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Abstract

In this thesis we develop spatial models for damage accumulation in the bone cement 

of hip replacement specimens. A to tal hip replacement consists of an artificial cup, 

forming the socket portion of the joint, and a prosthesis inserted into the femur, 

replacing the ball part of the joint. Both components are fixated to the bone using 

an acrylic polymer known as bone cement. The dominant mode of failure of the hip 

replacement is the aseptic loosening of the components due to damage accumulation 

consisting of crack initiation and crack growth in the bone cement.

The da ta  analysed come from a laboratory experiment in which 5 hip replacement 

specimens were subjected to a stress loading typical of normal use. Finite element 

stress measurements, together with start and end locations of each crack were pro

vided.

As well as stress being a factor in damage accumulation, it is known th a t other 

spatially varying factors, for example pores, have an influence on crack initiation and 

growth. We develop two spatial models for crack initiation. Both models incorporate 

stress and allow for spatially varying latent factors to be modelled. A discrete model is 

proposed, in which crack counts in regions are modelled using an identity-link Poisson 

regression model. A continuous model for initiation is also presented th a t models the 

initiation of cracks as a spatial Poisson process, incorporating the influence of the 

latent factors through a Gamma random field.

Since damage accumulation consists of crack initiation and crack growth, we also 

propose a model for crack growth. It is known th a t cracks initiate with some length 

and th a t jumps occur in their growth; our model incorporates these features and the 

influence tha t stress has on crack growth. In the analysis of this model, evidence of 

spatial variability in the jum p is presented.

All analysis is carried out through a Bayesian framework, employing MCMC tech

niques in order to sample from the posterior distribution of the param eters of each of 

the models.
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Chapter 1

Introduction

The aim of this thesis is to develop spatial models for damage accumulation in the 

bone cement of hip replacement specimens. The spatial models we will develop incor

porate both observed and unobserved factors th a t are influential in causing damage 

accumulation. In order to provide some motivation for this aim, we describe the hip 

replacement and the reasons as to why it fails. We also outline the structure of the 

thesis and summarise the research contributions made.

1.1 Dam age A ccum ulation in Bone Cem ent

A common type of orthopaedic joint replacement is the to tal hip replacement. This 

replacement consists of two components, an artificial cup forming the socket and a 

prosthesis inserted into the femur, replacing the ball part of the joint. The components 

are fixated to the bone using an acrylic polymer known as bone cement.

The to tal hip replacement is considered to be a successful operation, with studies 

reporting over 90% of replacements still functioning well after 10 years (Huiskes and 

Verdonschot (1997)). For many patients though, the procedure is a failure and revision 

operations are not nearly as successful as prim ary ones (Malchau et al. (2000)). Also, 

the procedure is being carried out on younger patients, leading to the need for longer 

lasting replacements.

1



CHAPTER 1. INTRODUCTION 2

Failure of a hip replacement is a subjective term  with much discussion as to when 

a replacement is said to have failed. Huiskes (1993) defines failure from a clinical 

point of view as the time at which a revision operation is required, due to excessive 

pain and impaired function. The dominant mode of failure is the aseptic loosening 

of the components of the replacement, due to damage accumulation (crack initiation 

and growth) in the bone cement.

It is known that, when in use, cyclic loads of several times a person’s bodyweight 

are experienced at the hip (Bergmann et al. (1993)). Relative to the stresses th a t are 

applied a t the hip, bone cement is a weak material (Huiskes (1993)). The cyclic loading 

results in compressive and tensile stresses along the femoral stem of the implant. These 

stresses are responsible for the initiation and growth of cracks in the bone cement.

As well as stress being a factor in crack initiation and growth in the bone cement, 

it is known that other influential factors exist. During the preparation of the bone 

cement, pores (air bubbles) may become trapped in the cement. It has been shown 

through retrieval studies (Jasty et al. (1991); Culleton et al. (1993)), th a t a link 

exists between crack initiation and the presence of pores in the cement. Pores have 

an im pact on the stress in the cement. A raised stress state exists around a pore and 

this, coupled with stress concentrations in the micro-structure of the cement makes 

crack formation at pores highly likely.

There may also be inclusions in the cement, biological (e.g. blood) or non-biological 

(e.g., barium  sulphate). These inclusions will also have an impact on the initiation 

and growth of cracks as they too change the structure of the cement.

1.2 M odelling M echanical Failure

Given any sort of structure, the mechanical failure of th a t structure is dependent on 

its strength and on the stresses it experiences. Even if the structure experiences very 

high stresses, it will not fail, provided it is strong enough. But if the structure is weak 

and it experiences stresses tha t are beyond its limit, then it will fail.
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Mechanical failure has been modelled in many different ways, depending on the 

understanding of the reasons for failure and on the tools and methods available for 

modelling. Obviously, the better the understanding of the reasons for failure, the 

better the model.

People have modelled failure in many ways. The simplest approach being the ob

servation of the physical causes of stresses on structures and the drawing of conclusions 

based on these observations. A more sophisticated approach involves the construc

tion of a m athem atical model to quantify the influence th a t stress has on causing 

failure. The realisation th a t deterministic models were not sufficient to account for 

the random variability observed in the failure of structures led to the development of 

stochastic models for failure.

In the case of damage accumulation in the bone cement, random variability does 

exist. An obvious example of the variability being, th a t specimens subjected to the 

same stresses, under laboratory conditions, do not show the same damage accumu

lation patterns. This would obviously suggest the need for a stochastic model for 

damage accumulation. Incorporating stress into a stochastic model for damage accu

mulation is one way of approaching the task of modelling the variability.

It has also been observed th a t damage accumulation varies spatially. The incorpo

ration of spatial coordinates of damage (crack locations), together with spatial stress 

information allows for an even closer examination of the relationship between damage 

and stress. This provides a more realistic model for damage accumulation.

The understanding of the physical process and the knowledge of other influential 

factors, but the inability to accurately measure or locate them, leads to a further 

extension. We can model, through latent variables, a spatial process, th a t accounts 

for the unobserved influential factors.

1.3 Overview o f Chapters

In the following we present a brief outline of the research carried out.



CHAPTER 1. INTRODUCTION 4

1.3.1 Background

We describe in detail the structure of the orthopaedic hip replacement. We also 

introduce the concept of fatigue and examine the main reasons why these replacements 

fail, reviewing the literature on the impact of stress and of pores on causing damage 

accumulation in these implants. The data  th a t we analyse come from experiments 

carried out on five specimens in a laboratory setting; each of the specimens was 

subjected to the same stress loading under similar conditions. The experimental 

model is described together with the methods by which the cracks were located and 

measured. We also present in this chapter a review of other statistical models tha t 

have been used for damage accumulation.

1.3.2 Statistical M ethodology

We detail the statistical methods th a t we use throughout the analysis tha t we carry 

out in this thesis. All of our modelling is done in a Bayesian framework. We describe 

the Bayesian method in detail, highlighting the differences between this method and 

tha t of the Classical framework. We also address issues such as prior elicitation, which 

is an im portant aspect in carrying out any Bayesian statistical analysis.

The models tha t we present in this thesis are relatively complicated, often with 

many parameters, making direct simulation from these models difficult, if not impos

sible. To obtain estimates of the param eters of the models we use MCMC techniques 

in order to sample from the Posterior distributions. We describe in detail the Markov 

chain theory tha t underlies the MCMC techniques, as well as describing individual 

MCMC algorithms.

1.3.3 Discrete M odel for Crack Initiation

We present a discrete spatial model for the initiation of cracks during the stress 

loading process. The model is discrete in the sense th a t we aggregate the data  to 

form counts of cracks in a finite number of regions. We model the counts of cracks in
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the regions as independent Poisson random variables, relating the Poisson intensity 

to both known (compression and tension) and unknown, or latent, factors through 

an identity-link regression model. We include the latent spatial param eters since we 

know from the literature th a t factors such as pores (air bubbles), which could not 

be measured during the experiment, have an impact on causing cracks to form. The 

latent factors are modelled by including a latent spatial param eter for each region. 

The influence of this param eter on crack formation in its own region, as well as in 

neighbouring regions, is governed by a Gaussian kernel. The distance over which the  

latent spatial param eters have an influence is determined by the variance param eter 

of the Gaussian kernel and we perform inference in order to estim ate this param eter.

1.3.4 C ontinuous M odel for Crack Initiation

A continuous spatial model for the initiation of cracks in the bone cement is presented 

in Chapter 5. Instead of aggregating the data, we use each of the data  points (spa

tial coordinates) directly and model the initiation of the cracks as a spatial Poisson 

process. As in the case of the discrete model, we also incorporate both observed and 

unobserved factors th a t are influential in the formation of cracks in the bone cem ent. 

We model the intensity of the Poisson process, again using an identity link regression 

model, and this time we incorporate the latent factors using a Gam m a random  field. 

Thus the intensity due to the latent factors, th a t are influential in causing cracks to  

form but th a t were not measured, is modelled as a continuous surface.

1.3.5 G row th M odel

Damage accumulation consists of both crack initiation and crack growth and so it 

is also necessary to model crack growth when examining damage accumulation. We 

present a model for the growth of the different types of fatigue cracks th a t are present 

during the stress loading. The model attem pts to capture the actual physical process 

by which cracks grow, drawing on information from the literature about crack growth.
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For example, cracks are known to have both active and dormant periods of growth. 

The model incorporates the effect of stress on the growth of the cracks. Cracks 

subjected to different stresses would be expected to show varying amounts of growth. 

It is also believed th a t cracks experience jum ps in their growth rate and we model a 

jum p in growth, showing visually tha t spatial variation does exist in the size of the 

jumps. We also carry out a sensitivity analysis which shows variability between the 

specimens with respect to the parameters of the growth model proposed.

1.4 Research Contributions

The following are the main contributions made by the research contained in this thesis:

1. The development of spatial models for crack initiation in the bone cement of 

hip replacement specimens. One model allows for the spatial modelling of crack 

counts without the need for actual spatial coordinates. The other model incor

porates spatial coordinates of the crack locations allowing for a more detailed 

analysis to be carried out. Both of these models incorporate observed and unob

served factors (latent) and they constitute a new application of the methodology 

in an engineering setting.

2. The statistical modelling of the unobserved latent spatial factors is a new method 

of assessing the impact of the unmeasured covariates th a t are known to have an 

influence on crack formation.

3. The modelling of crack growth, incorporating the influence of stress, by adapting 

another available model and the detailing of how spatial modelling of crack 

growth may be carried out.



Chapter 2

Background

In this chapter we introduce the concept of fatigue with particular reference to fatigue 

in orthopaedic hip replacements. We examine the reasons why these replacements fail 

and detail a laboratory experiment which was carried out in order to investigate dam 

age accumulation in the bone cement of the replacement. This experiment resulted 

in data  which form the basis of our analysis in subsequent chapters. We also review 

other stochastic models th a t have been used to examine the initiation and growth of 

cracks in bone cement.

2.1 Fatigue

The deterioration of a structure tha t is subjected over time to an external loading, 

resulting in the inability of the structure to carry the intended loading, is known as 

fatigue. Crack initiation and crack growth are regarded as the basic causes of fatigue 

damage accumulation and ultim ate fatigue failure (Sobczyk and Spencer (1992)). 

According to Sobczyk and Spencer (1992), between 50 and 90 percent of all mechanical 

failures in metallic structures are related to fatigue. Structures made from materials 

other than metal also experience crack initiation and growth, for example, orthopaedic 

joint replacements are load-bearing structures th a t experience fatigue.

7
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2.2 Orthopaedic Hip Replacem ent

8

Orthopaedic joint replacements are used to replace human joints th a t no longer func

tion as they should. In particular, an orthopaedic hip replacement is used to replace 

the ball and socket components of the hip joint. The replacement of a hip joint is 

a very common procedure with up to one million hip replacements being carried out 

annually (Huiskes and Verdonschot (1997)). Typically the hip replacement consists 

of a prosthesis, usually metallic, being inserted into the medullary cavity of the fe

mur bone which has been hollowed out. The metal prosthesis is a replacement for 

the “ball” portion of the joint. The “socket” portion of the joint is replaced with 

an artificial cup (typically this is made from ultra  high molecular weight polyethy

lene; UHMWPE). The prosthesis is held in place by an acrylic polymer (polymethyl

methacrylate; PMMA) cement mantle th a t interlocks the prosthesis and the bone. 

See Figure 2.1.

CementAcetabular
cup Cancellous

bone

Prosthesis

Cortical
bone

Figure 2.1: Schematic diagram of a hip replacement showing the prosthesis and ac

etabular cup inserted into the femur and pelvis respectively. Image courtesy of A.B. 

Lennon.
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The polymer cement used in the fixation of the joint replacement is often referred to 

as bone cement. The cement does not form any sort of chemical bond with either 

the metal prosthesis or the bone. The fixation occurs instead through a mechanical 

interlocking th a t arises between the surface of the implant and interdigitation with 

cancellous bone. An analogy given by Lennon (2002) for the function of the bone 

cement is th a t it performs a similar role to th a t of a “grout” .

Bone cement has a similar composition to Perspex/Plexiglas used in industrial 

settings. The bone cement is prepared in the operating theatre several minutes before 

the components of the joint replacement are inserted. It is prepared as a self-curing, 

dough-like resin thus ensuring th a t it is possible to insert the cement into the prepared 

cancellous bone and implant the prosthesis into the cement. The cement hardens 

within 10-15 minutes of initial preparation allowing enough time for the insertion. 

The bone cement may contain inclusions, for example, radiopaque fillers or antibiotics 

or biological inclusions such as blood or fat. For a more detailed description of bone 

cement and its composition see (Lennon 2002, pg. 13 -17).

2.4 Failure of the Hip Replacem ent

There are two main reasons for failure in cemented hip replacements: infection and 

mechanical (aseptic) loosening of the components. Due to improvements in surgical 

conditions, infection has been almost eliminated (cumulative revision rate for deep 

infection after ten years is 0.3% (Malchau et al. (2000))) and aseptic loosening of the 

components is now the dom inant mode of failure, in particular aseptic loosening of 

the femoral stem (Malchau et al. (2000)).

According to Huiskes (1993) two interacting failure scenarios can account for the 

mechanical loosening of the hip replacement - particulate reaction scenario and the 

damage accumulation scenario. The particulate reaction scenario is a deterioration 

of the bone until it is no longer able to support the replacement. This deterioration
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of the bone is caused by biological reactions to particulate wear debris. The damage 

accumulation scenario consists of the debonding of the prosthesis from the cement, 

together with the formation of cracks in the cement, until the prosthesis is no longer 

fixated to the bone, i.e., the prosthesis is free to move inside the femur. The two 

failure scenarios can interact, see Figure 2.2.

Debonded implant- 
cem ent interface:

Im plan t-cem ent debonding  
d e c r e a s e s  load-bearing  a re a  
of in te rface  an d  in c re a se s  
c em en t s t r e s s e s  and  
d a m a g e  accum ulation . 
R elative  m otion of the  
im plant a n d  cem en t 
g e n e ra te s  ab ra s iv e  w ear 
partic les  which c an  lead  to 
further particu la te  reactions.

UHMWPE 
wear 
particles

Pore and cracks:
P o re s  a c t a s  s tre s s  ra isers  and  
crack  initiation s ite s . C rack s  m ay 
a lso  initiate from th e  in terdigitated 
c em en t-b o n e  in terface  or from 
localised  d e b o n d ed  reg ions of the  
im plan t-cem ent in terface (such  
bim aterial in terface  c ra ck s  a re  
p rone  to  branch ing  into th e  w eak er 
m aterial). L arge c rack s  with jag g ed  
fa c e s  a re  likely to ex p erien ce  
further ab rasio n , stim ulating 
particu la te  reactions

Soft-tlssu e interface 
with UHMWPE and 
PMMA wear particles:

S tress-sh ie ld in g  induced  b one  
resorption  and  interfacial fa ilu res 
o pen  a  route  for pa rticu la te  debris . 
W eaken ing  of th e  in te rface  le a d s  to 
in c re a se d  relative m icrom otions 
with resulting in te rface  d a m a g e  
a n d  b o n e  resorp tion  with the  
form ation of a  so ft-tissu e  in terface .

D ebonded im plant-cement 
interface and branching crack

Figure 2.2; Particulate reaction senario and the damage accumulation senario and 

their interations. Image courtesy of A.B. Lennon.

Improvements have been made in resistance to the particulate reaction scenario 

but according to Lennon (2002) the reduction of damage accumulation within the 

cement has proved difficult. According to Lennon (2002) damage accumulation is 

likely to be the dominant mode of failure in the femoral part of the im plant as the 

interface between the prosthesis and the cement experiences greater stress here.
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According to Lennon and Prendergast (2001), the aseptic loosening in hip replace

ments is usually caused by fatigue failure of the cement mantle under cyclic loading. 

Maintaining the cement mantle is not simply a m atter of reducing the peak stress 

in the mantle. Lennon and Prendergast (2001) highlight the situation where the in

fluence of cement porosity may dominate the effect of stress to such an extent th a t 

failure may occur, not at the location of peak stress but instead where the pores are 

largest. In this case, recording the peak stress would not give sufficient information 

for investigating crack initiation and propagation.

2.4.2 Pores

Bone cement has a much lower fatigue resistance than Perspex/Plexiglas because of 

the way in which it is prepared (Lennon (2002)). During preparation, pores (air 

bubbles) become trapped in the cement. Retrieval studies carried out show that 

a link exists between the porosity in the bone cement in the hip replacement and 

damage accumulation (Jasty et al. (1991); Culleton et al. (1993)). According to Jasty 

et al. (1991) cracks initiate in the cement due to stress concentrations at the interface 

between the implant and the cement and also from pores in the cement. It has been 

observed tha t large numbers of pores form a t the interface between the im plant and 

the cement. Lennon (2002) provides more details on this.

The amount of porosity varies depending on the way in which the cement is mixed. 

Improvements in the mixing of the cement such as mixing under a vacuum and cen

trifuging, as opposed to manual mixing with a bowl and spoon, decrease the amount 

of air bubbles trapped but do not eliminate all pores (Wang et al. (1996)). According 

to Lennon (2002) the pores th a t do remain can often be very large (which can lead 

to early failure of the implant) in the case with vacuum mixing or the pores may be 

heterogeneously distributed in the case of centrifuging.

Damage accumulation, initiating mainly from pores was dem onstrated in a physi-
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cal model of the femoral stem of the hip replacement which was subjected to a bending 

load (McCormack and Prendergast (1999)). Another examination of the im pact of 

pores can be seen in a time-lapse study of damage accumulation, in which it was 

noted th a t microcracks initiated from pores (Murphy and Prendergast (1999)). The 

existence of pores causes stress concentrations making crack initiation very likely. 

Also, pores often tend to cluster so tha t interactions occur which can result in cracks 

initiating and propagating in a different manner than would be expected.

Tsukrov and Kachanov (1997) examined the impact on stress of interactions be

tween elliptical holes (pores or cracks) using a stress “feedbacks” method. In real 

materials pores often have strongly non-circular shapes and mixtures of holes of di

verse shapes are typically to be found. Interactions between holes may produce both 

stress shielding and stress amplification, depending on factors such as the m utual 

positions of the holes, the hole eccentricities and the mode of the remote stress load

ing. Tsukrov and Kachanov (1997) also noted th a t different stress loading conditions 

produce different zones of shielding/amplification. The authors detail the effects of 

the interactions on stress of many different hole combinations, varying the relative 

distances between the holes, the number of holes and the hole shapes and sizes. For 

example, they examine the interaction between two circular holes, which are of equal 

size and tha t are experiencing remote tension in the direction normal to the line con

necting the centres of the holes. They found th a t at distances of 1/100 of the hole 

radius the interaction effect was very strong and the stress was amplified.

For more details on the impact of pores in crack formation and propagation see 

Lennon (2002).

2.5 Other Factors Influencing Performance

There are other factors th a t have an influence on how long a replacement lasts. The 

design of the prosthesis will certainly have an impact on the performance. Many 

different prosthesis models are available with varying femoral stem designs. The
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longevity of the replacement is dependent on the design type, with different designs 

having different survival rates. A prosthesis design th a t suffices for the remaining life 

of all patients has yet to be found (Lennon and Prendergast (2001)).

The prosthesis needs to be carefully inserted so tha t it is well placed within the 

femur and th a t even pressurisation is achieved during the insertion, i.e., the surgeon’s 

skill has an impact on the performance of the replacement. The condition of the 

surrounding bone will also have an effect on the longevity of the replacement as will 

the activity levels of the patient. The inclusions, both biological and non-biological 

previously mentioned will alter the structure of the cement. For example, both the 

presence of antibiotics and blood will weaken the cement, and so these too will have 

an influence on crack initiation and propagation.

However, under controlled laboratory conditions, variability exists in the damage 

accumulation in the bone cement and according to Lennon (2002) this variability is 

large enough th a t it might dominate, i.e., the other factors mentioned above would 

not have as great an impact on the performance of the replacement. There is also the 

possibility th a t these factors will interact.

