

“A Device Gateway Service Architecture as a Business Process Integration Enabler in Industry

Automation Environments”

Michael Glienecke, Trinity College Dublin (TCD)

i

I declare that this thesis has not been submitted as an exercise for a degree at this or

any other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or

allow the library to do so on my behalf, subject to Irish Copyright Legislation and

Trinity College Library conditions of use and acknowledgement.

Signed, 20.08.2018

Michael Glienecke

ii

ACKNOWLEDGEMENTS

Writing a PhD thesis is a challenging task which cannot be undertaken alone; it requires

many people in various roles and contexts, whom I would like to thank sincerely.

First of all, my deep gratitude goes to my PhD supervisor, Dr. Declan O’Sullivan, for his

constant support in all ups and downs and especially his willingness to answer any kind of

awkward question without hesitation and absolutely amazing responsiveness for such a busy

person. His ability to keep me attached to the thesis and his willingness to accept my more

than erratic work schedule due to my professional work in parallel were of paramount

importance.

Next, my work colleagues and customers, who shared emotionally and supportive the final

stages of the thesis in the last two years with lots of willingness to adjust deadlines,

deliverables and provide as much of leeway for writing as possible. Among them would be Dr.

Jürgen Hoffmann for his emotional support and especially Heike Rudolph, Derk Kob and

Robert Mayrhofer (all from Daimler AG) for providing valuable feedback, discuss and review

ideas, visions and critical parts of the technology. With their consent many design ideas and

issues could be tested in real-world environments and thus create a much stronger argument.

Finally, my beloved wife Urzula, without her the whole project would never have taken off

and who supported me in the bleakest moments when nothing seemed to progress anymore.

Her willingness to accept any further direction, even a total stop of the thesis, as well as

providing the necessary time for me to write, was paramount in the final achievement of

fulfilling the thesis.

iii

SUMMARY

Device gateways as a means of being an abstraction or transparency layer between devices

and applications are in use already for a long time in the industry automation area to convert

data formats, signals and messages from the physical world of the devices (including PLCs1

and sensors as data endpoints) to the logical world of the consuming application. However,

modern business processes need further value-added services from device gateways to

enable an efficient integration of these data endpoints2. Devices have to become active

participants in the overall business process for enabling the process to adapt to rapidly

changing business environments. In addition, semantically enriched data has to be provided,

so that consumers can make better decisions based on these. These demands (among others)

are cornerstones for the “future of production” 3 as well as part of the larger blueprint of

“Industry 4.0”4.

In this thesis a new architecture for device gateways, which enables the business process

integration of devices and sensors as active participants, and the provisioning of additional

value-added services and semantically enriched data, is discussed and a reference

implementation provided.

After investigation of the current methods of device business process integration (as state-of-

the-art analysis) and solutions taken by other device gateway architectures, specific

requirements for a new device gateway architecture were defined and discussed in this

thesis. Based on these requirements, especially considering the enabling and optimization of

the integration of devices into business processes, specific characteristic for the architecture

were defined. Based on these requirements and characteristic the design was created and a

reference implementation implemented to provide a working solution as well as a test-bed

for case studies and experiments.

The evaluation of the design was done with several experiments and two specific case

studies, where real-world use cases were implemented using the proposed architecture and

Microsoft Azure IoT as an alternative implementation with a comparison and discussion of

the results.

1 PLC = Programmable Logic Controller. It is used to control machines in the industry automation area

2 Abele, Eberhard, und Gunther Reinhart. Zukunft der Produktion. Hanser München, 2011.

3 ibid

4 Vogel-Heuser, Birgit, et al. Handbuch Industrie 4.0 2nd Ed Bd.2: Automatisierung (VDI Springer

Reference). Springer Vieweg, 2017

iv

Table of content

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Why is this research important? .. 3

1.3 Research question ... 5

1.4 Research approach .. 5

1.5 The reference implementation ... 6

1.6 What is not covered in the thesis .. 6

1.7 Overview of the thesis .. 7

2 Background on Industry automation, production environment, Industry 4.0, integrating

devices and their sensors into business processes ... 9

2.1 Devices, sensors, actuators and consumers .. 9

2.2 Industry Automation ..10

2.2.1 Communication protocols in industry automation ..10

2.2.2 The typical production (or industry automation) environment11

2.3 Industry 4.0 ..12

2.3.1 State of practice regarding industry automation and Industry 4.012

2.3.2 Industry Automation and adoption rates of IT innovation ...13

2.3.3 IoT and Industry 4.0 ..14

2.4 The place of device gateways in automation and Industry 4.0 ...14

2.4.1 Future trends of device gateways ...16

2.4.2 Direct integration of devices..16

2.5 Real-world integration example in a corrosion quality control lab16

2.5.1 Business process interests and requirements ...19

2.5.2 Internal requirements ..20

2.6 State of the art in device gateway architectures ...21

2.6.1 Overview of existing device gateway architectures ...21

2.6.2 Gateway architecture feature comparison ..31

2.6.3 Data protocol support ..36

2.7 Discussion ...39

v

3 Requirements and characteristics of a device gateway architecture .. 41

3.1 Usage scenarios of the architecture ... 41

3.1.1 Corrosion lab scenario simulation .. 42

3.1.2 Exhibition visitor congestion display system scenario simulation 44

3.2 Standard use cases to be supported by a gateway architecture .. 46

3.3 Requirements to be supported by a device gateway architecture 46

3.3.1 Functional requirements for device gateway architectures 47

3.3.2 Non-Functional requirements for device gateway architectures 48

3.4 Requirements rating .. 49

3.5 Characteristics of the proposed device gateway architecture - DBGA 53

3.5.1 Centralized data store .. 54

3.5.2 Direct data retrieval from data store ... 55

3.5.3 Integrated data quality control .. 55

3.5.4 Semantic data value enrichment ... 56

3.5.5 Communication interface agnostic ... 57

3.5.6 Autonomous operation / workflow execution .. 57

3.5.7 Actuator support .. 58

3.5.8 Write target agnostic .. 59

3.5.9 Data format agnostic .. 60

3.5.10 Preservation of sensor state.. 60

3.5.11 Extendable and easy to change .. 61

3.5.12 Provide feedback on data change ... 61

3.5.13 Basic ontology-Support ... 61

3.6 Comparison of requirements coverage by selected state of art architectures 62

3.7 Measuring the improvement achieved by the architecture ... 69

4 Device-Business-Gateway Architecture (DBGA) design ... 75

4.1 Data sources and destinations (data entities) ... 77

4.1.1 Registration of data entities .. 77

4.1.2 Virtual devices / virtual sensors entities ... 78

4.1.3 Data entity trees ... 79

vi

4.1.4 Virtual entity value evaluation (computation) ..80

4.1.5 Performance considerations of virtual value evaluation ...81

4.2 DBGA communication ..81

4.2.1 Communication interface agnosticism ..82

4.2.2 Device specific communication ..82

4.3 Usage of workflow execution as autonomous operations in the DBGA83

4.4 The components of the device gateway (logical view)...84

4.5 Process (dynamic) view ..85

4.5.1 Device and sensor management ..85

4.5.2 Actuator writes ..86

4.5.3 Receiver tasks for data endpoint issued writes ...87

4.5.4 Sensor scanning task ...88

4.5.5 Sensor read ...90

4.5.6 Data access ..92

4.5.7 Value management ..93

4.5.8 Watchdog and cyclic execution with workflows .. 101

4.5.9 Access control ... 103

4.6 Physical view .. 104

4.7 Data model ... 106

4.8 Discussion .. 107

5 Reference implementation of DBGA ... 108

5.1 Options of how to implement the reference implementation .. 109

5.2 General structure of the reference implementation ... 111

5.3 CentralServiceLauncher ... 113

5.4 CentralServerService ... 114

5.4.1 Modules and components .. 114

5.4.2 Communication with the outside world .. 120

5.5 GlobalDataContracts .. 122

5.6 DeviceServer.Base .. 123

5.7 DeviceSimulator .. 123

vii

5.8 GatewayServiceContract ... 123

5.9 Reflection on experience of creating reference implementation 124

6 Research Experiments ... 126

6.1 Test equipment used... 129

6.2 Test #1: Timing to push values into the core with dynamic calculations 129

6.3 Test #2: Timing to calculate virtual values in the core using only internal data

(available measures) ... 132

6.4 Test #3: Concurrent access (READ / WRITE) by several clients to check for

concurrency, race conditions and locking issues .. 135

6.5 Test #4: Test with different data formats and conversion vs. native storage /

handling .. 139

6.6 Test #5: Core timing considerations when using workflows (triggering, execution

control for long-running tasks) ... 141

6.7 Test #6: Communication mode (REST, WCF using SOAP, .NET Remoting (Binary))

implications ... 144

6.8 Test 7: ODATA access ... 149

6.9 Test #8: Writing actuator values ... 153

6.10 Test #9: MS-MQ adapter to READ / WRITE data with sample consumer / producer

to prove the extendibility .. 156

6.11 Test #10: MS-MQ adapter performance to evaluate usage in business workflow

environments ... 157

6.12 Overall observations during the experiments .. 159

6.13 Discussion .. 160

7 Case Studies: comparing DBGA and Microsoft Azure IoT ... 163

7.1 Corrosion Lab Scenario .. 164

7.1.1 Device-Business-Gateway (DBGA) based implementation 165

7.1.2 Azure IoT based implementation ... 166

7.2 Exhibition visitor congestion display system ... 168

7.2.1 Device-Business-Gateway (DBGA) based implementation 169

7.2.2 Azure IoT based implementation ... 170

7.3 Comparison of architectures regarding the case studies .. 171

viii

7.4 Key Findings .. 176

7.5 Discussion .. 178

8 Conclusions ... 180

8.1 Structure of the thesis ... 180

8.2 Main Findings ... 182

8.3 Future Work .. 183

8.4 Contribution .. 185

9 References ... 187

A. Appendix 1 - Use Case Details ... 193

A.1 Corrosion lab... 193

A.2 Exhibition visitor congestion display system .. 198

B. Appendix 2 - Specification Details ... 201

B.1 Gateway architecture feature definition ... 201

C. Appendix 3 - Device-Details ... 207

C.1 Devices considered for the DBGA ... 207

C.1.1 Physical devices ... 208

C.1.2 Networked devices ... 208

C.1.3 Non-networked devices .. 208

C.1.4 Logical devices .. 210

C.1.5 Consumers of device data considered .. 211

C.2 Common operations in device integration ... 212

C.2.1 Reading device data (including cleansing, filtering and manipulating) 212

C.2.2 Storing, caching and querying of device data .. 213

C.2.3 Informing consumers about change of data ... 214

C.2.4 Writing data to actuators ... 214

C.2.5 Device and operations control (supervision) .. 215

C.3 Device to business processes integration and integration patterns 215

C.3.1 Point-to-Point integration ... 219

C.3.2 Hub-and-Spoke integration ... 221

D. Appendix 4 – Design Details ... 225

ix

D.1 Data Model .. 225

D.1.1 DbDevice .. 227

D.1.2 DbDeviceAttributes ... 227

D.1.3 DbSensor .. 227

D.1.4 DbSensorAttributes ... 230

D.1.5 DbSensorData ... 230

D.1.6 DbSensorDependency ... 230

D.1.7 TrackingPoint ... 230

D.1.8 Log... 230

D.2 Data consumers for the device gateway ... 231

D.3 DBGA communication handler details... 232

D.4 Process (Dynamic) view details ... 235

D.4.1 Receiver tasks for data endpoint issued writes ... 235

D.4.2 Callback handling .. 237

D.4.2.1 Callback example in Python ... 239

D.4.3 Error- and Log handling component .. 239

D.4.4 Gateway engine core ... 240

D.4.5 Dynamic configuration ... 240

x

Table of Figures and Tables

Figure 2.2.1: Device Gateway for the Internet (IIoT gateway) ...15

Figure 2.2: Current Corrosion Lab Process ..19

Figure 2.3: Xively services ...23

Figure 2.4: Azure IoT solution architecture [81] ...25

Figure 2.5: MyDriving sample application in Azure IoT showing sub-services used26

Table 2.1: List of features ...32

Table 2.2: Feature overview ...33

Table 2.3: Data protocol support ..38

Figure 3.1: UML Use Case diagram for Corrosion Lab ...43

Table 3.1: Specialized use cases for Corrosion Lab ...43

Figure 3.2: UML Use Case diagram for exhibition visitor congestion display system45

Table 3.2: Specialized use cases for exhibition visitor congestion display system45

Table 3.3: Functional requirements for device gateway architectures ..47

Table 3.4: Non-Functional requirements for device gateway architectures48

Table 3.5: Requirements/Characteristics rating for Industry Automation/Business Process

integration ..50

Table 3.6: Table of characteristics..53

Table 3.7: Mapping between characteristic and requirements ...54

Table 3.8: Requirement coverage for device gateway architectures including DBGA63

Table 3.9: Measurement criteria definition to compare different architectures70

Figure 4.1: Data Entity Tree ..80

Table 4.1: Use-Case to Component Mapping ...84

Figure 4.2: UML Component Interaction ...85

Figure 4.3: Writing actuator value ...87

Figure 4.4: Receiver tasks for endpoint write requests ..88

Figure 4.5: Task Launcher - Scanner Task - Sensor ..89

Figure 4.6: Operations inside scanner task ..90

Figure 4.7: Retrieve values as a consumer ...92

Figure 4.8: Data access class diagram ...93

Figure 4.9: Current Sensor Value Management (read / write) ..96

Table 4.2: Callback type and use ...98

Figure 4.10: Virtual Value Evaluation .. 100

Figure 4.11: Cyclic Task Execution ... 102

Figure 4.12: Access control .. 104

Figure 4.13: Exemplary physical view of device gateway ... 106

Figure 5.1: Reference Implementation (Main) Components.. 113

xi

Table 6.1: Experiment overview ... 127

Table 6.2: Test 1 results in µsec for 10,000 executions ... 131

Figure 6.1: Test 1 results in µsec for 10,000 executions ... 131

Table 6.3: Test 2 results in µsec for 10,000 executions ... 134

Figure 6.2: Test 2 results in µsec for 10,000 executions ... 134

Table 6.4: Test 3 results in µsec for 5 parallel read and 5 parallel write executions (500 times

each) .. 137

Figure 6.3: Test 3 results in µsec for 5 parallel read and 5 parallel write executions (500 times

each) – reading operations .. 137

Figure 6.4: Test 3 results in µsec for 5 parallel read and 5 parallel write executions (500 times

each) – writing operations ... 138

Table 6.5: Data format conversion performance of SQL, Python and C# using native and

agnostic data formats (in µsec) .. 140

Table 6.6: Data format conversion performance of SQL, Python and C# using native and

agnostic data formats (in µsec) .. 140

Table 6.7: Workflow as trigger for checking and after change (in µsec) .. 143

Table 6.8: Workflow as virtual value calculation (in µsec) .. 143

Table 6.9: Workflow in a parallel read / write scenario (in µsec) .. 143

Table 6.10: 1, 5 and 10 threads in parallel retrieving data using .NET Remoting, SOAP and

REST as protocol (in µsec) ... 145

Table 6.11: 1, 5 and 10 threads in parallel retrieving data using .NET Remoting, SOAP and

REST as protocol between 2 machines (in µsec) .. 146

Figure 6.5: 1, 5 and 10 threads in parallel retrieving data using .NET Remoting as protocol (in

µsec) .. 146

Figure 6.6: 1, 5 and 10 threads in parallel retrieving data using SOAP as protocol (in µsec) 147

Figure 6.7: 1, 5 and 10 threads in parallel retrieving data using REST as protocol (in µsec) 147

Figure 6.8: ODATA server processing time in msec for 100 - 9,900 records 151

Figure 6.9: ODATA client request time in msec for 100 - 9,900 records .. 151

Figure 6.10: ODATA server processing time in msec for 5,000- 195,000 records 152

Figure 6.11: ODATA client request time in msec for 5,000- 195,000 records 152

Figure 6.12: total time in µsec for writing 1 sensor value to an actuator 154

Figure 6.13: total time in µsec for writing 20 sensor values to an actuator 155

Figure 6.14: time in msec for sending a request including receiving response using MS-MQ

from client to server ... 158

Figure 6.15: time in msec for receiving a request, processing and posting an actuator request

and response packet using MS-MQ on the server .. 159

Table 6.12: Test result overview ... 161

xii

Figure 7.1: Schematic overview Corrosion Lab scenario using DBGA ... 166

Figure 7.2: Schematic overview Corrosion Lab scenario using Azure IoT 167

Figure 7.3: Exhibition Visitor Scenario implementation using DBGA .. 170

Figure 7.4: Exhibition Visitor Scenario implementation using Azure IoT 171

Table 7.1: Comparison of different architectures ... 172

Table 8.1: Future work overview .. 184

Table A.1: Corrosion lab scenario complete use case table .. 193

Table A.2: Exhibition visitor congestion display system scenario complete use case table ... 198

Table B.1: Gateway architecture feature definition ... 201

Figure C.1: Logical Device Chain .. 211

Figure C.2: QA process ... 217

Figure C.3: Point-to-Point integration ... 220

Figure C.4: Hub-and-Spoke integration .. 222

Figure D.1: Data Model ... 225

Table D.1: Sensor definition attributes ... 227

Figure D.2: Communication interfaces .. 233

Figure D.3: Callback types .. 237

Table D.2: Callback kinds .. 238

Page 1 / 252

1 Introduction	

1.1 Motivation	

Device gateways, as a means of being an abstraction or transparency layer between devices

and applications that use them, have been around since the late 1980s primarily in industry

automation environments (usually production) [84]. Their main purpose was to shield the

consuming (using) application from the intricate details of the device inter-operation, such as

protocols used, hardware-specific issues like byte-ordering, and so on. These early gateways

existed mostly to make application development easier, as either dedicated hardware

systems or libraries / linkable modules.

In the early 2000s, as companies started to try to bring the classical business process closer

to the shop floor and its automation systems for enhanced control and optimization, more

generalized software like TinyDB (2003) [79], IrisNet (2002) [80] or OPC-CA [86] were

introduced. This was manifested as independent middleware between devices and

consumers, in the wake of service orientation in general. From this point onwards, the device

gateway was considered an independent service which sat in the middle between devices and

consumers to handle all issues. In addition to the physical handling of protocols and

hardware, the addressing of resources was a major concern as well.

In the wake of the discussions around REST5 vs WS-* based solutions (starting from the early

2000s) with projects like SIRENA ([88], [89]) and SOCRADES [90], accessing devices using

URL based schemes (REST) also came to the fore. This was the approach taken by device

gateways like SenseWeb [7] and various others to hide the device behind http-requests using

interfaces like [2], [3] and [5]. In addition, service bus architectures have been developed [9],

[81] (Microsoft Azure IoT being one example), but these are used more in environments

where the direct interaction with the device is not so much an issue.

So, in summary a device gateway is currently generally considered to be a more or less a

simple façade (with different addressing options) for devices, but usually do not provide

additional value or services to aid business processes and workflow integration.

However, in the business world, more and more businesses need to apply formal business

processes, in order to be able to quickly adapt to new requirements more easily [62]. Aside

from the adoption of formal business processes, comes the need to undertake additional

5 REST = Representational State Transfer

(http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm)

Page 2 / 252

control and performance measurements, so as to support a more objective view of the real

business performance and its parameters. Together with other needs like consumer-

customized products at mass production prices, leaner production to save resources and

enhanced value-chains, leads to concepts like “Industry 4.0”6 [84] which drives the next

generation of device gateways.

As acknowledged widely, e.g. [25], [87], it is clear that devices must be part of integrated

business processes and thus value-chains, in order to be able to achieve the desired needs of

business as discussed above, which in a nutshell is the ability to enable rapid change whilst

being able to monitor and control performance and generate additional value.

Newly emerging business models in the industry automation-world utilize device integration

to a very high degree and are explicitly dependent on it to function [60]. In [84] this is clearly

stated: “for producing companies there is a clear demand to integrate what happens on the

shop floor with the global IT-systems”.

The business process integration of devices could be either done using a direct device

integration7 (for example reading the consumer entrance counter of a gate, combining it with

the current time and adjusting the price of the merchandise in a shop – more in section 2.4.2),

or as semantically enriched (added value) data integrated into the process [5], like in

historical averages which can be easily consumed, lookups performed based on other data,

and so on. This data enrichment would usually be the task of a device-gateway, yet as such

gateways (as will be shown later) do not offer these features easily there is a need for a new

architecture to provide exactly this.

In summary, there is a driving need for a device-gateway architecture that fully integrates

devices as cyber-physical entities into business processes in order to make them active	

participants in the process, in addition to providing added data (as new business intelligence)

to the process, therefore improving the global value-chain. Thus, in addition to the classical

device-gateway features that one would expect, the new device-gateway architecture would

need to support:

- services for business process and workflow integration of devices;

6 Industry 4.0 is the complete integration of the production environment into an overall IT-landscape

to provide “smart factories”. These “smart factories” are the underlying foundation for the challenges

and requirements of the 21st century regarding industrial production

(https://www.bmwi.de/Redaktion/DE/Dossier/industrie-40.html)

7 Direct Device Integration is when a device is directly integrated into any kind of further process

without an intermediary of any kind [84]

Page 3 / 252

- provision of added value to business processes by means of semantic enrichment8 of

data;

This type of device gateway architecture - the joining and merging of device and business

world requirements - has had little research focus, prior to the research described in this

thesis, and it is argued that the outcomes of the research presented in this thesis is unique

and a contribution to both research and business communities.

1.2 Why	is	this	research	important?	

The core device integration using protocol adaption and conversion has been researched for

a long time as has been storage structures, communication patterns with devices and

consumers (protocols in general). Therefore, these areas are considered as being more or less

defined and it is considered that very few new contributions can be achieved here.

Yet, as foretold in the “Strategic Research Agenda” of EPoSS9 ([29]), smart systems are

emerging in all domains, and the data integration, processing and further usage of sensing

data in processes are of paramount importance in these domains (for example medical

systems, automotive, Internet of Things).

Given the trends, and the requirements and challenges outlined in section 1.1, it was very

clear from the outset of the PhD that research was (and continues to be) needed in this area.

Especially issues as how data can be semantically enriched and thus made “more valuable”,

fed into business processes, as well as taking part in business process interactions are very

important. Another issue, when looking at “smart systems” is the question of how they are

becoming “smart”. Here workflows, which allow them to be smart and self-controlling /

resilient, play a major role. With the growing importance of “Big Data”10 in the industry [93],

[87] the provisioning of highly aggregated and pre-computed data from industry automation

8 The term “Semantic Enrichment” is used throughout the thesis in a sense that additional data is made

available for existing data by means of giving the existing data additional meaning, usability and value.

This is achieved by adding contextual data to the existing data (so it’s semantic usefulness increases –

it becomes more meaningful for consumers)

9 EPoSS is an industry-driven policy initiative, defining R&D and innovation needs as well as policy

requirements related to Smart Systems Integration and integrated Micro- and Nanosystems. EPoSS is

contributing to EUROPE 2020, the EU's growth strategy for the coming decade, to become a smart,

sustainable and inclusive economy (http://www.smart-systems-integration.org/public)

10 Big data is an evolving term that describes any voluminous amount

of structured, semistructured and unstructured data that has the potential to be mined for information

(https://searchdatamanagement.techtarget.com/definition/big-data)

Page 4 / 252

also becomes a necessity and thus device gateways as places where this aggregation and

calculation can happen, become more important for research. In places where this is used

already (like the evaluation and definition of the stress collectives on parts as indicated by

[94]) it clearly shows that these highly aggregated data measures (e.g. the “quality of a

measurement”) become important decision factors in the overall part approval business

process and therefore the whole supply chain management.	

Another reason as to why the research is important is the fact that there appears to be a

tendency to connect devices directly to the business process (and therefore consumers) using

direct device integration approaches (see 2.4.1). This might provide quick-wins for the

involved parties as results are easily obtainable (and rather cheap as well) with a certain

feeling of “agility”. Yet in the long run every system which evolves over time will face the old

dilemma that maintenance and support gets harder and will cost more, whereas extendibility

and innovation will decrease. The author of this thesis (based on extensive experience in the

business process integration domain in automation) personally considers this direct

connection approach very problematic due to the following reasons:

 Security control would be a task of each device and not a task of a centralized, more

superior instance (like a gateway);

A	classic	example	would	be	that	for	instance	Siemens	S7	PLCs11	which	has	no	firewall	or	

other	protection	against	malicious	communication	and	writing	to	an	output	area	could	

result	in	disastrous	machine	behavior.

 Systems become quickly very complex and very fragile (devices not responding,

timing issues, reliability of information);

 A controlling instance in the “middle” seems important as otherwise the old problem

of n..m relations (consumers – producers) arises;

 In general, it is often underestimated how much effort has to be put in even the

simple task to coordinate a small number of devices all speaking the same “language”

(for example REST). Still every device is different, has different semantic

requirements and responds in different ways.

It should be noted that the idea to publish devices on the Internet by means of an

intermediary like a gateway is in the opinion and experience of the author of this thesis a very

good and viable idea; with no direct access to the device, but access always controlled and

11 PLC = Programmable Logic Controller – a device to control a machine in a guaranteed way usually

used in industry automation environments

Page 5 / 252

within operational limits. Here the device gateway could act as a much better suited

“guardian” for the information, privacy and communication issues involved.

In this way a device, or even a group of devices – this abstraction could be taken higher and

higher (up to for example a complete corrosion test unit) – could be represented as a “device”

or even more a “service” which can be integrated into business processes.

Many of the issues discussed above are similar to IoT middleware systems where a lot of

research has been undertaken [91]. Yet as current IoT middleware is typically wireless

sensor network (WSN) centric, many of the implications and assumptions do not translate

well to the automation and production environment. For instance in automation/production

environments the availability, adequacy and stability of power supply, computing power and

communications are usually a given. In any case it is explicitly acknowledged that no single

IoT middleware can support all environments and requirements [91].	

1.3 Research	question	

Given the motivations outlined in sections 1.1 and 1.2, this	research	examines	the	extent	to	

which	a	new	device	gateway	architecture	(with	integrated	data	quality	control,	increase	

of	data	value	by	semantic	enrichment,	communication	interface	agnosticism,	data	target	

independence	and	data	format	agnosticism)	that	is	available	for	low	cost	will	improve	

business	process	integration	in	environments	where	industry	automation	is	used.

1.4 Research	approach	

To be able to test the various assumptions, requirements and characteristics of the proposed

gateway architecture (from now on called the ‘Device‐Business‐Gateway	Architecture	

(DBGA)’), a complete reference implementation was created, as well as an examination of

existing state of the art solutions and architectures. Experiments based on the reference

implementation were undertaken in various machine constellations to:

1) Evaluate the overall stability, reliability and performance, as well as timing and load

characteristic for several use cases;

2) Perform functional tests of compliance with design principles (like correct evaluation

of virtual values or proper filter of invalid values);

3) Provide as close as possible to a real use case scenario, so that a later implementation

in real world projects would not have any hidden surprises.

Furthermore, the proposed gateway architecture has been evaluated in two case studies.

Both scenarios (one from a customer of the author’s, one from an “art exhibition” domain) are

implemented using the architecture and compared to Microsoft Azure as an alternative

approach.

Page 6 / 252

In general, the research is using a very practical approach and focused on real-world

scenarios compared to a more purely theoretical and comparative approach.

1.5 The	reference	implementation	

The reference implementation, which is available as open source12, was implemented using

C# in the .NET 4.6.1 environment using available free of charge products (like SQL Server

2012 Express as a database and Visual Studio 2015 Express Edition), and therefore all parts

of the solution can be run without using royalty-based software (except Windows as such –

here the .NET Platform on Linux or Mac13 might be an alternative). On the connected physical

clients, the .NET Micro Framework 4.4 (some devices required 4.3) was used14. For Python

and Ruby, the corresponding packages IronPython 2.7 and IronRuby 1.1.3 were used. JSON15

was implemented using the fastJSON 1.0 library.

As a handler for the WS* and REST-requests the WCF 4.5 (Windows Communication

Foundation) infrastructure in IIS 7 was utilized to have an easy, declaration based (contract

first) development environment, which is much easier to maintain and extend. Should the

need arise this can be changed easily to a more classical request-handler-loop approach.

All implementation specific parts can be exchanged as dynamic handlers are used which will

for example allow the exchange of SQL Server with mySQL, and so on. As a sample for this

technology a pluggable data store to XML files has been provided as well.

1.6 What	is	not	covered	in	the	thesis	

The Internet of Things (IoT) at the moment is the main driving force behind the motivation of

many companies, research institutions and people to use, research, manage and integrate

devices. In addition, many new devices and usage scenarios are being developed with this

focus. Therefore, it is quite natural that many questions and thus research issues arise from

this environment. Combining with the implications and requirements of Industry 4.016, being

the 4th industrial revolution, will also result in even more complex questions arising. In

particular, the combination of industry automation, sensor systems, business processes and

12 https://github.com/mglienecke/DeviceGateway

13 https://channel9.msdn.com/events/Build/2015/3-670 and https://github.com/dotnet/core

14 https://github.com/NETMF/netmf-interpreter/releases

15 JSON (JavaScript Object Notation) is a lightweight data-interchange format http://www.json.org/

16 Industry 4.0 – the next industrial revolution (https://www.bmbf.de/de/zukunftsprojekt-industrie-

4-0-848.html)

Page 7 / 252

knowledge management are of paramount importance for the successful enterprise of the

21st century.

This thesis however only focuses in particular on the device integration part – the part where

the physical device meets the business process.

This thesis does	not	cover wider IoT issues, nor does it cover industry automation in

general, nor sensors as such, except where needed for clarity.

All these topics are part of a wider discussion, and this thesis can be considered an important

cornerstone in the overall solution, as sensors and the gateway to them, is the basis for any

further data analysis, process integration and knowledge gain.

In addition, this thesis briefly considers mobile devices like smart phones, and so on, mainly

for their integrated sensing abilities and sensors, and not for their classical use model (which

would be a desktop or laptop computer replacement, used and operated with the same

interfaces like web browsers and so on). Thus, for this thesis, mobile devices are only

relevant because they possess quite considerable calculation power, memory, storage,

sensors and especially user interface in one unit – so they can manage the sensors they

contain, communicate with a gateway and a business process (via the gateway) and interact

with the user.

1.7 Overview	of	the	thesis	

After the introduction, the thesis in chapter 2 provides background information about

business processes, integration patterns, and key issues regarding device integration

(devices, consumers, operation modes). In addition, the chapter presents a state of the art

overview of the currently available technologies and implementation patterns for doing

business process integration.

Chapter 3 presents the key requirements as well as the main characteristics for the proposed

DBGA, which were derived from the state of the art and also presents two use cases. These

use cases will be further used to evaluate the DBGA (and reference implementation).

The DBGA is described in detail in chapter 3.7 and full details about the reference

implementation of the DBGA is given in chapter 5.

Chapter 6 describes several experiments which were undertaken to evaluate the architecture.

This is further exemplified by chapter 7 where two case studies (defined in section 3.1) and

their possible implementation using the DBGA and one existing state of the art architecture

(Azure IoT) are discussed.

Final conclusions are drawn in chapter 8.

Page 8 / 252

Additional information towards the presented topics is provided as appendixes in appendix

A, B, C and D.

Page 9 / 252

2 Background	on	Industry	automation,	production	environment,	Industry	

4.0,	integrating	devices	and	their	sensors	into	business	processes	

This chapter provides background information about industry automation, Industry 4.0, and

devices and definitions covered (section 2.1, 2.2 and 2.3). Following on, there are sections

about the place device gateways have in industry automation (2.4), a real-world example how

a device-gateway can be utilized to achieve business process integration (section 2.5) and a

review of the state of the art in Gateway Architectures including a comparison of their

features (section 2.6) followed by a discussion (section 2.7).

2.1 Devices,	sensors,	actuators	and	consumers	

For any device gateway, devices, sensors, actuators and consumers are the main players and

therefore it is important to properly define the terms as well as the usage of them (for details

of devices, typical operations and integration patterns see appendix C).

In this thesis the following definitions for terms are used:

 A sensor responds to a physical stimulus (as heat, light, sound, pressure, magnetism,

or a particular motion) and transmits a resulting impulse (as for measurement or

operating a control)17.

 An actuator moves or controls something18.

 A device is a piece of equipment (e.g. a machine) or a mechanism designed to serve a

special purpose or perform a special function19 with sensors and / or actuators

attached to it.

Very often in the corresponding literature (and in this thesis as well) the term device and

sensor / actuator are used interchangeably 20 which indicates that a device is operating as a

sensor / actuator (which can be seen by the above definitions as well).

This can be considered true, if either the device has exactly one sensor / actuator and

therefore 1 device equals 1 sensor (or actuator), or a device is referenced in a general term –

thus regardless of the number of sensors / actuators involved. Internally, for the Device-

Business-Gateway Architecture (DBGA), device and sensor / actuator are separate data

definitions and entities. A device always contains 0..n sensors / actuators.

17 http://www.merriam-webster.com/dictionary/sensor

18 http://www.merriam-webster.com/dictionary/actuator

19 http://www.merriam-webster.com/dictionary/device

20 Like: “the device sends” or “data is written to the device” instead of “sensor X send” or “data is

written to actuator Y”

Page 10 / 252

In general sensors, are read-only and actuators are write-only, with some exceptions where

for instance a sensor can be written to, or an actuator read from, as well.

2.2 Industry	Automation	

Since the late 1960s industry automation was defined as: “automatically controlled operation

of an apparatus, process, or system by mechanical or electronic devices that take the place of

human labor”21.

This controlled operation involved mostly two components:

- The machine, which is to be controlled

- Programmable Logic Controllers (PLCs), as very resilient autonomously runnable

building blocks to actually control the machine operation

Especially the PLCs are and were of paramount importance in the industry automation

environment as they guarantee that timing considerations from the physical process are met,

security issues considered (e.g. protect the human operator with security checks) and overall

that the machine as one unit is operational. Over the past decade the PLC market22 is quite

segmented with Siemens as the clear leader in Europe.

2.2.1 Communication	protocols	in	industry	automation	
Industry automation – due to the nature of the physical process and the machine control –

requires un-interrupted, guaranteed, reliable and deterministic communication between

participants.

To achieve this, many protocols have evolved over time starting with serial protocols (e.g.

R3964) towards the now network oriented ones. Yet even nowadays, sometimes due to

hazard prevention (e.g. handling of explosive materials), sometimes due to machine

investment cycles (which can be 15 – 20 years), serial communication can still be found in

many places.

The networked environments can further be divided23 into the so called “field-bus”-systems24

like ProfiBus (Siemens), DeviceNet (Rockwell), CANOpen, etc. , and Ethernet-systems like

Modbus-TCP, EtherCAT, and so on.

21 https://www.merriam-webster.com/dictionary/automation

22 Overview of Top PLC manufacturers: http://automationprimer.com/2013/10/06/plc-

manufacturer-rankings/

23 http://www.feldbusse.de/#feldbusse-uebersicht

24 Overview of field-bus-systems: http://www.feldbusse.de/Vergleich/uebersicht_feldbusse.shtml

Page 11 / 252

These Ethernet-systems share many similarities with the classical office-Ethernet-

infrastructures, yet features like guaranteed response times, real-time ability with update

cycles of <= 1ms were missing and had to be added. To give an example, with EtherCAT the

update time for 1000 I/Os is only 30 μs including I/O-time. With a single Ethernet-frame

(which can be transferred in 300 μs) up to 1,486 byte of process data can be exchanged which

equates to nearly 12,000 digital I/O ports.

2.2.2 The	typical	production	(or	industry	automation)	environment	
In a typical production environment, the “shop floor” is where all physical operations (the

production) is handled. Most PLCs and machines would be located and operated there.

Logically on top of the shop-floor is the shop-floor management25 which ensures the smooth

overall operation of one or several shop floors. Usually the shop-floor management uses

SCADA-Systems26 to visualize and control operations of several sub-systems (machines). In

parallel most companies would use ERP/MES-systems27 to integrate the process data into

further business processes and areas like product lifecycle management, customer

relationship management, and so on.

Parallel to the core production environment are usually other environments, which include

machine control as well, yet are not directly involved in production, but associated with it.

A typical example (which will used as a running example in this chapter) would be the

corrosion test lab of Daimler AG which is associated with the surface production unit and

department, and yet has no direct role in production.

As the production environment, being the core revenue generating process, is shielded and

protected, and thus usually not (easily) accessible from the outside, systems in parallel zones

are often having the same (or slightly lesser) restrictions.

This means that in the above-mentioned example the climate chamber – as an independent

“machine” with a physical control and a PLC to control it – cannot be directly accessed from

outside of the local environment, but needs interfacing using an intermediary.

As these secondary machines (or devices in general) are not production-relevant areas, they

are not integrated into any SCADA, ERP- or MES-lifecycle and usually left alone as non-

integrated information islands.

25 Definition of Shop-Floor Management: http://www.refa.de/lexikon/shopfloor-management

26 SCADA = Supervisory Control and Data Acquisition (https://en.wikipedia.org/wiki/SCADA)

27 ERP = Enterprise Resource Planning, MES = Manufacturing Execution Systems

Page 12 / 252

2.3 Industry	4.0	

The goal of “Industry 4.0” as the 4th Industrial Revolution (after steam-engine, conveyor-belt

and computer) is in principal the complete integration of the production environment into an

overall IT-landscape to provide “smart factories”28. These “smart factories” are the underlying

foundation for the challenges and requirements of the 21st century regarding industrial

production ([95]).

The aim is to create dynamic value-chains which include all phases and cycles of a product

from design and development over customization to production and delivery. These value-

chains can then be optimized (and combined and integrated) to provide better profitability,

faster reaction and production times, or in general a better utilization of resources like raw

materials, supply-chain-management and finally customer satisfaction and retention.

A basic necessity for this to function is the complete networking and integration of all parts

and components along the value-chain, including secondary systems, which might be relevant

in terms of quality assurance, and so on. In our Daimler climate chamber example, it is for

instance mandatory that sample data which points to supply problems (e.g. raw material

corrosion) is immediately fed back into the supply-chain and production life-cycle to prevent

further damage much later (even years after production).

Using such an approach it will be possible – at least this is the goal – to produce highly

individual goods with excellent support for humans in the production process [103], with the

production methods (and price-levels) of mass-production, streamlining logistics and supply

chains as well ([100]). In the value-chain every step is then – by using the necessary

automation and integration – streamlined and configured to achieve this.

2.3.1 State	of	practice	regarding	industry	automation	and	Industry	4.0	
Industry automation in the Western Industry Nations is quite common and normal as can be

seen for example in the usage of industry robots per 10,000 workers. Whereas the global

average is at 74, many of the leading industry nations far exceed that level (with South Korea

at 631, Germany at 309 or Switzerland with 128).29 On the other hand, as Industry 4.0 is still

quite new (projects mainly started in 2015 / 2016), the establishment of the mechanisms in

factories is, if already started at all, an ongoing process. Currently – according to the German

Ministry of Economy – 20% of all German industry producers are already utilizing self-

controlling processes and 83% are considering a high digitalization of their value chains until

2020, with planned investments into Industry 4.0 of 40 billion EUR per year until 2020

28 https://www.bmwi.de/Redaktion/DE/Dossier/industrie-40.html

29 https://blogs-images.forbes.com/niallmccarthy/files/2018/04/20180425_Robot_Workers.jpg

Page 13 / 252

followed by further 33 billion EUR for additional investments in IT, electronics and machines

from 2016 – 2030 [107]

So generally speaking, most modern factories have already established basic industry

automation, yet the aim of a digital value-chain is quite far away for most. Especially when it

comes to secondary (not directly production relevant) systems this is even more the case.

2.3.2 Industry	Automation	and	adoption	rates	of	IT	innovation	
Industry automation utilizes Information Technology (IT) concepts, methods and processes

to achieve its goals. Yet the classical IT infrastructure of an industry automation supported

company is normally far more focussed on terms like payroll / order processing, customer

relationship management, computer management, and so on, rather than the industrial

application/business process itself.

Whereas in the technical world of industry automation very “real” factors like response time

in msec, size of a telegram in bytes and even bit-alignments matter, these are very seldom

issues for classical IT-departments. In addition, due to the importance of the production and

the longevity of investments in that area30 industry automation usually follows different

timescales and development cycles as well31. Another factor is that failures of a system can

easily cause harm to humans (and other systems) whereas in “normal” IT the worst-case

scenario usually is data- or money-loss32.

All this leads to the perceived impression that development and innovation adoption

progress is not as fast in industry automation than in “normal” IT – mainly due to the above-

mentioned innovation cycles and restrictions.

This has to be taken into account when developing architectures and solutions for this area. It

implies that for instance new technologies are only introduced in the industry automation

domain after maturity of a technology is assured. As an example, Microsoft .NET (which was

generally available since 2002) has been provided as Microsoft .NET Micro Framework for

use in industry automation environments from 2009 onwards. Another example would be

SOAP, which was available roughly around 1999 – but usage in the industry automation

30 In machines investments cycles of 10 – 15 years are not uncommon whereas in IT usually 4-5 years

are the maximum (which can be seen in depreciation tables for taxation as well)

31 Which is exaggerated by the fact that usually after a machine is operational there is no real test-

environment to check new features aside taking the machine out of production

32 Exceptions to this include among others medicine, aviation, military operations, etc. Yet here the

same time scales of innovation adaption can be found.

Page 14 / 252

device world did not really take place before 2007 with the advent of “device profiles for web

services”.

The implication is that usually adoption of new IT technology into industry automation

environment is typically delayed between 5 – 10 years after adoption into “normal” IT

environments, and the technology has to undergo a much more stringent check and usually

“hardening” phase where as many as possible problems are eliminated, before it will be

utilized in the industrial automation world.

2.3.3 IoT	and	Industry	4.0	
Industry 4.0 and the Internet of Things (IoT) are often similar, yet they are still different

approaches.

In IoT the main focus is on integration and mass connectivity of thousands (or millions) of

sensors, quite seldom actuators, very often associated with consumers to create new

intelligent services based on the generated data. This comes with all associated problems like

device energy consumption, connectivity problems, downtime, ability to process the data in

general, and so on.

Industry 4.0 (sometimes called the industrial internet as well) on the other hand considers

industry with stable energy supply, networking infrastructure, etc. – where the focus is more

towards the value-chain and the change involved there.

Yet both share aspects like Internet connectivity between value-chain partners (e.g. supplier

and producer), cloud-based computing and as a long-term goal a unified world-view where

the physical and virtual world come together to form one common system - see [84], [102]

and [96].

2.4 The	place	of	device	gateways	in	automation	and	Industry	4.0	

Every machine (or device in general) which is supposed to be integrated into a business

process or value-chain has to be accessed via a communication protocol. In some cases, this is

done from a consumer via direct access to the device (usually a PLC) using the native

protocols (e.g. Profibus), yet in most cases an intermediary – sitting between consumer and

producer (the device or machine) – is used. This intermediary, the device gateway, acts as an

access point to the device.

In the past device integration was – if it was performed at all – mostly only an integration

suited for the purpose it was intended for, e.g. a SCADA-system which means that the data

could not be used by anybody else as it was a 1:1 integration.

Page 15 / 252

Due to the open information flow envisaged in Industry 4.0 – especially towards the cloud as

participants of the value-chain are geographically dispersed – the gateway becomes more of

an Internet to Device (or IIoT) gateway33, see Figure 2.1.

Figure	2.2.1:	Device	Gateway	for	the	Internet	(IIoT	gateway)34	

In addition to being “just” a gateway, due to its computing abilities, the gateway very often

takes the role of an edge device in a fog computing environment35. Operated in such a mode,

the gateway becomes what is known as “Soft PLC” 36 – a PLC running on a standard system

and not on dedicated hardware.

Especially with the advent of business-process and value-chain integration, device-gateways

become more important and “first-class citizens” in the industry IT landscape. This point is

neatly encapsulated by the quote: “in the context of ever-increased networking of devices, the

amount and heterogeneity of interfaces to be considered increases […] which creates a

demand to simplify the integration and programmability of these systems, so that they are

usable in changing environments for changing requirements” [84].

33 Acronym not to be confused with IoT (internet of things), which is entirely different

34 https://industrial-iot.com/2016/07/future-industrial-gateway/

35 Fog Computing is an architecture where edge devices perform physical input and output and carry

out a substantial amount of computation and storage (https://en.wikipedia.org/wiki/Fog_computing)

36 A Soft-PLC is a PLC running only in software – often as a service. This requires a very stable

infrastructure as the same requirements towards resilience, fault-tolerance and timing apply very

often like towards regular PLCs.

Page 16 / 252

2.4.1 Future	trends	of	device	gateways	
As envisioned by [84], [87] and [97] as well as by this thesis author’s own experience on

working upon leading edge customers’ projects, device gateways will develop very much like

shown in Figure 2.2.1. They will become hubs to gather data and represent often autonomous

intelligence (“Soft-PLC”). In addition, the generated data is used in further data analysis (Big

Data) by feeding it usually into so called data-lakes [105].

Here not only the raw values, but especially the virtual sensor values (see section 4.1.2) are of

paramount importance, as they represent highly aggregated value37 which is created close to

the origin with lots of expertise which has not to be replicated at levels much further away38.

These generated values can then be used “as is” and / or processed further to form new

information levels.

2.4.2 Direct	integration	of	devices		
In contrast to an integration using device gateways, as described in 2.4, very often (according

to the author’s experience) devices are integrated directly on a 1:1 basis with the consuming

process. Thus, without the intermediary, the device gateway, which is why this method is

termed “direct integration” by the author and some references (like in [84])

In general, this approach offers quick results and usually fast integration times, whereas

(based on experience) in the long run the total costs and effort needed to maintain a properly

working solution far outweighs any short-term gain.

This in addition to other, already mentioned criteria like increasing complexity, security

issues and coordination renders this approach, in the opinion of the author, is not suitable for

larger integration scenarios, or when issues like data quality, value generation for the overall

process including data retrieval, etc. arise.

