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ABSTRACT 

The principal goal of the proposed project is to develop a data analysis framework 

that incorporates analytical methods for the study of cognitive map represented by 

neurons in vivo recorded from chronically implanted freely behaving rodents. 

Where and how spatial information is represented in the brain has long been studied 

since O’Keefe and Dostrovsky (1971) first described the spatial receptive fields in 

hippocampal neurons (O'Keefe and Dostrovsky, 1971). The discovery of grid cells- 

neurons with multiple such receptive fields arranged in a triangular grid, in 

entorhinal cortex(Hafting et al., 2005) led to the discovery of an internal navigation 

system in the brain (Moser et al., 2008). Moreover, neurons tuned to non-spatial, 

natural stimuli (e.g. speed-cells, etc.), have also been described, and are likely to 

contribute to the dynamic representations of ‘self-location’, e.g. for path integration 

(Kropff et al., 2015). 

Recently, other brain areas contributing to this navigation system have also been 

explored with novel experiment designs in chronically implanted rodents (Jankowski 

et al., 2014). This approach can generate vast amounts of data, particularly if acquired 

over a long duration, i.e. to validate the stability of recordings and to test different 

experimental manipulations (Jankowski et al., 2014). Moreover, advances in the 

design of electrodes, i.e. increasing the density (and therefore, the number of 

recording sites), have, and will continue to increase the amount of generated data 

exponentially in the coming years (Rey et al., 2015). The process of analysing such 

large data sets involves first identifying the activities of single-neurons from the noisy 

recorded data using unsupervised machine learning techniques, second, the analysis 

of relationships with spatial and non-spatial variables and verifying the correlations, 

and finally, the computation of inferential statistics for the description of local cell 

population. There are some open-source software packages for studying neural codes 

of single-neurons, multi-neurons, and local field potential (Rey et al., 2015, Ince, 

2013), however, at present, there is no toolbox, so far we know, to explore neuronal 

encoding of spatial and non-spatial information relevant to cognitive mapping that 

also incorporates batch processing of large amounts of data. Individual laboratories 

have been using established analyses while new ones evolve, but there is no software 
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that implements these algorithms within one working environment, which limits the 

wide applications of these methods. Moreover, it is also necessary to facilitate quick 

implementation and integration of new techniques along with the established ones 

given the challenges associated with evolution of new technology. 

In this project we developed NeuroChaT (Neuron Characterization Toolbox), a 

graphical user interface (GUI)-based open-source software suit that will bring 

together the existing algorithms and analysis methods in a unified framework for 

greater accessibility and to provide a platform for easier implementation of the 

context-specific techniques. I expect that it will enable the scientific community to 

focus more on bringing excellence in both developing novel algorithms and 

experimental designs with an ease of access to a widely used and standard data format 

much like SPM and BrainVoyager in neuroimaging. 
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AROUND 100MS- IMPLYING THAT THE UNIT IS RHYTHMIC AT AROUND 10HZ.-------------------------------95 

FIGURE 3.12 ALGORITHM FOR CALCULATING THE CORRELATION BETWEEN INTER-SPIKE INTERVAL OF TWO 

SPIKING TRAINS. ONE OF THEM ACT AS REFERENCE, AND THE OTHER AS TARGET- AS THAT OF IN PERI-

STIMULUS HISTOGRAM. THE SPIKING EVENTS IN THE REFERENCE TRAIN CAN BE COMPARED TO THE 

EVENTS AND THE HISTOGRAM WITH RESPECT TO EACH SPIKE IS CALCULATED ON THE TARGET SPIKE 

TRAIN. THE SUMMATION OF ALL SUCH HISTOGRAM RESULTS IN THE ISI CORRELATION. IF THE TARGET 

AND REFERENCE SPIKE TRAINS ARE FROM THE SAME UNIT, THIS IS CALLED AUTO-CORRELATION 

HISTOGRAM. ---------------------------------------------------------------------------------------------------------------------96 

FIGURE 3.13 THE AUTOCORRELATION HISTOGRAM OF THE ISI OF A UNIT. THE PEAKS-TROUGH RHYTHMIC 

PATTERN IS MORE APPARENT THAN THE ISI HISTOGRAM (INSET) OF THE UNIT.-----------------------------97 

FIGURE 3.14 THE ISI AUTOCORRELATION HISTOGRAM FOR SHORT LAGS. THIS PARTICULAR EXAMPLE REVEALS 

THAT THERE IS NO COUNT OF SPIKES WITHIN 2MS INTERVAL, WHICH IS AN INDICATION THAT, IF WE 

CONSIDER A 2MS REFRACTORY PERIOD FOR THE UNIT, SPIKES FROM OTHER UNITS ARE NOT 

INCORPORATED INTO THIS UNIT. THIS IS AN ALTERNATIVE ASSESSMENT OF QUALITY OF SPIKE SORTING.

 --------------------------------------------------------------------------------------------------------------------------------------97 

FIGURE 3.15 ISI AUTOCORRELATION HISTOGRAM OF A THETA-MODULATED UNIT. THE RED ENVELOPE 

SHOWS THE FITTED CURVE FROM THE EQUATION 3.1. THE INDEX FOR THETA MODULATION IS DERIVED 

FROM THIS FITTED CURVE. --------------------------------------------------------------------------------------------------99 

FIGURE 3.16 ISI AUTOCORRELATION HISTOGRAM OF A THETA-SKIPPING UNIT (BLUE HISTOGRAM) AND THE 

CORRESPONDING FITTED CURVE FROM EQUATION 3.2 (RED ENVELOPE). ----------------------------------- 100 
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FIGURE 3.17 ILLUSTRATION OF BURSTING SPIKE TRAINS AND THE CONCEPT OF INTER-BURST INTERVAL (IBI) 

ALONG WITH THE DURATION OF BURST. THE RATIO OF BURST DURATION TO THE IBI IS DEFINED AS THE 

DUTY CYCLE OF BURSTING (ADAPTED FROM HTTP://WWW.SCHOLARPEDIA.ORG/ARTICLE/BURSTING).

 ------------------------------------------------------------------------------------------------------------------------------------- 102 

FIGURE 3.18 DEPICTION OF THE USE OF ISI HISTOGRAM TO IDENTIFY THE BURSTING UNITS; TOP: REGULAR 

SPIKING NEURON, BOTTOM: SPIKE WITH BURSTING SHOWING THE BIMODALITY OF DISTRIBUTION 

WITH CHARACTERISTIC HIGH COUNTS OF SPIKES AT LOW INTERVALS (ADAPTED FROM 

HTTP://WWW.SCHOLARPEDIA.ORG/ARTICLE/BURSTING). ------------------------------------------------------- 103 

FIGURE 3.19 ILLUSTRATION OF HOW LOCATIONAL FIRING PLACE IS CREATED FROM THE LOCATION DATA OF 

THE ANIMAL AND THE SPIKE TIMES. A VISIT COUNT MAP IS CREATED (UPPER LEFT) FROM THE TWO-

DIMENSIONAL HISTOGRAM OF THE LOCATION WHICH SHOWS THE NUMBER OF TIMES ANIMAL VISITED 

IN A PARTICULAR PIXEL IN A FORAGING ARENA. PIXELS OF 2CM SIZES ARE PAIRED AND COLOR CODED 

IN THE RAW LOCATIONAL DATA IN THE MIDDLE. IT IS THEN MULTIPLIED BY THE SAMPLING INTERVAL 

OF THE LOCATION DATA TO OBTAIN THE TOTAL AMOUNT OF TIME THE ANIMAL HAS TRAVERSED IN 

DIFFERENT PIXELS OF THE ARENA (UPPER-MIDDLE, TIME MAP). ANOTHER MAP IS CREATED FOR THE 

SPIKE COUNT AT THOSE LOCATIONS (UPPER RIGHT) BY COUNTING THE NUMBER OF SPIKES IN THE 

PAIRED PIXELS.  THE MAP IN THE RIGHT IS DIVIDED BY THE TIME-MAP TO OBTAIN THE FIRING-RATE 

MAP OF A UNIT IN THE ARENA. ------------------------------------------------------------------------------------------- 105 

FIGURE 3.20 SAMPLE OUTCOME OF LOCATIONAL FIRING RATE ANALYSIS; (A) FIRING RATE AS A FUNCTION 

OF LOCATION OF THE ANIMAL; (B) BLACK LINES SHOW THE PATH OF THE ANIMAL TRAVERSED, THE RED 

DOTS REPRESENT SPIKING EVENTS. ------------------------------------------------------------------------------------- 106 

FIGURE 3.21 DISTRIBUTION OF SPECIFICITY MEASURES IN LOCATIONAL SHUFFLING ANALYSIS. RED LINE 

SHOWS THE 95TH-PERCENTILE. THE SKAGGS INFORMATION CONTENT (IC), COHERENCE OF THE FIRING 

MAP FROM THE ORIGINAL SPIKE-TRAIN IS COMPARED TO THE RED LINE TO TEST FOR SIGNIFICANCE AT 

5% LEVEL AT THE UPPER TAIL AS THEY ARE SUPPOSED TO BE HIGHER IN ORIGINAL SPIKE-TRAIN IF THE 

SPIKING INCIDENTS WITH RESPECT TO LOCATION ARE EXPECTED NOT TO BE RANDOM (A, B). AS THE 

SPARSITY IS EXPECTED TO BE MINIMUM, THE LOWER TAIL AT 5% SIGNIFICANCE LEVEL IS CONSIDERED 

FOR THE COMPARISON (C). ------------------------------------------------------------------------------------------------ 107 

FIGURE 3.22 THE TIME-LAPSE SPIKE-PLOT (TOP TWO ROWS) AND FIRING RATE MAP (BOTTOM TWO ROWS). 

THE CUMULATIVE TIME-LAPSE ARE 0-1MIN, 0-2MIN, 0-4MIN, 0-8MIN, 0-16MIN, 0-END OF THE 

RECORDING. THE PROGRESSIVE TIME-LAPSE ARE 1-2MIN, 2-4MIN, 4-8MIN, 8-16MIN, 0-END OF THE 

RECORDING. ------------------------------------------------------------------------------------------------------------------- 108 

FIGURE 3.23 CONSTRUCTION OF FIRING RATE MAP FROM THE SPIKE TRAIN OF THE UNIT AND SHIFTED SPIKE 

TRAIN; (A) VISIT COUNT, TIME MAP, AND SPIKE-COUNT MAP FOR THE UNCHANGED SPIKE-TRAIN OF 

THE UNIT; (B) MAPS SIMILAR TO (A), BUT WITH A SHIFT IN SPIKE TRAIN  AS SHOWN IN (C); (C) TOP ROW 

SHOWS THE COORDINATES OF THE LOCATION, MIDDLE ROW DEPICTS THE SPIKE TRAIN, AND THE 

BOTTOM ROW SHOWS THE SPIKE TRAIN WHEN IT IS SHIFTED TO MATCH WITH  A PAST LOCATION OF 

THE ANIMAL. THE PIXELS FORMED BY PAIRING THE X-, AND Y-COORDINATES ARE COLOR-CODED. AS 
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WE CAN SEE, THE COUNT IN SPIKE CHANGES IN THE SHIFTED SPIKE TRAIN, AND A NEW MAP IS FORMED 

OUT OF IT. ---------------------------------------------------------------------------------------------------------------------- 109 

FIGURE 3.24 ILLUSTRATION OF THE RATIONALE BEHIND TIME-SHIFT ANALYSIS. THE TRAJECTORY IS 

CONSIDERED ONE-DIMENSIONAL FOR EASE OF EXPLANATION. THE UNIT IS ASSUMED TO SIGNAL THE 

LOCATION Y. SOLID ARROW REPRESENTS A TRAJECTORY FROM LEFT TO RIGHT ACROSS THE PLACE 

FIELD, THE DOTTED ARROWS SHOWS THE SIMILAR BUT IN OPPOSITE (RIGHT TO LEFT) TRAJECTORY; (A) 

EXPECTED FIRING RATE CURVE IF THE UNIT FIRES SIMULTANEOUSLY AS THE LOCATION OF THE ANIMAL 

CHANGES; (B) AN EXAMPLE OF CASE-A WHERE THE FIRING RATE IS HIGHER AT A LOCATION (X OR Z) 

AFTER THE ANIMAL TRAVERSES THE SIGNALING OR PREFERRED LOCATION Y (LEFT); THE FIRING RATE 

MAPS OVERLAPS AND THE PLACE FIELD BECOMES NARROWER WHEN THE SPIKE TRAIN IS PAIRED WITH 

A PAST LOCATION (RIGHT); (C) AN EXAMPLE OF CASE-B WHERE THE FIRING RATE IS HIGHER AT A 

LOCATION (X OR Z) BEFORE THE ANIMAL TRAVERSES THE SIGNALING OR PREFERRED LOCATION Y 

(LEFT); THE FIRING RATE MAPS OVERLAPS AND THE PLACE FIELD BECOMES NARROWER WHEN THE 

SPIKE TRAIN IS PAIRED WITH A FUTURE LOCATION (RIGHT); ---------------------------------------------------- 111 

FIGURE 3.25 SPECIFICITY MEASURES FOR LOCATIONAL FIRING IN A UNIT WITH PLACE FIELD; (A) SKAGGS 

INFORMATION CONTENT (IC); (B) COHERENCE; (C) SPARSITY. THE SKAGGS IC AND THE COHERENCE ARE 

EXPECTED TO ATTAIN THE MAXIMUM VALUE WHEN THE UNIT IS PAIRED WITH IT S PREFERRED 

LOCATION WHERE THE SPARSITY WILL REACH TO ITS MINIMUM AS PLACE FIELD WILL BE MORE 

COMPACT. AS THEY REACH THE OPTIMUM VALUE AT A +VE TIME SHIFT, IT CAN BE SPECULATED THAT 

THE UNIT IS ANTICIPATORY. ----------------------------------------------------------------------------------------------- 112 

FIGURE 3.26 CONSTRUCTION OF AUTOCORRELATION MAP- CONCEPT OF LAGS AND HOW THE SPATIAL 

AUTOCORRELATION IS CALCULATED. THE SHADED AREA SHOWS THE OVERLAPPING PIXELS BETWEEN 

A LAGGED MAP AND THE ORIGINAL MAP. (A) OVERLAP AT ΤX= -3 AND ΤY= -2; (B) OVERLAP AT ΤX= +5 

AND ΤY= +2. CORRELATION BETWEEN THE SHADED AREAS FOR A PARTICULAR LAG REPRESENTS THE 

AUTOCORRELATION FOR THAT LAG. ------------------------------------------------------------------------------------ 113 

FIGURE 3.27 PATTERNED FIRING FIELDS IN A GRID CELL; (A) PATTERN OF TESSELLATING TRIANGLES AMONG 

THE FIRING FIELDS; (B) HEXAGONAL PATTERN AROUND THE CENTRAL PEAK OF THE SPATIAL 

AUTOCORRELATION. -------------------------------------------------------------------------------------------------------- 114 

FIGURE 3.28 FLOW CHART FOR THE DETECTION OF GRID CELL AND MEASURING THE GRIDNESS SCORE. - 115 

FIGURE 3.29 ILLUSTRATION OF IDENTIFYING GRID CELL AND CALCULATING GRIDNESS SCORE; (A) MAXIMA 

LOCATIONS IN SPATIAL AUTOCORRELATION; (B) PEAKS FORMING THE CENTRAL HEXAGON; (C) SHADED 

ZONE SHOWS THE (1±0.5)*MEAN PEAK DISTANCE; (D) ROTATIONAL CORRELATION MEASURED WITH 

THE SHADED ZONE IN (C). RED DOTS SHOW THE MAXIMA LOCATIONS, AND THE GREEN DOT SHOWS 

THE MINIMA IN THE CURVE. GRIDNESS SCORE IS THE DIFFERENCE IN BETWEEN THE ROTATIONAL 

CORRELATIONS AT PEAKS AND TROUGHS; (E) DEFINITION OF CENTRAL ANGLE (LEFT), INTERIOR ANGLE 

(MIDDLE) AND ORIENTATION OF THE GRID (RIGHT). --------------------------------------------------------------- 116 

FIGURE 3.30 SPIKE PLOT (A) AND FIRING RATE MAP (B) OF A UNIT WITH PREFERENTIAL FIRING ALONG THE 

BORDER OF THE ENVIRONMENT. ---------------------------------------------------------------------------------------- 117 
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FIGURE 3.31 STEPWISE DEPICTION OF BORDER DETECTION PROCEDURE; (A) BLACK LINES SHOW THE PATH 

OF THE ANIMAL TRAVERSED IN THE ENVIRONMENT; (B) PATHS ARE PIXELATED TO COUNT THE 

AMOUNT OF TIME ANIMAL VISITED A PIXEL; BLACK AREA SHOWS AREAS CAPTURED BY THE CAMERA 

BUT NOT VISITED BY THE ANIMAL; (C) BINARY PICTURE OF THE MAP IN (B). UNVISITED AREA IS 

REPRESENTED BY ‘1’ AND VISITED AREA BY ‘0’ (COLORMAP IS INVERSED); (D) BINARY MAP IS 

REGULARIZED TO OBTAIN A SMOOTHER BOUNDARY; (E) BLACK PIXELS ARE THE ONES FORMING THE 

BOUNDARY; (F) MAP OF THE DISTANCE OF EACH PIXEL FROM THE BOUNDARY PIXELS. ----------------- 118 

FIGURE 3.32 BORDER CELL ANALYSIS; (A) SPATIAL FIRING RATE MAP SHOWING A CHARACTERISTIC CIRCULAR 

RING OF HIGH FIRING RATE ZONE NEAR THE ENVIRONMENTAL BOUNDARY; (B) HISTOGRAM OF 

NORMALIZED ACTIVE PIXEL COUNT FROM THE BORDER AT A PARTICULAR DISTANCE. ACTIVE PIXELS 

ARE COUNTED AS THE TOTAL PIXELS WITH FIRING RATE HIGHER THAN THE USER SPECIFIED 

THRESHOLD, I.E., 20% NORMALIZED BY THE TOTAL PIXEL AT THAT DISTANCE; (C) FIRING RATE 

CALCULATED ACCORDING TO THE RATE CODING SCHEME; (D) STAIR PLOT SHOWING A LOW MEAN 

DISTANCE FROM BORDER FOR PIXELS WITH HIGH FIRING RATES, AND SUDDEN INCREASE IN DISTANCE 

FOR PIXELS WITH LOW FIRING RATES, INDICATING THAT FIRING RATE IS HIGH NEAR THE BORDER AND 

ALMOST DIMINISHES NEAR THE CENTER OF THE ARENA. --------------------------------------------------------- 119 

FIGURE 3.33 LINEARIZATION OF FIRING RATE MAP; (A) NUMBER OF ACTIVE PIXELS (ABSOLUTE COUNT) AT 

DIFFERENT ANGULAR DISTANCE OF THE ENVIRONMENT FROM THE CENTER OF THE ARENA; (B) 

NUMBER OF ACTIVE PIXEL AT DIFFERENT DISTANCE FROM THE BORDER ALONG PARTICULAR CIRCULAR 

DISTANCE. ---------------------------------------------------------------------------------------------------------------------- 120 

FIGURE 3.34 GRADIENT CELL ANALYSIS; (A) FIRING RATE MAP SHOWING THAT THE ACTIVITY OF THE UNIT 

INCREASES GRADUALLY AS THE ANIMAL MOVES FROM BORDER TOWARDS THE CENTER, FORMING 

BANDS OF ACTIVITY BELONGING TO A PARTICULAR FIRING RATE PERCENTAGE. HERE, 5 COLORS HAVE 

BEEN USED REPRESENTING SPIKING ACTIVITY OF 0-100% IN STEP OF 20%; (B) STAIR PLOT LIKE THE ONE 

CALCULATED IN BORDER CELL. THE STAIRS ARE INCREASING GRADUALLY, AND THERE IS NOT ABRUPT 

CHANGE IN THE PLOT, FURTHER PROVIDING SUPPORT FOR THE GRADIENT CELL; (C) THE SPIKING RATE 

VS DISTANCE OF THE ANIMAL FORM THE BORDER IS CALCULATED LIKE THAT IN BORDER CELL (BLUE). 

THIS CURVE IS FITTED WITH GOMPERTZ FUNCTION (GREEN); (D) DIFFERENTIAL FIRING RATE VS 

DISTANCE SHOWING THAT THE INCREASE IN FIRING RATE MAXIMIZES AT SHORT DISTANCE FURTHER 

FROM THE BORDER WITHIN THE ARENA. THE POINT WHERE THIS RATE OF CHANGES IN FIRING RATE 

MAXIMIZES IS CALLED DEFLECTION POINT. --------------------------------------------------------------------------- 122 

FIGURE 3.35 DEPICTION OF CALCULATION OF THE SPIKING RATE WITH RESPECT TO THE HEAD DIRECTION OF 

THE ANIMAL. TOP ROW- LEFT: VISIT COUNT OF THE ANIMAL IN DIFFERENT DIRECTIONAL BINS, MIDDLE: 

AMOUNT OF TIME SPENT IN SUCH DIRECTIONS, RIGHT: NUMBER OF SPIKES PAIRED WITH SUCH 

DIRECTION; MIDDLE ROW: HEAD-DIRECTION OF THE ANIMAL AT DIFFERENT TRACKER SAMPLES.; 

BOTTOM ROW- SPIKE-TRAIN OF THE UNIT DURING 9 SAMPLES SHOWN. HEAD DIRECTIONS FALLING IN 

DIFFERENT BINS ARE COLOR-CODED DIFFERENTLY. ---------------------------------------------------------------- 123 

FIGURE 3.36 TUNING CURVES FROM A RECORDED HEAD-DIRECTIONAL UNIT; (A) FIRING RATE WITH RESPECT 

TO DIRECTIONAL HEADING OF  THE ANIMAL (BLUE) AND THE PREDICTED FIRING RATE (GREEN) TO 
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OBSERVE THE HOMOGENEITY IN SAMPLING OF THE DIRECTIONAL BINS; (B) DEPICTION OF THE 

MEASURE OF HALF-WIDTH, A CHARACTERISTIC OF THE TUNING CURVE TO DESCRIBE HOW WIDE THE 

DIRECTIONAL RECEPTIVE FIELD IS; (C) MEASUREMENT OF SEPARATION ANGLE, THE DIFFERENCE 

BETWEEN THE DIRECTIONS WHERE PEAK FIRING OCCURS DURING CW(RED) AND CCW(BLUE) HEAD 

MOVEMENT. ------------------------------------------------------------------------------------------------------------------- 125 

FIGURE 3.37 ILLUSTRATION OF THE DIRECTIONAL SPLIT AT A PIXEL. THE TOTAL TIME AT DIRECTION Θ1 IS THE 

SUM OF TIME SPENT IN ALL PIXELS J, K, … OR TJ(Θ1)+  TK(Θ1)+… WHERE TOTAL SPIKES (AVERAGE OR 

PREDICTED) AT DIRECTION Θ1 IS THE SUM OF THE RATES AT EACH PIXELS MULTIPLIED BY THE TIME AT 

THAT PIXEL OR RPJTJ(Θ1)+ RPKTK(Θ1)+…. THE PREDICTED RATE IS CALCULATED BY DIVIDING THE 

PREDICTED SPIKES BY TOTAL TIME. ------------------------------------------------------------------------------------- 126 

FIGURE 3.38 SAMPLE PLACE UNIT WITH APPARENT DIRECTIONAL TUNING RECORDED IN A PELLET CHASING 

TASK IN AN OPEN ARENA. THE BLUE LINE SHOWS THAT THE UNIT PREFERENTIALLY FIRES ALONG THE 

NORTH-NORTHWEST DIRECTION. GREEN LINE, THE PREDICTED RATE, ALMOST RESEMBLES THE 

OBSERVED FIRING RATE AND, THEREFORE, THE DR IS VERY SMALL (0.14). ONSET SHOWS THE BEHAVIOR 

OF THE UNIT WITH RESPECT TO LOCATION. THE PLACE FIELD IS IN THE NORTH-NORTHEAST WALL OF 

THE CYLINDRICAL ARENA AND MAY CAUSE THE UNIT APPARENTLY FIRES MORE ALONG THAT 

DIRECTION. WE CAN ALSO CONCLUDE THAT THERE IS AN INHOMOGENEITY IN SAMPLING OF THE HEAD 

DIRECTION. --------------------------------------------------------------------------------------------------------------------- 127 

FIGURE 3.39 SCATTER PLOT OF THE HEAD DIRECTION CORRESPONDING TO EACH SPIKE OF (A) THE HEAD 

DIRECTIONAL UNIT WITH THE FIRING RATE SHOWN IN FIGURE 3.36 AND (B) A NON-HEAD DIRECTIONAL 

UNIT ------------------------------------------------------------------------------------------------------------------------------ 128 

FIGURE 3.40 SAMPLE OUTPUT OF HEAD-DIRECTIONAL SHUFFLING ANALYSIS; (A) DISTRIBUTION OF RAYLEIGH 

Z SCORES (B) DISTRIBUTION OF THE VON MISES Κ. THE RED LINE SHOWS THE 95TH-PERCENTILE IN THE 

DISTRIBUTION WHICH IS THEN COMPARED TO THE RAYLEIGH Z= 930 AND Κ= 2.44 TO TEST FOR 

SIGNIFICANCE AT 5% LEVEL. ----------------------------------------------------------------------------------------------- 129 

FIGURE 3.41 THE TIME-LAPSE DIRECTIONAL SPIKE-PLOT (TOP TWO ROWS) AND TUNING CURVES (BOTTOM 

TWO ROWS). THE CUMULATIVE TIME-LAPSE ARE 0-1MIN, 0-2MIN, 0-4MIN, 0-8MIN, 0-16MIN, 0-END 

OF THE RECORDING. THE PROGRESSIVE TIME-LAPSE ARE 1-2MIN, 2-4MIN, 4-8MIN, 8-16MIN, 0-END OF 

THE RECORDING. ------------------------------------------------------------------------------------------------------------- 130 

FIGURE 3.42 CONSTRUCTION OF A TUNING CURVE FROM THE SPIKE TRAIN OF A UNIT AND IT SHIFTED SPIKE 

TRAIN; (A) VISIT COUNT, TIME MAP, AND SPIKE-COUNT MAP FOR THE UNCHANGED SPIKE-TRAIN OF 

THE UNIT; (B) MAPS SIMILAR TO (A), BUT WITH A SHIFT IN SPIKE TRAIN  AS SHOWN IN (C); (C) TOP ROW 

SHOWS THE HEAD DIRECTION, MIDDLE ROW DEPICTS THE SPIKE TRAIN, AND THE BOTTOM ROW 

SHOWS THE SPIKE TRAIN WHEN IT IS SHIFTED TO MATCH WITH  A PAST LOCATION OF THE ANIMAL. 

DIRECTIONS FALLING INTO DIFFERENT BINS ARE COLOR CODED. AS WE CAN SEE, THE COUNT IN SPIKE 

CHANGES IN THE SHIFTED SPIKE TRAIN, AND A NEW RATE IS FORMED OUT OF IT. ----------------------- 131 

FIGURE 3.43 SAMPLE RESULTS OF THE HEAD-DIRECTION TIME-SHIFT ANALYSIS FOR A UNIT THAT HAS A 

DIRECTIONAL FIRING FIELD; (A) THE SKAGGS INFORMATION CONTENT GRADUALLY MAXIMIZES 

TOWARDS THE PREFERRED DIRECTION AND DECLINES AFTERWARDS AS EXPECTED FOR A UNIT WITH 
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DIRECTIONAL FIRING FIELD. IT MAXIMIZES AT A +VE TIME SHIFT, WHICH IMPLIES THAT THE UNIT IS 

ANTICIPATING A PREFERRED DIRECTION. (B) SIMILAR RESULTS CAN BE OBTAINED BY USING THE PEAK 

FIRING RATE OF THE TUNING CURVES AT EACH SHIFTED TIME. (C) PLOT OF SEPARATION ANGLE Δ VS 

SHIFT OF TIME. SEPARATION OF THE CW VS CCW CURVES ARE EXPECTED TO BE ZERO AT THE 

PREFERRED DIRECTION. THEREFORE, THE ANTICIPATORY TIME INTERVAL IS MEASURED AS THE SHIFT 

OF TIME WHERE THE FITTED Δ LINE INTERSECTS X-AXIS (INTERSECTION OF THE BLUE AND BLACK LINES).

 ------------------------------------------------------------------------------------------------------------------------------------- 132 

FIGURE 3.44 GRAPHICAL OUTPUT OF A UNIT WITH A HIGH CORRELATION ITS FIRING RATE TO THE SPEED OF 

THE ANIMAL (PEARSON’S R= 0.9, P< 0.001) --------------------------------------------------------------------------- 133 

FIGURE 3.45 ANGULAR HEAD VELOCITY ANALYSIS; (A) CONCEPT OF CLOCKWISE (CW) AND COUNTER-

CLOCKWISE (CCW) HEAD DIRECTIONAL MOVEMENT (ADAPTED FROM BLAIR AND SHARP, 1995); (B) 

SAMPLE FIRING RATE OF A HEAD DIRECTION CELL THAT FIRES AT A DECREASING RATE AS THE 

MAGNITUDE OF AHV INCREASES, BUT DOES NOT DEPEND ON THE DIRECTIONALITY OF THE HEAD 

MOVEMENT. ------------------------------------------------------------------------------------------------------------------- 134 

FIGURE 3.46 MULTIPLE REGRESSION CORRELATION PARAMETERS (MEAN±STD) FOR DIFFERENT 

INDEPENDENT VARIABLES. THE INSET SHOWS THE APPARENT DIRECTIONAL PREFERENCE (BLUE LINE) 

FOR A UNIT WITH LOCATIONAL FIRING PREFERENCE. AS EXPECTED, THE SEMIPARTIAL CORRELATION 

DOMINANTLY EXPLAINS THE VARIABILITY IN SPIKING ACTIVITY, AS THE DIRECTIONAL PREFERENCE IS 

AN ARTEFACT EXPLAINED BY THE GREEN LINE- THE PREDICTED FIRING RATE- WHICH IS VERY SIMILAR 

TO THE OBSERVED RATE (DR= 0.14) ------------------------------------------------------------------------------------- 136 

FIGURE 3.47 RESULT OF THE LFP ANALYSIS; (A) THE PSD (ΜV2/HZ) CALCULATED USING THE WELCH'S 

METHOD; (B) THE POWER SPECTROGRAM OF THE LFP BAND-LIMITED TO 40HZ AND CONVERTED INTO 

DECIBEL IN THIS EXAMPLE. IT IS APPARENT THAT THERE ARE STRONGER THETA COMPONENTS AS IT 

PEAKS AT AROUND 8HZ AND 10HZ. ------------------------------------------------------------------------------------- 138 

FIGURE 3.48 ALGORITHM TO OBTAIN THE PHASES OF A UNIT LOCKED TO THE LFP SIGNAL. ------------------- 140 

FIGURE 3.49 STEPWISE ILLUSTRATION OF CALCULATING THE SPIKE TO LFP PHASE LOCKING WITHIN A 

PARTICULAR BAND OF  LFP SIGNAL IN THE FREQUENCY RANGE [FMIN, FMAX]; (A) THE BLUE LINE SHOWS 

THE HIGH-PASS FILTERED LFP SIGNAL L. RED LINE SHOWS THE BAND-PASS FILTERED SIGNAL B; (B) BLUE 

LINE IS THE B SIGNAL. RED LINE SHOWS THE AMPLITUDE OF THE SIGNAL DERIVED FROM HILBERT 

TRANSFORM. BLACK DOTTED LINE IS THE CROSSING-LINE TO DETERMINE SEGMENTS FOR FURTHER 

ANALYSIS. GREEN DOTS ARE CROSSING POINTS, WHERE GREEN ARROW SHOWS A SEGMENT THAT IS 

LONGER THAN 1/FMIN OR THE MINIMUM TEMPORAL LENGTH TO REPRESENT THE SLOWEST 

COMPONENT OF THE B SIGNAL; (C) POWER SPECTRAL DENSITY MEASUREMENT FOR THE L SIGNAL. THE 

POWER WITHIN THE B-BAND IS SUM OF THE POWER BETWEEN [FMIN, FMAX] AND MUST BE GREATER 

THAN A SET PERCENTAGE (PRATIO) OF THE TOTAL POWER; (D) ONCE THE SEGMENT IS VERIFIED TO 

CARRY SIGNIFICANT BAND-POWER AND HAVING PEAK-TO-PEAK (P2P) AMPLITUDE COMPARABLE TO 

THE OVERALL P2P AMPLITUDE OF THE L SIGNAL, PHASES OF THE SPIKES WITHIN THAT SEGMENT (RED 

STEMS) ARE CALCULATED FROM THE PHASES (BLUE DOTTED LINES) OF THE B SIGNAL USING HILBERT 

TRANSFORM (RED DOTS); (E) THE RASTER (TOP ROW) SHOWS THE PHASES OF THE SPIKES AT EACH 



 

XXI 

 

SEGMENT (Y-AXIS), AND THE BOTTOM ROW SHOWS THE COUNTS AT DIFFERENT PHASE-ANGLES; (F) 

THE BOTTOM ROW IN (E) IS SHOWN ALONG WITH A COSINE CURVE TO DISTINGUISH THE PORTION OF 

THE DISTRIBUTION WITH PHASE-PREFERENCE. THE INSET IN THE FIGURE SHOWS A CIRCULAR PLOT OF 

THE SAME DISTRIBUTION ALONG WITH THE MEAN PHASE (RED LINE). -------------------------------------- 141 

FIGURE 3.50 FLOW CHART FOR CALCULATION OF SPIKE-FIELD COHERENCE (SFC) AND PHASE-LOCKING VALUE 

(PLV) ----------------------------------------------------------------------------------------------------------------------------- 143 

FIGURE 3.51 STEPWISE ILLUSTRATION OF MEASURING THE PHASE-LOCKING METRICS; (A) A SEGMENT OF THE 

LFP IS CUT OUT, CALLED SPIKE-TRIGGERED LFP, FOR A WINDOW OF, FOR EXAMPLE, [-0.5, 0.5] SEC 

CENTERED AROUND THE SPIKING TIME. THE RED STEMS SHOW THE SPIKES AND THE BLUE TRACES ARE 

THE LFP SEGMENTS; (B) EACH SEGMENT IS MULTIPLIED BY A HANNING WINDOW AND THE FOURIER 

TRANSFORMATIONS ARE OBTAINED. THESE GRAPHS SHOW THE POWER SPECTRAL DENSITY (PSD) 

OBTAINED FROM THE FOURIER TRANSFORM; (C) THE LFP SEGMENTS ARE AVERAGED TO OBTAIN SPIKE-

TRIGGERED AVERAGE (STA); (D) POWER SPECTRUM OF THE SEGMENTS ARE AVERAGED TO OBTAIN THE 

AVERAGE SPECTRUM (STP); (E) THE POWER SPECTRUM OF THE STA; (F) THE SPIKE-FIELD COHERENCE 

(SFC) MEASURED FROM FSTA AND STP. ------------------------------------------------------------------------------- 144 

FIGURE 3.52 RESULTS OF DIFFERENT PHASE-LOCK METRICS; (A) POWER SPECTRUM OF THE SPIKE-TRIGGERED 

AVERAGE. INSET SHOWS THE STA; (B) AVERAGE OF THE POWER SPECTRUM OF INDIVIUDAL LFP TRACES; 

(C) SPIKE-FIELD COHERENCE; (D) PHASE-LOCKED VALUE. ALL THESE GRAPHS SHOW THAT THERE IS A 

STRONG COUPLING OF THE SPIKING ACTIVITY TO THE UNDERLYING LFP SIGNAL AT 9HZ. -------------- 145 

FIGURE 3.53 TIME-RESOLVED PHASE-LOCK METRICS; (A) POWER SPECTRUM OF THE SPIKE-TRIGGERED 

AVERAGE; (B) THE SPIKE-FIELD COHERENCE; (C) THE PHASE-LOCKING VALUE; ----------------------------- 146 

FIGURE 3.54 PHASE-LOCK METRICS USING BOOTSTRAP TECHNIQUE; THE MEAN (DOTTED)±SEM OF THE (A) 

POWER SPECTRUM OF THE SPIKE-TRIGGERED AVERAGE; (B) AVERAGE OF THE POWER SPECTRUM OF 

INDIVIDUAL TRACES; (C) SPIKE-FIELD COHERENCE; (D) PHASE-LOCKING VALUE; IN THIS PARTICULAR 

EXAMPLE, THE SEM VALUES ARE VERY SMALL, AND THEIR SHADED PLOTS ARE NOT RECOGNIZABLE.

 ------------------------------------------------------------------------------------------------------------------------------------ 147 

FIGURE 3.55 POPULAR FILE FORMATS USING THE HDF5 FORMAT. ---------------------------------------------------- 153 

FIGURE 3.56 THE HIERARCHY USED FOR DATA STORAGE IN THE HDF5 FILE FORMAT ---------------------------- 154 

FIGURE 4.1 THE SPATIOTEMPORAL DOMAIN OF NEUROSCIENCE AND OF THE MAIN METHODS AVAILABLE 

FOR THE STUDY OF NERVOUS SYSTEM IN 2014. EACH COLORED REGION SHOWS THE EXTENT OF 

SPATIAL AND TEMPORAL RESOLUTION FOR A METHOD. FILLED BOXES SHOW PERTURBATION 

TECHNIQUES FOR ALTERNATING THE FUNCTIONS OF NEURONAL CIRCUITRY AND THE UNFILLED BOXES 

SHOW THE MEASURING TECHNIQUES. INSET SHOWS A CARTOON RENDERING OF THE METHODS 

AVAILABLE IN 1988. (ADAPTED FROM SEJNOWSKI AND CHURCHLAND., 2014). EEG= 

ELECTROENCEPHALOGRAPHY; MEG= MAGNETOENCEPHALOGRAPHY; PET= POSITRON EMISSION 

TOMOGRAPHY; VS= VOLTAGE-SENSITIVE DYE; TMS= TRANSCRANIAL MAGNETIC STIMULATION; 2-DG, 

2-DEOXYGLUCOSE. (ADAPTED FROM SEJNOWSKI ET AL., 2014) ------------------------------------------------ 165 
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FIGURE 4.4 LIST OF OPEN DATA ECOSYSTEM REQUIREMENTS ---------------------------------------------------------- 168 

FIGURE 4.5 LANDSCAPE OF DATA SHARING IN NEUROSCIENCE AND THE ISSUES TO ADDRESS. THESE ISSUES 

CAN BE GROUPED INTO THREE CLUSTERS- RED, BLUE AND GREEN- EACH FOR THREE DIFFERENT 

CATEGORIES: 1. CULTURAL, TECHNICAL AND PRACTICAL, 2. NATURE OF THE DATA AND RESOURCES, 

AND 3. MARKETPLACE OR ECOSYSTEM. (ADAPTED FROM WIENER ET AL., 2016) -------------------------- 170 

FIGURE 4.6 STANDARD PIPELINE FOR THE PROCESSING OF BEHAVIORAL NEUROPHYSIOLOGY DATA FROM 
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1 Thesis Outline 
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Chapter 2 provides the contextual framework for the thesis with a description of the 

different stages on our way to build our project objectives. Chapter 2.1 is an overview 

of different concepts of navigation. It defines navigation, different mechanisms that 

animal follows to perform the navigational tasks and the concept of referencing in 

navigation. It also describes the concept of spatial memory and cognitive map- how 

the spatial information is represented in the nervous system for storage, maintenance, 

and updating etc. Chapter 2.2 outlines the principles of neurophysiology and 

recording of such data as well as the detection and identification of single units- 

putatively the activity of individual neurons. Chapter 2.3 introduces different 

toolboxes used in the analyses of neurophysiology data across research fields. We 

provide a logical grouping of the toolboxes and briefly describe the scopes, usage or 

limitations of such toolboxes. At the end of this chapter, we describe the objectives 

that we pursued throughout the project. The schematic of the chapter is given below: 

 

 

 

Chapter 3 discusses the Neuron Characterization Toolbox, or NeuroChaT- the 

software and the application programming interface that enables us to achieve the 

project objectives in a systematic and user-friendly way. Chapter 3.1 describes the 

basic architecture of the toolbox, connectivity between different components of the 

Figure 1.1 The schematic of Chapter 2 



 

~ 3 ~ 

 

toolbox, and the flow of information among them.  Chapter 3.2 provides a more detail 

explanation of the design concepts, mostly from software development perspectives. 

