asymmetric Tamura cycloaddition reactions between enolisable anhydrides and various Michael acceptors as electrophiles. ${ }^{178,179}$ The results of these studies represent a promising starting point for subsequent optimisation and scope expansion studies involving different electrophiles.

Preliminary investigations carried out within our group into the catalytic asymmetric cycloaddition of homophthalic anhydride (147) with trisubstituted nitroalkenes 275 highlighted that α-alkyl substituents are required to prevent product enolisation (277), as the non α-substituted products possess a highly acidic proton at the C-3 position (276, Scheme 2.1). This substitution was also found to improve the rate, yield and the stereoselectivity of the reaction, and also introduces a valuable quarternary stereocentre (e.g. 278).

Scheme 2.1 Rationale for electrophile design.
To exploit these findings and to expand the scope of the electrophilic component in this reaction, we set about the synthesis and evaluation of substituted α, β-unsaturated carbonyl compounds as Michael acceptors.

2.1 Synthesis of Michael acceptors

The synthesis of Michael acceptors was accomplished by following a general procedure based on the Knoevenagel condensation between benzaldehyde (135) and the appropriate substituted alkane 279 in the presence of a catalytic amount of base to furnish the respective trisubstituted alkenes 280 (Scheme 2.2).

Scheme 2.2 General procedure for the synthesis of Michael acceptors.

The substrate 282 was formed in 66% yield in the reaction between benzaldehyde (135) and malonitrile (281) within 1 h at room temperature (Scheme 2.3). ${ }^{211}$

Scheme 2.3 Synthesis of substrate 282.

The nitroalkene 285 was produced by a three step synthetic sequence: first adding nitromethane dropwise to an aqueous solution of potassium hydroxide at $70^{\circ} \mathrm{C}$ under an air atmosphere. Upon cooling, the resulting salt $\mathbf{2 8 3}$ was filtered, then dissolved in methanol and treated with $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $-15^{\circ} \mathrm{C}$ for 1 h . The isolated methyl nitroacetate 284 underwent a Knoevenagel reaction with benzaldehyde $\mathbf{1 3 5}$ in the presence of TiCl_{4} and a catalytic amount of N-methylmorpholine to afford the product $\mathbf{2 8 5}$ as an inseparable mixture of E / Z isomers in 30% yield (Scheme 2.4). ${ }^{212,213}$

Scheme 2.4 Synthesis of the substrate 285.

The synthesis of $\mathbf{2 8 8}$ was achieved by reacting an equimolar solution of benzaldehyde (135) and dimethylmalonate (286) in toluene at reflux in the presence of a catalytic amounts of piperidine. Purification by flash column chromatography afforded the product $\mathbf{2 8 8}$ in $\mathbf{6 7 \%}$ yield. A similar procedure was followed to provide the substrate $\mathbf{2 8 9}$ from 287. In this case the product was purified by recrystallisation from diethyl ether in excellent yield (Scheme 2.5). ${ }^{214}$

Scheme 2.5 Synthesis of substrate $\mathbf{2 8 8}$ and $\mathbf{2 8 9}$

The substrate 296 was synthesised starting from the preparation of the phosphonium salt 292 by reaction of ethyl 2-bromopropionate (290) with triphenylphosphine (291). The salt 292, once isolated, was then treated with an aqueous solution of sodium hydroxide $(2.0 \mathrm{M})$ to furnish ylide 293. This underwent a Wittig reaction with benzaldehyde to give 294, which after hydrolysis to the acid 295 and coupling with pyrazole (297) in presence of DCC and a catalytic amount of DMAP delivered the desired product 296 in 17\% overall yield (Scheme 2.6).

Scheme 2.6 Synthesis of 296.

2.2 Evaluation of Michael acceptors

To test the feasibility of these electrophiles in the Tamura cycloaddition, we initially evaluated them in the reaction with homophthalic anhydride (147), which was prepared from readily available homophthalic acid (298) and acetic anhydride (Scheme 2.8). The reactions were carried out in presence of $5 \mathrm{~mol} \%$ of catalyst $\mathbf{2 0 0}$ with an equimolar amount of $\mathbf{1 4 7}$ and the relative Michael acceptor (280) in MTBE (0.1 M) at room temperature (Table 2.1). These conditions were selected as they were found to be optimal in both preceding studies involving anhydrides and aldehydes.

Scheme 0.8 Synthesis of homophthalic anhydride (147).
The results of these preliminary experiments showed that both the derivatives of malonitrile (e.g. 282, entry 1) and dimethyl malonate (288, entry 2) failed to react, along with 296 (entry 3). Substrate $\mathbf{2 8 9}$ on the other hand reacted efficiently, providing $\mathbf{3 0 2}$ in 62% yield (entry 4). This reaction underwent a catalyst screening and optimisation process which will be discussed later (see Section 2.2.1).

Table 2.1 Preliminary evaluation of Michael acceptors as substrates.

entry	substrate	time	product	yield (\%) a
1	$\mathbf{2 8 2}$	87	$\mathbf{2 9 9}$	0
2	$\mathbf{2 8 8}$	120	$\mathbf{3 0 0}$	0
3	$\mathbf{2 9 6}$	90	$\mathbf{3 0 1}$	0
4	$\mathbf{2 8 9}$	96	$\mathbf{3 0 2}$	62
5	$\mathbf{2 8 5}$	72	$\mathbf{3 0 3}$	53

${ }^{\bar{a}}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole as an internal standard.
When phenyl methyl nitroacetate (285), existing as a mixture of two diasteroisomers $Z: E$ $=55: 45$, was evaluated, the reaction proceeded to afford the product 303 in moderate yield after 72 h (entry 5). Although the reaction could result in the formation of up to four diastereomers, only one was formed in sufficient amounts to be detected by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude reaction mixture. The product was found to be of trans geometry between $\mathrm{H}-1$ and $\mathrm{H}-2$, as the coupling constants measured in the ${ }^{1} \mathrm{H}$ NMR spectrum of the compound were 12.1 Hz . By serendipity, during its synthesis, (E)-285 precipitated out of a solution, thus we were later able to perform an experiment with the isolated E-nitro olefin. Interestingly, this failed to react - suggesting that only the Z isomer is reactive. Without being able to isolate the Z isomer by conventional purification methods, we embarked on an attempt to completely isomerise the mixture to the Z isomer by way of a DMAP-catalysed process (Table 2.2). As shown in Table 2.2, when DMAP was employed in at $5 \mathrm{~mol} \%$ loading, limited isomerisation of $(E)-285$ to its Z isomer was observed by NMR spectroscopic analysis of the reaction mixture (entry 1, Table 2.2). After 24 hours, no improvements in the ratio were observed, therefore an extra $5 \mathrm{~mol} \%$ of DMAP was added, which formed 285 in 28:72 E:Z (entry 2, Table 2.2).

Table 2.2 DMAP-promoted isomerisation process.

entry	DMAP (mol\%)	time	T $\left({ }^{\circ} \mathbf{C}\right)$	ratio $(\boldsymbol{E}: \boldsymbol{Z})^{\mathbf{a}}$
1	5	24	rt	$33: 67$
2	10	24	rt	$28: 72$
3	20	24	40	$17: 83$

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole as an internal standard.
Encouraged by this observation, a further $10 \mathrm{~mol} \%$ of DMAP (total $20 \mathrm{~mol} \%$) was added, providing an $E: Z$ ratio of $83: 17$, which to our dismay could not be improved upon, even when the reaction mixture was heated at reflux temperature.

Further difficulties were encountered with this process during the racemic preparation of 303. Following a general methodology we allowed 285 to react with homophthalic anhydride in the presence of $20 \mathrm{~mol} \%$ Hünig's base $\left(i-\mathrm{Pr}_{2} \mathrm{NEt}\right)$ in MTBE $(0.1 \mathrm{M})$ for 24 h at room temperature. This reaction failed to furnish the product even after the addition of a stoichiometric amount N, N bis- 3,5 trifluoromethyl phenylurea, leading us to abandon the investigation involving substrate 285 (Scheme 2.4).

Scheme 2.4 Synthesis of racemic product 303.

2.2.1 Evaluation of Michael acceptors of general type 289

As previously reported in Table 2.1, substrate $\mathbf{2 8 9}$ was found to react with anhydride $\mathbf{1 4 7}$ (entry 4 , Table 2.1) in the presence of catalyst $\mathbf{2 0 0}$, forming the carboxylic acid product as a single diastereomer, which was then converted to its methyl ester derivative $\mathbf{3 0 2}$ in situ using anhydrous MeOH , followed by TMSCHN_{2} - for CSP-HPLC analysis. A racemic synthesis was then carried out by reaction of homophthalic anhydride and electrophile $\mathbf{2 8 9}$ in the presence of $20 \mathrm{~mol} \%$ of DIPEA in THF at room temperature. The enantioselectivity of the process was then determined by analysing the enantiomeric excess of the isolated diastereomer by CSP-HPLC, furnishing 302 in 2% ee (entry 1 , Table 2.3). In order to improve the stereoselectivity of this process, we turned our
attention to an evaluation of catalysts - a small library of which was available having been synthesised within the group previously.

Table 2.3 Catalyst and temperature evaluation in the cycloaddition reaction between 147 and 289

entry	cat.	conc. (M)	$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	time (h)	${\text { yield }(\%)^{\boldsymbol{a}}}$	$\boldsymbol{e e}_{\boldsymbol{e}_{\text {trans }}(\mathbf{\%})^{\mathbf{b}}}$
1	$\mathbf{2 0 0}$	0.1	rt	96	62	2
2	$\mathbf{3 0 4}$	0.1	rt	96	64	1
3	$\mathbf{2 2 8}$	0.1	rt	190	32	2
4	$\mathbf{3 0 5}$	0.1	rt	96	70	1
5	-	0.1	rt	18	60	-
6	-	0.1	-30	18	44	-
7	-	0.05	rt	18	62	-

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic analysis using p-iodoanisole as an internal standard. ${ }^{b}{ }^{b} e_{\text {trans }}$ determined by CSP-HPLC.

All catalysts proved to possess similar activity and selectivity profiles; as product $\mathbf{3 0 2}$ was formed with moderate yield and poor asymmetric induction in all cases (entries 14). This led us to believe there may be a background reaction taking place in the absence of catalyst. This proved to be the case, as without catalyst the reaction proceeded to 60% conversion in 18 h (entry 5). In attempts to suppress the background reaction we reduced the temperature of the system (entry 6) and also reduced the concentration (entry 7), both of which had little effect.

2.2.1.1 The effect of temperature on the reaction between homophthalic anhydride and 289

Unsatisfactory results from our initial catalyst screen led us to investigate the effect of reaction temperature on stereoselectivity. The reactions reported in entries 1-6 of Table 2.4 were repeated at lowered temperatures, however, only a slight improvement in enantiocontrol was observed in all cases-with longer reaction times required. Moderate stereocontrol was observed at $-30^{\circ} \mathrm{C}$ in the presence of catalyst 304 (entry 4, Table 2.4), which furnished $\mathbf{3 0 2}$ in 30% ee. Meanwhile, a similar level of stereocontrol was observed forming the opposite enantiomer when catalyst $\mathbf{3 0 5}$ was employed (entry 6 , Table 2.4).

Table 2.4 Temperature evaluation

entry	cat.	conc. (M)	$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	time (h)	${\text { yield }(\%)^{\boldsymbol{a}}}^{c}$	$\boldsymbol{e e}_{\text {trans }}(\%)^{\boldsymbol{b}}$
1	$\mathbf{2 0 0}$	0.1	-15	120	95	18
2	$\mathbf{2 0 0}$	0.1	-30	96	72	17
3	$\mathbf{2 0 0}$	0.1	-78	96	20	26
4	$\mathbf{3 0 4}$	0.1	-30	97	70	30
5	$\mathbf{3 0 4}$	0.1	-78	135	10	1
6	$\mathbf{3 0 5}$	0.1	-78	168	20	-24

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic analysis using p-iodoanisole as an internal standard. ${ }^{b} e e_{\text {trans }}$ determined by CSP-HPLC.

2.2.2 Evaluation of the anhydride component

In a further attempt to reduce the rate of the background reaction, the use of less reactive anhydrides such as phenyl succinic anhydride (306) and methoxy glutaconic anhydride (307) were investigated. Disappointingly, both of these anhydrides gave no conversion to
their respective products after 48 hours at room temperature (entries 1-2). Heating the reactions to reflux in MTBE afforded no products after 24 hours either.

Table 2.5 Investigation of anhydrides 306 and 307

	 306 307			$\xrightarrow[\text { MTBE (0.1 M), rt }]{\text { 1. cat. } 5 \mathrm{~mol} \%)}$
entry	anhydride	catalyst	time (h)	yield (\%) ${ }^{\text {a }}$
1	306	200	72	-
2	307	305	72	-

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$-NMR spectroscopic analysis using p-iodoanisole as an internal standard.

2.3 Conclusion

An attempt has been made to expand the scope of the electrophilic component in the catalytic asymmetric Tamura cycloaddition to include new activated Michael acceptors. A preliminary substrate screen identified a suitability reactive Michael acceptor, the reaction of which with homophthalic anhydride underwent a catalyst screen to enhance the stereocontrol. It was later observed that the rate of the uncatalysed background reaction was too high to achieve satisfactory levels of stereocontrol - with little suppression of which being observed on decreasing the temperature, lowering the concentration and switching to less reactive anhydrides. A failure to eliminate the background reaction meant superior levels of stereocontrol would be out of reach, leading us to abandon this project.

3. Cycloaddition reactions between homophthalic anhydride and 2phenylpropionaldehyde

Since the recent promising results obtained from studies on the catalytic cycloaddition reaction between homophthalic anhydrides and various aldehydes ${ }^{150}$ (Section 1.5.1), the Connon group has been involved in probing catalysts' ability to kinetically resolve α branched aldehydes. At the onset of these studies two possible processes were proposed:

1) In a chiral environment (in the presence of bifunctional cinchona alkaloid derived catalyst) the cycloaddition between one of two enantiomers of a chiral aldehyde to homophthalic anhydride should proceed faster than that of the other, affording a maximum 50% yield of enantiopure dihydroisocoumarin derivatives bearing three contiguous stereocentres via a kinetic resolution process.
2) In the presence of a Brønsted acid/base catalyst, α-branched aldehydes (e.g. (R)233 and (S)-233) could undergo racemisation by keto-enol tautomerism (308, Scheme 3.1), affording a possible 100% yield of dihydroisocoumarin derivatives via a dynamic kinetic resolution process.

Scheme 3.1 Dynamic kinetic resolution of α-branched aldehyde 233.
Despite both of these processes having high synthetic potential, no studies regarding kinetic and dynamic resolution of α-branched aldehydes promoted by bifunctional organocatalysts have been reported to date.

3.1 Preliminary experiments

To verify the plausibility of this process, we initially decided to evaluate the reaction involving equimolar amounts of $\mathbf{1 4 7}$ and $\mathbf{2 3 3}$ promoted by $5 \mathrm{~mol} \%$ of catalyst $\mathbf{2 0 0}$ at room temperature in MTBE (0.1 M). After 48 h product yields (with respect to p-iodoanisole as an internal standard) and diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the reaction mixture. Subsequent extraction with sodium bicarbonate solution followed by acidification with hydrochloric acid solution and a second extraction with organic solvent allowed for the isolation of the lactone-acids 309,

310 and 311. In order to facilitate the analysis of the enantioselectivity by CSP-HPLC, the mixtures of the diastereoisomeric acids were then converted to their methyl ester derivatives by the previously described procedure and then purified by flash column chromatography on silica gel (Scheme 3.2).

Scheme 3.2 Preliminary study on aldehyde 233.
The desired product contains three stereocentres, therefore a possible four diastereomers may be formed - named according to where their $\mathrm{H}-2$ resonances arose in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Figure 3.1 Assignment of diastereomers by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic analysis.
As can be seen in Figure 3.1, the preliminary reaction reported above formed three diastereomers with a $d r=48: 10: 0: 42$, with each being formed in 99% ee (CSP-HPLC analysis). The relative stereochemistry of diastereomers \mathbf{A} and \mathbf{D} was elucidated by interpretation of coupling constants in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Small J values were
observed from ($\mathrm{H}-1$) to ($\mathrm{H}-2$), while large and small J values were observed from $(\mathrm{H}-2)$ to (H-3), indicating these diastereomers possess a cis orientation on the ring and also differ from each other based on the configuration of H-3. Meanwhile diastereomers \mathbf{C} and \mathbf{D} have a trans orientation on the ring and also differ from each other based on the configuration of the stereocentre outside of the ring. These assumptions were later confirmed by X-ray crystal structure analysis of diastereomer \mathbf{D}, isolated by Dr Umar Farid.

3.2 Synthesis of $\boldsymbol{\alpha}$-branched aldehydes

With a robust screening procedure in hand, we began an investigation into the development of a protocol with improved diastereocontrol which could maintain already established levels of enantiocontrol, and if possible, improve the yield of the dihydroisocoumarin by extending the process to dynamic kinetic resolution.

We started with the synthesis and evaluation of various electron-deficient aldehydes bearing enol-stabilising electron-withdrawing groups on the aromatic ring, which could potentially promote racemisation at a faster rate than the reaction of the slower-reacting enantiomer, pushing towards efficient DKR of the aldehyde.

Synthesis of aldehyde $\mathbf{3 1 4}$ was carried out according to a known literature procedure based on the Johnson-Corey-Chaykovsky reaction (Scheme 3.3). ${ }^{226}$ To a reaction mixture of sodium hydride and trimethylsulfoxonium iodide in THF at $70^{\circ} \mathrm{C}$ was added the ketone 312. The corresponding epoxide $\mathbf{3 1 3}$ was then isolated by column chromatography on silica gel in moderate yield and treated with $\mathrm{BF}_{3} \cdot \mathrm{OEt}$ to furnish the aldehyde $\mathbf{3 1 4}$.

Scheme 3.3 Synthesis of aldehydes 314.

The substrate 319 was synthesised starting from p-nitro phenylacetonitrile (315), which was converted to the corresponding acid $\mathbf{3 1 6}$ by hydrolysis with dilute sulfuric acid and acetic acid at reflux. The p-nitrophenyl acetic acid then underwent an esterification with methanol in presence of catalytic sulfuric acid to afford 317 in 61% yield. Subsequent alkylation of $\mathbf{3 1 7}$ was achieved using methyl iodide and caesium carbonate in DMF at
$70^{\circ} \mathrm{C}$ to obtain the α-substituted methyl nitrophenyl acetate 318. This was then reduced by DIBAL-H (solution in THF) which was added dropwise at $-78{ }^{\circ} \mathrm{C}$ for an hour (Scheme 3.4). ${ }^{215}$ After completion of the reaction, the desired product 319 was isolated after purification by column chromatography.

Scheme 3.4 Synthesis of aldehyde 319.

3.3 Preliminary investigations on the DKR of aldehydes 314 and 319

Subsequent evaluation of substrates $\mathbf{3 1 4}$ and $\mathbf{3 1 9}$ was carried out under the same conditions as reported in the preliminary study (Section 3.1). Although it was observed that these reactions proceeded relatively quickly, with complete consumption of the aldehyde component after 48 h with excellent enantioselectivity, the $d r$ shows that DKR could not be occurring, as the ratio between the two cis-diastereomers was approximately 1:1 (entries 1-2). Furthemore, hardly any change in $d r$ was observed when the more acidic aldehyde was employed, meaning little to no racemisation could be taking place.

Table 3.1 Evaluation of substrates 314 and 319

147 +	CH_{3}		$\begin{aligned} & 320 \mathrm{R}=3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \\ & 323 \mathrm{R}=4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \end{aligned}$		 B \& C (trans on ring) D (cis on ring) $\begin{array}{ll} 321 \mathrm{R}=3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} & 322 \mathrm{R}=3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \\ 324 \mathrm{R}=4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} & 325 \mathrm{R}=4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \end{array}$	
	$\begin{aligned} & 314 \mathrm{R}=3-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \\ & 319 \mathrm{R}=4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \end{aligned}$					
entry	cat.	substrate	solvent	yield (\%) ${ }^{\text {a }}$	$d r(\mathrm{~A}: \mathrm{B}: \mathrm{C}: \mathrm{D})^{\text {d }}$	$e e(\%) \mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}^{c}$
1	200	314	MTBE	53	44:7:4:45	99:99:-:99
2	200	319	THF	54	38:10:6:46	99:99:-:99

${ }^{a}$ Isolated yield of the esterified diastereomeric mixture after flash column chromatography. ${ }^{b}$ Diastereomeric
ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC. ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC.

3.3.1 Investigations on KR of aldehyde 319

The experiment involving substrate $\mathbf{3 1 9}$ was then repeated using 0.5 equiv. of anhydride in order to investigate possible KR of the aldehyde. Once the anhydride was fully consumed, the remaining aldehyde was reduced to the corresponding alcohol 327 in situ using sodium borohydride (1.5 equiv.), in order to prevent any racemisation of the potentially resolved aldehyde during the aqueous base extraction employed for the isolation of the crude diastereomeric mixture 328. Subsequent evaluation of the ee was possible by CSP-HPLC. Table 3.2 shows the results of these reactions along with the investigation of one additional catalyst 326 displayed below. A preliminary catalyst screen performed by Dr Umar Farid (See Appendix, page 261) suggests that the introduction of a bulky substituent such as a trityl group to the squaramide $\mathbf{3 2 6}$ could provide a level of steric hindrance around the active region of the catalyst which may enhance stereocontrol, therefore we went about employing bulkier catalysts.

Table 3.2 Investigation of the kinetic resolution of $\mathbf{3 1 9}$

entry	cat.	solv.	T ($\left.{ }^{\circ} \mathrm{C}\right)$	$\boldsymbol{e} \boldsymbol{e}_{\text {alcohol }}(\%)^{\boldsymbol{a}}$	yield (\%)	$\boldsymbol{d r}(\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D})^{\boldsymbol{c}}$	$\boldsymbol{e e}(\%) \mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}^{\boldsymbol{a}}$
1	$\mathbf{2 0 0}$	THF	rt	0	21	$43: 4: 5: 48$	$99: 99:-: 99$
2	$\mathbf{3 2 6}$	THF	$-60^{\circ} \mathrm{C}$	45	23	$12: 7: 26: 55$	$99: 99:-: 99$

[^0]
3.4 Expansion of substrate scope

Since the previous studies showed no increase in diastereocontrol when electronwithdrawing groups were introduced to the aromatic ring of the aldehyde, we decided to investigate the influence of sterics by incorporating bulky groups into the α-branched aldehyde - which could potentially promote a more efficient KR. The aldehydes chosen to improve the diastereo- and enantioselectivity are shown in Figure 3.2.

329

330

331

Figure 3.2 Substrates synthesised for the evaluation of the reaction scope.

The aldehyde 329 was synthesised as per the previously reported Johnson-CoreyChaykovsky method going via the epoxide $\mathbf{3 3 3}$ starting from ketone 332 (Scheme 3.5). ${ }^{226}$

Scheme 3.5 Synthesis of aldehyde 329.
Aldehydes $\mathbf{3 3 0}$ and $\mathbf{3 3 1}$ were synthesised by dropwise addition of ketones $\mathbf{3 3 4}$ and $\mathbf{3 3 5}$ to a solution of (methoxymethyl)triphenylphosphonium chloride and potassium tertbutoxide at $0{ }^{\circ} \mathrm{C}$ to afford the (Z / E)-enol-methyl ethers 336 and 337 in 35% and 45% yields respectively after purification by column chromatography. Compounds 336 and 337 were then treated with a 70% aqueous solution of perchloric acid, which furnished the corresponding α-arylaldehydes $\mathbf{3 3 0}$ and $\mathbf{3 3 1}$ which were isolated in low to moderate yields after column chromatography (Scheme 3.6). ${ }^{216}$

Scheme 3.6 Synthesis of aldehydes 330 and 331.

To investigate whether KR of the aldehydes shown in Figure 3.2 was occurring, the reactions were performed using 0.5:1 equivalents of anhydride:aldehyde in the presence of catalyst 326.

Table 3.3 Investigation of the KR of bulky aldehydes

entry substrate $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) /$ time (h) $e e_{\text {alcohol }}(\%)^{a} \quad$ yield (\%) $)^{b} \quad \operatorname{dr}(\mathrm{~A}: \mathrm{B}: \mathrm{C}: \mathrm{D})^{c} \quad e e(\%) \mathrm{A}: \mathrm{D}^{a}$

1	$\mathbf{3 2 9}$	$\mathrm{rt} / 24$	52	33	$29: 0: 0: 71$	$99: 99$
2	$\mathbf{3 3 0}$	$\mathrm{rt} / 24$	55	51	$25: 0: 2: 73$	$99: 99$
3	$\mathbf{3 3 0}$	$-30 / 48$	66	81	$21: 0: 1: 78$	$99: 99$
4	$\mathbf{3 3 1}$	$\mathrm{rt} / 48$	53	43	$11: 0: 3: 86$	$99: 99$
5	$\mathbf{3 3 1}$	$-60 / 120$	60	55	$5: 0: 0: 95$	$19: 99$

${ }^{a}$ Determined by CSP-HPLC. ${ }^{b}$ Isolated yield of the esterified diasteromeric mixture after flash column chromatography. ${ }^{c}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis.

Gratifyingly, KR of the aldehydes under investigation was found to occur, with the unreacted aldehydes being present in moderate $e e$ at the end of the reaction (entries 1-5). The catalyst 326 (entries 1-5) was found to promote the reaction to give \mathbf{D} as the major diastereomer with excellent enantioselectivity in all cases. It appeared the introduction of a bulky substituent to the α-position of the aldehyde was of great benefit to the diastereocontrol of the process (entries 2 and 3). Lowering the temperature of the reaction also led to further improvements in $d r$, along with an improved resolution of the aldehyde (entry 3). It is also noteworthy that increasing the steric bulk of the aldehyde by the introduction of a methyl group to the phenyl ring also increased the formation of diastereomer \mathbf{D} over \mathbf{A} and \mathbf{C} (entry 4), which was also observed by lowering the reaction temperature to $-60{ }^{\circ} \mathrm{C}$ (entry 5). Unexpectedly, both entries 4 and 5 show a discrepancy in the observed $d r$ and enantiomeric excess of the resolved aldehyde (as the theorical \%ee
of the resolved aldehyde is supposed to be equal to the difference in the ratio 95:5 indicating that some aldehyde racemisation took place).

3.4.1 Kinetic studies involving aldehyde 331

With the aim to confirm the previous results, we embarked on a series of kinetic studies in which we monitored the diastereoselectivity of the product mixture and enantiomeric excess of the unreacted aldehyde over the time. If we assume that the process occurs by KR, we should expect that as the aldehyde reaches 50% conversion, the faster reacting enantiomer would be consumed and its concentration in solution would decrease. Meanwhile, the slower reacting enantiomer should still be present in solution in relatively high concentration, and continues to react at its own rate, causing a change in $d r$ over time.

Table 3.4 Investigation into the KR of aldehyde 331

entry	$\mathbf{C}(\mathbf{M})$	time	$\boldsymbol{e} \boldsymbol{e}_{\text {alcohol }}(\%)^{\boldsymbol{a}}$	yield (\%) $^{\boldsymbol{b}}$	$\boldsymbol{d r}(\mathbf{A}: \mathrm{B}: \mathrm{C}: \mathrm{D})^{\boldsymbol{c}}$	$\boldsymbol{e e}(\%) \mathrm{A}: \mathrm{D}^{\boldsymbol{a}}$
1	0.1	1	84	81	$11: 0: 3: 86$	$99: 99$
2	0.1	18	87	81	$11: 0: 3: 86$	$99: 99$
3	0.1	48	53	33	$11: 0: 3: 86$	$99: 99$
4	0.2	18	83	43	$12: 0: 4: 84$	$99: 99$
5	0.4	18	54	44	$10: 0: 3: 87$	$99: 99$

${ }^{a}$ Determined by CSP-HPLC. ${ }^{b}$ Isolated yield of the diasteromeric mixture after flash column chromatography. ${ }^{c}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis.

Thus, the experiment summarised in entry 4 of Table 3.3 was repeated and monitored over 48 h . By ${ }^{1} \mathrm{H}$-NMR spectroscopic analysis of the crude reaction mixture we observed that after 1 h (entry 1) the conversion reaches completion as 0.5 equivalents of homophthalic anhydride was consumed. Surprisingly, the diastereoselectivity measured was found to be constant over time, while the ee of the unreacted aldehyde was 84% after the first 18 hours (entry 2), then decreased dramatically to 53% after 48 hours longer
(entry 3). To explain these results we assumed the rate constants of the two enantiomers are dramatically different, allowing for the selective interaction of one of the two enantiomers with the catalyst. Moreover, changes in the ee of the resolved aldehyde over time might be due to its racemisation promoted by the lactone carboxylate species - which could occur when the reaction mixture is left standing after completion for an extended period of time. In order to minimise this phenomenon we repeated the same experiment under diluted solutions - to no avail (entries 4 and 5).

3.5 Conclusion

The synthesis of a novel three stereocentre-containing dihydroisocoumarin acid has been achieved with good enantio-and diastereocontrol by way of a kinetic resolution process. We have demonstrated for the first time that electron-deficient substituted α-branched aldehydes can be kinetically resolved at low temperature, and that the use of a bulky substituted squaramide catalyst provides moderate levels of stereocontrol. An investigation into the effect of the steric bulk of the aldehyde on the stereochemical outcome found that bulky α-branched aldehydes allow for a far more selective process.

4. The asymmetric organocatalytic formal cycloaddition of homophthalic anhydrides to aldehydes

As described in Sections 1.5.1 and 1.5.2, our group has recently been involved in the development of the first one-pot asymmetric cycloaddition reactions involving enolisable anhydrides and various aldehydes in the presence of an $a d$ hoc-designed novel cinchona alkaloid derived organocatalyst. ${ }^{150}$ This process is synthetically useful as it is able to furnish enantioenriched 3,4-dihydroisocoumarin and γ-butyrolactone compounds which are simple derivatives of a class of natural products of considerable pharmacological activity. ${ }^{152-157,162-164}$ During these studies, a screening of different aldehydes under optimised conditions highlighted that when hindered 'branched'or aliphatic straightchain aldehydes (e.g. 201, 202) were employed, higher levels of the cis-diastereomer (e.g. 203 and 204 respectively) could be obtained than when aromatic aldehydes were used (Scheme 4.1).

Scheme 4.1 Catalytic cycloaddition reactions between homophthalic anhydride and aliphatic aldehydes.

Inspired by this observation, we decided to investigate the possibility of reversing the trans favoured diastereoselectivity previously observed, via catalyst design and choice of aliphatic aldehyde, in order to provide one pot access to functionalised cis products
(which are well known for their moderate antibacterial and antifungal activities - see Section 1.5.4). ${ }^{175}$

4.1 Catalyst evaluation in the formal cycloaddition reaction between homophthalic anhydride and hydrocinnamaldehyde

We first focused on the evaluation of a relatively large library of cinchona-based organocatalysts as reaction promoters. Most of these catalysts had been previously synthesised by fellow researchers within the group for the development of various other asymmetric transformations. For this reason, it was possible to evaluate a wide range of structures and compare their catalytic performance in the reaction between homophthalic anhydride (147) and hydrocinnamaldehyde (202). Catalyst structures which were employed are depicted in Figure 4.1, while the results of their evaluation are reported in Table 4.1.

The protocol we used involved the reaction of equimolar amounts of $\mathbf{1 4 7}$ and 202 promoted by $5 \mathrm{~mol} \%$ of catalyst at $-15^{\circ} \mathrm{C}$ in $\operatorname{MTBE}(0.1 \mathrm{M})$. We chose these conditions as they were found to be optimal in the preceding studies involving anhydrides and aldehydes. After 24 h product yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the crude using p-iodoanisole as an internal standard, and the diastereoselectivity of the reactions was quantified. Following the standard procedure described in previous Sections, the mixtures of the lactone-acids were esterified and purified by column chromatography to obtain diastereomeric mixtures of esters 204- the enantiomeric excess of which could be determined by CSP-HPLC analysis.

Various bifunctional catalysts bearing different hydrogen-bond donating moieties were evaluated and in all cases we observed good product yields and reasonable reaction times. N-aryl-(thio)urea-cinchona derived catalysts $\mathbf{3 0 5}$ and $\mathbf{1 0 6}$ exhibited similar catalytic profiles, as they both furnished a mixture of trans and cis acid-lactones in a ratio of $\sim 2: 1$ with poor to moderate enantiocontrol (entries 1 and 3) - which increased for both diastereomers in the presence of the trityl N-urea derivative catalyst $\mathbf{3 4 4}$ (entry 2). Sulfonamide cinchona-derived catalysts $\mathbf{3 4 5}$ and $\mathbf{3 4 6}$ (kindly provided by Mr Romain Claveau) were also employed, however no improvements in cis-diastereo- and enantiocontrol were observed (entries 4-5). In order to explore the catalytic performance of systems bearing a different dual hydrogen-bond donating moiety at the C-9 position,
we decided to evaluate squaramide-substituted cinchona alkaloids. Catalyst 304 (entry 6) was evaluated and compared to its analogue $\mathbf{2 0 0}$ bearing a phenyl ring in the $\mathrm{C}-\mathbf{2}^{\prime}$ position (entry 7). Contrary to previous observations (Sections 1.5 .1 and 1.5.2) in which substitution at the C-2' position improves the catalytic performance, we observed that its absence led to slightly improved levels of the cis-diastereomer over the trans.

305

344

106

345

Figure 4.1 Structures of cinchona alkaloid-derived organocatalysts screened.

Table 4.1 Preliminary experiments involving the cycloaddition between homophthalic anhydride (147) and hydrocinnamaldehyde (202).

entry	catalyst	time (h)	yield (\%) ${ }^{\text {a }}$	$d r(c i s: t r a n s){ }^{\text {b }}$	ee cis (\%) ${ }^{\text {c }}$	ee trans (\%) ${ }^{\text {c }}$
1	305	120	79	46:54	0	20
2	344	48	99	40:60	87	98
3	106	120	91	40:60	rac	60
4	345	168	65	42:58	47	10
5	346	144	60	34:66	51	18
6	304	48	99	33:67	99	99
7	200	24	94	25:75	98	90
8	347	96	82	24:76	70	94
9	348	144	74	35:65	14	76
10	349	144	52	20:80	16	92
11	350	192	50	44:56	3	51
12	351	48	89	29:71	34	92
13	352	120	94	48:52	5	12
14	353	48	85	76:24	80	rac.
15	326	33	97	72:28	90	91

${ }^{a}$ Yield of combined diastereomers determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC.

Introduction of a phenylglycine residue in its natural L- (348) and unnatural Dconfiguration (349) respectively, and a benzyl group (347) on the squaramide scaffold furnished the trans-diastereomer as the major product (entries $8-10$), while the C_{2} symmetric analogue $\mathbf{3 5 0}$ was found unsuitable for use in the reaction currently under
study (entry 11) due to unsatisfactory $d r$ and $e e$ of products yielded. We hypothesised that the exchange of an electron-deficient aryl group on the squaramide moiety in $\mathbf{3 0 4}$ or $\mathbf{2 0 0}$ for sterically hindered alkyl groups such as triethyl- or tricyclohexyl groups ($\mathbf{3 5 1}$ and $\mathbf{3 5 2}$) could likely effect the catalytic performance, however this did not influence the $d r$ of the transformation (entries 12 and 13). Surprisingly, in the presence of the trityl-substituted catalyst 326 and its substituted analogue 353 (synthesised by Mr. Romain Claveau) we were delighted to observe a complete reversal of the diastereoselectivity from 3:1 trans:cis for $\mathbf{2 0 4}$ to 3:1 cis:trans (entries 14 and 15). Both catalysts outperformed all of the other candidates, however catalyst $\mathbf{3 2 6}$ resulted superior to catalyst $\mathbf{3 5 3}$ as both diastereomers were afforded in remarkable enantiomeric excesses.

Scheme 4.2 Synthesis of catalyst 326.
The synthesis of catalyst $\mathbf{3 2 6}$ was achieved by the four step procedure depicted in Scheme 4.2. It began with the Mitsunobu reaction of quinine (79) with triphenylphosphine (PPh_{3}), diisopropyl azodicarboxylate (DIAD) and diphenylphosphoryl azide (DPPA) - which allows for inversion of configuration at C-9' and substitution of the free alcohol functionality with an azide group. This was then reduced in situ to the free amino group by reaction with $\mathrm{PPh}_{3} / \mathrm{H}_{2} \mathrm{O}$ to give product $\mathbf{3 5 4}$ in 83% yield.

Simultaneously, squaric acid (355) was converted to the corresponding dimethyl ester 357 by reaction with trimethyl orthoformate (356) and trifluoroacetic acid (TFA) in methanol at reflux. After isolation and purification by column chromatography, $\mathbf{3 5 7}$ was treated with trityl amine (358) in methanol at room temperature, affording 359 in 58\% yield after filtration. The substrate $\mathbf{3 5 9}$ was reacted with $\mathbf{3 5 4}$ to furnish catalyst $\mathbf{3 2 6}$ in 91\% yield (Scheme 4.2).

4.1.1 Further optimisation of reaction conditions

Prompted by the discovery that the trityl squaramide catalyst $\mathbf{3 2 6}$ provided high cisdiastereocontrol, we decided to move forward by optimising the reaction conditions. The influence of solvent and temperature were investigated in the formal cycloaddition reaction between homophthalic anhydride and hydrocinnamaldehyde using catalyst 326 - the results of this study are reported in Table 4.2.

Only ethereal solvents were examined here since previous studies within our group have shown them to increase the $\mathrm{p} K_{\mathrm{a}}$ of the acid products formed, thus avoiding inhibition of the catalyst via protonation of quinuclidine moiety. The reaction performed in THF (entry 1) formed the cis product in high yield and ee, however no improvement in $d r$ was observed (entry 1). A mixture of MTBE and THF gave comparable results with a slight increase in enantiomeric excess of the minor product (entry 2). 1,4-Dioxane, 2methyltetrahydrofuran and 1,2-dimethoxyethane (entries 3-5) all exhibited similar profiles, furnishing the cis-product in remarkable yields but moderate $d r$ of the major product. Lastly, the use of diisopropyl ether gave excellent enantioselectivity, however yield and $d r$ were unsatisfactory (entry 6). From this screen, THF was shown to offer the best results from a diastereocontrol standpoint, so we kept with this solvent for further investigations.

We next examined the effect of temperature on catalytic performance. When the reaction was repeated at room temperature, decreased yields and stereocontrol were observed for both products (entry 7). Increasing the reaction temperature to $40{ }^{\circ} \mathrm{C}$ reduced the diastereocontrol (entry 8), while lowering the reaction temperature to $-65^{\circ} \mathrm{C}$ furnished better diastereo- and enantioselectivity, albeit in lower yield and with a longer reaction time (entry 9). Based on these results, $-15^{\circ} \mathrm{C}$ was considered the optimal temperature.

Table 4.2 Effect of solvent and temperature on the catalytic performance of $\mathbf{3 2 6}$

entry	solvent	T (${ }^{\circ} \mathrm{C}$)	time (h)	yield (\%) ${ }^{\text {a }}$	${ }^{\text {a }}$ dr (cis:trans) ${ }^{\text {b }}$	$e e_{\text {cis }}(\%)^{c}$	$e e_{\text {trans }}(\%)^{c}$
1	THF	-15	48	99	71:29	99	91
2	MTBE/THF	-15	48	99	71:29	99	93
3	1,4-dioxane	rt	24	99	71:29	93	92
4	2-MeTHF	-15	24	99	71:29	95	93
5	1,2-dimethoxyethane	-15	48	99	71:29	99	94
6	diisopropyl ether	-15	144	62	63:37	99	89
7	MTBE	rt	48	80	71:29	95	88
8	THF	40	48	99	68:32	95	90
9	THF	-65	144	85	77:23	99	92

${ }^{a}$ Yield of combined diastereomers determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC.

4.2 Evaluation of substrate scope: aliphathic aldehydes

With optimised conditions in hand, we went about investigating the ability of catalyst $\mathbf{3 2 6}$ to promote the formation of the cis- over the trans-diastereomer in the reaction between various aliphatic aldehydes and homopthalic anhydride (Table 4.3).

This methodology proved itself extremely robust when α-branched, straight chain, unsaturated aldehydes reacted with high levels of cis-diastereomer formation. When α -
branched aldehydes were employed, 360, 203, and 361 were formed in a $d r$ of approximately $4: 1$ to $9: 1$ - highlighting the significance of the substitution at the α position to the carbonyl group (entries 1-3). However, trimethylacetaldehyde failed to react - probably due to significant steric hindrance (362, entry 4). Aromatic α-branched diphenylacetaldehyde was also tested, giving 363 in $87: 13 d r$ and high optical purity (entry 5). Interestingly, the length of the straight chain aldehyde was shown to effect the diastereo- and enantiocontrol of the process, as isovaleraldehyde and phenylacetaldehyde, possessing shorter alkyl- and phenyl- substituted straight chains respectively (entries 67), furnished 364 and 365 in higher $d r$ and ee compared to hydrocinnamaldehyde (202, Table 4.2, entry 1). The use of octanal led to good cis-diastereoselectivity, however a low ee of trans product ($\mathbf{3 6 6}$, entry 8) was obtained. Unsaturated aldehydes were also well tolerated (entries 9-10), generally proceeding quickly with great yield and excellent enantioselectivity being observed for both diastereomers ($\mathbf{3 6 7}$ and $\mathbf{3 6 8}$ up to $84-98 \%$ ee). This methodology also allowed for a highly stereoselective preparation of synthetically malleable 3,4-dihydroisocoumarins 369 and 370 (entries 11-12).

Table 4.3 Evaluation of substrate scope: the aldehyde component.

2

3

48

18
48
92
84:16
99
99

47
8

94 79:21 95

9
 18

10

18

12

11

18

76

8
96
74:26

84
73:27
98
98

75
24

66:34
92
84

84:16
99
${ }^{\bar{a}}$ Diastereomers not separable: combined isolated yield. after column chromatography. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC.

The aldehydes employed for the synthesis of dihydroisocoumarins $\mathbf{3 6 9}$ and $\mathbf{3 7 0}$ were prepared according to the procedure reported.

The substrate 373 was synthesised by the reaction between glutaraldehyde (371) and (carboethoxymethylene) triphenylphosphorane (372), furnishing the aldehyde $\mathbf{3 7 3}$ in 44% (Scheme 4.3). ${ }^{217}$

Scheme 4.3 Synthesis of aldehyde 373.
The synthesis of aldehyde $\mathbf{3 7 6}$ was accomplished in two steps: Boc-protection of the 3-aminopropan-1-ol (374) to $\mathbf{3 7 5}$, which then underwent a Swern oxidation in the presence of DMSO, oxalyl chloride and triethylamine to afford the desired product 376 in good yield (Scheme 4.4). ${ }^{218,219}$

Scheme 4.4 Synthesis of aldehyde 376.
The relative stereochemistry of $\mathbf{3 6 4}$ was found to be $3^{\prime}, 4^{\prime}$-cis- $\mathbf{3 6 4}$, as a coupling constant value of 3.3 Hz was measured between protons at positions C-4' and C-3'. With regards to the minor diastereomer, a coupling constant of 6.1 Hz was measured between the same protons in its ${ }^{1} \mathrm{H}$ NMR spectrum, allowing the assignment of its relative stereochemistry as $3^{\prime}, 4^{\prime}$-trans- $\mathbf{3 6 4}$.

In all the cases reported above, the cis-diastereomer could not be chromatographically separated from the trans-diastereomer, however isolation of cis-diastereomer was possible (albeit in low yield) by treating the mixture with isopropanol - in which the major product was found to be poorly soluble. Subsequent recrystallisation of the cisdiastereomer allowed for X-ray diffraction analysis in order to assign the absolute stereochemistry of the product cis-364. The result obtained led to the unequivocal assignment of the absolute stereochemistry of cis-364 (Figure 4.2) as $(3 R, 4 R)$. This configuration was consequently assigned by analogy to all of the major diastereomers obtained via this methodology.

Figure 4.2 Absolute stereochemical assignment of product $(3 R, 4 R) \mathbf{- 3 6 4}$.

4.2.1 Stereochemical outcome: rationale

In order to rationalise the stereochemical outcome of this process, Dr Trujillo carried out DFT (density functional theory) studies on the reaction between homophthalic anhydride 147 and 2-ethylbutyraldehyde (entry 1, Table 4.3). By analogy with observations made in the catalytic cycloaddition reaction between homophthalic anhydride and benzaldehyde (see Section 1.5.1.1), ${ }^{159}$ we assumed that the reaction proceeds via 'specific-like catalysis'. The enolate, generated from deprotonation by the quinuclidine moiety, interacts with the squaramide moiety via a double hydrogen bonding interaction, while the aldehyde is activated by the protonated quinuclidine unit.

Our experimental data indicated that the two major stereoisomers yielded were $(R, S)-\mathbf{3 6 0}$ and $(R, R) \mathbf{- 3 6 0}$. Thus, based on the binding mode previously mentioned, we proposed two different pre-TS assemblies for both diastereomers (Figure 4.3) and studied their relative energy profiles (Figure 4.4). An overall analysis showed (computationally) that the pathway leading to (R, S) - $\mathbf{3 6 0}$ is favoured as the barriers associated with the formation of $(R, R) \mathbf{- 3 6 0}$ are higher than those related to the formation of the more stable $(R, S)-\mathbf{3 6 0}$ (Figure 4.4). It is noteworthy that when starting at the catalyst-bound adduct, the barrier to its collapse to starting materials is lower than the barrier to lactonisation.

Binding mode A leading to (R, S)- $\mathbf{3 6 0}$

Binding mode A leading to $(R, R)-\mathbf{3 6 0}$

Figure 4.3 Pre-TS assemblies leading to (R, S) -360 and $(R, R)-\mathbf{3 6 0}$ according to binding mode A .

Figure 4.4 Potential energy surfaces for $(R, S)-\mathbf{3 6 0}$ and (R, R) - $\mathbf{3 6 0}$ complexes formed via binding mode A .

As this model was unable to explain the stereoinduction observed experimentally we investigated a second possible binding mode (B), in which two oxygen atoms of $\mathbf{1 4 7}$ are orientated towards the trityl group of $\mathbf{3 2 6}$ (Figure 4.5). In this case, higher energetic barriers were observed to the formation of the 1,2-adducts. However, the significantly lower energy of the cis-adduct ($40.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$) relative to that of the trans-adduct (R, S) ($76.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$), in addition to very similar barriers to its subsequent lactonisation or reversion to starting materials and a more stable cis-product, could potentially explain the origins of the observed sense of stereoinduction (Figure 4.6).

Binding mode B leading to $(R, S)-\mathbf{3 6 0}$

Binding mode B leading to (R, R) - $\mathbf{3 6 0}$

Figure 4.5 Pre-TS assemblies leading to $(R, S)-\mathbf{3 6 0}$ and $(R, R)-\mathbf{3 6 0}$ according to binding mode B .

Figure 4.6 Potential energy surfaces for $(R, S)-\mathbf{3 6 0}$ and (R, R) - $\mathbf{3 6 0}$ complexes formed via binding mode B .

In further support of this hyphothesis, QTAIM (quantum theory of atoms in molecules) revealed that the stereochemical outcome is also governed by a web of attractive interactions involving hydrogen atoms on the trityl phenyl rings of $\mathbf{3 2 6}$ and the two oxygen atoms of $\mathbf{1 4 7}$, which influence the facial selectivity of the attack of the anhydride enolate to the aldehyde (Figure 4.7). This also provides an explanation for the profound influence of the trityl unit on diastereocontrol, which is not mimicked by any other squaramide substituent evaluated.

Figure 4.7 QTAIM interactions contributing to the formation of $(R, R)-\mathbf{3 6 0}$.

The influence of these type of interactions on the stereocontrol of the reaction was demonstrated by evaluating the influence of electron-withdrawing and -donating functionality on the trityl moiety of $\mathbf{3 2 6}$. The reaction reported in Scheme 4.5 was repeated under the optimised conditions in presence of catalyst 377 (synthesised by Mr Romain Claveau), which provided good cis-diastereo- and excellent enantioselectivity (Scheme 4.5). This result affirms the existence of these interactions in that the presence of $-\mathrm{CF}_{3}$ in the para positions would increase the acidity of its adjacent protons, resulting in stronger interactions with the anhydride enolate. On the other hand, catalyst $\mathbf{3 5 3}$ (Table 4.1, entry 14), bearing $-\mathrm{CH}_{3}$ in the para positions of the trityl phenyl rings, showed good diastereocontrol but inadequate enantioselectivity - likely due to the reduced acidity of the aromatic protons on the trityl moiety, which would result in weaker interactions with the anhydride enolate.