Replacing the PMMA bone cement with a suitable alternative has yet to be suc

cessful (Lennon (2002)), but replacements do exist th a t use no bone cement. Instead 

the prosthesis is coated with a bioactive substance tha t allows a bond to form directly 

between the prosthesis and the bone. However these replacements have not performed 

as well as those using bone cement (Malchau et al. (2000)).

2.6 The Experim ent

The data tha t are available for analysis come from an experiment which was carried 

out in a laboratory setting. Five specimens, each resembling as close as was possible 

a femoral hip replacement, were subjected under laboratory conditions to a stress 

loading. For full details of the design and experimental procedure see Lennon (2002).
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2.6.1 The E xperim ental M odel

The experimental model was designed in such a w’ay as to retain the most important 

physical features of the femoral hip replacement, ensuring that it would behave in 

the laboratory in a similar fashion to a hip replacement in the human body. It 

was also necessary to design the model in such a way that measurements of damage 

accumulation could be made, i.e., that cracks could be observed and located.

The model consists of a femoral stem encased between layers of cement and strips 

of cancellous bone, see Figure 2.3(a). These are then held in two aluminium side 

plates which offer support similar to that which would be given by the cortical bone 

in the human body. The cancellous bone strips are made from bovine rib bone that 

has been cut and shaped to fit the length of the cavity in the aluminium side plates.

The side plates contain windows in which the cement is exposed and therefore 

available for observation. The cement that was used was mixed by hand and contained 

no inclusions (biological or otherwise). The particular type of cement that was used 

is translucent, enabling cracks to be stained and viewed by light transmission.

2.6.2 Fatigue Testing

Stress loading was applied to the physical model in two ŵ ays. A load was applied 

to the prosthesis by means of a lever attached to the prosthesis head centre and a 

muscle loading was applied using a lever attached to the centre of the trochanter-like 

process of the aluminium holders. See Figure 2.3(b). Both loadings were applied 

simultaneously and were used to simulate what would occur in the human body, the 

prosthesis loading simulating the load that would be applied at the joint in a human 

body. For details on the actual load measurements see Lennon (2002).

2.6.3 Crack C ounting

Before any testing was carried out dye penetrant was applied to the cement layers of 

each of the specimens. A magnified image of the cement surface was then projected
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Cancellous
bone
strips

Cem ent

Windows
Cem ent

Aluminium holders

(a) (b)

Figure 2.3: (a) shows an exploded view of the experimental model of the femoral 

stem encased in bone cement, (b) shows a photograph of a specimen mounted in the 

fatigue testing machine. The means by which muscle and joint loading are applied 

can be seen at the plates connecting the lever to the specimen and a t the stem head, 

respectively. Images courtesy of A.B. Lennon.

onto a screen using an optical comparator. Any cracks which would have formed when 

the cement was curing (drying) were identified and traced onto acetate transparencies. 

The transparencies were digitally scanned and image analysis was carried out in order 

to obtain the position, length, and slope of each crack. In the literature these cracks, 

which form before the stress loading has been applied, are referred to as pre-cracks.

As would be expected not all cracks lay on the surface - some were seen to extend 

below the surface. For a crack of this type the focus of the optical com parator was 

changed in order to assess the full length of the crack. Cracks would also have formed
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below the surface but would not have been stained with the dye and so could not 

have been identified. For this reason the data  provide a conservative estim ate of the 

number of cracks in each specimen.

After testing, this procedure of identifying and locating the cracks was repeated 

for each specimen. The cracks which have formed during the stress loading process 

are referred to as load-cracks.

2.7 Approaches to  M odelling Fatigue D ata

Since fatigue data is inherently random, with even data th a t have been produced 

under controlled laboratory conditions showing variability, the obvious approach in 

modelling this type of data is to use stochastic models. The choice of stochastic model 

should represent as fully as possible the essential aspects of the physical model.

2.7.1 Survival Analysis

Predicting lifetimes, for example, how long a hip replacement will last, is done by 

analysing lifetime data. When investigating lifetimes, components are tested until 

they fail, the lifetime of the component being the period from the start of observation 

until failure occurs. Survival analysis is concerned with the study of lifetimes and 

involves all aspects related to lifetimes data, from the recording of the data  to the 

examination of factors tha t affect the lifetime of the components being considered.

A random variable Y  is termed a survival random variable if an observed outcome 

of Y  lies in the interval [0, oo). It is possible to define a survival function or reliability 

function 5, as follows: S{y)  =  P (y  ^  y) =  f {u)du,  where f {u)  is the probability 

density function.

As well as looking at the survival function it is often the case th a t we are interested 

in the instantaneous rate of failure of the component at a given time y, given th a t the 

component survives up to time y. This information is given by the hazard function 

h{y) =  f ( y ) / S{y ) .  Essentially the hazard function says how the failure rate changes
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with time. It is possible to construct many different kinds of hazard models. For 

example, if the risk of failure does not change over time, then a constant hazard 

model would be appropriate. What is often the case in engineering problems is that 

as time increases the imminent risk of failure also increases. W hat is termed a power 

hazard model is often proposed in this case. Here h(y) = )//?", where y > 0

and in this case the lifetime variable V  can be modelled with a Weibull distribution.

Lifetime analysis for hip replacements has been carried out, see for example 

Malchau and Herberts (1998). For an examination of lifetime analysis and the tech

niques used, see Smith (2002).

2.7.2 M odelling Crack Initiation

McCormack et al. (1998) analysed fatigue data from an experiment in which hip 

replacement specimens were subjected in a laboratory setting to cyclic stress loading 

typical of normal use. In this experiment, cracks were observed in ten observational 

windows on the cement surface and the number of cracks in each window was recorded 

at 0, 0.5, 1, 2.5, and 5 million cycles. The length of each crack was also recorded. The 

number of cracks Xij{n) in window j  of specimen z at n million cycles was modelled as 

a counting process, the process increasing by one each time a crack was initiated. The 

simplest counting process, that of a Poisson process, was chosen to model the number 

of cracks. The rate of the Poisson process Ajj was modelled as =  {aj-\-(3jZij), where 

Zjj indicates the number of pre-load cracks, aj may be interpreted as the expected 

rate of crack formation when no pre-load cracks were present, and as the increase 

in the crack formation rate for each pre-load crack present.

Bayesian analysis was carried out and estimates of the posterior distributions for 

the parameters and j3j were obtained. The authors acknowledge a lack of fit and 

suggest that it may be due to influential factors that have not been accounted for, 

such as stress levels or the location of pores. Also this model for initiation of cracks 

did not allow for any spatial data to be incorporated.
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2.7.3 M odelling Crack G row th

A model for crack growth was also presented by McCormack et al. (1998). The 

average growth per million cycles over the observed life of each crack was examined. 

Cracks that did not grow or that appeared to shrink were ignored. A histogram 

of the logarithm of growth appeared to be bell-shaped and so a natural choice for 

the probability distribution to model the growth was the Lognormal distribution. 

Bayesian analysis was carried out and posterior estimates were obtained for the mean 

and variance parameters of the Lognormal distribution. According to the authors this 

model was satisfactory for all cracks except those that grew very quickly.

2.7.4 Hierarchical M odelling o f Crack Initiation and G row th

The same data as were analysed by McCormack et al. (1998) were again analysed by 

Wilson (2005). Here, a hierarchical model for crack initiation and grow^th is proposed 

and a Bayesian analysis is carried out. The decision to use a hierarchical model is 

based on the fact that the variability between specimens and wdthin specimens can 

be attributed to different influential physical factors. An example of within-specimen 

variability given by Wilson is that of random variations in the distribution of pores 

in the cement. Between-specimen variability could be due to the random differences 

in the mixing of the cement, for example.

A Poisson process, modelled as a function of local material properties of the ce

ment, is proposed for the initiation of the cracks. The model proposed is similar to 

that of McCormack et al. (1998), again with the rate of the process being a function 

of the number of pre-load cracks.

The growth model proposed by Wilson models the physical process of crack 

growth. Through inspection of the data, the main features of the growth of the cracks 

may be observed. Cracks initiate with some length, some of the cracks then grow very 

slowly and some grow very quickly. Wilson models the way in which the cracks grow 

by allowing for large instantaneous jumps between periods of slower growth. We
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follow this model in Chapter 6, adapting it to incorporate stress measurements and 

investigating how growth can be spatially modelled.

2.7.5 B-Models

Another approach to the stochastic modelling of the fatigue life of bone cement in the 

hip replacement is presented in Grasa et al. (2003). The authors propose a model, 

called a B-model, based on Markov chains. This type of model has been used to 

compute the probability of failure after a certain time or number of cycles, for different 

damage problems using results obtained though experimentation.

The basic idea of the model is the following. At a given time t (discrete) the 

component is at some damage level Dt, after starting at time 0 in state  D q. There 

exist damage cycles of constant severity and associated with each damage cycle is a 

transition m atrix P.  The authors define the model so tha t given a damage state Dt, 

there are only two options for Dt+i, the next step in the chain. Either the chain will 

remain in the same state or it will advance to the next damage level, until finally it 

reaches a failure state b.

It is possible to examine the probability of being in any state at time t with the 

probability of being in state b tending to 1 as i ^  cx). The authors use this model to 

examine the probability of failure for different cement mixing techniques at different 

stress levels.

2.8 W hat a M odel Should Incorporate

The engineering literature on fatigue in hip replacement specimens obviously regards 

stress as having an im portant role in causing cracks to form and grow in the bone 

cement. When a model for crack initiation was proposed th a t did not incorporate 

stress (McCormack et al. (1998)), the model did not perform very satisfactorily. As 

the da ta  we are analysing contain stress measurements, we should construct a model 

tha t exploits these measurements fully.
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As well as stress measurements being available in our data, we also have accu

rate spatial coordinates for each of the observed cracks. Again, our model should 

incorporate this information, as it is known that spatial variability exists in damage 

accumulation.

Together with the data available we also have the knowledge that pores have an 

effect on damage accumulation. Although their spatial distribution is unknown, a 

realistic model for damage accumulation should accommodate and account for their 

influence.

As there are two aspects to damage accumulation: crack initiation and crack 

growth both should be modelled. In the following chapters we construct and analyse 

models that fulfil the above criteria.



Chapter 3 

Statistical M ethodology

In order to analyse the data  th a t we have available and in order to gain a better 

understanding of the processes tha t have given rise to the data, we will in subsequent 

chapters construct models and make inferences about the param eters of these models. 

To do this we draw on a wide range of statistical methods and in this chapter we detail 

many of these methods.

3.1 Bayesian Inference

When we carry out data analysis we are interested in summarizing the da ta  and also 

in making inferences about the physical system or process th a t produced this data. 

We may also be interested in making predictions based on the da ta  we have observed. 

Before we have collected any data, prior beliefs exist about the nature of the system 

or process. The modification of these beliefs in light of the observed data, through 

the use of Bayes’ theorem, forms the basis of Bayesian inference.

One of the main differences between Bayesian and classical (frequentist) inference 

is th a t the param eters of the model are treated as random variables in Bayesian infer

ence, whereas in classical inference they are assumed to have unique values (although 

these are unknown), (O’Hagan and Forster (2004)). Bayesian inference also differs 

from classical inference in th a t it is subjective and th a t previous knowledge or in-

21
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formation about the system is im portant. It is subjective since one person’s prior 

behefs need not necessarily agree with another person’s prior beliefs. Bayesian infer

ence takes into account, through the use of what is called the prior distribution, any 

information available before any data are observed. For comprehensive introductions 

to Bayesian inference see, for example, Lee (1997) and O ’Hagan and Forster (2004).

3.1.1 Prior Distribution

Let 0  =  {9i, 6 2 , . . .  , 6 k} represent the param eters of the distribution th a t models 

the da ta  arising from the process, i.e., 0  represents characteristics which must be 

determined in order to obtain a complete description of the system or process. We are 

interested in knov/ing more about these unknown parameters, for example, obtaining 

point or interval estimates.

Before any data are observed we have some a priori beliefs about the values of 0 . 

These beliefs may be based on our own knowledge of the system or on an expert’s 

knowledge or opinion. We use a probability density function 7r(0) to express these 

beliefs. This p.d.f, 7r(0), is referred to as the prior distribution. Choosing a prior 

tha t correctly reflects this a priori knowledge is not always an easy task, see Section 

3.1.6.

3.1.2 Likelihood Function

Now suppose we observe some data: X  =  {Xi ,  X 2 , . . . ,  Xn},  whose distribution de

pends on the unknown param eters 0 . How likely is it tha t we observe the data  X  

given th a t the parameters take the value 0 ?  The probability statem ent called the 

likelihood, Z/(0|X ) =  P (X |0 ) , models the relationship between the param eters and 

the observed data, and provides an answer to this question. The likelihood function is 

obtained by calculating the joint probability of the observed data  values as a function 

of the parameters. The likelihood function is used both in classical and Bayesian 

inference. In classical inference the likelihood is often maximized in order to find the
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“most likely” values for 0 ; Chatfield (1983), pg. 123 provides a simple example.

If we were to consider P(A^|0) as a function of X  for fixed 0  then P(A"|0) is a 

density function, i.e., J P ( A |0 ) d A  =  1. Here, however, P (X |0 )  is thought of as a

to one. Lee (1997) gives the example where X  does not depend on © and in this case 

it is possible for the integral to equal oo.

3.1.3 Bayes’ Theorem and The Posterior Distribution

We want to be able to express our beliefs about 0  given both our prior knowledge 

and the data  tha t we have observed. The prior distribution takes into account prior 

beliefs about 0  while the likelihood function expresses the relationship between 0  and 

the observed data. Bayes’ theorem provides a mechanism for combining both these 

sources of information. For random variables (continuous or discrete) Bayes’ theorem

This allows us to look at the conditional distribution of the param eters given the 

observed data, i.e., P (0 |X ). P (0 |X ) is termed the Posterior distribution and it is a 

summary of all tha t is known about 0  after we have observed da ta  A". Thus we have

function of 0  for fixed X  and in this case f  P (X |0)< i0  does not necessarily integrate

states tha t

P (0 |A ) oc 7 r(0 )P (X |0 )

where the constant of proportionality is given by:

f  7 t(0)P(A |0)c?0, (continuous) 

7 t(0 )P (A |0 ), (discrete).

Posterior a  Prior x Likelihood.

3.1.4 Predictive Distribution

As well as carrying out inferences for the param eters of our model we may also be 

interested in making predictions based on the da ta  we have observed and on our prior
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knowledge. Suppose we are interested in some future (unobserved) observation Y,  

given tha t we have observed data  X .  We can look at the following distribution

which is referred to as the predictive distribution. P (0 |X ) is the posterior distribution 

and P ( y |0 ,X )  is the likelihood function for Y.  If X  and Y  are independent given 0 , 

then the likelihood for Y  reduces to P ( y |0 ) .

3.1.5 Estim ating the Posterior Predictive D istribution

Suppose 0 1 , . . . ,  0 „  are samples from the posterior distribution P (0 |X )  and suppose 

we are interested in obtaining the posterior predictive distribution P(y|A"). Often 

P(y|A") is not known analytically, but we can approximate it with P (F |J^ ), the Rao- 

Blackwellized estim ator (Casella and Robert (1996); Gelfand and Smith (1990)):

tha t is, we use the numerical average of the conditional densities over the simulated 

values of 0  as an approximation.

3.1.6 Prior Elicitation

Prior distributions are the means by which a priori beliefs, regarding the value(s) of 

the parameter(s) 0  are expressed. This a priori information about 0  may be based on 

the researcher’s knowledge or on the knowledge or opinions of an expert. The process 

of constructing a probability distribution, the prior distribution 7t(0), th a t expresses 

the knowledge and /or opinions tha t are available before any analysis is carried out, 

is termed prior elicitation. Strictly speaking prior elicitation should take place before 

any data  are observed, but it is often the case th a t researchers turn  to experts after 

the data  have been collected.

F{Y\x)= F{Y\e,x)r{e\x)de,

P (y |A )  =  i V P ( F | . Y , 0 , ) ,  
n ^ '

1=1
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The elicitation of a prior usually involves two steps. The first step is the choice of 

probability distribution and the second is the choice of values for the parameters of 

the chosen distribution.

The choice of distribution is often governed by the desire to have a mathematically 

tractable model. For example, conjugate priors are often used for this reason. A 

conjugate prior is a prior distribution that belongs to the same class of distributions as 

the posterior distribution. This has the advantage that the only change in going from 

the prior distribution to the posterior is to change the parameters of the distribution 

and this can often make analysis much simpler.

The choice of distribution is not so critical as long as a prior distribution is chosen 

that is quite flexible, i.e., changes in the parameters of the distribution give very 

different distributions. For example, in the case where a conjugate prior is chosen it 

is most likely that the “true” prior is not conjugate but the class of conjugate priors 

is large enough so that a prior distribution can be chosen that is very close to the 

“true” prior. See Lee (1997).

Choosing the parameters for the prior is important. Suppose we choose a Gamma 

prior, then the problem becomes how to assign values to the shape and scale parame

ters of the Gamma distribution. One method of obtaining values for the parameters is 

to consider what is known about 0 , for example, if we have an idea what the mean and 

standard deviation should be, then we can equate these with the mean and standard 

deviation of the prior distribution and hence obtain values for the parameters of the 

prior. According to Garthwaite et al. instead of eliciting prior information through 

moments, it is often better to elicit the information through quantiles. People’s abil

ity to estimate statistical quantities, for example, means and variances, have been 

examined in psychological experiments. It is not easy for people to interpret what is 

meant by “variance” , for example, and so it is difficult to obtain a numerical value 

for this quantity, hence eliciting prior information through quantiles, which are easier 

to interpret, is often a better idea. For more ideas on specifying a prior distribution 

see also O’Hagan (1998).
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The situation where very little prior information exists must also be considered. 

For example, suppose no expert is available or the expert cannot give very much 

information. It is possible to specify what is termed a non-informative prior. (Up 

until now we have been considering informative priors). Suppose the range of values 

that the random quantity of interest can take is finite. It would be possible to use 

a Uniform prior over this range, i.e., all possible values in the range would be given 

equal probability. It is also possible to choose parameters for other prior distributions 

so that the distribution appears to be flat over the range of possible values for 0 .

When 0  takes values over an infinite range, a prior that is sometimes used is the 

following: 7t (0 ) =  1/ c , for all values of 0 , where c is some constant. This prior is 

not a probability density function, as f  7r (Q )d O  =  oo and is termed an improper 

prior density for this reason. Sometimes when improper priors are combined with 

likelihoods they result in proper posterior densities and so in some cases it is possible 

to use improper priors.

Objections to improper priors are for obvious reasons, i.e., they are not probability 

density functions and so one must be very careful, as the posterior is not guaranteed to 

be a proper density. See Lee (1997) for more details on improper priors and Uniform 

priors.

3.2 Markov Chains

In this section we introduce a special type of stochastic process called the Markov 

chain. Some definitions and main results are presented as they form the theory behind 

the iterative simulation techniques that will be introduced in the next section. For 

a more detailed study of Markov chains see Ross (2003) or Grimmett and Stirzaker 

(2001).
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3.2.1 Basic Definitions

D efinition 3.1 A stochastic process can be defined as a collection of random variables 

{9t : t E T } ,  where T  is called the index set. The {9t} take values in a set S , called 

the state space, i.e., 9t = s; s E S , t  E T.

If the index set is assumed to be countable, then we have a discrete time stochastic 

process. W ithout loss of generality it will be assumed to be the set of natural numbers 

N. In general the state space will be a subset of .

Note th a t in what follows we are assuming a discrete state space, as it is possible 

to present the main theories of Markov chains in this way. Extending the theory to 

more general state spaces is of course possible.

Definition 3.2 A stochastic process {9t '■ t E T }  is called a discrete time Markov 

chain with countable state space S  if:

1. V n ^  0, P(^„ e  S) = 1;

2. Markov property: V n ^  0 and V j,  i, i n - i , . . .  ,io E S  :

P((9„+1 =  j\9n = i, 9n-i = in - u  ■ ■ ■, 6>q =  io) =  =  j|6>„ =  i).

Less formally stated, a Markov chain is a stochastic process where given the present 

state, past and future states are independent of each other.

Definition 3.3 A discrete time Markov chain {9n} with countable state space S  is 

said to be time homogeneous (or homogeneous) i f  the conditional probabilities

P(6»„+i = j\9n = i),

are independent of n , ' i  i , j  € S. This is also known as stationarity.

From here on we will assume th a t our state space S  is discrete and th a t our Markov 

chain is homogeneous. We will now examine the probabilities for moving around this 

state space.
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3.2.2 Transition Probabilities

D efinition 3.4 A transition probability Pij = P(0„+i = j\(^n = i) is a function that 

satisfies:

1. P y  ^ 0 ,  V G S;

2. Pij =  1, y  i E S , i.e., Pi, is a probability distribution. Thus the transition

matrix

^ P n  P i 2 . . .  P is ^

p  _  P21 P22 ■ ■ ■ P2S

y-Ps l  P s 2 ■ ■ ■ P ss  J

is a stochastic matrix. It is also called the Markov matrix.