In this section, we have shown class diagrams and explained the design patterns in 

different layers of the programming. In section 3.3, we described the analysis 

methods-grouping them into logical subsections. Chapter 3.4 explains different 

utilities that help make the data management easier through NeuroChaT and attain 

the objectives of bringing efficiency, controlling the quality at certain aspects and 

ensuring integrity in data analysis pipeline. The schematic of the chapter is given 

below: 

 

 

 

Chapter 4 discusses a project that we undertook to further reduce the cognitive 

efforts for analyzing data by automatizing the clustering or isolation of individual 

units or neurons. Chapter 4.1 briefly explains why automated spike sorting algorithm 

is necessary and the reasoning behind studying a new clustering algorithm. Chapter 

4.2 explains the algorithm that laid the foundation of the algorithm we developed. 

Chapter 4.3 provides a detail description of the algorithm and its evaluation on 

simulated and real datasets. Chapter 4.4 discusses different quality assessment 

Figure 1.2  Schematic of Chapter 3 
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metrics used for spike-sorting and their use in assessing the stability of chronic 

recording of single units. The chapter ends with a brief description of future works 

and relevant aspects of spike sorting. The schematic of the chapter is given below: 

 

 

Chapter 5 presents different use cases of NeuroChaT as an electrophysiology toolbox. 

Chapter 5.1 shows how a single-unit can be identified and verified to be responsive to 

the spatial information of the animal in the foraging environment. Chapter 5.2 gives 

an example of how NeuroChaT can be used to assess the rhythmicity of neuronal 

activity of a single unit and the relationship to another neurophysiological 

measurement called local field potential (LFP). Chapter 5.3 describes the use of 

NeuroChaT in an experiment where the nature of correlation of the single-unit 

physiology to that of the spatial behavior of the foraging rodents were modulated by 

the external experimental manipulations. The schematic of the chapter is given 

below: 

Figure 1.3  Schematic of Chapter 4 
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Chapter 6 provides a general discussion on NeuroChaT and its different aspects. 

Chapter 6.1 explains how NeuroChaT successfully attained the project objectives 

which were defined to address the problem domains. Chapter 6.2 discusses the 

requirements and challenges of openness initiative in research and how NeuroChaT 

aligns itself with the concept of open research. Chapter 6.3 explains the data-integrity 

and practice of open science in NeuroChaT. This chapter ends with a short 

description of potential developments of NeuroChaT in future. The schematic of the 

chapter is given below: 

 

 

Figure 1.4 Schematic of Chapter 5 

Figure 1.5 Schematic of Chapter 6 
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NeuroChaT has been extensively used by the neurophysiologists in Experimental 

Brain Research Lab led by Prof Shane O’Mara and the laboratory of Dr Marian Tsanov. 

The software has been tested and used by at least 11 researchers in these two 

laboratories. The feedback from the users have been crucial in designing the software, 

its graphical interface, which analysis and parameter to include, and how the data 

and results should be presented. The prototype or the proof of concept has been 

developed in MATLAB® before the extensive development in Python programming 

language. The software underwent evolution as new requirements arose in terms of 

analysis and user experiences. The user-friendly software succeeded in analyzing data 

very quickly which resulted in a number of publications that are listed at the end of 

this chapter. NeuroChaT or the methods developed in the software were used for data 

analysis in these publications. The author of this thesis contributed by tailoring the 

analysis to be used in a particular experiment while also contributing to interpreting 

the results and writing the papers. Specific contributions can be found in relevant 

section of each of these publications.    

 List of relevant publications and presentations: 

* Equal contributions by authors 

Journal Publications: 

1 Jankowski MM*, Islam MN*, Wright NF, Vann SD, Erichsen JT, Aggleton JP, 

O'Mara SM (2014). Nucleus reuniens of the thalamus contains head direction 

cells. eLife, doi: 10.7554/eLife.03075 

2 Jankowski MM, Passecker J, Islam MN, Vann SD, Erichsen JT, Aggleton JP and 

O’Mara SM. (2015) Evidence of spatially responsive neurons in rostral 

thalamus. Frontiers in Behavioral Neuroscience 9:256, doi: 

10.3389/fnbeh.2015.00256 

3 Jankowski MM*, Islam MN* and O’Mara SM. (2017) Dynamics of spontaneous 

local field potentials in the anterior claustrum of freely moving rats. Brain 

Research, doi: 10.1016/j.brainres.2017.09.021 
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4 Mamad O, Islam MN, Cunningham C, Tsanov M. (2018) Differential Response 

of hippocampal and prefrontal oscillations to systematic LPS application. Brain 

Research, doi: 10.1016/j.brainres.2017.12.036 

5 Passecker J, Islam MN, Hok V and O’Mara SM. (2018) Influence of photic 

stress on postsubicular head-directional processing (Accepted for publication 

in European Journal of Neuroscience) 

6 Matulewicz PM, Ulrich K, Islam MN, Mathiasen ML, Aggleton JP, and O’Mara 

SM. (2018) Proximal perimeter encoding in the rat rostral thalamus (submitted 

for peer review) 

7 Islam MN, O’Mara SM (2018) Recursive fast-search and find of density peaks 

algorithm for spike sorting from extracellular neuronal recordings (In 

preparation) 

8 Islam MN, O’Mara SM (2018) NeuroChaT: An interactive analysis toolbox for 

behavioral correlates of neural ensembles (In preparation) 

9 Wynne PJ, Islam MN, Jankowski MM and O’Mara SM. (2018) Boundary and 

Head directional encoding in anterior retrosplenial cortex (In preparation) 

 

Conference presentations: 

1 Islam MN, O’Mara SM (2017) Recursive fast-search and find of density peaks 

algorithm for spike sorting from extracellular neuronal recordings. 

In Proceedings of the British Neuroscience Association Festival of Neuroscience, 

Birmingham, United Kingdom, April 10-13, 2017. 

2 Dillingham DM, Islam MN, Chandra R, Jankowski MM, O’Mara SM (2017) 

High- voltage spindle oscillation episodes in the rat claustrum. In Proceedings 

of the British Neuroscience Association Festival of Neuroscience, Birmingham, 

United Kingdom, April 10-13, 2017. 
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3 Islam MN, O’Mara SM (2016) Spike-sorting using density-based clustering 

around fuzzy cores. In Proceedings of the Young Neuroscientists Symposium 

2016, Dublin, Ireland, September 1, 2016. 

4 Islam MN, O’Mara SM (2016) NeuroChaT: An interactive analysis toolbox for 

behavioral correlates of neural ensembles. In Proceedings of the 10th FENS 

Forum of Neuroscience Meeting, Copenhagen, Denmark, July 2-6, 2016. 

5 Ulrich K, Matulewicz PM, Islam MN, Aggleton JP, O’Mara SM (2016) Are cells 

within rostral thalamus sensitive to environmental changes? In Proceedings of 

the 10th FENS Forum of Neuroscience Meeting, Copenhagen, Denmark, July 2-6, 

2016. 

6 Matulewicz P, Ulrich K, Islam MN, Aggleton JP, O’Mara SM (2016) Spatial 

properties of perimeter units in the parataenial nucleus of the thalamus. 

In Proceedings of the 10th FENS Forum of Neuroscience Meeting, Copenhagen, 

Denmark, July 2-6, 2016. 

7 Wynne PJ, Islam MN, Jankowski MM, O’Mara SM (2016) Spatial and theta-

modulated units are present in the rodent anterior retrosplenial cortex. 

In Proceedings of the 10th FENS Forum of Neuroscience Meeting, Copenhagen, 

Denmark, July 2-6, 2016. 
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2  Background 

This chapter provides a systematic review of the research concepts relevant to the 

development of NeuroChaT software. A brief description of the concept of navigation 

and how the spatial information is presented in the neuronal ensembles is provided 

in Chapter 2.1. This section, therefore, presents the importance and aspects of the 

cognitive mapping as a fundamental area of research for broadening our 

understanding of how the brain works. It also provides with information about the 

scopes of cognitive map research. Chapter 2.2 illustrates the principles and concepts 

of neurophysiology recordings that enable us to examine the activity of the brain in 

neuronal level. Understanding this activity in relation to the navigational information 

formed the basis set of what NeuroChaT should put emphasis on. This chapter also 

explains different challenges in such recordings and sheds light on the importance of 

developing a software like that of NeuroChaT. Chapter 2.3 summarizes the ongoing 

efforts by computational neuroscientists to develop toolboxes that address the 

challenges and need of the modern-day neurophysiology research. The review of the 

toolboxes also provides us the opportunity to identify the necessity of developing 

NeuroChaT and its contribution in mitigating the capacity gap in relevant researches. 

At the end of this chapter, the reader will have an overall understanding of the area 

of research we are interested in where the representations of the brain’s global 

positioning system are studied. This also follows the understanding of the relevant 

concepts, principles, challenges and opportunities to explore. 
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2.1 Navigation 

2.1.1  Concept of navigation 

What is Navigation 

Mobile behavior such as exploration, or obstacle avoidance are primitive survival 

skills that animals must possess to ensure survival. One such behavior is navigation 

which is, in a formal definition, ‘the process of determining and maintaining a course 

or directory to a goal direction’ (Franz and Mallot, 2000). Therefore, the minimal 

capabilities to navigate are to move in space and to determine whether or not the goal 

has been reached. It is distinguished from other spatial behaviors like foraging, 

exploration, body orientation by the factor that it requires a goal location. 

The behavioral actions driving navigation follow a hierarchy based on the availability 

of the information. The hierarchy is summarized in Table 2.1 (Franz and Mallot, 

2000). Local navigation requires one particular goal location perceived by sensory 

information, while way finding involves recognition of several places and the 

representation of the relations between these places to reach a goal. Local navigation 

is further divided into four categories: search, direction following, aiming, and 

guidance. On the other hand, the way-finding incorporates three different levels: 

recognition-triggered response, topological and survey/metric navigation. These 

behavioral classifications are based on the level of task complexity. For example, in a 

‘search’ of a goal, the only competence required by the animal is to perceive the goal,  

while in a ‘direction-following’, the animal knows the direction of the goal, but not 

the exact location of where the goal can be perceived (see Franz and Mallot, 2000, 

Trullier et al., 1997 for details) 

Mechanism of Navigation 

While navigating, the animal needs to move from one place to another and may 

change its direction as well. In such actions, the spatial relationship between the 

animal and its environment changes constantly. Spatial updating is a cognitive 

process that computes the spatial relationships between an animal and its 

surrounding environment as it moves based on the perception of its own motion or 
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‘self-motion’ (Wang et al., 2006). The basic form of spatial updating is the path 

integration or dead-reckoning where the location of an origin relative to the animal’s 

current position and orientation are computed. Such path integration mechanism has 

been observed in a study by (Mittelstaedt and Mittelstaedt, 1980) where they used 

the strong drive of the mother rat to retrieve a pup displaced from the nest in 

darkness. A pup was removed from the nest (starting location) to a location within 

the adjacent arena. The mother left the nest and searched for the pup giving rise to a 

complex outgoing path involving many turns. Once it found the pup, it returned 

directly to the nest. The experiment was repeated and when the mother left the nest, 

the arena was rotated slowly. This resulted in a return trajectory error of the same 

magnitude of the arena rotation. (Mittelstaedt and Mittelstaedt, 1980) argued that, 

the rat, in its outgoing journey, calculated its distance and orientation from the origin 

to take the shortcut in its return journey. Spatial updating, in its advanced form, keeps 

track of multiple targets in the environment and estimates the new relationship to 

the environment as the animal moves (Collett et al., 1999). 

Concept of Egocentric and allocentric navigation 

In a navigation task (or spatial updating), animals ascertain their own location 

(distance, orientation, etc.), plans for a destination and follow the route. To perform 

the process successfully, animals need to possess knowledge of the space that they 

belong (spatial knowledge). The self-localization and the planning of the spatial 

actions generally follows measuring the distances and directions (Poucet, 1993) with 

respect to a reference frame. Based on the selection of this reference frame, there are 

two systems of spatial representations defining two approaches for spatial navigation 

(Wang et al., 2006)-  

▪ Egocentric or self-to-object: The distance and orientation of an object are 

measured with respect to oneself (Figure 2.1a). This approach is essential in 

local navigation for body alignment and to reach the goal.  

▪ Allocentric or object-to-object: The location of one object is measured with 

respect to the location of another object (Figure 2.1b). For example, exploring 

the environment involves learning how the landmarks are placed with respect 

to each other, and thus, updating the perspective as the animal moves. 
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Action Behavioral prerequisite Navigation competence 

  Local Navigation  

Search Goal recognition 
Finding the goal without 

active goal orientation 

Direction-following 
Align course with local 

direction 

Finding the goal from 

one direction 

Aiming Keep goal in front 
Finding a salient goal 

from a catchment area 

Guidance 
Attain spatial relation to 

the surrounding objects 

Finding a goal defined by 

its relation to the 

surroundings 

  Way finding 

Recognition-triggered 

response 

Association sensory 

pattern–action 
Following fixed routes 

Topological navigation 
Route integration, route 

planning 

Flexible concatenation of 

route segments 

Survey navigation 
Embedding into a 

common reference frame 

Finding paths over novel 

terrain 

 

 

Table 2.1 Hierarchy in the behavioral mechanisms of spatial navigation (Franz and Mallot, 2000)  
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2.1.2  Spatial memory and cognitive map 

As the spatial navigation mechanisms, i.e. path integration, depends on the storage 

of the spatial information, or requires that a representation of the spatial relationships 

be present a priori (e.g. finding shortcuts and detours; Trullier et al., 1997), it intrigued 

the idea of the presence of spatial memory and a map in the brain. Such an idea was 

first suggested by (Tolman, 1948) where he studied how animals learn to navigate. 

Although the concurrent behaviorist approach suggested that the chains of ‘stimulus-

response’ relationships form complex behaviors, Tolman argued that the exploration 

of the environment gradually resulted in the formation of a cognitive map that 

enabled animals to navigate and find the optimal path through the environment. For 

example, in one experiment, two groups of rats were trained to find food reward 

(reinforcement) at two locations respectively in the arms of a T-maze, where the 

starting location was placed at the other end of the T-arm across a round table. After 

Figure 2.1  An illustration of two hypotheses of spatial updating. Panel (a) illustrates an allocentric 
model in which the central cross represents an external reference system. The target locations are 
represented as A and B and remain the same as the observer, represented by the filled triangle, moves 
from the old position to the new one. Spatial updating involves computation of the observer’s new 
position, S’, in the external reference system according to the old position S and the movement vector M 
(S’ = S + M). Panel (b) illustrates an egocentric model in which the target positions (A and B) are 
represented relative to the observer. Spatial updating involves computing the new egocentric positions 
(A’ and B’) of the objects as the observer moves (A’ = A - M; B’ = B - M). (Wang et al., 2006) 
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the training session, the table and the T-maze arms were rotated 180-degree. Tolman 

showed that the rats learned to turn right to obtain the reward now preferentially 

turned left and vice versa, implying that the rats had created a cognitive map of the 

maze during the training session, and used the map to retrieve the reward when the 

maze orientation was altered. The presence of spatial memory and cognitive maps 

has also been explained by other experimental approaches. For example, in the Morris 

water maze task (Morris, 1981), rodents are placed in a large circular pool of water 

containing a hidden platform under the water. The animal needs to escape from the 

water onto the platform whose location is randomized with respect to the start 

location of the animal. The decrease in escape time (time to get into the platform) 

over trials, finally leading to a directed path navigation, which does not prevail in 

lesion studies (Morris et al., 1982) indicates that the special localization does not 

require presence of local sensory cues for navigation. 

However, where and how in the brain these maps are being represented were not 

addressed until the advent of techniques that enabled neuroscientists to record from 

brains of freely moving animals using chronically implanted microwires 

(Strumwasser, 1958) to obtain cellular level activity of individual neurons in response 

to the spatial stimuli (e.g. location, head direction etc.).  The following section 

introduces such discoveries that led to the winning of Nobel Prize in Medicine and 

Physiology in 2014. 

 

Neuronal encoding of spatial information 

Neuronal cells in different brain areas discretely represent spatial information. Some 

of them represent a specific location in the environment and some of them represent 

a particular direction. Information regarding egocentric movement, such as running 

speed, are also represented. A brief description of such encoding paradigms is 

described below. 
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Place cell and hippocampus 

The experimental evidence of the spatial representation of brain was first described 

in (O'Keefe and Dostrovsky, 1971). They reported the presence of spatial receptive 

fields, called place fields, in hippocampal neurons. When a rat forages in an open 

environment, such neurons, known as place cells, show spiking activity only when 

the animal is residing in a certain portion of the environment. The neighboring place 

cells fire at different locations as if the local cell population, throughout the 

environment, represents the entire environment, and it is possible to estimate the 

position of a rat using the activity of these cells (Wilson and McNaughton, 1993). The 

pattern of spiking activity remains highly correlated when recorded in consecutive 

days in the same environment, but a ‘remapping’ occurs when moved to a new 

environment (O'Keefe and Conway, 1978). The activity of these cells are also highly 

modulated by idiothetic, e.g. vestibular, cues (Sharp et al., 1995) or other sensory cues 

apart from the visual stimulus (Etienne et al., 2000).  Inspired by the suggestion of 

(Tolman, 1948), that local navigation is guided by an internal ‘cognitive map’ that 

flexibly represents the overall spatial relationships between landmarks in the 

environment, (O'Keefe and Nadel, 1978) proposed that place cells are the basic 

elements of the distributed and non-centered map-like representation, where 

hippocampus is the locus of the brain’s internal map of the spatial environment. Place 

cells provide a continuously updated representation of the allocentric space and the 

animal’s own position in that space. Although this suggests that the place cells 

contribute to forming the spatial working memory, longitudinal studies like (Alme et 

al., 2014), interestingly, report recurring place cell activities in the hippocampal 

neurons. This finding also suggests that a number of spatial representations are 

‘stored’ in the brain region. Place-like cells have also been found in bat (Yartsev and 

Ulanovsky, 2013; 3D spatial cells), primate (Rolls and O'Mara, 1995; Spatial view cells) 

and human (Ekstrom et al., 2003). 

 

Encoding of head-directional information 

(Taube et al., 1990) later discovered the presence of cells in postsubiculum of 

subicular complex, adjacent to hippocampus, that discharge when an animal is 
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heading towards a particular direction of the environment, regardless of its location. 

These cell are called head-direction (hd) cells and can be found in many structures 

throughout the rodent brain (Taube, 2007). Apparently, they are similar to a 

compass, but unlike a magnetic compass that depends on the geomagnetism, such 

cells depend on landmarks, and self-motion represented by vestibular and 

proprioceptive cues (Yoder and Taube, 2014). These cells use the environment as the 

reference coordinate system using visual landmarks or other internal idiothetic cues 

i.e. vestibular signal. Their contribution in the spatial behavior is to dynamically 

maintain and correct spatial orientation of the animal in path integration task even 

in the absence of visual information (Valerio and Taube, 2012), although, in the 

presence of conflict between idiothetic cues and visual cues, these cells preferentially 

fire with respect to the visual cues (Zugaro et al., 2000). 

 

Grid cell in entorhinal cortex 

The idea of the presence of cognitive map was further strengthened by the fact that 

lesioning of the hippocampus resulted in the loss of spatial recognition in both human 

(Scoville and Milner, 1957) and rodents (Hollup et al., 2001, Broadbent et al., 2004). 

Interestingly, some other brain regions, such as entorhinal cortex, also participate to 

form a network for such representation. A new type of cell, called Grid cell, was 

discovered by (Fyhn et al., 2004), where the neurons have preferential activation in 

multiple place-fields. The place-fields of each neuron formed a periodic triangular 

array, or grid, that tiled the entire environment explored by the animal. Each grid is 

characterized by spacing (distance between place-fields), orientation (tilt of major 

axis with respect to an external reference), and phase (xy displacement relative to an 

external reference point). Grids of neighboring cells share a common orientation and 

spacing, but their vertex locations (their phases) differ. The spacing and size of 

individual fields increase from dorsal to ventral dorso-caudal medial entorhinal 

cortex. The map is anchored to external landmarks, but persists in their absence, 

suggesting that grid cells may be part of a generalized, path-integration-based map 

of the spatial environment (Hafting et al., 2005) and may contribute to the formation 

of a metric system for spatial navigation (Moser et al., 2008). 
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Discrete representation to spatial navigation 

Place cells are predominantly found in the hippocampus, but were also identified in 

the brain areas like rostral thalamus (Jankowski et al., 2015) and in claustrum 

(Jankowski and O'Mara, 2015). Head directional information recruits even larger 

network of distributed interconnected brain regions (Taube, 2007). Grid cells are 

predominantly found in layer II of the medial entorhinal cortex (mEC). But the deep 

cortical layers provides a conjunctive representation of grid cells, head direction cells 

and grid-by-head directional cells, all of them correlating to the running speed of the 

animal, and projects to superficial layer II (Sargolini et al., 2006). Boundary cells, 

responsive to environment boundaries, either in particular allocentric direction 

(boundary vector cells or BVC) (Barry et al., 2006) or along all environment 

boundaries (perimeter or annulus cells) (Weible et al., 2012), are also found in 

number of brain areas (Grieves and Jeffery, 2017). This cell type is also accompanied 

by the cells that fire only in the center of an environment (boundary-off cells) in 

mouse anterior cingulate cortex (Weible et al., 2009). A schematic diagram of the 

cell-types and the brain regions where they are found is shown in Figure 2.2. 
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It is not, however, clear where the origins of these cells are or what are the inputs to 

their discharges. (Chersi and Burgess, 2015) suggested that self-motion and 

environmental sensory inputs are driving force for these spatially responsive cells 

which were supported by the evidence from cue-control studies of the cells. For 

example, BVC activity is driven by the environment walls, ridges or vertical drops, but 

is unaffected by the color, texture or odor cues present in the environment (Lever et 

al., 2009)- implying that these cells are responsive to more primitive environmental 

Figure 2.2 Schematic diagram concentrating on the brain regions and cell types discussed in this review. 
Place cells can be found in the hippocampus, nucleus reuniens (NRe), paratenial nucleus (PT), 
anteromedial nucleus (AM), claustrum, medial entorhinal cortex and subiculum. Place correlates (i.e. 
weak spatial activity) can be found in the orbitofrontal cortex (OFC), postrhinal cortex, lateral entorhinal 
cortex and lateral septum. Grid cells can be found in the medial entorhinal cortex, pre- and 
parasubiculum. Head-direction cells can be found in the lateral mamillary nuclei (LMN), anterodorsal 
nuclei (ADN), laterodorsal nuclei (LDN), retrosplenial cortex (RSC), postsubiculum, nucleus reuniens 
and anteromedial nucleus (AM). Boundary cells can be found in the parasubiculum, claustrum, 
subiculum, anterior cingulate cortex, pre- and parasubiculum and medial entorhinal cortex. Object 
sensitive cells can be found in the lateral entorhinal cortex, postrhinal cortex, orbitofrontal cortex (OFC) 
and the lateral septum. Goal cells can be found in the medial prefrontal cortex (mPFC) and prelimbic and 
infralimbic regions of the prefrontal cortex. Self-motion or egocentric cells such as those encoding 
running speed or angular head velocity can be found in the mEC, striatum, RSC, PPC, LMN and DTN. 
(Adapted from Grieves and Jeffery, 2017) 
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features and are basic to survival strategy. In contrary, place cell activity is affected by 

distal cues and landmarks surrounding the environment and changes in completely 

novel environment (Anderson and Jeffery, 2003), and, therefore, is particularly 

important for allocentric navigation  (Ekstrom et al., 2014), although a very recent 

study suggests that distance from a salient cue is sufficient to form place fields in 

preweaning rats even before the grid-cell system has matured (Bjerknes et al., 2018). 

Recognizing novel or familiar stimulus in the environment is also crucial for survival. 

Memory system required for navigation is comprised of spatial (‘where’) and 

nonspatial (‘what’) information (Knierim et al., 2014). There are cells which are active 

near specific objects in an environment, called object cells. Although it was assumed 

that these cells are encoding visual or tactile information (Burke et al., 2012), there 

are small population of cells in the rat anterior claustrum which fire persistently in 

darkness and if the object is replaced with another one, implying that they do not 

represent visual or other sensory features (Jankowski and O'Mara, 2015), and rather 

encode the spatial location of the objects. The allocentric navigation requires 

establishing a relationship between the environmental objects recognized by their 

location and features i.e., shape, size, color etc. requiring both location-related and 

view-related coding. On the other hand, the egocentric relationship requires that a 

representation of their relative movement to the environment be present for updating 

the distance or direction to the goal. Speed cells and angular head velocity cells 

provide processing of such egocentric information (Kropff et al., 2015, Bassett and 

Taube, 2001) and are very often present conjunctively with other cell types. For 

example, grid cells in mEC and head direction cells in rat lateral mammillary nucleus 

(LMN) are modulated respectively by the speed and angular head velocity of the 

animal (Sargolini et al., 2006, Stackman and Taube, 1998). 

But how these discrete representations interpret to the navigation mechanisms, i.e. 

path integration, is yet to understand. (McNaughton et al., 2006) attempted to 

explain that an attractor dynamics in the medial entorhinal-hippocampal may 

contribute to path integration, but the model is questioned by the fact that grid cells 

form stable firing pattern quite late in the development phase compared to the place 

cell activity (Wills et al., 2010, Langston et al., 2010). Goal-directed spatial navigation 

recruits prefontal-thalamo-hippocampal circuit, suggesting that the long-range 
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communication between cortical regions, beyond the local interaction in the 

hippocampus and entorhinal cortex, are involved in the navigation (Ito et al., 2015). 

Moreover, it is little known how the allocentric information combines to give rise to 

the navigation. It is complicated by the fact that there is no specific distinction 

between allocentric and egocentric information processing networks, and they are 

most often not mutually exclusive in higher order species (Ekstrom, 2015, Ekstrom et 

al., 2014). Mammalian allocentric strategy measures the direction and distances from 

the local objects and such vector representations are also implemented in the neural 

representations of space in object-vector cells (Hoydal et al., 2018). These cells are 

not results of the tactile sensation or blockade of trajectory and are elicited from the 

sensory landmark properties. In rodents, the lesion of Nucleus Reuniens, a thalamic 

nucleus representing egocentric information (Jankowski et al., 2014), alters the 

allocentric hippocampal place cell stability (Cholvin et al., 2018).  

The rhythmic properties of the neural signals also contribute to the spatial 

information processing. The head-directional cells are segregated in time by 

alternating theta cycles according to their directional preference, which indicates that 

the theta oscillation facilitate the segregation of information (Brandon et al., 2013). 

The location specific phase-segregation in hippocampus place cells reflects the 

distance representation by time-compression and is dependent on the speed of the 

animal (Geisler et al., 2007). Distinct environmental representations and the changes 

in context, i.e., location of reward, are also segregated across separate theta cycles 

(Jezek et al., 2011). These results support the hypothesis that there is a spatial 

information packaging by theta rhythms (Colgin, 2013). Inactivation of the medial 

septum, the pacemaker of theta rhythm, eliminates the periodicity of grid cells and 

reduces the number of theta-modulated cells in the entorhinal cortex (Brandon et al., 

2011). Septal inactivation does not affect formation of place fields in novel 

environments when recorded in rodent hippocampus (Brandon et al., 2014) and the 

place cells in flying bats exhibit little to no such theta-modulation (Yartsev and 

Ulanovsky, 2013). These findings, along with other studies (Colgin, 2016), suggest 

that theta may not be required for the formation of spatial memory representations 

in single cell level, but is essential in sensory processing, coordination of neuronal 

ensembles participating in the distributed process of memory, coupling between 
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different brain regions, and formation of long-term memory. Travelling at a certain 

velocity for a certain time translates an animal by a particular distance. Therefore, 

timing is important for the spatial coding, and given that the theta rhythm varies in 

frequency with running speed (Shin and Talnov, 2001), and artificially altering the 

theta frequency affects the running speed of mice (Bender et al., 2015), there is also 

an specific locomotor role of this rhythmic component, particularly associated with 

the active movements (Vanderwolf, 1969). 

Understanding the mechanistic principles of spatial navigation requires studying 

what other brain regions may contribute to the spatial circuitry, how the spatial cells 

receive information or what are their origin, are there any functional integration or 

specialization among the participating brain regions, and how the rhythmic 

components couple the information flow among different brain areas or represent 

spatial information processing, how different navigation mechanisms are represented 

in the brain, or whether there are any mechanistic dependency between such 

mechanisms etc. Although most of the studies have been conducted on a horizontal 

plane, real world space itself is a three-dimensional entity and presents a complex 

scenario of different known and novel object, views, perspective, optic flow, and– for 

species that can swim or fly– large volumetric spaces (Jeffery et al., 2015a). Therefore, 

recent studies have also shifted focus on how 3D spatial information and their 

temporal relationship are represented in neural ensembles (Page et al., 2018, Wilson 

et al., 2015). Studies also include use of virtual reality to mimic different navigational 

strategy and information presentation to the animal (Chen et al., 2013). Exploration 

of long-range navigation, three dimensional maps and compass, and factors affecting 

such representations are also being studied (Finkelstein et al., 2016, Geva-Sagiv et al., 

2016). 

The following section presents the concept of how the activities of the brain in such 

neuronal level are recorded and identified for individual neurons. It also briefly 

describes different schemes of how the neuronal encoding is studied. The challenges 

in such recordings are also outlined providing an idea of why the development of 

software like NeuroChaT is very much essential and timely for cognitive map 

research. 
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2.2  Extracellular neuronal recordings 

Behavioral events are represented at cellular level in the nervous system (Allen et al., 

2017, Hartley et al., 2014). Therefore, we need to understand the activity of individual 

neurons and the way these activities contribute to the neuronal circuitry. 

Neurophysiological techniques are used to record the bioelectrical/biophysical 

activities of individual neurons or ensembles. These methods record the activities 

intracellularly (patch clamp, voltage clamp etc.), or extracellularly from external 

matrix (single-unit and local field potential recording, electrocorticography etc.) by 

penetrating micropipettes, metal electrodes, or patches of microfabricated electrodes 

into the brain. A metal recording electrode may consist of a single insulated wire or a 

group of two or four wires called stereotrodes or tetrodes respectively. Such 

recordings can be done either in vivo from the living animal or in vitro using brain 

slices. Intracellular recordings are usually used to explore cell physiology and are 

mostly performed in vitro. Extracellular recordings can be both in vivo or in vitro.  

Extracellular recording method allows recording the discharges or action potentials 

(AP) of a single neuron without impaling it as it records the AP from the very vicinity 

of a cell. Therefore, the activity of a single cell can be isolated and studied chronically 

and can thus be characterized comprehensively by correlating with the behaviors or 

physiological events and by studying their connectivity. Electrical, chemical or optical 

stimulation of identified cell populations at the recording site can also be used to 

determine the effects of cell activity on behavior or physiology. The neuronal APs of 

individual neurons are considered as the code used by the nervous system for 

information transmission. A number of coding schemes are used across different 

research areas in Neuroscience which are described in Section 2.1.2. 

Extracellular electrodes record activity of a relatively small number of neurons in the 

implanted area and can provide information with high spatial and temporal 

resolution. But they are not capable of capturing the subthreshold events, such as 

synaptic potentials that may influence cell excitability but does not produce an AP. 

Intracellular or membrane level approaches with in vitro preparations are used for 

recording the subthreshold potentials. 



 

~ 23 ~ 

 

2.2.1  Principles of extracellular recordings 

(This section is based on (Heinricher, 2004) and (Logothetis, 2003) unless otherwise 

specified) 

All the neuronal coding schemes involve the task of detecting whether or not an AP 

has occurred at a specific time. The waveforms and their characteristic changes 

depending on the morphology of recording sites or distance of recording electrodes 

form the basis for spike identification. It is, therefore, of particular interest to consider 

the basis for the APs obtained with an extracellular microelectrode. 

Extracellular microelectrodes record the APs or spikes produced by the currents that 

flow in the extracellular space around an active neuron. This is explained by the 

volume conduction theory (Rall, 1962) where the extracellular medium surrounding 

a neuron works as low uniform resistance or a volume conductor. The specific 

impedance of this conductor is higher (∼200–400 Ω/cm, depending on neural site) 

(Ranck, 1966, Nicholson and Freeman, 1975, Mitzdorf, 1985) than that measured in a 

saline bath (∼65 Ω/cm, 1 Hz-10 kHz; Logothetis, 2003). This is because ions move 

around the cellular processes in a very limited space. A static (or quasi-static) electric 

field can be assumed surrounding a neuron as the inductive, magnetic, and 

propagative effects of the bioelectrical signals in the extracellular space can be 

neglected for the frequency range that is of interest in physiology studies (0 to ∼2 

kHz). Ideally, the membrane potential is uniform along the entire length of an axon 

at rest, and there is no current flowing inside or outside the neuron (Figure 2.3a). 

When the AP propagates through the axon, it depolarizes part of the membrane as 

the inflow of Na+ into the active sites of a neuron (Figure 2.3b). The active region is 

called sink and the inactive region near the sink is called source. By Ohm’s law, the 

potential difference between the depolarized and resting parts causes the current to 

flow. Current flows inward in the sink and outward in the source. If an electrode is 

placed adjacent to the axonal membrane at this point, it will record negative voltage 

with respect to a distant indifferent electrode. But if records from a source, the 

potential will be positive with respect to a distant indifferent electrode as the current 

flows outward in the source. Because of the resistance of the extracellular medium, 

such currents generate so-called extracellular field potentials (EFPs). 
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Let us consider the simplest model of extracellular recording consisting of an isolated 

neuron and an electrode recording somewhere along the axon (Figure 2.4). The 

electrode registers positive potential while the membrane underneath acts as a source 

for the membrane depolarized at a distance. As the AP approaches the electrode, the 

difference in potential between the source and sink decrease, causing the decease of 

positive potential. When the AP reaches the region underlying the electrode, the 

depolarized membrane acts as a sink, and the electrode records a negative potential. 

Finally, as the AP moves away from the electrode, membrane is repolarized, and 

resume serving as a current source. The electrode records the positive potential once 

again.  

Therefore, the AP recorded by an electrode adjacent to an isolated axon should be 

triphasic in theory. This theoretical prediction has been experimentally verified by 

simultaneous intra- and extracellular recording (Henze et al., 2000), as shown in the 

example in Figure 2.5. The negative phase of the extracellular spike coincides with 

the depolarization seen by the intracellular electrode. The late positive phase of the 

extracellular potential corresponds to the repolarization of the membrane recorded 

intracellularly. 

Figure 2.3 Depiction of volume conductor theory to model current flows around an axon in a uniform, 
low-resistance extracellular medium called volume conductor; (a) When the axon is at rest, the 
membrane potential is uniform, and no current flows; (b) Current will flow in a depolarized segment of 
the membrane. The flow is inward at the depolarized region (sink) and outward at adjacent regions 
(source). (Adapted from Heinricher, 2004) 
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Figure 2.4 Model of sources and sinks predicts that a triphasic waveform will be recorded from an 
isolated axon; (a) As the AP approaches the region underneath the electrode, that membrane serves as a 
source, and the electrode sees a positive potential relative to a distant indifferent electrode; (b) When the 
AP reaches the membrane underlying the membrane, the electrode records a negative potential; (c). As 
the AP continues down the axon, the membrane under the electrode once again acts as a source, and as 
a consequence, the electrode records a positive potential. (Adapted from Heinricher, 2004) 

Figure 2.5 Simultaneous recording of the intracellular and extracellular spike. The monophasic 
depolarization seen by the intracellular electrode corresponds with a positive-negative-positive waveform 
recorded by the extracellular electrode. Note different scales for extracellular and intracellular 
recordings. (Adapted from Henze et al., 2000) 
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Similarly, when an electrode records AP close to the cell soma, soma depolarization 

is recorded as negative potential at the electrode. Consider a simple neuron model in 

Figure 2.6. As the AP passes through the axon, the soma membrane becomes positive 

(source). The waveform recorded with an extracellular electrode near the soma, 

therefore, should be biphasic in theory, with an initial negative component followed 

by a positive potential. However, actual neurons are more complex, and cell 

morphology and distribution of active conductance on the somatic and dendritic 

membrane, the location of the electrode relative to the cell body and the state of cell 

excitability causes a deviation to the ideal waveform obtained using volume 

conduction theory. Recordings from soma vary in the relative amplitude of the 

negative and positive phases of the waveform showing the distinct inflection points 

on either phase. 

 

 

Figure 2.6 The simplest model of an isolated neuron showing the biphasic potential recorded from a 
soma; (A) Recoding of depolarization where the membrane works as the sink, and the recorded voltage 
is negative. (B) Recording of repolarized membrane potential as the AP moves down the axon. Soma 
works as the source in this case and contributes to a positive potential. 
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Practically, an electrode placed at a neural site records the mean EFP (mEFP) signal 

from the weighted sum of all sinks and sources along multiple cells (Logothetis, 

2003). The superposition principle dictates that the EFPs from different cells add up 

linearly throughout the volume conductor. The lipid layers in neuronal membranes 

create a low pass filter in conjunction with the volume conduction which creates a 

low pass filter attributable to the weighting- making the interpretation of mEFP 

difficult. For the cells oriented opposite to each other, information is lost as the 

currents of equal magnitude, but opposite polarity generates potentials that cancel 

each other. The volume conductor itself is strongly anisotropic because of the varying 

alignment of the neural elements. The orientation-dependent conductivity means 

that the detailed anatomical and geometrical information are necessary to ensure the 

correct interpretation of the mEFP signal. 

Whether the electrode records APs of a neuron or the ensemble properties of the 

neuronal mass of the recording site depends on the choice of electrodes, their exact 

positioning, and the recording sites. Microelectrode with a small tip, if placed near 

the soma or axon of a neuron, measures the mEFP directly and reports the spike traffic 

of that neuron and that of its immediate neighbors as well. Simultaneous intra- and 

extracellular recordings of pyramidal cells in rat hippocampus by placing tetrodes 

within 50μm of it show that extracellular potentials provide accurate information on 

number of parameters such as latency, amplitude, and shape of the APs (Harris et al., 

2000, Henze et al., 2000).  

The discharge of a large neuron generates a greater flow of membrane current for an 

equivalent transmembrane AP- creating a bias in recording due to cell types (Stone, 

1973) and/or sizes (Towe and Harding, 1970). The resulting extracellular field remains 

above the recording noise levels over a greater distance. Larger neurons with diameter 

greater than 20–30μm diameter are estimated to generate a potential larger than 

100μV within a 100μm-diameter sphere with the electrode tip at its center (Rall, 1962) 

which decreases rapidly with increasing the distance from the electrode tip because 

of the low-pass properties of recording medium. Spikes are not distinguishable 

anymore from background noise at a distance larger than ∼140μm (Henze et al., 

2000). Spikes from the small neurons do not propagate that far and, therefore, their 

recordings for longer duration are less stable. 
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Electrodes placed at a distance from the spike-generating neurons and with low 

impedance monitors the totality of the potentials in that region as the APs do not 

predominate. The EFPs recorded under these conditions are attributed to both the 

integrative processes (dendritic events) and to the spikes generated by hundreds of 

cells (Bishop and O'Leary, 1942)– known as the local field potential (LFP) and multi-

unit activity (MUA) respectively. A high-pass filter cutoff of ∼300–400Hz is used in 

most recordings to obtain multiple-unit spiking activity (MUA), and a low-pass filter 

cutoff of ∼300Hz is used to obtain the so called local field potentials (LFPs) 

(Logothetis, 2003). 

Depending on the recording sites and the electrode properties, the MUA most likely 

represents a weighted sum of the extracellular APs of all neurons within a sphere of 

∼140–300μm radius, with the electrode at its center (Gray et al., 1995). Synchronous 

firings of many cells can enhance the spikes by summation and are detected over a 

larger distance (Chi-ming and Buchwald, 1977). The MUA EFPs are the function of 

cell and axon size, and, therefore, is site specific (Buchwald and Grover, 1970). It 

varies considerably from one brain region to another but remains relatively constant 

for a particular site (e.g., hippocampus vs neocortex). Sites where MUA of large 

amplitude fast activity are found also contain homogenous population of large cells, 

and the size of the transmitting axon also correlates the magnitude of the axonal 

spikes (Logothetis, 2003). 

