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Summary

Prediction of fatigue failure in engineering artefacts is becoming increasingly important as 

we enter the third millennium; more catastrophic fatigue failures will occur as engineers push 

the limits of design even further due to demands for greater efficiency. This thesis describes a 

methodology for predicting fetigue feilure in engineering components subjected to high cycle 

fatigue using the finite element analysis method.

The research started fi'om a previous theory known as the “crack modelling method”, which 

considers the whole stress field and models a geometrical discontinuity as a crack. Further 

study of the theory was carried out and improvements were made for application to the short 

crack/notch problem. Because of the difficulty of judging whether a defect in a given 

component would behave as a short crack or not in practice, a new approach was developed. 

The method was still based on a consideration of the stress field of the component, but 

attention was focussed on a small region close to the stress concentration. The method avoids 

the problem because it inherently allows for short crack effects. The basic theory was 

formulated and tested, with respect to standard test specimens, for which data was found 

fi'om the literature. The effect of notch depth, of notch acuity, of notch and specimen type, of 

load ratio, and of material properties on the notched fatigue limit were considered. The 

theory showed good predictions. The implication of this research is that there is no 

fundamental difference between the fatigue limit of an uncracked body and that of a body 

which already contains a crack. The theory was also tested on real components used in 

vehicles, including a crankshaft, camshaft, pump bracket and C-shaped bracket. Good 

predictions were achieved in all cases.

A general methodology was devised which combined the new method, the previous method 

and traditional methods. It is intended that the methodology will meet every possibility 

which could occur in engineering applications. The methodology can be incorporated into 

software which will address the requirement of “design right at first time” for industries.
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Chapter 1 Introduction

Fatigue is the most common cause of failure of engineering structures and components. 

Making reliable fatigue predictions is very difficult because knowledge about fatigue 

mechanisms in all stages of the fatigue process must be developed much further. Despite the 

huge volume of research which has been conducted in this area and many hundreds of papers 

and reports published each year on the problem of fatigue life prediction, it remains the 

principal limitation on the life prediction of components, especially components such as 

aircraft, vehicles, medical devices and machine tools.

The aim of the present research has been to develop methods of analysis for the prediction of 

the high cycle fatigue (HCF) behaviour in engineering components using the finite element 

analysis (FEA) method. Traditional methods, which compute fatigue life on a point-by-point 

basis, could not give a satisfied prediction when applied to high stress concentrations (e.g. 

sharp notches) or to materials of low notch-sensitivity (e.g. cast iron). The reason is that very 

high stresses can be tolerated by a component provided they are restricted to small regions of 

the component and then there is no one to one relationship between stress and life.

The crack modelling method developed by Taylor [1996], which considers the whole stress 

field and models the geometrical feature, such as a notch, a hole and a corner, as a crack, was 

tried in this thesis. Further study was done on the method, such as the path determination, the 

minimum and maximum distance. With these improvements the method was tested using 

some simple specimens from the literature and in-house. The method was also tested on a 

real engineering component which was used by Rover car company. The results were very 

promising in many cases.

However, a problem was identified when short cracks/notches occurred. The crack modelling 

method did not account for the short crack effect in reducing the fatigue strength of the 

specimens or components. The problems are more significant in low notch-sensitive
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Chapter 1

materials such as cast irons, cast aluminium alloys. Several attempts were tried to modify the 

method in order to overcome the difficulties. These included adding a material constant, 

adding a short crack length in a notched body and combining the method with a traditional 

stress-life method. Different modifications were made for different situations and the revised 

method was tested on notched specimens showing short crack effect. The prediction results 

on the simple geometrical specimens showed a good agreement with the experimental data.

However, a problem arose when feced with real engineering components with complex 

geometry. The difficulty was how to know whether a given geometrical feature would be a 

short crack problem or not. We went back to basics and made big modifications to the 

previous theory. The new theory was devised based on a consideration of the stress field of 

the component, but now attention was focussed on a small region close to the stress 

concentration. Three methods were formulated: the point method, the line method and the 

area method. Each of them has its own advantage. They inherently allowed for the short 

crack effect, so they should avoid the problem found in the previous approach theoretically.

Ten methods including traditional stress-life methods, the crack modelling method and its 

revised versions and the new methods were tested on standard test specimens, for which data 

can be found from the literature. The effect of notch depth, of notch acuity, of notch and 

specimen type, of load ratio, and of material properties on the threshold stresses were 

considered. The theory showed good predictions on 90 percent of forty-six data sets. 

Furthermore, four types of real components were used for testing thanks to Rover Car 

Company and GEC Ltd. Some of the components had surfece effects and for some of them 

we needed to measure the fatigue threshold. All these difficulties were overcome and good 

results were obtained, showing that the new methods can be applied to real components.

A general methodology was devised which combined all the methods. It is hoped that the 

methodology will meet every possibility which could occur in engineering applications. The 

theory was written into computer software to interfece with FEA, to meet the requirement of 

“design right at first time” fi-om industries. Some problems still remain and need further 

work.
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Chapter 2 Review of the Literature

Engineering structures invariably contain stress concentrations which are the principal sites 

for the inception of fatigue flaws. The stress and deformation fields in the immediate vicinity 

of the stress concentration have a strong bearing on how the fetigue cracks nucleate and 

propagate. Continuum approaches on this topic can be divided into four categories. They are 

traditional approaches (which include stress-life, strain-life and critical distances), fracture 

mechanics concepts, crack closure & defect effects and the short crack problem.

The effect of stress concentrators on fetigue limit and high-cycle endurance has traditionally 

been studied using notches. The simplest approach -  using the elastic stress-concentration 

fector Kt -  is reasonably accurate for blunt notches under low applied stress, but ATt is found 

to diverge from the experimentally measured fatigue strength reduction, Ki, when notches are 

sharp or when the notch depth, D, is small. Relevant factors include the existence of the 

plastic zone and the relatively small stressed volume ahead of a sharp notch.

2.1 Traditional Approaches for Prediction of Fatigue Failure

2.1.1 Stress life method

The stress-life approach is used for high-cycle fatigue failures ahead of stress concentrations. 

High cycle fatigue (HCF) is caused by low, nominally elastic fluctuating stresses. The 

prediction of fatigue failure is made by appropriately modifying the smooth specimen 

(unnotched) endurance limit.

The theoretical elastic stress concentration factor Kt, which relates the local stress ahead of 

the notch tip to fer-field loading, is defined as the ratio of the maximum local stress oinax to 

the nominal stress a. Kt is a function only of the component geometry and loading mode and 

is available from handbooks [Peterson, 1953; 1974]. For the stress at the end of an elliptic 

hole [Smith, 1982],

3



Chapter 2 

(2- 1- 1)

where p  is the radius at the ends of the ellipse and D is the depth (half width) of the elliptical 

hole.

The stress-life method is unsuitable for situations where considerable plastic deformation 

occurs ahead of the stress concentration.

2.1.2 Strain life method

The local strain approach relates deformation occurring in the immediate vicinity of a stress 

concentration to the remote stresses and strains using the constitutive response determined 

from fetigue tests on simple laboratory specimens. The method predicts the life expectancy 

of a machine part which is under low cycle fatigue loads. Low cycle fatigue (LCF) is caused 

by high, fluctuating stresses and strains. The method has its beginning in the early 1950s. 

Today it is still in frequent use by machine designers in LCF and HCF analyses and it is 

recommended by ASME [ASME, 1989], SAE [Rice, 1988] and ASTM [ASTM, 1980].

The strain concentration factor is the ratio of the maximum local strain to the nominal 

strain. The stress and strain concentration factors are of the same value when only elastic 

deformation occurs at the tip of the notch. However, once the material yields at the notch tip, 

the stress and strain concentration factors take different values. Under conditions of plastic 

deformation, the theoretical elastic stress concentration factor is given approximately by the 

geometrical mean of the stress ATcrand strain concentration factors K .̂ This is the well-known 

Neuberrule [Neuber, 1961]:

Satisfactory predictions of the fatigue behaviour in notched members of a wide variety of 

steels were provided by modifying and applying the rule to fatigue loading conditions 

[Topper et al, 1969; Dowling et al, 1977], These analyses can be divided into two steps;

4



Chapter 2

First, the local stress and strain histories at the notch tip must be known. Second, the fetigue 

life that can be expected for the local stress and strain histories must be determined. For the 

first part, either simple analytical expressions or detailed finite element simulations o f the 

notch tip deformation (using constitutive laws and hardening rules) are developed to relate 

the local stresses and strains to far-field loading. Alternatively, the notch tip deformation is 

experimentally monitored with the aid of strain gauges or other displacement/strain 

measurement techniques.

2.1.3 Critical distance methods

Under fatigue loading conditions, the elastic stress concentration factor is replaced by the so- 

called fatigue notch factor;

Kf = unnotched bar endurance limit /  notched bar endurance limit (2-1 -3)

Fatigue experiments suggest that notches produce a lower stress concentrating effect than 

predicted by theoretical elastic analysis, so Ki < ATt; K{-> Kt for large notch-root radii and for 

higher strength materials. ATf is determined empirically fi'om experimental measurements. The 

critical distance method, which has a long history [Peterson, 1959; Neuber, 1958; Mitchell, 

1979], is based on the idea of averaging stresses over some characteristic volume, which is 

material-dependant. Thus for a notch, especially if it is sharp and/or small in size, the stress 

range when averaged in this way will be significantly smaller than the hot-spot value. 

Normally the approach is simplified so that in practice one examines the stress at a given 

point (located a fixed distance fi’om the hot-spot) which is assumed to be an estimate of the 

averaged stress: alternatively the solution can be expressed in terms of the hot-spot stress 

combined with the local stress gradient [Siebel and Stieler, 1955]. Methods of this kind are 

popular in industry because they are easy to use and do not require test data except the plain- 

specimen fatigue limit; also they can be easily adapted to FE analysis [Sheppard, 1991]. The 

main problem, however, is the size of the critical volume or distance. This is very material 

dependant, and can only be found using empirical rules, usually based on the material’s UTS. 

Examples of these methods are as follows;

5



The Peterson equation for ferrous wrought alloys has the form

Chapter 2

(2-1-4)

... where is a constant whose value depends on the strength and ductility of the material

and p  is the notch-root radius. By considering the threshold condition for a crack of length oo 

at the notch root, Klesnil and Lucas [1980] derived an equation as follows;

where is the EHaddad crack-length constant (see Section 2.4.2).

2.2 Fracture Mechanics Methods

The most successful application of the theory of fracture mechanics is in the characterisation 

of fatigue crack propagation. One of the known methods is the method of linear elastic 

fracture mechanics (LEFM). It is designated to compute the crack propagation based on the 

fiindamental assumption that the material is linearly elastic. This method basically 

approaches the crack propagation problems in 2-D space. For more complex cases an 

adaptation of the basic correlations is used. A very important parameter, called the stress 

intensity factor (SIF), was introduced, which signifies the relationship of three factors; the 

geometry of the plate, the loading, and the length of the crack. The stress intensity factor is 

defined as follows

In the above, F  is a compliance function that describes the geometry of the part, cris a stress 

in a remote distance which designates the loading and a is the crack length. The crack growth 

can be expressed in the form of

^ \  + 4 . 5 a J p (2-1-5)

K  = (2-2- 1)

6
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(2-2-2)

where C is a constant factor, AK  is the range of the stress intensity factor and n an empirical 

exponent. The equation is known as the fatigue crack propagation law [Paris and Endoyan, 

1963], Crack propagation ceases if AK < AKth, the threshold value, which depends on the 

load ratio, i? [Taylor, 1989]

2.2.1 Smith and Miller m ethod

Smith and Millers model [Smith and Miller, 1978] can be used for the prediction of fatigue 

failure on notched specimens including the prediction of non-propagating cracks. It is 

illustrated in Fig. 2.2.1, concerning notches with variable radius and constant depth D. We 

called it the Notch Method (NM). For low Kt (between A and B) the fetigue limit is given by

where Aoo is the fetigue limit of plain specimens and Aaon is the fetigue limit of notched 

specimens. For high Kt (between B and C) the notch is assumed to behave like a crack, so 

the fatigue limit is given by

(2-2-3)

(2-2-4)

Non-propagating cracks will occur if the stress is below this value.

7
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X   Typical experimental resiills

H - - -  '

Failure zone

b<
B  '

1.0
Stress concentration &ctnr

Fig. 2.2.1 The boundary conditions between failure and non-failure of variously notched

specimens

This model gives good predictions for many materials such as mild steels and alloy steels 

[Taylor, 1994] in laboratory tests.

The curve will move up or down in the figure if the notch depth decreases or increases for a 

component. So there is not a fixed critical value for the varying notch depths. However there 

will be a critical value of the fector, K*t, existing at point B in the figure for a certain notch 

depth, D. At that point, both Eqs. (2-2-3) and (2-2-4) should give the same predictions. So the 

critical value can be determined by

(2-2-5)

So for elliptical notches, for example;

AoF-yJnD
(2-2-6)
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Chapter 2

where p* is a critical value of the notch tip ratio for the given D. Eq. (2-2-6) deals not only 

with the material properties (fatigue limit and material threshold) but also with geometry 

characteristics.

The value of p* can be defined directly using Eq. (2-2-6), if the material properties, such as 

fatigue limit and material threshold, are known. This is quite useful for engineering design. 

Normally Eqs. (2-2-3) and (2-2-4) are both conservative so they can be used simultaneously 

at the point B in Fig.2.2.1.

A problem that remains is that this method could not be directly employed for components 
that do not contain notches, but instead have comers or other geometric features where the 

stress concentration occurs. This is because neither D nor F  can be defined in these cases. 

This greatly reduces the use of this method in engineering applications.

2.2.2 Crack Modelling Method

The crack modelling method [Taylor, 1996] is an extension of the Smith and Miller model. 

This extension made the model available for the prediction of engineering components not 

only with notches but also with other geometric features.

The method examines the stress field in the region of the stress concentration, and compares 

this with the stress field that is knovm to exist around an ideal crack. Figure 2.2.2 describes 

the approach schematically. From an FE model of the component, loaded with some system 

of loads, L, a plot is obtained of stress as a function of distance, r, measured fi'om the point of 

maximum stress. The curve in the plot was named as the Stress-Distance curve or a-r curve 

for short. The curve is compared with the stress-distance plot from an ideal crack; the 

particular crack geometry chosen is the one examined by Westergaard [1939]: a central, 

through crack of length 2a^, in an infinite plate subjected to a tensile stress Ow. This stress 

field is described by

(2-2-7)
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The values of cr„ and can be varied to obtain a best fit between the stress-distance curve 

of Eq. (2-2-7) and the curve obtained from FE data. When the best fit has been found, the 

appropriate K  value is given by

K  =  (2 -2-8)

This method assumes that if the equivalent AK  is less than the threshold value of the material, 

at the appropriate R  ratio, fetigue feilure will not occur.

The great advantage of the method is that it uses fiucture mechanics concepts without 

introducing a crack into the component. It examines the stress distribution in the region of 

hot spots just from linear-elastic FE analysis and just uses standard material properties such 

as the material threshold. No real crack model is needed. No plastic zone analysis is needed. 

All these greatly reduce the cost of the prediction.
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lifiiSiMIII Component FEA 
H Applied Loads, L

Stress
^Ikid^Iioads.L

X‘ r  X
Stresses along X-X' (S-D curve)

Centre-Cracked Infinite Plate

Stress

Stress Inteosit;, K

Stresses along Y-Y*

Best ft ^ves a K prediction 
correspondiogto loads L

Fig. 2.2.2 Schematic illustration of the methodology used in the crack modelling

technique

2.3 Consideration of Crack Closure and De^ct Effects

2.3.1 Newman’s model, considering crack closure

Fatigue crack closure is understood to play an important role in many aspects of fetigue crack 

growth (FCG) [Elber, 1968], Although closure is not equally important in all FCG problems, 

and although closure does not provide a complete explanation of every problem where it is 

important, the closure phenomenon is an intrinsic feature of crack tip behaviour that must be 

considered in many problems. The elastic-plastic finite element (FE) method has been used 

successfully to study fatigue crack closure for more than twenty-five years [McClung, 1999],
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The earliest investigations of closure based on the finite element method were published 

independently fi-om 1973 to 1977. One of them is Newman’s model [Newman, 1974; 1981; 

1982; 1994], which is called a plasticity-induced crack-closure model. He believed that 

crack-closure effects are also one of the key elements in small-crack growth. His model is 

based on Elber’s crack-closure phenomenon [Elber, 1970] and the Dugdal model [Dugdale, 

I960], Crack-opening stresses were calculated in the model. The J-integral [Rice, 1968], one 

of the commonly used parameters for non-linear crack-growth analyses, was used to define 

an equivalent plastic stress intensity factor in the elastic-plastic firacture mechanics regime. 

The model agreed well with test data on unnotched and notched specimens made of two 

aluminium alloys [Wu and Newman, 1993].

Many real closure problems are 3-D, but the computational expense of FE closure analysis 

has limited most previous investigations to 2-D. Chermhimi et al. [1988; 1989] performed 

the first 3-D FE closure analysis, studying closure through the thickness of a centre-cracked 

plate, and more recently publishing some very elementary results for a semi-elliptical surface 

crack [Chermhimi et al., 1993]. They generally found higher opening levels at the specimen 

surface, similar to plane stress behaviour, and lower opening levels in the specimen interior, 

similar to plane strain behaviour. As computational power continues to increase, 3-D FE 

closure analysis should become more practical, and many important problems are waiting to 

be solved. However, careful study of 3-D modelling issues will be required before the results 

can be fiilly trusted.

2.3.2 Murakami and Endo’s model: considering defects and hardness

Murakami and Endo [1983] proposed a model, which considered the defect effect, by 

introducing a new geometrical parameter ^jarea for two-dimensional and three-dimensional 

defects. This parameter is based on both microscopic observation of cracking fi-om small 

surface defects and 3-D numerical stress analysis. From their experiences, they derived the 

following formula; a^-yjarea = c with n « 6, where a ,̂ is the rotating bending or tension-

compression fatigue limit; yjarea is defined as the square root of the defect area obtained by
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projecting a defect or a crack onto the plane perpendicular to the maximum tensile stress, n 

and c are constants that have to be determined through fatigue tests.

The choice of ^jarea comes from stress intensity factor considerations. Its application has 

been widespread, not only to the fatigue problems of small cracks and holes, but also to those 

of surfece scratches and roughness, non-metallic inclusions, corrosion-pits, carbides in tool 

steels, second phases in Al-Si eutectic alloys and spheroidal graphites in cast irons.

Murakami and colleagues [Murakami et ah, 1990] further revised the model and proposed 

the following equations:

Act̂ = 1.43(//,+120)(>/W a)'^* (2-3-1)

AA:̂  = 3.3*10-'(//,+120)(V^)''’ (2-3-2)

Here is the Vickers micro-hardness; AKth = threshold stress intensity fector range under 

the stress ratio R = -I (MPa m’”̂); ^area is in fxm. The extended equation to predict the

fetigue limit for various values of stress ratio R is expressed by including a fector,

in Eq. (2-3-1), where a  = 0.226 + //v x 10"̂ . In predicting Aoy, by using Eq. (2-3-1), no

fatigue test is necessary. It is sufficient to measure the values of -\larea and Hy and to 

estimate R at the place where the defect exists. They reported that the prediction error was 

less than 15% for //v = 100-740.

In 1991, Endo [1991] proposed a modified equation of this method for nodular cast iron. 

Instead of introducing a parameter C, he used the matrix hardness and the percentage of 

graphite to predict the fatigue limit ^cr^and AIQh- This method therefore unifies both effects 

of defects and matrix structures:

Acr„ -1.43 * /(I -  /J  +120) * (2-3-3)
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where //v, gross is the gross Vickers hardness value including the contribution o f graphite 

nodules and fv is the volume fraction of graphite. On the other hand, AKth is defined as 

follows:

^K^=3.3*\0-^ + (2-3-4)

Murakami and Endo’s model is valid over a sjarea range which is dependent on the

material. The valid upper limit of ^area  is considered to be ~ 1000 nm. [Murakami and 

Endo, 1994],

2.4 Short Crack Problems

The fatigue life o f a structure goes through several stages from crack initiation, through crack 

propagation, to the final failure. Miller [1993] indicated three categories o f crack growth 

regimes for the whole period. They are the micro-structural fracture mechanics (MFM) 

regime, the elastic-plastic fracture mechanics (EPFM) regime and the linear elastic fracture 

mechanics (LEFM) regime. In the MFM and EPFM regimes, cracks are short and require a 

high stress range to propagate. Suresh and Ritchie [1984] suggested the following definitions 

by which short cracks can be broadly classified; microstructurally small, mechanically small, 

physically small and chemically small cracks. “Small cracks” and “short cracks” are often 

used interchangeably. However there is sometimes a distinction between the two cases. The 

former definition is employed for flaws that are small in all three dimensions. The latter types 

are taken to denote through-thickness flaws that are small in all but one dimension.