Scheme 4.5 Experiments involving the cycloaddition between homophthalic anhydride (147) and hydrocinnamaldehyde (202) using catalyst 377.

4.3 Evaluation of substrate scope: aromatic aldehydes

Until this point we had observed the cis-diastereoselectivity to be strongly dependent on two main factors: the steric and electronic properties of the trityl catalyst (326), and the aliphatic nature of the aldehyde. To probe the scope further, we turned our attention to the evaluation of aromatic aldehydes. We began this study by reacting benzaldehyde (135) with homophthalic anhydride (147) under the conditions presented in Table 4.4
(entry 1). As expected, the use of trityl catalyst $\mathbf{3 2 6}$ reversed the trans-diastereoselectivity observed in studies mentioned in Section 1.5.1, however the exchange of an aliphatic for an aromatic aldehyde led to reduced diastereomeric ratios relative to those observed using aliphatic aldehydes - forming cis-152 and trans-152 in a ratio of 2:1. Entry 1 was also repeated at lower temperature $\left(-70^{\circ} \mathrm{C}\right)$ to see if any improvements in $d r$ could be made, however only a slight improvement was observed ($d r$ 66:34).

This methodology proved extremely robust, as hindered- ($\mathbf{3 7 8}$ entry 2) and electrondeficient/rich aldehydes (379-383, 157 and 49, entries 3-9) were all well tolerated by the catalyst. Yields and enantiomeric excesses of both isolated diastereomers were generally good to excellent. Lactones 394, 395, and 396 derived from heterocyclic π-excessive aromatic aldehydes (e.g. 384, 158, and 385, entries 10-12), were also found to be well compatible. Interestingly, furfural (158) underwent the most diastereoselective reaction in this screen-affording 395 in 74:26 $d r$ but moderate $e e$ (entry 10), which did not improve when lowering the temperature to $-70^{\circ} \mathrm{C}(d r 89: 11$, eecis 0%, ee $76 \%)$.

Table 4.4 Evaluation of substrate scope: the aldehyde component.

2

378

379

4

388

380
386

8

3

5

381

382

383
8

$$
>
$$

392

157

9

49

6

390

391

15

393

168

38936
54
37
59:41
95
78

48
51

48
55
38
42
58:42
89
60

教 48 35

30
58:42 91

40

96
58
28
67:33
95
82
10
 394
144
50 37
56:44
88
57
384
11

395
72
68
25
74:26
46
92
158

385
396
96
58 32 61:39
61:39 84 25

${ }^{a}$ Isolated yield of the cis- and trans-diastereomers after column chromatography. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC. ${ }^{d}$ Diastereomers not separable: combined isolated yield after column chromatography.

4.4 Evaluation of substrate scope: substituted homophthalic anhydrides

After demonstrating the ability of the catalyst $\mathbf{3 2 6}$ to consistently favour the formation of the cis-diastereomer in the reaction with a range of aliphatic and aromatic aldehydes, we decided to examine its tolerance of different anhydrides - in particular substituted homophthalic anhydrides of disparate steric and electronic properties.

Methoxy-substituted anhydride $\mathbf{3 9 8}$ was kindly provided by Mr Aaròn Gutiérrez Collar, while the synthesis of the bromo-substituted homophthalic anhydride $\mathbf{2 3 0}$ was achieved following a procedure described by Balci et al. ${ }^{220}$ (Scheme 4.6). Homophthalic acid (298) undergoes a regioselective bromination to furnish the dicarboxylic acid 397, which was then converted to the corresponding bromo-substituted homophthalic anhydride $\mathbf{2 3 0}$ in moderate yield.

Scheme 4.6 Synthesis of bromo substituted homophthalic anhydride 230.
Anhydride $\mathbf{4 0 2}$ was prepared according to another literature procedure ${ }^{221}$ via the three step synthetic sequence depicted below. Fischer esterification of the dicarboxylic acid

298 to 399 allowed α-methylation to 400 , which was subsequently hydrolysed to the corresponding acid $\mathbf{4 0 1}$ and closed to furnish the anhydride $\mathbf{4 0 2}$ in 65% yield (Scheme 4.7).

Scheme 4.7 Synthesis of methyl substituted homophthalic anhydride 402.
We then began the examination of substituted homophthalic anhydrides 230, 398 and $\mathbf{4 0 2}$ in reaction with 2 -ethylbutyraldehyde (403) - selected as it previously gave excellent results in terms of cis-diastereo- and enantiocontrol (see Table 4.3, entry 1). Compound 404 was obtained in good yield, excellent $d r$ and $e e$ (entry 1). The use of C-5 substituted homophthalic anhydride 402 furnished cis-405 and trans-405 in a ratio of 1:1, with high $e e$ being observed for the cis-product (entry 2). Meanwhile, as expected, incorporation of a deactivating methoxy group on homophthalic anhydride led to a sluggish reaction forming of the cis-product (406, entry 3) in low enantiomeric excess.

Table 4.5 Evaluation of the substrate scope: homophthalic anhydride component.

entry	product	time (h)	yield (\%) ${ }^{\text {a }}$	$d r\left(\right.$ cis:trans) ${ }^{\text {b }}$	$e e_{\text {cis }}(\%)$
1		216	71	84:16	99
2		96	43	54:46	97
3		240	67	80:20	57

${ }^{{ }^{\text {Isolated }} \text { yield of the } \text { cis-diastereomer after column chromatography. }{ }^{b} \text { Diastereomeric ratio determined by }}$ ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC.

Only the cis-diastereomer was isolated after column chromatography, therefore all ee data refer to this diastereomer only. The relative stereochemistry of the products 404 and 406 were assigned by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic analysis of the crude reaction mixture by determination of the coupling constants between $\mathrm{H}-3$ and $\mathrm{H}-4$.

Figure 4.8 Assignment of the relative stereochemistry of 405 using a selective ROESY experiment.

However, the assignment of compound $\mathbf{4 0 5}$ required selective Rotating Overhause Effect (ROESY) experiments. Irradiation of the C-5 methyl group protons revealed an intense ROE correlation with H-6 ($\sim 4.5 \mathrm{ppm}$), showing that these groups interact through space - strongly suggesting a relative cis stereochemistry for $\mathbf{4 0 5}$ (Figure 4.8).

4.5 Evaluation of substrate scope: p-nitrophenyl succinic anhydride

We next explored an extension of the scope to succinic anhydrides, in particular p nitrophenyl succinic anhydride, and examined the possibility of achieving efficient cisdiastereocontrol in presence of trityl catalyst $\mathbf{3 2 6}$ and aliphatic aldehydes. The synthesis of 4-nitrophenyl succinic anhydride (211) was achieved by nitration of phenylsuccinic acid (407) to give 408. The 4-nitrophenyl succinic acid (408) obtained was then converted to 4-nitrophenyl succinic anhydride (211) in 68\% yield (Scheme 4.8).

Scheme 4.8 Synthesis of 4-nitrophenylsuccinic anhydride (211).
As depicted in Table 4.6, we first evaluated the anhydride 211 in the reaction with hydrocinnamaldehyde (202) under our optimised conditions (entry 1). We were pleased to observe that catalyst $\mathbf{3 2 6}$ reversed the trans-diastereoselectivity observed previously with squaramide catalyst 200, from 72:28 for the trans-214 to 90:10 in favour of cis-214, albeit in low ee. With the aim of improving the enantiocontrol, we attempted the same reaction in MTBE (entry 2), which increased the product ee to 61%, with a marginal decrease in $d r$. Lowering the temperature to $-30^{\circ} \mathrm{C}$ resulted in moderate enantioselectivity (entry 3), meanwhile at $-75^{\circ} \mathrm{C}$, product 214 could be prepared in high enantiomeric excess without compromising the diastereocontrol (entry 4). Compared to homophthalic anhydride (147), the reactions involving p-nitrophenyl succinic anhydride (211) under identical reaction conditions proved to be significantly slower (comparing Tables 4.2 and 4.6), probably due to the requirement for the formation of a quaternary stereocentre using the latter anhydride. Overall, enantioselectivity was also lower using the succinic anhydride compared to the homophthalic analogue.

Table 4.6 Evaluation of p-nitrophenyl succinic anhydride as a substrate at different temperatures

entry	time (h)	solvent	$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	yield (\%) $^{\boldsymbol{a}}$	$\boldsymbol{d r}(\text { cis:trans })^{b}$	$\boldsymbol{e e}_{\boldsymbol{c i s}}\left(\mathbf{(\%)}{ }^{\boldsymbol{c}}\right.$
1	72	THF	-15	83	$90: 10$	40
2	72	MTBE	-15	78	$87: 13$	61
3	168	THF	-30	72	$86: 14$	51
4	264	THF	-75	71	$86: 14$	74

${ }^{a}$ Combined yield of the cis- and trans-diastereomers after column chromatography. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC.

We also evaluated p-nitrophenyl succinic anhydride in the reaction with the 2 ethylbutyraldehyde (403) under the conditions reported in the Scheme 4.9. Product 409 was isolated as a major product in excellent optical purity $(95 \% ~ e e)$, but in low yield.

Scheme 4.9 Reaction between p-nitrophenyl succinic anhydride and 403.
The relative stereochemistry of compound $\mathbf{4 0 9}$ was assigned as depicted in Figure 4.9, again using ROE experiments. A ROE contact between the C-3 proton and H_{a} of the p nitrophenyl moiety revealed these protons to be adjacent in space - allowing for the assignment of the relative stereochemistry of $\mathbf{4 0 9}$ as (2,3)-cis-409.

Figure 4.9 Relative stereochemistry of the diastereomer 409 determined by ROE NMR techniques.

4.6 Evaluation of substrate scope: substituted phenyl succinic anhydrides

Encouraged by the results reported in the previous Section, we decided to investigate the tolerance of this process for other phenyl succinic anhydride derivatives. We therefore went about the synthesis of different anhydrides bearing electron-withdrawing and donating groups on the phenyl ring.

Scheme 4.10 Synthesis of 3,5-dibromophenylsuccinic anhydride 415.
Anhydride 415 was first synthesised according to the procedure reported in the Scheme 4.10, starting with para-nitration of phenylsuccinic acid (407 to 408), followed by catalytic reduction of the nitro group to afford $\mathbf{4 1 0}$, which was subsequently esterified to

411, then di-brominated to furnish 412 in 64% yield. The amine 412 underwent diazotisation to the diazonium salt, which was reduced to the diester 413 in high yield. Subsequently hydrolysis furnished 414, which was cyclised to the corresponding anhydride $\mathbf{4 1 5}$ in 55\% yield (Scheme 4.10).

The anhydride 421 was synthesised in 17\% overall yield in a four step synthetic sequence starting from the commercially available 4-methoxyphenylacetic acid 416 (Scheme 4.11). Fischer esterification of $\mathbf{4 1 6}$ gave 417 in 83% yield, which underwent alkylation with methyl bromoacetate (418) in the presence of LDA (prepared in situ at $-78{ }^{\circ} \mathrm{C}$). A subsequent basic hydrolysis of the esters in 419 furnished the corresponding diacid 420, which was then transformed into 4-methoxyphenyl succinic anhydride 421 (Scheme 4.11).

Scheme 4.11 Synthesis of 4-methoxyphenyl succinic anhydride (421).

Anhydride $\mathbf{4 2 5}$ was synthesised in two steps starting by an initial conjugate addition of thiophenol (423) to maleic acid (422, Scheme 4.12). Compound 424 was subsequently cyclised with acetic anhydride to afford $\mathbf{4 2 5}$ in 70\% yield.

Scheme 4.12 Synthesis of thiophenyl succinic anhydride 425.
With these anhydrides in hand, phenyl succinic anhydride 306 (kindly provided by Ms Astrid Botte) was first evaluated under the conditions reported in Table 4.7, furnishing
the cis-diastereomer 426 in moderate yield and excellent enantiomeric excess (entry 1). Surprisingly, the reaction with 3,5-dibromo anhydride 415 favoured the formation of trans-427 over cis-427 - suspected to be due to the size of the anhydride, which probably influences binding within the transition state.

Table 4.7 Evaluation of phenyl succinic anhydride derivatives.

${ }^{a}$ Combined isolated yield of the cis- and trans-diastereomers after column chromatography.
${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{\text {c }}$ Determined by CSP-HPLC.
Anhydride 421, possessing an electron donating group (-OMe), required a noticeably longer reaction time to reach 30% conversion than the other anhydrides, but yielded
product 428 in good $d r$ and $e e$ (entry 3). Meanwhile, the reaction between anhydride $\mathbf{4 2 5}$ and hydrocinnamaldehyde did not take place (entry 4) - probably due to the low reactivity of the anhydride.

4.7 Synthesis of glutaconic anhydride derivatives

As reported previously (Section 1.5.3), 3,4-dihydropyrone represents a common framework in a number of kavalactone natural products. A retrosynthesis disconnection of this unit shows it may be synthesised by formal cycloadditions between anhydrides and aldehydes. Until now no cycloadditions between glutaconic anhydride derivatives and aldehydes have been reported in the literature. Thus, in order to study the feasibility of the process, a number of substituted glutaconic anhydrides were first synthesised following known literature procedures reported below (Schemes 4.13, 4.14, 4.15). ${ }^{177,}$ 241, 242

Scheme 4.13 Synthesis of anhydride 226.

Scheme 4.14 Synthesis of anhydride 436.

Substrates 226 and $\mathbf{4 3 6}$ were synthesised by cyclisation of their respective diacids (e.g. 433 and 435) - obtained from hydrolysis of the lactone products 432 and 434, formed from an intermolecular condensation process.

Anhydride 307 was produced from enol-etherification of $\mathbf{4 3 7}$ with trimethylorthoformate (356), followed by basic hydrolysis of the diester 438 and subsequent cyclisation of 439 using acetyl chloride.

Scheme 4.15 Synthesis of anhydride 307.

4.7.1 Catalytic cycloaddition between glutaconic anhydrides and aromatic aldehydes

Our first attempt to effect a cycloaddition between a glutaconic anhydride and an aldehyde was with phenyl glutaconic anhydride 226 and benzaldehyde (135) in the presence of $5 \mathrm{~mol} \%$ of catalyst $\mathbf{3 2 6}$ at $-15{ }^{\circ} \mathrm{C}$ in THF (0.1 M). Disappointingly, the reaction failed to furnish the desired lactone; various unidentifiable side products were formed.

Scheme 4.16 Attempted cycloaddition between glutaconic anhydride and benzaldehyde promoted by catalyst $\mathbf{3 2 6}$.

Moving forward, we decided to evaluate anhydride 226 with diphenylacetaldehyde (440) - an aldehyde previously reported to readily undergo cycloaddition with homophthalic
anhydride (see Table 4.3, Section 4.2). Under the conditions reported in Table 4.8 we found catalyst 326 was able to promote the cycloaddition - generating a single diastereomeric product (441). Lactone-acid 441 was then isolated via a base/acid extraction and analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to assign its relative stereochemistry. The product was found to possess a cis conformation, as a coupling constant value of $J=$ 1.4 Hz was measured between $\mathrm{H}-3$ and $\mathrm{H}-4$. This was further confirmed by ROE experiments, which revealed through-space interactions between protons $\mathrm{H}-3$ and $\mathrm{H}-4$, and between $\mathrm{H}-3$ and $\mathrm{H}-5$ respectively, allowing us to assume that these three protons are most likely on the same side of molecule.

MeOH (75 equiv.) TMSCHN_{2} (1.2 equiv.), $-15^{\circ} \mathrm{C}, 20 \mathrm{~min}$

Scheme 4.17 Evaluation of phenyl glutaconic anhydride 226 and phenylacetaldehyde (440).

In order to determine the enantioselectivity of the process by CSP-HPLC, 441 was then converted to the corresponding lactone-ester $\mathbf{4 4 2}$ by reaction with TMSCHN_{2} (1.2 equiv.) at $-15{ }^{\circ} \mathrm{C}$. After 20 minutes the crude mixture of esters was analysed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy, which revealed the formation of a minor trans-diastereomer (based on the coupling constant between H-3 and H-4) - most likely due to an epimerisation process taking place which converted the cis-isomer to its trans counterpart. Despite this setback, the major product was isolated by chromatography and its enantiomeric excess quantified (99\% ee, Scheme 4.17).

4.7.1.1 Optimisation of esterification procedure

At this stage we looked into the epimerisation issue which arose during the 'standard' esterification procedure using trimetylsilyldiazomethane (TMSCHN2) and MeOH (75 equiv.), in case it should hinder our diastereocontrol moving forward.

We postulated this process may be taking place via a similar mechanism to a computationally validated pathway which was proposed within our group (See Section 1.5.4). ${ }^{178}$ By this mechanism, a hydrogen bonding complex involving two molecules of methanol (443) facilitates tautomerisation to the enol species 444, which furnishes the corresponding trans-442 after re-tautomerisation (Scheme 4.18).

Scheme 4.18 Proposed epimerisation mechanism.

Thus, we embarked on a series of experiments seeking to optimise the derivatisation procedure which could reduce epimerisation. Based on the proposed mechanism we thought that the use of more hindered alcohol in reasonable amounts could reduce the probability of that process occurring. To test this hypothesis we performed the reactions in EtOH (15 equiv.) at lowered temperature. After 20 minutes we analysed the reaction crude by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy and we observed 10% of the trans-isomer (entry 1). The cis-product was then isolated after column chromatography through silica gel and the enantiomeric excess estimated about 98% by CSP-HPLC. Identical result was obtained upon exchange of either ethanol or methanol with $i \operatorname{PrOH}$ (5 equiv.) at $-15^{\circ} \mathrm{C}$ (entry 2). Meanwhile esterification carried out in presence of MeI and DIPEA failed to afford the desired lactone-ester generating decomposed products instead. Finally the use of methyl triflate and triethylamine was also investigated. This protocol adopted could not fully suppressed the side reaction but did minimise it to 4%, keeping the product optical purity unchanged (entry 4) however in low yield.

Table 4.8 Epimerisation conditions.

| entry | esterification condition | yield
 $(\%)^{a}$ | dr (cis:trans)
 (acids) | dr (cis:trans) ${ }^{c} \boldsymbol{e e}_{c i s}$
 (esters) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(\%)^{\boldsymbol{d}}$ | | | | |

${ }^{a}$ Isolated yield of the cis-diastereomer after column chromatography. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis before esterification. ${ }^{c}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis after esterification. ${ }^{d}$ Determined by CSP-HPLC.

4.7.2 Catalytic cycloaddition between glutaconic anhydride derivatives and aliphatic aldehydes

After achieving a good result in the evaluation of the aromatic α-branched aldehyde 440 we decided to investigate the applicability of this process to aliphatic aldehydes such as 202 and 403.

We first reacted phenyl glutaconic anhydride 226 with hydrocinnamaldehyde (202) under our established optimal conditions (Table 4.9, entry 1). Contrary to what was described in the previous Section no variations in the $d r$ of the products due to epimerisation upon esterification were observed using isopropanol and TMSCHN2 at $-15{ }^{\circ} \mathrm{C}$. Good diastereocontrol was achieved, as cis- $\mathbf{4 4 5}$ was afforded in a ratio of almost 5 to 1 over the trans-445 in a combined yield of 62%, albeit in low ees. In order to improve the enantioselectivities, we decreased the reaction temperature to $-78{ }^{\circ} \mathrm{C}$. Despite the higher $d r$ obtained, both products were generated in poor enantiomeric excess. Therefore, we repeated the same reaction at room temperature, which surprisingly gave product 445 in higher enantio- and diastereoselectivity, showing a preference for cis-445 (entry 3).

Table 4.9 Evaluation of phenyl glutaconic anhydride 226 and hydrocinnamaldehyde (202) at different temperatures

entry	time (h)	$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	yield (\%) $^{\boldsymbol{a}}$	$\boldsymbol{d r}(\text { cis:trans })^{\boldsymbol{b}}$	$\boldsymbol{e e}_{\text {cis }}(\%)^{\boldsymbol{c}}$	$\boldsymbol{e e}_{\text {trans }}(\%)^{\boldsymbol{c}}$
1	18	-15	63	$82: 18$	7	10
2	240	-78	60	$88: 12$	7	10
3	18	rt	64	$86: 14$	76	45

${ }^{a}$ Combined isolated yield of the cis- and trans-diastereomers after column chromatography.
${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC.
We next investigated various glutaconic anhydride derivatives in the reaction with the 2ethylbutyraldehyde (403) under the conditions depicted in Table 4.10. Disappointingly, anhydrides 436, $\mathbf{3 0 7}$ and $\mathbf{4 4 6}$ failed to form the corresponding products 448-450 (entries 2-4). Meanwhile, the reaction involving phenyl glutaconic anhydride produced one single diastereomer (e.g. 447) in almost optical purity (entry 1).

Table 4.10 Evaluation of glutaconic anhydride derivatives and 2-ethylbutyraldehyde (403)

entry	substrate	product	time (h)	yield (\%) ${ }^{a}$	$d r(c i s: t r a n s)^{b}$	$e e_{\text {cis }}(\%)^{c}$
1	$\mathbf{2 2 6}$	$\mathbf{4 4 7}$	72	56	$95: 5$	99
2	$\mathbf{4 3 6}$	$\mathbf{4 4 8}$	-	-	-	-
3	$\mathbf{3 0 7}$	$\mathbf{4 4 9}$	-	-	-	-

4
446
450
${ }^{a}$ Isolated yield of the cis-diastereomer after column chromatography. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC.

4.8 Derivatisation protocol development

As mentioned previously this new methodology offered the possibility of synthesising cis-products in good yields and excellent optical purity. However, most of the compounds obtained were isolated as mixtures of the cis- and trans- diastereomers which were inseparable as they possess identical retention factors (Rf). Despite intensive efforts devoted to the separation of these diastereomers either as methyl ester derivatives or as carboxylic acids (isolated after work up) by column chromatography, no separation could be achieved. We also attempted separation using an automated flash chromatographic purification system (e.g. Biotage SP4), which employs high performance prepacked silica cartridges - to no avail.

At this stage we considered the possibility of derivatising the cis- and trans-acid lactones as alcohols or amides, hypothesising that the diastereomers formed would be easily separable by chromatography on silica gel. We first repeated the reaction reported in Table 4.3 (entry 6). After full conversion, the acid products 451 were isolated through an acid/basic work up, then dissolved in THF (2.0 M) and converted to the corresponding alcohol derivatives $\mathbf{4 5 2}$ by selective reduction of the carboxylic acid functionality in the presence of borane dimethyl sulphide complex.

Scheme 4.19 Derivatisation of acids 451 as alcohols 452.

Subsequent purification of the mixture on silica gel revealed the two alcohol derivatived lactones were not chromatographically separable (Scheme 4.19). Thus, we then decided to react the 3,4 dihydroisocoumarine-4-carboxylic acids (451) with benzylamine - all attempts of which are reported in the Table 4.11.

Performing the reaction in the presence of HBTU (2- (1H-benzotriazol-1-yl)-1,1,3,3tetramethyluronium hexafluorophosphate) and DIPEA led to formation of a mixture of unidentified side products (entry 1). Meanwhile, when the mixture of cis:trans-451 (in a ratio 78:22) was reacted with benzylamine in the presence of DCC and DMAP at $0^{\circ} \mathrm{C}-$ the corresponding mixture of cis- and trans-carboxamide lactones were formed in a ratio of 65:35 (entry 2). However, a difference in $d r$ was detected by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic analysis before and after this reaction - suggesting an epimerisation process occurred. Unfortunately the same drawback was observed when carring out the reaction with EDC at $0^{\circ} \mathrm{C}$ (entry 3).

Table 4.11 Derivatisation as amide

${ }^{a}$ Isolated yield of the cis-diastereomer after column chromatography. ${ }^{b}$ Isolated yield of the trans-diastereomer after column chromatography. ${ }^{c}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis before derivatisation. ${ }^{d}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis after derivatisation.

Thus, we decided to adopt another strategy which employed one equivalent of oxalyl chloride and 2 drops of DMF at $0^{\circ} \mathrm{C}$ for one hour - converting the carboxylic acid $\mathbf{4 5 1}$ to its acyl chloride (entry 4). This was then used in the next step without further purification and an excess of benzylamine (3 equivalents) was added to allow the
formation of the corresponding carboxamide 453 -leading to unchanged $d r$ and enantiomeric excess. Subsequent purification by column chromatography allowed for the complete separation of the cis- and trans-453 which were isolated as single diasteromers.

4.9 Conclusion

The results obtained in this project have demonstrated the possibility to reverse the transdiastereoselectivity previously observed in organocatalytic asymmetric formal cycloaddition reactions between cyclic enolisable anhydrides and various aliphatic aldehydes by choice of a bulky substituted squaramide catalyst. This process has provided one-pot access to functionalised cis-lactone derivatives such as dihydroisocoumarins and γ-butyrolactones in good yield and high stereocontrol. Furthermore, we demonstrated for the first time the expansion of the scope of the anhydride component to phenyl glutaconic anhydride, allowing for the synthesis of 3,4-dihydropyrones - core units present in a range of natural products possessing interesting medicinal properties.

Computational studies have shed light on the stereochemical outcome observed, and the absolute configuration of the products obtained has been assigned by direct analogy and X-ray crystallography.

5. Use of bifunctional iminophosphazenes in the cycloaddition reaction between enolisable anhydrides and aldehydes

As mentioned in Sections 1.5 .1 and 1.5.2, the rate-limiting step in cinchona alkaloid catalysed cycloaddition reactions between enolisable anhydrides and electrophiles is in part, the formation of the enolate species - promoted via deprotonation by the quinuclidine moiety. When aromatic anhydrides bearing an electron widrawing group were employed, the reaction proceeded at higher rates as a consequence of greater concentrations of enolate in solution. On the other hand, anhydrides lacking functionality which is able to stabilise the enol species react slowly, if at all.

A potential approach to overcome the low nucleophilicity of some anhydrides due to their poor enolisability is to enhance the Brønsted basicity of the catalyst itself. Thus, we turned our attention to a new class of catalysts: bifunctional iminophosphorane superbase catalysts. We believed that the strong Brønsted basicity of a triaryliminophosphorane unit could provide sufficient activation of weak pronucleophiles, while an incorporated H bond donor group attached to a suitable chiral scaffold could activate the electrophilic component.

5.1 Synthesis of bifunctional iminophosphorane catalyst 459

Our studies began with the synthesis of the achiral bifunctional iminophosphorane catalyst 459, which was formed in 10% overall yield by a five step synthetic procedure starting from the commercially available 1,2 ethylenediamine 454. This underwent Bocprotection of one of the amino groups to provide 455, which was then converted to the Boc-azide 457 in the presence of imidazole-1-sulfonyl azide hydrochloride (456) and catalytic amounts of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (copper sulphate pentahydrate). Subsequent Bocdeprotection affords the corresponding aminoazide, which reacts with bis-3,5-(trifluoromethylphenyl)-isothiocyanate in situ to furnish the azidothiourea 458. Finally, a Staudinger reaction afforded the catalyst 459 (Scheme 5.1).

Scheme 5.1 Synthesis of catalyst 459 and imidazole-1-sulfonyl azide hydrochloride. 456.

5.2 Preliminary studies: evaluation of substrate 421 and 425

With a bifunctional superbase organocatalyst in hand we first tested its catalytic ability in the formal cycloaddition reaction between p-methoxyphenyl succinic anhydride 421 and benzaldehyde $\mathbf{1 3 5}$ under the conditions depicted in Table 5.1. This reaction was attempted in the presence of squaramide cinchona alkaloid catalyst 200, yielding only 7% of the product after 4 days. ${ }^{168}$ The low yield observed was undoubtedly due to the presence of an electron donating group on the aryl unit which destabilises the formation of the enol. We hoped that the use of a superbase catalyst could improve the product conversion and the rate of reaction by increasing the concentration of the enol in solution. Thus, we conducted some kinetic studies, monitoring the conversion over time by ${ }^{1} \mathrm{H}-$ NMR spectroscopic analysis of the crude reaction mixture (Table 5.1). In order to obtain a direct comparison we carried out the same experiment with the thiourea based cinchona alkaloid catalyst 106 in parallel. In both cases no product was detected after 10 minutes (entry 1). The reaction with catalyst $\mathbf{4 5 9}$ proceeded only slightly faster (entries 2 and 3), showing no significant increase in conversion after 32 h - possibly due to degradation of catalyst (entry 4).

Table 5.1 Kinetic studies on the cycloaddition reaction between anhydride 421 and benzaldehyde (135).

${ }^{a}$ Yield of combined diastereomers determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole as an internal standard.

A ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic kinetic experiment was also carried out for the reaction involving 2-thiophenyl succinic anhydride (425) and benzaldehyde (135). As reported in Section 4.6, $\mathbf{4 2 5}$ was found to be unreactive in the cycloaddition reaction with aliphathic aldehyde 202 promoted by trityl catalyst 326. Consistent with what was observed previously, the superbase catalyst 459 outperformed 106, giving more conversion over time (entries 1-4, Table 5.2).

Table 5.2 Kinetic studies in the cycloaddition reaction between anhydride $\mathbf{4 2 5}$ and benzaldehyde (135)

${ }^{a}$ Yield of combined diastereomers determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole as an internal standard.

5.3 Catalyst design

Although our preliminary results demonstrated that the higher basicity of catalyst $\mathbf{4 5 9}$ led to greater catalytic activity than 106, the rate of reaction was still low, leading us to consider designing a more powerful bifunctional iminophosphorane catalyst possessing greater Brønsted basicity. Inspired by Dixon's studies (see Section 1.7.1), we decided to modify the triaryliminophosphorane moiety by varying the electronic properties of the triarylphosphine component. We believed that the incorporation of electron-donating groups such as methoxy (-OMe), or dimethyl amine groups $\left(-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$ on phenyl ring units would create a stronger iminophosphorane base capable of accelerating the rate of reaction.

Scheme 5.2 Synthesis of catalyst 464.

Catalyst 464 was prepared via Staudinger reaction between the thiourea azide $\mathbf{4 5 8}$ and the commercially available tris(4-methoxyphenyl)phosphine (463, Scheme 5.2). Using a similar strategy we also attempted the synthesis of catalyst 467. The substituted triphenylphosphine 466 was prepared starting from 4-bromo- N, N-dimethylaniline (465). A subsequent Staudinger reaction between 458 and 466 failed to furnish the corresponding product, mainly due to its degradation in situ (Scheme 5.3).

Scheme 5.3 Attempted synthesis of 467.

We later investigated modification of the H-bond moiety. The superiority of the squaramide unit as a H -bond donor in the activation of a range of electrophiles (see Section 1.2.3) led us to the design of novel catalyst 470, the attempted synthesis of which was carried out following the procedure depicted in the Scheme 5.4 below.

The H-bond unit was first synthesised by converting squaric acid (355) to the dimethyl ester 357, which was substituted with 3,5-bis(trifluoromethyl)-aniline to furnish 468. Compound 457 was then reacted with 468 upon deprotection to give $\mathbf{4 6 9}$ in just 6% yield, which subsequently underwent a Staudinger reaction with triphenylphosphine at room temperature. Disappointingly, $\mathbf{4 7 0}$ could not be isolated due to its degradation in solution via hydrolysis - forming triphenylphosphine oxide (472) and the corresponding amine 471, both of which were observed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic analysis of the crude, and also detected by APCI mass spectrometry.

Scheme 5.4 Attempted synthesis of squaramide iminophosphorane catalyst and its hydrolysis.

Such instability of catalysts $\mathbf{4 6 7}$ and $\mathbf{4 7 0}$ led us to move forward with an investigation into the catalytic efficiency of the substituted iminophosphorane catalyst 464, which was next evaluated in formal cycloaddition reactions between various anhydrides and benzaldehyde (Section 5.2.1).

5.3.1 Evaluation of catalyst 464

Under the conditions reported in the Table 5.3 we first tested catalyst 464 with 2thiophenyl succinic anhydride (425) and benzaldehyde (135). Monitoring the reaction over time we observed higher reaction rates (entries 1-2, Table 5.3) than those observed with its unsubstituted analogue 459 (entries 1-4, Table 5.2). These results would support the hypothesis that the presence of electron-donating groups on the triarylphosphine moiety can increase the basicity of the catalyst, rendering it more capable of promoting the keto-enol equilibrium, and in turn increasing the rate of nucleophilic attack of the enol to the aldehyde.

Table 5.3 Kinetic studies in cycloaddition reaction between anhydride 425 and benzaldehyde.

${ }^{a}$ Yield of combined diastereomers determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole as an internal standard.

Encouraged by these results, we then evaluated the catalytic performance of catalyst 464 in the formal cycloaddition between phenyl succinic anhydride (306) and benzaldehyde (135). This reaction was first attempted in the presence of squaramide derivative 200, which yielded 44\% of products trans-473 and cis-473 (90:10 dr) in 68\% ee of the major diastereomer after 24 hours. ${ }^{167}$

Table 5.4 Kinetic studies on cycloaddition reaction between anhydride 306 and benzaldehyde (135)

	 306	135	 trans-473	 $d r$ 77:23 cis-473
entry	time (h)	yield (\%) ${ }^{a}$ using 464 in THF	time (h)	yield (\%) ${ }^{a}$ using 464 in MTBE
1	18	13	14	22
2	30	17	24	28
3	96	28	45	36
4	384	58	60	42

[^1]Unexpectedly, lower conversions after approximately the same period of time (entries 1 and 2, Table 5.4) were observed when iminophosphorane catalyst 464 was employed. However, repeating the same reaction in MTBE gave faster reactions than when performed in THF (comparison among entries 1-4, Table 5.4). Based on these results we decided to move forward with MTBE being our solvent of choice.

5.4 Evaluation of chiral catalyst 474

Despite relatively unsatisfactory results obtained up until this point, the kinetic studies previously reported had the merit of demonstrating the superiority of catalyst $\mathbf{4 6 4}$ over its unsubstituted analogue 459. Thus, we went about the development of a chiral variant of this catalyst - successfully synthesised by Ms Astrid Botte and subsequently evaluated in collaboration with the author, in the cycloaddition reaction between anhydrides and a range of aldehydes.

In Section 4.7 we mentioned a failed attempt to develop a cycloaddition reaction between phenyl glutaconic anhydride (226) and benzaldehyde (135) promoted by trityl catalyst 326. Gratifyingly, the employment of catalyst 474 in MTBE at room temperature promoted the reaction efficiently, affording 475 as a mixture of diastereomers in a ratio of 95:5 (Scheme 5.5).

Scheme 5.5 Catalytic cycloaddition reaction between phenyl glutaconic anhydride and benzaldehyde promoted by 474.

The crude acid-lactones were then isolated by acidic/basic extraction and esterified under the conditions depicted in the Scheme below. Unfortunately this reaction generated the desired product trans-477, along with the side adduct 476- most likely deriving from ring opening of the lactone by MeOH followed by decarboxylative elimination. Subsequent purification of 477 by column chromatography furnished trans-477 with 43% ee.

Scheme 5.6 Esterification of trans-475.

At this point in the study a collaborative effort began, focusing on the evaluation of superbase catalyst 474 with various aromatic (Ms Astrid Botte) and aliphatic aldehydes (author).

5.4.1 Evaluation of aliphatic aldehydes

In Sections 4.7.1 and 4.7.2 we reported some examples of asymmetric cycloaddition reactions between phenyl glutaconic anhydride and aliphatic aldehydes promoted by the trityl catalyst 326. Although this methodology was tolerant of hindered α-branched aldehydes such as 403 (see Section 4.7.2, Chapter 4), inadequate levels of enantioselectivity were observed when linear aliphatic aldehydes such as hydrocinnamaldehyde were employed at lowered temperature. With the aim of improving the stereocontrol of this process, we decided to investigate the performance of a small library of catalysts, including chiral iminophosphorane 474 in the reaction between anhydride $\mathbf{2 2 6}$ and hydrocinnamaldehyde (202, Table 5.5) under the conditions found to be optimal in the preliminary studies conducted with the trityl catalyst 326 (see Table 4.2, Section 4.1.1, Chapter 4)

With the exception of (thio)urea catalysts $\mathbf{3 0 5}$ and $\mathbf{1 0 6}$ (entries 1 and 2), which failed to afford the corresponding products, all catalysts under evaluation promoted the reaction in low to moderate yield in convenient reaction times (entries 3-8). In contrast to what was observed with catalysts 304, 200 and 228, catalyst 474 furnished the product in moderate to good $d r$ with a preference for the trans-isomer.

Table 5.5 Catalyst screening between phenyl glutaconic anhydride 226 and hydrocinnamaldehyde (202)

entry	cat.	loading (\%)	T $\left({ }^{\circ} \mathrm{C}\right)$	solv.	time (h)	$\begin{aligned} & \text { yield } \\ & (\%)^{\text {a }} \end{aligned}$	$\stackrel{d r}{(\text { cis:trans) })^{b}}$	$e e_{c i s}(\%)^{c}$	$e e_{\text {trans }}(\%)^{c}$
1	305	5	rt	THF	-	-	-	-	-
2	106	5	rt	THF	-	-	-	-	-
3	304	5	rt	THF	15	66	62:38	99	99
4	304	20	rt	THF	24	71	64:36	99	99
5	200	5	rt	THF	24	77	57:43	93	95
6	228	5	rt	THF	15	65	64:36	93	79
7	474	5	rt	THF	24	40	29:71	80	73
8	474	5	-15	THF	120	33	22:78	94	75

${ }^{a}$ Yield of combined diastereomers determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole as an internal standard. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC.

Analysis of the enantioselectivity of the reaction showed the trans-isomers of products were all formed in good $e e$, while the $c i s$-isomers were always formed in $e e \geq 80 \%$, and in particular near optical purity when catalyst $\mathbf{3 0 4}$ was employed (entries 3 and 4). Despite the reduced diastereocontrol provided by $\mathbf{3 0 4}$ and 200 (entries 3-5) compared to the other catalysts under examination (228 and 474), these two structures proved to be the most
efficient, promoting the only three reactions that achieved product ee above 90% in reasonable yield.

In analogy to these results, concomitant studies carried out by Ms Astrid Botte on the cycloaddition reaction involving phenyl glutaconic anhydride (226) and α-branched aldehyde $\mathbf{4 0 3}$ in the presence of catalyst $\mathbf{4 7 4}$ provided better trans-diastereo and enantioselectivity than that achieved with linear aldehydes such as 202. (Scheme 5.7).

Scheme 5.7 Cycloaddition reaction between anhydride 226 and aldehyde 403 promoted by 474.

Based on these observations we hypothesised that the development of a highly enantioselective protocol involving either the linear or α-branched aldehydes could be possible by choice of an adequate catalyst. To test this, we conducted experiments involving commercially available linear aliphatic aldehydes 478 and 479, which were previously successfully employed in asymmetric cycloaddition reactions with homophthalic anhydride (Table 4.3, Section 4.3, Chapter 4). Each aldehyde was evaluated in cycloaddition with phenyl glutaconic anhydride and both squaramide catalyst 304 and superbase catalyst 474 respectively. The results obtained are summarised in Table 5.7 below.

As expected, in both cases catalyst 304 (entries 1-3) formed a diastereomeric mixture of products 480 and 481 in a ratio of almost 1:1, with excellent enantiocontrol and higher yield than catalyst 474 . On the other hand catalyst 474 provided the product with moderate trans-diastereoselectivity - furnishing the trans-isomer in an enantiomeric excess of up to 95% (entries 2,4).

Table 5.7 Catalytic cycloaddition reactions involving aliphatic aldehyde 478 and 479.

${ }^{a}$ Diastereomers not separable: combined isolated yield after column chromatography. ${ }^{b}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC. ${ }^{d}$ Experiment carried out by Ms Astrid Botte.

Hindered branched aromatic/aliphatic aldehydes (e.g. 403 and 440) were also investigated in the presence of both catalysts. Consistent with previous results, iminophosphorane catalyst $\mathbf{4 7 4}$ provided the product with good diastereoselectivies, showing a preference for the trans-isomer, which was obtained in excellent to moderate ee (entries 1 and 3). Meanwhile, the use of a squaramide catalyst 304 reduced the $d r$ to $1: 1$, delivering products in higher enantiomeric excesses (entries 2 and 4).

Table 5.8 Investigations into the cycloaddition between phenyl glutaconic anhydride 226 and aliphatic aldehydes.

entry	cat.	substrate	time (h)	yield (\%) $^{\boldsymbol{a}}$	$\boldsymbol{d r}\left(\right.$ trans:cis) ${ }^{\boldsymbol{b}}$	$\boldsymbol{e e}_{\text {trans }}(\%)^{\boldsymbol{c}}$	$\boldsymbol{e e _ { \text { cis } } (\%) ^ { \boldsymbol { c } }}$
1^{d}	$\mathbf{4 7 4}$	$\mathbf{4 0 3}$	120	67	$76: 24$	95	99
2	$\mathbf{3 0 4}$	$\mathbf{4 0 3}$	120	90	$50: 50$	99	99
3^{d}	$\mathbf{4 7 4}$	$\mathbf{4 4 0}$	24	42	$87: 13$	66	-
4	$\mathbf{3 0 4}$	$\mathbf{4 4 0}$	24	90	$52: 48$	99	99

$\overline{{ }^{a} \text { Diastereomers not separable: combined isolated yield after column chromatography. }{ }^{b} \text { Diastereomeric ratio }}$ determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. ${ }^{c}$ Determined by CSP-HPLC. ${ }^{d}$ Experiment carried out by Ms Astrid Botte.

5.5 Conclusion

This project has seen the synthesis and attempted synthesis of various novel bifunctional iminophosphorane catalysts. Kinetic studies carried out on the cycloaddition reaction between unreactive phenyl succinic anhydride derivatives and benzaldehyde allowed the identification of a substituted thiourea iminophosphorane derivative catalyst as a superior promoter of this transformation. We were also able to develop the first asymmetric cycloaddition reaction between phenyl glutaconic anhydride and benzaldehyde. An effort to expand the scope of this methodology with respect to the aldehydes component also demonstrated that hindered α-branched aldehyde were well tolerated.

6. General experimental data

Proton Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker DPX 400 MHz and Bruker Avance II 600 MHz spectrometers, using as solvents CDCl_{3}, DMSO- d_{6} or $\mathrm{D}_{2} \mathrm{O}$ and referenced relative to residual $\mathrm{CHCl}_{3}(\delta=7.26 \mathrm{ppm})$ DMSO $(\delta=2.50 \mathrm{ppm})$ or $\mathrm{H}_{2} \mathrm{O}(\delta=4.79 \mathrm{ppm})$. Chemical shifts are reported in ppm and coupling constants (J) in Hertz. Carbon NMR spectra were recorded on the same instruments (100 MHz) with total proton decoupling. Fluorine and phosphorus NMR spectra were recorded on the Bruker DPX400 machine (376.5 and 202 MHz respectively). HSQC, HMBC, NOE and ROESY NMR experiments were used to aid assignment of NMR peaks when required. All melting points are uncorrected. Infrared spectra were obtained using neat samples on a Perkin Elmer Spectrum 100 FT-IR spectrometer equipped with a universal ATR sampling accessory. ESI mass spectra were acquired using a Waters Micromass LCT- time of flight mass spectrometer (TOF), interfaced to a Waters 2690 HPLC. APCI experiments were carried out on a Bruker microTOF-Q III spectrometer interfaced to a Dionex UltiMate 3000 LC or direct insertion probe. The instrument was operated in positive or negative mode as required. Flash chromatography was carried out using silica gel, particle size $0.04-0.063 \mathrm{~mm}$. TLC analysis was performed on precoated $60 \mathrm{~F}_{254}$ slides, and visualised by UV irradiation or KMnO_{4} staining. Optical rotation measurements were made on a Rudolph Research Analytical Autopol IV instrument, and are quoted in units of $10^{-1} \mathrm{deg}$ $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Anhydrous tetrahydrofuran (THF), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ were obtained by using Pure Solv MD4EN Solvent Purification System. Methanol (MeOH) was dried over activated $3 \AA$ molecular sieves. Commercially available anhydrous t-butyl methyl ether (MTBE), 1,4-dioxane, 2-methyltetrahydrofuran (2-MeTHF), 1,2-dimethoxyethane, diisopropyl ether were used. Analytical CSP-HPLC was performed on Daicel Chiralpak, AD, AD-H, IA, OD, OD-H, OJ-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) and using ACQUITY UPC ${ }^{2}$, Trefoil CEL1, CEL2, $2.5 \mu \mathrm{~m}(3.0 \times 150 \mathrm{~mm})$. The X-ray intensity data for the crystal structure of cis364 was collected on a Bruker Smart Apex 2 CCD diffractometer. A suitable crystal was selected and mounted using inert oil on a 0.3 mm MiTeGen loop and placed on the goniometer head in a $100 \mathrm{~K} \mathrm{~N}_{2}$ gas stream. The dataset was collected using Bruker APEX2 v2011.8-0 software. Data integrations, reductions and corrections for absorption and polarization effects were all performed using APEX2 v2011.8-0 software. Space group determination, structure solution and refinement were obtained using Bruker Shelxtl*

Ver. 6.14 software. The structures were solved with Direct Methods using the SHELXTL program and refined against $\mathrm{IF}^{2} \mathrm{I}$ with the program XL from SHELX-97 using all data. Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed into geometrically calculated positions and refined using a riding model. (*Software Reference Manual, version 5.625; Bruker Analytical X-Ray Systems Inc.: Madison, WI, 2001. Sheldrick, G. M. SHELXTL, An Integrated System for Data Collection, Processing, Structure Solution and Refinement; Bruker Analytical X-Ray Systems Inc.: Madison, WI, 2001).

6.1 Experimental procedures and data for Chapter 2

6.1.1 Racemic preparation of dihydroisocoumarins 302

An oven-dried 10 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with homophthalic anhydride (147, $39.9 \mathrm{mg}, 0.246$ mmol). Anhydrous MTBE ($2.5 \mathrm{~mL}, 0.1 \mathrm{M}$) was added via syringe followed by 289 (46.8 $\mathrm{mg}, 0.246 \mathrm{mmol}$). N, N-Diisopropylethylamine ($8.6 \mu \mathrm{~L}, 0.0495 \mathrm{mmol}-20 \mathrm{~mol} \%$) was added via syringe and the resulting mixture was allowed to stir for 20 h at room temperature. The corresponding carboxylic acids were dissolved in dry MTBE (0.1 M) and anhydrous MeOH (75 equiv.), followed by trimethylsilyldiazomethane (2.0 M solution in diethyl ether, 1.2 equiv.) were added via syringe and the reaction was allowed to stir for 30 min at room temperature. The solvent was then removed in vacuo and the crude mixture of diastereomeric esters was purified by flash column chromatography, (hexanes/EtOAc 8:2) to afford both diastereomers.

6.1.2 General procedure A: organocatalysed cycloaddition reaction between homophthalic anhydride (147) and Michael acceptors (285) and (289) (Table 2.1, entry 5 and Table 2.4, entry 4)

An oven-dried 10 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with homophthalic anhydride (147, 1 equiv.) and catalyst $\mathbf{2 0 0}$ or $\mathbf{3 0 5}$ ($5 \mathrm{~mol} \%$). Anhydrous MTBE (0.1 M) was added via syringe followed by the relevant Michael acceptors (1 equiv.) and the resulting mixture was allowed to stir under the reaction conditions (time and temperature) indicated in Table 2.1. The yield and diastereomeric ratio of the carboxylic acid were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole (0.5 equiv.) as an internal standard. The corresponding
carboxylic acid was then dissolved in dry MTBE (0.1 M) and anhydrous MeOH (75 equiv.), followed by trimethylsilyldiazomethane (2.0 M solution in diethyl ether, 1.2 equiv.) were added via syringe. The reaction was allowed to stir for 1 h at room temperature. The solvent was then removed in vacuo and the corresponding diastereomeric ester was purified by flash column chromatography (hexanes/EtOAc 8:2) to afford the trans-diastereomer $\mathbf{3 0 2}$ or $\mathbf{3 0 3}$. The enantiomeric excess of the trans- $\mathbf{3 0 2}$ was determined by CSP-HPLC.