The LFPs reflect cooperative activity in neural populations as they represent the slow 

events. They are suggested to reflect the weighted average of synchronized 

dendrosomatic components of the synaptic signals of neuronal ensemble within 0.5–

3mm of the recording sites (Mitzdorf, 1987). Unlike the multiunit activity, their 

magnitude is not correlated with the cell size. Instead, they depend on the extent and 

geometry of dendrites in the recording sites. If the cells are in open field geometrical 

arrangement- i.e., dendrites face in one direction and somata in another- they 

produce strong dipoles between dendrite and soma when activated by synchronous 

synaptic input. Neurons oriented horizontally contribute less efficiently or not at all 

to the sum of potentials. There is also evidence of the existence of other types of slow 

activity unrelated to synaptic events, including voltage-dependent membrane 
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oscillations (Kamondi et al., 1998) and spike afterpotentials (Buzsaki et al., 1988) that 

contribute to the LFP generation. 

It is essential to identify the activities of individual neurons to explore their relation 

to spatial encoding. The following section provides a description of how this is 

achieved using the principles that facilitates the isolation of their activities from 

signals recorded in electrodes with thousands of neurons in their vicinity. 

2.2.2  Single-unit activity 

Principles of single unit isolation 

(This section is adapted from (Humphrey, 1979) unless otherwise specified) 

Action potentials do not vary in amplitude and duration throughout the nervous 

system and across the species, although the conduction velocity dramatically varies 

depending on the size and myelination of the axons (Hartline and Colman, 2007). 

But the recorded action potential depends on number of different factors which 

causes to vary the shapes of the waveform. Given that the recording is stable during 

the entire duration of the experiment, the waveforms and their properties allow 

discriminating the groups of action potential belonging to a putative neuron, also 

known as ‘single unit’. 

The extracellular field theory described before states that the electrodes positioned 

near the neurons record changes in electric potential in the extracellular field which 

is generated from the volume conductance and the current flow. The membrane 

current consists of both capacitive and resistive components given by the equation, 

𝐽𝑚 = 𝐽𝑐𝑎𝑝 + 𝐽𝑟𝑒𝑠 = 𝐶𝑚(𝑑𝑉𝑚 𝑑𝑡⁄ ) + 𝐺𝑚𝑉 (2.1) 

Where, Vm is the transmembrane potential, Cm is the membrane capacitance, and Gm 

is the membrane conductance. 

Let us consider a stellate-shaped neuron. Current flows radially outward from the 

soma (sink) into the dendritic tree during an action potential in its soma, which is 

extracellularly viewed as a single sink in the soma and distributed sources at dendrites 

(Figure 2.7a). The recorded potential at an electrode in the extracellular field is then 
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given by the net effect from the distributed dipole model or compartmental neuron 

model based on Hodgkin-Huxley membrane model (Moffitt and McIntyre, 2005), 

which is given by, 

𝑉𝑒 = 
1

4𝜋𝜎
∑(𝐽𝑚,𝑖 𝑟𝑖⁄ )𝛥𝑆𝑚
𝑖

(2.2) 

Jm,I is the membrane current density at segment i, σ is the volume conductance, ri is 

the distance of segmented dipole to an external point (Figure 2.7b), and ΔSm is the 

membrane surface area for the elemental membrane dipole. In a more complex 

model, the compartments may comprise the soma, the axon hillock, and segments of 

both axons and dendrites. 

 

 

As the model suggests, spike configuration and polarity may markedly vary 

depending on the location of the recording electrode with respect to the cell 

geometry, or alternatively, to the spatial distribution of the sources and sinks. As 

explained in Section 2.2.1, phases of the spike changes as the recording site moves 

from soma to axon- altering the shape of the waveform (Figure 2.8). 

Figure 2.7 Extracellular electric field model of an example neuron; (a) Direction of lines of current flow 
around a stellate shaped neuron during somatic action potential; (b) Distribution of membrane current 
and its relation to the potential at an extracellular point (modelled with single dendrite). Current flows 
inward during an action potential at cell’s soma (hatched), and outward at various regions along the 
dendrite. (Adapted from (Humphrey, 1979)). 
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Spike shape is influenced by both the cell geometry and cell size. Spike shape can vary 

depending on the structure of the dendritic trees even under the simple assumption 

of passive dendrites. The cell size determines the cell’s input impedance, which in 

turn affects the magnitude of the membrane currents during depolarization. For a 

given change of transmembrane potential, large cells can induce membrane currents 

Im that are larger than for small cells. Here, Im = ∆Vm / Zin, where ∆Vm is the 

transmembrane potential and Zin is the neuron’s input impedance. An alternative way 

to think of the issue is that the larger cells have greater capacitance and hence greater 

current must flow to discharge and then recharge the membrane. Larger membrane 

currents imply stronger field potentials based on Equation 2.1. 

Initial models (Nelson and Frank, 1964) assert that the differences in spike polarity 

and configuration result from the degree of active invasion of the dendrites as the 

action potential propagates, like what is explained in Section 2.2.1. Although this is 

applicable for Purkinje cells, the differences in spike shapes for pyramidal and stellate 

cells can be accounted for based on the cell geometry (Figure 2.9). The axon hillock 

in pyramidal cells act as sink, whereas the apical and basal dendrites appear as the 

distributed current sources. Therefore, when recorded at a distant point from the 

dendrites, the sink dominates, and the spike is negative in polarity. As the recording 

site approaches the apical dendrites, outwardly directed membrane current 

Figure 2.8 Changes in spike-shapes with respect to the electrode location; (a) Recorded spikes for a 
spherical neuron undergoing a spike-generating conductance change over only a portion of a soma; (b) 
Changes in the action potential in a more generalized model of neuron-electrode interface (Adapted from 
Obien et al., 2015). 
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dominates and the spike becomes biphasic (positive-negative) (Figure 2.9a, 2.8b). 

At points ventral to soma, the contribution from the sink dominates and the spikes 

are negative. The soma of the stellate cells acts as the sink, but the dendritic sources 

are more diffused and distributed- creating a more complex scenario of the spike-

shapes depending on where the recordings are performed. 

 

 

The cell size also alters the spike shape. The input impedance of a cell is a function of 

the cell size and affects the magnitude of the membrane current during 

depolarization. Large cells induce more transmembrane potential than the small ones 

owing to their low impedance. This can be attributed to the fact that larger cells have 

greater transmembrane capacitance. This implies that a large amount of current must 

flow to discharge and recharge the membrane. The extracellular potential is a 

function of the membrane current, and, therefore, causes a larger field potential 

according to Equation 2.1. In effect, this also poses a challenge in recording single-

units. Majority of the CNS cells are small with soma diameters ranging from 10 to 

20μm. Their spike amplitudes are in order of 0.05-0.1mV unless the recording is done 

in the immediate vicinity of the cell body where they generate spikes of amplitude 

ranging from 0.2 to 0.3mV (Humphrey and Corrie, 1978). These spikes are detectable 

Figure 2.9 Example of the effect of cell types on recorded action potentials; Spikes recorded across (a) 
the axis of a pyramidal cell; (b) depth of a stellate cell (Adapted from Humphrey and Schmidt) 
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only over a short distance and cannot be held for longer periods as they are lost, 

particularly, if the electrode moves. This tempts the experimenters to identify only 

the easily obtainable large-amplitude spikes that survive for required periods of the 

recording. 

The variability in spiking waveforms due to the relative location of the electrode, cell 

types, and sizes makes it feasible to identify the event times of action potentials from 

individual putative neurons. The use of multiple electrodes, such as tetrode, which is 

a group of four electrodes bundled together (Figure 2.10), provides a better 

discrimination of the waveforms and improves the quality of isolation of activities 

generated by individual neurons (Harris et al., 2000). The distance and orientation 

of each cell with respect to the individual electrodes are different- creating more 

features for separation of the waveforms, e.g., electrode closer to one neuron will 

record stronger signal than the one located further. 

 

 

Processing of implanted electrode data 

The recording and data processing steps are shown in Figure 2.11. LFP data reflect 

the dynamics of neuronal population surrounding the electrode and are obtained by 

low pass filtering (cutoff frequency: ~300Hz, (Logothetis, 2003)). The recorded signal 

Figure 2.10 Schematic diagram of four-channel tetrode among pyramidal cells. Each electrode records 
signal from the neurons, but the shape of the waveforms from the same neuron recorded in individual 
channels are different (right). Therefore, the isolation of the neuronal activities based on waveform 
shapes are more facilitated (Adapted from O'Keefe and Recce, 1993) 



 

~ 34 ~ 

 

is band-pass filtered to obtain the activity of neurons near the electrodes. Activities 

from the neurons located very far away give rise to the background activity or noise 

signal (black trace in the bottom panel of Figure 2.11). The bandpass filtered signal 

comprises action potentials from different neurons superimposed. Spike sorting 

techniques are then used to identify the waveforms generated from individual 

putative neurons and their temporal information are obtained. 

 

 

 

Figure 2.12 depicts the spike sorting process. The waveforms of individual neurons 

are used to identify the spikes and their timing with an underlying generative model 

that spike-waveforms of similar shapes belong to the same neuron. The next logical 

Figure 2.11 Standard data processing steps for extracellular recording experiments, particularly those 
involve single-unit characterization. Raw data is lowpass filtered to obtain the LFP signal. The bandpass 
filtered signal undergoes spike-sorting process resulting in identifying the waveforms and spike-train for 
each neuron. (Adapted from Rey et al., 2015b) 



 

~ 35 ~ 

 

step is to identify the spike waveforms from the noise-corrupted low-pass filtered 

signal. This step is called ‘spike detection’. There are number of spike detection 

techniques (Bestel et al., 2012). One of the most common approaches is to use a 

voltage threshold to determine the presence of spiking waveforms. The threshold can 

be manually set by the experimenter during the recording session, or an automated 

threshold measurement method can be used (Quiroga et al., 2004) (Figure 2.12a). 

Usually, a signal chunk of 1msec is taken around the threshold to obtain the 

waveforms (Figure 2.12b). Different waveform features like wavelet coefficients 

(Hulata et al., 2002, Quiroga et al., 2004), principle component analysis (PCA) 

coefficients (Shoham et al., 2003), spike-shapes (width, peak, troughs)(Vogelstein et 

al., 2004) are used to describe individual waveforms. These descriptions or features 

form groups or clusters, where each cluster represents waveforms belonging to each 

putative neuron (Figure 2.12c). Clustering algorithms or manual cluster cutting 

techniques (Lewicki, 1998) are used to identify the groups and the spike-sorting 

process is complete with assigning appropriate tags to each cluster and corresponding 

waveforms (Figure 2.12d). Manual clustering involves cutting the clusters by drawing 

ellipsoids or polygons around the blob at feature space, usually in two-dimensional 

projection of the features, e.g., plotting against the amplitude vs width of the waves, 

and delimiting the spikes of different neurons. This approach is very time-consuming 

and subjective. There are attempts for automated spike sorting algorithms (Rey et al., 

2015b) that employ unsupervised machine learning techniques and statistical 

approaches (Kadir et al., 2014, Quiroga et al., 2004). Spike-sorting results in 

identifying the sequence of spike times, spike shapes and the neurons they putatively 

belong to. Shapes that cannot be separated due to low signal to noise ratio leads to a 

cluster of multiunit activity (MUA). Neurons contributing to MUA are relatively close 

from the electrodes for their spikes being detected, but not close enough for their 

shapes to be isolated. 
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Spike sorting is essential to characterize individual neurons in response to the 

experimental manipulations. Close-by neurons can be picked up by the same 

electrode but can fire in response to different information item. For example, in the 

Figure 2.12 Spike sorting steps (a) Thresholding on bandpass filtered recorded extracellular potential for 
spike detection. This is one of the most popular choice for detecting spikes (simulated); (b) Extracting 
the waveforms (left) and creating a feature space constituting different features of the waveform (PCA, 
wavelet coefficients etc.); (c) Using clustering algorithms to identify individual clusters (left) or using 
manual cluster cutting techniques (middle) to draw boundaries around a feature cluster and identify it 
as a distinct cluster. Waveforms from individual neurons are separated (right) where individual color 
corresponds to waveforms belonging to one cluster; (d) The waveforms are appropriate tagged to identify 
their temporal location. This timing information is used for subsequent analysis. Spike waveforms are 
extracellular data recorded from the rat anterior thalamus and the filtered continuous signal is simulated 
data. 
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human or rat hippocampus, nearby neurons fire to unrelated people in the first case 

and to distant place fields in the latter (Quian Quiroga, 2012). Individual neurons 

have their characteristic tuning and firing properties, relationship with other 

neurons, and dynamics with the local field potentials. 

It is indeed also a matter of concern that how the isolated single-units or putative 

neurons encode the information. The following section provides an overview of 

different encoding schemes which also contain the description of ‘Spike-count rate’ 

and the ‘Temporal encoding’ that are used in the NeuroChaT software. 

2.2.3  Neuronal encoding schemes 

The study of nervous system generally follows a standard procedure of presenting 

stimuli and observing the behavior as the response (Figure 2.13). It is then observed 

how the behavior and the stimulus are correlated to the underlying neural elements. 

The focus of neural encoding is to identify how different neural components, namely 

single-units, LFP and MUA responds to a wide variety of stimuli and to develop 

models to predict the response to other stimuli. Neural decoding refers to the process 

of reconstructing a stimulus from neural responses. A train of spikes can contain 

information based on different coding schemes. It may be the firing rate of the spikes 

(rate code) that represents the strength at which innervated muscles contract. 

Neurons firing in preference to a specific location in the environment also encodes 

the location information by the timing of firing (temporal code). Schemes to study 

neural encoding by neural spike trains can be described in 4 categories: 
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Rate coding 

The rate coding scheme states that the frequency or rate of spikes increases as the 

stimulus intensity increases. This is based on the idea that the information about the 

stimulus is contained in the firing rate of the neuron. In most the sensory systems, 

there is a nonlinear relationship between the increasing stimulus intensity (Kandel et 

al., 1991) and spike firing rate calculated by counting the number of spikes in a given 

time interval. For example, the direction sensitive visual neurons have higher 

preferential firing rates to certain directional rotation of the visual stimulus (Figure 

2.14) (Dayan and Abbott, 2005). 

Firing rates in this scheme can be defined in two different ways based on the 

averaging procedure followed such as an average over time or an average over several 

repetitions of experiment. Rate as “spike count”, also called “temporal average”, is 

calculated by dividing the number of spikes in a given trial by the duration of the trial 

Figure 2.13  Experiment design in neuroscience and the stimulus to neural response to behavioral 
pathway model; S : Stimulus, B : Behavior, N: Neural response (Neural Coding, Johnson, 2000) 
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(Figure 2.15a). Trial length T  is set by the experimenter which is heuristically 

determined depending on the neuron type and the stimulus (Gerstner and Kistler, 

2002). Although rate can be determined using a single trial, the temporal resolution 

of the variation in neural response is lost in this approach. The rate is calculated for a 

set of stimuli to observe the effect of a particular event (e.g. changes in direction of a 

light bar in the receptive field to observe direction selectivity; Figure 2.14).  

The time-dependent firing rate is the number of spikes averaged over trials within 

short intervals. It can be viewed as splitting the entire trial into small time windows 

and calculating the spike-count rate over many trials (Figure 2.15b). It is useful for 

both impulsive stimulus and the time-dependent one. In this approach, the same 

stimulus is repeated several times and the response of the neuron is reported in a 

Peri-Stimulus-Time Histogram (PSTH). As it counts the discrete random events 

within short term interval, it is also mathematically equivalent to calculating the 

point density estimates at each short interval Δt. Therefore, it is a measure of 

probability that a spike occurs during interval t and t+ Δt. The number of occurrences 

of spikes nK within t and t+Δt summed over all repetitions of the experiment is divided 

by the number of repetitions K to obtain the average number of spikes. Division by 

the interval length Δt gives the time dependent firing rate r(t) of the neuron. This 

approach neglects all the information possibly contained in the exact timing of the 

spikes. 
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Figure 2.14 (a) Recordings from a neuron in the primary visual cortex (V1) of a cat. A bar of light was 
moved across the receptive field of the cell at different angles. The diagram on the left shows the stimulus. 
Dashed line is the receptive field of the neuron. The bidirectional motion of the light bar is indicated by 
the arrows. (b) Average firing rate as a function of the orientation angle of the light bar stimulus. The 
nonlinear relation is readily apparent as it takes the shape of a Gaussian function. The firing rate is 
maximum in the preferred direction which is 0 degree relative to receptive filed orientation for this cell. 
(Adapted from Dayan and Abbott, 2005) 

Figure 2.15 Depiction of different rate coding strategies. (a) Spike count rate which measures firing rate 
on a trial-by-trial basis by dividing the number of spikes with the duration of the trial. (b) Time dependent 
firing rate is calculated by calculating peri-stimulus time histogram (PSTH) and averaging over trials of 
repeated stimulus; nsp=number of spikes in one run, T= duration of trial, υ= spike-count rate, Δt= time 
bin for generating the PSTH, K= trial number, nK= number of spikes in K-th trial between time t and t+ 
Δt, ρ= time dependent firing rate. (Adapted from Gerstner and Kistler, 2002) 
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Temporal coding 

Neuronal spiking rates exhibit high frequency fluctuations. The rate coding assumes 

that such irregularities are noise on the Poisson process of spike generation. The 

temporal coding implies that the timing-interval between individual spikes encode 

information of the underlying stimulus (Dayan and Abbott, 2005). The spiking 

activity is modelled ‘0’ (no spike) or ‘1’ (spike) constituting a binary sequence. Spike 

trains 00110100 is different from 01010110 and carry different features of a stimulus 

according to the temporal coding scheme, while the rate coding implies that these 

two trains carry the same information. Experiments with similar but not identical 

stimuli shows that the neural responses are significantly different for the stimuli set- 

suggesting that the distinctness in the patterns of spikes contain more information 

than can be expected in rate code (Stevens and Zador, 1995). There are also features 

of neuronal activity that cannot be explained in terms of the rate code. For example, 

the rhythmicity in spiking activity of many neurons in rodent Hippocampus reflects 

the synchrony with underlying LFP theta signal which is observed by the inter-spike 

interval distribution of the spike train (Cacucci et al., 2004). Other features, i.e., time 

to spike after stimulus onset, or temporal patterns or groups of spikes precisely timed 

cannot be identified without exploring the temporal codes (Kostal et al., 2007). Given 

that there is no reference frame to represent time in the nervous system, temporal 

coding uses either the relative timing of the spikes in a neuronal population or 

ongoing brain oscillation as reference (Stein et al., 2005). The latter is more 

commonly known as ‘phase of firing’ code that uses the time reference based on the 

phase of oscillations and counts the spikes occurring at particular phases of the 

underlying LFP activities or its sub-bands, i.e. LFP theta band. Place cells and grid 

cells in hippocampus are shown to encode the animal’s progression through a place 

field by the advancement of phase with respect to the underlying theta cycle (O'Keefe 

and Recce, 1993, Jeewajee et al., 2014) (Figure 2.16). The cell fires in synchrony with 

the wave cycle outside of the place field. As the animal proceeds through the place 

field, the phase at which action potential occurs increases and finally aligns to the 

trough of the wave cycle at the center of the place filed where maximum firing rate 

occurs. This phase advancement keeps going as the animal moves away along the 

place field and finally aligns in synchrony with the next theta cycle making it in-phase 

again. Thus, the advancement in phase, or the temporal sequence of the action 
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potential, through the place field represents animal’s position in the field. This 

phenomenon is also called phase precession. 

 

 

 

Population coding 

While the rate coding dictates the behavior of individual neurons, population coding 

explains how these responses are combined by many neurons to represent the stimuli. 

This coding paradigm is widely applicable in the sensory and motor systems as 

Figure 2.16 Phase precession in place cell and grid cell in rodent hippocampal formation; (a) Example of 
phase precession in a place cell showing the spiking rate map (left), the spikes as dots on the animal's 
path (black line; left middle), raster plots of spike phase versus pdcd. Red line is the circular linear 
regression line (right middle) and an example of the timing of spikes (vertical ticks) versus LFP (grey line, 
right); (b) Similar example for a grid cell; (c) Example of the transformation of a run through a firing field 
onto a unit circle which represents the firing field with the peak firing rate at the center. Locations on the 
run are transformed radially so that their proportional distance between the firing peak and the perimeter 
is preserved, and then rotated about the center of the circle so that the mean direction of the run (white 
arrow) is left–right for all runs. ‘pbcd’ is the distance of the animal to the field peak projected on the 
current running direction, which varies from −1 to 1 as the animal enters the field on the left and exits on 
the right. (Adapted from Jeewajee et al., 2014) 
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revealed by the experimental studies. The neurons from visual area MT are tuned to 

different moving directions of an object (Maunsell and Essen, 1983). The neurons 

together fire in a noise corrupted Gaussian activity pattern across the population. The 

direction of the object is, therefore, retrieved from the population activity. This is 

performed using the population vector coding model (Georgopoulos et al., 1986) 

where a monkey was trained to reach its arm to a series of directions. Neuronal 

activities were then recorded from the primary motor cortex of the monkey. Neurons 

have been found to preferentially fire for the arm-reach at a particular direction 

(Figure 2.17a). The response, again, forms a characteristic bell-curve like the one 

shown in Figure 2.17b. The population vector coding suggests that spikes from each 

neuron can be viewed as the votes for the motion in its preferred movement direction. 

When a movement occurs, votes are combined, and movement occurs in the average 

direction. Mathematically, the weighted average of individual neurons’ preferred 

direction retrieves the stimuli- where each direction is a vector and the firing rates 

act as the weights. As it calculates the vector summation of the directional firing rates, 

the resulting average is called population vector code (Figure 2.17d).  

Alternatively, we can explain it in terms of linear algebra. Each directional tuning 

curve form the basis set where the firing rates are the weights. The linear combination 

of the responses from all the neurons gives rise to the stimuli that triggered the neural 

response. Therefore, the collective response, or the population response, encode the 

stimuli information. Although individual neurons are too noisy to encode the stimuli 

faithfully, the population code ensure fidelity and precision as it reduces the neuronal 

variability. Individual neurons have overlapping selectivity (Figure 2.17c), so that, if 

not all, many neurons respond to a given stimulus. Given that the tuning curves of 

each neuron are known, population coding can reflect the stimulus almost instantly 

(Hubel and Wiesel, 1959) and is much faster than the rate coding. 
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Sparse coding 

Information in the brain are represented by the pattern of activation of the neurons. 

But strong activation of a small set of neurons represents an information item at any 

given time, and the subset of all available neurons are different for each item to be 

encoded. This philosophy of neural computation is called sparse coding. The 

sparseness may be on temporal sequence of spiking activities, i.e. a relatively small 

number of time periods are active or may be on the sparseness on the activated 

population of neurons (Kloppenburg and Nawrot, 2014). 

Sparse encoders attempt to find a small set of basis functions or patterns to represent 

a large set of input patterns. These patterns can reproduce the original input patterns 

Figure 2.17 Explanation of the population encoding of directional stimuli; (a) Spiking activity of a neuron 
for different directional stimuli, showing preference towards west; (b) Typical tuning curve in response 
to the directional stimuli; (c) Depiction of the overlapping selectivity. Each bell-curve shows the tuning 
function of individual neurons; (d) Each black line represents the preferred firing direction of eight 
example neurons. Their length shows the firing rate of neuron for a given stimuli. The stimulus direction 
is retrieved by the weighted average of the black lines which is represented by the blue line. (Recreated 
from Dayan and Abbott, 2005)  
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when they are combined in the right proportions and are called the sparse codes for 

the input. For example, the letters, numbers, punctuations etc. are the sparse codes 

for a written language. When these codes are combined in a particular order, they can 

produce words and sentences 

Sensory representation of information is experimentally observed in the sensory and 

memory systems. Vision, touch, audition and olfaction (Vinje and Gallant, 2000, 

Crochet et al., 2011, Hromádka et al., 2008, Ito et al., 2008) sensations are coded 

accordingly, e.g., sparse coding of odors by Kenyon cells in Drosophila is thought to 

generate large number of odor specific memory locations which are precisely 

addressable (Wood, 2014). Theoretical explanation of sparse distributed memory 

suggests that sparse coding reduces the overlap between representations and, 

therefore, increases the capacity of associative memory (Palm, 2013). 

The above description of different neuronal encoding schemes provides us with the 

idea of how information carried by neuronal encoding are studied. But such studies 

also follow a number of challenges as outlined in the following section. 

2.2.4  Challenges in extracellular data analysis 

With the progress of the electrode design technology, increase in the number of 

electrode sites, lack of a universally suitable spike sorting algorithm retaining the 

need for manual cluster cutting techniques, and the need to perform complex and 

multi-faceted experimentation to observe the characteristic tuning of the same 

neurons pose the challenges to analyze of a large volume of data for the 

neuroscientists. Here, we give a very brief description of each of these aspects and a 

tentative idea of how big the data associated to each recording and for each neuron 

can be. 

A. Increase in the number of electrode sites:  

Since (Strumwasser, 1958) first invented the microwire technology to chronically 

record the electrical activity in the brain, there has been a tremendous growth in the 

number of simultaneously recorded neurons. With current multi-electrode 

technology, spikes from hundreds of neurons can be recorded simultaneously. A 

study by (Stevenson and Kording, 2011) reports that the number of neurons recorded 
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simultaneously approximately doubles in every 7 years (Figure 2.18). This 

improvement is principally attributed to the development of cutting-edge recording 

techniques. The use of tetrodes (4 electrodes) allowed recording from four sites 

simultaneously. The advent of silicon technologies, i.e., advanced micromachining 

techniques, allows developing the polytrodes or multiple columns with 8-64 

recording sites or channels in each (Fig-3; Blanche et al., 2005). As the electronics 

industry flourishes, data acquisition systems provides robust and stable, hence low-

noise, recording- availing further the observation of higher number of neurons 

simultaneously (Alivisatos et al., 2013). Most recent developments in nanoscale 

analysis tools, and in the design and synthesis of nanomaterials have made it possible 

to deploy nearly one thousand recording sites (Alivisatos et al., 2013). In addition to 

that, the introduction of wireless transmitter has enabled recording for a longer 

duration from the animal, thus increasing the amount of data to be processed to a 

great extent (Schwarz et al., 2014). 

 

 

Figure 2.18 Exponential growth in the number of recorded neurons. (a) Examining 56 studies published 
over the last five decades, (Stevenson and Kording, 2011) found that the number of simultaneously 
recorded neurons doubled approximately every 7 years. (b) A timeline of recording technologies during 
this period shows the development from single-electrode recordings to multi-electrode arrays and in vivo 
imaging techniques. (Adapted from Stevenson and Kording, 2011) 
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B. Lack of a universal automated spike sorting algorithm: 

As identifying the firing pattern from individual neurons is a crucial step for their 

proper characterization, the increase in the recorded neurons poses another big 

challenge- suitable spike sorting algorithm. Although manual cluster cutting 

methods (Gray et al., 1995) have been used for years,  it has become increasingly 

difficult and time consuming to cut the cluster one by one basis as number of 

recorded neurons increases. This is a substantial bottleneck for large scale multi-

electrode recording. There are a number of efforts to develop automated spike-sorting 

algorithms to lessen the need for human intervention (Rey et al., 2015a, Kadir et al., 

2014). But the lack of a properly validated spike sorting utility to process such a high 

volume of data efficiently and reliably (Einevoll et al., 2012, Rey et al., 2015a) further 

exaggerates the need for both sophisticated spike-sorting tools and, till then, a 

platform to minimize the human-efforts for analysis of such identified neurons. 

C. The demand of more experimental manipulations:  

As new research questions are being conceived for a deep-understanding of the 

navigation mechanisms in animal brain, complex experimental manipulations are 

Figure 2.19 Polytrodes with 54 recording electrodes (adapted from Blanche et al., 2005) 



 

~ 48 ~ 

 

being performed to observe the effect of continuous changes in the spatial 

information while the animal navigates. For example, in a study by (Alme et al., 2014), 

it was shown that a spatially-tuned single neuron responded differently to eleven 

different experiment rooms, where it has completely different receptive fields as the 

environment changes. Although this is an example of a very simple manipulation, 

neural recording of large-scale three-dimensional space are also being performed 

(Jeffery et al., 2015b). The feasibility of recording in a more complex setup poses the 

challenge that more such manipulations be performed to understand the navigation 

mechanism in a high-level processing perspective. Therefore, neuroscientists should 

have an appropriate tool to properly manage thousands of analysis outcomes in a 

systemic way to reduce both of their manual and cognitive efforts. 

In summary, there are challenges owing to the increased number of recorded 

neurons, lack of universal software to isolate their activities requiring a lot of manual 

efforts, and the necessity of a toolbox for managing large volume of analysis 

outcomes. There is also a lack of tools containing standardized and peer-reviewed 

analyses. These challenges were the driving forces in conceiving the idea of 

developing the NeuroChaT software in the first place which then also followed how 

the software was designed. 

The following section provides an overview of different neurophysiology toolboxes 

and their scopes of data analysis. The review of the toolboxes shows that there is no 

toolbox that can accomplish the domain specific needs of the cognitive map research 

that also addresses the challenges as outlined above. 

 

2.3  Implanted electrophysiology toolboxes 

Over the years, computational neuroscientists leveraged their efforts to make data 

handling and analysis fast, interactive and user friendly by developing open-source 

software tools for the wider neuroscientist community. This section introduces the 

current state of the art of these software packages and toolboxes for semi- or 

automated processing and analysis of extracellular neuronal recordings. Such 

toolboxes can be categorized based on their scopes of analyses: 
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a) Toolboxes for Spike-sorting 

b) Toolboxes for spike-trains and field potential analysis 

c) Toolboxes for simulating the extracellular electrophysiology 

d) General purpose toolboxes 

 

2.3.1  Spike-sorting 

With the increasing capability to record simultaneously from a growing number of 

neurons, there is a continuous effort to develop new toolboxes to address the 

challenges of sorting of spikes from thousands of electrodes (Harris et al., 2016, Rey 

et al., 2015b). Following are the toolboxes currently available for spike-sorting for 

various electrode configurations. 

WaveClus 

WaveClus (Quiroga et al., 2004) is a MATLAB package that implements an 

unsupervised algorithm for spike detection and sorting. The features for clustering 

are selected as the wavelet coefficients of spike waveforms and are clustered with 

super-paramagnetic clustering (Blatt et al., 1996). 

Link: https://github.com/csn-le/wave_clus, or 

https://vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.htm  

MClust 

MClust (Redish, 2014) is a toolbox with graphical user interface developed in 

MTALAB®. It enables both manual and automated spike sorting on single-electrode, 

stereotrodes and tetrode recordings.  It facilitates the selection of a range of user-

defined features and uses expectation maximization (EM) algorithm for the 

clustering. It can also be used in a batch-mode using the MATLAB® scripts. 

Link: http://redishlab.neuroscience.umn.edu/MClust/MClust.html  

OSort 

OSort (Rutishauser et al., 2006) uses spike waveform templates and sorts them using 

unsupervised clustering by template matching. The template matching algorithm 

https://github.com/csn-le/wave_clus
https://vis.caltech.edu/~rodri/Wave_clus/Wave_clus_home.htm
http://redishlab.neuroscience.umn.edu/MClust/MClust.html
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uses the distance based on residual sum of squares and custom thresholds. The spike-

sorting can be performed online using this MATLAB-base toolbox. 

Link: http://www.urut.ch/new/serendipity/index.php?/pages/osort.html  

Spyke 

This Python package allows data visualization, navigation and sorting of extracellular 

waveform data from multi-channel high density recordings (Spacek et al., 2008). The 

feature extraction uses principal component analysis (PCA) and the sorting uses 

modified gradient ascent clustering (Swindale and Spacek, 2014) to classify the 

features. 

Link: http://spyke.github.io/  

KlustaKwik 

KlustaKwik (Harris et al., 2000) is written in C++ and provides the automatic 

clustering using a mixture of Gaussian and masked EM algorithm (Rossant et al., 

2015). It is also integrated in the NeuroScope toolbox and can also be used stand-

alone. 

Link: https://github.com/klusta-team/klustakwik  

SAC 

SAC (Shoham et al., 2003) is a MATLAB package with graphical user interface that 

uses principal components (PC) of spike waveforms as features and clusters them 

using a mixture of t-distributions. An EM-based competitive mixture decomposition 

is used to identify the clusters. 

EToS 

Efficient Technology of Spike-sorting or EToS is a command-line based spike-sorting 

program (Takekawa et al., 2012). It uses weighted-PCA based feature extraction and 

clusters using robust variational Bayes on a mixture of t-distributions. It is supported 

only in UNIX-like operating systems. 

Link: http://etos.sourceforge.net/  

http://www.urut.ch/new/serendipity/index.php?/pages/osort.html
http://spyke.github.io/
https://github.com/klusta-team/klustakwik
http://etos.sourceforge.net/
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SpikeOMatic 

Developed in R, SpikeOMatic implements spike sorting using Gaussian Mixture and 

hidden Markov model as the generative model, and estimates using EM and Markov 

chain Monte Carlo methods respectively (Pouzat et al., 2004). 

Link: http://www.biomedicale.parisdescartes.fr/SpikeOMatic/  

UltraMegaSort2000 

This MATLAB toolbox implements the hierarchical clustering algorithm for spike 

sorting using the similarities of spike shape and spike timing statistics (Fee et al., 

1996, Hill et al., 2011). The quality metrics are provided by false-positive and false-

negative errors. 

Link: http://neurophysics.ucsd.edu/software.php  

NEV2lkit 

The objective of NEV2lkit is to supply a friendly user interface that links the 

experimental data to a basic set of routines for analysis, visualization and 

classification of spikes in a consistent framework (Bongard et al., 2014). It implements 

different clustering algorithms where features are extracted using the PCA. It is 

developed in C++ and is available as an executable file. 

Link: http://nev2lkit.sourceforge.net/  

WIToolbox 

This toolbox is developed in MATLAB® and uses wavelet transform and information 

theory on the temporal structure of spike-train for better classification of spike 

(Lopes-dos-Santos et al., 2015). 

Link: https://www2.le.ac.uk/centers/csn/software/WI  

JRCLUST 

Jenelia Rocket Cluster (JRCLUST) is a software for real-time spike sorting using fast-

search of density peak clustering (Rodriguez and Laio, 2014) with a linear-scaling of 

1000 channel recording in single workstation and addresses the issue of probe drift 

in recorded signal (Jun et al., 2017). The core clustering algorithm is developed in 

http://www.biomedicale.parisdescartes.fr/SpikeOMatic/
http://neurophysics.ucsd.edu/software.php
http://nev2lkit.sourceforge.net/
https://www2.le.ac.uk/centres/csn/software/WI


 

~ 52 ~ 

 

hardware-specific C-language for NVIDIA processors called CUDA that provides a 

faster processing by parallel computing in graphical processing unit (GPU). 

Link: http://www.jrclust.org/ or https://github.com/JaneliaSciComp/JRCLUST/wiki  

Kilosort 

Kilosort is another spike sorting platform to cluster units in real time from large-scale 

in vivo multielectrode recordings (Pachitariu et al., 2016). It models the recorded 

voltage as a sum of template waveforms triggered on the spike times that allows 

overlapping spikes to be identified and resolved. It also harnesses the computational 

power of GPU if CUDA-enabled GPU is installed. The software is developed in 

MATLAB®. 

Link: https://github.com/cortex-lab/KiloSort  

MountainSort 

MountainSort  is developed in Python to provide a means for automated spike sorting 

(Chung et al., 2017) using density based clustering called ISO-SPLIT based on the 

representation of the spikes in low dimensional feature space with  an assumption 

that each cluster arises from a density function that, when projected onto any line, is 

unimodal. The clustering part of the algorithm uses the parallel computations on CPU 

cores. 

Link: https://github.com/magland/mountainlab  

spyKING CIRCUS 

This is another spike sorting toolbox that works with large silicone probes with 

thousands of recording channels (Yger et al., 2018). It extracts a dictionary of 

‘templates’ from the recording waveforms and uses them to decompose the signal 

with a template-matching algorithm for clustering. Developed in Python, it provides 

parallelization over distributed computers.  

Link: https://github.com/spyking-circus/spyking-circus  

http://www.jrclust.org/
https://github.com/JaneliaSciComp/JRCLUST/wiki
https://github.com/cortex-lab/KiloSort
https://github.com/magland/mountainlab
https://github.com/spyking-circus/spyking-circus
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YASS (Yet Another Spike Sorter) 

YASS is another spike-sorting tool for sorting spikes in dense multielectrode array 

(MEA) (Lee et al., 2017). The algorithm uses the Dirichlet Process Gaussian Mixture 

Models (DP-GMM)and non-parametric Bayesian estimate (Wood and Black, 2008) 

for clustering on subset of feature data-points called ‘core set’. The mean of clustered 

waveforms is used as templates for collided or missed spikes using the matching 

pursuit approach. 

Link: https://github.com/paninski-lab/yass  

 

2.3.2  Spike-train dynamics and field potentials 

NeuroQuest 

NeuoQuest is a MATLAB®-based toolbox that incorporates a number of signal 

processing algorithms including LFP pre-processing, spike detection, and spike 

sorting (Kwon et al., 2012). Blind source separation (BSS) is used for the pre-

processing of the spiking data, and the PCA, peak-to-peak value and discreate wavelet 

transformations are used as features. The clustering algorithms include Fuzzy c-

means, EM, k-means, linkage, and manual cluster cutting. It also implements basic 

analysis measuring e.g., inter-spike interval (ISI), peristimulus time histogram 

(PSTH), cross-correlogram between two spiking units etc.  

nSTAT 

nSTAT (Cajigas et al., 2012) performs spike train analysis in time-domain using 

Kalman filtering, frequency domain using multi-taper spectral estimation, and point-

process generalized linear model (PP-GLM) for analyzing the causality between 

spiking trains. It is developed in MATLAB®. 

Link: http://www.neurostat.mit.edu/nstat/  

Spike Train Analysis Toolkit (STAToolkit) 

This tool implements information theoretic methods to analyze spike-train behavior 

with respect to stimuli (Goldberg et al., 2009). The backend computations are 

https://github.com/paninski-lab/yass
http://www.neurostat.mit.edu/nstat/
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developed in C for better performance and speed but are interfaced with MATLAB® 

using the MEX framework. 

Link: http://neuroanalysis.org  

FIND toolbox 

The MATLAB® based FIND toolbox provides unified data import function from 

various proprietary formats and implements the analysis techniques for multiple-

neuron recordings and network simulations (Meier et al., 2008) 

Link: http://find.bccn.uni-freiburg.de/  

sigTOOL 

sigTOOL is written in MATLAB® which provides the analysis for neural spike trains, 

i.e., ISI distribution, Poincare plots, spike-triggered averaging etc., and frequency-

domain analysis, i.e., power-spectral estimation or coherence estimation (Lidierth, 

2009).  

Link: http://sigtool.sourceforge.net/  

STAR 

Spike Train Analysis with R (STAR) is a tool to visualize spike trains and fit, test, and 

compare models for discharge applied to data (Pouzat and Chaffiol, 2009).  As it 

explains, the toolbox is developed in R programming language.  

Link: https://sites.google.com/site/spiketrainanalysiswithr/  

Neuropy: 

Neuropy implements analyses of spike trains in relation to stimuli (Spacek et al., 

2008). The analyses include ISI histograms, instantaneous firing rates and their 

distributions, auto- and cross-correlogram and spike-triggered average. Other 

analyses include binary code of population spike trains, their correlation coefficient 

distribution, maximum entropy using modelling of such codes etc. The toolbox is 

written in Python. 

Link: http://www.swindale.ecc.ubc.ca/neuropy  

http://neuroanalysis.org/
http://find.bccn.uni-freiburg.de/
http://sigtool.sourceforge.net/
https://sites.google.com/site/spiketrainanalysiswithr/
http://www.swindale.ecc.ubc.ca/neuropy
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MEA-Tools 

Micro-Electrode Array Tools (MEA-Tools), a graphical user interface based tool, 

implements shape-based spike sorting, visualization of continuous data, and 

extracting characteristic LFP segments (Egert et al., 2002). It is developed in 

MATLAB®.  

Link: http://material.brainworks.uni-freiburg.de/research/meatools/  

Data-MEAns 

This is an executable software developed in Delphi 7 and MATLAB® with basic 

analyses like rate histograms, correlograms etc. and spatiotemporal visualization of 

unit activity in an MXN electrode configuration (Bonomini et al., 2005). It also 

provides clustering using the nearest-neighbor or k-means algorithms. 