We will denote by P ^  the probability of a chain moving from state  i to state j  

in exactly m  steps. If we let 7t° denote the initial distribution of the chain and we 

denote by tt" the marginal distribution of the chain at stage n, then

3.2.3 C lassification o f States

We will now consider some properties of the states themselves.

D efinition 3.5 A state i ^  S  is said to be recurrent (persistent) i f  the Markov chain 

starting in i returns to i with probability 1, and it is said to be transient i f  it has positive 

probability o f not returning to i. A recurrent state is said to be positive recurrent if  

the expected time to return to the state is finite, otherwise the state is null recurrent.

Recurrent states are infinitely often visited with probability 1. A Markov chain is 

said to be recurrent if all its states are recurrent. Similarly a Markov chain is said to 

be a positive recurrent chain if all its states are positive recurrent.



C H APTER 3. STA TISTIC A L M ETH O D O LO G Y  29

D efinition 3.6 State j  is accessible from state i i f  there exists an n  such that Pj” > 0. 

States i and j  communicate i f  i is accessible from j  and j  is accessible from i. States 

that communicate with each other are said to be in the same class.

D efinition 3.7 A Markov chain is irreducible i f  it has only one class, i.e., all states 

can communicate with each other.

D efinition 3.8 The period of a state i, denoted by di, is the greatest common divisor 

of the set

0}.

A state i is said to be aperiodic i f  di — 1.

For an irreducible chain all states have the same period. A chain is periodic with 

period d if all its states have period d > 1 and aperiodic if all its states are aperiodic.

D efinition 3.9 A chain that is positive recurrent and aperiodic is said to be ergodic. 

3.2.4 Stationary D istribution

In using Markov chains for simulation it is necessary to study the behaviour of the 

chain as the number of iterations n —> oo. In looking at this asymptotic behaviour of 

the chain a key concept is th a t of the stationary distribution of the chain.

Definition 3.10 A distribution tt, is said to be a stationary distribution of a Markov 

chain with transition matrix P  if

TtP  =  7T.

If the marginal distribution at any given n is vr then the distribution at n +  1 is 

7tP  =  7T, i.e., once the chain reaches a stage where tt is its distribution, then the chain 

keeps this distribution. The stationary distribution is also known as the invariant or 

equilibrium distribution. It can be shown th a t if tt exists and lim„_>oo -Pj" =  then, 

independently of the initial distribution of the chain, tt" will approach tt as n —>• oo. 

In this case the distribution is also referred to as the limiting distribution.
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3.2.5 Stationary and Lim iting D istribution  Theorem s

We present two definitions tliat are necessary for the consideration of the stationary 

and limiting distribution theorems.

D efin ition  3.11 The first passage time is defined to he the probability that the first 

visit to state j ,  given that the chain started in state i, takes place at the step, i.e..

D efin ition  3.12 The mean recurrence time jii o f a state i is defined as

n fJl i f  state i is recurrent;

cxD i f  state i is transient,

where Ti =  m in jn  ^  1 : =  i}.

The following two theorems are stated but not proved; see for example Grim m ett

and Stirzaker (2001) for detailed proofs. These theorems will be im portant when we

consider simulating Markov chains in order to draw samples from some distribution 

of interest.

T h eorem  3.1 An irreducible Markov chain has a stationary distribution tt i f  and 

only i f  all its states are positive recurrent. In this case vr is unique and is given by 

7Ti =  ^  where Hi is the mean recurrence time of state i.

T h eorem  3.2 For an irreducible aperiodic chain:

lim Pl̂ . = — ■ V i , j  e  S.
n-foo ■' i _ i j

Combining these two theorems we have th a t if a Markov chain is irreducible and 

ergodic then

lim p." =  — =  7T,.
n->oo
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3.3 Markov Chain M onte Carlo
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Suppose we are interested in simulating from some probability distribution t t ( x ) ,  which 

we will refer to as the target distribution. A Markov chain Monte Carlo (MCMC) 

method is a method used to simulate from an ergodic Markov chain whose stationary 

distribution is the target distribution 7t ( x ) .  The Monte Carlo part of MCMC refers to 

the use of Monte Carlo integration to form sample averages in order to approximate 

expectations.

MCMC techniques are used in the analysis of complex statistical models where, 

for example, they provide a means of simulating from high dimensional distributions 

when otherwise it would either be very difficult or impossible to perform direct sim

ulation. High dimensional distributions often appear, for example, in the context of 

hierarchical modelling or in models for spatial data. Gamerrnan (1997) and Gilks et al. 

(1996) provide a more detailed and comprehensive treatm ent of MCMC with many 

applications. In order to examine how MCMC techniques work we examine first w'hat 

is meant by Monte Carlo integration and then show how it is possible to construct a 

Markov chain th a t has as its stationary distribution the target distribution 7r(x).

3.3.1 M onte Carlo Integration

We look at Monte Carlo integration in the Bayesian setting. Let P (0 |X )  be the 

posterior distribution of 0 ,  where 0  could be a vector of random variables; 0  =  

{d i , . . .  ,dk}. In the Bayesian setting 0  is the set of param eters of interest. Suppose 

we want to evaluate

E|/(e)l = J  f ( e } p ( 0 i x ) d e ,
where /  is some function of interest. Suppose ŵe can obtain n samples, 0^^\ . . . ,  0^”  ̂

of 0  from the posterior P (0 |A '). These samples can be used to form an approximation 

as follows:

E[/(e)]»i /̂(e<'>).n ^i=l
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Drawing samples and using the above approximation is a Monte Carlo method of eval

uating the expectation. When the , 0^"^ are independent, the approximation

is made more accurate by increasing n.

3.3.2 S im ulation U sing M arkov Chains

In order to use Monte Carlo integration we need to be able to generate random samples 

from the target distribution. For standard distributions, for example, the Normal, 

Gamma, etc., it is straightforward to simulate from these distributions as there are 

many algorithms for simulation available (Press et al. (1992)). For distributions that 

are not of known form, and where there are high dimensional parameter spaces, it is 

possible to use techniques based on Markov chains.

Suppose we simulate a homogeneous Markov chain, i.e., we generate a sequence 

of random variables {Xq, A"'i,...} , where the Xt+\ is sampled from P(Xt+i|A^i), i.e., 

the next state only depends on the present state and not on any other states and the 

distribution P(.|.) does not depend on time, see Section 3.2. Given certain conditions 

the chain will eventually converge to its unique stationary distribution (p. The number 

of iterations taken before the chain has reached its stationary distribution is known 

as the burn-in period. All subsequent random variables that are generated will be 

dependent samples approximately from the stationary distribution (p.

As mentioned above, for Monte Carlo integration we require independent samples 

from the distribution. However, it is possible to carry out Monte Carlo integration 

where the samples are not independent, so long as they are drawn from the full support 

of the distribution. We now need to construct a Markov chain whose stationary 

distribution is not just an arbitrary distribution but the target distribution.

3.3.3 M etropolis-H astings A lgorithm

The Metropolis-Hastings algorithm is a method of ensuring that the stationary dis

tribution of a generated Markov chain is the desired distribution. The Metropolis-
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Hastings algorithm was first proposed by Metropolis et al. (1953) and then generalised 

by Hastings (1970).

The basic idea of the algorithm is as follows. Given a state Xt  at time t the 

next state is chosen by first sampling a candidate Y  from some proposal distribution 

q{.\Xt). The candidate is then accepted, i.e., Xt+i =  Y  with probability a{Xt ,Y )  

where

If the candidate state Y  is not accepted then the chain remains in the same state, 

i.e., Xt+i =  Xt- This algorithm has the advantage that there is no need to determine 

the normalizing constant of the target distribution 7r( .)  since it divides out in the 

acceptance probability o;(,).

The fact that q{.\.) can take any form and still yield tt as the stationary distribution 

of the chain can be seen from the following. The transition kernel for the Metropolis- 

Hastings algorithm is:

P(;^i+i|Xi) =  q{Y\Xt)a{Xt,Y),  if /  F,

P(Xj+i|Xt) =  1 -  I  q{Y\Xt)a{Xt,Y)dY,  Xt = X^+u

P(Â £4.i|Xj) being the acceptance of the candidate state Y  if Xt  7̂  Y  and if Xt  =  

the rejection of all candidate states Y.  From the definition of the acceptance 

probability, Equation 3.1, it follows that

7r{Xt)q{Xt+,\Xt)a{Xt,Xt+i) = T r{X t+ M X t \X t+ M X t+ u  Xt). (3.2)

Combining Equation 3.2 with the transition kernel we have that

7t(X0 P(Xj+i|X0 =  7r{Xt+i)r{Xt\Xt+,).  (3.3)

Equation 3.3 is known as the detailed balance equation. If we integrate Equation 3.3 

with respect to Xt  we have that

J  T T ( x , ) r { x , + i \ X t ) d x ,  =  f  7 , { x , ^ i ) F { x , \ X M ) d X t ,
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i.e., we have obtained the marginal distribution for Xt+i given that Xt  comes from 

the stationary distribution tt. Thus, once Xt  is from the stationary distribution, any 

subsequent samples will also be from the stationary distribution.

3.3.4 M etropolis and R andom -W alk M etropolis A lgorithm s

The Metropolis algorithm consists of a symmetric proposal distribution, i.e., q{Y\Xt)  =  

q[Xt\Y)  and so the acceptance probability reduces to

A special case of the Metropolis algorithm is the Random-Walk Metropolis algo

rithm. For this algorithm the proposal distribution is of the form:

An example of such a proposal distribution is F  ~  Normal(Xj, a^).

It is important to choose the proposal distribution for a random-walk carefully. 

If the moves proposed are small, i.e., |A" — F | are small, then the acceptance rate

chain) will be relatively high and it will take the chain a long time to explore the 

target distribution (poor mixing). On the other hand if the moves proposed are large, 

they will generally be rejected and the acceptance rate will be low and the chain 

will fail to move. Both of these extremes need to be avoided. Where the target and 

proposal distributions are Normal, optimal acceptance rates of approximately 0.45 for 

one dimensional problems are suggested, with this rate being reduced as the number 

of dimensions increases (Chib and Greenberg (1995)).

3.3.5 G ibbs Sam pling

Gibbs sampling is a stochastic simulation method that uses Markov chains to sample 

from a distribution of interest; it is an MCMC technique. The term Gibbs sampling 

comes from an application in image processing where samples were drawn from a

a{Xt , Y)  =  min < 1,

q ( Y \ X , ) = q ( \ X i - Y \ ) .

(the number of times a move is accepted divided by the total number of steps in the
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Gibbs distribution. In Geman and Geman (1984) the authors discussed Bayesian 

restoration of images and the Gibbs distribution, specifically looking at sampling 

schemes. But it wasn’t until Gelfand and Smith (1990) and Gelfand et al. (1990) 

that the idea of Gibbs sampling began to be used in general. They pointed out that 

this method could be used to sample from, not only the Gibbs distribution, but from 

many other posterior distributions.

Gibbs sampling provides a method of sampling from the posterior distribution 

of interest by means of successively sampling from the full conditional distributions. 

Suppose P (^i, . . .  ,9k) is the distribution of interest. Let f ‘i{9i\9-i) be the full condi

tional distribution for 9i, i — 1 , . . . ,  k, where 9-i = 9 i , . . . ,  9i^i, 9i^ i , . . .  ,9k- Suppose 

also that the full conditional distributions are easy to sample from, i.e., suppose that 

f ‘i{9i\9_i) is of some known distribution. The Gibbs sampling algorithm is then as 

follows:

1. Initialise . . . ,  0̂ °̂ ;

2. Generate

9i^̂  -  F2{92\9^^\. .. ,9i^-%

9^^ ^  ¥k{9k\9^^\. .. ,9^l,) ,  

for j  =  1, . . .  until convergence is reached.

The 9^^\ . . . ,  9̂ ^̂  ̂ drawn after convergence has been reached are a sample from 

¥{9i, . . .  ,9k)- Note that proposed new values for the 9i are always accepted, no 

accept/reject step is required. Gibbs sampling defines a Markov chain, since the 

probability of moving to only depends on and not on the previous moves.
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3.3.6 Convergence

For each of the MCMC schemes detailed, we know that the stationary distribution is 

the target distribution and that after a number of iterations (burn-in) the chain will 

have reached its stationary distribution. After burn-in the chain is said to have con

verged. The question is how long should burn-in be before we can say we are sampling 

from the target distribution, i.e., before we can say we have reached convergence?

A number of diagnostic tools for assessing convergence exist. For example, Brooks 

and Roberts (1998) and Cowles and Carlin (1996) provide details of tools based on a 

statistical approach to the assessment of convergence.

For practical applications, trace plots of sampled values are often examined. A 

chain that has the same qualitative behaviour (Gamerman (1997)) after a number of 

iterations indicates convergence of that chain.

Iterative simulations can be slow-moving and it is important to note this when 

making inferences based on finite-length sequences. For example, the random walk 

can remain for many iterations in a region that has been influenced by the starting 

point of the chain. Gelman and Rubin (1992) provide a tool for assessing conver

gence that is based on running multiple independent chains whose starting values are 

chosen from a distribution that is more variable than the target distribution (overdis

persed). Their method examines between-chain variance and within-chain variance: 

as chains become longer (and hence closer to convergence) the between-chain variance 

will become smaller. The multiple sequences are analysed to form a distributional es

timate (t-distribution) of the target random variable given the simulations so far. 

The t-distribution will lie somewhere between the starting (overdispersed) distribu

tion and the target distribution and it provides a basis for an estimate of how close 

the simulation process is to convergence.
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3.4 D ata  A ugm entation
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The method of augmenting observed data with unobserved data  in order to construct 

an iterative optim ization algorithm or a sampling algorithm is termed data augmen

tation. This m ethod is often used during the calculation of maximum likelihood 

estim ates or posterior modes, where it allows easier analysis of a problem. It is also 

often used to facilitate Gibbs sampling.

The paper by Dempster et al. (1977) on the EM algorithm had an influence in pop

ularising the idea of data  augmentation for deterministic algorithms. The D ata Aug

m entation algorithm  of Tanner and Wong (1987) for posterior sampling popularised 

the m ethod for stochastic algorithms. It was here tha t the term  data  augmentation 

originated. This same method may also be seen in the physics literature where it is 

termed the m ethod of auxiliary variables. The paper by Swendsen and Wang (1987) 

on sampling from the Ising and Potts models and their generalisations was influential 

in this area. A detailed discussion of data  augmentation may be found in van Dyk 

and Meng (2001). It should be noted th a t implementing data  augmentation schemes 

requires skill and experience as the choice of scheme depends very much on the model 

being considered.

3.4.1 T he M ethod

Two cases where d a ta  augmentation may be used are first if we have incomplete 

data  and second where the likelihood function is intractable. Even in well-defined 

experiments, it is often the case tha t we have missing values tha t make the estimation 

of param eters difficult. The likelihood function can often be difificult to analyse for 

some reason. The introduction of latent data  (unobserved supplementary data  in the 

case of incomplete data, or unobserved random variables in the likelihood case) make 

analysis easier.

According to Tanner and Wong (1987) the method of data  augmentation applies 

whenever the da ta  can be augmented in such a way that:
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1. it becomes easier to analyse the augmented data;

2. it is easy to generate the augmented data, given the parameter(s).

In the case of analysing posterior densities, suppose we have observed da ta  X  whose 

distribution depends on some param eter 9, where 9 is the param eter of interest, i.e. 

we are interested in the distribution:

P(01X).

Let 7t { 9 )  be the prior on 9. Suppose now that the likelihood function P(X |0) is 

not readily available, but suppose we can augment the data  X  easily with latent 

(unobserved) data  Z  from the predictive density F( Z\ X)  such th a t the augmented 

data  ( X , Z )  is easy to analyse, i.e., the posterior distribution:

F{9, Z\ X)  oc F{X,Z\9)Tr{9),

becomes easy to analyse because the likelihood P(X, Z|0) is available. D ata aug

m entation consists of successively sampling 9 and Z,  then calculating the marginal 

distribution of 9, i.e.,

P(0|X ).

3.4.2 Exam ple o f D ata  A ugm entation  

Exam ple 3.1 P ois son  Model

We now present an example of da ta  augmentation which is a simplified version of how 

we will later on in this thesis (Sections 4.2.5 and 5.4) implement the method of data 

augmentation. The introduction of the augmented data set (A î, N 2 ) in this example 

allows for the use of the Gibbs sampler and also for the estim ation of the parameters 

Ai and A2 which are not identified by the data  N.  When we implement this method 

during the analysis of initiation models for the crack data  in the following chapters, 

together with facilitating the use of the Gibbs sampler, the data  augmentation will 

allow us to identify the proportion of the intensity of the Poisson model th a t is due 

to various crack causing factors.
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Suppose we have the following Poisson model;

N  Poisson (Ai +  A2).

We wish to make inferences about the parameters Ai and A2, i.e. we are interested in 

P(Ai|A^) and P(A2|iV). Suppose we choose Gamma priors for both Ai and A2. Consider 

first the joint distribution:

P ( A i ,A 2 |Â  =  n) oc P(iV =  n|Ai,A2)7r(Ai)7r(A2),

_  exp (-(A i + A2))(Ai +  A2)” , . . .
—   j---------------------------- 7 r ( A i j 7 r ( A 2 j .

n!

It is not so easy to analyse the conditional posterior distributions for Ai and A2, i.e. 

P(Ai|A2,jV =  n) and P(A2iAi, A" =  n) respectively, as they are not of known form. 

What we can do though, is augment the data as follows. Introduce two new random 

variables Ni  and N2, where we define Ni as:

AiP(A î = rii\N = n) ^  Binomial I . 1 ,
V Ai +  A2 /

and N2 = N  — Ni. We must show that the random variables we have defined, namely

N i  and N 2 ,  both have Poisson distributions with parameters Ai and A2 respectively.

L em m a 3.1 Ni ~  Poisson{\\).

Proof:
00

P(7Vi=ni) = ' ^ F { N i = n i \ N  =  n)F{N =  n),

n  \  f  Ai y W  X 2  e-W(A)"E
n = m  \  '^1 

00 -

n = n i

ni! ^  722! ̂ U2=0
e-^i(Ai)”! 

nil
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where A =  Ai +  A2. Therefore Ni ~  Poisson(Ai). With a similar argument to that 

used in Lemma 3.1 it is possible to show that N2 ~  Poisson(A2). We must now show 

that the random variables Ni  and N2 are independent.

L em m a 3.2 P(A î =  ni, N 2  =  n ^ )  =  P(A î =  ni)P(A^2 =  ' ^ 2 ) -  

Proof:

P(A î =  m , Â 2 =  ^̂ 2) =  ¥{Ni  =  r i i , N  -  Ni =  n2),

=  P( iVi  =  n i ,  iV =  n i  +  712),

=  P(A  ̂ =  ni +  n2)P(A^i = rii\N = rii + 712),

e-^(A) (
(ni +  71,2)!

Till U2l

n i  /  \ \  ri2n i + r i 2 \ f  Ai \ ( A

Given the random variable N  ~  Poisson(A] +  A2) we have constructed the inde

pendent random variables Ni  ~  Poisson(Ai) and N2 ~  Poisson(A2). Thus

P(Ai ,A2 |A^i  =  n i , i V 2  =  ^ 2 ) tx P(7Vi =  n i , i V 2  =  n 2 | A i ,  A2)7r(Ai)7r(A2),

= P(Â i = ni)P(iV2 = n2)7r(Ai)7r(A2).

It is possible to show that P(AiIA2, Â i, N2) and P(A2|Ai, Â i, N2) both have Gamma 

distributions since we have chosen a Gamma prior for both Ai and A2. Hence for 

the algorithm we simulate rii ~  Binomial ^n, and U2 = n — rii, we can then

simulate Ai and A2 given ni and 7̂ 2.

3.5 Bayesian Kriging

It is sometimes necessary that we interpolate the data that we have available in 

order to estimate responses at locations other than those given. Kriging is a method
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used for the in terpo lation  or prediction of spatial data . See Cressie (1993), Diggle and 

R ibeiro Jr. (2000) and W inBUGS (June 2003) for more details. Consider a continuous 

study  region G We have a set of locations {xi,yi), i = 1 , . . . ,  N,  and a t each 

of these locations we have a scalar m easurem ent (response) Yi = Y{xi , i / i ) ,  where in 

principle the y^’s can be located anywhere in A.  We consider the real-valued stochastic 

process:

{Y{x , y )  : {x,y)  e  A}.

The Yi can be though t of as a “noisy” version of an underlying random  variable 

S{xi , y i ) ,  which is the  value a t location {xi ,yi)  of another process { S { x , y )  : ( x , y )  e  

R^}. 5 ( .)  is som etim es referred to as the signal. The stochastic process S { x , y )  is 

a s ta tio n ary  G aussian process, i.e., the jo in t d istribu tion  of 5 (x i ,  y i ) , . . . ,  5 (x„ , y„) 

is a m ultivariate  N orm al for any integer n  and set of locations {(x i,y j)} , the ex

pecta tion  E[S'(x,y)] =  l-i'{x,y) for all locations {x,y) ,  the variance of S { x , y )  is cr̂  

for all locations and the  correlation between S{x i , y i )  and S{ x 2 , y 2 ) depends only on 

Euclidean distance (isotropic). The mean of the Gaussian process S{.)  can be ex

pressed as i-i{x,y) =  ^kXk { x , y ) ,  w'here X k { x , y )  are a set of k spatially-referenced 

exp lanatory  variables.