However, it is a good option to consider for simple integration of just some device data

(usually read-only).

2.5 Real‐world	integration	example	in	a	corrosion	quality	control	lab	

To give a real-world example for business process integration of a device gateway

architecture, a case study from the author's current work, is presented. Daimler AG (the

mother company of Mercedes-Benz) has a lab for corrosion tests in Sindelfingen (Germany)

37 Often these are KPI (Key Process Indicators) or KBI (Key Business Indicators)

38 “local” knowledge is usually more technology oriented and up-to-date than further away knowledge

which has to be taught as well

Page 17 / 252

where around 25 climate control chambers are running different test sets for corrosion

checks. These tests involve things like:

- Tempering parts to 70°C and then cooling them to -40°C while being sprayed with hot

brine (up to 5% salt in water);

- Permanent heat tests;

- Stone hit tests;

- Scratch tests;

- Lamination tests;

- Deformation tests.

In general, any part (from a tiny screw to a complete van chassis), being used in any produced

vehicle by Daimler AG, will have to undergo a test prescribed by internal specifications which

define how much corrosion, scratch, delamination, and so on is allowed for a given material

with a given treatment, coating, and so on.

So, the typical corrosion test process would be:

- Receive the part and label it with a water-resistant RFID tag which acts as a print

label at the same time;

- Place the part into a test chamber;

- Run the tests;

- If a chamber needs cleaning, maintenance, change, the part will be taken out and the

tests continue in another chamber;

- Finalize the results;

- Create the reports.

These climate chambers run software (firmware and communication protocols) from the

period 1977 – 2018 using 5 different protocols. These range from 2 very rare ones (using RS-

232 communication with 300 Baud and MODBUS (J-BUS)), to a Siemens S7 PLC as chamber

control, a REST (based on http) to a web-enabled device and proprietary TCP/IP protocols.

So, a classic case of networked and non-networked integration.

Each climate chamber usually has sensors for humidity and temperature with optional

additional sensors for in- / outflow of brine, brine temperature, gas pressure, content of Cu

(copper), Na (sodium), Cl (chlorine) in water. Very modern chambers provide sensors in a

redundant configuration so that always the most likely value is returned (determined by the

chamber control system). So in total a chamber provides from 2 to 10 sensor values.

Sensor data is read every 10 seconds, thus 6 samples per minute per channel, thus causing a

load of 300 to 1500 bytes per second per chamber (including the protocol overhead). In

Page 18 / 252

addition to the chamber data the RFID tags cause the RFID infrastructure to generate RFID

movement messages per part so each part can be localized and its exact position over time is

recorded.

Data integrity and quality used39:

- Data is delivered in different scientific units as some channels report in Celsius, some

in Kelvin, some in mBar, some in hPa, and so on.

- Data representation uses different floating-point formats and different bit ordering

schemes;

- Data storage is undertaken in 6 different ways (and 6 different physical stores);

- Data often contains values which are simply impossible (for example temperature of

water at 125 ° at normal pressure) due to wrong sensor readings, necessary re-

adjustments, and so on.

This data is very important as it is the basis for:

- Proof reports undertaken by the lab which verify a supplier’s quality compliance;

- Production management reports which is extremely important for a manufacturer;

- Definition of quality criteria that suppliers have to obey when providing material

treatment and coatings;

- Investment decisions, for example new paint finishing systems and their working

parameters.

Currently data integration and consolidation are performed manually (using tools like Excel

and Word) so all reports have to be processed manually as well. Only the templates for the

reports are generated automatically.

Figure 3.1 shows the current situation of the corrosion lab process in UML by describing the

logical flow of information between the components, which form the lab.

39 Currently Daimler in in the progress of changing things to a device gateway architecture, so things

improve and get better

Page 19 / 252

Figure	2.2:	Current	Corrosion	Lab	Process	

The situation is even more exaggerated as some tests are run on separate equipment and

produce additional data (in form of Excel files for the measures and images for the result)

which currently is not automatically incorporated into the lab control system. As these

usually are calibration tests performed with some 300+ scratch pads this is an enormous

amount of additional data40 which would need proper integration and analysis to be able to

give better quality-factors (Q-factors) and early warnings for failure.

Given this integration example the business process and internal requirements of the

author’s customer have been evaluated in several workshops and requirement analysis

documents bilaterally with the customer and the results are presented in the next two sub-

sections.

2.5.1 Business	process	interests	and	requirements	
From the business process side, the requirements towards the corrosion test center are:

- Integrate directly and automatically in the approval process of new parts which is

very complex, time-consuming and expensive;

- As many manufacturers produce the same parts in the same way (and are purchased

to maintain independence) it has to be ensured that the quality remains high and

40 Each pad generates 2 images (each 4 MB) and 3 measures (longest thread, average and mean)

sd Corrosion Lab Current

Operator

ControllerData store

Test chamber(s)

Part approv al
process

Lab control application

Part with RFID tag

RFID reader
(star-receiver)

Central Server for Lab
Control app

Controller

1: new part to evaluate()

1.1: define part()

1.2: label part()

1.3: part in chamber()

1.4: transmit measures()

2: transmit status information()

2.1: store status message()

3: query a report of measures()

3.1: query report template()

3.2: compile report()

3.3: enter result data and attach report()

4: establish Q-factor by running manual reports and exports to Excel()

Page 20 / 252

stable. Any fluctuations have to be immediately reported back so that very expensive

callbacks and warranty operations can be avoided;

- If tests show significant problems of a material some recommendation towards

production is required.

Interestingly these requirements have nothing to do with the device integration (chamber,

part with RFID-tag) as such, but are simply using the results which such an integration could

generate.

If the whole corrosion test center is considered a very complex device (which it is to some

extent) then the integration into the overall production process would be much more

streamlined and the efficiency (by reducing manual work) increased. This efficiency increase

would be an especially important requirement from business process side as operational

costs are high due to the amount of labor required.

2.5.2 Internal	requirements		
The corrosion test center has the following logical requirements which need fulfilling:

- Correlate all data so that the same scientific unit, data format and representation is

used;

- Eliminate implausible data (many of the temperature readings are simply impossible)

and therefore provide a much more reliable data basis;

- Store data in a centralized data store so it can be used in a uniform way;

- Provide unified access to data of the same type for comparisons;

- Be able to identify any part position over time for each part;

- Provide automated warning if parts are lost (not in any chamber, yet due for tests);

- Automatically adjust the workflows in the facility control software in a way that

interrupts (cleaning, part disposition) are booked into the workflow;

- Be able to have for each part historic information as to when each measurement was

retrieved from which chamber;

- Calculate a dynamic Q-factor (quality measurement of the lab) which combines

accuracy of the tests, timeliness and compliance to requirements;

- Create part approvals automatically based on evaluation of measured criteria versus

requirements from the norm specification.

Combining these logical requirements, the following requirements can be derived:

- Data quality has to be integrated and executed before data enters the business

process;

- Data format has to be irrelevant;

Page 21 / 252

- Communication interfaces and methods towards devices and consumers have to be

irrelevant and flexible / exchangeable;

- Where the data is consumed (data target) is irrelevant;

- Data must be semantically enriched so added value is presented to the business

process

o Either by generating entirely new data like a Q-factor;

o Or by combining data like what the temperature’s measure for part X on a

particular date was.

2.6 State	of	the	art	in	device	gateway	architectures	

Section 2.6.1 provides an overview of a number of key device gateway architectures from the

state of the art. Section 2.6.2 compares the features (defined in Table 2.1) of these

architectures against each other. The data protocols used in state of art are then described in

section 2.6.3.

2.6.1 Overview	of	existing	device	gateway	architectures	
The following device gateway architectures (or methodologies to achieve a similar

functionality) were selected as the state-of-the art architectures that should be described:

1) Xively (now Google Cloud);

2) MS Azure IoT (generally message bus-based systems);

3) sMAP;

4) Custom / Proprietary solutions.

They have been chosen for the following reasons:

- their coverage in academic publications41;

- their market presence for commercial solutions42;

- their use in real-world environments (based on the author's experience).

The list could be extended by many other solutions, most notably SenseWeb [7], TinyDB [79],

SENSEI [11], IrisNet [81], SIRENA [89] or SOCRADES [90], yet all of those lack a larger

41 For example, the sMAP paper (http://dl.acm.org/citation.cfm?id=1870003) at SenSys 2010 has been

cited 153 times and there are in the region of 10 papers covering the topic; Azure IoT has references in

1,260 papers (according to Google Scholar as of 11.07.2016)

42 Xively as part of Google Cloud IoT and Microsoft Azure IoT, are rather large

Page 22 / 252

installed base or are no longer used / active (at least accessible to the author) and therefore

were not included.

In addition to the above list, gateway architectures have been designed or suggested by

institutional bodies like Internet of Things Architecture (IoT-A) [25], EPCGlobal [26], Open

Geospatial Consortium [27], EPoSS [28] and others. Common to all these projects is their

large scale and more fundamental and wider research scope (beyond the scope of just device

integration part). Therefore, as the approach proposed in this thesis is more towards a direct

and tangible improvement of the device integration part, these were not included.

Another group were not included in the analysis, as they are very similar to the chosen Xively

and Azure IoT, namely platforms like Amazon’s AWS IoT

(https://aws.amazon.com/de/iot/how-it-works/) or Beckhoff’s TwinCAT

(http://www.beckhoff.com/twincat/). They provide more or less the same functionality and

feature setand have a messaging-based approach with some additional processing.

Finally pure IoT gateways ([91] provides a good overview of available technologies) and pure

industry automation device gateways were also not included in the analysis. This is because:

IoT gateways tend to be WSN43-biased and focus mainly on issues associated with the

runtime environment (power-efficiency, communication issues, edge- and fog-computing,

etc); pure industry device gateways only tend to focus on the protocol support and

interchange, like Soft PLC’s44 protocol converter. There is a tendency for overlap in areas of

fog-computing and industry automation [98] yet this is not covered as well.

2.6.1.1 Xively	(part	of	Google	Cloud	IoT)	

Xively (www.xively.com) is a commercial45 system whose components are shown in Figure

2.3. The services are running only on Xively systems, so no standalone or on-site installation

is available which means that an active Internet connection is required all the time.

43 WSN = Wireless sensor networks – where sensors are connected using wireless technology

44 http://www.softplc.com/products/comm/gateways/

45 Personal users can use it - within limitations - free of charge

Page 23 / 252

Figure	2.3:	Xively	services	

All data producers and consumers connect to the central system using a standardized

publish-subscribe messaging transport protocol MQTT 3.1.146. Connectivity via REST (over

http(s) and Sockets) is available as well, yet more for compatibility with previous versions of

the product than for emerging integration scenarios.

The internal payload of all telegrams (regardless of the communication link) is either JSON,

XML (in EEML47 dialect), CSV48 or XLS49 (for series data).

The design allows for an arbitrary number of consumers to be connected (logically linked) to

an arbitrary number of producers (sensors / devices). So messages from one producer will be

transported to the centralized system and there the broadcasting to a whole range of

registered receivers (consumers) tales place using MQTT. This might be a reason why MQTT

was given precedence over previous, more technical access protocols like REST and sockets,

as it focusses on a more abstract level50. A message receiver can be a producer (thus a device)

as well, meaning that sending data to the device is implemented by means of MQTT-

messaging.

46 http://mqtt.org/documentation

47 EEML = Extended Environments Markup Language - http://www.eeml.org/. A XML specification to

describe environmental data, developed by Xively while still being Pachube.

48 CSV = Comma separated values

49 MS Excel file format

50 This is a fundamental feature of most messaging-platforms (like Microsoft Azure IoT as well) which

might be a reason why IBM (using the know-how they gained from WebSphere MQ-Series) is

participating in the MQTT consortium as well

Page 24 / 252

Xively handles the messaging part (both ways –read and write) very effectively and by using

MQTT (internally as well as externally) as an abstract protocol in a very device-independent

way. The data hierarchy used by Xively is based on products which contain several (1..n)

devices which have one feed. The feed is the collection of data streams (0..n).

In addition to just forwarding information from producer to consumer Xively can aggregate

time-series data as well, which means they collect data from a producer over a period of time

and make these available as a “time-series”. The maximum duration of a time-series window

which can be retrieved is 6 hours – in case a longer window is requested several requests

have to be made. The same information collection and retrieval is offered for incident and

status logging as “log-data” service.

Xively includes the ability to define triggers to notify registered listeners about special data

constellations as well. Here the intended listener is registered for a feed with a condition

which has to be met and in case the condition occurs the listener is called using a HTTP POST

request. So, as an example, a listener could register for the feed on “device ABC” for the

condition of data stream “Temperature Celsius” is >= 80 and in case this happens the HTTP

POST to the registered URL will occur.

It is not defined, if the trigger is called synchronously or asynchronously to the occurrence of

the event, and how much the delay between occurrence and call would be. Thus usage in a

critical environment, where for example reaction to a threshold breach within x msec is

important, is not possible.

So, in principle Xively is a large-scale message exchange with the core focus on very fast

publishing of inbound data to multiple subscribers with an additional internal data store for

historic data. Aggregated data as time-series and logs, in addition to triggers and optionally

an integrated SalesForce51 integration can be used as well.

This clearly classifies the product as a device gateway, yet compared to the proposed DBGA

(see next chapters) some short-comings are clear:

 Xively is commercial and therefore everybody using it has to pay;

 Many people in the industry handling data would not be able to utilize the Xively

service as their company policy prevents them from storing these data packets

anywhere outside the company52;

51 SalesForce is market-leading Customer Relationship System (CRM) - https://www.salesforce.com/

52 For example, at Daimler Benz AG any data which is considered relevant (which is below confidential)

can only be stored in in-house data centers. If it is confidential further limitations apply.

Page 25 / 252

 Xively can only be used as a centralized service requiring any submitting device or

receiving application to be connected to the Internet which is very often simply

impossible or not allowed (security, policy, etc.);

 The main target group of Xively data is more classical consumers like data

visualization, CRM systems or central monitoring systems;

 Triggers are the only way a client can react to a change in data. No autonomous

operations by the device gateway are defined or possible, thus making it very hard to

implement a higher degree of control;

 Xively does not filter, alter, cleanse or operate on device data in any other way than

time-series aggregation.

2.6.1.2 Azure	IoT	

Microsoft (MS for short) Azure53 is a collection of cloud-based services offered by Microsoft

(MS). Among these services the IoT-suite54 acts as a complete IoT solution implementing

Microsoft’s IoT architecture [81] (where a device gateway architecture is part of it). It should

be noted that the MS Azure IoT suite is a combination of several micro-services from the

range of the MS Azure services with some pre-configuration applied. This level of

functionality could be achieved by using and connecting the core components as well. In

order to create a fully working system these components normally have to be adjusted and

configured anyhow.

Figure 2.4 shows the schematic overview of the MS IoT solution architecture.

Figure	2.4:	Azure	IoT	solution	architecture	[81]	

53 https://azure.microsoft.com/en-us/

54 https://azure.microsoft.com/en-us/solutions/iot-suite/

Page 26 / 252

For achieving the functionality depicted in the architecture several other services from the

Azure range are combined. These combined services can be identified in Figure 2.5 which is

an overview of the MyDriving55 sample application (developed by MS to showcase their

technology). From the figure the following main Azure services used can be identified:

- IoT	Hub as a cloud gateway to provide the core connectivity from a device to the IoT

service;

- Blob and SQL	database to store data permanently;

- Stream	Analytics and Message	Bus to do the life data processing and eventing;

- Machine	learning to automatically figure out new facts;

- Monitoring to keep track of ongoing operations;

- Processing	unit to run several services.

Figure	2.5:	MyDriving	sample	application	in	Azure	IoT	showing	sub‐services	used56	

In this architectural approach many separate components (services) are combined to form an

entire architecture and application landscape, which has an added benefit for MS insofar as

several services have to be consumed (where each service has its own cost associated).

On the technical side the approach stems mainly from the fact that the predecessors of the

architecture utilized the BizTalk message bus architecture as described in [9] and [10]. This

55 https://azure.microsoft.com/de-de/documentation/samples/mydriving/

56 https://azure.microsoft.com/de-de/documentation/samples/mydriving/

Page 27 / 252

message bus is available as a separate hybrid messaging and application integration platform

as well (Azure BizTalk services)57.

At the very core of the architecture is a message bus – similar to the one used by Xively (see

section 2.6.1.1 for details). So, both architectures operate internally on the principle that

inbound messages are routed to dedicated receivers. The message content is of no concern to

the routing engine as it just routes a data packet from A to B. The message format used

internally is always XML to enable the various parties to access the payload in a homogenous

way.

A device is considered a data stream source where conceptually a single data stream for all

attached sub-components of the device (for example sensors) is utilized and each sub-

component writes into the same stream. In this main stream the sub-components are

identified by some property of the data record (for example “stream-id” or “sensor-id”). Any

data packet sent in a message is just considered an anonymous data record in a data stream

from a device which has a unique timestamp, so the data as such is of no concern to the

gateway.

Any device in the MS architecture never accepts unsolicited network connections which

means that all connections are initiated by the device as an outbound operation. Therefore,

sending data to the device (for example writing a value or sending a command) will be

implemented using sending messages to a queue or store for the device where the messages

are persisted for guaranteed delivery. Once the device is active (again) the messages will be

retrieved. To activate a device when it is in for example power-down mode (so that it

retrieves the messages) an out-of-bound signal (like a SMS) might be sent to wake up a device

and then the device can retrieve the pending messages. Messages are stored until the device

retrieves the messages or the Time-to-Live (TTL) time for the message expires. This is

important as some data (for example the command to open a flap on an exhaust) might only

make sense within a specific period of time (for example next 2 minutes).

Connecting a device to the MS architecture can be done in several ways:

1) Direct	connectivity	to	the	cloud	gateway	

Here the device is directly connected using a TLS/SSL stack and TCP/IP to Azure.

	

2) Connectivity	via	a	field	gateway

Used mainly for devices using specific protocols, short-range communication

57 https://azure.microsoft.com/en-us/services/biztalk-services/

Page 28 / 252

technologies (like ZigBee or BlueTooth), devices not supporting a TLS/SSL stack, or

devices which are not connected to the Internet. In addition, this option might be used

when some sort of aggregation of streams and data shall be performed before the

data enters the cloud (for example limit check).

Field gateways are different from mere traffic routers as they take an active role in

managing access and information flow.

3) Connectivity	via	a	custom	cloud	gateway	

Custom cloud gateways are part of the cloud based architecture and thus operated in

the cloud context as well (in comparison to the field gateway which – usually -

remains outside the cloud). They generally manage all aspects of communication,

including transport-level connection management, protection of the communication

path, device authentication and authorization towards the cloud gateway. Quota

enforcement, billing data collection, monitoring, etc. are all part of their normal

operation.

4) Combination	of	Field	Gateway	and	Custom	Cloud	Gateway

This option simply combines the previous options.

The actual communication protocols (in case direct connectivity is used as otherwise any

protocol could be utilized) provided are: HTTPS, AMQP 58and MQTT (as Xively). Using the

provided libraries for connectivity available for .NET, Java, Node.js, Python or C (which can

run directly on a device)59 greatly reduces the implementation effort.

Compared to Xively, MS has put much more emphasis on the processing facilities of inbound

data as well as further “higher” services like machine-learning and data analysis. Inbound

data streams can be analyzed “on the fly” using stream processors or data pipeline transfer

and the resulting data stream is then forwarded to the next handler. Using several handlers, a

chain of handlers can be created where each handler will only do its part. Therefore, it is

possible to completely analyze, process, change and even suppress incoming data before

being handed over to the corresponding receiver(s).

58 AMQP = Advanced Message Queuing protocol (http://www.amqp.org/) – a protocol like MQTT yet

on a far more global scale

5959 https://azure.microsoft.com/en-us/documentation/articles/iot-hub-sdks-summary/

Page 29 / 252

As all services are run in a stateless manner in the cloud the architecture provides in

principle limitless growth which clearly coincides with their architectural definition [81]:

“The proposed architecture should support millions of connected devices. It should allow

proof-of-concepts and pilot projects that start with a small number of devices to be scaled-out

to hyper-scale dimensions.”

Given that and the structure of the services which can be combined in flexible solutions, the

MS architecture is for sure one usable for extremely large environments containing millions

of devices. On the downside this comes with considerable administrative and integration

effort. Especially as all the components have to be developed, deployed and operated which

requires several areas of special and dedicated knowledge.

As well as for Xively the comments about being commercial and not available for on-site

deployment compared to the proposed DBGA (see next chapters) remain. Yet as there are

many options regarding stream processing and data handling, the architecture is quite

similar to the DBGA (but with a different way of doing things). More detail on the differences

is seen in the case study sections.

2.6.1.3 sMAP	

sMAP (the Simple Measurement and Actuation Profile60 - details at [5], [18] and [57]) was

developed at Berkeley University to address sensing issues and sensor integration in building

and environmental monitoring scenarios. The main intention was to represent physical

devices (which usually have / had no TCP/IP or even HTTP stack available) to an outside

world by means of HTTP resources.

Its core concept is that a physical device is represented in the HTTP space by a "sMAP source"

(which is connected to the actual device using a driver). This source, which technically acts as

a tiny web-server, is then available to be queried using RESTful APIs from anywhere using

JSON-encoded data. In addition, consumers for a source can be configured and then the

source sends HTTP POST to each consumer when data changes. Thus the source is a unique

information object (resource) addressable using a URL in the whole range of other objects

available.

sMAP is written nearly entirely in Python and available in source code as well. The current

drivers are more towards building and environmental monitoring (power-consumption,

temperature readings, humidity, etc.) whereas different types could be connected rather

60 http://www.cs.berkeley.edu/~stevedh/smap2/index.html

Page 30 / 252

easily. Receiving data as a client can be done with either "R"61 or using sMAP's own query

language (embedded in the JSON request).

Using sMAP's approach to create new sources (and connect devices to it) is rather fast and

straightforward and allows any integrator to get some basic system up and running in a short

time. However when you start having quite a number of sensors things start getting

complicated with all the small web-servers around; especially discovery and security.

Allowing an "intelligent" device to act as its own source by hosting a Python environment

could be done, but due to the availability of Python in embedded environments this would

not be very easy and especially involve quite some testing.

The sMAP adopted "source" approach is fine in a research context, where you could walk to a

"source" which is not responding properly (typically a dedicated machine), but will not work

so well in a more industry or automation environment. In addition, from a security point of

view these tiny servers are sub-optimal and most industrial customers would simply not

tolerate such an approach from the security side (controlling access, securing data,

encryption, etc.).

Querying data using R or the sMAP-query language is a very interesting feature for scientists

and people with technological background, yet the access from tools like Excel62 (using for

example ODATA) is far more important for many people and not implemented at the

moment. Of course, you could build a connection (using R or some other technology) between

Excel and the source, but still you have to do it and it is rather complex work.

The missing "centralized" coordination results in there being no option to combine several

data-sources and create new knowledge out of this. You could achieve this, of course, by

creating a new source which subscribes to other sources and provides new data based on the

ancestral data. Yet still this has several disadvantages in that: it is not in centralized

repository; has to be done anew for each constellation; no central management, and so on.

sMAP is more focused on data aggregation and then afterwards retrieval than active process

control or data manipulation. In addition, sMAP provides no added services like actuators,

triggers, data enrichment, etc. - all these features have to be a custom adaptation and

implementation.

61 https://www.r-project.org/

62 Excel being the "tool of trade" for most users of these device data in a more aggregated form

Page 31 / 252

2.6.1.4 Custom	solutions	(proprietary	approaches)	

Proprietary approaches, usually containing a mix from all above, are also in use (for example

at the author's customer projects as well). Typical examples, which were examined during the

state of the art review, are (among others): CTS Umweltsimulation63, WUT Simpati64 and

Johnson Control Umweltsimulation. In these examples, the gateways bundle devices and act

as backup control units (in case a centralized system fails and data has to be stored for some

time before it can be re-transmitted). When a connection is there, any event is propagated up

the chain to centralized systems where the final storage (usually in more or less proprietary

data silos) takes place.

These solutions usually are quite performant and functional as long as no further process

integration is needed and / or data from the processes required. Especially when it comes to

dynamically generated values (like quality of service, throughput times, etc.) or additional

services these systems usually will not support these operations / requests.

The downside to such approaches is that any evolution or change requires additional

investments (everything has to be developed). Retaining knowledge of the integration is also

another problem with such solutions as they are usually bound to an integrator whom to

replace (sometimes mandatory as for example the company ceases to exist) is hard and

sometimes nearly impossible.

In short, these custom solutions are very much like a bespoke suit. For some they can be

absolutely perfect and provide everything needed for a very reasonable price. For others

(especially when requirements change frequently) they can become a major obstacle

hindering progress and far too expensive for what they deliver.

2.6.2 Gateway	architecture	feature	comparison		
To be able to compare the various features present in the analysed architectures discussed in

section 2.5.1, Table 2.2 has been created to illustrate the core features and their coverage.

The features listed in Table 2.1 were chosen as they, from the vast experience of the author as

an integration practitioner in the industry automation area, are the most relevant when it

comes to actually using and integrating a gateway in the real world:

63 https://www.cts-umweltsimulation.de/produkte/software.html

64 https://www.weiss-technik.com/en/productarea/smpatiR-software/

Page 32 / 252

Table	2.1:	List	of	features	

Kind of feature Feature

F1 Functional Available “in-house”

F2 Functional Hostable in the cloud

F3 Functional Support for very large number of devices

F4 Functional Failover, Cluster-Support

F5 Functional Data can be written to the sensors

F6 Functional Asynchronous information about changes

F7 Functional Autonomous system support / workflow operation

F8 Functional Data is stored internally

F9 Functional Inbound data can data be intercepted, analysed, checked?

F10 Functional Support for data querying

F11 Functional Communication pattern

F12 Functional Synchronous / asynchronous communication model

F13 Functional Level of coupling of gateway and consumers (client)

F14 Functional Preservation of state (knowledge about a sensor)

F15 Functional Semantic data value increase

F16 Functional Ontology support

F17 Non-Functional Customization required before use

F18 Non-Functional Amount of infrastructure / additional services needed

F19 Non-Functional Cost

For a full description of each feature chosen see B.1 in the appendix.

Page 33 / 252

Table	2.2:	Feature	overview	

Feature / Functionality Azure IoT Xively sMAP

F1 Available “in-house” No No Yes

F2 Hostable in the cloud Yes Yes Maybe with a lot of work

F3 Support for very large number of devices Yes Yes No

F4 Failover, Cluster-Support Yes Yes Partially (database yes,

gateway only cold-standby)

F5 Data can be written to the sensors Yes (yet requires special

integration work)

Yes No

F6 Asynchronous information about changes Yes Yes (only via triggers) No

F7 Autonomous system support / workflow operation Yes, but not controlling the

device directly

No No

F8 Data is stored internally Yes (with additional modules) Yes No (can be achieved with

external services)

F9 Inbound data can data be intercepted, analysed, checked Yes No Yes, but with effort

Page 34 / 252

Feature / Functionality Azure IoT Xively sMAP

F10 Support for data querying Yes (database operations and

analysis)

Somehow by means of web

interfaces and small

analytical parts

Yes, a specific query

language is provided as well

as support for R

F11 Communication pattern Message based Message based API

F12 Synchronous / asynchronous communication model Asynchronous (message

based)

Asynchronous (message

based)

Synchronous (API-based)

F13 Level of coupling of gateway and consumer (client) Loose Loose Tight

F14 Preservation of state (knowledge about a sensor) Only with additional services Only partially as historic data Only with additional services

F15 Semantic data value increase Not directly – requires quite a

lot of additional work

No No

F16 Ontology support With additional effort No No

F17 Customization required before use Yes No (but could) No

F18 Amount of infrastructure / additional services needed Much – many services and

additional features have to be

combined and integrated

Very little – almost all is

hosted as one solution in the

cloud with just a few options

Very little

Page 35 / 252

Feature / Functionality Azure IoT Xively sMAP

F19 Cost Fixed cost is usage based, can

be quite high65.

Follow-up cost due to

specialized skill requirements

very high

Fixed costs are moderate –

per customer specific deal.

Follow up costs is moderate

as well as there is not very

much to configure

Free fixed costs (aside

hardware).

Follow-Up costs usually

quite low

65 Pricing is actually quite complicated as for example for an S1 edition (42 € / month) 400,000 messages / day (each 4 KB block is one message) is included. In case

additional services like Machine Learning, App Service or Stream Analytics are used, these are charged on top.

Page 36 / 252

2.6.2.1 Summary	of	feature	comparison	

As each feature can be more important than others in a specific integration

environment, any kind of prioritization is not really possible. Yet from a current

industry usage point of view, based on the author’s experience, the most important

features are:

a) The preservation of state (so the knowledge how the current sensor state is);

b) Semantically enriched data which can be utilized by a business process to be re-

used higher up in the value chain;

c) Flexibility to support synchronous as well as asynchronous communication

patterns, loose or tight coupling between consumer and gateway and the ability

to use an API instead of a message-based approach;

As in-house66 message bus operations become available67 and are being utilized,

protocols like MQTT (see Table 2.3) and asynchronous principles become more

important in general. This is very much in line with the current trend to utilize the

Internet as a communication media for industry data as well ([84], [106]), especially

when the value-chain and data model stretches over several different companies (for

instance suppliers and consumers). This can be seen in solutions like Xively or Azure

IoT as they provide this as their only operational model.

2.6.3 Data	protocol	support	
Data protocol support is a key aspect of any gateway architecture (indicated in [106] as

well). In general data protocol support is very heterogeneous among the different

architectures with REST being supported by all, yet on different levels. For sMAP it is

the only option to communicate with the nodes, for Xively and Azure IoT it is mainly

66 Which is an important difference for most users as usually no sensitive production data will

be allowed outside the premises

67 For instance, in Daimler AG (and several other large manufacturing sites in Germany) there is

currently a process to establish a factory wide message bus for any kind of production related

data

Page 37 / 252

used to manage things (devices, streams, etc.) and for the DBGA all operations are

available via REST.

SOAP is currently supported by none of the architecturs, yet in case of need a custom

cloud gateway could offer the same functionality for Azure or in a similar manner for

Xively.

Azure IoT exclusively provides AMQP as native internal protocol, whereas both Xively

and Azure offer MQTT for message transport.

To standardize efforts for integrating industry automation devices the protocol OPC-DA

[86], later followed by OPC-UA [85], has been developed by the OPC. It is the internal

data transmission format over any external link format like REST or SOAP, and thus

defines a common format for the exchange of data and information retrieval. It is used

mostly in SCADA- or ERP/MES-system-integration but can be utilized by any consumer.

Usage examples can be found in [99].[98]

Page 38 / 252

The protocol support matrix is shown in Table 2.3:

Table	2.3:	Data	protocol	support	

Protocol Azure IoT Xively sMAP

REST Yes, but Throttling

may be activated68

Yes Yes

SOAP Only with custom

implementation

No No

AMQP Yes No No

MQTT Yes Yes No

Binary protocol Only with custom

implementation

No No

ODATA Only with custom

implementation

Only with custom

implementation

No

CNDEP Only with custom

implementation

Only with custom

implementation

No

OPC-DA / OPC-UA Only with custom

implementation

Only with custom

implementation

No

Data content

agnostic

Yes Yes No

Azure IoT custom protocol implementations can be done by implementing an IoT hub69

where the protocol conversion to and from AMQP is performed.

Custom solutions cannot be classified as specific from use case to use case. Yet usually

their protocol support is limited to that which is absolutely necessary, which in most

cases known by the author is either a binary protocol using native TCP/IP frames or

REST services. In more automation industry related solutions SOAP is predominant, as

REST is as yet not considered deterministic or predictable enough.

68 (https://azure.microsoft.com/en-us/documentation/articles/iot-hub-devguide/#throttling)

based on communication pattern used.

For example, for receiving messages from the cloud the supported frequency using HTTP/1 is 1

request per 20 min (per device) - https://azure.microsoft.com/en-

us/documentation/articles/iot-hub-csharp-csharp-c2d/

69 https://azure.microsoft.com/en-us/documentation/articles/iot-hub-devguide/

Page 39 / 252

Current gateways (aside from custom solutions) all support using JSON data in a HTTP

request.

2.7 Discussion	

Information about devices and sensors (section 2.1), industry automation (section 2.2)

and Industry 4.0 (section 2.3) and the place of device gateways in automation and

Industry 4.0 (section 2.4) was presented, followed by a real-world integration example

from the author’s customer in section 2.5, leading to a state of the art overview of

existing device gateway architectures in section 2.6.

Based on this information, the presented architectures (see section 2.6.2), research

papers like [101], [95] and [104], and various discussions with business stakeholders

in the automation industry lead to the identification and confirmation70 of several key

criteria for device gateway architectures:

 Flexibility offered by the architecture for an integrator to integrate devices into

business processes, including ease and cost of change in the future

The complexity of the solution and the skill required to execute the solution,

including the learning curve to obtain the skill level required;

 How much time (and therefore cost as well) it takes to:

o build a solution for a use case based on the architecture;

o Operate and administer the solution in one year;

 Simplicity of the design and the ease of change (including the cost of change) in

the future including the preservation of investment;

 Easiness to obtain the current device / sensor state and use it in the business

process;

 How much infrastructure and overhead in terms of “environment” is needed

(footprint of the system) and what performance with which maximum number

of devices / sensors / actuators supported is provided on this infrastructure;

 How reliable and fault tolerant is the system and what is the overall stability;

 Is it free software or a commercial system, which costs are involved;

 What security mechanisms are in place.

These criteria define if a device gateway architecture is usable and adding value in the

automation environment, and therefore will form the basis of further requirements

70 These criteria were confirmed as reasonable Mr. Robert Mayrhofer, Head of Corrosion Testing

Team, Daimler AG

Page 40 / 252

(see section 3.3). Characteristics are derived from these requirements (see section 3.5),

as well as measurements (see section 3.7) of how much achievement an architecture

provides (for the results see the architecture comparison in section 7.3).

Based on the feature comparison (see Table 2.2 in section 2.6.2) the current systems

(especially Azure IoT and Xively) are powerful with regards to business processes, yet

lack the necessary features of preservation of state and the semantic enrichment of

data (which is of paramount importance in industry automation environments)

without extensive additional efforts.

Autonomous system support, is another very important feature when a device gateway

is to interact directly with a device in a non-supervised mode, and lacking from Xively

and sMAP. Here Azure IoT provides some support due to its very good and powerful

workflow capabilities, yet lacks in the interaction with the device, which limits its

usability.

Flexibility is to some extent present in all architectures, yet only in a quite narrow pre-

defined set of operational limits, which does not provide much choice for integrators.

Yet as flexibility very often is a driving factor in achieving an improvement in an

integration of a device gateway into a business process (by having a free choice of

communication patterns, deployment options, API style, message-based operations,

etc.), this becomes more important.

Therefore, an architecture optimized to improve the integration needs to address all

these issues (among other requirements) in its design.

Page 41 / 252

3 Requirements	and	characteristics	of	a	device	gateway	architecture	

In this chapter descriptions of typical usage scenarios for device-gateways (section

3.1), which shows potential uses of the architecture in real life (and evaluation

environments), as well as a description of standard use cases (section 3.2) are shown.

Based on these, together with features from the state-of-the-art section 2.5, the derived

requirements that should be supported by gateway architectures are presented

(section 3.4) and ranked (section 3.5). The characteristics of the proposed gateway

architecture DBGA are then defined (section 3.5). Finally, the coverage of the derived

requirements by the selected state of the art gateway architectures (including DBGA)

are then compared in section 3.6 and the measures to define overall business process

integration achievement are defined in section 3.7.

3.1 Usage	scenarios	of	the	architecture	

To have as wide as possible spectrum covering a majority of typical situations, two

scenarios for later case studies and evaluations of the architecture in chapter 7 were

chosen which resemble typical environments for a device gateway architecture:

- A stripped-down version of a climate chamber control system (section 3.1.1) for

use inside a corrosion lab including RFID integration very similar to the

author’s customer environment71. The current “real” environment is described

earlier in section 2.5;

- An exhibition visitor congestion display system (section 3.1.2) which tracks

users and shows a heat map72 for congestion in the exhibition space.

In general, it should be noted that the scenarios are not complete. There are several

special conditions and real-world requirements which cannot be met. Yet still the

scenarios demonstrate a basic usage pattern and implement all needed technology and

control which is required from a device gateway integration perspective.

Typical examples for conditions and requirements which are not met, including the

work-arounds used in the case studies, would be:

- No physically existing RFID systems and test chambers were present in

evaluation, so simulators to generate the events and data were used;

71 For a real life version many more devices would have to be supported and much more

statistical data retrieved or calculated - yet for the scenario all required parts are covered.

72 http://www.businessdictionary.com/definition/heatmap.html

Page 42 / 252

- In the real world, the chamber min / max values would be dependent on the

current test and test cycle running as well as an aging factor, as over time (due

to crystallization) readings especially for temperature and humidity are less

accurate (and have to be compensated);

- A real-world system would operate with 2,000 – 10,000 parts at any given

moment of time. As this is simply a scaling up of the data sets the operations

were performed with a limited amount of 100 sample parts;

- Instead of real mobile devices a simulation process was used and 100

concurrent users, operating in a defined rectangular area, simulated.

3.1.1 Corrosion	lab	scenario	simulation	
Using a subset of the environment described in section 2.5 a scenario for a case study in

section 7.1 is defined.

For the scenario the following requirements are given:

The chamber acts as a device with 3 connected sensors so it can be read from. A

reading should occur every second, minimally every 10 seconds to guarantee proper

values. Each value must be associated with a precise timestamp. Each sensor value has

to be checked for current min / max constraints.

The exact location must be retrievable for each part73 (based on the id).

An alarm has to be raised by writing to an actuator in the following cases:

- When parts are moved out of a chamber into the pre-chamber-zone and not

restored into a chamber within 15 seconds74

- When one of the chamber sensor values is invalid or not available for more than

10 second (would be 15min in real life)

For each part a Q-factor75 has to be calculated dynamically which defines how well the

part is tested compared to the test specification. As this would be a rather complex

operation in a real environment for the scenario it is abbreviated to generate a random

Q-factor for each individual part.

73 So, the last known position from the RFID scanner should be taken

74 In real life this would be 1h. Happens when a chamber cleaning (has to take place sometimes

during tests) either takes too long or parts are simply forgotten to be restored

75 quality factor from 1 to 10 as highest

Page 43 / 252

In the UML Use Case diagram shown in Figure 3.1 the standard use cases provided by

the architecture as well as specialized versions needed for this actual scenario are

defined.

Figure	3.1:	UML	Use	Case	diagram	for	Corrosion	Lab	

In Table 3.1 the specialized use cases are defined in short (full details can be found in

section A.1 (appendix)):

Table	3.1:	Specialized	use	cases	for	Corrosion	Lab	

Use Case Meaning

Get part location

Get the current zone76 where the part (identified by its id) is

currently located. This can be either the last transmitted

position or the last stored value (needed after restart of

gateway) or undefined in case no position is available

76 Zone is a predefined symbolic name for a unique coordinate area. The RFID-infrastructure

organizes all actual coordinates, derived by triangulation of the signal, into zones which are then

communicated (instead of the real X/Y/Z position)

uc Scenario 1

Device Gateway Standard Use Cases

Check read cycle
frequency

Validate v alue

RFID simulator

Send part mov ements
in 3 zones and

undefined

Write Sensor Value

Check if part status is
correct

Raise alert

Cyclic calculation of
Q-factor for parts

Cyclic Execution of
task

Query Q-factor for
part

Data Consumer

Get part location

Read chamber data
(PULL operation)

Read Sensor Value

Data Access

Implemented by
chamber data
simulation process

Write actuator v alue

Ev alue Virtual
Sensor Value

Dev ice & Sensor
Management

if not correct

«invokes»

«invokes»

fai lure reading

«invokes»

«trace»

Page 44 / 252

Query Q-factor for

part

Get the current Q-factor for the part (identified by its id). If

no calculation is possible (for example no data) 0 (lowest) is

returned

Cyclic calculation of

Q-factor

Perform a cyclic evaluation of all Q-factors for all currently

active parts and write the results back to the gateway so that

the next query will deliver the correct Q-factor

Send part

movements in 3

zones and undefined

Simulate sending movement information for the parts into

one of the 3 defines zones A, B or C or as undefined.

Read chamber data Scan the defined chambers (simulation process) and retrieve

the readings for the sensors

Check if part status is

ok

Check if the part is not in an invalid chamber for the current

test, the part is not scheduled to be tested, the part has been

tested already or the part has been “forgotten” in the

preparation area

Check read cycle

frequency

Check that chamber data has been read and is valid within

the last 15 minutes

Raise alert In case an invalid condition is existent a global alarm has to

be raised by writing to an actuator (which calls a WS*

service)

3.1.2 Exhibition	visitor	congestion	display	system	scenario	simulation	
As an alternative scenario for a case study an exhibitor congestion display system is

defined in section 7.2.

For the scenario the following requirements are given:

When the user's position is sent to the device gateway it must be validated before it can

be used (bounds check). Using the data, a clustering can be calculated by a centralized

autonomous operation (workflow) every 1 second and the result as heat map data is

stored. This data, consisting of an array of X/Y-coordinates based on a 10x10 cell size

(thus dividing the coordinate space in 100 areas) and the number of people in the area

will then be made available via a virtual value (data read request) and returned in JSON

format so it can be consumed by the client to display the map. Using the heat map the

distribution of people in the coordinate space can be shown using bright colors for

many people and darker colors for less (or zero) people. Thus, the brightest areas

would be those where the most people are.

Page 45 / 252

In the UML Use Case diagram shown in Figure 3.2 the standard use cases provided by

the architecture as well as specialized versions needed for the actual scenario are

defined.

Figure	3.2:	UML	Use	Case	diagram	for	exhibition	visitor	congestion	display	system	

In Table 3.2 the specialized use cases are defined in short (full details can be found in

section A.2 (appendix)):

Table	3.2:	Specialized	use	cases	for	exhibition	visitor	congestion	display	system	

Use Case Meaning

Send position

Send the simulated position in a 100 x 100 rectangle.

Sometimes random errors (too large or too small numbers)

are sent

Read heat map Read the current heat map data as JSON array

Validate position Make sure the coordinates match the rule, otherwise ignore

Calculate heat map

data

Take the current valid positions of all participants and

calculate the heat map data

	

uc Scenario 2

Device Gateway Standard Use Cases

Smartphone simulation
process

Send position Read heat map

Read Sensor ValueWrite Sensor Value Validate v alue

Data Access

Cyclic Execution of
task

Calculate heat map
data

Validate position

Ev alue Virtual
Sensor Value

Dev ice & Sensor
Management«invokes»

«trace»

Page 46 / 252

3.2 Standard	use	cases	to	be	supported	by	a	gateway	architecture	

Analysis of the scenarios outlined in section 3.2 plus knowledge of other real-world

scenarios have been used to derive a set of standard use cases that a gateway

architecture used for integration into other systems should support:

 Manage	devices	and	sensors	(details	in	section	4.5.1)	

Consumers can register, query, delete and update devices and sensors attached

to devices. This includes virtual devices as well. 	

 Write	sensor	value	(details	in	section	4.5.3	and	4.5.4)

Data producers use this use case to be able to deliver new sensor values into the

system. This can be a push or pull operation – so either a write to the gateway

by devices or a read from devices by the gateway.

 Read	sensor	value	(details	in	section	4.5.5)

Data consumers use this use case to be able to get existing values from the

system.

 Evaluate	virtual	sensor	value	(as	a	specialized	form	of	“read	sensor	value”)	

(details	in	section	4.5.7	and	especially	4.5.7.4)	

When a sensor is defined as virtual value the evaluation the read operation is

done by the evaluation.	

 Write	actuator	value	(details	in	section	4.5.2)	

Allows the gateway users to be able to write values to an actuator.	

 Validate	value	(details	in	section	4.5.7)	

The gateway uses it to validate (and potentially reject or adapt) a value before it

is accepted into the system.	

 Cyclic	execution	of	tasks	(details	in	section	4.5.7.5)	

The gateway uses it to run periodic tasks automatically.	

 Data	access	(details	in	section	4.5.6)	

Used by write and read sensor value to have access to a core data storage

functionality for reading / writing sensor data, etc.

3.3 Requirements	to	be	supported	by	a	device	gateway	architecture		

The functional and non-functional requirements (section 3.3.1 and 3.3.2 respectively)

of a device gateway architecture were derived based on the use cases and the state of

the art review (section 2.6) as well as key criteria presented in section 2.7 and

academic papers [84], [102], [104] and [106] among others.

Page 47 / 252

3.3.1 Functional	requirements	for	device	gateway	architectures	
Table 3.3 defines functional requirements derived from the discussion for device

gateway architectures.

Table	3.3:	Functional	requirements	for	device	gateway	architectures	

Requirement Description

R1 Centralized data store Data from sensors must be stored in a suitable

centralized storage media (usually a SQL database).

R2 Data retrieval using query

facility

The architecture must provide a query / data retrieval

mechanism in the protocol

R3 Direct data retrieval from data

store

Data from the data store should be retrievable directly

by a consumer without interference of the gateway

R4 Communication interface

agnostic

Communication interfaces must be exchangeable and

may not hinder any interaction. No specific features

only in one (or several) implementations and not in

others should be allowed (for example operation X

works on protocol A, but not in protocol B)

R5 Data format agnostic Store data in an internal format which is not specific

to any CPU and implies no meaning to the stored data

R6 Integrated data quality control Provide a flexible, extendable internal data processing

chain which adjusts and / or filters data before it is

stored / forwarded

R7 Semantic data value

enrichment

New data, created or derived based on scripts or

definitions and, based on existing one, must be

generatable

R8 Autonomous operation /

workflow execution

The ability to execute workflows should be integrated

in the architecture so that they can directly and

independently react to external events

R9 Actuator support Data must be capable of being written as well as read

(if supported by a device)

R10 Write-target agnostic Provide writing of values to either physical or virtual

actuators (which could be for example a URL where

the value is POSTed to). Using this feature allows to

easily “chain” messages from a device gateway to the

next system by simply writing to a, for example, URL

and thus passing the message further on. If not

present any chained system must listen actively for

Page 48 / 252

messages and retrieve and process them which would

not be possible with for example a WS* as they by

definition are passive and have to be activated /

called.