Link: http://cortivis.umh.es/   

Brain System for Multivariate Autoregressive Time Series (BSMART) 

Based on the multivariate auto-regressive model (MAR), BSMART is intended to 

establish causal relationship and direction of driving between multiple neural signals 

using the Granger causality analysis (Cui et al., 2008). The MAR analysis also facilities 

computing the spectral quantities such as spectral power, partial directed coherence 

and directed transfer function etc. It is developed in MATLAB® and C.  

Link: http://www.brain-smart.org/  

CSDPlotter 

This software is developed to visualized the current source density (CSD) using a 

graphical user interface (Pettersen et al., 2006). It is implemented in MATLAB® and 

incorporates the standard CSD method or the inverse CSD method. It is a pure GUI 

application, and the parameters for the CSD plots can be changed from the user-

interface. It is primarily designed to plot extracellular recording from electrodes 

perpendicular to cortex at different cortical depths. 

Link: https://github.com/espenhgn/CSDplotter  

http://material.brainworks.uni-freiburg.de/research/meatools/
http://cortivis.umh.es/
http://www.brain-smart.org/
https://github.com/espenhgn/CSDplotter
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iCSD 2D 

iCSD 2D (Leski et al., 2011) is a CSD plotter for two-dimensional data. It is a GUI 

toolbox primarily developed in MATLAB®, but later migrated to Python. 

Link: http://www.neuroinf.pl/Members/szleski/csd2d/toolbox  

SigMate 

It is a MATLAB-based software primarily for the extensive pre-processing of LFP data 

(baseline correction, artefact removal etc.) and the visualization of CSD (Mahmud et 

al., 2010). It also integrates EEGLAB, a popular tool for electroencephalography data 

analysis (Delorme and Makeig, 2004), and Wave_Clus for spike analysis.  

Link: https://sites.google.com/site/muftimahmud/codes  

QSpikeTools 

This is a cloud-computing framework to facilitate the parallel processing and analysis 

of extracellular multi-unit activity (Mahmud et al., 2014). The software follows a 

client-server architecture and is developed using MATLAB® and Bash scripts. It works 

by delegating the processing of CPU-intensive operations for electrode channels to a 

multi-core computer or to a computer cluster. 

Link: https://sites.google.com/site/qspiketool/  

2.3.3  General purpose toolboxes 

Chronux 

Chronux is a MATLAB® library providing routines for the analysis of point process 

and continuous neural data (Bokil et al., 2010). It provides the functionalities for pre-

processing, filtering, spectral analysis and visualization of the recorded signal. 

Link: http://chronux.org/  

pyEntropy 

This is a Python module for the estimation of the entropy and information theoretic 

quantities from the discrete signals using bias correction methods (Ince et al., 2009). 

It also includes an algorithm for estimating the marginal constraint maximum 

http://www.neuroinf.pl/Members/szleski/csd2d/toolbox
https://sites.google.com/site/muftimahmud/codes
https://sites.google.com/site/qspiketool/
http://chronux.org/
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entropy distributions which is used for quantitative assessment of the higher order 

interactions between the neural signals treated as stochastic communication 

channels. 

Link: https://code.google.com/archive/p/pyentropy/ 

Information Breakdown ToolBox (ibTB) 

This software measures different bias-corrected estimates of the information 

theoretic quantities for both continuous and discrete signals i.e., LFP and spike trains 

(Magri et al., 2009). It is written in C and MATLAB®. It provides information 

breakdown technique for exploring the encoding of sensory stimuli by different 

groups of neurons. 

Link: http://static-content.springer.com/esm/art %3A10.1186%2F1471-2202-10-

81/MediaObjects/1471-2202- 10-81-S1.zip 

OpenElectrophy 

This is a GUI and command-line based Python module to facilitate the management 

and visualization of the data (Garcia and Fourcaud-Trocme, 2009). It stores all 

experimental and meta-data in a single central MySQL database. It incorporates 

offline spike-sorting methods using k-means and super-paramagnetic clustering 

algorithms (Blatt et al., 1996). The non-stationary oscillations in LFP are also detected 

using the scalogram to extract individual oscillations with ridge extraction methods. 

This toolbox maintains a very standard workflow and data-integration and very 

modular in architecture. 

Link: http://neuralensemble.org/OpenElectrophy/  

Relacs 

Relaxed Electrophysiology data acquisition, Control, and Stimulation (Relacs) is a 

data acquisition platform for closed-loop experiments (Benda and Grewe, 2009). It is 

developed in C++ and performs online analysis and visualization. It can generate 

stimuli (e.g. offset, variance) in a closed-loop fashion to control the running 

experiment. The platform also includes some basic analysis pertaining to firing rates 

(ISI, PSTH etc.) and mutual information content etc. 

https://code.google.com/archive/p/pyentropy/
http://static-content.springer.com/esm/art%20%3A10.1186%2F1471-2202-10-81/MediaObjects/1471-2202-%2010-81-S1.zip
http://static-content.springer.com/esm/art%20%3A10.1186%2F1471-2202-10-81/MediaObjects/1471-2202-%2010-81-S1.zip
http://neuralensemble.org/OpenElectrophy/
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Link: http://relacs.sourceforge.net/  

  

2.3.4  Neuronal encoding of spatial behavior 

As we can see that the software was intended for one of the following purposes, 

▪ Identification and isolation of single-unit action-potentials (spike-sorting) 

from electrophysiological recordings 

▪ Analysis of spike-train dynamics 

▪ Analysis of stimulus-triggered average spike-firing and implementation of 

relevant information theoretic approaches 

▪ Analysis of frequency spectrum, current source density or stimulus-triggered 

dynamics of the LFP data 

Although Neuroscope implements visualization of continuously recorded signals, 

spiking activity, and behavioral events, it does not provide any data analysis. There is 

no comprehensive toolbox for studying the single-unit characteristics with respect to 

the spatial information. Although it is understandable that each research lab may 

have custom-written codes or software that suits the type of methods and data 

processing pipeline, it is not very clear why there no such open-source toolbox 

regarding the study of cognitive mapping of neurons. We speculate that the pattern 

of analysis methods that can be accepted as ‘standard’ to be included in an open-

source software grew over many years of research in this field. This may result in the 

researchers being used to or being trained to the usual practices of the individual 

laboratories. It may also be historic to study one neuron at a time given that the earlier 

recording electrodes allowed studying only a very limited number of neurons 

(Stevenson and Kording, 2011).  

2.3.5  Summary of toolboxes 

The software for analyzing single neuron and LFP data from implanted electrodes are 
summarized in the table below. 

Table 2.2 Summary of the scopes and functionalities of available tools and software for single-unit data 
analysis 

http://relacs.sourceforge.net/
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Name of 

toolbox 
Reference 

Development 

environment 
Functionality Scope 

WaveClus 
(Quiroga et al., 

2004) 
MATLAB 

Implementation of 

unsupervised spike sorting 

using wavelet coefficients of 

spike waveforms as features 

followed by super-

paramagnetic clustering  

Spike sorting 

MClust 
(Fraley and 

Raftery, 2002) 
MATLAB & R 

Manual or automated 

clustering (using 

Expectation-Maximization) 

with a selection of or user-

defined features using 

graphical user interface or 

batch mode.  

OSort 

(Rutishauser et 

al., 2006, Spacek 

et al., 2008) 

MATLAB 

Online spike sorting using 

spike waveform templates. 

The sorting is unsupervised 

Spyke 
(Spacek et al., 

2008) 
Python 

Python package for data 

visualization and navigation 

of extracellular waveform 

data, and spike sorting using 

template matching approach 

KlustaKwik 
(Harris et al., 

2000) 
C++ 

Spike sorting using masked 

EK algorithm on a selected 

subset of high-dimensional 

features from high-density 

electrode array 

SAC 
(Shoham et al., 

2003) 
MATLAB  

Spike sorting using principal 

components of spike 

waveforms as features and 

clustering using a mixture of 

t-distributions algorithm. It 

includes a graphical user 

interface. 
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EToS 
(Takekawa et al., 

2012) 

Standalone suite 

of command-line 

interface 

Weighted-PCS based feature 

extraction and clustering 

using robust variation Bayes 

for a mixture of t-

distributions 

SpikeOMatic 
(Pouzat et al., 

2004) 
R 

R package for spike sorting 

using a generative model 

(hidden Markov model) 

UltraMegaSort2000 (Fee et al., 1996) MATLAB 

hierarchical clustering 

algorithm for spike sorting 

using similarities of spike 

shape and spike timing 

statistics 

NEV2lkit 
(Bongard et al., 

2014) 
C++ 

GUI executable for analysis, 

visualization and 

classification of spikes using 

number of clustering 

algorithms. Discrimination of 

neural spikes is based on PCA 

WIToolbox 

(Lopes-dos-

Santos et al., 

2015) 

MATLAB 

wavelet transform and 

information theory on the 

temporal structure of spike-

train for better classification 

of spikes 

JRCLUST (Jun et al., 2017) CUDA 

Real-time spike sorting using 

fast-search of density peak 

clustering. It can scale up to 

1000 recording channels in 

single workstation and 

addresses the issue of probe 

drift in recorded signal. 

CUDA provides a faster 

processing by parallel 

computing in GPU. 

Kilosort 
(Pachitariu et al., 

2016) 
MATLAB 

Spike sorting platform to 

cluster units in real time from 

large-scale in vivo 
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multielectrode recordings. 

Provides a means for 

identifying and resolving 

overlapping spikes. Uses 

computational power of GPU 

if CUDA-enabled GPU is 

installed. 

Mountainsort 
(Chung et al., 

2017) 
Python 

automated spike sorting 

using density-based 

clustering called ISO-SPLIT 

The clustering part of the 

algorithm uses the parallel 

computations on CPU cores. 

SpykingCircus (Yger et al., 2018)  

Spike sorting toolbox that 

works with large silicone 

probes with thousands of 

recording channels. 

It extracts a dictionary of 

‘templates’ from the 

recording and uses these 

templates to decompose the 

signal with a template-

matching algorithm for 

clustering. It provides 

parallelization over 

distributed computers. 

Yet Another Spike 

Sorter (YASS) 
(Lee et al., 2017)  

Spike-sorter for dense MEA 

using Dirichlet Process 

Gaussian Mixture Models 

(DP-GMM) and non-

parametric Bayesian estimate 

for clustering. The means of 

clusters are used as templates 

for collided or missed spikes 

using matching pursuit 

approach. 
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NeuroQuest 
(Kwon et al., 

2012) 
MATLAB 

LFP pre-processing, spike 

detection, spike-sorting using 

blind source separation (BSS) 

as pre-processing, PCA and 

peak-to-peak value along 

with discrete wavelet 

transform coefficients as the 

features, and Fuzzy c-means, 

Expectation-Maximization, 

k-means, linkage and manual 

cluster cutting as the 

clustering options. It also 

avails basic analysis i.e., inter-

spike interval (ISI), peri-

stimulus time histogram 

(PSTH), cross-correlogram 

between two separate units 

etc.  

Spike sorting and 

spike train 

analysis 

nSTAT 
(Cajigas et al., 

2012) 
MATLAB 

Implementation of point 

process-generalized linear 

model algorithms (PP-GLM) 

Spike train 

analysis 

Spike Train Analysis 

Toolkit 

(Goldberg et al., 

2009) 
MATLAB 

Information theoretic 

analysis of spike train  

FIND toolbox 
(Meier et al., 

2008) 
MATLAB 

Toolbox providing analysis 

techniques for multiple-

neuron recordings and 

network simulations 

sigTOOL (Lidierth, 2009) MATLAB 

Analysis of neural spike train 

(inter-spike interval 

distribution, Poincare plots, 

spike-triggered averaging 

etc.), and frequency analysis 

(power spectral analysis, 

coherence estimation etc.) 

STAR 
(Pouzat and 

Chaffiol, 2009) 
R Tools to visualize spike trains 

and fit, test and compare 
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models of discharge applied 

to actual data 

Neuropy 
(Spacek et al., 

2008) 
Python 

Analysis of spike trains and 

their relation to stimuli  

MEA tools 
(Egert et al., 

2002) 
MATLAB 

Implements shape-based 

spike sorting, visualization of 

continuous data, extracting 

characteristic LFP segments 

Spike sorting LFP 

DATA-MEAns 
(Bonomini et al., 

2005) 

Delphi 7, 

MATLAB 

Executable software with 

basic analyses like rate 

histograms, correlograms etc. 

and spatiotemporal 

visualization of unit activity 

in an MXN electrode 

configuration. It also provides 

clustering using nearest-

neighbor or k-means 

algorithms. 

Spike sorting and 

spike train 

analysis 

BSMART (Cui et al., 2008) MATLAB, C 

Exploring causal relationship 

using multivariate auto-

regressive model and Granger 

causality. It also computes 

other spectral quantities such 

as spectral power, partial 

directed coherence and 

directed transfer function etc. 

 

CSDPlotter 
(Pettersen et al., 

2006) 
MATLAB 

Graphical user interface-

based toolbox for estimation 

and visualization of current 

source density (CSD) from 

implanted electrode 

recordings. The estimation 

techniques include both 

standard CSD and inverse 

CSD (iCSD)  

Field potential 

iCSD 2D (Leski et al., 2011) MATLAB Implementation of iCSD 

method in two-dimensional 
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electrode distribution (i.e., 

Utah array) 

SigMate 
(Mahmud et al., 

2010) 
MATLAB 

Tool for extensive pre-

processing of LFP data 

(baseline correction, artefact 

removal etc.) and 

visualization of CSD. It also 

integrates EEGLAB and 

Wave_Clus. 

QSpikeTools 
(Mahmud et al., 

2014) 
 

Cloud-computing, client-

server framework to facilitate 

parallel processing and 

analysis of extracellular 

multi-unit activity. It 

delegates the processing of 

CPU-intensive operations for 

electrode channel to a multi-

core computer or to a 

computer cluster. 

Cloud computing 

Chronux 
(Bokil et al., 

2010) 
MATLAB 

A general neurobiological 

data analysis toolbox 

including pre-processing and 

spectral analysis 

functionalities for continuous 

(e.g., LFP) and point-process 

signals (e.g., spike-

occurrence). 

General purpose 

Ibtb 
(Magri et al., 

2009) 
MATLAB 

Implementation of bias 

corrected estimates of 

information theoretic 

quantities 

pyEntropy 
(Ince et al., 

2009) 
Python 

Implementation of bias 

corrected estimates of 

information theoretic 

quantities. Similar to 

infoToolbox 
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OpenElectrophy 

(Garcia and 

Fourcaud-

Trocme, 2009) 

Python 

GUI-, and command line- 

based python module to 

facilitate data management 

and visualization. 

Incorporates an offline spike-

sorter and time-frequency 

analysis tools along with 

detection of transient 

oscillations in LFP 

Relacs 
(Benda and 

Grewe, 2009) 
C++ 

Platform for closed loop 

experiments facilitating both 

online analysis and stimulus 

generation, and integration of 

experiments and model 

simulations 

Experimentation, 

data acquisition 

and stimulus-

triggered spike 

data analysis 

 

  

2.4  Project objective 

The neuronal mechanisms that drive the cognitive ability to perceive spatial 

information and enable navigation are yet to explore. New experimental methods are 

being employed in for improved understanding of the mechanism. There is also an 

exponential increase in the number of recording sites as cutting-edge technologies 

evolve that enables recording a large number of single-unit data from many sites of 

the brain simultaneously and helps better understanding the functions of the brain 

in the cellular level and in network level. New analysis techniques are also being 

developed simultaneously. The novel experiments and the new electrode 

technologies poses the challenge of analyzing an ever-growing amount of data. But 

there is no suitable toolbox to bring all these analysis methods required for 

investigating spatial information processing ability of the brain into one platform in 

a managed standard procedure using a friendly and interactive interface. Therefore, 

the objective of the current research project is to develop such software with a parallel 

development and inclusion of new analysis methods in an agile development 

framework. The basic features or objectives that the project will pursue are:  
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❑ To create a framework for in-vivo single-unit data analysis 

❑ To provide a unified platform for established methods 

❑ To provide an easy-to-use interactive tool for neuroscientists 

❑ To enable easy implementation of problem-specific analysis techniques 

❑ To save time to analyze data, bringing efficiency and exceling in research 

❑ To provide an open-source ecosystem for neurophysiology data analysis 

Neuroimaging already has matured and standardized open-source tools such as SPM, 

BrainVoyager, AFNI etc. those are widely accepted among the scientific community. 

In contrast to that, behavioral neurophysiology is rapidly evolving, and still in 

research and development phase owing to the diverse technologies involving 

recording and stimulation. The situation in behavioral neurophysiology now is about 

the same as in neuroimaging two decades ago requiring a revolution in how we 

address the challenges. NeuroChaT is an effort to that pursuit. 
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3  NeuroChaT 

To achieve the objectives of the project systematically, we have developed a graphical 

user interface-based toolbox called Neuron Characterization Toolbox or NeuroChaT. 

In this chapter, we described the design of the toolbox and the application 

programming interface, the architecture and the layers of interaction between the 

user, data and analyses. We also explain, in groups, different types of analyses that 

are core to the NeuroChaT and explain the underlying algorithms as easily as possible 

considering that the targeted user group may span from biologists to expert 

computational neuroscientists. 
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3.1  Architecture 

NeuroChaT is built on the concept of object-oriented programming (OOP). 

Interested users can read any standard programming book to get acquainted with the 

OOP. The architecture of the software is depicted in Figure 3.1. The user starts 

providing input through the graphical user interface (GUI) shown in Figure 3.2. The 

interface interacts with the user using the log-screen at the bottom of the GUI. At this 

stage (specification phase shown in Figure 3.3), user selects the data, specify analyses 

and parameters- collectively called configuration- required for the analyses which is 

saved in a custom Python object named Configuration. The details of how to specify 

the configuration through the interface will be shown in Appendix A and Appendix 

B. The information is then passed to a ‘NeuroChaT’ object which acts as the controller 

class or the façade that provides a unified interface to different components of the 

entire system. We will discuss the design pattern of the software in Section 3.2. 

NeuroChaT then connects to a data structure called NData which itself is composed 

of three different data types 

▪ NSpike: The object of this class contains information about the spiking activity 

of the single-unit, the waveform and the clustering information that are 

derived from spike-sorting techniques. Apart from providing information to 

other data objects, it also contains some analyses which are described in 

Section 3.3. 

▪ NSpatial: This object contains spatial information regarding animal position, 

head direction, speed, angular head velocity etc. and performs relevant 

analyses using the information from NSpike object which is passed through 

NData object. 

▪ NLfp: It is a placeholder for LFP data and contains relevant analyses borrowing 

necessary information from other objects i.e. spiking information of a unit 

from the NSpike object. 

NeuroChaT then passes the relevant parameters to the NData and asks to perform 

the analyses, on a cell-by-cell basis, based on the user input in the specification phase. 

This is the execution phase of the software (Figure 3.3). The analysis results are sent 

back to the NeuroChaT which then uses the nc_plot-a custom module or Python file- 
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to plot the graphical outcome of the analyses, stores the parametric results in a 

tabular format, and converts the data in a standardized format called the Hierarchical 

Data File format (HDF5) (www.hdfgroup.org). This is the visualization and export 

phase in Figure 3.3. The user can perform statistical analysis on the parametric results 

if required, and this step is the Inference phase of the data analysis workflow using 

NeuroChaT. The graphical output and the tabular listings follow a nomenclature for 

making the post-processing tracking easier. This will be discussed in Section 3.4. The 

specifications of the data, analyses, and input parameters can be saved for future use 

in .ncfg (NeuroChaT configuration) file format, which is basically a YAML (Ain’t 

Markup Language) format, a human readable data-serialization format commonly 

used for configuration files (yaml.org). 

The software enables managing graphical files through the GUI. Once the graphical 

output of the analyses is saved in PDF or PS file format, and the relevant information 

are provided to the user in a tabular form for record and future use, the user can use 

it to collect all the output graphics into one place so that the unit of similar properties 

can be grouped together or they can be merged to store them into one file. There are 

other utilities in the software like unit verification, cluster quality evaluation, 

conversion to the HDF5 file format from the proprietary formats etc. which uses other 

types of data objects namely NClust and Nhdf. NClust itself is a derived class of the 

NSpike class. These features of the software will be discussed in Section 3.4 and 

Chapter 4.5. 
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Figure 3.1 The architecture of NeuroChaT. It shows the connectivity of different components and the 
flow of information between them. 

Figure 3.2 The graphical-user interface of NeuroChaT 
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3.2  Design 

N.B: The description of the methods and attributes for each class defined in 

NeuroChaT can be found in the API documentation section in https://osf.io/kqz8b/. 

3.2.1  Technologies used 

The software is developed using the latest version of Python 3.5. The GUI is developed 

using PyQt5, a cross-platform framework that enables Python to be used as an 

application development language by providing graphical elements and necessary 

functionalities. 

The development is done using NumPy (from Numeric Python) package 

(www.scipy.org)  which provides MATLAB®-like matrix manipulation facilities and is 

Figure 3.3 The workflow diagram in NeuroChaT and action space of different components of the 
program.  

https://osf.io/kqz8b/
http://www.scipy.org/
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widely used for scientific computing. The project also has use of SciPy (Scientific 

Python) library that provides linear algebra functionalities and mathematical 

optimizations i.e. curve fitting etc. NeuroChaT also uses SciPy for standard signal 

processing techniques like filtering, Fourier Transform etc. There is a brief use of 

pandas library for the storage of parametric results. The DataFrame object of pandas 

facilitates storing data in a tabular form with non-numeric indexing facilities, along 

with basic numeric operations across rows or columns of the tabular data. It also 

provides the functionalities to import/export (IO tools) the data to commonly used 

formats like CSV, Microsoft Excel or plain text files. 

The manipulation of HDF5 binary file format through Nhdf object is performed using 

the h5py package (www.h5py.org) that enables manipulating the data using NumPy. 

The configuration data are exported or imported using PyYAML (pyyaml.org), which 

parses the text-editable .ncfg file and loads the information to the Configuration 

object. 

We used matplotlib (matplotlib.org) for generating graphical output. 

 

3.2.2  Data model and storage 

The NData object, as shown in Figure 3.4, is composed of data objects of different 

kinds, and is built upon the composite structural object pattern (Gamma et al., 1995). 

The regular arrows show class inheritance and the diamond arrows show object 

composition. In NeuroChaT, NAbstract and NBase form the parent classes with basic 

and common methods and attributes across different data types. Each data class 

representing the neural data (NSpike, NClust, NLfp), along with the event class 

NEvent inherits the NBase, where NBase itself inherits NAbstract and extends its 

capabilities. The NSpatial class inherits the NAbstract class. The NData class gets one 

instance or object for each NSpatial, NSpike and NLfp class as its attribute. The 

rationale behind this design is to provide an encapsulation of the interaction among 

the behavioral and neural data types, i.e. how the peers like NSpatial and NSpike 

would know each other. Either they will need to have a reference to each other, which 

increases their coupling, or they need to be cooperated using another object, which, 

http://www.h5py.org/
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in our design, is the NData object. The similar design principle is also followed in 

other composite classes of NeuroChaT. The getter (get_*) and setter (set_*) methods 

of the composite class instance then allow dynamically changing the objects or 

retrieving it. For example, the spatial data does not need to be changed for a single 

recording while analyzing for multiple single units recorded in the same session. 

Therefore, NSpatial object remains same, but the data in the NSpike object changes 

with changing the units. Now, creating one instance of NData for every pair of spatial 

and single unit data is not very memory efficient. Instead, we can replace the data in 

the NSpike by reloading the spike file while it is still a member of the NData object 

and optimize the reuse of data objects, save memory, and increase the performance 

of the software. 

In another situation, if the NData class was formed using multiple inheritance from 

NSpatial, NSpike and NLfp data, it would create a tight coupling between the classes. 

If the users need to add a new analysis method, i.e. involving LFP and single-unit data, 

they can inherit the existing NLfp class, add the new analysis on it, create an instance 

of the new class, i.e., NLfp2 and set it to the NData class without much changes in the 

NData class. It would not be that straightforward for the inherited NData class, as its 

inheritance would need to be redefined with the new Nlfp2 class, along with the 

NSpatial and NSpike class or their child classes (classes inheriting another class). 

Over the time, the coupling would be difficult to maintain as the data classes evolve 

to include new methods. Thus, the type of design pattern used in NeuroChaT creates 

a modular structure and allows the objects to alter dynamically without intense 

refactoring of the codes. 

NSpike class contains analyses involving spiking activity of the single-units i.e. inter-

spike interval autocorrelation histogram etc. along with implementing the decoders 

for the copyright data formats. NSpatial class contains methods for analyzing the 

spatial correlation of the single units and requires the information about the timing 

of the unit activity only which it receives either directly as an input to its methods 

(Appendix B, API use guide) or through NData. When used with the NData class, it 

receives the information through that class instead of coupling directly to the NSpike 

data. Therefore, it creates another layer of independence between the data classes 

which are highly susceptible to changes but requires less efforts to couple them and 
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to get the expected results. Therefore, it enables quick integration of problem-specific 

data analysis. This design also applies to the methods in NLfp class. It represents 

analyses that involves use of the LFP data, possibly along with the spiking 

information. NData also contains Nhdf data object to provide read/write access of 

HDF5 (hierarchical data file, version 5) data formats containing spatial or neural data 

within the class without trying to decode the native binary file formats every time the 

data is loaded. As the HDF5 file contains all the data, it makes storage more 

manageable through a readable format. Nhdf contains methods to read and write 

what is called groups and datasets in HDF5 file format. It also contains methods that 

are specific to storing individual NSpike, NLfp, and NSpatial data to their common 

HDF5 container for a recording session. NeuroChaT creates one such file for each 

recording session, not for individual units or electrodes as will be discussed in 

Section 3.4. 

NClust class manages and implements the spike-sorting information and provides the 

waveform features, unit spiking activity, measures of cluster separation for quality 

assessment of spike-sorting and measuring the cluster similarity with a unit in 

another NClust object. It contains a NSpike object and adds on its functionalities that 

are very specific for the clustering and relevant analyses. 

NEvent class implements event-related data management and basic analyses, i.e., 

peri-stimulus time histogram or psth, and analyses pertaining to locking of the LFP 

signals to the events. But there is no decoder for proprietary formats, and, therefore, 

can only be used when the event information is added in it. 

The analyses are mainly implemented based on the exclusiveness of the data among 

the data classes, and the methods are written in a style that intrinsically minimizes 

the dependence on other data structures in the software. Therefore, whenever 

applicable, the spike-timing of the unit under consideration is given as an input to an 

analysis implementation involving spatial and LFP data classes instead of passing the 

entire NSpike object as its input parameter. This is because, the way we developed 

the algorithms, as explained in Section 3.3, the waveform information, for example, 

or the recording parameters are not useful to conduct the analyses. 
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We cross-validated the relationship between classes or objects using Pyreverse, a 

python utility for reverse-engineering the Python code 

(https://pypi.org/project/pyreverse/). Each designed class diagram is accompanied 

by a code-generated class diagram- the later also revealing the composing objects in 

the code. 

 

 

  

Figure 3.4 Class diagram for the data classes in NeuroChaT. The regular arrows show the inheritance 
and the diamond arrows show the composition. Inheritance or composition are one-to-one in all the 
cases. Top diagram shows the multiplicity (numbers) of association, and the bottom diagram shows the 
composite objects (green texts). The latter is generated from the code using the pyreverse package. 

https://pypi.org/project/pyreverse/
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3.2.3  Controller 

NeuroChaT, the controller class in NeuroChaT software, is the top layer application 

programming interface and provides encapsulation of the configuration object, data 

object, object for creating pdf or ps file from matplotlib graphics using the PdfPages 

class, HDF5 file object, and the logger object. We used NLog for logging which is a 

wrapper of the native ‘logging’ class to create formatted logs of the events or 

statements. The relevant class diagram is shown in Figure 3.5. The design of the 

NeuroChaT class is what is formally called façade design pattern, because an instance 

of this object represents an entire subsystem. It carries out responsibilities and 

exchanges information between the data class and the configuration class, which 

describes the analyses to perform, information about the data, and the input 

parameters. It can be used standalone (see Appendix B), but when used with the 

GUI, it is the entry point to the backend analytic platform. All the commands, and 

configurations that are requested through the GUI is forwarded through this class to 

its components. It also deciphers the configuration and updates the NData object to 

perform the analyses on a unit by unit basis. 
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3.2.4  User interface 

NeuroChaT_Ui is the graphical element of the NeuroChaT software that provides an 

interface for the users to specify the type of analyses they want to perform, to select 

the data for that analyses, to provide the input for those analyses, and the type of 

graphical file format they want to store their results in. As it is explained in Appendix 

A, this is a simple-to-use interface with lots of features that enables setting the 

commands and information to be forwarded to the NeuroChaT object. Its composing 

objects are all graphical elements except the NeuroChaT object (Figure 3.6). 

NeuroChaT API documentation (https://osf.io/kqz8b/) describes each of these 

classes. Although built in a composite structure, this class is static, in the sense that 

its components cannot be altered dynamically using commands outside of the class 

itself. Therefore, the coupling between these classes to others is considered tight, and 

any changes required must involve changing within the code file where the class is 

defined. 

NLogBox is an editable graphical widget that is sub-classed from QTextEdit of the 

QtWidgets of PyQt5 to format the logged messages into html format. 

ParamBoxLayout is inherited from QVBoxLayout which is used for arranging the 

parameter definition in a vertical layout in the Settings menu of the interface 

(Appendix A). ScrollableWidget provides a container of listed items so that the user 

Figure 3.5 Class diagram of the NeuroChaT class, the controller of the NeuroChaT software. Top 
diagram shows the multiplicity of association, and the bottom diagram shows the composite objects 
(green texts). The latter is generated from the code using pyreverse package. The name precedes the dot 
of each classes are the name of the Python modules where they reside. 

https://osf.io/kqz8b/
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can scroll through the items if the list takes more space than the widget, they are 

located in. UiParameters define and add the graphical elements to the interface. NOut 

replaces the standard output texts of Python or IPython (print command) into texts 

that are received by the logger of the system. UiResults is a sub-class of QDialog of 

QtWidget that displays the results of the analysis in a tabular format along with an 

option to export them in an Excel file (Appendix A). UiMerge is a graphical window 

that asks the user to select a list of pdf filename to either merge them into one file or 

to transfer them to one folder. The user can also select the pdf files manually using 

an interactive window (Appendix A) that is built in UiGetFiles class (Figure 3.6). 

 

 

  

3.2.5  Configuration 

Configuration class is basically a container for all the information that are required 

for NeuroChaT to execute the analyses, or equivalently the information that are set 

through the GUI. It includes the type of analyses user is interested to perform, 

definition of the data, parameters that are required by each analysis type etc. It also 

contains methods that are required for accessing or setting the information. It has 

Figure 3.6 Class diagram for the NeuroChat_Ui class that defines the graphical user interface of the 
software. 
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methods to export the information into an YAML file with ncfg extension, and to 

import from the same using the PyYAML parser. 

 

3.2.6  Utilities 

There are other classes and modules those are required at different stages of the 

software. They assist other classes or contain static functions. CircStat class 

encapsulates circular data and provides methods to calculate circular statistics i.e., 

mean, standard deviation, Rayleigh statistics, von Mises distribution parameters, 

circular histogram, circular smoothing filter etc. The nc_utils module contains static 

utility functions that are not part of any classes or can be used by different data 

classes. The nc_plot module is another utility module that creates plots for different 

analyses used in the NeuroChaT. The plotting functions in this module can be 

considered as thin wrappers on the matplotlib plotting functions. The nc_defaults 

module defines the default analyses parameters in name-value pairs for individual 

analyses type. 

 

3.2.7  Organizing the codes 

Python uses modules to organize the codes. A module is a file that contains the 

definitions and statements. A module is named by the file name and can contain the 

definition of classes and functions. The codes in NeuroChaT are organized in 18 

modules. Table 3.1 shows which module the classes belong. 

Class names Module name 

NAbstract, NBase nc_base.py 

CircStat nc_circular.py 

NClust nc_clust.py 

Configuration nc_config.py 

Table 3.1 List of classes in NeuroChaT software and the modules they belong to. 
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NeuroChaT nc_control.py 

NData nc_data.py 

NEvent nc_event.py 

Nhdf nc_hdf.py 

NLfp nc_lfp.py 

NSpatial nc_spatial.py 

NSpike nc_spike.py 

NeuroChaT_Ui, UiResults, 

UiParameters, ParamBoxLayout 

nc_ui.py 

UiGetFiles nc_uigetfiles.py 

UiGetMerge, nc_uimerge.py 

ScrollableWidget, NLogBox, NOut, 

PandasModel 

nc_uiutils.py 

 

3.3  Analysis methods and algorithms 

There are 25 different types of analysis already developed in NeuroChaT. The types 

of analysis are summarized in Figure 3.7 and a brief description of these analyses are 

provided in Table 3.2. Rest of the subsections describe the algorithms.  
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Figure 3.7 Category of analyses in NeuroChaT and relevant count of the methods 

Table 3.2 Summary of the analyses developed in NeuroChaT; hd= head direction of the animal, border= 
distance from the border of the foraging environment. 
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Name of function Category of 

analysis 

Input data 

file 

Category of 

information 

required 

Waveform properties Spike waveform Spike Spike waveform 

Inter-spike Interval Spike firing  Spike Spike time 

ISI Autocorrelation Spike firing Spike Spike time 

Theta-modulated Cell 

Index 

Spike firing Spike Spike time 

Theta-skipping Cell 

Index 

Spike firing Spike Spike time 

Burst Property Spike firing Spike Spike time 

Spike Rate vs Running 

Speed 

Speed Spike, spatial Spike time, speed 

Spike Rate vs Angular 

Velocity 

Angular velocity Spike, spatial Spike time, hd, 

angular velocity,  

Spike Rate vs Head 

Direction 

Head directional Spike, spatial Spike time, hd, 

angular velocity 

Head Directional 

Shuffling Analysis 

Head directional Spike, spatial Spike time, hd 

Head Directional Time 

Lapse Analysis 

Head directional Spike, spatial Spike time, hd 

Head Directional Time 

Shift Analysis 

Head directional Spike, spatial Spike time, hd 
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Spike Rate vs Location  Locational Spike, spatial Spike time, 

position, angular 

velocity, hd 

Locational Shuffling 

Analysis 

Locational Spike, spatial Spike time, Position  

Locational Time Lapse 

Analysis 

Locational Spike, spatial Spike time, position 

Locational Time Shift 

Analysis 

Locational Spike, spatial Spike time, position 

Spatial 

Autocorrelation 

Locational Spike, spatial Spike time, position 

Grid Cell Analysis Locational Spike, spatial Spike time, position 

Border Cell Analysis Locational Spike, spatial Spike time, border 

Gradient Cell Analysis Locational Spike, spatial Spike time, border 

Multiple regression Multivariable Spike, spatial Spike time, 

position, border, 

direction, speed, 

angular velocity 

Interdependence 

Analysis 

Multivariable Spike, spatial Spike time, border, 

position, direction, 

speed, angular 

velocity 

LFP frequency 

Spectrum 

LFP LFP LFP 

Unit LFP-phase 

Distribution 

Phase synchrony Spike, LFP Spike time, LFP 
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3.3.1  Rhythmic and waveform properties of spikes 

Waveform Properties 

It provides graphical output of mean±std waveform for the unit (Figure 3.8). The 

graphical representation provides further information on the particular electrode 

where the unit was detected and the variability of the waveform, as an alternative 

indication of the signal-to-noise ratio, measured by the standard deviation of the 

waveform from the mean. This function also calculates the summary statistics of basic 

spike features i.e. mean & standard deviation of spike width, amplitude, and height 

in the channel where the spike-waveforms have the largest peaks. 

Unit LFP-phase 

Locking 

Phase synchrony Spike, LFP Spike time, LFP 
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Definition of the features are as follows and is depicted in Figure 3.9: 

Spike width: Width of the spike waveform at the 25% of the peak amplitude (Figure 

3.9; red solid line). 

Amplitude: The amplitude of the spike is the first negative peak of the spike to the 

first positive peak of the spike. If there is no negative peak before the positive peak, 

the amplitude refers to the peak voltage. 

Height: Height is defined as the difference between the peak amplitude and the 

minimum waveform voltage of the spikes. 

Figure 3.8 The mean±std waveform of a unit isolated in a tetrode configuration from data recorded in 
rat anterior thalamus. Channel numbers are, 1= upper left, 2= upper-right, 3= lower-left, 4= lower-right.  
It shows that the variability is much less in channel 3 where the waveform is much stronger- indicating 
that a tiny small proportion of noise-spikes (spikes not belonging to this unit) were included during the 
spike-sorting. As expected, the variability is much higher in other channels. 
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Inter-spike Interval 

This function gives the distribution of inter-spike-interval (ISI) of spikes of a unit. ISI 

is calculated by taking the time difference between spikes of particular unit. A 

histogram is then calculated as shown in Figure 3.10. We do also present an 

alternative visualization of the ISI where the interval before a spiking event is plotted 

against the interval after a spike of a unit (Figure 3.11). This analysis, along with the 

IS autocorrelation histogram described later, is very useful for observing bursting 

and/or rhythmic properties of the spikes, example of which will be given in the 

following sections. 

Figure 3.9 Depiction of how different waveform properties are measured. The red solid line is the width 
of the waveform which is measured as the 25% of the peak voltage of the waveform as shown in red dotted 
line.  
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Figure 3.11 The plot of ISI after vs ISI before; a) scatter plot, b) two-dimensional histogram. The red 
dotted line is the threshold for burst. The colored region displays a high density of spikes at intervals 
lower than the burst threshold- implying that this is a bursting unit. The horizontal and vertical strip at 
(a) and (b) represents a repetition of ISI at around 100ms- implying that the unit is rhythmic at around 
10Hz. 

Figure 3.10 Distribution of inter-spike interval (ISI); x-axis gives the ISI bins, and y-axis gives the count of ISI 
for a particular bin. The red-dotted line is the user-specified threshold for the bursting spikes. This unit shows 
a large count under the bursting threshold time as well as a higher count at approximately 100ms 
(representing rhythmicity at around 10Hz). So, this is both a busting unit with a higher burst propensity and 
theta-rhythmicity (these concepts will be explained in the following sections) 
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Autocorrelation of inter-spike interval 

The idea of cross-correlation is depicted in Figure 3.12. One of the units is considered 

as the reference and the other one as target. It is based on the concept of peri-stimulus 

time histogram (PSTH), a very popular rate-coding technique in event-related single 

unit analysis (Shinomoto, 2010). But instead of the event, the spike-timing of the unit 

is used for making spike count around it at binned intervals. All such histogram count 

for each spiking-event is then summed up to obtain the cross-correlation. The 

autocorrelation histogram is basically a cross-correlation of a unit to itself. A sample 

autocorrelation histogram is shown in Figure 3.13. 

 

 

The autocorrelation histogram is powerful in exhibiting the rhythmicity in the spiking 

activity of the neurons. Sometimes, the rhythmicity is not stronger enough or hidden 

under the scaling of high counts in low ISI, as shown in the inset of Figure 3.13, but 

is clearly revealed in the autocorrelation histogram. It is also useful in assessing the 

quality of spike-sorting while evaluated for a small autocorrelation lag (Figure 3.14). 

It is expected to have a zero-count for t< Tr, where t= histogram bins in ms and Tr= 

Refractory period of the units. 

Figure 3.12 Algorithm for calculating the correlation between inter-spike interval of two spiking trains. 
One of them act as reference, and the other as target- as that of in peri-stimulus histogram. The spiking 
events in the reference train can be compared to the events and the histogram with respect to each spike 
is calculated on the target spike train. The summation of all such histogram results in the ISI correlation. 
If the target and reference spike trains are from the same unit, this is called auto-correlation histogram. 
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Figure 3.13 The autocorrelation histogram of the ISI of a unit. The peaks-trough rhythmic pattern is 
more apparent than the ISI histogram (inset) of the unit. 