T he model for the  d a ta  can then be expressed as:

Y  ~  MVN (/u, >

where ^  is an  x correlation m atrix , i.e., Y lij — / ( , )  is a corre

lation  function, is the variance of the nugget effect (small scale variation and 

m easurem ent error) and  dij is Euclidean distance. Equivalently, conditional on S{.),  

Y, ~  N orm al(5(x j, yi), r^).

Suppose w'e are in terested  in predicting responses Tj, j  =  1 , . . .  , M  a t locations 

( x j , y j ) .  The param eters {Pk\ ,  and 0  m ust be estim ated and in Bayesian kriging 

we choose an app rop ria te  prior d istribu tion  for each of them . From the properties of 

the  m ultivariate  N orm al d istribu tion  and Bayes’ theorem , it can be shown th a t the
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conditional distribution for T given Y  is as follows:

r{T \Y)  ~  M VN(//T |r ,^) ,
T \Y

I I t \ y  =  //l + Cov(T,y)Var(r)-n^-/^l),

=  Var(T) -  Cov(r,r)Var(r)-^Cov(F,T),
T \Y

and thus we can obtain estimates for the responses Tj, j  = 1 , ,  M.



Chapter 4

D iscrete Initiation M odel

As was m entioned previously, dam age accum ulation is defined to  be the in itia tion  and 

grow th of fatigue cracks. In order to  model dam age accum ulation it is necessary to 

m odel the  in itia tion  of the cracks in the bone cem ent. As discussed, various models 

have been proposed for the in itia tion  of these cracks. We now present a model th a t 

utilises the  spatial inform ation th a t is available in the d a ta , nam ely the  crack loca

tions (given as x  and y  coordinates). Local properties of the bone cem ent such as 

irregularities in the cement due to  pores or air bubbles (unm easured), or local stresses 

(m easured) have an im pact on the in itia tion  of cracks. We propose a spatia lly  discrete 

m odel for crack in itia tion  th a t incorporates bo th  the observed and unobserved factors 

th a t influence crack in itiation.

4.1 M odelling Approach

As detailed  in C hapter 2, the  d a ta  collected consist of crack locations for each crack 

in each of the five specimens, together w ith stress m easurem ents (compression and 

tension) obtained through a finite element analysis. The crack locations consist of 

spatia l coordinates of bo th  the  s ta r t and end points of each crack. The stress m ea

surem ents are identical for the five specimens, as only one set of stress m easurem ents 

was taken. In this chapter we wish to  model the in itia tion  of cracks during the  stress

43
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loading. We will only be concerned with those cracks tha t have formed during the 

stress-loading (i.e, load-cracks) and not with the cracks which have formed prior to 

the loading. Also we will only be considering the start locations of the load-cracks. 

See Figures 4.1 and 4.2 (left hand side) for images of the load-crack start locations in 

each of the five specimens.

Various models for crack initiation have been proposed, see Section 2.7. We wish 

to model the initiation of the cracks as a spatial process. Having observed the crack 

locations (and hence counts of cracks in regions are available) together with estimates 

of the stress intensities, we would like to make inferences about the underlying process 

th a t has given rise to the cracks. In doing so we would like to make use of the spatial 

information available to model the relationship between stress (both compression and 

tension), unobserved covariates and crack initiation.

4.1.1 A pproaches to  M odelling Count D ata

An approach when considering data consisting of actual spatial coordinates, such 

as we have, is to aggregate the data over some grid /partition  and then model the 

resulting count data (Ickstadt and Wolpert (1997)). The grid, often referred to as 

a “lattice” (Cressie (1993)), denotes a countable collection of (spatial) sites and it 

is often possible to specify neighbourhood information for the lattice. In disease 

mapping, where the number of disease cases in each geographical region is of interest, 

the data  are often supplied as count data (Elliott et al. (2000)).

The choice then becomes how to model the count data. One method in modelling 

the count data  is to perform a variance stabilizing transform ation and then treat the 

count data  as having a Normal distribution (Cressie (1993)), but as noted in Ickstadt 

and W olpert (1997) this Gaussian model does not respect the discrete nature of the 

count data.

A natural choice when dealing with count data  is to use the Poisson distribution. 

A type of model sometimes used is the log-linear Poisson model. In this case the 

count da ta  are modelled as Poisson and the logarithms of the intensity can then be
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Figure 4.1: Diagrams on the left indicate individual crack locations for specimens 1 

to 3 (top to bottom ) with corresponding image diagrams on the right of the windows 

divided into an arbitrary grid of polygons shaded according to the observed number 

of cracks.
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Figure 4.2: Diagrams on the left indicate individual crack locations for specimens 4 

and 5 (top and bottom  respectively) with corresponding image diagrams on the right 

of the windows divided into an arbitrary grid of polygons shaded according to the 

observed number of cracks. (Due to the non-uniformity of the bone strips used in the 

experimental model described in Section 2.6.1, some cracks appear to be outside of 

the windows, but are in fact inside.)
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modelled with a Gaussian random field. Unfortunately if the level of aggregation is 

not the desired level and we wish to aggregate the regions or refine the partition the 

model does not scale so easily. We would expect sums for the intensity if we aggregate 

regions but instead we get products. Thus the choice of lattice is very im portant as 

the analysis would have to be repeated if a new level of aggregation is desired.

4.1.2 Identity-Link Poisson Regression M odel

An alternative model for the Poisson random variable is to model it using an identity- 

link Poisson regression model. As already mentioned, when a logarithmic-link is 

proposed, attem pting to aggregate the partition leads to products for the Poisson 

means of the new aggregated regions instead of sums, as would be desired. The 

identity-link does not have this problem as it is consistent under aggregation and 

refinement of the partition. Poisson regression models with identity link functions 

have been used in various applications, for example, in spatial epidemiology (Best 

et al. (2000b)) and in the examination of forest inhomogeneity (Ickstadt and Wolpert 

(1997)).

Thus we choose a partition of our windows and count the number of cracks in 

each of the regions of the partition and model the count as a Poisson random variable 

which in turn  is modelled with an identity-link regression model.

The next step is then to consider how to relate the Poisson random variables, one 

associated with each region, to both the observed and unobserved factors tha t are 

believed to have an infiuence on the Poisson random variables. In our case how to 

relate the Poisson random variables to stress and any influential unobserved factors.

4.2 M odel Specification

To begin we choose an arbitrary partition of both the lateral and medial windows and 

we introduce some notation and specify the factors which we believe have an influence 

on the Poisson intensity.
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4.2.1 The P artition  and the Intensity

We choose to divide the lateral and medial windows into an arbitrary  g rid /partition  

consisting of 22 polygons in each window. Figures 4.1 and 4.2 (right hand side) 

indicate the crack count for this arbitrary grid for each of the specimens. Each 

polygon is shaded according to the number of cracks observed in the polygon. Figure 

4.3 also gives details of the counts for this arbitrary grid.

Let Pij denote polygon j  of specimen i, z =  1 , . . . ,  5; j  =  1 , . . . ,  44. We denote by 

N{Pij) =  Nij the count of cracks in polygon Pij. We model the crack count in each 

polygon as having an independent Poisson distribution with some unknown intensity, 

fiij. As we are modelling the crack count in a Bayesian setting, the intensity can be 

considered as a random variable.

Dobson (2002) describes the events of a Poisson process as being related to varying 

amounts of “exposure” which need to be taken into account when modelling the 

intensity. Consider the simple example given by Dobson where counts of occupational 

injuries are being modelled as Poisson distributed; each worker is exposed for the 

period th a t they are at work, so the Poisson rate (one-dimensional intensity) may be 

defined in terms of this time spent at work. In our spatial context this “exposure” 

may be thought of as the area of the polygons, giving

) =  l^ij —

where Aj  is the area of polygon P^j (note, not all Aj  are equal) and Xij is the unit-area 

intensity.

The influence tha t any explanatory variables have on the crack counts Nij is 

modelled by through Xij. This immediately raises the question of what explanatory 

variables are available in this case?

4.2.2 Explanatory Variables

As well as individual crack locations, the data provided also include a finite element 

analysis of the stress measurements. Figure 4.4 gives locations and measurements for
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Figure 4.3: (a) shows a boxplot of the count of cracks in the polygons for each of the 

specimens, (b) shows a histogram of the count of cracks for all specimens.

the finite element stress analysis, (note th a t positive stress measurements denote ten

sion, negative values indicate compression). Instead of using the stress measurements 

as presented, we have kriged the stress measurements in order to obtain estimates of 

the stress a t the centroids of each of the polygons. This allows us to relate the count 

of cracks in a polygon to a single stress measurement at the centroid of the polygon.

In carrying out Bayesian kriging (see Section 3.5) we assume the nugget variance 

is negligible and so set =  0. For each of the given stress measurements at lo

cation n, we set //„ =  /5 and we choose the correlation function Xlnm ~  i.~4>dnm)i 

where dnm is the Euclidean distance between locations n and m. For the unknown 

param eters /3, and we choose Gaussian, Gamma and Uniform priors, respec

tively. We carry out inference to estimate these param eters and then predict the 

stress measurements at the centroids of each of the polygons.

See Figure 4.5 for an image detailing the kriged values of the stress. We denote by 

Cj and Tj the compression and tension respectively at the centroid of polygon for 

alH  =  1 , . . . ,  5. Note th a t only one of Cj and Tj will be non-zero for a given polygon 

centroid, as compression and tension cannot both be present at a given location.
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(a) (b)

Figure 4.4: (a) indicates the locations at which finite element measurements of stress 

were calculated, (b) shows the spread of stress intensities th a t were calculated (mea

sured) in the finite element analysis.

Both compression and tension have an effect on crack initiation and we would like to 

estim ate the effect th a t each has, see Section 2.4.1.

Another factor tha t has an impact on the initiation of cracks is the distribution of 

pores (air bubbles) in the bone cement. As detailed in Section 2.4.2 the mixing of the 

cement is a very im portant step during the operation as it is possible for air bubbles to 

become trapped in the cement while it is being prepared. As also detailed in Section 

2.4.2 the pores have an impact on the initiation of the cracks in the cement. In the 

experiment from which our data  come, it was not possible to locate pores within the 

cement. Thus we do not have any idea as to the distribution of the pores in each of 

the specimens. We would like to incorporate this im portant factor in our model for 

the initiation of cracks and to do this we model the unobserved distribution of pores 

using hidden or latent spatial variables, which will also model excess variability due 

to other unobserved factors.
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Figure 4.5: Kriged values of compression and tension for each of the polygons.

4.2.3 Poisson R egression M odel w ith  Identity  Link

We model the dependence of the random unit area intensity \ i j  on the explanatory 

variables (stress, latent) using a Poisson regression model with identity link (Dobson 

(2002 )):

44

\ i j  = P i C j  +  ! 3 2 T j  +  u j j k J i k ,  i  =  1 , . . . ,  5; j  =  1 , . . . ,  44, (4.1)
k=l

where j3\ is the coefficient of compression and /?2 is the coefficient of tension. We choose 

to model the effect of compression and tension without a specimen effect. The reason 

for this is tha t we have only one set of stress measurements for all of the specimens 

and so we do not expect to be able to model a specimen effect, {'jij} is defined to 

be the set of latent factors with one factor for each polygon. These latent factors 

represent the effect in polygon Pjj of the unobserved spatially distributed factors th a t 

have an influence on crack initiation. The amount of influence th a t these factors have 

on causing cracks to form in a given polygon is governed by Ujk, a Gaussian kernel
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which depends on Euclidean distance, i.e.,

|2

27rp2 \  2p2

where djk is the Euclidean distance from the centroid of polygon Pij to the centroid 

of polygon Pik. If a polygon is far away from the polygon whose crack count we are 

modelling then the kernel will be relatively small and so the influence from the latent 

factor in this polygon will be small. This influence is controlled by the param eter p. 

We make the following assumption: when considering the crack count in a particular 

polygon, the latent factors associated with the polygons in the other window do not 

have any influence in causing cracks to form in this polygon. We make this assumption 

as there is no physical link between the windows in the experimental model, see Figure 

2.3(a). Thus, in Equation 4.1 the kernel u)jk =  0 if polygon is not in the same 

window as polygon P^j.

4.2.4 Prior Inform ation

The param eters Pi, (̂ 2 , {j i j},  and p are all uncertain. /5i quantifies the influence of 

compression on cracks forming, /?2 quantifies the influence of tension on the initiation 

of cracks, and the {j i j }  quantify the influence of unobserved, spatially varying factors 

on crack formation. The param eter p indicates over what distance the effect of the 

latent spatial variables is felt, answering the question: Do these unobserved spatially 

varying factors only have an influence locally or is their influence more far-reaching? 

All of these parameters are of interest and we would like to estim ate each of them. 

We will make inferences about each of these param eters using Bayesian analysis.

In order to model these param eters using a Bayesian analysis, we must choose 

prior distributions for each of them. We choose independent prior distributions. For 

the coefficients of compression and tension we choose independent prior distributions 

as physically compression and tension will not both be present in a given polygon. 

For each of ^ 1 , ^ 2 , {j ik} we choose Gamma priors. One reason for choosing Gamma 

priors is th a t the mean of the Poisson must be non-negative; another is our belief tha t
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each of these corresponding factors positively influences the formation of cracks. We 

also have reason to believe from communications with engineers that tension stresses 

have a greater impact in crack initiation than do compression stresses and our priors 

should reflect this knowledge. We choose the following priors:

7t(^i) ~  Gamma(o!i = l,bi = 0.1),

7t(/32) ~  Gamma(o!2 =  3,62 =  0.1),

~  Gamma(o;g =  1,6^ =  0.1), V i ,j.

We return to the question of inference for p in Section 4.3.

4.2.5 Posterior D istribution

The joint posterior distribution is proportional to the product of the joint likelihood 

and independent priors;

^  P ({ A ^ * j} |A , /3 2 ,{ 7 i j} ,p ) 7 r ( /3 i ) 7 r ( /3 2 ) 7 r ( p )  ] j 7 r ( 7 , : j ) ,

ij

In order to make inferences about the unknown parameters of interest we make use 

of the MCMC techniques that are available, see Section 3.3. By using the technique 

of data augmentation, see Section 3.4, the full conditional distributions for /3i,/?2, 

and {7ij} are of known form, (they have Gamma distributions). The choice of prior 

distributions (Gamma) for each of these parameters has also made this possible as 

we are exploiting the conjugacy of the prior distributions. In augmenting the data 

we introduce a set of new random variables, {Nijk}, by breaking up the count Nij of 

cracks in each polygon into a sum of counts, where each of these new counts represents 

the number of cracks that are attributable either to compression, tension or one of 

the latent factors. See Appendix A. 1.1 for full details.

With the inclusion of this data augmentation step the full conditional distributions 

for /3i ,^ 2, and {72̂ } are available in known form. This makes the use of the Gibbs
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sam pler, see Section 3.3.5, a n a tu ra l choice of MCMC technique to  use in order to draw 

sam ples from the full posterior d istribution. It can easily be shown (see A ppendix 

A. 1.2) th a t the full conditional d istributions are as follows:

P(/3i 1/?2, {7ifc},p) G am m a I Y ^ N i j i  + a u b Y ^ C j A j  + b i y ,
\  i j  j  /

F { / 3 2 \ P i , { ' y i k } , p )  ~  G am m a + 0 2̂,5 + 62 I ;
V i j  j  J

P (7 ifc|/5 i , /52,p) ~  G am m a Nijk+2 + .

See A ppendix A. 1.1 for definitions of Nij,.

4.3 Investigation of the Kernel Param eter p

The G aussian kernel, uijk — exp { (—|djjtp/(2p^)}/(27rp^), governs the  influence on 

the crack count in polygon Pij arising from the la ten t variable 7 /̂̂  in polygon Pi^. 

The param eter p >  0 determ ines how rapidly  this influence declines w ith increasing 

distance from the centre of polygon P^j. As p gets larger, the kernel ujjk becomes 

flatter, as p becomes sm aller the kernel becomes more peaked and the  la ten t variables 

associated w ith far away (relative to  p) polygons have less of an influence on the crack 

count in polygon Pij. See Figure 4.6.

4.3.1 Other Applications Using a Gaussian Kernel

Best et al. (2000b) used th is type of kernel in their identity  link spatia l regression 

m odel which related the prevalence of respiratory  illness in children in Huddersfield, 

UK, to  NO 2 concentrations and unm easured factors. The au thors trea ted  p as fixed 

or certain . Several different fixed values for p were considered and the  value for p 

th a t was chosen was the one th a t gave results th a t were m ost consistent w ith the 

data . Best et al. (2000a), again exam ining the prevalence of resp irato ry  illness in 

children using an identity  link regression model, chose a Lognorm al prior for p. The
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Figure 4.6: Gaussian kernels for two values of p. On the left p =  2 and on the right

p = 3. The X and y ranges are (1,15) for both plots.

mean and variance of this Lognormal prior reflected the fact th a t spatial effects on a 

small scale would not be detectable and those on a much larger scale would appear 

as large-scale trends. Wolpert and Ickstadt (1998a) analyse the density and spatial 

correlation of hickory trees and they also use a Gaussian kernel in their analysis, again 

with Lognormal prior with appropriate mean and variance parameters.

4.3.2 Exploratory A nalysis for p

As an initial examination of the param eter p we look at the log-likelihood function

for each specimen, for i =  1 , . . . ,  5

132, {%j},pm)  =  -  log(iVy!)},
j

where
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for the range of p values 0.01 =  <  p2 < • • • <  P m  < • • • <  P m  =  20. This was done

as follows. For each pm we calculated

t = l

where \/32 *\ and { ' y f j }  are the parameter estimates obtained at each ite ra tion  of 

the M C M C  a lgorithm  when p is fixed at the value pm- Thus F { { N i j } \ ^ i ,  P2 , { ' l i j j iPm)  

is an estimate o f E [F ({N jj}|;0 i,/32 , { 7 j j } ) ]  w ith  respect to  the posterior d is tribu tion  

^ P u p 2 , { l i j } \ p A ^ i j } ) -  For each pm we then p lo t (Pm, /?2, Pm)) as

can be seen in  Figure 4.7.
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Figure 4.7: Estim ated log-likelihood, P ({iV jj} |/3 i, ,02) {7 ij} )  Pm) calculated for pm G 

[0.01, 20] for each o f the five specimens. The log-likelihood was estimated using sample 

values for /5i,/32, and { j i j }  from  the posterior d is tribu tion  obtained from  the M CM C 

program. The dashed black line is at p =  2.

The log-like lihood was calculated by running the M CM C algorithm . Section B .l,  

for each o f the specimens ind iv idua lly, w ith  p having a fixed value, for an appropriate 

burn-in period. One thousand samples were then taken for each o f ^ 1 , ^ 2  and {7 ij }
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Figure 4.8: (a) shows the logarithm of the likelihood times different priors for Speci

men 5. (b) shows Lognormal priors for different parameters, these are the correspond

ing priors used in Figure (a).

and averaged. The plots for each of the five specimens clearly show th a t values less 

than approximately 2 are to be favoured for p. As p becomes larger, i.e., the kernel 

becomes more diffuse, the log-likelihood decreases. This is as we would expect in 

light of engineering intuition tha t the influence of the latent factors is of a localised 

nature. Based on the information from the likelihood and from the range over which 

it is believed the latent variables have an influence, it would be possible to treat p as 

fixed and carry out inference for the other parameters.

We also examined the effect of including a Lognormal prior for p. Figure 4.8(a) 

shows the logarithm of the likelihood times a Lognormal prior for p with different 

mean and variance parameters for the prior. Figure 4.8(b) shows the Lognormal priors 

used. The Lognormal prior has the effect of making small values for p, (p < 2), i.e., 

kernels th a t are peaked, less likely, meaning the latent influence is not so localised. 

The prior param eters should reflect the beliefs as to the range over which interactions 

from latent factors are to be expected. For a given value of p, most of the Gaussian 

kernel will lie within a radius of 2p of the centroid of the polygon. A polygon is
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approxim ately  6  units across. We would like a prior for p to  allow influence outside a 

given polygon and so the prior m ean for p should reflect this.

4.3.3 Simulation Study

In order to  investigate the identifiability of the param eters, in particu la r p, we carried 

out a sim ulation study. Fixing the param eters a t known values we sim ulated count 

d a ta  from a Poisson d istribu tion , using the s ta tis tica l package R, for 44 polygons of 

the  sam e area as each of the  polygons in the experim ental model. Inpu ting  the resu lt

ing sim ulated count data , we used the MCMC algorithm  in order to  ob ta in  estim ates 

of our known param eters. We choose a Lognorm al prior d istribu tion  for p w ith pa

ram eters: p  — 1 and a  — 1.4, giving a prior mean of ~  7.2. As was noted by Best 

et al. (2000b), the likelihood function for p is com plicated and doesn’t facilitate Gibbs 

sam pling. Instead we use a G aussian random  walk. The full MCM C algorithm  with 

details of the  random  walk step  can be found in Section B .l. The d a ta  were sim ulated 

w ith the  following values: j5\ — 0.01, /?2 =  0.03 and p — 3. See F igure 4.9 for image 

plots of the stresses, 7 ’s, sim ulated counts, and the resulting 7  estim ates. Table 4.1 

presents quantiles of the param eters: P i ,̂ 2 and p. From these results it appears th a t 

the param eters are reasonably well estim ated.