Homophthalic anhydride (147) ${ }^{222}$

A 50 mL round-bottomed flask containing a magnetic stirring bar was charged with homophthalic acid (298, $2.00 \mathrm{~g}, 11.1 \mathrm{mmol})$. Acetic anhydride (25 mL) was added, the flask was fitted with a condenser and the reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 2 h . The excess acetic anhydride was removed in vacuo and the solid obtained was triturated with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, filtered and dried to obtain homophthalic anhydride (147) as an off white solid ($1.50 \mathrm{~g}, 85 \%$). M.p. $141-142^{\circ} \mathrm{C}$ (lit., ${ }^{222}$ m.p. $143-144{ }^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d6): $8.05(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.75(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-2), 7.52$
(1 H , app. t, $J 7.8, \mathrm{H}-3$), 7.44 ($1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-4$), $4.28(2 \mathrm{H}$, $\mathrm{s}, \mathrm{H}-5)$.

2-Benzylidene-malononitrile (282) ${ }^{211}$

A mixture of benzaldehyde ($\mathbf{1 3 5}, 960 \mu \mathrm{~L}, 9.40 \mathrm{mmol}$) and malonitrile (281, $933 \mathrm{mg}, 14.1$ mmol) was ground at room temperature in a glass mortar for 1 h . The mixture was taken up in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and stirred for 15 min . The resulting solid was collected by suction filtration and dried to afford $\mathbf{2 8 2}$ as a brown solid ($850 \mathrm{mg}, 66 \%$). M.p. $79-81{ }^{\circ} \mathrm{C}$ (lit., ${ }^{212}$ m.p. $87-88^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.88(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}-1), 7.76(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.67-7.60(1 \mathrm{H}$, app. t, $J 7.5, \mathrm{H}-3), 7.50-7.54(2 \mathrm{H}$, app. $\mathrm{t}, J 7.5, \mathrm{H}-2)$.

Dipotassium nitroacetate (283) ${ }^{212}$

A 100 mL three necked round-bottomed flask equipped with a condenser and a magnetic stirring bar was charged with $\mathrm{KOH}(4.48 \mathrm{~g}, 80.0 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(12.1 \mathrm{~mL})$. The reaction mixture was heated at $70^{\circ} \mathrm{C}$ and nitromethane ($\mathbf{1 0 3}, 2.8 \mathrm{~mL}, 52.4 \mathrm{mmol}$) was slowly added dropwise via syringe. After completion of the addition, the stirring was stopped and the reaction was warmed to $160^{\circ} \mathrm{C}$ for 1 hour. The resulting solution was allowed to cool to room temperature, the precipitate formed was filtered through a sintered glass frit, washed with methanol ($3 \times 75 \mathrm{~mL}$) and dried in vacuo to furnish $\mathbf{2 8 3}$ as a peach powder (3.20 g, 82\%). M.p. $240-242{ }^{\circ} \mathrm{C}$, (lit., ${ }^{212}$ m.p. $242-243{ }^{\circ} \mathrm{C}$).
$\delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 4.64(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1)$.
Methyl 2-nitroacetate (284) ${ }^{213}$

A 100 mL three necked round-bottomed flask equipped with a stirring bar and a calcium chloride drying tube was charged with $283(5.00 \mathrm{~g}, 27.0 \mathrm{mmol})$ and $\mathrm{MeOH}(33 \mathrm{~mL})$. The reaction mixture was cooled to $-15{ }^{\circ} \mathrm{C}$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(15 \mathrm{~mL})$ was added over approximately 1 h . The mixture was warmed to room temperature and stirred for 8 h . The precipitate formed was removed by suction filtration and the filtrate concentrated under vacuo. The residual oil was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. The organic phases were collected, dried over anhydrous MgSO_{4}, filtered and concentrated to furnish 284 as a yellow oil ($1.90 \mathrm{~g}, 59 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 5.31(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$.

HRMS (m / z - ESI): $\quad[\mathrm{M}]^{+}$Found: $119.0223 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NO}_{4}$ Requires: 119.0219.

(Z/E) Methyl 2 nitro-3-phenylacrylate (285) $)^{213}$

(Z)-285

(E)-285

An oven-dried 50 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with $284(1.20 \mathrm{~g}, 10.1 \mathrm{mmol})$, benzaldehyde ($\mathbf{1 3 5}, 1.5$ $\mathrm{mL}, 15.0 \mathrm{mmol}$) and dry THF (25 mL). The reaction mixture was cooled to $-10^{\circ} \mathrm{C}$ and TiCl_{4} ($17 \mathrm{~mL}, 17.0 \mathrm{mmol}$) followed by N -methylmorpholine ($4.3 \mathrm{~mL}, 40.0 \mathrm{mmol}$) were added dropwise via syringe. The reaction was allowed to warm to room temperature, stirred for 18 h and then diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic layers were then dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was then purified by flash column chromatography eluting with 80:20 hexanes:EtOAc, to furnish $\mathbf{2 8 5}$ as a mixture of (Z / E)-diastereomers in a $55: 45$ ratio ($621 \mathrm{mg}, 30 \%$).
(Z)-285:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.11(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.52-7.47(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3), 3.93$ (3 H, s, H-5).
(E)-285:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
7.56 (1 H, s, H-4), 7.52-7.47 (5 H, m, H-1, H-2, H-3), 3.97 (3 H, s, H-5).

HRMS (m/z - ESI): $\quad[\mathrm{M}]^{+}$Found: $207.0534 \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{4}$ Requires: 207.0531.
Dimethyl 2-benzylidenemalonate (288) ${ }^{214}$

A 50 mL round-bottomed flask equipped with a reflux condenser and containing a magneting stirring was charged with benzaldehyde ($147,2.0 \mathrm{~mL}, 19.0 \mathrm{mmol}$) and dimethylmalonate ($\mathbf{2 8 6}, 2.2 \mathrm{~mL}, 19.0 \mathrm{mmol}$). $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added followed by 10
$\mathrm{mol} \%$ of piperidine ($375 \mu \mathrm{~L}, 3.80 \mathrm{mmol}$) and the reaction mixture was heated at reflux temperature for 4 h . The solvent was then removed under reduced pressure and the residue purified by column chromatography on silica gel, eluting with 70:30 hexanes:EtOAc, to afford 288 as white crystalline solid ($2.82 \mathrm{~g}, 67 \%$). M.p. $32-33^{\circ} \mathrm{C}$, (lit., ${ }^{214} \mathrm{~m}$. p. $27-28^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.76(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.42-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3), 3.84(6$ $\mathrm{H}, \mathrm{s}, \mathrm{H}-5 \mathrm{a}$ and $\mathrm{H}-5 \mathrm{~b}$).

(Z)-2-Cyano-3-phenyl-acrylic acid methyl ester (289) ${ }^{214}$

A 50 mL round-bottomed flask equipped with a reflux condenser and containing a magnetic stirring was charged with benzaldehyde ($\mathbf{1 3 5}, 1.0 \mathrm{~mL}, 10.0 \mathrm{mmol}$) and methylcyanoacetate ($\mathbf{2 8 7}, 882 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$). $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added followed by $10 \mathrm{~mol} \%$ of piperidine $(118 \mu \mathrm{~L}, 1.20 \mathrm{mmol})$ and the reaction was heated at reflux temperature for 4 h . The solvent was then evaporated in vacuo to furnish a yellow solid that was purified by recrystallisation from $\mathrm{Et}_{2} \mathrm{O}$ to afford 289 as yellow solid (1.50 g , 82%). M.p. $84-85^{\circ} \mathrm{C}$, (lit., ${ }^{214}$ m.p. $83-84^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.39(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 8.03(2 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{H}-1), 7.55-7.64(3 \mathrm{H}$, m, H-2, H-3), 3.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$).

(1-ethoxy-1-oxopropan-2-yl)triphenylphosphonium (292) ${ }^{223}$

A 100 mL round-bottomed flask fitted with a condenser and containing a magnetic stirring bar was charged with triphenylphosphine (291, $7.20 \mathrm{~g}, 27.6 \mathrm{mmol}$) and toluene $(50 \mathrm{~mL})$. Ethyl 2-bromo proponiate ($\mathbf{2 9 0}, 3.5 \mathrm{~mL}, 27.6 \mathrm{mmol})$ was then added via syringe and the resulting white suspension was heated at $90^{\circ} \mathrm{C}$ for 16 h . The mixture was then cooled to room temperature and the solid formed was isolated by suction filtration,
washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$ and dried to give 292 as a white solid ($10.0 \mathrm{~g}, 82 \%$). M.p. $150-152^{\circ} \mathrm{C}$, (lit., ${ }^{223}$ m.p. $153-156{ }^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.05-7.90(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 7.78-7.68(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 7.68-7.64$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 7.27-7.18 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 3.99 ($2 \mathrm{H}, \mathrm{q}, J 7.1$, H-6), 1.69 (3 H, dd, J7.1, 18.5, H-5), 1.00 (3 H, t, J 7.1, H7).
(E)-Ethyl 2-methyl-3-phenylacrylate (294) ${ }^{224}$

A 250 mL round-bottomed flask containing a magnetic stirring bar was charged with 292 ($10.0 \mathrm{~g}, 22.5 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ followed by an aqueous solution of NaOH (1.0 M, 80 mL). The reaction was allowed to stir vigorously at room temperature for 15 min after which time the organic layer was discarded and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo to afford a residue containing the corresponding crude ylide (293, $9.33 \mathrm{~g}, 93 \%$) which was dissolved in toluene (14 mL). and transferred via syringe to a 100 mL round-bottomed flask containing a magnetic stirring bar. To the mixture was added freshly distilled benzaldehyde (135, $2.6 \mathrm{~mL}, 26.1$ mmol) and the reaction was allowed to stir at room temperature for overnight. The solvent was then removed under reduced pressure and the residue obtained was purified by flash column chromatography, eluting with 90:10 hexanes:EtOAc, to give 294 as a yellow pale oil (4.40 g, 89\%).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.69(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.41-7.33(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-2), 7.32-$ 7.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 4.25 ($2 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{H}-6$), $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 5), 1.33 ($3 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{H}-7$).

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $191.1058 \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ Requires: 191.1066.

(E)-Ethyl 2-methyl-3-phenylacrylate (295) ${ }^{225}$

To a solution of 294 ($905 \mathrm{mg}, 4.75 \mathrm{mmol}$) in $\mathrm{EtOH}(12 \mathrm{~mL})$, was added a 10% aqueous solution of $\mathrm{NaOH}(26 \mathrm{~mL})$ and the resulting reaction mixture was allowed to stir at room temperature for 12 h . The mixture was then acidified to $\mathrm{pH}=1.0$ by addition of an aqueous solution of $\mathrm{HCl}(1.0 \mathrm{M}, 25 \mathrm{~mL})$ and extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo to afford the corresponding product 295 as a white solid ($753 \mathrm{mg}, 95 \%$). M.p. $75-77^{\circ} \mathrm{C}$ (lit.,,225 m.p. $78-80^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.81(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.47-7.36(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$ and $\mathrm{H}-2), 7.36-$ 7.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 2.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$).

* The protic signal (H-6) is not visible in CHCl_{3}
(E)-2-methyl-3-phenyl-1-(pyrazol-1-yl)prop-2-en-1-one (296)

To a stirred solution of pyrazole (297, $333 \mathrm{mg}, 4.90 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added 295 ($735 \mathrm{mg}, 4.50 \mathrm{mmol}$) followed by DMAP ($54.9 \mathrm{mg}, 0.45 \mathrm{mmol}$) and DCC $(1.38 \mathrm{~g}, 6.70 \mathrm{mmol})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then allowed to warm to room temperature for 48 h . The suspension was then filtered and the precipitate washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduce pressure to furnish a pale yellow oil. The crude product was then purified by flash column chromatography, eluting with 70:30 hexanes:EtOAc, to give 296 as a white solid (250 $\mathrm{mg}, 26 \%)$. M.p: $60-62^{\circ} \mathrm{C}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.31(1 \mathrm{H}, \mathrm{dd}, J 0.7,2.8, \mathrm{H}-6), 7.73(1 \mathrm{H}, \mathrm{dd}, J 0.7,1.5, \mathrm{H}-8)$,

$$
7.54(1 \mathrm{H}, \mathrm{q}, J 1.4, \mathrm{H}-4), 7.48-7.41(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-1), 7.40-7.34
$$

($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 7.33-7.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $6.46(1 \mathrm{H}, \mathrm{dd}, J 1.5$, $2.8, \mathrm{H}-7), 2.32$ ($3 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{H}-5$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 163.3(\mathrm{C}=\mathrm{O}), 160.4,143.4,142.1,129.6,128.5,128.4,126.7$, 114.8, 109.4, 19.0.
$\nu_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 3675,2970,2622,1664,1447,1415,1200,1128,1003,797$.
HRMS ($m / z-\mathrm{ESI}): \quad[\mathrm{M}+\mathrm{Na}]^{+} \quad$ Found: $235.0846 \quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{ONa}$ Requires: 235.0847 .

3-Cyano-4-0xo-2-phenyl-1,2,3,4-tetrahydronaphthalene-1,3-dicarboxylic acid dimethyl ester (trans-302, Table 2.4, entry 4)

Synthesised according to general procedure A by reaction of anhydride $147(39.9 \mathrm{mg}$, 0.246 mmol), catalyst $\mathbf{3 0 4}$ ($7.75 \mathrm{mg}, 0.0123 \mathrm{mmol}-5 \mathrm{~mol} \%$) and Michael acceptor 289 ($46.0 \mathrm{mg}, 0.246 \mathrm{mmol}$) at $-30{ }^{\circ} \mathrm{C}$ for 97 h After purification by flash column chromatography with 80:20 hexanes:EtOAc, trans-302 was isolated as a yellow solid $(10.0 \mathrm{mg}, 11 \%, 30 \% e e)$. M.p. $148-150^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}=-14.0\left(c=4.3, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel OD-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $80 / 20,1.0 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: trans-302 17.2 min (major enantiomer) and 19.0 min (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.15(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{H}-1), 7.67(1 \mathrm{H}$, app. t, $J 7.6, \mathrm{H}-2), 7.52-$ 7.47 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-9$), 7.38-7.32 (4 H, m, H-7 and H8), 4.87 ($1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{H}-6), 4.40(1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{H}-5), 3.74$ (3 H, s, H-10), 3.60 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 184.0(\mathrm{C}=\mathrm{O}), 170.8(\mathrm{C}=\mathrm{O}), 164.0(\mathrm{C}=\mathrm{O}), 139.0,136.0$, 134.3, 129.8, 129.2, 129.0, 128.9, 128.5, 128.1, 127.4, 113.3, 61.4, 53.9, 52.6, 49.2, 48.5 .
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2215,1743,1689,1596,1440,1338,1249,1227,949,882$, 754, 665.

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: 364.1179 $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{5}$ Requires: 364.1185.

3-Nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydro-naphthalene-1,3-dicarboxylic acid

 dimethyl ester (trans-303, Table 2.1, entry 5)

Synthesised according to general procedure A by reaction of anhydride $147(39.9 \mathrm{mg}$, 0.246 mmol), catalyst $200(8.70 \mathrm{mg}, 0.0123 \mathrm{mmol}-5 \mathrm{~mol} \%$) and Michael acceptor 285 $(51.0 \mathrm{mg}, 0.246 \mathrm{mmol})$ at rt for 72 h . After purification by flash column chromatography eluting with 80:20 hexanes:EtOAc, trans-303 was isolated as a white oil ($20.2 \mathrm{mg}, \mathbf{2 0 \%}$); $[\alpha]_{\mathrm{D}}^{20}=-1.02\left(c=0.3 \mathrm{CHCl}_{3}\right)$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.12(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.69(1 \mathrm{H}$ app. t, $J 7.8, \mathrm{H}-2), 7.55(1$ H, app. t, J 7.8, H-3), 7.52-7.47 (2 H, m, H-7), 7.40-7.32 (4 H, m, H-4, H-8, H-9), 4.91 ($1 \mathrm{H}, \mathrm{d}, J 12.1, \mathrm{H}-6$), $4.70(1 \mathrm{H}$, d, $J 12.1, \mathrm{H}-5), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10), 3.56(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11)$
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 183.0(\mathrm{C}=\mathrm{O}), 170.8(\mathrm{C}=\mathrm{O}), 161.7(\mathrm{C}=\mathrm{O}), 138,8,135.5$, $132.4,130.4,129.5,129.1,128.9,128.3,127.2,101.0,53.9$, 52.7, 49.6, 49.0, 29.7.
$V_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2937,1759,1734,1564,1497,1287,1259,1221,1106,903$, 885, 760.

HRMS (m / z - ESI): $\quad[\mathrm{M}]^{+}$Found: $383.1005 \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{7}$ Requires: 383.1005.

6.2 Experimental procedures and data for Chapter 3

6.2.1 General procedure B: Synthesis of aldehydes 314 and 329 from aryl methyl ketones 312 and 332 via epoxides 313 and 333 as precursors

An oven-dried 100 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere and fitted with a reflux condenser was charged with NaH (60% in mineral oil, $240 \mathrm{mg}, 6.00 \mathrm{mmol}$). Anhydrous THF (4 mL) was added via syringe followed by trimethylsulfoxonium iodide $(1.40 \mathrm{~g}, 6.00 \mathrm{mmol})$ and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 1 h . A solution of aryl methyl ketone ($\mathbf{3 1 2}$ or $\mathbf{3 3 2}$, 3.00 mmol) in dry THF (4 mL) was then added via syringe and the reaction mixture was left stirring for an additional 48 h at $70{ }^{\circ} \mathrm{C}$. The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure to afford the crude product which was purified by flash column chromatography eluting with 90:10 hexanes:EtOAc to isolate epoxide $\mathbf{3 1 3}$ or $\mathbf{3 3 3}$ respectively. A solution of the relevant epoxide (2.90 mmol) in dry THF (8 mL), was subsequently added via syringe to an oven-dried round-bottomed flask containing a magnetic stirring bar under an argon atmosphere and the solution was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(468 \mu \mathrm{~L}, 3.80 \mathrm{mmol})$ was added via syringe and the reaction mixture was stirred for 24 h at rt , then diluted with a 5% aqueous solution of $\mathrm{NaH}_{2} \mathrm{PO}_{4}(10 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4} and the solvent was removed in vacuo to afford the crude product which was purified by flash column chromatography eluting with 90:10 hexanes:EtOAc, to give the corresponding aldehyde 314 or 329.

6.2.2 Genaral procedure C: Synthesis of aldehydes 330 and 331 from ketones 334 and 335 via enol-methyl ether 336 and 337 as precursors

An oven-dried 100 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{OCH}_{3} \mathrm{Cl}(1.70 \mathrm{~g}, 5.00 \mathrm{mmol})$ and anhydrous THF (20 mL). The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and $t \mathrm{BuOK}(594 \mathrm{mg}, 5.30 \mathrm{mmol}$) was subsequently added portionwise. After 30 min a solution of ketone $\mathbf{3 3 4}$ or $\mathbf{3 3 5}$ (3.37 mmol) in dry THF (20 mL) was added dropwise via syringe to the reaction mixture which was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then allowed to warm to room temperature. The reaction was then poured into water $(20 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined
organic layers were dried over anhydrous MgSO_{4} and then concentrated under reduced pressure to afford the crude product enol-methyl ether product $\mathbf{3 3 6}$ or $\mathbf{3 3 7}$ respectively, which was purified by flash column chromatography. The relevant pure enol-methyl ether 336 or 337, was then dissolved in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and a 70% aqueous solution of $\mathrm{HClO}_{4}(5$ mL) was slowly added. After 24 h the mixture was diluted with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$ and the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried over anhydrous MgSO_{4} and the solvent removed in vacuo. Then the residue was purified by flash column chromatography to afford the corresponding α-arylaldehyde $\mathbf{3 3 0}$ or $\mathbf{3 3 1}$.

2-Methyl-2-(3-trifluoromethyl-phenyl) oxirane (313) ${ }^{226}$

Prepared according to general procedure B by reaction of 3-(trifluoromethyl) acetophenone ($\mathbf{3 1 2}, 2.00 \mathrm{~g}, 10.6 \mathrm{mmol}$) with $\mathrm{NaH}(60 \%$ in mineral oil, $800 \mathrm{mg}, 21.2$ mmol) and $\mathrm{Me}_{3} \mathrm{~S}(\mathrm{O}) \mathrm{I}(2.00 \mathrm{~g}, 21.2 \mathrm{mmol})$ in anhydrous THF $(20 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$. Upon purification by flash column chromatography, eluting with 90:10 hexanes:EtOAc, epoxide 313 was obtained pure as yellow oil ($1.40 \mathrm{~g}, 65 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.61-7.39(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4), 2.96(1 \mathrm{H}, \mathrm{d}, J 5.4$ Hz, H-5a), 2.73 (1 H, d, J 5.4, H-5b), 1.71 (3 H, s, H-6)

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $225.1560 \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{ONa}$ Requires: 225.1563.

2-(3 trifluoromethyl-phenyl)-propionaldehyde (314) ${ }^{226}$

Prepared according to general procedure B by reaction of epoxide 313 ($1.40 \mathrm{~g}, 6.90$ $\mathrm{mmol})$ with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.1 \mathrm{~mL}, 9.10 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ at room temperature for 24 h . Purification of the crude product by flash column chromatography eluting with 90:10 hexanes:EtOAc, furnished the pure aldehyde $\mathbf{3 1 4}$ as a pale yellow oil (503 mg , 35\%).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 9.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 7.58-7.33(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4)$, $3.70(1 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{H}-5), 1.47(3 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{H}-6)$.

HRMS $(m / z-E S I): \quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $203.0604 \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}$ Requires: 203.0605.
2-Cyclohexyl-2-methyloxirane (333) ${ }^{226}$

Prepared according to general procedure B by reaction of 1-cyclohexylethanone (332, 1.1 $\mathrm{mL}, 8.00 \mathrm{mmol}$) with $\mathrm{NaH}(60 \%$ in mineral oil, $640 \mathrm{mg}, 16.0 \mathrm{mmol}$) and Me3S(O)I (3.70 $\mathrm{g}, 16.0 \mathrm{mmol})$ in anhydrous THF $(20 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$. Upon purification by flash column chromatography eluting with 90:10 hexanes:EtOAc, epoxide $\mathbf{3 3 3}$ was obtained pure as a colourless oil ($340 \mathrm{mg}, 30 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 2.20(1 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{H}-7 \mathrm{a}), 2.11(1 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{H}-7 \mathrm{~b}) 1.50-$ 1.29 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-3 \mathrm{a}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-5 \mathrm{a}, \mathrm{H}-6 \mathrm{a}$), 0.96-0.46 (6 H , m, H-1, H-2b, H-3b, H-4b, H-5b, H-6b), 0.87 (3 H, s, H-8).

HRMS (m / z - ESI): $\quad[\mathrm{M}]^{+}$Found: $140.1101 \mathrm{C} 9 \mathrm{H}_{16} \mathrm{O}$ Requires:140.1201.

2-Cyclohexylpropanal (329) ${ }^{226}$

Prepared according to general procedure B by reaction of epoxide 333 ($600 \mathrm{mg}, 4.60$ $\mathrm{mmol})$ with $\mathrm{BF}_{3} . \mathrm{OEt}(250 \mu \mathrm{~L}, 2.00 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ at room temperature for 24 h . Purification of the crude product by flash column chromatography eluting with 90:10 hexanes:EtOAc, furnished the pure aldehyde $\mathbf{3 2 9}$ as a colourless oil $(36.0 \mathrm{mg}$, 58\%).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 9.56(1 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{H}-8), 2.28-2.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7) 1.83-1.49$ (5 H, m, H-2a, H-3a, H-4a, H-5a, H-6a), 1.30-0.74 (6 H, m,

H-1, H-2b, H-3b, H-4b, H-5b, H-6a), 0.95 (3 H, d, J 7.0, H9).

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $141.1101 \mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}$ Requires: 141.1201.
(1-Methoxymethylene-2methyl-propyl)-benzene (336) ${ }^{227}$

Prepared according to procedure C by reacting isobutyrophenone (334, $500 \mathrm{~g}, 3.40 \mathrm{mmol}$) with $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{OCH}_{3} \mathrm{Cl}(1.70 \mathrm{~g}, 5.00 \mathrm{mmol})$ and $t \mathrm{BuOK}$ ($594 \mathrm{mg}, 5.30 \mathrm{mmol}$) in anhydrous THF (20 mL). Upon purification by flash column chromatography, eluting with 85:15 hexanes:EtOAc, the enol ether $\mathbf{3 3 6}$ was obtained pure as a yellow oil (210 mg , $35 \%)$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.29-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3), 5.94(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.65(3$ H, s, H-7), 3.05 (1 H, sept., $J 7.3, \mathrm{H}-4$), 1.14 (6 H, d, J 7.3, $\mathrm{H}-5)$.

HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{ESI}$):
$[\mathrm{M}+\mathrm{H}]^{+}$Found: $177.2588 \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}$ Requires: 177.2590.

3-Methyl 2-phenyl butanal (330) ${ }^{227}$

Prepared according to procedure C, by reacting the enol ether $336(210 \mathrm{mg}, 1.20 \mathrm{mmol})$ with a 70% aqueous solution of $\mathrm{HClO}_{4}(2 \mathrm{~mL})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. Purification of the crude product by flash column chromatography, eluting with 90:10 hexanes:EtOAc, afforded the pure aldehyde $\mathbf{3 3 0}$ as a white oil ($120 \mathrm{mg}, 57 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 9.69(1 \mathrm{H}, \mathrm{d}, J 3.2, \mathrm{H}-7), 7.37-7.13(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3)$, 3.17 ($1 \mathrm{H}, \mathrm{dd}, J 3.2,9.5, \mathrm{H}-4$), 2.46-2.33 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 1.03 ($6 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{H}-6$).

HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{ESI}$): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $163.1124 \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}$ Requires: 163.1123.

1-(2-Methoxy-1-methyl-vinyl)-2-methyl-benzene (337) ${ }^{227}$

Prepared according to general procedure C by reacting 2-methylacetophenone (335, 2 $\mathrm{mL}, 15.0 \mathrm{mmol})$ with $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{OCH}_{3} \mathrm{Cl}(7.60 \mathrm{~g}, 22.5 \mathrm{mmol})$ and $t \mathrm{BuOK}(2.70 \mathrm{~g}, 24.0$ mmol) in anhydrous THF (40 mL). Upon purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, the enol ether $\mathbf{3 3 7}$ was obtained pure as a colourless oil ($1.10 \mathrm{~g}, 45 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.37-7.14(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4$ and $\mathrm{H}-5), 5.96(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 7), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), 2.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 1.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$).

HRMS $(m / z-$ ESI $): \quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $163.1085 \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}$ Requires:163.1085.
2-(o-Tolyl)propanal (331) ${ }^{227}$

Prepared according to general procedure C by reacting enol ether $337(1.10 \mathrm{~g}, 6.78 \mathrm{mmol})$ with a 70% aqueous solution of $\mathrm{HClO}_{4}(2 \mathrm{~mL})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at room temperature for 24 h . Purification of the crude product by flash column chromatography, eluting with 90:10 hexanes:EtOAc, afforded the pure aldehyde $\mathbf{3 3 1}$ as a yellow oil ($350 \mathrm{mg}, \mathbf{3 5 \%}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 9.65(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{H}-7), 7.17-7.24(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5)$, 7.03-7.06 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 3.83 ($1 \mathrm{H}, \mathrm{dq}, J 1.2,6.8, \mathrm{H}-6$), 2.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 1.40 ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-8$).

HRMS ($m / z-$ ESI $): \quad[\mathrm{M}-\mathrm{H}]^{-}$Found: $147.0814 \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}$ Requires: 147.0810.
4-Nitrophenyl acetic acid (316) ${ }^{228}$

A 50 mL round-bottomed flask containing a magnetic stirring bar was charged with 4nitrophenyl acetonitrile ($\mathbf{3 1 5}, 5.00 \mathrm{~g}, 30.8 \mathrm{mmol}$), water (11 mL) followed by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(6 \mathrm{~mL})$ and glacial acetic acid $(6 \mathrm{~mL})$. The resulting reaction mixture was heated at reflux temperature for 2 h and then cooled to $0^{\circ} \mathrm{C}$. The precipitate formed was filtered off, washed with water (30 mL) and dry to afford the product 316 as a white solid (5.58 g, 98%). M.p $153-155^{\circ} \mathrm{C}\left(\mathrm{lit}^{228}\right.$ m.p. $153-155^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}, \mathrm{DMSO}): \quad 8.15(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-2), 7.52(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-1), 3.75(2 \mathrm{H}$, s, H-3).

*The protic signal ($\mathrm{H}-4$) is not visible in CHCl_{3}

4-Nitrophenyl acetic ester (317) ${ }^{229}$

In a 50 mL round-bottomed flask containing a magnetic stirring bar nitroacetic acid (316, $5.58 \mathrm{~g}, 30.8 \mathrm{mmol}$), was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$. The resulting solution was then heated at $80^{\circ} \mathrm{C}$ for 4 h and then cooled to room temperature. An aqueous solution of $\mathrm{NaOH}(2.0 \mathrm{M}, 50 \mathrm{~mL})$ was added and the reaction mixture was then extracted with EtOAc ($2 \times 40 \mathrm{~mL}$). The combined organic phases were dried over anhydrous MgSO_{4}, filtered and the volatiles were removed under reduced pressure to afford 317 as pale yellow solid ($3.66 \mathrm{~g}, 61 \%$). M.p $45-50^{\circ} \mathrm{C}$ (lit ${ }^{229} \mathrm{~m}$. p. $46-47^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.13(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-2), 7.43(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-1), 3.73(2 \mathrm{H}$, s, H-3), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$).

2-(4-Nitro-phenyl)-propionic acid methyl ester (318) ${ }^{215}$

To a stirred solution of $\mathbf{3 1 7}(537 \mathrm{mg}, 2.75 \mathrm{mmol})$ in dry DMF (5.5 mL), in an oven-dried 100 mL round-bottomed flask, was added $\mathrm{CsCO}_{3}(1.17 \mathrm{~g}, 3.60 \mathrm{mmol})$ followed by MeI ($205 \mu \mathrm{~L}, 3.30 \mathrm{mmol}$). The resulting mixture was heated at $60^{\circ} \mathrm{C}$ overnight under an argon atmosphere. After cooling to room temperature, the reaction mixture was diluted with
water $(20 \mathrm{~mL})$ and then extracted with EtOAc ($2 \times 25 \mathrm{~mL}$). The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was then purified by flash column chromatography eluting with 90:10 hexanes:EtOAc, to give 318 as a yellow oil ($369 \mathrm{mg}, 65 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.08(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-2), 7.40(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-1), 3.79(1 \mathrm{H}$, q, $J 7.7, \mathrm{H}-3), 3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 1.46(3 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-4)$.

HRMS (m / z-ESI):
[M-H] Found: $208.0613 \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{4}$ Requires: 208.0615.

2-(4 nitrophenyl)-propionaldehyde (319) ${ }^{215}$

An oven-dried 50 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with a solution of $\mathbf{3 1 8}(1.08 \mathrm{~g}, 5.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ mL) and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in THF, 6 mL) was then added dropwise via syringe over 30 min and the reaction was stirred for 24 h at $-78^{\circ} \mathrm{C}$. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, was then added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were then dried over anhydrous MgSO_{4}, filtered and the solvent was removed in vacuo to afford the crude aldehyde which was purified by flash column chromatography eluting with 90:10 hexanes:EtOAc, to give $\mathbf{3 1 9}$ as a yellow oil (178 mg , 20%).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 9.70(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 8.22(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-2), 7.37(2 \mathrm{H}, \mathrm{d}, J$ $8.8, \mathrm{H}-1), 3.77(1 \mathrm{H}, \mathrm{q}, J 7.3, \mathrm{H}-3), 1.50(3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-4)$.

HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{ESI}$):
[M-H] ${ }^{-}$Found: $178.0504 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{3}$ Requires: 178.0508.
6.2.3 General procedure D : Synthesis of chiral diastereomeric esters and investigation into a DKR process by reacting anhydride 147 (1.0 equiv.) with the relative aldehyde (1.0 equiv.)

An oven-dried 5 mL round-bottomed flask equipped with a magnetic stirring bar was charged with the relevant aldehyde (1.0 equiv.), and catalyst 200 ($5 \mathrm{~mol} \%$). Anhydrous

MTBE or THF (0.1 M) was added via syringe followed by the anhydride 147 (1.0 equiv.). The reaction mixture was stirred for the time and at the temperature indicated in Scheme 3.2 or in Table 3.1. The reaction conversion was determined by adding p-iodoanisole (0.5 equiv.) as an internal standard to the reaction mixture and by monitoring the disappearance of the aldehyde using ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. After the reaction was deemed complete was diluted with $\operatorname{EtOAc}(15 \mathrm{~mL})$ and extracted with a 10% aqueous solution of $\mathrm{NaHCO}_{3}(4 \times 10 \mathrm{~mL})$. The organic layers were dried over anhydrous MgSO_{4} and the solvent was concentrated in vacuo to give the crude diastereomeric mixture of carboxylic acid products. The $d r$ of the carboxylic acid products was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis. The diastereomeric mixture of acids was then redissolved in dry MTBE ($0.1 \quad \mathrm{M}$) and dry MeOH (0.75 equiv.) followed by trimethylsilylsiazomethane (2.0 M solution in diethyl ether, 1.2 equiv.) were added via syringe. After stirring for 30 min , the solvent was removed in vacuo and the crude mixture of diastereomeric esters was purified by column chromatography eluting with 80:20 hexanes:EtOAc, to give a mixture of distereomers A and D - the enantiomeric excesses of which were determined by CSP-HPLC.

1-Oxo-3-(1-phenyl-ethyl)-isochroman-4-carboxylic acid methyl ester (309a and 311a, Scheme 3.2)

Prepared according to procedure D, using anhydride $147(45.3 \mathrm{mg}, 0.280 \mathrm{mmol})$, anhydrous MTBE ($0.1 \mathrm{M}, 2.8 \mathrm{~mL}$), 2-phenylpropionaldehyde $\mathbf{2 3 3}$ ($33.0 \mu \mathrm{~L}, 0.280 \mathrm{mmol}$) and catalyst $200(9.89 \mathrm{mg}, 0.0140 \mathrm{mmol}-5 \mathrm{~mol} \%)$. The reaction was stirred at rt for 48 h to give a mixture of carboxylic acids in 48:10:0:42 $d r$ (A:B:C:D). After esterification and purification by column chromatography eluting with 80:20 hexanes:EtOAc, the mixture of diastereomers 309a and 311a were isolated pure as a yellow oil (39.1 mg , 42%). The enantiomeric excesses of cis-309a and cis-311a were both found to be 99%.

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA 98:2, $0.3 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 mm , retention times: cis-309a 69.5 min ; cis-311a 118.3 min .

```
cis-309a (A):
\deltaн (400 MHz, CDCl )}:\quad8.16(1 H, m, H-1), 7.63(1 H, app. t, J 7.5, H-2), 7.52(1 H app. t, \(J 7.5, \mathrm{H}-3\) ), 7.40-7.25 (3 H, m, H-9, H-10), 7.16 ( 2 H , d, \(J 7.4, \mathrm{H}-8\) ), \(7.00(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-4), 5.08(1 \mathrm{H}, \mathrm{dd}, J 4.1\), 9.9, H-6), 3.66 ( \(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12\) ), 3.64 ( \(1 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{H}-5\) ), 2.89\(2.79(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.49(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{H}-11)\).
\(\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.3(\mathrm{C}=\mathrm{O}), 163.0(\mathrm{C}=\mathrm{O}), 141.73,134.6,133.4,130.0\), \(128.9,128.8,128.7,127.3,127.6,124.9,83.3,52.9,45.6\), 42.3, 19.2.
cis-311a (D):
\(\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.17(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 7.44(1 \mathrm{H}\), app. t, J 7.6, H-3), 7.40-7.25 ( \(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-9, \mathrm{H}-10\) ), 7.39 ( 1 H , app. t, \(J 7.6, \mathrm{H}-2\) ), \(7.25(1 \mathrm{H}\), d, \(J 7.7, \mathrm{H}-4), 7.18\) ( \(2 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-8\) ), \(4.70(1 \mathrm{H}, \mathrm{dd}, J 4.1\), 10.6, H-6), 3.68 (3 H, s, H-12), 3.52 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.1, \mathrm{H}-5\) ), 3.39\(3.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.55\) ( \(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{H}-11\) ).
\(\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.0(\mathrm{C}=\mathrm{O}), 164.7(\mathrm{C}=\mathrm{O}), 141.69,137.0,133.9,130.5\), \(129.0,128.9,128.8,127.6,127.33,125.1,82.8,52.8,45.6\), 43.3, 17.9.
\(v_{\max }(\) neat \() / \mathrm{cm}^{-1}: \quad \quad 2944,1726,1603,1455,1257,1161,1087,1030,799,700\).
HRMS ( \(m / z-\) ESI): \(\quad[\mathrm{M}+\mathrm{Na}]^{+}\)Found: \(333.1103 \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O} 4 \mathrm{Na}\) Requires: 333.1106.
1-Oxo-3-(1-phenyl-ethyl)-7-trifluoromethyl-isochroman-4-carboxylic acid methyl ester (320 and 322, Table 3.1, entry 1)
```


Prepared according to procedure D, using anhydride 147 ($47.5 \mathrm{mg}, 0.290 \mathrm{mmol}$), anhydrous MTBE ($0.1 \mathrm{M}, 2.9 \mathrm{~mL}$), α-branched aldehyde 314 ($58.7 \mathrm{mg}, 0.290 \mathrm{mmol}$) and
catalyst 200 ($10.2 \mathrm{mg}, 0.0145 \mathrm{mmol}-5 \mathrm{~mol} \%$). The reaction was stirred at rt for 48 h to give a mixture of carboxylic acids in 44:7:4:45 dr (A:B:C:D). After esterification and purification by column chromatography eluting with 80:20 hexanes:EtOAc, the mixture of diastereomers $\mathbf{3 2 0}$ and $\mathbf{3 2 2}$ were isolated pure as a yellow oil ($58.1 \mathrm{mg}, 53 \%$). The enantiomeric excesses of cis-320 and cis-322 were both found to be 99%.

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA 98:2, $0.3 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 mm , retention times: cis- $\mathbf{3 2 0} 57.3 \mathrm{~min}$; cis- $\mathbf{3 2 2} 83.0 \mathrm{~min}$.

```
cis-320 (A):
```

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.22(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-2), 8.17(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 7.58-7.53(3 \mathrm{H}$, m, H-8, H-9), 7.33 (2 H, d, J 8.6, H-7), 7.14 (1 H, app. t, J 8.7, H-3), 5.05 ($1 \mathrm{H}, \mathrm{dd}, J 4.1,8.1, \mathrm{H}-5$), 3.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), 3.52 ($1 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{H}-4$), 2.99-2.92 (1 H, m, H-6), 1.53 (3 H , d, J6.0, H-10).
$\begin{array}{ll}\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 170.4(\mathrm{C}=\mathrm{O}), 162.7(\mathrm{C}=\mathrm{O}), 149.2,134.5,134.2,130.8\left(\mathrm{q}, J_{\mathrm{CF}}\right. \\ 235), 130.4,128.6\left(\mathrm{q}, J_{\mathrm{CF}} 24.6\right), 128.4,127.8,125.2,124.5, \\ & 124.0,82.5,52.9,45.3,42.9,17.9 .\end{array}$
$\delta_{\mathrm{F}}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad-62.7$
cis-322 (D):
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.22(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-2), 8.17(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 7.65(1 \mathrm{H}, \mathrm{app}$. $\mathrm{t}, J 8.5, \mathrm{H}-3), 7.58-7.53(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9), 7.47(1 \mathrm{H}, \mathrm{d}, J$ 8.6, H-7), 4.67 ($1 \mathrm{H}, \mathrm{dd}, J 4.1,10.5, \mathrm{H}-5$), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 11), $3.50(1 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{H}-4), 2.99-2.92$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 1.58 ($3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{H}-10$).
$\delta_{\mathrm{c}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 171.7(\mathrm{C}=\mathrm{O}), 168.6(\mathrm{C}=\mathrm{O}), 147.2,136.5,134.0,133.7,130.6$ (q, $J_{\text {CF }} 234$), 129.0, 128.7 (q, $J_{\text {CF }} 35$), 127.2, 125.0, 124.0, 124.3, 82.3, 52.8, 45.7, 43.0, 18.9.
$\delta_{\mathrm{F}}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad-62.6$
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2946,1729,1603,1457,1324,1248,1161,1073,1000,910$, 856, 728, 660.

HRMS ($m / z-\mathrm{ESI}$): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $379.115 \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~F}_{3}$ Requires: 379.1157.

3-[1-(4-Nitro-phenyl)-ethyl]-1-oxo-isochroman-4-carboxylic acid methyl ester) (323 and 325, Table 3.1, entry 2)

Prepared according to procedure D, using anhydride 147 ($23.4 \mathrm{mg}, 0.140 \mathrm{mmol}$), anhydrous THF ($0.1 \mathrm{M}, 1.4 \mathrm{~mL}$), aldehyde $\mathbf{3 1 9}(25.4 \mathrm{mg}, 0.140 \mathrm{mmol})$ and catalyst 200 ($4.94 \mathrm{mg}, 0.00700 \mathrm{mmol}-5 \mathrm{~mol} \%$). The reaction was stirred at rt for 48 h to give a mixture of carboxylic acids in 38:10:6:46 dr (A:B:C:D). After esterification and purification by column chromatography eluting with 80:20 hexanes EtOAc, the mixture of diastereomers $\mathbf{3 2 3}$ and $\mathbf{3 2 5}$ were isolated pure as a yellow oil ($26.8 \mathrm{mg}, 54 \%$). The enantiomeric excesses of cis-323 and cis-325 were both found to be 99%.

CSP-HPLC analysis. Chiralpak AD ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $90: 10,0.5 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 mm , retention times: cis-323 54.6 min ; cis- $\mathbf{3 2 5} 78.1 \mathrm{~min}$. cis-323 (A):
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.27(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-9), 8.18(1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-1), 7.69-7.52$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and H-3), $7.48(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-8), 7.18(1 \mathrm{H}$, m, H-4), 4.68 ($1 \mathrm{H}, \mathrm{dd}, J 4.4,10.4, \mathrm{H}-6$), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), 3.47 (1 H, d, J 4.4, H-5), 3.11-2.99 (1 H, m, H-7), 1.51 (3 H , d, J6.9, H-10).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.0(\mathrm{C}=\mathrm{O}), 164.6(\mathrm{C}=\mathrm{O}), 149.4,147.1,134.0,130.7$, 133.9, 128.8, 127.4, 125.1, 124.7, 124.2, 82.1, 52.7, 45.9, 42.4, 19.4.
cis-325 (D):

6.2.4 General procedure E: Synthesis of chiral diastereomeric esters, investigation

 into a KR process by reacting anhydride 147 (0.5 equiv.) with the relative aldehyde (1.0 equiv.) and concomitant reduction of the unreacted aldehyde to afford the corresponding alcohol (Table 3.2 and Table 3.3)An oven dried 5 mL round-bottomed flask equipped with a magnetic stirring bar was charged with the relevant aldehyde (1.0 equiv.), and catalyst 200 or 326 ($5 \mathrm{~mol} \%$). Anhydrous THF (0.1 M) was added via syringe followed by the anhydride 147 (0.5 equiv.). The reaction mixture was stirred for the time and at the temperature indicated in Table 3.2 and Table 3.3. After the reaction was deemed complete, dry $\mathrm{MeOH}(1 \mathrm{~mL})$ was added via syringe followed by NaBH_{4} (0.75 equiv.). The organic phase obtained was dried over anhydrous MgSO_{4} and concentrated in vacuo to afford the crude alcohol product which was purified by flash column chromatography eluting with 70:30 hexanes:EtOAc to yield the corresponding alcohol. The basic aqueous phase was acidified by adding a 2.0 N aqueous solution of HCl dropwise which caused a fine white precipitate to form. The acidified aqueous phase was then extracted with EtOAc (4 x 10 mL), the combined organic layers were dried over MgSO_{4} and the solvent was removed in vacuo to give the crude diastereomeric mixture of the carboxylic acid products. The $d r$ of the carboxylic acid products was determined by ${ }^{1} \mathrm{H}$-NMR spectroscopic analysis. The diastereomeric mixture of acids was then redissolved in dry THF (0.1 M) and dry MeOH
(0.75 equiv.) followed by trimethylsilylsiazomethane (2.0 M solution in diethyl ether, 1.2 equiv.) were added via syringe. After stirring for 30 min , the solvent was removed in vacuo and the crude mixture of diastereomeric esters was purified by column chromatography eluting with 80:20 hexanes:EtOAc to give a mixture of distereomers A and D whose enantiomeric excesses were determined by CSP-HPLC.

3-(1-Cyclohexyl-ethyl)-1-oxo-isochroman-4-carboxylic acid methyl ester (341, Table 3.3, entry 1)

Prepared according to procedure E, using anhydride $147(22.8 \mathrm{mg}, 0.140 \mathrm{mmol})$, anhydrous THF ($0.1 \mathrm{M}, 2.8 \mathrm{~mL}$), aldehyde $\mathbf{3 2 9}(39.5 \mathrm{mg}, 0.280 \mathrm{mmol})$ and catalyst $\mathbf{3 2 6}$ ($9.20 \mathrm{mg}, 0.0140 \mathrm{mmol}-5 \mathrm{~mol} \%$). The reaction was stirred at rt for 48 h to give a mixture of carboxylic acids in 29:0:0:71 $d r$ (A:B:C:D). After esterification and purification by column chromatography eluting with 80:20 hexanes:EtOAc, the mixture of diastereomers 341 (A and D) was isolated pure as a yellow oil ($20.3 \mathrm{mg}, 33 \%$). The enantiomeric excesses of cis-341 (A and D) were both found to be 99%.

Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA 98:2, $0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 mm , retention times: cis-341 (D, major diastereomer) 50.3 min ; cis-341 (A, minor diastereomer): 97.2 min .
cis-341 (A):
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.14(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{H}-1), 7.65-7.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 7.54-751$
($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $7.34(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}-4), 4.89(1 \mathrm{H}, \mathrm{dd}, J 3.9$, 9.3, H-6), 4.10 ($1 \mathrm{H}, \mathrm{d}, J 3.9, \mathrm{H}-5$), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 2.112.06 (1 H, m, H-7), 1.79-1.49 (5 H, m, H-9a, H-10a, H-11a, H-12a, H-13a), 1.48-1.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.35-0.95 ($5 \mathrm{H}, \mathrm{m}$, H-9b, H-10b, H-11b, H-12b, H-13b), 0.83 (3 H, d, J 6.9, H14).

$\delta \mathrm{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 169.2(\mathrm{C}=\mathrm{O}), 164.8(\mathrm{C}=\mathrm{O}), 137.0,133.4,130.5,128.8, \\ & 127.0,125.5,80.7,79.8,52.4,46.0,40.6,36.0,31.4,29.5, \\ & 26.5,26.1,25.6 \end{aligned}$
cis-341 (D):	
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	8.17 ($1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-1$), $7.65-7.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 7.54-7.51$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $7.34(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}-4), 4.55(1 \mathrm{H}, \mathrm{dd}, J 4.3$, 10.5, H-6), 3.97 ($1 \mathrm{H}, \mathrm{d}, ~ J 4.3, \mathrm{H}-5$), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15$), 2.112.06 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.79-1.49 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}, \mathrm{H}-10 \mathrm{a}, \mathrm{H}-11 \mathrm{a}$, H-12a, H-13a), 1.48-1.36 (1 H, m, H-8), 1.35-0.95 (5 H, m, H-9b, H-10b, H-11b, H-12b, H-13b), 1.01 (3 H, d, J 6.9, H14).
$\delta \mathrm{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 169.2(\mathrm{C}=\mathrm{O}), 164.8(\mathrm{C}=\mathrm{O}), 137.0,133.4,130.5,128.8 \\ & 127.0,125.5,80.7,79.8,52.4,46.0,40.6,36.0,31.4,29.5 \\ & 26.5,26.1,25.6 \end{aligned}$
$v_{\text {max }}\left(\right.$ neat $/ \mathrm{cm}^{-1}$:	$\begin{aligned} & \text { 2922, 2852, 1727, 1709, 1603, 1455, 1377, 1265, 1165, 1087, } \\ & 992,933,691,744 . \end{aligned}$
HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{ESI}$)	$[\mathrm{M}+\mathrm{Na}]^{+}$Found: $339.1572 \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O} 4 \mathrm{Na}$ Requires: 339.1577.