Figure 3.14 The ISI autocorrelation histogram for short lags. This particular example reveals that there 
is no count of spikes within 2ms interval, which is an indication that, if we consider a 2ms refractory 
period for the unit, spikes from other units are not incorporated into this unit. This is an alternative 
assessment of quality of spike sorting. 
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Analysis of theta-modulated cell 

Sometimes the temporal discharge pattern in the neuronal spikes follow a 

rhythmicity that is revealed as a repeated count of the inter-spike interval. Such 

frequency of rhythmicity normally lies within the theta-band frequency (6-12Hz) 

(Tsanov et al., 2011a) and is clearly revealed in the autocorrelogram of the ISI (Figure 

3.13). This type of units is called theta-modulated cells and are characterized by the 

strength of theta-modulation which is expressed in terms of ‘Theta-Index’. The non-

normalized autocorrelogram is fitted to the Equation 3.1, 

𝑦(𝑥) = 𝑎 . cos(𝜔𝑥) . exp (−
|𝑥|

𝜏1
) + 𝑏 + 𝑐. exp (−

𝑥2

𝜏2
2) (3.1) 

where y is the autocorrelation signal, x is the lag, a is the amplitude of the oscillating 

terms with frequency ω and modulated by exponential with decay constant τ1 

assuming that spikes were generated following a Poisson Process. τ2 is the decay 

constants for the exponentials with amplitude c. The Gaussian term c·exp(-x2/τ2
2) was 

used to help fit the center peak of the autocorrelogram. The baseline shifts for the 

cosine terms and all the constant errors are interpreted in constant b. The theta index 

is defined as the ratio of the fit parameters a/b (Royer et al., 2010, Tsanov et al., 2011b). 

The fitted curve for the unit in Figure 3.13 is shown Figure 3.14.  
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Analysis of theta-skipping cell 

Some theta-modulated cells show theta-cycling skipping- the first side peak of the 

autocorrelogram is smaller than the second side peak. This implies that the spikes are 

occurring at alternating theta cycles (Figure 3.16; blue histogram). The non-

normalized autocorrelation signal was fitted (Figure 3.16-red envelope) to Equation 

3.2 which is an extended form (Jankowski et al., 2014) of the one used in (Brandon et 

al., 2013). 

𝑦(𝑥) =  [𝑎1. cos(𝜔1𝑥) + 𝑎2. cos(𝜔2𝑥)]. exp (−
|𝑥|

𝜏1
) + 𝑏 + 𝑐1. exp (−

|𝑥|

𝜏2
) − 𝑐2. exp (−

|𝑥|

𝜏3
) (3.2) 

here y is the autocorrelation signal, x is the lag, a1 and a2 are the amplitude of the 

oscillating terms with frequency ω1 and ω2 and modulated by exponential with decay 

constant τ1. τ2 and τ3 are the decay constants for the exponentials with amplitude c1 

and c2. The parameters a1, a2, b, c1 and c2 were allowed to vary in the range [0, N], 

Figure 3.15 ISI autocorrelation histogram of a theta-modulated unit. The red envelope shows the fitted 
curve from the Equation 3.1. The index for theta modulation is derived from this fitted curve. 
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where N is the peak of the autocorrelation signal. The range of default decay constants 

are, τ1= [0, 5000], τ2= [0, 100], τ3= [0, 10] in millisecond unit. 

 

 

Similar to theta-modulated analysis, assuming that spikes were generated following 

a Poisson process, the ISI was considered to follow an exponential distribution which 

also gives an exponential distribution in its autocorrelation, represented in Equation 

3.2 by the positive exponential component comprised of (c1, τ2). Initial dip in the 

autocorrelation for the delay in ISI was given by the fast decaying negative 

exponential (c2, τ3). The alternating low and high peaks are modelled as superposition 

of two interfering oscillations, given by two slow decaying cosine functions, as if the 

high peaks are generated when the oscillations are in the same-phase and the low 

peaks are generated when they are in anti-phase. The baseline shifts for the cosine 

terms and all the constant errors are interpreted in constant b. Equation 3.2 does not 

Figure 3.16 ISI autocorrelation histogram of a theta-skipping unit (blue histogram) and the 
corresponding fitted curve from Equation 3.2 (red envelope). 
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hold the prior assumption that one of the periodic functions oscillates exactly at half-

frequency of the other as that was assumed in (Brandon et al., 2013).  

The curve fitting followed the measurement of ‘jump factor’, defined as the relative 

contribution of high and low frequency components in the higher peaks given by 

a2/(a1+a2). Frequency ratio of the cosine functions were also measured to verify the 

superposition model of Equation 3.2.  Theta cycle skipping index, TS was measured 

by Equation 3.3 

𝑇𝑆 =
𝑝2 − 𝑝1

max(𝑝1, 𝑝2)
(3.3) 

where p1 and p2 are the model values at one and two full cycles (x= 2π/ω and x= 4π/ω) 

to the right of the center peak (Brandon et al., 2013). TS range should be [-1, 1]. 

Negative TS is unexpected according to the model in Equation 3.2 if it is particularly 

fitted for the theta-skipping cycle cell with alternative low and high peaks, and low 

peaks appearing first after the center peak. The meaning of positive TS is that the 

second peak is larger than the first one. The bigger the TS is, the higher the larger 

peak is jumped from the theta-modulated signal, caused by the interference of the 

second oscillation. 

 We measured this effect with an alternative index ‘jump factor’ defined as a2/ (a1+ 

a2). The advantage of using a2/ (a1+ a2) is that it provides the direct measurement of 

the relative contribution of the two oscillations. Jump factor>0.5 means that the 

contribution of slow varying interfering oscillation in the jump is bigger than the 

theta-range oscillation. 

If the Frequency ratio follows a 2:1 ratio (or closer), then the mathematical basis, of 

using two cosine functions of different frequency ranges to obtain consecutive in-

phase or anti-phase superposition to yield lower and higher peaks respectively, is 

verified. 

Analysis of burst property 

In NeuroChaT, a burst is defined as a series of spikes in which each ISI was < Tth, 

where Tth is the threshold for ISI to consider the series of action potentials to 

constitute a burst-typically Tth≥ Tr (Tr= Refractory period of the neuron). Bursts, 
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therefore consisted of a minimum of two spikes. The analysis first detects the bursts 

(Figure 3.17) based on the Vth set by the user. If the unit bursts, number of other 

parameters are calculated (Appendix D). The time intervals between the first spikes 

of consecutive bursts are defined as inter-burst interval (IBI). Burst duration is 

measured as the cumulative ISI of the bursting spikes in each burst or, equivalently, 

the time difference between the first and last spiking event of a burst. The ratio of 

burst duration to IBI for a detected burst is defined as the duty cycle. A propensity to 

burst index was calculated as the ratio of the number of burst-forming spikes and 

total spike count (Anderson and O'Mara, 2003) to measure the likelihood of a unit to 

fire in bursting mode, with the 0 value indicating the cell never bursts and 1 indicating 

the unit fires constantly in bursting mode. 

 

 

Bursting units or units with bursts can be visually identified from the ISI histogram 

from its bimodality (Figure 3.18). The short ISIs from the burst spikes form the first 

mode while the longer ISIs form the second mode. If there exists a trough between 

the two modes, it may correspond to a) Refractory period of an intrinsic burst, or b) 

the timescale of the network-induced bursting (Doiron et al., 2003). There are two 

Figure 3.17 Illustration of bursting spike trains and the concept of inter-burst interval (IBI) along with 
the duration of burst. The ratio of burst duration to the IBI is defined as the duty cycle of bursting 
(Adapted from http://www.scholarpedia.org/article/Bursting).  
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approaches for detecting bursts in neural spike trains (Bakkum et al., 2014). The rate-

threshold approach detects the spikes whenever the activity rate exceeds a specific 

value. This approach is more common in detecting network bursts or bursts in 

multiple spike trains. The ISI-threshold approach detects a burst whenever the ISI 

between consecutive bursts are smaller than a set threshold. NeuroChaT analyses are 

performed on a cell by cell basis and, therefore, ISI-threshold is the method of choice 

for burst-detection. Selecting the threshold can be manual or automated. Automated 

algorithms are based on finding valleys in the bimodal distribution of the ISIs 

(Pasquale et al., 2010). There are other approaches where the ISI distribution is 

modelled with a generative process i.e. Poisson distribution, and the bursts are 

identified as the ‘surprise’ events (Ko et al., 2012). We will consider implementing the 

automated detection algorithms in future versions of NeuroChaT. A comprehensive 

review on different algorithms is presented in (Bakkum et al., 2014) which can be a 

useful resource for future work in this regard. 

 

  

Figure 3.18 Depiction of the use of ISI histogram to identify the bursting units; top: regular spiking 
neuron, bottom: spike with bursting showing the bimodality of distribution with characteristic high 
counts of spikes at low intervals (Adapted from http://www.scholarpedia.org/article/Bursting). 
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3.3.2  Analysis pertaining to location of animal 

Spike rate as a function of the location of the animal in the environment 

This analysis explores the single unit spike activity with respect to the location of the 

animal in the arena through spatial firing map. The map is produced by obtaining the 

total number of spikes in each spatial bin using the video data and dividing them by 

the duration the animal remained in individual bins. The entire process is illustrated 

in Figure 3.19. The rate map is then smoothened using a two-dimensional box-filter 

of specified length. The unoccupied edges are chopped off and if back-ground firing 

rate adjustment is enabled in the configuration, then the analysis subtracts the firing 

map by mean rate of the pixels with 20%-40% of the peak rate if number of such 

pixels are counts more than 80% of the overall pixels. 

Along with the firing map output, the analysis provides some measures of spatial 

selectivity like- a) Skaggs information content, b) Spatial coherence, c) Spatial 

sparsity. The Skaggs information content is expressed in bits per spike and calculated 

according to (Skaggs et al., 1996, Skaggs et al., 1993) expressed in the equation below, 

𝑆𝑘𝑎𝑔𝑔𝑠 𝐼𝐶 =  ∑𝑃𝑖
𝑖

𝑅𝑖
𝑅
log2 (

𝑅𝑖
𝑅
) (3.4) 

where Pi is the occupancy probability at i-th pixel, which is measured from the time 

map in Figure 3.19 by dividing time at each pixel with the total foraging time. Ri is 

the firing rate at each pixel, R is the overall firing rate (total number of spikes divided 

by total foraging time).  

Spatial coherence is a measure of orderliness of the local firing pattern, or simply the 

correlation between firing map before smoothing, and the smoothed firing map 

(Muller and Kubie, 1989). As the smoothing was done using a box filter of, e.g. length 

3, then each pixel is represented by the average of eight surrounding pixels. Thus high 

positive coherence implies that firing rate at each pixel can be predicted by knowing 

the rate of neighboring pixels, which in turn means that it is a measure of any 

consistent, graded, location-related variations in the rate (Cho and Sharp, 2001). 
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Spatial sparsity is a measure of adaptation that calculates the fraction of the 

environment in which a unit is active and is measured by the Equation 3.5 (Treves 

and Rolls, 1991). 

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =  
⟨𝑅⟩

⟨𝑅2⟩
=  
(∑ 𝑃𝑖𝑅𝑖𝑖 )2

∑ 𝑃𝑖𝑅𝑖
2

𝑖

(3.5) 

where Pi and Ri, similarly, are the occupancy probability and the firing rate at i-th 

pixel.  

There are other standard measures like coordinates of the centroid of the spatial firing 

map, firing rates at each pixel being the weights of the averaging. 

 

 

 

A sample firing rate map of a unit with a locational receptive field is provided in 

Figure 3.20a. We also plot the y versus x coordinates to show the traversing path of 

the animal and along with scatter plot of the location where a spike occurs, i.e. the 

Figure 3.19 Illustration of how locational firing place is created from the location data of the animal and 
the spike times. A visit count map is created (upper left) from the two-dimensional histogram of the 
location which shows the number of times animal visited in a particular pixel in a foraging arena. Pixels 
of 2cm sizes are paired and color coded in the raw locational data in the middle. It is then multiplied by 
the sampling interval of the location data to obtain the total amount of time the animal has traversed in 
different pixels of the arena (upper-middle, time map). Another map is created for the spike count at 
those locations (upper right) by counting the number of spikes in the paired pixels.  The map in the right 
is divided by the time-map to obtain the firing-rate map of a unit in the arena. 
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coordinates for the first spike in Figure 3.19 is (19.4, 45.7). Such plots are called spike-

plot with respect to the location. A sample plot is shown in Figure 3.20b. 

 

 

Locational shuffling analysis 

In this analysis, firing maps are created as that of in Figure 3.20a for spike-trains 

created from shuffling the time of the spiking-events within a specified time range 

from the events or randomizing them, as specified by the user. This procedure is 

replicated for a specified number of shuffles and spatial specificity measures (Skaggs 

information content, spatial coherence and spatial sparsity) are calculated for every 

new spike-train created. Such measures are then binned to create a histogram and 

observe the distribution. The fundamental idea behind this analysis is that if the 

spiking activity is independent of location, or the firing rate map that we observe is a 

random observation, then the specificity measures from the original spike-train will 

be statistically insignificant when compared to the similar measures observed from 

randomly shuffled spike-trains. Given that a higher information content and spatial 

coherence are expected for units with locational receptive field, they are compared to 

the upper tail of the 95th-percentile of the distribution. The spatial sparsity should be 

Figure 3.20 Sample outcome of locational firing rate analysis; (a) Firing rate as a function of location of 
the animal; (b) Black lines show the path of the animal traversed, the red dots represent spiking events. 
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low for such units, as expected, and would be compared to the lower tail at 5% 

significance level. The outcome for such analysis is presented in Figure 3. 21.  

 

 

Locational time-lapse analysis 

Locational time-lapse analysis simply splits the entire recording sessions into smaller 

segments of creates firing rate maps, as well as the spike-plot, at following intervals: 

Cumulative: 0-1min, 0-2min, 0-4min, 0-8min, 0-16min (if recording session is longer 

than 16min), 0-end of the recording 

Progressive: 1-2min, 2-4min, 4-8min, 8-16min (if recording session is longer than 

16min), 0-end of the recording. 

Figure 3.21 Distribution of specificity measures in locational shuffling analysis. Red line shows the 95th-
percentile. The Skaggs information content (IC), coherence of the firing map from the original spike-train 
is compared to the red line to test for significance at 5% level at the upper tail as they are supposed to be 
higher in original spike-train if the spiking incidents with respect to location are expected not to be 
random (a, b). As the sparsity is expected to be minimum, the lower tail at 5% significance level is 
considered for the comparison (c). 
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Sample outcome for such analysis is shown in Figure 3.22. This simple analysis is 

effective in describing a unit whether it is responding to the animal’s locational from 

the very beginning of the session, or first exposure to an environment, or it gradually 

emerges as the animal forages the environment. In short, it provides a picture of 

temporal evolution of the firing of a unit in an environment (Jankowski et al., 2014). 

 

 

 

Locational time shift analysis 

A series of time-shifted firing rate maps are created for user-specified number of shifts 

in time with respect to the video samples. The algorithm remains as same as the firing 

rate map calculated for the original spike-train of the unit. Only the spike-train has 

been shifted by a multiple of location timestamps to the left (-ve shift) or to the right 

(+ve shift) to pair with past (-ve shift), present (no shift) or future (+ve shift) locations 

of the animal. This is illustrated in Figure 3.23.  

Figure 3.22 The time-lapse spike-plot (top two rows) and firing rate map (bottom two rows). The 
cumulative time-lapse are 0-1min, 0-2min, 0-4min, 0-8min, 0-16min, 0-end of the recording. The 
progressive time-lapse are 1-2min, 2-4min, 4-8min, 8-16min, 0-end of the recording. 
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The specificity measures were calculated for each such map. While the firing-rate 

map and associated measures provide a way to determine whether the unit is 

responding to location of the animal, this analysis explores the temporal relationship 

between the unit activity and the location of the animal. The rationale behind this 

method, as described in (Sharp, 1999), is illustrated in Figure 3.24. Consider a one-

dimensional trajectory of an animal through a place field (receptive field with respect 

to location), from left to right as shown by the arrow in Figure 3.24a, of the unit 

under consideration. The unit fires when the animal is at or near the location Y, and 

over repeated runs through this place field, the average firing rate of the unit forms 

an approximately Gaussian function, centered on location Y. If we assume that the 

Figure 3.23 Construction of firing rate map from the spike train of the unit and shifted spike train; (a) 
Visit count, time map, and spike-count map for the unchanged spike-train of the unit; (b) Maps similar 
to (a), but with a shift in spike train  as shown in (c); (c) top row shows the coordinates of the location, 
middle row depicts the spike train, and the bottom row shows the spike train when it is shifted to match 
with  a past location of the animal. The pixels formed by pairing the x-, and y-coordinates are color-coded. 
As we can see, the count in spike changes in the shifted spike train, and a new map is formed out of it. 
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timing of the spikes coincides with the animal’s arrival at the preferred location, the 

location signaled by this unit is Y. However, there are two other possible cases, 

▪ The unit is driven to fire by location X, but it takes some time for the 

information to reach the recording location, so that the unit does not fire 

maximally until it reaches Y. 

▪ The unit fires in relation to anticipated arrival at Z, and the firing is maximal 

when the animal is at Y. 

Figure 3.24b provides an example of case (a). In this figure (left), when the unit 

activity is paired with simultaneous (present) position, it appears that the unit fires 

maximally at Z when traversing in the forward direction, and at X when travelling in 

the backward direction. But if unit activity is paired with the past location, two 

directional splits of the firing rate curves merges into one (Figure 3.24b; right). This 

implies that the unit lags and fires after the arrival at the preferred location.  

Figure 3.24c provides an example of case (b). In left figure, the unit fires optimally at 

location X while moving from left to right direction (solid arrow) and at Z when the 

animal traverses in the opposite direction (dotted arrow). This is the case when the 

firing rate profiles are created by pairing unit activity with animal’s simultaneous or 

present position. But if the spikes are paired with future position, the actual preferred 

location of the animal is location Y, as is shown in the right figure. This can be 

interpreted as the unit signals the arrival at Y ahead of time. 
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In both the cases, the maximum information or spatial coherence can be expected 

when the unit activity is paired with a time-shifted position- either with past position 

when the unit is lagging, or with future position when it is anticipating. When the 

Figure 3.24 Illustration of the rationale behind time-shift analysis. The trajectory is considered one-
dimensional for ease of explanation. The unit is assumed to signal the location Y. Solid arrow represents 
a trajectory from left to right across the place field, the dotted arrows shows the similar but in opposite 
(right to left) trajectory; (a) Expected firing rate curve if the unit fires simultaneously as the location of 
the animal changes; (b) An example of case-a where the firing rate is higher at a location (X or Z) after 
the animal traverses the signaling or preferred location Y (left); The firing rate maps overlaps and the 
place field becomes narrower when the spike train is paired with a past location (right); (c) An example 
of case-b where the firing rate is higher at a location (X or Z) before the animal traverses the signaling or 
preferred location Y (left); The firing rate maps overlaps and the place field becomes narrower when the 
spike train is paired with a future location (right); 
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specificity measures are plotted against the time-shift, a gradually optimal curve 

appears in units with place-field, as shown in Figure 3.25.  

 

 

Spatial and rotational autocorrelation 

Spatial correlation is a two-dimensional autocorrelation of the firing rate map. It is 

estimated using the equation below, 

𝑟(𝜏𝑥 , 𝜏𝑦) =  
𝑛 ∑ 𝑅𝑖(𝑥,   𝑦)𝑅𝑖(𝑥 − 𝜏𝑥 ,   𝑦 − 𝜏𝑦)𝑖 − ∑ 𝑅𝑖(𝑥,   𝑦)𝑖 ∑ 𝑅𝑖(𝑥 − 𝜏𝑥 ,   𝑦 −  𝜏𝑦)𝑖

√𝑛∑ 𝑅𝑖(𝑥,   𝑦)
2 − (∑ 𝑅𝑖(𝑥,   𝑦)𝑖 )2𝑖 √𝑛∑ 𝑅𝑖(𝑥 − 𝜏𝑥,   𝑦 −  𝜏𝑦)

2
− (∑ 𝑅𝑖(𝑥 − 𝜏𝑥,   𝑦 −  𝜏𝑦)𝑖 )

2

𝑖

(3.6) 

where Ri denotes the firing rate at ith-pixel, τx and τy are the spatial lags. The 

summation is over all overlapping pixels between the firing rate map and its lagged 

Figure 3.25 Specificity measures for locational firing in a unit with place field; (a) Skaggs information 
content (IC); (b) Coherence; (c) Sparsity. The Skaggs IC and the coherence are expected to attain the 
maximum value when the unit is paired with it s preferred location where the sparsity will reach to its 
minimum as place field will be more compact. As they reach the optimum value at a +ve time shift, it can 
be speculated that the unit is anticipatory.  
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version. The autocorrelation was not estimated for those lags where the total number 

of overlapping pixels are less than a user-specified number. The concept of lags in 

spatial correlation, or 2-dimensional correlation in general is depicted in Figure 3.26. 

 

 

We further estimated the rotational autocorrelation by rotating the spatial 

autocorrelation maps in steps of user-specified degree, i.e. 5°, and calculating the 2-

dimensional correlation between each rotated map and the original. As we will see in 

the next section, this analysis helps identifying the periodicity in units firing in grid 

patterns (Sargolini et al., 2006). The spatial autocorrelation itself also reveals patterns 

of hexagonal receptive fields in grid cells. 

Grid cell analysis 

A grid cell reveals spatial organization of subfields forming a grid of regularly 

tessellating triangles spanning the whole recording surface (Hafting et al., 2005) as 

shown in Figure 3.27a. Once the spatial autocorrelation is calculated, the regular 

nature of the activity distribution is more apparent, and the central peak of thee 

autocorrelogram is surrounded by six equidistant peaks forming the vertices of a 

regular hexagon (Figure 3.27b). This analysis identifies the geometric structure, 

Figure 3.26 Construction of autocorrelation map- concept of lags and how the spatial autocorrelation 
is calculated. The shaded area shows the overlapping pixels between a lagged map and the original map. 
(a) overlap at τx= -3 and τy= -2; (b) overlap at τx= +5 and τy= +2. Correlation between the shaded areas for 
a particular lag represents the autocorrelation for that lag. 
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verifies if it forms a grid, and characterizes the structure of the grid. The analysis flow 

chart is shown in Figure 3.28 and illustrated in Figure 3.29.  

 

 

The spatial autocorrelation of the firing rate map of the unit is obtained. The maxima 

in the spatial autocorrelation are identified (Figure 3.29a) and sorted by their 

distance from the central peak. The first 6 peaks are then isolated and their distance 

from the centers is measured. If they all belong to within ±25% of their mean distance 

(Figure 3.29b), the portion of the autocorrelogram within ±50% of the mean distance 

is then isolated (Figure 3.29c) and its rotational autocorrelation is observed (Figure 

3.29d). If there exists alternating peaks and troughs at every 60±tolAngle, the 

difference between correlation values at the peaks and troughs is defined as the 

gridness score of the unit (Sargolini et al 2006). The mean of the central angles (α), 

interior angles (ψ), orientation of the grid with the positive x-axis measured as the 

orientation of first peaks are also calculated for further verification and 

characterization (Figure 3.29e). 

Figure 3.27 Patterned firing fields in a grid cell; (a) pattern of tessellating triangles among the firing 
fields; (b) Hexagonal pattern around the central peak of the spatial autocorrelation. 
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Spatial autocorrelation

Identify the maxima
No of peaks excluding 

central one≥ 6

All peaks within 
(1±0.25)*mean distance?

Sort them by distance from the centre, 

pick first 6 peaks. Take the mean distance

YesNot a grid cell

No

Create rotational autocorrelation for 
circular arena within (1±0.5)*mean 

distance of the spatial correlation mapYes

No

Peaks recurring at 

multiples of 60o?
No Grid cell is identified!Yes

Sort peaks by angular 

distance ascendingly

Measure the means of interior 

angles and central angles

Gridness score = difference between 

correlations at peaks and troughs
 

Figure 3.28 Flow chart for the detection of grid cell and measuring the gridness score. 
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Border cell analysis 

Border cells are units that are activated along the geometric border of the arena an 

animal traverses (Jankowski and O'Mara, 2015). The activity can be along the entire 

environmental border or along a segment of the arena (Figure 3.30). When the unit 

has a receptive field in the intersection of the environmental boundary and is located 

at a specific distance from the animal in a specific allocentric direction, the unit is 

more specifically called boundary vector cell (BVC) (Lever et al., 2009), although they 

may also be referred as border cells as in (Solstad et al., 2008). 

In NeruoChaT, analysis of such cells starts with identifying the environmental border 

from the traversing path of the animal as the recording systems usually do not provide 

this information. The outermost pixel along the path forms the putative 

environmental border. This is primarily a two-step process (Figure 3.31): (i) a binary 

Figure 3.29 Illustration of identifying grid cell and calculating gridness score; (a) Maxima locations in 
spatial autocorrelation; (b) Peaks forming the central hexagon; (c) Shaded zone shows the (1±0.5)*mean 
peak distance; (d) Rotational correlation measured with the shaded zone in (c). Red dots show the 
maxima locations, and the green dot shows the minima in the curve. Gridness score is the difference in 
between the rotational correlations at peaks and troughs; (e) Definition of central angle (left), interior 
angle (middle) and orientation of the grid (right).  
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map of the traversed arena is produced by placing ‘0’ for the pixels visited, and ‘1’ for 

the pixels the animal did not visit and (ii) The edging 1s are kept optimized to have a 

regular pattern and isolated as border. 

Once the border is identified, the distance of each pixel is measured as the number 

of pixels it is away from the border times the pixel size. Pixel where an animal is 

located at each time-point is identified and corresponding distance is assigned as the 

distance from border for that spatial data point. 

 

 

The spike firing rate with respect to border than follows the regular rate coding 

scheme as that followed in calculation of firing rate vs running speed or angular head 

velocity (see Section 3.3.4). Figure 3.32 and Figure 3.33 show the output graphics of 

a border cell analysis. Figure 3.32a shows the typical firing rate map, but it reveals 

that there are zones of higher firing rate near the environmental border, indicating 

that this is a border cell. The active pixels of this map are defined as the ones with 

firing rates higher than a user-specified threshold. If the user sets 20% of maximum 

firing rate as the minimum rate for accepting the activity of pixel significant, the total 

number of such pixels at every distance ring (Figure 3.31f) are divided by the number 

of pixels located in that distance within the border. Such normalization is necessary 

as the total number of pixels away from the environment because of shrinking in the 

area while the pixel size is remaining same throughout the environment. The 

Figure 3.30 Spike plot (a) and firing rate map (b) of a unit with preferential firing along the border of the 
environment. 
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histogram of such count for the example cell is shown in Figure 3.32b. The firing rate 

vs the distance is shown in Figure 3.32c. The stair-plot shown in Figure3.32d shows 

the mean distance of all the pixels within stepwise activity level. For example, the 

pixels with firing rate within 80% to 100% are identified, and the mean of their 

distance from the border is obtained. For a border cell, this distance is very low as 

most of the active pixels will remain near the border (dark grey zone in Figure 3.32d). 

As the distance increases, the firing rate declines, and drops drastically near the 

center of the arena, resulting is a sharp increase the mean distance at low firing 

percentiles (light grey zone in Figure 3.32d). 

 

 

Figure 3.31 Stepwise depiction of border detection procedure; (a) black lines show the path of the animal 
traversed in the environment; (b) Paths are pixelated to count the amount of time animal visited a pixel; 
black area shows areas captured by the camera but not visited by the animal; (c) Binary picture of the 
map in (b). Unvisited area is represented by ‘1’ and visited area by ‘0’ (Colormap is inversed); (d) Binary 
map is regularized to obtain a smoother boundary; (e) Black pixels are the ones forming the boundary; 
(f) Map of the distance of each pixel from the boundary pixels. 
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Figure 3.33a shows the active pixel count, but instead of the distance from the border, 

it uses the angular distance from the center of the arena. The pixel count is not 

normalized. This analysis shows the spread of the activity across the environment. 

The user can set a threshold that if there is a continuous block of 90degree spread of 

the activity, covering 1/4th of the environmental border, the cell can be considered as 

a border cell. Figure 3.33b is an extension of Figure 3.33a, as it linearizes the entire 

firing rate map, and counts the number of active pixels at particular distance along a 

particular directional bin. 

Figure 3.32 Border cell analysis; (a) Spatial firing rate map showing a characteristic circular ring of high 
firing rate zone near the environmental boundary; (b) Histogram of normalized active pixel count from 
the border at a particular distance. Active pixels are counted as the total pixels with firing rate higher 
than the user specified threshold, i.e., 20% normalized by the total pixel at that distance; (c) Firing rate 
calculated according to the rate coding scheme; (d) Stair plot showing a low mean distance from border 
for pixels with high firing rates, and sudden increase in distance for pixels with low firing rates, indicating 
that firing rate is high near the border and almost diminishes near the center of the arena. 



 

~ 120 ~ 

 

 

 

Gradient cell analysis 

Gradient cells have a gradually increasing firing rate from the environmental 

boundary to the center of the foraging arena. Figure 3.34a shows an example of such 

a unit where the activity of the unit increases gradually as the animal moves from 

border towards the center, forming bands of activity belonging to a particular firing 

rate percentage. Each color in the map represents spiking activity of 0-100% in step 

of 20%. The stair plot (Figure 3.34b) is obtained (like the border cells) using a gradual 

stepping in the mean distance with respect to the firing rate bands, representing a 

Figure 3.33 Linearization of firing rate map; (a) Number of active pixels (absolute count) at different 
angular distance of the environment from the center of the arena; (b) Number of active pixel at different 
distance from the border along particular circular distance. 
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graded activity pattern in contrast to the border cell where active pixels are located 

close to the border. The spiking rate vs distance of the animal form the border is 

calculated like that in border cell and fitted to a Gompertz function (Equation 3.7) 

in Figure 3.34c, the goodness of fit is evaluated, and the differential firing rate is 

calculated by taking the first derivative of the fitted curve with respect to the distance 

(Figure 3.34d). 

𝑦 = 𝑎. exp−𝑏exp
−𝑐𝑥

(3.7) 

where y is the firing rate, x is the distance from the border, a is the Gompertz 

asymptote setting the saturation of firing rate at the edges, and b and c are positive 

numbers setting the displacement along the x-axis and the growth rate respectively. 

The distance at which differential rate maximizes at short distance further from the 

border within the arena is defined as the deflection point and can be used to 

characterize the gradient activity. This equals to the ln(b)/c in the fitted equation. 
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3.3.3  Analyses on directional correlations of spikes 

Spike rate as a function of head direction of the animal 

This function analyses the effect of head-direction (HD) of an animal with respect to 

the environment in the horizontal plane on spiking rate of a unit. It starts with 

smoothing the head directional data of the animal by replacing each recorded sample 

with the circular mean of 5 data samples centered around that sample, or, nt= Circular 

Mean (nt-2, nt-1, nt, nt+1, nt+2), where nt is the t-th sample of the recording session. The 

directional heading is divided into bins of user-specified size, i.e. 5°.  The spike rate is 

Figure 3.34 Gradient cell analysis; (a) Firing rate map showing that the activity of the unit increases 
gradually as the animal moves from border towards the center, forming bands of activity belonging to a 
particular firing rate percentage. Here, 5 colors have been used representing spiking activity of 0-100% 
in step of 20%; (b) Stair plot like the one calculated in border cell. The stairs are increasing gradually, 
and there is not abrupt change in the plot, further providing support for the gradient cell; (c) The spiking 
rate vs distance of the animal form the border is calculated like that in border cell (blue). This curve is 
fitted with Gompertz function (green); (d) Differential firing rate vs distance showing that the increase 
in firing rate maximizes at short distance further from the border within the arena. The point where this 
rate of changes in firing rate maximizes is called deflection point. 
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calculated by dividing the total number of spikes in a particular head-direction bin 

by the amount of time the animal was heading that direction bin (Taube et al., 1990). 

This is depicted in Figure 3.35. 

 

 

The head direction vs spike rate curves are called “HD tuning curves”. The idea of 

such rate coding is similar to that of the place field, but instead of having a 2-

dimensional distribution of spiking activity, it is assessed for circular data 

(directional). Therefore, the statistical analyses are those used for directional data for 

head-directional information. The circular mean is then calculated which is the 

preferred direction of firing of a unit. The firing rate in this direction is also reported. 

Skaggs information content is measured according to Equation 3.4, where Pi and Ri 

represents the occupancy probability and firing rate at i-th directional bin, θi, instead 

of the spatial bins described in that section. Other standard circular statistical tests 

and measurements- like mean resultant vector, Raleigh’s z-test for uniformity, 

concentration parameters for von-misses distribution- are calculated according to 

(Mardia and Jupp, 2008). Corresponding equations are provided in Appendix F. 

The typical firing rate pattern in a head-direction tuned unit is shown in Figure 3.36a. 

The width of the tuning curve is measured as the angular differences between the 

points where the firing rates are 50% of the peak firing rate (dotted line in Figure 

3.36b). It is used to characterize the spread of the directional receptive field. 

Figure 3.35 Depiction of calculation of the spiking rate with respect to the head direction of the animal. 
Top row- left: visit count of the animal in different directional bins, middle: amount of time spent in such 
directions, right: number of spikes paired with such direction; Middle row: head-direction of the animal 
at different tracker samples.; Bottom row- spike-train of the unit during 9 samples shown. Head 
directions falling in different bins are color-coded differently.  
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Drawing the similarity from Figure 3.24 for one dimensional place field, we can 

similarly explain that there are possible cases of a unit being anticipating or lagging 

behind from the preferred direction of firing. To observe such effects, we calculate 

the angular head velocity (AHV) and split the head directions into clockwise (CW) or 

counter-clockwise (CCW) head movement depending on the sign of the AHV. A ‘+ve’ 

AHV indicates that the animal’s head moves in CW direction, and ‘-ve’ AHV indicates 

a CCW movement. In both cases the absolute value of AHV must be greater than a 

user-specified threshold to avoid flickers in head-movement of the animal during 

exploration. The two sets of head-directions are then paired with synced spiking-

activity to obtain two curves (Figure 3.36c; red for CW and blue for CCW) and their 

mean values are calculated. If the peak firing rates for these two curves occur at θCW 

and θCCW respectively for the head directions at CW and CCW movements, the 

separation angle is measured as δ= θCW- θCCW. 
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The green line in the head directional tuning curve (Figure 3.36a) is the predicted 

firing rate calculated using the methods described in (Cacucci et al., 2004) based on 

‘distributive hypothesis’ (Muller et al., 1994). The approach consists of calculating the 

directional firing that one would predict under the null hypothesis that place cell 

firing is only modulated by location and that the only influence of head direction 

arises from the sampling bias. Sampling bias arises because of inhomogeneous 

sampling of locations and head directions and may cause a place cell to show an 

apparent directional modulation of its firing rates and vice versa. For example, if an 

animal is foraging in a cylindrical arena, a head-direction unit with a preferred 

Figure 3.36 Tuning curves from a recorded head-directional unit; (a) Firing rate with respect to 
directional heading of  the animal (blue) and the predicted firing rate (green) to observe the homogeneity 
in sampling of the directional bins; (b) depiction of the measure of half-width, a characteristic of the 
tuning curve to describe how wide the directional receptive field is; (c) Measurement of separation angle, 
the difference between the directions where peak firing occurs during CW(red) and CCW(blue) head 
movement. 
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northeast direction may show a place field against the northeast portion of the wall. 

This is attributable to the fact that whenever the animal is in the northeast region of 

the cylinder, it will often face northeast and cannot face southeast due to the physical 

constraint. It may also be the case that a spurious head-direction response arises if 

the animal samples some head directions more frequently while spending time within 

a place field, i.e. when the place field is near a wall. 

The predicted rate as a function of direction is derived from the locational firing map 

using the equation, 

𝑅𝑝𝑟𝑒𝑑(𝜃) =  
∑ (𝑅𝑝𝑇𝑝(𝜃))

∑𝑇𝑝(𝜃)
⁄ (3.8) 

where Rp is the firing rate at p-th pixel, Tp(θ) is total time spent facing head direction 

θ while at pixel p.  The numerator denotes the average number of spikes at direction 

θ, and the denominator is the amount of time spent across all pixels only when the 

animal was facing in the direction θ. This split of time by head-direction is illustrated 

in Figure 3.37.  

 

 

Figure 3.37 Illustration of the directional split at a pixel. The total time at direction θ1 is the sum of time 
spent in all pixels j, k, … or Tj(θ1)+  Tk(θ1)+… where total spikes (average or predicted) at direction θ1 is the 
sum of the rates at each pixels multiplied by the time at that pixel or RpjTj(θ1)+ RpkTk(θ1)+…. The predicted 
rate is calculated by dividing the predicted spikes by total time.   
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The predicted firing rate (green) can be compared to the observed firing rate (blue) 

using the distributive ratio (DR) given by the following equation, 

𝐷𝑅 = ∑|ln ((1 + 𝑅𝑜𝑏𝑠(𝜃)) (1 + 𝑅𝑝𝑟𝑒𝑑(𝜃))⁄ )| 𝑁⁄ (3.9) 

Robs(θ) is the firing rate of the unit with respect to head direction measured using the 

algorithm explained in Figure 3.35. N is the number of directional bins. DR is zero 

for a perfect prediction as the Robs(θ) and Rpred(θ) are equal. The null hypothesis is 

true in such cases and the directional modulation is only attributable to the 

inhomogeneity of sampling, where the place-field firing is only modulated by 

locations. A higher value of DR indicates a poor prediction and, therefore, if there 

exists directional modulation, that accounts for some of the variability in the firing of 

the unit. Figure 3.38 shows an example where the predicted firing rate resembles the 

observed or calculated firing rate. 

 

 

Figure 3.38 Sample place unit with apparent directional tuning recorded in a pellet chasing task in an 
open arena. The blue line shows that the unit preferentially fires along the north-northwest direction. 
Green line, the predicted rate, almost resembles the observed firing rate and, therefore, the DR is very 
small (0.14). Onset shows the behavior of the unit with respect to location. The place field is in the north-
northeast wall of the cylindrical arena and may cause the unit apparently fires more along that direction. 
We can also conclude that there is an inhomogeneity in sampling of the head direction.  
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The analysis also provides a polar-scatter plot for the head-directions of each spike. 

The time of each spike is observed and paired to the corresponding head-direction. 

Such head-directions are then binned at 2° intervals, and each spike is represented by 

the coordinate (r, θ) where θ is the bin, and r is the incremental radius for each spike 

count in this bin. Examples plots are shown in Figure 3.39. 

 

 

Head directional shuffling analysis 

Like the location shuffling analysis, spike-trains are shuffled, and a new tuning curve 

is created for each of the new spike-trains. The Rayleigh Z-score and the 

concentration parameter κ for the von Mises distribution are calculated for each 

tuning curve. This procedure is replicated for a specified number of shuffles and then 

binned to create a histogram. This is, as was argued in the shuffling analysis of 

locational firing map, based on the idea that if the spiking activity is independent of 

directional heading of the animal and the tuning curve implying a directional 

receptive field is a random observation, the specificity measures for the tuning curves, 

namely Rayleigh Z and von Mises parameter κ will be statistically insignificant. These 

measures are compared to the upper tail of the distribution with a 5% significance 

level. Sample output graphs are shown in Figure 3.40. 

Figure 3.39 Scatter plot of the head direction corresponding to each spike of (a) the head directional unit 
with the firing rate shown in Figure 3.36 and (b) a non-head directional unit    
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Head directional time-lapse analysis 

Like the locational time-lapse analysis, this analysis simply splits the entire recording 

sessions into smaller segments of creates tuning curves and directional spike-plot at 

following intervals: 

Cumulative: 0-1min, 0-2min, 0-4min, 0-8min, 0-16min (if recording session is longer 

than 16min), 0-end of the recording 

Progressive: 1-2min, 2-4min, 4-8min, 8-16min (if recording session is longer than 

16min), 0-end of the recording. 

A sample outcome for such an analysis is shown in Figure 3.41. This analysis is 

effective in describing a unit whether it is responding to the animal’s head direction 

from the very beginning of the session, or first exposure to an environment, or it 

gradually emerges as the animal forages the environment. In short, it provides a 

picture of temporal evolution of the firing of a unit in an environment (Jankowski et 

al., 2014). 

Figure 3.40 Sample output of head-directional shuffling analysis; (a) distribution of Rayleigh Z scores 
(b) distribution of the von Mises κ. The red line shows the 95th-percentile in the distribution which is then 
compared to the Rayleigh Z= 930 and κ= 2.44 to test for significance at 5% level. 
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Head directional time shift analysis  

A series of time-shifted tuning curves are created for user-specified number of shifts 

in time with respect to the video samples. The algorithm remains as same as the 

tuning curve calculated for the original spike-train of the unit. Only the spike-train 

has been shifted by a multiple of location timestamps to the left (-ve shift) or to the 

right (+ve shift) to pair with past (-ve shift), present (no shift) or future (+ve shift) 

locations of the animal. This is illustrated in Figure 3.42. The Skaggs information 

content, peak firing rate and separation angle δ are calculated for each tuning curve 

and plotted against the amount of time spike-train are shifted (Figure 3.43). The δ-

values are fitted with a straight line and the shifted time where δ= 0 is defined as the 

anticipatory time interval (Blair and Sharp, 1995) . This is the time required for the 

CW vs CCW tuning curves to overlap with each other (like the 1D place field explained 

in Figure 3.24). The information content and the peak firing rate is also expected to 

be maximum around this time interval. 