The prediction of fatigue failure for such short cracks results in consistently lower crack 

growth rates than the experimental data [Suresh, 1991] using standard threshold and Paris 

growth law concepts. This has been commonly attributed to several fectors, including the 

influence o f microstructure, plasticity-induced closure, roughness-induced closure and crack 

face bridging/interference.
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Over the past decade, the propagation of short cracks in fatigue has received considerable 

attention. The behaviour of short fatigue cracks was reviewed in three books [Miller and de 

los Rios, 1986; Ritchie and Lankford, 1986; Suresh, 1991]. Quantitative attempts have been 

used to try to explain the propagation and have achieved some success in the correction of 
the propagation behaviour.

2.4.1 Kitagawa and Takahashi Curve

Kitagawa and Takahashi [1976] presented a figure similar to Fig. 2.3.1, which shows the 
boundary between propagating and non-propagating cracks.

AK. = Y A a(* a)* '^
O

LEFM or loi»g crack-low 
.stiess re^ne

physically small cracks
short cracks

shoit crack resiine

logCrack Leii;^h a

Fig.2.3.1. Schematic of the Kitagawa-Takahashi curve showing the boundary between

propagating and non-propagating cracks

The line given by AKth represents the threshold condition below which a crack should not 

grow if LEFM assumptions are valid. Obviously they are invalid when small scale yielding 

conditions are exceeded and this occurs to a greater or lesser extent when the term Aa 

exceeds about two thirds of the cyclic yield stress, â y, in a reversed stress test. A second line 

on the Kitagawa-Takahashi plot is the fetigue limit itself Obviously LEFM is not applicable 

at these levels of stress. An examination of the figure reveals why cracks can grow at levels
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less than AKth, but it should also be appreciated that cracks have been reported as growing on 

surfaces of plain specimens at stress levels below the fatigue limit. However, such cracks 

eventually stop propagating. This has made some people modify the curve in the 

microstructurally short region.

Several other lines can be drawn on the plot, i.e., d\̂  (J2, d ,̂ etc., to represent the size of 

microstructural units such as grain sizes, inclusion spacing, precipitation spacing, surface 

finish, etc., and these too will be expected to affect crack growth behaviour. The lengths at 

which the experimental data points merge with the plain specimen lim it and the long-crack 

threshold were defined by Taylor and Knott [1981] as a\ and uj, respectively. The so-called 

the short crack problem is concemed with any crack length that is within a\ and az.

But at crack lengths beyond microstructural effects, i.e., a  >«2, it is to be expected that a 

continuum mechanics approach w ill represent crack growth behaviour. However, LEFM  

analyses of crack tip fields may not be o f sufficient accuracy at these stresse levels to 

describe fatigue crack growth behaviour permitting correspondence between large structures 

and small laboratory specimens.

Therefore, fatigue cracks fall into three categories:

(1) microstructurally short cracks: a < oi;

(2) long cracks sometimes termed as LEFM-type cracks: a>az;

(3) transition length cracks: a \ < a <  0 2 .

The first category o f short cracks require high stresses for continuous propagation to failure, 

i.e., A <j>  A cto. The second category is essentially for cracks in low elastic stress fields. The 

third category is essentially the short-crack category.

2.4.2 EIHaddad Model: parameter ao

ElHaddad et a l proposed a method for dealing with the short crack problem [EIHaddad et a l ,  

1979; 1980; EIHaddad and Miettinen, 1982]. The following expression was proposed in
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which the elastic stress intensity factor (SIF) of a crack is modified by giving it an effective 
length of (a+ao)

AK = A(TyJn:{a + a^) (2-4-1)

where A ct is the applied nominal stress range, and a o  is a constant for a given material and 

heat treatment. Actually it was Smith [1977] who first introduced the concept of the 

parameter Oo and named it as intrinsic crack length. The threshold stress at a very short crack 

length will approach the fatigue limit of the material ('AcTo), based on small smooth 

specimens, and from Eq. (2-4-1) the threshold stress intensity AKt/, can be obtained as

These equations assume a geometry fector, F, equal to unity. Following this model, for any 

crack of length a, the threshold stress Aath is then obtained as.

This relationship was tested with a series of experiments on steel and aluminium alloys by 

the authors. Short cracks were initiated at notches in these experiments and then they 

machined away the notches and determined the threshold stress levels for the cracks. Because 
cracks fi-equently start from notches, brittle materials that often break due to crack growth 

were sometimes referred to as notch sensitive. As stated in their papers, agreement of the

(2-4-2)

or

a.O (2-4-3)

(2-4-4)
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prediction of the model (Eq. (2-4-4)) and the test data were very good. Taylor and O ’Donnell 

[1994] also tested this theory and found it to apply to a wide range of materials.

For many materials such as mild steels, alloy steels and other alloys, the values of Oo are very 

small [Ting and Lawrence, 1993] and can be neglected compared with notch depth. For 

example, A533B Steel, ao=0.0762 mm; AISI4340 Steel, ao=0.0508 mm; AL2024-T351 Alloy 

[DuQuesnay et al, 1986], Oo =0.1016 mm. Therefore, when K ^K ^ , the sharp notched 

specimens are ‘crack-like’, and Smith and Miller’s model is quite efficient for predicting the 

fatigue failure. However, the correlation with experimental data was found to be very poor 

when Smith and Miller s model was used to test for the data of some other materials, like cast 

iron. Taylor and colleagues [Taylor et al, 1996] solved this problem by introducing a 

material constant, Uc. The notch depth is augmented by it, thus modelling the notch as a crack 

of length (D+ ac). It was shown that the value of Oo is similar to the short crack parameter Oo.

In ElHaddad s model the physical meaning of a„ is unclear. However it is a reasonable 

approximation. And the addition of the geometry factor, F, which contains Oo, to Eq. (2-2-8), 

may be better for getting a material constant, ao. Combinations of Smith s model and 

ElHaddad s model could be used for prediction of fatigue failure in notched specimens or 

components.
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Chapter 3 Further Study of the Crack Modelling 
Method

3.1 Introduction

The research in this thesis started from the crack modelling method (CMM). The previous 

work made by Taylor and his colleagues [Taylor and Lawless, 1996] had showed its success 

in 2-D problems and potential advantages in application on engineering components. Further 

work needed to be carried out in order to make the technique more suitable for a wide range 

of applications for both scientific and engineering usage. This work included the study of the 

path distance effect, the mesh density effect, and the path orientation effect. In this chapter, 

all these effects will be examined.

3.2 The Focus Path

The prerequisite for the application o f CMM is that the geometric feature of a specimen or 

component has some features of a real crack, such as a I Nr  singularity. The method 

examines the stress field in the region of this feature. Furthermore only one path on which a 

stress-distance (o=-r) curve is determined in this region is needed for evaluating the stress 

intensity from the FEA, A K fe .  This specific path is defined as the “ focus path”. Although 

previous work had shown some characteristics of the focus path, it is still worth discussing 

how to choose this path, in order to develop a systematic way of choosing this path which 

will be used throughout this work.

3.2.1 Path orientation, the mle of lowest A K fe

The path for CMM is a straight line which radiates from the stress concentration point. 

Assuming that a fatigue crack is loaded in Mode I, where the crack’s sides move 

perpendicularly apart, the opening stress, i.e. the maximum principal stress (MPS), will drive 

the crack to grow. So the path direction should represent the direction on which the crack will 

grow in general. Previous work has confirmed that this is a correct way to determine the path
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direction [Taylor et al, 1997], In that case, the direction of crack growth could be understood 

by examining a failed component. The prediction agreed well with the experimental data usin 

the path direction. Also if the MPS direction is perpendicular to the crack front, the path 

direction should be normal to the MPS direction. It is true that the MPS direction will change 

during the crack propagation. Keeping the path normal to the MPS direction from the 

beginning to the end will be very difficult, and in doing so the path will be a curve instead of 

a straight line. However, we will not make the path like this. We concentrate on the total life 

of a component or specimen, in which crack initiation and early growth takes the most part. 

We assume that the MPS is the main driving force for fatigue failure. So the MPS direction 

here only refers to the MPS direction at or near to the stress concentration place.

Experimental testing was carried out on a single-edge notched specimen, which was 

subjected to pull-push loads; the notch depth was 3 mm; the material of the specimen was a 

cast Al-alloy, LM25; the fetigue limit of plain specimens ACo was 77.48MPa; the threshold 

AKth was 5.97 MPa m*̂  ̂[Wang et al, 1999]. The stress field was analysed using the finite 

element method. Fig. 3.2.2 shows MPS contour plot of the specimen. In this case, p , which is 

defined in Fig. 3.2.1, is equal to zero. Examining a foiled specimen, a crack surface was at a 

symmetrical plane a  = 0, as shown in Fig.3.2.1. So the path should be at a  = 0. A series of 

lines are drawn with variable a  values for comparison. Fig. 3.2.3 shows the Aa-x  curves at 

variable a  values. Fig.3.2.4 shows the effect of the path orientation on value of AKfe, using 

applied load equal to the experimental fatigue limit.

At or = 0, the prediction error is only 7.03%. It is evident that our assumption is right. 

Moreover, the value of a  varied from 0° to 60° without any large change in A K fe-, and even at 

60° the change in AK/^ was only 15%. This illustrates that the CMM is not sensitive to the 

path direction. This character is very good for applications.
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Fig. 3.2.1 Path choice on a 3D model of a single-edge notched specimen

Fig.3.2.2 MPS contour plot of a single notched specimen and angle definition in 2D model
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Fig.3.2.4 Path direction eflfect on predicted result using CMM

Considering the question that a crack path is unknown in a body, how do we choose the path 

orientation on a MPS contour plot? There should be a unique path for a given case

22



Chapter 3

theoretically; if the value of AKfe from the path is more than the threshold value, feilure will 

occur. For the above example, the path is at or = 0, which is normal to the MPS direction. 

How does this path differ from the others?

2D Stress Fields

The AcF-r curves in Fig.3.2.3 illustrate important information. For clarity only three curves, 

« =  0°, 30° and 60°, are shown. A distinguishable difference can be seen. Starting from an 

identical point, the hot spot, each curve has the same maximum stress value; ending at points 

where stress field tends to be uniform, the curves tend to be overlapped after a distance. The 

difference among each line is that the rates of the stress reduction with increasing r  value are 

different. Increasing a  reduces the rate of reduction; the highest rate is at a  = 0. All these 

result in variable AK^e values when using CMM. The variation in a certain region is 

monotonic; a curve with a higher rate brings a lower AKe^ value. On the path a  = 0, the 

stress in the A ct ~  r  curve decreases fester than from a path drawn at any other angle, as 

shown in the figure. This results in the lowest value of AKfe from any other path. We call this 

phenomenon the “Rule of lowest AKfe'.

For a component with a complex geometry, a set of stress/distance curves would be drawn 

from the stress concentration point and the CMM could give a AKpe value on each curve. 

However, only one from the path that is normal to the MPS direction is the right answer. The 

rule of lowest AKfe can be used to identify the MPS direction and give the solution at the 

same time.

3D Stress Fields

hi order to test the rule being available in a 3D stress field, two examples are shown below. 

The first example is a 3D model of the single-edge notched bar shown in Fig. 3 .2.1. The size 

of the bar is 12x18x140 mm. A tensile stress of 60 MPa is applied to the end of the bar. The 

stress concentration place is located at the point F which can be seen if the figure, actually on 

both sides. From this point, a series of lines with variable a  and p  are drawn on the MPS
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contour plot. Fig.3.2.5 shows the evaluation of A K fe values using CMM on variable lines. 

The path of or = 0 and P = 0  produces the lowest A K fe  as expected. It proves that the Rule of 

lowest A K fe  is right in this case. Also the results show that the diflference on each path is 

small.

In a general 3D case where the crack path is not known, the path choice can be divided into 

two steps; the first step is drawing a plane which is normal to the MPS direction; the second 

step is drawing a series of lines in this plane, radiating fi-om the hot-spot, and then selecting 

the line on which the A K f e  value is found to be lowest. Fig. 3.2.6 shows the detail of the path 

choice. The body is subjected to a load P; the hot spot is at F; n-n’ is the plane normal to the 

MPS direction.
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Fig. 3.2.5 Evaluation of A K fe on the 3D model
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Fig. 3 .2.6 Schematic illustration of choosing the path

The second example is a notched bar subjected to a torsion load (actually an automotive 

camshaft). The details of the fatigue test and the finite element analysis will be shown in 

Section 7.3. Fig. 3.2.7 shows the schematic illustration of the path choice in this situation. 

Considering a brittle material bar, such as a cast iron, subjected to torsion, M, the crack 

plane, n-n, is 45” from an axis of the bar. This plane is normal to the MPS direction 

according to stress analysis. Assuming the fatigue failure starts from a point F, the stress 

condition at the point is illustrated in the figure; a series o f lines are drawn radiating from this 

point; then the AKfe values are evaluated using CMM. It is expected that the path of 0" 

will give the lowest A K f e  value. On the camshaft, the same process was carried out. The 

evaluating AKfe values on each line are shown in Fig. 3.2.8. Because a notch existed, the 

path which gives the lower AKfe value is not tit 0°; it is about at /? = 15°. However the 

difiference in AKfe between the two lines is very small, only 3.7%, Even at /? =  45°, the 

difference is still only 9.1%. This proves again that CMM is not sensitive to the path 

orientation. The threshold AKth is 15.96 MPa so the prediction is very good in this case.
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Fig. 3.2.7 Schematic illustration of the path choice in a bar subjected a torsion load,

assuming a stress concentration at F.
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Fig. 3 .2.8 Evaluating AKfe values on variable lines for the camshaft 

3.2.2 Minimum distance

For any Aa-r curve, the focus path is that part of the curve to be examined, which will be 

limited by the minimum distance r„,i„ and maximum distance rmax, shown in Fig. 3.2.9. 

can not be zero for the following reason. CMM produces a best fit between a curve fî om the
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Westergaard equation and a Acr-r curve from the path mentioned above. The fit error, defined 

as the percentage difference between the area under the crack curve and the area under the 

Ac-r curve, is minimised. Eq. (2-2-6) gives a stress value of infinity at r  = 0, whereas the FE 

data gives a finite stress at this point. If were zero, the fit error would be infinite. This 

implies that the comparison of curves must begin at some value, rmm, shown in Fig. 3.2.9. 

Theoretically, rmm should be as small as possible, but avoid being zero. Numerically, it is 

impossible due to the limit of the FE mesh density. Three examples will now be highlighted, 

which show the effect of on different materials, geometry and loads.

Westergaard function

Ao-r curve of a component
<

r r

Fig. 3.2.9 Definition of the minimum distance and maximum distance

The first example is a single-edge notched specimen, as shown in the last section. The 

previous work suggested using r„,„ = Oo [Taylor, 1996]. The underlying logic of this was that 

short fatigue cracks would initiate from the notch at an early stage. These cracks would 

typically grow to a length «« and would disrupt the stress field over this distance. In this case, 

Oo is 1.89 mm and the error of the prediction is only 3%, as shown in Fig. 3 .2.10. This result 

supports the suggestion. However, in a range of 0.14 mm to 4 mm, the variable rmm does not
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bring much difference on the prediction for a constant w  of 17 mm. Compared with AKth, 

the biggest difference is less than 17%. It implies that CMM is not sensitive to the choice of 
rmin, at least in this case.

Tension
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Fig. 3.2.10 Effect o f o n  the prediction ofLM25 specimen subjected to tension load,

f  max 1 "7 mm

The second example is a mild steel bar subjected to rotating bending [Frost, 1974; Smith and 

Miller, 1978]. The specimens were machined into a 12.7 mm outside diameter containing a 

circumferential vee-notch 1.3 mm deep and 0.1 mm root radius; i? = -1; AKth — 6.5 MPa m ;
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ao = 0.05 mm. Fig. 3.2.11 shows the r„,„ efifect on the evaluation oiA K ps, with a constant 

of 5.05 mm. This data will be used in a later chapter.

Bending
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Fig. 3.2.11 Effect o f on the prediction of a mild steel specimen subjected to bending,

= 5.05 mm

The third example is the camshaft subjected to torsion loads, as mentioned in the last 

section. The material constant ao of this cast iron is 2.24 mm. Fig. 3.2.12 shows the 

variation of AKfe when increasing rm,„. The r^ax value is kept as a constant, 11.25 mm. 

Again a good prediction is obtained when rmm -  do. Starting at 0.093 mm, the valid 

region for rmm extends to approx 3.5 mm. In this region the error from any rmm is less 

than 20%,
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Torsion
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Fig. 3.2.12 Effect of rmm on the prediction of a camshaft subjected to torsion load,

11.25 mmmax

In general, these three examples include three kinds of materials, three kinds of geometries

from the previous examples, all indicate a common trend, i.e. CMM is not sensitive to the 

choice of rmm. The conclusion supports Taylor’s suggestion. Furthermore, any selection of 0 

< r„i„ ^  «o is valid in all these situations.

3.2.2 Maximum distance

include all information about the stress concentration, i.e. the part over which the geometrical 

feature raises stresses above their nominal values. However, in the general case of complex 

component geometry, it may not be clear what these nominal stress values are. With this in 

mind, a series of r^ax values was analysed on a cr-r curve in order to find a general rule.

Fig. 3.2.13 shows three typical Acr-r curves; (a) is a common curve firom a stress 

concentration in a tensile stress field, such as a single notch plate subjected to tensile stress; 

(b) represents a curve from more than two stress concentrations in a body; (c) behaves as a 

body subjected to bending; the stress goes negative beyond a neutral axis.

and three kinds of load conditions. They cover a wide range of applications. The conclusions

The choice of rmax also requires some discussion. It is expected that the focus path should
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According the analysis above and the previous work, it was decided to use the entire tensile 

stress distribution for (a) and (c). For (b), it is necessary to examine the curve; the focus part 

should be in the region where the <T-r curve is consistently decreasing; several values should 

be tested if possible; the final rmax value should give the lowest K  value. The three examples 

are still used to verify the decision above. We did not have an example for (b) at this stage, so 

this was not considered.

Fig. 3.2.14 shows the predicted AKfe values of the first example, the LM25 single-edge 

notched specimen. AKfe almost remains a constant on variable Kmax from 1 mm to 17 mm; the 

fit error also keeps about the same level, between 7 and 11 %; the biggest prediction error 

comparing with the test data is less than 15%. This means that the choice of rmax does not 

have much effect in this case.

The second example is used to verify the type (c) Aa-r curve, which is from a body subjected 

to bending load. Due to the existence of bending loads, the remote stress in the notched mild

0<

Fig. 3.2.13 Typical Aa^r curves from stress concentrations
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steel bar did not tend to some unique value, but continued to decrease, passing through zero 

at the neutral axis and becoming negative. In this case the neutral axis was 5.05 mm away 

from the notch root. Fig. 3.2.15 shows the A a - r  curve and the best-fit curve at Vmax -  6 mm; 

the former goes negative whereas the latter still keeps positive; the fit error is 40%. This 

implies that CMM treats negative as zero. Fig. 3.2.16 shows the A K fe changing with variable 

rmcDc- The prediction error in a range of Vmca from 1 mm to 6 mm is less than 20%. This proves 

that CMM is not sensitive to the rmax choice in the bending condition.

10 T

o
(0
u- <M

IIH
in0)
s

8 ■
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2

■ ■

A K  fB  
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I - I  I L.

10
r max mm

15 20

Fig. 3.2.14 Predicted A K f e  values on variable r„ax for the single-edge notched specimen
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Fig. 3.2.15 A g - r  curve and its best-fit curve on the notched mild steel bar
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Fig. 3.2.16 Predicted values on variable r„ax for the notch mild steel specimens 

subjected to rotating bending, rmm = 0.01mm
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The third example, the camshaft subjected to torsion, is a blunt notch sample; the notch root 

radius is 1.5mm with a 1mm depth. In a range oirmca from 1mm to 11.5 mm, the change in 

AKfe was small, as shown in Fig. 3.2.17. On a constant value of = 0.3mm, the prediction 

error on each selected point is less than 13.5%. This means that r^ax effect is very small and 
can be neglected in this case.