P aram eter
(

5%

IJuantile

50%

s

95 %

Pi 0 .0 0 1 0.007 0.025

P2 0.009 0 . 0 2 0.033

P 2 . 6 8 3.14 3.48

Table 4.1: Q uantiles for /3i, /?2 and p for the sim ulated data .
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4.4 M CM C Algorithm

We now present a brief outline of the MCMC algorithm for obtaining samples from 

the posterior distribution for each of the parameters: P i ,  (^2, { j i j } ,  and p.  A more 

detailed algorithm  is contained in Appendix B .l.

A lgorithm

1. Initialise /3i, /?2 , Pi and set the iteration counter r  =  0.

2. Calculate the Gaussian kernel for each pair of polygons Pij and Pik.

3. Simulate for all i, j, k.

4. Using Gibbs sampling simulate and

5. Propose ptest from Normal(p^''“ ^\ cr) and accept ptest with probability a, other

wise

6. Set r  =  r  +  1 and repeat Step 2 through 5.

4.5 Results

4.5.1 R unning the M C M C  Algorithm

We now present the estim ates of the /3 parameters and the param eter p  based on data 

for the five specimens. See Table 4.2 for quantiles and kernel density estimates for 

each of the param eters. The estimates for the param eters are based on sample values 

obtained from the posterior distribution by running the MCMC algorithm detailed 

in Section B .l. We computed 15,000 iterations of the program attributing  the first 

3,000 to burn-in. We examined each of the chains visually in order to inspect for 

lack of convergence. The chains appeared to have converged. We also ran multiple 

independent chains from various starting points. No evidence for lack of convergence
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was found. Trace plots of some parameters may be found in Appendix B.4, Figures 

B. 1 and B.2.

4.5.2 Estim ates of the 7 ’s

We present the estimates for the latent parameters in the form of image plots. For 

each polygon we present the posterior median value of Aj'^f.ujjk^n-, obtained from 

the MCMC algorithm. These plots show an estimate of the latent contribution to 

the intensity. See Figures 4.10 and 4.11. These may be compared with the median 

intensity for each of the polygons presented in Figures 4.15 and 4.16.

KDE’s andQuantiles 

50% 95 %Parameter 5% Priors

2.14 2.24 2.33

Table 4.2: Quantiles and plots of kernel density estimates and priors (red) for the 

parameters Pi, P2 and p based on data from all five specimens.

4.5.3 Posterior Predictive Distribution for Counts

We calculate the posterior predictive distribution for the count of cracks in each 

polygon using the Rao-Blackwellized estimator (Section 3.1.5):

PWyKWi,}) =  {7'; ’}), (4.2)
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where R  is the total number of iterations after burn-in. This was carried out as follows

and the estim ator is given by the following;

We then calculate the cumulative sum of (/„ ) and obtain 95% quantiles for the pre

dicted counts. This was done for the count in each polygon of each specimen. In

median posterior predicted count (and 95% quantiles), based on this estimate.

4.5.4 Zero-Inflated Poisson Distribution

One point to note when examining Figure 4.12 is th a t the zero counts appear not to 

be so well modelled. The overabundance of observed zero counts could be modelled 

by treating the zero counts differently from the non-zero counts. One way of doing 

this is to consider a zero-inflated Poisson Distribution (Ridout et al. (1998)). N  has 

a zero-inflated Poisson (ZIP) distribution if

where ttq is the proportion of zero counts, 0 ^  ttq <  1. For the ZIP distribution

Thus the ZIP distribution has a variance tha t is greater than its mean, allowing for 

overdispersion.

We re-calculate the posterior predictive for the count of cracks in each polygon 

again using the Rao-Blackwellized estimator. Equation 4.2 and replace Equation 4.3 

with the ZIP distribution, where ttq is the proportion of polygons having zero count.

n  =  0 , 1 , . . .

Figure 4.12 we show for each of the polygons of Specimen 3 the actual count and the

7To +  (1  -  7To) ex p ( - / i ) ,  n  =  0 ;

E{N)  =  (1 -  7To)/i; 

Var(iV) =  (1 -  7To)/i(l +  TTo/i).



C H A P T E R  4. D I S C R E T E  IN I T I A T I O N  M O D E L 62

For each of the  polygons of Specimen 3 we present the actual count and the m edian 

posterior predicted count (and 95% quantiles), based on this estim ate obtained using 

the  ZIP d istribu tion , see Figure 4.13. It would appear from th is figure th a t the zero 

counts are b e tte r  modelled using this d istribution.

4.5.5 Cross-Validation Predictive Density

We will carry  ou t a  cross-validation analysis by om itting  the count, for each polygon 

in tu rn , and exam ining the resulting predictive densitites. It is no t possible to  om it 

a full specim en from the  analysis as the la ten t factors, the j i / s  are specim en specific. 

For our purposes th e  set of cross-validation densities is given by {P(A^y 

where denotes all counts excepts the count Nij  for polygon Pij. The density

F{Ni j \ {N^ i j } )  gives an indication of w hat values of Nij  are likely when we fit the 

m odel b u t leave out th e  count Nij. We then  com pare the true  Nij w ith th is density 

and see how likely it is under the model we have chosen. More details of the m ethod 

can be found in Gilks et al. (1996).

We carry ou t th is cross-validation in the following way. For specim en i we om it 

the  count for polygon j  and inpu t all other d a ta  into the MCMC algorithm . All pa

ram eters Pi, P2 , p and {^(ij) are estim ated  as usual. At each itera tion  m  of the  MCMC 

algorithm  a count n \J^  ̂ is sim ulated from a Poisson d istribu tion  where the param eter 

of the  d is tribu tion  is given by cJJfc7^■^~^ )̂• Ĵ•

For Nij  we then  calculate the  posterior predictive d istribu tion  as follows:

F{Ni , \ {N _i, } )  = I  r { N , , \ e , { N . , , } ) m { N - ^ J } ) d e ,

where 6 =  Pi, P2 , P, { l i j} -  We again use a Rao-Blackwellized estim ate:

1 "

m=l

where M  is the  to ta l num ber of iterations after burn-in.

The results of th is  analysis are presented for Specimen 3 in Figure 4.14. Here 

we have om itted  the  count for each polygon in tu rn  and predicted the  count for
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this polygon. As can be seen from the figure, all true counts, except one, lie within 

the 95% predicted intervals. This would suggest th a t the model is an adequate one. 

Another indication of the adequacy of the model is given by calculating the percentage 

of counts th a t fall into the 50% equal-tailed predictive intervals. This percentage is 

47.7%, which suggests th a t the interval lengths are of the right size. We would expect 

with a reasonably well-fitting model, th a t approximately 50% of the observed data 

would lie in the predictive intervals.

4.6 Conclusions

In this chapter we have presented a spatial regression based approach to modelling the 

influence tha t both measured (stress) and unmeasured (latent) factors have in causing 

cracks to initiate in the bone cement during stress loading. One of the most im portant 

aspects of the model is the detection of latent spatial factors and the estim ation of 

the distance over which these factors appear to have an influence. We present an 

in-depth examination of the variance param eter of the Gaussian kernel, showing 

through a sinmlation study th a t it is possible with reasonable accuracy to estimate 

this parameter.

The estimates th a t we obtain for p suggest tha t the latent random effects have a 

short-range influence and this finding agrees with the literature. The partition size 

th a t we have chosen may be too large for us to determine if the influence is of a 

shorter range. A refinement of the partition may be considered, i.e., refining the 

areas o: the polygons upon w'hich the latent spatial factors are defined. The choice of 

refinement may be difficult, each time we refine the partition we may believe tha t a 

further refinement is desirable. The ultim ate refinement is to treat the latent spatial 

effects as a continuous random field, as we do in Chapter 5.

Usirg a finite partition  of the area has advantages, namely th a t in future experi

ments it would be possible to apply this model to data  where counts of cracks have 

been taken as opposed to the more time consuming task of locating each crack and
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obtaining its coordinates.
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(a) Stress (b) 7 ’s

(c) Simulated Counts (d) Median Estimates of 7 ’s

Figure 4.9: Im age plots for the sim ulation study, showing (a) stress, (b) 7 ’s, (c) 

sim ulated Poisson counts and (d) estim ated  7 ’s.
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9!

(a) Specimen 1 (b) Specimen 2

(c) Specimen 3 (d) Specimen 4

Figure 4.10: The posterior median estimates of the latent contribution, Aj  

foir eich polygon, (Specimens 1 to 4).
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(a) Specimen 5

Figure 4.11: The posterior median estimates of the latent contribution, Aj  

for each polygon of Specimen 5.

Polygon

Figure 4.12: For each polygon (x-axis) of Specimen 3 we show the actual count (red 

star), and the median posterior predicted count (black circle), together with 95% 

quantiles for the predicted counts.
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Figure 4.13: For each polygon (x-axis) of Specimen 3 we show the actual count (red 

star), and the median posterior predicted count (black circle), together with 95% 

quantiles for the predicted counts, based on the ZIP distribution.
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Figure 4.14: For each polygon (x-axis) of Specimen 3 we show the actual count (red 

star), and the median posterior predicted count (black circle), together with 95% 

quantiles for the predicted counts, based on carrying out the analysis with the count 

for the relevant polygon omitted.
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 3 (d) Specimen 4

Figure 4.15: Posterior medians of Aj/s for Specimens 1 to 4.
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(a) Specimen 5

Figure 4.16: Posterior medians of Ajj’s for Specimen 5



Chapter 5

Continuous Initiation M odel

We propose a spatial model for the initiation of cracks in the bone cement, this 

time using a continuous spatial field. The discrete model presented in Chapter 4 

necessitated the choice of an arbitrary grid and the aggregation of the data in order 

to form counts of cracks in regions. This model allows the crack locations to be 

modelled without having to aggregate the data. This model also incorporates the 

observed (stress) and unobserved (latent) spatial factors which influence the formation 

of cracks in the bone cement again using an identity-link Poisson regression model. 

The latent spatial factors are modelled using a Gamma random field. Similar models 

have been used in an epidemiological study (Best et al. (2000a)) and in the modelling 

of origin/destination trip data  (Ickstadt and Wolpert (1999)) which are based on 

Bayesian hierarchical point process models which were developed by Wolpert and 

Ickstadt (1998a).

5.1 Poisson Random  Field

5.1.1 M arked Poisson P rocess

Consider again the load-crack locations. This time, instead of creating a discrete 

lattice or grid of polygons and counting the number of cracks in each polygon, we look

72



C H A P T E R  5. CONTINUOUS INITIATIO N  MODEL 73

at the coordinates of the start locations of the cracks, i.e., the actual measurements

crack j  of specimen i. Let us consider what we mean by a spatial point process. See 

Cox and Isham (1980), Cressie (1993) and Diggle (2003) for a detailed introduction 

to spatial point processes.

D e fin itio n  5.1 A spatial point process is a stochastic mechanism which generates a 

countable set of events in Euclidean space.

A particular type of point process is the Poisson process, see Kingman (1993).

D e fin itio n  5.2 A Poisson process on is a random countable subset S  o/M^, such 

that
1. for any disjoint measurable subsets A i, A 2 , . . . ,  An of W' ,  the random 

variables N{Ai ) ,  N { A 2 ) , . . . ,  N{An)  are independent;

2. N{A)  is Poisson distributed with mean ^.{A), 0 ^  IĴ {A) ^  00, i.e.,

where N{A)  =  # {5  n A}, the measurable sets are the Borel sets, and

where X{x) is a non-negative valued function called the intensity function.

If X{x) is constant, then the process is referred to as a homogeneous or uniform 

Poisson process, otherwise the process is termed an inhomogeneous Poisson process. 

Note th a t the intensity function is the two-dimensional analogue of the rate function 

of the one-dimensional Poisson process.

The set of crack locations {lij} can be thought of as a random countable subset 

of some space £  C In particular we can model this set of crack locations as 

a Poisson process L  on £ , i.e., for any disjoint measurable subsets Ai ,  A 2 , . . . ,  An 

of £,  the random variables N( Ai ) ,  N ( A 2 ) , . . . ,  N(An)  are independent and Poisson 

distributed.

th a t were presented in the data. We denote by /jj the spatial coordinates (location) of
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For each crack location, we now obtain, through kriging, the stress value at that 

location and denote this stress value by either C(/y ) =  Ctj, if it is a compression 

stress, or T{lij) — Tij if it is a tension stress. Note, as in the case where we obtained 

through kriging the stress values at the centroids of the polygons, only one of either 

compression or tension can be present at a single location, not both. For each crack 

location lij we can consider the attribute vector aij, where aij is defined to be either 

of the form (Cjj, 0) or (0, T^), depending on whether there is a compression or tension 

value at the crack location lij. In a similar way as we did with the set of crack locations 

we can consider the set of attribute vectors {a^j} as lying in some space ^  C We 

would like to combine both the crack locations and the attribute vectors in a model. 

To do so we define a particular type of point process, namely a marked point process.

D efinition 5.3 A marked point process is a point process in which a real-valued 

random variable, or vector of random variables, called a mark, is attached to each 

point (Cox and Isham (1980)).

Trivially a marked Poisson process is a marked point process where the underlying 

process is Poisson. See also Kingman (1993) for more details, in particular on marked 

Poisson processes.

Thus we have associated a vector of random variables (attribute vector), taking 

values in some space .4 C with each point of the random set {kj},  i.e. with each 

point of the Poisson process L, hence we have defined a marked Poisson process.

5.1.2 Poisson Process on the Product Space

Consider the product space X  = C x A,  the pair x = (l,a), x  e X,  I e  C, a E A  

can be regarded as a random point in this product space X  and the set of points 

{x = (l,a) : I E L}  forms a random countable subset of £  x A fundamental result 

is that this set of coordinates {x} of marked points in the product space is a Poisson 

process. See Kingman (1993), pg. 55 for a detailed proof. Thus we have a spatial
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Poisson process

N{dx)  ~  Poisson(A(dx)), (5.1)

defined on the p roduct space X .  A{dx)  is an uncertain  and inhom ogeneous intensity 

m easure, m aking N {dx)  a doubly-stochastic Poisson process or Cox process,

D e f in i t io n  5 .4  A  doubly-stochastic spatial Poisson process or spatia l Cox process 

is a stochastic process in which the intensity is replaced by a random process A(2:) 

defined in R” , where, conditional on A{x) the stochastic process is an inhomogeneous  

spatial Poisson process, (Cox and Isham  (1980), K ingm an (1993)).

A{dx)  can also be referred to  as a random  field (Cox and Isham  1980, pg. 147).

5.1.3 Intensity  M easure

The in tensity  m easure A{dx)  can be modelled as a p roduct of the intensity  a t a point x  

and a  reference m easure uj{dx) on X . In this case uj{dx) is an area-w eighted reference 

m easure. This is sim ilar to  the discrete case where the in tensity  w'as a product of a 

u n it-a rea  in tensity  and  the area of the polygon. Thus we have

A{dx)  =  A{x)uj{dx),

and th e  to ta l num ber of cracks in X  is given by

N { X )  ~  Poisson A{x)u!{dx) =  A(A’)

5.1.4 R egression M odel w ith Identity-Link

In a sim ilar way as in the discrete case we model the intensity  a t a point using a 

regression model w ith identity  link th a t incorporates bo th  the observed (compression 

and tension) and unobserved factors (laten t factors representing the  unknown spatial 

d is tribu tion  of pores or o ther influential factors) th a t are believed to  have an influence 

on crack in itia tion . T he intensity  a t a point x  is given by

A(x)=C'(/)/3i+T(/)^2 +  ^3/53, V x e A ”,
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where the coefficients Pi and p2 are indicators of the influence of compression and 

tension, respectively, on causing cracks to initiate. The third term  in the identity 

link regression model represents the influence of the unobserved (latent) factors, which 

we will define subsequently.

5.1.5 Latent Spatial Covariate

As in the discrete case where we considered a set of latent spatial variables, one for 

each region (polygon), we also include a latent spatial covariate here. If unobserved 

covariates vary continuously over the space, it is im portant to include them in the 

analysis and, as we have reason to believe tha t the distribution of pores varies con

tinuously, v/e incorporate a latent spatial covariate to account for this. We are no 

longer considering discrete regions but want to model the intensity over continuous 

space. Suppose to start with we introduce a set of M  random locations {smjmeM in 

5  I where S  is some region such tha t C C S  and with each of these we associate 

a set of random latent magnitudes {TmjmeMi not necessarily all equal. Each of the 

SrnS can be considered as analogous to the polygon centroids and each of the 7 m’s as 

analogous to the random variables 7 jj, associated with each polygon in the discrete 

model.

In a similar way as in the discrete case we choose to model the influence, tha t 

the latent magnitudes {jmjmeM have on causing cracks to form, with a Gaussian 

kernel k(/, Sm) depending on Euclidean distance, for any location I G C. Thus we 

are modelling the unobserved factors th a t influence the formation of cracks as point 

sources of not necessarily equal magnitudes, and whose influence decreases with in

creasing distance from the point source, and the rate at which the influence decreases 

is determined by the Gaussian kernel.

We consider the following

M

"^k { l ,S m h rn -  (5.2)
m = l

The magnitudes {7m} together with the locations are an approximation to
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any unobserved spatially varying latent covariate. Suppose now we increase the set, 

{smjTm}? in the limit this leads to a random field, which we denote by r{ds),

5.1.6 Gamma Random Field

We now introduce a particular type of random field, namely the Gamma random field.

•  A  C r(y4) ~  Gamma [J^a{s)ds, b{s));

• I f  two sets A , B c S  are disjoint, then F(^) and T{B) are independent, (inde

pendent increments).

Note that the distribution is exact if b{s) is constant on A, otherwise it is an approx

imation. Gamma random fields offer a means by which we can model uncertainty 

about both the location and the size of factors (for example, the pores in the cement) 

that we believe have an influence on the formation of cracks. Wolpert and Ickstadt 

(1998a) introduced the idea of using Gamma random fields in their class of Bayesian 

hierarchical models used to analyse spatially dependent count data. As an illustra

tive example, they modelled the density and spatial correlation of hickory trees. The 

incorporation of a Gamma random field and Gaussian kernel in order to model latent 

spatial covariates was also used in the analysis of the effect of traffic pollution on 

respiratory disorders in children (Best et al. (2000a)). It has also been used in the 

analysis of origin/destination trip data (Ickstadt and Wolpert (1999)).

The influence of all latent spatial point sources on a point I G C, Equation 5.2, 

now has the following integral form

T{ds) — ^  ̂Im^sm jds).
m

Definition 5.5 A random field T{ds) ~  Gamma{a{ds),b{s)) is said to be a Gamma 

random field with shape measure a{ds) and scale function b{s) over some set S  if
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The intensity for the marked Poisson process then becomes

A(x) =  C (/)A  +  T(/)/32 +  J  k{l , s)r{ds) .  (5.3)

For notational simplicity let X i{x )^ i  = C{l)Pi, X 2 {x)P2 =  T{1)^2, and X ^{x ) ^ 3  = 

f^k{ l , s ) r {ds ) .  The intensity can now be written as

3

A(x) =  Y ^ X k { x )^ k -
fc=i

5.1.7 Simulation of a Gamma Random Field

Since the Gam m a random field is not observed it is necessary to have some way of 

simulating the field. The Gamma random field can be simulated using the Inverse 

Levy Measure (ILM) algorithm, see Wolpert and Ickstadt (1998a) and Wolpert and 

Ickstadt (1998b) for full details. The ILM algorithm is based on an idea regard

ing characteristic functions of infinitely-divisible distributions and particular positive 

measures which are termed “Levy measures” . The algorithm is used to draw random 

samples from Gam m a and other non-negative independent-increment random fields. 

According to W olpert and Ickstadt (1998a) the work of Levy (1937) and others sug

gests th a t a Gam m a process can be constructed from a Poisson process. The following 

theorem summarizes how this can be done, see Wolpert and Ickstadt (1998a) for a 

detailed proof.

Theorem  5.1 Let o;(s) ^  0 and b{s) > 0 be measurable functions on a space S. Let 

{<7m} be independent identically distributed draws from any probability distribution 

U{ds) on S , and let Tm ^  0 be the successive jump times of a standard Poisson 

process. Set t {u , s ) =  Ei{u/b{s))a{s) and 7^  =  inf[u ^  0 : T { u , a m )  ^  r^], that is,

Tm ("^m/o^(*^m))^(^m))

or jrn = 0 i f  <^Wm) =  0. Then the random field T{(j)) =  Ylm<oo'yrn4>{(^m) for bounded 

measurable 4>{s) has the Gamma process distribution F((is) ~  Gamma{a{ds), b{s)) for  

the measure a{ds) =  o;(s)II(c!s).
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Note; Ei{t) = denotes the exponential integral function, see Abramowitz

and Stegun (1964), pg. 228. See Wolpert and Ickstadt (1998b) for details on how to 

approximate this function and its inverse.