R11 Provide feedback on data

change

Inform any registered receiver about changes in data

monitored without the need to constantly query the

value (busy polling)

R12 Data Source Interaction

agnostic

The architecture should support PUSH or PULL

operations for its attached devices. For PUSH the

device sends actively, for PULL the architecture

queries the device

R13 Provide discovery support for

devices / sensors

It must be possible that devices with a certain

characteristic can be found

R14 Authenticate users and limit

access

Access to the gateway must be limited to specific

authenticated users and individual access rights have

to be granted

R15 Preservation of sensor state The current state of a sensor must be accessible at all

times from outside so that the application does not

have to maintain this state information itself.

R16 Ontology support The architecture should have at least some basic

ontology support to be able to retrieve sensor and

virtual sensor metadata and associated information

3.3.2 Non‐Functional	requirements	for	device	gateway	architectures	
Table 3.4 defines non-functional requirements derived from state-of-the-art review and

discussed scenarios for device gateway architectures:

Table	3.4:	Non‐Functional	requirements	for	device	gateway	architectures	

Requirement Description

R17 Architecture should be

implementable using "free"

software

Any software needed to build the architecture should

not involve license fees to be paid

R18 Extendable and easy to adapt

to changing requirements

The architecture should be based on pluggable

components so an extension / exchange of a feature /

functionality / communication protocol can be easily

achieved, thus an integrator is able to react with agility

to changing requirements

Page 49 / 252

R19 Based on modern software

engineering practice

Assert that principles of modern software design are

incorporated and used in the gateway architecture

R20 Operations support Provide functionality so that the operations of the

architecture can be tested, tracked, traced and

analyzed during runtime

R21 Integration of a new device

should be straightforward

The architecture must allow that a new device can be

integrated in a very short amount of time

R22 Provide scalable and fault

tolerant infrastructure

The architecture should allow to be run on highly

available system so that in case of failure a cluster

failover can happen

3.4 Requirements	rating	

As input into the definition of the desired characteristics of the proposed architecture

DBGA (see section 3.5), the requirements defined in section 3.3 can be rated for their

importance with 3 as the most important, and 1 as the least.

A ‘rating of requirements ‘exercise for such gateway architectures very much depends

on the actual environment a gateway architecture is to be targeted for.

For example, in case someone is planning to build a publicly available IoT system with

hundreds or thousands of users, then security and access control would be of

paramount importance. In case of a localized solution in the industry automation

environment with private networks, usually sealed off by firewalls from the rest of the

world and only accessed by some users, such a security requirement would have a

lesser important role (yet the database access still is mandatory to be secured).

The author’s area of experience (industry automation and business process

integration) was used as foundation for the ratings assigned in Table 3.6 below, in

combination with customer feedback and discussions about usage of device gateway

architecture targeted for industry automation and business process integration

environment. A rating of 3 indicates a most important, 1 a less important characteristic;

Page 50 / 252

Table	3.5:	Requirements/Characteristics	rating	for	Industry	Automation/Business	Process	integration	

Requirement /

Characteristic77

Rating

(1-3)

Reason for rating

R1 Centralized data store 3 Centralized data is paramount as very often data from very diverse sensors must be
compared and used

R2 Data retrieval using query facility 2 Historic data retrieval usually is not very often used during live control of a sensing
environment but more a monitoring feature to investigate a for example anomaly

R3 Direct data retrieval from data
store

3 Especially when using data analysis tools (foremost Excel using ODATA) or in case
business data warehouse has to be supplied from the sensor data (perhaps aggregated
values) a direct database access must be present to facilitate the load and speed
requests.

R4 Communication interface agnostic 3 Different levels of API-support on different protocols is something very problematic as it
requires constant checking which option is supported in which protocol.

R5 Data format agnostic 3 For many business integration scenarios data must be stored in for example JSON
arrays, strings, state information so agnosticism is mandatory

R6 Integrated data quality control 3 Having a gateway-side quality control built-in (or easily to integrate) is very important
as sensor data very often is faulty and erroneous

R7 Semantic data value enrichment 3 Most sensing environments will have the need to enrich data based on internal or
external values so that the consumer can utilize the centrally enriched data without the
need to re-invent the wheel

R8 Autonomous operation /
workflow execution

2 Autonomous operation is a useful feature, yet if not present it can usually be substituted
with an external application which reads the underlying data and reacts accordingly.
This is not as good as an integrated support, just a remedy

R9 Actuator support 3 Supporting actuators depends very much on the usage scenario the gateway is supposed
to support. As writing values to physical actuators is usually not done by PCs or
monitoring applications directly, but by specialized industry controls (PLCs), the

77 To simplify the usage, requirement and characteristic naming were harmonized to share the same naming.

Page 51 / 252

Requirement /

Characteristic77

Rating

(1-3)

Reason for rating

actuator then is a way to inform the PLC that something should be written. Therefore,
the PLC becomes the target of the write operation and from then on controls the actual,
physical write.

R10 Write-target agnostic 3 In combination with actuator support it is very important that the target of a write
operation can be anything which is addressable. So either a physical device, or a logical
address (for example URL), which could be used for data-chaining

R11 Provide feedback on data change 2 Calling back consumers about changed data is sometimes a useful feature, yet very often
there are technical issues to overcome (like for example sending data back to a browser
or mobile application is non-trivial). Therefore, this feature is not considered essential.

R12 Data Source Interaction agnostic 1 Being able to read as well as (wherever possible) write to an attached device is of
paramount importance in any environment which tries to control any kind of
automation process. If only reading is provided than the DBGA can only be used to
enrich the existing data, but cannot actively control the process.
Therefore, the architecture should support PUSH or PULL operations for its attached
devices. For PUSH the device sends actively, for PULL the architecture queries the
device.

R13 Provide discovery support for
devices / sensors

1 Usually, discovering new devices / sensors is only necessary when they are not known
beforehand by consumers. Even when the device is not known (for example mobile user
transmitting sensing data) it is usually not necessary for a consumer to figure out
additional data about the device aside its unique id which might be used to look up user
data.

R14 Authenticate users and limit
access

2 When working in public available gateway environments authentication and access
limitation is paramount as data integrity may never be compromised. When working in
clearly sealed off environments like in the industry (where sub-nets are totally isolated
from any external access) then this is no real issue. It all depends on the nature and
sensitivity of the data as well as the data policy in the environment.

R15 Preservation of sensor state 3 If the gateway is just used as a message routing engine from devices to consumers this
feature is not relevant, yet if the gateway acts as a sensor state memory then it is very

Page 52 / 252

Requirement /

Characteristic77

Rating

(1-3)

Reason for rating

important to always have a valid sensor state (even if defaulted). As the usual
environments where the DBGA is to be used needs such a state this feature became
dominant

R16 Ontology Support 1 The need for ontology support usually only arises in environments, where the number of
sensors and virtual sensors exceeds some usable limit or where logical grouping of data
becomes important (for instance to retrieve all sensors associated with temperature).
Therefore, ontology could be important, but usually it is no core requirement.

R17 Architecture should be
implementable using "free"
software

2 In a low-budget or academic research environment this is a huge issue, for commercial
use, less. Yet the big side-issue with it usually is, that non-free gateways nowadays
operate in the cloud which contradicts most business customers’ requirement for having
the sub-nets, where the data is sensed, disconnected from the Internet.

R18 Extendable and easy to adapt to
changing requirements

2 Especially in sensing change is constant as the processes and infrastructure is in
constant move. Therefore, adaption is important

R19 Based on modern software
engineering practice

1 As long as the solution is operational and fully working, extendable and usable this is an
important but not mandatory feature

R20 Operations support 1 Operating any system requires considerable effort (either if hosted by an explicit
operations department or if a solution is hosted only internally in a lab). Therefore,
support for this is a very useful feature to allow for smooth and easy operation.

R21 Integration of a new device should
be straightforward

2 As the adaption requirement is about change, new device integration is important

R22 Provide scalable and fault tolerant
infrastructure

2 Depends on the usage scenario. Very often a cold standby is sufficient, sometimes 24x7
operations are relevant. The gateway should provide some defined way of how
scalability and fault tolerance could be achieved, but does not necessarily have to
provide it directly.

Page 53 / 252

3.5 Characteristics	of	the	proposed	device	gateway	architecture	‐	DBGA	

Based on the ratings of the requirements as described in section 3.5, it was decided that

the proposed gateway architecture (DBGA) be designed to have the characteristics

shown in Table 3.6:

Table	3.6:	Table	of	characteristics	

Characteristics

C1 Centralized data store: Store any sensor data in a centralized data store

C2 Direct data retrieval from data store: Provide direct access for 3rd party to

the data store so they can read data directly

C3 Integrated data quality control: Provide a flexible, extendable internal data

processing chain which adjusts and / or filters data on its way from data

source to data destination

C4 Semantic data value enrichment: Provide script- and definition based “virtual

sensors” which combine and / or process internal and external data sources

to form “new” data

C5 Communication interface agnostic: Provide a wide variety of (extensible and

pluggable) communication interfaces so that consumers can access and

producers deliver data in the most appropriate methods, protocols and

formats for them

C6 Autonomous operation / workflow execution: Allow the architecture to

control and monitor sensor state changes and integrate the execution of

workflows so the gateway can directly and independently react to external

events

C7 Actuator support: Allow data to be written to end-points (which could be a

data chaining as well)

C8 Write-target agnostic: Provide writing of values to either physical or virtual

actuators (which could be for example a URL where the value is POSTed to)

C9 Data format agnostic: Store data in an internal format which is not specific to

any CPU but in a human readable format (string)

C10 Preservation of sensor state

C11 Extendable and easy to change: Provide an architecture which is based on

pluggable components so an extension / exchange of a feature / functionality

can be easily achieved, thus an integrator is able to react quickly and

effectively to changing requirements

Page 54 / 252

C12 Provide feedback on data change: Inform any registered receiver about

changes in data monitored without the need to constantly query the value

(busy polling)

C13 Basic Ontology-Support: Provide a basic ontology level on top of the sensor

information level so that information retrieval based on logical attributes and

context can be performed effectively

The mapping between the requirements and the corresponding characteristic is

detailed in Table 3.7:

Table	3.7:	Mapping	between	characteristic	and	requirements	

Characteristic Requirement

C1 Centralized data store R1

C2 Direct data retrieval from data store R2, R3

C3 Integrated data quality control R6

C4 Semantic data value enrichment R7

C5 Communication interface agnostic R4

C6 Autonomous operation / workflow execution R8

C7 Actuator support R9

C8 Write-target agnostic R10

C9 Data format agnostic R5

C10 Preservation of sensor state R15

C11 Extendable and easy to change R19

C12 Provide feedback on data change R11

C13 Basic Ontology-Support R17

These high-level characteristics are further detailed and defined in the following

subsections.

3.5.1 Centralized	data	store		
Having a centralized data store allows to combine data from sensors from different

devices (which might come from different data generation tasks) regardless of their

origin. This is very useful when an overall reporting / data analysis or data integration

with further systems (like for example business data warehouses) is anticipated or

necessary.

Page 55 / 252

Usually a centralized data store could be a SQL database yet any form of central store is

valid, as long as all participants can access it. As sensor data very often just contains

huge amounts of small payloads (the actual values) a NoSQL database78 like for

example MongoDB79 might be superior to a SQL-DB as much less control and structural

information is needed.

In addition, as sensor data is usually just written upon arrival (and very seldom deleted

or updated), little demand for transactions exists.

3.5.2 Direct	data	retrieval	from	data	store	
Especially when the raw (or only marginally, by means of query language) modified

sensor data is needed in further systems like for example data warehouses, then a

direct data retrieval is necessary. Otherwise all requests for sensor data would have to

go via the gateway which simply, given long or complex enough requests could easily

overwhelm the query facilities.

The access is always only a data retrieval (read) operation – writes and updates can

only happen via the gateway to not compromise data integrity.

Usually data retrieval would be done in for example SQL or any other query language

(like R), which might be usable to extract the data from the central data store.

3.5.3 Integrated	data	quality	control	
The internal data processing chain must be flexible and extendable when filtering data

on its way from data source to the internal data representation. Flexible here means

that the different steps in the chain can, but do not have to be implemented. These

steps would usually be checks that the data:

 is valid as such (data format, precision) – syntax analysis

 is within the defined bounds (min / max) – band pass filter

 fits / matches the previous values (sudden surges, drops)

 is continuous (if a sequencing is possible)

Any implementer of the gateway should be free to decide if the default (which can be

no implementation or an implementation based on a configurable default) or a custom

78 http://nosql-database.org/

79 https://www.mongodb.com/

Page 56 / 252

implementation for processing step should to be taken. This way extendibility would be

guaranteed.

Extendibility should be done in a way which allows a new behavior to be plugged into

the system by simple configuration. The implementation as such should be doable in

the most appropriate form for the given task – so in whatever language / environment.

Another requirement towards the value chain processing would be that in different

stages of the chain external plug-ins can be called. These stages, when an optional exit

to an external module should be possible are:

 new value arrives

 value is checked

 value is to be considered the actual value

 value is to be persisted

 value has been persisted

When an external module is called additional behavior (like for example protocolling of

value changes) could be realized.

3.5.4 Semantic	data	value	enrichment	
As one of the core requirements is the generation of semantically enriched data the

creation of such virtual data endpoints (device / sensor) must be easily possible.

These virtual endpoints must behave like physical endpoints, thus supporting to be

persisted, having default values, a value history and taking part in the value chain

processing. They must allow to be used as the basis for further endpoints as well – so

virtual endpoint chaining has to be possible. This way a virtual endpoint A and virtual

endpoint B, together with a physical endpoint C could form a new virtual endpoint Z,

which might be the sum of the three other endpoints.

The way a virtual endpoint is defined should be easy and straightforward. As it implies

a calculation of some kind (otherwise it would not make any real sense to have an

endpoint) this calculation must be either performed in an internal scripting language of

some kind or an external module. In case of an external module this should follow the

same criteria as usual extension points (pluggable modules) for the for example value

chain processing.

An additional requirement, in case an endpoint is defined as based on other endpoints

(regardless if virtual or physical), would be to optionally update the endpoint when the

Page 57 / 252

underlying endpoint(s) change. This way a data change in an underlying endpoint could

then trigger a complex operation of changes (change propagation) which have to be

controlled as well as otherwise the timing for the whole system could go astray.

Therefore, tight watchdog mechanisms must remain optionally in place to guarantee

that such update cycles do not cause trouble to overall system responsiveness as these

are usually performed within one execution thread and thus cause stalling until

performed.

When defining endpoints, it must be verified by the gateway as well that these

endpoints do not form a cyclic dependency graph as otherwise the update would cause

in indefinite recursion and break the process finally. Thus definitions of dependencies

which are cyclic in nature have to be rejected or at least during runtime discovered and

eliminated.

3.5.5 Communication	interface	agnostic	
For an integrator it is always a big benefit if all operations are available in a similar way

in all supported communication interfaces a solution offers. Given that, the integration

focus can be put on finding the most appropriate communication protocol for the given

task and not having to investigate if all operations are supported or might cause some

undesired side-effect (for example throttling of requests if a request / sec rate exceeds

some value in protocol A, which is not an issue for protocol B).

In addition, a wide support of communication choices is always beneficial. Currently

there is a tendency to use only REST for most operations as it is so easy and quick to

implement and extend, yet by the author’s industry experience this can lead easily to

incomplete designs and cluttered implementations that this in the long run can cause

quite some problems and therefore more formal, and thus stable, protocols as SOAP are

desirable as well. Having both options – and then all operations in both - is definitely a

huge advantage as it allows to choose the optimal interface for the task at hand.

An exception to this rule would be dedicated protocols for dedicated tasks. So for

example ODATA is designed primarily as a data request protocol for applications like

Excel and thus the operations there (if supported by the gateway) are only valid in the

specific implementation.

3.5.6 Autonomous	operation	/	workflow	execution	
An autonomous operation is an action which is performed by the DBGA itself, based on

rules for the execution (like for instance when a new value arrives), yet without the

interference of an external actor to start something (so no user has to interact with the

Page 58 / 252

system for the execution). The operation as such is implemented in a so-called

workflow, where the workflow is usually a piece of code designed using BPML80 and

then generated at runtime, or in a more static implementation, yet still loaded and

executed on-demand.

These workflows can be either short- or long-lasting, where long-lasting usually implies

that they can be persisted while waiting for an external event and on arrival of that

event (usually via some kind of correlation mechanism) will resume operation and

short-lasting ones are meant to be executed in the same iteration they are called and

used without interruption in terms of suspending and re-activation.

Autonomous operation (workflows) usage in a gateway comes into use in 2 situations:

- When based on the arrival of new values (as trigger) something should be done

- When cyclic tasks which have to run periodically are needed

In the first situation the usage is similar to the filter operations described in section

3.5.3 and the benefit by using a workflow in the very often more formal approach of

definition as well as pre-defined infrastructure (for example actions) which are defined

so that standard tasks can be performed easier.

The second usage depends very much on the application logic needs. Usually when

complex background operations (like for example checking backend systems based on

sensor data and using the result to generate new data) are needed, workflows are a

good match. In case only some small computation is needed (for example running

mean, etc.), a virtual value (see section 3.5.4) might be the better choice.

In general, workflows can be substituted by classical filters (usage one) or external

applications which read sensor data periodically, perform the task to be done and write

back values (usage two).

3.5.7 Actuator	support	
Writing to actuators can be achieved in several ways, depending very much on the

environment a gateway is running in:

1) Directly write to the actuator from the gateway

2) Write to the actuator via an intermediary (usually a PLC)

80 BPML = Business Process Modelling Language – a XML-based notation to model processes.

This is usually

Page 59 / 252

3) Provide a pool where messages for the actuator are stored so they can be

retrieved by the actuator

Option 1 is usable in low-risk environments (for example not turning down a shutter in

a house climate control system has potentially a lower impact than not closing a valve

in a chemical process). This is due to the fact that execution can never be really

controlled and especially not guaranteed, so it is not really reliable. Should this

required, option 2 will be used.

In cases where this reliability is needed (or defined by policy like in the author’s

integration example – see section 7.2) then actuator integration is usually done using

option 2 by writing the actuator value from the gateway to a PLC81 using a for example

private protocol or calling a web-service on the PLC. For the caller of the actuator

writing the effect still is the same, the value will be written to the destination.

Option 3 is usually used by message-bus based systems which only know message

producers and consumers. So the actuator would be the consumer who has to read

messages from its inbox and process them afterwards. Usually in this case a so called

TTL (Time To Live) is associated with the message which will erase it after expiration

of the TTL so that old and outdated messages are not transported to the receiver

anymore. This approach cannot be used for any integration which needs response time

guarantees or even acknowledges of writing to the actuator as everything is

asynchronous – here option 1 and 2 could provide the caller the guarantee that a write

occurred.

3.5.8 Write	target	agnostic	
When writing values to an actuator it must be possible that the actuator is either a

physical or a virtual actuator. In terms of a physical actuator the address would be in

any format which allows the gateway and the communication handlers to reach the

actuator and submit the value.

For a virtual actuator the address would be URL where the gateway can just write to

and the receiving end (usually a process) is responsible for further processing of the

data.

81 Which has all the necessary features like reliability, resilience, redundancy, etc. integrated to

guarantee operations

Page 60 / 252

This approach allows to easily integrate almost everything which can be written into a

gateway environment as for example an alerting service which would be written to (see

section 3.1.1 for an example) could be implemented as an actuator and thus any write

to the actuator results in a write to the alerting system.

3.5.9 Data	format	agnostic	
When data is stored internally in a format which is not specific to any CPU but in a

human readable format a lot of problems like conversion, limited data types, etc. are

eliminated. This way data is just an arbitrary amount of characters where the semantic

meaning is left to the senders and receivers. The only problem which remains is that,

for example, a floating number stored in one numbering format (for example using . as

decimal separator) has to be converted back at the receiving client accordingly. The

benefit of this approach is that any payload associated with sensor data can be stored

which could be even XML or JSON data.

As size usually is no issue nowadays82 this is no hindering either and the benefits of the

uniform internal data handling (no different logic paths for different formats) pay off in

cleaner and more straightforward code. Especially, as no semantic context has to be

associated with sensor data any more – for the gateway it is just an object of data which

has to be treated. When data is coming to or from the gateway using REST or SOAP it is

anyhow converted into a textual format.

3.5.10 Preservation	of	sensor	state		
When a gateway starts up, either after initial start or after a fail, it could be – depending

on the usage environment – very important for clients, that the last known sensor state

is re-read from permanent storage and used automatically. This might mean that the

value is outdated, but it is a value anyhow.

To handle this problem with outdated values several methods should be associated

with the state preservation like a TTL (time to live), how long a value is considered

valid, what to do after re-start (re-read from central database or assume an initial

value), etc. Many things in the initial handling depend on the environment as well, yet

quite a lot of scenarios can be handled by configuration and the gateway itself.

82 storing an INT in perhaps 10 bytes instead of 4 would require billions of records to have a

significant impact

Page 61 / 252

3.5.11 Extendable	and	easy	to	change	
As gateway projects are usually very dynamic and contain quite often new devices and

new technologies to be integrated, an easy extension mechanism for a gateway is a very

useful feature. This usually happens in all parts, so either a new device, a new

communication protocol, a new filter, a new handler to achieve something…

Therefore, the architecture should be based on pluggable components so an extension /

exchange of a feature / functionality can be easily achieved, and the integrator is able to

react easily to changing requirements.

3.5.12 Provide	feedback	on	data	change	
A common problem during integration is how a consumer gets the information that a

data-point (sensor) of interest changed. Very often this is achieved either by polling,

which causes additional load on the communication and server infrastructure, or, when

using message-based systems, by placing a message in the inbox of the consumer which

then would unblock any reader.

A much more straightforward approach is if the consumer is notified from the gateway

if such a change happens and then can react accordingly. This notification could happen

using a variety of mechanisms like Web-Sockets, callbacks, HTTP-calls, etc. which is

again dependent on the integration environment. Yet the ability in general, when

combined with a pluggable architecture, so that the mechanism is exchangeable, is very

important for a reactive and fast solution.

3.5.13 Basic	ontology‐Support	
Especially when integrating similar devices (from various vendors) often the problem

arises that several sensors provide the same logical information yet are called

differently. In the example presented in section 2.5 several chambers (manufactured by

4 different vendors) provide information which is temperature related. The device

gateway could capture each sensor value and a consuming application access those

values, yet every joining between different sensors across chambers (like for instance

to compare the temperature curve in two chambers) would require the application to

know which channel (sensor) provides temperature related data.

Therefore, with a basic ontology layer inside the device gateway the sensors could be

grouped in the for example “temperature” group and any consumer could query the

associated sensors and afterwards their values.

Page 62 / 252

This way, by providing an arbitrary grouping of sensor attributes to form new query

able attribute sets, the device gateway provides a very important meta-information

layer for any consumer which makes data consumption much easier.

3.6 Comparison	of	requirements	coverage	by	selected	state	of	art	

architectures	

In this section, the coverage of the derived requirements by the selected state of the art

device gateway architectures are compared, including the proposed DBGA device

gateway architecture. Due to their non-standard nature, custom/proprietary gateway

solutions are not included.

Table 3.8 shows the requirements as rows and systems as columns, with individual

cells including commentary about coverage (the most important ones – according to

the rating in section 3.6. – have been indicated).

Page 63 / 252

Table	3.8:	Requirement	coverage	for	device	gateway	architectures	including	DBGA	

Requirement Device Business

Gateway

Architecture (DBGA)

Azure IoT Xively sMAP

R1 Centralized	data	store	 Yes, easy to

exchange by

providing a new

plug-in.

Yes, is highly

configurable (SQL-

DB, BLOB, flat files,

etc.)

Yes (but not

configurable and not

options)

Principally per node,

but could be

configured to use a

central repository

R2 Data retrieval using query facility Limited Yes Limited Limited

R3 Direct	data	retrieval	from	data	store	 Yes Yes No Yes

R4 Communication	interface	agnostic	 Yes Not 100%, some

functionality is not

available in HTTP

(for example

throttling if

messages are

retrieved too often).

Service endpoints

only available using

ACMP

Not 100%, some

functionality is not

available in HTTP

No, only REST

R5 Data	format	agnostic	 Yes Yes Yes No

Page 64 / 252

Requirement Device Business

Gateway

Architecture (DBGA)

Azure IoT Xively sMAP

R6 Integrated	data	quality	control	 Yes (filters) Yes (has to be

implemented)

No No

R7 Semantic	data	value	enrichment	 Yes (virtual values) Not integrated and

online - only by

means of writing

triggers and then

performing the

calculations where

the result is stored

in secondary storage

No No

R8 Autonomous operation / workflow execution Yes (workflows can

be launched based

on data or in

general)

Yes (workflows can

be launched based

on data or in

general)

No No

R9 Actuator	support	 Yes Only indirectly by

writing to an outbox

Only indirectly by

writing to an outbox

No

R10 Write‐target	agnostic	 Yes Not directly, but

possible with

No No

Page 65 / 252

Requirement Device Business

Gateway

Architecture (DBGA)

Azure IoT Xively sMAP

workaround to

write to a new

message-queue

R11 Provide feedback on data change Yes Yes, needs special

message processing

No No

R12 Data Source Interaction agnostic Yes Only PUSH Only PUSH Yes

R13 Provide discovery support for devices / sensors No Yes Partially No

R14 Authenticate users and limit access Limited Yes Partially Yes

R15 Preservation	of	sensor	state	 Yes No (messages for

the sensor have to

be read to identify

the “last” valid

value)

Yes Yes

R16 Ontology support No Partially Partially

R17 Architecture should be implementable using "free"

software

Yes (yet Windows is

required, Mono is an

option)

No No Yes (running on

LINUX)

Page 66 / 252

Requirement Device Business

Gateway

Architecture (DBGA)

Azure IoT Xively sMAP

R18 Extendable and easy to adapt to changing

requirements

Yes Principally, but

rather complex and

steep learning curve

is involved. Many

different options

and configuration

points as IoT is not a

single package but a

combination of

many different parts

No Moderately as

protocol support is

limited, yet in the

given operational

limits it is quite easy

to use

R19 Based on modern software engineering practice Yes Mostly recycled

older technology

like BizTalk which

was extended and

enriched with some

new features. The

API and

programming

Yes Principally, yet a bit

aged software

(already 10 years)

Page 67 / 252

Requirement Device Business

Gateway

Architecture (DBGA)

Azure IoT Xively sMAP

interface as well as

the internal

messaging engine is

new technology

(.NET)

R20 Operations support Partially N/A (hosted

solution)

N/A (hosted

solution)

No

R21 Integration of a new device should be

straightforward

Yes Yes (as long as the

protocol stack is

accessible from the

device)

Yes (as long as the

protocol stack is

accessible from the

device)

Yes

R22 Provide scalable and fault tolerant infrastructure Can be done (for

example SQL

clustering, hot

standby and

failover)

N/A (hosted

solution)

N/A (hosted

solution)

No

Page 68 / 252

As the DBGA provides a flexible architecture to store data centrally (which could be in a

NoSQL-database as well83) as well as a direct data retrieval from the data source data

operation requirements are fulfilled.

By providing an agnostic communications interface the DBGA can be accessed from any

supported client with the same functionality regardless of the communication method

which is a major difference to the compared solutions (where this can be a limiting

factor in actual implementations).

An integrated data quality control is a major difference to the other solutions as either

it is not possible at all, or has to be implemented in quite difficult and time-consuming

ways.

By providing actuator support, which is a mandatory feature in any industry

automation environment which has to control something (as otherwise it is a read-only

operation), the DBGA offers a very different approach to the integrator. This goes hand-

in-hand with write-target agnosticism to be able to write to any kind of destination (so

either physical or logical device which could be another process).

Yet perhaps the two most important requirements for a typical industry automation

environment are the preservation of sensor state and the ability to have a semantic

data value enrichment. State preservation is needed to relieve the client from tracking

sensor states itself which makes Azure IoT (and most message-based systems) quite

hard to use from an integration point of view as these states have to be retrieved

upfront (to know where a system is starting from) and cannot be queried.

Given the discussion about value-chain-management and integration of cyber-physical-

devices (sensors, etc.) into value-chains ([84], [87]) data value enrichment in Azure IoT

is quite difficult to implement (yet can be done very flexibly given enough work is

invested), whereas for the other solutions there is no direct option available.

So, it can be summarized that the DBGA covers most requirements and especially those

which have been rated in section 3.6 as important. The ones not provided in the current

situation can be added in a later stage and are not necessarily needed for an industry

automation use-case.

83 Which might make sense if there are very big amounts of data records

Page 69 / 252

Having defined the requirements for and the characteristics of the DBGA, the next

chapter focuses on how these can be converted into a software design (chapter 3.7),

which is then used for a reference implementation in chapter 5.

3.7 Measuring	the	improvement	achieved	by	the	architecture	

Concerning the research question the measurement of the improvement of the business

process integration is of paramount importance as only by these indicators will any

comparison among architectures be possible. The problem is that no such criteria

exists on a general basis. Everybody doing integration focuses and covers different

points, which the author of this thesis has experienced during 32 years of working

experience in the industry automation area as software developer and solution

architect.

Some like [75], [76] or [29] use the performance difference of the overall process,

whereas others like [74] or [77] are more interested in the net results this integration

provides (less waste, less recalls, less field-visits, reputation increase, and so on).

Therefore, the criteria selected and used in this thesis are based on the significant

personal experience of the author of this thesis in business process integration projects

and reflects more on improvement upon the direct integration part itself, and not so

much the improved “gain” or “benefits” upon the parts using the integration.

To measure the process integration improvement, several criteria which are shown in

Table 3.9, were decided upon by the author of this thesis as reasonable and confirmed

by a key business stakeholder in the automation industry84.

Each criterion is defined by describing the measure that will be applied during the

analysis, and the meaning of the criteria. The Level of achieving the requirements

ranges from 1 = low achievement to 3 = everything (over)achieved and (subjectively)

measures how the requirements by the use cases were achieved by the presented

solution (or not).

84 These criteria were confirmed as reasonable Mr. Robert Mayrhofer, Head of Corrosion Testing

Team (KPZ), Daimler AG

Page 70 / 252

Table	3.9:	Measurement	criteria	definition	to	compare	different	architectures	

Criteria Levels Meaning

M1 Level of achieving the requirements 1 = low achievement

3 = high achievement

A general indicator expressing how many requirements have been

achieved

M2 Flexibility offered by the architecture for an

integrator to integrate devices into business

processes

1 = very inflexible

3 = highly flexible

A general indicator expressing how easy a device and sensor can be

integrated into a business process. This is a very general measure

as it has to be reflected upon using the concrete use case at hand.

Therefore, for this evaluation parameters like communication

protocols provided, agnosticism in protocols, ease on

understanding, etc. were considered

M3 Performance 1 = low performance,

3 = very good performance

Estimates the performance the solution will provide and

anticipates how it will behave with the "real" workload

M4 Maximum number of devices / sensors / actuators

supported

Any number or a range Are there any practical / theoretical limits to the number of devices

/ sensors / actuators?

M5 Maximum number of sensors which can be handled

as peak

Any number or a range How many sensor value changes could be handled in a given period

of time

Page 71 / 252

Criteria Levels Meaning

M6 Complexity 1 = low complexity,

3 = highly complex

The level of interdependence between involved subsystem [59]85

where 1 would mean little interdependence and 3 high inter-

dependences. A typical example of 1 would be that parts can be

exchanged easily and directly without affecting the overall system

whereas in 3 an exchange must be meticulously evaluated to avoid

disaster.

Very often seemingly non-complex systems afterwards prove to be

highly complex as the interdependencies had been very high or

non-standardized

M7 Skill Required 1 = low skill requirements,

3 = high requirements

Defines how much skill is required from an implementer to create /

realize the solution. This includes actual skills in customization /

programming as well as general skills for the environment

M8 Learning Curve 1 = low curve,

3 = high curve

How much learning is involved to get the solution done if no

previous knowledge (aside core essential knowledge) would exist

M9 Time required building in hours Here a rough estimate in hours divided into the following areas is

given:

85 Despite the fact that complexity depends on the observer

Page 72 / 252

Criteria Levels Meaning

 Conceptualization

 missing skill acquisition (which always is the case)

 realization

 testing

 fixing, adjusting

For use case 2 the time for the app on the smart phone is not

included

M10 Time required operating and administrating in one

year

in hours A rough estimate of how much time in h p.a. is needed to operate

and administer the solution

M11 Ease of change in future 1 = very easy to change,

3 = not easy to change

Defines how easy it is to change a solution and to adapt it to new

requirements. This combines the simplicity of design to some

extent with the complexity and the skill required.

If a simple design has a huge complexity and requires highly skilled

people the ease of change is low (1) whereas if for example a very

complex system has only moderate demands towards skills and a

Page 73 / 252

Criteria Levels Meaning

low learning curve as the components are clearly identifiable, then

the ease of change would be high (3)86

M12 Preservation of investment 1 = low preservation,

3 = very high preservation

Evaluates how the solutions will preserve the initial investment

over time (especially looking towards the point when changes are

needed).

This is a combination of the ability to change in the future

Very often very simple (and inexpensive) solutions cannot be

extended as very high skilled labor is needed which might result in

a low preservation factor as the follow-up costs can easily

outnumber the initial costs

M13 Free software / commercial software - cost If software used in the solution is not free a possible cost in EUR is

given

M14 Security 1 = not secure,

3 = highly secure (or can

be made so)

Investigates the security the solution can (or could using all

standard methods) offer in communication, data storage and

invalid use (URL script injection, etc.)

86 In reality all mixed forms would occur as well so it is really more a rule of thumb

Page 74 / 252

Criteria Levels Meaning

M15 Reliability / Fault tolerance 1 = not reliable / fault

tolerant,

3 = highly available

Defines if the solution is (or can be, using standard mechanisms,

made) highly available and reliable so that 99.9% availability87 can

be achieved (minimum requirement for 24/7 operation88)

M16 Overall stability 1 = highly stable

3 = can be volatile

Defines a global factor considering how stable the entire system is

when:

 devices fail (for sending / receiving)

 parts of the infrastructure fail (for example database

systems)

Included is an observation about what could be done as well

M17 Easiness to obtain the current device / sensor state

and use it in the business process

1 = very hard

3 = very easy

As the current state of a sensor is very often needed for business

process decision making (for example if a value is exceeding a

certain threshold) this measure shows how easy it is to obtain and

use the current state

M18 Footprint of the system 1 = low footprint

3 = large footprint

How much infrastructure and overhead in terms of “environment”

is needed to run and operate the architecture

87 Which allows for 8:45h per year of non-availability

88 Usually the request is made to have 99.99% as a goal (52 min downtime / year), yet the costs usually will rise exponentially, so that normally 99,9% is a practicable

value

Page 75 / 252

4 Device‐Business‐Gateway	Architecture	(DBGA)	design	

The device gateway is a very typical example of a service-oriented architecture where

application components provide services to other components via a communications

protocol, typically over a network, and are independent of any vendor, product or

technology.

In this thesis, the gateway is a service which is offered and consumed by all sorts of

clients, which acts as the central mediator between data senders and consumers,

performing processing and being accessed by visualization interfaces.

On a very general and abstract architectural level the following statements of principle

underlie the design:

 As the gateway has a universal approach (in not being limited to any specific

kind of client) serving devices, sensors and very technical as well as business

process clients, a multitude of stakeholders with different concerns have to be

satisfied. Therefore, the design has to reflect this multidisciplinary nature by

offering services and communication facilities suitable for each stakeholder.

 Device data usually is extremely crucial for ongoing operations, thus quality

attributes like extensibility, reliability, usability and other such “-ilities” (all

non-functional requirements) are in close relation to the architecture. In

accordance with current research [64] the architecture proposed in this thesis

is mainly driven by the stakeholder's concerns regarding these attributes and

not so much by classic software design approaches (for example Jackson

Structured Programming) where required functionality and the flow of data

through the system are the main issues. As a result, the architecture prioritizes

these quality attributes over feature / functionality.

 The design is entirely separated from the implementation and provides the

overall vision of the whole system. It dictates what and how the system should

act without being limited by programming language or environmental issues of

an implementation, thus providing conceptual integrity. The reference

implementation's goal is simply to provide a test-bed for the necessary

requirements tests and to build the evaluation scenarios. No impact from the

implementation must influence the design.

 The device gateway is designed in a runtime agnostic form, which means that

its later deployed runtime environment has no impact on the design as such. By

Page 76 / 252

using abstraction layers whenever possible and needed, the necessary

encapsulation of features against the environment can be resolved.

 In case specific options are available and usable89 the most suitable ones for a

broad and encompassing solution are chosen. In general, the selected options

represent an approach based on the current situation and could easily change

in the future (which is the reason why for example Ruby is no longer supported

as a virtual value evaluation language).

 Design patterns (see [67]) and service design patterns (see [66]) in particular

are used wherever possible in the design as a provision against repetitive

definitions. To further enhance the design several Anti-patterns90 (see [68])

were considered, too.

 To allow for the best separation of concerns the view model approach, as

designed by Phillipe Kruchten [63], is used. UML is used as the notation in the

design. Contents of the view model approach include:

o Section 3.1 describes the scenarios and the use cases are described in

section 3.2, and these support the gateway architecture design

(scenario view) which serve as a basis for the case studies in Chapter 7;

o Section 4.3 will describe the design of the components of the gateway

architecture design (logical view);

o Section 4.5 represents the dynamic aspects of the interactions of the

components in the gateway architecture design (process view);

o Section 4.6 depicts the topology of components which form the gateway

architecture (physical view).

 In addition to these, section 4.7 presents the data model as an architectural

view [70].

The support for various data sources and data destinations is described (section 4.1),

followed by the design of communication (section 4.2), a description of the workflow

usage (section 4.3) and the logical view of the components (section 4.4), as well as the

dynamic view in section 4.5. The physical view is described in section 4.6 and the data

model in section 4.7. The chapter is concluded by section 4.8.

89 For example, virtual value evaluation in section 4.5.7.4 can be done in a variety of ways using

either JavaScript, Python, or any other dynamic resolvable language environment

90 Typical examples might be the use of patterns everywhere (even if a non-pattern approach

might be better suited) or selecting ill-suited patterns for a problem

Page 77 / 252

4.1 Data	sources	and	destinations	(data	entities)	

Data sources and destinations (also called data entities) and their value(s) are the core

data structure defined and handled by the gateway as everything revolves around

them. Therefore, the core definition of what data sources and destinations are, as well

as how they can be chained is of paramount importance to the whole design of the

architecture.

A data source or destination of the gateway is a uniquely addressable entity (by

whatever protocol and definition) which represents a value. In the case where an entity

does not exist in real life, but only in the DBGA as a conceptual value, it is called a

virtual value. Therefore, a data source or destination could be actually anything from a

real physical sensor or actuator to a virtual sensor or actuator representing a

dynamically evaluated value.

Devices can either exist as physical or virtual devices. A physical device usually implies

a tangible “thing” (the device) which can be “communicated with” by means of some

communication media and protocol. Virtual devices exist just as a definition for an

abstract data set [of data entities], where the sensors or actuator (which could be

literally unlimited) are the single data items (endpoints). As an example, for the

gateway a REST-based web-service could be described as a virtual device, having the

resources (which can be addressed by REST) as the sensors and any reading would

yield the current sensor value of the service / resource combination which is

represented by that concrete endpoint. Therefore, virtual devices and sensors are

treated equally to physical devices in every aspect.

Generally, it could be defined that: the gateway considers a data entity, which has

readable / writable values and can be classified in terms of device / sensor, as an

endpoint usable for further operation.

Data entities can be read, write or read-write, depending on their use-case and

supported protocols. The gateway has to enforce that a write only entity will not be

read and a read-only not be written to.

4.1.1 Registration	of	data	entities	
The registration of devices and data endpoints (either sensors or actuators) must be

done explicitly by means of the provided API of the device gateway. This is necessary

for any kind of data entity including virtual "non-store" endpoints, which are just

computed on the fly and have no persisted information whatsoever.

Page 78 / 252

It is during the registration where all definitions are made, like what kind of endpoint

(entity) the data is - either sensor, actuator or both, whether it is a virtual value and

how the dependencies are, and so on. So, all the vital basic information about an item is

given here, which can be changed later, of course.

During the registration process, when a data entity is registered by the gateway,

housekeeping tasks have to create the necessary data structures, and so on.

4.1.2 Virtual	devices	/	virtual	sensors	entities		
By using the same analogy as physical devices, a logical device acts as the container for

several virtual sensors and thus provides 1..n endpoints as entities which can be

addressed like physical endpoints. What is behind or underneath such an endpoint is in

principle of no concern for the consuming application as it behaves exactly like a

physical endpoint would do.

Classical examples for such virtual devices / sensor combinations would be (not

conclusive):

 A “Statistics” virtual device with sensor values for the different statistical

methods like Min(), Max(), Mean(), etc. for physical sensor readings;

 An “External data” virtual device with sensor readings for energy costs / kWh,

etc. from a provider’s web service;

 In addition to these more "classic" examples a virtual entity could be any value

evaluable by a process like the memory consumption, CPU utilization, requests

made, and so on.

By using these virtual entities data handled by the gateway will become semantically

enriched as not only actual physical data, but new data, based on definitions,

calculations and relations can be generated. In this way existing data can be combined

to form new data, thus allowing additional insights and especially move the process of

these calculations from the consumer of the data to the source (the gateway) making it

therefore much more (quality) controllable, (centrally) adjustable, available and

valuable for everybody.

The actions involved behind getting / setting a virtual entity are described in section

4.5.7.

These virtual entities act logically in very much the same way as a user defined function

in a SQL database does – providing a server-side data item which can be queried

without the need of the client to either fully understand the underlying principles or

Page 79 / 252

connections behind the data. In addition to this analogy virtual entities can be written

to, as well.

So, in principle any internal or external data item could be masqueraded behind such a

virtual entity definition. In this way it is the task of the virtual device and not relevant

for the consumer how the device gets the sensor readings (or in case of actuators

writes back values). It is just important that necessary overall timing, stability and

security issues are preserved.

4.1.3 Data	entity	trees	
Data entities can form trees or chains (as a special form a linear tree with no branches)

of entities. In such a tree root nodes, which rely upon other nodes' values, have to be

virtual entities whereas leaf or base nodes (one node where other nodes rely upon) can

be either a physical or virtual entity.

Currently such entity trees can only be defined for reading of virtual values, as writing

involves many specific problems and is a deferred problem. Saying this it is possible to

write a virtual value, of course - just no further propagation of such a write in a tree

occurs.

Every node in the tree can be queried individually as an independent value, yet the

higher up in the hierarchy the query is addressed, the larger the evaluation basis

becomes as more base nodes have to be evaluated. Using this approach, a step-by-step

aggregation of information can be achieved as each step could be represented by an

independent virtual value, where others are based upon. This is very similar to a

function calling other functions, and so on, in a programming language.

Normally virtual values are evaluated "on demand" by default, which means that the

evaluation is performed when the value is requested by a consumer. As this evaluation

can be a quite time-consuming operation and perhaps involve querying sub-sequent

physical entities (which involve further potential time-delays) the gateway design

provides the option to automatically update dependent values. Here a change in a base

value (which other entities are dependent upon) is directly propagated up the tree and

the new dependent value is evaluated at the moment the change takes place. This can

be either the response to a newly read value or a written one and works for physical as

well as virtual entities.

A typical example of such an entity tree is shown in Figure 4.1. Two physical values are

presented that both automatically propagate any change up to their dependent value.

This implies that the value for "KPI 2" is always up to date, as both dependencies are

Page 80 / 252

always synchronised with the value. This is not true for "KPI 1" as this only receives

updates from "Physical Value 1", but not "Business Process Value 1". Therefore, the

gateway engine cannot automatically serve the current value when queried (like

possible for "KPI 2") but has to start the virtual value evaluation process. Here it could

be implemented that anyhow the actual value is taken as for example "Business Process

Value 1" is more like a constant, but this is entirely up to the implementation of the

virtual value evaluation.

KPI Final

KPI 1 KPI 2

Business Process
Value 1

Physical Value 1 Physical Value 2

Virtual Value Physical Value

Figure	4.1:	Data	Entity	Tree	

Querying "KPI Final" or "KPI 1" will always involve computing the virtual value as their

values have to be computed when queried.

4.1.4 Virtual	entity	value	evaluation	(computation)	
To ease the business process integration process where virtual value evaluation is a

very important task, the gateway design allows for great flexibility in the way the actual

evaluation of the value of a virtual entity is performed.

In general, the evaluation module will be passed the current environment (as access

point to the device gateway) as well as the virtual entity to be evaluated and is expected

to return the new value. Using the environment, the module has access to all

methodology of the gateway including access to all other values defined in the system.

As virtual value evaluation is a non-predictable process due to code provided by

external sources, the design has to take precautions against system instability. The

following mechanisms to secure system integrity are provided:

Page 81 / 252

- Quota assignments which mean that only x number of requests are allowed

within a given timespan;

- Constant monitoring of the CPU utilization and if given factors are exceeded

further evaluations are gracefully degraded;

- Execution of external code is always and only done inside an independent unit

of execution, so that a failure (for example exception) inside a module (for

example division by zero) causes no threat to the overall system.

As semantic data value enrichment (section 3.5.4) is a major characteristic which

requires virtual value evaluation to function, an implementation of an architecture

should provide several options to allow the integrator to choose the most appropriate

one. For implementation details of the reference implementation for this matter refer

to section 5.4.1.2.