Torsion

o  n  u.
>> ^ m  <

= I
^  0= 14 -E
lA
«A
£

20 - r  

18 

16

12 -E 

10

■ A K  FE 
-Threshold

■ ■ ■ ■ H
0 5 10 15

r max itiin

Fig. 3.2.17 Prediction error on variable r^ax values for a camshaft under torsion,

r™„=0,3 mm

In general, the results from all the examples, including different materials, load conditions 

and geometry, illustrate that rmca does not affect much the fatigue failure prediction when 

using CMM. The results support the suggestion for the types (a) and (c) made earlier in the 

section. The suggestion for the type (b), which will not be met in this thesis, still needs to be 

verified.

3.3 The Effects of Mesh Density

In this thesis most stress analyses were done using finite element modelling (FEM). The 

prediction accuracy will thus be affected by the element mesh density. Previous work showed 

that CMM was not sensitive to mesh refinement. In one case an increase in mesh density 

which raised the value of the hot spot stress by 32% had a negligible effect on the prediction 

[Taylor et al, 1999],
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The concept of a general mesh density in a 2D model includes densities in two directions; 

around the root of the notch, i.e. the peripheral direction and the radial direction from the hot 

spot. The latter is directly related to the a-r  curve to be examined. Since the basic material 

parameter is the short crack constant Uo, the definition of the radial density might be a 

function of Oo. The element size in the vicinity of the hot spot should be smaller than rmm- 
The radial density is defined as

d  (3 -3 - 1)

^  K

where h  is the average element length along the radial direction. The peripheral density is 

defined as a function of the root radius p, which could be evaluated by

5 Ttp (3-3-2)
d „ -  — and S = —  ,” I, 2 ’

where 5" is a quarter of the circle of radius p. Ip is the average element length around the root.

These definitions are easy to use. Taking the single-edge notched specimen as an example 
again, if there are five elements around the notch root, so the peripheral density is equal to 

5; fifteen elements around the root, then dp—\5, as shown in Fig. 3.3.1. The root radius is 0.1 

mm. ]£dp is less than one, this means that the element length around the notch is larger than S  

and the root arc will be modelled as a straight line as shown in Fig.3.3.1 (a).
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(a) (b)

(c) (d)

Fig. 3.3.1 Mesh density on the notch root o f the single-edge notched specimen, 

some examples: {d)dp = 0 . \ \ , d r  = 1 .1 25;(b) dp = 2, dr =4.1;

(c )d p ^ 5 , d r = \ 0; (d )d p ^ \ 5 ,  dr =25.

Six different mesh densities were modelled using FEM; from Mesh 1 oi  dp = 0.05 and c/r = 

0.54 to Mesh 6 of = 15 and dr = 25. The Aa^r curves from each density are shown in Fig. 

3.3.2. It can be seen that a fine mesh gave a high accuracy o f the stress field, particularly in 

the vicinity of the hot spot; the MPS value increased from Mesh 1 of 106 .3 MPa to Mesh 6 of 

647.1 MPa. There is not much difference between Mesh 5 and 6; the maximum value of 

Mesh 5 is 637.1 MPa, which means that the stresses from the two densities converge. 

However, the stress goes down very quickly at higher mesh density; in a very short distance,
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the big stress difference from variable density vanishes; even though the stress in Mesh 6 is 

over six times that in Mesh 1, it goes down to about the same value from the coarse mesh 

when r = 0.5 mm. This reflects the character of the stress field in the vicinity of the stress 

concentration place; the stress comes up to the maximum at the hot spot and attenuates 

quickly away from the spot. Because of the character, the choice of rmm definitely affects the 

CMM prediction. In the present case, Oo is 1.89 mm and if we use the suggestion of rm m  = cio, 

one cannot see the effect from the mesh density. In order to investigate the effect, we use r„,„ 

as small as possible.

700

600 Mesh 1 -H- Mesh 2 -ite- Mesh 3

♦ -  Mesh 4 Mesh 5

400 I

S 300 '
0)k.« 200

100 T ^ ^

«— Mesh 6

0
0 0.5 1

Distance r mm
1.5 2

Fig. 3.3.2 Ao^r curves of the LM25 specimen with variable mesh density
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Fig. 3.3.3 and 4 show the prediction results with variable dr and dp respectively. A K fe 

converges quickly with dp or dr increasing; there is not much difference between the data 

from Mesh 2 and Mesh 6. This implies that it is not necessary to model the details o f the 

notch root when it is small; at least in the present case, the accuracy of the prediction can be 

accepted without modelling the root radius. The reason why CMM is not sensitive to the 

mesh density can be explained as follows: the method counts the stress from the entire curve, 

not a local part. The change of the sfress in variable mesh density is only limited to a small 

part relatively. So this change, only in the immediate vicinity o f the hot spot, does not affect 

the evaluation o f AKfe significantly, which depends on the entire Acf^r curve. Finding a 

critical value o f dr or dp needs much more work and it depends on the geometry. However in 

applications, it is not necessary to have a critical value. For a sharp notch, if the notch root is 

modelled by its radius, a reliable value of AKpg is possible. For a blunt notch where the stress 

lever is not so high, any reasonable mesh density will make /^Kfe reliable. This has been 

proved by the previous work, hi practice one can decrease mesh density until convergence 

occurs: this analysis suggests that this will happen if dp and dr are less than 1.0.

3.4 Conclusions

1. CMM is not sensitive to the path orientation. The path for CMM should be normal to 

the MPS direction and the rule of lowest AKfe can be used to find the path in a 

complex situation.

2. CMM is not sensitive to the minimum distance. A range of 0 < rmm ^  cio is valid in all 

cases concerned in this thesis and it is suggested to limit small as possible.

3. CMM is not sensitive to the maximum distance. For specimens subjected to tensile or 

bending loads, it is suggested to use the entire tensile stress distribution. For a 

component with more one notch it is suggested to use rmax on which the AcF-r curve is 

monotonic fianction,

4. CMM is not sensitive to FE mesh density because it concerns the entire A o^r  curve. 

Any reasonable mesh density will make a reliable A K fe possible.
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Chapter 4 Modification of CMIVI for the Short 
Crack Problem

4.1 Introduction

For a sharply notched sample, the Crack Modelling Method (CMM) is equal to LEFM 

because the sharp notch can be modelled as a crack using Smith and Miller’s model. 

However, problems were encountered in the present work when the method was applied to 

physically small notches that, like short cracks, display anomalous behaviour that cannot 

simply be predicted from material data obtained from larger features. The questions are:

♦ Can the CMM be used ft>r short cracks?

If the answer to this question is yes, the second question is

♦ How can we apply the method to notches or to components which have the short crack 

effect?

In this chapter, several attempts are made to modify CMM for use in these situations. Various 

methods are examined critically and recommendations are made.

For any given crack, we can simply measure the crack length, and compare it to a standard 

(e.g. the material constant «„) to find out whether the crack is a short crack or not. This can 

be done for sharp notches (using the notch depth, D). However, a notch with a big root radius 

may not have short crack effect even if the notch depth D  is very small. Also a stress 

concentration on a component may not have a well-defined D value. The point is that we 

should find out an equivalent crack length first and than compare it with Oo. We use A ctpred 

to represent the predicted stress in range.

4.2 Method 1 -  Comparing with Aoo
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Considering a cracked sample under cyclic loads, the fetigue limit, Aoix, can be described 

using the ElHaddad method as shown in Fig. 4.2.1. An initial approach can be made by using 

LEFM or CMM, which gives an approximate value Aopj{ed- In this case both methods are 

identical. If the value Agpred is larger than the fatigue limit of a plain specimen, i.e. Aapmo > 

JcTo (or if it is smaller by only a small amount), then one has a short crack problem. For 

example, if AapREo = Ado, i.e. two lines cross at the point A, then the crack length, a = Uo, 

and the true value of AcToo will be lower by a fector of V2, at the point B in the figure. For any 

crack length a at the point C in the figure, the true value at the point D will be lower by the

fector of^(a + a^)fa . If the crack length a is much longer than ato, the factor will tend to be 

1, and A cToc — A c p r e d -

Act,

Fig. 4 .2 .1 Schematic illustration of the method 1

For a notched specimen, the notch depth D can be used to replace the crack length a for 

evaluating A ctpred- An equivalent crack length Ueq can be found:

 ̂ 1 A
(4-2-1)

\_
n
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The fatigue limit o f the notched specimen Aaon can be predicted using

A0-„„ =
(4-2-2)

However, this needs to be checked against experimental data. The set o f data points chosen 

for testing was from the literature [DuQuesnay et al, 1986]. The specimens were machined 

with a central circular hole, with variable radius, in a flat plate. The thickness o f the plate was 

2.5 mm and the width was 44.6 mm. The material was aluminium alloy A12024-T351, with 

the material properties of AKth = 5 MPa Aao = 248 MPa and so ao = 0.13mm. These are 

also used later, in Chapter 6.

Table 4.2.1 Corrected predictions on Al 2024-T351 specimens

Depth

D

mm

Exp. data

AOon

MPa

CMM

ACTpjiED

MPa

LEFM

AOpRED

MPa

AOppED / A G o

(CMM) mm

Corrected

prediction

MPa

0.12 159.14 250.22 251,‘Sl 1.01 0.13 175.91

0.25 122.61 168.88 178.41 0.68 0.28 139.49

0.5 121.22 115.67 126.16 0.47 0.59 104.78

1.5 83.95 63.89 72.84 0.26 1.95 61.86

Table 4.2.1 shows the initial predictions from CMM and LEFM; the values Ogq were 

evaluated from Eq. (4-2-1). The correction was made using Eq. (4-2-2). It was clear that the 

notch of D = 0.12 mm was a short notch because A c tp r e d  was very close to AcXo. So the 

correct value should be lower by a factor of V2, which was proved to be right by the 

experimental data. For Z) = 0.5 mm, the equivalent crack length was more than four times of 

the Qo value, so the short crack effect was small. The prediction error was 13.5% with 

correction and 4.5 % without correction. This implied that this point was very close to «2 in 

Fig. 2.3 .1 and both methods were valid. The last point in the table was out of the question, 

neither a long crack nor a short crack; when using the notch method (see Section 2.2.1) the 

prediction error was only —2,3%, so this is classified as a blunt notch.

42



Chapter 4

The predicted Actpred from LEFM, in which the notch depth D  was used as the crack length, 

is also listed. There was a consistent difference: CMM showed lower values than LEFM on 

each data point. The reason was that the values of Ugq from CMM were larger than the 

corresponding notch depth D. Since CMM models notches as cracks and works out agq 

instead of using notch depths as crack lengths, using CMM on notched samples is more 

reasonable than using LEFM theoretically. However, the difference was not big, so LEFM 

was still useful in this type of specimens. A comparison between the two methods to predict 

results on some other specimens will be shown in Chapter 6.

Another example was from the same literature; the geometry and load condition were the 

same as in the previous example: the material was Steel SAE 1045, with material properties 

of AKth = 13.9 MPa m '̂ ,̂ AcTo = 608 MPa giving ao = 0.17mm. These will also be used later, 

in Chapter 6. The results are shown in Fig. 4.2.1. The prediction was significantly improved 

on each point, except the one with £>=1.5 mm which was a blunt notch.

1000

re
Q.

100
0.01 0.1 1 10 

Notch depth D mm

Fig. 4.2.1 Prediction results on SAE 1045 specimens using CMM and the correction

If a given notch behaves as a long crack, i.e. â q is much bigger than Og, AcTon will be close to 

AopRED and will tend to 1. Therefore, the method can be used for both short

and long crack problems and can be employed to judge whether a given notch behaves a

43
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short crack or not. The following example proved this deduction, as shown in Table 4.2.2. 

This group of data was from the same literature as in Section 3.3,2. The specimens were mild 

steel bars with 1.3 mm notch, subjected to rotating bending loads. The ratios A a p R E o / ^ C T o  

were very small, so the values of Ugq were close to the notch depth and notches behaved as 

long cracks. The diflference between the original value and the corrected value was very 

small. This example also illustrates that the method could be used in a body subjected to a 

bending load.

Table 4.2.2 Corrected predictions on mild steel bars subjected to rotating bending loads

Depth

D

mm

Exp. data 

/lOon 

MPa

CMM

ACTpRED

MPa

A G preD / A(To fleq

mm

Corrected

Prediction

MPa

Error

%

0,005 90.54 78.47 0.15 1.29 77.00 -14.95

0.05 90.54 78.47 0.15 1.29 77.00 -14,95

0.1 90.54 77.43 0.15 1.33 76,02 -16,03

0.2 96.10 78.47 0.15 1.29 77.00 -19,88

A major limitation o f the method is that the nominal stress must be known, so it is applicable 

for notched samples and for some components with simple geometries, but not for any 

problem in which nominal stress is hard to estimate,

4.3 Method 2 -Using as the equivalent cracl( length

For a given problem, CMM produces two parameters, <Tw and which represent the stress 

and half crack length in the Westergaard model (see Eq, (2-2-4)), Can we use Uw as O eq l If we 

can, we will know whether the problem is short crack or not. It is necessary to test the idea on 

notched specimens. Table 4,3,1 lists a set of predicted results which show that can be used 

as Oeq on specimens with a central circular hole in a flat plate subjected to tensile stress. This 

condition is similar to the Westergaard condition, a central through crack in an infinite plate 

subjected to tensile stress.
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In the table, predicted stress intensity factor, A K f e , and predicted fatigue limit, ^ o ,  arc

listed. // is a correcting factor which is equal to^(a^ - \ - a ^ l . CMMscr represents the

revised CMM including the short crack correction. Comparing with Table 4.2.1, the values o f 

ay, here are almost the same as the values of agq and the corrected results are almost the same 

as well. Since there is no need to compare with A go, it is not necessary to know the nominal 

stress. This is a big advantage over Method 1, implying that the method could be used for 

complex geometry. However, it needs to be tested.

Table 4.3.1 Crack Modelling Method prediction for A12024-T351 specimens

Notch

depth

mm

CMM 

AK fe 

MPa m*'^

Predicted

APo

using CMM

kN

Error

% mm

n CMMscr

AK fe

M Pam '^

Predicted

APo

using CMMscr

kN

Error

%

0.12 3.18 27.88 57.10 0.13 1.41 4.50 19.71 11.08

0.25 3.63 18.84 37.78 0.28 1.21 4.39 15.57 13.86

0.50 5.24 12.90 -4.58 0.60 1.10 5.78 11.69 -13.49

1.50 6.57 7.13 -23.86 2.00 1.03 6.78 6.91 -26.22

For comparison. Table 4.3.2 lists the predictions using LEFM and the ElHaddad method on 

the same data as used above, using the notch depth D . A  comparison between LEFM and 

CMM on these data confirms that there is not a significant difference between the two. In 

addition, no significant difference is seen between the ElHaddad method and CMMscr. 

Relatively, predictions fi'om CMM and CMMscr are slightly more conservative than those 

from their LEFM equivalents.

The second group of data chosen for testing the method was from the literature [Ting, 1993; 

Lukas, 1986], also discussed later in Chapter 6. The specimens were machined into notched 

cylindrical bars with a diameter of 5 mm, which were very different in shape from the 

Westergaard case. The notches were semi-circular. The fetigue limit of plain specimens, Acjo, 

was 440 MPa and the threshold o f the material (Steel 15313 (2.25Cr-lMo)), was 12
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1/2

MPa m giving = 0.237 mm. Fatigue tests were carried out under push-pull load, i.e. R  

was -1.

Table 4.3.2 Prediction for the fatigue failure in A12024-T351 specimens

Notch depth 

D  

mm

LEFM Method ElHaddad Method

AKpE 

MPa m*̂ ^

APo

kN

Error

%

AKpE 

MPa m*̂ ^

APo

kN

Error

%

0.12 3.09 28.71 61.82 4.46 19.89 12.11

0.25 3.48 19.67 43.88 4.28 15.95 16.70

0.50 4.91 13.75 1.74 5.52 12.25 -9.36

1.50 6.18 7.58 -19.07 6.44 7.27 -22.36

Table 4.3.3 shows the prediction from CMM and CMMscr. Almost every notch geometry 

was a short crack; the correction significantly improved the predictions. This confirmed that 

Ow could be used as the equivalent crack length Oeq and the method was applicable on these 

types of specimens which were subjected to tensile stress.

Table 4.3.3 Prediction using CMM and CMMscr on Steel 15313 CNB samples

Notch depth 

D

CMM

Predicted

AdpRED

Error

(CMM)

%

aw 7 CMMscr

Predicted

ACTpfiED

Error

(CMMscr)

%

0.03 1163.44 170.9 0.034 2.8 412.10 -4.1

0.05 802.72 99.0 0.06 2.2 360.80 -10.6

0.07 708.59 120.6 0.092 1.9 374.71 16.6

0.2 386.93 63.3 0.306 1.3 290.46 22.6

0.4 243.33 16.5 0.77 1.1 212.78 1.9

0.76 153.86 -0.7 1.2 1.1 140.60 -9.3

The experimental data is listed in Table 4.3.4 with the prediction using LEFM and the 

ElHaddad method. For small D, the equivalent crack length a„, is close to the corresponding 

notch depth D. When D  is over 0.4 mm, the difference between the two is significant; D
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could not be used as Ogq anymore and CMMscr showed better estimates on the last two data 

points than the ElHaddad method. CMM also predicted well on these two data. This implies 

that the value ofa^ in the Kitagawa-Takahashi curve (see Section 2.4.1) may be between 0.77 

and 1.2 mm for this kind of material; both CMM and CMMscr could be used in this overlap 
region. It needs to be tested.

However there was no significant improvement when applying CMMscr to the specimen 

under bending. Taking a mild steel bar subject to rotating bending (see Section 3.3.2) as an 

example was 3.2 m for this 1.3 mm notched sample, which could not be used as Oeq. When 

a„ tends to infinity, cr̂  tends zero. The reason is that the CMM program tries to obtain the 

best fit of the Achr curve with the Westergaard stress function. In this situation, both 

parameters, a„, and <Tw, are meaningless. The Westergaard stress may not be suitable for 

obtaining in the stress field caused by bending. One may make a». equal to Qeq by using 

bending stress function instead of the Westergaard stress function in the CMM, but this has 

not been tested here.

Table 4.3.4 Prediction using LEFM and ElHaddad method on Steel 15313 CNB samples

Notch depth 

D

Experimenta

1

Data

gross

LEFM

Predicted

Aopred

Error

%

ElHaddad

Predicted

ACTpRED

Error

%

0.03 429.5’ 1103.64 157.0 369.94 -13.9

0.05 403.4 854.88 111.9 356.82 -11.5

0.07 321.2 722.50 124.9 345.00 lA

0.2 237.0 427.44 80.4 289.17 22.0

0.4 208.9 302.24 44.7 239.51 14.7

0.76 155.0 219.27 41.5 191.44 23.5

* The experimental data in the literature were given in terms of net-section threshold stress range. The author 

changed them into the gross-section threshold stress range because the nominal stress refers to the gross-section 

stress. In fact the stress on the net-section is not uniform, so there is no physical meaning for the net-section 

threshold stress and the expression can cause confusion.
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In general CMMscr has a much bigger range of application potentially because it can be used 

on the body with irregular geometry under uniaxial tensile loads and no nominal stress is 

needed. This needs to be proved. However it will not detect the short crack problem in 

components subjected to bending loads. More verification of this method is reported in 
Chapter 6.

4.4 Method 3 -  Adding uo or extrapolating the stress/distance curve

We can judge whether a given crack is short or not by using Eq. (2-2-1) in Chapter 2, 

K = F  a  ^Jna . Adding a small amount a„ to the crack length, if the crack is short, will 

greatly increase AK, if the crack is long AK will be unaffected. We can imagine doing this to 

notches and components (Fig. 4.4.1).

Since CMM is not sensitive to mesh density, no special elements are needed for modelling a 

crack. A real short crack problem was used for verifying the method. The sample with a 

radius of 0.25 mm (Table 4.2.1) was used, adding Oo at the stress concentration place in the 

FE model. Before adding AKfe = 3.67 MPa m'^ when loaded at the fatigue limit; after 

adding Oo in the FE model, AKfe was 4.15 MPa m’̂ . The threshold AKth was 5 MPa m* ,̂ so 

the method improved the prediction significantly.

componentnotch

Fig. 4.4.1 Adding ao in different situations
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Another example was from Table 4.3.4. The prediction results from adding a„ and not adding 

Oo are listed in Table 4.4.1. The prediction of each data point, except D  = 0.76, was much 

improved by adding in the FE models.