Suppose we want to sample from the Gamma random field r(c?s) ~  (a(c?s), b(s)), 

over the set S. A single realization of this Gamma random field will be discrete, and 

will consist of countably many point masses of random magnitudes jrn locations 

Sm € s .  The theory allows for the sample locations to be drawn from any distribution 

n , provided that whenever a set A  exists such that a{A) > 0 then n(A) > 0. For 

example it is possible to exploit information about where points associated with the 

latent variables would be expected to lie and to sample heavily from those areas. If 

such information is not available then the Uniform distribution on 5  is a good choice 

from which to sample.

5.1.8 Inverse Levy Measure Algorithm

The following is the ILM algorithm to sample from a Gamma random field 

r(ds) ~  Gamma(o;((is), 6(s)):

1. Set M  to be large.

2. Choose a distribution II(c?s) on S  from which it is easy to sample.

3. Generate M  independent identically distributed draws {cTm} from Il(ds).

4. Generate the first M jump times {Tm} of a standard Poisson process; to do 

this simulate M  independent exponential random variables {e^} and set =

Em 
i=l

5. Set 7m =  E^^{Tm/oc{am)}b{am), for m =  1 , . . . ,  M.

6. r { d s )  ^  T m (c ? s )  =  Y l r n ^ r n S a m i d s ) .
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Figure 5.1 shows a single realisation of a Gamma random field. The code for this plot 

was w ritten in R and it is an adaptation of S-Plus code th a t is available in Wolpert 

and Ickstadt (1998b).

Figure 5.1: A single realisation of a simulated Gamma random field with a{ds) =  10 

and b{s) =  2. The Gamma random field was simulated with n(ds) Uniform on 

(0,1) X (0,1) and M  =  1000.

5.2 Likelihood

The Poisson regression model with identity-link (see Equations 5.1 and 5.3) is the 

model we have chosen: N{ X)  ~  Poisson(A(A’) =  A). The joint likelihood for all 

crack locations for all five of the specimens may be written as follows

-r-i- exp
P({iVi,}IA.&,{ri,(ds)},p) = n jv ! ■
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where the  indexing sets are specim en: i =  1 , 2 , . . . ,  5 and window: j  =  1,2 and 

Nij = Ni{Xj) .  Note th a t the index j  previously referred to  cracks. We m odel the 

la tera l and m edial windows separately  since there is no physical link in the  labora to ry  

m odel between the  two windows, see Section 4.2.3 and Figure 2.3(a). Thus Nij  is the 

to ta l num ber of cracks in window j  of specim en i. The intensity  is given by

A^{Xj) = Aij — Pi /  Xi{x)u!{dx) + 132 /  X 2 {x)uj{dx) +  /  /  k{x,  s)rij{ds)cu(dx),
J  Xj  J x j  J  Xj  J  S j

where Xj  is the  la tera l ( j  =  1 ) or the  m edial ( j  =  2 ) window and Sj  is a rectangular 

region containing the  la tera l window ( j  =  1) or the  medial window ( j =  2 ).

5.3 Prior D istributions

As in the  d iscrete m odel we perform ed inference on the unknown param eters ^ 1 , ^ 2 , 

{ j i j }  and p. Sim ilarly we wish to  carry  out inference on ^ 1, P2 and p and also on the 

G am m a random  field Tij{ds).  For /9i, /?2 and  p we use sim ilar priors as in the  discrete 

case,

r\j Gam m a(o!i, 61),

7t(/32) ~  Gam m a(o;2 , 62),

7t (p ) Lognormal(/[i, a),

as we are still m aking use of the same prior inform ation th a t is available for analysing 

th is data .

For the prior for the  G am m a random  field Fy(c?s) we choose a U niform  shape 

m easure a{ds)  on a  rectangular region surrounding each of the la teral and  m edial 

windows separately  and we choose a constan t scale param eter b.
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5.4 The Posterior D istribution
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r { ^ i , / 3 2 , { r ^ j { d s ) } , p \ { N ^ j } )  oc I — 7 r (r j j (d s ) ) |7 r ( /3 i )7 r ( /3 2 )7 T (p ) .

The jo in t posterior d istribu tion  for all the d a ta  can be w ritten  as follows:

N,j\

5.4.1 Inference for Pi ,  /32, and p

We w ant to  perform  inference on the param eters j3i, p, and { rij((is)} . In order 

to  do th is we em ploy MCMC techniques. The first of which is d a ta  augm entation, 

see Section 3.4. In the  discrete model, given a count of crack s ta r t locations in a 

particu la r polygon during each iteration  of the algorithm , we divided the count into 

cracks which we a ttr ib u te d  to  com pression, cracks which we a ttr ib u ted  to  tension, and 

cracks we a ttr ib u te d  to  the unobserved la ten t factors. We do som ething sim ilar here. 

For each crack {k) in window (j)  of specim en (i) we have a point Xijk =  {lijki0.ijk) in 

the p roduct space Xj.  D uring each itera tion  of the  algorithm , we assign to  each of 

these points an ind icato r lijk G {1,2, 3}, where =  n) oc Xn{xijk)Pn,  2, 3.

And we in troduce the  random  variables Nin{Xj)  = Nijn defined as

N i j n  — . l i j k  — ^ } )

and hence

3

Nij = ^  ̂Nijn 
n = l

See A ppendix  A .2.1 for full details on how th is is carried out. The inclusion of this 

d a ta  augm entation  step  facilitates the use of the  Gibbs sam pler in order to  draw 

samples from th e  full conditional d istributions for Pi and /?2 - For the  param eter p we 

use a random -w alk M etropolis step, calculating the full conditional d istribu tion  for p 

for use in the  acceptance probability, see A ppendix A.2.1 for details.
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5.4.2 Full Conditional Distributions for (3i and P2

For full details on how these full conditional distributions may be obtained see Ap

pendix A .2.1. The conditional distributions for Pi  and P2  are as follows:

P(/5i|/52,P, {F ij}) ~  G am m a j +  q ; i , 5 ^  /  X i { x ) u { d x )  +  b A  , {5A)
V J  - ^ ^ 3  J

and

1P’(/52|/5i,P, {F jj}) ~  G am m a I ^  jVy2 +  Q ; 2 ,5 ^  /  X 2 {x)Lo{dx) +  b2 j . { o . 5 )
\  i] j  -̂ 3̂ /

5.4.3 Conditional Distribution for r{ds)

We consider T{ds)  the G am m a random  field over the space S.  The following m ethod  

and results apply also to Fjj((is), the G am m a random field over the space Sj  for all i 

and j .  Full details on how the full conditional distribution for T{ds)  is obtained using  

data augm entation m ay be found in W olpert and Ickstadt (1998a).

Consider N 3 {dx),  it is a finite integer-valued measure on X  and as such can be repre

sented as the sum  of a random number of unit point masses at points which need 

not necessarily be distinct. Again we use the technique of data augm entation in order 

to obtain the full conditional distribution of F(c?s) in known form. For each of these  

x „ ’s select an additional random variable G S,  i.e., a point in the auxiliary space 

5 , where

Y.n^i^n,Sn)T{dSn) '

Now we have pairs o f points Xn & X , S n  ^ S.  We introduce a new random

measure Z  od. X  x S  such that

Z { d x , d s )  =  '^S(^:,^^sn)idx,ds).
n

Note that Z { X  x S )  =  N 3 . Let Zi { dx)  =  Z { d x x S )  =  N^{dx) ,  i.e. Zi {dx)  recovers the 

unaugm ented data and let Z 2 {ds) =  Z { X  x ds),  i.e. Z 2 {ds)  recovers the augm ented  

data. The following result now holds:
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Lemma 5.1

P {r{ds)\Ni, N 2 , Z 2 {S), ^1,^2) ~  Gamma ^ { d s )  +  Z 2 {ds), b{s) + j  k{x, s)ui{dx)

See Appendix A.2.2 for a proof of Lemma 5.L

5.5 MCMC Algorithm

We present in the following a brief outline of the MCMC algorithm used to sample 

from the posterior distribution of the continuous initiation model in order to obtain 

samples for the parameters: /?i,/32,p and Tij{ds). A more detailed algorithm is con

tained in Appendix B.2.

A lgorithm

1. Initialise Pi, P2 , P, X 3 P3 , and set the iteration counter r  =  0.

2. For each crack set A| ]̂, =  +  Tijk0 2 ~̂ '  ̂ +

3. Simulate Bernoulli variables to indicate whether each crack is attributable to 

compression, tension or latent factors. Set Niji =  number of cracks due to 

compression, Nij 2  = number of cracks due to tension and Nij^ = number of 

cracks due to latent factors.

4. For each crack attributable to latent factors simulate a corresponding location

in S .

5. For each cTjj* carry out a random-walk Metropolis step proposing a new location 

% test- — '^ijtest if ®tep is accepted, otherwise Sijk = k =

1 , . . . Nij3.

6. Simulate the Gam m a random field.

7. Simulate the param eters ^ 2 .̂
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8. Carry out a random-walk Metropolis step for p, proposing Ptest> accepted

=  P test’ otherwise p̂*"̂  =

9. r =  r +  1. Repeat steps 2 through 9.

5.6 R esults

We now present the results obtained from carrying out inference on the unknown 

param eters of the model using the MCMC algorithm detailed above. Table 5.1 shows 

quantiles, kernel density estimates and priors for Pi, ^ 2 , and p. The estimates for 

these param eters are based on sample values obtained from the posterior distribution 

by running the MCMC algorithm. We computed 6,000 iterations of the program; 

the first 1000 of these iterations were attribu ted  to burn-in. For each param eter we 

examined a trace plot of its chain and from this inspection there was no evidence for 

lack of convergence. We also ran multiple independent chains from various starting 

points and again, after an initial burn-in, there was no reason to believe the chains 

had not converged. Trace plots of some param eters may be found in Appendix B.4, 

Figure B.3.

5.6.1 G am m a R andom  Fields and Posterior M ean Intensity

For each specimen we present, in image form, the posterior mean of its Gamma 

random field. This field models spatially the latent factors th a t have been influential 

in causing cracks to form in tha t specimen. See Figures 5.2 and 5.3.

For each of the specimens we also examine the range of the Gamma random field, 

boxplots of these results may be found in Figure 5.6. From this figure it would appear 

th a t the range of the contribution (on the logarithm  scale) to the intensity, is of the 

same magnitude for each of the specimens, i.e., there is no specimen variability as 

regards the range of the Gamma random field. This suggests th a t the influence th a t 

the latent factors have on causing cracks to form is the same across specimens.
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Figures 5.4 and 5.5 show the posterior mean intensity E(Aj) as an image plot with 

stars indicating the crack locations.

5.6.2 M odel Validation

As in the discrete initiation model, it is not possible to carry out cross-validation by 

om itting a specimen and carrying out the analysis as the Gamma random field is 

specific to the specimen as it is modelling spatially varying factors th a t are specimen 

specific. Instead, to examine the fit of the model we examine residuals as follows. 

For each of the regions in Figure 5.7(a), which correspond to the polygons in the 

discrete initiation model, Pij, we calculate the standardised residuals Vij for region j  

of specim*en i using the following approximation

and T  is the to tal number of iterations. We plot these standardised residuals against 

the predicted counts

in Figure 5.7(b). This plot suggests tha t, in general, there is no unmodelled trend 

in the residuals, which we would hope for if the model is a reasonable fit. Although, 

there are a small number of large residuals. When we further examine the residuals 

by plotting them  against both specimen and window, in Figures 5.7(c) and 5.7(d) 

respectively, it appears th a t the large residuals are associated with Specimens 1, 2, 

and 4, mostly. There appears to be no distinction between windows as to how well 

the model fits.

We also examine the predictive count for each of the specimens. A plot of this 

analysis may be seen in Figure 5.8. In general the model appears to predict the count

where

t = i
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of cracks in each of the  specim ens well, as all of the true  counts lie w ithin the 90% 

quantiles, and are all close to  the  m edian predicted values.

5.7 Com paring Continuous and D iscrete M odels

We now com pare the  discrete and continuous models for in itia tion  th a t we have pre

sented. We exam ine how com parable the  priors are for the  la ten t factors in b o th  of the 

models. We highlight the im portan t issue of inform ation being lost th rough  aggrega

tion  of the  d a ta  in th e  discrete model. We also address the issue of the com putational 

tim e taken by each of the  two algorithm s, the discrete and continuous, used to  carry 

o u t inference for th e  models.

5.7.1 Priors for Latent Factors

For the discrete crack in itia tion  model we have chosen a G am m a(l,0 .1 ) prior for the 

la ten t factors {7 ^} . In the  continuous model we have chosen a prior w ith a uniform  

shape param eter and a constant scale param eter b. We can com pare these two prior 

d is tribu tions in the  following m anner. For the discrete model the in tensity  per unit 

a rea  due to  the la ten t factors is approxim ately equal to  / { 2 ttp ^ ) , as the  la ten t 

con tribu tion  from outside a polygon is small. The prior mean in tensity  for each of the 

7 i j’s is equal to 1 0 , giving a prior un it area m ean intensity  due to  the la ten t factors 

o f approxim ately 0.33.

For the  continuous in itia tion  model the prior un it area in tensity  is given by

where G K  is a G aussian kernel, whose area is obviously 2iip^. This prior un it area

1 r (G i^ )  _  a (s )

in tensity  is equal to  0.6 as we have chosen o;(s) =  0.6 and b = 1. Thus, as regards 

p rior m ean intensity, the  priors are com parable.
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5.7.2 Loss of Inform ation due to A ggregation

The discrete model cannot be expected to perform as well as the continuous model in 

modelling crack initiation, as information, specifically spatial information, will have 

been lost due to the aggregation of the data  for this model. Although the identity-link 

in the discrete model facilitates the aggregation and refinement of the initial partition, 

in order to examine results for this model a partition must be chosen. The choice of 

partition  will determine how much information will have been lost in the analysis. In 

contrast, no information is lost in the continuous model as no aggregation is carried 

out.

In determining the param eter p, the range over which the latent factors have an 

influence, the continuous model will perform better than  the discrete model with a 

more accurate estimate, as the choice of partition in the discrete model will have an 

influence on the estimation of this parameter.

5.7.3 C om putational T im e

The continuous model does require more time for preparation and initial setup and 

running of the algorithm in comparison to the discrete model. But if the chosen 

partition for the discrete model has to be reviewed and either refined or aggregated, 

then the speed of the discrete model is lessened. In comparison, the continuous model 

does not require this.

5.8 Conclusions

In this chapter we have presented a continuous spatial model for crack initiation th a t 

models the data  (crack locations) at the finest level of aggregation, i.e., as a continuous 

spatial process. This model incorporates the spatially varying stress together with 

latent influential factors, which we have modelled as a continuous surface using a 

Gamma random field.
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Again, as in the case of the discrete model one of the im portant aspects of the 

model is the detection of the range over which the latent factors exert an influence, 

i.e., the estimation of the param eter p. This model suggests th a t the latent factors 

have an influence on crack formation up to a distance of just under 4mm.

Param eter 5%

^uantile

50%

s

95 %

Histogram 

of Samples

0.003 0.015 0.034

h 0.024 0.031 0.04 y v i
P 1.5 1.78 2.06

Table 5.1: Quantiles, and histograms of sample values for /3i,/02, and p.
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Specimen 1 Specimen 2

Specimen 3 Specimen 4

Figure 5.2: Image plots for Specimens 1 - 4  indicating the posterior mean of the 

Gamma random field over the two windows. The posterior mean is calculated on 

a 100 X 100 grid and the Gamma random field in each grid segment G is obtained 

by calculating f^r(ds)  ~  '■ ^  G}  at each iteration of the program and

averaging over the iterations.
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Specimen 5

0.0 2.0 3.0

Figure 5.3: Image plot for Specimen 5 indicating the posterior mean of the Gamma 

random field over the two windows. The posterior mean is calculated on a 100 x 100 

grid and the Gamma random field in each grid segment G is obtained by calculating 

f ^ r ( d s )  ^  ^ G j  at each iteration of the program and averaging over

the iterations.
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(d) Specimen 4

Figure 5.4: Posterior mean crack density for Specimens 1 to 4 together with actual 

crack locations (stars).
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(a) Specimen 5

Figure 5.5: Posterior mean crack density for Specimen 5 together with actual crack 

locations (stars).
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Figure 5.6: Boxplots of re-scaled J^F((is) where G is a square of area (145*40)/(100 

* 100) =  0.58 on the grid used for each of the specimens in Figures 5.2 and 5.3 for 

each of the specimens. (The re-scaling is log ( f ^  r(ds)e~^)).
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Figure 5.7: (a) The regions for which the residuals were calculated. The standardised 

residuals against the posterior mean crack count (b), against specimen (c), and against 

window (d).
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Figure 5.8: For each specimen we show the actual to ta l crack count (red star), and 

the median posterior predicted count (black circle), together with 90% quantiles for 

the predicted counts.



Chapter 6

Growth M odel

Damage accum ulation consists of bo th  crack in itia tion  and crack growth. In order to  

model dam age accum ulation it is necessary to  model the grow th of the cracks in the 

polym er cement. A model for grow th m ust take into account the differences between 

pre-cracks and load-cracks. We present a spatial model for growth th a t incorporates 

the physical properties of th e  cem ent and captures the way in which fatigue cracks, 

both pre-cracks and load-cracks, grow.

6.1 Prelim inary Investigations

6.1.1 Crack Types

As regards exam ination of grow th of the cracks in the bone cem ent, we reta in  the 

distinction between those cracks th a t have formed before any stress loading has been 

applied, i.e., the  pre-cracks, and those cracks th a t in itia te  som etim e during the stress 

loading, which are referred to  as load-cracks. W hen the stress loading is applied the 

pre-cracks are still present bu t are now subject to  the  stresses th a t have been applied. 

I t is necessary to  take into account the ex tra  growing tim e th a t the  pre-cracks have had 

in 1 m odel for the growth of the  cracks. Figure 6.1 shows pre-cracks and load-cracks 

for one particu la r specimen.

96
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Figure 6.1: Crack lines in the two windows of one particular specimen. Red lines 

indicate pre-cracks and black lines indicate load-cracks.

6.1.2 Crack Lengths

As a preliminary exploration of the data we examine the growth experienced by each 

type of crack. In Figure 6.2 we have plotted the logarithm  of the lengths of the 

pre-cracks (yellow) before stress loading, the logarithm of the growth of the pre

cracks (red) after the stress loading, and the logarithm  of the lengths of the load- 

cracks (green), for all specimens. In order to make any comparisons or to draw any 

conclusions about the lengths of the cracks we must first examine the components 

th a t make up the lengths of each of these crack types.

The pre-cracks consist of an initiation length together with some length due to 

growth before stress loading. The growth in pre-cracks is due to residual stresses ex

perienced in the cement during the curing (drying) process (Lennon and Prendergast 

(2002)). The lengths of the load-cracks are composed of an initiation length, similar 

to  the pre-cracks and a growth component; the growth having occurred during the
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Figure 6.2: Logarithm  of lengths (mm) o f the various crack types.

stress loading. The amount of growth experienced by the pre-cracks during stress 

loading should be s im ila r to  tha t experienced by the load-cracks, since both types o f 

cracks are experiencing the same stresses and they are both subject to  the influence o f 

any other factors tha t affect crack growth. The reason why the growth in  pre-cracks 

during stress loading appears to be significantly smaller than the growth o f the load- 

cracks is due to the in it ia tio n  length o f the load-cracks. We must also note tha t the 

pre-cracks have had the fu ll loading tim e in which to grow, th is  is not the case for 

the load-cracks; they may have in itia ted  at any tim e during the stress loading, w ith  

the possib ility th a t any o f these cracks could have in itia ted  towards the end o f the 

loading period. Th is would indicate tha t the in itia tio n  length o f a crack accounts for 

a substantial pa rt o f the to ta l length.
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6.2 How Cracks Grow

99

We have two measurements of the lengths of pre-cracks. They initiate at some point 

before the stress loading is applied, their lengths are then measured immediately prior 

to stressing and again at the end of the experiment. For the load-cracks we only have 

one measurement of their lengths, i.e., th a t taken at the end of the experiment. This 

makes the examination of how the cracks grow, difficult, as we do not have many 

time points at which to examine their lengths. But it is known th a t fatigue cracks 

initiate with some length th a t is sufficient in order for the cracks to propagate, tha t 

they then grow interm ittently with the growth consisting of both active and dormant 

periods (Sobczyk and Spencer 1992, Ch. 5). The active and dormant periods can 

be explained by the fact tha t the damaging stresses experienced by the cement and 

which cause the cracks to grow, are generated by factors such as peaks in the stress 

loading process.