4.1.5 Performance	considerations	of	virtual	value	evaluation	
The performance of the virtual value evaluation cannot be defined or predicted as it

depends entirely on the actual implementation of the evaluation (in terms of for

example JavaScript or Python modules). Even more important is the approach taken in

this thesis, to provide as much support for performance optimization as possible and

therefore easing the integrators burden to care for these topics.

Despite all parallelism and distribution of work inside the gateway, for the consumer

the total request duration between issuing the request for a virtual value and the

receipt of the result is still the only relevant timing. This duration has to be optimized

as much as possible wherever it can be influenced by the architecture.

One option, to enhance request performance (total duration) is that the design defines

thresholds until when "current" data is still to be considered "current", which

eliminates the need to constantly re-evaluate still valid data. So for example in the case

of a slowly changing base value the threshold for a virtual entity could be 2 hours,

meaning that any request for that virtual entity within 2 hours since the last evaluation

will be served the current value.

Due to the importance of virtual value evaluation, several test cases have been designed

especially for the evaluation of timing, load factors and corresponding limits in section

6.3 and 6.4.

4.2 DBGA	communication		

Communication with the gateway is a task undertaken by consumers as well as

producers of data (like sensors). It is very often the case that consumers (more details

Page 82 / 252

about consumers can be found in section D.2 (appendix)) choose different protocols

than those of producers which very often dictated by business integration needs, skills

and more technical factors like latency, throughput, and so on.

The gateway design uses the same communication handlers for inbound (receiving) as

well as outbound (sending) communication. So, when writing from the gateway (by

means of an actuator value being written to an endpoint), the same handlers as for

reading are involved.

4.2.1 Communication	interface	agnosticism		
As the architecture should be communication interface agnostic (see section 3.5.5)

several communication interfaces and protocols like SOAP, REST, ODATA, CNDEP and

MS-MQ91 (among others as an extendable list) have to be supported.

A client can communicate with the DBGA in any defined way and it has to be irrelevant

over which interface (even mixed) the communication is undertaken. Here the

communication interface exposes the same underlying logic and API, yet in a

communication interface specific format to enable the use of interface specific

characteristics. In this way the DBGA "looks" different on all communication interfaces,

yet acts the same. In case a communication interface does not support all operations

(for example ODATA is usually used to read bulk data, but not to write new values), the

communication handler has to signal according result codes / exceptions to the user.

Further details about the various protocol specific issues can be found in section D.3

(appendix).

4.2.2 Device	specific	communication	
Between receiving and sending data there is one big difference which has to be

considered in the design.

When the gateway is the receiver, the gateway defines the logical protocol (API) to be

used with variations for each underlying communication protocol. When the gateway is

the caller (for example by means of scanning data endpoints or writing to actuators)

the gateway has to obey the logical protocol definition defined by the called endpoint.

This means that for example scanner tasks (for details see section 4.5.4) can use the

91 MS-MQ = Microsoft Message Queue -> Microsoft’s product (as part of the Windows operating

system) to provide reliable message queuing (https://msdn.microsoft.com/en-

us/library/ms711472(v=vs.85).aspx)

Page 83 / 252

generic communication interfaces (interface agnosticism), but need specialized logic to

handle the logical protocol with the data endpoint. To cope with this implication each

data endpoint that is considered to be pulled (scanned) has to provide the class which

is capable of communicating with the endpoint. It is the sole responsibility of the class

to call the necessary APIs of the endpoint and thus provide a seamless and generic

integration into the device gateway framework

4.3 Usage	of	workflow	execution	as	autonomous	operations	in	the	DBGA	

To implement the characteristic of autonomous operations (specified in section 3.5.6)

the DBGA design uses workflows to achieve this.

The definition for what a workflow is tends to be blurred at best, so for the design the

following definition, is assumed92 (see [72] as well): "A workflow is the definition of a

shared and usually repetitive business process. Through the workflow the tasks,

processing units, the structure and inter-operation between participants as well as

data-flow and process-logic-flow are defined”.

These workflows would be usually designed in an external application and interact

with the DBGA using a defined set of methods and a specific environment. They are

either created on the fly from their BPML definition or loaded as runnable modules (if

present in an executable state) into the DBGA runtime and then executed on demand.

Based on this definition the device gateway incorporates workflows in two areas:

- As call-backs to for example calculate a virtual value or react to a change in a

sensor value;

- As cyclic tasks which are executed automatically in the system.

Whereas the second use case exploits all characteristic of a workflow to its full extent

(especially the autonomous operations and proactivity), the first use case degrades the

workflow more to an execution engine for an action, as a reaction to an external event

which was sensed by the device gateway. In any case, the workflow can do whatever it

has been developed to do, mainly setting other values (actuators) based on the current

state of its inbound sensors.

92 https://wirtschaftslexikon.gabler.de/definition/workflow-48807

Page 84 / 252

In the .NET environment a workflow would be implemented as a Windows Workflow

Foundation93 workflow which is run and controlled inside the Device Gateway.

4.4 The	components	of	the	device	gateway	(logical	view)	

The device gateway architecture is composed of components that resemble the

standard use cases (see section 3.2). Table 4.1 shows a mapping between these use

cases and the component(s) involved.

Table	4.1:	Use‐Case	to	Component	Mapping	

Use Case Involved Component Name(s)

Manage devices and sensors	  Device and Sensor Management (section 4.5.1)	

Write sensor value  Value Management (section 4.5.7)

 Receiver Tasks for Data Endpoint Issued Writes

(section 4.5.3)

 Sensor Scanning Task (section 4.5.4)

Read sensor value  Sensor Read (section 4.5.5)

 Value Management (section 4.5.7)

Evaluate virtual sensor value  Value Management (section 4.5.7)

 Virtual Value Evaluation (section 4.5.7.4)

Write actuator value  Actuator write (section 4.5.2)

 Value Management (section 4.5.7)

Validate value  Value Management (section 4.5.7)

Cyclic execution of tasks  Watchdog	and	Cyclic	Execution (section 4.5.7.5)

Data access  Data Access (section 4.5.6)

Access Control  Access control (section 4.5.9)

These components are shown in the UML component diagram in Figure 4.2 where the

relation with each other is described.

93 https://msdn.microsoft.com/en-us/vstudio/jj684582.aspx

Page 85 / 252

Figure	4.2:	UML	Component	Interaction	

Additional utility components like error and log handling, configuration, etc. can be

found in the appendix (section D.4.3 to D.4.5).

4.5 Process	(dynamic)	view		

To define the architecture's dynamic aspects, system processes, components involved

and the internal communication between them, the usage scenarios (see section 3.1)

will now be detailed using process views.

4.5.1 Device	and	sensor	management	
All devices and their associated sensors (and / or actuators) are managed by this

component. It is mainly designed as a centralized registration place so that new devices

/ sensors / actuators can be easily registered and retrieved. Using an optional (not

cmp Logical View

Data Access

Dynamic
Configuration

Gateway Engine
Core

Dev ice and Sensor
Management

Virtual Value
Ev aluation

Listener
Notification

Watchdog &
Cyclic Execution

Error & Log-
Handling

Access Control

Discov ery &
Serv ice

Propagation

Dev ice Gateway
Communication

Actuator Write

Value
Management

Receiv er Tasks
for Data Endpoint

Issued Writes

Sensor Scanning
Task

Sensor Read

Value Validation

Page 86 / 252

designed and included) query facility this information can be queried as well. This way

a discovery mechanism could be added later on as well.

4.5.2 Actuator	writes	
When writing actuator values the same problems as with scanning for endpoints occur

as each actuator defines its own API and communication protocol to use which has to

be obeyed. Therefore, the same rules apply for both usage scenarios so that actuator

specific classes have to be present, which have to implement the

IDeviceCommunicationHandler94 interface.

An additional requirement for actuators exists that (depending upon the actuator and

use case) some actuator data must be written synchronously at the exact moment when

it is generated (when for example used during a workflow processing step), and some

data can be written asynchronously. In general, the goal should be that data is written

asynchronously as often as possible, as synchronous operation interrupt the normal

"flow" of the system. This is exaggerated when for example a workflow is run

(synchronously) based on a change of an input value and then sets an actuator value,

which is written, again synchronously. This way the whole input handling is delayed

(due to the synchronous following operations) until the final writing (with all potential

time-outs, errors, etc.) has been handled.

To handle these requirements one potential design would have been to use a similar

architecture like the scanner tasks, just for sending. Yet as writing data to actuators

usually (according to current experience) happens not as often as receiving or reading

from endpoints a simpler design was used for the device gateway. In this approach,

shown in Figure 4.3, the task for writing resides (shielded from the remaining parts of

the core) inside the device gateway core as an independent thread of execution which

is launched during start-up. Should need arise this thread could be removed from the

in-process execution and put into an external process.

94 Tagging them as providers of the device communication classes

Page 87 / 252

Figure	4.3:	Writing	actuator	value	

4.5.3 Receiver	tasks	for	data	endpoint	issued	writes		
As the device gateway defines the API when data endpoints write their values to the

gateway it is a mere matter of handling the various protocols over which the requests

can arrive. Figure 4.4 provides a UML component diagram of these receiver tasks and

data endpoints.

The protocol handlers are mere protocol converters between external representation

and internal format. Thus, the load is not very high and for the predominant use-cases

(REST, SOAP and binary formats) the system infrastructure will take good care for

efficient parsing and routing of requests.

Further details about the specific protocol handlers can be found in section D.2

(appendix).

act Write Actuator

fo
re

v
e

r

Protected Region

Start

«centralBuffer»

FIFO command queue
Blocking read for new

command

Write new
value

Retrieve designated communication handler Communication Handler Factory

ActuatorWrite data

Synchronous

Normal
enqueue

Enqueue at
head

Communication
Exception

Exception
Occured

ExceptionHandler1

Exception
Occured

Log &
Continue

[No]
[Yes]

Page 88 / 252

Figure	4.4:	Receiver	tasks	for	endpoint	write	requests	

4.5.4 Sensor	scanning	task	
To read values from devices and sensors attached to them is one of the main tasks the

gateway has to perform if the sensors do not send their own values as they change. This

scanning (pulling) of data endpoints has to be performed in so called "sensor scanning

tasks". As each data endpoint can dictate its own API and communication protocol, the

specific access has to be provided in a dedicated object (class instance) for this

endpoint. The class to use for the communication is registered with the endpoint and

used during runtime to create the specific class.

To enable best system performance and throughput several scanner tasks can be run at

the same time where each of them is controlled by a central scanner task controller.

This controller, by running in its own separate space (and not as part of the device

gateway) is protecting the entire system against errors and exceptions arriving from

the communication layer. In case of a serious problem "only" the task controller has to

be restarted and the rest of the system remains responsive.

cmp Write Receiv er Tasks

SOAP handlerSOAP container

Logical View::
Dev ice Gateway
Communicationhttp container

REST handler

Binary Request
handler

Binary Request
container

CNDEP container

ODATA handler

CNDEP Handler

Message Queue
handler

Message Queue
container

Data Request

«flow»

Data Request

«flow»

Data Request

«flow»

Data Request

«flow»

Data Request

«flow»

Data Request

«flow»

«use»

«use»

«use»

«use»

«use»

«use»

Page 89 / 252

The ability to have several scanner tasks cope with situations when big latencies are to

be expected and then the scanning of all data endpoints, would not be possible in a

given period of time. A typical case might be querying devices using the SOAP protocol

where, due to name resolution, XML parsing, etc., the response could be substantially

delayed. If there are several endpoints to be queried using this approach the latencies,

then add up and the total iteration takes (perhaps too) much time. Another use case

might be when very different scanning times are present and it would thus make much

more sense to group the scans into different scanner tasks.

The interactions between the task controller, the scanner task and the sensors are

shown in Figure 4.5 as a UML diagram.

Figure	4.5:	Task	Launcher	‐	Scanner	Task	‐	Sensor	

It is the responsibility of the task controller to control how many scanner tasks are

needed, when they are launched, when dismissed (destroyed), etc. As each task is

considered an independent unit of work, the tasks are designed to be run in threads

taken out of a (configurable) thread-pool so that no inflation of threads happens, which

would degrade system performance again95 due to synchronization, race-conditions

and especially internal locks over shared resources. With the given thread-pool, system

95 Some additional background can be found here: http://www.drdobbs.com/tools/avoiding-

classic-threading-problems/231000499

sd Scanner Task Controller - Scanner Task - Sensor

Scanner Task

Scanner Task
Controller

Dev ice GatewaySensor

loop forev er

[unti l not stopped]

every x seconds
[while not stopping]:
resynchronize launcher()

Figure out information about endpoints to scan()

prepare tasks to scan based on protocol, pool-size, etc.()

Check that a pool slot is available()

Start(Information about the data-endpoints to be
scanned)

request value() :data

submit value to the core()

Value Change Handling()

stop when needed()

Page 90 / 252

behaviour can be fine-tuned towards the actual implementation scenario so that

exactly the right amount of threads is used.

The scanner task itself is designed to run forever in an endless loop where parameters

like scanning frequency, protocol, etc. are passed during creation. In this loop it then

scans the sensors assigned and reports read values to the device gateway core where

the value change handling (see section 4.5.7.1) begins. When the task controller needs

to stop the scanner task a stop command is issued. Communication between scanner

task and task controller has to be implemented by a FIFO-queue so that both sides can

continue to operate and have a de-coupled media to exchange information.

These operations inside the scanner task are shown as a UML diagram in Figure 4.6:

Figure	4.6:	Operations	inside	scanner	task	

4.5.5 Sensor	read	
When a consumer wants to retrieve from the device gateway, he will issue a request

towards any of the defined entry-points, which are 100% similar to the ones specified

in “Receiver Tasks for Data Endpoint Issued Writes” (section 4.5.3). There the handlers

are expecting sensor write operations; whereas the very same handlers, when used to

act Scanner Task

S
c

a
n

 e
n

d
p

o
in

ts
 a

lw
a

y
s

 o
n

e
 a

t
a

 t
im

e
 a

c
c

o
rd

in
g

 t
o

 t
h

e
 s

c
a

n
 l

is
t

/
g

ro
u

p
s

Protected Region

Thread
Start

«centralBuffer»

FIFO command queue
read queue for command

«co...

Task
Launcher

Command present?

Arrange endpoints to scan
in groups and order

Communication
Handler Factory

Retriev e designated communication
handler

Dev ice / SensorIssue Read Request to dev ice /
sensor

ActivityInitial

Exception
Occurred

Check if general problem
and if yes terminate

scanner task; otherwise
continue and re-try

Exception
Occurred

Communication
Exception

Check Result

ActivityFinal

Communicate value to
Device Gateway

Thread
Terminated

Handle Command

Terminate Scanner Task

Apply new device / sensor
information

A specialized class for
exactly this endpoint's
logical and
communication protocol

Command

«flow»

Command

«flow»

[no]

[yes]

Scanner Task
Abort
Command
{Command}

«flow»

Page 91 / 252

retrieve data, just receive the corresponding requests for retrieve operations. As the

device gateway has a complete communication interface agnosticism characteristic

(see section 3.5.5) it does not matter which communication protocol is used, as long as

the protocol specific issues are addressed properly.

The basic parameters used for retrieving data are always:

- Data endpoint (sensor) relevant

- Optionally from when data is relevant

- Optionally until when data is relevant

- Maximum amount of results

These are then packaged according to whatever format is used during communication

and could take forms like (dynamic parts are enclosed with {}) for example in REST:

- http(s)://server/SingleDevice/{DeviceId}/SingleSensor/{SensorId}?generate

dAfter={Timestamp}&generatedBefore={Timestamp}

Usually to make requests shorter (and easier to use / learn) there are shortcut-versions

available. For example, to get just the last value this would be:

- http(s)://server/SingleDevice/{DeviceId}/SingleSensor/{SensorId}/latest

All the requests are processed in the corresponding handlers and passed down, using

the internal communication protocol to the device gateway kernel. There the request is

further analysed and data retrieved using a global component ValueManagement (see

later) which manages all values, caches, etc. in the system.

This is shown as an UML sequence diagram in Figure 4.7 where the communication

between the components is represented.

Page 92 / 252

Figure	4.7:	Retrieve	values	as	a	consumer	

Usually it is an entirely synchronous process; only in case of asynchronous protocols

(like for example message-based ones) this might imply an asynchronous element. For

example, for SOAP or REST the call would start at the consumer and go all the way

down to the ValueManagement with results flowing all the way back.

4.5.6 Data	access	
Sensor or global data of the device gateway has to be stored in permanent storage and

accessed there to be usable. This access is designed to be handled by subclasses

deriving from an abstract class DataStorageAccessBase which requires the derived class

to implement methods like: StoreDevice(), StoreSensorDate(), GetSensorDependencies(),

etc.

All methods needed by any module within the device gateway will have access to these

methods and no other data access methods should be used throughout the system.

To use an abstract base class in the design allowed the provisioning of a static

singleton96 property as a concrete factory implementation (which an Interface cannot

provide). In the singleton the ConfigurationManager is queried for a concrete

implementation class which is then instantiated. Should there be no other

96 A singleton is a design pattern which allows to make an instance of an object globally available

and guarantee that only one instance of the class is actually instantiated

(https://msdn.microsoft.com/en-us/library/ms998426.aspx)

sd Data Retriev al

:Consumer / Producer
Communication

Channel Frontend
Dev ice GatewayInternal

Communication
Frontend

ValueManagement

Read / Write Request for Data()

in async protocols the message has to be received()

Checks()

response if error
in checks()

Pass request on()

package to internal structures()

call core methods()

access value management()

response()

internal structure - protocol()

response()

repack data()

response()

Page 93 / 252

implementation, the default one would be for Microsoft SQL Server. Figure 4.8 shows

the UML class diagram for this mechanism.

Figure	4.8:	Data	access	class	diagram	

In this way it is very simple to exchange the permanent storage access to for example

another SQL database like ORACLE, mySQL, etc. or even to a flat-file system or a hybrid

approach (for example store sensor data in flat files or ISAM and the rest in an SQL like

structure).

Changing the implementation should require an effort of perhaps 8 hours for an

experienced developer and that way it can be considered easy to change.

The ability to use alternative storage systems is very important as many integration

scenarios either have existing database infrastructures, or require versions, which are

royalty free97 or want to use the fastest possible access to the sensor data, which might

be flat files or ISAM like systems. In addition, as NoSQL98 databases become important

for large scale data systems, this way integration into those systems is possible as well.

4.5.7 Value	management	
The value management of the device gateway is one of its core components and of

paramount importance to the whole system as everything regarding sensor values

depends upon it. Several areas are covered by the ValueManager	component, which are

described in subsequent sections in more detail:

- Handling of the current sensor values (read / write) and their history

- Populating the sensor history during start of the device gateway

97 Which the standalone SQL Server version would be as well, as long as the data is not more

than 10 GB https://www.microsoft.com/web/platform/database.aspx

98 https://en.wikipedia.org/wiki/NoSQL

class Permanent Storage Access

«abstract»
DataStorageAccessBase

«property»
+ Instance() :DataStorageAccessBase

SqlDataStorageAccess

ConfigurationManager
Get the data storage entry

Page 94 / 252

- Callback handling

- Dependency Management

- Virtual Value Evaluation including asynchronous (cyclic) modes

4.5.7.1 Handling	of	the	current	sensor	values	(read	/	write)	and	their	history	

As the ValueManager component has to provide quick access to the values (usually the

current) of sensors it must organize them in a way so that they are quickly and

efficiently accessible. This is especially important as this operation is often called

synchronously to other operations, so a lengthy delay to for example load data from a

data store is not usable. It is assumed that any implementation provides:

- Direct access to the current value of any sensor

- Direct access to a suitable (depending on the use case) sized set of historic

values and then to a value within this set

- Access (with additional loading) to any historic value of any sensor

- Virtual sensor values

The current value is thereby defined either as:

- The last reported value either by scanning for a value or as it was sent from a

sensor to the gateway

- In case a definition for a value expiration threshold exists

(DataValidityThresholdInMsec in the sensor registration) then the current value

is only defined, if the time difference between request and last update is less

than the threshold

- If no current value exists, a configurable default or a NULL-representation (no

value present) is returned (it is configurable what should happen)

- If the sensor is a virtual sensor the virtual value evaluation will be used to

determine the current value, except if a value exists and the virtual sensor

definition does not state "calculate on request" as mandatory. In these cases,

the existing current value will be returned.

In case a historic value is accessed it is either served from the cache, or, in case not

present, from the query result against the data store.

When writing the current value several call-backs are performed to allow for checking

and potentially adjusting the value. In case this succeeds the current value is supposed

to be over-written, the last update synchronized and a historic entry added.

Page 95 / 252

In case the sensor is defined as "sensor data to be written to data store" this has to be

done. If in addition the flag "direct persist after change" is given, the writing must

happen synchronously to the change, which makes it a very expensive operation.

Should the sensor be an actuator, then the value will be propagated to the actuator by

means of a background thread. In case of a synchronous operation the write should be

enqueued at the head of the request queue to not block the value management. This

enqueue at the head of a command queue between threads is a general design pattern

taken in the value management as it is of paramount importance that operations

perform as swiftly and least intrusively as possible, as access locks (semaphores) have

to be kept on each sensor value to prevent multi-threading problems, which makes

synchronization already difficult. In addition, the latency involved in "out-of-bounds"

calls would make any predictable access difficult.

The specific actions and flows to handle the current sensor value are described as an

UML Action diagram in Figure 4.9:

Page 96 / 252

Figure	4.9:	Current	Sensor	Value	Management	(read	/	write)	

Page 97 / 252

Specially to gather information about timing, limits, etc. the tests "Timing to push

values into the core with dynamic calculations" (section 6.2) and "Concurrent access

(READ / WRITE) by several clients to check for concurrency, race conditions and

locking issues" (section 6.4) have been designed.

4.5.7.2 Populating	the	sensor	history	during	start	of	the	device	gateway	

To enhance system performance, it is recommended that during start the device

gateway pre-loads a suitable set of last historic values for sensors from the persistent

storage (database) into runtime memory. This is especially important if triggers (or

consumers) access these values quite frequently, as otherwise a constant loading from

the data store happens, which, due to latencies, can cause overall system degradation.

Assuming an approximate size of ca. 100 bytes for a value entry (data + associated

control information) and 100 historic values / sensor this yields 10 KB for each sensor.

Thus, even with 1,000 sensors the load factor would only be 10 MB which is no concern

at all. Therefore, the design considers pre-loading all existing data - at least up to

reasonable sizes.

4.5.7.3 Callback	handling	

Callbacks are used for several things inside the value management where the defined

types and their use99 is defined in Table 4.2. They are designed like function calls where

the callback is called (according to the type in different scenarios), gets the current

value and environment (to access historic data for a running-means for example)

passed in and returns the new value. In addition to returning a value the callback can

signal if the current operation shall be cancelled or the sample rates adjusted.

99 Should the need for additional callbacks arise this is simply a matter of extending the

defined callback types and call these types in the appropriate places.

Page 98 / 252

Table	4.2:	Callback	type	and	use	

Callback-Type Meaning / Use

DetectAnomaly The callback is intended to check the incoming data for

improper values (anomalies). Usually the value would

then be discarded

AdjustSampleRate Check if the sample rate has to be adjusted by either

giving a higher or lower rate

GeneralCheck Check the incoming data in general. Does it fit the

intended data type, is the value ok, does it match the

series, etc.

BeforeStore Before a value is stored this callback can be used to

manipulate the type

AfterStore After storing is done. This is more a "marker" callback

which might write the value to for example a second

system, etc.

VirtualValueCalculation The callback is intended to calculate the virtual value

for the current node

AfterChangeCallback After a value change where the change amount is

configurable (from “always” to a specific value)

Here DetectAnomaly, AdjustSampleRate or GeneralCheck Callback-Types are used to

validate and / or modify data before it is accepted into the device gateway value

management.

The AfterChangeCallback Callback-Type which will be called after the value has

changed in the value management. In the handler any action could be done – including

sending for example notifications to other systems, etc. The default implementation

would be to provide feedback to a URL using a POST operation.

To use workflows as callbacks especially for value change is a powerful, yet very

(potentially) dangerous operation as well. Workflows can be very unpredictable as

their timing usually depends on many factors and especially long-running tasks pose a

big challenge to the device gateway infrastructure (serialization of state, wake-up and

continuation of run, etc.). Therefore, the device gateway by design does not support

suspension of tasks (thus they have to start and finish in the same iteration) and has to

run them in a dedicated secure space so that, in case of trouble (for example a

Page 99 / 252

watchdog expiring), the whole operation can be stopped without damage to the

remaining system.

All callbacks are stored system-wide in a component called the value manager which

manages all values and all callbacks currently existent.

Further information about callback details can be found in section D.4.2 (appendix).

4.5.7.4 Virtual	Value	Evaluation	including	asynchronous	(cyclic)	modes	

The evaluation (computation) of a virtual value is a straightforward process which

depends entirely upon the existence of the callback to compute the value. It can be

either executed synchronous to the request or be performed asynchronous

automatically in a cyclic background operation100.

When a virtual value is requested (synchronous mode) and a computation rule exists,

as well as the value is designated as to be computed on request101 and no threshold

value is present, then the callback for this value is loaded and executed.

In case the computation was not cancelled by the callback the new value is returned,

otherwise the existing (or default, in case none has been established beforehand).

These operations are shown in the UML activity diagram in Figure 4.10.

100 This option is usually relevant if the basis for virtual values does not change too much in a

given timeframe, or the virtual value does not have to 100% reflect the underlying value like for

instance the average room temperature where a fluctuation of 0.1° C does not make a big

difference

101 Other options would include to be computed by a cyclic task or when the data item the value

is dependent upon changes

Page 100 / 252

Figure	4.10:	Virtual	Value	Evaluation	

If a background (cyclic) evaluation is set up, then a background thread will be started,

which checks every x millisecond all virtual values and re-computes them by evaluating

their value102.

4.5.7.5 Dependency	Management	

Another task which has to be performed by the value management is the dependency

management between sensors, virtual sensors and their dependencies. The core tasks

here are:

- Register dependencies and persist them in the data store (using data access

methods)

102 Future versions might improve this by providing several parallel background tasks with for

instance different evaluation times

act Virtual Value Ev aluation

Request
Value

Perform Evaluation?

Evaluation will only happen, if:

1) A computation rule exists
2) The virtual value is designated as "Calculate On
Request" or no current value exists
3) The current threshold is not set or set, but expired

Provide
Current
Value

Load the defined callback to handle
the v irtual value computation

ValueManager

Evalute Virtual Value
(AbstractCallback::ExecuteCallback)

Cancelled by Callback?

Store Computed Value

[yes]

[no]

AbstractCallback {«abstract» AbstractCallback}

«flow»

[AbstractCallback is of type VirtualValueCalculation]

[no]

Page 101 / 252

- Check for cyclic dependencies which are not permitted

The cyclic dependency check can be done by simply building a tree of all classes which

constitute the dependent upon (base) type and then check this tree for any occurrence

of the dependent type in it. In case a cyclic dependency is discovered this has to be

rejected.

4.5.8 Watchdog	and	cyclic	execution	with	workflows	
To be able to perform additional house-holding tasks which are usually always present

in an integration project, especially when doing business-process-integration, the

device gateway is designed that a background task exists which is able to execute other

tasks on a cyclic basis.

For this the task to be executed has to be generally registered in the device gateway

registration and implement the interface ICyclicTask which is shown in the UML class

diagram in Figure 4.11.

The CyclicTaskRunner component then scans the configuration for all relevant entries

and for each entry loads the task (if not still ready from a previous run and having the

attribute KeepAliveBetweenInstances). Then the task is executed and the next task used.

This can go on as long as the server is running.

Page 102 / 252

Figure	4.11:	Cyclic	Task	Execution	

4.5.8.1 Watchdog	task	

A special task always running is the Watchdog task, which can be used to supervise

operations in various components. Any component or object implementing

ISupervisableObject can register in the WatchdogTask and then the watchdog will check

that after each object’s n msec the object is still alive by reacting to the call to its

TestAlive() method. In case an object is no longer responsive the Timeout() method has

to be called which will have an implementation inside the object and there any further

action can be taken (un-blocking communication channels, etc.)

4.5.8.2 Workflow	execution	as	a	task	

Very similar to the execution of workflow callbacks in value management workflows

can be used (and executed) as tasks as well. The difference here is that now long-

class Cyclic Tasks

F
o

r
e

a
c

h
 t

a
s

k
 i

n
 t

h
e

 C
o

n
fi

g
u

ra
ti

o
n

 :
IS

c
a

n
n

e
rT

a
s

k

«interface»
ICyclicTask

+ IsOneTimeOperation :boolean
+ KeepAliveBetweenInstances :boolean
+ SleepBetweenIterationsInMsec :int
+ TaskName :string

+ Execute(object) :void

ActualTaskInstance

+ Execute(object) :void

CyclicTaskRunner

Execute Task
(ICyclicTask::Execute)

RuntimeEnvironment

Create Task based on Configuration
entry or re-use existing if

KeepAliv eBetweenInstances

CreateObject

ActivityFinal

SoftwareAgentTask

+ Execute(object) :void

Already run and IsOneTimeOperation

Next task

WatchdogTask

«Singleton»
- Instance :WatchdogTask

+ Execute(object) :void
+ RegisterSupervision(ISupervisableObject) :void
+ UnRegisterSupervision(ISupervisableObject) :void

«interface»
ISuperv isableObject

+ TimeoutInMsec :int

+ TestAlive() :boolean
+ Timeout() :void

«trace»

[yes]

[sleeping time is obeyed]

controlled object

«use»

«use»

Page 103 / 252

running tasks can be supported as well - including suspension and re-animation of a

suspended task. Especially for these workflows is a provision in the value management

so that correlation identifiers (ids) can be associated with values that on arrival for

example of a special value, the correlation between value and workflow can be

established and the agent continued.

This implies hosting of the workflow runtime environment and execution engine as

well as providing additional support for suspension (hibernation) of agents and re-

animation.

4.5.9 Access	control	
Access control is designed to act as an empty shell at the moment (at least for the

reference implementation), which can be extended to a fully functional security

integration with full access control if necessary. The UML activity diagram for this topic

is presented in Figure 4.12.

Every method and communication entry point reachable from outside will branch to a

centrally configurable loadable security context provider which is then responsible for

letting the request pass or fail (usually be means of an AccessNotAllowed exception and

a corresponding log entry).

The DefaultSecurityProvider does nothing and lets every request pass so that every

consumer can access any data present in the system as well as insert any data for any

device. This decision was made deliberately as for most integration environments an

existing security infrastructure has to be used, which then requires adaptions and

further integration.

If such an access control is needed in a specific business process integration

environment then a specific SecurityProvider has to be implemented, which checks the

object passed in, which is of interface ICallContext. Using this interface, the

implementer can extend the call context as well (by having specific classes derive from

it). This is important as depending on the security infrastructure different parameters

will be needed and passed. Some store for example the user as an ID in each web

request in a request variable, others have an LDAP id, etc. In addition, as the system

cannot know which operation has to be tested, this will have to be passed in the current

context as well (for example "CREATE-SENSOR", etc.).

Page 104 / 252

Figure	4.12:	Access	control	

4.6 Physical	view	

From the physical point of the design, principles of the device gateway were:

- Being modular in every aspect from software development to physical

deployment

- Allow the utilization of existing infrastructure which is proven and "already

there" (do not re-invent the wheel)

- Be as small in terms of "footprint" and easy to use as possible. In a typical usage

environment everything should run on one physical (moderately dimensioned)

machine

Database, communication handling, inbound and outbound requests can all be

distributed to different physical systems with internal binary communication between

them. Only, due to the stateful nature of the "Value Management" (section 4.5.7) with

all associated triggers, virtual values, etc., the device gateway core (with all associated

components) has to be on the same (and single) system and running permanently as an

independent process.

To design the DBGA as a classical request – response web-service seems not very useful

as then state data (current values, dependencies, etc.) would have to be retrieved from

the database for each request. To just retrieve a serialized state (for example from a file

on disk) is not possible as it might happen that several instances of a web-service

(perhaps even on different nodes in a cluster) are instantiated at the same time and

then all serialized states would be invalid as none reflects the overall system.

act Security checks

Retirev e security prov ider

SecurityProvider

CallContext :ICallContext

Security Prov ider
Factory

«datastore»
Configuration

Ok

Start Check

CheckAccess
(SecurityProvider::)

CurrentContext :ICallContext

AccessNotGranted

SecurityProvider

[If none configured DefaultSecurityProvider]

ICallContext

[granted]

Page 105 / 252

Therefore, a re-build of the state is necessary for each request. This is not very efficient

and uses vast system resources for each request whereas in a stateful system data is

preserved between requests and always available. In addition, the internal

communication protocol would then have to be either REST or SOAP, which implies

significant costs in terms of processing time and memory consumption versus a binary

protocol.

In addition, dynamic processes like value change handling would be much more

complicated as issues like several value writes for the same endpoint which are routed

to different instances by a load balancer have to be resolved.

In case of need the device gateway could be split across several physical machines, but

it must be guaranteed that sensor values dependent upon each other are kept on the

same machine so that updates and evaluations work.

Figure 4.13 shows a typical simplified physical view (with the assumption to have a

Windows execution environment103) of a device gateway system with all major

components included.

103 Should another system be used, then IIS must be replaced by another hosting environment

Page 106 / 252

Figure	4.13:	Exemplary	physical	view	of	device	gateway	

Whether the hosting container for ODATA, SOAP and REST is IIS or any other available

option does not matter and only might have impact on the processing time

requirements and memory consumption.

4.7 Data	model	

The data model, where details about the physical and logical design can be found in the

appendix (section 0), of the device gateway is very simplistic and designed to be

extended104 when needs arise, yet act as a fully functional model from the very

beginning.

It focusses around the following general data structures:

104 by means of a pluggable architecture where the provider of the data storage can be

configured and provides common methods. See section 4.5.6 for details

deployment Deployment View

Dev ice Gateway

«device»
Sensor(s)

Database Serv er

Database instance

Write Actuator
Values

«device»
Actuator(s)

Listener

«executionEnvironment»
IIS

ODATA

Requests SOAP (http /
binary)

Requests REST

«executionEnvironment»
Scanner-Task-Controller

Scanner Tasks

«executionEnvironment»
MS-MQ / CNDEP Runner

CNDEP Receciv e

MS-MQ Receiv e

Client

«executionEnvironment»
Dev ice Gateway Core

Dev ice, Sensor, Value
Management

Virtual Value
Ev aluation

Data Access
Component

Inform Listeners of
changes

Workflow
Integration

«use»

Page 107 / 252

- Device and sensor / actuator and their relations to describe which sensor /

actuator belongs to which device and has which relation to other sensors

(forming chains) including some physical attributes (like IP-address, etc.)

- Some additional semantic information about the sensors and actuators to

provide a minimal level of ontology support

- Sensor data (either from a sensor or calculated)

Therefore, much additional information usually associated with sensors or devices is

omitted as this additional data is usually only needed for discovery of devices (based on

additional data attributes) and reporting.

Especially classic markup-languages like SensorML [71] or other XML based variants

[58] tend to be all-encompassing, yet on the downside huge and hard to implement. For

most business-integration scenarios a much simpler approach is sufficient, yet when it

comes to for example world-wide distribution and querying of sensor-data, such an

alternative approach is more suitable. Due to the pluggable architecture an

implementation of such an approach is no problem, as the core definitions of what a

device and sensor is can be exchanged, as long as the functional elements like virtual

value evaluation, and so on are left intact.

The current design has no precautions for data aggregation after some time x, etc. This

is usually done on a project specific level (or as part of a big data solution) and can be

handled perfectly in an integration as a stored procedure; in any case not as a core task

of the device gateway.

4.8 Discussion	

The data source and destination management and registration process design (section

4.1), the gateway communication design (section 4.2), as well as the use of workflows

in device gateways (section 4.3) was described. This was followed by the matching of

use cases to involved components as logical view (section 4.4) and the process (or

dynamic) view in section 4.5, followed by the physical view (section 4.6) and data

model (section 4.7), as well as a final conclusion in section 4.8.

Having defined the design elements that make up the complete design, next is to

describe the reference implementation of the design. This is presented in detail in

chapter 5, which uses and applies these design elements.

Page 108 / 252

5 Reference	implementation	of	DBGA		

This chapter describes the reference implementation, by discussing the

implementation approach chosen (section 5.1), the general structure of the

implementation (section 5.2), sections 5.3 to 5.8 are then devoted to describing

individual components, and finally section 5.9 provides reflection on the experience of

creating the reference implementation.

The reference implementation that has been implemented is a fully functional

implementation of the design of the proposed Device-Business-Gateway Architecture

(DBGA) described in chapter 3.7.

The reference implementation (which is available to download105) was used:

a) As a test-bed to perform the research experiments (see chapter 6) for

checking that the design is stable, sustainable and that it fulfills the

requirements/characteristics outlined in chapter 3;

b) To implement the case studies (see chapter 7) as a proof-of-concept and

further check of the achievement of the requirements/characteristics;

c) To provide a solid basis for anybody wishing to use such an architecture for

their own device integrations.

The reference implementation was undertaken using the following technology stack:

- .NET 4.6.1 on Windows 7 Enterprise Ed. (and Windows 10)

- Windows Workflow Foundation 4.5

- SQL Server 2012 Express Edition106	

- IIS 7	

- IronPython.NET 2.7	

Each of these components, aside Microsoft Windows which is a commercial product

(and contains IIS 7), is available as either open-source or free of charge.

In the opinion of the author of this thesis, the choice of these environments and

components guarantees a thorough and stable platform, whilst also exhibiting a very

modern programming environment.

105 https://github.com/mglienecke/DeviceGateway

106 Whereas the Standard or Enterprise Edition work 100% similar

Page 109 / 252

5.1 Options	of	how	to	implement	the	reference	implementation	

Based on the characteristics defined in section 3.5 and the components described in

section 4.5 there were a number of choices as to how to implement the reference

implementation:

1) Create a monolithic application which includes all logic and handling in one

large executable piece of software;

2) Create a pure web-service-based software solution;

3) Create a hybrid solution with a computational core and exchangeable

interfaces / services.

Approach 1 usually tends at least in the beginning (based on the experience of the

author) to be the quickest and fastest implementation approach, yet over time this

changes as the effort expended to maintain such applications usually increase quite a

lot (compared to more layered and disperse applications). In such an approach you

normally find the lowest degree of complexity as very little interaction between

components outside the single process takes place and in general it is straightforward

to develop. Yet for the anticipated environment and requirements, a monolithic

application might be usable as a reference implementation, but would not be usable

anywhere in a real-world environment for the following reasons: it would not scale,

would be hard to expand and in general very would be inflexible. In addition, it would

be a contradiction to modern software engineering, especially modular and extendable

design.

Such a design approach allows for exchange of parts and components and replacement

or extension of them with better, corrected, enhanced or somehow different versions,

without re-distributing the entire application. Redistribution of applications can be a

major issue and therefore a modular approach would be preferred.

With Approach 2 every part is modular, exchangeable and all things work together by

communication links (URLs), which can be configured. If a service A needs some

feature X it can obtain this from another service which publishes the interface and can

consume and handle the corresponding requests.

There is just one major obstacle to this – maintaining state. The maintenance of state

requires some active part, which monitors the state and reacts to changes. As web-

services are always only passive (they are called and react solely on this activation –

afterwards they are suspended, kept sleeping, etc.) they cannot perform that task

directly but always need such an active component. It might be an option to use for

Page 110 / 252

example a cache service or a SQL database to maintain state, but this would require

quite a number of transactions and interactions and thus could make the system quite

complex and perhaps slow as well. This passiveness is an even bigger problem when it

comes to autonomous operations when some action (for example checks) must be

performed without any external trigger or stimulus to start an operation.

Even when using workarounds to alleviate such issues a purely web-service based

solution usually is quite complex as many components are interacting to create the

desired result.

To compensate for this, Approach 3 was chosen as the basis for the reference

implementation. Such a solution approach has proven successful in the experience of

the author in terms of stability, manageability and especially effectiveness of

implementation as it combines the swiftness and ease of approach 1 with the

extendibility of approach 2. The implementation uses a centralized process running as

a core (this can be run as a system service as well) which utilizes several

communication services to handle client requests (consumers and devices / sensors).

It should be clearly pointed out that the same solution of course could be built using a

pure web-service approach with some added active components (acting as triggers to

start web-services, etc.).

In a use case where distribution, clustering or fail-over-resilience of the system is

important, the following considerations should be considered:

- The database server can be operated completely as a cluster with full resilience

- The communication frontend: ODATA, SOAP, REST handlers, CNDEP, MS-

MQand scanner tasks can each be put on individual machines as the

communication internally can be done over a network as well

o The IIS part (which in typical environments will take the most load) can

be (due to its stateless nature) completely operated as a cluster with full

resilience

Page 111 / 252

5.2 General	structure	of	the	reference	implementation	

One of the core considerations, when implementing the components presented in

chapter 3.7, was how to efficiently package and combine them in terms of modules,

assemblies107 and general structure.

A big problem was that some internal classes – mainly the data structures needed for

communication in SOAP and objects used in JSON based communication - are needed in

the server- as well as the client-side. In addition, if the client is a .NET MicroFramework

client108, the format for the assembly is different and thus the code for these platforms

has to be generated from the same source, into a different target environment.

One approach could have been taken would be to have many small assemblies, each

resembling a single component, another to package the components into logical groups

and combine several of them together.

Therefore, based on author’s experience from similar projects as well as practical field

tests109, the components were packaged into the following logical implementation

components, which are described in more detail in subsections 5.3 to 5.8 of this

chapter:

- CentralServiceLauncher	which launches the server-side process and starts

initialization;	

- CentralServerService acts as the core of the whole device gateway. Here all

internal logic is implemented; Internal to this component are several sub-

components (for details see section 5.4): ValueManager, Communication

Modules for CNDEP and MS-MQ, Actuator Writing and watchdog as well as

cyclic task execution;

- GlobalDataContracts provides all system-wide definitions and declarations for

data-types, enumerations, and so on;

- DeviceServer.Base	is a reference implementation for a basic server process

running on a .NET MicroFramework enabled device;

107 An executable module in .NET - typically in form of a DLL

108 This was a big consideration for the DeviceServer.Base implementation (see later) on the

.NET MicroFramework devices

109 Especially the Micro Framework due to its different internal format of assemblies and

serialization required a lot of low-level try and error work

Page 112 / 252

- DeviceSimulator	is a fully working device server as a simulation process on the

host system for easier debugging;

- GatewayServiceContract	as IIS-plugin modules to allow REST- and SOAP-

handling;

- ODATA	is a	handler to process ODATA requests.

These components and their interactions are shown in Figure 5.1 and described in

detail in subsequent sub-sections.

The main goal was to have as few as possible, yet as many reusable components as

possible without having one big “mega-assembly” and “1001 tiny assemblies” as

extremes.

In addition to the previously mentioned main components, there are several other

components provided:

- ODataConsoleConsumer as a process which requests and consumes ODATA from

the device gateway and therefore can be used as a debugging tool (versus using

Excel);

- PerformanceCounterSensorTask	as a sensor data producer task which scans

Windows Performance Counters and passes them as sensor readings into the

device gateway. This acts as a sample of how to actually scan for values and

submit them, in addition it provides added benefit as arbitrary performance

counters (by means of configuration) can be passed to the gateway and used in

for example decisions;

- MsmqSensorTask	which	transmits data for arbitrary (configurable) sensors

using MS-MQ and accepts values written back as actuator values. This can be

used as a test-bed to see actuator values being passed back (for example from a

workflow);

- UnitTests	to excessively test all components and behaviors (as regression tests

as well).

Page 113 / 252

Figure	5.1:	Reference	Implementation	(Main)	Components	

In the following subsections additional information about the implemented

components and their relation to the design can be found.

5.3 CentralServiceLauncher	

The CentralServiceLauncher is the launcher to start a device gateway server, which

must be running at least on one machine in the network.

It acts as the runtime and launching environment for the CentralServerService (section

5.4), which, being an assembly, cannot be started directly. When started, the process

contains the loaded CentralServerService and the device gateway server is fully

operational.

In addition, to provide better support for debugging and testing the launcher can be

started as a foreground command line process and all output is directly visible on the

console, whereas in normal operation mode, it would be started as a Windows service

and running in the background (without visual output).

cmp Reference Implementation

CentralServ erServ ice
CentralServ erLauncher

MSMQ-Handler

CNDEP-Handler

ValueManager

WriteActuatorValues

Common data
structures IIS

ODATAGatewayServ iceContract

WCF-Handlers for SOAP
and Binary
Http-Handler for, REST
Requests

SQL Serv er 2012

CyclicTaskRunner

WatchdogTask

Dev iceSimulator

Dev iceServ er.Base

GlobalDataContracts

Data Access

«trace»

Requests

«flow»

Launch

«use»

Call SOAP / REST

«use»

«use»

Page 114 / 252

Running as a foreground process has the advantages that all output written to the

Console (including debug output and other error information) is directly visible so that

a setup can be easily controlled. Later on, when the implementation is stable a switch to

a background operation (as a service) can be easily achieved. The background service

has the advantage that it can be controlled by the Windows Service Manager, started

automatically, declare dependencies110, and so on. The dependency declaration is

especially very helpful as this ensures that for example SQL Server (which is necessary

for the implementation to start-up) is already running.

5.4 CentralServerService	

At the heart of the entire reference implementation is the CentralServerService

component which is implemented as an assembly. This assembly will be launched by

the CentralServerLauncher process either as a normal foreground process or as a

Windows Service (invisible in the background). It implements several components

which are detailed in the following sub-sections.