Table 4.4.1 Prediction comparison between before and after adding a„ on Steel 15313 CNB

samples

Notch depth

D

Experimental

Data

A ct gross

CMM 

not adding Uo

AcTpRED

Error 

not adding Uo 

%

CMM 

adding Uo

AOpRED

Error 

adding Uo 

%

0.03 429.5 1163.4 170.88 391.6 -8.81

0.05 403.4 802.7 99.00 372.3 -7.69

0.07 321.2 708.6 120.59 363.7 13.21

0.2 237.0 386.9 63.27 288.7 21.83

0.4 208.9 243.3 16.50 212.4 1.69

0.76 155.0 153.9 -0.74 140.7 -9.23

A disadvantage of the method is that a huge FE model will be needed for the analysis, when 

applying the method to engineering components, especially if Uo is small. This will greatly 

limit the application to engineering components. Therefore it was necessary to develop a 

simple way o f using the idea of the method without adding a crack of length Uo in the FE 

model.

Considering a stress-distance {Acr-r) diagram, a similar result can be realised by adding a part 

of the Acr-r curve in front of the notch tip (r = 0). As illustrated in Fig. 4.4.2, the curve AB is 

the A<j-r curve from the notch root before adding ao\ the curve C 'A 'B ' is from the same 

notch but adding Oo. Assuming that AB and A 'B ' are identical, CA is extrapolated from AB 

and CAB will replace C 'A 'B ' as the input A o ^ r  curve o f CMM. This is an approximate 

method: AB is not exactly identical to A'B' and the extrapolated curve CA is not as same as 

C 'A '. We found that the difference between AB and A 'B ' was limited at small distances and 

the effect o f the difference between CA and C'A ' was also limited. Therefore the error 

caused by CAB replacing C 'A 'B ' was small.
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To test this method we took An A1 2024-T351 specimen with D  = 0.25 mm as example, 

shown in Fig. 4.4.3. In order to add the Qo value, we moved the original A c-r curve a distance 

of ao to the right and made the trend line using polynomial format, y = 1228.1x"*-
3 2

4210x +5138.5x -2636.lx+609.64; we extrapolated the curve and used the data as an input 

file for CMM. The prediction results are listed in Table 4.4.2.

Notch

Crack

Fig. 4.4.2 Dlustration of the extrapolation method

^  500-

Before adding aO ▲ Adding aO 

- O - Extrapolated curve  y

400
J  300 
% 200

y = 1228.1 -421 Ox® + 5138.5x^ - 2636.1x + 609.64
= 0.9772

0.2 0.4 0.6

Distance r mm

0.8

Fig. 4.4.3 Extrapolating a curve fi^om a notch model.
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Table 4.4.2 Extrapolating method for 2024-T351 specimens with varies of notch radiuses

Notch depth 

D  mm

Experimental

data.

A a , MPa

Predicted

AapRED

MPa

A a ^

MPa

aw

mm

Error

%

0.12 159.1 184.76 159 0.24 15.47
0.25 122.61 125 122 0.53 0.81

0.5 121.22 84.94 116 1.25 -31.51

1.5 83.95 51.14 76 4.2 -43.18

At the points of notch radii 0.12 and 0.25 mm, the prediction agreed well with the 

experimental data, even better than previously. For the large notches, which were actually 

blunt notches, the method showed an overestimate, which was expected. The key point of the 

method is to choose a good function format for extrapolating the data. At this stage we used a 

poljmomial format, which seemed not very good because the prediction on the notch of D = 

0.5 mm was not as good as expected. An exponential format may be a better function for 

describing the stress gradient in the vicinity o f a crack.

In general the method o f adding a crack length of ao at the stress concentration point can be 

used for the short crack problem, but the method needs a big FE model when applied to 

engineering components. This greatly limits its utility. Its equivalent method, the 

extrapolating method, may solve the problem. The initial work has shown promising results 

but further work is needed to be done in the future.

4.5 Method 4 -  Average of NM & CMM

We found that CMM overestimated Aaon due to the short crack effect, while the Notch 

Method (NM, see Section 2.2.1) underestimated Adon due to the stress gradient of small 

notches. So the solution must lie somewhere between the two. A typical example is 

illustrated in Fig. 4.5.1; AcToc is the fatigue limit of a flat plate specimen with variable centre 

crack length; AcTo^ is the fatigue limit of a flat plate specimen with a centre hole (CNP). The 

line labelled CMM in the figure represents the prediction results A o pr e d  for both notched and
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cracked specimens; the line NM in the figure represents the prediction results for notched 

specimens. In this situation, notched samples and cracked samples variable behave 

differently; the former tends to the NM line with increasing the radius of holes; the latter 

tends to the CMM line when the crack length is over

CMM

<

A troc .NM m
a{} a.*2

Notch Depth or Crack Length

Fig. 4.5.1 Comparison of NM and CMM on the prediction of notched specimens

Considering Adon curve, normally an assessment of whether a given notch is short or not can 

be made by comparing the prediction results fi"om the two methods. If NM’s result is lower 

than CMM’s one, this must be a short crack problem. In the short notch area. Region II (ai < 

D  <  a i ) , a simple way to approach the test data is to average the results fi'om both methods; 

this was named as the Average Method (Ave.). The application on Al 2024-T351 CNP 

samples is shown in Fig. 4.5.2. The method gave a very good prediction. More verification 

will be shown in the Chapter 6. The method may be suitable in Region I as well but as a —> 0, 

the CMM prediction will tend to infinity, so the Ave. prediction will become too large. For 

Region III, it depends on the detail of the geometry, for example, the notch depth and notch 

radius.
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1000
—O—Test data 
-■ -C M M
- ^ A v e .  NM & CMM 
- ♦ -N M

100

0.12 0.25
Notch Depth D mm

0.5 1.5

Fig. 4.5.2 Prediction on A1 2024-T351 CNP samples using the Average Method

Fig. 4.5.3 shows another example of the short crack problem. Again, the prediction was very 

good using the method. The details o f these specimens will be described in the Chapter 6.

Ave. was specially designed for short crack problems. The method does not need nominal 

stress and is not limited by the load type. Also it is easy to use. Nor requiring a notch depth, 

the method can be applied to components. For a given notch or fillet which is not sharp, 

comparing predictions from NM and CMM, one can assess whether it is a short crack 

problem or not. For a short crack problem, CMM will produce an overestimate while NM 

will give an underestimate. If the notch or fillet is sharp, a crack like, using CMM is the best 

choice. Theoretically, the three methods, NM, CMM and Ave., nearly cover all regions in 

Fig.4.5.1, except if D  is very small in Region I, where A<Ton is close to A<To.

Further improvement o f this method is needed for more accurate prediction. Taking Fig 

4.5.3 as an example, the test data curve was not just in the middle between the other lines, it 

was closer to NM curve. So instead o f taking the average value, putting a weight on one side 

could be helpful for a closer estimate. The weight should be a fiinction o f material properties
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and geometry features. An understanding of the mechanism of crack growth in the early 

stages of fatigue is essential to construct the weight function. From this point of view, the 

Average Method is just an initial, simple and approximate approach. However, the testing 

results were promising. Considering errors caused by many factors, such as a scatter in 

material properties, numerical analysis, manufacturing tolerance etc., it may be acceptable for 
engineering applications.

1E+4

CMM Test Data Ave.-

Q.

^  1E+3
D

< 1

1E+2
0.05 0.07 0.2 0.4 0.760.03

Notch Depth D mm

Fig. 4.5.3 Another short crack problem example. Steel 15313 (2.25Cr-lMo) CNB under

Push-pull load [Lukas et al, 1986]

4.6 Conclusions

1. CMM can be used for the short crack/notch problem after revision. Several 

modifications make the method available for different situations, such as different 

geometry and loads. Revised methods show a good agreement with several sets of 

experimental data.

2. Method 1 can be used to judge whether a given notch is small or not and predict the 

fatigue failure on specimens and components subjected to tensile stress or bending 

load, but the method requires the nominal stress to be known.
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3. Method 2 is vaHd for notched specimens and components subjected to uniaxial 

fetigue load. No nominal stress is required for the utility of the method. The method 

can predict fatigue loads. It cannot be used for bending loads.

4. Method 3 can be used for both judging and predicting the short crack/notch problem. 

The method is not constrained by any kind of geometry and load conditions. The 

method may need a big FE model for engineering components. Using the 

extrapolating method, in which an imaginary crack length is added in the 

stress/distance plot, may solve the problem; the initial approach has shown promising 

results.

5. Method 4 is applicable on notched specimens or engineering components. The 

method does not require special FE models and material constant a„. Any type of load 

conditions will not limit the utility o f the method. It may be limited to certain 

notch/crack size.

Table 4.6.1 Limitations and requirement of revised CMM for short crack/notch problems

Method Long crack Short crack/notch Tension Bending Kt needed

1 Yes Yes Yes Yes Yes

2 Yes Yes Yes No No

3 Yes Yes Yes Yes No

4 No Yes Yes Yes No

Table 4.6.1 lists the limitations and requirement of each revised method. At this stage, 

although any more general method has not been found yet, one could find a suitable method 

among the four for a given short crack/notch problem. It is necessary to verify the methods 

on more experimental data before applying them to engineering components. The verification 

should include the main effects o f fetigue failure, such as material, load type, load ratio, 

geometry, size effect etc. At the moment, judging correctly whether a given fatigue problem 

was a short crack problem or not was still a vital question needing to be solved for practical 

application o f these four methods. This will be discussed further in Chapter 8, where a 

general methodology for the selection o f the appropriate method will be discussed.
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Chapter 5 A New Method of Prediction

5.1 Introduction

Although the Crack Modelling Method (CMM) was successfully modified for the short 

fatigue crack prediction on notched samples (see Chapter 4), some potential problems have 

been identified when applied to engineering components. For example, it is hard to define a 

nominal stress when a component has a complex geometry; it is difficult to distinguish that a 

given component with the geometry feature belongs to the short crack or long crack 

categories. Also, a crack in a stressed body can propagate in a combination of the three 

opening modes, mode I, II or in .. The current Crack Modelling method concentrates on a 

crack growing under an opening or mode I  mechanism and examines the First Principal 

Stress. However, many service failures occur fi’om cracks subjected to mixed mode loading 

[Qian and Fatemi, 1996 and Brown and Miller, 1989],

Due to the inconvenience of the Crack Modelling Method for short crack problems, a new 

theory is presented in this chapter which approaches the problem in a different way. The new 

theory is still based on a consideration of the stress field of the component but now attention 

is focussed on a small region close to the stress concentration. We begin with a theory known 

as the critical distance theory; modify the theory using fi'acture mechanics; incorporate short 

cracks and then extend the approach to notched specimens or components. We will build a 

“bridge” linking behaviours between unctacked bodies and cracked bodies. The aim is to 

develop a general solution, applicable to cracks, notches, other geometry features and plam 

specimens, which takes account of size effects in an intrinsic feshion.

5.2 Background of the Theoretical Model

The present methodology is based on the critical distance theories. These theories have been 

used in the analysis of notches and plain specimens for over 40 years, since the work of 

Peterson [1959], Neuber [1958], Siebel and Stieler[l 955] and others. The basic idea in the 

theories is to examine the stresses not only at the notch tip but also within a certain volume of
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material surrounding the notch. It is assumed that fatigue failure will occur if the average 

cyclic stress within this volume exceeds some given value.

This methodology had been realised in various different ways that are all essentially the 

same. For example, Siebel and Stieler [1955] expressed their predictions in terms of the 

normalised stress gradient at the notch. Peterson [1959] used the notch root radius as the 

determining parameter. Usually the stress field is approximated in some way so as to simplify 

the calculations. For example, Peterson assumed a linear stress-distance variation (i.e. a 

constant stress gradient) so that the average stress over a certain distance could be 

approximated by the stress at a given point.

In practice, the correct distance (i.e. the one that gives the best predictions) varies 

considerably from one material to another. It tends to be larger (over 1 mm) in low strength 

materials, and much smaller (less than 0.1 mm) in high-strength materials. Up to now the 

appropriate distance has been found from experimental data. After analysing a large amount 

of the experimental data, Peterson developed an empirical relation between this distance and 

the UTS in steels. His results are widely used in industry.

The major weak point of all of these critical-distance approaches is the choice of the distance 

parameter. The accurate determination of this parameter is a major problem because small 

variations in the distance chosen can lead to large errors, especially for sharp notches. 

Additional errors arise from other simplifying assumptions, such as the assumption of 

constant stress gradient and the reliance on root radius as the only relevant geometric 

parameter.

5.3 New Approach to Find the Critical Distance

We begin by making a hypothesis that the fatigue limit of cracked bodies and of uncracked 

bodies can be predicted using the same theory. The hypothesis follows the premise of fatigue 

life prediction for bodies under high-cycle fatigue loading. Mechanistically, this amounts to 

saying that the processes of crack initiation and short-crack growth which are necessary 

precursors to the failure of uncracked bodies, are not ftindamentally different from the
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process of crack extension which is necessary for the failure of a body containing a long 

crack. Historically, cracked and uncracked bodies have been considered using different 

theories, based on AK for the former and A c  (or Ae) for the later. If the present hypothesis is 

correct, then methods of analysis which work for plain and notched bodies, such as the 

critical-distance approach, will also work for cracked bodies.

Irwin [1957] found the analytical solutions for the stress and displacement fields in the 

vicinity of crack tips subjected to the three modes of deformation. For mode I, the stress field 

is given by

where the stress components and the co-ordinates r  and ^are shown in Fig. 5.3.1. Eq. (5-3-1) 

represents the case of plane strain and neglects higher-order terms in r. Because higher-order 

terms in r are neglected, the equations are exact in the limit as r approaches zero and are a 

good approximation in the region where r  is small compared with other x-y planar 

dimensions. We will use this solution for determining the critical distance in this section.

crack

Fig. 5 .3 .1 The elastic stress field near a crack tip
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Three possible ways are presented for obtaining the stress value. They will be referred to as 
ihe point, line and area methods. These methods are named depending on whether the stress 

at a fixed point is used, or whether the stress is found by averaging over a given line or area. 
In each case, the region concemed will commence at the stress concentration and end at some 
fixed distance fi"om it.

5.3.1 Point Method

The point method is the application of a simple critical-distance approach to a long crack. 
Considering Eq. (5-3-1), the stress causing crack opening can be written as

K,
4 ^  (5-3-2)

where is the stress at a distance r  ahead of a crack at an angle of ^ = 0. Ki is the stress 

intensity factor. This equation can be used to find the critical distance, d ,̂ for which an 

applied stress range /Icr gives rise to the fatigue limit of plain specimens, AcJo and the stress 

intensity fector in range, AKi, gives rise to the material threshold, AKth- The result is

d = (5-3-3)

dc is thus a material constant related to the fatigue properties of the material. It is also related 

to the load ratio R. The distance do has its own direction which is at the angle of 0. This 

direction is the same as we defined for the path in the Crack Modelling Method, which is 

normal to the direction of the maximum principal stress. In the method we assume that if the 

stress at the distance dc is equal to or larger than the fatigue limit Acto, the crack will grow 

and fatigue failure will occur.

The length dc can be compared to the parameter defined by ElHaddad et al [1980] as 

described in Chapter 2:
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(5-3-4)

Substituting this into Eq. (5-3-3), the value oft/, is equal to aJ2. ElHaddad’s equation was 

purely empirical, and the parameter Uo was not given any physical significance. The above 

analysis implies that; (a) the critical-distance approach can be used to predict the fatigue limit

related to this critical distance.

5.3.2 Line Method

histead of considering a point, the line method is an average method considering the stress 

distribution on a line. Considering the Eq. (5-3-1) again, if the stress is integrated over a 

distance d, assuming unit thickness, a force that drives the crack to open can be expressed as

Since K i  is independent of the distance, r, above equation can also be expressed as

For any value of d, Ki is a constant; so Eq. (5-3-6) can be used to evaluate the Kj value if one 

knows the stress field in vicinity o f a crack tip. In Fracture Mechanics, the principle of 

superposition is often used to calculate K j  as a function of crack length; the details of the 

principle can be seen in the literature [e.g. Bueckner, 1970].

By definition, at the fatigue limit of this cracked body, A K  = AKth and d  = dci. Substituting 

Eq. (5-3-4) into Eq. (5-3-6), the applied stress range of Act, which is a function of distance, r, 

can be displayed as a function of the M gue limit stress range, AcTo, in integration form:

of a cracked body, and (b) the physical significance of the Qo parameter is that it is directly

(5-3-5)

(5-3-6)
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“ d o  J ’ ^ (5-3-7)

Comparing both sides of the above equation, it is found that the average stress over some 

distance, dci, is equal to the fatigue limit and this distance is equal to 2ao. That is

—̂  (Aodr = Aa„.
2a, J (5-3-8)

In this case the critical distance, dc, is found analytically as the function of the material’s 

threshold and plain-specimen fatigue limit. Eq. (5-3-8) can also be shown in another way, as 

the function of material threshold, e.g.

(5-3-9)

The method is called the Line Method because of its line integral. The rule for choosing the 

analysis path, which is used in the Point Method and Line Method, is the same as in the 

Crack Modelling Method.

5.3.3 Area Method

There is a similar identity related to the area method. If the average stress is evaluated over a 

semicircular area ahead of the crack tip, of radius d, then the stress intensity factor Kj is 

characterised by an average stress, thus using Eq. (5-3-1);

I  4 K, G(^ . 0 . 30^cr. I . = — - \ ^ \  - r - ^ c o s —11 + sm—sm —
2^ 2 2 )  (5-3-10)

rdrdO

Another expression can be written as
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(5-3-11)

Kj  is a constant for any value ofd,  so Eq. (5-3-11) can be used to evaluate the value if one 

knows the stress field in vicinity of a crack tip. If the stress intensity factor in range, AKi, 

gives rise to the material threshold, AKth, substituting Eq. (5-3-4) into Eq. (5-3-11), we can 

find that the average stress in range Aaove is related to the fatigue limit of plain specimens 

Aao, if d  =Oo, then the threshold for crack propagation is characterised by an average stress, 

which is slightly larger than Aao:

(5-3-12)

All of the methods imply that the critical-distance concept can be used in conjunction with 

the elastic stress distribution ahead of a crack, to predict whether or not the crack will 

propagate. In this case the relevant distance is related to Uo. For the point and line methods 

the correspondence is exact. For the area method, using a distance of the resulting 

prediction of the fatigue limit based on A cTo (omitting the fector 1.1) is a slightly conservative 

estimate.

Now we have three methods which can predict the fatigue feilure of a long crack. The point 

method examines the stress at the distance of aJ2; the line method examines the average 

stress on the distance from 0 to 2ao, the area method examines the average stress over a 

semicircular area with a radius ofoio. Fig. 5.3.2 shows the geometrical definition of the point, 

line and area on a crack. We will extend the methods to short cracks and notches. In those 

cases, the geometrical definition of the methods is identical.
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2 a
notch

crack ,
linepoint

area

Fig. 5.3.2 The geometric definition of the point, hne and area on a crack or notch

5.4 Application of the l^odel to Short Cracks

We extend this concept to consider the effect of crack size in this section. In order to do this, 

we use the Westergaard [1939] stress function, which is the exact result for the stress 

distribution to allow consideration of cases where the crack length is comparable in size to Uo 

and the stress values at all positions are required. For a through crack in an infinite plate 

loaded by a uniform tensile stress <t, applied normal to the crack, Westergaard has shown that 

the elastic stress as fijnction of distance from the crack tip, a{r) is:

cr(r) = cr

This is the stress which acts in the same direction as the applied stress, i.e. in the crack 

opening direction. Fig. 5.4.1 shows predictions for the fatigue limit (Actoc) as a fiinction of 

crack length using the new point, line and area methods. The material constants chosen are 

those for a typical medium-carbon steel, tested by DuQuesnay et al [1986] atR = Using 

the stress distribution of Eq. (5-3-2) results in the prediction labelled LEFM which is valid

2 i l / 2

(5-4-1)
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only for long cracks. Use of Eq. (5-4-1) causes a reduction in fatigue limit which is more

pronounced as a decreases, tending to Acto at zero crack length. The figure also shows the 
ElHaddad method.