2-Cyclohexyl propan-1-ol (338, Table 3.3, entry 1$)^{230}$

Prepared according to procedure E, using dry $\mathrm{MeOH}(1 \mathrm{~mL})$ followed by $\mathrm{NaBH}_{4}(7.94$ $\mathrm{mg}, 0.210 \mathrm{mmol})$. The organic phase obtained was collected, dried over anhydrous MgSO_{4} and concentrated in vacuo to afford the crude alcohol product which was purified by flash chromatography eluting with 80:20 hexanes:EtOAc to afford the alcohol 338 ($9.35 \mathrm{mg}, 47 \%, 52 \% e e$).

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 98:2, $0.4 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 220 mm , retention times: 20.2 min (minor enantiomer); 31.2 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 3.64-3.40(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$ and $\mathrm{H}-8 \mathrm{~b}), 1.91-0.79(15 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 1a, H-1b, H-2a, H-2b, H-3a, H-3b, H-4a, H-4b, H-5a, H-5b, H-6, H-7, H-9).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 66.5,41.1,39.6,31.1,29.0,27.0,26.9,26.8,13.6$.
*The protic signal ($\mathrm{H}-9$) is not visible in CDCl_{3}.

3-(2-Methyl-1-phenyl-propyl)-1-oxo-isochroman-4-carboxylic acid methyl ester (342, Table 3.3, entry 3)

Prepared according to procedure E, using anhydride 147 ($25.5 \mathrm{mg}, 0.150 \mathrm{mmol}$), anhydrous THF ($0.1 \mathrm{M}, 3.1 \mathrm{~mL}$), aldehyde $\mathbf{3 3 0}(51.1 \mathrm{mg}, 0.315 \mathrm{mmol})$ and catalyst $\mathbf{3 2 6}$ ($10.4 \mathrm{mg}, 0.0157 \mathrm{mmol}-5 \mathrm{~mol} \%$). The reaction was stirred at $-30^{\circ} \mathrm{C}$ for 48 h to give a mixture of carboxylic acids in 21:0:1:78 $d r$ ($\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}$). After esterification and purification by column chromatography eluting with 80:20 hexanes:EtOAc the mixture of diastereomers 342 (A and D) were isolated pure as a yellow oil ($86.3 \mathrm{mg}, 81 \%$). The enantiomeric excesses of cis-342 (A and D) were both found to be 99%.

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 98:2, $0.3 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 mm , retention times: cis-342 (D, major diastereomer) 75.0 min , cis-342 (A, minor diastereomer) 98.0 min .
cis-342 (A):
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.16(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}-1), 7.62-7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-3)$ 7.41-7.29 (3 H, m, H-9 and H-10), 7.20 ($1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-4$), 7.04 ($2 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-8$), 5.52 ($1 \mathrm{H}, \mathrm{dd}, J 4.2,11.5$, H-6), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 3.19 ($1 \mathrm{H}, \mathrm{d}, J 4.2, \mathrm{H}-5$), 2.77-2.59 (1 H , m, H-11), 2.58-2.46 (1 H, m, H-7), 0.98 (3 H, d, J 6.8, H12a), 0.75 (3 H, d, J6.8, H-12b).

3-Methyl-2-phenyl-butan-1-ol (339, Table 3.3 entry 3$)^{231}$

Prepared according to procedure E, using dry $\mathrm{MeOH}(1 \mathrm{~mL})$ followed by NaBH_{4} (8.92, 0.236 mmol). The organic phases obtained was collected, dried over anhydrous MgSO_{4} and concentrated in vacuo to afford the crude alcohol product which was purified by flash column chromatography eluting with 70:30 hexanes:EtOAc to obtain the corresponding alcohol $\mathbf{3 3 9}$ as a colourless ($24.3 \mathrm{mg}, 48 \%, 66 \% e e$).

CSP-HPLC analysis. Chiralpak ADH ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 98:2, $1.0 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 mm , retention times: 11.8 min (major enantiomer) and 13.3 \min (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.33-7.13(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3), 3.94-3.79(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}$ and H-5b), 2.52-2.46 (1 H, m, H-4), 1.96-1.81 (1 H, m, H-6), 0.95 ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{H}-7 \mathrm{a}$), 0.72 ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{H}-7 \mathrm{~b}$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 141.7(\mathrm{q}), 128.7,128.5,126.7,65.2,55.8,30.1,21.0$.
*The protic signal ($\mathrm{H}-8$) is not visible in CDCl_{3}.

1-Oxo-3-(1-0-tolyl-ethyl)-isochroman-4-carboxylic acid methyl ester (343, Table 3.3, entry 5)

Prepared according to procedure E, using anhydride 147 ($16.8 \mathrm{mg}, 0.100 \mathrm{mmol}$), anhydrous THF ($0.1 \mathrm{M}, 2.0 \mathrm{~mL}$), aldehyde $331(30.8 \mathrm{mg}, 0.200 \mathrm{mmol})$ and catalyst 326 ($6.60 \mathrm{mg}, 0.0100 \mathrm{mmol}-5 \mathrm{~mol} \%$). The reaction was stirred at $-60^{\circ} \mathrm{C}$ for 48 h to give a mixture of carboxylic acids in 5:0:0:95 $d r$ (A:B:C:D). After esterification and purification by column chromatography eluting with 80:20 hexanes:EtOAc, the mixture of diastereomers 343 (A and D) were isolated pure as a yellow oil ($35.7 \mathrm{mg}, 55 \%$). The enantiomeric excesses of cis-343 (A and D) were both found to be 99%.

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $98: 2,0.4 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 mm , retention times: cis-343 (D, major diastereomer) 80 min ; cis-343 (A, minor diastereomer) 45.3 (major enantiomer) and 55.5 (minor enantiomer).

Only the major diastereomer assigned for ${ }^{13} \mathrm{C}$ NMR.
cis-343 (A):
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.19(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}-1), 7.61-7.46(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4)$, 7.27-7.08 (4 H, m, H-8, H-9, H-10, and H-11) $5.20(1 \mathrm{H}$, dd, $J 4.1,10.4, \mathrm{H}-6) 3.74(1 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{H}-5), 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 14), 3.35-3.16 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$) $2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12)$, $1.45(3 \mathrm{H}$, d, J6.6, H-13).

```
cis-343 (D):
```

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.19(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}-1), 7.61-7.46(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4)$, 7.27-7.08 (4 H, m, H-8, H-9, H-10, and H-11) 4.87 (1 H , dd, $J 4.4,10.5, \mathrm{H}-6), 3.71$ (1 H, d, J 4.4, H-5), 3.63 (3 H, s, H14), 3.17-3.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$) $2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12)$, 1.47 (3 H , d, J6.6, H-13).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.0(\mathrm{C}=\mathrm{O}), 164.7(\mathrm{C}=\mathrm{O}), 140.3,137.0,135.8,135.2$, $133.5,130.9,130.6,128.8,127.3,126.6,126.5,125.1,82.7$, 52.6, 45.6, 29.5, 19.6, 19.2.
$\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2927,1733,1603,1456,1374,1120,1083,1008,758,727$, 699.

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $367.1249 \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O} 4 \mathrm{Na}$ Requires: 347.1259.
2-(2-Methyl-phenyl)-propan-1-ol (340, Table 3.3, entry 5) ${ }^{232}$

Prepared according to procedure E, using dry $\mathrm{MeOH}(1 \mathrm{~mL})$ followed by NaBH_{4} (5.67 $\mathrm{mg}, 0.150 \mathrm{mmol}$). The organic phase obtained was collected, dried over anhydrous MgSO_{4} and concentrated in vacuo to afford the crude alcohol product which was purified by flash column chromatography eluting with 70:30 hexanes/EtOAc, to furnish the alcohol $\mathbf{3 4 0}$ as a colourless oil ($7.60 \mathrm{mg}, 51 \%, 60 \%$ ee).

CSP-HPLC analysis. Chiralpak AD ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90:10, $0.5 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 mm , retention times: 54.6 min (major diastereomer) and 78.1 (minor diastereomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.23-7.10(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5), 3.76-3.61(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-7 \mathrm{a}$ and $\mathrm{H}-7 \mathrm{~b}), 3.30-3.19$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 2.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 1.26 (3 H, d, J 6.9, H-8).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 141.7,136.2,130.4,126.2,126.1,125.4,67.9,37.2,19.5$, 17.4 .
*The protic signal ($\mathrm{H}-9$) is not visible in CDCl_{3}.
2-(4-Nitro-phenyl)-propan-1-ol (327, Table 3.2 entry 2$)^{232}$

Prepared according to procedure E, using dry $\mathrm{MeOH}(1 \mathrm{~mL})$ followed by $\mathrm{NaBH}_{4}(6.96$ $\mathrm{mg}, 0.184 \mathrm{mmol}$). The organic phase obtained was collected, dried over anhydrous MgSO_{4} and concentrated in vacuo to afford the crude alcohol product which was purified by flash column chromatography eluting with 70:30 hexanes:EtOAc, to furnish $\mathbf{3 2 7}$ as a colourless oil ($3.50 \mathrm{mg}, 39 \%, 45 \% \mathrm{ee}$).

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 95:5, $0.3 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 mm , retention times: 73.9 min (major enantiomer); 78.2 min , (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.52(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-2), 7.38(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-1), 5.01-4.95$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{b}$), 3.09-3.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $0.93(3 \mathrm{H}, \mathrm{d}, J 6.6$, H-5).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 152.2,146.9,128.6,123.9,68.1,42.6,25.8,17.6$.

*The protic signal ($\mathrm{H}-6$) is not visible in CDCl_{3}.

6.4 Experimental procedure and data for Chapter 4

6.4.1 General procedure F : racemic synthesis of dihydroisocoumarins and γ butyrolactones (Tables 4.1-4.7)

An oven-dried 10 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with the relevant anhydride (1 equiv.) and anhydrous THF $(2.5 \mathrm{~mL}, 0.1 \mathrm{M})$. The relevant aldehyde (1 equiv.) followed by $N, N-$ diisopropylethylamine ($8.6 \mu \mathrm{~L}, 0.0492 \mathrm{mmol}-20 \mathrm{~mol} \%$) were then added via syringe and the resulting mixture was allowed to stir for 20 h at room temperature. To the
corresponding solution of carboxylic acids in THF ($2.5 \mathrm{~mL}, 0.1 \mathrm{M}$), were added via syringe anhydrous $\mathrm{MeOH}(750 \mu \mathrm{~L}, 18.5 \mathrm{mmol}$), followed by trimethylsilyldiazomethane (2.0 M solution in diethyl ether, $150 \mu \mathrm{~L}, 0.300 \mathrm{mmol}$) and the reaction was allowed to stir for 30 min at room temperature. The solvent was then removed in vacuo and the crude mixture of diastereomeric esters was purified by flash column chromatography to afford both diastereomers.

6.4.2 General procedure G: racemic synthesis of 442,445 and 447

226
aldehyde

An oven-dried 10 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with phenyl glutaconic anhydride (226, $46.3 \mathrm{mg}, 0.246$ mmol) and anhydrous THF ($2.5 \mathrm{~mL}, 0.1 \mathrm{M}$). The relevant aldehyde (1 equiv.) was then added to the reaction followed by equal amounts of catalyst $\mathbf{3 0 5}(14.2 \mathrm{mg}, 0.0246 \mathrm{mmol}$ $-10 \mathrm{~mol} \%$) and its pseudoenantiomer catalyst epi-305 ($14.2 \mathrm{mg}, 0.0246 \mathrm{mmol}-10 \mathrm{~mol} \%$) and the resulting mixture was allowed to stir for 20 h at room temperature. The corresponding solution of carboxylic acids in dry THF ($2.5 \mathrm{~mL}, 0.1 \mathrm{M}$) was then cooled to $-15{ }^{\circ} \mathrm{C}$ and anhydrous $i \operatorname{PrOH}(94 \mu \mathrm{~L}, \quad 1.23 \mathrm{mmol})$, followed by trimethylsilyldiazomethane (2.0 M solution in diethyl ether, $150 \mu \mathrm{~L}, 0.300 \mathrm{mmol}$) were added via syringe. The reaction was allowed to stir for 20 min at $-15^{\circ} \mathrm{C}$, after which time the solvent was removed in vacuo. The resultant crude mixture of diastereomeric esters was then purified by flash column chromatography to furnish both diastereomers.

6.4.3 General procedure H: enantioselective preparation of dihydroisocoumarins and γ-butyrolactones (Tables 4.1-4.7)

An oven-dried 10 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with the relevant anhydride (1.0 equiv.), catalyst 326 (8.13 $\mathrm{mg}, 0.0123 \mathrm{mmol}-5 \mathrm{~mol} \%$) and anhydrous THF (0.1 M). The resulting mixture was cooled to $-15^{\circ} \mathrm{C}$ and the relevant aldehyde (1 equiv.) was added via syringe. The reaction was allowed to stir at $-15^{\circ} \mathrm{C}$ and for a time indicated in the relative Table. The yield and diastereomeric ratio of the carboxylic acids were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole (0.5 equiv.) as an internal standard. The reaction was then diluted with EtOAc (10 mL) and extracted with a 10% aqueous solution of NaHCO_{3} (15 $\mathrm{mL})$. The combined aqueous phases were acidified with an aqueous solution of $\mathrm{HCl}(2.0$ $\mathrm{N}, 5 \mathrm{~mL}$) and the mixture was then extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure to furnish the diastereomeric mixture of carboxylic acids. To a solution of the carboxylic acid products in dry THF $(0.1 \mathrm{M})$ were added via syringe anhydrous $\mathrm{MeOH}(750 \mu \mathrm{~L}, 18.5 \mathrm{mmol})$ followed by trimethylsilyldiazomethane (2.0 M solution in diethyl ether, $150 \mu \mathrm{~L}, 0.300 \mathrm{mmol}$) and the reaction was allowed to stir for 20 min . The solvent was then evaporated in vacuo and the crude mixture of diastereomeric esters was purified by flash column chromatography, to isolated both diastereomers - the enantiomeric excesses of which were determined by CSP-HPLC.

6.4.4 General procedure I: enantioselective preparation of 442, 445 and 447 (Tables

 4.8 and 4.10)An oven-dried 10 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with phenyl glutaconic anhydride (226, $46.3 \mathrm{mg}, 0.246$ mmol), catalyst 326 ($8.13 \mathrm{mg}, 0.0123 \mathrm{mmol}-5 \mathrm{~mol} \%$) and anhydrous THF (0.1 M). The resulting mixture was cooled to $-15^{\circ} \mathrm{C}$ and the relevant aldehyde (1 equiv.) was added via syringe. The reaction was allowed to stir at $-15{ }^{\circ} \mathrm{C}$ and for a time indicated in the relative Table. The yield and diastereomeric ratio of the carboxylic acids were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole (0.5 equiv.) as an internal standard. The reaction was then diluted with EtOAc (10 mL) and extracted with a 10% aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The combined aqueous phases were acidified with an aqueous solution of $\mathrm{HCl}(2.0 \mathrm{~N}, 5 \mathrm{~mL})$ and the mixture was then extracted with EtOAc
(3 x 15 mL). The combined organic extracts were dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure to furnish the diastereomeric mixture of carboxylic acids. To a solution of the corresponding carboxylic acids in dry THF (0.1 M) cooled to $-15^{\circ} \mathrm{C}$, were added via syringe anhydrous $i \operatorname{PrOH}(94 \mu \mathrm{~L}, 1.23 \mathrm{mmol})$, followed by trimethylsilyldiazomethane (2.0 M solution in diethyl ether, $150 \mu \mathrm{~L}, 0.300 \mathrm{mmol}$) and the reaction was allowed to stir for 20 minutes at $-15^{\circ} \mathrm{C}$. The solvent was then evaporated under reduced pressure and the crude mixture of diastereomeric esters was purified by flash column chromatography to furnish both diastereomers. The enantiomeric excesses of the products were determined by CSP-HPLC using the conditions indicated for each case.

6.4.5 General procedure J: racemic synthesis of cis-453 and trans-453

An oven-dried 10 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$) and anhydrous THF ($2.5 \mathrm{~mL}, 0.1 \mathrm{M}$). Isovaleraldehyde ($27.0 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) followed by N, N-diisopropylethylamine ($8.6 \mu \mathrm{~L}, 0.0495 \mathrm{mmol}-20 \mathrm{~mol} \%$) were added via syringe and the reaction was allowed to stir for 18 h at room temperature. The reaction was then diluted with EtOAc (10 mL) and extracted with a 10% aqueous solution of NaHCO_{3} (15 $\mathrm{mL})$. The combined aqueous phases were acidified with an aqueous solution of $\mathrm{HCl}(2.0$ $\mathrm{N}, 5 \mathrm{~mL}$) and the mixture was then extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure to furnish the diastereomeric mixture of carboxylic acids. To a solution of the corresponding carboxylic acids in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, dry DMF ($5 \mu \mathrm{~L}$), followed by oxalyl chloride (2.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 187 \mu \mathrm{~L}, 0.300 \mathrm{mmol}$) were added via syringe at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 1 h at room temperature. Benzylamine ($80.6 \mu \mathrm{~L}, 0.738 \mathrm{mmol}$) was then added via syringe at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at room temperature. The resulting suspension was then diluted with water (10 mL) and extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude diastereomeric mixture of carboxamide lactones was purified by flash column chromatography to furnish cis-453 and trans-453 as single diastereomers.

6.4.6 General procedure K: enantioselective synthesis of cis-453 and trans-453

 (Tables 4.11, entry 5)An oven-dried 10 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with homophthalic anhydride (147, $39.9 \mathrm{mg}, 0.246$ mmol), catalyst $\mathbf{3 2 6}$ ($8.13 \mathrm{mg}, 0.0123 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and anhydrous THF (0.1 M). The resulting mixture was cooled to $-15{ }^{\circ} \mathrm{C}$ and freshly distilled isovaleraldehyde ($26.9 \mu \mathrm{~L}$, 0.246 mmol) was added via syringe. The reaction was allowed to stir for 18 h at $-15^{\circ} \mathrm{C}$. The yield and diastereomeric ratio of the carboxylic acids were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole (0.5 equiv.) as an internal standard. The reaction was then diluted with EtOAc (10 mL) and extracted with a 10% aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The combined aqueous phases were acidified with an aqueous solution of $\mathrm{HCl}(2.0 \mathrm{~N}, 5 \mathrm{~mL})$ and the mixture was then extracted with EtOAc (3×15 $\mathrm{mL})$. The combined organic extracts were dried over anhydrous MgSO_{4} and the solvent was removed under reduced pressure to furnish the diastereomeric mixture of carboxylic acids. The carboxylic acid products were then dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and DMF ($5 \mu \mathrm{~L}$), followed by oxalyl chloride (2.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 187 \mu \mathrm{~L}, 0.300 \mathrm{mmol}$) were added via syringe at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 1 h at room temperature. Benzylamine ($80.6 \mu \mathrm{~L}, 0.738 \mathrm{mmol}$) was then added via syringe at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at room temperature. The resulting suspension was then diluted with water (10 mL) and extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude diastereomeric mixture of carboxamide lactones was then purified by flash column chromatography to furnish cis-453 and trans-453 as single diastereomers. The enantiomeric excesses of the products were determined by CSPHPLC.
(S)-(6-Methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2yl)methanamine $\cdot \mathbf{3 H C l}(\mathbf{3 5 4 a})^{233}$

A 100 mL round-bottomed flask containing a magnetic stirring bar was charged with quinine ($\mathbf{7 9}, 5.00 \mathrm{~g}, 15.4 \mathrm{mmol}$), triphenylphosphine ($4.85 \mathrm{~g}, 2.42 \mathrm{mmol}$) and dry THF $(70 \mathrm{~mL})$. Diisopropyl azodicarboxylate (DIAD) ($3.6 \mathrm{~mL}, 18.5 \mathrm{mmol}$) was added via syringe. at $0^{\circ} \mathrm{C}$ under an argon atmosphere and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . A solution of diphenylphosphoryl azide (DPPA, $4.0 \mathrm{~mL}, 18.5 \mathrm{mmol}$) in dry THF (32 mL) was then added dropwise. The reaction mixture was allowed to stir for 12 h at room temperature and then heated at $50^{\circ} \mathrm{C}$ for an additional 2 h . After cooling the reaction mixture to room temperature, triphenylphosphine ($5.30 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added portionwise. The reaction was then heated at $50^{\circ} \mathrm{C}$ for 2 h after which time, the resultant mixture was cooled to room temperature, diluted with water $(5 \mathrm{~mL})$ and allowed to stir for 4 h . The organic volatiles were removed under reduced pressure and the residue was dissolved in an aqueous solution of $\mathrm{HCl}(2.0 \mathrm{~N}, 20 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and concentrated in vacuo to afford $\mathbf{3 5 4 a}$ as a yellow solid (5.53 g, 83%). M.p. $218-222{ }^{\circ} \mathrm{C}$, (lit. ${ }^{233}$ m.p. $220-222{ }^{\circ} \mathrm{C}$). $[\alpha]_{\mathrm{D}}^{20}=+19.0(c=0.75, \mathrm{MeOH})$, $[\alpha]_{\mathrm{D}}^{20}=+22.1(c=0.75, \mathrm{MeOH}) .{ }^{235}$
$\left.\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)\right)^{*} \quad 9.03(1 \mathrm{H}, \mathrm{d}, J 5.8, \mathrm{H}-1), 8.27(1 \mathrm{H}, \mathrm{d}, J 9.4, \mathrm{H}-5), 8.12(1 \mathrm{H}$, d, $J 5.8, \mathrm{H}-2), 7.96(1 \mathrm{H}, \mathrm{dd}, J 2.4,9.4 \mathrm{H}-4), 7.83(1 \mathrm{H}, \mathrm{bs}$, H-3), 5.90 (1 H , ddd, $J 6.8,10.5,17.2, \mathrm{H}-14$), 5.53 ($1 \mathrm{H}, \mathrm{d}, J$ 10.6, H-6), 5.32-5.18 (2 H, m, H-15), 4.34-4.22 (1 H, m, H7), 4.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16$), 4.04-3.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12 \mathrm{a}$), 3.85 (1 H , dd, J 10.6, 13.3, H-8b), 3.59-3.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-12 \mathrm{~b}$), 3.02-2.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 2.17-2.00 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-11 \mathrm{a}$ and H-11b), 1.96-1.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{~b}$), 1.18 ($1 \mathrm{H}, \mathrm{dd}, J 7.2,14.2$, $\mathrm{H}-13 \mathrm{a}$).

* The protic signal ($\mathrm{H}-17$) is not visible in $\mathrm{D}_{2} \mathrm{O}$.

3,4-Dimethoxycyclobut-3-ene-1,2-dione (357) ${ }^{234}$

A 50 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with squaric acid (355, $2.00 \mathrm{~g}, 17.5 \mathrm{mmol})$, dry $\mathrm{MeOH}(20 \mathrm{~mL})$,
followed by trimethyl orthoformate ($\mathbf{3 5 6}, 5.7 \mathrm{~mL}, 52.6 \mathrm{mmol}$) and TFA ($269 \mu \mathrm{~L}, 3.50$ $\mathrm{mmol})$. The flask was fitted with a condenser and the reaction mixture was heated at reflux temperature for 48 h and then cooled to room temperature. The solvent was removed in vacuo to afford a crude residue which was purified by flash column chromatography eluting with 70:30 hexanes:EtOAc, to furnish $\mathbf{3 5 7}$ as white solid (1.90 g, 76%). M.p. $51-53{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{234}$ m.p. $52-54^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 4.38(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-1)$.

3-Methoxy-4-(tritylamino)cyclobut-3-ene-1,2-dione (359)

To a 25 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was added a solution of $357(1.60 \mathrm{~g}, 11.4 \mathrm{mmol})$ in dry $\mathrm{MeOH}(11.4 \mathrm{~mL})$ followed by tritylamine (358, $2.90 \mathrm{~g}, 11.4 \mathrm{mmol}$). The solution was allowed to stir at room temperature for 48 h . The precipitate formed was then filtered, washed with MeOH and dried to afford $\mathbf{3 5 9}$ as an off white solid ($2.44 \mathrm{~g}, 58 \%$). M.p. $193-196^{\circ} \mathrm{C}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.39-7.30(9 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5), 7.16-7.09(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$, 6.81 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-2$), $3.79(3 \mathrm{H}, \mathrm{bs}, \mathrm{H}-1)$.
$\delta_{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 189.3(\mathrm{C}=\mathrm{O}), 184.5(\mathrm{C}=\mathrm{O}), 178.2,172.3,143.7(\mathrm{q} \mathrm{x} \mathrm{3})$, 128.7, 128.3, 127.9, 72.9, 59.8.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3379,3287,1802,1701,1594,1490,1441,1365,1058,1090$, 956, 831, 769, 699.

HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{APCI}$): $\quad[\mathrm{M}-\mathrm{H}]^{-}$Found: $368.1296 \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}_{3}$ Requires: 3681292.

3-(((S)-(6-Methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)amino)-4-(tritylamino)cyclobut-3-ene-1,2-dione (326) ${ }^{235}$

A 100 mL oven dried round-bottomed flask was charged with $\mathbf{3 5 4 a}(2.00 \mathrm{~g}, 6.40 \mathrm{mmol})$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ followed by freshly distilled triethylamine ($3.5 \mathrm{~mL}, 25.2 \mathrm{mmol}$) were added via syringe and the resultant mixture was stirred at room temperature for 1 h . Water $(20 \mathrm{~mL})$ was then added and the organic phases separated and dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was dissolved in MeOH $(12.7 \mathrm{~mL})$ and transferred to a 50 mL round-bottomed flask. Compound $\mathbf{3 5 9}(2.36 \mathrm{~g}, 6.40$ mmol) was added in one portion and the reaction mixture was allowed to stir at room temperature for 48 h under an argon atmosphere. The solvent was removed under reduced pressure and then resulting solid residue was purified by flash column chromatography (hexanes:EtOAc:MeOH: $\mathrm{NEt}_{3} 7: 1.5: 1: 0.5$) to give 326 as a white solid ($3.85 \mathrm{~g}, 91 \%$). M.p. $156-158^{\circ} \mathrm{C}$, (lit. ${ }^{235}$ m.p. $\left.220-222^{\circ} \mathrm{C}\right),[\alpha]_{\mathrm{D}}^{20}=+41.7\left(c=0.10, \mathrm{CHCl}_{3}\right),[\alpha]_{\mathrm{D}}^{20}=+41.8$ $\left(c=0.10, \mathrm{CHCl}_{3}\right) .{ }^{235}$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.61(1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{H}-1), 7.99(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{H}-5), 7.56-7.46$ ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3$), 7.38 ($1 \mathrm{H}, \mathrm{dd}, J 2.3,9.2, \mathrm{H}-4$), 7.20-7.09 (9 H , m, H-20 and H-21), 7.07-6.91 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-19$), 6.55 (1 H , bs, H-2), 6.39 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{N}-\mathrm{H}$), 5.91-5.71 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and H-14), 5.06-4.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), $3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-16), 3.69(1 \mathrm{H}, \mathrm{bs}$, N-H), 3.34-3.12 (2 H, m, H-8b and H-12a), 2.67-2.46 (3 H, m, H-7, H-8a and H-12b), 2.31-2.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 1.70-1.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 1.55-1.40 (3 H, m, H-11a, H-11b and H-13b), $0.74-0.57$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13 \mathrm{a}$).

HRMS (m / z - APCI): $\quad[\mathrm{M}-\mathrm{H}]^{-}$Found: $661.3180 \mathrm{C}_{43} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{3}$ Requires: 661.3173.

Methyl-1-oxo-3-((E)-styryl)isochromane-4-carboxylate (cis-204, trans-204, Table 4.2 , entry 1$)^{150}$

Prepared according to general procedure H , using freshly distilled hydrocinnamaldehyde (202, $32.0 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 33 h to give a diastereomeric mixture of carboxylic acids in a 71:29 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, cis-204 and trans-204 were isolated combined as a pale yellow oil ($74.0 \mathrm{mg}, 99 \%$). TLC (hexanes/EtOAc, $8: 2 v / v$): $\mathrm{R}_{\mathrm{f}}=0.34$. The enantiomeric excesses of cis-204 and trans-204 were found to be 90% and 91% respectively.

CSP-HPLC analysis. Chiralcel OJ-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 70/30, $0.3 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: cis-204 70.4 min (major enantiomer) and 105.9 min (minor enantiomer); trans-204 60.6 min (major enantiomer) and 79.2 min (minor enantiomer).
cis-204:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.15(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-1), 7.56(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{H}-2), 7.48$
(1 H , app. t, $J 7.9, \mathrm{H}-3$), 7.32-7.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 7.25-7.14 $(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-10$ and $\mathrm{H}-11), 4.60-4.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 3.83$ ($1 \mathrm{H}, \mathrm{d}, J 3.2, \mathrm{H}-5$), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), 3.05-2.90 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-8 \mathrm{a}), 2.90-2.83$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}), 2.31-2.18$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}$), 2.14-2.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b})$.
trans-204:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.15(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.57(1 \mathrm{H}$, app. t, $J 7.7, \mathrm{H}-2), 7.47$
(1 H , app. t, $J 7.7, \mathrm{H}-3$), 7.32-7.24 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and H-11), 7.25-7.14 (3 H, m, H-4 and H-10), 4.90-4.82 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$),
3.92 ($1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-5$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), 3.05-2.90 (1 H , m, H-8a), 2.83-2.75 (1 H, m, H-8b), 2.15-2.01 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 7a), 1.99-1.84 (1 H, m, H-7b).

HRMS (m / z - APCI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $311.1284 \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{4}$ Requires: 311.1277.

Methyl-1-oxo-3-(pentan-3-yl)isochromane-4-carboxylate (cis-360, trans-360, Table 4.3, entry 1)

Prepared according to general procedure H , using freshly distilled 2-ethylbutyraldehyde (403, $30.3 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($147,39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 6 days to give a diastereomeric mixture of carboxylic acids in a 90:10 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 95:5 hexanes:EtOAc, cis- $\mathbf{3 6 0}$ and trans- $\mathbf{3 6 0}$ were isolated combined as a white solid ($61.2 \mathrm{mg}, 90 \%$). M.p. $45-47^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 8:2 $v / v): \mathrm{R}_{\mathrm{f}}=0.64,[\alpha]_{\mathrm{D}}^{20}=-3.9\left(c=0.04, \mathrm{CHCl}_{3}\right)$.* The enantiomeric excesses of cis-360 and trans- $\mathbf{3 6 0}$ were both found to be 99%.

CSP-HPLC analysis. ACQUITY UPC ${ }^{2}$, Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: $1500(\mathrm{psi}) . \mathrm{A}\left(\mathrm{CO}_{2}\right)=97 \% / \mathrm{B}($ Ethanol/ACN/IPA 1:1:1, $v: v: v)=3 \%, 1.2 \mathrm{~mL} \mathrm{~min}^{-1}, 30$ ${ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: cis- $\mathbf{3 6 0} 2.05 \mathrm{~min}$; trans $\mathbf{- 3 6 0} 2.02 \mathrm{~min}$.
cis-360:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.16(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.58(1 \mathrm{H}$, app. t, $J 7.7, \mathrm{H}-2), 7.50$ (1 H, app. t, J7.7, H-3), $7.34(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-4), 4.45(1 \mathrm{H}$, dd, $J 2.9,9.8, \mathrm{H}-6), 4.01(1 \mathrm{H}, \mathrm{d}, J 2.9, \mathrm{H}-5), 3.68(3 \mathrm{H}, \mathrm{s}$, H-12), 1.90-1.77 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8 \mathrm{a}$ and $\mathrm{H}-9 \mathrm{a}$), 1.70-1.59 (1 H, m, H-8b), 1.55-1.42 (1 H, m, H-9b), 0.94-0.88 (6 H, m, $\mathrm{H}-10$ and $\mathrm{H}-11$).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.5(\mathrm{C}=\mathrm{O}), 165.0(\mathrm{C}=\mathrm{O}), 137.2,133.6,130.7,129.0$, $127.3,125.6,80.6,52.6,46.1,41.7,20.0,19.7,9.8,9.6$.
trans-360:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.14(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{H}-1), 7.61(1 \mathrm{H}$, app. t, $J 7.6, \mathrm{H}-2), 7.50$ (1 H , app. t, $J 7.6, \mathrm{H}-3$), $7.23(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{H}-4), 4.90-4.84$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 4.14 ($1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{H}-5$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12)$, 1.90-1.77 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8 \mathrm{a}$ and H-9a), 1.70-1.59 ($1 \mathrm{H}, \mathrm{m}$, H-8b), 1.55-1.42 (1 H, m, H-9b), 0.94-0.88 (6 H, m, H-10 and $\mathrm{H}-11$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.9(\mathrm{C}=\mathrm{O}), 164.2(\mathrm{C}=\mathrm{O}), 136.3,134.0,130.4,128.6$, 127.2, 124.8, 80.7, 52.7, 46.2, 43.2, 21.9, 20.9, 11.2, 10.8 .
$\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2963,2878,1724,1604,1458,1264,1226,1158,1110$, 1085, 997, 717, 691.

HRMS (m / z-ESI):
$[\mathrm{M}+\mathrm{Na}]^{+}$Found: 299.1279 C $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$ Requires: 299.1259.

* $[\alpha]_{D}^{20}$ refers to a mixture of cis- $\mathbf{3 6 0}$:trans- $\mathbf{3 6 0}$ in a 90:10 ratio

Methyl-3-cyclohexyl-1-oxoisochroman-4-carboxylate (cis-203, trans-203, Table 4.3, entry 2$)^{151}$

Prepared according to general procedure H using freshly distilled cyclohexanecarboxyaldehyde (201, $29.8 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 24 h to give a diastereomeric mixture of carboxylic acids in a 80:20 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 90:10 hexanes:EtOAc, cis203 and trans-203 were isolated combined as a pale yellow oil ($67.4 \mathrm{mg}, 95 \%$). The enantiomeric excesses of cis-203 and trans-203 were both found to be 98%.

CSP-HPLC analysis. Chiralcel ODH ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 60/40, $1.0 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: cis-203 62.3 min (minor enantiomer) and 65.1 min (major enantiomer); trans-203 51.8 min (major enantiomer) and 62.3 min (minor enantiomer).
cis-203:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.16(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{H}-1), 7.58(1 \mathrm{H}$, app. t, $J 7.6, \mathrm{H}-2), 7.50$ (1 H, app. t, $J 7.6, \mathrm{H}-3$), 7.33 (1 H, d, $J 7.6, ~ \mathrm{H}-4), 4.26$ (1 H, dd, J3.0, 9.9, H-6), 4.03 ($1 \mathrm{H}, \mathrm{d}, ~ J 3.0, ~ H-5), 3.69$ (3 H, s, H-13), 2.41-2.23 (1 H, m, H-7), 2.03-1.08 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 8a,b, H-9a,b, H-11a,b and H-12a,b), 1.08-0.95 (2 H, m, H10a and H-10b).
trans-203:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.13(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-1), 7.58(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{H}-2), 7.46$ (1 H, app. t, J7.9, H-3), 7.22 (1 H, d, J7.9, H-4), $4.66(1 \mathrm{H}$, m, H-6), 4.06 (1 H, d, J5.7, H-5), 3.77 (3 H, s, H-13), 1.97$1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 1.87-1.08(10 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{b}, \mathrm{H}-9 \mathrm{a}, \mathrm{b}$ and $\mathrm{H}-10 \mathrm{a}, \mathrm{b}, \mathrm{H}-11 \mathrm{a}, \mathrm{b}$ and $\mathrm{H}-12 \mathrm{a}, \mathrm{b})$.

HRMS (m / z-APCI): $\quad[\mathrm{M}-\mathrm{H}]^{-}$Found: $287.1277 \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4}$ Requires: 287.1288.
Methyl-3-isopropyl-1-oxoisochromane-4-carboxylate (cis-361, trans-361, Table 4.3, entry 3)

Prepared according to general procedure H , using freshly distilled isobutyraldehyde (22.4 $\mu \mathrm{L}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was stirred for 18 h to give a diastereomeric mixture of carboxylic acids in a 84:16 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 85:15 hexanes:EtAOc, cis-361 and trans-361 were isolated combined as a white
solid ($54.9 \mathrm{mg}, 90 \%$). M.p. $69-72^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, $8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.26,[\alpha]_{\mathrm{D}}^{20}=$ $-5.1\left(c=0.05, \mathrm{CHCl}_{3}\right)$.* The enantiomeric excesses of cis- $\mathbf{3 6 1}$ and trans- $\mathbf{3 6 1}$ were both found to be 99%.

CSP-HPLC analysis. Chiralcel ODH ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $85 / 15,0.5 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: cis-361 21.8 min ; trans- $\mathbf{3 6 1} 15.2 \mathrm{~min}$. cis-361:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.16(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}-1), 7.58(1 \mathrm{H}$, app. t, $J 7.5, \mathrm{H}-2), 7.50$ (1 H, app. t, $J 7.5, \mathrm{H}-3$), 7.33 (1 H, d, $J 7.5, \mathrm{H}-4), 4.17$ (1 H, dd, J 3.0, 9.9, H-6) ,4.03 (1 H, d, J 3.0, H-5), 3.67 ($3 \mathrm{H}, \mathrm{s}$, H-10), 2.17-2.01 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.20 ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-8$), 1.12 (3 H, d, J 6.8, H-9).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.4(\mathrm{C}=\mathrm{O}), 164.9(\mathrm{C}=\mathrm{O}), 137.1,133.7,130.7,129.0$, 127.3, 125.6, 84.4, 52.6, 46.2, 31.1, 18.5, 19.4.
trans-361:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.14(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.60(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-2), 7.48$ (1 H, app. t, $J 7.8, \mathrm{H}-3), 7.23(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-4), 4.65(1 \mathrm{H}$, m, H-6), 4.07 ($1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{H}-5$), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 1.931.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), 1.09 ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{H}-8$), 1.05 (3 H, d, J 6.8, H-9).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $169.5(\mathrm{C}=\mathrm{O}), 165.6(\mathrm{C}=\mathrm{O}), 136.1,134.1,130.3,128.6$, 127.3, 125.6, 83.9, 52.8, 46.3, 30.9, 19.3, 17.2.
$V_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 2973,1718,1604,1436,1263,1210,1168,1109,1084$, 983, 768, 714, 642.

HRMS (m / z-APCI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $249.1122 \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}$ Requires: 249.1121.

* $[\alpha]_{D}^{20}$ refers to a mixture of cis-361:trans-361 in a $84: 16$ ratio

(3R,4R)-Methyl-3-benzhydryl-1-oxoisochromane-4-carboxylate (cis-363, trans-363, Table 4.3, entry 5)

Prepared according to general procedure H , using freshly distilled diphenylacetaldehyde ($440,43.6 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($147,39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 48 hours to give a diastereomeric mixture of carboxylic acids in a $87: 13$ ratio (cis:trans). After esterification, only the diastereomer cis- $\mathbf{3 6 3}$ was isolated and purified by flash column chromatography to give cis-363 as a white solid ($78.1 \mathrm{mg}, 85 \%, 99 \% e e$). M.p. $174-176 .{ }^{\circ} \mathrm{C}$, TLC (hexanes:EtOAc, $8 / 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.67$, $[\alpha]^{20}{ }_{D}=-2.9\left(c=0.04, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. ACQUITY UPC², Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: $1500(\mathrm{psi}) . \mathrm{A}\left(\mathrm{CO}_{2}\right)=97 \% / \mathrm{B}($ Ethanol/ACN/IPA 1:1:1, $v: v: v)=3 \%, 1.2 \mathrm{~mL} \mathrm{~min}^{-1}, 30$ ${ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: cis- $\mathbf{3 6 3} 2.0 \mathrm{~min}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.15(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.56(1 \mathrm{H}$, app. t, $J 7.7, \mathrm{H}-2), 7.50$ (1 H , app. t, $J 7.7, \mathrm{H}-3$), 7.43-7.38 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11$), 7.38-7.25 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-8, \mathrm{H}-9, \mathrm{H}-10$ and H-12), 7.22 ($1 \mathrm{H}, \mathrm{t}, J 7.3$, H-13), 5.39 ($1 \mathrm{H}, \mathrm{dd}, J 2.4,10.9$, H-6) ,4.59 (1 H, d, J 10.9, H-7), 3.75 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4, \mathrm{H}-5$), 3.66 (3 H, s, H-14).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.9(\mathrm{C}=\mathrm{O}), 164.4(\mathrm{C}=\mathrm{O}), 140.2,140.1,136.9,133.7$, 130.7, 129.1, 129.0, 128.6 (С x 2), 128.1, 127.6, 127.5, 126.8, 125.3, 79.9, 53.6, 52.4, 45.8.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 3029,1734,1724,1600,1494,1452,1251,1221,1157$, 1107, 1085, 996, 973, 749, 695, 592.

HRMS (m / z-APCI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $373.1434 \mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{4}$ Requires: 373.1434.

Methyl-3-isopropyl-1-oxoisochromane-4-carboxylate (cis-364, trans-364, Table 4.3, entry 6)

Prepared according to general procedure H , using freshly distilled isovaleraldehyde (26.9 $\mu \mathrm{L}, 0.246 \mathrm{mmol})$ and homophthalic anhydride $(\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was stirred for 18 h to give a diastereomeric mixture of carboxylic acids in a 78:22 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, cis- $\mathbf{3 6 4}$ and trans- $\mathbf{3 6 4}$ were isolated combined as a white solid ($58.7 \mathrm{mg}, 91 \%$). M.p. $95-97{ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 8:2 v / v): $\mathrm{Rf}_{\mathrm{f}}=0.27,[\alpha]_{\mathrm{D}}^{20}=$ $-6.3\left(c=0.04, \mathrm{CHCl}_{3}\right)$.* The enantiomeric excesses of cis-364 and trans- $\mathbf{3 6 4}$ were found to be 99% and 91% respectively.

CSP-HPLC analysis. Chiralcel ODH ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 95/5, $1.0 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: cis- $\mathbf{3 6 4} 18.4 \mathrm{~min}$; trans-364 10.2 min (major enantiomer) and 12.2 min (minor enantiomer).
cis-364:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.19(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.59(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-2), 7.51$
(1 H , app. t, $J 7.8, \mathrm{H}-3$), $7.33(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-4), 4.72(1 \mathrm{H}$, ddd, $J 3.3,4.5,9.2, \mathrm{H}-6), 3.83$ ($1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{H}-5$), 3.70 (3 H, s, H-11), 2.10-2.01 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.87 (1 H , ddd, J 5.9, 9.2, 14.6, H-7a), 1.57 ($1 \mathrm{H}, \mathrm{ddd}, J 4.5,8.4,14.6, ~ H-7 b), 1.01$ ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{H}-9$), 0.98 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{H}-10$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.3(\mathrm{C}=\mathrm{O}), 164.8(\mathrm{C}=\mathrm{O}), 136.8,133.7,130.8,129.0$, 127.2, 125.4, 76.8, 52.6, 48.3, 41.5, 24.1, 22.9, 21.9.
trans-364:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.15(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{H}-1), 7.63-7.59(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 7.49-7.45$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $7.24(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-4), 4.96(1 \mathrm{H}, \mathrm{ddd}, J 4.5$, 2.01-1.94 (1 H, m, H-8), 1.85 ($1 \mathrm{H}, \mathrm{ddd}, J 5.9,9.2,14.6$, H$7 \mathrm{a}), 1.35$ (1 H , ddd, $J 4.5,8.4,14.6, \mathrm{H}-7 \mathrm{~b}$), 0.97 (3 H, d, J 6.6, H-9), 0.94 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{H}-10$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.7(\mathrm{C}=\mathrm{O}), 164.9(\mathrm{C}=\mathrm{O}), 135.8,134.1,130.4,128.7$, 127.4, 124.7, 77.2, 52.8, 48.8, 42.8, 24.3, 23.1, 21.5.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2956,1719,1605,1459,1311,1264,1163,1113,1087,993$, 948, 827, 711, 606, 567.

HRMS (m / z-APCI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $263.1273 \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}$ Requires: 263.1277.

* $[\alpha]_{D}^{20}$ refers to cis- $\mathbf{3 6 4}$ which was isolated after trituration of the diastereomeric mixture with isopropanol

Methyl-3-benzyl-1-oxoisochromane-4-carboxylate (cis-365, trans-365, Table 4.3, entry 7)

Prepared according to general procedure H , using freshly distilled phenylacetaldehyde $(27.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 48 h to furnish a diastereomeric mixture of carboxylic acids in a 84:16 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, cis-365 and trans-365 were isolated combined as a white solid ($67.1 \mathrm{mg}, 92 \%$). M.p. $68-70{ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 8:2 $v / v): \mathrm{R}_{\mathrm{f}}=0.41,[\alpha]_{\mathrm{D}}^{20}=-4.5\left(c=0.04, \mathrm{CHCl}_{3}\right)$.* The enantiomeric excesses of cis-365 and trans- $\mathbf{3 6 5}$ were both found to be 99%.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: cis-365 48.0 min ; trans- $\mathbf{3 6 5} 15.4 \mathrm{~min}$.
cis-365:
$\delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.18(1 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{H}-1), 7.68(1 \mathrm{H}$, app. t, $J 6.5, \mathrm{H}-3), 7.61$
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.2(\mathrm{C}=\mathrm{O}), 164.6(\mathrm{C}=\mathrm{O}), 136.7,135.7,133.8,130.7$, $129.5,129.1,128.8,127.4,127.2,125.4,79.7,52.7,46.7$, 38.9 .
trans-365:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.19(1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{H}-1), 7.75(1 \mathrm{H}$, app. t, $J 6.4, \mathrm{H}-3), 7.61$
(1 H , app. t, $J 6.4, \mathrm{H}-2$), $7.54-7.44$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9$ and H10), 7.35 ($1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{H}-4$), $5.71-5.65$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 4.53 $(1 \mathrm{H}, \mathrm{d}, J 5.2, \mathrm{H}-5), 4.43(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 3.96(1 \mathrm{H}, \mathrm{dd}, J 6.3$, 14.1, H-7b), 3.71 ($1 \mathrm{H}, \mathrm{dd}, J 7.8,14.1, \mathrm{H}-7 \mathrm{a}$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.2(\mathrm{C}=\mathrm{O}), 164.6(\mathrm{C}=\mathrm{O}), 135.5,135.2,134.3,130.5$, $129.5,128.89,128.83,127.9,127.3,124.7,79.4,52.8,46.5$, 39.6.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3030,2952,1724,1658,1453,1434,1376,1261,1158,1119$, 1030, 979, 738, 698.

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $319.0945 \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}$ Requires: 319.0940.