5.4.1 Modules	and	components	
Inside the central service various modules (either implemented as independent,

reusable assembly or in the CentralServerService assembly) are contained which:

- Manage values and callbacks including writing the data back to disk;

- Write values back to actuators;

- Perform the execution of cyclic tasks;

- Allow the management of Watchdog timers;

- Run workflows as Windows Workflow Foundation Workflows;

- Handle requests from CNDEP and MSMQ (the Microsoft implementation of a

messaging system);

- Provide storage access to SQL Server 2012.

5.4.1.1 Data	Access	

Storage access to SQL Server 2012 is provided in the assembly DataStorageAccess

where 2 concurrent implementations are available. The one to be chosen for the actual

instance can be configured in the app.config111 of the device gateway.

110 Done in the registration as a Windows service

111 The standard way to configure application settings in .NET

Page 115 / 252

One implementation is implemented using "classic" ADO.NET112 which is very fast

(among the fastest possible access methods), the other is done using LINQ113 to Entities.

The first approach is far more procedural and contains many manual data copy

operations (which are error-prone) than the LINQ to Entities which is much higher-

leveled114. Yet as the overall speed benefit115 is much higher for approach one than the

better readability it was used in the reference implementation.

Storage access is very important for the overall performance of the system, but as most

values are cached in any case in the value manager there is not too much impact. The

only exception being the part when value changes have to be written directly to the

data store - here a method StoreSensorData() is called which always assumes that

several data items are stored at once and therefore puts them in a temporary table with

a bulk copy operation afterwards. The bulk copy prevents some internal features of

SQL Server but makes the execution much faster. As usually the writing of sensor data

is undertaken asynchronously in the background and therefore several hundreds or

thousands of values have to be written at one, this is much faster than opening a

transaction, looping over all values, performing the write operation and afterwards

undertaking commit (or rollback). Tests have shown that the bulk copy performance

vs. transactional one-by-one is approx. 100 times faster which makes it worthwhile to

use.

5.4.1.2 ValueManager	

The ValueManager component is the complete implementation of the

ValueManagement component (section 4.5.7) and contains everything in this area from

handling the initial loading, managing the sensor data, perform virtual value

calculation, validation and callbacks as well as notifications and workflow integration.

112 Microsoft technology to access data sources. It is a bit old-fashioned but still widely used

113 LINQ = Language Integrated Query; an extension to C# where SQL-like query syntax can be

embedded into the C# code which is transposed by the compiler to the calling of extension

methods on the base objects

114 And much more object-oriented – a real ORM (object relational mapper)

115 The direct access is roughly 2-3 (in extremes 100 times) faster than LINQ. Especially larger

INSERT-sequences cause a big problem here, which could be alleviated by using 3rd party

libraries which allows “BULK” INSERT operations into the database (with all the problems

associated), similar to the approach chosen

Page 116 / 252

It is implemented in an independent assembly using a singleton pattern. This

availability as independent assembly was important as now independent load and unit

tests could be directly performed against the component without having another

context around it. In addition, due to this implementation approach, the value manager

is 100% re-usable in other implementation environments, so in case an integrator

would like to change the central service, the value management could still be used as is.

As the ValueManager, with 35 – 45% of the total CPU cycle consumption in typical

scenarios116 is the single-most consumer of cycles any optimization and performance

check is beneficial for the complete device gateway.

Inside the ValueManager all defined sensors (for all devices) are kept as a dictionary of

value definitions with the sensor-id as a key. Inside such a value definition is:

- The definition of the sensor (virtual value, formula, etc.)

- Dependencies (if present)

- Current value

- Historic values

The historic values are set from the loading module (the CentralServerService) by

calling a method during its own startup process. It has proven117 to be better that the

caller starts this population process which could be quite lengthy (instead of the

component populating itself) as then overall system control is better coordinated. As

only one method has to be called a change from the encapsulating component to the

actual component would be very simple. In additional scenarios (when handling larger

data than in the test environment which used 100,000 sensors with 50 values as in

memory cache for each sensor as historic data as a maximum118) this task could be

delegated to a background thread and then the load could occur in parallel to the

remaining load process119.

116 Tests were done with a CPU execution profiler

117 Separate test cases were made to check either approach with a CPU profiler

118 According to the author’s experience these sensor counts would happen very rarely in non-

cloud-based solutions; 100 – 400 sensors is a more normal value. 50 values / sensor as direct in-

memory history usually is enough as well, as failures or abnormalities should show up in such a

sampling frame, too (of course depending on the sample rate, too).

119 As usually only a small subset of all defined sensors is used this could be staged as well

Page 117 / 252

Using a dictionary for the sensor access allows a very fast (by using the sensor-id as key

there is simply a lookup operation with O(1) constant access speed), thread-safe access

to the sensor definition and data. Especially the thread-safe access is of paramount

importance as very often several requests for the same value from different clients

produce overlapping requests, which are handled as separate threads in the

communication layer and thus could create race conditions and / or invalid values as

they are not synchronized.

To provide the highest possible flexibility for virtual value evaluation, the following

(extendable120) options are implemented in the ValueManager:

- SQL	stored	procedure

Here the evaluation is done inside the database as a stored procedure. This

approach enables much faster access to historical data (for example for

analysis), yet other computational tasks or access to outside resource is very

restricted for overall database integrity reasons.

In general, this evaluation is suitable for virtual values which rely heavily on

historical / structured data. Execution is distributed by nature as the stored

procedure is executed in the context of the SQL engine, which very often might

be an independent system.

- Python

In this evaluation method an external Python module is handed to the Python

execution engine (provided as external module121) by the device gateway and

all computation is done within it. Using Python as a general purpose

programming language has the benefit of easy adaptability, it is easy to learn

and the existence of a wide know-how pool.

The down-side is that the execution is performed within the context of the

device gateway and thus has the potential of a severe degradation of system

performance in case too many evaluations are done.

This evaluation method is suitable for more computing-intense and data

manipulation oriented tasks like for example online analysis, running means,

120 By means of factory patterns and late loading of components

121 http://ironpython.net/

Page 118 / 252

etc. of items whereas access to historic data is not of paramount importance122.

- Code	from	an	externally	loadable	code	module

This approach uses late binding to load an external module, which implements

the necessary interfaces, into the engine and then executes the code. This

approach is the fastest (in terms of execution time) and most flexible of all

approaches (as every necessary logic can be implemented). Due to the software

development lifecycle for such external code modules, it is the most involved

evaluation process as well compared to the simple and easy execution of a

scripting language like Python or JavaScript

Inside the value manager are two other important objects implemented:

1) The writing thread which writes outstanding changed data values back to the

data store. According to the design the thread communicates with the rest of

the world by using a FIFO-queue, yet due to the writing in chunks (as bulk

copies) a dictionary where a whole range of objects to the be written can be

taken easily has proven as a better option. In a dictionary of unsaved changes,

no order can be preserved which would mean that priority writes do not get

priority treatment, yet as all writes are done in one go this does not actually

matter. The thread is designed in a way that a write usually only happens every

x seconds, except when priority writes have to occur as the test then is changed.

Currently the minimum frequency where a write can happen is 500 msec which

can be changed by adjusting a constant.

2) The virtual value calculation thread which calculates all virtual values which

are defined as "calculated by virtual value thread". The thread can be started /

stopped from outside the ValueManager class by calling a method. The task is

developed in a way that every x msec (currently 250123) a check is made if there

122 Especially as every change back and forth from Python to the gateway engine involves quite a

lot of overhead

123 Usually 1000 msec is a good value for a sampling frequency in many not time critical

processes according to the author’s experience. If the check is made every ¼ of the that the

probability is very high that calculations are done timely so the next request is served with

proper values

Page 119 / 252

are any pending calculations. This check evaluates all relevant virtual values

and checks if any underlying value did change and in case yes a re-calculation is

performed. Currently this re-calculation is an iterative process which could

actually take quite a long time to finish so future enhancements would be: a) to

move the calculation to a real external thread as it cannot be assumed that the

caller called the method in a thread context b) to use the parallel task library

of .NET which allows the distribution of the calculation process on all available

CPUs of the target system. In case of parallelizing the computation, care must be

taken that values which are dependent on other values are computed in a

proper order - the base values first, then the dependents.

5.4.1.3 Write	values	back	to	actuators	

The central server service provides a thread which currently registers a callback

routine for each actuator inside the value management. As soon as the value changes

the value manager calls back the callback and then a thread is enqueued to write the

actual value, given that the last operation had no communication problem as otherwise

another write usually makes no sense.

This is a slight difference to the design where a FIFO queue is designed to enqueue

high-priority writes first and then low-priorities afterwards. According to some test

results the approach taken is quite suitable for smaller scale implementations and

much easier to manage as no FIFO has to be managed, no locks taken, and so on. The

thread is enqueued and simply starts.

In case more actuators are to be served, a better scalable approach using a FIFO queue

should be implemented (according to the design).

5.4.1.4 Perform	execution	of	cyclic	tasks	(CyclicTaskRunner)	

A cyclic task object (the CyclicTaskRunner) is provided which during startup loads all

tasks to execute from the configuration and then afterwards each task object is

instantiated.

In an endless loop with an appropriate124 sleep of currently 1000 msec (configurable)

at the start, the tasks are checked if they need execution (according to the design) and if

yes, they are started accordingly by calling their Execute() method and passing in the

124 As is a good default sample rate 1000 msec for not time-critical processes (according to the

author’s experience) the same is true for cyclic tasks. Usually there is no need that these sample

/ run faster than the sensor data is retrieved.

Page 120 / 252

current runtime environment, so that the task can access all sensor values, methods,

etc.

5.4.1.5 Management	of	watchdog	items	(WatchdogTask)	

The WatchdogTask object is implemented as described in the design and launched by

the central server service. It provides all components and objects with the methods to

register and de-register for watchdog checks as well as calling the appropriate methods

inside the registered objects.

5.4.1.6 MSMQ	and	CNDEP	handler	

The CentralServerService provides default implementations in dedicated threads for

handling inbound CNDEP and MSMQ messages.

Normally these message handling facilities would be hosted outside of the

CentralServerService (like the SOAP or REST handlers), yet as there is no framework to

run them directly exists125, the decision was made to include them in the core service.

The communication internally is done using .NET Remoting as well, with the exception

that the IP access is performed using a loopback adapter in memory. Therefore, both

handlers act very much the same as if they would be really "outside" of the core service.

5.4.2 Communication	with	the	outside	world	
This CentralServerService is – at least in the end - accessed by any user using the .NET

Remoting protocol, which is a very fast and efficient (typically binary) distributed

object message broker implementation. Even if some consumer uses SOAP or REST or

any other protocol, internally all messages are broken down (inside the specific

protocol handlers) to the .NET Remoting protocol.

All designated CentralServerService object properties and methods are exposed as

remotely accessible and any request made on behalf one of these exposed end-points

results in the corresponding message being transported from the client to the core as a

remote procedure call. As this implementation causes very little strain upon the

runtime environment as well as requires nearly no development effort, it was chosen as

a matter of choice for the internal communication. Another benefit of using this

technology is that is has been used in many customer projects of the author with

125 SOAP and REST are handled inside IIS. So in case MS-MQ and / or CNDEP should be hosted

externally a plug-in for IIS would be required or a dedicated hosting process.

Page 121 / 252

trillions of transactions and an extremely optimized memory, speed and runtime

environment footprint.

The only real alternative would have been to implement the server as a set of web-

services but this has a lot of problems associated as described in the design chapter.

The main reason being the stateful nature of the value management which requires

values and history to be present for efficient virtual value evaluation and callbacks.

There is a limiting factor in using .NET Remoting when it comes to fail-over systems

and clusters as there is no failover routing possible. Therefore, it is impossible to have

two (or more) systems to share load and increase availability out of the box. Custom

solutions to achieve this behavior can be developed (and have been done), mainly using

hot-standby technology where one server takes over the others operations as soon as

the first one fails, yet all these measures are not very easy and optimal to use. So it has

to be noted that using this implementation approach the user is limited to use the

device gateway on a single machine. As the .NET Remoting is capable of spreading out

communication threads on several physical CPUs this can be alleviated (at least in

terms of performance) as there usually is enough resources available to handle these

requests126. It is not unusual to see 100 threads in parallel actively handling client

requests at the same time, thus optimizing delays in responses from databases, external

resources, and so on.

As Microsoft no longer encourages people to use .NET Remoting (yet it will perhaps

never go away) in the long run alternatives will have to be investigated. Investigating

options in this thesis research showed again that the move to a stateless WCF-based

service-model will require excessive serialization / de-serialization of the entire value

management and centralized synchronization of the stored data among several

instances. In total this might be a more flexible approach when it comes to large-scale

scaling and fault-tolerance, but yet the added cost in terms of infrastructure,

deployment and especially administration outweighs the benefits substantially (at least

considering the environment where such device gateways usually are used).

When there really is a need to handle more than 1,000,000 sensors with 1,000 values

per sensor (which is easily doable on a modern PC), then in any case a total different

126 Which has been shown by the tests as well.

Page 122 / 252

environment exists, where different patterns have to be applied and a move to an

architecture like Azure IoT might be appropriate.

These numbers have been derived through experience in real projects by the author.

Usually in an industry automation project there are 100 to 400 devices (at the most)

with 1 to 3 or 4 sensors / device. To have 1,000 values of history per sensor would

normally mean a history of 100 minutes (as a sample is very often done only once every

10 seconds) which is normally enough for an online statistical investigation by

validation routines or workflows. If there is real demand for historic analysis than this

usually is either kept outside of the gateway as separate task (directly operating on the

database data), or the history is increased to for example 10,000 or 100,000 records.

This is mostly a question of loading time while starting the gateway as the data simply

has to be read from the database. The internal structures are capable of holding as

much data as needed.

In case an environment consists of 100,000 sensors or more this for sure is a

geographically wide-spread environment, which requires a totally different approach

to data sending and analysis. In addition, writing will not be required most likely as

these environments tend to be mostly read / submit data only and perfect examples for

the use of message based middleware like Xively or Azure IoT127.

5.5 GlobalDataContracts	

In this assembly all data structures used for communication between data providers /

consumers and the gateway are defined.

In case of SOAP, CNDEP and MSMQ these data structures are serialized to transport

them over the communication link and de-serialized on the receiver side to re-

constitute the objects involved. For serialization the standard .NET serializer for string

results is used128. In de-serialization the string form is transported back to the internal

binary object format.

Should REST be used then the content is transferred using JSON and serializing / de-

serializing is done to / from a JSON string.

127 Which does not imply that it could not be solved using the Device-Business-Gateway

Architecture (DBGA). Just the provided logistics from the mentioned architectures is much more

suited to such an approach.

128 There are others for XML, binary, etc.

Page 123 / 252

5.6 DeviceServer.Base	

The DeviceServer.Base is an application which can run on any device supported by

the .NET Micro Framework. It acts as a kind of generic framework where custom device

applications can be built on top.

The DeviceServer.Base application is fully working including communication between

the device and the gateway using HTTP REST and CNDEP as protocols129. Support is

added to act as data provider (sending sensor data to the gateway) as well as actuator

which can be sent to/from the gateway.

So in case in a real project someone needs a real device the DeviceServer.Base could be

taken and in designated places some logic added to have a fully functional piece of

device software.

In addition, there are specific implementations for Netduino boards and some other

vendors to provide support for their dedicated hardware.

5.7 DeviceSimulator	

The device simulator acts like a real device with REST-based communication. It can be

queried to retrieve new values (PULL), sends values on its own (if started accordingly -

PUSH) and acts as an actuator destination.

Therefore all typical operations associated with a device can be tested and easily

simulated which is much more efficient than to load a device image to a device (even

using fast USB) all the time.

5.8 GatewayServiceContract	

This assembly acts like a façade for the internal .NET Remoting protocol towards SOAP

and REST requests.

For SOAP which in WCF130 is easily configurable to accept binary- or http-based (or

both) requests, this means simply the implementation of the service contract where the

interface for the implementation is annotated as [ServiceContract] and each method

within with [OperationContract] with the corresponding message parameters to mark

an externally reachable message based API. Special care was taken to compose the

message parameters for the methods only with types which can be represented in

129 Support for MSMQ is not existent and SOAP is only partially implemented in .NET MF

130 Windows Communication Foundation

Page 124 / 252

other languages (like Java or PHP) as well. Usually this exchange is an area of great

distress in mixed environments as different tooling and development systems have

different assumptions about how the WS* call should be performed and how the

messaging is done. With the approach taken Java-tools can generate client stubs as well,

so that Java client can use the device gateway directly.

The actual integration into IIS as hosting environment for SOAP is done by registering

the service inside the IIS. Should IIS not be relevant a hosting inside a standalone SOAP-

Request-Container would be possible, yet performance might suffer as these are not as

optimized as IIS would be.For REST-handling the GatewayServiceContract assembly

provides handlers for http-requests which are analyzed according to the verb (GET /

PUT / POST) used and the parameters provided. Most parsing is left to the .NET

framework, but some intelligence remains and the major task is the re-packaging of

parameters for the device gateway core. Registration in IIS is simply done by creating a

service URL as base request handler and IIS passes all requests down to the registered

handler. This process is quite effective so high loads can be consumed as well.

Both variations (SOAP and REST) can be distributed in clustered environments as well

as IIS is fully capable of clustered operations with load-balancing, etc.). From the side of

any client using these communication interfaces no state is assumed and each

operation is considered atomic.

5.9 Reflection	on	experience	of	creating	reference	implementation			

Implementing the reference implementation using well known .NET technologies was

straightforward without any major obstacles or problems, mainly due to the well-

known behavior and interaction of the components. Considering an implementation in

Java (or any other platform) should be no major challenge, given that the platform

supports “active” components.

Integrating Python (as IronPython for the .NET framework) was a more complex task

as passing data back and forth in a dynamic language environment (which was quite

new at that time for .NET) posed some unexpected challenges. The same applied for the

Ruby-integration (which was later abandoned due to lack of support for the ported

runtime).

A very interesting area of the implementation was the integration of the F# runtime

environment as it provides a whole range of options. Due to the functional

programming nature of the environment (with all built-in benefits like the orientation

towards parallel processing enablement due to immutable objects, and so on) this

Page 125 / 252

could be a worthwhile area of research for more complex rules and data analysis. In

general, this advanced “on-the-fly” analysis of data streams would be an important

issue for later systems and versions. Especially with newer sensor types generating

more data – and even data streams in a rapid succession – this poses different

challenges than the current “point in time” analysis where a point is at the most

compared to previous measurements and perhaps some additional data.

One major finding, which will have to be incorporated into next versions of the

reference architecture, was that asynchronous operations have to be used to an even

greater extent than they are currently used. A typical example would be the calculation

of virtual sensor values as a result of an incoming data change. Currently it is a usable

option to do this calculation synchronous to the inbound event, which is only usable as

long as some threshold X is not exceeded. After that threshold X race conditions start to

arise (new inbound events for changes might overtake previous calculations and thus

data can be corrupted).

Stability, performance and extendibility had to be addressed by the reference

implementation as well as, they are of paramount importance in using an architecture

in a real environment / project.

Having undertaken the reference implementation, the next task was to evaluate the

stability of the implementation, for example maximum number of sensors the system

can handle, typical timings for accepting value changes, time needed to calculate virtual

sensor values, and so on. Such measures are crucial for any integration where these

factors have to be taken into consideration.

To address these questions in combination with a test of various

requirements/characteristics from section 3.5 , several evaluation experiments were

defined upon the reference implementation, and the results of these are detailed next

in chapter 6.

Page 126 / 252

6 Research	Experiments	

To establish basic performance characteristics of the reference implementation of the

proposed Device-Business-Gateway Architecture (DBGA), as well as to evaluate if the

requirements have been fulfilled, 10 experimental tests were undertaken with the

reference implementation described in chapter 5.

Section 6.1 describes the test equipment used; sections 6.2 to 6.11 describe the tests

performed; and sections 6.12 and 6.12 conclude with some overall observations.

For each test a description is presented under 5 headings:

1) The research question which was to be answered;

2) A description which explains how the test operates;

3) A definition as to which test parameters were used (and why);

4) A result section where the actual findings / measurements are detailed;

5) An analysis where the results are interpreted.

The overview in Table 6.1 shows which tests were conducted and which requirement is

tested with it. In addition, it is shown which area (implementation or design concepts)

is covered by the test.

Page 127 / 252

Table	6.1:	Experiment	overview	

Test # Short description Reason Requirement

covered

Area tested

(implementation

/ design)

1 Timing to push values into the core with
dynamic calculations

For the requirements “integrated data quality control” and
“preservation of sensor state” timing considerations are of
paramount importance to define usable limits of the
implementation and technologies used

R6, R15 Implementation

2 Timing to calculate virtual values in the
core using only internal data (available
measures)

As “semantic data value enrichment” is one of the core
features of DBGA it is important to understand limitations
and implications of different approaches

R7 Implementation

3 Concurrent access (READ / WRITE) by
several clients to check for concurrency,
race conditions and locking issues

A general usability test to guarantee real-world operations Implementation

4 Test with different data formats and
conversion vs. native storage / handling

This test is for the requirement “data format agnostic” R5 Design Concept

5 Core timing considerations when using
workflows (triggering, execution control
for long-running tasks)

This test is for the requirement “autonomous operation /
workflow operation”

R8 Implementation

6 Communication mode (REST, WCF, .NET
Remoting (Binary)) implications

This test is for the requirement “communication interface
agnostic”

R4 Implementation

7 ODATA access This is a combined test of the requirements: “centralized
data store”, “direct data retrieval from data store” and
“extendable and easy to change” as ODATA accesses the
data in the centralized data store directly, yet is an
extension to the core access patterns

R1, R2, R17 Implementation

8 Writing actuator values (by POSTing to
a URL as a receiver)

This test is for the requirement “actuator support” R9 Design Concept

Page 128 / 252

9 MS-MQ adapter to READ / WRITE data
with sample consumer / producer to
prove the extendibility

This test is for the requirements “extendable and easy to
change” as well as “provide feedback on data change”

R17, R11 Design Concept

10 MS-MQ adapter performance to evaluate
usage in business workflow
environments

This test is a by-product of the test #9 and useful as MS-MQ
is used in many environments as a simple to use message
queue system so performance considerations when using it
together with the DBGA are important

R17 Implementation

Page 129 / 252

	

6.1 Test	equipment	used	

Tests #1-4 were performed on a standalone Intel i7 system with 2.9 Ghz and 8 GB of

RAM and 256 GB SSD hard disk storage. In the “re-run” as well as for tests from #5

onwards a i7 8-core with 3.5 Ghz and 32 GB of RAM as well as 1 TB SSD was used

For test #6 a separate dedicated server with 2 Xeon 6-core-CPUs and 16 GB RAM as

well as 4 TB RAID 1 of storage was used.

Both systems used Windows 7, 64 Bit and .NET 4.6.1 as a basis. The server was running

Windows Server 2008 R2.

6.2 Test	#1:	Timing	to	push	values	into	the	core	with	dynamic	

calculations	

Research	question:	

Each time a value is pushed into the gateway from an external source (for example

sensor) some dynamic calculation (for example data filtering / data change) can take

place before the value is stored internally. This causes some delay in the response (if

called synchronously) as well as internal processing time.

The question is whether a given amount of x calculations / computations will cause

significant (observable) impact to the whole system. As a side-effect a limit (upper-

bound) for the number can be obtained.

Another important factor was which runtime environment for the computation

(compiled, interpreted, or even the SQL database) can yield which performance given

the amount of workload.

Description:		

To answer the question a sensor variable was set (pushed to the gateway) 10,000 times

and each time a calculation to perform a general scaling of the value (multiply by 4),

before storing it internally, was executed. It does not matter what the actual calculation

does, as long as it is always the same operation (to be able to better compare results)

and that each iteration takes the same amount of time (which should be given if the

same code is executed).

The calculation was implemented in C#, Python, SQL Server Stored Procedure and SQL

statement (dynamically executed).

Page 130 / 252

To allow for a swing-in and setup phase 200 iterations of the test were performed in a

loop producing individual timings for each run so that MEAN, MIN, MAX and MEDIAN

could be established (where MEAN and MEDIAN are usually roughly the same).

As the communication media can be quite important in the overall load and timing (see

section 6.7 for examples) the test was performed with the value engine directly without

any data protocol overhead.

Test	parameters:	

As the individual write is extremely fast 10,000 writes per cycle was chosen by testing

to produce measurable as well as stable results.

200 cycles were identified (by using different numbers as well) as a reasonable small

enough number to produce results fast (not too many unnecessary iterations) as well

as large enough to get the results with only minimal test setup influence (right now

around 3-4%).

Results:		

Table 6.2 shows the results for one cycle with 10,000 executions for each type. All

timings are given in µsec:

Page 131 / 252

Table	6.2:	Test	1	results	in	µsec	for	10,000	executions	

 MEAN MIN MAX MEDIAN
C# 34,997 33,745 49,298 34,449
Python 65,897 62,390 90,059 65,518
Stored Procedure 753,890 751,166 772,842 757,366
SQL dynamic 1,266,839 1,247,701 1,291,689 1,265,811

The actual data for the results as a distribution chart:

Figure	6.1:	Test	1	results	in	µsec	for	10,000	executions	

The results show that evaluating 10,000 dynamic computations – including all

overhead for retrieval, method resolution, dynamic dispatching, and so on – in C# cost

between 34 to 49 msec (thus roughly 3 to 5% of the total available CPU time).

A specialized version of the test with 1,000,000 iterations showed no difference in

linearity for C# but was omitted for the other environments.

Analysis:	

The results were as expected showing that compiled C# is clearly the fastest and SQL

dynamic execution the slowest operation. Yet the interesting point was that Python,

being purely interpreted at runtime, still is only 2 times slower than C# and thus

absolutely capable of being used for triggers as well.

To put it differently: if 10,000 sensor values are pushed into the core and each value is

evaluated, checked and some simple computation implemented in dynamic Python is

undertaken (like the sample calculation or a simple band-pass filter), then the total

execution time is 90 msec as the worst case. The usage of a stored procedure could be

Page 132 / 252

acceptable, depending on the overall load of the system, but has to be evaluated in a

concrete case.

Given that the system utilization for C# is between 3 and 5% and for Python between 6

and 9%, this implies a theoretical upper limit of roughly 10 times the amount of

calculations in Python and 20 times in C# resulting in theoretically 100,000 value

settings and calculations / s in Python and 200,000 in C#.

Considering an environment with 200 sensors (which already is quite big) and each

sensor fires once every 10 msec (therefore 100 times / s, which is very fast as well), the

total data changes would be 20,000 and thus well within the boundaries of the system.

With dynamic calculations being a parallelizable algorithm, a future version of the

implementation should utilize multi-core CPU environments specifically. In addition, by

means of independent calculation tasks, the current synchronous operation could be

split, thus making the system more responsive and able to handle even higher data

loads.

6.3 Test	#2:	Timing	to	calculate	virtual	values	in	the	core	using	only	

internal	data	(available	measures)	

Research	question:	

As a core feature of the Device-Business-Gateway Architecture (DBGA) is the

enrichment of data by means of virtual sensor data, it is important to know how much

time is consumed in such calculations and therefore what would be the upper limit of

requests which can be handled in a given time X.

To make sure that no external factors (like network latency for example) interfere with

the result, only internal data was taken as a data basis for the calculation.

Description:		

The virtual value calculation was evaluated with an implementation in C# and Python

(SQL Stored Procedure would be future work).

In the calculation all defined historic values (buffer size was 10 values) were added up

dynamically and the result (as a SUM() function) was delivered. Given this, the

operations were the same for each iteration and each execution was the same length as

the previous one.

Page 133 / 252

The test involved not only the calculation (and value conversions from internal to

numeric representation to perform the summing) but the access to internal value

structures as well (with all boundary checks, and so on.).

As the communication media can be quite important in the overall load and timing (see

section 6.7 for examples) the test was performed with the value engine directly without

any data protocol overhead.

To allow for a swing-in and setup phase, 200 iterations of the test were performed with

10,000 iterations of the evaluation, in a loop producing individual timings for each run

so that MEAN, MIN, MAX and MEDIAN could be established.

Test	parameters:	

The same test parameter criteria applied as in test #1 (section 6.2).

Results:		

Page 134 / 252

Table 6.3 shows the results for 10,000 executions for each type. All timings are given in

µsec:

Table	6.3:	Test	2	results	in	µsec	for	10,000	executions	

 MEAN MIN MAX MEDIAN
C# 99,276 97,464 131,640 98,846
Python 219,655 213,768 248,721 218,722

	

The actual data for the results as a distribution chart:

Figure	6.2:	Test	2	results	in	µsec	for	10,000	executions	

Again, C# is roughly 2 times faster than Python, but still Python is fast enough to deliver

10,000 values in 220 msec.

Analysis:	

Given the results, it is obvious that evaluating virtual sensors is a time-consuming task

which should not be underestimated in terms of impact on the whole gateway. As the

execution currently is synchronous on behalf of the request (with parallel requests

executing the virtual sensors in parallel as well) the response time for a request can be

delayed if load increases.

Yet if 100 virtual sensors would be queried every 100 msec (which already would be an

extremely high value as a refresh rate of 100 msec is rarely used) only 1,000 requests

would be made, occupying the system around 1-2% (depending on the

implementation).

Page 135 / 252

As long as the implementation of the virtual value uses only internal data, timings will

always be in a linear range as everything is loaded in the cache and thus no delays for

out of bounds access, etc. has to be considered. In such a scenario, the main issue would

be the conversion routines as they usually consume quite a lot of CPU cycles. As virtual

value requests could cascade if the virtual value depends on other virtual values, the

whole execution path could become rather complex.

In case external data (by means of for example web service calls) is accessed to

evaluate the virtual value, timings can no longer be predicted.

Due to the fact that requests for virtual values are usually initiated from a request from

a client and requests from all clients are handled as individual parallel units of work

(by means of the communication handler, for example ASP.NET) the mutual influence

would be lessened.

6.4 Test	#3:	Concurrent	access	(READ	/	WRITE)	by	several	clients	to	

check	for	concurrency,	race	conditions	and	locking	issues	

Research	question:	

Mixed read and write data access by several clients to the same data item usually

produces issues in several areas. Therefore, it is of paramount importance for the DBGA

to gain insight into concurrency, locking and race conditions when parallel access to the

same data cells is performed.

To bring the test more to a real-life scenario writing a new value shall involve

triggering a calculation as well, so that threading issues show up better.

Description:		

For this test 5 reading and 5 writing threads concurrently accessed sensor values with

each thread performing 500 write and read operations per iteration – yielding 10

parallel requests in the gateway at any point of time. The total load therefore was 2,500

read and 2,500 write operations per iteration over all threads.

The writing thread had a trigger on its value (again a simple multiply by 3) and the read

thread was directly accessing the values as such. The trigger was implemented in C#,

Python, SQL Stored Procedure and dynamic SQL.

To allow for a swing-in and setup phase 100 iterations of the test were performed in a

loop.

Page 136 / 252

Test	parameters:	

As 10 parallel requests at any given moment relate to 10 concurrent sustained data

consumers / producers at all times, this was considered a realistic real-time

environment as very seldom more than 10 parallel operations should take place at the

very same moment131.

By using 500 operations for each thread in one iteration the total time used is large

enough to be measurable and small enough to be quickly available.

Results:		

131 The test was run with 200 parallel operations for C# alone (so 20 times the amount of

concurrency) and the execution time just 2,5 times longer giving a good scaling for the parallel

access

Page 137 / 252

Table 6.4 shows the results for one iteration (having 5 executed in parallel) using 500

operations per iteration. All timings are given in µsec:

Table	6.4:	Test	3	results	in	µsec	for	5	parallel	read	and	5	parallel	write	executions	(500	times	each)	

 MEAN MIN MAX MEDIAN
C# read 808 133 31,572 301
C# write 2,831 427 38,039 1,068
Python read 880 134 31,141 300
Python write 10,854 1,087 65,935 6,975
SQL dynamic read 2,364 456 45,786 1,026
SQL stored procedure read 1,874 438 40,846 970
SQL dynamic write 1,307,811 998,488 1,644,265 1,299,924
SQL stored procedure write 1,204,606 876,726 1,538,354 1,245,710

The actual data for the results as a distribution chart for reading operations:

Figure	6.3:	Test	3	results	in	µsec	for	5	parallel	read	and	5	parallel	write	executions	(500	times	
each)	–	reading	operations	

Page 138 / 252

The actual data for the results as a distribution chart for writing operations:

Figure	6.4:	Test	3	results	in	µsec	for	5	parallel	read	and	5	parallel	write	executions	(500	times	
each)	–	writing	operations	

Each “read” indicates the reading of the value of a sensor, each “write” is the setting of

the value inclusive of the trigger execution in the corresponding environment.

Analysis:	

Again, C# is performing the fastest, yet interestingly this time the performance against

Python is not 2 times, but 4-6 times better, which might be mainly attributed to faster

thread switching and synchronization issues. SQL performance is in line with previous

tests and no anomalies are showing up.

In general, it can be concluded that parallel access from several execution threads with

intermixed read and write works fine and is very stable. For larger scenarios SQL

should not be used as an environment where triggers are implemented as the total

execution time might simply be affected too much.

It is interesting to compare the C# results with the results of test #1 (section 6.2). In

test #1 the MEAN for 10,000 write operations (using triggers) is 34,997 µsec which

relates nicely to the MEAN timing for 10,000 write operations (20 * 2,872 = 57,440

µsec). In the current test the read operations are “on top” as well as the thread access

synchronization. In a mixed 10,000 operations this test would produce 10 * 2,872 µsec

for write and 10 * 807 µsec for read which yields 36,790 µsec, making it similar within

10% to test #1.

Page 139 / 252

In a separate test (not included in the thesis) it might be worth investigating if a

separation of the SQL Server engine to another system (and therefore removing of load

from the system) produces better performance for the SQL use cases. This is especially

interesting as triggers very often are based on historic data which might be still in the

database or alternative data sources and therefore the closeness of the trigger

evaluation to the data source could be enhancing the overall performance.

6.5 Test	#4:	Test	with	different	data	formats	and	conversion	vs.	native	

storage	/	handling	

Research	question:	

As the proposed device gateway stores all values internally in a character

representation in the database (data format agnostic - without any interpretation of the

value as such) it was important to see if that causes any performance penalty.

Description:		

To research the question a test was constructed which was implemented similarly in

native T-SQL (MS SQL), C# and Iron Python (both using the SQL Server connection).

The test was divided in two parts:

The first part ran as a loop for 5,000 iterations and in each loop an operation was

performed 1,000 times. In the operation a simple INSERT statements with dynamic

(Dynamic…) and static value conversions (Fixed…) was executed, comparing the

conversion from the internal format to a string and storing the internal format in a

fitting native SQL type like BIGINT, INT, etc.

In the second part of the test a more “typical” operation was simulated – reading

integer and decimal values from a table, adding something and writing them back (as

INSERT, not UPDATE). The internal values were converted in the data receiver from the

string format (DynamicTransform…) into the native data types or used the “correct”

native SQL server types (FixedTransform...) to retrieve data. As a special case the raw

SQL performance to perform these INSERT operations using pure SQL was measured as

well.

The second part was iterated 5,000 times as well and each sub-part read and wrote

1,000 values to generate more load and not use the cache all the time.

Test	parameters:	

Page 140 / 252

5,000 iterations were chosen to yield a stable measurement as with smaller numbers

the test setup was too noticeable. With 1,000 operations per iteration the tests

produced sufficiently usable data without too much setup influence.

Results:		

Table 6.5 shows the average timing for 1,000 conversion operations in µsec either

using a dynamic conversion (string -> native data type) or a fixed conversion (reading

directly from a column with the same data type).

Table	6.5:	Data	format	conversion	performance	of	SQL,	Python	and	C#	using	native	and	agnostic	
data	formats	(in	µsec)	

Sub‐Test		 SQL	 Iron	Python	 C#	

DynamicBigInt	 58.84 127.64 122.54

DynamicBit	 58.74 127.68 122.66

DynamicFloat	 59.72 128.5 124.22

DynamicInt	 58.26 127.72 122.6

DynamicNumeric	 60.28 129.88 124.7

FixedBigInt	 58.14 120.92 116.86

FixedBit	 58.2 120.5 116.54

FixedFloat	 58.66 121.1 116.74

FixedInt	 58.66 120.94 120.52

FixedNumeric	 58.88 121.46 117.64

FixedString	 67.46 129.08 125.34

	

Table 6.6 shows the average timing for 1,000 conversion operations in µsec either

using a dynamic conversion (string -> native data type -> string) or a fixed conversion

(reading / writing directly from / to a column with the same data type).

Table	6.6:	Data	format	conversion	performance	of	SQL,	Python	and	C#	using	native	and	agnostic	
data	formats	(in	µsec)	

Sub‐Test	 SQL	 Iron	Python	 C#	

DynamicTransformInt	 63.22 138.86 128.48

DynamicTransformNumeric	 64.79 142.97 131.19

FixedTransformInt	 63.17 133.65 122.80

FixedTransformNumeric	 64.36 135.91 124.11

SelectBasedFixedTransformInt	 3.22 3.34 2.80

SelectBasedFixedTransformNumeric	 3.17 3.50 3.00

	

In the Fixed variants the value was read directly into a variable of the same native type

(an SQL-INT into a 32-bit int and a NUMERIC into a decimal object), whereas for the

Page 141 / 252

Dynamic variants the data was read in a string version, converted to the target format,

then processed and for the writing converted back to a string-version. Thus the

Dynamic variants involve 2 convert operations (one for retrieving, one for writing).

The SelectBased… variants timing is for a comparison with native SQL performance.

Analysis:

As can be seen differences among the different data formats and the conversion (the

Dynamic variants) are not really existing which proves that storing the data in a non-

native format is of no concern. This applies for reading as well as writing.

Another general result this test provided is the closeness in terms of performance

between C# and IronPython. Technically both are interpreted languages, yet the

primary intutition would have been that C# would be much faster than Iron Python. Yet

as the results show there is just some 10% speed increase which means in terms of

data processing both approaches should be approximately similar. Given this

observation, it can be considered that Iron Python could be a first class implementation

environment for triggers and filters, since these have to operate as fast as possible.

Due to the fact that the SQL engine can keep all data internally (and not transport over

an external protocol), the pure SQL operations are generally far superior, which clearly

indicates that for heavy duty operations pure SQL should always be favored (for

example large scale calculations, etc.).

This insight is highly valuable as all operations which require mass data handling will

therefore be optimized towards SET-operations wherever possible in the gateway.

Size-wise the string-representation takes up more space in terms of hard-disk usage, of

course. Yet this is not very much more, as a float would anyhow require 6 bytes

internally and the average string representation might be done in 10 - 14 bytes. Given

the current disk capacities and the cost of storage this point can be ignored in the

further discussion except if trillions of data items are to be stored.

6.6 Test	#5:	Core	timing	considerations	when	using	workflows	

(triggering,	execution	control	for	long‐running	tasks)	

Research	question:	

Due to the importance of workflows for the DBGA, the performance evaluation of these

in virtual sensor evaluation and trigger execution compared to other options is

necessary.

Page 142 / 252

Description:		

The test cases in section 6.2, 6.3 and 6.4 were extended with a workflow running as a

code activity (which is a code only Windows Workflow item performing some

operation). This code activity is used for a trigger (one for general checking, one as a

trigger after the value changed), for a virtual value calculation and for the read / write

parallel operations.

The code activity performs exactly the same operation as its C# or Python counterpart.

Test	parameters:	

The same test parameters as in section 6.2, 6.3 and 6.4 were applied.

Results:		

The three different test case adaptions can be seen in the following results:

- Table 6.7 shows the workflow acting as a trigger for the general check (data

quality)

	

- Table 6.8 shows the workflow performing a virtual value computation

	

- Table 6.9 shows the adapted parallel read / write scenario of section 6.4

The lines for the other results are simply presented as a comparison to the workflow’s

performance.

Page 143 / 252

Trigger implementation

Table	6.7:	Workflow	as	trigger	for	checking	and	after	change	(in	µsec)	

 MEAN MIN MAX MEDIAN
C# 34,997 33,745 49,298 34,449
Python 65,897 62,390 90,059 65,518
Stored Procedure 753,890 751,166 772,842 757,366
SQL dynamic 1,266,839 1,247,701 1,291,689 1,265,811
Workflow Check Trig. 84,945 82,941 123,568 84,506
	

Virtual Value Calculation

Table	6.8:	Workflow	as	virtual	value	calculation	(in	µsec)	

 MEAN MIN MAX MEDIAN
C# 99,276 97,464 131,640 98,846
Python 219,655 213,768 248,721 218,722
Workflow 211,356 208,800 262,825 211,012
	

Read / Write parallel operation

Table	6.9:	Workflow	in	a	parallel	read	/	write	scenario	(in	µsec)	

 MEAN MIN MAX MEDIAN
C# read 807 133 31,572 301
C# write 2,872 427 38,039 1,071
Python read 880 134 31,141 300
Python write 10,924 1,087 65,935 6,978
SQL dynamic read 2,358 456 45,786 1,026
SQL stored procedure
read

1,872 438 40,846 972

SQL dynamic write 1,307,599 998,488 1,644,265 1,298,785
SQL
Stored Proc Write

1,238,865 876,726 1,538,354 1,243,732

Workflow Read 1001 404 14,349 421
Workflow Write 11,322 2,312 33,121 7,121
	

Analysis:	

The workflow implementation is – as expected – slightly less performant than Python

and C#, yet still very competitive. Especially as workflows as triggers and virtual value

evaluations involve a lot of overhead, with loading the agent definition, initializing the

environment, and so on.

Due to their abstract and declarative nature (they can be visually constructed in the

Windows Workflows environment using Visual Studio) and their extended capabilities

being available for use in real-world environments is a big benefit. This test proves that

they are perfectly usable and capable to fulfil the needed functionality when

considering the timing and load issues involved.

Page 144 / 252

Further tests (outside the scope of this thesis) have to show if a separation of these

agents to a different system (activation can be done remotely as well, even via web-

service activation calls) would cause a significant timing difference. This is anticipated

as the switching of the environments causes quite some load issues on the system

which would be eased.

6.7 Test	#6:	Communication	mode	(REST,	WCF	using	SOAP,	.NET	

Remoting	(Binary))	implications	

Research	question:	

As the DBGA is supposed to be communication interface agnostic it is important to

know which execution parameters that the communication interface has. As the main

protocols are REST, SOAP and .NET Remoting (as a binary protocol) these have to be

investigated accordingly.

Description:		

The same test was run 3 times – each with a different protocol: REST, SOAP and .NET

Remoting (binary). In each run the test process was launched 20 times in parallel and

10 values were retrieved for 50 times in 1, 5 and 10 threads in parallel. This resulted in

20, 100 and 200 requests in parallel (20 processes with 10 threads each making a

request) and a total of 10,000 requests (50 requests for 200 threads) simulating a very

large number of users as these values in such a short time would be quite unusual for a

normal installation.

To allow for a swing-in and setup phase of the system, which was especially important

for the larger thread counts, the first 1, 4 or 6 rows of result data (thus accounting for 1,

5 and 10 parallel threads) were removed from the measurements as these are clearly

exceptional results due to setup phase.

The values retrieved had no calculated data and were served directly from the internal

cache so no additional computational time was used which is a typical use case as well.

Very often data will be coming from “current” values and as this test is supposed to test

for the communication protocol there is no need for further elaboration of this part.

Test	parameters:	

Page 145 / 252

The thread-count per process was not increased beyond 10 as then inter-thread

problems started to show up132, which have nothing to do with the device gateway, but

more how the communication channels are used and dispatched by Windows per

process. In addition, 10 threads retrieving values in parallel from one process is rather

uncommon in real-world scenarios, where mostly 1-3 or 4 reading threads would be

used to scan for data changes (and even then only every 5 seconds or less as this would

be busy polling otherwise).

To use 20 processes simulates parallel users as then each process could be associated

with a user. To use more processes is counter-productive as Windows starts to use

more and more time for process dispatching and less for actual processing. Should a

larger user number be relevant, then the test must be performed using different

systems for clients and server.

Results:		

To provide realistic timings the values were averaged over all 20 processes and given

in µsec for a single iteration (50 requests).

Table 6.10 shows the results for 1, 5 and 10 threads in parallel for .NET Remoting,

SOAP and REST as protocols used.

Table	6.10:	1,	5	and	10	threads	in	parallel	retrieving	data	using	.NET	Remoting,	SOAP	and	REST	as	
protocol	(in	µsec)	

 MEAN MIN MAX MEDIAN
REM 1 4,234 345 23,976 2,255
REM 5 26,471 418 171,551 14,801
REM 10 38,714 372 528,262 24,602
SOAP 1 171,723 6,302 381,295 161,919
SOAP 5 122,604 4,971 500,971 98,328
SOAP 10 100,174 7,387 511,261 81,452
REST 1 9,656 5,061 20,385 8,679
REST 5 79,747 11,914 362,287 64,149
REST 10 110,232 13,199 431,001 102,012

132 Especially SOAP had problems with more than 20 threads and stalling issues

Page 146 / 252

2 machine execution:

Table	6.11:	1,	5	and	10	threads	in	parallel	retrieving	data	using	.NET	Remoting,	SOAP	and	REST	as	
protocol	between	2	machines	(in	µsec)	

 MEAN MIN MAX MEDIAN
REM 1 7,301 360 31,969 4,792
REM 5 39,200 422 211,076 24,283
REM 10 40,688 355 301,696 20,142
SOAP 1 40,263 6,558 174,920 35,324
SOAP 5 123,131 13,046 1,455,249 63,078
SOAP 10 207,221 8,573 3,209,347 131,205
REST 1 23,383 2,761 113,708 21,724
REST 5 89,595 12,165 428,354 72,338
REST 10 60,107 3,658 234,039 56,003

The actual data for Remoting as a distribution chart:

Figure	6.5:	1,	5	and	10	threads	in	parallel	retrieving	data	using	.NET	Remoting	as	protocol	(in	µsec)	

The actual data for SOAP as a distribution chart:

Page 147 / 252

Figure	6.6:	1,	5	and	10	threads	in	parallel	retrieving	data	using	SOAP	as	protocol	(in	µsec)	

The actual data for REST as a distribution chart:

Figure	6.7:	1,	5	and	10	threads	in	parallel	retrieving	data	using	REST	as	protocol	(in	µsec)	

It should be noted, that in the reference implementation the protocol handlers are a

façade to the core, internally .NET Remoting as a protocol between for example the

REST handler and the core is used. Therefore, the REST-timing includes the .NET

Remoting timing for the request as well (including parameter conversion, etc.). WCF

has some setup advances over REST as resources are reused which minimizes setup

time as (compared to REST where the setup has to be done every time).