SAE1045 Steel
1000.00

UEFM

ElHaddad

Point method

Line Method

—j?r- Area method
100.00

0.01 0.1 1 10
Crack Length a mm

Fig. 5.4.1 Prediction of the fatigue limit using the point, line and area method

All three methods (point, line and area) follow the general form of the ElHaddad line, 
indicating that they would give reasonable approximations to the experimental data. Li fact 

the line method gives exactly the same resuh as the ElHaddad method, as can be shown 

mathematically as follows. The average stress over the distance from zero to 2uo using Eq. 
(5-4-1) is;

2a„

A ct .
1

r=0-2a„ 2a
I  A ct

1

o 0 a
-dr

a + r) (5-4-2)

=  A ct.
\a + a_

a.
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If this average stress is set equal to Aao then the applied stress A ain  Eq. (5-4-2) is equal to 

A(Too (see Eqs. (5-3-4)). This is an important result because it provides a rational explanation 

for the empirical law of ElHaddad and thus gives a physical significance to the length 
parameter Oo.

5.5 Application of the Model to Notches

The same approach can be applied to the consideration of notches. We used the linear elastic 

finite element method to obtain the stress field. Fig.5.5.1 shows the results of the point, line 

and area predictions for circular holes in the same medium carbon steel as mentioned above, 

using the same critical distance values. The figure also shows some experimental data for 

four different hole diameters at i? = -1 [DuQuesnay et al, 1986]. All prediction lines show the 

same general features, tending to the plain fatigue limit as the notch size tends to zero, and 

tending to the value which can be predicted using the notch method when notch size is large. 

As analysed in Chapter 4, some of circular holes behaved like short cracks and the one with 

notch depth of 1.5 mm behaved like a blunt notch which can be predicted using the notch 

method. The figure shows us that the new methods can overcome these types of problems 

without any modification.

1000

0.
S

s □
Q>
3  
O)
<0 u.

100
0.1 1

Notch depth D mm

Fig. 5.5.1 Prediction the fatigue limit of circular holes using the point, line and area methods,

compared with experimental data.

Circular Hole, SAE1045 Steel

-♦~p<>int method 
ne method 
'ea method 
cperimental data

W 1 i

•  E]
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5.6 Discussion

5.6.1 Input parameters needed

It has been shown that a single theoiy can predict the fatigue limits o f both cracks and 

notches and can also account for the variation of fatigue limit with size in both of these 

features. This is a useful result because it brings together two areas o f the subject which have 

traditionally been treated quite separately.

The present approach also has the advantage that it removes the empiricism which was 

inherent in earlier treatments o f the size effect. This has been done by identifying the length 

constant as Oo which is a quantity that can be calculated knowing two other experimental 

quantities: the plain-specimen fatigue limit (A cto) and crack propagation threshold {AKth).

The threshold value is relatively difficult to measure since it involves monitoring the growth 

of a crack at various applied stress intensity values. A simpler approach is to deduce AKth 

from the fetigue limit o f specimens containing sharp notches. In principle it is possible to 

find all three quantities (A cTo, AKth and Oo) from fatigue limit data measured from any two 

difierent geometric features, e.g. notches of two different shapes or cracks of diSerent sizes. 

This is very useful because fetigue testing is expensive and time-consuming.

5.6.2 Comparison of the new methods with previous approaches

Next we discuss two previous approaches to this problem. The first is the work of Klesnil and 

Lucas [1980] who predicted the fatigue limit for a notch by assuming that the critical stage in 

the process was the growth of a crack o f length Ic, a length which is almost the same as a„. 

This method has the advantage that it models the known physical process o f fetigue; the 

growth of a crack. Disadvantages are the simplifying assumptions that must be made 

concerning the stress intensity of this crack/notch combination in the elastic/plastic stress 

field and, more importantly, uncertainty about the growth rate of the small crack, which will 

be subject to the size effect discussed above. Also it is difficult to imagine how this method 

could be applied to cracks.
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Another approach of interest is that of Pluvinage and co-workers [Boukharouba et al, 1995; 

Pluvinage, 1997] who extended their concept of a notch stress intensity factor to include the 

idea of a critical distance, Xg. Their approach is similar to the point method used in the 

present work, except that Xe is not a material constant; it is primarily related to the notch 

stress distribution, being an estimate of the distance over which the stress remains relatively 

high compared to the hot spot stress. They define this as the region over which their notch 

stress intensity factor is unable to predict the stress level. Material properties are introduced 

because the stress distribution is modified in an elastic-plastic analysis which takes account 

of the material’s cyclic stress-strain behaviour. Grain size is also used, though it is not clear 

how this is taken into account. Overall the model is similar to the present one but the 

definition of the critical distance is complex and liable to extrapolation errors. It requires 

specialised material information, the cyclic stress-strain curve, which is relatively difficult to 

obtain. The method does not seem to be able to predict the size effect, or the behaviour of 

cracks.

5.6.3 Extension to other loading modes

Based on the linear elastic stress analysis, the new theory developed in this chapter gives the 

possibility of using any stress components, such as the maximum principal stress (MPS), 

Von-Mises stress etc. The rule of choosing the stress components depends on material type 

and the type of loading mode. In this thesis attention is focused on the opening crack mode, 

which is caused by MPS.

However, many service failures occur from cracks subjected to mixed mode loading. For 

example, the fatigue failure of a mild steel bar under torsional loads may be caused by the 

maximum shear stress [Brown and Miller, 1989]. It is necessary to develop a methodology to 

satisfy these engineering requirements. In feet, the new theory developed in this chapter can 

be extended to any other crack modes and also to mixed modes. In the following paragraphs, 

we will take the Line Method as an example to show how to apply the new methods to the 

other two modes.
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From fracture mechanics, the resulting asymptotic solutions for mode n, in plane sliding, are

yy

. e f 9 30

V2im-

- s m — 2 + cos—cos—
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And mode HI, anti-plane shear, it can be shown that
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2

(5-6-1)

(5-6-2)

When 0 is equal to 0, only one non-zero stress component exists in each mode. They are

a  = for mode II;
42nr (5-6-3)

for mode in.
Tir

In the same way as in developing the Line Method, the stress intensity factor for each mode 

can be obtained and they are

AK„ = 1 - ^  j  A a^dr, for mode II;
V 0

(5-6-4)
AKjij = -----\ts.(7 dr, for mode in.

0

In fracture mechanics, criteria of fetigue failure under mixed model loading are related with 

AKji and AKw. For different models various criteria should be used for fatigue crack 

prediction. This is beyond the study in this thesis.

5.6.4 Further work
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An interesting finding of the present work is that there appears not to be a fijndamental 

difference between the behaviour of cracks, the behaviour of blunt stress concentrations such 

as holes or indeed the behaviour of plain, unnotched specimens. The fatigue limit o f all three 

categories of geometrical feature can be predicted using the same general law. Now it is 

recognised that fatigue failure involves two quite different processes; the initiation of a crack 

and its subsequent propagation through the body. But the present work suggests that, at least 

as far as the fatigue limit is concerned, these processes are indistinguishable, so that the 

presence of a pre-existing crack does not alter the mechanism by which fatigue proceeds to 

failure. So further research is needed to understand the mechanism of fatigue failure.

Three different methods have been mentioned here; the point, line and area methods. It has 

been shown formally that they can all give solutions that are exact for a long crack. For short 

cracks, the solutions differ from the ElHaddad law and from each other by less than 10%. For 

the case of circular holes the differences were larger, 20%, but care should be exercised here 

because the type of experimental data used has an uncertainty o f at least 10%, so a large 

amount of data would have to be analysed in order to distinguish between the various 

methods. So far only circular holes are analysed; more applications to specimens and 

components will be reported in the following chapters.

5.7 Conclusions

1. Critical-distance analyses, which are normally used to predict the fetigue limits of 

notched bodies, can also be applied to bodies containing long, sharp cracks. In this 

case the critical distances can be found analytically, as functions o f the material’s 

threshold and plain-specimen fatigue limit. The distance parameters are related to Uo 

which is the ElHaddad constant used in short-crack analysis.

2. Short crack effects can be predicted using the critical-distance analyses. The variation 

of fatigue limit with crack length is found to be similar to that in ElHaddad’s 

equation. Experimental data can be predicted with reasonable accuracy in this way.

3. The same methods can also be used to predict the behaviour of notches; analysis of 

data on circular holes in two different materials gave good predictions o f the fatigue 

limits as a function of hole size.
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Chapter 6 Notched Specimen Verification

6.1 Introduction

In this chapter, experimental data reported in the literature and in-house results are used to 

assess the validity of the new theories developed in the previous chapters. The effect of notch 

depth, of notch acuity, of notch and specimen type, of load ratio, and of material properties 

on the threshold stresses are considered. Particular attention is paid to the inclusion of very 

small notches in order to test prediction of the size effect. As a comparison, some traditional 

methods are tested using these data as well.

A total of ten methods were applied on the notched specimens. They are:

1. LEFM - th e  standard crack prediction following Smith and Miller, using the 

following equation

The fatigue limit AcXo here is the nominal (gross section) stress applied to the notched 

specimen. The constant F  is determined by the geometry of the equivalent crack.

2. ElHaddad -  the LEFM prediction modified using ElHaddad’s correction for the stress 

intensity, using Eq. (2-4-1).

3. CMM -  the crack modelling method.

4. NM -  the notch method as used by Smith and Miller (using Eq. (2-2-3)).

5. CMMscr -  the crack modelling method modified by the ElHaddad correction using 

Uo- For notched specimens with regular geometry, the Methods 1 and 2 in Chapter 4 

are identical.

6. AVE. CMM&NM -  Method 4 in Chapter 4 in which a prediction is made by 

averaging the fatigue limit found fi-om the CMM and NM methods. The method was 

developed for analysing small notches.

7. PM -  the point method using stresses at a point a J 2  from the hot spot.

8. LM -  the line method, averaging stresses over a line o f length 2a„.

(6- 1- 1)
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9. AM -  the area method, averaging stresses over a semi-circle of radius Uo.

10. K&L -  the Klensnil & Lucas method (Eq. (2-1-5)), taken to typify previous critical 
distance methods.

6.2 Experimental Details

A  total of ten different sets of experimental data were chosen for verification; they are listed 
in Table 6.2.1. The materials included two aluminium alloys, two cast irons, three carbon 
steels, and two special alloy steels. The notch types of specimens included a circumferential 

notch cylindrical bar (CNB), a centre notch in a flat plate (CNP), a double edge notch in flat 

plate (DENP), and a single edge notch in flat plat (SENP). The values of load ratio R were 
from -1 to 0.7. The load types included tension and bend. The fatigue limit was defined at 

10  ̂cycles.

6.2.1 Steel samples 

• Mild Steel (0.15%C)

Two sets of data were chosen for axial loading. The geometries of these two group samples 
were different. One of them was machined in 43 mm outside diameter bar containing a 
circumferential vee-notch 5.08 mm deep and of root radii varying from 0.05 mm to 5.08 mm. 

The other was machined in 64 mm width flat plate with 5.08 mm double edge notches and 

root radii varying from 0.1 mm to 7.62 mm. Both of them were tested in push-pull [Frost, 

1974 and Harkegard, 1981],

Another set of data was used for assessing rotating bending. The samples were made of the 

same material but with different heating treatment. The specimens were machined in 12.7 

mm outside diameter bar containing a circumferential vee-notch 1.3 mm deep and of root 

radii varying from 0.005 mm to 2.3 mm. All specimens were stress-relieved for one hour at 

650 "C in vacuo after final machining and were tested in rotating bending [Frost, 1974], 

Because of the heat treatment the threshold stress intensity fector was lower than usual {AKth
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1/2— 6.5 MPa m ). The same kind of specimens with different sizes and geometry were also 

tested in reversed direct stress. Smith and Miller [1978] treated these notches, of which the 

stress concentration factor was larger than a certain value {Kt = 3), as cracks and got 
predictions which compared well with the experimental results.

• SAE1045

DuQuesnay et al [1986] tested this material for the investigation of the short crack effect. 

Flat plate specimens were machined from rolled plates such that the loading axis was parallel 
to the final direction of rolling. Circular notches were then drilled at the centre of the plate 

specimens. Notch diameters of 3 mm, 1 mm, 0.5 mm, and 0.24 mm were used. The surface 
of each specimen was hand polished to remove any sharp edges surrounding the notch. The 
geometry and dimensions of each notch were then checked by means of a travelling 

microscope with a resolution of 0.025 mm. The specimens were tested in uniaxial, fully 

reversed stressing (R = until fracture. For this simple notch geometry the stress field was 

given by Airy’s equation.

2 +
a.

yz + 3
Aa

(6-2- 1)

where a„ is the size of the notch (i.e. the hole radius) and x  is the distance measured from the 

centre of the hole.

• Steel 15315 (2.25Cr-lMo).

This is a pressure vessel steel. Lukas et al [1986] performed fetigue tests for investigating 

non-damaging notches. They used specimens with a cylindrical gauge section of 5 mm dia.. 

They machined circumferential semicircular notches with radii ranging from 10 to 800 ^m in 

the middle of the gauge length. After machining all specimens were subjected to a stress 

relief heat treatment and tested under symmetrical loading conditions {R 1).
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• SM41B

This is a structural low-carbon steel. The specimens were centre-notched plates whose width 

and thickness were 45 and 4 mm. The notch had a length of 6 mm and a tip-radius of 0.16 

mm. After machining, the specimens were annealed at 1200 °C for 5 hours in vacuum and 

cooled in a fumace. A notch was made after the heat treatment with an electro-discharge 

machine and then the specimens were reheated at 650 ”C for 90 min to relieve the residual 

stress. All specimens were electro-polished and then tested in uniaxial tension with varying 

load ratios [Tanaka and Nakai, 1983]. Another group of specimens were machined with 

varying tip radii and tested in push-pull.

6 .2 .2  Aluminium alloy sam p le s

• A12024-T351

The details of the specimen and fatigue test are the same as the steel S AE 1045 [DuQuesnay 

etal, 1986].

• LM25

This is a cast aluminium alloy tested in house. Ingots were obtained from a local 

manufacturer. Specimens were machined in single edge notched tension bars. The width, 

thickness and length were 20 mm, 10 mm and 120 mm respectively. A through-thickness 

sharp notch was machined into the specimen. The notch depths were 3 mm and 5 mm. The 

notch tip radius was less than 0.1 mm and the angle of the vee-notch was 58 . This was 

expected to be a crack-like notch. Specimens were tested under uniaxial tension (i? = -1) at 

room temperature. The fatigue tests were also carried out on material in the TF heat treatment 

form. In this form only 3 mm notched specimens were tested because of the limited number 

of samples.
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6.2.3 Cast iron samples 

• Grey cast iron

Taylor et al [1996] tested a grey cast iron (grade 17) to study the notch &tigue behaviour. 

The specimens were machined in 30 mm outside diameter bar containing a circumferential 

vee-notch 3.18 mm deep, of root radius 0.3 mm and vee-notch angle 90°. The fatigue testing 

was earned out in uniaxial tension to obtain the fetigue limit at four different/? ratios; -1,0.1, 
0.5 and 0.7.

Table 6.2.1 Material properties used in the threshold stress predictions

Case Material R A cTo AK,h ao Geometry

1

Mild steel (0.15%C) 

[Frost, 1974 and 

Harkegard, 1981]

-1 420 12.8 0.296 340 CNB#

D ^ C , p = V

2

Mild steel (0.15%C) 

[Frost, 1974 and 

Harkegard, 1981]

-1 420 12.8 0.296 340 DENP#

D = C , p = V

3

Mild steel 

[Frost, 1974 and Smith & 

Miller, 1978]

-1 520 6.5 0.05 CNB*

D = C , p = V

4 Steel SAE 1045 

[DuQuesnay et al ,1986]

-1 608 13.9 0.166 472 CNP#

D = p = V

5 Steel 15313 (2.25Cr-lMo) 

[Lukas efa/,1986]

-1 440 12.0 0231 380 CNB# 

D = p = V

6

Steel SM41B 

[Tanaka and Nakai, 1983]

-1

0.0

0.4

326

274

244

12.36

8.36 

6.38

0.458

0.296

0.218

194

194

194

CNP#

D = C, 

p - c

7 Steel SM41B 

[Tanaka and Nakai, 1983]

-1 326 12.36 0.458 194 CNP#

D = C ,r = V

8 A1-2024-T351 -1 248 5.0 0.129 357 CNP#
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DuQuesnay et al ,1986] >IIIIQ
9 LM25 -1 77.5 5.94 1.87 SENP#

D = V ,p = C

-1 155 15.94 3.15
Grey cast iron 0.1 99 11.2 4.07 CNB#

10 0.5 68 8.0 4.41 D = C,
[Taylor e/a/, 1996] 0.7 48 5.2 3.74 p  = C

Uniaxial tension test. * Rotating bending test.

Table 6.2.1 lists the material properties and test conditions of all specimens: (1) load ratio R, 

(2) fetigue limit range of plain specimens Aao, (3) long-crack threshold stress intensity range 

AKth, (4) yield stress (Xy, (5) geometry and (6) short crack constant Uo. p  is notch tip radius 

and D is notch depth. C represents a constant value. V represents a variable value.

6.3 Stress Analysis

In each case an elastic finite element analysis was carried out using ANSYS software. The 

stress parameter used in all cases was the 1** principal stress, which is equal to the maximum 

principal stress in a tensile stress field.

6.3.1 Element type

For plate specimens, an 8-node element was used because it provides more accurate results 

than a 4-node element for mixed (quadrilateral-triangular) automatic meshes and can tolerate 

irregular shape without as much loss of accuracy. The elements have compatible 

displacement shapes and are well suited to model curved boundary shapes, especially at 

notch roots.

For circumferential-notch cylindrical bars, a harmonic element was used for 2-D modelling 

of axisymmetric structures with both axisymmetric and non-axisymmetric loading, such as 

uniaxial tension and bending. A quarter or half model was chosen for the sample with the 

symmetric structure. The boundary condition should be carefully applied at the symmetry
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Hne. The use of an axisymmetric model greatly reduces the modelling and analysis time 

compared to that of an equivalent 3-D model.

6.3.2 Load condition

The stress at a point on the surface of a rotating bending specimen varies sinusoidally 

between numerically equal maximum tensile and compressive values once a revolution. Li 

another words, assuming the specimens remain wholly elastic, Aa=32 where ^dcris

the maximum surface stress in range, AM is the bending moment in range at the cross-section 

under consideration and <j) is the specimen diameter. This non-axisymmetric load can be 

applied to the harmonic element.

In ANSYS the load is defined as a series of harmonic functions (Fourier series). For example, 

a load F  is given by

Each term of the above series must be defined as a separate load step. A term is defined by 

the load coefficient {Al or Bl), the number of harmonic waves (/), and the symmetry condition 

(cos/^or sin/6). The number of harmonic waves, or the mode number, is input with the mode 

command. For rotating bending, the load is pure bending, we use MODE = 1 and ISYM = 

cosine (as defeult). The applied moment (AM) due to an axial input force {AFr) for this case 

can be computed as follows

F{0) =  A q  + Â  C O S0  + sinO +  Aj cos2^ + .Sj sin2^ +... (6-3-1)

AM - 1{ A F y  { c o s O ) / c o s 0 \ S d O )  =  AFyS/2 (6-3-2)

So the input force, AFr, can be determined by

A c t  (p (6-3-3)

16^
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where ^is the distance between the axis and the point where AFy is applied. Considering the 

effect of the concentration force, we apply AFr at a distance as far as 3 times the sample 

diameter away from the notch and the effect on the notch region, which is shown in the stress 
contour plot, is very small and can be neglected.

6.4 Definition of Prediction Error

In this thesis, the procedure of fatigue analysis can be divided into three general steps, as 
shown in Fig. 6.4.1. The first step is Stress Analysis. Stress analysis is carried out mostly 

using the finite element method. Sometimes analytical solutions may be used if the sample or 
component has a regular geometry.

The second step is Parameter Evaluation. There are several methods that are used or 

developed for fatigue failure prediction in this thesis. Each method involves different 

parameters. The parameters concerned with material behaviour are the threshold stress 

intensity fector AKth and the fatigue limit of plain specimens Aao. Corresponding parameters 

from the FEA are stress intensity fector range, AKfs and stress range, A c tp r e d , for applied 

loads APfe.

The third step is failure load prediction. The fatigue limit load range, APo, for a specimen or 

component can be found as shown in Fig. 6.4.1. In the equation, APfe represents a load 

applied to the FE model, which can be forces, displacements or temperature loads. Knowing 

the experimental fatigue limit test result, APt, the prediction error can be defined as shown in 

the equation (6-4-1);

* 100%Error
(6-4-1)
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FE analysis

Prediction
metliods

N/1

Parameters from different 

prediction methods; A K pe ,

Fig. 6.4.1 Schematic present of the proceeding of prediction fatigue failure

If the error is positive, it means that the prediction is overrated, non-conservative. Otherwise 

the prediction is underrated, conservative. For engineering applications, an error between 

±20% is acceptable, considering errors in experiments and numerical analysis.