Figure 3.41 The time-lapse directional spike-plot (top two rows) and tuning curves (bottom two rows). 
The cumulative time-lapse are 0-1min, 0-2min, 0-4min, 0-8min, 0-16min, 0-end of the recording. The 
progressive time-lapse are 1-2min, 2-4min, 4-8min, 8-16min, 0-end of the recording. 
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Figure 3.42 Construction of a tuning curve from the spike train of a unit and it shifted spike train; (a) 
Visit count, time map, and spike-count map for the unchanged spike-train of the unit; (b) Maps similar 
to (a), but with a shift in spike train  as shown in (c); (c) top row shows the head direction, middle row 
depicts the spike train, and the bottom row shows the spike train when it is shifted to match with  a past 
location of the animal. Directions falling into different bins are color coded. As we can see, the count in 
spike changes in the shifted spike train, and a new rate is formed out of it. 
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3.3.4  Non-spatial navigational information 

Spike rate as a function of running speed of the animal 

The raw speed data, as provided by the recording system, is smoothed using a moving 

average filter with rectangular window of user-specified samples, i.e. sample nt is 

being replaced by (nt-2+ nt-1+ nt+ nt+1+ nt+2)/5 for a 5-sample averaging. The histogram 

counts of the speeds, and hence the number of times the rat moved with certain 

Figure 3.43 Sample results of the head-direction time-shift analysis for a unit that has a directional firing 
field; (a) The Skaggs information content gradually maximizes towards the preferred direction and 
declines afterwards as expected for a unit with directional firing field. It maximizes at a +ve time shift, 
which implies that the unit is anticipating a preferred direction. (b) Similar results can be obtained by 
using the peak firing rate of the tuning curves at each shifted time. (c) Plot of separation angle δ vs shift 
of time. Separation of the CW vs CCW curves are expected to be zero at the preferred direction. Therefore, 
the anticipatory time interval is measured as the shift of time where the fitted δ line intersects x-axis 
(intersection of the blue and black lines).  
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speed, are binned up to the maximum speed the user specifies for the analysis. The 

scheme for this analysis is exactly as same as the calculation for head directional 

tuning curves. The number of spikes corresponding to the speed for each position 

data sample is counted. The spike rate is finally calculated by dividing the total 

number of spikes belonging to each running speed bin by the total time the animal 

moved at that speed. The Skaggs information content were calculated using the 

travelling time & spike rate at speed bin and mean firing rate of the cell using the 

Equation 3.4 specified in Section 3.3.2. Speed bins at which animals did not travel 

for at least 1sec were then excluded. The remaining raw data are then fitted to a linear 

regression equation. The quality of the linear fit is assessed using the Pearson’s 

correlation coefficient between the raw spike rate vs the fitted rate. A sample outcome 

is shown in Figure 3.44 for a unit that has a strong linear correlation to the speed 

with its spiking rate. 

 

 

Figure 3.44 Graphical output of a unit with a high correlation its firing rate to the speed of the animal 
(Pearson’s r= 0.9, p< 0.001) 
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Spike rate as a function of the angular head velocity of the animal 

To calculate the angular head velocity, head directions are first smoothed using a 

moving circular mean filter over a rectangular window with specified size. The 

angular head velocity (AHV) at time ti was then calculated as the slope of the linear 

regression line passing through head direction at ti-2 to ti+2 time samples. The –ve and 

+ve angular head velocities were taken as the clockwise (CW) & counter-clockwise 

(CCW) angular velocities respectively, as the clockwise movement decrease the head-

direction in the reference plane (Figure 3.45a). For each of these groups, the spike 

rate was calculated using a similar approach to that of the running speed. The Skaggs 

information were calculated taking CW & CCW rates together (the rate and time 

spent at each bin spanning both the -ve and +ve bins). High AHVs are always 

preceded by passing through the range of lower AHVs creating an inherent sampling 

bias in lower AHVs and resulting in lower samples and higher variance at high AHVs 

(Bassett and Taube, 2001). To minimize this bias, bins with trailing zeros at higher 

angular velocities and those not visited for at least one second were removed. The 

lower AHVs are also excluded below a cut-off amplitude, e.g. 10°/sec. Both the CW & 

CCW spike rates were separately fitted to a linear equation, and the quality of the fit 

were assessed using the Pearson’s correlation coefficient between the fitted spike rate 

and the raw rate. A sample output is shown in Figure 3.45b. 

 

Figure 3.45 Angular head velocity analysis; (a) Concept of clockwise (CW) and counter-clockwise (CCW) 
head directional movement (Adapted from Blair and Sharp, 1995); (b) Sample firing rate of a head 
direction cell that fires at a decreasing rate as the magnitude of AHV increases, but does not depend on 
the directionality of the head movement.  
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3.3.5   Multivariable analyses 

Multiple regression analysis 

Multiple regression or MR (linear least square regression) R2 values measure how well 

regression line approximates the real data points. In NeuroChaT, MR represents the 

instantaneous spike-rate as a linear combination of environmental variables. The 

variables under consideration are location, running speed, angular head velocity, 

head direction of the animal and its distance from the border in the arena. As the 

spike rate of the unit is non-linear in nature for head-direction, place and border cells, 

we use the firing rate of the animal at corresponding binned elements to be 

representative of the value in the MR. The entire recording is subsampled into a 

specified interval, e.g. 0.1ms, by taking the intermediate values between samples, and 

a specified chunk of samples is taken randomly with replacement (bootstrapping) for 

a, for example, 120sample episode which, along with 10Hz new sampling rate, turns 

into 120 data samples under consideration. This procedure is replicated for many 

times, i.e. 1000 replications, and multiple regression is estimated using ordinary least 

square for each such randomly sampled chunk. The semipartial correlation 

coefficient for each independent variable is calculated for each multiple-regression 

estimate. The mean and standard deviation of all semipartial correlations are 

presented in the graph as shown in Figure 3.46,  
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The original version of the MR analysis assumed that the locational and directional 

firing patterns tend to be idiosyncratic, so that each unit that codes direction has its 

own unique preferred direction and, each unit that signals location has its own 

preferred location (Sharp, 1996). Therefore, the point of the analysis was to ask if the 

unit showed a reliable locally graded influence of either of these variables so that 

information about the unit’s own average firing in a given range of directional 

headings or spatial locations would assist in prediction of the unit’s momentary rate. 

We extended the concept to border cell as well. But for two other variables, namely 

speed and AHV, we are assuming a linear relationship between the firing rate and the 

variable values. 

Interdependence analysis 

The distributive hypothesis is explained in Section 3.3.3 for location and head 

direction of the animal as two potential contributing sources of firing rates. And the 

predicted firing rate is compared to observed firing rate to obtain the DR value, which 

explains further whether the unit is preferentially firing signaling animal’s location 

Figure 3.46 Multiple regression correlation parameters (mean±std) for different independent variables. 
The inset shows the apparent directional preference (blue line) for a unit with locational firing preference. 
As expected, the semipartial correlation dominantly explains the variability in spiking activity, as the 
directional preference is an artefact explained by the green line- the predicted firing rate- which is very 
similar to the observed rate (DR= 0.14) 
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where the effect of head directional modulation is an artefact due to physical 

constraints, and vice versa (Cacucci et al., 2004). In this analysis, we extended the 

concept for other independent variables, namely speed, AHV and distance of the 

animal from the border, as they can also be constrained and may represent the 

locational firing as the response to these variables, i.e. place field in the border etc. 

The split of each of the variables into respective bins and the calculation of predicted 

firing rates followed the same equations as that of directional information. The 

analysis provides parametric output showing the DR for each variable. 

 

3.3.6  Local field potential 

LFP frequency spectrum 

The raw LFP signal is passed through a bidirectional zero-phase shift Butterworth 

filter. The user can specify the cut-off frequencies, filter order etc. for the filter. This 

signal is then considered for two different spectral analyses- 

▪ A standard power spectral density obtained by the Welch’s method- dividing 

the data into overlapping segments of specified size, called window size (e.g. 

1sec), with specified amount of overlap (e.g., 0.5sec) and computing modified 

periodogram for each segment and averaging the periodogram. The resulting 

output provides a mean for quick screening of the power distribution in the 

entire signal (Figure 3.47a). 

▪ A time resolved spectrogram, where spectrogram was calculated for each 

moving window of, for example, 1 sec, with consecutive windows having 

overlap of specified length (e.g., 0.5sec). This is also called short-term Fourier 

Transform or STFT (Oppenheim and Schafer, 2009). 

In both the case, the output graphic is band limited to a specified frequency, say 

40Hz, and the STFT is converted into decibel scale (Figure 3.47b) 
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3.3.7  Single units to local field potential phase synchrony 

Unit to LFP phase distribution 

The algorithm for determining the LFP phases within a band [fmin, fmax] at spiking-

events is shown in Figure 3.48. After the pre-filtering to remove the effects of non-

stationarity due to trends and drifts, the raw LFP signal (L) is bandpass filtered with 

a fifth order bidirectional zero-phase Butterworth filter within [fmin, fmax] to obtain the 

band signal (B) (Figure 3.49a). The amplitude and phase of the B signal are obtained 

using its Hilbert transform. We first divided the entire L and B signals into segments 

to explore the portion of the filtered signal with significant strength. The segments 

were taken between the points where the amplitude of the B crossed the 50% of the 

mean amplitude taken from the signal envelope (Figure 3.49b). A segment is merged 

with the next segment until the newly formed segment is longer than the temporal 

length corresponding to the lower cut off frequency of the filter, or 1/fmin Hz. The 

power spectrum of the corresponding L segment is obtained through Fast Fourier 

Transform (Figure 3.49c). If the power within [fmin, fmax] Hz is at least pratio (specified 

by the user, i.e. 15%) times of the total LFP power of the segment, and the peak-to-

Figure 3.47 Result of the LFP analysis; (a) The PSD (μV2/Hz) calculated using the Welch's method; (b) 
The power spectrogram of the LFP band-limited to 40Hz and converted into decibel in this example. It is 
apparent that there are stronger theta components as it peaks at around 8Hz and 10Hz. 
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peak LFP amplitude within that segment is at least aratio times (user-specified, i.e., 

25%) of that of the entire LFP, then this segment was regarded to contain significantly 

strong filtered band signal. The phase of all spikes lying within such acceptable 

segments of the filtered signal were taken by interpolating the phase calculated using 

Hilbert transform at the timestamp of each spiking event (Figure 3.49d). The phases 

are then binned, and the raster and histogram of phases are calculated (Figure 3.49e 

and f). To determine if the spikes were phase-locked, NeuroChaT further assesses 

circular statistics of the spike-phase distribution using Rayleigh’s Z-test (Appendix 

F). The mean phase and von Mises distribution parameter, κ, are also determined 

(Fisher, 1993). The description of the input and output parameters are explained in 

Appendix C and Appendix D respectively. 
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Pre-filter to remove non-stationarity. Call this L

Obtain band pass LFP for [fmin, fmax] range. Call this B

Calculate Magnitude and Phase from Hilbert transformation of B

0.5*mean(magnitude of B) as crossing point

L and B signal between two consecutive crossing points is a segment

Segment length> 1/fmin?

p2p(B) ≥  aratio*p2p(L)

Merge to the next 
segment to create a new 

one

PSD of L

Band power≥ 
pratio*total power?

Count the phases of  spikes within the segment

Bin the phases

 

 

Figure 3.48 Algorithm to obtain the phases of a unit locked to the LFP signal. 
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Figure 3.49 Stepwise illustration of calculating the spike to LFP phase locking within a particular band 
of  LFP signal in the frequency range [fmin, fmax]; (a) The blue line shows the high-pass filtered LFP signal 
L. Red line shows the band-pass filtered signal B; (b) Blue line is the B signal. Red line shows the amplitude 
of the signal derived from Hilbert transform. Black dotted line is the crossing-line to determine segments 
for further analysis. Green dots are crossing points, where green arrow shows a segment that is longer 
than 1/fmin or the minimum temporal length to represent the slowest component of the B signal; (c) Power 
spectral density measurement for the L signal. The power within the B-band is sum of the power between 
[fmin, fmax] and must be greater than a set percentage (pratio) of the total power; (d) Once the segment is 
verified to carry significant band-power and having peak-to-peak (p2p) amplitude comparable to the 
overall p2p amplitude of the L signal, phases of the spikes within that segment (red stems) are calculated 
from the phases (blue dotted lines) of the B signal using Hilbert transform (red dots); (e) The raster (top 
row) shows the phases of the spikes at each segment (y-axis), and the bottom row shows the counts at 
different phase-angles; (f) The bottom row in (e) is shown along with a cosine curve to distinguish the 
portion of the distribution with phase-preference. The inset in the figure shows a circular plot of the same 
distribution along with the mean phase (red line).   
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Unit to LFP phase locking 

NeuroChaT includes another approach to determine the phase-locking of a unit to 

the LFP signals using the phase-locking value (PLV) (van Wingerden et al., 2010) and 

spike-field coherence (SFC) measures (Rutishauser et al., 2010). The algorithm for 

such measurements is shown in Figure 3.50 and illustrated in Figure 3.51. A segment 

of the LFP is cut out, called spike-triggered LFP, for a window of, for example, [-0.5, 

0.5] sec centered around the time of the spiking events of the unit (Figure 3.51a). 

Individual traces are averaged to obtain the spike-triggered average, or STA (Figure 

3.51c). Each of the traces is multiplied by a hanning window and the Fourier 

transformations are obtained (Figure 3.51b). The average of the power spectrums 

provides the spike-trigged power spectrum, or STP (Figure 3.51d). The power 

spectrum of the STA, fSTA, is also calculated. The spike-field coherence is obtained 

by, 

𝑆𝐹𝐶(𝑓) = [
𝑓𝑆𝑇𝐴(𝑓)

𝑆𝑇𝑃(𝑓)
] 𝑋100% (3.10) 

where PLV is obtained by normalizing each frequency spectrum and taking the 

resultant vector length which is given by the following equation, 

𝑃𝐿𝑉(𝑓) = |
1

𝑁
∑

𝑋𝑖(𝑓)

|𝑋𝑖(𝑓)|

𝑁

𝑖=1

| (3.11) 

where Xi(f) represents the frequency spectrum of the LFP trace corresponding to the 

i-th spike. N is the total number of spikes in the unit. Sample analysis outcome are 

shown in Figure 3.52.  
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Traces of LFP centred around spiking events are cut out to 
obtain spike-triggered LFP

Traces are multiplied by hanning window

Power spectrum of each trace is calculated using Fourier 
transformation (fLFP)

Traces are averaged to obtain spike-triggered average (STA) 
signal

Average of each spectrum is obtained (STP) 

Power spectrum of the STA is obtained (fSTA)

SFC= (fSTA/ STP)x 100%

Complex frequency spectrum of each LFP traces is normalized

Magnitude of the vector sum of the normalized frequency 
spectrum is phase-locking value (PLV) 

 

Figure 3.50 Flow chart for calculation of spike-field coherence (SFC) and phase-locking value (PLV) 
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Figure 3.51 Stepwise illustration of measuring the Phase-locking metrics; (a) A segment of the LFP is cut 
out, called spike-triggered LFP, for a window of, for example, [-0.5, 0.5] sec centered around the spiking 
time. The red stems show the spikes and the blue traces are the LFP segments; (b) Each segment is 
multiplied by a hanning window and the Fourier transformations are obtained. These graphs show the 
power spectral density (PSD) obtained from the Fourier transform; (c) The LFP segments are averaged 
to obtain spike-triggered average (STA); (d) Power spectrum of the segments are averaged to obtain the 
average spectrum (STP); (e) The Power spectrum of the STA; (f) The spike-field coherence (SFC) 
measured from fSTA and STP. 
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We further extended the analysis for measuring the time-resolved phase-lock metrics.  

The window of the LFP traces are offset by a series of time-shifts in a step of 25ms. 

SFC and PLV are measured for each shifted LFP traces according to the algorithm 

explained above. Sample outcomes for such analysis are shown in Figure 3.53. Such 

analyses not only provide the information about the lock to the phases of different 

frequency components, but also indicates the temporal dynamics between the spikes 

and LFP from the shifts for maximum locking. Therefore, they can be a good indicator 

of causal relationships between the spikes and the LFP signals. 

Figure 3.52 Results of different phase-lock metrics; (a) Power spectrum of the spike-triggered average. 
Inset shows the STA; (b) Average of the power spectrum of indiviudal LFP traces; (c) Spike-field 
coherence; (d) Phase-locked value. All these graphs show that there is a strong coupling of the spiking 
activity to the underlying LFP signal at 9Hz.  
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Given that the more spikes we use to obtain our statistical estimate of the PLV using 

the resultant length equation, the more reliable it becomes (van Wingerden et al., 

2010). Therefore, the PLV itself is a biased measure with respect to the number of 

spikes for the unit under consideration. To compare across different experimental 

conditions or to reduce the statistical variances between units, NeuroChaT also 

estimates the phase-locking values using the bootstrapping procedure. A pool of a 

fixed, i.e. 100, number of spiking-events is drawn, and the phase-locking metrics are 

estimated for this group of spikes. The procedure is replicated for a user-specified 

number of time and the mean and standard error of mean for each of the metrics are 

calculated. A sample outcome is shown in Figure 3.54. 

Figure 3.53 Time-resolved phase-lock metrics; (a) Power spectrum of the spike-triggered average; (b) The 
spike-field coherence; (c) The phase-locking value; 
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3.4 Data management made easy 

NeuroChaT provides for better data management by standardizing the nomenclature 

in its output data. It also reduces efforts and attention by facilitating batch mode 

processing and activity logs and verifying the specification of the data before 

NeuroChaT starts analyzing them. It facilitates the management of output graphics 

in an easy to use approach. It also facilitates the data integrity, accessibility, and 

acceptability by converting the proprietary format data into a standardized data 

format. 

Figure 3.54 Phase-lock metrics using bootstrap technique; The mean (dotted)±sem of the (a) power 
spectrum of the spike-triggered average; (b) average of the power spectrum of individual traces; (c) spike-
field coherence; (d) phase-locking value; In this particular example, the sem values are very small, and 
their shaded plots are not recognizable. 
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3.4.1  Nomenclature 

NeuroChaT creates a unique name for each unit of a recording session using the 

following format: 

unit_id = record_id+ ‘TT’+ tet_no+ ‘_SS_’+ unit_no + ‘_’+ eeg_file_ext 

record_id= Unique file or folder identifier for each recording session that are used to 

store the individual data and identify them properly. 

tet_no= Tetrode number where the unit is identified. 

unit_no= Tag of the unit or the cluster number in spike-sorting. 

eeg_file_ext= Filename or the extension used for naming an LFP data file. 

Name conventions in the supported data formats of NeuroChaT are shown in Table 

3.3. Each HDF5 file represents one recording session, and the data for units, LFP, and 

spatial behavior are organized in folder-like paths. The HDF5 data format used in 

NeuroChaT is further explained in Section 3.4.5. 

Recording 

system 

Spike File LFP File Spatial File 

Axona (record_id).(tet_no), 

e.g., 120412_1.1. Here, 

120412_1 is the 

recording id, and 1 is 

the tetrode number 

where the unit is 

recorded 

(record_id).(eeg_file

_ext), e.g., 

120412_1.eeg8 

representing LFP 

data recorded in 

channel 8 of the 

recording system 

(record_id)_x.txt, e.g., 

120412_1_1.txt, where 

x can represent any of 

the tetrode number in 

that session. 

Neuralynx ~/record_id/TT(tet_ 

_no).ntt, e.g., data in 

tetrode 8 for the 

~/record_id/CSC(tet

_no).ncs, e.g., LFP 

data recorded in 

channel 1 in 

~/record_d/VT(x).nvt

, e.g., where x can be 

any user specified 

entity, but normally it 

Table 3.3 Naming conventions of data formats supported in NeuroChaT. 
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recording session 

120412_1 are saved in 

~/120412_1/TT8.ntt 

recording session 

120412_1 are saved in 

~/120412_1/CSC1.ncs 

is set to 1. So, the 

spatial data resides in 

~/120412_1/VT1.nvt 

NWB/ HDF5 (record_id).hdf5 + 

path within file= 

/processing/Shank/tet

_no 

(record_id).hdf5 + 

path within file= 

/processing/Neural 

Continuous/LFP/lfp

_id 

(record_id).hdf5 + 

path within file= 

/processing/Behavior

al/Position 

 

The filenames are resolved to extract individual components of the unique unit name. 

The output graphics from the analysis of one unit are stored in unit_id.pdf (or .ps), 

and the relevant analysis parameters, graphical output data and parametric output 

are stored in (record_id).hdf5 file in path /analysis/unit_id/. The parametric outputs 

are also listed in a table where each unit is indexed (row number) with the unit_id. 

The existing analysis in NeuroChaT produces more than 50 graphical outputs. Storing 

them in one file creates the initial layer of output data management. These output 

files are stored in the respective data folder, so that they can be easily traced. The 

unique nomenclature of the unit information is essential when working with many 

such units from the same study, otherwise keeping track of the output graphics would 

be overwhelming in terms of number of graphic files and the amount of disk space 

they would require. We also rasterize the graphics and store them at 400dpi to 

preserve the image quality for publication. The Excel table of the parametric output 

are also easy to use as the user can perform inferential statistics on them using any 

standard analysis package including Microsoft Excel itself. The list can also be used 

to easily identify the units of interest based on certain property of the output 

parameter, i.e. Skaggs information content for spatial units. Thus, the nomenclature 

used in NeuroChaT brings in efficiency in managing and scrutinizing the analyses 

outcome. 
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3.4.2  Batch mode processing 

NeuroChaT facilitates batch mode processing by providing the unit and spatial 

information in an Excel list. It is a very usual practice for researchers to keep track of 

the identified single units or the units of interest using an Excel file. We harnessed 

this opportunity to facilitate the analysis using this list. Appendix A shows how to 

provide the input to NeuroChaT using such lists. Once input and other configurations 

are set, and the user starts the execution, it fetches individual unit information one 

at a time, performs the analyses specified, and finally gives the results in a table. While 

it takes time for the analyses to complete, the user can do other tasks, and make 

efficient use of the time. Moreover, as the output are all stored accordingly in the 

respective data folder, the user does not need to worry about saving individual files. 

Once the analysis is finished, the parametric output table is displayed, and it waits for 

the user to save in his/her desired location. Meanwhile, the errors or warnings keeps 

up showing in the log box if used with the GUI or in the Python command interface. 

The user can traceback which units showed such notifications and at what point of 

the analysis. Therefore, there is no need for the neuroscientist to sit in front of the 

computer till the analyses are finished. On top of that, units with speculated similar 

properties, i.e., head-directional, can be listed in one file for convenience of post-hoc 

inferential analysis of population data. 

 

3.4.3  Verification utility 

We observed from our experience that a frequent reason for having error while 

analyzing a unit comes from the wrong specification of data. If a user has already a 

list prepared, he or she can verify the information using this utility, i.e., whether the 

specified path or files exist, or whether the cluster unit of interest belongs to the 

recording or is mistyped. The utility works by verifying the existence of each file, 

loading each spike file, and exploring whether it contains the specific unit of interest. 

This assures that the user is not wasting time for finding issues after running the 

analyses and knows well ahead about the problematic specifications. As many of the 
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NeuroChaT analysis are very time consuming, this is a convenient way of eliminating 

a common human error and reduce the waste of time. 

 

3.4.4  PDF management utility 

Given that a large number of units are recorded over time, the number of .pdf or.ps 

output files grows linearly. The PDF management utility in NeuroChaT facilitates the 

user to merge the output file of interested units into one file or to relocate them in a 

specific folder to group them together. The utility can be used either by providing a 

list of such units, or by manually choosing the files using an interactive window 

(Appendix A). At the end of each execution, NeuroChaT provides a list of pdf files 

where the graphical output for each analyzed unit are stored. User can export this list 

from the GUI Utility menu and can use the same list for merging or accumulating 

them into one folder. Thus, NeuroChaT also bridges the gap of tracing, by using 

unique nomenclature, and managing hundreds of graphical outputs in a logical and 

non-contradictory approach. 

 

3.4.5  Data accessibility through NWB/ HDF5 

The proprietary format data are converted into and are accessible through the HDF5 

file viewers (www.hdfgroup.org/) once they go through NeuroChaT. The name came 

from Hierarchical Data File format, and as it suggests, data within the file are stored 

in hierarchical groups and datasets, making it more like organizing the data in folder 

in an operating system. Every time NeuroChaT analyses a unit, it stores the relevant 

data in the HDF5 file that has been named following the convention in NeuroChaT 

as described in Section 3.4.1.  HDF5 is behind many popular open electrophysiology 

file formats (Figure 3.55) such as NIX (Stoewer et al., 2015), LBNL BRAINformat 

(Rübel et al., 2015), Orca, KWIK (Rossant et al., 2015), and most recently the 

Neurodata Without Border or NWB (Teeters et al., 2015). A comprehensive effort was 

particularly taken for establishing NWB file format by considering a number of 

evaluation criteria such as:  

http://www.hdfgroup.org/
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▪ Ability to store electrophysiology data  

▪ Making the data open-source  

▪ Extensibility to accommodate new data or methods 

▪ Available and robust tool ecosystem  

▪ Support for popular electrophysiological data analysis platforms like Python 

or MATLAB® 

▪ Viewing the data without coding  

▪ User’s ability to describe the data after reviewing its contents 

▪ Ease of extracting and plotting data by naïve users etc.  

Therefore, we also considered NWB as the standard output and input data file format 

for NeuroChaT. One of the biggest hurdles in using NWB was its poor API design 

which does not allow extending on an existing file to include new data. It always 

requires creating a new file. But this extensibility is essential for NeuroChaT because 

of the cell-by-cell approach it uses. We convert the data for each unit a time at the 

end of analysis and store it in the file. There is always one HDF5 file for one session 

of recording as mentioned earlier so that we can manage the data compactly. We also 

wanted to enable the user to try for different sets of analyses. As the analysis data are 

also stored in the HDF5 file, it is very inefficient to recreate a file every time a new set 

of analysis is performed. Given that HDF5 itself has all the essential criteria, and the 

API for reading or writing is available in all major programming languages, we 

decided to store our data in the native HDF5 file format, instead of one of the formats 

that are built on it. 

Other key advantages that HDF5 file format provides are: 

▪ Ability to store heterogeneous data or data of different types i.e., numbers or 

texts, or complex data objects 

▪ There is no vendor lock-in 

▪ Self-describing which implies all data and the meta-data, or the description of 

the data can be passed along in one file 

▪ The reading and writing process are very fast and reliable 
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▪ There is virtually no limit on the file size and the number of data objects in can 

store, therefore it is very flexible for big data and potentially very useful for 

storage of data from high-density electrodes, i.e., Neuropixels (Jun et al., 2017). 

 

 

NeuroChaT stores the data in the HDF5 file following a very similar naming 

convention as are used in NWB format so that if NWB brings changes in its read/write 

API, the HDF5 file can be compatibly used by it. The hierarchy in the storage for 

NeuroChaT-created HDF5 file is shown in Figure 3.56. The acquisition, epochs, 

general, and stimulus folders are currently unused. The video tracker in each 

recording system processes the raw video files to provide the spatial behavior of the 

animal, and therefore, is placed in the processing folder (or, path or group as called 

in HDF5). This is also the case for LFP and single-unit data which are stored in the 

Neural Continuous and Shank paths respectively within processing to remain 

consistent with the NWB format. A path is divided into modules, each module into 

interfaces, and each interface as series in NWB, although in terms of data 

organization within HDF5 file, they are paths at descending hierarchy. The data paths 

and comparable items in NWB are listed in Table 3.4. 

Figure 3.55 Popular file formats using the HDF5 format. 
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Data Path NWB 

Module 

NWB 

Interface 

NWB 

Series 

NWB 

datasets 

Spatia

l 

/Behavioral/Position/ 

location etc. 

Beha-

vioral 

Position Spatial 

Series: 

location, 

Time 

Series: 

direction, 

speed etc. 

data, unit, 

num_samples

, timestamps 

Spike Shank/X/Clustering or 

Shank/X/EventWavefor

m/ Waveform 

X 

(tetrode 

number) 

Clustering, 

Event-

Waveform 

Spike 

Event 

Series: 

Waveform 

Clustering: 

cluster_nums

, num, times 

Waveform: 

data, 

Figure 3.56 The hierarchy used for data storage in the HDF5 file format 

Table 3.4 NeuroChaT-generated HDF5 file data paths and items comparable to the NWB formats. 
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electrode_idx

, num_events, 

num_samples

, timestamps 

LFP /Neural Continuous/ 

LFP/eegX 

Neural 

Conti-

nuous 

LFP Electrical 

Series: 

eegX (LFP 

file 

extension) 

data, 

num_samples

, timestamps 

 

The toolbox also has a utility that converts the units specified in a list of using an 

Excel file like the one used for the batch-mode processing (Appendix A). This is 

another step towards the integrity in data throughout the entire NeuroChaT 

workflow and data processing. 
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4 Discussion 

  



 

~ 160 ~ 

 

4.1  Attaining NeuroChaT objectives 

4.1.1  Interactive tool 

One of the objectives of this project was to create an interactive tool for 

neuroscientists. NeuroChaT achieved this by producing a graphical user interface that 

helps the user interact with the underlying large volume of codes by simple clicks and 

enjoying analyses in different modes, i.e. one cell at a time or batch processing of list 

of cells, along with setting up the analyses parameters using the interactive panels. 

Other utilities like verification of the unit list before batch mode processing, selecting 

the analyses individually as per the requirements or by cell types, output graphical 

file management utility can also be done using just clicks. Current setting of analyses 

types and parameters can be stored and retrieved from the menu- further reducing 

the amount of efforts for executing similar analyses on different sets of data using 

similar input to the analysis techniques. Selecting the unit, LFP channel, browsing 

the data, comparing units for similarity, assessing the quality of clustering, converting 

the proprietary format data to the standard HDF5 file format data- all these features 

define the UI as very useful and interactive tool. 

The development framework PyQt5 is a cross-platform framework and, therefore, the 

software UI can be rendered in most operating systems. We have not tested the 

interface on touch enabled devices or in mobile operating system platforms. Given 

that the computing power of the mobile devices are increasing very rapidly, it might 

be a good opportunity to design the UI using a framework, e.g., Kivy 

(https://kivy.org), that is more suitable for such platforms, but considering the 

maturity, versatility, stability, existence of large community of users, and the ease of 

implementation and extension compared to other platforms, we have decided to 

build our entire graphical interface in PyQt5. Qt is a cross-platform C++ application 

framework and widget library and is free to use for open source project under the GPL 

v3, and LGPL v3 licenses (https://www.qt.io). PyQt5 is a set of Python bindings for Qt 

v5 which enables Python as an alternative language for application development and 

is released under the GPL v3 license (https://pypi.org/project/PyQt5/). As 

NeuroChaT source is made open for non-commercial use, there is no restriction on 

usage of either Qt v5 or PyQt5. 

https://kivy.org/
https://www.qt.io/
https://pypi.org/project/PyQt5/
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4.1.2  How can it work as a framework? 

The general concept of software framework is that it provides generic functionalities 

which can be used along with the user-written codes to develop new application. The 

concept of framework in NeuroChaT is that it provides the user with diversified 

functionalities, which are both class specific and generic, for managing the attributes 

and input/output control from an object. The user can utilize the objects in many 

fashions. For example, user can define a separate spike object and a spatial object and 

can pass the information selectively to the spatial object, e.g., the spike event 

timestamps, for a rate coding analyses while the spike object remains unchanged and 

can be used independently for analysis built within itself. The entire spike object can 

be passed as a member of the spatial object which will harness the information carried 

by the spike object within itself. Similar principle applies for spike-LFP data coupling. 

Alternatively, they can be the members of NData object which can manage the 

transfer of information among these objects- thus providing for encapsulation of all 

three recorded data types. As each object is readily extendable with the helper 

functions to facilitate the transfer of information, a variety of combinations of these 

objects or data within them can be used to build a set of analyses according to the 

user requirement. This use of collection of NeuroChaT classes as an application 

programming interface (API) or skeletal support by bringing together different 

components to develop a customized project can be compared to what is traditionally 

defined as software framework, although the code base is not big enough to fit into 

the classic definition. 

 

4.1.3  Unification of analyses methods 

We achieved this objective by implementing a big set of analyses techniques that are 

already widely in use in relevant researches. There are altogether 25 different analyses 

developed, tested, and being used- resulting in their unification in one platform. We 

implemented well established methods for spatial analyses, analyses of spike trains, 

LFP and its relationship to the spiking activities. Most of the toolboxes currently 

available put emphasis on a particular datatype or analyses as explained in Section 
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1.3.5. They are either made for spike-sorting, working with spike-trains and event 

related analyses, or analyzing LFP signals. But description of the spatial behavior in 

terms of neuronal firing can also be modulated by underlying LFP signals, and the 

units may have traits in their spiking-trains to describe the dynamics of local 

population ensembles (Section 1.1.2). Therefore, collecting all these analyses in one 

platform made it easier for researchers to examine their data in different ways without 

switching from one toolbox to another and without additional burden of managing 

data format compatibility among different analyses platforms. 

 

4.1.4  Developing problem specific analysis 

The architecture of NeuroChaT easily facilitates integration of new analyses methods. 

The object-oriented design enables ease of extension of the classes by including new 

methods into the class. This can be achieved in two ways: (a) classes can be sub-

classed either by composition or inheritance, and (b) Python allows inserting a 

method to an instance of an object dynamically which, therefore, does not require 

sub-classing the original class. There are large sets of methods in each class for 

managing input and output of data and information in and out of the class instances. 

These methods provide a means for data management within each class instance 

without interfering to the variables or data that are in use exclusively within each 

class. Please refer to the NeuroChaT documentation (Appendix A) for references to 

these methods. 

In API use guide (Appendix C), we provide an example of how problem specific 

analysis technique can be developed using the data classes in NeuroChaT by writing 

a few lines of code. The example depicts how easily an analysis can be implemented 

and integrated in NeuroChaT with the help of a large number of methods included in 

its classes. These are not part of the analysis techniques but designed for bringing 

efficiency and eloquence in programming new analysis algorithm. 
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4.1.5  Bringing efficiency in research yield 

The batch analyses mode in NeuroChaT facilitates serializing the analyses of 

hundreds of units using a list in an Excel sheet. This implies the users can set all the 

analyses and associated parameters for the analyses they want to perform, can upload 

the Excel file with the list of units and start the analyses. NeuroChaT will take care of 

the analyses and will provide feedback in terms of progress, warning and error 

messages. Therefore, the user does not need to sit in front of the computer for the 

analyses to complete. They can plan other studies, do experiments, or review the 

output of previous run for inference while NeuroChaT is running. The user can 

efficiently use their time this way. The specification of batch mode data input is a 

simple approach and align with how the researchers keep track of their recording 

information- usually using an Excel sheet with all the information. The tabular 

parametric output and the table of graphical file location that can be used for merging 

or accumulating them into one file or folder, respectively, can then be used for further 

assessment of the spatial or rhythmic nature of the units. Logs displayed during the 

process can be analyzed for errors and can be addressed easily. The overall scheme of 

working in NeuroChaT is thus not only user friendly, but also very efficient in terms 

of working hours. Since NeuroChaT prototype had been developed, there is an 

increased pace in the analyses of data in the lab, yielding number of publications and 

few others under preparation or review- proving how NeuroChaT is contributing to 

the overall yield to our experimental works. 

 

4.2  Towards a culture of openness and 

reproducibility 

4.2.1  Open Data 

 Why Open Data initiative? 

Data in Neuroscience exist at a range of scales in space and time as summarized in 

Figure 6.1 (Sejnowski et al., 2014). Decades of developments enabled obtaining data 

using a wide variety of techniques, using patch clamp to record intracellular action 
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potentials to fMRI for system level organization of neural functionalities. Each of 

these techniques has their own vocabularies, assumptions and experimental practices 

or norms. Integrating information from different recording techniques is one of the 

fundamental problems in Neuroscience study. This is further complicated by the fact 

that Neuroscience research is conducted on a range of problems, i.e. learning and 

memory, decision making, perception, motor activities etc. and across different 

species (Keifer and Summers, 2016)- requiring a horizontal integration of problem 

specific findings along with the vertical integration on the same problem or species 

using different levels of organization of neuronal populations. This can be achieved 

through the mega-analyses or pooled analyses of raw data and meta-analysis of 

published data as already been exemplified by genome projects (Costafreda, 2009). 

Data sharing also comes into play when large scale efforts like Brain Research through 

Advancing Innovative Technologies (BRAIN) (Insel et al., 2013) and Human Brain 

Project (HBP)(Markram et al., 2011) needs to combine the findings from different 

laboratories which would otherwise be nearly impossible to accomplish from one lab. 

Research involving human subjects have inherent ethical demands to minimize the 

number of participants and maximize the benefits of research (Brakewood and 

Poldrack, 2013, Choudhury et al., 2014) unless doing so would increase the risk to the 

subjects. Sharing data also has economic advantage as it reduces the cost of doing 

science by providing a bigger sample set for the same research questions and 

increasing the reproducibility in terms of analyses. The increased concern of 

reliability and reproducibility (Anonymous, 2013) in scientific research are often 

embedded in the low statistical power in many published studies (Button et al., 2013) 

- posing an increased pressure to deploy larger samples. But this can be hindered by 

the regulation on the use of animals or subjects and financial limitations (Poldrack 

and Gorgolewski, 2014) which can be overcome by amassing large number of samples 

within the similar species and experimental paradigms by sharing data among 

laboratories. Almost all the neuroscientific techniques involve multistage processing 

streams resulting in a large number of variations in analysis parameters (Carp, 2012). 

This poses another concern on reproducibility to obtain similar results using different 

analysis pipelines. As the computation power and the new generation of 

computational neuroscientists evolve, there is a continuous development of analytic 

techniques using complex algorithms and machine learning methods for more 
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comprehensive and translational research (Lloret-Villas et al., 2016). Sharing data 

may provide the test bed as well as the benchmark for the new techniques. For 

example, data from OpenfMRI have been used to examine the effects of different 

processing pipelines on analyses outcomes (Poldrack and Gorgolewski, 2014, Carp, 

2012), and German Neuroinformatics Node (spike.g-node.org) provides the platform 

for benchmark data and evaluation of spike-sorting algorithms. Developing open-

source toolboxes is a cultural practice in neuroscience which benefitted researchers 

to a great extent. Sharing data in an open and widely used format can also foster the 

development of open-source tools and standardizing them along with increasing the 

code reuse between different toolboxes. The use of in-house or proprietary formats 

and source codes prevent the researchers from modifying and unifying them across 

different tools and languages (Siegle et al., 2015). Figure 6.2 summarizes the 

necessity of open-data initiative and that of sharing the data. 

 

Figure 4.1 The spatiotemporal domain of neuroscience and of the main methods available for the study 
of nervous system in 2014. Each colored region shows the extent of spatial and temporal resolution for a 
method. Filled boxes show perturbation techniques for alternating the functions of neuronal circuitry 
and the unfilled boxes show the measuring techniques. Inset shows a cartoon rendering of the methods 
available in 1988. (Adapted from Sejnowski and Churchland., 2014). EEG= electroencephalography; 
MEG= magnetoencephalography; PET= positron emission tomography; VS= voltage-sensitive dye; TMS= 
transcranial magnetic stimulation; 2-DG, 2-deoxyglucose. (Adapted from Sejnowski et al., 2014) 
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Open Data Requirements 

Sharing data for open science has some preliminary requirements. Collaborative 

projects like genome projects standardize the file format and store them in massive 

databases so that both the raw and the published data can be pooled. The toolboxes 

for such datasets should also be such that researchers using various computer systems 

and analysis machinery can access them irrespective of the platforms they are using. 

Often reading the data and information about the data, also known as metadata, 

provide an additional confidence about the data structure, types, size, and usability. 