Wilson (2005), having crack length data  measured at five time points, observed 

tha t cracks initiate with some length, then some of the cracks grow slowly, while 

others grow very quickly. This observation can be explained by the theory of active 

and dormant periods in growth, in which jumps in growth (active periods) occur 

between periods of much slower growth (dormant periods). Wilson (2005) attributes 

the jumps in growth to local material properties such as dislocations in the cement, 

and the slower growth is a ttributed  to global properties of the specimen such as, for 

example, the stress range.

6.3 Stochastic Process M odel for Growth

We propose a stochastic process model for the growth of all cracks in the hip re

placement specimens during stressing. Sobczyk and Spencer (1992) suggest treating 

the crack growth process as a discontinuous random process consisting of a random 

number of jumps, with each of the jumps being of random magnitude. We construct 

a model similar to this. In order to account for the spatial variability in stress, which
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obviously would have an influence on crack growth, we propose th a t our crack growth 

model should take into account the varying stress.

6.3.1 Spatial A spect to  Growth

Consider again the division of the medial and lateral windows into 22 polygons each, 

as in our discrete model for crack initiation in C hapter 4. Let kjkit) be the logarithm 

of the length (in fim) of crack k (can be either a pre-crack or a load-crack) in region 

j  of specimen i at time t, 0 ^  t ^  ^final’ ^final time at which the final

measurements were recorded.

6.3.2 Stress

As would be expected, stress has an impact on the growth of the cracks. We propose 

to model the influence of stress spatially and we use the same kriged values as used 

in the discrete crack initiation model. Chapter 4., i.e., the stress at the centroid of 

each of the polygons, as we believe th a t the growth of a crack in a given polygon is 

influenced by the stress in th a t polygon.

6.3.3 Jum ps in Growth Rate

As mentioned already, it is known tha t the growth in cracks consists of slow periods 

of growth in between jumps in the growth rate, and we would like our model to 

incorporate these jumps in growth. Wilson (2005) allowed for just one jum p in each 

0.5 million cycles interval, as 0.5 million cycles was the shortest interval between the 

successive measurement of the cracks in the d a ta  th a t were analysed. Since we do 

not have multiple time points at which the cracks were measured we would like to 

allow for a random number of random sized jum ps to occur, but there is a question of 

identifiability between the number and size of the jumps, i.e., it may not be possible 

to  identify both the number and size of jum ps since a small number of large sized 

jum ps would have the same effect on growth as a large number of small jumps. For
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th is  reason we allow for either a single jum p of random  size or no jum p a t all. We 

would hope th a t the ju m p  would m odel pores or any o ther la ten t factors present in 

th e  cem ent th a t would have an influence on the  growth of the  cracks.

6.3.4 T he M odel

From  exam ination of the d a ta  and following M cCormack et al. (1998) and W ilson 

(2005) it appears th a t  the  lengths of cracks follow a Lognorm al d istribu tion  and so 

we propose the  following model for the  logarithm  of the  length of a crack k  (again 

either pre-crack or load-crack) in region j  of specim en i a t tim e t:

k j k { t )  ^  Normal(/Xyfe(^),cr^),

where

and we now explain in detail the param eters of the model. lijk  is the logarithm  of 

the  in itia tion  length  of the  crack. For pre-cracks this is known and it is the  length of 

th e  pre-crack ju s t p rior to  the s ta r t of loading. For load-cracks it is unknown and we 

sim ulate the 7^^ for these cracks. For a load-crack 7^^ ~  Normal(A7/, -^) w ith  some 

unknown m ean M / and unknown precision r /.

As in the discrete m odel for in itia tion , see C hapter 4, Cj and Tj are the compression 

and  tension respectively a t the centroid of polygon j .  Again as in the discrete in itia tion  

model one of e ither C j  or Tj  will be zero for a given polygon as com pression and  tension 

cannot bo th  be present a t a single location, a. and /3 are the  coefficients of compression 

and  tension respectively, and we include them  in order to  model the influence th a t 

stress has in causing cracks to  grow, a  and j3 are not specim en specific, refiecting the 

fact th a t we only have one set of stress m easurem ents for all specim ens and thus do 

no t expect the  infiuence of stress to  vary between specimens.

The in itia tion  tim e of a  crack is denoted by Ujk- We fix t, the tim e a t the  end of 

th e  experim ent to  be 1, so th a t the duration  of the experim ent is from 0 to  1. For
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pre-cracks tijk = 0 and since load-cracks initiate at some unknown time during the 

experiment tijk" is unknown.

We indicate whether a crack experiences a jump in growth by Bijk, where Bijk ~  

Bernoulli(A). The size of the jump is denoted by Yij^, where Yijk ~  Normal(My, 1/ry).

6.3.5 Prior D istributions

We would like to carry out Bayesian inference, and we use MCMC techniques in order 

to sample from the posterior of the unknown parameters: r  =  1/cr^, a, /3, A, Mi,  r/, 

My and Ty .  In order to do this we must specify prior distributions for each of these 

parameters. For the precision parameter r  we choose a vague prior, G am m a(l/2 ,1/2), 

reflecting the lack of information available as regards the variance and also that the 

parameter must be non-negative. For A the parameter of the Bernoulli distribution for 

the jump indicator we choose a Beta(l, 1) prior as we have no reason to believe 

a jump is more likely than not. We also choose Uniform priors for both a  and p. We 

propose a Uniform(0,1) prior on hijk' =  1 — Ujk., k* indicating a load-crack.

For the means Mj  and My of the Normal distributions for the initiation length lijk 

and jump size Yijk respectively we choose Normal priors. This allows for the Gibbs 

sampler (see Section 3.3.5) to be used due to the conjugacy of the distributions. For 

the precision parameters t j  and ry of the Normal distributions for the initiation length 

lijk and jump size Yij^ respectively we choose Gamma priors, allowing for the use of 

the Gibbs sampler due to the conjugacy of the distributions again. Here are the prior 

distributions chosen:
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T  G am m a(0, a;),

A ~  Beta(aA,^A), 

a  ~  Uniform(aa, 5q), 

j3 ~  Uniform(a^, 6^),

M i  Normal(m/, S /) ,

Ti ~  Gamma(0 7 , w/),

M y  Normal(m y, sy),

Ty ~  Gamma((/)y, wy), 

hijk* ~  Uniform(a/i, 5/i).

6.4 Posterior D istribution

The joint posterior distribution for all the da ta  has the following form:

P(r, a ,  A, M /, r / ,  M y, ry , {i'ijfc}, {hijk-}\{kjk})

oc P({/ijfc}|r,o;,;g, {/„*:*}> {yt jk},  { h i j k ^ } ) m i i j k - } \ M i , T i )

X P ({ 5 , ,a |A )P ({ F , , ,} |M y ,ry )^ (0 ) ,

ijk

^

ijk*

^  ~  m /)^ ) r f '^^exp(-a ; / r / )

X ~  e x p  ( - ujyTy )

X r ' ^ “ ^ e x p ( - ( j r ) { I ( / i i j f c .  €  [a^ , 6/ i ] ) } { I ( a  G [0 ^ , 6^ ] ) }

X { I ( /3 e [ a ^ ,M )} A “^ - ' ( l - A ) ' ^ - \
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where 7r(0)  indicates the priors for all the unknown param eters and k* indicates load- 

cracks. See Appendix A.3.1 for full details of the posterior distribution.

6.4.1 Full Conditional Distributions

We want to carry out inference for the parameters r ,a ,  j3, X, My,  and ry . In

order to do this we look at the full conditional distributions for each of the parameters.

Again, full details of these distributions may be foimd in Appendix A.3.2. The full

conditionals for each of the parameters are as follows. For the precision parameter:

P ( r | G a m m a  ( y  + ^ ' ^ { h j k  ~  l i i j k f  +  w j , (6.1)
\  i j k  /

where K  is the to tal number of cracks. The full conditional distributions for the 

coefficients for stress:

TO/ I \ X- , (  Ylijki^o,ijkCj{t — t i j k ) )  1 1 /C

where Ldjk  =  hjk ~  Ujk ~  PTj{t — tijk) — BijkYijk and similarly the full conditional 

distribution for /3:

P(/?| . . . )  ~  Normal

where L^ij^ =  kjk — hjk ~  cxCj{t — Ujk) — BijkYijk- The full conditional distribution for 

the jum p param eter A, which is the probability th a t a crack has a jum p in growth, is 

given by:

P(A| . . . )  ~  Beta | ̂   ̂Bijk + 1, -fT +  1 - E  Bijk I ■ (6-4)
\  i jk i j k /

The full conditional distributions for the parameters of the Normal distribution for 

the initiation lengths:

P ( M , i . . . )  ~  Normal  "j (6 .5)
V  +  S i  t i K *  +  s / 7
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where K* is the total number of load-cracks.

P ( r / | . . . )  ~  Gamma j ^ +  -  M/)^ +  w /J , (6.6)
\  ijk* )

and the full conditionals for M y  and ry  are of similar form to those of M/ and r /,

\  ̂ M  , ( ^ y Y . i , k " ^ i o k ^ r n y S Y  \  \
F { M y \ . . . )  ~  Normal --------------—------------- , — ———  , (6.7)

\  T y K  +  S y  T y K  +  Sy /

and

Gamma +
\  ijk

P ( ry l . . . )  ~  Gamma 1 — + 0y, -  -  My) +  wy ) . (6.8)
ijk

Since each of the full conditional distributions is of known form we can use Gibbs 

sampling in order to obtain samples of each of the parameters from the posterior 

distribution.

6.4.2 Simulation of lijk*., Bijk,Yijk^ and hijk*

Even though we are not interested in obtaining estimates of each of the lijk- , Bijk, hijk>, 

and Yijk it is still necessary th a t we simulate them in our MCMC algorithm and in 

order to do this we again look at the full conditional distributions for each of these 

variables. Full details of these distributions are supplied in Appendix A.3.2. For the 

initiation length of a load-crack

Wijk*  I • • ■) "  ̂ Normal  ̂ ^V T  +  T j  r  +  T i J

where XjjVfc. =  lijk- — {aC j+^T j ){ t—tijk>)+Bijk”y'ijk‘ - The full conditional distribution 

for the jum p indicator Bijk is as follows:

=  1| . . . )  ~
R  / ____________ e x p { - |( X , , f c - r , , , ) ^ A ____________ \

'U x p { - i (x . , , -y « » p } A  + e x p { - | ( ; i :m P } ( i -A ) j ’

where Xijk =  kjk — hjk — (oiCj +  /3Tj){t — Ujk). The jum p sizes are simulated from 

the following distributions: if Bijk = 0, then

^{yijkl • • •) ~  Normal (My, T y ) , (6.11)



C H A P T E R  6. G R O W T H  MODEL  106

and if Bijh = 1, then

F{Yijk\ ■••)"" Normal f ' ^^v^  + TYMy  ̂ 1— \
\  T  +  T y  T +  T y  J

where Xyfc =  l i jk-I i jk~{aCj+l3Tj){ t-t i jk ) ,  as before. Finally for e a c h =  1-Ujk*, 

where tijk- is the initiation time of a load-crack, the full conditional distribution is:

~  Normal { ^ J : i ' ' ^ T , y r ( a C ,+ l 3 T ,y )

where lijk* ^ijk*

6.5 MCMC Algorithm

We now present a brief outline of the MCMC algorithm used to obtain samples from 

the posterior distribution for each of the param eters of the growth model. A more 

detailed algorithm  is contained in Appendix B.3.

A lgorith m

1. Initialise r, a, 13, A, M /, r/, M y,  Ty and {Iijk-}, {Bijk}, {Yijk}, {hijk-}, and set the 

iteration counter r  =  0.

2. Using Gibbs sampling, simulate each of the parameters M̂ \̂ 

r j^ \  M y \ t y ' ^  from the appropriate distributions.

3. For each load-crack simulate its initiation length and its initiation time

'‘'ijk* ■

fr)4. Simulate the jum p indicator Bljj. for each crack.

5. Depending on whether there is a jum p in growth or not simulate the jum p length

appropriately.

6. r = r + 1. Repeat Step 2 through 6.
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6.6 Results
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6.6.1 C onvergence A ssessm ent

The estimates of our param eters of interest are based on sample values obtained 

from the posterior distribution by running the MCMC algorithm detailed above. We 

computed 22,000 iterations. In order to examine whether the chains showed evidence 

of convergence we examined trace plots for each of the parameters. Visual inspection 

of the traces presented no evidence for lack of convergence. We also ran multiple 

independent chains of the same length for each of the parameters, with each chain 

having a different starting  point. Using R code, available on the web (Gelman and 

Rubin (1992)), th a t implements the method of convergence assessment of Gelman and 

Rubin (1992), see Section 3.3.6, it was not determined th a t the chains would benefit 

from further iterations. Thus we use the sample values obtained from these iterations 

to obtain estim ates for our parameters of interest. Figure 6.3 shows the first 1500 

iterations of multiple chains for two parameters, together with a magnified image of 

500 of the iterations th a t appear to show' convergence. Further trace plots may be 

found in Appendix B.4, Figure B.4.

6.6.2 P aram eter E stim ates

We present in Table 6.1 estimates of the param eters of interest. The results are 

based on 20,000 iterations after a burn-in of 2000 iterations. No thinning has been 

performed.

6.6.3 H eterogeneity  of Specim ens

We have also obtained estimates for the param eters based on subsets of the data, i.e., 

we have run the MCMC algorithm but left the data  for one specimen out each time. 

Figures 6.4 and 6.5 show 95% credibility intervals for each of the param eter estimates. 

The results presented in this table would appear to suggest th a t heterogeneity does
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KDE’s andQuantiles 

5% 50% 95 %Parameter Priors

26.821.0 23.8

0.130.04 0.08

0.060.05 0.06

0.02 0.03 0.04

4.16 4.204.12

1.31 1.41 1.51

M y - 0.01 0.64 1.22

0.05 0.07 0.09

Table 6.1: Quantiles and plots of kernel density estimates and priors (red) for each of 

the parameters of the growth model based on data from all five specimens.

exist between the specimens. Specimen 4 is seen to have a large impact on the 

estimates of My and as is demonstrated by the sensitivity analysis in Figures 6.5 

(c) and (d). The heterogeneity between specimens should be taken into account when 

considering the estimates of the parameters.

6.6.4 Spatial Pattern of Jump Sizes

On examination of the average jump size, conditional on there being a jump, we see 

that a spatial pattern does exist for the impact of jumps. See Figures 6.6 and 6.7.
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This could be accommodated in the model by having a spatially varying param eter 

for the mean of the jumps.

6.6.5 Growth M odel Validation

In order to carry out model validation for the growth model we do a prediction 

analysis. For a given specimen we randomly select half of the pre-crack and half of 

the load-crack lengths. We then carry out our analysis using this randomly selected 

data. Using the MCMC algorithm for the growth model, we obtain posterior estimates 

for fiijk for each of the cracks k in region j  of the chosen specimen i. Where the index k 

now runs over the randomly selected half of the data. We then calculate the posterior 

mean of the V-, and v/e plot the Normal density, N orm al(/7,1/r) where 1 / r  is

the posterior estimate of the variance obtained from the randomly selected half of the 

data.

We then take the remaining half of the data th a t were not used in the analysis and 

we examine a histogram of the logarithm of the lengths of these cracks, comparing 

the histogram with the Normal density we have obtained from our analysis.

If the model fits the data  reasonably well we would expect th a t the logarithms 

of the lengths of the cracks not used in the analysis to be of the same size as the 

posterior density estimate we have obtained.

In Figure 6.8 we show plots containing histograms of the remaining da ta  together 

with the posterior density we have estimated. We have carried out this analysis for 

Specimen 3 and Specimen 4. For Specimen 3 the analysis was carried out using the 

lengths of 143 cracks (85 pre-cracks, 58 load-cracks) and the results are compared 

with the remaining 142 cracks in Figure 6.8(a). The m ajority of the logarithms of the 

lengths of the remaining cracks do appear to lie within two standard deviations of the 

posterior mean, although there are a number of small cracks th a t the model does not 

appear to capture so well.

A similar analysis was carried out for Specimen 4. In this case the analysis was 

done on the logarithms of 418 cracks (161 pre-cracks, 257 load-cracks) and the results
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are compared in Figure 6.8(b) with a histogram of the logarithms of the lengths. It 

would appear from this figure th a t they are reasonably well modelled by the Normal 

density whose parameters are obtained from the analysis. The model may, in the case 

of Specimen 4 appear to be fitting better as more data  have been used in the analysis 

than in th a t carried out for Specimen 3.

6.7 Conclusions

The model th a t we have presented for growth does capture some of the main features 

of how fatigue cracks grow. For example, the length with which cracks initiate seems 

to be substantial, this is also noted in the literature as cracks must initiate with a 

length tha t is sufficient in order to propagate (Sobczyk and Spencer (1992)). The 

model does appear to estimate reasonable initiation lengths for the load-cracks, in 

comparison with data analysed in Wilson (2005) the initiation lengths are of the 

same size.

The spatial aspect to growth does appear to be im portant, for the jumps there 

seems to be spatial variability, although our model does not capture the spatial vari

ability in jum p sizes explicitly it does allow for the examination of a spatial pattern 

in jum p size.
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(b)

(c) (d)

Figure 6.3: (a) shows a trace plot of sample values for A; the black trace having started 

at 0.9, the red trace at 0.1 and the green trace at 0.5. (b) shows a sample of 500 points 

from each of the three traces for A when the chains appear to have converged, (c) 

shows a trace plot of sample values for Mj; the black trace having started  at 1, the 

red trace at 5 and the green trace at 10. (d) shows a sample of 500 points from each 

of the three traces for Mj  when the chains appear to have converged.
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0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15

0 .0.4 0.05 0.06 0 .07- 0.08 0.09

(b) Q

0.01 0.02 0.03 0 .04-

(c) /3 (d) A

Figure 6.4: Each plot contains 95% credibility intervals for a particular parameter: 

- ^ , a ,  ^  and A. Each plot contains five 95% credibility intervals and each interval has 

circles at the 0.025, 0.5 and 0.975 quantiles, left to right. An interval at y = x, x  = 

1 , . . . , 5  represents estimates for the parameter based on data not containing that 

specimen, for example, an interval at y =  3 indicates that the estimates are based on 

data from all specimens except Specimen 3. Intervals at y =  0 are based on the data 

from all five specimens
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(a) Mi

CM

0.70 O.TS 0.80 0.85 0.90

( b ) ^

(C) M y  (d ) ^

Figure 6.5: Each plot contains 95% credibility intervals for a particular parameter: 

Mi, - ^ , M y  and Each plot contains five 95% credibility intervals and each in

terval has circles at the 0.025, 0.5 and 0.975 quantiles, left to right. An interval at 

y = X,  X  = 1 , . . .  ,5 represents estimates for the param eter based on data  not con

taining th a t specimen, for example, an interval at y =  3 indicates th a t the estimates 

are based on data from all specimens except Specimen 3. Intervals a t y =  0 are based 

on data from all five specimens
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(a) Specimen 1 (b) Specimen 2

(c) Specimen 3 (d) Specimen 4

Figure 6.6: Spatial representation of the average jump size, i.e., for polygon j  of 

specimen i the average jump size, conditional on there being a jump, is given by
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(a) Specimen 5

Figure 6.7: Spatial representation of the average jump size, i.e., for polygon j  of 

specimen 5 the average jump size, conditional on there being a jump, is given by
^5 i k
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■j 2 6 83 4 5 7
Logarithm of Length

(a) Specimen 3

1 2 3 4 65 7
Logarithm of Length

(b) Specimen 4

Figure 6.8: The posterior density for the logarithm of the crack lengths for a random 

selection of half of the cracks in Specimen 3 (a) and Specimen 4 (b), together with 

histograms of the logarithms of the lengths of the remaining cracks not used in the 

analyses.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

From the analysis carried out, it would appear th a t unmeasured, spatially varying 

factors have an impact on crack initiation. The influence of the unmeasured factors 

was modelled using latent variables (discrete model) and a Gamma random field 

(continuous model). In the analysis of both the discrete and continuous models, 

evidence was presented tha t spatially varying factors were present in the cement that 

had an influence on crack initiation in the specimens. The range over which these 

spatially varying factors exert an influence appears to be short (<  4mm).

The identification of such im portant factors is helpful for the understanding of why 

damage accumulation is so variable. Specimens th a t were subjected to identical stress 

loads under laboratory conditions did not present the same damage accumulation 

patterns. The knowledge th a t such factors exist and the identification of them  as crack 

causing, together with the estimation of the range over which they have an influence 

can lead to strategies to identify the physical causes. It may then be possible to either 

eliminate or reduce them in order to decrease the amount of damage accumulation 

and ultim ately prolong the lifetime of the hip replacement.

Comparing the results of the discrete and continuous models it could be argued 

that not much more information was gained by not aggregating the data  and using

117
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the continuous model. The continuous model would allow for more accurate estimates 

of the parameters but at the cost of locating each individual crack. If collecting 

crack counts on a discrete grid facilitates the replication of more data  than would 

locating each individual crack, then using the discrete model with more data  would 

be preferable. The advantage of the continuous model is th a t it allows for more 

accurate estimates of the range over which the latent parameters exert an influence.