6.5 Prediction Results

In this section, the prediction results are shown in the terms of the percentage difference 

between the predicted and experimental fatigue limits, with a negative value indicating a 

conservative prediction. Each case, is subdivided into three graphs for clarity; in each graph 

the following predictions are shown using variable method:

On graph (a) — LEFM, ElHaddad and CMM;

On graph (b) -  NM, CMM, CMMscr and AVE.CMM&NM;

On graph (c) -  PM, LM, AM, K&L.

In Case 9 only graphs (b) and (c) are shown because we use the ElHaddad method here to 

evaluate the threshold of the material (see in Chapter 7) instead of a prediction method.
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6.5.1 Verification of steel samples 

♦ Case 1 M ild  Steel CNB

30 
20 
10
0 

-10 
-20 
-30 
-40 
-50

0.01 0.10 1.00 10.00

Notch tip radius r mm

Fig. 6.5.1 (a) Prediction error on M ild  Steel CNB samples
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Si? 20
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2 -20 
® -40

I  -60 
■6 -80 
£i  -100 

-120
0.01 0.10 1.00 10.00 

Notch tip radius r mm

Fig. 6.5.1 (b) Prediction error on M ild  Steel CNB samples
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- ^ N M
-♦ -C M M
-O -A V E . CMM & NM 
HD—CMM scr

I Mnfr^1 = 5.08 mm
: 1 i 1 i i i i i i ................................ ....... ................—

LEFM
EIHaddad
CMM

Notch depth = 5.08 mm
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Notch depth = 5.08 mmQ.
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Fig. 6.5.1 (c) Prediction error on Mild Steel CNB samples 

♦ Case 2 Mild Steel DENP

Notch depth = 5 mm

-20

~#-EIHaddad
-^ L E F M

-60
0.1

Notch tip radius mm

Fig. 6.5.2 (a) Prediction error on Mild Steel DENP samples
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Fig. 6.5.2(b) Prediction error on Mild Steel DENP samples
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Fig. 6.5.2(c) Prediction error on Mild Steel DENP samples
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♦ Case 3 Mild Steel CNB under rotating bending load

20
Notch depth = 1.3 mm

-20

-40
LEFM
EIHaddad
CMM

-80
0.001 0.01 0.1

Notch tip radius r mm

Fig. 6.5.3 (a) Prediction error on Mild Steel CNB samples, rotating bending.
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Fig. 6.5.3 (b) Prediction error on Mild Steel CNB samples, rotating bending.
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Notch depth = 1.3 mm

-10

-20

-30
0.001 0.01 0.1 1 10

Notch tip radius r mm

Fig. 6.5,3 (c) Prediction error on Mild Steel CNB samples, rotating bending.

Case4SAE 1045 CNP
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Fig. 6.5.4 (a) Prediction error on SAE 1045 CNP samples
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Fig. 6.5.4 (b) Prediction error on SAE 1045 CNP samples
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Fig. 6.5.4 (c) Prediction error on SAE 1045CNP samples
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♦ Case 5 Steel 15315 CNB
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Semicircular notch LEFM
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Fig. 6.5.5 (a) Prediction error on Steel 15315 CNB samples
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Fig. 6.5.5(b) Prediction error on Steel 15315 CNB samples

85



Chapter 6

io>
co

■o

100
Semicircular notch80

60

40

20

0

-20
0 0.2 0.4 0.6 0.8
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Fig. 6.5.5 (c) Prediction error on Steel 15315 CNB samples 

♦ Case 6 SM41B CNP under variable load ratio
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b
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Fig. 6.5.6 (a) Prediction error on SM41B CNP samples
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Fig. 6.5.6(b) Prediction error on SM41B CNP samples
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Fig. 6.5.6 (c) Prediction error on SM41B CNP samples
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♦ Case7SM 41BCNP
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Fig. 6.5.7 (a) Prediction error on SM41B CNP samples
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Fig. 6.5.7(b) Prediction error on SM41B CNP samples
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Fig. 6.5.7 (c) Prediction error on SM41B CNP samples

6.5.2 Verification of aluminium alloy samples

♦ Cases A12024-T351

Circular hole EIHaddad
LEFM
CMM
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Fig. 6.5.8 (a) Prediction error on A1 2024 T351 CNP samples
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Fig. 6.5.8 (b) Prediction error on A1 2024 T351 CNP samples
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Fig. 6.5.8 (c) Prediction error on A1 2024T351 CNP samples
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♦ Case9LM25

■ LM 25 3mm □ LM 25 5mm B LM 25-TF 3mm 
2 0 ------------------------------------------------------------------------------

-100 ----------------------------------------------------
Method

Fig. 6.5.9(b) prediction error on LM25 and LM25-TF SENP sample

ILM25 3mm □LM25 5mm BLM25-TF3mm

Q. -20

Method

Fig. 6.5.9(c) prediction error on LM25 and LM25-TF SENP sample
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6.5.3 Verification of cast iron samples 

♦ Case 10 Grey cast iron

Notch depth = 3.18 mm, Notch radius = 0.3 mm.

402 -♦ -C M M

- ♦ “ EIHaddad
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Fig. 6.5.10(a) Prediction error on Grey Cast Iron CNB samples
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Fig. 6.5.10 (b) Prediction error on Grey Cast Iron CNB samples
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Notch depth = 3.18 mm, Notch radius = 0.3 mm

40
2 30 -LM
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Fig. 6.5.10 (c) Prediction error on Grey Cast Iron CNB samples

6.5.4 Summary of verification

Table 6.5.1 summarises our findings firom all the data analysed. Two categories are defined 

in the Table: better than 20% and better than 30%. Our goal was to make predictions within 

20% because errors of this magnitude will arise anyway in the experimental work and stress 

analysis, so it was felt that one couldn't distinguish between an error of 20% and an error of 

zero. Table 6.5.2 shows the findings from methods used in conjunction with the notch 

method. In the table, an estimate from each method was compared with the one from the 

notch method and higher ones were chose as final predictions. This technique is based the 

Smith and Miller model (see Chapter 2). The last three in the table show very good 

predictions because they can be used for both short and long crack problems.
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Table 6.5.1 Summary of the accuracy of the various methods of prediction

Method

Percentage 

accurate 

within 20%

Percentage 

accurate 

within 30%

Method
Percentage 

accurate 

within 20%

Percentage 

accurate 

within 30%
LEFM 44 53 Ave.* 51 70

ElHaddad 79 93 PM 94 100
NM 18 25 LM 81 100

CMM 49 66 AM 92 100

CMMscr 65 86 K&L 57 81
* Ave. rq^resents the method of averaging NM and CMM

Table 6.5.2 Summary of the prediction accuracy of methods used in conjunction with the

notch method

Method

Percentage accurate within 

20%

Percentage accurate within 

30%

LEFM and NM 42 56

CMM and NM 63 80

ElHaddad and NM 87 100

CMMscr and NM 68 96

Ave., NM and CMM ** 81.4 98

** Three methods, Ave., CMM and NM, were combined for use.

6.6 Discussion

Geometrically, all notches in these ten sets data can be divided into three categories: small 

notches, long crack like notches and blunt notches. Around 20% of notches were blunt 

notches^ these were all predicted well using the notch method. The boundary between small 

notches and long crack like notches was not clear; methods for long crack like notches could 

also give a good prediction on small notches in some cases. As the figures and Table 6.5.1 

show, the new critical dista.nce methods (PM, LM and AM) were clearly the best performers, 

with accurate predictions in about 90% of cases and no errors above 30%. These methods can 

handle any size of notches.
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The ElHaddad method is capable of good accuracy in most cases, with accurate prediction in 

about 80% of cases and only 7% errors above 30%. The method can be used for both small 

and long crack like notches. However, it produced too conservative predictions on blunt 
notches.

LEFM and its FEA-friendly version, CMM, showed around the same results, with accurate 

prediction of 44% and 49%, 53% and 66% error above 30%; a slight difference existed, as 

we mentioned in Chapter 4, CMM was better on notched specimens. These methods can be 

used for long crack like notches. The advantage of using the CMM method is that the method 

converges very easily, as we mentioned in Chapter 3, in contrast to the critical distance 

methods - especially PM - which require finer meshes to pick up changes in stress at the 

critical distance. NM also requires a fine mesh, but CMM may still be the best option for 

large, crack-like notches in complex components.

The short-crack corrections of CMM are CMMscr and Ave., which showed good 

performance in most cases with small notches. The old Klesnil and Lucas method was 

almost as good, though it had a significant number of high errors.

It is interesting to look in more detail at the datasets, in order to appreciate trends in the 

predictions. Figs. 6.5.1 is typical of the kind of data fi'om which Smith and Miller [1978] 

developed their approach; notches of relatively large D  (compared to ao) in which Kt is varied 

by changing r. Sharp notches are well predicted by LEFM and blunt notches by NM: using 

the highest o f the two predictions is a successful strategy. Figs. 6.5.1 shows, as expected, that 

the FE-based CMM gives almost the same prediction as its analytical equivalent (LEFM) and 

the short-crack corrections (ElHaddad and CMMscr) tend to reduce the predicted fatigue 

limit, but only by a small amount here because D is large. All these can be seen in Figs. 

6.5.2-3 in spite of the different geometry and load type.

As Fig. 6.5.1(c) shows, the point and area methods tend to give similar predictions; AM was 

expected to be 10% lower but in fact this rarely happens. LM gives slightly higher 

predictions and was a trend throughout the datasets. It was closely matched by K.&L, which
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is to be expected since both are based on the averaging of stresses over a line, though the line 

length and the method o f determining stress differ significantly.

Fig. 6.5.4,5,8 show typical behaviour of small notches. A common character in those 

specimens was that the notch depth was equal to the root radius. ElHaddad and CMMscr are 

useful (and necessary) corrections to the crack-based theories. Ave. NM&CMM was very 

successful in these cases and can be extended to complex components because nominal 

stresses are not required. PM, AM and LM continue to work well but K&L can be poor. The 

largest errors generally occur for very small notches, in those methods which do not 

incorporate the size effect.

Figs 6.5.8-9 show predictions from aluminium alloys of varying strength levels. Lower- 

strength materials tend to have higher values of flo, thus extending the range of notches for 

which size effects are important. Fig.6.5.10 shows the material with the largest Oo value 

found; a grey cast iron. This dataset also shows predictions at various R ratios.

The crack and notch methods cannot usefully be considered in isolation, since they are 

intended to be used in conjunction, as Smith and Miller proposed. LEFM & NM together 

constitute the original Smith and Miller approach, whilst CMM & NM is the FEA-fiiendly 

version. Both give good predictions in a majority of cases but experience large errors when 

dealing with notches that are small in size. This problem is almost alleviated by the use of 

short-crack corrections. Table 6.5.2 also shows good predictions using three combination 

methods, ElHaddad & NM, CMMscr & NM and Ave. & CMM & NM, with accurate 

predictions in over 68% of cases and about 2% errors above 30%. The strategy of using the 

higher of the two predictions is successful for these methods, except Ave. & CMM & NM.

Ave. & CMM & NM represents a package containing three methods; Ave., CMM and NM. 

This package was found to be valid for any kind of notches; small notches, crack-like notches 

and blunt notches as shown in Table 6.5.2. An additional requirement to the strategy is that 

one should know whether a given notch is a small notch or not.
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Predictions showed no particular bias with regard to material type, loading type, R  ratio or 

notch shape. Fig. 6.5.2 shows the same trend as in Fig. 6.5.1, in spite of the different 

geometry of specimens; Fig. 6.5.3 shows the prediction on another type of load -  rotating 

bending. Fig. 6.5.6-7 show the predictions on variable load ratio. The two parameters of D 

and p  were the only significant variables.

6.7 Conclusions

1) High cycle fatigue failure in notched specimens can be predicted based on linear elastic 

stress analysis. The fatigue properties of materials, threshold stress intensity AKth, fatigue 

limit of plain specimens Aao and material constant Oo, are basic parameters for prediction. 

The two parameters, notch depth D and notch root radius p, are the only significant variables.

2). Critical distance methods -  the point, line and area methods, based on the use of Uo, are 

very successfijl in predicting the fatigue limits of notched specimens fi'om elastic FE 

analysis. They are able to handle notches of all sizes and shapes in a wide variety of 

materials, R  ratios and load types. Their only significant disadvantage is the need for a 

relatively fine FE mesh.

3). The crack modelling method combined with the notch method can also be used 

successfully in most cases. This analysis can be carried out using coarser meshes and so may 

be more practical in complex components. Problems occur when notches are small in size. 

These problems can be solved mostly by using its revised version, CMMscr. However the 

solution is limited to specimens or components with simple geometry.

4). The combination of the ElHaddad method and notch method is capable of predicting the 

fatigue limit of notched specimens. This combination method is able to handle notches of all 

sizes and shapes in a wide variety of materials, R  ratios and load types. Problems may occur 

when applying it to components with complex geometry.
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5). The method of averaging predictions from the crack modelling method and notch method 

can be used for small notches. The method can be extended to complex components with 
short crack effects.
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Chapter 7 Prediction of The Fatigue Failure in 
Engineering Components

A very important conclusion from the last chapter was that high-cycle fetigue feilure could 

be predicted using linear-elastic analysis essentially. All the methods used for verification of 

notched samples did not deal with plasticity. In this chapter, the new techniques were 

employed on engineering components. All these components except the marine component 

were currently used in Rover vehicles. The new methods were compared with a traditional 

stress-life approach, which is the same as the notch method (NM).

7.f Marine Component

The first component chosen for fatigue analysis was a large casting used in marine 

applications, which was made from grey cast iron. Previous work was successfully 

performed on the fatigue prediction using the Crack Modelling Method [Taylor, 1996]. Here 

the Point Method and the Average Method were used for comparison.

7.1.1 Fatigue failure description

In service this component had failed by fatigue; cracking initiated from a right-angle comer 

which had a filled radius of 0.3 mm. In an attempt to prevent fetigue, this radius was 

increased by a factor of 10, to 3.18 mm, but fatigue failure still continued to occur. An 

alternative approach, in which the original small fillet radius was unchanged but the service 

loads were reduced, was successftil in preventing fatigue. Fig. 7.1.1 shows the cr-r curve from 

the hot spot for these three design conditions: SI refers to the original design; S2 refers to the 

increased root radius and C shows the reduced loading conditions on the original radius. The 

stress value that is plotted is the 1** principal stress at the point of maximum load in the cycle. 

In Table 7.1.1, the plain specimen fatigue limits in range Acto, the threshold stress intensity 

factor AK,h, and the material constant Oo were listed at different load ratios [Taylor, 1996; 

Taylor and Wang, 1999].
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Fig. 7.1.1 o r  curves on the large casting component

Table 7.1.1 Material property of marine components

Condition

Load ratio 

R

Aao 

in MPa

AIQh 

in MPa

ao 

in mm

SI (sharp fillet, high service loads) 0.56 62.4 6.83 3.81

S2 (blunt fillet, high service loads) 0.56 62.4 6.83 3.81

C (sharp fillet, low service loads) 0.65 53.4 5.93 3.93
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7.1.2 Prediction results from CMM, PM and NM

In Table 7.1.2 the prediction results using CMM, PM and NM are listed, comparing with test 

data and the threshold. Because of limited stress data, the Line Method and Area Method 

could not be used for examining the fatigue failure. Both PM and CMM gave very good 

predictions on both the sharp and blunt fillets. The estimates using NM are also listed in the 

table. At this stage, we did know the loads applied to the FE models, so we could not 

evaluate the prediction errors. However, CMM showed higher estimates in each case than 

NM comparing A ctpred with Aao (in Table 7.1.1) and AKfe with AK^, so we chose CMM 

results as final predictions as discussed in the last chapter and it was proved this choice was 

right comparing with the fatigue limits of components. Also because these predictions are 

very close to those from PM, one can say that these problems are long crack-like problems. 

The advantage of using two different methods together is that the prediction results can be 

verifiable.

Table 7.1.2 Comparison of prediction results with test data on marine components

Name Fatigue limit
f^max

in MPa

PM

OPRED

in MPa

NM 

A o p r e d  

in MPa

Threshold 
AKth in

MPa

CMM
A K p E  in

MPa

SI 142 150 282 6.83 7.82

S2 142 160 85.5 6.83 6.30

C 152 135 195 5.93 5.03

From Fig. 7.1.1, we can see that fatigue failure of the component depended of the stress value 

at a J 2  but not at the hot spot. The material constant Uo of these two load ratios were around 

the same. The stress values at hot spot was decreased much from Condition SI with sharp 

fillet to Condition S2 with blunt fillet, but no big change at a J 2  and the fatigue limit was not 

increased even the fillet radio was 10 times larger than original. This implies that the fatigue 

limit of the component cannot be improved by simply increasing the fillet radio. The 

material in the component was low notch-sensitive material. For these kinds o f material, a 

reasonable solution could be (a) reducing loads or (b) changing another material with higher 

fatigue limit.
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NM showed too conservative predictions in each case, even on the blunt fillet, S2. The 

reason is that this traditional method only examines the stress at hot spot, which is not 

suitable for low notch sensitive materials, such as grey cast iron, since very high stresses can 

be tolerated by a component provided they are restricted to small regions of the component - 

leading to a so-called "stress-gradient effect". However, it plays a very important role if using 

CMM. Without comparing with the NM estimate, we did not know whether these geometries 

could be modelled as cracks or not; we did not know whether using CMM here was suitable 

or not. So NM was useful even if it could not give a proper prediction.

7.1.3 Conclusions

1. The stress concentration in the component subjected to high-cycle fetigue loads can be 

modelled a crack and CMM is able to predict the fatigue failure on this low notch- 

sensitive material, grey cast iron. PM can be used for the components as well and the 

method gave a clear explanation of why the feilure could happen and solved the problem 

which had confused people when using the traditional method. CMM and PM came from 

different theory but showed the same prediction result. It implies the result is reliable.

2. NM showed too conservative estimates. This method was not available for the marine 

components made of grey cast iron. However it is helpfiil for judging whether a given 

geometry is crack-like or blunt notch-like, which is necessary if using CMM.

7.2 Crankshaft

7.2.1 Introduction

Taylor and his colleagues performed a fatigue analysis on a crankshaft under bending and 

torsion reversed loads [Taylor et al,  1999; 1997], The crankshaft, which was in commercial 

use in Rover vehicles, was made of spheroidal graphite (SG) cast iron. They carried out 

fetigue tests with a load ratio R = -l and FE analysis. They made a prediction using the Crack 

Modelling Method, which agreed very well with the experimental data.
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7.2.2 Material and experimental data

From the literature, the threshold stress intensity factor, AKth, is 23.46 MPa m*^, A<Jo is 

392.01 MPa therefore the value of «o is 1.14 mm. The fatigue limits of the component were 

12 kN load range for bending and 3.2 kNm for torsion. Fig. 7.2.1 shows the whole 

component. Fig. 7.2.2 shows details of the loading and clamping; bending and torsion loads 

were applied in such a way as to cause failure in the bearing closest to one end of the shaft. 

The components were clamped in the same manner for both types of loading; for the bending 

test the load was applied vertically downward and the vertical plane containing the loading 

clamp was constrained to remain vertical. For torsion loading the load was applied at the 

same location and the three clamps were constrained to remain coaxial.

Fig. 7.2.1 The crankshaft component
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. Wnwt 
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Fig. 7.2.2 The method of clamping and loading. The clamp on the left is loaded downwards 

to produce bending or rotated to produce torsion.

Fig. 7.2.3 shows schematically the appearance of fetigue cracking after testing in bending 

and in torsion. In bending (left) the crack grows from A to B in a plane normal to the 

diagram. In torsion cracks initiate at A and A' and grow at approximately 45° to the mid 

plane.

LOAD

H4l
CLAMP

Batring

(a) (b)
Fig. 7.2.3 Illustration of feilure modes: (a) in bending (b) in torsion

The S/N  data, the details of FE analysis and the place where fatigue failure occurred can be 

found in the literature. Fig. 7.2.4 shows the Aa-r curves from the hot spot.
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Fig. 7.2.4 Stress/distance curves o f a crankshaft under bending and torsion loads at the

fatigue limit.