*[$[\alpha]_{D}^{20}$ refers to a mixture of cis- $\mathbf{3 6 5}$:trans- $\mathbf{3 6 5}$ in a 84:16 ratio

Methyl-3-heptyl-1-oxoisochromane-4-carboxylate (cis-366, trans-366, Table 4.3, entry 8)

Prepared according to general procedure H , using freshly distilled octanal ($38.4 \mu \mathrm{~L}$, $0.246 \mathrm{mmol})$ and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 18 h to give a diastereomeric mixture of carboxylic acids in a 79:21 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 90:10 hexanes:EtOAc, cis-366 and trans-366 were isolated combined as a white solid ($70.4 \mathrm{mg}, 94 \%$). M.p. $50-55^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, $8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.61,[\alpha]_{\mathrm{D}}^{20}=$ -3.2 $\left(c=0.05, \mathrm{CHCl}_{3}\right)$.* The enantiomeric excesses of cis-366 and trans- $\mathbf{3 6 6}$ were found to be 95% and 47% respectively.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $98 / 2,0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: cis- $\mathbf{3 6 6} 48.5 \mathrm{~min}$ (minor enantiomer) and 62.1 min (major enantiomer); trans-366 33.6 min (minor enantiomer) and 35.6 min (major enantiomer).
cis-366:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.17(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.61(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-2), 7.50$ (1 H, app. t, $J 7.8, \mathrm{H}-3$), 7.32 ($1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-4$), 4.63-4.59 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 3.88 ($1 \mathrm{H}, \mathrm{d}, ~ J 3.2, \mathrm{H}-5$), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$), 1.96-1.86 (1 H, m, H-7a), 1.84-1.73 (1 H, m, H-7b), 1.691.54 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 1.55-1.42 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}$), 1.41-1.20 (8 $\mathrm{H}, \mathrm{m}, \mathrm{H}-9, \mathrm{H}-10, \mathrm{H}-11$ and $\mathrm{H}-12), 0.95-0.83$ (3 H, m, H-13).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.3(\mathrm{C}=\mathrm{O}), 164.8(\mathrm{C}=\mathrm{O}), 136.8,133.7,130.7,129.0$, 127.2, 125., 78.7, 52.6, 47.9, 32.8, 31.7, 29.2, 29.0, 25.2, 22.7, 14.1.
trans-366:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.15(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-1), 7.58(1 \mathrm{H}$, app. t, $J 8.0, \mathrm{H}-2), 7.48$ (1 H , app. t, $J 8.0, \mathrm{H}-3$), 7.23 ($1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-4$), $4.88(1 \mathrm{H}$, ddd, $J 3.8,6.5,12.5, \mathrm{H}-6$), 3.92 ($1 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{H}-5$), 3.81 (3 H, s, H-14), 1.83-1.74 (1 H, m, H-7a), 1.69-1.54 (2 H, m, H7b, H-8a), 1.55-1.42 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}$), 1.41-1.20 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$, $\mathrm{H}-10, \mathrm{H}-11$ and $\mathrm{H}-12$), $0.95-0.83$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-13$).

```
\deltaс (100 MHz, CDCl3): 170.7 (C=O), 163.9 (C=O), 135.9,134.0,130.5,128.6,
    127.3, 124.7, 79.1, 52.7, 48.4, 33.7, 31.6, 29.1, 29.03, 25.0,
    22.6, 14.0.
vmax (neat)/\mp@subsup{\textrm{cm}}{}{-1}: 3133,3025,1730,1680, 1580, 1467,1156,1125,1096,1012,
                                    790, 685,705.
HRMS (m/z - APCI): }\quad[M+H\mp@subsup{]}{}{+}\mathrm{ Found: 305.1760 C18H25O4 Requires: 305.1747.
```

* $[\alpha]_{D}^{20}$ refers to a mixture of cis- $\mathbf{3 6 6}$:trans- $\mathbf{3 6 6}$ in a 79:21 ratio

Methyl-1-oxo-3-((E)-styryl)isochromane-4-carboxylate (cis-367,trans-367, Table 4.3, entry 9)

Prepared according to general procedure H , using freshly distilled cinnamaldehyde (31.0 $\mu \mathrm{L}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($147,39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 18 h to give a diastereomeric mixture of carboxylic acids in a 66:34 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, cis- $\mathbf{3 6 7}$ and trans- $\mathbf{3 6 7}$ were isolated combined as a pale yellow oil ($57.6 \mathrm{mg}, 76 \%$). TLC (hexanes/EtOAc, $8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.42,[\alpha]_{\mathrm{D}}^{20}=-6.0(c=$ $\left.0.03, \mathrm{CHCl}_{3}\right)$.* The enantiomeric excesses of cis- $\mathbf{3 6 7}$ and trans- $\mathbf{3 6 7}$ were found to be 92% and 84% respectively.

CSP-HPLC analysis. ACQUITY UPC ${ }^{2}$, Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: $1500(\mathrm{psi}) . \mathrm{A}\left(\mathrm{CO}_{2}\right)=97 \% / \mathrm{B}($ Ethanol/ACN/IPA 1:1:1, $v: v: v)=3 \%, 1.2 \mathrm{~mL} \mathrm{~min}{ }^{-1}, 30$ ${ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: cis-367 3.0 min (minor enantiomer) and 3.3 min (major enantiomer); trans-367 3.4 min (major enantiomer) and 3.7 min (minor enantiomer).
cis-367:

$\delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad$	$8.22(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.63(1 \mathrm{H}$, app. t, $J 7.7, \mathrm{H}-2), 7.54$
	$(1 \mathrm{H}$, app. t, $J 7.7, \mathrm{H}-3), 7.44(2 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-9), 7.42-7.29$
	$(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-10$ and H-11), $6.91(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{H}-8)$,
	$6.38(1 \mathrm{H}, \mathrm{dd}, J 6.1,16.0, \mathrm{H}-7), 5.36(1 \mathrm{H}, \mathrm{ddd}, J 1.4,3.5$,
	$6.1, \mathrm{H}-6), 4.06(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{H}-5), 3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.8(\mathrm{C}=\mathrm{O}), 164.2(\mathrm{C}=\mathrm{O}), 136.3,135.7,134.05,133.9$,	
	$130.8129 .2,128.7,128.5,127.5,126.8,125.2,123.1,78.4$,
	$52.6,48.9$.

trans-367:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.18(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-1), 7.63(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{H}-2), 7.51$ (1 H , app. t, $J 7.9, \mathrm{H}-3$), $7.40(2 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-9), 7.42-7.29$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-10$ and $\mathrm{H}-11$), 6.79 ($1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{H}-8$), $6.20(1 \mathrm{H}, \mathrm{dd}, J 6.8,15.9, \mathrm{H}-7), 5.60-5.54(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6)$, 4.11 ($1 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{H}-5$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.1(\mathrm{C}=\mathrm{O}), 163.7(\mathrm{C}=\mathrm{O}), 135.4,135.3,135.2,134.3$, $130.5128 .9,128.7,128.6,127.5,126.8,124.7,123.9,79.4$, 52.9, 49.1.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 2954,1732,1713,1606,1439,1311,1266,1230,1164$, $1154,1117,710,690,607$.

HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{APCI}$): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $331.0943 \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O} 4 \mathrm{Na}$ Requires: 331.0940.
${ }^{*}[\alpha]_{D}^{20}$ refers to a mixture of cis-367:trans- $\mathbf{3 6 7}$ in a 66:34 ratio
Methyl-3-(but-3-en-1-yl)-1-oxoisochromane-4-carboxylate (cis-368, trans-368, Table 4.3, entry 10)

Prepared according to general procedure H , using freshly distilled 4-pentenal ($26.0 \mu \mathrm{~L}$, 0.246 mmol) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 18 h to give a diastereomeric mixture of carboxylic acids in a 74:26 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 85:15 hexanes:EtOAc, cis- $\mathbf{3 6 8}$ and trans- $\mathbf{3 6 8}$ were isolated combined as a pale yellow oil ($61.4 \mathrm{mg}, 96 \%$). TLC (hexanes $/ \mathrm{EtOAc}, 8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.47,[\alpha]_{\mathrm{D}}^{20}=-5.9(c=$ $\left.0.07, \mathrm{CHCl}_{3}\right)$.* The enantiomeric excesses of cis-368 and trans-368 were found to be 97% and 90% respectively.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $90 / 10,1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: cis- $\mathbf{3 6 8} 10.5 \mathrm{~min}$ (minor enantiomer) and 12.8 min (major enantiomer); trans-368 8.4 min (minor enantiomer) and 9.0 min (major enantiomer).
cis-368:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.17(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-1), 7.59(1 \mathrm{H}$, app. t, $J 7.3, \mathrm{H}-2), 7.50$ (1 H , app. t, $J 7.3, \mathrm{H}-3$), 7.32 ($1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-4$), $5.90-5.76$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), $5.12(1 \mathrm{H}, \mathrm{dd}, J 1.5,17.1, \mathrm{H}-10 \mathrm{a}), 5.04(1 \mathrm{H}$, dd, $J 1.5,10.1, \mathrm{H}-10 \mathrm{~b}), 4.68$ (1 H , ddd, $J 3.3,4.8,8.7$, H-6), 3.87 ($1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{H}-5$), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), 2.49-2.25 (2 H , m, H-8a and H-8b), 2.13-1.97 (1 H, m, H-7a), 1.95-1.81 (1 H, m, H-7b).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.2(\mathrm{C}=\mathrm{O}), 164.7(\mathrm{C}=\mathrm{O}), 136.7(\mathrm{C} \times 2), 133.7,130.7$, 129.0, 127.3, 125.4, 116.1, 77.7, 52.6, 47.8, 31.8, 29.2.
trans-368:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.16(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{H}-1), 7.61(1 \mathrm{H}$, app. t, $J 7.6, \mathrm{H}-2), 7.49$
(1 H , app. t, $J 7.6, \mathrm{H}-3$), 7.24 ($1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{H}-4$), $5.85-5.74$
($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 5.09 ($1 \mathrm{H}, \mathrm{dd}, J 1.6,17.3, \mathrm{H}-10 \mathrm{a}), 5.03(1 \mathrm{H}$, dd, J 1.6, 10.0, H-10b), 4.95 (1 H, ddd, J4.0, 6.6, 10.5, H-6), 3.94 ($1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{H}-5$), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), 2.43-2.20 (2 H , $\mathrm{m}, \mathrm{H}-8 \mathrm{a}$ and $\mathrm{H}-8 \mathrm{~b}), 1.96-1.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a})$, 1.77-1.64 (1 $\mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b}$).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.6(\mathrm{C}=\mathrm{O}), 163.8(\mathrm{C}=\mathrm{O}), 136.6(\mathrm{C} \mathrm{x} \mathrm{2}), 135.8,134.1$, $130.5,128.7,126.6,124.6,116.0,78.3,52.8,48.4,32.9,29.1$.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2951,1720,1640,1604,1458,1435,1240,1159,1116,1086$, 1030, 996, 916, 768, 709.

HRMS (m / z-APCI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $261.1116 \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}$ Requires: 261.1121.

$*[\alpha]_{D}^{20}$ refers to a mixture of cis-368: trans- $\mathbf{3 6 8}$ in a 74:26 ratio

(E)-Ethyl-7-oxohept-2-enoate (373) ${ }^{217}$

To an aqueous solution of glutaraldehyde ($\mathbf{3 7 1}, 15 \mathrm{~mL}, 166 \mathrm{mmol}, 25 \% \mathrm{w} / v$ in water) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was added a solution of (carboethoxymethylene)triphenylphosphorane ($\mathbf{3 7 2}, 5.78 \mathrm{~g}, 16.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The corresponding reaction mixture was allowed to stir at room temperature for 12 h , after which time EtOAc (30 mL) was added. The resulting solution was washed with water (20 mL) and then concentrated under reduced pressure. The crude product obtained was then purified by flash column chromatography eluting with 80:20 hexanes:EtOAc to furnish (E) - $\mathbf{3 7 3}$ as a colourless oil ($1.24 \mathrm{~g}, 44 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 9.79-9.74(1 \mathrm{H}, \mathrm{t}, J 1.3, \mathrm{H}-1), 6.93(1 \mathrm{H}, \mathrm{dt}, J 6.8,15.7, \mathrm{H}-5)$, 5.85 ($1 \mathrm{H}, \mathrm{d}, J 15.7, \mathrm{H}-6$), 4.20 ($2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{H}-7$), 2.50 (2 H, dt, J1.3, 13.2, H-2), 2.33-2.21 (2 H, m, H-4), 1.89-1.77 (2 H, m, H-3), 1.30 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{H}-8$).

HRMS (m / z-ESI): $\quad[M-H]^{-}$Found:169.0707 $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3}$ Requires:169.0713.
tert-butyl (2-aminoethyl)carbamate (375) ${ }^{218}$

A 500 mL round-bottomed flask containing a magnetic stirring bar was charged with a solution of ethylenediamine ($\mathbf{3 7 4}, 5.6 \mathrm{~mL}, 83.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. A solution of
di-tert-butyl dicarbonate ($3.05 \mathrm{~g}, 14.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was then added dropwise over 3 h . The volatiles were removed in vacuo and the resulting oil was dissolved in a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(300 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 150 \mathrm{~mL}$). The combined organic phases were dried over anhydrous MgSO_{4} and concentrated under reduced pressure to afford 375 as colourless oil ($1.59 \mathrm{~g}, 71 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 4.90(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4), 3.13(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.76(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$, 1.41 ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 1.22 (2 H, bs, H-1).

HRMS ($m / z-\mathrm{APCI}$): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $161.1289 \mathrm{C}_{7} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ Requires: 161.1284.
tert-butyl (3-oxopropyl)carbamate (376) ${ }^{219}$

An oven-dried 50 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere, was charged with a solution of DMSO ($3 \mathrm{~mL}, 32.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(57 \mathrm{~mL})$, followed by oxalyl chloride $(1.4 \mathrm{~mL}, 16.1 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The resultant mixture was stirred for 15 min and a solution of $\mathbf{3 7 5}(1.71 \mathrm{~g}, 10.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ mL) was added dropwise. After 1 hour, triethylamine ($7.5 \mathrm{~mL}, 53.8 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ and the corresponding solution was allowed to stir at room temperature for 30 min . The reaction mixture was then quenched with a 10% aqueous solution of $\mathrm{HCl}(100 \mathrm{~mL})$ and extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The combined organic phases were washed with a saturated aqueous solution of NaHCO_{3}, then brine, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The crude product was purified by flash column chromatography eluting with 70:30 hexanes:EtOAc, to afford $\mathbf{3 7 6}$ as a yellow oil $(1.50 \mathrm{~g}$, 81\%). TLC (hexanes:EtOAc 8:2, v / v): $\mathrm{Rf}=0.42$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 9.79(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 4.73(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4), 3.48-3.32(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 3), 3.75-3.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$), 1.42 ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$).

HRMS ($m / z-\mathrm{APCI}$): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $196.0936 \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}$ Requires: 196.0944.

Methyl-3-((E)-6-ethoxy-6-oxohex-4-en-1-yl)-1-oxoisochromane-4-carboxylate (cis369, trans-369, Table 4.3, entry 11)

Prepared according to general procedure H, using aldehyde $373(42.0 \mathrm{mg}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 18 h to give a diastereomeric mixture of carboxylic acids in a 73:27 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 85:15 hexanes:EtOAc, cis-369 and trans-369 were isolated combined as a pale yellow oil (71.6 $\mathrm{mg}, 84 \%$). TLC (hexanes/EtOAc, $8: 2 v / v)$: $\mathrm{Rf}_{\mathrm{f}}=0.16,[\alpha]_{\mathrm{D}}^{20}=-3.4\left(c=0.01, \mathrm{CHCl}_{3}\right)$.* The enantiomeric excesses of cis-369 and trans-369 were found to be 99% and 98% respectively.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: cis-369 43.0 min ; trans-369 20.9 min (minor enantiomer) and 23.5 min (major enantiomer).
cis-369:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.17(1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{H}-1), 7.59(1 \mathrm{H}$, app. t, $J 7.1, \mathrm{H}-2), 7.51$ (1 H , app. t, $J 7.1, \mathrm{H}-3$), 7.32 ($1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{H}-4$), $7.03-6.89$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), $5.86(1 \mathrm{H}, \mathrm{d}, J 15.5, \mathrm{H}-11), 4.67-4.55(1 \mathrm{H}$, m, H-6), 4.21 ($2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{H}-12$), 3.87 ($1 \mathrm{H}, \mathrm{d}, J 2.8, \mathrm{H}-5$), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$), 2.35-2.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 2.00-1.78 (2 H , m, $\mathrm{H}-7 \mathrm{a}$ and $\mathrm{H}-7 \mathrm{~b}$), 1.75.1.63 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$ and $\mathrm{H}-8 \mathrm{~b}$), 1.31 (3 H, t, J 7.1, H-13).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.1(\mathrm{C}=\mathrm{O}), 165.5(\mathrm{C}=\mathrm{O}), 164.5(\mathrm{C}=\mathrm{O}), 147.8,136.6$, $133.8,130.8,129.1,127.5,125.4,122.1,78.3,60.2,52.6$, 47.9, 32.2, 31.6, 23.8, 14.3 .
trans-369:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.15(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.62(1 \mathrm{H}$, app. t, H-2), $7.49(1 \mathrm{H}$, app. t, H-3), $7.24(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-4), 7.03-6.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 10), 5.83 ($1 \mathrm{H}, \mathrm{d}, J 14.5, \mathrm{H}-11$), 4.98-4.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 4.19 $(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{H}-12), 3.92(1 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{H}-5), 3.82(3 \mathrm{H}, \mathrm{s}$, H-14), 2.31-2.21 (2 H, m, H-9), 1.91-1.74 (2 H, m, H-7a and H-7b), 1.74-1.60 (2 H, m, H-8a and H-8b), 1.30 ($3 \mathrm{H}, \mathrm{t}, J 7.1$, H-13).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.5(\mathrm{C}=\mathrm{O}), 166.5(\mathrm{C}=\mathrm{O}), 163.7(\mathrm{C}=\mathrm{O}), 147.7,135.8$, $134.2,130.6,128.8,127.2,124.5,122.1,78.6,60.2,52.8$, 48.5, 33.0, 31.4, 23.4, 14.2 .
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad \quad 2953,1717,1652,1459,1367,1265,1159,1032,976,706$, 625.

HRMS $(m / z-$ ESI $): \quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $369.1309 \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}$ Requires: 369.1308.

* $[\alpha]_{D}^{20}$ refers to a mixture of cis-369: trans- $\mathbf{3 6 9}$ in a 73:27 ratio

Methyl-3-(2-((tert-butoxycarbonyl)amino)ethyl)-1-oxoisochromane-4-carboxylate (cis-370, trans-370, Table 4.3, entry 12)

Prepared according to general procedure H , using aldehyde $\mathbf{3 7 6}$ ($42.6 \mathrm{mg}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 24 h to give a diastereomeric mixture of carboxylic acids in a 84:16 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 70:30 hexanes:EtOAc, cis-370 and trans-370 were isolated combined as a pale yellow oil (64.4 $\mathrm{mg}, 75 \%)$. TLC (hexanes/EtOAc, $8: 2 v / v)$: $\mathrm{R}_{\mathrm{f}}=0.17,[\alpha]_{\mathrm{D}}^{20}=-4.4\left(c=0.02, \mathrm{CHCl}_{3}\right) .{ }^{*}$ The enantiomeric excesses of cis-370 and trans-370 were found to be 99% ee and 81% ee respectively.

CSP-HPLC analysis. Chiralcel ODH ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $98 / 2,0.5 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: cis- $\mathbf{3 7 0} 364.7 \mathrm{~min}$; trans- $\mathbf{3 7 0} 220.1 \mathrm{~min}$ (minor enantiomer) and 190.1 min (major enantiomer).
cis-370:
δ н ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\quad 8.17(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.60(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-2), 7.51$ (1 H, app. t, $J 7.8, \mathrm{H}-3$), 7.34 ($1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-4$), 4.88-4.77 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-9$), 4.76-4.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 3.95 ($1 \mathrm{H}, \mathrm{d}, J 3.5$, $\mathrm{H}-5), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11)$, 3.53-3.29 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$ and $\mathrm{H}-8 \mathrm{~b}$), 2.18-1.98 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}$ and $\mathrm{H}-7 \mathrm{~b}$), $1.44(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-10)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.2(\mathrm{C}=\mathrm{O}), 164.5(\mathrm{C}=\mathrm{O}), 156.1(\mathrm{q}), 136.7,133.8,130.7$, 129.1, 127.4, 125.2, 76.5, 67.9, 52.6, 47.7, 36.9, 33.1, 28.3.
trans-370:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.15(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-1), 7.63(1 \mathrm{H}$, app. t, $J 8.0, \mathrm{H}-2), 7.49$ (1 H , app. t, $J 8.0, \mathrm{H}-3$), 7.27 (1 H, d, $J 8.0, \mathrm{H}-4$), $5.04-4.96$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 4.88-4.77 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-9$), 3.96 ($1 \mathrm{H}, \mathrm{d}, ~ J 5.6$, $\mathrm{H}-5), 3.82$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), 3.53-3.29 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$ and $\mathrm{H}-8 \mathrm{~b}$), 1.98-1.84 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}$ and $\mathrm{H}-7 \mathrm{~b}$), $1.45(9 \mathrm{H}, \mathrm{s}, \mathrm{H}-10)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.3(\mathrm{C}=\mathrm{O}), 163.5(\mathrm{C}=\mathrm{O}), 155.9,135.7,134.3,130.5$, 128.8, 127.4, 124.4, 76.9, 68.5, 52.8, 48.2, 36.7, 33.7, 28.3.
$V_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 3383,2976,1705,1609,1516,1458,1366,1241,1161,1086$, 1031, 994, 734, 605.

HRMS (m / z - ESI): $\quad[\mathrm{M}-\mathrm{H}]^{-}$Found: $348.1450 \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{6}$ Requires: 348.1447.

* $[\alpha]_{D}^{20}$ refers to a mixture of cis-370: trans- $\mathbf{3 7 0}$ in a 84:16 ratio

Methyl 1-oxo-3-phenylisochroman-4-carboxylate (cis-152, Table 4.4, entry 1)

Prepared according to general procedure H , using freshly distilled benzaldehyde (135, $25.0 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($147,39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was allowed to stir for 5 days to give a diastereomeric mixture of carboxylic acids in a 61:39 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, the diastereomer cis-152 was isolated as a white solid ($37.5 \mathrm{mg}, 54 \%, 94 \%$ ee). M.p. $115-117{ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, $8: 2 v / v)$: $\mathrm{R}_{\mathrm{f}}=0.41,[\alpha]_{\mathrm{D}}^{20}=-4.3\left(c=0.02, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: 18.6 min (minor enantiomer) and 23.6 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.26(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.64(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-2), 7.56$ (1 H , app. t, $J 7.8, \mathrm{H}-3$), $7.52-7.48$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), $7.44(2 \mathrm{H}$, app. t, H-7), 7.42-7.36 (2 H, m, H-4, H-9), $5.80(1 \mathrm{H}, \mathrm{d}, ~ J 3.7$, H-6), 4.16 ($1 \mathrm{H}, \mathrm{d}, J 3.7, \mathrm{H}-5$), 3.47 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
168.6 ($\mathrm{C}=\mathrm{O}$), $164.4(\mathrm{C}=\mathrm{O}), 136.3,136.2,134.0,131.0$, 129.3, 128.7, 128.6, 127.3, 125.6, 125.3, 79.4, 52.3, 50.7.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2955,1721,1601,1454,1431,1244,1080,997,782,701$.
HRMS ($m / z-\mathrm{APCI}$):
[M-H] Found: $281.0811 \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{4}$ Requires: 281.0819.
Methyl 1-oxo-3-phenylisochroman-4-carboxylate (trans-152, Table 4.4, entry 1) ${ }^{150}$

Prepared according to general procedure H , using freshly distilled benzaldehyde (135, 25 $\mu \mathrm{L}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was allowed to stir for 5 days to give a diastereomeric mixture of carboxylic acids in a 61:39 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, the diastereomer trans-152 was
isolated as a white solid ($24.3 \mathrm{mg}, 35 \%, 64 \%$ ee). M.p. $118-120{ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, $8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.38$. (lit., ${ }^{127,151}$ m.p. $129-132{ }^{\circ} \mathrm{C}$).

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: trans- $\mathbf{1 5 2} 17.0 \mathrm{~min}$ (minor enantiomer) and 19.5 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.19(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-1), 7.60(1 \mathrm{H}$, app. t, $J 8.0, \mathrm{H}-2), 7.49$
(1 H , app. t, $J 8.0, \mathrm{H}-3$), 7.44-7.30 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8$ and H9), $7.20(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-4), 5.86(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-6), 4.34$ (1 H, d, J8.3, H-5), 3.69 (3 H, s, H-10).

Methyl-3-(naphthalen-2-yl)-1-oxoisochromane-4-carboxylate (cis-386, trans-386,
Table 4.4, entry 2)

Prepared according to general procedure H , using recrystallised 2-naphthaldehyde (378, $38.4 \mathrm{mg}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 7 days to give a diastereomeric mixture of carboxylic acids in a 49:51 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 90:10 hexanes:EtOAc, both diastereomers (cis-386 and trans-386) were isolated combined as a pale yellow oil ($68.7 \mathrm{mg}, 84 \%$). The enantiomeric excesses of cis-386 and trans-386 were found to be 34% and 62% respectively. TLC (hexanes/EtOAc, $8 / 2 v / v$): $\mathrm{R}_{\mathrm{f}}=0.41$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $95 / 5,0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: cis- $\mathbf{3 8 6} 76.8 \mathrm{~min}$ (minor enantiomer) and 93.3 min (major enantiomer); trans- $\mathbf{3 8 6} 107.1 \mathrm{~min}$ (minor enantiomer) and 116.7 min (major enantiomer).
cis-386:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$8.29(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{H}-1), 8.04(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 7.95-7.86(3 \mathrm{H}$, m, H-7, H-12 and H-11), 7.64 (1 H , app. t, $J 7.4, \mathrm{H}-2$), 7.617.49 ($4 \mathrm{H}, \mathrm{m} \mathrm{H}-3, \mathrm{H}-9, \mathrm{H}-10$ and H-13), 7.42 ($1 \mathrm{H}, \mathrm{d}, J 7.6$, H-4), 5.96 ($1 \mathrm{H}, \mathrm{d}, ~ J 3.8, ~ H-6), ~ 4.28(1 \mathrm{H}, \mathrm{d}, J 3.8, \mathrm{H}-5), 3.41$ (3 H, s, H-14).
168.6 ($\mathrm{C}=\mathrm{O}$), $164.4(\mathrm{C}=\mathrm{O}), 136.4,134.0,133.5,133.3$, 133.2, 131.0, 129.3, 128.5, 128.3, 127.8, 127.4, 127.3, 126.5, $125.4,124.5,123.0,79.4,50.3,50.6$.
trans-386:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.23(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.90-7.81(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-7, \mathrm{H}-8$, H-12), 7.62 (1 H , app. t, $J 7.7, \mathrm{H}-2$), $7.55-7.48$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$, H-10, H-11, H-13), 7.23 (1 H, d, J 7.6, H-4), 6.06 ($1 \mathrm{H}, \mathrm{d}, J$ 8.1, H-6), 4.48 ($1 \mathrm{H}, \mathrm{d}, ~ J 8.1, \mathrm{H}-5$), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 170.1(\mathrm{C}=\mathrm{O}), 164.0(\mathrm{C}=\mathrm{O}), 136.0,134.4,134.0,133.4$, $132.9,130.7,128.9,128.7,128.3,127.7,126.8,126.7,126.6$, 126.4, 124.6, 123.8, 80.7, 52.7, 50.7.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3062,2955,1980,1714,1601,1457,1433,1353,1258,1118$, 1076, 1002, 955, 928, 862, 825, 733, 723, 689.

HRMS ($m / z-$ ESI):
[M-H] ${ }^{-}$Found: $331.0981 \mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{4}$ Requires: 331.0970.
Methyl-3-(4-bromophenyl)-1-oxoisochromane-4-carboxylate (cis-387, Table 4.4, entry 3)

Prepared according to general procedure H , using recrystallised p-bromobenzaldehyde ($\mathbf{3 7 9}, 45.5 \mathrm{mg}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 22 h to give a diastereomeric mixture of carboxylic acids in
a 60:40 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 85:15 hexanes:EtOAc, the diastereomer cis- $\mathbf{3 8 7}$ was isolated as a white solid ($47.9 \mathrm{mg}, 54 \%, 94 \%$ ee). M.p. $135-137{ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 8:2 v/v): $\mathrm{R}_{\mathrm{f}}=0.35,[\alpha]_{\mathrm{D}}^{20}=-7.6\left(c=0.03, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $95 / 5,0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: 87.2 min (minor enantiomer) and 91.2 min (major enantiomer).

HRMS (m / z - ESI): $\quad[\mathrm{M}-\mathrm{H}]$ [Found $358.9920 \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O} 4 \mathrm{Br}$ Requires 358.9924.

Methyl-3-(4-bromophenyl)-1-oxoisochromane-4-carboxylate (trans-387, Table 4.4, entry 3$)^{15}$

Prepared according to general procedure H , using recrystallised p-bromobenzaldehyde ($\mathbf{3 7 9}, 45.5 \mathrm{mg}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 22 h to give a diastereomeric mixture of carboxylic acids in a 60:40 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 85:15 hexanes:EtOAc, the diastereomer trans-387 was isolated as a white solid ($31.7 \mathrm{mg}, 36 \%, 74 \% \mathrm{ee}$). M.p. $137-138{ }^{\circ} \mathrm{C}$ (lit., ${ }^{151}$ m.p. 138-140 ${ }^{\circ} \mathrm{C}$), TLC (hexanes/EtOAc, 8:2 v / v): $\mathrm{Rf}_{\mathrm{f}}=0.38$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $95 / 5,0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: 70.0 min (minor enantiomer) and 80.7 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$8.17(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-1), 7.61(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{H}-2), 7.55-$
$7.45(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and H-8), $7.28(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-7), 7.19(1$
$\mathrm{H}, \mathrm{d}, J 7.5, \mathrm{H}-4), 5.80(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-6), 4.28(1 \mathrm{H}, \mathrm{d}, J 8.5$,
$\mathrm{H}-5), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9)$.

Methyl 3-(3-bromophenyl)-1-oxoisochromane-4-carboxylate (cis-388, Table 4.4, entry 4)

Prepared according to general procedure H , using freshly distilled 3-bromobenzaldehyde ($\mathbf{3 8 0}, 28.7 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 40 h to give a diastereomeric mixture of carboxylic acids in a 55:45 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with $85: 15$ hexanes:EtOAc, the diastereomer cis- $\mathbf{3 8 8}$ was isolated as a white solid ($39.1 \mathrm{mg}, 44 \%, 93 \% e e$). M.p. $92-94{ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, $8 / 2 v / v): \mathrm{R}_{\mathrm{f}}=0.50,[\alpha]_{\mathrm{D}}^{20}=-5.9\left(c=0.03, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 95/5, $1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: 19.0 min (minor enantiomer) and 25.0 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.26(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-1), 7.69-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-7)$, 7.58-7.47 (2 H, m, H-3 and H-8), 7.45-733 (2H, m, H-9 and H-10) 7.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$), 5.83 (1 H, d, J 3.7, H-6), 4.15 (1 H, d, J3.7, H-5), 3.50 (3 H, s, H-11).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.4(\mathrm{C}=\mathrm{O}), 164.0(\mathrm{C}=\mathrm{O}), 138.4,135.9,134.2,131.9$, 131.1, 130.2, 129.4, 128.8, 127.6, 125.1, 124.3, 122.8, 78.5, 52.5, 50.4 .
$V_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad \quad 2947,1722,1601,1458,1358,1286,1261,1225,1112$, $1085,1056,996,971,989,787,717,689,638,584$.

HRMS $(m / z-\mathrm{APCI}): \quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $382.9889 \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}_{4} \mathrm{Na}$ Requires: 382.9888.

Methyl 3-(3-bromophenyl)-1-oxoisochromane-4-carboxylate (trans-388, Table 4.4, entry 4)

Prepared according to general procedure H , using freshly distilled 3- bromobenzaldehyde ($\mathbf{3 8 0}, 28.7 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 40 h to give a diastereomeric mixture of carboxylic acids in a $55: 45$ ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with $85: 15$ hexanes:EtOAc, the diastereomer trans- $\mathbf{3 8 8}$ was isolated as a white solid ($35.3 \mathrm{mg}, 39 \%, 72 \%$ ee). M.p. $100-105^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, $8 / 2 v / v): \mathrm{R}_{\mathrm{f}}=0.46,[\alpha]_{\mathrm{D}}^{20}=+8.8\left(c=0.05, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: 16.7 min (minor enantiomer) and 18.8 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.21(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-1), 7.64(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{H}-2), 7.59$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$), $7.55-7.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 7.51-7.49(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 8), 7.36-7.31 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 7.28-7.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and H10), 5.83 ($1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-6$), 4.32 ($1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-5$), 3.74 (3 H, s, H-11).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.8(\mathrm{C}=\mathrm{O}), 163.7(\mathrm{C}=\mathrm{O}), 138.8,135.8,134.6,132.3$, 130.7, 130.3, 129.9, 129.0, 126.7, 125.4, 124.3, 122.8, 79.7, 52.8, 50.7.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2940,1720,1601,1455,1348,1285,1260,1235,1112,1075$, 1054, 995, 971, 989, 783, 713, 687, 584.

HRMS (m / z - APCI):
$[\mathrm{M}+\mathrm{H}]^{+}$Found: $360.9887 \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrO}_{4}$ Requires: 360.9888.
Methyl 3-(4-chlorophenyl)-1-oxoisochroman-4-carboxylate (cis-389, Table 4.4, entry 5)

Prepared according to general procedure H , using recrystallised 4-chlorobenzaldehyde ($\mathbf{3 8 1}, 34.6 \mathrm{mg}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 36 h to give a diastereomeric mixture of carboxylic acids in a 59:41 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, the diastereomer cis-389 was isolated as white solid ($42.1 \mathrm{mg}, 54 \%, 95 \%$ ee). M.p. $65-68^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, $8: 2 v / v): \mathrm{R}_{\mathrm{f}}=0.70,[\alpha]^{20}{ }_{\mathrm{D}}=-11.6\left(c=0.03, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: 24.1 min (minor enantiomer) and 26.0 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.25(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.60(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-3), 7.56$
(1 H , app. t, $J 7.8, \mathrm{H}-2$), $7.49-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-7$ and $\mathrm{H}-$ 8), 5.77 ($1 \mathrm{H}, \mathrm{d}, J 3.4, \mathrm{H}-6), 4.14(1 \mathrm{H}, \mathrm{d}, J 3.4, \mathrm{H}-5), 3,49$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.4(\mathrm{C}=\mathrm{O}), 164.1 \quad(\mathrm{C}=\mathrm{O}), 136.0,134.7,134.6,134.2$, 131.0, 129.4, 128.9, 127.4, 127.0, 125.1, 78.6, 52.5, 50.4.
$\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2953,2926,2862,1736,1709,1602,1459,1261,1001,826$, 740.

HRMS ($m / z-$ ESI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $317.0568 \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cl}$ Requires: 317.0580.
Methyl 3-(4-chlorophenyl)-1-oxoisochroman-4-carboxylate (trans-389, Table 4.4, entry 5) ${ }^{150}$

Prepared according to general procedure H , using recrystallised 4-chlorobenzaldehyde ($\mathbf{3 8 1}, 34.6 \mathrm{mg}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 36 h to give a diastereomeric mixture of carboxylic acids in a 59:41 ratio (cis:trans). After esterification and purification by flash column chromatography eluting with 80:20 hexanes:EtOAc, the diastereomer trans-389 was isolated as a white solid ($29.6 \mathrm{mg}, 38 \%, 78 \%$ ee). M.p. $71-73{ }^{\circ} \mathrm{C}\left(\right.$ lit., ${ }^{151} \mathrm{~m}$. p. $70-72^{\circ} \mathrm{C}$), TLC (hexanes/EtOAc, 8:2 v / v): $\mathrm{R}_{\mathrm{f}}=0.6$.

CSP-HPLC analysis Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $90 / 10,1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: 20.2 min (minor enantiomer) and 23.0 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.18(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.61(1 \mathrm{H}, \mathrm{app} . \mathrm{t}, J 7.7, \mathrm{H}-3), 7.50$ (1 H, app. t, J 7.7, H-2), 7.39-7.29 (4 H, m, H-7 and H-8), 7.19 (1 H, d, J7.7, H-4), 5.82 ($1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-6$), $4.30(1 \mathrm{H}$, d, $J 8.7, \mathrm{H}-5$), 3.71 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$).

Methyl 3-(4-cyanophenyl)-1-oxoisochromane-4-carboxylate (cis-390, Table 4.4, entry 6)

Prepared according to general procedure H , using recrystallised 4-cyanobenzaldehyde ($\mathbf{3 8 2}, 32.3 \mathrm{mg}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 48 h to give a diastereomeric mixture of carboxylic acids in a

58:42 ratio (cis:trans). After esterification and purification by flash column chromatography eluting with 75:25 hexanes:EtOAc, the diastereomer cis-390 was isolated as a white solid ($78.4 \mathrm{mg}, 51 \%, 89 \%$ ee). M.p. $126-128^{\circ} \mathrm{C}, \mathrm{TLC}$ (hexanes/EtOAc, $8: 2 v / v): \mathrm{R}_{\mathrm{f}}=0.25,[\alpha]^{20}{ }_{\mathrm{D}}=-1.7\left(c=0.14, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. ACQUITY UPC ${ }^{2}$, Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: 1500 (psi). A $\left(\mathrm{CO}_{2}\right)=97 \% / \mathrm{B}($ Ethanol/IPA $1: 1, v: v)=3 \%, 1.2 \mathrm{~mL} \mathrm{~min}^{-1}, 30^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 3.5 min (major enantiomer) and 3.6 min (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.20(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.71(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{H}-8), 7.65-7.58$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and H-2), 7.53 (1 H , app. t, $J 7.7, \mathrm{H}-3$), 7.36 (1 H, d, $J 7.7, \mathrm{H}-4), 5.85(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{H}-6), 4.19(1 \mathrm{H}, \mathrm{d}, J 3.6$, H-5), 3.47 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.1(\mathrm{C}=\mathrm{O}), 163.6(\mathrm{C}=\mathrm{O}), 141.3,135.7,134.3,132.5$, 131.1, 129.6, 127.5, 126.4, 124.9, 118.3, 112.7, 78.2, 52.5, 49.9 .
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2922,2231,1742,1609,1458,1356,1275,1164,1080,1064$, 971, 816, 704, 557.

HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{ESI}$): $\quad[\mathrm{M}-\mathrm{H}]^{-}$Found: $306.0761 \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{NO}_{4}$ Requires: 306.0766.
Methyl 3-(4-cyanophenyl)-1-oxoisochromane-4-carboxylate (trans-390, Table 4.4, entry 6)

Prepared according to general procedure H , using recrystallised 4-cyanobenzaldehyde ($\mathbf{3 8 2}, 32.3 \mathrm{mg}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 48h to give a diastereomeric mixture of carboxylic acids in a 58:42 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 75:25 hexanes:EtOAc, the diastereomer trans-390 was
isolated as yellow oil ($67.6 \mathrm{mg}, 42 \%, 60 \% e e$). TLC (hexanes/EtOAc, $8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.23$, $[\alpha]^{20} \mathrm{D}=+19.1\left(c=0.05, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. ACQUITY UPC ${ }^{2}$, Trefoil CEL2, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: $1500(\mathrm{psi}) . \mathrm{A}\left(\mathrm{CO}_{2}\right)=97 \% / \mathrm{B}($ Ethanol/ACN 1:1, $v: v)=3 \%, 1.2 \mathrm{~mL} \mathrm{~min}^{-1}, 30^{\circ} \mathrm{C}, \mathrm{UV}$ detection at 254 nm , retention times: 3.1 min (minor enantiomer) and 3.4 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.21(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-1), 7.70(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-8), 7.65(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{H}-2), 7.58 .7 .51(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and H-3), 7.22 (1 H, d, $J 7.7, \mathrm{H}-4), 5.94(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-6), 4.32(1 \mathrm{H}, \mathrm{d}, J 8.5$, H-5), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.6(\mathrm{C}=\mathrm{O}), 163.4(\mathrm{C}=\mathrm{O}), 141.7,135.4,134.7,132.6$, $130.8,129.2,127.6,126.7,124.2,118.2,113.2,78.6,52.9$, 50.5 .
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2921,2215,1730,1609,1454,1356,1272,1167,1078,1061$, 956, 811, 701, 557.

HRMS ($m / z-\mathrm{ESI}$): [M-H] Found: 306.0757 $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{NO}_{4}$ Requires: 306.0766.

Methyl 3-(4-(methoxycarbonyl)phenyl)-1-oxoisochromane-4-carboxylate (cis-391,
Table 4.4, entry 7)

Prepared according to general procedure H , using recrystallised methyl 4-formylbenzoate ($\mathbf{3 8 3}, 40.4 \mathrm{mg}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 48 h to give a diastereomeric mixture of carboxylic acids in a 59:41 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 70:30 hexanes:EtOAc, the diastereomer cis-391 was isolated as a white solid ($46.0 \mathrm{mg}, 55 \%, 88 \%$ ee). M.p. $144-146{ }^{\circ} \mathrm{C}$. TLC (hexanes/EtOAc, 8:2 $v / v)$: $\mathrm{R}_{\mathrm{f}}=0.31,[\alpha]^{20}{ }_{\mathrm{D}}=-10.4\left(c=0.04, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: 33.0 min (major enantiomer) 53.2 min (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.26(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 8.13(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-8), 7.67(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-2$), $7.63-7.55$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and H-3), 7.42 (1 H, d, J7.0, H-4), 5.85 ($1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{H}-6), 4.19(1 \mathrm{H}, \mathrm{d}, J 3.5$, H-5), 3.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 3.47 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.4(\mathrm{C}=\mathrm{O}), 166.7(\mathrm{C}=\mathrm{O}), 164.1(\mathrm{C}=\mathrm{O}), 141.2,136.0$, $134.4,131.1,130.5,129.9,129.5,126.5,125.7,125.1,78.8$, 52.5, 52.3, 50.5.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3016,2162,2030,1748,1611,1428,1280,1250,1193,1072$, 921, 870, 742, 642.

HRMS (m / z-APCI)
$[\mathrm{M}+\mathrm{Na}]^{+}$Found: $363.0839 \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O} 6 \mathrm{Na}$ Requires: 363.0839.

Methyl 3-(4-(methoxycarbonyl)phenyl)-1-oxoisochromane-4-carboxylate (trans391, Table 4.4 , entry 7)

Prepared according to general procedure H , using recrystallised methyl 4-formylbenzoate ($\mathbf{3 8 3}, 40.4 \mathrm{mg}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 48 h to give a diastereomeric mixture of carboxylic acids in a 59:41 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 70:30 hexanes:EtOAc, the diastereomer trans-391 was isolated as a white solid ($31.8 \mathrm{mg}, 38 \%, 83 \% e e$). M.p. $156-158^{\circ} \mathrm{C}, \mathrm{TLC}$ (hexanes/EtOAc, $8: 2 v / v): \mathrm{R}_{\mathrm{f}}=0.32,[\alpha]^{20}{ }_{\mathrm{D}}=+6.3\left(c=0.04 \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: 32.2 min (minor enantiomer) and 37.9 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.21(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-1), 8.06(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-8), 7.64(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{H}-2), 7.57-7.45(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and H-7), 7.22 (1 H, d, $J 7.9, \mathrm{H}-4), 5.95(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-6), 4.35(1 \mathrm{H}, \mathrm{d}, J 8.2$, H-5), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.8(\mathrm{C}=\mathrm{O}), 166.5(\mathrm{C}=\mathrm{O}), 163.7(\mathrm{C}=\mathrm{O}), 141.4,135.7$, 134.7, 130.8, 130.7, 130.0, 129.0, 126.8, 126.7, 124.4, 80.0, 52.8, 52.3, 50.6.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3010,2158,2029,1735,1020,1609,1425,1280,1250,1184$, 1279, 1107, 1056, 1018, 921, 869, 736, 641.

HRMS (m / z-APCI $) \quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $363.0835 \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{Na}$ Requires: 363.0839.
Methyl 3-(4-methoxyphenyl)-1-oxoisochroman-4-carboxylate (cis-392, Table 4.4, entry 8)

Prepared according to general procedure H , using freshly distilled 4methoxybenzaldehyde ($\mathbf{1 5 7}, 30 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9$ $\mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was allowed to stir for 48 h to give a diastereomeric
mixture of carboxylic acids in a 58:42 ratio (cis:trans). After esterification and purification by flash column chromatography eluting with 85:15 hexanes:EtOAc, the diastereomer cis-392 was isolated as a white solid ($26.9 \mathrm{mg}, 35 \%$, 91% ee). M.p. 75-77 ${ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, $\left.8: 2 v / v\right)$: $\mathrm{R}_{\mathrm{f}}=0.52,[\alpha]^{20}{ }_{\mathrm{D}}=-7.1\left(c=0.04, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $97 / 3,1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: 66.7 min (minor enantiomer) and 69.8 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.25(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.63(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-2), 7.55$ (1 H , app. t, $J 7.8, \mathrm{H}-3$), $7.44-7.35$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-7$), 6.95 ($2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-8$), 5.75 ($1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{H}-6$), $4.12(1 \mathrm{H}, \mathrm{d}, J$ 3.6, H-5), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 3.50 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.8(\mathrm{C}=\mathrm{O}), 164.5(\mathrm{C}=\mathrm{O}), 159.7,136.3,133.9,130.9$, 129.2, 128.2, 127.3, 126.9, 125.3, 113.9, 79.2, 55.3, 52.3, 50.8 .
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: \quad 3012,2959,2930,2834,1710,1604,1518,1248,990,734$.
HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{ESI}): \quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $335.0888 \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}$ Requires: 335.0895.

Methyl 3-(4-methoxyphenyl)-1-oxoisochroman-4-carboxylate (trans-392, Table 4.4, entry 8$)^{150}$

Prepared according to general procedure H , using freshly distilled 4methoxybenzaldehyde ($157,30.0 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride (147, $39.9 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was allowed to stir for 48 h to give a diastereomeric mixture of carboxylic acids in a 58:42 (cis:trans) ratio. After esterification and purification by flash column chromatography eluting with 85:15 hexanes:EtOAc, the diastereomer trans-392 was isolated and purified as a white solid ($23.1 \mathrm{mg}, 30 \%, 40 \%$ $e e$). M.p. $80-82{ }^{\circ} \mathrm{C}$, (lit. ${ }^{151}$ m.p. $82-84^{\circ} \mathrm{C}$), TLC (hexanes/EtOAc, $8: 2 v / v$): $\mathrm{R}_{\mathrm{f}}=0.57$.

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $97 / 3,1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: 26.5 min (minor enantiomer) and 29.3 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.18(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.60(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-3), 7.49$ (1 H , app. t, $J 7.8, \mathrm{H}-2$), $7.31(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-7), 7.19(1 \mathrm{H}$, d, $J 7.8, \mathrm{H}-4), 6.88(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-8), 5.77(1 \mathrm{H}, \mathrm{d}, J 9.0$, H-6), 4.34 ($1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{H}-5$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9), 3.69(3 \mathrm{H}$, s, H-10).

Methyl 1-oxo-3-(o-tolyl) isochromane-4-carboxylate (cis-393, Table 4.4, entry 9)

Prepared according to general procedure H , using freshly distilled 2-methylbenzaldehyde $(49,28.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($147,39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 4 days to give a diastereomeric mixture of carboxylic acids in a 67:33 ratio (cis:trans). After esterification and purification by flash column chromatography eluting with $85: 15$ hexanes: EtOAc, the diastereomer cis-393 was isolated as a white solid ($42.3 \mathrm{mg}, 58 \%, 95 \%$ ee). M.p. $108-110{ }^{\circ} \mathrm{C}$. TLC (hexanes/EtOAc, $8: 2 v / v): \mathrm{R}_{\mathrm{f}}=0.38,[\alpha]^{20}{ }_{\mathrm{D}}=-15.0\left(c=0.04, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. ACQUITY UPC², Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: $1500(\mathrm{psi}) . \mathrm{A}\left(\mathrm{CO}_{2}\right)=99 \% / \mathrm{B}($ Ethanol/ACN/IPA 1:1:1, $v: v: v)=1 \%, 1.2 \mathrm{~mL} \mathrm{~min}^{-1}, 30$ ${ }^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 3.2 min (minor enantiomer) and 3.4 min (major enantiomer).
$\delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.28(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.67-7.61(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-7), 7.57$ (1 H , app. t, $J 7.7, \mathrm{H}-2$), $7.37(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{H}-4) 7.33-7.28$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-9$), 7.25.7.22 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 5.96 ($1 \mathrm{H}, \mathrm{d}, J$ 3.5, H-6), 4.11 ($1 \mathrm{H}, \mathrm{d}, ~ J 3.5, ~ H-5), ~ 3.47(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 2.39$ (3 H, s, H-11).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.7(\mathrm{C}=\mathrm{O}), 164.7(\mathrm{C}=\mathrm{O}), 136.4,134.2,133.9,133.5$, 131.0, 130.6, 129.3, 128.6, 127.3, 126.4, 125.9, 125.4, 76.9, 52.3, 48.6, 19.1.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3071,3024,2952,2929,2844,1718,1602,1457,1250,1003$, 915, 736.

HRMS (m / z-ESI):
$[\mathrm{M}+\mathrm{Na}]^{+}$Found 319.0932. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}$ Requires 319.0940.
Methyl 1-oxo-3-(0-tolyl) isochromane-4-carboxylate (trans-393, Table 4.4, entry 9) ${ }^{150}$

Prepared according to general procedure H , using freshly distilled 2-methylbenzaldehyde (49, $28.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($147,39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 4 days to give a diastereomeric mixture of carboxylic acids in a $67: 33$ ratio (cis:trans). After esterification and purification by flash column chromatography eluting with 85:15 hexanes:EtOAc, the diastereomer trans-393 was isolated as a white solid ($20.4 \mathrm{mg}, 28 \%, 82 \%$ ee). M.p. $109-110^{\circ} \mathrm{C}$, (lit., ${ }^{151} 114-116^{\circ} \mathrm{C}$), TLC (hexanes/EtOAc, 8:2 v / v): $\mathrm{R}_{\mathrm{f}}=0.41$.