These requires a format that is human readable, or at least widely provided with 

appropriate software to make it so. Neuroscience data format needs to support the 

management and organization of complex datasets from various sources, e.g. 

neuronal recording, video and audio recording, eye-tracking, external stimuli, neural 

stimulation, task-related events, analytic results etc. Supporting the metadata can 

make interpretation and analysis much easier. Storing similar data elements in a 

common, compatible way with common descriptions and terminologies can further 

Figure 4.2 Summary of why open data initiative is necessary 
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enable interpreting the data without any need for an API or any other translation 

mechanism between one lab and another (Zehl et al., 2016). Apart from these 

technical requirements, as summarized in Figure 6.3, there are other aspects to 

consider for creating the ecosystem of data sharing (Figure 6.4). Given the 

tremendous amount of data growth in Neuroscience, the file formats should also need 

to be extensible while still maintaining portability. They must be widely supported by 

programming languages and analysis tools for fostering the growth of open-source 

toolboxes and for unifying custom-developed codes. The sharing of the data implies 

that they must be usable and easily accessible by other users. Hence, the principle of 

data sharing dictates that the data must reside in a repository which is discoverable 

to everyone with appropriate open-storage location along with the traceability of the 

data by the types of technologies used and the use of experimental paradigms. The 

quality of the data must be assessable by engaging the community to adopt a metric 

which will also incentivize individual researchers (Wiener et al., 2016). Moreover, the 

repository or the storage mechanism must be provided with incentives for 

sustainability of the data over the years. This implies that the data must be curated 

and governed, their life-cycle must be managed in a marketplace where data-

exchange can be rewarded as part of the research product instead of calling them 

supplementary materials (Ferguson et al., 2014, Wiener et al., 2016). One such 

approach can be sharing data in the form of publication named as data-articles 

(Poline, 2018) and developing a citation system equivalent to the literature citation. 

Agencies like Wellcome Trust mandate the release of data, and there is an increase 

number of journals, e.g. Nature Scientific Data, GigaScience, F1000Research, MNI 

Open Research, eNeuro, eLife, Wellcome Open Research, that are accepting data 

from neuroscience-focused experiments. Such credit attribution through stable 

digital identifier can also help tracking of data and improving most of the ecosystem 

requirements of open-data sharing. 
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Open Data Challenges 

Open data challenges mostly surround the requirements of data sharing. Identifying 

the challenges as a multi-factor construct, (Wiener et al., 2016) mentioned a number 

of challenges to initiate the data sharing ecosystem and enable its survival so that new 

collaborative projects can thrive. The problem-space of neuroscience data sharing can 

be presented by Figure 3.5 non-exhaustively. The most significant challenge in data-

sharing is sociological and ethical, rather than technical (Choudhury et al., 2014). 

Researchers lack motivation to share their data unless an incentive to promote data-

sharing is introduced (Poline et al., 2012). There is a classic competition to be 

recognized for novel findings. It is also expensive to generate data, and, when 

obtaining funding for research is extremely competitive, anxiety to be undercut by 

other researchers in terms of data collection is a very real challenge unless there is a 

strong motivation to release hard-earned data. There are also concerns of data quality 

and the fear of being viewed as incompetent if the researchers lack confidence about 

their research methods not being of the highest quality. The willingness to share data 

may further be constrained if the study involves human subjects where there are 

Figure 4.3 List of open data technical requirements 

Figure 4.4 List of open data ecosystem requirements 
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concerns of privacy and confidentiality. Data used in Neuroscience studies suffers 

from diverse formats, methods and models. Sharing data in open repositories need to 

address the standardization of the data and make them discoverable which will 

otherwise be used by only a fraction of closely-operated researchers. The large volume 

of datasets also poses an upper bound on the capacity and throughput of the data-

sharing infrastructures. Neuroscience datasets are highly specialized and very domain 

specific- requiring the training of a new workforce of researchers to ask what they 

should do with these data and to employ modern techniques, i.e., machine learning, 

for obtaining insights on the  large volume of recorded data (Vogelstein et al., 2014). 

Projects with massive funding, e.g., US BRAIN and European Human Brain Project, 

produce large-scale datasets, but neuroscientists across the research spectrum 

produce lots of small datasets which creates a granularity in the data-sharing. These 

datasets are also called long-tail data (Ferguson et al., 2014). Sharing these richly 

diverse and heterogeneous small datasets are also in question for data-sharing as it 

requires continuous integration and adaptation of new data types. Sustainability of 

the stored data depends on the discoverability, usability, governance of the data and 

establishing a market-place to trade the data in research ethos. If there is a barrier to 

enter the database and the researchers cannot readily find the data they are interested 

in, the enrichment process for the ecosystem will diminish. This also implies that 

there should be policies and governance of data sharing allowing for federating 

disparate datasets. Finally, there should be financial safeguards for the continued 

existence of the ecosystem and its scalability to accommodate new generations of 

complex data recorded from sophisticated technologies which is also a demand 

against the traditional fixed-period funding strategies. 
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4.2.2  Open Source 

It is a very common practice to make the analytic and software source-codes publicly 

available across all fields of Neuroscience. In neurophysiology alone, there are lots of 

open source toolboxes as we discussed in Chapter 2. The open source tools help 

neuroscientists to extract, translate, analyze, and visualize the data. Neuroscientists 

also use software like Statistical Parametric Mapping (SPM) and Neuron for 

analyzing, modelling and simulating their data. But there are also a growing number 

of publications where custom-built software and scripts are being used, either stand-

by or utilizing the codes from other open-source projects. When the results are set 

for publication, it undergoes a complex analysis pipeline involving many processing 

steps from the pre-processing of the data for extracting the exact information that the 

scientists are interested in to the statistical analyses and visualization of the 

Figure 4.5 Landscape of data sharing in Neuroscience and the issues to address. These issues can be 
grouped into three clusters- red, blue and green- each for three different categories: 1. cultural, technical 
and practical, 2. Nature of the data and resources, and 3. Marketplace or ecosystem. (Adapted from 
Wiener et al., 2016) 
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information. All these steps cannot be described in full-details in the accompanying 

publications- making it difficult to reproduce the results and cross-validate the 

findings of the original research. This issue brings a compromise in the integrity and 

reliability of research as addressed in (Open Science Collaboration, 2015). Although 

there are other experimental steps like use of transgenic animals and reagents that 

cannot be exactly reproduced, this limitation does not apply when the collected raw 

data enters the computation. Analyses techniques are becoming more sophisticated, 

implying that there is a wide gap between the collected raw data from the experiment 

to what is published as results. Availability of codes make it more transparent and 

enables other researchers to reuse and potentially improve it. The publication itself 

works as an advertising tool for the usefulness of the code or the software (Gleeson et 

al., 2017), and the feedback received by other users, contributions to the codes, tests 

and sharing of one another’s software or codes can create a network of tools or 

neuroscientific developers. This can enable a multi-fold improvement in the quality 

control and efficiency in neuroscience research- particularly those engaging data 

analyses and model development. But it also necessitates developing a platform for 

open source repository and shares similar challenges as that of open data initiative. 

Interestingly, many good code-sharing solutions exist like GitHub and BitBucket. 

GitHub alone has 15 million users and its popularity has been increasing exponentially 

among scientists, many of them from Neuroscience, to share, maintain, and update 

their code (Perkel, 2016). Dedicated scientific sites like Zenodo (http://zenodo.org) 

and Figshare (http://figshare.com) provide citable unique identifiers (DOI) and also 

allow GitHub users to upload snapshots of their repositories (Eglen et al., 2017). 

There is also an observable reluctance among researchers to share codes who believe 

that their codes are not written properly following the standardization or are poorly 

documented (Barnes, 2010) - implying that the codes are not ‘good enough’. But it 

can be argued that if the code is good enough to do the job, it can be considered good 

enough to release. This will eventually provide the peers with at least a tentative idea 

of what data processing steps were undertaken and what set of parameters or 

assumptions were used to obtain the results of a published model or figure. The codes 

can still be useful contrary to popular expectation, although well-documented codes 

are obviously easy to reuse or test. 

http://zenodo.org/
http://figshare.com/
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Releasing the codes used for analyses of data in a publication had not been a pre-

requisite until recently. A growing number of journals are now mandating that the 

authors ensure the public availability of all the codes, computational models and 

analysis tools (Eglen et al., 2017).  F1000Research stated that “software papers 

describing non-open software, code and/or web tools will be rejected”. BioMed 

Central introduced a checklist for minimum standards of reporting for  BMC 

Neuroscience, BMC Biology, Genome Biology and GigaScience which require the 

submission to include a statement about code availability and, when applicable, 

citing the code using a DOI or similar unique identifier (Kenall et al., 2015). Nature 

journals now require the authors to include a statement declaring the availability 

of the codes underlying the central results. Given that the altruistic motives for 

sharing codes are clear, funding agencies such as Wellcome Trust in the United 

Kingdom and the NIH in the United States already have developed policies to 

obligate the researchers and change their attitudes towards code-sharing. 

 

4.2.3  Open Storage 

Apart from the social challenges in making data open, the next level of difficulty arises 

when it comes to storage of the vast amount of data. Taking as an example, brain 

imaging studies such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

(Weiner et al., 2012) which produces multiple petabytes of genetics data alone with 

its initially available samples of 832 subjects (Van Horn and Toga, 2014). The size of 

the data increases significantly when this is combined with the multi-modal 

neuroimaging data types. The increase in the capability to obtain data and the need 

for open-data for sustainable reproducibility generated interest among the 

neuroscientists to create and share large scale databases. Neuroimaging community 

is particularly well ahead in manifesting the data-sharing culture. There are several 

major initiatives that provide publicly available datasets such as the Human 

Connectome Project, OpenfMRI, XNAT Central, 1000 Functional 

Connectomes/International Neuroimaging Datasharing Initiative, OASIS, ADNI1, 

NIH MRI Study of Normal Brain Development1 (NDAR), the FBIRN consortium etc. 

Further briefings on these projects are available (Poline et al., 2012). Numbers of 
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organizations are also fostering the neuroimaging data sharing, e.g., the 

Neuroimaging Data Access Group (NIDAG), INCF and its Neuroimaging Data Sharing 

initiative, and the Biomedical Informatics Research Network (BIRN; Helmer et al., 

2011). 

But such large projects are multi-site collaboratives in nature which require an 

extensive amount of funding and are specifically financed to do so. For example, 

ADNI itself received a grant of $60 million USD at the first stage. Although projects 

like ADNI, BIRN and XNAT produced infrastructure and tools to help groups share 

their data, small laboratories often struggle in capturing, preparing, and releasing 

their data (Poline et al., 2012). Sharing and curating “long-tail” data (Ferguson et al., 

2014) and facilitating small laboratories to share their data within reasonable budgets 

are not yet well-practiced, and there is a necessity for more generalized and 

sustainable storage platform so that the data can be available for re-analysis in a 

distributed and lightweight manner.  

So far, neurophysiologists do not have many community repositories like their 

colleagues in neuroimaging except the German Neuroinformatics Node 

(https://www.g-node.org). All the open data repositories can be browsed by subject 

‘Neuroscience’ through the Registry of Research Data Repositories 

(https://www.re3data.org). There is a proliferation of ‘generalist’ data repositories 

that host data from different scientific fields with an objective to provide a systematic 

data stewardship practices and enable datasets collection, curation, preservation, 

long-term availability, dissemination and access (Assante et al., 2016). The following 

five repositories have been identified as being recommended by data journals for the 

deposition and publication of research data (Candela et al., 2015): 

▪ 4TU.ResearchData: Previously known as 3TU.Datacentrum 

(https://researchdata.4tu.nl) is the result of cooperation between four 

technical universities in the Netherlands.  

▪ CSIRO Data Access Portal: This repository (https://data.csiro.au) is 

established by the Commonwealth Scientific and Industrial Research 

Organization (CSIRO) and is a part of the Australian National Data Service 

(ANDS).  

https://www.g-node.org/
https://www.re3data.org/
https://researchdata.4tu.nl/
https://data.csiro.au/


 

~ 174 ~ 

 

▪ Dryad: This repository is an initiative of number of journals and scientific 

societies to adopt a joint data archiving policy (JDAP) (http://datadryad.org). 

This is governed by a membership organization where the membership is 

assigned to the scientific stakeholders such as journals, publishers, research 

institutions etc. One of the unique features of Dryad is that data files are always 

associated with a published article. Usually, journals facilitate the data 

submission by sending notices of new manuscripts to Dryad. Authors submit 

data either during the review of the associated article or after it has been 

published. 

▪ Figshare: This repository provides free unlimited space for public data and is 

one of the portfolio business of Digital Science, the global technology division 

of Macmillan Science and Education (https://figshare.com). 

▪ Zenodo: This repository is a by-product of the EU FP7 project OpenAIREplus 

(Manghi et al., 2012) in collaboration with CERN to establish a European-wide 

data-sharing infrastructure (https://zenodo.org). It has an integration with 

GitHub for creating citation of the hosted codes. 

All five of these repositories provide DOI, an essential requirement for increasing the 

visibility and access to data-articles. (Assante et al., 2016) provides a detailed analysis 

of their features such as formatting, documentation, licensing, publication costs, 

validation process, availability of the data, discoverability and access, and provision 

for citation. Although Dataverse (Crosas, 2011) is often cited as a repository, it is 

indeed a technology that enables creating repositories.  

Google’s G Suite for Education provides free unlimited Google Drive spaces. For 

example, all students of Trinity College Dublin avail of this unlimited cloud-space 

through Trinity’s MyZone service. Amazon Web Services (AWS) has launched ‘AWS 

Public Dataset Program’ to cover the cost of storage for publicly-available high-value 

cloud-optimized datasets to democratize access to data when it is available for 

analysis using the cloud-computing facilities of AWS. Other objectives of the program 

are to develop techniques, formats and tools that are native to cloud-computing and 

to encourage the development of communities who may possibly benefit from the 

shared data. Data analysis in neuroscience will soon require adoption to ‘big-data’ 

philosophy and will involve use of rich open-source ecosystems for distributed 

http://datadryad.org/
https://figshare.com/
https://zenodo.org/
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computing and storage (Freeman, 2015). The storage facilitation by two technology 

giants for the greater scientific and academic community will hopefully ease the 

cultural shift in data-handling of neuroscientific studies. 

 

4.2.4  NeuroChaT and open science 

Open Data and NeuroChaT 

NeuroChaT meets most of the technical requirements of open-data concept by 

adopting a widely used platform independent format called Hierarchical Data File 

(HDF5) format (www.hdfgroup.com) as its default output. This format provides a 

view of the data without decoding using freely available software called HDFView 

available in the link above. Popular electrophysiological data analysis platforms like 

Python or MATLAB® have API for reading and writing data in the HDF5 format which 

eases the extraction and plotting of data by naïve users. There is no vendor lock-in 

for this file-type. It is also extensible, and there is virtually no limit on the file size and 

the number of data objects it can store. This makes the format very flexible for big 

data and potentially very useful for storage of data from high-density electrodes, i.e., 

Neuropixels (Jun et al., 2017b). Different NeuroChaT data types are stored 

hierarchically using the name specifications of NWB format. Data from each 

recording session are stored in one file, reducing the management of multiple files 

generated in single recording in most of the commercial recording systems. The 

analyses outcome, both graphical and parametric, are stored in different folders with 

individual subfolders for each analysis. Use of this format and the arrangement of 

information within the file (Figure 3.56) conforms to most of the technical 

requirements of open data. We do not have specific mechanism to store meta-data 

apart from those automatically retrievable from the original data files. But 

NeuroChaT I/O module for HDF5 enables writing data and attributes to any of its 

paths or data without rewriting the entire file which was a major limitation in NWB 

API. Storing meta-data in multiple formats or extracting them into one common file 

using a structured file like odML (open metadata Markup Language) provides ways 

for keeping the information organized, easily accessible and machine-readable which 

are crucial for enhancing reproducibility in neuroscience research (Zehl et al., 2016). 

http://www.hdfgroup.com/
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Future extension of codes on system specific meta-data extraction or to insert user-

input as meta-data to the HDF5 files can be easily deployed as a plug-in and without 

further requirement of new file formats for storing them separately aside the data 

files. The ecosystem requirements of open data are not addressed yet apart from the 

fact that we deposited analyzed data and PDFs of graphical output for the publication 

of (Jankowski et al., 2014) in eLife, a prominent journal funded by the Wellcome 

Trust, the Howard Hughes Medical Institute, and the Max Planck Society.  But we 

briefly mentioned some of the options for the open storage to meet the requirements 

in Section 6.2.3. 

Open Source and NeuroChaT 

We used Open Science Framework (OSF) (https://osf.io) to make NeuroChaT source 

codes publicly available. OSF is an open-source software project of Center for Open 

Science, a non-profit organization in Charlottesville, Virginia, that facilitates 

management and open collaboration in scientific research. All files, data, codes and 

protocols can be stored in one centralized location which is managed in a secure 

cloud. Access to these files can be controlled by the user to make part of the project 

public or to keep it private. The user can view all the projects in one dashboard, add 

collaborators and view the changes in file version and their contributors. Each project 

may contain a Wiki for the description of the project. The framework currently also 

provides unlimited storage along with supporting third-party add-ons for storage like 

Google Drive, Dropbox, OneDrive, Amazon S3, Bitbucket, Box and Figshare. Citations 

manager like Mendeley and Zotero can be integrated as well. GitHub and GitLab can 

also be used from the project dashboard with full control to the git repository. Thus, 

OSF brings in a new opportunity to store-keep source-codes, data, and 

documentation along with other project-management features-making it a suitable 

candidate for hosting NeuroChaT with respect to all open-initiative aspects. 

The entire NeuroChaT project can be found in the citable link, https://osf.io/kqz8b. 

NeuroChaT provides access to the source codes by hosting them in GitHub repository 

(https://github.com/mnislamraju/NeuroChaT). The same codes are also hosted in 

the OSF project where they are essentially linked and synced to the GitHub 

repository. Therefore, the users can avail the version control and collaboration in the 

same way as in git. Common git actions like creating repository, branching, 

https://osf.io/
https://osf.io/kqz8b
https://github.com/mnislamraju/NeuroChaT
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committing, sending pull requests and downloading the entire repository can be 

performed similarly. The project page also contains a Wiki describing essential 

aspects of the NeuroChaT. Few example datasets in HDF5 formats are also provided 

using the free storage that OSF provides. These datasets are also publicly available so 

that the users can use or test NeuroChaT by using these files. 

 

4.3  Data integrity and open science in NeuroChaT 

Scientific misconduct and fraud span creating data, manipulating results to make 

them more statistically significant or more compelling, appropriating ideas and 

approaches of other researchers and plagiarizing (Lisberger, 2013). While most other 

issues are addressed through enforcing and nurturing ethical practices, the ones 

involving data can be handled through direct speculation. When it comes to 

neuroscience, particularly to neurophysiology, there are challenges pertaining to the 

artefact created by the analysis pipeline, lack of peer-reviewed code and lack of 

replication of analysis. Novel developments are facilitating increased neuroscience 

data volume and posing challenges on computational errors apart from the 

intentional misconducts. This is further exaggerated by the veracity of neuroscience 

data types and formats, and lack of analysis tools supporting data standards apart 

from the copyright formats. There are also issues associated with data storage, 

maintenance, exploring across data across historical framework, referencing, 

indexing and data sustainability. So far, responsibility for the truth and accuracy of 

data is on the onus of the researcher (National Academy of Sciences et al., 2009), but 

it is also essential to  address the challenges in compounding results from multiple 

scales of resolution (gene expression datasets, cellular imaging and physiology, 

functional imaging and clinical data) (Akil et al., 2011, Gordon, 2003, Deco et al., 2015, 

Bouchard et al., 2016). Transparency in data manipulation, interpretation, statistical 

measurements etc. can be assured through the practice of open science in the 

community and cultivating data integrity within individual laboratories. The US 

National Academy of Science makes the following recommendation for ensuring 

integrity of research data (Editorial, 2009): 
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▪ Provision of appropriate tools for management of research data and for 

efficient utilization of computational and human resources 

▪ Documentation of experimental protocols and their relevance to data 

acquisition and manipulation 

▪ Making data and experimental details accessible and archiving to allow for 

replication and consequent studies 

The data integration process by using NeuroChaT starts with standardizing the 

processing pipe-line as shown in Figure 6.6. Data is handled by the experimenter 

from the design of the studies to publication. Once the behavioral and neural data 

are recorded, they are stored in the recording computer with a backup to an external 

storage medium or a secure cloud storage of experimenter’s choice. Experimental 

details including details of the animal under use are written on spreadsheet as a 

source of metadata for subsequent studies. The unit identification and isolation 

follow the analysis of behavioral correlates using the NeuroChaT software. Once units 

are all analyzed, they are characterized based on the analysis graphics and output 

parameters. Units with similar characteristics, i.e., tuned to head-directional 

information, are grouped for statistical inference. The expert developer creates 

routine for appropriate use of the NeuroChaT or assesses the credibility of built-in 

algorithms. Thus, an intra-lab peer-reviewing is ensured. The computational expert 

also provides feedback on the interpretation of the inferential statistics and an intra-

lab data-integrity is established. 

The source code of NeuroChaT is open. Once the storage of the data is appropriately 

handled, it ensures an overall integrity of the research data to the wider community 

for reproducibility and accountability. The open-methodology principle has been 

complied by using peer-reviewed analyses techniques and explaining the entire data-

processing pipeline in the published literatures. Apart from the open source and open 

data, the trinity of open science (Kraker et al., 2011) is accomplished by archiving 

them in platforms with open peer-review and open access such as bioRxiv 

(Matulewicz et al., 2018). The working philosophy in NeuroChaT therefore created 

an ecosystem for aligning our research to open science principles by addressing 

associated challenges. 
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4.4  Future works 

Owing to the rise of big-data in neurophysiology and envisioning the use of cloud 

computing (Bouchard et al., 2016), future development of NeuroChaT can target a 

cloud-native version to support distributed computing and work with algorithms to 

support such technologies. Neo (Garcia et al., 2014) has a support for conversion of 

electrophysiology data from several copyright formats i.e., Axona, Balckrock, Plexon, 

NeuroExplorer etc. to HDF5 format. NeuroChaT currently supports Axona and 

Neuralynx formats. Integrating other data formats will be useful to provide for the 

analytic need of scientists using recording systems from a wide range of vendors. 

Currently, NeuroChaT supports analyses that pertain to assessing the dynamics of 

neural responses in response to the spatial information. Analysis of stimulus-response 

dynamics are also widely studied in neurophysiology. Extensive development of 

event-related analysis using both the LFP and single-unit data will potentially open 

the door for wide-spread reception among the neurophysiologists. We currently do 

not provide tools for visualizing the raw behavioral or neural data and the spike-

sorted data. Therefore, we may further consider integration of tools necessary for 

such visualizations.  

Figure 4.6 Standard pipeline for the processing of behavioral neurophysiology data from recording to 
publication. 
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A. NeuroChaT GUI Use Guide  
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Download and installation: 

Download the codes from OSF website or GitHub 

▪ OSF link: https://osf.io/kqz8b  

▪ GitHub link: https://github.com/mnislamraju/NeuroChaT  

Start NeuroChaT GUI (no installation required) 

▪ Using command prompt: 

o Change your current directory to the NeuroChaT directory 

o >cd C:\path\to\neurochat 

o Execute following command 

o >python neurochat.py 

o Or, >python C:\path\to\neurochat\neurochat.py 

▪ Using Python IDE, i.e. Spyder: 

o Open neurochat.py in the editor 

o Press the Run button to start NeuroChaT GUI 

Following window will pop-up: 

https://osf.io/kqz8b
https://github.com/mnislamraju/NeuroChaT
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Overview of the front panel: 

Input Data Format 

Select one of the three data or file formats. NeuroChaT is currently supporting Axona, 

Neuralynx and NWB (HDF5) file formats. 

Figure 0.1: NeuroChaT graphical user interface 
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Analysis Mode 

NeuroChaT works in three analysis modes (Figure 3): Single Unit, Single Session, 

Listed Units. Following are the descriptions of how these modes work. 

a. Single Unit: When selected, it analyses data that belongs to a single cluster 

extracted from spike-sorting methods. This mode is a perfect choice when the 

detailed analysis using many functions is required to explore more properties of the 

cell. 

b. Single Session: This mode analyses data from a single spike file. In Neuralynx 

system, it accepts .ntt and .nst files. For Axona system, it supports .n (n= 1, 2, 3 etc.) 

files. This mode looks for all the clusters that have been identified from the spike 

sorting methods and analyze the selected functions for all of them. Along with 

appropriate choice of analysis functions, this is a powerful mode for thorough 

examination and characterization of units from a single electrode. 

Figure 0.2: Select the input file format from one of the three options in the 'Input Data Format' dropdown 
menu. 
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c. Listed Units: This mode analyses data from units those are listed in an Excel 

format as shown in Figure 3. The first column is the directory where the data is 

stored. Data specifications are provided by following means: 

HDF5 File: 

Column 1 Column 2 Column 3 Column 4 

Data 

directory 

Name of the 

HDF5 file 

without 

extension  

Single unit of 

interest 

LFP channel 

ID 

 

Axona and Neuralynx Files: 

Column 1 Column 2 Column 3 Column 4 Column 5 

Data 

directory 

Name of the 

spatial data 

file without 

extension  

Name of the 

spike data 

file with 

extension 

Single unit of 

interest 

LFP channel 

extension (Axona) 

Or Name of the LFP 

data file (Neuralynx) 

 

 

 

Figure 0.3: Input style in Excel files for batch mode analysis using ‘Listed Cell’. Top row shows the style 
for HDF5 data. Bottom row shows the style for Axona and Neuralynx systems. 
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Note: For Axona system, you should provide the spatial information as a .txt file 

format. If you use TINT for spike-sorting, you can export the information from there 

as .txt file. 

 

Unit No 

Select the unit that you are interested to analyze. Although NeuroChaT lists up to 255 

units, units those are identified using the clustering process can only be used. 

 

 

LFP Ch No 

Select the LFP channel from the dropdown list. When the data is browsed using the 

‘Browse’ button this box fills with the potential LFP channels in the folder with 

recorded data. For HDF5 dataset, it shows the data groups in the directory 

‘/processing/Neural Continuous/LFP’. It is always ‘ncs’ For Neuralynx data to refer to 

the files with .ncs extension. 

Figure 0.4 Dropdown list for the selection of cell number. 
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Graphic Format 

Select one of the two options for the file format of graphical output from NeuroChaT 

analyses. 

Browse 

Clicking on this button prompts for the file or folder selection based on analysis 

mode. For ‘Single Unit’ and ‘Single Session’ mode, this will ask user to select .ntt/.nst 

file followed by .nvt file (Neuralynx) or .n file followed by .txt file (Axona). For ‘Listed 

Units’ mode, it will ask for specifying the .xls/.xlsx file that contains the list of the 

units. 

Analysis Selection 

This section provides a list of analyses that can be selected by ticking the boxes beside 

their names. Checking the ‘Select All’ box selects all the analyses and unchecking it 

removes their selection. 

 

Figure 0.5: Dropdown list to select the LFP channel 
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Select Cell Type 

Analyses of interest can also be set by pressing one of the buttons in the ‘Select Cell 

Type’ section. It selects the analyses of interests essential for individual unit type. For 

example, characterizing units for rhythmic properties does not require spatial 

analyses. Therefore, only the analysis set that characterizes spike trains are selected. 

The user can select or deselect analyses from this set. 

Log Box 

The box with white background at the bottom of the user-interface displays log of 

NeuroChaT actions, warnings and errors. Warnings are represented by orange texts 

while errors are displayed in red texts. All other NeuroChaT logs are shown as blue 

texts. 

Save Log 

Pressing ‘Save Log’ button prompts the user to save the texts at the log box. This will 

export the log texts as plain ASCII texts and, therefore, there will be no color in the 

output text file. 

Clear Log 

This button simply clears the log record in the log box. It is recommended that the 

log box is cleared at intervals so that errors are easier to find when the logs are 

exported 

Start 

Pressing this button starts reading the data from the specified files and running 

analyses on them. As long as the data analysis keeps going, this button remains 

disabled to avoid unnecessary interruption of the execution. It is enabled again after 

the completion of the analysis or if there is a fatal error which stops the execution. At 

the end of the analysis of each unit, log box shows the full file directory of the output 

graphics which are saved in native folder of the spike data. If the selected functions 

have numeric results, a table appears after successful execution of all analysis 

functions. A sample table is shown in Figure 6. Clicking on the ‘Export results’ 

prompts the user to save the tabular data in Excel file (Figure 6, Bottom). 
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Menu items 

Current version of NC has 4 main menus items: File, Settings, Results & Help. 

File 

File menu consists of Open, Save Session, Load Session and Exit options as shown in 

Figure 6 below. 

a. Open: This option acts exactly as browse button described before. It will prompt 

user to give appropriate input depending on the analysis mode selected. If no file is 

selected, it generates a warning. 

b. Save Session: This will allow the user to save the configuration of NeuroChaT in 

.ncfg file (i.e. input and output format, analysis mode, cell no, file and directory 

information from user input, the state of the functions that are selected for analysis, 

and the parameters used for the analyses). If aborted, it creates a warning in the log 

box. 

Figure 0.6 Sample of parametric results of NeuroChaT analyses in a tabular form. The table pops up 
once the analyses are complete. Bottom row shows how it looks like once it is exported to an Excel file. 
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c. Load Session: This option will take the user to load configuration (.ncfg) file. If no 

file is selected, it will show a warning in the log box. 

d. Exit: Terminates the NeuroChaT software. 

 

 

Settings 

Settings menu has one item: Parameters. Clicking this item initiates the parameter 

selection box as shown in Figure 8. Analysis specific parameters and their accepted 

values are listed in Appendix C. Clicking on an item on the left panel will display the 

parameter setting panel for that analysis on the right panel. 

Figure 0.7 'File' menu items. Shortcuts for invoking each of these actions are also shown. 
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Utilities 

This menu comprises of useful NC utilities described below (Figure 9): 

Figure 0.8: Window for analysis specific input parameter settings. 
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a. Export results: This action prompts the user to save recent analysis results in Excel 

file. 

b. Export graphics file info: The user can export the directory and name of the 

output PDF/PS files containing analysis graphics and the HDF5 files associated to the 

data in an Excel file. The sample output looks as follows: 

 

 

c. Merge output PDF/PS: This utility allows merging multiple PDF/PS files into a 

single PDF or PS file. The utility works in two ways, as shown on the top row of Figure 

11: 1. By uploading an Excel list of the PDF/PS file names (full name, including 

Figure 0.9  Items in the 'Utilities' menu. 

Figure 0.10  Sample Excel file from the export of graphics file information. 
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directory) using the ‘Use Excel List’ option, 2. By picking the files manually using 

‘Choose files’ option. ‘Select now’ button will be activated and clicking on this will 

display a file-picking utility. The ‘Save In’ button opens a save file dialogue for the 

user to select the file. The utility executes upon pressing the ‘Start’ at the bottom of 

its window. Origin files remain intact. 

 

 

 

Figure 0.11: Upper row: Merge file utility showing the options of 'Use Excel List' or ‘Choose Files’. Bottom 
Row: The file-picker for selecting files to merge 
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d. Accumulate output PDF/PS: This utility help accumulating the analyzed output 

graphics files into a single folder. This works in the same way as merging files 

described above i.e., takes Excel file input or allows manual pick up. Specified files are 

then accumulated in the folder selected by ‘Save In’ button (Figure 11, bottom). This 

utility executes when the ‘Start’ button, located at the bottom of the window, is 

pressed. PDF/PS files being accumulated are not deleted from their original location. 

e. Verify units: Clicking this item asks the user to upload an Excel file that contains 

the name of the directory, spike file, and the unit number that the user is verifying as 

shown by the sample in Figure 12. Output of this analysis adds the last two columns 

that shows if the file and the unit in that file exists. 

 

 

f. Evaluate clustering: This option evaluates the quality of clustering by measuring 

Bhattacharyya coefficient and Hellinger distance between the clusters of a recording 

session. The clusters are formed using peaks, troughs and two principle components 

in each electrode channels. Sample input and results are shown in Figure 13. 

 

 

g. Compare single units: This option allows the user to compare the units in two 

different recordings. The analysis takes the clusters, formed as that of cluster 

evaluation, from two sessions, and compares their similarity by measuring their 

Figure 0.12: Sample input format and output in 'Verify units' utility. 

Figure 0.13: Sample Excel file input for cluster evaluation. The analysis outputs are added at the tail of 
each row of data. 
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degree of overlap (Bhattacharyya coefficient and χ2-similarity) or their statistical 

distance (Hellinger distance). Sample input style and results are shown in Figure 14. 

 

 

h. Convert to NWB formats: This option takes a list of file information in Excel 

format, as shown in Figure 15, and converts the data into HDF5 (NWB) format. The 

sample is for Axona recordings. Full filename (without directory) should be written 

in LFP data specification columns. 

 

  

In all of these Excel based manipulations, columns names are not strictly defined, but 

the order of information is strictly followed. The first row is always considered to 

specify the header for the Excel data. 

  

Figure 0.14: Sample Excel file input for cluster similarity measurement. Two sets of specifications are 
required for comparison. The analysis outputs are added at the tails of each set of specifications of the 
comparing units. 

Figure 0.15 Sample Excel input for converting the recorded data to HDF5 format. 
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B. API Use Guide 
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This API use guide produces results reported in Chapter 5. 

In addition to the codes for verifying the place cell, head-directional cell and analyses 

of rhythmic units, it also shows examples of other useful methods that can be 

harnessed for creating simple and efficient analysis scripts and data management. 

Please refer to the code-documentation for the description of each module, their 

classes and functions, and methods in each class. 

In addition to the example units, this guide shows uses of NeuroChaT and its 

components in many different ways. 

 

Step-1: Download NeuroChaT package from OSF or GitHub 

NeuroChaT can be used without any burden of installation. You can download a local 

copy of NeuroChaT codes and insert the path to your system. 

 

Step-2 Insert NeuroChaT path to $PYTHONPATH 

import sys 
sys.path.insert(1, 'path\to\neurochat') 

 

Step-3 Import modules and classes  

We are importing only NSpike and NSpatial for the moment. We will add and import 

NLfp data for analyses that require LFP signals. nc_plot is the module that provides 

with plotting functions 

from neurochat.nc_data import NData 
from neurochat.nc_spike import NSpike 
from neurochat.nc_spatial import NSpatial 
import neurochat.nc_plot as nc_plot 

 

Step-4 Instantiate objects  

The names C0 and S0 for the unit and the spatial data are arbitrary 

https://osf.io/kqz8b
https://github.com/mnislamraju/NeuroChaT
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spike= NSpike(system = 'Axona') 
spike.set_name('C0') 
 
spat= NSpatial(system = 'Axona') 
spat.set_name('S0') 

Step-5 Add names for the data files 

data_dir= '\full\file\directory\of\place cell\recorded\Axona\data\' 
 
spat.set_filename(data_dir + '040513_1_1.txt') 
spike.set_filename(data_dir + '040513_1.6') 

 

For HDF5 files, 

Path of the data should also be added following a ‘+’ sign. The system argument 

should be changed or could be set at NSpatial(system= ‘Axona’) 

spat.set_system('NWB') 
spike.set_system('NWB') 
 
data_dir= '\full\file\directory\of\place\cell\HDF5\data\' 
spat.set_filename(data_dir + '040513_1.hdf5+/processing/Behavioral/Position') 
spike.set_filename(data_dir + '040513_1.hdf5+/processing/Shank/6') 

 

Step-6 Load spatial and spike data. Set the unit number 

spat.load() 
spike.load() 
 
spike.set_unit_no(3) 

 

Step-7 Instantiate NData object. Add individual data objects to NData 

object. 

ndata= NData() 
ndata.spike= spike 
ndata.spatial= spat 

The data format, filenames for individual datasets can be set using ndata 

ndata.set_data_format(data_format = 'NWB') 
 
ndata.set_spatial_file(data_dir + '040513_1.hdf5+/processing/Behavioral/Positio
n') 
ndata.set_spike_file(data_dir + '040513_1.hdf5+/processing/Shank/6') 

They can be loaded using ndata 
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ndata.load() 

Or, individually 

ndata.load_spatial() 
ndata.load_spike() 

And the unit number can be set as well 

ndata.set_unit_no(3) 

 

Step-8 Perform analysis of interest 

Analysis of place cell 

Place cell firing map by using ndata: 

Pixel size is set 3cm. A 5x5 box filter is used for smoothing the firing map 

placeData= ndata.place(pixel = 3, filter = ['b', 5]) 

Similar results can be obtained by passing timestamps of the spiking unit to 

the spat.place() method 

NData object performs the job of connecting these two objects and simplifies the 

analysis 

placeData= spat.place(spike.get_unit_stamp(), pixel = 3, filter = ['b', 5]) 

Plotting relevant data 

Refer to neurochat.nc_plot.py module for more plotting functions. 

Following command is used for inline display of graphics in Notebook 

%matplotlib inline 

fig= nc_plot.loc_firing(placeData) 
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Analysis and plotting of locational shuffling analysis using default parameters 

The spike timestamps are shuffled for 500 times. Pixel size is 3 cm. limit=0 implies 

that the spikes timestamps are randomly shuffled in (-duration, +duration) range 

pshuffleData= ndata.loc_shuffle(nshuff = 500, limit = 0, pixel = 3) 
fig= nc_plot.loc_shuffle(pshuffleData) 

 

Analysis and plotting of locational shifting analysis using shifting index from 

-10 to +20 
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Spike timestamps are gradually shifted from -10 to +20 units of spatial time-

resolution. If the video for tracking animal behviour is sampled at 50Hz, this means 

the spike-train is shifted from -200ms to +400ms 

import numpy as np # numpy imported for the use of np.range 
pshiftData= ndata.loc_shift(shift_ind = np.arange(-10, 20)) 
fig= nc_plot.loc_time_shift(pshiftData) 

 

 

 

Head directional analysis of this unit 

hdData= ndata.hd_rate() 
fig= nc_plot.hd_firing(hdData) 
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Multiple regression analysis and plotting 

regressData= ndata.multiple_regression() 
fig= nc_plot.multiple_regression(regressData) 

 

 

If the data files are in Axona or Neuralynx format, they can be exported to 

HDF5 file 

ndata.save_to_hdf5() 

Datasets can be saved individually as well 

spike.save_to_hdf5() 
spat.save_to_hdf5() 

Parametric results of all the analysis performed can be obtained by 

results= ndata.get_results() # Returns the results in OrderedDict 
print(results) 

 

Results from individual data objects can also be retrieved similarly 

spike_results = spike.get_results() 
spat_results = spat.get_results() 

 

Analysis of head-directional cell  

Change data filename/paths for the new unit similar to what was done for the place 

cell information Load new data and set the unit number. No need to reassign to ndata, 

as Python assignments are by reference, not by value. 
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ndata.set_data_format('NWB') 
 
data_dir= \full\file\directory\of\head\directional\HDF5\data\' 
spat.set_filename(data_dir + '120412_1.hdf5+/processing/Behavioral/Position') 
spike.set_filename(data_dir + '120412_1.hdf5+/processing/Shank/3') 
 
 
spat.load() 
spike.load() 
 
spike.set_unit_no(1) 

Reset results to omit parametric output of previously analysed unit. This can be done 

before loading the new datasets or at any stage of the analysis. 

ndata.reset_results() 

Or, results can be reset using individual data objects 

spat.reset_results() 
spike.reset_results() 

Head-directional firing rate analysis and plot 

hdData= ndata.hd_rate() 
fig= nc_plot.hd_firing(hdData) 

 

Head directional shuffling analysis and plot 

Number of bins for the histogram of the shuffled data is set to 100 

hshuffleData= ndata.hd_shuffle(nshuff = 500, limit=0, bins= 100) 
fig= nc_plot.hd_shuffle(hshuffleData) 
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Head directional time-shift analysis 

hshiftData= ndata.hd_shift(shift_ind=np.arange(-10, 10)) 
fig= nc_plot.hd_time_shift(hshiftData) 

 

 

 

Head directional multiple regression 

regressData= ndata.multiple_regression() 
fig= nc_plot.multiple_regression(regressData) 
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Analysis of spike-train dynamics 

Changing the data filename/paths for the new unit 

data_dir= \full\file\directory\of\HDF5\data\' 
spat.set_filename(data_dir + '112512_1.hdf5+/processing/Behavioral/Position') 
spike.set_filename(data_dir + '112512_1.hdf5+/processing/Shank/5') 
 
spat.load() 
spike.load() 
 
spike.set_unit_no(1) 

Reset results to omit parametric output of previously analysed unit 

ndata.reset_results() 

Waveform properties of the unit 

graphData= ndata.wave_property() 
fig= nc_plot.wave_property(graphData, [int (spike.get_total_channels()/2), 2]) 

 

 

Inter-spike interval (ISI) histogram 

The number of bins for histogram is 350, and the maximum ISI to bin for is 350ms. 