Analysis:	

Page 148 / 252

As setup costs for communication links are quite high, they have to be considered for

single requests as these setup costs will contribute quite a lot to the total request time.

To give an example in the single threaded REST request the 1st request iteration (which

was eliminated from the above result as a pure setup exception) takes 1,090,410 µsec

(so more than 1 sec) whereas subsequent ones have an average of 7,301 µsec. This is

mainly due to establishing the IP link, opening ports, HTTP setup, and so on. This shows

clearly that for efficient operation the client should try to maintain connections open /

connected as long as possible. In case the route, and so on, has to be established for

each new request, the global overhead will be considerable.

The results show clearly that the system performs quite nicely when for example 50

value requests using REST are served in a medium load environment (5 threads in

parallel on 20 processes = 100 requests in parallel) in 79 msec as average.

Another – quite surprising – result was that REST is doing so well in comparison to the

binary protocol used by .NET Remoting by being just three to five times slower. This is

even without considering caching, which might be an option for often queried values

that do not change often. Therefore, REST can be considered a real promising, fast and

good integration solution. Another observation was that the overall system load using

REST was at roughly 55% CPU utilization whereas SOAP drove the system to 100% and

stalling.

SOAP being the most verbose of all tested options (with request / response packet sizes

being 430 bytes vs. 125 bytes for REST) clearly used the most time and system

resources. When running the tests on a single machine, the system was stalled.

In future stages (not part of this thesis) it has to be evaluated if the time consumption is

mainly driven by the protocol handling (parsing) or the WCF method resolution /

routing engine (which uses a lot of reflection for parameter passing, etc.).

Considering these results SOAP is a viable option for integration, yet it is much slower

than for example REST and therefore the data transmission rates or request rates have

to be adjusted accordingly. Especially for small single data requests (for example the

latest sensor value) the time needed is far higher than REST (nearly 18 times slower).

Interestingly when running the test in a dedicated server environment timing change

considerably with .NET Remoting becoming 4 times slower and SOAP becoming 3-6

times faster, drawing almost equal with REST in most cases. The decrease for .NET

Remoting was expected as the link shifts from a loopback TCP/IP to a “real” network

Page 149 / 252

link, yet for SOAP in general and REST for the higher bandwidth scenarios, this was

quite a surprise. It all points in the same direction, that setup costs are a considerable

factor in the whole equation and between two machines load issues (concurrency,

memory, etc.) faced by SOAP in a single environment, is alleviated. Therefore, SOAP and

REST could be used interchangeably.

Another experiment for a later stage (not part of this thesis) could investigate if in a

self-hosted environment (thus not using WCF for example for REST) execution time is

faster due to for example simpler routing mechanisms.

Stalling and overload issues have to be considered in a real environment as timings

have a wide spread between MEAN and MAX (up to 6 times) which makes execution

timing quite unpredictable. In particular the MAX values can be unusual high due to

communication setup and resource buildup reasons, yet with a real server (which

would give priority to background processes like for instance the IIS in the DBGA case)

this should not happen in a production environment.

6.8 Test	7:	ODATA	access	

Research	question:	

ODATA133 is an important protocol used by most business users who want to access

and consume sensor data from applications like for example Excel. As it is mostly used

to only consume (despite its capability to update and delete as well, which is not

supported by the reference implementation), the important question was which limits

are imposed and how does the architecture scale.

Description:		

The ODATA service of the reference implementation is implemented as a WCF-service

and derives from an EntityFramwork (EF)134 data service, which makes the

implementation straightforward (around 20 lines of code + 3 configuration files are

133 Open Data Protocol (OData) is a data access protocol to provide standard CRUD access to a

data source via a website. It is similar to JDBC and ODBC although OData is not limited to SQL

databases (http://en.wikipedia.org/wiki/Odata)

134 An open source object-relational mapping (ORM) framework for ADO.NET, part of .NET

Framework to simplify SQL Server and other relational database access with designers, tools

and runtime support

Page 150 / 252

needed). The service provides the ability to any ODATA client to retrieve devices,

sensors for devices and values for sensors.

Excel is accessing ODATA through the PowerPivot add-in which retrieves the data

items and then stores them internally in Excel format – thus providing a disconnected

facility – which is not interesting in terms of load measurement as the data is retrieved

only once. Therefore, an ODATA test client has been written which by means of LINQ

and ODATA accesses the ODATA sensor data feed and retrieves a configurable amount

of data items in configurable steps.

Test	parameters:	

As test data 1,000,000 sensor data records were generated by a SQL script, so each

query addresses the complete data set.

This data was queried from a remote client (as local client access will not happen in

reality very often). In the first scenario a small amount of data (retrieving 100 – 9,900

sensor records with a step width of 100) and in the second a large amount of data

(retrieving 5,000 – 195,000 sensor records with a step width of 5,000) was queried.

Having different retrieval rates is a useful comparison as a typical client will request

smaller packets in a more frequent approach, while data mining applications will be

interested in larger scale requests for more data. As 200,000 seemed enough sensor

data for a normal consumer the tests were limited there.

Results:		

Figure 6.8 and Figure 6.9 is for retrieving 100 – 9,900 records (step width 100) on

different machines for client and server.

Page 151 / 252

In Figure 6.8 the request processing time for the server is shown in msec

Figure	6.8:	ODATA	server	processing	time	in	msec	for	100	‐	9,900	records	

In Figure 6.9 the total request time for the client is shown in msec

Figure	6.9:	ODATA	client	request	time	in	msec	for	100	‐	9,900	records	

Figure 6.10 and Figure 6.11 is for retrieving 5,000 – 195,000 records (step width 5,000)

on different machines for client and server.

Page 152 / 252

In Figure 6.10 the request processing time for the server is shown in msec

Figure	6.10:	ODATA	server	processing	time	in	msec	for	5,000‐	195,000	records	

In Figure 6.11 the total request time for the client is shown in msec

Figure	6.11:	ODATA	client	request	time	in	msec	for	5,000‐	195,000	records	

Analysis:	

Page 153 / 252

The server processing timing shows an almost linear (+/- 20%) distribution of

processing time mainly due to the fact that the data, after the initial swing-in-phase was

dealt directly from the cache. In addition, regardless of the requested records the

timing is approximately identical with only slightly higher values for the larger data

sizes.

As all the data has to be converted on the server into XML (not measured in the server

processing time) and sent back to the client where it is parsed to the internal format

this contributes to the client timing. As can be seen the client timing is an almost linear

function which is only dependent upon the size of data items – thus directly related to

the size of the XML data packet.

Up to 8,000 records the total time is still under 1s which usually would be acceptable

by users, according to the experience of the author.

While performing the tests it showed that the ODATA client had a problem around

510,000 records, because the XML serializer ran out of memory, which resulted in a

reduction of the maximum record request size to 250,000. This has to be considered in

real-life scenarios when server to server communication might be used as then higher

record sized could occur. Yet ODATA as a protocol for such large data requests does not

really seem to be appropriate and different retrieval mechanisms should be utilized.

6.9 Test	#8:	Writing	actuator	values	

Research	question:	

Writing data to an actuator is a functionality which, especially if done synchronously to

the request, needs very precise timings to be able to estimate how many requests can

be handled by the architecture and how these will be distributed time-wise.

As usually one data item is written at one time, this is the most important timing.

However, to have values for several writes in one point of time, gives insight how the

value will increase based on the amount.

Description:		

As the network connection speed can be very much dependent on the environment

used this was not considered in the test so only a local installation was used. The

issuing process, the reference implementation and a sensor process (acting as a

receiver of the write) were on the same local system, connected by TCP/IP, thus testing

the core internal performance of the gateway implementation.

Page 154 / 252

Test	parameters:	

To check for different execution times, the test was performed using 10,000 requests

with 1 sensor value per write request and as alternative with 500 requests and 20

sensor values per write request, thus the same total amount of data.

In total, using the 10,000 writes, execution timing was stable enough to exclude setup

issues.

Results:		

Figure 6.12 shows the total duration distribution in µsec of 10,000 requests with

always 1 sensor value per write request.

In Figure 6.13 the same information can be found, just for 500 requests with 20 sensor

values per write request. The big difference is that for the 20 sensor writes just one

request from the client to the server is made, yet from the server to the device 20

updates have to be done.

Figure	6.12:	total	time	in	µsec	for	writing	1	sensor	value	to	an	actuator	

Page 155 / 252

Figure	6.13:	total	time	in	µsec	for	writing	20	sensor	values	to	an	actuator	

Analysis:	

Initially the tests were undertaken using UDP as well, but it was discovered that UDP

can only be used for approx. 7-8 sensor data items / request as otherwise the packet

size (in JSON-format) exceeds 1500 bytes, which is the default MTU135 of the network

card. Any traffic larger than this value cannot be transported in one packet and the

overhead to implement multi-packet UDP requests was as well too high, as against the

idea of having “simple” packets without delivery guarantee as well.

Yet if the non-guaranteed nature of UDP can be accepted, and the request size does not

exceed the MTU, then UDP might be a real option for remote scenarios. In the same test

as above performed using two machines (client + actuator on one, server on the other)

the average timing for TCP with 1 sensor value / request was 253,656 µsec compared

to 87,722 µsec for UDP, but this could vary widely based on the network infrastructure,

routers, etc.

One more issue which has to be researched in a later stage (not part of this thesis)

would be how a connection caching in the service could enhance these timings.

Currently whenever a new write request is issued the server will acquire a connection,

pass the value and close the connection again (as otherwise the connections might run

out), yet this connection could be maintained if several writes are supposed to occur to

the same destination.

135 MTU = Maximum Transmission Unit

Page 156 / 252

6.10 Test	#9:	MS‐MQ	adapter	to	READ	/	WRITE	data	with	sample	

consumer	/	producer	to	prove	the	extendibility	

Research	question:	

Extendibility is a major feature of the DBGA so it is important to know how easily and

straightforwardly such an extension could be done. As messaging architectures are

used by other gateway systems as well, having an MS-MQ adapter as a special extension

providing a message queuing implementation to the available communication protocols

is of special interest, too.

From the several available message queuing options like MS-MQ (which comes with the

Windows operating system), BizTalk (an independent product from Microsoft), IBM’s

MQ Series, Rabbit MQ136 and various others, MS-MQ was chosen as it is free of charge

and directly integrated in Windows.

Description:		

In the test, a client writes sensor values to an actuator via the gateway using MS-MQ for

all communications between client, server and actuator. The data to send to the

actuator is placed as a XML- message in the server’s in-queue where the server

retrieves the message, processes it and a response is written to the server’s out-queue,

where it is read again by the client (so a kind of synchronous operation takes place with

send – process – acknowledge).

The actuator is informed by placing a XML-message into the server’s actuator out-

queue where it can be read by any client.

For the test, the server was extended using a MS-MQ handling facility (plug-in) and the

actuator notification was extended with another communication handler to use MS-MQ

(aside HTTP REST). The queue names used are configurable and thus a scaling out to

any infrastructure is simply a matter of configuration. This allows for additional

processing by means of 3rd party tools which intercept messages, filter or adjust them,

as well.

Results:		

The time to implement and test the adapter was 16h in total. This includes unit testing

and performing test #10, which tests the actual implementation performance of the

136 An open source message queuing solution https://www.rabbitmq.com/

Page 157 / 252

new adapter (see section 6.11 for details) and therefore provides vital data for the

implementation’s success.

Analysis:	

As the research question is how easy and straightforward such a new adapter, to

extend the DBGA, can be built no additional parameters were needed.

A general result of the test is that the gateway system can be easily extended. The test

implementation – including all tests and test #10 - took around 16h to complete, which

is very acceptable for a new protocol in such an environment.

6.11 Test	#10:	MS‐MQ	adapter	performance	to	evaluate	usage	in	business	

workflow	environments		

Research	question:	

As the new MS-MQ adapter, which was introduced in section 6.10, has to have a

thorough evaluation with regards to performance and stability, to not compromise the

entire DBGA, it was mandatory to know how these factors perform and scale under

load.

Description:		

In the test, a client writes sensor values to an actuator via the gateway using MS-MQ for

all communications between client, server and actuator. The data to send to the

actuator is placed as a XML- message in the server’s in-queue where the server

retrieves the message, processes it and a response is written to the server’s out-queue,

where it is read again by the client (so a kind of synchronous operation takes place with

send – process – acknowledge).

The actuator is informed by placing a XML-message into the server’s actuator out-

queue where it can be read by any client.

For the test, the server was extended using a MS-MQ handling facility (plug-in) and the

actuator notification was extended with another communication handler to use MS-MQ

(aside HTTP REST). The queue names used are configurable and thus a scaling out to

any infrastructure is simply a matter of configuration. This allows for additional

processing by means of 3rd party tools which intercept messages, filter or adjust them,

as well.

Test	parameters:	

Page 158 / 252

To allow for enough data to remove any test setup influence 1,000 requests were

performed for each test.

To remain as close to a realistic environment data producer and consumer were on one

machine and the device gateway server on another.

Results:		

To test the implementation several performance tests were undertaken. In Figure 6.14

the total time from posting the XML packet into the in-queue of the server until the

response is returned to the client using the out-queue of the server is measured in

msec.

Figure	6.14:	time	in	msec	for	sending	a	request	including	receiving	response	using	MS‐MQ	from	
client	to	server	

Figure 6.15 shows the time spent in the server (in msec) for processing inbound

requests, forwarding another message to the actuator’s out queue (which has to read

the request) and passing back a message to the client. So here the initial client

transmission of the originating data package is omitted and only the server processing

time considered.

Page 159 / 252

Figure	6.15:	time	in	msec	for	receiving	a	request,	processing	and	posting	an	actuator	request	and	
response	packet	using	MS‐MQ	on	the	server	

Analysis:	

The usage of MS-MQ is quite straightforward and can be utilized for the gateway

without problems. Special care must be taken (in a later state, not as part of this thesis)

to not “overrun” an actuator with messages in case the actuator does not retrieve them

from its queue. This could be done by using a TTL value (time to live) after which

messages are simply discarded (optionally including messages after the failing

message) by the messaging infrastructure.

The timing for MS-MQ is smooth and uniform over a wide range, with some exceptions

which are not reproducible and occur in various places. A deeper investigation with a

Memory and Performance analyzer shows that these are due to the load issues of the

system, especially when the garbage collector is run which happens from time to time

as many small objects are allocated and released frequently. Anyhow for asynchronous

operations this does not matter very much as for each message sent the delivery is

guaranteed, and therefore a simulation of a synchronous operation (send with

acknowledge) is not necessary.

6.12 Overall	observations	during	the	experiments	

After running all tests on the reference implementation, several general observations,

not specific to a particular test, have been made:

 The architecture scales very nicely with regards to multi-threading and multi-

processor issues (see section 6.4 and 6.7 for details) as regardless of the load

Page 160 / 252

the system was still receptive (no stalling) and other processes could run as

well, so system usage is very good.

 The same applies to system resource consumption as connections, memory and

processing power are taken as needed and returned whenever possible (details

especially in sections 6.4, 6.5 and 6.8). Not a single “out of memory” or “out of

resource” situation has occurred137.

 Handling of 250,000 internal sensor definitions with 100 historic data values

for each sensor (therefore a total of 25,000,000 data items in the online cache at

runtime) resulted in a system load of 1.4 GB of memory with a linear processing

time curve (see sections 6.2, 6.3, 6.4 and 6.5). Therefore, adding more sensor

definitions and / or historic values / sensor in the cache can be performed as

needed where the maximum is just defined by the available memory of the

system.

 The limits of the system were tested and currently the main limit would be

networking (see sections 6.6, 6.7 and 6.9). As the transmission speed for local

networks is usually fixed the only option to alleviate this bottleneck is to re-use

and / or cache connections where the setup takes a long time or to use even

more asynchronous patterns.

Using such patterns has the added problem that producer and consumer, due to

being disconnected from each other, require much more coordination and

external control (by means of queue checks for pending requests, etc.) which

complicates such systems again.

6.13 Discussion	

The goal for this chapter was to conduct evaluation tests upon the reference

implementation. These tests were designed to establish basic performance

characteristics and check that requirements were fulfilled by the reference

implementation.

In Table 6.12 the results are abbreviated for each test:

137 Except in the ODATA sample where the XML parser (which can be substituted) returned an

“Out of Memory”-exception after retrieving 500,000 records

Page 161 / 252

Table	6.12:	Test	result	overview	

Test # Short description Results

1 Timing to push values
into the core with
dynamic calculations

With 200 sensors firing once every 10 msec the total data
changes would be 20,000 / second

2 Timing to calculate
virtual values in the
core using only
internal data (available
measures)

Care must be taken when using triggers external to the DBGA.

If 100 virtual sensors are queried every 100 msec resulting in
1,000 requests per second the system has a CPU load of
around 1-2% (depending on the implementation).

3 Concurrent access
(READ / WRITE) by
several clients to check
for concurrency, race
conditions and locking
issues

Parallel access from several execution threads with
intermixed read and write works fine and is very stable.

For larger scenarios SQL should not be used as an
environment where triggers are implemented as the total
execution time might simply be affected too much

4 Test with different
data formats and
conversion vs. native
storage / handling

Differences among the different data formats and the
conversion (the Dynamic variants) are not really existing
which proves that storing the data in a non-native format is of
no concern

5 Core timing
considerations when
using workflows
(triggering, execution
control for long-
running tasks)

It is shown that agents are perfectly usable and capable to
fulfil the needed functionality when considering the timing
and load issues involved

6 Communication mode
(REST, WCF, .NET
Remoting (Binary))
implications

All communication protocols can be used for operations, yet
some care must be taken with the overhead generated by
SOAP messaging in heavy duty environments with a lot of
traffic

7 ODATA access Up to 8,000 result records the total time request time is still
under 1s. For higher result sets the memory consumption of
ODATA causes some concern and problems as for instance at
510,000 records an Out of Memory exception occurred.

This has to be considered in real-life scenarios

8 Writing actuator
values (by POSTing to
a URL as a receiver)

Writing is possible without problems in all protocols.
In UDP usage scenarios, special care has to be taken with
packet sizes exceeding the MTU (very likely with verbose JSON
data), as message segmentation is an issue.

9 MS-MQ adapter to
prove the extendibility

The DBGA is easily extendable and the effort for doing so is
within reason

10 MS-MQ adapter to
READ / WRITE data –
performance
consideration

The usage of MS-MQ is quite straightforward and can be
utilized for the gateway without problems.
Mechanisms like TTL should be implemented so that a
receiver, which is not taken packets from the queue, is not
overrun by pending packets at the next start.

As all the tests upon the reference implementation were successful, the reference

implementation holds promise from a performance perspective in that it has been

Page 162 / 252

shown to scale according to the requirements set out and had no serious issues or

problems.

In addition, due to (still) ever increasing speed, parallelism of the CPUs and advances in

available memory these limits are getting higher and higher with each new generation

of hardware. This means that more workflows and dynamically executable code can be

put on a device gateway, making it even more dynamic and flexible.

Having established basic performance characteristics of the reference implementation

of DBGA in this chapter, the next chapter discusses the implementation of the two

diverse example scenarios outlined in section 3.1, and compares implementing these

scenarios using the reference implementation of DBGA with that of implementing the

scenarios with Microsoft Azure IoT.

Page 163 / 252

7 Case	Studies:	comparing	DBGA	and	Microsoft	Azure	IoT	

In the following case studies, the 2 example scenarios defined in section 3.1 were

implemented using the Device-Business-Gateway Architecture (DBGA)138 reference

implementation platform and using the Microsoft Azure IoT139 platform. The scenario

implementations were developed on both platforms by the author of this thesis.

They were then evaluated based on this implementation experience using the business

process improvement criteria presented in section 3.7. The other state of the art

approaches described in section 2.6 were also evaluated, but only based on the author’s

paper analysis of what would be involved with implementing the scenarios using those

architectures.

The Microsoft platform was selected as being a message-based system, it would

operate quite differently, and would be an interesting comparison.

Recall that a feature comparison with a number of the key gateway architectures was

presented in section 2.6.1. While both implementations (DBGA and Azure IoT) share

some similarities like the use of the simulation processes for data generation, the

internal processing and overall architecture is quite different due to differences in

message / event processing as well as data access options.

In general, with Azure IoT, like with most complex systems, many alternative

implementations are possible. The chosen implementation was simply the most

straightforward and efficient one to undertake. Whereas others might be superior in

performance, throughput, cost or system utilization, the key focus of the evaluation was

to evaluate particularly against the business process improvement criteria (as defined

in section 3.7, and as highlighted as the goal for proposed architecture in our research

question section 1.3) and to have a comparison for the DBGA with respect to those.

Section 7.1 presents how the Corrosion Lab Scenario was implemented using DBGA and

Azure. Similarly, Section 7.2 discusses the implementations of the Exhibition Scenario.

Section 7.3 then compares the implementations based on the criteria defined in section

3.7. In addition, this comparison also evaluates the other selected state of the art

architectures with respect to in theory what would be involved in their implementation

138 Available at: https://github.com/mglienecke/DeviceGateway

139 Only results are available as access to the Azure IoT solution would incur costs

Page 164 / 252

of the scenarios. Key findings are then presented in section 7.4, followed by a general

conclusion in section 7.5.

7.1 Corrosion	Lab	Scenario		

Using a subset of the environment described in section 2.5 an evaluation scenario using

just two similar climate control chambers for salt brine tests140 and the area before the

chambers is defined. This is sufficient (it is argued) to show the problems and

necessary work as the other chambers are somehow similar (using different protocols

and different processes but otherwise more or less the same).

The actual numbers used in this scenario do not reflect real numbers yet were used to

make the scenario more testable and usable. To have no data from a chamber for 10

seconds would be no problem in real life, whereas 15 minutes would be; yet to test for

15 minutes in a simulation has no impact on the outcome, therefore the shorter period

of 10 seconds was taken.

As simulation setup the following assumptions were taken:

 There are 100 parts in the system;

 Each part to be tested is equipped with a RFID tag;

 There are 2 equivalent chambers in the system implemented as simulators

which are queried similar to a chamber (using TCP/IP);

 The chamber simulators provide 3 independent sensor values (humidity in %,

temperature in K, and salt brine concentration in % (as g/ 100 ml)).

At random points in time erroneous data as well as no data is delivered to

simulate sensor failure.

 RFID is provided as a simulator;

 For RFID the coordinate system is divided in 3 zones:

o Zone A = Chamber A

o Zone B = Chamber B

o Zone C = Area before the chambers (preparation area)

 A part can be in 4 different zones: A, B, C or undefined;

140 The chamber can be heated to +70° and cooled to -40° with a salt brine concentration from 5

- 40% simulating different parts of the world. Usually the chamber would be cooled down; salt

brine applied, then heated, cooled down, etc. for 144 - 2880h in cycles. This simulates roughly

the stress normally occurring during 3-4 years.

Page 165 / 252

 For setup 30 parts are in Zone A, 20 in Zone B, 20 in Zone C and 20 undefined

with 50 parts belonging to one test order (run in chamber A) and 50 to another

test order (run in chamber B);

 The RFID simulator generates movement information for parts in a random

way every second so that parts can move in and out of zones (and undefined

state). These movements are sent to the gateway.

This scenario, being the more complex of the two scenarios, was quite straightforward

to implement using DBGA, yet took a considerable amount of effort to implement in

Azure as many different components had to be incorporated and adjusted for the

overall solution.

In the following sub-sections, the specific details of implementation of the scenario

using the DBGA reference implementation and Azure are discussed.

7.1.1 Device‐Business‐Gateway	(DBGA)	based	implementation	
The DBGA handles all part positions, Q-factors and chamber data as sensor data (virtual

and real) with the corresponding device and sensor definitions. A part is a device with a

sensor value for position and Q-factor; a chamber a device with sensor values for

humidity, temperature and salt brine concentration. The alerting is implemented as an

actuator where data can be written to (to generate the alert).

Chamber data values are provided by a simulation process which is scanned (pulled)

periodically (every second) from the DBGA and returns arbitrary channel data

(sometimes erroneous). This incoming data is then analysed by a WWF141 code activity

(chamber data validation), which is automatically run by the DBGA for every inbound

new data item, and in case the temperature is invalid information is written to the alert

actuator. As an alternative, the data validation could have been written as Python or C#

script as well, yet the use of WWF code activity is very efficient and elegant as those

encapsulate a unit of work very nicely and especially provide a good testing

environment.

Part positions are generated by an RFID part movement simulation process (sometimes

erroneous) for each part and send (pushed) to the DBGA. Their incoming data is

141 WWF = Windows Workflow Foundation. Base classes and framework to create workflow

applications in .NET environments

Page 166 / 252

analysed by another WWF code activity (sensor position validation) and errors are

written to the alert actuator.

The Q-factor for each part is calculated at request time (which is controlled by the

definition of the virtual value, could be based on a change of a dependency sensor as

well) using a WWF code activity as the Q-factor is registered as a virtual sensor with an

underlying calculation.

In Figure 7.1 this DBGA-based implementation and the logical data flows are shown as

a schematic overview with all participants and modules involved. Everything inside the

DBGA is running on the server, both external processes on clients.

Figure	7.1:	Schematic	overview	Corrosion	Lab	scenario	using	DBGA	

7.1.2 Azure	IoT	based	implementation	
The IoT Hub is the main entry point for any message (event) into the system in Azure

IoT, from which all further processing originates. Therefore, the chamber simulation

process as well as the RFID part movement simulation process both push messages

(some erroneous) into this (same) hub for further processing.

As Azure supports no pulling of data from devices (all data must be pushed) the

scenario’s requirement to scan the chambers is implemented insofar as the simulation

process would scan a chamber and then push the readings further on to the hub.

A stream analytics job is receiving all inbound messages sent to the IoT hub and based

on the sending device id (either “chamber_xxx” or “part_xxx”) data is forwarded to a

service bus with 2 event hubs for parts and chambers. An alternative implementation

Page 167 / 252

could have been to send data directly to the destination event hubs, yet with the stream

analytics in between additional filtering and data processing can happen, which would

be beneficial in a real world usage.

These inbound events from the event hubs are then read and processed by a worker

task running on an external system to Azure. Valid data is used to update an Azure SQL

database with information needed to calculate the Q-factors, invalid data is written to

an alerting service bus where it can be consumed. As an alternative implementation

this worker process could have been implemented as an Azure process as well, yet this

would require an additional virtual machine with the process running, configuration,

etc. which would make it even more difficult to maintain and deploy. Therefore, the

implementation running locally on the client was the most efficient for the time being.

As Azure IoT does not provide a facility to query a sensor value, this query mechanism

had to be implemented using a REST-service. Therefore, the Q-factor calculation was

implemented as a REST-API-service using MVC and is hosted inside Azure as a WebApi-

service, which accesses the same Azure SQL database with the raw data for the

calculation. Any client can then access the Q-factors as well as positions based on a

simple REST-API.

In Figure 7.2 this Azure IoT-based implementation and the logical data flows are shown

as a schematic overview with all participants and modules involved. Everything inside

the Azure IoT box runs in the Azure cloud, other components on separate systems.

Figure	7.2:	Schematic	overview	Corrosion	Lab	scenario	using	Azure	IoT	

Page 168 / 252

7.2 Exhibition	visitor	congestion	display	system	

In exhibitions people very often create clusters, whereas other areas are vacant (yet

typically become clustered soon afterwards). So, the goal of this scenario is to show

people, using their smartphones as devices, a live heat-map of the exhibition’s space

congestion and clustering. This allows the users to guide themselves either around hot-

spots (clusters of congestion) or willingly proceed into such a hotspot.

To use such a very different scenario from a classical automation environment (like the

one presented in section 7.1) is useful as it allows to test the DBGA in a totally different

environment, which improves the usability in real-life environments, too. In addition,

the problem to detect objects (here people) in an environment and especially their

grouping and ways to avoid it are classical problems in industry automation as well –

especially in areas like chaotic warehousing, storage of partially finished goods and

provisioning of raw material to production lines.

For simulation setup the following assumptions were taken:

- The coordinate space for the scenario is defined as a 100 x 100 rectangle142 ;

- 100 virtual people are simulated as this produces some load and reflects a

medium sized exhibition event;

- They move in the coordinate space in arbitrary random directions with random

speeds;

- To allow the simulation to operate smooth an iteration cycle is 1 second, so

each second up to 100 virtual people move;

- Each second the position of the person is transferred from the person’s device

to the server;

- A simulation process is used instead of a real smartphone to send and receive

data;

- The overall heat map is available as a virtual sensor value in JSON format with

each data tuple defining X and Y coordinate of the point and the number of

people.

142 Any X/Y-dimension can be used, yet with 100x100 and 100 people the chance to have

clustering rises

Page 169 / 252

In the following sub-sections, the implementations for the Exhibition visitor scenario,

using DBGA reference implementation and Azure IoT is described.

7.2.1 Device‐Business‐Gateway	(DBGA)	based	implementation	
In the DBGA implementation each person moving is implemented as a sensor which has

a location value (X/Y) and the heat map as a single sensor value which returns a JSON

object for the cells of the grid (10x10 raster) and the number of people in each cell.

The smartphone simulation process pushes the coordinates (using out-of-bounds

values as invalid values as well) towards the DBGA where each value is validated using

a WWF code action (position validation). In the DBGA, using a cyclic WWF action (heat

map calculator) the value for the heat map is generated every second and can be

retrieved using any method to query the sensor value for the heat map.

Using an UML sequence diagram this whole interaction between smartphone

simulation process and DBGA with the server-side logic is shown in Figure 7.3:

Page 170 / 252

Figure	7.3:	Exhibition	Visitor	Scenario	implementation	using	DBGA	

7.2.2 Azure	IoT	based	implementation	
In the Azure IoT implementation a smartphone simulation process pushes movement

messages towards the Azure IoT hub. In the subsequent Stream Analytics module,

which processes any inbound messages to the IoT Hub, valid movements are forwarded

to an event hub “validsensordata” in a service bus, all invalid items are forwarded to

the “invalidsensordata” event hub.

Using this approach, the stream analytics is capable of removing any unwanted

messages directly so further processing is not needed. The valid messages are then

consumed by an external (to the Azure IoT cloud platform) worker process, where the

heat map is calculated and made available using a queue with a topic “newheatmap”

which allows any interested subscriber to directly subscribe for new data. The other

sd Exhibition Guiding System using DBG

DBGSmartphone
simulator process

loop retriev e information by client

[every 1000 msec]

loop send mov ement data

par cyclic activ ity

[every 1000 msec]

movement occurred
send new position(x, y)

register device with sensors()

display information on screen()

read heat map sensor()

validate using WWF
activity()

create heat map using WWF
code activity()

Page 171 / 252

benefit by using the subscriber mechanism is that messages in the queue are duplicated

for each subscriber, so everybody receives the same message.

The alternative for the message queue approach would have been to provide a WebApi

solution as in scenario 1, yet this seemed too much effort for such little benefit, as

subscribing and reading from a queue is a straightforward process, if the client side API

is present for the target device.

Using an UML sequence diagram this whole interaction between smartphone

simulation process and Azure IoT with the cloud and worker process logic is shown in

Figure 7.4:

Figure	7.4:	Exhibition	Visitor	Scenario	implementation	using	Azure	IoT	

7.3 Comparison	of	architectures	regarding	the	case	studies	

To evaluate the different possible architecture approaches, the defined evaluation

criteria of Table 3.9 were applied to the selected state of the art architectures discussed

in section 2.6. The resulting comparison table can be found in Table 7.1.

For DBGA and Azure columns, the evaluation is a result of the thesis author’s

experience gained in implementing the scenarios using the Azure and DBGA

architectures. For the other architectures, the evaluation is purely based on a desk-

based evaluation using the author’s knowledge and experience to apply the criteria as if

implementing the scenarios using the architectures.

sd Exhibition Guiding System using Azure IoT

Smartphone
simulator process

Stream Analytics«boundary»

Azure IoT Hub

«entity»

invalid messages

«control»

worker process

«boundary»

heatmap topic in message
queue

«boundary»

valid messages
event hub

loop retriev e heat map data

[every 1000 msec]

[message is valid]:store()

process()

display result on screen()

calculate heat map()

read heat map queue entries()

send coordinates()

[message is invalid]:move & discard()

retrieve messages()

write heat map to queue()

Page 172 / 252

Table	7.1:	Comparison	of	different	architectures	

#	 Criteria	 DBGA	 Azure	IoT	 Xively	 sMAP	 Custom	
implementation	

M1 Level of achieving the requirements 3 - everything was
achieved

3 - everything was
achieved

2 – most
requirements; some
need a change in
structure

1 - the second use case
could not be really
implemented and the
1st one not very well

3 - everything was
achieved

M2 Flexibility offered by the architecture
for an integrator to integrate devices
into business processes

3 = highly flexible

2 = moderately flexible
as the API is by design
limited to several
protocols which are
not agnostic in their
semantics. New
protocols can be
added, yet this is again
custom
implementation and a
big task

1 = very inflexible

Just the supported
protocols with no
possibility of change
or added support for
other protocols.

1 = very inflexible

Only REST

2 = moderately flexible

As it is custom made it
will be a perfect match
for the original
environment, yet
changes might require
additional support

M3 Performance 3 – very fast 2 – Due to the external
worker processes a lot
of time is spent
communicating with
Azure IoT. This could
be changed by placing
everything in cloud
modules, yet the
simple connection

3 – very fast 3 - very fast 3 - very fast

Page 173 / 252

#	 Criteria	 DBGA	 Azure	IoT	 Xively	 sMAP	 Custom	
implementation	

initialization from
device to Azure is
quite slow.

M4 Maximum number of devices /
sensors / actuators supported

Depending on RAM
and Hard disk in
principle unlimited –
in realistic
environments around
100,000 sensors

In principle unlimited In principle unlimited Several 1000s of
sensors

In principle unlimited

M5 Maximum number of sensors which
can be handled as peak

Around 50,000 given a
modern server

Depending on the CPU
model used for the
hosting nearly
unlimited

Nearly unlimited Several 1000s of
sensors

In principle unlimited

M6 Complexity 1 – simple and
straightforward

3 - highly complex 2 – moderately
complex

2 - moderately 1 - easy,
straightforward; very
few connections and
interactions

M7 Skill Required 2 - after the initial
knowledge things get
easy

3 - very high skill
requirements

2 – moderate 1 - concepts are simpe
and implementation is
easy

3 - needs a lot of
knowledge

M8 Learning Curve 2 - moderate 3 - very high learning
curve

2 – moderate 1 - concepts are simply
and implementation is
easy

2 - moderate

M9 Time required building 1 – fast (all together 16

h for both scenarios)
3 – around 40h for
both scenarios.

60 – 80h (change +
external modules)

N/A N/A

M10 Time required operating and
administrating in one year

12h – mostly backups 80 h (quite complex
tasks involved)

8h (all is hosted and
maintained
externally)

12h 8h

Page 174 / 252

#	 Criteria	 DBGA	 Azure	IoT	 Xively	 sMAP	 Custom	
implementation	

M11 Ease of change in future 2 – moderate 3 – change is complex
and requires a lot of
effort, especially due to
various cloud parts
working together

2 – moderate 2 – moderate 3 - requires quite a lot

M12 Preservation of investment 2 - moderate 3 - very high
preservation

3 – very high
preservation

2 - moderate 1 - will cost more

M13 Free software / commercial software
- cost

Free Monthly costs are high Monthly costs are
moderate

Free Onetime build cost

M14 Security 2 - can be made
moderately secure

3 - can be made
absolutely secure

3 - can be made
absolutely secure

1 - there is no real
concern about it

2 – moderate /
depending on
implementation

M15 Reliability / Fault tolerance 2 - can be made totally
reliable

3 – is reliable 3 – is reliable 2 - not reliable except
database

2 – moderate /
depending on
implementation

M16 Overall stability 2 = moderately stable

Failing devices,
sensors and actuators
cause no problem.
Failure of the database
would make the
system useless.

Fixes are usually easy
and can be directly
done.

1 = highly stable

Failing devices,
sensors and actuators
cause no problem
(either no messages
arrive or none are
consumed). Everything
is provided as highly
available.

1 = highly stable

Like Azure IoT

2 = moderately stable

Failing devices and
sensors are handled;
no support for
actuators.
Failure in the database
can cause a problem
(like in the DBGA).

2 = moderately stable

Like the DBGA

Page 175 / 252

#	 Criteria	 DBGA	 Azure	IoT	 Xively	 sMAP	 Custom	
implementation	

In case a real problem
happens it is up to
Microsoft to fix it

Fixes are usually easy
and can be directly
done.

M17 Easiness to obtain the current device
/ sensor state and use it in the
business process

3 = very easy

Sensor state is kept
directly and can be
readily retrieved

1 = very hard

There is no concept of
“current state” of a
sensor / device and it
has to be constructed
by the integrator

1 = very hard

There is no concept of
“current state” of a
sensor / device and it
has to be constructed
by the integrator

Like the DBGA Depending on the
implementation, mostly
like the DBGA

M18 Footprint 1 = low footprint 3 = very high footprint

Not obvious, as all is
“external”, yet the
footprint is very high
due to various
different services &
applications needed

2 = high footprint

Not obvious, as all is
“external”, yet the
footprint is visible

1 = low footprint 1 = usually low
footprint

Page 176 / 252

7.4 Key	Findings	

After implementing the example scenarios using DBGA and Azure IoT, as well as

comparing them to hypothetical implementations for the other selected state of the art

approaches (Xively, sMAP and custom implementation) the following general

observations	have been derived (based on Table 7.1):

 sMAP has a specific usage pattern by concept and design which simply does not

work very well with the scenarios presented. If the requirement would have

been to, for example, to just display the chamber data over a period of time

sMAP might have been a very powerful tool as exactly this is its core

competence (including the querying part) - record time-series based values and

retrieve them using various criteria. This non-match is even more obvious for

the kind of transactional processing required by the scenarios

 Custom implementations are, like most tailor-made solutions for a problem,

usually very efficient, fast and small in terms of system requirements as well as

runtime overhead. At least this is true in the beginning, yet usually there is a

general maintenance as well as extendibility and change problem over time as

every change needs additional workforce (with associated labor cost). There is

neither a new feature you get through an upgrade path, a bug fix, etc.

Therefore, usually these custom solutions (good as they might be) have to be

repeated (and re-done) every 4-6 years based on the author’s experience. In

addition, a custom implementation usually is custom for one problem – if the

problem changes (even if only slightly), the implementation does not fit any

more (which might be the case with a more generalized tool). In addition, there

is a tight coupling to the provider of the solution, which in case of for example

company termination, could cause major problems, whereas in case of a general

solution usually a replacement for the integrator can be found

 Xively is a nice moderately small and easy to use system with a straightforward

design and architecture based on and around a messaging infrastructure. This

simplicity is a wonderful thing if it suits the needs of a device integration, yet in

case of the usage scenarios it would not match and a lot of extra work would be

needed to get the case study implemented. In addition, as there are no extra

modules or services such as those provided by Azure IoT (which is quite similar

in the base messaging engine) the usable tool-set is quite small.

As it is a hosted solution in the cloud any user has to have no concerns

regarding data backup, stability and availability as these can be considered

assumed.

Page 177 / 252

 Azure IoT can be used to implement most real usage requirements, yet quite

often the requirement must be adjusted to the specific implementation patterns

offered by Azure, especially the message based processing. Being a large and

sophisticated platform, especially when additional services like storage, real-

time analysis and message processing are involved, makes it a very complex,

hard to learn and maintain solution. It might offer all which is needed, yet to get

the solution right requires extensive knowledge very few people will have. In

addition, due to its mainly web-based user-interface for administration (when

avoiding the scripting interface) many tasks are not that easy to accomplish as

many features are hard to find or not present in their entireness (like for

example the event hubs for service buses which are only available in the old,

not the new version of the management portal). In addition, like Xively, being a

hosted solution, availability, data backup, etc. can be taken for granted. Yet the

cost involved is quite essential as there is a fee for transactions or processing

time which adds up to considerable amounts over time.

 All message-based systems under investigation (Xively, Azure IoT) as well as

others (like AWS IoT (amazon) or Google IoT) only process messages and have

no notion of a device or a sensor as such. For them these are just message start-

or endpoints with some centralized (workflow) processing in between, yet no

notion of a sensor state exists, which means every integrator, who needs to

have a current state of a sensor has to build logic to provide this state

information. This could be achieved by monitoring the state by scanning the

messages and updating a database with some kind of web access, etc. Yet

always it requires the integrator to do something extra.

 The DBGA offers all that is needed to implement the example usage scenarios

with a straightforward and quite easy implementation approach. As the whole

design is centered around the storage, access and calculation of sensor values,

an integration can be done far more “naturally” from an integrator’s point of

view, as many tasks (like necessary in for example Azure) are either done

automatically or are much easier to implement. In addition, due to the very

extendible architecture and the many provided adjustment points any change

and adaptation can be made quickly and easily, as well as new features added

quickly.	

Page 178 / 252

As the source code of the reference implementation is available143 there is a

chance for every research project to just use the source and investigate or

change as necessary.

Being based on software which is free of charge (including SQL Server

Express144, except Microsoft Windows, if not run under LINUX or MacOS) there

are no additional costs to be considered and the hosting can be done from

anything like a simple PC to a fully clustered environment.

Due to the varied communication protocols supported as well as the achievable

internal knowledge gain by means of virtual values as well as workflows a

business process integration is greatly enhanced as less work has to be done on

the process side and more can be shifted to the gateway.

	

7.5 Discussion	

In this chapter the details of actual implementation of the two scenarios from section

3.1 using the Device Business Gateway (DBGA) and Azure IoT were described and

compared using important criteria for business process integration improvement

defined in Table 3.9.

The result of the overall comparison presented included the other selected state of the

art architectures (but where scoring was based on a hypothetical implementation

approach) in Table 7.1 and then key findings discussed (section 7.4).

In short the main findings were that sMAP would not be usable for the example

scenarios, Xively with some changes in requirements or re-structuring of the solution

and custom implementations could do very well, yet there are other problems.

Azure IoT could very well handle all the requirements of the scenario, yet due to its

complexity, different services involved and thus the various skill-sets required to build

an integration solution, is probably more suited for larger or very large environments.

Especially, given the specific nature of Azure IoT with a messaging system in the core

produces a different approach to most problems, which very often is not suited exactly

to typical environments. This is very obvious when it comes to maintaining sensor

states as a basis for further action.

143 https://github.com/mglienecke/DeviceGateway

144 Which has some limits, but these are not likely to come into effect

Page 179 / 252

It has been found during the evaluation of the implementation of the example scenarios

that the DBGA can satisfy the requirements nicely and with very little effort, which in

addition to its lean and extensible architecture makes it very usable.

A general overall observation from the implementation of the scenarios is that DBGA

suits much better towards an industry automation type of project than would Azure

IoT or Xively.

Having evaluated the different approaches towards device gateway integration into

business processes and made comparisons in this chapter, the next chapter will present

overall conclusions.

Page 180 / 252

8 Conclusions	

The research question posed in this thesis is to what extent a new device gateway

architecture (with integrated data quality control, increase of data value by semantic

enrichment, communication interface agnosticism, data target independence and data

format agnosticism) that is available for low cost, will improve business process

integration.

In this thesis, the Device-Business-Gateway Architecture (DBGA) has been proposed as

that new architecture, motivated by an analysis of the state of the art. A design of the

DBGA has been outlined in the thesis, and a reference implementation of that design

has been described and made available for other researchers/projects to use.

Evaluation of the proposed DBGA has been undertaken by using test cases to test the

reference implementation, and case study implementations to evaluate the potential

improvement in the business integration experience. To further test the reference

implementation and its usability, as well as stability and performance, parts of DBGA

reference implementation are already being utilized in the author’s customer industry

automation environment.

In the following sub-sections, a recap of the structure and flow of this thesis is

presented (section 8.1), the main findings highlighted (section 8.2), future work

postulated (section 8.3) and the contribution made by this research is summarized

(section 8.4).

8.1 Structure	of	the	thesis	

To be able to properly research the question this thesis used the following structured

approach.

Chapter 2 provided background information about which kind of devices, sensors,

actuators and consumers are relevant (section 2.1) as well as industry automation

(section 2.2) and Industry 4.0 (section 2.3). This was followed by the role of device

gateways (section 2.4), a real-world business process integration example (section2.5),

an overview of exemplary gateway architectures as state of the art (section 2.6) and a

discussion (section 2.7).

Chapter 3 defined two usage scenarios, based on real-world requirements (section 3.1),

which were later used to implement case studies (chapter 7). From these the standard

use cases that any gateway architecture must be able to support (section 3.2) as well as

the requirements (section 3.3 and section 3.4) and based on those the characteristic of

the Device-Business-Gateway (DBGA) (section 3.5) were derived. A comparison of

Page 181 / 252

requirement achievement of different architectures (section 3.6) was concluded by the

definition which measurements are usable to define the effectiveness of improvement

of an architecture (section 3.7).

As the use cases, requirements and characteristics were defined, chapter 4 detailed the

actual design of the architecture, first by presenting data sources and destinations

(section 4.1), followed by the supported communication options (section 4.2) and the

usage of workflows in the design (section 4.3). Afterwards the components of the

architecture in a logical view (section 4.4) were presented, followed by the process or

dynamic view (section 4.5). The chapter finished by presenting the physical view

(section 4.6) and data model (section 4.7).