CSP-HPLC analysis. Chiralcel ODH ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 83/17, $0.5 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: 22.3 min (minor enantiomer) and 35.6 \min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.20(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.62(1 \mathrm{H}$, app. t, $J 7.7, \mathrm{H}-2), 7.51$
(1 H, app. t, $J 7.7, \mathrm{H}-3$), 7.31 ($1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-4$) 7.28-7.13 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-7, \mathrm{H}-8, \mathrm{H}-9$ and $\mathrm{H}-10$), 6.08 ($1 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-6$), 4.48 ($1 \mathrm{H}, \mathrm{d}, J 8.7$, H-5), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), $2.45(3 \mathrm{H}, \mathrm{s}$, H-11).

Methyl 1-oxo-3-(thiophen-2-yl)isochroman-4-carboxylate (cis-394, Table 4.4, entry 10)

Prepared according to general procedure H , using freshly distilled 2thiophenecarboxaldehyde (384, $23 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride (147, $39.9 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was allowed to stir for 6 days to give a diastereomeric mixture of carboxylic acids in a 56:44 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 75:25 hexanes:EtOAc, the diastereomer cis- 394 was isolated as a brown solid ($35.5 \mathrm{mg}, 50 \%, 88 \%$ ee). M.p. 110$112{ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 8:2 v/v): $\mathrm{R}_{\mathrm{f}}=0.35,[\alpha]^{20}{ }_{\mathrm{D}}=-3.2\left(c=0.01, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: 23.9 min (minor enantiomer) and 28.4 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.24(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-1), 7.65(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{H}-3), 7.57$ (1 H , app. t, $J 7.9, \mathrm{H}-2$), 7.44 ($1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-4$), $7.38(1 \mathrm{H}$, dd, $J 1.2,5.1, \mathrm{H}-7$), 7.19 ($1 \mathrm{H}, \mathrm{d}, J 1.2,3.7, \mathrm{H}-9$), $7.06(1 \mathrm{H}$, dd, $J 3.7,5.1, \mathrm{H}-8), 6.03(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{H}-6), 4.23(1 \mathrm{H}, \mathrm{d}, J$ 3.6, H-5), 3.60 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.6(\mathrm{C}=\mathrm{O}), 163.9(\mathrm{C}=\mathrm{O}), 138.4,135.9,134.1,131.1$, $129.4,127.4,126.8,126.1,125.6,125.0,52.7,50.7,30.9$.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 3104,3011,2951,2925,1727,1703,1605,1459,1431,1359$, 1332, 1226, 1081, 943, 714.

HRMS $(m / z-\mathrm{APCI}): \quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $289.0518 \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4}$ S Requires: 289.0529.

Methyl 1-oxo-3-(thiophen-2-yl)isochroman-4-carboxylate (trans-394, Table 4.4, entry 10) ${ }^{150}$

Prepared according to general procedure H , freshly distilled 2-thiophenecarboxaldehyde (384, $23 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$).The reaction was allowed to stir for 5 days to give a diastereomeric mixture of carboxylic acids in a 56:44 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 75:25 hexanes:EtOAc, the diastereomer trans-394 was isolated as a white solid ($26.2 \mathrm{mg}, 37 \%, 57 \%$ ee). M.p. $110-112{ }^{\circ} \mathrm{C}\left(\right.$ lit., ${ }^{129} 126-128{ }^{\circ} \mathrm{C}$), TLC (hexanes/EtOAc, 8:2 v / v): $\mathrm{R}_{\mathrm{f}}=0.36$.

CSP-HPLC analysis. Chiralpak IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: 30.3 min (minor enantiomer) and 32.9 min (major enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.16(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{H}-1), 7.63(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{H}-3), 7.51$
(1 H , app. t, $J 7.9, \mathrm{H}-2$), 7.33-7.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and H-7), 7.09-7.01 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 6.96-6.89 (1 H, m, H-8), 6.19 (1 H , d, $J 6.1, \mathrm{H}-6), 4.35$ ($1 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{H}-5$), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$).

Methyl 3-(furan-2-yl)-1-oxoisochromane-4-carboxylate (cis-395, Table 4.4, entry 11)

Prepared according to general procedure H , using freshly distilled furan-2carboxaldehyde ($\mathbf{1 5 8}, 20.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride $(\mathbf{1 4 7}, 39.9 \mathrm{mg}$, 0.246 mmol). The reaction was stirred for 3 days to give a diastereomeric mixture of carboxylic acids in a 74:26 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 75:25 hexanes:EtOAc, the diastereomer cis-395
was isolated as a white solid ($45.5 \mathrm{mg}, 68 \%, 46 \% e e$). M.p. $105-108{ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 8:2 v/v): $\mathrm{R}_{\mathrm{f}}=0.58,[\alpha]^{20}{ }_{\mathrm{D}}=-4.3\left(c=0.02, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralpak ODH ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: 22.3 min (minor enantiomer) and 28.7 \min (major enantiomer).
$\begin{aligned} \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 8.23(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.64(1 \mathrm{H}, \text { app. t }, J 7.7, \mathrm{H}-2), 7.55(1 \\ & \text { H, app. t }, J 7.7, \mathrm{H}-3), 7.46(1 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{H}-9), 7.43(1 \mathrm{H}, \mathrm{d}, \\ & J 7.7, \mathrm{H}-4), 6.53(1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{H}-7), 6.43(1 \mathrm{H}, \mathrm{dd}, J 1.8,3.3, \\ & \mathrm{H}-8), 5.78(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{H}-6), 4.27(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{H}-5), 3.63 \\ & (3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10) .\end{aligned}$
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.9(\mathrm{C}=\mathrm{O}), 163.8(\mathrm{C}=\mathrm{O}), 148.7,143.1,135.9,134.1$, 131.0, 129.3, 127.4, 125.1, 110.6, 108.9, 73.9, 52.7, 47.8.
$\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3139,3115,2945,2844,1734,1712,1601,1462,1435,1256$, 1121, 1003, 927, 742, 685.

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $295.0565 \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{Na}$ Requires: 295.0576.

Methyl 3-(furan-2-yl)-1-oxoisochromane-4-carboxylate (trans-395, Table 4.4, entry $11)^{150}$

Prepared according to general procedure H , using freshly distilled furan-2carboxaldehyde ($\mathbf{1 5 8}, 20.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}$, 0.246 mmol). The reaction was stirred for 3 days h to give a diastereomeric mixture of carboxylic acids in a 74:26 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 75:25 hexanes:EtOAc, diastereomer trans-395 was isolated as a yellow solid ($16.7 \mathrm{mg}, 25 \%, 92 \% e e$). M.p. $112-114{ }^{\circ} \mathrm{C}$, (lit., ${ }^{151} 112-$ $114{ }^{\circ} \mathrm{C}$), TLC (hexanes/EtOAc, 8:2 v / v): $\mathrm{R}_{\mathrm{f}}=0.46$.

CSP-HPLC analysis. Chiralpak ODH ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: 23.3 min (major enantiomer) and 31.4 \min (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.13(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.62(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-2), 7.48$
(1 H , app. t, $J 7.8, \mathrm{H}-3$), $7.35(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-9), 7.31(1 \mathrm{H}, \mathrm{d}, J$
7.8, H-4), 6.34-6.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and H-8), $6.00(1 \mathrm{H}, \mathrm{d}, J$
5.9, H-6), 4.46 ($1 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{H}-5$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$).

Methyl 1-ox0-3-(pyridin-2-yl)isochromane-4-carboxylate (cis-396, Table 4.4, entry 12)

Prepared according to general procedure H , using freshly distilled pyridin-2 carboxaldehyde ($\mathbf{3 8 5}, 23.5 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and homophthalic anhydride $(\mathbf{1 4 7}, 39.9 \mathrm{mg}$, 0.246 mmol). The reaction was stirred for 4 days to give a diastereomeric mixture of carboxylic acids in a 61:39 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 70:30 hexanes:EtOAc, the diastereomer cis-396 was isolated as a thick yellow oil ($40.4 \mathrm{mg}, 58 \%, 84 \% e e$). TLC (hexanes/EtOAc, 8:2 $v / v): \mathrm{R}_{\mathrm{f}}=0.20,[\alpha]^{20}{ }_{\mathrm{D}}=-1.14\left(\mathrm{c}=0.03, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel OJ-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: 52.0 min (major enantiomer) and 78.3 \min (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.62(1 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{H}-7), 8.24(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.86-7.78$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and H-10), 7.65 (1 H , app. t, $J 7.7, \mathrm{H}-2$), 7.55 (1 H , app. t, $J 7.7, \mathrm{H}-3$), $7.48(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-4), 7.30(1 \mathrm{H}$, m, H-8), 5.84 ($1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{H}-6), 4.63(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{H}-5)$, 3.44 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.8(\mathrm{C}=\mathrm{O}), 164.0(\mathrm{C}=\mathrm{O}), 156.0,149.0,137.0,136.4$, 134.2, 130.9, 129.2, 127.9, 125.1, 123.2, 120.7, 79.6, 52.3, 47.9.
$v_{\max }$ (neat) $/ \mathrm{cm}^{-1}: \quad 2968,1715,1601,1453,1420,1287,1253,1119,1002,862$, 824, 731, 720.

HRMS (m / z - ESI): $\quad[\mathrm{M}-\mathrm{H}]^{-}$Found: $282.0769 \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{4}$ Requires: 282.0766.
Methyl 1-oxo-3-(pyridin-2-yl)isochromane-4-carboxylate (trans-396, Table 4.4, entry
12)

Prepared according to general procedure H , freshly distilled pyridin-2 carboxaldehyde $(\mathbf{3 8 5}, 23.5 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ and homophthalic anhydride ($\mathbf{1 4 7}, 39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$). The reaction was stirred for 4 days to give a diastereomeric mixture of carboxylic acids in a 61:39 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 70:30 hexanes:EtOAc, the diastereomer trans-396 was isolated as a thick yellow oil ($22.3 \mathrm{mg}, 32 \%, 25 \% e e$). TLC (hexanes/EtOAc, $8 / 2 v / v$): R_{f} $=0.30,[\alpha]^{20} \mathrm{D}=+0.3\left(\mathrm{c}=0.04, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: 26.3 min (major enantiomer) and 32.8 min (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.52(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{H}-7), 8.13(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.69(1 \mathrm{H}$, app. t, $J 7.9, \mathrm{H}-9), 7.57$ (1 H , app. t, $J 7.8, \mathrm{H}-2$), 7.53 (1 H , d, $J 7.9, \mathrm{H}-10$), 7.43 (1 H , app. t, $J 7.8, \mathrm{H}-3$), 7.33 ($1 \mathrm{H}, \mathrm{d}, J$ 7.8, H-4), 7.23-7.17 (1 H, m, H-8), 6.13 ($1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{H}-6$), 4.89 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.5, \mathrm{H}-5$), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$).

```
\deltac (100 MHz, CDCl 3): 170.6 (C=O), 163.6 (C=O), 156.3,149.0,137.1,135.2,
    134.2, 130.2, 128.6, 128.3, 124.6, 123.2, 121.3, 79.9, 52.8, 47.0.
\(v_{\max }\) (neat) \(/ \mathrm{cm}^{-1}: \quad 2969,1715,1601,1455,1425,1289,1253,1119,1004,862\), 824, 733, 723.
HRMS ( \(m / z\)-ESI): \(\quad[\mathrm{M}-\mathrm{H}]^{-}\)Found \(282.0760 \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{4}\) Requires 282.0766.
```


5-bromo-2-(carboxymethyl)benzoic acid (397) ${ }^{220}$

A 100 mL round-bottomed flask equipped with a condenser and containing a magnetic stirring bar was charged with homophthalic acid (298, $5.00 \mathrm{~g}, 27.0 \mathrm{mmol}$), potassium bromate ($6.60 \mathrm{~g}, 40.0 \mathrm{mmol}$) and water (30 mL). The reaction mixture was then heated at $90^{\circ} \mathrm{C}$ and a solution of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(25 \mathrm{~mL})$ in water $(40 \mathrm{~mL})$ was added over a period of 30 min . After completion of the addition, the reaction was stirred for 2 h at the same temperature, then cooled to room temperature. The solid formed was filtered, washed with water ($3 \times 25 \mathrm{~mL}$), dried and recrystallised from EtOAc to furnish 397 as a white solid ($2.20 \mathrm{~g}, 30 \%$). Mp 216-217 ${ }^{\circ} \mathrm{C}$, (lit., ${ }^{220} 216-217^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d $)$: $7.94(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 7.67(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{H}-2), 7.27(1 \mathrm{H}, \mathrm{d}, J$ 8.0, H-3), 3.87 (2 H, s, H-4).
*The protic signals (H-5 and H-6) are not visible in DMSO-d6.
7-Bromoisochroman-1,3-dione (230) ${ }^{220}$

An oven-dried 50 mL round-bottomed flask fitted with a condenser was charged with 5-bromo-2-(carboxymethyl) benzoic acid (397, $1.00 \mathrm{~g}, 3.89 \mathrm{mmol})$. Freshly distilled acetyl chloride (15 ml) was added under an argon atmosphere and the reaction mixture was
heated at reflux temperature for 16 h . The reaction was then cooled to room temperature and the excess of acetyl chloride was removed in vacuo. The solid obtained was then triturated with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, filtered and dried to give $\mathbf{2 3 0}$ as an off white solid (800 mg , 85%). M.p. $176-177{ }^{\circ} \mathrm{C}$ (lit.,,220 M.p. $171-173{ }^{\circ} \mathrm{C}$).
$\delta_{\text {H }}(400 \mathrm{MHz}$, DMSO-d6): $8.13(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{H}-1), 7.94(1 \mathrm{H}, \mathrm{dd}, J 2.0,8.3, \mathrm{H}-2), 7.41$ (1 H, d, J 8.3, H-3), 4.23 (2 H, s, H-4).

Methyl 2-(2-methoxy-2-oxoethyl)benzoate (399) ${ }^{221}$

In a 50 mL round-bottomed flask containing a magnetic stirring bar, homophthalic acid (298, $2.00 \mathrm{~g}, 11.1 \mathrm{mmol}$), was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$. The resultant solution was then heated at $80^{\circ} \mathrm{C}$ for 4 h and then cooled to room temperature. A 2.0 M aqueous solution of $\mathrm{NaOH}(50 \mathrm{~mL})$ was added and the reaction mixture was then extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic phases were dried over anhydrous MgSO_{4}, filtered and the volatiles were removed under reduced pressure to afford 399 as a white solid ($1.40 \mathrm{~g}, 62 \%$). M.p. $48-49^{\circ} \mathrm{C}\left(\right.$ lit.,,222 m.p. $52-56^{\circ} \mathrm{C}$).
$\delta_{\text {н }}(400 \mathrm{MHz}$, DMSO-d 6$): 8.02(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.74(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-3), 7.52$ (1 H , app. t, $J 7.8, \mathrm{H}-2$), $7.43(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-4), 3.98(2 \mathrm{H}$, s, H-5), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), $3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7)$.

Methyl 2-(1-methoxy-1-oxopropan-2-yl)benzoate (400) ${ }^{222}$

An oven-dried 50 mL round-bottomed flask containing a magnetic stirring bar was charged with freshly distilled diisopropylamine ($747 \mu \mathrm{~L}, 5.30 \mathrm{mmol}$) and dry THF (3 mL) under an argon atmosphere. The solution was cooled to $-78^{\circ} \mathrm{C}$ and $n-\operatorname{BuLi}(1.6 \mathrm{M}$ in THF, $3.3 \mathrm{~mL}, 5.30 \mathrm{mmol}$) was added. After 30 min , a solution of $399(1.00 \mathrm{~g}, 4.80 \mathrm{mmol})$ in
dry THF (3.0 mL) was added dropwise via syringe. After stirring the solution for 1 h at $78{ }^{\circ} \mathrm{C}$, MeI ($597 \mu \mathrm{~L}, 9.49 \mathrm{mmol}$) was added dropwise and the reaction mixture allowed to stir for 1 h at $-78^{\circ} \mathrm{C}$ and then for 12 h at room temperature. The reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure to give a residue which was purified by flash column chromatography eluting with 90:10 hexanes:EtOAc to yield $\mathbf{4 0 0}$ as yellow oil ($928 \mathrm{mg}, 87 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.98(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.72(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-3), 7.57$ (1 H , app. t, $J 7.8, \mathrm{H}-2$), $7.30(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-4), 4.58(1 \mathrm{H}$, q, $J 7.0, \mathrm{H}-5), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 1.54$ (3 H, d, J7.0, H-8).

HRMS (m/z -ESI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $223.0890 \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{4}$ Requires: 223.0891.
2-(1-carboxyethyl)benzoic acid (401) ${ }^{236,237}$

In a 50 mL round-bottomed flask containing a magnetic stirring bar, compound $\mathbf{4 0 0}$ (700 $\mathrm{mg}, 3.20 \mathrm{mmol})$ and $\mathrm{KOH}(1.80 \mathrm{~g}, 32.0 \mathrm{mmol})$ were dissolved in a mixture of $\mathrm{MeOH}(4$ $\mathrm{mL})$ and water $(8.5 \mathrm{~mL})$. The reaction mixture was then heated at $80^{\circ} \mathrm{C}$ for 1 h and then cooled to room temperature. A 2.0 M aqueous solution of $\mathrm{HCl}(15 \mathrm{~mL})$ was added and the reaction mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to afford a pale yellow solid which was triturated with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ to give $\mathbf{4 0 1}$ as a white solid ($600 \mathrm{mg}, 90 \%$). M.p. $138-140{ }^{\circ} \mathrm{C}$ (lit., ${ }^{236,237} \mathrm{~m} . \mathrm{p} .146-161^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 7.94(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.65(1 \mathrm{H}$, app. t, $J 7.8, \mathrm{H}-3), 7.53-$
$7.43(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and H-4), $4.25(1 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{H}-5), 1.54$ (3 H, d, J7.0, H-6).

[^2]4-Methyl-isochromane-1,3-dione (402) ${ }^{227}$

An oven-dried 50 mL round-bottomed flask fitted with a condenser was charged with 2-(1-carboxyethyl)benzoic acid (401, $500 \mathrm{mg}, 2.60 \mathrm{mmol}$). Freshly distilled acetyl chloride $(10 \mathrm{ml})$ was added under an argon atmosphere and the reaction mixture was heated at reflux for 16 h . The reaction was then cooled to room temperature and the excess of acetyl chloride was removed under reduced pressure. The solid obtained was then triturated with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$, filtered and dried to furnish $\mathbf{4 0 2}$ as an off white solid (297 mg, 65\%). M.p. $176-177^{\circ} \mathrm{C}$ (lit., ${ }^{227}$ m.p. $171-173{ }^{\circ} \mathrm{C}$).
$\delta_{\text {H }}(400 \mathrm{MHz}$, DMSO-d 6$): \quad 8.03(1 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-1), 7.76(1 \mathrm{H}$, app. t, $J 8.4, \mathrm{H}-3), 7.57-$ 7.47, ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and H-4), 4.33 ($1 \mathrm{H}, \mathrm{q}, ~ J 7.3, \mathrm{H}-5$), 3.30 (3 H, d, J7.3, H-6).

Methyl -7-bromo-1-oxo-3-(pentan-3-yl)isochromane-4-carboxylate (cis-404, Table

 4.5 , entry 1)

Prepared according to general procedure H , using freshly distilled 2-ethylbutaraldehyde (403, $30.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and anhydride $230(59.3 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was stirred for 9 days to give a diastereomeric mixture of carboxylic acids in a 84:16 ratio (cis:trans). After esterification, the diastereomer cis-404 was isolated and purified by flash column chromatography, eluting with 90:10 hexanes:EtOAc to give cis-404 as a white solid ($62.0 \mathrm{mg}, 71 \%, 99 \% e e$). M.p. $72-75^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 8:2 v / v): R_{f} $=0.67,[\alpha]^{20}{ }_{\mathrm{D}}=-1.9\left(\mathrm{c}=0.03, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: 14.5 min (major enantiomer).

```
\deltaн (400 MHz, CDCl3):
\deltac (100 MHz, CDCl 3): 168.9 (C=O), 163.7 (C=O), 136.6,135.9,133.5,128.8,
                                    127.3, 122.9, 80.7, 52.7, 45.6, 41.6, 21.8, 20.8, 9.8, 9.6.
vmax (neat)/\mp@subsup{\textrm{cm}}{}{-1}: 2959,2888, 1716, 1601, 1468, 1414, 1255, 1227,1166,1130,
987, 907, 767, 638.
HRMS ( \(\mathrm{m} / \mathrm{z}\) - APCI): \(\quad[\mathrm{M}+\mathrm{Na}]^{+}\)Found: \(377.0361 \quad \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrO} 4 \mathrm{Na}\) Requires: 377.0358.
```

4-Methyl-1-oxo-3-(pentan-3-yl)isochromane-4-carboxylate (cis-405, Table 4.5, entry 2)

Prepared according to general procedure H , using freshly distilled 2-ethylbutaraldehyde ($403,30.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and anhydride $402(43.3 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was stirred for 4 days to give a diastereomeric mixture of carboxylic acids in a 54:46 ratio (cis:trans). After esterification, the diastereomer cis-405 was isolated and purified by flash column chromatography, eluting with 90:10 hexanes:EtOAc to give cis-405 as a yellow oil ($30.7 \mathrm{mg}, 43 \%, 97 \% \mathrm{ee}$). TLC (hexanes/EtOAc, $8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.52,[\alpha]^{20}{ }_{\mathrm{D}}=-$ $1.43\left(\mathrm{c}=0.04, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel OD-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: 8.1 min (minor enantiomer) and 9.6 min (major enantiomer).
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.21(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-1), 7.62(1 \mathrm{H}, \mathrm{app} . \mathrm{t}, J 8.2, \mathrm{H}-2), 7.48$ (1 H, app. t, J 8.2, H-3), 7.42 (1 H, d, $J 8.2$, H-4), 4.45 (1 H , d, $J 1.2, \mathrm{H}-6$), 3.63 (3 H, s, H-12), 1.77-1.71 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$),
1.67-1.70 (4 H, m, H-5 and H-8a), 1.60-1.51 (1 H, m, H-8b), 1.44-1.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}$ and H-9b), 0.98-0.93 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ and $\mathrm{H}-11$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 172.5(\mathrm{C}=\mathrm{O}), 165.2(\mathrm{C}=\mathrm{O}), 142.5,133.7,130.7,128.2$, 125.6, 124.6, 84.7, 52.6, 46.8, 41.4, 24.1, 21.1, 19.8, 12.5, 11.7.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2964,2897,1713,1601,1465,1413,1252,1224,1160,1130$, 984, 903, 764, 632.

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: 313.1405 $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}$ Requires: 313.1410.
Methyl 7-methoxy-1-oxo-3-(pentan-3-yl)isochromane-4-carboxylate (cis-406, Table 4.5 , entry 3)

Prepared according to general procedure H , using freshly distilled 2-ethylbutaraldehyde (403, $30.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and anhydride $398(47.3 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was stirred for 10 days to give a diastereomeric mixture of carboxylic acids in a 80:20 ratio (cis:trans). After esterification, the diastereomer cis-406 was isolated and purified by flash column chromatography, eluting with 85:15 hexanes:EtOAc to give cis-406 as a white solid ($50.5 \mathrm{mg}, 67 \%, 57 \%$ ee). M.p. $85-87^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 8:2 v/v): Rf $=0.73,[\alpha]^{20}{ }_{\mathrm{D}}=-3.0\left(\mathrm{c}=0.03, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: 9.3 min (minor enantiomer) and 17.6 (major enantiomer).
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.65(1 \mathrm{H}, \mathrm{d}, J 2.8 \mathrm{H}-1), 7.25(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-3), 7.14(1 \mathrm{H}$, dd, $J 2.8,8.3, \mathrm{H}-2), 4.43(1 \mathrm{H}, \mathrm{dd}, J 3.1,9.7, \mathrm{H}-5)$, $3.94(1 \mathrm{H}$, d, J3.1, H-4), 3.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), 1.881.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and $\mathrm{H}-8 \mathrm{a}$), 1.70-1.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}$ and $\mathrm{H}-$

7b), 1.52-1.40 (1 H, m, H-8b), 0.95-0.88 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-$ 10).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.8(\mathrm{C}=\mathrm{O}), 165.1(\mathrm{C}=\mathrm{O}), 159.9,129.5,128.5,126.5$, $121.4,113.4,80.8,55.7,52.7,45.3,41.6,19.6,19.7,9.7,9.6$.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad \quad 2963,2847,1718,1611,1500,1428,1312,1276,1229,1164$, 1074, 1036, 861, 786, 643.

HRMS ($m / z-$ ESI $): \quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $329.1370 \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}$ Requires: 329.1359.

2-(4-Nitrophenyl)succinic acid (408) ${ }^{167}$

A 50 mL three-necked round-bottomed flask containing a magnetic stirring bar and equipped with a thermometer was charged with fuming $\mathrm{HNO}_{3}(15 \mathrm{~mL})$ and cooled to 0 ${ }^{\circ} \mathrm{C}$. Phenylsuccinic acid ($407,2.00 \mathrm{~g}, 25.7 \mathrm{mmol}$) was added portionwise and the resultant solution was allowed to stir at $0^{\circ} \mathrm{C}$ for 2 h . Crushed ice (15.0 g) and water (20 mL) were added to the reaction mixture. The white precipitate formed was filtered, washed with water, dried, and then recrystallised from water to obtain 408 as a white solid (3.40 g , 56%). M.p. $228-230{ }^{\circ} \mathrm{C}$. (lit., ${ }^{167}$ m.p. 233-235 ${ }^{\circ} \mathrm{C}$).
$\delta_{\text {H }}(400 \mathrm{MHz}$, DMSO-d 6): * $8.16(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-4), 7.56(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-3), 4.06(1$ H , dd, $J 5.4,9.5, \mathrm{H}-2), 2.97(1 \mathrm{H}, \mathrm{dd}, J 9.5,17.1, \mathrm{H}-1 \mathrm{~b})$, 2.61 (1 H, dd, J 5.4, 17.1, H-1a).
*The protic signals (H-5 and H-6) are not visible in DMSO-d6.

3-(4-Nitrophenyl)dihydrofuran-2,5-dione (211) ${ }^{167}$

A 50 mL round-bottomed flask containing a magnetic stirring bar was charged with 408 $(2.00 \mathrm{~g}, 8.36 \mathrm{mmol})$. The apparatus was then fitted with a condenser and placed under an argon atmosphere. Freshly distilled acetyl chloride (15 mL) was added and the reaction mixture was heated at reflux temperature for 16 h . The acetyl chloride was then removed in vacuo to obtain a yellow oil that was purified through a plug of silica eluting with 50:50 hexanes:EtOAc followed by several azeotropic distillations with CHCl_{3} on a rotary evaporator ($5 \times 5 \mathrm{~mL}$) to obtain 211 as a white solid ($1.20 \mathrm{~g}, 68 \%$). M.p. $66-68{ }^{\circ} \mathrm{C}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): * \quad 8.22(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-4), 7.74(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{H}-3), 4.84(1$ H, dd, $J 8.3,10.2, \mathrm{H}-2), 3.44$ ($1 \mathrm{H}, \mathrm{dd}, J 10.2,18.3, \mathrm{H}-1 \mathrm{~b}$), 3.32 (1 H, dd, J 8.3, 18.3, H-1a).

Methyl 3-(4-nitrophenyl)-5-oxo-2-phenethyltetrahydrofuran-3-carboxylate (cis214, trans-214, Table 4.6, entry 4) ${ }^{167}$

Prepared according to general procedure H , using freshly distilled hydrocinnamaldehyde ($\mathbf{2 0 2}, 32.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and anhydride $211(54.3 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was stirred for 7 days at $-75^{\circ} \mathrm{C}$ to give a diastereomeric mixture of carboxylic acids in a 86:14 ratio (cis:trans). After esterification and purification by flash column chromatography eluting with 80:20 hexanes:EtOAc, cis-214 and trans-214 were isolated combined as a pale yellow oil ($75.4 \mathrm{mg}, 83 \%, 74 \%$ ee). TLC (hexanes/EtOAc, $8 / 2 v / v$): $\mathrm{R}_{\mathrm{f}}=0.41$.

CSP-HPLC analysis. Chiralcel OD-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $85 / 15,1.0 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: cis-214 35.4 (minor enantiomer) and 44.3 \min (major enantiomer)
cis-214:
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.15(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-9), 7.39-7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 7.31-7.22$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and H-7), 7.22-7.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 4.88 (1 H , dd, $J 1.6,11.0, \mathrm{H}-2), 3.75$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), $3.52(1 \mathrm{H}, \mathrm{d}, J 17.1$,
trans-214:
δ н ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\quad 8.21(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-9), 7.35(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-8), 7.31-7.22$ (2 H, m, H-6), 7.24-7.13 (1 H, m, H-7), 7.10 (2 H, d, J 7.4, H-5), 5.14 ($1 \mathrm{H}, \mathrm{dd}, J 1.6,10.9, \mathrm{H}-2$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 3.37 ($1 \mathrm{H}, \mathrm{d}, J 17.4, \mathrm{H}-1 \mathrm{~b}$), 3.14 ($1 \mathrm{H}, \mathrm{d}, J 17.4, \mathrm{H}-1 \mathrm{a}$), 2.902.78 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}$), 2.72-2.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}$), 1.80-1.65 (1 H, m, H-3a), 1.37-1.20 (1 H, m, H-3b).

HRMS ($m / z-$ ESI):
[M-H] Found: $368.1136 \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{6}$ Requires: 368.1134.

Methyl 3-(4-nitrophenyl)-5-oxo-2-(pentan-3-yl)tetrahydrofuran-3-carboxylate (cis409, Scheme 4.9)

Prepared according to general procedure H , using freshly distilled 2-ethylbutyraldehyde ($403,30.3 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and anhydride $211(54.4 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was stirred for 13 days to give a diastereomeric mixture of carboxylic acids in a $87: 13$ ratio (cis:trans). After esterification, the diastereomer cis-409 was isolated and purified by flash column chromatography, eluting with 75:25 hexanes:EtOAc, to give cis-409 as a yellow oil ($43.7 \mathrm{mg}, 53 \%$, 95% ee). TLC (hexanes/EtOAc, 8:2 v / v): $\mathrm{R}_{\mathrm{f}}=0.69,[\alpha]^{20}{ }_{\mathrm{D}}=$ $+5.0\left(\mathrm{c}=0.01, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. ACQUITY UPC ${ }^{2}$, Trefoil CEL2, $2.5 \mu \mathrm{~m}(3.0 \times 150 \mathrm{~mm}$). ABPR: $1500(\mathrm{psi}) . \mathrm{A}\left(\mathrm{CO}_{2}\right)=97 \% / \mathrm{B}($ Ethanol/ACN 1:1, $v: v)=3 \%, 1.2 \mathrm{~mL} \mathrm{~min}^{-1}, 30^{\circ} \mathrm{C}, \mathrm{UV}$ detection at 254 nm , retention times: 3.7 min (minor enantiomer) and 3.8 min (major enantiomer.

$\delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	8.27 ($2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-9$), 7.47 ($2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-8$), 5.06 (1 H , d, J 3.4, H-2), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10), 3.59(1 \mathrm{H}, \mathrm{d}, J 17.1$, H1b), $2.72(1 \mathrm{H}, \mathrm{d}, J 17.1, \mathrm{H}-1 \mathrm{a}), 1.84-1.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$, 1.55-1.46 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}$ and $\mathrm{H}-5 \mathrm{a}$), 1.47-1.41 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}$, H-5b), 1.02-0.93 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and H-7).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$172.8(\mathrm{C}=\mathrm{O}), 171.0(\mathrm{C}=\mathrm{O}), 147.4(\mathrm{C} \times 2), 127.2,124.3,85.9$, 57.9 (q), 53,3, 42.8, 41.6, 23.1, 20.6, 11.2, 11.0.
$v_{\text {max }}(\mathrm{neat}) / \mathrm{cm}^{-1}$:	2922.2962, 1786, 1722, 1600, 1512, 1409, 1512, 1347, 1233, 1206, 1185, 1012, 949, 853, 798, 703.
HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{APCI}$)	$[\mathrm{M}+\mathrm{H}]^{+}$Found: $336.1438 \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{6}$ Requires: 336.1441.

2-(4-Aminophenyl)succinic acid (410) ${ }^{167}$

An oven-dried 100 mL round-bottomed flask, was charged with $\mathbf{4 0 8}(3.00 \mathrm{~g}, 12.5 \mathrm{mmol})$ followed by $\mathrm{MeOH}(20 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(2 \mathrm{~mol} \%)$. The flask was evacuated, placed under a hydrogen atmosphere and allowed to stir for 3 h at room temperature. The flask was then evacuated and filled with argon atmosphere. Water (25 mL) was added, the reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 10 minutes and then filtered hot through a pad of Celite and washed with hot water (5 mL). The filtrate was allow to cool to room temperature and the precipitate formed was collected by suction filtration and dried in vacuo to obtain 410 as a pale yellow solid ($1.90 \mathrm{~g}, 74 \%$). M.p. $200-202^{\circ} \mathrm{C}$ (lit., ${ }^{167} \mathrm{~m} . \mathrm{p}$. 202-204 ${ }^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d 6$): * 6.91(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-3), 6.49(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{H}-4), 3.66(1 \mathrm{H}$,

$$
\text { dd, } J 5.0,10.5, \mathrm{H}-2), 2.86(1 \mathrm{H}, \mathrm{dd}, J 10.5,16.9, \mathrm{H}-1 \mathrm{~b}), 2.42
$$

$$
(1 \mathrm{H}, \mathrm{dd}, J 5.0,16.9, \mathrm{H}-1 \mathrm{a}) .
$$

[^3]
Dimethyl 2-(4-aminophenyl)succinate (411) ${ }^{167}$

In a 100 mL round-bottomed flask containing a magnetic stirring bar, $410(1.20 \mathrm{~g}, 5.70$ mmol) was dissolved in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$ under an argon atmosphere. Freshly distilled thionyl chloride ($1.5 \mathrm{~mL}, 20.0 \mathrm{mmol}$) was added dropwise via syringe at $0{ }^{\circ} \mathrm{C}$. The flask was then fitted with a condenser and the reaction mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature and the excess of thionyl chloride was quenched by addition of a saturated aqueous solution of NaHCO_{3}. The solvent was then removed in vacuo and the mixture obtained was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4} and concentrated under reduced pressure to afford 411 as a peach coloured solid (1.12 g, 81%). M.p. $108-110{ }^{\circ} \mathrm{C}$, (lit., ${ }^{167}$ m.p. $110-112{ }^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:* $\quad 7.02(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-3), 6.60(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}-4), 3.94(1 \mathrm{H}$, dd $J 5.4,10.1, \mathrm{H}-2), 3.63(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$ and H-7), $3.12(1 \mathrm{H}$, dd, J 10.1, 16.9, H-1b), 2.61 ($1 \mathrm{H}, \mathrm{dd}, J 5.4,16.9$, H-1a).

* The protic signal (H-5) is not visible in CHCl_{3}

Dimethyl 2-(4-amino-3,5-dibromophenyl)succinate (412) ${ }^{167}$

An oven-dried 50 mL round-bottomed flask containing a magnetic stirring bar was charged with $411(1.49 \mathrm{~g}, 6.30 \mathrm{mmol})$ and acetic acid $(15 \mathrm{~mL})$. Bromine ($798 \mu \mathrm{~L}, 15.5$ mmol) was added dropwise at room temperature and the reaction mixture was allowed to stir for 1 h . After quenching the bromine in excess by adding a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, a 10% aqueous solution of NaHCO_{3} was added until $\mathrm{pH}=8$ was reached. The reaction mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the combined organic
phases were dried over anhydrous MgSO_{4} and concentrated under reduced pressure to obtain 412 as a yellow oil ($1.59 \mathrm{~g}, 64 \%$).

$$
\begin{aligned}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 7.31(2 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 4.55(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4), 3.89(1 \mathrm{H}, \mathrm{dd}, J 5.6, \\
& 9.7, \mathrm{H}-2), 3.66(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-6), 3.65(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}-5), 3.13(1 \mathrm{H}, \\
& \mathrm{dd}, J 9.7,17.0, \mathrm{H}-1 \mathrm{~b}), 2.63(1 \mathrm{H}, \mathrm{dd}, J 5.6,17.0, \mathrm{H}-1 \mathrm{a}) .
\end{aligned}
$$

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $415.9126 \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{NO}_{4} \mathrm{Na}$ Requires: 415.9109.

Dimethyl 2-(3,5-dibromophenyl)succinate (413) ${ }^{167}$

A three-necked oven-dried 100 mL round-bottomed flask containing a magnetic stirring bar and equipped with a thermometer was charged with $412(1.00 \mathrm{~g}, 2.50 \mathrm{mmol})$ and conc. $\mathrm{HCl}(10 \mathrm{~mL})$. Once cooled the mixture to $0^{\circ} \mathrm{C}$, a solution of $\mathrm{NaNO}_{2}(226 \mathrm{mg}, 3.30$ mmol) in water (8 mL) was added slowly while keeping the temperature of the reaction mixture below $5{ }^{\circ} \mathrm{C}$. After stirring the resulting mixture at $0{ }^{\circ} \mathrm{C}$ for 20 minutes a solution of $\mathrm{H}_{3} \mathrm{PO}_{2}(40 \mathrm{~mL}, 30 \% w / v$ in water) was added at the same temperature. The reaction was allowed to stir for 2 h at room temperature after which time water (20 mL) was added. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure to obtain a yellow oil which was purified by flash column chromatography eluting with 90:10 hexanes:EtOAc to give $\mathbf{4 1 3}$ as a white solid ($753 \mathrm{mg}, 78 \%$). M.p. 86$87^{\circ} \mathrm{C}$ (lit., ${ }^{167}$ m.p. $89-91{ }^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.58-7.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 7.37-7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.01(1 \mathrm{H}$, dd, $J 5.6,9.7, \mathrm{H}-2), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5)$, $3.13(1 \mathrm{H}, \mathrm{dd}, J 9.7,17.0, \mathrm{H}-1 \mathrm{~b}) 2.62(1 \mathrm{H}, \mathrm{dd}, J 5.6,17.0$, $\mathrm{H}-1 \mathrm{a})$.

2-(3,5-Dibromophenyl)succinic acid (414) ${ }^{167}$

To a stirred solution of $413(500 \mathrm{mg}, 1.31 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$, was added a 2.0 M aqueous solution of $\mathrm{KOH}(10 \mathrm{~mL})$. The resulting reaction mixture was heated under reflux for 3 h and then cooled to room temperature. The volatiles were removed under reduced pressure and the pH of the solution was adjusted to $=2$ by addition of a 2.0 M aqueous solution of $\mathrm{HCl}(10 \mathrm{~mL})$. The white precipitate formed was collected by suction filtration and dried in vacuo to furnish 414 as a white solid ($450 \mathrm{mg}, 97 \%$). M.p. 217-220 ${ }^{\circ} \mathrm{C}$, (lit., ${ }^{167}$ m.p. $227-229{ }^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 12.4(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-5$ and H-6), 7.73 ($1 \mathrm{H}, \mathrm{d}, J 1.7, \mathrm{H}-4$), 7.51 (2 H, d, J 1.7, H-3), 3.93 ($1 \mathrm{H}, \mathrm{dd}, J 5.6, ~ 9.4, ~ H-2), 2.94(1 \mathrm{H}$, dd, $J 9.4,16.9, \mathrm{H}-1 \mathrm{~b}), 2.61(1 \mathrm{H}, \mathrm{dd}, J 5.6,16.9, \mathrm{H}-1 \mathrm{a})$.

3-(3,5-Dibromophenyl)dihydrofuran-2,5-dione (415) ${ }^{167}$

A 10 mL round-bottomed flask containing a magnetic stirring bar was charged with $\mathbf{4 1 4}$ ($300 \mathrm{mg}, 0.852 \mathrm{mmol}$). The apparatus was then fitted with a reflux condenser and freshly distilled acetyl chloride (4 mL) was added via syringe under an argon atmosphere. The reaction mixture was heated at $65^{\circ} \mathrm{C}$ for 16 h after which time acetyl chloride was then removed in vacuo to obtain 415 as a white solid ($156 \mathrm{mg}, 55 \%$). M.p. $110-112{ }^{\circ} \mathrm{C}$ (lit., ${ }^{168}$ m.p. $112-115^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \quad 7.80(1 \mathrm{H}, \mathrm{t}, J 1.7, \mathrm{H}-4), 7.75(2 \mathrm{H}, \mathrm{d}, J 1.7, \mathrm{H}-3), 4.67(1 \mathrm{H}$, dd, $J 8.5,9.9, \mathrm{H}-2$), 3.48 ($1 \mathrm{H}, \mathrm{dd}, J 9.9,18.4, \mathrm{H}-1 \mathrm{~b}$), 3.11 (1 H, dd, $J 8.5,18.4, \mathrm{H}-1 \mathrm{a})$.

Methyl 2-(4-methoxyphenyl)acetate (417) ${ }^{238}$

In a 50 mL round-bottomed flask fitted with a condenser and containing a magneting stirring bar, 4-methoxyphenyl acetic acid (416, $2.00 \mathrm{~g}, 12.0 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. was added and the reaction was heated under reflux temperature for 16 h . The reaction mixture was cooled to room temperature, basified by the addition of a 2.0 M aqueous solution of NaOH and extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The organic extracts were concentrated, dried over anhydrous MgSO_{4} and filtered to furnish 417 as a colourless oil ($1.79 \mathrm{~g}, 83 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.18(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-1), 6.84(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-2), 3.77(3 \mathrm{H}$, s, H-3), 3.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 3.55 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$).

HRMS ($m / z-$ ESI):
$[\mathrm{M}]^{+}$Found: $180.0782 \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$ Requires: 180.0785 .
Dimethyl 2-(4-methoxyphenyl)succinate (419) ${ }^{239}$

An oven-dried 50 mL round-bottomed flask containing a magneting stirring bar was charged with freshly distilled diisopropylamine ($1.0 \mathrm{~mL}, 7.20 \mathrm{mmol}$) and dry THF (3.6 mL) under an argon atmosphere. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and n - $\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $3.7 \mathrm{~mL}, 5.80 \mathrm{mmol}$) was added. After 30 min , a solution of $417(1.04 \mathrm{~g}, 5.80$ mmol) in dry THF (3.0 ml) was added dropwise via syringe. After stirring the solution for 45 min , methylbromoacetate ($418,597 \mu \mathrm{~L}, 9.50 \mathrm{mmol}$) was added dropwise and the reaction mixture was allowed to stir for 15 min at $-78^{\circ} \mathrm{C}$ and then for an additional 5 h at room temperature. The reaction was then quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. The residue was then purified by flash column chromatography eluting with 70:30 hexanes:EtOAc, to give 419 as a pale yellow solid ($695 \mathrm{mg}, 45 \%$). M.p. $94-96^{\circ} \mathrm{C}$, (lit., ${ }^{239} \mathrm{~m}$. p. $93-94{ }^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.18(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-3), 6.83(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}-4), 4.01(1 \mathrm{H}$, dd, J 5.4, 9.9, H-2), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), $3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7)$, 3.62 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), 3.13 ($1 \mathrm{H}, \mathrm{dd}, J 9.9,16.7, \mathrm{H}-1 \mathrm{~b}$), 2.62 (1 H, dd, J5.4, 16.7, H-1a).

2-(4-Methoxyphenyl)succinic acid (420) ${ }^{239}$

A 100 mL round-bottomed flask equipped with a condenser was charged with 419 (650 $\mathrm{mg}, 2.40 \mathrm{mmol}$) followed by a mixture of $\mathrm{MeOH}(9 \mathrm{~mL})$ and water $(6 \mathrm{~mL})$. A 2.0 M aqueous solution of $\mathrm{KOH}(10 \mathrm{~mL})$ was added and the reaction mixture was heated at reflux temperature for 3 h . The reaction was then cooled to room temperature and MeOH was removed in vacuo. The resultant solution was acidified to $\mathrm{pH}=2$ by the addition of a 2.0 M aqueous solution of $\mathrm{HCl}(5 \mathrm{~mL})$. The precipitate formed was collected by suction filtration, washed with water $(10 \mathrm{~mL})$ and dried in vacuo to yield $\mathbf{4 2 0}$ as an off-white solid (495 mg, 91\%). M.p. 199-202 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{239}$ m.p. 197-199 ${ }^{\circ} \mathrm{C}$).
$\delta_{\text {н (} 400 \mathrm{MHz}, ~ D M S O-d}$): $12.25(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-6$ and H-7), $7.16(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-3), 6.84$ (2 H, d, J 8.6, H-4), 3.78 (1 H, dd, J 5.1, 10.1, H-2), 3.69 (3 H, s, H-5), 2.88 ($1 \mathrm{H}, \mathrm{dd}, J 10.1,16.8, \mathrm{H}-1 \mathrm{~b}), 2.55-2.40(1 \mathrm{H}$, m, $\mathrm{H}-1 \mathrm{a}$).

3-(4-Methoxyphenyl)dihydrofuran-2,5-dione (421) ${ }^{240}$

A 25 mL round-bottomed flask equipped with a condenser and containing a magnetic stirring bar was charged with $\mathbf{4 2 0}(300 \mathrm{mg}, 1.35 \mathrm{mmol})$ and acetic anhydride (10 mL). The reaction mixture was heated at $80^{\circ} \mathrm{C}$ under an argon atmosphere for 16 h . The volatiles were then removed under reduced pressure to give a yellow oil. $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at room temperature at $0^{\circ} \mathrm{C}$. The solid
formed was collected by suction filtration, washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ and dried in vacuo to furnish 421 as a white solid ($137 \mathrm{mg}, 50 \%$). M.p. $85-87^{\circ} \mathrm{C}$ (lit..240 m.p. $91-92$ ${ }^{\circ} \mathrm{C}$)
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d $)$): $7.30(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-3), 6.89(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{H}-4), 4.51(1 \mathrm{H}$, dd, $J 7.9,9.8, ~ \mathrm{H}-2), 3.71$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), $3.35(1 \mathrm{H}, \mathrm{dd}, J 9.8$, 18.2, H-1b), 3.16 ($1 \mathrm{H}, \mathrm{dd}, J 7.9,18.2, \mathrm{H}-1 \mathrm{a}$).

2-(Phenylthio)succinic acid (424) ${ }^{167}$

To an oven-dried 100 mL round-bottomed flask equipped with a condenser and containing a magneting stirring bar was added maleic acid (422, $2.00 \mathrm{~g}, 17.2 \mathrm{mmol}$) followed by anhydrous THF (34.5 mL) and freshly distilled triethylamine ($6.0 \mathrm{~mL}, 43.1$ $\mathrm{mmol})$ under an argon atmosphere. Thiophenol ($\mathbf{4 2 3}, 1.9 \mathrm{~mL}, 18.9 \mathrm{mmol})$ was added via syringe and the reaction mixture was heated at reflux temperature for 16 h . The volatiles were removed under reduced pressure and the residue was dissolved in EtOAc (15 mL), then washed with a 2.0 M aqueous solution of $\mathrm{NaOH}(2 \times 15 \mathrm{~mL})$. The aqueous phases were acidified with conc. HCl and the precipitate formed was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$ $(2.5 \mathrm{~mL})$ and dried to furnish $424(3.40 \mathrm{~g}, 89 \%)$ as a white solid. M.p. $89-90^{\circ} \mathrm{C}$. (lit., ${ }^{167}$ m.p. $109-112{ }^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d 6$): * 7.46(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-3), 7.40-7.29(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and H-5), 3.91 (1 H, dd, J5.3, 9.3, H-1), 2.66 ($1 \mathrm{H}, \mathrm{dd}, J 9.3,16.9$, H2a), 2.62 ($1 \mathrm{H}, \mathrm{dd}, J 5.3,16.9, \mathrm{H}-2 \mathrm{~b})$.

* The protic signals (H-6 and H-7) are not visible in DMSO-d6.