This implies each bin represents 1msec interval. ‘graphData’ term will be used 

repetedly from now on for reusing the memory 

graphData= ndata.isi(bins = 350, bound = [0, 350]) 
fig= nc_plot.isi(graphData) 
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ISI autocorrelation histogram for longer length 

Binsize is 1msec, and autocrrelation is performed from -350ms to +350ms 

graphData= ndata.isi_corr(bins = 1, bound = [-350, 350]) 
fig= nc_plot.isi_corr(graphData) 
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ISI autocorrelation histogram for shorter length 

Binsize is 1msec, and autocrrelation is performed from -10ms to +10ms 

graphData= ndata.isi_corr(bins = 1, bound = [-10, 10]) 
fig= nc_plot.isi_corr(graphData) 

 

Theta modulation Index analysis 

Input paramteres are for [Frequency, tau1, tau2] and provides the starting value, 

lower, and upper bound for the fitted sinusoidal equation. Binsize and remporal 

bound are that of ISI autocorrelation histogram 

graphData= ndata.theta_index( start = [6, 0.1, 0.05], \ 
                             lower = [4, 0, 0], \ 
                             upper = [14, 5, 0.1], \ 
                             bins = 1, bound = [-350, 350]) 
fig= nc_plot.theta_cell(graphData) 
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Above analyses can also be done using the spike data itself as it does not require 

information from other data object. For example, 

graphData= spike.isi(bins = 350, bound = [0, 350]) 
fig= nc_plot.isi(graphData) 

 

Analysis of rhythmicity of LFP and spike-to-LFP phase relationships 

Import NLfp class 

from neurochat.nc_lfp import NLfp 

 

Instatiate LFP data object, set the filename, load data, and add to ndata 

lfp= NLfp(system= 'NWB') 
 
lfp.set_filename(data_dir+ '\\112512_1.hdf5+/processing/Neural Continuous/LFP/e
eg') 
 
lfp.load() 
 
ndata.lfp= lfp 

 

LFP frequency spectrum analysis 

Hanning window of 2sec with 1sec overlap and number of FFT components= 2048. 

ptype is ‘psd’ which means power-spectral density. Other option can be ‘power’. 

prefilt set ‘True’ for pre-filtering the LFP signal with a bandpass filter as set by filtset. 

filtset= [filter order, lower cutoff frequency, higher cutoff frequency, type of filtering]. 

fmax defines the maximum frequency to analyse. db set to ‘True’ will convert the 

spectogram in decibel unit. tr set to ‘True’ creates a time-resolved spectogram with 

‘window’-resolution and ‘overlap’ amount of signal overlap. tr set to ‘False’ calculates 

the spectogram using Welch’s method. This function can also be similarly called as 

ndata.spectrum() 

graphData= lfp.spectrum(window = 2, noverlap = 1, nfft = 2048, ptype = 'psd', \ 
            prefilt = True, filtset = [10, 1.5, 40, 'bandpass'], \ 
            fmax = 40, db = False, tr = False) 
fig= nc_plot.lfp_spectrum(graphData) 
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After setting tr as True and db = True 

graphData= lfp.spectrum(window = 2, noverlap = 1, nfft = 2048, ptype = 'psd', \ 
            prefilt = True, filtset = [10, 1.5, 40, 'bandpass'], \ 
            fmax = 40, db = True, tr = True) 
fig= nc_plot.lfp_spectrum_tr(graphData) 

 

 

 

Spike-LFP phase distribution 

fwin= [6,12] means that the phase of the spike are sought in the LFP band of 6Hz to 

12 Hz. The minimum power of this band to be accepted to carry significant theta is 

0.2 times the total LFP power, and that of the amplitude of the band signal is 0.15 

times the amplitude of the LFP signal. The LFP signal is prefiltered using the filtset 

parameters. 
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graphData= ndata.phase_dist(binsize = 5, rbinsize = 2, fwin = [6, 12],\ 
        pratio = 0.1, aratio = 0.15, filtset = [10, 1.5, 40, 'bandpass']) 
fig= nc_plot.spike_phase(graphData) 

 

 

The analysis can be performed from both the NLfp() and NSpike() objects 

Using the lfp object: 

graphData= lfp.phase_dist(spike.get_unit_stamp(), binsize = 5, rbinsize = 2, fw
in = [6, 12],\ 
        pratio = 0.1, aratio = 0.15, filtset = [10, 1.5, 40, 'bandpass']) 
fig= nc_plot.spike_phase(graphData) 

Using the spike object: 
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graphData= spike.phase_dist(lfp = lfp , binsize = 5, rbinsize = 2, fwin = [6, 1
2],\ 
        pratio = 0.1, aratio = 0.15, filtset = [10, 1.5, 40, 'bandpass']) 
fig= nc_plot.spike_phase(graphData) 

Analysis of phase-locking value (PLV), spike-field coherence (SFC), and spike-

triggerd average (STA) 

Window of the LFP chunks in reference to the spike timestamps is set to -400ms to 

+400ms Frequency of interest for the analysis is set as 2Hz to 30Hz 

graphData= ndata.plv(window = [-0.4, 0.4], fwin = [2, 40]) 
fig= nc_plot.plv(graphData) 

 

Time-resolved as set by mode= ‘tr’. nsample implies number of randomly selected 

spikes around which the LFP signals are cut for phase-locking analysis slide gives the 

time in ms by which the window is shifted from left to right to obtain the time-

resolved phase-locking analysis 
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graphData= ndata.plv(window = [-0.4, 0.4], nfft = 1024, mode = 'tr', nsample = 
2000, slide = 25, fwin = [2, 40]) 
fig= nc_plot.plv_tr(graphData) 

 

In most of the cases where composite information are required and ndata is not used, 

the spike timestamp is provided as the first argument to the methods followed by 
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other information. Because, in such cases only information required by the analysis 

from the spike object is the timestamps of individual spikes in the train. For example, 

graphData= ndata.plv(window = [-0.4, 0.4], fwin = [2, 40]) 
fig= nc_plot.plv(graphData) 

gives the same result as the codes given below: 

graphData= lfp.plv(spike.get_unit_stamp(), window = [-0.4, 0.4], fwin = [2, 30]) 
fig= nc_plot.plv(graphData) 

 

Use of Nhdf class 

Import and instantiate Nhdf class 

from neurochat.nc_hdf import Nhdf 
hdf= Nhdf() 

Store data using Nhdf object 

Nhdf() resolves the filename and the path for storage of the data using 

Nhdf().resolve_pathname(data=data_obj) where data_obj can be a NSpatial(), 

NSpike() of NLfp() object 

hdf.save_spatial(spat) 
hdf.save_spike(spike) 
hdf.save_lfp(lfp) 

This can also be done using 

hdf.save_object(obj = spat) 
hdf.save_object(obj = spike) 
hdf.save_object(obj = lfp) 

 

Graphical data from indiviudal analysis can be stored using the following 

codes 

path is the path inside HDF5 file. Analysis data are always recommended to store in 

the /analysis/ path. But analysis for each unit+lfp pair is stored in one path under 

which graphical data from individual analyses are store. The unique unit ID is 

established using the name resolving method Nhdf().resolve_analysis_path() which 

utilises the filename of the recorded data, electrode/tetrode number, eeg channel ID 

and the unit number. name is the name of the analysis following the unit ID, i.e. ‘plv’ 

etc. graph_data are the dictionary data that are plotted using the functions iin nc_plot 
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unit_id= hdf.resolve_analysis_path(spike = spike, lfp = lfp) 
 
hdf_name= hdf.resolve_hdfname(data=spike) # Resolve HDF5 filename 
hdf.set_filename(hdf_name) # NeuoChaT opens the file as file-object as soon as 
new filename is set. 
 
print(unit_id) 
 
hdf.save_dict_recursive(path ='/analysis/' + unit_id+ '/' , 
             name = 'plv', data = graphData) 

 

Analysis results can be stored by 

results= ndata.get_results() 
hdf.save_dict_recursive(path ='/analysis/' + unit_id+ '/' , 
             name = 'results', data = results) 

 

Apart from that data and attributes to any group or dataset can be added using 

Set create_group to ‘True’ it will create the path if does not already exist 

hdf.save_dataset(path = '/path/to/group/', name = 'name_of_dataset', data = dat
e_to_store, create_group = True) 
hdf.save_attributes(path= '/path/to/group/or/dataset/', attr = dict_of_attribut
es) 

Use of NeuroChaT class 

Import NeuroChaT class and instantiate 

from neurochat.nc_control import NeuroChaT 
nc= NeuroChaT() 

Convert files in Axona format to NWB files specified in an Excel list 

excel_file= '\full\file\name\of\Excel\list.xlsx' 
nc.convert_to_nwb(excel_file) 

 

Verify units provided in an Excel list before batch-mode analysis 

excel_file= '\full\file\name\of\Excel\list.xlsx.xlsx' 
nc.verify_units(excel_file) 

 

Evaluate the quality of clustering from a list provided in an Excel file 

excel_file= '\full\file\name\of\Excel\list.xlsx.xlsx' 
nc.cluster_evaluate(excel_file) 
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Evaluate similarity of clusters 

The excel list contains paired list of units to be compared for similarity 

excel_file= 'C:\\Users\\Raju\\Google Drive\\Sample Data for NC\\Comparison resu
lts_from NeuroChaT_pawels_data.xlsx' 
nc.cluster_evaluate(excel_file) 

 

Analysis using NeuroChaT 

Analysis using NeuroChaT class is always done with the help of Configuration class 

where the user specifies all the data, intended analyses, input parameters etc. 

Configuration class 

Import, instantiate, set the filename and load configuration from the file. This class 

uses nc_defaults.py module for importing deafult analyses and parameters. 

from neurochat.nc_config import Configuration 
 
config= Configuration() 
 
config.set_config_file('\full\file\name\of\grid_config.ncfg') 
 
config.load_config() 

Set configuration to NeuroChaT object 

nc.set_configuration(config) 

Start analysis. This will ‘read’ the instructions from the config object and execute 

accordingly 

nc.start() 

Use get_ and set_ functions also known as getters and setters for accessing and setting 

values of interest. For example, * Getting and setting parameters: 

param_list= config.get_param_list() # List of all parameters as dictionary keys 
 
params_by_analysis= config.get_params_by_analysis(analysis= 'isi') 
print(params_by_analysis) 
 
param_val= config.get_params(name = 'isi_length') # name is the list of paramet
ers or the name of a single parameter' 
print(param_val) 
 
config.set_param(name = 'isi_bin', value = 2) 
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Getting and setting analyses 

list_of_analyses= config.get_analysis_list() # List of all analysis 
print(list_of_analyses) 
 
analysis_checked= config.get_analysis(name = 'isi') # If 'True', analysis is se
t to be done 
print(analysis_checked) 
 
config.set_analysis(name = 'theta_skip_cell', value = False) # Analysis of thet
a skippin cell turned off 

Analyses can be performed in different modes, namely: 1. ‘Single Unit’-one cell at 

time, value ‘0’ 2. ‘Single Session’- all the cells in one recording at a time, value ‘1’ 3. 

‘Listed Units’- all the cells listed in one Excel file, value ‘2’ 

Getting and setting analysis mode 

print(config.get_analysis_mode()) 
 
config.set_analysis_mode(analysis_mode = 'Single Unit') # Can also set analysis
_mode = 0 

What type of data file need to be specified depends on the type of mode and the 

format of the data Please refer to the Configuration class for more such methods. 

Here, we show an example of settingh Axona data and an example of batch mode 

analysis 

Specifying Axona files for analyses 

data_dir= '\path\to\recorded\Axona\data\' 
 
config.set_analysis_mode(0) # For 'Single Unit' analysis 
 
config.set_spatial_file(spatial_file = data_dir+ '040513_1_1.txt') 
config.set_spike_file(spike_file = data_dir + '040513_1.6') 
 
config.set_unit_no(3) 

We are interested in only certain anlyses. So, we first turn off all the analyses: 

config.set_analysis(name = 'all', value = False) # 'all' for setting all the an
alyses 

Specify new analyses 

config.set_analysis(name = ['loc_rate', 'loc_shuffle', 'loc_time_lapse'], value 
= True) # See nc_defaults for names of the analyses 
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Let us use default parameters for ease of understanding. NeuroChaT() always saves 

the graphics in a file. Let us set the file in ‘PDF’ or ‘pdf’ format. Other option is 

‘Postscript’ or ‘ps’ 

config.set_graphic_format(graphic_format = 'PDF') 

Set this configuration for NeuroChaT’s use 

nc.set_configuration(config) 

Save this configuration to a file for future use. This file can be edited using any 

standard text-editing software 

config.save_config('\full\file\name\of\place_config.ncfg') 

Once the configuration file is set to NeuroChaT object, all of its methods can be uses 

by NeuroChaT itself. For example, the configuration can be loaded from and saved to 

file using the NeuroChaT object. It works this way- if NeuroChaT cannot find a 

method within itself, it at first searches in the Configuration object. If not found, it 

looks into composing object NData() for the function. This process is call delegation. 

The precedence for delegation is Configuration() > NData() 

nc.set_config_file('\full\file\name\of\place_config.ncfg') 
nc.load_config() 
 
nc.set_analysis_mode(0) # Analysis mode set to 'Single Unit' in Configuration o
bject 

Once the anayses are done, NeuroChaT saves the pdf in respective data folder It 

always stores the NWB-converted file if the latter does not exist and stores the 

graphics data and the parametric results in the files. Along with that, parameteric 

results and names of output PDF and NWB files can be obtained by using following 

codes which return them in Pandas DataFrame. 

results_df= nc.get_results() 
print(results_df) 
output_filename_df= nc.get_output_files() 
print(output_filename_df) 

TT6_SS_4_eeg 9.730225 23.065766 21.465309 241.153945 

Mean amplitude Std width Mean height Theta Index   

TT6_SS_4_eeg 203.199722 64.520798 204.495651 0.714889 

TI fit freq Hz TI fit tau1 sec ... Mult Rsq   

TT6_SS_4_eeg 8.808084 0.229588 ... 0.222366 

Semi Rsq Loc Semi Rsq HD Semi Rsq Speed Semi Rsq Ang Vel   
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TT6_SS_4_eeg 0.15583 0.002322 0.03563 0.001138 

Semi Rsq Dist Border DR HP DR SP DR AP DR BP 

TT6_SS_4_eeg 0.001403 0.085843 0.340246 0.190116 0.159364 

[1 rows x 88 columns] 

Graphics Files   

TT6_SS_4_eeg C:UsersRajuGoogle DriveSample Data for NC... 

NWB Files 

TT6_SS_4_eeg C:UsersRajuGoogle DriveSample Data for NC... 

These files can be exported for future use using DataFrame’s io utilities: 

import pandas as pd 
writer= pd.ExcelWriter('\full\file\path\to\parametric_results.xlsx') # set-up w
riting engine 
results_df.to_excel(writer, 'Sheet1') # write to file 
output_filename_df.to_excel(writer, 'Sheet2') 

While the graphical interface provides an easier means for performing almost all of 

the abovementioned functionalities, NeuroChaT and its constituent classes works as 

the ‘engine’ behind those tasks. 

 

Use NClust class 

Import and instantiate NClust 

Athough we are initialising it with already defined spike object, we could similarly set 

the filename and unit and load the composing spike object as we do for any other 

spike object itself NClust also performs some of the analysis that spike object does, 

i.e. analysing waveform properties, ISI histogram, PSTH etc. See nc_clust.py module 

to learn more about this aspect. 

from neurochat.nc_clust import NClust 
clust= NClust(spike= spike) 

This object is intended for facilitating analysis pertaining to clustering algorithm and 

cluster quality measurements. Following are some of the example methods: 

Remove null channels if any 

off_chan= clust.remove_null_chan() 

Resample wave by intended factor 

wave, time= clust.resample_wave(factor= 2) # Resampling factor is 2 
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Align waves by peaks for better estimation of waveform features 

clust.align_wave_peak() 
aligned_wave= clust.getWaveform() 

Get the channel with highest waveform energy, peak at the channel , and the 

index of the peak 

peak, peak_chan, maxInd= clust.get_max_wave_chan() 

Get the Principle Components of the waveforms 

pc= clust.get_wave_pc(npc = 2) # 2 PC in each channel 
print(pc) 

Get features for clustering 

feat= clust.get_feat(npc = 2) # Consist of waveform peaks, troughs and 2 PC comp
onents in each channel 

Get fetures of clustered units 

unit_feat= clust.get_feat_by_unit(unit_no = 3) 

Get waveforms by unit number 

waves= clust.get_unit_waves() 

Clustering quality evaluation 

If unit_no set to 0 all units are evaluated with a matrix output for pairwise 

comparison. Otherwise, maximum Bhattacharyya distance (BC) and minimum 

Hellinger distance (Dh) for the specified unit are returned 

bc, dh = clust.cluster_separation(unit_no = 0) 

Evaluationg unit similarity 

clust_1 = NClust() 
clust_1.load(filename = '\full\file\directory\of\spike\data_1', system = 'NWB') 
# An alternative approach for loading spike data  
 
clust_2 = NClust() 
clust_2.load(filename = '\fullfile\directory\of\spike\data_2', system = 'NWB') 
# An alternative approach for loading spike data  
 
bc, dh = clust_1.cluster_similarity(nclust= clust_2, unit_1= 3, unit_2= 3) # un
it_1 and unit_2 are the comparable units 
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C. Input parameter description 

Waveform properties 

NO PARAMETER 

      

  

      

 

Inter-spike interval (ISI) 

          

isiBin 2 1-100 Ms Bin size of the ISI histogram 

isiLength 350 10-1000 Ms Length of ISI histogram 

          

isiLogBins 70 10-100     

isiLogLength 350 10-1000 Ms   

 

ISI Autocorrelation 

isiCorrBinSh 1 1-10 Ms 

Bin size of the ISI correlation 

histogram obtained on short 

lags 

isiCorrLenSh 10 5-50 Ms 

Length of the ISI correlation 

histogram obtained on short 

lags 

          

isiCorrBinLong 2 1-50 Ms 

Bin size of the ISI correlation 

histogram obtained on long 

lags 
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isiCorrLenL 350 10-1000 Ms 

Length of the ISI correlation 

histogram obtained on long 

lags 

 

Theta-modulated Cell Index 

thetaCellFreqMin 6 1-10 Hz 
Lower limit of the theta band 

frequency in curve fitting 

thetaCellFreqMax 12 8-16 Hz 
Upper limit of the theta band 

frequency in curve fitting 

thetaCellFreqStart 6 5-10 Hz 

Starting value of the theta 

band frequency in curve 

fitting 

thetaCellTau1Max 5 0.5-10 Sec 

Upper limit of the decay 

constant τ1 decay constant in 

curve fitting 

thetaCellTau1Start 0.1 0-15 Sec 

Starting value of the decay 

constant τ1 decay constant in 

curve fitting 

thetaCellTau2Max 0.05 0-0.1 Sec 

Upper limit of the decay 

constant τ2 decay constant in 

curve fitting 

thetaCellTau2Start 0.05 0-0.1 Sec 

Starting value of the decay 

constant τ2 decay constant in 

curve fitting 

 

Theta-skipping Cell Index 

NO PARAMETER       
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Parameters from theta-

modulated cell index are be 

used 

 

Burst Property 

burstThresh 5 1-15 Ms 
Minimum ISI between 

consecutive spikes in a burst 

spikesToBurst 2 2-10 Ms 

Minimum number of 

consecutive spikes with 

burstThresh for a burst 

ibiThresh 50 5-1000 Ms 

Minimum inter-burst interval 

between two bursting groups of 

spikes 

 

Spike Rate vs Running Speed 

speedBin 1 1-10 cm/sec 
Size of the speed bin for 

histogram 

speedMin 0 0-10 cm/sec 
Minimum acceptable speed 

to analyze 

speedMax 40 10-200 cm/sec 
Maximum limit on the speed 

to analyze 

          

speedKernLen 3 1-25, odds samples 

Length of moving-average 

smoothing kernel of 

recorded speed 
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speedRateKernLen 3 1-7, odds Bins 

Length of moving-average 

smoothing kernel of the 

spike rate 

 

Spike Rate vs Angular Velocity 

angVelBin 10 1-50 deg/sec 
Size of the angular velocity 

bin for histogram 

angVelMin -200 -500-0 deg/sec 
Minimum acceptable 

angular velocity to analyse 

angVelMax 200 0-500 deg/sec 
Maximum limit on the 

angular velocity to analyse 

angVelCutoff 10 0-100 deg/sec   

          

angVelKernLen 3 1-25, odds samples 

Length of moving-average 

smoothing kernel of 

calculated angular velocity 

angVelRateKernLen 3 1-5, odds Bins 

Length of moving-average 

smoothing kernel of the 

spike rate 

 

Spike Rate vs Head Direction 

hdBin 5 
factors of 

360 
degree 

Size of the head directional 

bin for histogram 

hdAngVelCutoff 30 0:5:100 deg/sec 

Lower limit of the acceptable 

angular velocity for avoiding 

noise from jerking of the head 
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hdRateKernLen 5 1-11 Bins 

Length of moving-average 

smoothing kernel of the spike 

rate 

 

Head Directional Shuffling Analysis 

hdShuffleTotal 500 100-10000   
Number of shuffles for head 

directional shuffling analysis 

hdShuffleLimit 0 0:2:500 Sec 
Upper limit of the shuffled 

shifted time of spikes 

hdShuffleNoBins 100 10:10:200 Bins 

Number of bins for displaying 

the distribution of specificity 

measures 

 

Head Directional Time Lapse Analysis 

NO PARAMETER 

        

        

 

Head Directional Time Shift Analysis 

hdShiftMax 10 1-100 Indices 

Maximum number of spatial 

samples by which spike-events 

are shifted forward 

hdShiftMin -10 -1 to -100 Indices 

Maximum number of spatial 

samples by which spike-events 

are shifted backward 
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hdShiftStep 1 1-3   
Steps of samples spikes are 

shifted with 

 

Spike Rate vs Location 

locPixelSIze 3 1-100 Cm 
Pixel size (bin size) for spatial 

firing 2D histogram 

locChopBound 5 3-20 pixels 

Upper limit on number of 

empty rows and columns 

which are chopped off from 

the firing rate map 

          

locRateFilter Box Box/Gaussian   
Type of smoothing kernel of 

the firing rate map 

locRateKernLen 5 1-11, odds 

pixels/ 

no 

unit 

Number of pixels for box filter 

and standard deviation for 

Gaussian filter 

 

Locational Shuffling Analysis 

locShuffleTotal 500 100-10000   
Number of shuffles for 

locational shuffling analysis 

locShuffleLimit 0 0:2:500 Sec 
Upper limit of the shuffled 

shifted time of spikes 

locShuffleNoBins 100 10:10:200 bins 

Number of bins for displaying 

the distribution of specificity 

measures 
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Locational Time Lapse Analysis 

NO PARAMETER 

        

        

 

Locational Time Shift Analysis 

locShiftMax 10 1-100 Indices 

Maximum number of spatial 

samples by which spike-events 

are shifted forward 

locShiftMin -10 -1 to -100 Indices 

Maximum number of spatial 

samples by which spike-events 

are shifted backward 

locShiftStep 1 1-3   
Steps of samples spikes are 

shifted with 

 

Spatial Autocorrelation 

spatialCorrMinObs 20 1-100 pixels 

Minumum number of 

overlapping pixels between 

original and the shifted 

firing rate map 

          

rotCorrBin 3 factors of 360 degree 
Steps of firing rate map 

rotation 

          

spatialCorrFilter Box Box/Gaussian   
Type of smoothing kernel 

of the firing rate map 
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spatialCorrKernLen 5 1-11, odds   

Number of pixels for box 

filter and standard 

deviation for Gaussian filter 

 

Grid Cell Analysis 

Parameters from spatial autocorrelation are also used 

gridAngTol 2 1-5 Degree 

Accepted differences between 

angular measures to consider 

them same 

gridAngBin 3 
Factors of 360 

less than 45 
Degree 

Size of angular bins to measure 

rotational correlation 

 

Border Cell Analysis 

borderFiringThresh 0.1 0:0.05:1   

Minimum firing rate to 

maximum firing rate ratio to 

define as active pixels 

borderAngBin 3 

Factors of 

360 less 

than 45 

  
Size of angular bin for 

circular-linear firing rate map 

borderStairSteps 5 4-10   
Number for steps for stair plot 

of border firing 

 

Gradient Cell Analysis 

gradAsympLim 0.25 0.1:0.05:1   

Range of asymptotic 

parameter 'a' on Gompertz 

function, e.g., ±0.25 
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gradDisplaceLim 0.25 0.1:0.05:1   

Range of displacement 

parameter 'b' on Gompertz 

function, e.g., ±0.25 

gradGrowthRateLim 0.5 0.1:0.05:1   

Range of growth rate 

parameter 'c' on Gompertz 

function, e.g., ±0.5 

 

Multiple Regression 

multiRegInterval 0.1 0.1:0.1:1 Sec 
Interval of spatial samples for 

multiple regression 

multiRegEpisode 120 60:30:300 Sec 
Duration for each replication 

of multiple regression 

multiRegNoRep 1000 100:100:2000   
Number of replications for 

multiple regression 

 

Interdependence Analysis 

NO PARAMETER 

      Parameters from other analysis 

should be used       

 

LFP Frequency Spectrum 

lfpPreFiltLowCut 1.5 0.1:0.1:4 Hz 
LFP prefiltering lower cutoff 

frequency 

lfpPreFiltHighCut 40 10:5:500 Hz 
LFP prefiltering higher cutoff 

frequency 

lfpPreFiltOrder 5 1-20   
LFP prefiltering Butterworth 

filter order 
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lfpPwelchSegSize 2 0.5:0.5:100 Sec 

LFP segment size for Welch's 

method for spectral density 

estimation 

lfpPwelchOverlap 1 0.5:0.5:50 Sec 

Overlap between LFP 

segments for Welch's method 

for spectral density estimation 

lfpPwelchNfft 1024 128:128:8192   
NFFT for Welch's method for 

spectral density estimation 

lfpPwelchFreqMax 40 10:5:500 Hz 
Maximum frequency to 

display  

          

lfpStftSegSize 2 0.5:0.5:100 Sec 
LFP segment size for short-

time Fourier transform 

lfpStftOverlap 1 0.5:0.5:50 Sec 

Overlap between LFP 

segments for short-time 

Fourier transform 

lfpStftNfft 1024 128:128:8192   
NFFT for short-time Fourier 

transform 

lfpStftFreqMax 40 10:5:500 Hz 
Maximum frequency to 

display  

 

Unit LFP-Phase Distribution 

phaseFreqMin 6 1-10 Hz 
Lower frequency of LFP band 

for analysis of phase locking 
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phaseFreqMax 12 1-10 Hz 
Higher frequency of LFP band 

for analysis of phase locking 

phasePowerThresh 0.1 0:0.05:1   

Minimum band power to 

overall power of acceptable 

LFP segments 

phaseAmpThresh 0.15 0:0.05:1   

Minimum segment 

amplitude to overall 

amplitude of acceptable LFP 

segments 

          

phaseBin 5 
Factors of 

360 
degree 

Size of phase bins for circular 

histogram of spike-phases 

phaseRasterBin 2 1-15 degree 
Size of phase bins for raster of 

spike-phases 

 

Unit LFP-Phase Locking 

phaseLockWinLow -0.4 -1:0.05:-0.1 sec 

Lower limit of the LFP 

segments in reference to 

spike-events 

phaseLockWinUp 0.4 0.1:0.05:1 sec 

Upper limit of the LFP 

segments in reference to 

spike-events 

phaseLockNfft 1024 128:128:8192   NFFT for Fourier transform 

phaseLockFreqMax 40 10:5:500 Hz 
Maximum frequency to 

analyse and display  
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D. Output parameter description 

Waveform Properties 

Mean Spiking Freq= Spiking frequency over the entire trial  

Mean amplitude= mean of amplitude. Amplitude is measured by the difference 

between the first negative peak and first positive peak,  

Std amplitude= Standard deviation of amplitude  

Mean height= mean of height. Height is measured by the difference between the first 

positive peak and the overall minimum value of the spike  

Std height= Standard deviation of height  

Mean width= Mean of spike width taken at 25% of the amplitude 

Std width= Standard deviation of the width 

 

Inter-spike Interval (ISI) 

No output parameter 

 

ISI Autocorrelation  

No output parameter 

 

Theta-modulated Cell Index 

Theta Index= Ratio of the sinusoid amplitude and the constant term in the model  

TI fit freq Hz= Theta frequency from the model fitting in Hz   

TI fit tau1 sec= Decay constant for the exponential modulation of the sinusoidal 

component in the model 

TI adj Rsq= Goodness of fit of the model for the ISI autocorrelation data  



 

~ 235 ~ 

 

TI Pearse R= Goodness of fit Pearson’s R between the original and model-fit values 

for the ISI autocorrelation data 

TI Pearse P= Goodness of fit Pearson’s P between the original and model-fit values for 

the ISI autocorrelation data  

 

Theta-skipping Cell Index 

Theta Skip Index= Theta Skipping Index  

TS jump factor= Ratio of the amplitude of the theta and delta band sinusoids   

TS f1 freq Hz= Fitted frequency of the faster sinusoid in Hz  

TS f2 freq Hz= Fitted frequency of the slower sinusoid,  

TS freq ratio= Ratio of f1 to f2  

TS tau1 Hz= Decay constant for the exponential modulation of the sinusoidal 

component in the model  

TS adj Rsq= Goodness of fit of the model for the ISI autocorrelation data   

TS Pearse R= Goodness of fit Pearson’s R between the original and model-fit values 

for the ISI autocorrelation data 

TS Pearse P= Goodness of fit Pearson’s P between the original and model-fit values 

for the ISI autocorrelation data 

 

Burst Property 

Total burst= Total number of bursts calculated 

Total bursting spikes= Total number of spikes constituting bursts  

Mean bursting ISI ms= Mean inter-spike-interval for the bursting spikes only (ms) 

Std bursting ISI ms = Standard deviation of inter-spike-interval for the bursting spikes 

only (ms)  
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Mean spikes per burst= Average number of spikes in bursts  

Std spikes per burst= Standard deviation of the number of spikes in bursts  

Mean burst duration= Mean of the duration of bursts in ms   

Std burst duration= Standard deviation of the duration of bursts in ms  

Mean duty cycle= Mean of the duty cycles. Duty cycle is the portion of the inter-burst 

interval during which the burst fires (burst duration/ inter-burst interval)  

Std duty cycle= Standard deviation of the duty cycles  

Mean IBI= Mean of inter-burst Intervals in ms 

Std IBI= Standard deviation of inter-burst intervals in ms  

Propensity to burst= Total bursting spikes/total spikes in the cluster 

 

Spike Rate vs Running Speed 

Speed Skaggs= Skaggs information content for speed vs spiking events in bits/sec 

Speed Pears R= Goodness of fit Pearson’s R between spike firing rate at different 

speeds and fitted straight line 

Speed Pears P= Goodness of fit Pearson’s P between spike firing rate at different 

speeds and fitted straight line 

 

Spike Rate vs Angular Velocity 

Ang Vel Left Pears R= Goodness of fit Pearson’s R between spike firing rate at different 

counter-clockwise (-ve) angular head velocity and fitted straight line 

Ang Vel Left Pears P= Goodness of fit Pearson’s P between spike firing rate at different 

counter-clockwise (-ve) angular head velocity and fitted straight line 

Ang Vel Right Pears R= Goodness of fit Pearson’s R between spike firing rate at 

different clockwise (+ve) angular head velocity and fitted straight line 
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Ang Vel Right Pears P= Goodness of fit Pearson’s P between spike firing rate at 

different clockwise (+ve) angular head velocity and fitted straight line 

 

Spike Rate vs Head Direction 

HD Skaggs= Head directional Skaggs information content   

HD Rayl Z= Rayleigh Z for the head-directional firing rate  

HD Rayl P= Rayleigh P for the head directional firing rate 

HD von Mises K= von Mises concentration parameter κ 

HD Mean= Vector mean or preferred head direction (degree) of the unit to fire 

HD Mean Rate= Firing rate in preferred direction 

HD Res Vect= Resultant vector length of head-directional firing rate 

HD Peak Rate= Peak firing rate in the head-directional tuning curve 

HD Peak= Head-direction at which peak firing rate occurs 

HD Half Width= Width of the tuning curve measured at 50% of the peak firing rate 

(degree) 

HD Peak CW= Peak firing direction during clockwise head-directional movement 

HD Peak CCW= Peak firing direction during counter-clockwise head-directional 

movement 

HD Peak Rate CW= Peak firing rate during clockwise head-directional movement 

HD Peak Rate CCW= Peak firing direction during counter-clockwise head-directional 

movement 

HD Delta= Separation angle between peak firing direction during clockwise and 

counter-clockwise head-directional movement 
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Head Directional Shuffling Analysis 

HD Shuff Rayl Z Per 95= 95th percentile of the distribution of Rayleigh Z parameter 

for the head-directional tuning curves obtained from shuffling of spike-events 

HD Shuff von Mises K Per 95= 95th percentile of the distribution of von Mises 

concentration parameter κ for the head-directional tuning curves obtained from 

shuffling of spike-events 

 

Head Directional Time Lapse Analysis 

No Parameter 

Head Directional Time Shift Analysis 

HD ATI= Anticipatory time interval for the head-directional cells, measured as the 

time-shift where the counter-/clockwise head-directions are same, or the separation 

angle becomes zero. 

HD Opt Shift Skaggs= Time shift which maximizes the information content in HD 

tuning of spiking events 

HD Opt Shift Peak Rate= Time shift which maximizes the peak firing rate in HD 

tuning of spiking events 

 

Spike Rate vs Location 

Spatial Skaggs= Information content of spatial firing map 

Spatial Sparsity= Fraction of the environment in which the cell is active (max=1, min 

=0) 

Spatial Coherence= Measure of orderliness of the local firing pattern (max=1. Min = -

1). Or, simply the correlation between raw firing map, and smoothed firing map (value 

at each pixel is replaced the 8 neighboring pixels of the non-smooth map). See Muller 

& Kubie 1989 
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Locational Shuffling Analysis 

Loc Skaggs 95= 95th percentile of the distribution of Skaggs information content for 

the firing rate map obtained from shuffling of spike-events 

Loc Sparsity 05= 95th percentile of the distribution of sparsity for the firing rate map 

obtained from shuffling of spike-events 

Loc Coherence 95= 95th percentile of the distribution of coherence for the firing rate 

map obtained from shuffling of spike-events 

 

Locational Time Shift Analysis 

Loc Opt Shift Skaggs= Time shift which maximizes the Skaggs information content 

in spatial firing map  

Loc Opt Shift Sparsity= Time shift which minimizes the sparsity in spatial firing map 

Loc Opt Shift Coherence= Time shift which maximizes the spatial coherence in spatial 

firing map 

 

Spatial Autocorrelation 

No Parameter 

Grid Cell Analysis 

Is Grid= Indicates if the unit is a Grid cell or not (1= yes, 0= no) 

Grid Mean Alpha= Average of the angles each arm of the hexagon (formed from the 

peaks of the firing fields) forms with the center of the spatial autocorrelation 

Grid Mean Psi= Mean angle between the arms of the central hexagon (formed from 

the peaks of the firing fields) in spatial autocorrelation 

Grid Spacing= Average spacing between the peak firing fields forming the grid; 

Obtained from spatial autocorrelation 

Grid Score= Gridness score as measured using (Sargolini et al., 2006) 
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Grid Orientation= Inclination of the central hexagonal firing field patterns with the 

X-axis 

 

Border Cell Analysis 

Border Skaggs= Skaggs information content for border vs spike-rate 

Border Ang Ext= Largest angular segment with non-zero histogram count in active 

pixel (>20% of maximum firing rate) vs angular distance histogram 

 

Gradient cell Analysis 

Grad Pearse R= Goodness of fit Pearson’s R between the calculated and model-fit rate 

of firing vs distance from border  

Grad Pearse P= Goodness of fit Pearson’s P between the calculated and model-fit rate 

of firing vs distance from border 

Grad adj Rsq= Goodness of adjusted R2 between the calculated and model-fit rate of 

firing vs distance from border 

Grad Max Growth Rate= Maximum rate of growth in firing rate in the fitted Gompertz 

function  

Grad Inflect Dist= Distance from border where the growth of firing rate is maximum 

Multiple Regression 

Mult Rsq= Goodness of fit of the linear equation with the observed spike rate. 

Alternatively, it is a measure of the amount of variance explained in firing rate by all 

the independent variables   

Semi Rsq Loc= Explained variance in firing rate by the location alone  

Semi Rsq HD= Explained variance in firing rate by the head direction alone  

Semi Rsq Speed= Explained variance in firing rate by the running speed alone 

Semi Rsq Ang Vel= Explained variance in firing rate by the angular velocity alone  
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Semi Rsq Dist Border= Explained variance in firing rate by the border as a variable 

alone 

 

Interdependence Analysis 

DR HP= Distributive ratio for predicting head direction tuning curve (H) from spatial 

firing map (P) 

DR SP= Distributive ratio for predicting spike rate vs running speed curve (S) from 

spatial firing map (P) 

DR AP= Distributive ratio for predicting spike rate vs Angular velocity curve (A) from 

spatial firing map (P) 

DR BP= Distributive ratio for predicting spike rate vs distance from border curve (B) 

from spatial firing map (P) 

 

LFP Frequency Spectrum 

No parameter 

 

Unit LFP-phase Distribution 

LFP Spike Mean Phase= Average LFP phase of the spikes 

LFP Spike Mean Phase= Average no of spikes with Mean Phase 

LFP Spike Phase Res Vect= Resultant vector on the distribution of spike-phases on 

LFP waves 

 

Unit LFP-phase Locking 

No parameter  
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E. Equations for circular statistics 

Note: Interested readers are referred to (Mardia and Jupp, 2008) or (Zar, 1999) for 

detailed explanation. 

Following equations apply for circular data, with magnitude Ri at i-th angle θi : 

𝑚𝑒𝑎𝑛 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒, 𝑅𝑛 = 𝑅𝑚𝑒𝑎𝑛 = √(∑𝑅𝑖 cos 𝜃𝑖
𝑖

)

2

+ (∑𝑅𝑖 sin 𝜃𝑖
𝑖

)

2

 

𝑚𝑒𝑎𝑛 𝑎𝑛𝑔𝑙𝑒, 𝜃𝑚𝑒𝑎𝑛 = arctan (∑𝑅𝑖 sin 𝜃𝑖
𝑖

∑𝑅𝑖 cos 𝜃𝑖
𝑖

⁄ )  

𝑁 = ∑𝑅𝑖
𝑖

 

𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑅𝑙 = 𝑅𝑚𝑒𝑎𝑛 𝑁⁄  

 

The Rayleigh’s Z-test in circular statistics is performed to test for circular uniformity. 

The null hypothesis H0 is that, θi are uniformly distributed around a circle, or R1= 

R2=… = Ri…= Rm, where m is the number of angular bins under consideration. Raleigh 

test assumes that the sample is generated from von Mises distribution. The Raleigh’s 

Z-score and the approximate P-value under H0 is computed as (Zar, 1999), 

𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ′𝑠 𝑍 =  𝑅𝑛
2 𝑁⁄  

𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ′𝑠 𝑃 = exp [√1 + 4𝑁 + 4(𝑁2 − 𝑅𝑛2) − (1 + 2𝑁)] 

The von Mises concentration parameter κ is calculated using the following set of 

equations (Fisher, 1993), 

𝜅 =  

{
  
 

  
 2𝑅𝑙 + 𝑅𝑙

3 +
5𝑅𝑙

5

6
; 𝑅𝑙 < 0.53

−0.4 +  1.39𝑅𝑙 +
0.43

1 − 𝑅𝑙
;  0.53 ≤ 𝑅𝑙 < 0.85

1

3𝑅𝑙 − 4𝑅𝑙
2 + 𝑅𝑙

3 ;  𝑅𝑙 ≥ 0.85
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The smaller κ is, the distribution is closer to uniformity. If κ is zero, the distribution is 

uniform. A large κ indicates that the distribution is very much centered on the mean 

angle. 
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