Based on the definitions in chapter 4 the actual reference implementation of the DBGA

was specified in chapter 5. Here the available options (section 5.1), the general

structure (section 5.2) and then the individual components like the central service

launcher (section 5.3), central server service (section 5.4), global data contracts

between devices and server (section 5.5) and the base code for modules running on

specific devices (section 5.6) among others were explained.

Using the reference implementation chapter 6 described nine tests (section 6.2 to 6.10)

which were constructed to test several low level criteria of the reference

implementation. Among these were the ability to handle how many requests / second,

times consumed to validate data, evaluation of virtual values, concurrent access

situations, race conditions, etc. In addition, several characteristics like data actuator

support, data format agnostic, etc. were tested alongside.

Based on the example usage scenarios (section 3.1) chapter 7 described the actual

implementation of these with the DBGA (section 7.1.1 and 7.2.1) as well as Microsoft

Azure IoT (section 7.1.2 and 7.2.2). This was followed by a comparison of all

architectures regarding implementation of the usage scenarios (section 7.3)145 and

resulting findings were provided (section 7.4).

Additional information related to, but not directly relevant for the mentioned topics,

was made available in appendices (appendix A, B, C and D).

145 here for the not implemented ones a hypothetical implementation based on desk analysis

was used as a basis

Page 182 / 252

8.2 Main	Findings	

Taking account of the findings of the case studies (section 7.4) and characteristics of

DBGA developed (section 3.5) based on general requirements (section 3.3 and section

3.4) and use cases (section 3.2), the following main findings can be derived as follows:

1) Indications are that the DBGA is capable of improving business process

integration in a variety of industry automation environments.

Due to its design “around” the sensor with all necessary operations like state

preservation, access, virtual value calculation provided, any integrator can

focus on the process, instead of on the technical part of the gateway.

This is achieved mainly by ensuring the architecture possesses the

characteristics of: integrated data quality control, increase of data value by

semantic enrichment, communication interface agnosticism, data target

independence and data format agnosticism.

It should be noted though that the DBGA does not claim to be a “Soft-PLC” or

running in a non-stop (24x7) environment which would require much more

dedicated tests, runtime analysis and further strengthening of especially the

failover capabilities.

2) These architecture characteristics directly underpin the following indicators

(see Table 3.9 or details), which enable the improvement in business process

integration:

a. Flexibility in the manner in which new devices are integrated into the

process and preservation of sensor state

b. Ease of change in the future

c. Cost of change

d. Operational cost per transaction

In addition, due to the simplicity and straightforwardness of implementation using

DBGA, a business process integration can be modeled in exactly the way it is needed,

not in the way which it may be constrained by adopting a commercial solution.

Page 183 / 252

3) Message based solutions are very useful for (very) large scale device integration

platforms where the (or a main) focus is on data investigation, collection and

analysis (big data). This is usually the case for large-scale, geographically

disperse projects, usually involving several distinct entities, like supply-chain-

management and so on.

Due to the internal structure these solutions are more concerned about how to

route messages than about device or sensor specific tasks.

Feedback to actuators or sensors in terms of centralized control is not easily

implementable using such platforms and requires much effort

The DBGA is no replacement for message-based solutions, yet can be used

effectively as a gateway, which provides pre-aggregated and value-enriched

data, for the message-bus. Another use-case for the DBGA would be as a

consumer to scan for device messages on the message bus and aggregate them

like normal sensor data – providing aggregated value further onto the value-

chain.

-

4) Commercial solutions (Azure IoT, Xively, etc.) usually have a historic

background in terms of a product they are based on, which clearly dictates their

use and benefit, which often is not in line with the requirements of the device

and sensor integrators.

In contrast, the DBGA was especially designed to match these requirements and

therefore – given the environment where it is beneficial – it is argued it will

provide superior benefit.

5) Due to be being freely available the DBGA can be a significant contribution to

research projects or classic business process integration in the industry

automation environment as everything can be investigated, changed or adapted

free of charge.

As many requirements are similar between IoT and automation environment, the DBGA

could be applied to IoT scenarios as well. Yet care has to be taken as issues like power

consumption, edge or fog computing, unreliable communication and other issues

usually associated with IoT are considered only on a very limited scale or not at all.

8.3 Future	Work	

There are a number of areas where future work might be considered based on a variety

of reasons which is briefly shown in Table 8.1:

Page 184 / 252

Table	8.1:	Future	work	overview	

Area of future work Reason

JavaScript -> Chakra integration As JavaScript is gaining more and more

momentum even in server-side processing the

integration of a JavaScript-engine into the

gateway (similar to the Python one) would be

very beneficial for the ease of integration

Standard functions for virtual

values

As very virtual values will be implementing

functionality to calculate KPIs (key process

indicators), it would be good to have an ability to

define standard functions which can be used in

the evaluation. Examples would be MEAN() or

MIN(), MAX(), etc.

Default checking for Write

(Upper / Lower Bound,

Frequency, etc.)

In real projects the data cleansing is very often a

repetitive task which could be greatly simplified if

pre-definable filters (upper / lower check,

bandwidth, frequency, patterns, etc.) could be

simply applied.

Wider Ontology support Extend the very basic ontology service layer so

that it covers many more attributes and provides

better information retrieval mechanisms.

Query & Discovery support When applied to a wider audience, the previous

points become relevant in terms of for example

discovery which actuator might be able to alert

something or which sensor could deliver the

temperature in room XYZ

Access control Especially for large scale environments using

many contributors and / or sensitive data (for

example medicine) further advances in access

control would be necessary as it must be made

sure that only authorized people access their data

Stream processing All data from sensors so far was based on singular

data points. As streams as data source are

becoming more and more present (for example

video data, music, etc.) a facility to process, handle

and use in business workflows would be very

Page 185 / 252

interesting. Especially features like for example

object recognition from video sources might

prove extremely useful as then for example CCTV

cameras could be used as data sources and the

resulting value used to trigger events

Providing a miniaturized

version for usage on a for

example smart device

With the advent of smart devices like smart

phones, Raspberry Pi, etc. it might be very

interesting to have a miniaturized version of the

proposed gateway on such a device so that the

device could be used as the first step of

integration in terms of decentral data cleansing,

pre-processing, etc. The communication with a

back-end system might then happen based on

TCP/IP alone with local data storage only in case

of link failure

Big Data integration Provide facilities so that further data processing

facilities like for instance data lakes can be

automatically populated by the data generated

from the device gateway (especially the virtual

sensor values).

Further evaluate the research Take the existing implementation and adapt it to

different environments using various sensors and

/ or backend systems

Extend the concepts Take the work as a basis for further conceptual

work and research on behalf of business process

integration, standard workflows and especially

more time-constrained environments.

Compare the work with other

implementations

Compare new and upcoming versions of other

implementations (like IoT gateways, message bus

architectures, cloud / fog approaches) to the work

and adapt where needed and required.

8.4 Contribution	

As this thesis provides a clear, simple and straightforward design for a device business

gateway architecture (DBGA), alongside the background information and discussion

contained, it is a good starting point for further research into more specific areas of the

Page 186 / 252

business process integration of devices and sensors in industry automation

environments.

Especially improvements in business process integration using autonomous operations

or semantic value increase will benefit substantially from the research undertaken as

the demand for sure will increase based on the current tendencies ([56], [84], [87]).

This has been the focus of the author’s publication [83], derived from this research, as

well.

Using the provided reference implementation any interested integrator or researcher

has access to a free of charge, fully functional device gateway which can be used as is or

extended to cater for additional demands. With this ability the time and effort needed

to integrate devices and sensors into research projects is greatly reduced and thus

more effort can be put into added or new functionality and value-added services which

will contribute to the research community as well.

Using the defined characteristic for the DBGA, derived from the requirements, which

were derived from the use cases as well as the state of the art, is an additional

contribution as these characteristic and requirements could be used by other

researches in similar environments as well.

To allow for a wider impact and therefore contribution of the DBGA, it is planned, after

the initial implementation (based on the DBGA) of a full-scale integration at the

author’s customer, to publish the findings, future improvements and benefits in various

publications.

To further increase the visibility of the DBGA, participation with papers and / or poster

sessions at SenSys 2019 (http://sensys.acm.org/) CASE 2019 (http://case2018.org/)

or ICRA 2019 (https://www.icra2019.org/) are planned.

Page 187 / 252

9 References	

[1] Aberer, K., Hauswirth, M., & Salehi, A. (2006, September). A middleware for fast and
flexible sensor network deployment. In Proceedings of the 32nd international
conference on Very large data bases (pp. 1199-1202). VLDB Endowment.

[2] Schramm, P., Naroska, E., Resch, P., Platte, J., Linde, H., Stromberg, G., & Sturm, T.
(2004). A service gateway for networked sensor systems. IEEE Pervasive
computing, 3(1), 66-74.

[3] Pautasso, C., Zimmermann, O., & Leymann, F. (2008, April). Restful web services vs.
big'web services: making the right architectural decision. InProceedings of the 17th
international conference on World Wide Web (pp. 805-814). ACM.

[4] Guinard, D., & Trifa, V. (2009, April). Towards the web of things: Web mashups for
embedded devices. In Workshop on Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings of WWW (International
World Wide Web Conferences), Madrid, Spain (p. 15).

[5] Stirbu, V. (2008, August). Towards a restful plug and play experience in the web of
things. In Semantic computing, 2008 IEEE international conference on (pp. 512-
517). IEEE.

[6] Pachube - data infrastructure for the Internet of Things. Available at:
http://www.pachube.com/ [Accessed March 21, 2011].

[7] Nath, S. SenseWeb: An Infrastructure for Shared Sensing. In US-Korea Conference
on Science, Technology, and Entrepreneurship (UKC).

[8] Open Data Protocol (OData). Available at: http://www.odata.org/ [Accessed March
21, 2011].

[9] Vasters, C., 2012. Internet of Things - Using Windows Azure Service Bus for ...
Things! [WWW Document]. Using Windows Azure Service Bus for ... Things! URL
http://msdn.microsoft.com/en-us/magazine/jj133819.aspx

[10] Internet of Things - A Smart Thermostat on the Service Bus [WWW Document],
2012. URL http://msdn.microsoft.com/en-us/magazine/jj190807.aspx

[11] SENSEI - Home [WWW Document], 2012. URL http://www.sensei-project.eu/
[Accessed July 29, 2012]

[12] HEU, A. B., HEU, P. G., CEA, A. O., & Stefa, J. (2013). Internet of Things Architecture.
[13] Trifa, V., Wieland, S., Guinard, D., Bohnert, T.M., 2009. Design and implementation of

a gateway for web-based interaction and management of embedded devices.
Submitted to DCOSS, 1-14.

[14] Haller, S., & Magerkurth, C. (2011, March). The real-time enterprise: Iot-enabled
business processes. In IETF IAB Workshop on Interconnecting Smart Objects with
the Internet.

[15] Prehofer, C., van Gurp, J., & di Flora, C. (2007, September). Towards the web as a
platform for ubiquitous applications in smart spaces. In Second Workshop on
Requirements and Solutions for Pervasive Software Infrastructures (RSPSI), at
Ubicomp (Vol. 2007).

[16] Debaty, P., Caswell, D., 2001. Uniform web presence architecture for people, places,
and things. Personal Communications, IEEE 8, 46–51.

[17] Extended Environments Markup Language: EEML [WWW Document], 2010. URL
http://www.eeml.org/

[18] Dawson-Haggerty, S., Krioukov, A., & Culler, D. E. (2012). Experiences integrating
building data with smap. University of California, Berkeley, Tech. Rep.

[19] Aslam, M. S., O'Regan, E., Rea, S., & Pesch, D. (2009, June). Open framework
middleware: an experimental middleware design concept for wireless sensor
networks. In Proceedings of the 6th international workshop on Managing
ubiquitous communications and services (pp. 35-42). ACM.

Page 188 / 252

[20] Debaty, P., Caswell, D., 2001. Uniform web presence architecture for people, places,
and things. Personal Communications, IEEE 8, 46–51.

[21] Vazquez, J.I., De Ipina, D.L., Sedano, I., 2007. Soam: A web-powered architecture for
designing and deploying pervasive semantic devices. International Journal of Web
Information Systems 2, 212–224.

[22] Priyantha, N.B., Kansal, A., Goraczko, M., Zhao, F., 2008. Tiny web services: design
and implementation of interoperable and evolvable sensor networks, in:
Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems. pp.
253–266.

[23] Kakanakov, N., Stankov, I., Shopov, M., & Spasov, G. (2006). Controller Network Data
Extracting Protocol–design and implementation. In Proc. CompSysTech (Vol. 6).

[24] Spasov, G., Stankov, I., & Petrova, G. (2006). WIRELESS REAL-TIME GATEWAY
(WRTG) FOR EMBEDDED DEVICES.

[25] “Internet of Things - Architecture — IOT-A: Internet of Things Architecture”.
[Accessed 29. Juli 2012]. http://www.iot-a.eu/public.

[26] “EPCglobal | GS1 - The global language of business”. [Accessed December 29 2013],
http://www.gs1.org/epcglobal.

[27] “Open Geospatial Consortium | OGC(R)”. Accessed December 29,
http://www.opengeospatial.org/.

[28] “Public — EPoSS.” Accessed December 29, 2013. http://www.smart-systems-
integration.org/public.

[29] “EPoSS Strategic Research Agenda 2009 — EPoSS.” Accessed December 29, 2013.
http://www.smart-systems-
integration.org/public/documents/publications/EPoSS%20Strategic%20Research
%20Agenda%202009.pdf/view.

[30] “ChipworkX_Development_System_Broch_Pinout.pdf.” Accessed December 30,
2013.
http://www.ghielectronics.com/downloads/man/ChipworkX_Development_Syste
m_Broch_Pinout.pdf.

[31] “Tahoe-II.” Accessed December 30, 2013.
http://devicesolutions.net/support/legacyproducts/tahoeii.aspx.

[32] “Arduino - HomePage.” Accessed December 30, 2013. http://arduino.cc/.
[33] “Netduino Home.” Accessed December 30, 2013. http://netduino.com/.
[34] “AMI > Home.” Accessed December 30, 2013. http://www.aug-electronics.com/ami.
[35] “SunSPOTWorld - Home -.” Accessed December 31, 2013.

http://www.sunspotworld.com/.
[36] Polastre, J., Szewczyk, R., & Culler, D. (2005, April). Telos: enabling ultra-low power

wireless research. In IPSN 2005. Fourth International Symposium on Information
Processing in Sensor Networks, 2005. (pp. 364-369). IEEE.

[37] Alliance, Z. (2006). Zigbee specification. .
[38] Siernens, A. G., Automatisierungstechnik, G., & Basis, I. S. O. 6.8 SINEC.Praxis der

Automatisierungstechnik, 238.
[39] Semiconductor, P. (1998). The I²C-Bus Specification: Version 2.
[40] Büch, C. (2006, June). SPI–Serial Peripheral Interface. In PhysiN-Seminar Universität

Koblenz-Landau (Vol. 27). .
[41] “Standard, O. A. S. I. S. (2009). Devices Profile for Web Services Version 1.1.
[42] Zeeb, E., Bobek, A., Bohn, H., Prueter, S., Pohl, A., Krumm, H., ... & Timmermann, D.

(2007). WS4D: SOA-Toolkits making embedded systems ready for Web
Services. Open Source Software and Productlines 2007 (OSSPL07).

[43] Clarke, G. R., Reynders, D., & Wright, E. (2004). Practical modern SCADA protocols:
DNP3, 60870.5 and related systems. Newnes.

[44] “Documents — IOT-A: Internet of Things Architecture.” Accessed January 1, 2014.
http://www.iot-a.eu/public/public-documents/documents-1.

Page 189 / 252

[45] “OData Version 4.0 Part 1: Protocol.” Accessed January 1, 2014. http://docs.oasis-
open.org/odata/odata/v4.0/cs01/part1-protocol/odata-v4.0-cs01-part1-
protocol.html.

[46] “Open Data Protocol (OData).” Accessed March 21, 2011. http://www.odata.org/.
[47] Kakanakov, N., Stankov, I., Shopov, M., & Spasov, G. (2006). Controller Network Data

Extracting Protocol–design and implementation. In Proc. CompSysTech (Vol. 6).
[48] Uckelmann, D., M. Harrison, and F. Michahelles. Architecting the Internet of Things.

Springer, 2011.
[49] Duquennoy, S., Grimaud, G., & Vandewalle, J. J. (2009, May). The Web of Things:

interconnecting devices with high usability and performance. InEmbedded Software
and Systems, 2009. ICESS'09. International Conference on (pp. 323-330). IEEE.

[50] Trifa, V. M. (2011). Building blocks for a participatory Web of things (Doctoral
dissertation, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19890,
2011).

[51] “Push API.” Accessed January 6, 2014. http://www.w3.org/TR/push-api/.
[52] Modbus, I. D. A. (2004). Modbus application protocol specification v1. 1a. North

Grafton, Massachusetts (www. modbus. org/specs. php).
[53] Meyer, S., Ruppen, A., Magerkurth, C., 2013. Internet of things-aware process

modeling: integrating IoT devices as business process resources, in: Advanced
Information Systems Engineering. Springer, pp. 84–98.

[54] Weske, M., 2012. Business Process Management: Concepts, Languages,
Architectures. Springer Science & Business Media.

[55] Dawson-Haggerty, S., Jiang, X., Tolle, G., Ortiz, J., Culler, D., 2010. sMAP: a simple
measurement and actuation profile for physical information, in: Proceedings of the
8th ACM Conference on Embedded Networked Sensor Systems. ACM, pp. 197–210.

[56] Internet of Things Market Size- Postscapes [WWW Document], n.d. URL
http://postscapes.com/internet-of-things-market-size (accessed 8.8.15).

[57] Zachariah, T., Klugman, N., Campbell, B., Adkins, J., Jackson, N., & Dutta, P. (2015,
February). The internet of things has a gateway problem. In Proceedings of the 16th
International Workshop on Mobile Computing Systems and Applications (pp. 27-
32). ACM.

[58] Waher, P. (2015). Internet of Things-Sensor Data.
[59] Funes, P. (2001). Evolution of complexity in real-world domains (Doctoral

dissertation, Brandeis University). .
[60] Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., & Marrs, A. (2013). Disruptive

technologies: Advances that will transform life, business, and the global
economy (Vol. 12). San Francisco, CA: McKinsey Global Institute.

[61] Worlds, G. S. P. the Internet of Everything Are Colliding to Create New Markets,
November 2013.

[62] Thamhain, H.J., 2015. Management of Technology: Managing Effectively in
Technology-Intensive Organizations. John Wiley & Sons.

[63] Kruchten, P., 1995. Architectural Blueprints—The “4+ 1” View Model of Software
Architecture. Tutorial Proceedings of Tri-Ada 95, 540–555.

[64] Bass, Len; Paul Clements; Rick Kazman (2012). Software Architecture In Practice,
Third Edition. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[65] Erl, T. (2005). Service-oriented architecture: concepts, technology, and design.
Pearson Education India.

[66] Robert Daigneau. 2011. Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and Restful Web Services (1 ed.). Addison-Wesley Professional

[67] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA

[68] Anti Pattern [WWW Document], n.d. URL http://c2.com/cgi/wiki?AntiPattern
(accessed 12.5.15).

Page 190 / 252

[69] Fowler, M. (2004). Inversion of control containers and the dependency injection
pattern.

[70] Merson, P.F., 2009. Data model as an architectural view.
[71] Botts, M., & Robin, A. (2007). OpenGIS sensor model language (SensorML)

implementation specification. OpenGIS Implementation Specification OGC,7(000).
[72] Franklin, S., Graesser, A., 1997. Is it an Agent, or just a Program?: A Taxonomy for

Autonomous Agents, in: Intelligent Agents III Agent Theories, Architectures, and
Languages. Springer, pp. 21–35.

[73] Sector, I.T.S., 1996. ITU-T Recommendation Z. 120. Message Sequence Charts
(MSC96).

[74] Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon, D. (2015).
Unlocking the Potential of the Internet of Things. McKinsey Global Institute
http://goo. gl/qzq5mV.

[75] Azure IoT Suite [WWW Document], n.d. URL https://azure.microsoft.com/en-
us/solutions/iot-suite/ (accessed 5.22.16).

[76] What is Xively - Xively [WWW Document], n.d. URL
https://xively.com/whats_xively/ (accessed 5.22.16).

[77] Leveraging the Internet of Things for Competitive
Advantage. Knowledge@Wharton (2016, March 22). Retrieved from
http://knowledge.wharton.upenn.edu/article/leveraging-the-internet-of-things-
for-competitive-advantage/.

[78] W. Bolton, Chapter 1 - Programmable Logic Controllers, In Programmable Logic
Controllers (Fifth Edition), Newnes, Boston, 2009, Pages 1-19, ISBN
9781856177511, http://dx.doi.org/10.1016/B978-1-85617-751-1.00001-X.

[79] TinyDB: A Declarative Database for Sensor Networks [WWW Document], n.d. URL
http://telegraph.cs.berkeley.edu/tinydb/ (accessed 5.23.16).

[80] IrisNet [WWW Document], n.d. URL
http://research.microsoft.com/pubs/76117/pervasive-03.pdf (accessed 5.23.16).

[81] Microsoft_Azure_IoT_Reference_Architecture.pdf [WWW Document], n.d. URL
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-
87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf (accessed
5.25.16).

[82] “Service Assisted Communication” for Connected Devices | Clemens Vasters. [WWW
Document], n.d. URL
https://blogs.msdn.microsoft.com/clemensv/2014/02/09/service-assisted-
communication-for-connected-devices/ (accessed 5.26.16).

[83] Michael Glienecke, David Lewis, Declan O' Sullivan, A Value Added Device Gateway
Architecture for Sensors and Actuators, International	Journal	of	Sensor	and	Related	
Networks	(IJSRN), 1, (1), 2013, p31 – 36

[84] Vogel-Heuser, Birgit, et al. Handbuch Industrie 4.0 Bd.2, 2nd Ed: Automatisierung
(VDI Springer Reference). Springer Vieweg, 2017

[85] “OPC-UA (Unified Architecture)“ [WWW Document]. OPC Foundation (blog).
accessed 3rd June 2018. https://opcfoundation.org/about/opc-technologies/opc-
ua/

[86] “OPC-Classic“ [WWW Document]. OPC Foundation (blog). accessed 3rd June 2018.
https://opcfoundation.org/about/opc-technologies/opc-classic/

[87] Abele, Eberhard, und Gunther Reinhart. Zukunft der Produktion. Hanser München,
2011.

[88] Jammes, François, und Harm Smit. „Service-oriented paradigms in industrial
automation“. IEEE Transactions on industrial informatics 1, Nr. 1 (2005): 62–70.

[89] H. Bohn, A. Bobek, und F. Golatowski. „SIRENA - Service Infrastructure for Real-time
Embedded Networked Devices: A service oriented framework for different
domains“. In International Conference on Networking, International Conference on
Systems and International Conference on Mobile Communications and Learning

Page 191 / 252

Technologies (ICNICONSMCL’06), 43–43, 2006.
https://doi.org/10.1109/ICNICONSMCL.2006.196.

[90] A. Cannata, M. Gerosa, und M. Taisch. „SOCRADES: A framework for developing
intelligent systems in manufacturing“. In 2008 IEEE International Conference on
Industrial Engineering and Engineering Management, 1904–8, 2008.
https://doi.org/10.1109/IEEM.2008.4738203.

[91] Razzaque, M. A., M. Milojevic-Jevric, A. Palade, und S. Clarke. „Middleware for
Internet of Things: A Survey“. IEEE	 Internet	of	Things	 Journal 3, Nr. 1 (February
2016): 70–95. https://doi.org/10.1109/JIOT.2015.2498900.

[92] Gaitan, Nicoleta-Cristina, Vasile Gheorghita Gaitan, Stefan Pentiuc, Ioan Ungurean,
und E Dodiu. „Middleware Based Model of Heterogeneous Systems for SCADA
Distributed Applications“. Advances	 in	Electrical	and	Computer	Engineering 10 (1.
Mai 2010). https://doi.org/10.4316/aece.2010.02021.

[93] Yin, S., und O. Kaynak. „Big Data for Modern Industry: Challenges and Trends [Point
of View]“. Proceedings of the IEEE 103, Nr. 2 (February 2015): 143–46.
https://doi.org/10.1109/JPROC.2015.2388958.

[94] Kob, D. & Mayrhofer, R. Berg Huettenmaenn Monatsh (2018) 163: 253.
https://doi.org/10.1007/s00501-018-0742-8

[95] Bauernhansl, Thomas. „Die Vierte Industrielle Revolution – Der Weg in ein
wertschaffendes Produktionsparadigma“. In Handbuch Industrie 4.0 Bd.4:
Allgemeine Grundlagen, herausgegeben von Birgit Vogel-Heuser, Thomas
Bauernhansl, und Michael ten Hompel, 1–31. Springer Reference Technik. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2017. https://doi.org/10.1007/978-3-662-
53254-6_1.

[96] „Cyber-physical microservices: An IoT-based framework for manufacturing
systems“. 2018 IEEE Industrial Cyber-Physical Systems (ICPS), Industrial Cyber-
Physical Systems (ICPS), 2018 IEEE, 2018, 232.
https://doi.org/10.1109/ICPHYS.2018.8387665.

[97] Diedrich, Christian, und Matthias Riedl. „Integration von Automatisierungsgeräten
in Industrie-4.0-Komponenten“. In Handbuch Industrie 4.0 Bd.2: Automatisierung,
herausgegeben von Birgit Vogel-Heuser, Thomas Bauernhansl, und Michael ten
Hompel, 279–92. Springer Reference Technik. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017. https://doi.org/10.1007/978-3-662-53248-5_63.

[98] Fernández-Caramés, Tiago M., Paula Fraga-Lamas, Manuel Suárez-Albela, und
Manuel A. Díaz-Bouza. „A Fog Computing Based Cyber-Physical System for the
Automation of Pipe-Related Tasks in the Industry 4.0 Shipyard“. Sensors 18, Nr. 6
(Juni 2018): 1961. https://doi.org/10.3390/s18061961.

[99] García, Marcelo V., Edurne Irisarri, Federico Pérez, Elisabet Estévez, und Marga
Marcos. „Arquitectura de Automatización basada en Sistemas Ciberfísicos para la
Fabricación Flexible en la Industria de Petróleo y Gas“. Revista Iberoamericana de
Automática e Informática industrial 15, Nr. 2 (5. March 2018): 156–66.
https://doi.org/10.4995/riai.2017.8823.

[100] Hofmann, Erik, und Marco Rüsch. „Industry 4.0 and the current status as well as
future prospects on logistics“. Computers in Industry 89 (1. August 2017): 23–34.
https://doi.org/10.1016/j.compind.2017.04.002.

[101] Kagermann, Henning. „Chancen von Industrie 4.0 nutzen“. In Handbuch Industrie
4.0 Bd.4: Allgemeine Grundlagen, herausgegeben von Birgit Vogel-Heuser, Thomas
Bauernhansl, und Michael ten Hompel, 237–48. Springer Reference Technik. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2017. https://doi.org/10.1007/978-3-662-
53254-6_12.

[102] Kayabay, K., M. O. Gökalp, P. E. Eren, und A. Koçyiğit. „[WiP] A Workflow and Cloud
Based Service-Oriented Architecture for Distributed Manufacturing in Industry 4.0
Context“. In 2018 IEEE 11th Conference on Service-Oriented Computing and
Applications (SOCA), 88–92, 2018. https://doi.org/10.1109/SOCA.2018.00020.

Page 192 / 252

[103] Mayer, Felix, und Dorothea Pantförder. „Unterstützung des Menschen in Cyber-
Physical Production Systems“. In Handbuch Industrie 4.0 Bd.2: Automatisierung,
herausgegeben von Birgit Vogel-Heuser, Thomas Bauernhansl, und Michael ten
Hompel, 525–35. Springer Reference Technik. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017. https://doi.org/10.1007/978-3-662-53248-5_76.

[104] Nowakowski, E., M. Farwick, T. Trojer, M. Haeusler, J. Kessler, und R. Breu.
„Enterprise Architecture Planning in the Context of Industry 4.0 Transformations“.
In 2018 IEEE 22nd International Enterprise Distributed Object Computing
Conference (EDOC), 35–43, 2018. https://doi.org/10.1109/EDOC.2018.00015.

[105] Schöning, Harald, und Marc Dorchain. „Big Smart Data – Intelligent Operations,
Analysis und Process Alignment“. In Handbuch Industrie 4.0 Bd.2: Automatisierung,
herausgegeben von Birgit Vogel-Heuser, Thomas Bauernhansl, und Michael ten
Hompel, 457–69. Springer Reference Technik. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017. https://doi.org/10.1007/978-3-662-53248-5_70.

[106] Tauchnitz, Thomas. „Schnittstellen ermöglichen Datenintegration in der
Prozessindustrie“. In Handbuch Industrie 4.0 Bd.2: Automatisierung,
herausgegeben von Birgit Vogel-Heuser, Thomas Bauernhansl, und Michael ten
Hompel, 335–48. Springer Reference Technik. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017. https://doi.org/10.1007/978-3-662-53248-5_64.

[107] Wolter, M.I., Mönnig, A., Hummel, M., Schneemann, C., Weber, E., Zika, G.,
Helmrich, R., Maier, T., Neuber-Pohl, C., n.d. Industrie 4.0 und die Folgen für
Arbeitsmarkt und Wirtschaft: Szenariorechnungen im Rahmen der BIBB-IAB-
Qualifikations- und Berufsfeldprojektionen 70.

Page 193 / 252

A. Appendix	1	‐	Use	Case	Details	

In section 3.1 two usage scenarios were defined, which contained abbreviated use cases. These use cases are fully defined in the sub-sections A.1and A.2

and include a full description, pre-conditions, post-conditions, and error-scenarios.

A.1 Corrosion	lab	

In this scenario it is assumed that the parts are devices which have two sensor values:

- Q-Factor (1 to 10 in steps of 1 or 0 if not defined)

- current position as a Zone A, B, C or undefined

For the scenario it does not matter if these sensors are stored permanently, implemented as real sensor values, or just computed on the fly by looking up

the data in a back-end data source.

For the corrosion lab scenario (see section 3.1.1) Table A.1 defines the relevant use cases:

Table	A.1:	Corrosion	lab	scenario	complete	use	case	table	

Use Case

Page 194 / 252

Get part

location

Description: Get the current zone (A, B, C or undefined) where the part (identified by its id) is currently located. This can be either

the last transmitted position or the last stored value (needed after restart of gateway) or undefined in case no position

is available. 	

Pre-Condition: Device-Id is valid and device is found

During loading the last known position has to be restored as current value	

Post-Condition: N/A

Error Scenario: Invalid device id causes an exception / error to be returned to the called	

Query Q-

factor for

part	

Description: Get the current Q-factor as sensor data for the part (which is a device identified by its id). The default for new devices

would be 0	

Pre-Condition: Device-Id is valid and device is found

Post-Condition: N/A

Error Scenario: Invalid device id causes an exception / error to be returned to the called

Cyclic

calculation of

Q-factor	

Description: This use case is assumed to be run cyclic every 30 seconds to always have the most up to date factors available.

In each run iterate over all defined parts (devices) and those which are currently valid (being in a defined zone) will

have a Q-Factor (1 to 10 as value in steps of 1) assigned. Non-Valid parts or parts currently not in use will receive 0

automatically.

The Q-factor will be determined for the usage scenario as a random number from 1 to 10 (in reality it would be a

complex calculation for the parts movements in chambers, etc.)

Pre-Condition: There are defined parts

Page 195 / 252

Post-Condition: All defined parts have a Q-factor associated (0 or 1..10)

Error Scenario: N/A

Send part

movements

in 3 zones

and

undefined	

Description: An external process (RFID simulator) to the gateway scans the gateway for all parts currently defined and for each part

sends a random new position A, B, C or undefined every second.

Therefore, all parts move every second into a new position (or remain at their current one if the new position equals

the current one)

Pre-Condition: There are defined parts

Post-Condition: All defined parts have a new position after each iteration

Error Scenario: Parts in an invalid state are detected by the validation handler in the gateway and treated accordingly

Read

chamber data	

Description: The chambers are simulated by an external process to the gateway which randomly generates values for the humidity

(0..100%), temperature (233K to 333K146) and salt brine concentration (0..60%). Again by random either no data will

be returned (to simulate sensor failure) or a value outside the defined range (to simulate reading fault). It should be

possible to set an option that only erroneous or no data is generated for some time to force an error condition in the

gateway.

These chamber values are to be read by the gateway using a PULL operation every second and stored internally as the

current readings for the chamber.

146 0°C = 273,5 K -> -40° .. +60° = 233K .. 333K

Page 196 / 252

In the validation handler each sensor is checked for the defined limits and in case a limit is breached the value is

ignored	

Pre-Condition: The external process is available for reading

Post-Condition: The provided value is taken as the new value for the devices gateway’s sensor data

Error Scenario: External process is not available raises an alert

Invalid data is checked by the validation handler and ignored

Check if part

status is ok	

Description: This validation is taking place every time a part moves by means of the simulator sending a new part position. It is

checked that:

- When a part is in the wrong chamber for the selected test an alert is raised. To figure out the “right chamber”

the part id can be used to look up the valid zone using a match table in the database or internal storage by

means of SQL or Web-service call

- When parts are moved out of a chamber into the pre-chamber-zone and not restored into a chamber within 15

seconds an alert is raised

Check if the part is not in an invalid chamber for the current test, the part is not scheduled to be tested, the part has

been tested already or the part has been “forgotten” in the preparation area	

Pre-Condition: A part was moved and the simulator sent a new zone

Post-Condition: If everything is fine nothing happens, otherwise an alert is raised

Error Scenario: N/A

Description: This use case is assumed to be run cyclic every 10 seconds to always have a proper system state.

Page 197 / 252

Check read

cycle

frequency	

In each iteration it is checked, that chamber data has been read and is valid within the last 10 seconds. Otherwise an

alert is raised.	

Pre-Condition: N/A

Post-Condition: If everything is fine nothing happens, otherwise an alert is raised	

Error Scenario: N/A

Raise alert	 Description: This use case is intended to be implemented as writing to an actuator, whereas the actuator would be “alerting service”.

Every time something is written to the actuator it is actually forwarded to an external process which will display the

data written to the actuator on the console147.

Pre-Condition: Actuator is registered

External process is running so the actuator can forward the message

Post-Condition: N/A

Error Scenario: When the external process is not running an exception / error is returned to the caller

147 In real life this might be sending information via SMS or E-Mail to a central instance, etc.

Page 198 / 252

A.2 Exhibition	visitor	congestion	display	system	

In this scenario it is assumed that the simulated users are sensors of a device “exhibition_users” and each sensor value represents the current position

as X/Y tuple in the serialized form of a Point148 class of the .NET runtime environment. The heatmap is a special sensor of the same device as well.

For the scenario no sensor values are stored to the database, so just kept in memory and initialized as empty points (X/Y = 0).

For the exhibition visitor congestion display system scenario (see section 3.1.2) Table A.2 defines the relevant use cases:

Table	A.2:	Exhibition	visitor	congestion	display	system	scenario	complete	use	case	table	

Use Case

Send position

Description: An external process to the gateway is assumed to scan all defined users (sensors) and generate movement changes as

sensor data every second.

The change is always in arbitrary random directions with random speeds (from 0 to 2 units per iteration). If a “wall” of

the defined coordinate space (100 x 100) is hit, the direction is reversed.

In random intervals wrong coordinates (too large and too small) are supposed to be sent to the gateway.

Pre-Condition: Users are defined as sensors of the device

148 https://msdn.microsoft.com/library/system.drawing.point(v=vs.110).aspx

Page 199 / 252

Post-Condition: The sensors (users) have a new coordinate

Error Scenario: N/A

Read heat

map	

Description: Read the current value of sensor heatmap and return the data as is. If no data is present, calculate the heatmap on the

fly (like the cycle task would do).	

Pre-Condition: N/A

Post-Condition: N/A

Error Scenario: N/A

Validate

position	

Description: Implemented as a validation rule for the new arriving position the X/Y coordinate are checked against the “walls” of the

coordinate space. If a violation occurs the data change is ignored and the user is set to an undefined position (0,0)	

Pre-Condition: Inbound sensor data with new position

Post-Condition: Valid data causes the sensor to update, invalid data is ignored and user is in undefined position

Error Scenario: N/A

Calculate heat

map data	

Description: This is intended as a cyclic operation running every 1 second.

All defined users having a valid position are traversed and the heatmap data is calculated. For the heatmap the

coordinate space is divided in 10 units in X and Y direction (so in total 100 rectangles) and the number of users in each

rectangle is stored in an array (for example [0, 0] -> 1 user, [1, 0] -> 4 users, …). This array is serialized and stored as

the value of the “heatmap” sensor

Pre-Condition: Valid users are present

Post-Condition: Heatmap data is stored in sensor heatmap

Page 200 / 252

Error Scenario: N/A

Page 201 / 252

B. Appendix	2	‐	Specification	Details	

B.1 Gateway	architecture	feature	definition	

Table	B.1:	Gateway	architecture	feature	definition	

Feature / Functionality Meaning / Importance

Customization required

before use

The main question for many integration environments is if you

have to adjust the underlying gateway before it can be used or is it

usable “out of the box”.

For larger systems the customization is no issue as it usually is

only a minor part of any project, yet for smaller scale projects the

setup costs and knowledge involved can be a major factor.

Especially the complexity which usually comes with highly

customizable solutions is a challenge for many integrators as it

requires a deep knowledge of all involved subsystems.

Available “in-house” Can the gateway be used / operated within the premises of the

integration environment or does it have to run in the “outside”

world? Many use cases simply prohibit – either by means of

security, cost, operational requirements or simply policy – the use

of external systems for any kind of more sensitive data.

Especially for more localized integration scenarios (machines, local

sensors, etc.) where direct feedback from the gateway to the

sensors and for example autonomous support is important this “in-

house” availability is a required feature. External systems could

not be reachable due to link problems, etc. – which might happen

in-house as well – yet, the probability is higher as more externally

controlled edges in the communication path are involved.

Hostable in the cloud This feature is of paramount important when measurements of

geographically disperse items are to be taken, which have no

common network link to a centralized gateway system.

Page 202 / 252

Here a cloud-based solution is the only option. Usually this implies

a real large-scale gateway where many devices are connected and

data is exchanged all the time.

Amount of infrastructure /

additional services needed

The higher the amount of additional infrastructure and service is,

the more complex a solution usually gets – making it harder to

change and enhance in the future as well.

Every additional component adds insecurity and dependencies

which in the long run can render a system very hard to adapt.

Cost Cost usually is an important factor for decisions as it is a constant

drain and usually occurs monthly (especially for cloud based

solutions).

The total cost of a solution is usually the combination of the fixed

costs (either initially or monthly) and the running costs. The more

complex a solution is – especially in terms of additional

components / services – the costlier it usually ends to be.

This usually stems from the fact that for each special component

specialized knowledge for integration and maintenance must be

present or purchased.

Support for very large

number of devices

Usually a gateway will have to handle between several and in

medium-sized environments 200 – 500 sensors. Yet in large and

very-large scale environments this could increase to several

thousand or even hundred thousand.

In case such large device numbers are involved normally these

devices are geographically separated and therefore cloud based

gateways become more important as well.

There exist special cases like RFID usage or wearable devices,

where large numbers of devices can be reached in very small space

and then this factor could become an issue for scaling and

resilience of “in-house” solutions as well.

Failover, Cluster-Support When only several devices are connected to a gateway in an

experimental environment or in case a system failure is not a real

problem then these features have no real meaning.

Page 203 / 252

Usually, as soon as gateways have to write sensor values, or an

autonomous operation takes place, then these features become

mandatory.

Data can be written to the

sensors

Does the gateway support writing values to the devices, or is only

read support provided?

As most gateways are usually used to only read data (for writing

often dedicated hardware solutions – PLCs – are used in the

industry149) this feature is mostly relevant in no time-critical and

no harmful processes.

Yet in combination with PLCs it can be extremely valuable as the

writing of a value (which would be done by the PLC) can be

triggered by writing a value to the PLC. PLCs are usually

networked (at least the modern ones) but have no or very little

process integration capabilities (they are very technical devices).

So the gateway can then use the native PLC protocol (mostly a

fieldbus protocol) and access the PLC (submit a command) which

is then resulting in a sensor write by the PLC.

Therefore the gateway then acts as a mediator (protocol

converter) between client and PLC (and from there the sensor)

Asynchronous information

about changes

A client can either perform some kind of “busy polling” to always

retrieve the latest value or is called back asynchronously when a

change occurs.

Busy polling as such is no problem as long as the frequency is not

too high and not too many requests for too many devices arrive

(causing load issues). The preferred approach for scalability and a

more reactive integration pattern would be an asynchronous

information based on which the client could perform some action.

149 Especially as they guarantee either the writing to a sensor or the raising of an error

condition if it cannot be written. When for example sending a “close” command to a

valve in a chemical process it is of paramount importance to know that it is either

closed within x msec or a high-priority alert is raised.

Page 204 / 252

Autonomous system

support / workflow

exection

In case the gateway is supposed to perform independent

operations (for example control some actuators based on some

inbound readings or perform some general action whenever a

value changes) autonomous operation of the gateway becomes

important.

In case the gateway offers no such support another system

(typically a client listening to the triggering values) would perform

the needed operations. Therefore, in the end the result might be

the same, yet another (virtual) machine is needed, more

integration has to be done and more failures can occur.

Data is stored internally To be able to provide a client with the ability to query historic data

for a value the gateway must store the data in a way that it is

accessible. This usually requires the data to be stored internally (or

at least close) to the gateway.

As usually historic data is of relevance for consumers (at least in

business process integration nearly always someone has to create

a kind of report with historic data), this is a rather important

feature.

Inbound data can data be

intercepted, analysed,

checked

In case data cannot be intercepted, analysed and checked in the

gateway this functionality has to be implemented on a separate

system. Yet here the problem might be that the perhaps incorrect

value already is “in the system” and might be consumed by another

data consumer with the incorrect value. In addition, if the value

has to be dismissed entirely, the history records might have been

written already, etc.

Thus, for a real business integration, where data is supposed to be

manipulated in the system which generates it, this requirement is

of paramount importance as it forms the backbone of the data

enrichment for processes.

To enrich data, it is necessary to align and normalize the data first.

Support for data querying As it is extremely important for consumers to be able to retrieve

data, which was captured by a gateway in an efficient and

Page 205 / 252

functional way each gateway architecture should offer some

functionality to do so.

Communication pattern In principle any communication pattern is usable. Yet from the

author’s experience it has proven that most integrators have more

problems with message based systems as the pure asynchronous

operation – especially when writing is involved – can be a major

issue regarding the learning curve and constant source of errors

and problems.

Most integrators are simply used to the pattern to call an action in

a gateway and receive an answer right away. A transaction which

might or might not succeed is therefore a problem. Especially

when it is important to know if a for example write was performed

(which is not easily possible with message based systems)

Synchronous /

asynchronous

communication model

This is the same area as the communication pattern.

Level of coupling of

gateway and consumers

(client)

In case a coupling is loose this might be a benefit (or even a

requirement) in geographically separated environments as there

no constant link can be easily established and maintained. Thus it

is important that no permanent (tight) connection is needed.

Yet in a more local environment this tightness using a permanent

connection has benefits as well. Usually data can be much faster

transferred, less errors occur and the integration very often is

much smoother.

For pure loosely coupled systems message exchange is the only

real communication pattern.

Preservation of state

(knowledge about a

sensor)

In case the gateway is simply used as a message relay, the

maintenance of state is no big issue. Yet as soon as the current

sensor state gets more important (like for example in autonomous

system integration) the gateway has to have a state representation

of the sensor.

In addition if no state is preserved no querying of a “current” state

can be done which means that either the consuming application

Page 206 / 252

has to maintain the state for the relevant data of the sensors or the

data has to be queried live all the time.

Semantic data value

increase

Does the gateway allow new data to be generated or existing data

enhanced in a way that new business value can be generated?

Page 207 / 252

C. Appendix	3	‐	Device‐Details	

In this appendix details about devices covered by the thesis (section C.1),

common operations in device integration (section C.2) and integration

patterns of devices into business process (section C.3) are given.

C.1 Devices	considered	for	the	DBGA	

In this thesis two kinds of devices are considered:

- Physical	devices with some communication facilities which exist as

an entity in the real world;

- Logical	(virtual)	devices which only exist as a definition, data source

or provider of information towards the architecture.

For physical devices it does not matter if a device is a simple temperature

sensor with just 2 pins and a signal as an analog voltage which has to be read

via an A/D converter behind an interface port, or a complex device like a

smartphone which can communicate using TCP/IP and WS* services or REST,

or a PLC with a Profibus interface.

The very same applies to logical devices – these can be simple discrete values

or complex ones generated by internal rules. The value which is generated

serves as data input for the consumer as well.

In higher abstraction layers, physical and logical devices start to blend in their

characteristics as they share functionality, communication patterns, and so on.

Due to the, at least currently, ever-increasing communication and CPU /

memory facilities of physical devices (according to [84], [87]), quite soon

many physical devices will have no difference to a logical device

whatsoever150.

The DBGA has to be agnostic to the fact if it is a physical or logical device –

operations and proceedings must be the same for both.

150 Here IoT would be different as devices have form-factors, communication and

energy requirements, etc. which are not easy to overcome despite the general

advances in computer technology

Page 208 / 252

C.1.1 Physical	devices	
Physical devices considered in this thesis can be divided into network‐

enabled devices which have support for networking operation (with the

corresponding protocol stack), and non‐networked	devices, which are

usually connected by means of some wire-protocol (RS-232, RS-485, I2C, SPI,

FireWire, USB, etc.). A third group would be RFID‐based	devices which can be

interfaced using RFID technology.