3-(Phenylthio)dihydrofuran-2,5-dione (425) ${ }^{167}$

An oven-dried 50 mL round-bottomed flask fitted with a condenser and containing a magneting stirring bar was charged with $424(1.00 \mathrm{~g}, 4.42 \mathrm{mmol})$ and acetic anhydride $(7.5 \mathrm{~mL})$ under an argon atmosphere. The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 2 h , then concentrated in vacuo to give a dark brown solid. The crude product was then triturated with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, filtered and dried to give $\mathbf{4 2 5}$ as grey solid ($650 \mathrm{mg}, 70 \%$). M.p. $35-40^{\circ} \mathrm{C}$.
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d $): \quad 7.50-7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 7.40-7.34(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5)$, 4.67 ($1 \mathrm{H}, \mathrm{dd}, J 5.3,9.8, \mathrm{H}-2$), 3.52 ($1 \mathrm{H}, \mathrm{dd}, J 9.8,18.8$, H1b), 2.98 ($1 \mathrm{H}, \mathrm{dd}, J 5.3,18.8, \mathrm{H}-1 \mathrm{a})$.

Methyl-5-0x0-2-phenethyl-3-phenyltetrahydrofuran-3-carboxylate (cis-426, trans426, Table 4.7 , entry 1)

Prepared according to general procedure H , using freshly distilled hydrocinnamaldehyde ($\mathbf{2 0 2}, 32.3 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and anhydride $\mathbf{3 0 6}(43.3 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was stirred for 15 days to give a diastereomeric mixture of carboxylic acids in a 83:17 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, cis-426 and trans-426 were isolated combined as a white solid ($48.7 \mathrm{mg}, 61 \%$). M.p 103-105 ${ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, $8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.85,[\alpha]_{\mathrm{D}}^{20}$ $=+3.7\left(c=0.2, \mathrm{CHCl}_{3}\right) . *$ The enantiomeric excesses of cis-426 and trans-426 were found to be 93% and 67% respectively.

CSP-HPLC analysis. Chiralcel OD-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $0.5 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: cis-426 49.8 min (major enantiomer) and 54.7 min (minor enantiomer); trans-426 30.0 min (minor enantiomer) and 35.9 min (major enantiomer).
cis-426:

```
\deltaн(600 MHz, CDCl}): 7.41-7.30 (5 H, m, H-6, H-9 and H-10), 7.31-7.24 (3 H, m, H-5 and H-7), 7.11-7.05 ( \(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8\) ), 4.94 ( \(1 \mathrm{H}, \mathrm{dd}, J 1.7\), 11.1, H-2), 3.72 ( \(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11\) ), \(3.56(1 \mathrm{H}, \mathrm{d}, J 17.4, \mathrm{H}-1 \mathrm{a})\), 3.14-3.01 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}\) ), 2.93-2.78 (1 H, m, H-4b), 2.79 ( 1 H, d, J 17.4, H-1b), 2.32-2.15 (1 H, m, H-3a), 2.03-1.88 (1 \(\mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b})\).
\(\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 173.6(\mathrm{C}=\mathrm{O}), 171.8(\mathrm{C}=\mathrm{O}), 140.3,138.9,129.1,128.7(\mathrm{C} \times 2)\), 128.1, 126.7, 125.9, 82.8, 57.8, 53.4, 40.5, 33.7, 32.4.
trans-426:
\(\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad\) 7.41-7.30 \((5 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-9\) and \(\mathrm{H}-10), 7.14-7.16(3 \mathrm{H}, \mathrm{m}\), H-5 and H-7), 7.14-7.11 ( \(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8\) ), \(5.16(1 \mathrm{H}, \mathrm{dd}, J 2.0\), \(11.8, \mathrm{H}-2), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11), 3.33(1 \mathrm{H}, \mathrm{d}, J 17.3, \mathrm{H}-1 \mathrm{a})\), \(3.16(1 \mathrm{H}, \mathrm{d}, J 17.3, \mathrm{H}-1 \mathrm{~b}), 2.89-2.78(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 2.74-\) 2.63 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}\) ), 1.85-1.70 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}\) ), 1.37-1.24 (1 H, m, H-3b).
\(\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 174.9(\mathrm{C}=\mathrm{O}), 172.6(\mathrm{C}=\mathrm{O}), 139.9,135.6,129.0,128.4,128.5\) \((\mathrm{C} \times 2), 126.4,126.1,83.8,57.9,53.1,37,4,32.9,32.1\).
\(v_{\text {max }}\) (neat) \(/ \mathrm{cm}^{-1}: \quad 2931,1786,1735,1497,1327,1291,1232,1172,1033,951\), 747, 695.
HRMS \((m / z-\mathrm{APCI}): \quad[\mathrm{M}+\mathrm{H}]^{+}\)Found:325.1436 \(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4}\) Requires: 325.1434.
*[ \(\alpha]_{D}^{20}\) refers to a mixture of cis-426: trans-426 in a 83:17 ratio
```


Methyl- 3-(3,5-dibromopheny)-5-oxo-2-phenethyltetrahydrofuran-3-carboxylate

``` (trans-427, Table 4.7, entry 2)
```


Prepared according to general procedure H , using freshly distilled hydrocinnamaldehyde ($\mathbf{2 0 2}, 32.3 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ and anhydride $\mathbf{4 1 5}(82.1 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was stirred for 9 days to give a diastereomeric mixture of carboxylic acids in a 8:92 ratio (cis:trans). After esterification, trans-427 was isolated and purified by flash column chromatography eluting with 85:15 hexanes:EtOAc to give trans-427 as a yellow oil ($96.5 \mathrm{mg}, 82 \%, 92 \% e e$). TLC (hexanes/EtOAc, $8: 2 \mathrm{v} / \mathrm{v}): \mathrm{R}_{\mathrm{f}}=0.79,[\alpha]_{\mathrm{D}}^{20}=-2.4(c=$ $\left.0.04, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 95/5, $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: 28.0 (minor enantiomer) and 30.8 (major enantiomer).
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 7.42-7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 7.32-7.25(3 \mathrm{H}$, m, H-5 and H-7), 7.09 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 4.78 (1 H , dd, $J 1.6$, 11.2, H-2), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 3.45 ($1 \mathrm{H}, \mathrm{d}, J 17.1, \mathrm{H}-1 \mathrm{a}$), 3.12-3.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}$), 2.89-2.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}$), 2.73 (1 H, d, J 17.1, H-1b), 2.24-2.11 (1 H, m, H-3a), 1.98-1.88 (1 H, m, H-3b).
$\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 172.6(\mathrm{C}=\mathrm{O}), 170.8(\mathrm{C}=\mathrm{O}), 142.3,139.7,133.9,128.9$, 128.6, 128.2, 126.6, 123.6 (C x 2), 81.8, 57.2, 53.2, 40.3, 33.6, 32.1.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 3027,2927,2873,1785,1731,1554,1411,1434,1229,1166$, 1106, 952, 857, 742.

HRMS $(m / z-A P C I): \quad[M+H]^{+}$Found: $480.9624 \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{O}_{4}$ Requires: 480.9644.
Methyl 3-(4-methoxyphenyl)-5-oxo-2-phenethyltetrahydrofuran-3- carboxylate (cis-428, trans-428, Table 4.7, entry 3)

Prepared according to general procedure H , using freshly distilled hydrocinnamaldehyde (202, $32.3 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and anhydride $421(50.7 \mathrm{mg}, 0.246 \mathrm{mmol})$. The reaction was stirred for 15 days to give a diastereomeric mixture of carboxylic acids in a 80:20 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 85:15 hexanes:EtOAc, cis-428 and trans-428 were isolated combined as a white solid ($26.0 \mathrm{mg}, 30 \%$). M.p. $92-95^{\circ} \mathrm{C}$. TLC (hexanes/EtOAc, $8: 2 \nu / v$): $\mathrm{R}_{\mathrm{f}}=0.59 ;[\alpha]_{\mathrm{D}}^{20}=$ $+9.9\left(c=0.01, \mathrm{CHCl}_{3}\right)$.* The enantiomeric excesses of cis-428 and trans-428 were found to be 71% and 61% respectively.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $95 / 5,0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: cis-428 40.1 min (minor enantiomer) and 42.9 min (major enantiomer); trans-428 37.4 min (minor enantiomer) and 51.7 min (major enantiomer).

cis-428:

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.38-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 7.30-7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and $\mathrm{H}-7)$, 7.01 (2 H, d, J 8.8, H-8), 6.85 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}-9$), 4.88 (1 H , dd, J2.1, 11.7, H-2), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), 3.48 ($1 \mathrm{H}, \mathrm{d}, J 17.1, \mathrm{H}-1 \mathrm{a}), 3.11-2.99(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 2.88-$ 2.78 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}$), 2.79 ($1 \mathrm{H}, \mathrm{d}, J 17.1, \mathrm{H}-1 \mathrm{~b}$), 2.27-2.14 (1 H, m, H-3a), 1.99-1.85 (1 H, m, H-3b).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 173.8(\mathrm{C}=\mathrm{O}), 172.1(\mathrm{C}=\mathrm{O}), 159.1,140.3,130.8,128.7(\mathrm{C} \times$ 2), 127.2, 126.4, 114.4, 83.1, 57.2, 55.3, 52.8, 40.6, 33.7, 32.4 .
trans-428:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.23-7.17(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 7.16-7.11(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and $\mathrm{H}-7)$, 7.08 (2 H, d, $J 9.2, \mathrm{H}-8), 6.89(2 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{H}-9), 5.13(1 \mathrm{H}$, dd, J2.3, 11.2, H-2), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), $3.30(1 \mathrm{H}, \mathrm{d}, J 17.3, \mathrm{H}-1 \mathrm{a}), 3.12(1 \mathrm{H}, \mathrm{d}, J 17.3, \mathrm{H}-1 \mathrm{~b}), 2.91-$ 2.79 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}$), 2.74-2.61 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}$), 1.85-1.71 (1 $\mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}), 1.37-1.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b})$.

```
\deltaс (100 MHz, CDCl3): 174.2 (C=O), 172.9 (C=O), 159.4, 140.7,130.8,128.5,
    128.4, 127.9, 126.1, 114.3, 84.0, 57.3, 55.3, 53.1, 37.5, 33.0,
    32.1.
vmax (neat)/\mp@subsup{\textrm{cm}}{}{-1}: 2922,1779,1716, 1512,1515,1452,1340, 1255,1233,1205,
    1170, 1030, 949. 832, 763, 699, 584.
HRMS (m/z - ESI): }\quad[\textrm{M}+\textrm{Na}\mp@subsup{]}{}{+}\mathrm{ Found: 377.1356 C21H22NaO5 Requires: 377.1359.
* [\alpha] 20 refers to a mixture of cis-428: trans-428 in a 80:20 ratio
```


General procedure L: Synthesis of anhydride 226, 307 and 437

An oven-dried 25 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with the relevant bis-acid precursor (250 mg) of the corresponding anhydride. Freshly distilled acetyl chloride (10 ml) was then added via syringe. The flask was fitted with a condenser and the reaction was heated at reflux temperature for 16 h . The mixture was then cooled to room temperature and the solvent was removed in vacuo to furnish the crude anhydride that was purified by rapid flash column chromatography eluting with 50:50 hexanes:EtOAc, followed by trituration with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ to afford the desired anhydride.

Ethyl 6-methyl-2-oxo-4-phenyl-2H-pyran-5-carboxylate (432) ${ }^{177}$

A 100 mL round-bottomed flask containing a magnetic stirring bar was charged with ethyl 3-phenylpropiolate ($\mathbf{4 3 0}, 1.4 \mathrm{~mL}, 8.60 \mathrm{mmol}$) followed by ethyl 3-oxobutanoate (431, $1.0 \mathrm{~mL}, 8.60 \mathrm{mmol}$) and 1,4-dioxane (16.5 mL). $\mathrm{NaOH}(68.8 \mathrm{mg}, 1.72 \mathrm{mmol})$ was added to the solution and the reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 16 h . The mixture was then cooled to room temperature, diluted with water (30 mL) and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to give a pale yellow solid which was purified by trituration with hexanes (5 mL) furnishing 432 as a white solid ($1.44 \mathrm{~g}, 65 \%$). M.p. $84-86^{\circ} \mathrm{C}$, (lit., ${ }^{178}$ m.p. $95-96^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.44-7.36(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-4), 7.32-7.25(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$,

$$
\begin{aligned}
& 6.14(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-1), 3.95(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{H}-6), 2.45(3 \mathrm{H}, \mathrm{~s}, \mathrm{H}- \\
& 5), 0.86(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{H}-7) \text {. }
\end{aligned}
$$

(E)-3-Phenylpent-2-enedioic acid (433) ${ }^{177}$

A 100 mL round-bottomed flask containing a magnetic stirring bar was charged with $\mathbf{4 3 2}$ $(1.00 \mathrm{~g}, 3.87 \mathrm{mmol})$, water (15 mL) and $\mathrm{NaOH}(760 \mathrm{mg}, 19.0 \mathrm{mmol})$. The flask was fitted with a condenser and the reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h . The mixture was then cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The pH of the aqueous solution was then adjusted to $\mathrm{pH}=2$ by the addition of conc. HCl The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over anhydrous MgSO_{4}, filtered and the solvent was evaporated to give a residue that was triturated with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ to afford 433 as a white solid ($329 \mathrm{mg}, 42 \%$). M.p. 134-136 ${ }^{\circ} \mathrm{C}$, (lit. ${ }^{178}$ m.p. $128-130^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d 6): $\quad 12.36$ ($2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-6$ and H-7), 7.54-7.48 (2 H, m, H-3), 7.45$7.35(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ and $\mathrm{H}-4), 6.22(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 4.11(2 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-5)$.

Ethyl 4,6-dimethyl-2-oxo-2H-pyran-5-carboxylate (434) ${ }^{241}$

A 100 mL round-bottomed flask containing a magnetic stirring bar was charged with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ and the reaction was cooled to $10^{\circ} \mathrm{C}$. Ethyl 3-oxobutanoate (431, $13.0 \mathrm{~mL}, 102 \mathrm{mmol}$) was added dropwise via syringe while keeping the reaction temperature below $15^{\circ} \mathrm{C}$. The resultant mixture was allowed to stir at room temperature for 72 h after which time the reaction was poured into ice $(30 \mathrm{~g})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with a 10% aqueous solution of
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1 x 50 mL), dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The residue obtained was then purified by flash column chromatography eluting with 80:20 hexanes:EtOAc to give 434 as a pale yellow oil ($2.86 \mathrm{~g}, 14 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 6.01(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 4.32(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{H}-4), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 3), $2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 1.35(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{H}-5)$.

HRMS (m / z-APCI): $\quad[M-H]^{-}$Found: $197.0806 \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}$ Requires: 197.0808.
3-Methylpent-2-enedioic acid (435) ${ }^{241}$

A 100 mL round-bottomed flask containing a magnetic stirring bar was charged with 434 $(1.10 \mathrm{~g}, 7.60 \mathrm{mmol})$, water $(20 \mathrm{~mL})$ and $\mathrm{NaOH}(1.52 \mathrm{mg}, 38.0 \mathrm{mmol})$. The flask was fitted with a condenser and the reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h . The mixture was then cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The pH of the resulting aqueous solution was adjusted to $\mathrm{pH}=2$ by the addition of conc. HCl . The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over anhydrous MgSO_{4}, filtered and the volatiles were removed to give a residue that was triturated with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ to afford $(E / Z)-\mathbf{4 3 5}$ in a $72: 28$ ratio ($730 \mathrm{mg}, 66 \%$). M.p. $104-107^{\circ} \mathrm{C}$, (lit., ${ }^{241}$ m.p. $101-105^{\circ} \mathrm{C}$).
(E)-435:
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d 6$): \quad 12.23(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4$ and $\mathrm{H}-5), 5.70(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.12(2 \mathrm{H}$, s, H-3), $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$.
(Z)-435:
$\delta_{\mathrm{H}}(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6): \quad 12.23(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4$ and $\mathrm{H}-5), 5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.63(2 \mathrm{H}$, s, H-3), $1.89(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$.

(Z)-Dimethyl 3-methoxypent-2-enedioate (438) ${ }^{242}$

In a 50 mL round-bottomed flask containing a magneting stirring bar, dimethyl-1,3acetonedicarboxylate ($437,1.60 \mathrm{~g}, 11.5 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(25 \mathrm{~mL})$. Trimethyl orthoformate (356, $2.5 \mathrm{~mL}, 22.9 \mathrm{mmol}$) and p-toluenesulfonic acid (98.2 mg , 0.57 mmol) were then added. The flask was fitted with a condenser and the reaction mixture was heated at reflux temperature for 3 days under an argon atmosphere. The solvent was then removed in vacuo to obtain a yellow oil that was purified by flash column chromatography eluting with 80:20 hexanes: EtOAc, to furnish $\mathbf{4 3 8}$ as a pale yellow oil ($875 \mathrm{mg}, 40 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 5.19(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.84(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 3.69$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$ '), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}$ ').

HRMS (m/z-ESI): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$found $211.0581 \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{Na}$ Requires 211.0582.

(Z)-3-Methoxypent-2-enedioic acid (439) ${ }^{242}$

A 50 mL round-bottomed flask containing a magneting stirring bar was charged with $\mathbf{4 3 8}$ ($875 \mathrm{mg}, 4.64 \mathrm{mmol}$) followed by water (14.5 mL) and $\mathrm{KOH}(1.04 \mathrm{mg}, 18.5 \mathrm{mmol})$. The flask was fitted with a condenser and the reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 12 h . The pH of the solution was then adjusted to $\mathrm{pH}=2$ by the addition of conc. HCl . The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and the combined organic phases were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The resulting residue was then triturated with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ to afford 439 as an off white solid ($742 \mathrm{mg}, 61 \%$). M.p. $177-178{ }^{\circ} \mathrm{C}$, (lit., ${ }^{242} 180-182^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d $)$): $12.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4\right.$ ' and $\left.\mathrm{H}-4{ }^{\prime}{ }^{\prime}\right)$, $5.12(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.68(2 \mathrm{H}$, s, H-2), 3.61 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-3$).

Phenyl-2H-pyran-2,6(3H)-dione (226) ${ }^{243}$

Synthesised according to general procedure L, using 433 as bis-acid precursor (250 mg , 1.21 mmol). After purification, 226 was obtained as a white solid ($118 \mathrm{mg}, 51 \%$). M.p. $195-197^{\circ} \mathrm{C}$, (lit., ${ }^{243}$ m.p. 193-195 ${ }^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6): ~ 7.79(2 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{H}-2), 7.55-7.41(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and H-4), $6.78(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 4.15(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-5)$.

4-Methyl-2H-pyran-2,6(3H)-dione (436) ${ }^{241}$

Synthesised according to general procedure L, using 435 as bis-acid precursor (250 mg , 1.73 mmol). After purification, 436 was obtained as a white solid ($116 \mathrm{mg}, 36 \%$). M.p. $73-75^{\circ} \mathrm{C}$, (lit., ${ }^{243}$ m.p. $79-83^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6): \quad 6.09(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.64(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 1.97(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$.
4-Methoxy-2H-pyran-2,6(3H)-dione (307) ${ }^{242}$

Synthesised according to general procedure L, using 439 as bis-acid precursor (250 mg , 1.56 mmol). After purification, $\mathbf{3 0 7}$ was obtained as a white solid ($77.5 \mathrm{mg}, 35 \%$). M.p. $84-86^{\circ} \mathrm{C}$, (lit., ${ }^{242} 85-87^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6): \quad 5.55(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 3.72(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3)$.

Methyl 2-benzhydryl-6-oxo-4-phenyl-3,6-dihydro-2H-pyran-3-carboxylate (cis-442,
Scheme 4.17)

Prepared according to general procedure I, using freshly distilled diphenylacetaldehyde ($\mathbf{4 4 0}, 43.6 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$). The reaction was stirred for 2 days furnishing only the diastereomer cis-442. Upon esterification, the reaction gave a diastereomeric mixture of esters in a 90:10 ratio (trans:cis). The major diastereomer cis-442 was then isolated by flash column chromatography, eluting with 95:5 hexanes:EtOAc, as a white solid (96.1 $\mathrm{mg}, 98 \%, 99 \% e e$). M.p. $142-144^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, $8: 2 v / v$): $\mathrm{R}_{\mathrm{f}}=0.67,[\alpha]_{\mathrm{D}}^{20}=$ $-2.8\left(c=0.04, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. ACQUITY UPC², Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: $1500(\mathrm{psi}) . \mathrm{A}\left(\mathrm{CO}_{2}\right)=97 \% / \mathrm{B}\left(\right.$ Ethanol/CAN/IPA 1:1:1, v:v) $=3 \%, 1.2 \mathrm{~mL} \mathrm{~min}^{-1}, 30^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: 2.9 min .

$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$7.49-7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 7.44-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-12$ and
	$\mathrm{H}-13), 7.38-7.35(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and H-9), $7.35-7.29(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-$
	6 and H-10), $7.21-7.19(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1)$,
	$5.37(1 \mathrm{H}, \mathrm{dd}, J 1.4,10.6, \mathrm{H}-3), 4.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.6, \mathrm{H}-4)$,
	$3.82(1 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{H}-2), 3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14)$.

Methyl 6-oxo-2-phenethyl-4-phenyl-3,6-dihydro-2H-pyran-3-carboxylate (cis-445, trans-445, Table 4.9, entry 3)

Prepared according to general procedure I, freshly distilled hydrocinnamaldehyde (202, $32.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$. The reaction was stirred for 18 hours to give a diastereomeric mixture of carboxylic acids in a 86:14 ratio (cis:trans). After purification by flash column chromatography, eluting with 75:25 hexanes:EtOAc, cis-445 and trans-445 were isolated combined as a pale yellow oil ($52.9 \mathrm{mg}, 64 \%$). TLC (hexanes/EtOAc, $8: 2 v / v$): $\mathrm{R}_{\mathrm{f}}=0.63$, $[\alpha]_{\mathrm{D}}^{20}=-8.9\left(c=0.5, \mathrm{CHCl}_{3}\right)$.* The enantiomeric excesses of cis-445 and trans-445 were found to be 76% and 45% respectively.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $90 / 10,1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: cis-445 17.6 min (major enantiomer) and 23.3 min (minor enantiomer); trans-445 15.0 min (major enantiomer) and 21.7 min (minor enantiomer).
cis-445:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.56-7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 7.48-7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ and $\mathrm{H}-11)$, 7.35-7.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 7.27-7.20 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and $\mathrm{H}-8$), $6.54(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 4.61-4.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 3.77(1 \mathrm{H}, \mathrm{d}, J$ $3.5, \mathrm{H}-2), 3.74$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), 3.06-2.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}$), 2.942.83 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}$), 2.25-2.14 (1 H, m, H-4a), 2.13-2.03 (1 $\mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b})$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.4(\mathrm{C}=\mathrm{O}), 164.6(\mathrm{C}=\mathrm{O}), 151.6,140.4,134.6,131.0$, 129.2, 128.7, 128.6, 126.3, 126.0, 116.6, 67.9, 52.9, 47.0, 34.2, 31.2.
trans-445:

$\delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	7.56-7.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 7.48-7.42 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$ and $\mathrm{H}-11$), 7.35-7.30 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 7.27-7.20 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and $\mathrm{H}-8$), $6.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 4.96-4.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 3.83(1 \mathrm{H}, \mathrm{d}, J$ 4.0, H-2), 3.65 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), 2.97-2.93 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}$), 2.842.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}$), 2.30-2.22 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}$), 2.02-1.93(1 H, m, H-4b).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:	$\begin{aligned} & 169.9(\mathrm{C}=\mathrm{O}), 163.0(\mathrm{C}=\mathrm{O}), 151.7,140.3,134.7,130.6, \\ & 129.2,128.8,128.5,126.6,126.1,116.9,78.5,52.9,47.3, \\ & 35.6,31.6 . \end{aligned}$
$v_{\text {max }}\left(\right.$ neat $/ \mathrm{cm}^{-1}$:	$\begin{aligned} & 2925,2856,1725,1458,1261,1239,1158,1112,1086,1030, \\ & 993,709,645 . \end{aligned}$
HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{ESI}$)	$[\mathrm{M}+\mathrm{H}]^{+}$Found: 337.1443 $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4}$ Requires: 337.1434.
* $[\alpha]_{D}^{20}$ refers to a mixture of cis-445: trans-445 in a $86: 14$ ratio	
Methyl 6-oxo-2-(pentan 447, Table 4.10 , entry 1)	l)-4-phenyl-3,6-dihydro-2H-pyran-3-carboxylate (cis-

Prepared according to general procedure I, using freshly distilled 2-ethylbutyraldehyde ($403,30.3 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$). The reaction was stirred for 72 hours to give a diastereomeric mixture of carboxylic acids in a 95:5 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, cis-447 was isolated as a white solid ($41.6 \mathrm{mg}, 56 \%, 99 \%$ ee). M.p. $132-134^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 8:2 v/v): $\mathrm{R}_{\mathrm{f}}=0.5,[\alpha]_{\mathrm{D}}^{20}=-3.6\left(c=0.04, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel OD ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $0.3 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: 55.7 min .
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.63-7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 7.48-7.44(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-11)$, $6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 4.44(1 \mathrm{H}, \mathrm{dd}, J 3.1,9.1, \mathrm{H}-3), 3.93(1 \mathrm{H}$, d, $J 3.1, \mathrm{H}-2), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12), 1.84-1.69(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$, H-5a, H-6a), 1.70-1.62 (1 H, m, H-5b), 1.53-1.44 (1 H, m, H$6 \mathrm{~b}), 0.98-0.94(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and $\mathrm{H}-8)$.
$\delta \mathrm{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.7(\mathrm{C}=\mathrm{O}), 165.0(\mathrm{C}=\mathrm{O}), 152.1,134.9,130.9,129.2$, 126.2, 116.8, 79.9, 52.9, 45.2, 41.7, 20.2, 19.7, 9.9, 9.6.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 3086,2965,2877,1721,1696,1624,1446,1353,1269,1245$, 1086, 1012, 990, 893, 777, 689, 602, 576.

HRMS (m / z-APCI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $303.1598 \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{4}$ Requires: 303.1590.
(3R,4R)-N-benzyl-3-isobutyl-1-oxoisochromane-4-carboxamide (cis-453, Table 4.10, entry 5)

Prepared according to general procedure K, using anhydride 147 ($39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$) and freshly distilled isovaleraldehyde ($27.0 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$). The reaction was stirred at $-15{ }^{\circ} \mathrm{C}$ for 48 h to give a diastereomeric mixture of carboxylic acids in a 78:22 ratio (cis:trans). After amidation, the crude mixture of diastereomeric carboxamide lactones was purified by flash column chromatography eluting with 70:30 hexanes:EtOAc to give cis-453 as a white solid ($58.9 \mathrm{mg}, 70 \%, 99 \%$ ee). M.p. $148-150{ }^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 8:2 v/v): $\mathrm{R}_{\mathrm{f}}=0.3,[\alpha]_{\mathrm{D}}^{20}=-4.1\left(c=0.03, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $90 / 10,1.0 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: 33.6 min .
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.19(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-1), 7.64(1 \mathrm{H}$, app.t, $J 7.8, \mathrm{H}-2), 7.52(1$ H, app.t, $J 7.8, \mathrm{H}-3$), 7.43 ($1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{H}-4$), 7.34-7.21 (3 $\mathrm{H}, \mathrm{m}, \mathrm{H}-14$ and $\mathrm{H}-15), 7.15(2 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{H}-13), 5.90(1 \mathrm{H}$,
bs, H-11), 4.79 (1 H , ddd, $J 3.3,4.5,9.2$, H-6), 4.45 (1 H , dd, $J 5.9,15.1, \mathrm{H}-12 \mathrm{a}$), 4.35 ($1 \mathrm{H}, \mathrm{dd}, J 5.6,15.1, \mathrm{H}-12 \mathrm{~b}), 3.77$ ($1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{H}-5$), 2.01-1.88 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.99 (1 H , ddd, $J 5.9,9.2,14.6, \mathrm{H}-7 \mathrm{a}), 1.66(1 \mathrm{H}, \mathrm{ddd}, J 4.5,8.4,14.6, \mathrm{H}-7 \mathrm{~b})$, 1.00-0.93 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-10$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.0(\mathrm{C}=\mathrm{O}), 164.9(\mathrm{C}=\mathrm{O}), 138.1,137.6,134.4,131.1$, 129.1, 128.7, 127.8, 127.5, 127.4, 124.5, 77.8, 49.9, 43.7, 33.8, 24.9, 22.9, 21.9.
$v_{\max }$ (neat) $/ \mathrm{cm}^{-1}: \quad 3318,2955,1712,1641,1609,1459,1288,1235,1089,1036$, 740, 701.

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $338.1746 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{NO}_{3}$ Requires: 338.1750

N-benzyl-3-isobutyl-1-oxoisochromane-4-carboxamide (trans-453, Table 4.10, entry 5)

Prepared according to general procedure K, using anhydride 147 ($39.9 \mathrm{mg}, 0.246 \mathrm{mmol}$) and freshly distilled isovaleraldehyde ($27.0 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$). The reaction was stirred at $-15{ }^{\circ} \mathrm{C}$ for 48 h to give a diastereomeric mixture of carboxylic acids in a 78:22 ratio (cis:trans). After amidation, the crude mixture of diastereomeric carboxamide lactones was purified by flash column chromatography eluting with 65:35 hexanes:EtOAc to give trans-453 as a white solid ($16.6 \mathrm{mg}, 21 \%, 91 \%$ ee) M.p. $148-150{ }^{\circ} \mathrm{C}$, (hexanes/EtOAc, $8: 2 v / v): \mathrm{R}_{\mathrm{f}}=0.5[\alpha]_{\mathrm{D}}^{20}=+0.7\left(c=0.03, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 221 nm , retention times: 16.3 (minor enantiomer) and 21.9 min (major enantiomer).
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 8.16(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{H}-1), 7.62(1 \mathrm{H}$, app. t, $J 7.7, \mathrm{H}-2), 7.50$ (1 H , app. t, $J 7.7, \mathrm{H}-3$), 7.37-7.29 ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-14$ and H-
15), 7.22 ($2 \mathrm{H}, \mathrm{d}, ~ J 7.2, \mathrm{H}-13$), 5.89 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-11$), 5.14 (1
 $(1 \mathrm{H}, \mathrm{d}, J 5.2, \mathrm{H}-5), 2.01-1.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.71(1 \mathrm{H}$, ddd, $J 4.9,9.7,13.9, \mathrm{H}-7 \mathrm{a}), 1.37$ ($1 \mathrm{H}, \mathrm{ddd}, J 4.3,8.9,13.9, \mathrm{H}-7 \mathrm{~b})$, 0.98-0.92 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-10$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.5(\mathrm{C}=\mathrm{O}), 163.7(\mathrm{C}=\mathrm{O}), 137.4,136.3,134.5,130.1$, $129.0,128.8,127.9,127.7,127.5,124.9,78.5,50.4,44.0$, 42.7, 24.4, 23.1, 21.6.
$v_{\max }$ (neat) $/ \mathrm{cm}^{-1}: \quad 3304,2948,1726,1521,1457,1256,1110,1024,691,562$.
HRMS (m/z - APCI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $338.1754 \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3}$ Requires 338.1750

6.5 Experimental procedure and data for Chapter 5

General procedure M: racemic preparation of compounds 473, 477, 480 and 481 (Tables 5.1-5.8)

An oven-dried 10 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with the relevant anhydride (1.0 equiv.). Anhydrous THF ($0.1 \mathrm{M}, 2.5 \mathrm{~mL}$) was added via syringe and the relevant aldehyde (1.0 equiv.) followed by catalyst $\mathbf{4 5 9}$ or $\mathbf{4 6 4}(5 \mathrm{~mol} \%)$ were added to the reaction mixture which was allowed to stir at room temperature for 16 h . Anhydrous isopropyl alcohol ($94 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$) and trimethylsilyldiazomethane (2.0 M solution in diethyl ether, $150 \mu \mathrm{~L}, 0.300 \mathrm{mmol}$) were added via syringe at $-15^{\circ} \mathrm{C}$ and the reaction was allowed to stir for 15 min at the same temperature. The crude reaction mixture containing the diastereomeric esters was then directly loaded into the silica column and the two diastereomers were isolated.

General procedure N : enantioselective preparation of compounds 442, 447, 477, 480 and 481 (Scheme 5.5, Tables 5.5-5.7)

An oven-dried 10 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with phenyl glutaconic anhydride (226, $46.3 \mathrm{mg}, 0.246$ mmol). Anhydrous THF or MTBE ($0.1 \mathrm{M}, 2.5 \mathrm{~mL}$) was added via syringe and the relevant aldehyde (1.0 equiv.) followed by catalyst $\mathbf{3 0 4}$ or $\mathbf{4 7 4}(5 \mathrm{~mol} \%)$ were added to the reaction mixture which was allowed to stir at room temperature for a time indicated in the relative

Table. Anhydrous isopropyl alcohol ($94 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$) and trimethylsilyldiazomethane (2.0 M solution in diethyl ether, $150 \mu \mathrm{~L}, 0.300 \mathrm{mmol}$) were added via syringe at $-15^{\circ} \mathrm{C}$ and the reaction was allowed to stir for 15 min at the same temperature. The crude reaction mixture containing the diastereomeric esters was then directly loaded into the silica column and purified to furnish the two diastereomers - the enantiomeric excesses of which were determined by CSP-HPLC.

1H-imidazole-1-sulfonyl azide hydrogen chloride (456) ${ }^{244}$

A 250 mL round-bottomed flask containing a magnetic stirring bar was charged with $\mathrm{NaN}_{3}(\mathbf{4 6 0}, 5.00 \mathrm{~g}, 77.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(77 \mathrm{~mL})$. Sulfuryl chloride $(6.2 \mathrm{~mL}, 77.0$ mmol) was added dropwise via syringe at $0^{\circ} \mathrm{C}$ and the reaction mixture was allowed to stir for 16 h at room temperature. Imidazole ($10.0 \mathrm{~g}, 146 \mathrm{mmol}$) was then added portionwise to the ice-cooled solution and the resulting mixture stirred for 3 h at room temperature. The reaction was diluted with EtOAc (100 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100$ mL) followed by a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$. The combined organic phases were dried over anhydrous MgSO_{4} and filtered. To the stirred filtrate was added a solution of HCl in $\mathrm{EtOH}(8.20 \mathrm{~mL}, 115 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$, and the resulting suspension was then filtered. The solid obtained was then washed with EtOAc (3 x 100 mL) to furnish $\mathbf{4 5 6}$ as colourless needles ($3.50 \mathrm{~g}, 22 \%$). M.p. $100-101^{\circ} \mathrm{C}$, (lit., ${ }^{245}$ m.p. $100-$ $102^{\circ} \mathrm{C}$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \quad 9.12(1 \mathrm{H}, \mathrm{dd}, J 1.3,1.6, \mathrm{H}-3), 7.85(1 \mathrm{H}, \mathrm{dd}, J 1.6,2.2, \mathrm{H}-1)$, 7.43 (1 H, dd, J 1.3, 2.2, H-2).
tert-butyl (2-aminoethyl)carbamate (455) ${ }^{245}$

A 500 mL round-bottomed flask containing a magnetic stirring bar was charged with ethylenediamine ($\mathbf{4 5 4}, 5.6 \mathrm{~mL}, 83.3 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. A solution of di-tert-
butyl dicarbonate ($3.0 \mathrm{~g}, 14.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was then added dropwise over 3 h and the reaction mixture was allowed to stir for 12 h at room temperature. The volatiles were then removed under reduced pressure and the oil obtained was dissolved in a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(300 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 150 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo to yield $\mathbf{4 5 5}$ as colourless oil ($1.60 \mathrm{~g}, 71 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 4.90(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4), 3.13(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.76(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2)$, 1.41 ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 1.22 ($2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-1$).

HRMS ($m / z-\mathrm{APCI}$): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $161.1289 \mathrm{C}_{7} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ Requires: 161.1284.

tert-butyl (2-azidoethyl)carbamate (457) ${ }^{246}$

To a stirred suspension of $\mathbf{4 5 5}(1.60 \mathrm{~g}, 9.98 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.35 \mathrm{~g}, 16.9 \mathrm{mmol})$ and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(24.9 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{ml})$ was added $456(2.50 \mathrm{~g}, 11.9 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$ behind a blast-shield. The resultant reaction mixture was allowed to stir for 14 h and the solvent was removed under a steam of N_{2}. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic phases were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was then purified by flash column chromatography, eluting with 80:20 hexanes:EtOAc, to afford $\mathbf{4 5 7}$ as a colourless oil ($1.27 \mathrm{~g}, 68 \%$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 4.81(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3), 3.39(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 3.27(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1)$, 1.43 ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$).

HRMS (m / z - APCI-DIP): $[\mathrm{M}-\mathrm{H}]^{-}$Found: $185.1048 \mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2}$ Requires: 185.1044.

1-(2-azidoethyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (458)

A 25 mL round-bottomed flask containing a magnetic stirring bar was charged with $\mathbf{4 5 7}$ ($963 \mathrm{mg}, 5.17 \mathrm{mmol}$) followed by 1,4-dioxane (10.3 mL). A solution of $\mathrm{HCl}(4.0 \mathrm{~N}$ in 1,4-dioxane, 2.1 mL) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was allowed to stir at room temperature for 48 h . The volatiles were then removed under N_{2} steam and the precipitated formed was filtered, washed with EtOAc (5 mL) and dried. The crude aminoazide was then dissolved in dry THF (2.4 mL) and 3,5-bis(trifluoromethyl)phenyl isothiocyanate ($944 \mu \mathrm{~L}, 5.17 \mathrm{mmol}$) was added dropwise via syringe. The reaction mixture was stirred at room temperature for 12 h . The solvent was then removed under reduced pressure and the crude product was purified by flash column chromatography, eluting with 85:15 hexanes:EtOAc, to give $\mathbf{4 5 8}$ as a colourless solid ($474 \mathrm{mg}, 56 \%$ over 2 steps). M.p: $73-75{ }^{\circ} \mathrm{C}$, TLC (hexanes $/ \mathrm{EtOAc}, 8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{R}_{\mathrm{f}}=0.57$.

$$
\begin{aligned}
\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 7.89(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3), 7.82(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-1), 7.78(2 \mathrm{H}, \mathrm{~s}, \mathrm{H}-2), \\
& 6.39(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4), 3.87(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-5), 3.70(2 \mathrm{H}, \mathrm{t}, J 5.8, \mathrm{H}- \\
& 6) .
\end{aligned}
$$

$\begin{array}{ll}\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 181.1,138.6,133.2\left(\mathrm{q}, J_{\mathrm{CF}} 34.2\right), 122.7\left(\mathrm{q}, J_{\mathrm{CF}} 270.7\right), 124.0, \\ & 120.0,50.3,44.2 .\end{array}$
$\delta_{\mathrm{F}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad-63.0$.
$\nu_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 3233,3035,2115,1535,1470,1379,1335,1122,1269,1175$, 991, 892, 703, 646.

HRMS ($\mathrm{m} / \mathrm{z}-\mathrm{APCI}$): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $358.0555 \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}_{5}$ S Requires: 358.0549.

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2-((triphenyl-15-

 phosphaneylidene)amino)ethyl)thiourea (459)

In a 25 mL round-bottomed flask containing a magnetic stirring bar $458(412 \mathrm{mg}, 1.15$ mmol) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(2.9 \mathrm{~mL})$. Triphenylphosphine ($302 \mathrm{mg}, 1.15 \mathrm{mmol}$) was added at room temperature under an argon atmosphere and the reaction mixture was
allowed to stir for 26 h . Pentane (2 mL) was then added via syringe and the resulting suspension was stirred vigorously for 2 h . The precipitated formed was then filtered, washed and dried in vacuo to afford $\mathbf{4 5 9}$ as an off white solid ($251 \mathrm{mg}, 37 \%$). M.p 77-80 ${ }^{\circ} \mathrm{C}$.

* The protic signals ($\mathrm{H}-3$ and $\mathrm{H}-4$) are not visible in CHCl_{3}

1-(3,5-bis(trifluoromethyl)phenyl)-3-(2-(4-methoxy(triphenyl-15phosphaneylidene)amino)ethyl)thiourea (464)

To a 25 mL round-bottomed flask containing a magnetic stirring bar was added 458 (128 $\mathrm{mg}, 0.36 \mathrm{mmol}$), followed by $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and tris(4-methoxyphenyl)phosphine (463, $126.7 \mathrm{mg}, 0.36 \mathrm{mmol}$) under an argon atmosphere. The reaction mixture was allowed to stir at room temperature for 12 h , after which time pentane (1 mL) was added and the resultant suspension was stirred vigorously for 2 h . The solid formed was filtered, washed
with pentane: $\mathrm{Et}_{2} \mathrm{O}$ (1:1) and dried in vacuo to give 464 as off white solid ($98.1 \mathrm{mg}, 40 \%$). M.p. $84-87^{\circ} \mathrm{C}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $^{*} \quad 7.57(2 \mathrm{H}, \mathrm{bs}, \mathrm{H}-2), 7.52-7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 7.31(1 \mathrm{H}, \mathrm{bs}$, H-1), 7.04-6.94 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 3.87 ($9 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 3.71-3.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 3.15-3.06 (2 H, m, H-6).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 181.6,163.7,162.4,134.7\left(\mathrm{~d}, J_{\mathrm{CP}} 11.6\right), 133.7,130.6\left(\mathrm{q}, J_{\mathrm{CF}}\right.$ 32.0), 124.1, 123.6 (q, $J_{\text {CF }} 273.4$), 116.3, 115.0 (d, J ${ }_{\text {CP }} 13.6$), 65.8, 55.3, 47.6-46.1 (m).
$\delta_{\mathrm{F}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\quad-62.6$
$\delta_{\mathrm{P}}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 26.5$
$V_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 2981,1597,1557,1502,1382,1272,1163,1110,803,827$.

HRMS (m / z - ESI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $682.1715 \mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{PS}$ Requires: 682.1722.

* The protic signals ($\mathrm{H}-3$ and $\mathrm{H}-4$) are not visible in CHCl_{3}

Tris(p-dimethylaminophenyl)phosphine (466) ${ }^{247}$

A 100 mL three-necked round-bottomed flask equipped with a condenser and containing a magnetic stirring bar under an argon atmosphere was charged with magnesium turnings ($90.0 \mathrm{mg}, 3.70 \mathrm{mmol}$), $\mathrm{LiCl}(106 \mathrm{mg}, 2.50 \mathrm{mmol})$ and dry THF (1.7 mL). A solution of 4-bromo- N, N-dimethylaniline $(\mathbf{4 6 5}, 500 \mathrm{mg}, 2.50 \mathrm{mmol})$ in dry THF $(700 \mu \mathrm{~L})$ was then added and the reaction mixture was heated at $40^{\circ} \mathrm{C}$ and stirred vigorously. A reminder solution of 4-bromo- N, N-dimethylaniline ($500 \mathrm{mg}, 2.50 \mathrm{mmol}$) in dry THF ($700 \mu \mathrm{~L}$) was then added. After stirring the reaction for 1 h at room temperature, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{PBr}_{3}(71 \mu \mathrm{~L}, 0.75 \mathrm{mmol})$ was added dropwise. The resulting mixture was allowed to stir for 20 min at room temperature and then quenched with a saturated solution
of $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The aqueous layers were extracted with CHCl_{3}, dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue obtained was then purified by trituration with hexanes to furnish 466 as an ocher solid ($176 \mathrm{mg}, 18 \%$). M.p. $205-206{ }^{\circ} \mathrm{C}$ (lit. ${ }^{248}$, m.p. $206-207^{\circ} \mathrm{C}$)
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.48-7.36(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 6.66(6 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{H}-2), 2.96(18$ H, s, H-3).
$\delta_{\mathrm{P}}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad-10.7$.
3-((3,5-bis(Trifluoromethyl)phenyl)amino)-4-methoxycyclobut-3-ene-1,2-dione (468) ${ }^{249}$

A 50 mL round-bottomed flask containing a magnetic stirring bar under an argon atmosphere was charged with $\mathbf{3 5 6}(400 \mathrm{mg}, 2.81 \mathrm{mmol})$, dry $\mathrm{MeOH}(8 \mathrm{~mL})$ and 3,5-bis(trifluoromethyl)aniline ($438 \mu \mathrm{~L}, 2.81 \mathrm{mmol}$). The reaction mixture was allowed to stir at room temperature for 3 days. The volatiles were removed under reduced pressure and the residue was purified by flash column chromatography, eluting with 70:30 hexanes:EtOAc, to afford $\mathbf{4 6 8}$ as a white solid ($776 \mathrm{mg}, 60 \%$). M.p. $192-194{ }^{\circ} \mathrm{C}$ (lit., ${ }^{248}$ m.p. $179-181^{\circ} \mathrm{C}$), TLC (hexanes:EtOAc, $2: 1 \mathrm{v} / \mathrm{v}$): $\mathrm{Rf}_{\mathrm{f}}=0.28$.
$\delta_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d $)$: $\quad 11.19(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 8.03(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 7.69(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$, $4.40(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$.

3-((2-azidoethyl)amino)-4-((3,5-bis(trifluoromethyl)phenyl)amino)cyclobut-3-ene-

 1,2-dione (469)

A 25 mL round-bottomed flask containing a magnetic stirring bar was charged with $\mathbf{4 5 7}$ ($963 \mathrm{mg}, 5.20 \mathrm{mmol}$) followed by 1,4-dioxane (10.3 mL). A solution of $\mathrm{HCl}(4 \mathrm{~N}$ in $1,4-$ dioxane, 2.1 mL) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was allowed to stir at room
temperature for 48 h . The solvent was then removed under N_{2} steam and the solid obtained was filtered, washed with EtOAc (5 mL) and dried. The crude aminoazide was then dissolved in THF (6.8 mL) and $\mathbf{4 5 8}(512 \mathrm{mg}, 5.2 \mathrm{mmol})$ was added portionwise. The reaction mixture was stirred at room temperature for 48 h . The solvent was then removed in vacuo and the crude product was purified by flash column chromatography, eluting with 40:60 hexanes:EtOAc, to give $\mathbf{4 6 9}$ as a white solid ($112 \mathrm{mg}, 6 \%$). M.p: $73-75^{\circ} \mathrm{C}$, TLC (hexanes/EtOAc, 6:4 v / v): $\mathrm{R}_{\mathrm{f}}=0.57$

$$
\begin{aligned}
\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 10.30(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-3), 8.03(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-1), 7.88(1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4), \\
& 7.67(2 \mathrm{H}, \mathrm{~s}, \mathrm{H}-2), 3.85-3.76(2 \mathrm{H}, \mathrm{~m}, \mathrm{H}-5), 3.64-3.57(2 \mathrm{H}, \\
& \mathrm{m}, \mathrm{H}-6) .
\end{aligned}
$$

$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 185.1(\mathrm{C}=\mathrm{O}), 181.2(\mathrm{C}=\mathrm{O}), 171.5,170.3,141.5,131.7\left(\mathrm{q}, J_{\mathrm{CF}}\right.$ 34.1), 123.5 ($\mathrm{q}, J_{\mathrm{CF}} 273.5$), 118.5, 115.3, 51.7, 43.7.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 3210,3092,2100,1768,1665,1586,1569,1445,1375,1340$, 1276, 1171, 934, 878, 905, 721, 678.

HRMS ($m / z-\mathrm{ESI}$): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $416.0549 \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Na}$ Requires: 416.0552 .

3-(4-Methoxyphenyl)-5-oxo-2- phenyltetrahydrofuran-3-carboxylic acid (trans461, cis-461, Table 5.1, entry 4)

Synthesised according to general procedure M , using anhydrous THF ($0.1 \mathrm{M}, 2.5 \mathrm{~mL}$), freshly distilled benzaldehyde ($\mathbf{1 3 5}, 25.0 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) anhydride $421(50.7 \mathrm{mg}$, $0.246 \mathrm{mmol})$ and catalyst $\mathbf{4 5 9}(7.30 \mathrm{mg}, 0.0123 \mathrm{mmol}-5 \mathrm{~mol} \%)$. The reaction was stirred for 32 h to give a diastereomeric mixture of carboxylic acids in a 73:27 ratio (trans:cis) in 13% yield which was monitored by using p-iodoanisole ($28.8 \mathrm{mg}, 0.123 \mathrm{mmol}$).

Due to the low conversion of the reaction, esterification was not carried out and trans461 and $c i s-461$ were not isolated.
(See Appendix for ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis).