7.2.3 Prediction result

Five methods, CMM, PM, LM, NM and Ave., which were available for the component, were 

tried for the fatigue prediction. CMM showed higher estimates than NM in both two cases, so 

we chose the CMM results. However we were not confident the method was good for the 

component at this stage, since the problem could be long crack-like and short crack-like as 

well and CMM could not give an accurate prediction if it was a short crack-like. So we used 

PM and LM; both method showed around the same estimates. Then we compared the 

estimates with the estimates from CMM and Ave.. It was found that the difference between 

PM, LM and CMM was smaller than that between PM, LM and Ave.. So it was confirmed 

that the given problem could be modelled as a long crack but not short crack
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Fig. 7.2.5 Prediction error of the crankshaft in bending and torsion

The prediction errors are listed along with the CMM result in Fig. 7.2.5. Three methods 

— PM, LM and CMM — all gave good predictions; NM and Ave. gave poorer predictions 

which were too conservative, especially NM. The situation of the crankshaft was similar to 

the component in the last section.

7.2.4 Conclusions

1. PM and LM, which were able to predict the behaviour of notched specimens, were able to 

analyse the automotive crankshaft component made of SG iron. They showed a good 

agreement with test data under torsion as well as bending loads, which implies that the 

methods can be used with various types of loading.
2. CMM was able to analyse the same component as well so stress-concentrations of this 

kind can be modelled as cracks. NM show too conservative estimates but is necessary if 

using CMM.
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7.3 Camshaft

7.3.1 Introduction

This component (which is described in detail below) had a number o f different features 

compared to the previous two. The fatigue failure occurred from a relatively blunt notch —  

the stress concentration fector, Kt, was approximately 2. It was not clear whether this type o f  

notch was a small notch or not. Also, the fatigue failure occurred from a notch which was on 

an as-cast surface. It was known that as-cast components have hard surface layers which can 

change fatigue strength. It was therefore necessary to extend the new techniques to include 

this effect. This part o f the work has been published [Wang etal.,  1999]

7.3.2 Experimental details

Tables 7.3.1,2 show the material properties and composition o f the material, which was a 

typical grey cast iron. The threshold stress intensity fector at R=-l was found to be AKm = 

15.94 MPa [Taylor, Hughes, and Allen, 1996].

Table 7.3.1 Mechanical properties o f grey cast iron

Young’s Modulus 170 GPa
Poisson’s ratio 0.29

Yield stress 202 MPa (ao.2)
Ultimate strength 249 MPa

Table 7.3.2. Composition o f grey cast iron (% Weight)

C S Mn Si Ni Cu P Cr
3.3 0.09 1.5 1.8 0.07 0.2 0.03 0.05

Fig. 7.3.1 shows a general view o f the camshaft component, which contained a number o f  

geometric features. The fatigue tests were done at Rover. The component was clamped at one 

end as shown, and loaded either in bending or torsion (both at/?=-l), to produce failure at a 

chosen location, as shown in the detail in Fig. 7.3.1. Two designs were tested: the first had an 

as-cast notch, 1mm deep, 1.5mm root radius; in the second design, machining was used to 

remove the cast surface, deepening the notch to 1.75mm with 1.63 mm root radius. The K,
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fectors for these notches were 2.1 in bending (for both notch depths) and 1.6 for the as-cast 

notch in torsion. The S/N  data for the material was obtained using standard hourglass 

specimens loaded in axial tension/compression at i?=-l. Vickers hardness was measured 

using macro- and micro-indents, to record its variation as a function of distance from the 
surface.

1 BEJNfDING

T
^TORSION

FMLTJILE LOCATION

Fig. 7.3.1 Camshaft component, showing loading and details ofthe notch which caused

failure

7.3.3 Results

Figs. 7.3.2-4 show test results in the form of S/N curves, plotting applied load range for the 

component tested in bending (Fig.7.3.2), torque range for the torsion testing (Fig.7.3.3) and 

stress range for the plain specimens (Fig.7.3.4). The material fatigue limit, defined at 10  ̂

cycles was 190 ^̂ 4Pa. The results showed a degree of scatter which is typical for this 

material, giving variations on the load (or stress) axis of 10-20% fi'om the mean.
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Fig. 7.3.2 Camshaft bending test results: (a) as-cast notch (b) machined notch.
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Fig. 7.3.3 Camshaft torsion test resuHs (as-cast condition)
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Fig. 7.3.4 Plain specimen bar tension/compression test results

Fig. 7.3.5 shows the hardness results; it is clear that, despite some scatter, the micro-indent 

hardness of the as-cast component was higher near the surface, especially within 1mm, 

whereas this was not the case for the machined component or for the macro-indent hardness 

readings. The average Vickers-hardness on the as-cast surface was 395.5. The average value 

in the bulk was 326.6. This difference appeared to arise due to a change in the amount and 

morphology of the cementite phase; it was thus detected by the micro-indents, which were 

always placed in the matrix (pearlite/cementite) and not in the graphite nodules. The average 

value for the machined condition was 319.3, which is not significantly different from the as- 

cast bulk value.
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Fig. 7.3.5 Vickers-hardness of the camshaft; (1) micro hardness on the machined surface

(2) macro hardness on the machined surfece

(3) micro hardness on the as cast surface

(4) macro hardness on the as cast surface

7.3.4 Finite element analysis

ANSYS software was used to create a finite element model; a quarter model was used (Fig. 

7.3.6) because the component is axially symmetrical apart from the cam lobes which do not 

carry much stress. The bending and torsion loading was treated as a symmetrical or 

asymmetrical load, respectively. The models were meshed using 3-D parabolic tetrahedral 

elements. Element size close to the notch was about 0.75 mm.

A linear elastic analysis was used. In each case the highest stress occurred at the notch tip. 

Fig.7.3.7 shows the 1®* principal stress plotted as a function of distance, r, measured from the 

notch tip along a straight line drawn in the direction perpendicular to the 1 principal stress 

direction at the tip (see Fig. 7.3.6). The loading in each case corresponds to the experimental 

fatigue limit of the component.
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Fig.7.3.6 The finite element model, showing in detail the mesh around the notch tip. The 

arrow shows the line on which the stress-distance curve was measured.

200 ■

100 ■

0

 ̂As cast under torsion 

 ̂As cast under bending 

 ̂{Machined under bending

1 ■ ■ ■ ■ I ■ ■ ■ ■ I * ■

2 4 6 8 10

Distance from notch tip mm

12

Fig. 7.3.7 FEA results: a-r curves for each case at the experimental fatigue limit.

7.3.5 Prediction of fatigue limit

Not all of the ten methods could be used for predicting the fetigue feilure of the camshafts. 

LEFM and ElHaddad could not be used directly because there were no available equations
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for the loading circumstances, bending and torsion. K&L method was unavailable for the 

given problem because the notch tip radius at the failure location was less than the material 

value of flo- This result was that the factor K f  was less than 1, which was definitely 
impossible.

CMMscr did not make any difference compared with CMM. The reason was that the value of 

fltw from CMM was large because the component is in bending (see Chapter 4) and the 

modification factor is very close to 1. So six methods were left, which might be available for 

application to this components.

In order to understand the character of the given problem, NM and CMM were used first. It 

was found that the predicted fatigue limit from CMM was larger than that from NM. This 

implied that the problem definitely could not be treated as a blunt notch as it looked like. It 

might be a short crack or a long crack problem.

Ikawa and Ohira [1967] reported that graphite in grey cast iron was a highly branched and 

interconnected formation within a eutectic cell cluster, these cell structures were composed of 

sharp flake edges which provided paths of easy fracture in addition to regions of high stress 

concentration. The observation of the microstructure has confirmed this and it was also found 

that graphite flakes were much more interconnected near the surfece. So CMM would be 

applicable method for solving the problem. However the possibility of short crack problem 

still existed since the notch depth, D ,  is very close to the value of Oq. If  the deduction was 

right. Average method would give a good estimate.

Figure 7.3.8 shows the comparison o f prediction errors using these six methods. For the 

machined camshaft under bending load, the predictions from the Point Method and the Area 

Method agree very well with the experimental data. CMM’s prediction is acceptable with a 

little over 20% error. LM shows about 30% error. NM and Ave. give an underestimated 

prediction. For the camshaft with the as-cast surface, under bending load, the prediction was 

not good and needed to be improved. It is necessary to consider the surface effect, even 

though the prediction for torsion loading was acceptable.
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Fig. 7.3.8 Prediction error on the camshafts without considering the surface effect

Fig.7.3.9 shows revised predictions in which a correction factor was introduced to allow for 

the surface effect noted above. This correction was made by using the methodology of 

Murakami and Endo [1986 andl989], who proposed a generalised method for the analysis of 

small surfece defects and notches. They proposed that, for steels, the fatigue limit could be 

predicted by assuming that the notch was a crack, the size parameter they used was "area" - 

defined as the area of the defect projected normal to the stress axis. They proposed equations 

for the fetigue limit and threshold for notches in all steels (see Chapter 2), as follows:

Ao- =1.43(/7,+120)(V^)'"* (7-1-1)

=3.3*10’(//,+120)(a/ ^ ) ‘'" (7-1-2)

Here Hv is the Vickers micro-hardness. Since in a case such as the present one where the 

notch geometry was kept constant and the hardness changes, both the threshold and the
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&tigue limit should increase in proportion to {Hv + 120) which, given the hardness values 

quoted above, implied an increase of a fector o f 1.15 for the as-cast case. This increase would 

apply to all the methods used here.
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Fig. 7.3.9 Prediction error for the camshafts including the surface effect 

7.3.6 Discussion

As Fig. 7.3.9 showed the PM and AM, along with the correction for surface hardness, give 

good predictions with the error within 20% in the case of bending (machined) and torsion 

(as-cast). In the case o f bending (as-cast), these two methods give the prediction error within 

30 %. The prediction from LM was relatively non-conservative, except in the case of 

bending (as-cast). This implies that the method overestimated the fatigue strength sometimes 

and this problem was one which merited further investigation.

For the same situation such as with the as-cast surface, the prediction for bending is 

conservative compared with torsion. This result may be explained as follows. During the 

fetigue test, fetigue feilure could occur at any place around the root of the camshaft notch 

under the torsion load because the shear stress goes to the maximum value on the outside of
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the circle. That gave more opportunities for the initiation of a crack, compared with the 

situation of bending load. Under bending load a crack can initiate only at two opposite spots 

where the 1 principal stress goes to the maximum value. So there was more volume of 

material involved under the torsion load than under the bending load. In fact, the condition of 

fetigue limit of the plain specimen is closer to the situation of the torsion load. In general, it 

is reasonable that the real fatigue limit under bending load could be higher.

The analysis has also demonstrated that, in some cases, the crack-modelling method could be 

applied to very blunt notches. Previous papers [Taylor and Lawless, 1996; Taylor and 

O'Donnell, 1994] discussed the range of validity of the method: following Smith and Miller 

[1978] it was assumed that this fracture-mechanics approach would be valid for relatively 

sharp notches, with the maximum-stress method being valid for blunter ones. However, for a 

material such as cast iron, which has a particularly low notch-sensitivity, the crack-modelling 

method would have a greater range of validity, being preferred for many of the stress 

concentrations which were found on components.

Also the Average Method, which was designed for the short crack problem, showed good 

prediction, with the error being about 20% for two cases. And the predictions for all three 

cases were conservative. This implies that the equivalent crack length of the notched 

camshaft is around the length of a^ in the Kitagawa and Takahashi curve (see Chapter 2). 

Sometimes (e.g. bending machined, torsion as-cast) the CMM and Ave. could be used 

simultaneously and both of them would give reasonable predictions.

7.3.7 Conclusions

1) PM, LM and AM were able to predict the behaviour of this component. They showed a 

good agreement with test data in two different design cases under both bending and 

torsion loading.
2) CMM was also successful. Failure occurred from a very blunt notch (K t = 1.6-2.1) but 

even so the CMM gave better predictions than the use of NM. This implies that the 

method is suitable for a very wide range of features in materials of low notch-sensitivity, 

such as this grey cast iron.
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3) A simple method based on hardness measurements was successful in allowing for the 

existence of a hardened surface layer. This provides some support for the approach of 
Murakami and Endo.

7.4 Al-alloy Components

7.4.1 Introduction

Cast aluminium alloy is quite popular for use in automotive industries. The fatigue design of 
these alloy components is a very important part of the whole design, which is directly 
connected with safe life and reliability of the vehicles and economic interest of industries. 
This section is concerned with the prediction of fatigue failure in engineering components 

that were made of a cast aluminium alloy, LM25. Some methods, such as LEFM, ElHaddad 
and K&L, could not be employed because comers instead of notches caused stress 

concentrations where fatigue feilure occurred in these components. Another thing that had to 

be done was the estimation of the threshold stress intensity factor for long cracks because the 

long-crack threshold was not known for these materials. Two automotive components were 

examined here: a C-shaped bracket and a pump bracket, both of which are used in Rover 

vehicles.

7.4.2 Experimental details

The components were made of a cast Al-Si alloy, LM25, in the TF heat treatment, which 
means solution treated and precipitation treated [Smithells et ai, 1992]. Young s modulus E 

= 71 GPa, Poisson’s ratio // = 0.34 and ultimate strength UTS = 275 MPa. From the literature 

there was no record that was found about the value of the material threshold AKth under the 

load ratio R =-I. Due to the limited number of test bars available in the TF form, sample bars 

made of the same material but in the as-cast form were also used. These bars 
(18x10x170mm) were either plain or sharply notched through-thickness on a single edge (see 

Fig. 7.4.1a). The angle of the V-shaped notch was about 60°. Finite element analysis showed 

that Kt for the 3 mm notch was 15.54. The Kt value for the 5mm notch will be larger. At this 

stage, we did not know the critical value, K* of the fector for this material (see Section 2.2.1
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in Chapter 2), but we presumed that it was less than 15.54, so it was expected that these 

sharply notched bars would behave as cracked ones.

=1  + 2 J —
V r (7-4-1)

H

Fig. 7.4. la  Plain specimen and notched specimen for fatigue limit testing

The fatigue limit was defined at 10^ cycles under the load ratio R = -1. Only one notch depth 

was tested because we just had a few bars in the TF form and they were quite small, so the 

notch depth in these bars had to be relatively shallow (3mm). The as-cast alloy was tested to 

give a more complete picture of the behaviour of the material, using notch depths of 3 mm 

and 5mm. The hardness of the material in both heat treatments was measured. Fig.7.4.1b 

shows the FE model with the load conditions and the detail of the notch tip.
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Fig. 7.4.1b FE model for sharply notched specimen bar

Figs 7.4.2 and 7.4.3 show the loading arrangements for the two components. Rover also 

modelled the C-shaped bracket and pump bracket using FEA. Subsequently the author made 

a refined-mesh FEA for the C-shaped bracket. The load ratio of the fatigue testR  was -1. The 

fatigue failure occurred on the upper corner for the C-shaped bracket and near the end of the 

thin wall for the pump bracket, as marked in the figure. Figs 7.4.4 and 7.4.5 show the FE 

models.
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Fig. 7.4.2 Testing condition of C-shaped bracket; fatigue failure occurred at F '. Tensile

loading was applied along AB.

ACTUATOR

uirrm ^
Fig.7.4.3 Testing condition of pump bracket; fatigue failure occurred at F,
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(a) (b)
Fig. 7.4.4 FE model of the C-shaped bracket; (a) coarse mesh (b) fine mesh. The fine mesh 

has density increased by a fector of three near the comer.

Fig. 7.4.5 FE model of the pump bracket
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7.4.3 Results

The fatigue hmits of both notched and plain specimens, Aoh and Aaon, are listed in Table 

7.4.1. The hardness values in the two heat treatments are listed as well. We found that the 

ratio of the hardness in the two forms was almost the same as the ratio of fatigue limits on 

both notched and plain specimens. The same discovery was made by Murakami (see Section 

2.3.2), who showed that fatigue limit values for small surface notches are approximately 

proportional to material hardness. We deduced the fatigue limit of the 5 mm notch by 

assuming that the ratio is constant. Fig. 7.4.6 shows the S/N data for the notched specimens. 

Fig.7.4.7 shows results from the two components, plotting applied load range in this case. 

Fig.7.4.8 shows FEA results for the components, plotting the variation in maximum principal 

stress with distance from the hot spot (the cr-r curve).

Table 7.4.1 Hardness values and fatigue limit for the two heat treatments

Heat treatment
Hardness

Hv

Fatigue limit of 
plain specimens 

A ao  
MPa

Fatigue limit 
of 3 mm notch 

Aaon 
MPa

Fatigue limit 
of 5m notch

AÔ on
MPa

As cast 58.87 77.48 42.5 36
TF 111.73 140 81 66.6"

Ratio 1.9 1.8 1.9 1.9

* This value is the average of the others.
**The value was deduced by assuming that the ratio of fatigue limit between two heat 

treatment forms is constant.
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Fig. 7.4.8 a-r curves o f components 

7.4.4 Estimation of threshold AKth

In this section a new method was developed for estimating the threshold stress intensity 

fector. Instead o f using cracked specimens, the notched samples were employed in the 

method. So we called it the “ Notched Sample Method”.

7.4.4.1 Short crack efiFect

Although these notches were sharp enough to be crack-like, the method of LEFM could not 

be used for obtaining the threshold of the material, AfQh, as we expected. The calculation 

confirmed that there was a strong short-crack effect which made a big difference between the 

two notch depths when estimating the threshold value. Because notch depth was close to the 

value o f Oo, the short crack effect was inevitable.

7 .44 .2  Procedure

The following procedure was adopted for making the predictions. Firstly, the as-cast material 

was assessed, finding the value of Uo which gave the best predictions for the two notched 

specimens. Then the value o f the threshold AKth was worked out by using the value of a„.
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The geometry fector should be considered because the size of the specimens was small. The 

same procedure was repeated on the TF form. After that, the final prediction was confirmed 

by comparing both results.

From Eqs. (2-3-3) and (2-3-4) we had

(7-4-1)

and

AK^ = V;r(£) + a J  , (7-4-2)

where D  is the notch depth; F  is the geometry factor which is a function of the ratio of notch 

depth and sample width [Murakami etal, 1987].

7.4.4.3 Prediction results

The results for each step are listed in Table 7.4.2. We fitted the two notches by averaging the 

Qo value and used the average value to work out the threshold value. Finally we found that 

the ratio of the thresholds was identical to the ratio which was measured in hardness value.

Table 7.4.2 Threshold prediction of LM25

As cast form TF form
Go in mm AK,h in MPa ao in mm AKth in MPa m* ^

1.87 5.94 2.09 11.33

Further confidence for these two threshold values can be obtained by comparing them with 

results from the literature. Whilst no results were found for exactly the same alloy and heat

treatment, data were found for closely-related materials [Wigant, 1987; Usami, 1981]; an
1/2alloy of similar composition tested in the T6 heat treatment gave a threshold of 6.0MPam

at R=0.1, implying a threshold of about 12MPam‘^̂ at R = -1, and an as-cast material with a
1/2slightly higher Si content recorded a threshold of 4.8MPam at R = 0.1.

7.4.4 4 Kitagawa and Takahashi curves of LM25

Fig.7.4.9 shows the results in the form of Kitagawa and Takahashi curves. The ElHaddad 

model gave good descriptions of both heat treatment forms. According to the model, the
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value of flto is 2.08mm for the TF form and 1.87mm for the as cast form. The threshold value 

so deduced was then used to make predictions for the components.

1000
-EIHaddad model for LM25 
EIHaddad model forLM25TF 

■  LM25 test data 
▲ LM25TF test data

m
Q.
S

<
*i 100
E
0)3o>
<0u.

10
1 100.01 0.1

Notch depth D mm

Fig. 7.4.9 Kitagawa and Takahashi curves for LM25TF and LM25 

7.4.5 Fatigue failure prediction

7.4.5.1 Definition of cr-r curve path

The C-shaped bracket was a typical 3D engineering component so the situation was different 

from 2D problems or axially symmetrical 3D problems. For 2D problems, the surface of a 

fatigue crack is represented by a line. So we called the line a path. CMM and LM examine 

the lines on which fatigue cracks might grow. PM examines a certain point on the line. AM 

examines a semi-circle around the path as well. The critical values of fatigue parameters 

should be found on the path in which fatigue crack growth will occur.

For 3D problems, the surface of the fatigue crack may not be planar. Unfortunately, no 

method was developed for examining a curved plane yet. However we assumed that all the 

methods which work well in 2D problems could be applied to 3D problems. Fig. 7.4.10 

shows the vector plot of the 1*̂ principal stress on the comer. So the path direction should be
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normal to the 1 principal stress that can be seen in the figure and the AK value from this path 
should be lowest.