C.1.2 Networked	devices	
A typical example of a networked device (in industry environments) would be

a Siemens S7151 PLC, which provides sensors and actuators, and is accessed

using a TCP/IP based protocol in specialized libraries.

Other very important devices nowadays would be smartphones or tablets.

They are ubiquitous and pervasive, provide a plethora of sensors152, are

accessible directly via TCP/IP (using wireless communication technology),

provide displays for interaction and have enormous processing power and

long energy support. Due to their form factor they can remain with the user

and thus provide very personalized sensing and feedback (actuator support)

which is increasingly interesting in business-process integration – mainly as

user interface for process interaction153 [84].

In general, for most use-cases the networked device (especially with TCP/IP)

will be the “device of choice” as it is easy to connect and most operational

parameters are standardized (by various specifications).

C.1.3 Non‐networked	devices	
These devices usually are connected by means of some serial protocol using

wires or being read from an I/O port. Classical examples would be SPI bus

151 https://w3.siemens.com/mcms/programmable-logic-controller/en/advanced-

controller/s7-300/pages/default.aspx

152 The current iPhone 6 provides: 3 axis gyroscope, 3 axis accelerometer, digital

compass, iBeacon, proximity sensor, ambient light sensor, touch id fingerprint reader,

barometer, camera

153 http://www.criticalmanufacturing.com/de/newsroom/blog/posts/blog/mobile-

devices-in-industry-4-0#.Wy-DC6dKjD8

Page 209 / 252

(see[40]) or I2C (see [39]) as de facto industry standards or RS-232 and RS-

485 as more “old-fashioned” and much less standardized connection methods.

The big difference between “old connection styles” (like RS-232) and new

ones is that the old ones in principle only defined the physical layer (the

hardware layout, pins, voltages) and gave no or very limited protocol

specification, timings, etc.154.

The lack of standardization / definition especially can lead to many problems

when connecting these devices, as any protocol to transport data over these

connections (including timing) must be specially implemented and is usually

supplier-proprietary. A very typical example of a RS-232 protocol would be

3964R from Siemens which was used before the Ethernet was available for

automation in almost all PLC applications undertaken by Siemens and others.

Nowadays – using SPI bus and I2C – these problems are solved and the

interfacing is usually very simple as most runtime environments or

development systems contain standard libraries / functionality to handle the

device access. So usually to read a value from an I2C device just means calling

some library function.

One additional challenge is that I2C and SPI bus were designed to connect

sensors using this serial protocol to a system, yet a PC usually is not equipped

for a task like that (missing I/O boards). So, to handle this efficiently, usually a

device board, which contains independent processing power, is placed in

between the PC and the I2C / SMI bus sensor. Boards like this would then act,

as mentioned before, as network enabled devices or custom devices like for

example a smartphone which internally uses I2C very often to connect the

various sensors.

C.1.3.1 RFID‐based	devices	

These devices are special, since to interface with them dedicated hardware is

required to generate the radio frequencies that are necessary. Thus, device

interaction is usually done via an RFID-gateway or transponder.

154 So it was more like “connect to the device using 300 bauds on a RS-232 cross-

cable”

Page 210 / 252

The RFID-based device is mostly used like an indicator (thus like a flag) telling

a receiver (and therefore the gateway ultimately) that the device (and the

thing it is attached to) is in its vicinity. For this a RFID-tag (which is the most

common use case with RFID) is programmed with an identifier by which the

labelled thing can be identified further on155. By means of triangulation and

signal run length calculation the 3-dimensional position can be calculated and

delivered. Most use cases involving RFID-sensors just check if a device is in or

out of a boundary (for example surgical instruments in or out of an operation

theatre) or if the device moves between “cells” (like in the author’s customer

case) or is idling.

C.1.4 Logical	devices	
A logical device is anything which just exists as a virtual concept – an

abstraction – capable to submit and / or receive data. So, a logical device can

be an input (sensor), an output (actuator), or both. Therefore, in principle a

logical device can be considered a software service which can be interfaced

using standard protocols and integrated and consumed instantly into a

business process, by means of pre-aggregated data and processing by pre-

defined rules and operations the logical device.

A logical device, like any physical device, has a number of properties which

would be its sensors and perhaps actuators as well.

For the DBGA, logical devices are very important as they provide an

abstraction layer which allows chaining of devices. A logical device can be the

input (together with other logical / physical devices) for another output

(again as logical device).

Typical examples of logical devices would be:

- A process which monitors current factory-wide counters (using a

variety of data sources) and publishes them (for example production

count, error count, etc.) as sensor readings to the gateway;

155 Usually tags have only approximately 18 bytes of usable data, so not very can be

fitted on them

Page 211 / 252

- A process which takes output from the gateway (for example some

process indicators) and publishes them towards a company-wide data

warehouse so the data can be further aggregated.

Such a typical combination and chaining is shown in Figure C.1 where one

logical and one physical device are combined by means for a process which

acts as the source for device X (in the gateway) with the sensor values

associated.

Figure	C.1:	Logical	Device	Chain	

C.1.5 Consumers	of	device	data	considered	
Device data can be principally consumed by any software capable to request

the data and process the response. In this thesis it is assumed that data

consumers of device data fall into 3 different categories (which share

similarities, of course):

1) Business processes in general which receive data from devices when

data changes or a scanning cycle retrieves new values.

Most data will be delivered as pushing data to the process so it can

react accordingly, instead of actively (busy) poll for data from the

process.

2) “Classical” applications interested in just some data items – in

principle the same as business processes, yet more often scanning for

data (polling) will be involved.

3) Business (or information) users querying data from the device using

methods like ODATA to retrieve more structured information on a

act Logical Dev ice Chain

Logical
Device A

Phyiscal
Device B

f(A * B)

Logcial
Device X

Page 212 / 252

large-scale basis. Usually these users will create reports, etc. with the

data.

Here only active data retrieval (query) is relevant.

C.2 Common	operations	in	device	integration	

When working with devices, regardless of the integration method used, the

operations described in the sub-sections of this section (section B to section

C.2.5) are commonplace and exist almost everywhere.

C.2.1 Reading	device	data	(including	cleansing,	filtering	and	
manipulating)	
When values are to be consumed, any application – gateways as well – have to

obey the following sequence for any data item entering the system if they

want to preserve data integrity:

 Read data item;

 Check that the data:

o is valid as such (data format, precision) – syntax analysis;

o is within the defined bounds (min / max) – band pass filter;

o fits / matches the previous values (sudden surges, drops);

o is continuous (if a sequencing is possible);

 Handle “out-of-sync” situations (data items missing, data items sent

several times, timestamp mismatch so older data is sent after newer

data).

Handling these requirements can be especially non-trivial if the data rate is

accelerating and data is to be handled in a uniform, yet extendable way (so

new formats are to be integrated, new checks done). In addition, additional

issues will arise when business process relevant filtering has to be applied. If

for example, every new value has to be checked whether it matches the

current production batch limits, then these limits must be retrieved

dynamically and the check done as well.

One of the most crucial problems here is how erroneous data is to be handled

– should it be ignored and thus losing values, should a default be applied,

should the wrong data item (with a flag set, that it is wrong) be stored? This all

depends on the consuming application’s requirements and must be addressed

Page 213 / 252

in a device gateway (or the consuming application if data is to be retrieved

directly).

When using a device gateway, the consumer should be relieved of these

considerations and be able to entirely focus on the task to process the arriving

data, assuming that it is valid – or at least to be able to distinguish easily that it

is not.

In general handling inbound device data by any system should follow

predefined workflows for the data analysis and manipulation so that it can be

formally checked, evaluated and quality controlled.

C.2.2 Storing,	caching	and	querying	of	device	data	
Aside from just plain reading, which often is just protocol conversion, filtering

and cleansing (see section B) many implementation scenarios have in addition

a requirement to access (query) historical device data.

If an integration technology therefore has no provision to do exactly this, that

part has to be implemented by the consumer, which in case of several

consumers of the same data might require:

 That each consumer stores its own data (thus creating data silos with

all the problems about security, access, etc.);

 A centralized instance is created which stores the data and consumers

than access that instance to retrieve historical data.

In the case where historical data is realized by an integration technology

caching that data – or at least keeping something like a least recently used

cache – is mandatory so that not each request (which very often is around the

current data) has to be served from external data pools.

If historical data is provisioned another challenge to be solved by the

integration technology is how data can be queried. This could take several

options:

 Provide a mechanism in the integration technology by means of a

query language, a query facility, and so on;

 Provide access to an underlying known data source like a SQL

database and provide views therein to access the data;

Page 214 / 252

 Support a data query interface like ODATA or R, which especially for

statistical queries, is very powerful156.

C.2.3 Informing	consumers	about	change	of	data	
As more and more devices will participate in business processes (especially

with the advent of smart mobile devices), scanning values from these devices

will be not an option for consumers in many environments. Simply the sheer

amount and the availability and accessibility are not given or cannot be

guaranteed, so it has to be possible that data changes are sent to consumers

whenever they happen. This can take the form that the device only signals

when it has changed data or that devices are scanned by a device gateway and

only changed data is propagated further to consumers.

Either way requires a changed behavior from consumers as they have to start

working in a passive mode – being triggered by changed data and then doing

something, as opposed to the typical usual model of scanning for data and

then handling the change.

Currently this change information or better notification can be – depending on

available technology – be sent by using:

- communication from the gateway to the consumer in a bi-directional

way which requires a permanent connection between the two;

- writing data into a queue where a consumer is either notified by the

queue client-side instance, or the consumer scans the queue client-side

(which is much faster and less intrusive to a central system);

- the server sends asynchronous notifications using technologies like

Web-Sockets or SignalR157.

C.2.4 Writing	data	to	actuators	
Writing data to devices is a non-trivial task as it often involves quite complex

error handling and especially recovery operations. What should be done when

a write failed (and how the sender is informed – even more important for

156 Used in for example sMAP

157 SignalR is a Microsoft technology (http://www.asp.net/signalr) using Web Sockets

or alternative protocols for older browsers which allows a server to call back clients

Page 215 / 252

asynchronous operations)? Or partially failed (for example write has to occur

on 4 ports where 3 can be written and the 4th generates an interrupt)?

Write operations might need to be either synchronous (as it might take some

time (longer than a typical accepted response time) to actually trigger the

change, etc.) or involves dedicated sub-systems which are not available at the

moment. Should several requests exist at the same time to change a single

actuator either some decision is required as to who will win. Options – which

should be configurable - are: last one wins, first one wins, or all writes have to

be done in the order of their arrival.

In cases where caches for data are involved these caches have to be

synchronized with the values to be written as well – thus always the current

value which is present at the device should be the internal value as well.

So, writing in general has to be either straightforward and thus “write-

through” by design (only supporting direct writing in synchronous manner) or

the whole implications of the above-mentioned issues have to be catered for

with queues for the values to be written and so on.

C.2.5 Device	and	operations	control	(supervision)	
Very often when dealing with devices, especially in slightly more complex

scenarios than just reading some values, it becomes important that either data

changes, data arrives, data is written, and so on. Usually these events are time-

related (for example a part must change its state in 15 minutes or a sensor

value must arrive every max. 30 sec) and therefore supervision has to be time-

related as well. As each sensor is unique, it is important, that thresholds can be

set individually for each sensor and centralized tasks – the watchdog-timers,

as they are timer-based – control the conformity of the current environment

to the definition.

C.3 Device	to	business	processes	integration	and	integration	

patterns	

Today most companies utilize business processes at various levels in addition

to technical processes usually happening in industry automation (for instance

SCADA-system to control material flows, etc.). These business processes can

be as simple as procedural definitions of what has to be done when and how,

Page 216 / 252

or more complex forms where data is collected, enriched and then forwarded

to a subsequent system in a potentially fully automated way158.

Reasons to have these business processes in place are:

- Obtain a better understanding of the operations a company performs

and especially their relationships and interactions. If the business

processes are formally defined understanding of them is greatly

improved;

- As a side effect especially, the interactions between processes are

usually important as here “media breaks”, “organizational breaks”, etc.

happen, which often causes problems;

- If the activities and interactions / relationships are defined,

stakeholders can communicate efficiently and start analyzing and

improving the performance of these processes;

- Flexibility as the ability to change. Having business processes

implemented means that change can be evaluated before it is

implemented, its results measured objectively and very often

implemented without causing too much disruption as well.

A side effect and result of the flexibility is perhaps the most important

reason:

- The ability to continuously improve processes based on new evidence

and knowledge.

A typical example would be a pre-production quality assurance process (part

approval process) which guarantees that only parts which comply with a

given specification / requirement are later used during the production

process. In Figure C.2 this quality assurance process is shown in an UML

activity diagram.

158 Often using orchestration languages such as BPML (Business Process Markup

Language)

Page 217 / 252

Figure	C.2:	QA	process	

Currently (at the author's customer) this process is handled manually by

operators whereas the decision “if ok or not” should be really an automated

one. The needed measures are clearly identifiable, the requirements (as being

a norm), are too. So, the process as such would simply have to take the

evaluated measure and compare it to the limit and using the result make a

decision including the generation of the approval report (at least to some

extent).

Historically devices (regardless if sensor or actuator) of any kind were direct

communicants to / for industrial automation, but not business processes, as

they were considered too technical, less advanced to communicate easily, and

so on. Therefore, any integration of devices into business processes was done

by (very often manually) pre-aggregated (offline) data which was stored

somewhere (often in a proprietary format), but no feedback ever was given

directly back to the devices. So, there was almost never an interaction

between the business process and the device reading data and even less

sending data, therefore not really integrating the devices.

As established and automated business processes are an absolute necessity

for any improvement as envisioned by Industry 4.0. [87] the business

processes need outside communication either to send or receive information

in becoming part of an ecosystem of information exchange. This interaction

exchange is vital for the overall use of the business processes as only then

(when information exchange happens) real “flows” between processes can

take place.

To achieve this, these “interfaces” or “connection points” where the

interaction happens, need special care as they have to be easy to integrate into

act QA

Receive Test
Part

Check for compliance to
specification

Ok

Approv al for production

Reject part

Page 218 / 252

the business process as well as easily accessible for making the business

processes integration smooth, straightforward and efficient.

Still the old problem remains that the business processes usually does not

consider the devices in their flows for several reasons:

- Device integration is troublesome business (error handling, recovery,

reliability, …);

- Usually you have to deal with several (sometimes even very different

ones) of these devices (at the same time);

- Various communication patterns, protocols and methods;

- Very often information is very “low” level and not aggregated /

accumulated.

Yet this is only the communication part. Other areas worth much deeper

investigation are:

- the pre-aggregation and cleansing of data to act as better information

sources for the business process (if data is always valid and even pre-

aggregated than internal operations are simpler and easier);

- the provisioning of value added data so that more complex / efficient

decisions can be taken (like for example the costs involved with a

particular measurement like the power consumption);

- the storage of historical data to be able to quickly retrieve them in case

of need (to quickly evaluate if this pattern happened before and how);

- the ability to have autonomous functionality as a kind of “sub business

process” or agent within the larger business process directly on or

near the device (so the overall process becomes simpler as sub-

activities can be off-loaded);

- Service oriented architecture (SOA159) is very well understood in

business process integration. Why not have the device gateway as a

159 SOA-Definition: http://www.opengroup.org/soa/source-

book/soa/soa.htm#soa_definition

Page 219 / 252

service which exposes its underlying devices / information in a similar

way?

- business processes usually possess a different structure than technical

processes (for instance communication patterns, solutions involved,

technologies used, etc.) this implies that the device integration must

obey these as well.

All these points together are the basis and motivation to investigate a new

device-gateway architecture to provide answers and solutions to these points.

When it comes to integrate devices (either directly or via intermediaries) the

following two patterns exist160, which are further elaborated in the following

sub-sections of this section:

 Point-to-point

 Hub-and-Spoke integration

C.3.1 Point‐to‐Point	integration	
A typical representation of point-to-point integration can be found in Figure

C.3. Each node interested in some interaction with a device gateway addresses

the gateway directly and communicates with it. In case a direct integration is

used then each node would address (if physically possible as a device might be

attached to a node and not accessible from other nodes then) each device

required.

160 It should be noted that regardless of the integration pattern used, direct or

intermediary based integration can be used

Page 220 / 252

Application ADevice Gateway A

Device Gateway A

Application B

Application C

Application D

Figure	C.3:	Point‐to‐Point	integration	

In a classical enterprise application integration scenario many people would

argue that this tends to generate many links between systems and each

change in one system has to be propagated to all other systems connected

with it (meaning that some implementation must be changed, etc.). Therefore,

after some time the ability to change (which is vital for any business as

otherwise processes cannot be changed and standstill occurs) is lessened and

lessened and costs spiral as integration is expensive. For other people this is

acceptable – as long as the number of integrated systems is rather low, as

alternative patterns (see section C.3.2) have a huge initial overhead upfront

and can be rather complex as well.

Normally in a device-gateway context the problem is much less exaggerated as

usually only one gateway exists which changes very seldom and the attached

devices usually have a very slow change cycle as well. So, change in general

will be low and if there is a change it usually is only the data transferred, not

the protocol as such. When new value types or new measures have to be

consumed by the receiving application this implies some change anyhow

(except if the application is prepared to handle new data automatically by

discovery). The same is true for writing data to actuators.

Page 221 / 252

Therefore, the point-to-point integration is the usual integration pattern

successfully used by most people without too many problems. In general, it

produces stable, easy to control systems – as long as:

 Not too many devices are connected

and / or

 Not too many consumers have to be addressed

When talking about large numbers of devices or consumers for business

process integration then the situation starts to change as here normal device-

gateways and direct integration will usually not be able to cope with the load

and not scale well enough.

Classical examples for such kind of integration scenarios would be:

 power consumption meters of a whole suburb transmit their data to a

centralized place so distribution and power-control can be optimized

 smart devices send data for further processing to a central location

 traffic congestion monitoring devices are queried by thousands of

people all the time and especially when automated updates are offered

this causes huge loads

Giving “many” a more absolute value is not easily possible but a rough

indicator would be 5,000 - 10,000 as indicated by tests performed in this

thesis and the author’s experience. More can be handled as peak, but not on a

sustained basis. When it comes to signaling changes back to consumers the

number drops significantly as the network overhead and time required has to

be considered as well.

As device numbers grow over time (just considering the amount of RFID-tags)

and integration will get more important for business process scaling options

for device gateways have to be revised and investigated to cope with the

increase in communication.

C.3.2 Hub‐and‐Spoke	integration		
An alternative to the direct integration is the hub-and-spoke integration which

is shown in Figure C.4. Here all nodes are connected as spokes to the

centralized hub.

Page 222 / 252

Spoke A

Device Gateway
Spoke

Hub

Spoke B Spoke C Spoke D

Message Bus

Figure	C.4:	Hub‐and‐Spoke	integration	

The device-gateway spoke (which can be either a direct integrated one or one

using an intermediary) sends any data to the hub which then, by analyzing

message structure and content161 and inspecting any given rule-set, discovers

the intended receiving spokes. These will then be either notified or the

message will be placed in their message store to be retrieved later on.

This pattern is mainly employed in cases where inbound data has to be

distributed directly to a (potentially large) set of receivers and very often no

further querying of data takes place162; so in principle data streaming from

producer to consumer.

Large scale business processes involving large number of the same kind of

devices often use this technology – and nowadays very often smart devices –

which requires a rather extensive infrastructure to be operational163.

The biggest benefits of this integration pattern are:

161 Usually messages are transmitted as XML so corresponding techniques like XPath,

XQuery, etc. are used

162 Depending on the technology used the message could be transformed and enriched

on the way by means of filters / modifies on the bus like for example in Azure IoT

163 Hub servers are usually clustered as well as the database to store the messages

Page 223 / 252

 A change in the device communication or intermediary usually will not

change the messages transported

 Messages usually are designed for change and downward compatible

(so in new messages the newer parts will be simply ignored or not

even sent by the hub)

 As it is entirely rule-based receiver definition is easy to change

 Receivers only have to consume messages – no interaction with a

gateway, etc.

 Message delivery is guaranteed – any message being received will, as

long as the receiver gets online, be delivered

As much as this pattern is optimized for large consumer numbers it has some

problems as well:

 Message receiver spoke identification is very CPU intense (XML

analysis, rule sets, transforms, etc.) and thus the hub is usually highly

utilized in CPU, so load-distribution, clustered system, etc. have to be

considered

 Due to the message format the amount of data to be transported is

very high compared to the real payload. It is not uncommon to

transmit 200 or more bytes in XML for a simple 2-byte value which

explains ratios (net data to control data) of 1:10 to 1:100 very often

seen in real-world environments

 All messages not being consumed immediately have to be stored (or

discarded by rules) which makes maintenance more difficult.

 The later retrieval of “old” messages, which might be outdated, is

another challenge which must be compensated by TTL164 definitions

 Interaction with the device is normally limited to receiving new values

(whenever they arrive – no direct control there) and sending changes

to be sent to the device (no control either – everything is

asynchronous).

Still a hub-and-spoke integration, given the right scenario and infrastructure,

can be a big improvement. So any device gateway should consider these points

164 TTL = Time To Live -> the amount of time a message / data items is remaining

active before it is discarded

Page 224 / 252

as well and apply especially methodologies for serving large consumer sets in

a straightforward manner.

Page 225 / 252

D. Appendix	4	–	Design	Details	

In this appendix details about specific design issues are given. Areas covered

are the data model (section D.1), data consumers (section D.2),

communication (section D.3) and process (dynamic) view details (section

D.4).	

D.1 Data	Model	

The current data model of the DBGA is shown in Figure D.1

Figure	D.1:	Data	Model	

class Data Model

DbDev ice

«column»
*PK Id :varchar(128)
* Description :varchar(4096)

«PK»
+ PK_DbDevice(varchar)

DbDev iceAttributes

«column»
*pfK DeviceId :varchar(128)
 LocationName :varchar(128)
 Latitude :decimal(7,4)
 Longitude :decimal(7,4)
 Elevation :decimal(18,2)

«PK»
+ PK_DbDeviceAttributes(varchar)

«FK»
+ FK_DbDeviceAttributes_DbDeviceAttributes(varchar)

DbSensor

«column»
* Id :varchar(128)
*FK DeviceId :varchar(128)
*PK SensorId :int
* SensorAddress :varchar(256) = ('')
* SensorValueDataType :int = ((0))
* SensorDataRetrievalMode :int = ((0))
* ShallSensorDataBePersisted :bit = ((1))
* PersistDirectlyAfterChange :bit = ((0))
* IsVirtualSensor :bit
* SensorDataCalculationMode :int = ((0))
* VirtualSensorDefinitionType :int = ((0))
 VirtualSensorDefininition :varchar(max)
* PullModeCommunicationType :int = ((0))
 PullModeDotNetType :varchar(256) = ((0))
* PullFrequencyInSec :int = ((0))
 DefaultValue :varchar(max)
* IsSynchronousPushToActuator :bit = ((0))
* IsActuator :bit = ((0))
* PushModeCommunicationType :int = ((0))
 LastUpdate :datetime
* DataValidityThresholdInMsec :int = ((0))

«PK»
+ PK_DbSensor(int)

«unique»
+ IX_DbSensor(varchar, varchar)

«FK»
+ FK_DbSensor_DbDevice(varchar)

DbSensorData

«column»
*PK Identity :bigint
*FK SensorId :int
* TakenWhen :datetime2(0)
* Value :varchar(max)
 CorrelationId :varchar(max)

«PK»
+ PK_DbSensorData(bigint)

«index»
+ IX_DbSensorData(datetime2)

«FK»
+ FK_DbSensorData_DbSensor(int)

DbSensorDependency

«column»
*pfK BaseSensorId :int
*pfK DependentSensorId :int

«PK»
+ PK_DbSensorDependency(int, int)

«index»
+ IX_DbSensorDependency_BaseSensorId(int)
+ IX_DbSensorDependency_DependentSensorId(int)

«FK»
+ FK_DbSensorDependency_DbSensor(int)
+ FK_DbSensorDependency_DbSensor1(int)

Log

«column»
* Id :int
* Date :datetime
* Thread :varchar(255)
* Level :varchar(50)
* Logger :varchar(255)
* Message :varchar(4000)
 Exception :varchar(2000)

TrackingPoint

«column»
* Id :int
* TrackingPoint :nvarchar(100)
 AdditionalData :nvarchar(max)
* Timestamp :datetime2(0)
* Counter :bigint = ((0))
 CorrelationId :varchar(max)

«stored procedures»
ExperimentsDesign

«proc»
+ CalcVirtualValueDemo()
+ CalcVirtualValueDemoNullResult()
+ CreateDevice()
+ CreateSensor()
+ CreateSensorDependency()
+ DeleteSensorDependency()
+ MultiplyBy3()
+ sp_alterdiagram()
+ sp_creatediagram()
+ sp_dropdiagram()
+ sp_helpdiagramdefinition()
+ sp_helpdiagrams()
+ sp_renamediagram()
+ sp_upgraddiagrams()
+ UpdateDevice()
+ UpdateSensor()

DbSensorAttributes

«column»
*pfK SensorId :int
* Description :varchar(4096)
* UnitSymbol :varchar(10)
 SensorCategory :varchar(128)

«PK»
+ PK_DbSensorAttributes(int)

«FK»
+ FK_DbSensorAttributes_DbSensor(int)

+FK_DbDeviceAttributes_DbDeviceAttributes

0..*

(DeviceId = Id)

«FK»

+PK_DbDevice

1

+FK_DbSensor_DbDevice 0..*

(DeviceId = Id)

«FK»

+PK_DbDevice 1

+FK_DbSensorData_DbSensor

0..*

(SensorId = SensorId)

«FK»

+PK_DbSensor

1

+FK_DbSensorDependency_DbSensor1

0..*

(DependentSensorId = SensorId)

«FK»

+PK_DbSensor 1

+FK_DbSensorDependency_DbSensor 0..*

(BaseSensorId = SensorId)

«FK»

+PK_DbSensor

1

+FK_DbSensorAttributes_DbSensor

0..*

(SensorId = SensorId)

«FK»

+PK_DbSensor

1

Page 226 / 252

The current design can be described like this:

- Devices, sensors and their relation to each other (who is dependent

upon whom) are defined by the three tables DbDevice, DbSensor and

DbSensorDependency. Here all information necessary to handle these

instances is stored.

In DbDevice the actual device with an IP address, etc. is defined.

DbSensor defines the sensor (or actuator) on a given device with

additional attributes like the scanning frequency, the rules how a

virtual value is computed, etc.).

DbSensorDependency describes as a 1:n relation which sensor depends

on which sensor(s) thus the ability to form these dependency trees

(see Data entity trees (section 4.1.3) for more details)

- As a core assumption (based on the characteristic Data format

agnostic (section 3.5.9)) was to store all data values as simple strings

in the database the table DbSensorData holds the values of persisted

sensor values over time165.

To allow for workflow synchronization an optional correlation id can

be stored with the data item as well, so that especially long-running

software-agents can synchronize on this correlation id

- The TrackingPoint is mainly present for runtime measurement of the

systems health and performance and consists of entries generated

dynamically by the device gateway core

- Log is the central system log where all centralized logging happens

165 Storing data as simple strings seems like a waste of lots of resources, yet the

evaluation tests in chapter 6 (especially test 4 in section 6.5) show clearly that this is

no issue. Data has to be converted anyhow back and forth for transmission over

communication protocols and as REST and SOAP use textual representation to store

the data as plain text saves at least one conversion.

Page 227 / 252

In the following sub-sections, the individual tables of the data model (see the

general description in section 4.7) are described:

D.1.1 DbDevice	
Here the device, which contains the sensors (for virtual sensors this is a

virtual device) is described. As written before the meta-data associated with a

device is rather sparse in the device gateway architecture, but based on

projects needs easily extendable. To do so the table DbDeviceAttributes is

designed, which is a simple container for the device attributes.

The primary key was chosen to be a VARCHAR(128) as this allows for easy

readable and symbolic device-names (like MACHINE12_CONTROLBOX2) to be

used instead of numbers.

D.1.2 DbDeviceAttributes	
This is the main place to store attributes about a device, especially in

consideration how to find and retrieve it during a discovery process.

Initially the location and X/Y/Z-coordinates are stored here to allow

geographical identification (for example using Google Maps).

D.1.3 DbSensor	
The sensor definition is the core of the whole device gateway as here many

fields are controlling the actual flow of tasks and processes. These fields (or

attributes) can be found in Table D.1:

Table	D.1:	Sensor	definition	attributes	

Attribute Description

SensorAddress Every sensor has an address (could be

origin or destination as well) which is

in a syntax and format depending on

the designated protocol to use. For

IPv4 this would be for example

192.168.0.1 whereas for a virtual

value, which represents a system

runtime value this could be

"percentage" to indicate which value

is needed

Page 228 / 252

SensorValueDataType Describes the original data type so

semantic checks can be performed for

any inbound string representation

SensorDataRetrievalMode Describes how a value gets to the

system (PUSH / PULL / both) or in

case it is an actuator how data is

written to the actuator

(PushOnChange)

ShallSensorDataBePersisted Flag, if data after a change shall be

written to the data store or only kept

internally online. For for example only

temporary values (or very fast

changing ones) this option is relevant

as it limits the traffic to the database

considerably

PersistDirectlyAfterChange If changed data is to be persisted this

flag controls if data is cached and

persisted in bulk operations (many

updates in one transaction), or if each

update has to occur at the very

moment of change. In case it is not

entirely necessary to synchronously

update the bulk update

(asynchronously) is much better for

overall system performance

IsVirtualSensor Flag, if this sensor is a virtual one

VirtualSensorDataCalculationMode How / when the sensor data is

calculated (by a cyclic background

task, on change of an underlying

(dependent upon) data item, on

request of the value)

VirtualSensorDefinitionType How the evaluation is to be done

(Formula, C#-Expression, F#-

Page 229 / 252

Expression166, IronPython167,

JavaScript, Typename of .NET-

object168, SQL Stored Procedure)

VirtualSensorDefininition The actual script or expression to use

for evaluation. In case of IronPython

or JavaScript the actual script is stored

here

PullModeCommunicationHandler Defines the type of the communication

handler to use for PULL operations

PullFrequencyInMsec Every how many msec shall a pull

occur

DefaultValue The default value (as string) this

sensor reports if queried without valid

data present

IsSynchronousPushToActuator Is a write to an actuator necessary

directly after updating the value, or

can the write request be queued

IsActuator Is the sensor an actuator?

PushModeCommunicationType Defines the type of the communication

handler to use for PULL operations

LastUpdate When was the last update of the

current value

DataValidityThresholdInMsec How many msec since the last update

is a sensor to be still considered valid,

before a new evaluation has to take

place

166 The .NET-runtime, which is used for the reference implementation allows code to

be compiled "on the fly" and then executed. The provided C# or F# (for functional

programming) script is then compiled at runtime and executed. A similar technology

would be available with Java and most other languages as well

167 Porting of the Python runtime environment to .NET

168 Again this is specific to the .NET runtime environment and a valid type name would

for example be System.Int32. Similar technology exists in Java, too.

Page 230 / 252

D.1.4 DbSensorAttributes	
Sensor attributes are mainly used for finding sensors and at the moment

limited to a description, a free text category and a unit symbol which can be

helpful in conversions. In case of need this area can be easily extended to

allow for many more attributes.

D.1.5 DbSensorData	
Sensor data which is stored in the database consists of the sensor-id it belongs

to, the value as a character representation and a timestamp when the value

was taken. The timestamp reflects the time the value was received by the

system, not when it was written, as this - due to caching and asynchronous

writing - could be much later.

In case a workflow is involved very often an optional correlation id is needed

so that long running processes can define data belonging to them.

D.1.6 DbSensorDependency	
In a sensor dependency it is simply described which sensor is dependent upon

which. Any cyclic references (A => B, B => C, C => A) have to be resolved by

higher logical layers. The database simply stores any data passed down.

D.1.7 TrackingPoint	
The TrackingPoints are used by various part of the device gateway to track

current operations and allow the basis for further performance and system

maintenance analysis. As an example, tracking points are written when new

values arrive, during the processing of the value change and after storing. This

way it can be later analysed which operations take which time, how the

system load was, etc.

In general, a tracking point can be used by any component (custom ones,

including communication handlers as well) and store timestamps, counters,

additional data, etc.

D.1.8 Log	
All exceptions, errors and problems are protocolled (alongside runtime

information and debugging messages) into the system wide log. The level

defines if it is an error, a warning, info or a debug message.

Page 231 / 252

D.2 Data	consumers	for	the	device	gateway	

Classical consumers for the device gateway would be any kind of business

process with an interest in the data of the devices / sensors. It does not matter

if physical or virtual data is relevant – either is treated uniformly and

delivered to the receiver.

So, the consumer in general is only interested in a speedy, reliable and as

optimal for the integration scenario as possible way, to retrieve the necessary

data. Especially when historical data is being retrieved the ability to access

these in a straightforward and logical way makes a big difference.

As indicated the most classical consumer of the gateway would be a business

process of some kind, which further utilizes the data to create additional

information. Yet, it could be (and will be more and more in the future) a web

site (even facebook.com might be an option here as values can be just an

embedded information) which uses some of the values (physical / virtual)

provided to visualize data or inform users about a critical status.

In general, in the past there was a clear focus on B2B169 integration while in

the future the B2C170 and M2M171 will gain significant importance. This implies

that for B2C, human readable data and ease of use is important, whereas in

M2M the clearly structured message (which could be automatically analyzed

and optionally converted) is paramount, which implies different protocols and

data volumes for both approaches as well [48].

So, the gateway design has to cater for the specific demands of the following

user groups:

 Business processes

 Workflows

 Web sites (even facebook.com might be an option here as values can

be just an embedded information into a site); therefore, mobile users

of any kind

 “Broadcasting” services like message queuing to publish changes

169 B2B = Business to Business

170 B2C = Business to Consumer

171 M2M = Machine to Machine

Page 232 / 252

The big difference between these different user groups is that some usually

react to changes in terms of being triggered (by for example workflows or

queues), yet others query the gateway permanently to retrieve values (web

sites with busy polling might be the best example).

As these requests could be towards highly chained virtual values, where the

execution might take a lot of CPU cycles, the gateway must take considerable

care not to be overwhelmed by these requests. Classical approaches to cope

with these request "bursts" would be appropriate caching or request quota

handling so that the impact can be easier levied.

At the moment the current gateway design only considers the caching

approach because quotas require knowledge about the consumer on the other

side as each quota might be different. As this implies additional requirements

(like usage identification) caching was the simpler and more straightforward

approach.

D.3 DBGA	communication	handler	details	

The current logical overview of the communication handler structure can be

seen in Figure D.2.

Page 233 / 252

Figure	D.2:	Communication	interfaces	

Each communication handler has specific use cases, which can be briefly

characterized like:

- SOAP

In this message API style ([66]) a common set of related messages,

which is not bound to a specific procedure, is used to invoke the

desired action. These messages usually are grouped in three different

types: Command, Event and Document messages, where all three are

used in the gateway architecture. In a message all relevant information

for the specific operation is contained and delivered as well, therefore

the message acts as a container (or envelope) for the enclosed data.

A major advantage of message style APIs - and especially the SOAP

variety - is a very good support for asynchronous operations, which

cmp Communication

SOAP

REST

Binary

ODATA

Internal protocol

CNDEP

MS-MQ

Consumer /
Sender

:Gateway Engine
Core

:datastore

SignalR

«interface»
ICommunicationHandler

{only used by notification targets}

{only used by consumers}

notification about change

Page 234 / 252

helps to provide blocking.

- REST

In this resource API style ([66]) all data is addressed as resources,

where in terms of the device gateway a resource would be a device, a

sensor or a specific reading of a sensor value. The relevant resources

are represented using the URI during the communication process with

HTTP as communication protocol. A typical URI to address a sensor

would then be: http://devicegateway/sensors/3/A12345 which would

address sensor A12345 on device 3, etc.

The state of these resources is then manipulated through

representations, which is the basis for the definition of the term

"REST" (Representational State Transfer). The device gateway adheres

to the concept of "RESTfulness" (implementing REST), yet it should be

noted, that not every resource API can be considered "RESTful".

The gateway uses the standard HTTP methods (which are required to

be considered RESTful as well):

o PUT (create or update resources)

o GET (retrieve - here optionally additional parameters can be

passed like the timeframe, etc.)

o DELETE to remove a resource

o POST to set a new value for a sensor

As a special notion POST is not idempotent (which sometimes is the case with

resource APIs), so every time POST is called, a new value is considered to be

written for a sensor.

- Binary: Similar to SOAP, just the message exchange is done using

binary data instead of XML which is much faster and as no parsing of

XML is involved much less CPU consuming as well

- CNDEP: An experimental protocol designed primarily to quickly push

data into the gateway. Not very efficient and elegant when used for

data retrieval, thus mostly used by sensors to write data

- ODATA: a semantic layer on top of REST providing standardized

services for querying and potentially updating data – mainly used

together with more general purpose consumer like Microsoft Excel or

Business Intelligence Applications as it allows for a more general

Page 235 / 252

approach. As stated in the ODATA specification ([46]): “The OData

Protocol is different from other REST-based web service approaches in

that it provides a uniform way to describe both the data and the data

model. This improves semantic interoperability between systems and

allows an ecosystem to emerge”

- Message-Queue based: message queuing interfaces imply that data

access is not online and synchronous. Requests are sent to the server

and responses delivered asynchronously. This is especially interesting

in either long-running requests (for example deliver the average of the

last 500 values for 1000 sensors) or in large amount of changes being

sent which need no instant (online) processing, but can be processed

at leisure by the gateway. Such a scenario would be for example

relevant when it is more important to keep the history of a data entity

value over time than the actual value at a given moment of time.

Message queuing usually will be mainly used by consumers

D.4 Process	(Dynamic)	view	details	

In the following sub-sections various details of the process (dynamic) view

which is discussed in section 4.5 can be found.

D.4.1 Receiver	tasks	for	data	endpoint	issued	writes	
For the defined protocol handles for inbound write requests, each protocol

handler implies its own semantics:

- Message based API (for example SOAP) will be triggered by an

external request and then the web service behind the SOAP request

will handle it.

- Resource based API (for example REST) will be triggered by an

external request as well and then the passed in data (usually POST for

write operations) is process.

- Message Queue based protocols require to actively read a message

queue, retrieve the packet and then process it which implies that the

"active" side is within the receiver task

Message and resource-based API styles tasks (with ODATA as a special case of

REST) as well as binary receiver tasks are usually passive and hosted within a

Page 236 / 252

receiver application. This application will activate the corresponding task

upon arrival of a new request and processing starts.

If for example the Internet Information Server (IIS) under Windows is used for

handling these kind of requests (using WCF for it), it is a matter of defining the

service and the binding and any inbound message to this service / port is

directed towards it, where the processing happens. The same is true for REST

protocol handling as here the resulting HTTP handler is simply registered

within IIS for the port. Regardless whether IIS or an independent hosting

process is used (could be from Apache or an own implementation) for these

kinds of tasks the following statements are still true:

- Activation is done from the outside by a request arriving

- Tasks are stateless as they - in the extreme - could be removed /

recycled after each processing of a request

- The hosting process cares usually very efficiently for load balancing,

instantiation of new tasks and in general resource management

Considering these points, a design decision was made to use as much of

existing system infrastructure as possible and design the receiver tasks in a

way that they just plug into what is present.

This implies:

- For REST and ODATA a http handler which plugs into the http

processing engine (IIS in the reference implementation)

- For SOAP a http handler and for binary a binary request handler which

plugs into the http processing engine (WCF under IIS in the reference

implementation172)

- For Message Queueing and CNDEP an independent process who scans

the configured message queues and CNDEP channels and processes

incoming requests

As CNDEP and Message Queue container have to be provided by an

implementation the design here was straightforward to have simple processes

which just instantiate the handler class and then use blocking reads for newly

172 In WCF the service contract is the same for both - just the binding would be (by

configuration file) different for SOAP and binary protocol

Page 237 / 252

arriving data packets. In this way no resources are used until a real new

request arrives and if it arrives it can be handled instantaneously. Should

more requests arrive than can be handled they will be either queued (message

queue) or, after the TCP-buffer for CNDEP is exceeded discarded. Should this

happen the sender must take care to properly react on the return codes of the

requests and re-submit the data items.

D.4.2 Callback	handling	
For the various callback types the UML class diagram can be seen in Figure

D.3:

Figure	D.3:	Callback	types	

There is an abstract base class AbstractCallback which defines some

properties - most importantly the type this callback is intended for. By

specifying the type of callback, the usage of the callback is defined as well.

Currently one callback is assumed to handle only one callback type, yet this

might be changed in the future so that one callback can handle several types.

A callback has to implement only the method ExecuteCallback() which gets

passed in CallbackPassInData which describes the current value, its definition

and the base definitions, which make up the current value. This is very

important for example for virtual values as then all nodes in the tree can be

traversed accordingly.

Via the pass in data, the callback has access to the currently cached (and non-

cached by means of data store retrieval) historic values which might be

needed to for example calculate a running mean.

class Callback Handling

«abstract»
AbstractCallback

- CallbackType :CallbackType

+ ExecuteCallback(CallbackPassInData) :CallbackResultData

CompiledMethodCallback CSharpInteractiv eCallback FSharpInteractiv eCallback PythonCallback SoftwareAgentCallback SqlInteractiv eCallbackJav aScriptCallback

«Enumeration»
CallbackType

CallbackResultData

- IsCancelled :boolean
- IsValueModified :boolean
- NewSampleRate :TimeSpan
- NewValue :SensorData
- SampleRateNeedsAdjustment :boolean

CallbackPassInData

- BaseValueDefinitionList :List<ValueDefinition>
- CallbackKind :CallbackType
- CurrentValue :SensorData
- ValueDefinition :ValueDefinition

SensorData

ValueDefinition

+HistoricValues 1

0..*

+NewValue

11

Page 238 / 252

The callback can signal to the initiator the next action by using the fields of the

returned CallbackResultData object. Here it can be defined that the current

operation shall be cancelled (IsCancelled) or the sample rates should be

adjusted (SampleRateNeedsAdjustment together with NewSampleRate). When

the value has been changed (for example in a GeneralCheck callback), to

multiply every value by 2 for a compensation in a process, the new value is

simply returned, or in case of a "normal" operation nothing happens at all, so

the new value is simple the existing value.

A callback can be implemented using a variety of technologies to best suit the

integration approach (and knowledge of the integrator). Table D.2 defines the

current callback-kinds:

Table	D.2:	Callback	kinds	

Callback-Kind Meaning

CompiledMethodCallback A compiled method173 will be executed

CSharpInteractiveCallback For .NET the ability to execute a piece of

plain-text C# code by on-the-fly

compilation and execution174

FSharpInteractiveCallback The same like with C# in F# which is more

suited to functional programming and

analysis

PythonCallback On the fly execution of Python175

JavaScriptCallback On the fly execution of JavaScript176

SqlInteractiveCallback Execute code stored in a stored procedure

in a SQL database

SoftwareAgentCallback Execute a Workflow.

173 in an Assembly in the .NET environment or a JAR in Java

174 Something similar would be possible in Java as well

175 IronPython.NET

176 Hosted V8-engine (https://github.com/JavascriptNet/Javascript.Net)

Page 239 / 252

D.4.2.1 Callback	example	in	Python		
As an example, a Python script (as a GeneralCheck callback) to multiply the

provided value by 3 (to for example compensate for something) would look

like:

import clr
import ValueManagement.DynamicCallback
from ValueManagement.DynamicCallback import *
clr.AddReference('GlobalDataContracts')
import GlobalDataContracts
from GlobalDataContracts import *

callback for general check
def GeneralCheckCallback(callbackPassIn):
 callbackResult = CallbackResultData()
 callbackResult.IsValueModified = True
 callbackResult.NewValue =

GlobalDataContracts.SensorData(str(int(callbackPas
sIn.CurrentValue.Value) * 3))

return(callbackResult);

D.4.3 Error‐	and	Log	handling	component	
For an autonomous system like a device gateway, which usually just keeps

running without any human interference for days or even weeks or months, it

is of utmost importance to keep track of anything which goes wrong, as well as

let someone know about problems.

To handle the error, runtime information and debug logging, an existing

component log4Net from the Apache Software Foundation is used177, which

can be easily configured and covers all needed aspects. Log data is stored in a

configurable location - for the reference implementation inside the database.

By using a provided appender (class SmtpAppender) output can be directly

forwarded to an SMTP-gateway and therefore sent as an e-mail to a receiver.

As the actions are highly configurable only errors of a certain level will be

sent.

Using just standard components enables a very swift and fast development

cycle with a low learning curve, yet they have to be replaced, should the device

177 https://logging.apache.org/log4net/

Page 240 / 252

gateway be ported to a different runtime environment. In case Java, this would

be log4J178 which is 100% similar to the used version.

D.4.4 Gateway	engine	core	
The gateway engine core component acts as the central component which will

launch all other operations and provides a complete repository of all loaded

instances, services, etc. Thus, it is a central dictionary that any component

inside the device gateway ecosystem can use to query the current

environment and reach any other component registered.

The gateway engine will be usually launched from a launching process which

is for example the device gateway server starter process. This launching

process acts as a start-up routine, the main work is done inside the engine

core.

D.4.5 Dynamic	configuration	
Configuration management is an important issue for a system like the device

gateway yet the standard mechanisms provided by the hosting environments

are enough to set the necessary values179.

The design assumes a centralized Singleton which holds all configurable

values as a centralized dictionary, acting as a cache as well. Writing is not

permitted and an exception is generated as no write-through to the

underlying data store can be guaranteed. Therefore, changing the

configuration has to happen outside of the framework by writing into the

textual configuration files using an editor.

By using the singleton approach the implementation can be easily changed

should the need arise later on to a database-based version. Then only some

methods have to be changed (fill the dictionary and write).

178 https://logging.apache.org/log4j/2.x/

179 As currently roughly 25 entries are configurable this seemed like a moderate

approach