5-oxo-2-phenyl-3-(phenylthio)tetrahydrofuran-3-carboxylic acid (trans-462, cis462, Table 5.3, entry 2)

Synthesised according to general procedure M, using anhydrous THF ($0.1 \mathrm{M}, 2.5 \mathrm{~mL}$), freshly distilled benzaldehyde ($\mathbf{1 3 5}, 25.0 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) anhydride $425(51.2 \mathrm{mg}$, $0.246 \mathrm{mmol})$ and catalyst $\mathbf{4 6 4}(8.38 \mathrm{mg}, 0.0123 \mathrm{mmol}-5 \mathrm{~mol} \%)$. The reaction was stirred for 32 h to give a diastereomeric mixture of carboxylic acids in a 75:25 ratio (trans:cis) in 12% yield which was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole ($28.8 \mathrm{mg}, 0.123 \mathrm{mmol}$). Due to the low conversion of the reaction, esterification was not carried out and trans-462 and cis-462 were not isolated.
(See Appendix for ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis).
Methyl 5-oxo-2,3-diphenyltetrahydrofuran-3-carboxylic acid (trans-473, Table 5.4, entry 4$)^{167}$

Synthesised according to general procedure M, using anhydrous MTBE ($0.1 \mathrm{M}, 2.5 \mathrm{~mL}$), freshly distilled benzaldehyde ($\mathbf{1 3 5}, 25.0 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ anhydride $306(43.3 \mathrm{mg}$, $0.246 \mathrm{mmol})$ and catalyst $464(8.38 \mathrm{mg}, 0.0123 \mathrm{mmol}-5 \mathrm{~mol} \%)$. The reaction was stirred for 5 days to give a diastereomeric mixture of carboxylic acids in a 77:23 ratio (trans:cis) in 42% yield which was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p iodoanisole ($28.8 \mathrm{mg}, 0.123 \mathrm{mmol}$). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, trans-473 was isolated as a yellow oil ($24.3 \mathrm{mg}, 35 \%$). TLC (hexanes:EtOAc, $8: 2 \mathrm{v} / \mathrm{v}$): $\mathrm{Rf}=0.34$.
δ н ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

HRMS (ESI): 7.21-7.02 (6 H, m, H-4, H-5, H-7 and H-8), 6.97 (2 H, d, J 7.3, H-3), 6.81 (2 H, d, J 7.3, H-6), $6.30(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 3.78$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), $3.42(1 \mathrm{H}, \mathrm{d}, J 17.6, \mathrm{H}-1 \mathrm{~b}) ; 3.33(1 \mathrm{H}, \mathrm{d}, J 17.6$, $\mathrm{H}-1 \mathrm{a})$.
$[\mathrm{M}+\mathrm{Na}] \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O} 4 \mathrm{Na}$ Requires 319.0942 Found 319.0941.
Methyl 6-oxo-2,4-diphenyl-3,6-dihydro-2H-pyran-3-carboxylate (trans-477, Scheme 5.6)

Synthesised according to general procedure N , using anhydrous MTBE ($0.1 \mathrm{M}, 2.5 \mathrm{~mL}$), freshly distilled benzaldehyde ($\mathbf{1 3 5}, 25.0 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and catalyst $474(9.13 \mathrm{mg}$, $0.0123 \mathrm{mmol}-5 \mathrm{~mol} \%$). The reaction was stirred for 5 days to give a diastereomeric mixture of carboxylic acids in a 95:5 ratio (trans:cis). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, trans-477 was isolated as a pale yellow oil ($30.3 \mathrm{mg}, 40 \%, 44 \% e e$). TLC (hexanes/EtOAc, 8:2 v/v): Rf_{f} $=0.69,[\alpha]_{\mathrm{D}}^{20}=-4.5\left(c=0.01, \mathrm{CHCl}_{3}\right)$.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$, RT, UV detection at 254 nm , retention times: trans-477 20.1 min (major enantiomer) and $24.9 \min$ (minor enantiomer).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad$ 7.46-7.41 $(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3$ and $\mathrm{H}-4), 7.40-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 7, H-8 and H-9), $6.44(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 6.02(1 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{H}-6)$, $4.29(1 \mathrm{H}, \mathrm{d}, J 4.8, \mathrm{H}-5), 3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10)$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.6(\mathrm{C}=\mathrm{O}), 163.2(\mathrm{C}=\mathrm{O}), 151.1,137.2,135.7,130.6$, $129.1,128.83,128.80,126.1,125.9,117.6,80.0,53.0,49.0$.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 2947,2850,1713,1623,1517,1497,1437,1353,1232,1072$, 1088, 973, 828, 766, 697.

HRMS (m / z - ESI):
$[\mathrm{M}+\mathrm{H}]^{+}$Found: $309.1122 \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{4}$ Requires: 309.1121.
Methyl 2-heptyl-6-oxo-4-phenyl-3,6-dihydro-2H-pyran-3-carboxylate (cis-480, trans480, Table 5.7, entry 1)

Synthesised according to general procedure N, using anhydrous THF ($2.4 \mathrm{~mL}, 0.1 \mathrm{M}$), freshly distilled octanal (478, $38.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol})$ and catalyst $304(7.85 \mathrm{mg}, 0.0123$ $\mathrm{mmol}-5 \mathrm{~mol} \%$). The reaction was stirred for 24 h to give a diastereomeric mixture of carboxylic acids in a 65:35 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, cis-480 and trans-480 were isolated combined as a pale yellow oil ($65.0 \mathrm{mg}, 80 \%$). TLC (hexanes/EtOAc, 8:2 v / v): $\mathrm{R}_{\mathrm{f}}=0.59$. The enantiomeric excesses of cis-480 and trans-480 were both found to be 99\%.

CSP-HPLC analysis. Chiralcel IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $90 / 10,0.5 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, RT, UV detection at 254 nm , retention times: cis-480 17.5 min ; trans- $\mathbf{4 8 0} 22.9 \mathrm{~min}$.
cis-480:
$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.52-7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 7.42-7.33(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4), 6.46$
$(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 4.60(1 \mathrm{H}, \mathrm{ddd}, J 3.5,5.1,8.3, \mathrm{H}-6), 3.71(1 \mathrm{H}$, d, $J 3.5, \mathrm{H}-5), 3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-14), 1.88-1.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a})$, 1.84-1.73 (1 H, m, H-7b), 1.70-1.62 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), $1.58-$ 1.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}$), 1.40-1.23 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H}-9, \mathrm{H}-10, \mathrm{H}-11$ and H-12), 0.94-0.86 (3 H, m, H-13).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 168.5(\mathrm{C}=\mathrm{O}), 164.8(\mathrm{C}=\mathrm{O}), 151.6,134.8,130.9,129.2$, 126.1, 116.7, 78.2, 52.9, 47.0, 32.6, 31.7, 29.2, 29.08, 25.3, 22.63, 14.1.
trans-480:

```
\deltaн (600 MHz, CDCl3): 7.42-7.33 (5 H, m, H-2, H-3, H-4), 6.42 (1 H, s, H-1), 4.96-
4.88(1 H, m, H-6), 3.83 (1 H, d, J 3.9, H-5), 3.69 (3 H, s, H- 14), 1.96-1.89 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}\) ), 1.73-1.64 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b})\), 1.61-1.51 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}\) ), 1.50-1.42 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{~b}\) ), \(1.40-\) 1.23 ( \(8 \mathrm{H}, \mathrm{m}, \mathrm{H}-9, \mathrm{H}-10, \mathrm{H}-11\) and \(\mathrm{H}-12\) ), 0.94-0.86 ( \(3 \mathrm{H}, \mathrm{m}\), H-13).
\(\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 171.1(\mathrm{C}=\mathrm{O}), 163.2(\mathrm{C}=\mathrm{O}), 150.9,134.7,130.6,129.1\), 126.0, 117.0, 79.2, 53.0, 47.1, 33.8, 31.6, 29.1, 29., 25.4, 22.61, 14.0.
\(v_{\max }\) (neat) \(/ \mathrm{cm}^{-1}: \quad 2927,2856,1712,1624,1447,1350,1242,1161,1020,875\), 772, 726, 686.
HRMS ( \(\mathrm{m} / \mathrm{z}-\mathrm{APCI}\) ): \(\quad[\mathrm{M}+\mathrm{H}]^{+}\)Found: \(331.1913 \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{4}\) Requires: 331.1903.
```


Methyl-2-(4-methylpent-3-en-1-yl)-6-oxo-4-phenyl-3,6-dihydro-2H-pyran-3-

carboxylate (cis-481, trans-481, Table 5.7, entry 3)

Synthesised according to general procedure N , using anhydrous THF ($0.1 \mathrm{M}, 2.4 \mathrm{~mL}$), freshly distilled 4-pentenal ($\mathbf{4 7 9}, 24.3 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and catalyst $\mathbf{3 0 4}(7.85 \mathrm{mg}, 0.0123$ $\mathrm{mmol}-5 \mathrm{~mol} \%$). The reaction was stirred for 24 h to give a diastereomeric mixture of carboxylic acids in a 56:44 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, cis-481 and trans-481 were isolated combined as a pale yellow oil ($56.3 \mathrm{mg}, 81 \%$). TLC (hexanes/EtOAc, 8:2 v / v): $\mathrm{R}_{\mathrm{f}}=0.72$. The enantiomeric excesses of cis-481 and trans-481 were both found to be 99\%.

CSP-HPLC analysis. Chiralcel OD-H ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: $90 / 10,0.5 \mathrm{~mL} \mathrm{~min}^{-}$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: cis-481 37.6 min ; trans-481 27.1 min . cis-481:

$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$	$7.61-7.54(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 7.53-7.41(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{and} \mathrm{H}-4)$,
	$6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 5.95-5.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 5.15(1 \mathrm{H}, \mathrm{dd}, J$
	$1.5,17.6, \mathrm{H}-10 \mathrm{a}), 5.07(1 \mathrm{H}, \mathrm{dd}, J 1.5,10.2, \mathrm{H}-10 \mathrm{~b}), 4.62(1$
	$\mathrm{H}, \mathrm{ddd}, J 3.4,4.9,8.7, \mathrm{H}-6), 3.80(1 \mathrm{H}, \mathrm{d}, J 3.4, \mathrm{H}-5), 3.75(3$
	$\mathrm{H}, \mathrm{s}, \mathrm{H}-11), 2.48-2.39(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}), 2.40-2.31(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$
	$8 \mathrm{~b}), 2.02-1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}), 1.93-1.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b})$.

trans-481:

$\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.53-7.41(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-3$ and $\mathrm{H}-4), 6.44(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1)$, 5.86-5.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 5.12 ($1 \mathrm{H}, \mathrm{dd}, J 1.5,17.1, \mathrm{H}-10 \mathrm{a}$), $5.06(1 \mathrm{H}, \mathrm{dd}, J 1.5,10.1, \mathrm{H}-10 \mathrm{~b}), 4.98-4.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6)$, 3.86 ($1 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{H}-5$), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-11$), 2.40-2.33 (1 H , m, H-8a), 2.32-2.23 (1 H, m, H-8b), 2.12-1.98 (1H, m, H-7a), 1.82-1.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b}$).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.9(\mathrm{C}=\mathrm{O}), 162.9(\mathrm{C}=\mathrm{O}), 150.9,136.5,135.8,130.7$, 129.4, 126.0, 117.0, 116.21, 78.4, 53.1, 47.2, 33.1, 29.4.
$\nu_{\max }$ (neat) $/ \mathrm{cm}^{-1}: \quad \quad 2952,1710,1641,1447,1352,1255,1118,1055,973,909$, 878, 774, 683, 603.

HRMS ($m / z-\mathrm{APCI}$):
$[\mathrm{M}+\mathrm{H}]^{+}$Found: $287.1277 \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4}$ Requires: 287.1277.

Methyl 6-oxo-2-(pentan-3-yl)-4-phenyl-3,6-dihydro-2H-pyran-3-carboxylate (trans-

 447 , Table 5.8 , entry 2)

Synthesised according to procedure N , using anhydrous THF ($0.1 \mathrm{M}, 2.4 \mathrm{~mL}$), 2ethylbutyraldehyde ($\mathbf{4 0 3}, 30.4 \mu \mathrm{~L}, 0.246 \mathrm{mmol}$) and catalyst $\mathbf{3 0 4}(7.85 \mathrm{mg}, 0.0123 \mathrm{mmol}$

- $5 \mathrm{~mol} \%$). The reaction was stirred for 24 h to give a diastereomeric mixture of carboxylic acids in a 50:50 ratio (cis:trans). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, cis-447 and trans-447 were isolated as a white solid ($67.0 \mathrm{mg}, 90 \%$). TLC (hexanes/EtOAc, 8:2 v / v): $\mathrm{R}_{\mathrm{f}}=0.59$. The enantiomeric excesses of cis-447 and trans-447 were both found to be 99%.

CSP-HPLC analysis. Chiralcel OD ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$), hexane/IPA: 90/10, $0.3 \mathrm{~mL} \mathrm{~min}-$ ${ }^{1}$, RT, UV detection at 254 nm , retention times: cis-44755.7 min; trans-44755.2 min. trans-447:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.60-7.59(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 7.50-7.47(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-11)$, 6.42 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 4.83 ($1 \mathrm{H}, \mathrm{dd}, J 4.4,7.3, \mathrm{H}-3$), $4.03(1 \mathrm{H}$, d, J4.4, H-2), 3.61 (3 H, s, H-12), 1.84.1.69 (3 H, m, H-4, H$5 \mathrm{a}, \mathrm{H}-6 \mathrm{a}), 1.70-1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}), 1.53-1.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $6 b), 0.98-0.94(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and H-8).

ठc (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \quad 170.0(\mathrm{C}=\mathrm{O}), 163.4(\mathrm{C}=\mathrm{O}), 152.3,135.9,130.5,129.1129 .2$, $126.0,117.3,81.0,44.9,43.1,22.0,21.0,10.7,10.5$.
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: \quad 3086,2965,2877,1721,1696,1446,1353,1269,1245,1086$, 1012, 990, 893, 777, 689, 602, 576.

HRMS (m / z-APCI): $\quad[\mathrm{M}+\mathrm{H}]^{+}$Found: $303.1598 \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{4}$ Requires: 303.1590.
(See page 230 for characterisation of cis-447).
Methyl 2-benzhydryl-6-oxo-4-phenyl-3,6-dihydro-2H-pyran-3-carboxylate (trans442, Table 5.8, entry 4)

Synthesised according to general procedure N , using anhydrous THF ($0.1 \mathrm{M}, 2.4 \mathrm{~mL}$), freshly distilled diphenylacetaldehyde (440, $43.6 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$) and catalyst 304 (7.8 $\mathrm{mg}, 0.0123 \mathrm{mmol}-5 \mathrm{~mol} \%$). The reaction was stirred for 24 h to give a diastereomeric
mixture of carboxylic acids in a 52:48 ratio (trans:cis). After esterification and purification by flash column chromatography, eluting with 80:20 hexanes:EtOAc, trans442 and cis- $\mathbf{4 4 2}$ were isolated combined as a pale yellow oil ($88.2 \mathrm{mg}, 90 \%$). TLC (hexanes/EtOAc, 8:2 v/v): R 0.67 . The enantiomeric excesses of cis-442 and trans-442 were both found to be 99%.

CSP-HPLC analysis. ACQUITY UPC ${ }^{2}$, Trefoil AMY1, $2.5 \mu \mathrm{~m}$ ($3.0 \times 150 \mathrm{~mm}$). ABPR: $1500(\mathrm{psi}) . \mathrm{A}\left(\mathrm{CO}_{2}\right)=97 \% / \mathrm{B}\left(\right.$ Ethanol/CAN/IPA 1:1:1, v:v) $=3 \%, 1.2 \mathrm{~mL} \mathrm{~min}^{-1}, 30^{\circ} \mathrm{C}$, UV detection at 254 nm , retention times: trans-442 3.0 min ; cis $\mathbf{- 4 4 2} 2.9 \mathrm{~min}$.
trans-442:
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 7.49-7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 7.44-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-12$ and $\mathrm{H}-13), 7.38-7.35(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$ and H-9), 7.35-7.29 (3 H, m, H6 and $\mathrm{H}-10), 7.21-7.19(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 6.53(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 5.83$ $(1 \mathrm{H}, \mathrm{dd}, J 2.9,10.4, \mathrm{H}-3), 4.34$ ($1 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{H}-4$), 3.83 (1 H, d, J2.9, H-2), 3.67 (3 H, s, H-14).
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 169.7(\mathrm{C}=\mathrm{O}), 162.4(\mathrm{C}=\mathrm{O}), 150.3,140.6,139.5,135.7$, 130.7, 129.4, 129.0, 128.8, 128.4, 128.1, 127.6, 127.2, 126.3, 116.9, 80.6, 54.4, 53.1, 44.3.
$v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}: \quad 3088,2971,2923,1660,1592,1506,1472,1311,1217,1072$, 998, 768, 642.

HRMS (m/z -ESI): $\quad[\mathrm{M}+\mathrm{Na}]^{+}$Found: $421.1407 \mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O} 4 \mathrm{Na}$ Requires: 421.1410.
(See page 228 for characterisation of cis-442).

References

B. M. Trost, Proc. Natl. Acad. Sci. USA, 2004, 101, 5348.
A. M. Thayer, Chem. Eng. News, 2007, 85, 11.
L. Pasteur, Anal. Chem. Phys., 1848, 24, 442.

Food, Drug Administration, FDA's policy statement for the development of new stereoisomeric drugs, Chirality, 1992, 4, 338.
H. D. Flack, Acta Cryst. A, 65, 371.
M. S. Taylor and E. N. Jacobsen, Proc. Natl. Acad. Sci. USA, 2004, 101, 5368.
T. Storz, P. Dittmar, P. F. Fauquex, P. Marschal, W. U. Lottenbach and H Steiner, Org. Proc. Res. Dev., 2003, 7, 559.
F. Guèritte-Voegelein, V. Sènilh, B. David, D. Guènard and P. Potier, Tetrahedron, 1986, 42, 4451.
O. K. Alder, Justus Liebigs Ann. Chem., 1928, 460, 98.
E. J. Corey and H. E. Ensley, J. Am. Chem. Soc., 1975, 97, 6908.
D. A. Evans, G. Helmchen and M. Rüping, Chiral Auxiliaries in Asymmetric Synthesis, Asymmetric Synthesis - The Essentials, WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim, 2007.
W. Oppolzer, R. Moretti and S. Thomi, Tetrahedron Lett., 1989, 30, 5603.
E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Comprehensive Asymmetric Catalysis, Springer, Berlin, 1999.
(a) I. Ojima, Catalytic Asymmetric Synthesis, 3rd Ed., Wiley, New York, 2010. (b) M. Heitbaum, F. Glorius and I. Escher, Angew. Chem. Int. Ed., 2006, 45, 4732.
(a) K. Drauz and H. Waldmann, Eds. Enzyme catalysis in organic synthesis; Wiley-VCH: Weinheim., 2002. (b) V.L. Schramm, Chem. Rev., 2006, 106, 3029.
T. Johannes, M. R. Simurdiak and H. Zhao, Biocatalysis, Encyclopedia of Chemical Processing, Taylor \& Francis, 2006.
W. S. Knowles, M. J. Sabacky, B. D. Vineyard and D. J. Weinkauff, J. Am Chem. Soc., 1975, 97, 2567.
B. J. A. Osborn, F. H. Jardine, J. F. Young and G. Wilkinson, J. Chem. Soc., 1966, 1711.
W. S. Knowles, Acc. Chem. Res., 1983, 16, 106.
(a) T. Katsuki and K.B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974. (b) S. G. Hentges and K.B. Sharpless, J. Am. Chem Soc., 1980, 102, 4263.
M. J. Gaunt, C. C. C. Johansson, A. McNally and N. T. Vo, Drug Discov. Today, 2007, 12, 8.
A. Berkessel and H. Groeger, Asymmetric Organocatalysis, Ed. Wiley-VCH, Weinheim, 2004.
U. Eder, G. Sauer and R. Wiechert, Angew. Chem. Int. Ed. Engl., 1971, 10, 496.
(a) Z. G. Hajos and D. R. Parrish, J. Org. Chem., 1973, 38, 3244. (b) Hajos, Z. G.; Parrish, D. R. German Patent DE 2102623, 1971.
D. Yang, Y.-C. Yip, M.-W. Tang, M.-K. Wong, J.-H. Zheng and K.-K. Cheung, J. Am. Chem. Soc., 1996, 118, 491.
Y. Tu, Z.-X. Wang and Y. Shi, J. Am. Chem. Soc., 1996, 118, 9806.
S. E. Denmark, Z. Wu, C. M. Crudden and H. Matsuhashi, J. Org. Chem., 1997, 62, 8288.
S. J. Miller, G. T. Copeland, N. Papaioannou, T. E. Horstmann and E. M. Ruel, J. Am. Chem. Soc., 1998, 120, 1629.
M. S. Sigman and E. N. Jacobsen, J. Am. Chem. Soc., 1998, 120, 4901.
E. J. Corey and M. J. Grogan, Org. Lett., 1999, 1, 157.
B. List, R. A. Lerner and C. F. Barbas III, J. Am. Chem. Soc., 2000, 122, 2395.
K. A. Ahrendt, C. J. Borths and D. W. C. MacMillan, J. Am. Chem. Soc., 2000, 122, 4243. P. Melchiorre, M. Marigo, A. Carlone and G. Bartoli, Angew. Chem. Int. Ed., 2008, 47, 6138.
B. List, Chem. Commun., 2006, 819.
C. Y. Lai, N. Nakai and D. Chang, Science, 1974, 183, 1204.
A. J. Morris and D. R. Tolan, Biochemistry, 1994, 33, 12291.
E. Knoevenagel, Chem. Ber., 1898, 31, 2596.
A. Michael, J. Prakt. Chem., 1887, 36, 349.
D. W. C. MacMillan, Nature, 2008, 455, 304.
B. List, Synlett, 2001, 1675.
H. Yamamoto, Lewis Acids In Organic Synthesis, Wiley-VCH, Weinheim, 2000.
H. Yamamoto, Lewis Acids Reagents, Oxford University Press, New York, 1999.
M. S. Taylor and E. N. Jacobsen, Angew. Chem. Int. Ed., 2006, 45, 1520.
(a) J. Hine, S.-M. Linden and V. M. Kanagasabapathy, J. Org. Chem., 1985, 50, 5096.
T. R. Kelly, P. Meghani and V. S. Ekkundi, Tetrahedron Lett., 1990, 31, 3381.
M. C. Etter and T. W. Panunto, J. Am. Chem. Soc., 1988, 110, 5896.
M. C. Etter, Z. Urbakzyk-Lipkowska, M. Zia-Ebrahimi and T. W. Panunto, J. Am. Chem. Soc., 1990, 122, 8415.
D. P. Curran and L. H. Kuo, J. Org. Chem., 1994, 59, 3259.
D. P. Curran and L. H. Kuo, Tetrahedron Lett., 1995, 36, 6647.
A. Wittkopp and P. R. Schreiner, Chem. Eur. J., 2003, 9, 407.
P. R. Schreiner and A. Wittkopp, Org. Lett., 2002, 4, 217.
T. Okino, Y. Hoashi and Y. Takemoto, Tetrahedron Lett., 2003, 44, 2817.
S. A. Kavanagh, A. Piccinini, E. M. Fleming and S. J. Connon, Org. Biomol. Chem., 2008, 6, 1339.
E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1965, 87, 1353-1364.
M. Kotke and P. R. Schreiner, Synthesis, 2007, 779.
E. I. Balmond, D. M. Coe, M. C. Galan and E. M. McGarrigle, Angew. Chem. Int. Ed., 2012, 51, 1.
M. S. Sigman and E. N. Jacobsen, J. Am. Chem. Soc., 1998, 120, 19.
A. G. Wenzel and E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124, 12964.
G. D. Joly and E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126, 4102.
M. S. Taylor and E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126, 10558.
J.T.Raheem and E. N. Jacobsen, Adv. Synth. Catal., 2005, 347, 1701.
C. K. De, N. Mittal and D. Seidel, J. Am. Chem. Soc., 2011, 133, 16802.
T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003, 125, 12672.
T. Okino, Y. Hoashi, T. Furukawa, X. Xu and Y. Takemoto, J. Am. Chem. Soc., 2005, 127, 119.
A. Hamza, G. Schubert, T. Soòs and I. Pàpai, J. Am. Chem. Soc., 2006, 128, 13151.
(a) Y. Hoashi, T. Yabuta and Y. Takemoto, Tetrahedron Lett., 2004, 45, 918. (b) Y. Hoashi, T. Yabuta, P. Yuan, H. Miyabe and Y. Takemoto, Tetrahedron, 2006, 62, 365.
T.-Y. Liu, H.-L. Cui, J. Long, B.-J. Li, Y. Wu, L.-S. Ding and Y.-C. Chen, J. Am. Chem. Soc., 2007, 129, 1878.
C. Wang, Z. Zhou and C. Tang, Org. Lett., 2008, 10, 1707.
X. Chen, Z.-H. Qi, S.-Y. Zhang, L.-P. Kong, Y. Wang and X.-W. Wang, Org. Lett., 2015, 17, 42.
X. Wang, Y.-F. Chen, L.-F. Niu and P.-F. Xu, Org. Lett., 2009, 11, 3310.
A. G. Doyle and E. N. Jacobsen, Chem. Rev., 2007, 107, 5713.
S. J. Connon, Chem. Eur. J., 2006, 12, 5418.
J. P. Malerich, K. Hagihara and V. H. Rawal, J. Am. Chem. Soc., 2008, 130, 14416.
G. Maahs and P. Hegenberg, Angew. Chem. Int. Ed. Engl., 1966, 5, 888.
J. Alemán, A. Parra, H. Jiang and K. A. Jørgensen, Chem. Eur. J., 2011, 17, 6890.
R. I.Storer, C. Aciroa and L. H. Jones, Chem. Soc. Rev., 2011, 40, 2330.
Y. Zhu, J. P. Malerich and V. H. Rawal, Angew. Chem. Int. Ed., 2010, 49, 153.
Y. Qian, G. Ma, A. Lv, H. -L. Zhu, J. Zhao and V. H. Rawal., Chem. Commun., 2010, 46, 3004.
H. Konishi, T. Y. Lam, J. P. Malerich and V. H. Rawal, Org. Lett., 2010, 12, 2028.
H. L. Song, K. Yuana and X. -Y. Wu, Chem. Commun., 2011, 47, 1012.
S. V. Pansare and E. K. Paul, Chem. Commun., 2011, 47, 1027.
V. Prelog and H. Wilhelm, Helv. Chim. Acta, 1954, 37, 1634
C. E. Song, Cinchona Alkaloids in Synthesis ans Catalysis, Ligands, Immobilisation and Organocatalysis, WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim, 2009.
E. M. O. Yeboah, S. O. Yeboah and G. S. Singh, Tetrahedron, 2011, 67, 1725.
T. P. Yoon and E. N. Jacobsen, Science, 2003, 299, 1691.
T. Marcelli and H. Hiemstra, Synthesis, 2010, 1229.
L. Pasteur, Cr. Hebd. Acad. Sci., 1853, 37, 162.
G. Bredig and P. S. Fiske, Biochem. Z., 1912, 46, 7.
H. Pracejus and H. Mätje, J. Prakt. Chem., 1964, 24, 195.
H. Hiemstra and H. Wynberg, J. Am. Chem. Soc., 1981, 103, 417.
G. Bartoli, M. Bosco, A. Carlone, A. Cavalli, M. Locatelli, A. Mazzanti, P. Ricca, L. Sambri and P. Melchiorre, Angew. Chem. Int. Ed., 2006, 45, 4966.
H. F. Wang, C.-W. Zheng, Y.-Q. Yang, Z. Chai and G. Zhao, Tetrahedron Asym., 2008, 19, 2608.
G. Maahs and P. Hegenberg, Angew. Chem. Int. Ed. Engl., 1966, 5, 888.
B. J. List, L. Jiang, M. Liu, Y. C. Chen, L. S. Ding and Y. Wu, Synlett., 2005, 603.
B. Vakulya, S. Varga, A. Csàmpai and T. Soòs, Org. Lett., 2005, 7, 1967.
S. H. McCooey and S. J. Connon, Angew. Chem. Int. Ed., 2005, 44, 6367.
J. Ye, D. J. Dixon and P. S. Hynes, Chem Commun., 2005, 4481.
P. S. Hynes, P. A. Stupple and D. J. Dixon, Org. Lett., 2008, 10, 1390.
J. P. Malerich, K. Hagihara and V. H. Rawal, J. Am. Chem. Soc., 2008, 130, 14416.
B. L. Zhao, J. H. Li and D. M. Du, Chem. Rec., 2017, 17, 994.
H. X. He and D. M. Du, Eur. J. Org. Chem., 2014, 6190.
B. L. Zhao and D. M. Du, Asian. J. Org. Chem., 2015, 4, 1120.
B. Yu, D. Q. Yu and H. M. Liu, Eur. J. Med Chem., 2015, 97, 673.
J. H. Li, H. Wen, L. Lei and D. M. Du, Eur. J. Org. Chem., 2016, 2492.
C. C. C. Johansson, N. Bremeyer, S. V. Ley, D. R. Owen, S. C. Smith and M. J. Gaunt, Angew. Chem. Int. Ed., 2006, 45, 6024.
Y. Wu and L. Deng, J. Am. Chem. Soc., 2012, 134, 14334.
A. Lee, A. Michrowska, S. Sulzer-Mosse and B. List, Angew. Chem. Int. Ed., 2011, 50, 1707.
W. Zhang, J. Hu, D. J. Young and T. S. A. Hor, Organometallics, 2011, 30, 2137.
M. González-López and J. T. Shaw, Chem. Rev., 2009, 109, 164.
W. Perkin, J. Chem. Soc., 1868, 21, 53.
W. H. Perkin, J. Chem. Soc., 1868, 21, 181.
W. H. Perkin, J. Chem. Soc., 1877, 31, 388.
R. Fittig and H. W. Jayne, Justus Liebigs Ann. Chem., 1883, 216, 97.
E. Müller, Justus Liebigs Ann. Chem., 1931, 491, 251.
J. B. Jones and A. R. Pinder, J. Chem. Soc., 1958, 2612.
N. Castagnoli, J. Org. Chem., 1969, 34, 3187.
M. Cushman, N. Castagnoli, J. Org. Chem., 1969, 39, 1546.
M. Cushman, N. Castagnoli, J. Org. Chem., 1973, 38, 440.
J. Robert and A. Boucherle, Ann. Pharm. Fr., 1981, 39, 337
M. A. Haimova, N. M. Mollov, S. C. Ivanova, A. I. Dimitrova and V. I. Ognyanov, Tetrahedron, 1977, 33, 331.
M. Cushman, J. Gentry and F. W. Dekow, J. Org. Chem., 1977, 42, 1111.
M. Cushman and E. J. Madaj, J. Org. Chem., 1987, 52, 907.
Y. Tamura, A. Wada, M. Sasho and Y. Kita, Tetrahedron Lett., 1981, 22, 4283.
Y. Tamura, A. Wada, M. Sasho and Y. Kita, Chem. Pharm. Bull., 1983, 31, 2691.
N. N. Girotra and N. L. Wendler, J. Org. Chem., 1969, 34, 3192.
K. Nozawa, M. Yamada, Y. Tsuda, K.-I. Kawai and S. Nakajima, Chem. Pharm. Bull., 1981, 29, 3486.
R. Okunaka, T. Honda, M. Kondo, Y. Tamura and Y. Kita, Chem. Pharm. Bull., 1991, 39, 1298.
N. Yu, R. Poulain, A. Tartar and J.-C. Gesquiere, Tetrahedron, 1999, 55, 13735.
M. G. Bogdanov and M. D. Palamareva, Tetrahedron, 2004, 60, 2525.
J. M. Lawlor and M. B. McNamee, Tetrahedron Lett., 1983, 24, 2211.
R. Bandichhor, B. Nosse and O. Reiser, Top. Curr. Chem., 2005, 243, 43.
R. C. Fuson, J. Am. Chem. Soc., 1924, 46, 2779.
J. B. Shoesmith and A. Guthrie, J. Chem. Soc., 1928, 2332.
J. A. Tran, C. W. Chen, F. C. Tucci, W. Jiang, B. A. Fleck and C. Chen, Bioorg. Med. Chem. Lett., 2008, 18, 1124.
N. Minami and I. Kuwajima, Tetrahedron Lett., 1977, 18, 1423.
S. Yoshida, T. Ogiku, H. Ohmizu and T. Iwasaki, Tetrahedron Lett., 1995, 36, 1455.
S. Yoshida, H. Ohmizu and T. Iwaski, Tetrahedron Lett., 1995, 36, 8225.
S. Yoshida, T. Ogiku, H. Ohmizu and T. Iwasaki, J. Org. Chem., 1997, 62, 1310.
(a) Y. Tamura, A. Wada, M. Sasho, K. Fukunaga, H. Maeda and Y. Kita, J. Org. Chem., 1982, 47, 4376; (b) Y. Tamura, M. Sasho, K. Nakagawa, T. Tsugoshi and Y. Kita, J. Org. Chem., 1984, 49, 473; (c) Y. Tamura, M. Sasho, S. Akai, A. Wada and Y. Kita, Tetrahedron, 1984, 40, 4539; (d) Y. Tamura, F. Fukata, M. Sasho, T. Tsugoshi and Y. Kita, J. Org. Chem., 1985, 50, 2273; (e) Y. Kita, S. Mohri, T. Tsugoshi, H. Maeda and Y. Tamura, Chem. Pharm. Bull., 1985, 33, 4723.
M. D. Rozeboom, I.-M. Tegmo-Larsson and K. N. Houk, J. Org. Chem., 1981, 46, 2338.
G. Roberge and P. Brassard, J. Org. Chem., 1981, 46, 4161.
P. G. Sammes, Ed. Topics in Antibiotic Chemistry, Vol. 2: Antibiotics from Marine Organisms, Oligosaccharides, Anthracyclines and Their Biological Receptors, 1978.
F. Arcamone, Doxorubicin. Anticancer Antibiotics, 1981.
H. S. El Khadem, Ed. Anthracycline Antibiotics, 1982.
(a) C. D. Cox and S. J. Danishefsky, J. Org. Lett., 2000, 38, 683; (b) C. D. Cox, T. Siu and S. J. Danishefsky, Angew. Chem. Int. Ed., 2003, 42, 5625.
H. Fujioka, H. Yamamoto, H. Kondo, H. Annoura and Y. Kita, Chem. Commun., 1989, 1509.
F.T. Smith and R. V. Atigadda, J. Heteocycl. Chem., 1991, 28, 1813.

Shimojima, Y.; Shirai, T.; Baba, T. and Hayashi, H. J. Med. Chem., 1985, 28, 3.
T. K. Tabopda, G. W. Fotso, J. Ngoupayo, A. -C. Mitaine-Offer, B. T. Ngadjui and M. A. Lacaille-Dubois, Planta Med., 2009, 75, 1228.
M. G. Bogdanov, M. I. Kandinska, D. B. Dimitrova, B. T. Gocheva and M. D. Palamareva, Naturforsch, 2007, 62, 477.
C. Cornaggia, F. Manoni, E. Torrente, S. Tallon and S. J. Connon, Org. Lett., 2012, 14, 1850.
S. Wan, F. Wu, J. C. Rech, M. E. Green, R. Balachandran, W. S. Horne, B. W. Day and P. E. Floreancig, J. Am. Chem. Soc., 2011, 133, 16668.
R. H. Cichewicz, F. A. Valeriote and P. Crews, Org. Lett., 2004, 6, 1951.
Y. F. Huang, L. -H. Li, L. Tian, L. Qiao, H. -M. Hua and Y. -H. Pei, J. Antibiot., 2006, 59, 355.
F. Bihel, G. Quéléver, H. Lelouard, A. Petit, C. Alvès da Costa, O. Pourquié, F. Checler, A. Thellend, P. Pierre and J. L. Kraus, Bioorg. Med. Chem., 2003, 11, 3141.
(a) Y. Kurosaki, T. Fukuda and Masatomo Iwao, Tetrahedron, 2005, 61, 3289; (b) K. Uchida, T. Fukuda and M. Iwao, Tetrahedron, 2007, 63, 7178.
A. Ramacciotti, R. Fiaschi and E. Napolitano, J. Org. Chem., 1996, 61, 5371.
A. Rioz-Martínez, G. de Gonzalo, D. E. Torres Pazmiño, M. W. Fraaije and V. Gotor, J. Org. Chem., 2010, 75, 2073.
C. Trujillo, I. Rozas, A. Botte and S. J. Connon, Chem. Commun., 2017, 53, 8874.
H. M. R. Hoffmann and J. Rabe, Angew. Chem. Int. Ed., 1985, 24, 94.
M. Seitz and O. Reiser, Curr. Opin. Chem. Biol., 2005, 9, 285.
R. Bandichhor, B. Nosse and O. Reiser, Top. Curr. Chem., 2005, 243, 43.
Y. Masaki, H. Arasaki and A. K. Itoh, Tetrahedron Lett., 1999, 40, 4829.
M. T. Barros, C. D. Maycock and M. R. Ventura, Org. Lett., 2003, 5, 4097.
J. M. Crawforth and B. J. Rawlings, Tetrahedron Lett., 1995, 36, 6345.
T. Martín, C. M. Rodríguez and V. S. Martín, J. Org. Chem., 1996, 61, 6450.
F. Manoni, C. Cornaggia, J. Murray, S. Tallon and S. J. Connon, Chem. Comm., 2012, 14, 6502.
H. Achenbach and G. Wittman, Tetrahedron Lett., 1970, 37, 3259.
R. H. Dharmaratne, N. P. Nanayakkara and I. A. Khan, Phytochemistry, 2002, 59, 429.
(a) S. Sotheeswaran, Chem. Aust., 1987, 377; (b) M. W. Klohs, F. Keller, R. E. Williams, M. I. Tockes and G. E. Cronheim, J. Med. Pharm. Chem., 1959, 1, 95.
(a) T. E. Smith, M. Djang, A. J. Velander, C. W. Downey, K. A. Carroll and S. V. Alphen, Org. Lett., 2004, 6, 2317; (b) C. R. Schmid, J. D. Bryant, M. Dowlatzedah, J. L. Phillips, D. E. Prather, R. D. Schantz, N. L. Sear and C. S. Vianco, J. Org. Chem., 1991, 56, 4056.
C. Spino, N. Mayes and H. Desfossés, Tetrahedron Lett., 1996, 37, 6503.
W. R. Huck, T. Mallat and A. Baiker, New J. Chem., 2002, 26, 6.
J. Chen, L. Zhou, C. K. Tan and Y.-Y. Yeung, J. Org. Chem., 2012, 77, 999.
T. Chena and Y.-Y. Yeung, Org. Biomol. Chem., 2016, 14, 4571.
L.-T. Shen, W.-Q. Jia and S. Ye, Angew. Chem., 2013, 125, 613.
F. Manoni and S. J. Connon, Angew. Chem. Int. Ed., 2014, 53, 2628.
F. Manoni, U. Farid, C. Trujillo and S. J. Connon, Org. Biomol. Chem., 2017, 15, 1463.

Fundamentals of asymmetric catalysis, P. J. Walsh and M. C. Kozlowski, Ed., University Science Books, 2009.
H. B. Kagan and J. C. Fiaud, Top. Stereochem., 1988, 18, 249.
J. M. Keith, J. F. Larrow and E. N. Jacobsen, Adv. Synth. Catal., 2001, 343, 5.
K. Faber, Chem. Eur. J., 2001, 7, 5004.
H. Pellissier, Tetrahedron, 2003, 59, 8291.
M. Hayashi, H. Miwata and N. Oguni, J. Chem. Soc., Perkin Trans. 1, 1991, 1167.
T. Ooi, K. Ohmatsu and K. Maruoka, J. Am. Chem. Soc., 2007, 129, 2410.
F. F. Huerta, A. B. E. Minidis and J.-E. Bäckvall, Chem. Soc. Rev., 2001, 30, 321.
X. Li and B. List, Chem Commun., 2007, 17, 1739.
J. H. Xie, Z.T. Zhou, W. L. Kong and Q. L. Zhou, J. Am. Chem. Soc., 2007, 129, 1868.
S. Hoffmann, M, Nicoletti and B. List, J. Am. Chem. Soc., 2006,128, 13074.
(a) D. Leow and C.-H. Tan, Chem. Asian J., 2009, 4, 488; (b) J. S. Bandar and T. H. Lambert, Synthesis, 2013, 45, 2485.
H. Krawczyk, M. Dzięgielewski, D. Deredas, A. Albrecht and Ł. Albrecht, Chem. Eur. J., 2015, 21, 10268.
R. Schwesinger and H. Schlemper, Angew. Chem. Int. Ed., 1987, 26, 1167.
Y. Kondo, Phosphazenes: Preparation, Reaction and Catalytic Role in Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes, and Related Organocatalysts (T. Ishikawa, Ed.) John Wiley \& Sons, Ldt., 2009.
(a) S. Sakaki and T. Ooi, J. Am. Chem. Soc., 2007, 129, 12392; (b) D. Uraguchi, S. Sakaki, Y. Ueki and T. Ito, T. Ooi, Heterocycles, 2008, 76, 1081.
D. Uraguchi, T. Ito and T. Ooi, J. Am. Chem. Soc., 2009, 131, 3836.
M. T. Corbett, D. Uruguchi, T. Ooi and J. S. Johnson, Angew. Chem. Int. Ed., 2012, 51, 4685.
(a) D. Uraguchi, R. Tsutsumi and T. Ooi, J. Am. Chem. Soc., 2013, 135, 8161; (b) D. Uraguchi, R. Tsutsumi and T. Ooi, Tetrahedron, 2014, 70, 1691.
D. Uraguchi, S. Nakamara, H. Sasaki, Y. Konakade and T. Ooi, Chem. Commun., 2014, 50, 3491.
U. Köhn, M. Schulz, A. Schramm, W. Günther, H. Görls, S. Schenk and E. Anders, Eur. J. Org. Chem., 2006, 4128.
M. Priede, E. Priede, J. Saame, I. Leito and E. Suna, Chem. Heterocycl. Compd., 2016, 52, 541.
M. G. Núñez, A. J. M. Farley and D. J. Dixon, J. Am. Chem. Soc., 2013, 135, 16348.
(a) O. Riant and J. Hannedouche, J. Org. Biomol. Chem., 2007, 5, 873; (b) M. Shibasaki, and M Kanai, M. Chem. Rev., 2008, 108, 2853.
G. P. Robertson, A. J. M. Farley and D. J. Dixon, Synlett, 2016, 27, 21.
A. J. M. Farley, C. Sandford and D. J. Dixon, J. Am. Chem. Soc., 2015, 137, 15992.
D. Enders, K. Lüttgen and A. A. Narine, Synthesis, 2007, 2007, 959.
Y. N. Belokon', K. A. Kochetkov, T. y. D. Churkina, N. S. Ikonnikov, S. A. Orlova, V.V. Smirnov and A.A. Chesnokov, Mendeleev Commun., 1997, 7, 137.
J. Yanch, A. J. M. Farley and D. J. Dixon, Chem. Sci., 2017, 8, 606.
A. M. Goldys, M. G. Núñez and D. J. Dixon, Org. Lett., 2014, 16, 6294.
H. Zhang, S. L. Shyaula, J. -Y. Li, J. Li and J. -M. Yue, Org. Lett., 2016, 18, 1202.
H. Shi, I. N. Michaelides, B. Darses, P. Jakubec, Q. N. N. Nguyen, R. S. Paton and D. J. Dixon, J. Am. Chem. Soc., 2017, 139, 17755.

Tanaka, K.; Toda and F. Chem. Rev., 2000, 100, 1025.
Zen, S.; Koyama and M.; Koto, S. Org. Synth., 1988, 50, 797.
Liwen He, G. S. C. Srikanth and S. L. Castle., J. Am. Chem. Soc., 2005, 70, 8140.
S. Fioravanti, L. Pellacani, P. A. Tardella and M. C. Vergani, Org. Lett., 2008, 10, 1449.
(a) B. Liu and L. Hu, Bioorg. Med. Chem. 2003, 11, 3889; (b) Z. Xu, Q. Wang and J. Zhu, Angew. Chem. Int. Ed., 2013, 52, 3272.
J. H. Xie, Z. T. Zhou, W. L. Kong and Q-L. Zhou, J. Am. Chem. Soc., 2007, 129, 1868.
P. G. Klimbo and D. A. Singleton, Synthesis, 1994, 9, 979.
J.-M. Becht, O. Meyer and H. Guenter, Synthesis, 2003, 18, 2805.

Fujisawa Pharmaceutical Co., Ltd-US6884868, 2005, B1.
M. K. Deliömeroğlu, S. Özcan and M. Balci, ARKIVOC 2010, (ii), 148.
M. Billamboz, F. Bailly, C. Lion, C. Calmels, M.-L. Andréola, M. Witvrouw, F. Christ, Z. Debyser, L. De Luca, A. Chimirri and P. Cotelle, Eur. J. Med. Chem., 2011, 46, 535. S. Özcan and M. Balci, Tetrahedron, 2008, 64, 5531.
S. E. Denmark, T. Kobayashi and Ch. S. Regens, Tetrahedron, 2010, 66, 4745.
L.W.Ye, X. Han, X.-L. Sun and Y.Tang, Tetrahedron, 2008, 64, 1487.
T. Fujihara, T. H. Xu, K. Semba, J. Terao and T. Tsuji, Angew. Chem. Int. Ed., 2011, 50, 523.
A. Theodorou, G. N. Papadopoulos and C. G. Kokotos, Tetrahedron, 2013, 69, 5443.
J. H. Xie, Z. T. Zhou, W. L. Kong and Q-L. Zhou, J. Am. Chem. Soc., 2007, 129, 1868.
D. H.Hug, J.S. Jeong, H. B. Lee, H. Ryu and Y. G. Kim, Tetrahedron, 2002, 58, 1752.
D. Xiyan, K. Yang, T. Shuang, M. Junying, L. Yaning, Z. Jiao, Z. Dongliang and C. Huanqing, Tetrahedron, 2015, 4634.
D. Strübing, P. Krumlinde, J. Piera and J.-E. Bäckvall, Adv. Synth. Catal., 2007, 349, 1577.
W. Adam, S. G. Bosio, N. J. Turro and B. T. Wolff, J. Org. Chem., 2004, 69, 1704.
S. Serra, Tetrahedron, 2011, 22, 619.
S. Tallon, Ph. D. Thesis, Trinity College Dublin, 2013.
M. Mohamed, T. P. Gonçalves, R. J. Whitby, H. F. Sneddon and D. C. Harrowven, Chem. Eur. J., 2011, 17, 13698.
F. Manoni, Ph. D. Thesis, Trinity College Dublin, 2013.
J. N. Chatterjea, C. Bhakta and T. R. Vakura, J. Indian Chem. Soc., 1972, 49, 1161.
A. Mckillop, D. P. Rao and Synthesis, 1977, 11, 759.
M. Pour, M. Spulak, V. Balsanek, J. Kunes, P. Kubanova and V. Buchta, Bioorg. Med. Chem., 2003, 11. 2843.
A.W. Murray and R.W. Bradshaw, Tetrahedron, 1967, 23, 2333.
B. B. Corson and R. W. Stoughton, J. Am. Chem. Soc., 1928, 50, 2836.
M. E. Jung, J. A. Lowe III, M. A. Lyster and M. Node, Tetrahedron, 1984, 40, 4751.
C. Cornaggia, S. Gundala, F. Manoni, N. Gopalasetty and S. J. Connon, Org. Biomol. Chem., 2016, 14, 3040.
D. C. England and C. G. Krespan, J. Org. Chem., 1970, 35, 3308.
E. D. Goddard-Borger and R. V. Stick, Org. Lett., 2007, 9, 3797
J. J. Soldevila-Barreda, P. C. A. Bruijnincx, A. Habtemariam, G. J. Clarkson, R. J. Deeth and P. J. Sadler, Organometallics, 2012, 31, 5958.
C. Gnaccarini, W. Ben-Tahar, A. Mulani, I. Roy, W. D. Lubell, J. N. Pelletier and J. W. Keillor, Org. Biomol. Chem., 2012, 10, 5258.
B. Kempf and H. Mayr, Chem. Eur. J., 2005, 11, 917.
W. Yang and D.-M. Du, Org. Lett., 2010, 12, 5450.

[^0]: ${ }^{a}$ Determined by CSP-HPLC. ${ }^{\text {b }}$ Isolated yield of the esterified diasteromeric mixture after flash column chromatography. ${ }^{c}$ Diastereomeric ratio determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis.

[^1]: $\overline{{ }^{a}}$ Yield of combined diastereomers determined by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis using p-iodoanisole as an internal standard.

[^2]: * The protic signals (H-7 and H-8) are not visible in DMSO-d 6 .

[^3]: * The protic signals (H-5, H-6 and H-7) are not visible in DMSO-d 6 .