Patti direction

:

Fig. 7.4.10 Vector plot of the 1*̂ principal stress on the comer of the C-shaped bracket and

the path direction

Several directions starting from the hot spot F' were chosen in order to find the best cr-r path 

as shown in Fig. 7.4.11. The predicted AK values from CMM are shown in Fig. 7.4.12. The 

final path was on the direction of a  = 0° and p = 45°, which gave the lowest AK value of 

11.09 MPa This path was also used in PM and LM because it also gave the lowest Acr 

value. Actually there were several paths which gave AK values very close to the lowest, as 

shown in the figure. This implies that CMM is not sensitive to the path direction.
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Fig. 7.4.11 Schematic illustration of searching correct path for CMM
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Fig. 7.4.12 Predicted AK on each path using CMM
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7.4.5.2 Prediction results and discussion

Fig. 7.4.13 shows A<y-r curves for the C-shaped bracket, with coarse and fine meshes. The 

fine mesh model showed that the stress at the hot spot increased but then came down quicker 

than the coarse model. This change happened only in the first few millimetres and vanished 

fijrther fî om the hot spot.

n
Q.

b
<J
<0w
£
M
75a.

■ cQ.
2

350
Coarse mesh for C-shaped bracket 
Fine mesh for C-shaped bracket 
ao/2300

-© -ao  
 )K 2ao250

200

150

100

50
2 3 4 50 1

Distance from hot spot r mm

Fig. 7.4.13 Comparison of CF-r curves between the re-meshed model and original one

Six methods were used for the fatigue failure prediction on the Al-alloy components. The 

results are shown in Fig. 7.4.14. For the C-shaped bracket, CMM gave the best prediction 

among these methods, overestimating the fatigue limit shghtly, which is within experimental 

error. The re-meshed model improved the prediction. LM, underestimating the fatigue limit 

slightly, also gave good predictions. The re-meshed model did not change the result very 

much. This confirmed the inference that LM is less sensitive to the mesh density than the 

others. However, the improvement can be observed in PM’s prediction. The mesh density 

fector dr (see Chapter 3) was 0.8 in the coarse mesh model and 1.75 in the fine mesh model 

which was still less than the required one. Even though the prediction error was still greater 

than 20%, it appears that the prediction will converge to the test data if the mesh is fine 

enough, i.e. dr = 5 .  NM showed a poor estimate on the coarse mesh and even poorer on the
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fine mesh, as expected. Even the average method shows a better result than the Notch 

Method, although the error was over -20%. It implies that the geometry feature was crack­

like, instead of blunt-notch like, and could not be treated simply using conventional methods. 

AM was not available at this stage.

^ C-shaped, coarse mesh 01 C-shaped, fine mesh ■ Pump bracket 

80 
60

n 9
t  40 
p
t: 20 o>

1 °
.2 -20 
■o
2 -40

Q.

-60 
•80

Fig. 7.4.14 Prediction errors on the Al-alloy components

For the pump bracket, NM gave a good estimate, with an error about - 20%, as expected. The 

K t value was 1.1, very low and stress gradient was due to the bending only, so the problem 

could not be modelled as a crack. Furthermore it was acceptable that CMM was not suitable 

here. For this component, Ave. showed a very good prediction, with a slight overestimation 

o f the fatigue limit. It implies that the problem had a short crack effect.

The geometry limited the usage of LM for this component. The fatigue failure occurred at the 

end o f a thin section, with a thickness o f only 5.88mm and under bending loads, shown in 

Figs 7.4.3 and 7.4.5. The value o f w a s  2.01 mm, so the length of 2«o was very close to the 

neutral axis on which the bending stress was zero. We called it the Neutral Axis Problem . 

The mesh density may be the reason that the PM showed a poor prediction. Unfortunately a 

refined-mesh model was not available for this component, so we could not make a 

comparison o f two mesh densities. However AM overcame all these difficulties; it examined
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an area, not a point, so the method was less sensitive to the mesh density than PM; it only 

needed a distance of Ofo, a half of the length in LM, so it avoided the effect of the Neutral 

Axis Problem. These are why AM showed a very good prediction, with an error less than 
20%.

7.4.6 Conclusions

1. The threshold stress intensity factor and material constant Oo for an Al-alloy in two 

heat treatments has been estimated using data from notched specimens. Findings are 

broadly in agreement with conventional test results from the literature. Also a good 

prediction for a component was obtained by using these parameters.

2. CMM was the best method for the C-bracket. It has a wide range of use in the cast Al- 

alloy since a comer with 5 mm fillet was successfrilly modelled as a crack.

3. LM is a good method for fatigue feilure prediction. Its usage was limited when 

meeting the Neutral Axis Problem.

4. PM is sensitive to mesh density; CMM and LM are less sensitive to mesh density.

5. AM is a good method. It is less sensitive to mesh density and the Neutral Axis 

Problem. To develop a new technique for applying the method to a real 3D problem is 

a further work of merit.

6. NM was sufficient for the low-Kt feature for which the stress gradient was due to 

bending only.

7.5 General Conclusions for the Application to Engineering Components

1. PM, LM, AM and CMM were generally able to predict the behaviour of engineering 

components. These methods are suitable for a very wide range o f features in materials 

of low notch-sensitivity, such as the grey cast iron and Al-alloy.

2. The Point Method needs a fine mesh density. The proper density is a function of the 

ratio of a geometry feature and the material constant Uo and can be confirmed by 

checking the convergence o f the two different mesh densities.
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3. For some components like the pump bracket, the fetigue feilure occurred at a thin 

section under bending or torsion loads and the thickness of the section or beam is 

relatively small compared with the value of Uo. The Neutral Axis Problem will be 

met. In this case, AM showed its advantage to LM.

4. A general methodology is needed for deciding which method(s) to use in a particular 

situation. This is discussed in the next chapter
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Chapter 8 Discussion, General IVIethodology 
and Conclusions

8.1 Discussion

8.1.1 Overview of Chapters 6 and 7

The critical distance methods (the point, line and area methods) showed the best adaptability 

for fatigue failure prediction on all sizes of notched specimens, as stated in Chapter 6. 

Among them the point method is the best with accurate prediction of 94 % (the prediction 

error is within 20%) and no error above 30%; the area method is the second; the line method 

showed a slight overestimate on some data.

Predictions on engineering components showed the same results, which can be seen in Table 

8.1. We analysed eight cases (components) in Chapter 7; the marine component was counted 

as three cases due to three fillet radii; for the camshaft, we counted as two cases due to two 

surface forms, i.e. the as cast form and machined from. The line and area methods could not 

be applied to every case because (a) we had limited data, for example there were not enough 

AcF-r data for applying these methods to the marine component; (b) the component was not 

valid for applying the method as we discussed on the pump bracket in that chapter; (c) the 

technique of how to apply the area method to a 3D problem needed to be developed. 

Whereas the critical distance methods show very good behaviour; the best one -  the point 

method -  gave accurate prediction of 63% and no error over 30%; the rest show the same 

results. Based on the work in the last two chapters, the advantages of PM over other methods 

can be summarized in two words: accurate and simple. We can say that critical methods can 

be used to predict the fetigue feilure on both notched samples and engineering components. 

This is significant for academic researches and engineering application. Using CMM and NM 

together was also very successful.

The critical distance is only a function o f material fetigue properties, i.e. material constant Oo.
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It is independent of geometry. As the critical distances differ in each of these three methods, 

ao/2. Go, and 2qo for the point, line and area methods respectively, the sensitivity of each 
method to FE mesh density is different; the point method requires a fine mesh, followed by 

the area method and the line method. For the notch specimens this requirement can be 
satisfied because the geometry is simple and most cases can be simplified to 2-D problems. 

Also this difference can be an advantage when feeing engineering components; the point 
method is better than the line method for a thin beam or wall subjected to a bending load 
because the 2a„ distance may be over the neutral axis and then the method will be invalid as 
happened for the pump bracket. However the line method is better than the point method 

when the FE method is coarse as happened for the C-shaped bracket.

Surfece effects should be considered when appropriate, such as the camshaft in the as cast 
form. We made corrections by measuring the hardness from centre to surfece and the 

prediction results proved that the method could be used for components with surfece 

treatment. Quantitative correction and ease of use are the advantages of the method. For 

LM25, we measured the threshold stress intensity fector by testing single notched specimens 

with two notch depths. If the fatigue limits of specimens with two notch depths are known, 

the threshold can be evaluated using the critical distance methods; the stress-distance curves, 

Aa-r, will intersect at one point which should be equal to aJ2. And one can evaluate the 

threshold knowing Uo and the fetigue limit of plain specimens. In practice, an accurate result 
may not be obtained by only using one method because of numerical analysis errors. So 

using several methods and averaging the results may be a good solution. For sharply notched 
samples with regular geometry, the ElHaddad method is good for the short-crack correction 

as applied to LM25 specimens. If using critical distance methods, it is not necessary to 

sharply notch the specimens since these methods can be used for blunt notches as well.
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Table 8.1 Summary of the prediction accuracy on components using different methods used

Method

Percentage accurate within 

20%

Percentage accurate within 

30%
PM (8 cases) 63 100

LM (3 cases) 50 100

AM (3 cases) 67 100

CMM (8 cases) 63 88

NM (8 cases) 13 25

Ave. NM&CMM (8 cases) 50 75

CMM, NM (8 cases) 75 100

8.1.2 Critical distance methods

The critical distance methods developed here examine stresses in the focus regions. These 

methods evaluate average stresses which represent some kind of energy density. For blunt 

notches, small notches or long crack-like notches, however, if this energy density on the 

focus region is over a certain level, fatigue failure will occurs. At this stage, the material 

constant Q o is related to the ability o f material to resist fatigue failure at notches; a material 

with a higher U o  value has strong fatigue failure resistance, i.e. it has a low notch-sensitivity.

The advantage o f these methods is that we need not divide the whole fiitigue life into several 

phases, such as crack initiation, short crack propagation and long crack propagation. It is still 

a commonly held view that fatigue life of a material, o f component or structure can be 

divided into an initiation phase, a short crack propagation phase and a long crack growth 

phase. For engineering components, defects, such as surfece scratches, grain boundaries, 

triple points and surface inclusions, are inevitable; and any kind of defect, however small, is 

a stress concentration that can readily give birth to a crack. So the crack initiation period can 

often be neglected. However even then the prediction is still complex: short crack 

propagation can be studied with Microstructural Fracture Mechanics and long crack growth 

with Elastic Plastic Fracture Mechanics; many parameters and complex non-linear stress
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analysis are needed. All these directly limit its application for engineering components.

We used the Rankine theory of maximum principal stress, MPS, in all cases including 

notched samples and components. MPS is suitable for the situation in which the Stage II 

crack dominates and cracks in notched specimens subjected to tension-compression or 

components with graphite flakes show tensile opening (or Stage II) type propagation [Miller, 

1999]. All forms of loading, however simple or complex, induce a three-dimensional strain 

pattern which in fatigue loading leads to specific Stage I and Stage II cracking systems. Stage 

n  cracks, for all loading modes, only grow on a plane whose normal is parallel to the 

direction of MPS. For Stage I dominance, as in torsion, the Tresca maximum shear stress 

theory is superior. However, should a material have grains with numerous slip systems then 

at higher stress levels the von-Mises criterion is more meaningful especially for multi-plane 

fracture materials. Our methods can be applied to Stage I cracks with some modifications, as 

discussed in Chapter 6.

8.1.3 Crack Modelling Method combined with the Notch Method

The use of CMM combined with NM was the best from Table 8.1. The materials in these 

components were cast iron and cast Al-alloy, which have low notch-sensitivity. The values of 

ao were large relatively. However the short crack effect was not strong in all these 

components. The reason may be that the defect effect was strong. The defect, such as 

graphite flakes in cast iron and pores in cast Al-alloy, combined with geometry feature, 

turning the problem into a long crack one. For the present work, we used MPS because of 

Stage n  cracks. However it is possible to extend the method to Stage I cracks by examining 

shear stresses, as noted above.

For materials like mild steel, short crack effects may be strong when the fillet radius in a 

component or notch tip is small, as it was in Chapter 6, so it depends on the geometry of 

components and materials. The average method may be a good choice, it still keeps the 

advantage of the crack modelling method and can be applied to small notches. Due to the 

absence of the experimental data, we did not test the method on a component made o f mild
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steel. But it should work because it worked well on notched specimens.

All the methods used in the present research are based on linear elastic stress analysis. The 

fact that accurate predictions were obtained for notched samples and engineering components 
by using these methods supports the assumption that high-cycle fatigue is a linear elastic 

problem basically. This is very good for engineering applications, especially for components 

at the design stage. There were some methods developed recently for predicting high-cycle 
fetigue failure [Ting and Lawrence, 1993;Chien and Coffin, 1998], which were based on 
plastic models and considered short fatigue crack growth in the vicinity of the notch. They 

showed good prediction on notched specimens and notched components, which had small 
notches or long crack-like notches. However these methods were limited when applied to 

engineering components: since using the elastic stress concentration fector, Kt, nominal stress 

was inevitably concerned; for a component with simple geometry, this nominal stress is valid 

but not for complex geometry like the C-shaped bracket. Additionally, plastic analysis will 

result in huge cost of fatigue analysis for large and complex components such as a 

crankshaft, or for a blunt notch which can be simply predicted using the notch method. The 

present research overcame these difficulties and can satisfy the requirements of the state of 

art, to obtain the right design first time.

8.2 General Methodology

All the methods discussed in this thesis have advantages and disadvantages. It is hard to say 

which method is better or worse without considering a particular circumstance. They can be 

used independently. But a better way is to use them together in order to get an optimum 

prediction. It is easy to use all available methods because all of them need the same source 

data and material properties basically. A general methodology should be developed including 

the use of each method. This should cover three regions: geometry of long crack-like, short 

crack-like and blunt notch-like features. For an engineering component, if we know what 

kind of the problem we have, we know where to get the solution. The following section 

proposes a general methodology of this type.
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The accurate prediction reUes on a proper FE mesh density. Coarse meshes will usually result 

in higher A K f e  when using CMM; and this will underestimate the fetigue limit. It happens 

when using critical distance methods, CDM, i.e. the point, line and area methods. Coarse 

meshes will result in lower A<j p e  when using NM and so will overestimate the fatigue limit of 

a component. However the requirement of mesh density from CMM is easily satisfied; the 

method will predict an accurate result in its regime for any reasonable mesh. So CMM should 
be the first choice.

For an engineering component with stress concentration, the general methodology starts with 

the comparison of prediction results from CMM and NM. If the estimate from CMM equals 

or is close to the estimate from NM, i.e. CMM = NM, a prediction can be made from the 

estimates. It impUes that tiie equivalent crack length of the geometrical feature equals or is 

close to the parameter U2 on the Kitagawa-Takahashi diagram. While if CMM < NM, the 

feature behaves as a blunt notch and the prediction can be made using the NM estimate.

The situation needs to be considered when CMM > NM: the feature can behave as a long 

crack or as a short crack. If the feature has short crack behaviour and CMM is used for 

prediction, it will tend to underestimate the fetigue limit. So it is necessary to judge the 

character o f the feature. At this stage, critical distance methods are invoked. Due to the fact 

that these methods are sensitive to FE mesh density, the first thing one should do is to check 

whether the given FE mesh is fine enough to apply these methods or not. There are two ways 

to examine the mesh density: one can directly measure the radial density, which was defined 

as d r  =  a j l r ,  Ir is the average element length along the radial direction. Experimentally, d r  

should be larger than 5 for PM. Additionally, one can compare estimates from these methods. 

Since the critical distance in each method differs from the others, the requirement for the 

mesh density is different: PM needs the finest mesh relatively; AM is less sensitive and LM 

is even less. If each estimate is identical or around the same, it means that the mesh is fine 

enough. Here it should be mentioned that LM tends to slightly overestimate the fatigue limit 

compared with the others, as happened in notched specimens, shown in Chapter 6. If there is 

a big gap between each estimate, it implies that the present mesh does not meet the 

requirements o f at least one method; the best way is to re-mesh the model and carry out the
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analysis again until the expected results are obtained. However, sometimes for some reasons, 

re-meshing is impossible or very difficult. Using the highest estimate is a good strategy for 

getting an approximate answer: a coarse mesh will result in an underestimate of the fatigue 

limit for each of those methods in general; while a mesh is coarse for PM but may not be 

coarse for AM or LM; so if AM>PM or LM>PM and the difference is bigger, it means that 

the mesh is coarse for PM but not for AM or LM. Another possibility may appear that is 

PM>LM or PM>AM. In this case, one should examine the stress -  distance curve, A a -r , if 

the stress goes down to a negative value in a distance o f Ug or 2qo, it means that the curve 

passes across the neutral axis. This happens when a thin beam or thin section is subjected to 

bending loads and AM or LM cannot be used in this situation. Thus one can obtain a CDM 

estimate from the above procedure.

The next step is to compare the CDM estimate with the CMM one. If CDM > CMM, it is a 

long crack problem and CMM will produce the best prediction. If CMM > CDM, the 

geometry feature behaves as a short crack; CDM will be the best choice; if a proper mesh 

density for CDM could not be guaranteed, CMMscr can be used (but not for bending loads) 

and Ave. NM &CMM for irregular geometry are highly recommended. Fig. 8.2.1 shows a 

schematic illustration of the whole methodology.

Briefly, the methodology can be divided into three steps;

1. Comparing the predictions from CMM and NM, if NM is bigger than CMM, it is a 

blunt notch like problem and NM will be efficient; no fine mesh is needed at this 

stage.

2. If CMM is bigger than NM, it is a crack like problem, either a long crack or a short 

crack. Comparing CMM with CDM, if the results are close to each other, it is a long 

crack problem. CMM is the best.

3 For a short crack problem, CDM is the best. However if a proper mesh density cannot 

be achieved, CMMscr or Ave. NM &CMM can be tried.
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Fig. 8 .2.1 Schematic illustration o f the general methodology
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This methodology was tested on these components. Taking the C-shaped bracket as example, 

the estimate from CMM was chosen since it gave the highest prediction value among all the 

others, the value agreed well with the estimate from LM (not with PM because of the mesh 

density). So it was confident that the final prediction was right. For the crankshaft, we found 

that CMM > NM, meaning that the problem was either a long crack or a short crack problem.

8.3 Conclusions

1. High cycle fatigue failure can be predicted using approaches based on linear elastic 

stress analysis. The theory examines stresses not only at the hot spot but also in a 

region around the stress concentration. The fetigue properties of materials, threshold 

stress intensity AKth, fatigue limit of plain specimens Aao and material constant Oo, are 

the only parameters needed for prediction. For notched specimens, the two 

parameters, notch depth D and notch root radius r, are the only significant variables.

2. The physical meaning of the material constant Qo can be expressed as the ability to 

resist fatigue feilure in the presence of a notch or stress concentration. A material with 

higher value of Uo has stronger resistance of fetigue failure. The threshold stress 

intensity fector and material constant Oo can be estimated using data from notched 

specimens. Findings are broadly in agreement with conventional test results from the 

literature. Also good predictions for components were obtained by using these 

parameters. A simple method based on hardness measurements was successfial in 

allowing for the existence of a hardened surface layer. This provides some support for 

the approach of Murakami and Endo.

3. Critical distance methods -  the point, line and area methods, based on the use of 

are very successful in predicting the fatigue limits of notched specimens and 

engineering components. They are able to handle notches of all sizes and shapes in a 

wide variety of materials, R ratios and load types. They are able to handle 

components with complex geometry as well. The only disadvantage of the point
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method is the need for a relatively fine FE mesh and the disadvantage of the line 

method is the limitation on thin sections subjected to bending loads.

4. The crack modelling method is not sensitive to the path orientation, minimum 

distance, maximum distance and finite element mesh density. The path of the stress- 

distance curve should be normal to the maximum principal stress direction and the 

rule of lowest A K p e  can be used to find the path in complex situations. Any 

reasonable mesh density will make a reliable A K pe possible.

5. The crack modelling method can be used for the short crack/notch problem after 

revision. Several modifications make the method available for different situations, 

such as different geometry and loads. Revised methods showed a good agreement 

with several sets o f experimental data. Among them the average method is applicable 

on not only notched specimens but also engineering components with complex 

geometry. The method does not require special FE models or the material constant Oo. 

A disadvantage o f the method is that it is only suitable for the short crack problem.

6. A general methodology was developed, which uses the advantages of each methods 

mentioned in this research. The methodology is supposed to be used commercially for 

predicting the fatigue failure on engineering components subjected to high-cycle 

fatigue loads. The methodology considers every possibility which could be met when 

applying it to engineering components. The initial testing of the methodology has 

shown promising results.
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