In analysing the estimates of the param eters of the growth model evidence was 

also found tha t suggest spatial variation in the growth of cracks exists. There is also 

evidence of specimen variability as regards growth of the cracks.

7.2 Comparison W ith Other M odels

Both the discrete and continuous initiation models presented are spatial models, in 

contrast to the initiation models presented in McCormack et al. (1998) and Wilson 

(2005), for example. The data analysed in this thesis readily facilitate the modelling 

of crack initiation spatially, as spatial information has been recorded for each crack 

tha t was observed. This is not the case in the da ta  analysed in both McCormack et al. 

(1998) and Wilson (2005) (same data  analysed in both), as detailed spatial information 

was not present in the data. Considering the spatial aspect as an im portant feature 

in modelling crack initiation, it could be argued th a t the data  analysed in this thesis 

carry more information.

For the growth model, again it is possible to explore spatial aspects of crack growth 

in the data  analysed in this thesis, as this information is contained in the data. Again 

such detailed information was not available in the da ta  used in the growth models of 

McCormack et al. (1998) and Wilson (2005) and hence any spatial aspects to growth 

could not easily be examined.

The data  analysed in this thesis do not have multiple time points at which cracks 

were observed, thus it is not possible to examine crack initiation or crack growth over 

time. In contrast, the data analysed in McCormack et al. (1998) and Wilson (2005)
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were recorded at five time points allowing a more detailed analysis of both initiation 

and growth over time. From this point of view the data analysed in this thesis contain 

less information.

7.3 Further Work

7.3.1 Reliability M odels

An obvious extension to the work carried out in this thesis would be to construct a 

model for the reliability of the hip replacement specimens. A model for reliability is 

necessarily dependent on the definition of failure. As mentioned in the introduction, 

the definition of failure is a subjective term. If failure is defined to be the total 

number of cracks exceeding some limit then it would be possible to use either of 

the initiation models proposed. Using one of these models it would be possible to 

obtain an estimate for the probability that the crack density in a region exceeds some 

specified limit. Beyond this limit the specimen would be deemed to have failed.

Another definition of failure could be that the total crack length (the sum of indi

vidual crack lengths) exceeds a certain threshold, again beyond which the specimen 

is deemed to have failed. The growth model proposed could be used to estimate the 

probability that the total length exceeds the threshold. Another alternative could be 

that a single crack length exceeds some threshold length.

7.3.2 Pre-Crack Initiation

The initiation models proposed are used to model the initiation intensity for load- 

cracks. Pre-cracks are also a component of damage accumulation and the initiation 

intensity for these cracks could also be modelled using the initiation models presented 

in this thesis.

Since pre-cracks by definition form before any stress loading has been applied, 

they are not subjected to this form of stress. However, they do experience what are
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known as residual stresses when the bone cement in the specimen is curing (drying). 

Pre-cracks would also be subjected to unmeasured factors influencing their initiation. 

Given estimates of the residual stresses, it would be possible to fit one of the initiation 

models and thus model the initiation intensity of the pre-cracks.

7.3.3 G rowth M odel E xtension

As briefly mentioned in Section 6.6.4, there does appear to be spatial variability in 

the impact of the jumps on growth. As mentioned, this feature could be modelled by 

incorporating a spatially varying parameter for the mean of the jumps. This could 

be accommodated in our model by allowing each polygon to have its own jump mean 

Myj, in this way accounting for the spatial variability.

7.4 Final Remarks

As mentioned in the introduction, the spatial initiation models presented in this thesis 

are a new application of the statistical methodology in an engineering context. Both 

of these models, together with the growth model, offer mathematical insight into the 

physical processes of damage accumulation, allowing the estimation of parameters 

that model the factors (both observed and unobserved) that are influential in caus

ing damage accumulation. This collaborative work offers both the engineer and the 

statistician directions for further research.



Appendix A

Calculations

A .l  Discrete M odel

A . 1.1 D ata A ugm entation  for Crack Count

The count of cracks in polygon P^j  is given by Ni j  ~  Poisson(//ij), where

^ i j  — ^   ̂^jk'yik-
k

T he likelihood function for A)/^2,{7ifc}5 and p  is calculated as follows. N ote the 

following index ranges; (specimen) i =  (polygon) j  — (polygon)

Using the technique of d a ta  augm entation (see Exam ple 3 .1) we in troduce the  follow

ing random  variables: Ni j i ,  N i j 2 , . . . ,  Ni j ^e ,  where

PiCjAj

F { Ni j 2 \ Ni j )  -  Binom ial ( -  N^ j i ,  —
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m . M N , , )  ~  Binomial ( m ,  -  N,,^ -  N,„,  _  I32T,,A,) '

^{Nij4 5 \Nij) ~  Binomial ( Nij -  Nij i  iVy44, 7 i43^ j 43^ j

7 i43<^j43^ j  +

and

N i j ^ g  — ^ i j

It follows from Lemma 3.1 that:

Niji Poisson{PiCjAj),

Nij2 ~  Poisson(/32T jA j),

Nijs Poisson(7aWjiAj),

Nij46 ~  Poisson(7i44o;j44Aj).

Combining this result and Lemma 3.2 we obtain the following

. . . ,  132, {jih}, p) =  ^{Niji)  ■ ■ - F{Nij4Q),
expi- /3 ,C ,A ,){ /3 ,C jA j)^ '^

N . j i l

exv{-P2TjAj)i^2TjA,)^^^^
X

X n
N .iJ

exp ( -  jikUJjkAj) {'^ik^jkAj)
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T he jo in t posterior is given by

13

X 

k
Q l —1X exp ( -b i ^ i ) / 3 °

xexp(-62̂ 2) 2̂ ~̂'

a p  \  2(7^

X Yl̂ P̂ i - b g l z j h i f ~ \

which can also be w ritten  as:

nPuP2,Hj},pmj}) OC

I 2j J j

X exp I -^ 2  J ]  T,Aj  I  (^2 )^ -  X 5
I i j  )  3

X i  exp (  - J i k  ^  cojkAj j (7ifc)̂ '̂
ik [ \  j  )  3

h

Ql —1
X exp (-6 iA )/5 i

xexp(-62̂ 2)A“̂ "'2
2

x J - e x p f(jp  ̂ i 2a2
x ] ^ e x p ( - 6g7 ifc)7 “/ “ \

ik

A .1.2 Full Conditional Distributions

The full conditional d istributions for /3i,/32, and {7 ij} are obtained  as follows:

^ ( A l ^ 2 , { 7 i j } , p )  OC e x p { - / 3 i ( 5 ^ C j A j +  \

G am m a E Niji  +  tti, 5 Y 1  ;
\  i j  j  /

123
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Hp2\Pi,{lij},p) «  exp{-/32{o'^TjAj + b2)}ptl ^ij2+Q2-l
h  5

~  G am m a E  ^i j2 + 0 :2 , 5 E ^ A  +  f -O ;
\  ij j /

P(7ifcl/3i,^2,p) OC exp
j

~  G am m a ( e  

The full conditional distribution for p is as follows

P(p!/5i,^2,{7ij}) Of n  Y 1 I ̂  exp I }

Let W{p)  =  ' ^ j k ^ j k l i k ^ j  and let Xij{p) =  Xij, the full conditional then becomes 

P(pIA,/32, {7ij}) OC {exp(-Ty(p))(A ^(p))^ '>}  —  exp  ̂ (log(p) / )̂
ij ap  [ 2a^

This full conditional distribution is not of known form and so the use of Gibbs sampling 

in order to perform inference for p is not easily facilitated. Instead we use a random 

walk Metropolis step. The acceptance probability for this step is calculated as follows:

accept(p ,p test)  =  min | l ,  } >

where Ptest P proposed for the random  walk. For ease of com putation  we

consider the log{P(ptest)/IP(p)}-

=  E ^ ^ W - E ' ^ ( ^ t e s t )
i] ij

+ E t 'V y  log(Aij (p^gg^))} ^{A/'ijlog(Aij(p))}
ij ij

+  log(CTp) -  log(aptest)
(log(p) -  n f  -  (log(ptest) -

2a2
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A .2 Continuous M odel
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For the random  field model for crack in itia tion  th e  count of cracks in window j  =  1 , 2  

of specim en i =  1 , . . . ,  5 is given by

Poisson(Aij), 

where the intensity measure is defined to  be

Ajj = /3i /  X x { x ) u } { d x ) j 5 2  /  X 2 {x)u){dx) +  /  /  k{x,  s)Tij{ds)uj{dx).
J x j  J  Xj J x j  J s j

For ease of nota tion  let Ajj„ =  /3„ n{ x) uj { dx)  for n  =  1, 2, and let 

Ajj3 =  k ( x ,  s ) r i j ( d s ) u j ( d x ) .  Also we let Fy =  Fjj((is).

A .2.1 Full C onditional D istributions for /3i, (32 and p

We use the  technique of d a ta  augm entation  (see Section 3.4) in the  following way. 

For each crack {k)  in a given specim en (i)  and window ( j )  we augm ent the d a ta  w'ith 

an ind icator which has the effect of a ttr ib u tin g  the in itia tion  of the  crack to either

compression (n =  1), tension (n =  2), or the unobserved la ten t spatia l factor (n =  3).

Let lijk G {1 ,2 ,3}  be this indicator variable, where

CX Xji{Xij)^')Pn, n  — 1,2, 3.

One m ethod of carrying this out is for a given crack Xijk let

p  _
A[Xijf;)

and

p  _ X2{Xijk)^2
 ̂ A{xijk) -  Xi {x^jk)Pi '

where

3

Ai X̂ijk) — ^  ^
n = l
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Simulate a Bernoulli random variable Bi  with probability Pi. If =  1, then lijk =  1, 

and we attribu te  this crack to compression. If 5 i  =  0 then simulate another Bernoulli 

random variable B 2 with probability P2 - If - 6 2  =  1 then I^jk =  2  and we attribute 

this crack to tension. If B 2  =  0 then lijk =  3 and we attribu te  this crack to the latent 

spatial factor.

We now introduce the random variables Niji, Nij2 , and Nijz where

Nijn ^  Poisson(Ay„).

Combining this result and Lemma 3.2 the joint posterior distribution for the aug

mented data  may be wTitten as

The full conditional distributions for /?i and ^ 2  may be obtained as follows, the priors 

for Pi and P2 are 7t (/3 i ) ~  Gamma(o;i, 5i) and tv{/32) ~  Gamma(o;2 , &2 )> respectively.

^ ijn  —  • ^ijk —

and it follows th a t
3

71=1

It follows from the definition of the indicator variables and from Lemma 3.1 tha t

OC exp T , i j  N i j i + a i - l

Gamma E Niji - 1 -  Q i ,  E„ Xi{x)co{dx) +  bi

and similarly for /32-

Gamma ^ij2 +  Oi2, E .. X2{x)uj{dx) + 62
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For p  the conditional distribution is as follows:

e x p - ( A y 3 ) ( A ^ 3 ) ^ ' - ' ' 3
-----------     exp

(log(p) -  I l f  
2a '^P

and we use this distribution in calculating the acceptance probability of the random- 

walk Metropolis step we use to generate samples of p.

A .2.2 Full Conditional D istribution for T{ds)

The following is an adaptation of a proof given in Wolpert and Ickstadt (1998a). 

Lemma 5.1

Let {Aj}  be a finite partition of 5, j  =  1, • • • , J. The realisation of a Gamma random 

field is almost surely discrete, consisting of countably infinitely many point masses 

of magnitude 7j at locations Sj, because of this we can determine r(ylj) by summing 

over the jumps that fall into Aj.

P {r{ds)\N„ N 2 , Z 2 {S), /5i, 132) ~  Gamma {a{ds) + Z 2 (ds), b{s) + k(x, s ) ) .

Proof:

=  ^ { 7 ,  : s , G A,}.

We also know from the definition of a Gamma random field (Definition 5.5) that 

r ( ^ , )  ^  Gamma(o;(Aj), 6(sj)), Sj G Aj.

Consider the following:

F{Z{X X Aj) = Zi  = Z2{Aj)\T{ds)) ~

=  Poisson{k{X, Sj)pj),

s)io{dx)r{ds))

where k{X,  s j )  = k(x, Sj)u>(dx) ,  r(ds) — r(y4j) =  p j .  Hence
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We have assigned a Gamma prior, Tr{r{ds)) ~  Gamma(a((is), 6(s)), on the Gamma 

random field T{ds), hence 7r(r(T4j)) ~  Gamma(a(Aj), 6(sj)), Sj G Aj.  Consider the 

following

j = i

where r ' ( . )  =  Jg°° i.e., the Gamma function. Hence

j

P (r(A j)  =  Vj| • • •) ~  ] ^  Gamma {a{Aj) + Z^, k{rX, Sj) + b{sj))
i=i

On refining the partition we have the following:

P(r((is) =  n{ds)\ ■ • •) ~  Gamma {a{ds) +  Z 2 {ds), k { X , s) +  b{s) ) ,

J

as required.
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A .3 G rowth M odel
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T he lo g arith m  of th e  len g th  of crack k of po lygon j  of specim en i is given by kjk,  

where lijk ~  Normal(//jjA:, <7 )̂, w here ^ijk =  Iijk +  { a C j  +  PTj )hi jk  +  BijkYijk.  We wish 

to  c a rry  o u t Bayesian inference for th e  p a ram ete rs : r  =  1 / a ^ ,  a ,  /3, A, M /, t j , M y  

and  Ty. T he  p rio r d is tr ib u tio n s  for each of these  p a ra m e te rs  are  as in Section  6.3.5.

A .3.1 Posterior D istribution

T he p o ste rio r d is tr ib u tio n  is as follows:

P ( t ,  0,1 P , A, A4j , Tj , M y ) 'Ty ) i ijfc}> {^ijk'  } I { h j k } )

I P ( t ,  Q! ,  / 3 ,  {lijk'- } )  {Bi jk}  1 }  I

X IP( A, M j , T/, M y , Ty | t ,  Ct, j5, {lijk" } j > {J îjk* }i {^ijfc}))

(X P('7', Ct, /5) }; {-S ij/c}, } | )

OC /5 , } )

X P({'BijA:}|A)P({/jjfc-}|M /, T i ) Y { { y i j k ] \ M y , Ty)

X 7r(r)7r(o;)7r(;5)7r(A)7r(M /)7r(r/)7r(M y)7r(ry) n
ijk*

n  I \f^ - t^i jk?)  (1 -
ijk  ̂ ^

ijk' '' * ''

^ \ / £  ~  exp {-(jJlTi)

^ ~~ m y )^ ) r^ '^ “ ^ e x p ( - a ;y r y )

X e x p  { - u j T ) { l { h i j k '  e  [0, l])}{I(a e [ aa , b a ] ) }
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where - t -

A .3.2 Full C onditional D istributions

The full conditional d istribu tions for each of the param eters of in terest are as follows:

^ { h j k  -  IJ-ijkf  j ? e x p ( -w r) ,
v, ijk /  )

~  G am m a f  y  +  ^  ~  jJ^ijkf  +  ^  j ,
V ijk /

where K  is the  to ta l num ber of cracks over all specim ens and polygons. For the  full 

conditional d is tribu tion  for a  we use the  m ethod of “com pleting the square” :

ijk

oc exp J
^  ' 2

) I T  ^XP ^ l-^ijk)
ijk

2
ijk

j -  2 (
L \  i j k  i j k

2q;  ̂^̂{L(yĵ jf;Cjhijk} 
i j k

r Z ^ j k ( C ] h l , )  /  E^JkLl^Jk 2

 ̂ 2 E.,.(C-?AL) +

- 2 a

ijky j  i jk/

ex exp < -------------- I  a  —
2 \ T.,„(c]hy
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where L a m  =  h j k  ~  k i k  ~  ^ T j h ^ j k  ~  B i j k Y i j k -  Similarly for the param eter

' r T . „ , ( T f h y  )  '

where L^ i jk  =  k jk  — h j k  ~  a C j h i j k  — Bi j^Yi jk-  For A the full conditional distribution 

is as follows:

P(A| . . . )  a  J]^{(1 -
ijk 

OC (1 —

~  Beta Bijk +  l , K  +  l  - E  Bi jk  I •
\  ijk ijk J

For the mean of the initiation lengths of the load-cracks M j \

P ( M , ] . . . )  OC j[^ {e x p  exp -  m ;)

i - j  -  ™ ' ) 4
I ijk J

exp -F s/)Af/ -  (t/ ^  I i jk '  +  miSi )2M,

+ +  rn]si) j \
ijk' }  J

exp | - ^  ( A M f  -  2 BMi -f C) |

ijk'

exp

^  exp { - -  -  -

~  Normal

where k* refers to a load-crack, K *  is the to tal number of load-cracks, A  =  t j K *  +  s/, 

h j k '  +  "miSi,  and C  =  t j  Y l,ijk ' ^fjk'  +  The mean of the Normal
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distribution for the jump size My is also of the same form;

P ( M y |. . . )  a  P J  jexp  I  exp
ijk

~  Normal

where A  =  t y K  +  s y  and B  =  Ty Yhijk +  ’m y S y .

The full conditional distribution for the precision parameter of the Normal distri

bution for the initiation lengths is as follows:

P ( r / | . . . )  oc J | | y ^ e x p ( - y ( / , j f e . - M / ) ^ ) | r / ' “ ^ e x p ( -a ; / r / )
ijk*

^  + 0/, 2
ijk'

The precision parameter of the Normal distribution for the jump size is also of the 

same form:

p ( r y | . . . )  oc ] ^ | y ^ e x p ( ^ - ^ ( F i j f c - M y ) 2 ) | r ^ ' ^  ^ e x p (- iJy ry )  
ijk

~  Gamma I y  +  ^  ~  j  •
V ijk /

Finally the full conditional distributions for the parameters I  ijk, Bi jk  and Yijk are 

as follows:

1 • • •) oc exp exp ( - y  -  M/)^^

in a similar way to Equation A.l we use the method of “completing the square” , 

giving

W i j k ' l - - - )  ~  Normal +  r / M /  ̂ 1—  \V T  +  T i T  +  T i J

where Xijk  =  kjk — {otCj +  /3Tj)hijk +  BijkYijk- The full conditional distribution for 

the jump indicator is:

r { B i j k \ . . . )  oc exp (1 -

=  exp
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Ao = F{Bijk =  0) cx exp (1 “  )̂>

=  F{Bijk =  1) a  exp

thus we have

Aq + A\

The full condi t ional  dist r ibut ion for the size of an individual  j u mp  is:

F { Y i j k \ . . . )  (X exp exp -  M y ^ y

if Bijk =  0

• • •) ~  Normal  (My, T y ) ,

and if Bijk =  1, then

P ( l - , , | . . . )  -  Normal  ( ,V r + T y  T + T y  J

where Xijk  =  hjk — hjk  ~  {aCj  +  j5Tj)hijk- The  full conditional d istribu tion  for 

hijk* =  1 — tijk*, where tijk- is the in itia tion  tim e of a load-crack is:

F { h i j k - \ -  ■ •) ex exp -  {aCj  +  l3Tj)hijk- f '^Hhijk-  e  [0,1]),

r { a C j + P T j f  /
oc exp I e  [0, 1])

~  i ( a C % T ,y

wtl6r6 ^ i j k *  ^ijk* ^ijk* ^ i jk * ^ i jk *  •



A ppendix B 

Algorithm s and Trace P lots

B .l  M CM C A lgorithm  for D iscrete Initiation M odel

We now present the MCM C algorithm  used to ob ta in  samples from  the  posterior 

d istribu tion  for each of the param eters: ;0i,/?2 i {7y}) and p of the discrete in itia tion  

model.

1. For i =  1 , . . . ,  5; j  =  1 , . . . ,  44, inpu t the data: Nij ,  Cj ,  Tj ,  and the  coordinates 

of the centroids of the polygons.

2. Initialise f3\,P2, {lij}-,  and p.

3. Set param eter values for the priors: a i , b i , a 2 , b 2 ,ag,bg,  iJ., and a.

4. Initialise the itera tion  counter r  =  0.

5. For r ^ total number of iterations:

(a) For j  =  1 , . . .  ,22,  k  =  1 , . . .  , 22  calculate

where \djk\ is the  Euclidean distance between the centroid of polygon Pij  

and the centroid of polygon Pi^ for a particu la r i (as the  weights are the 

same for each specim en).

134
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(b) For j  =  1 , . . . , 2 2 ,  ^ =  23, . . . , 4 4

- S ’ =  0,

i.e., initiation of cracks in a  given polygon is only affected by latent variables 

in the window th a t  contains the polygon.

(c) For j  =  2 3 , . . . ,  44, A: =  2 3 , . . . ,  44 repeat Step (a).

(d) For j  =  2 3 , . . . ,  44, A: =  1 , . . . ,  22 repeat Step (b).

(e) For z =  1 , . . . ,  5, j  =  1 , . . . ,  44 define

t o p g  =

top£] =  p i ' '~ ^ '’T j A j - ,

t o p S  =  

topiSj =

and

bottomSg. =  t o p S ;  

bo ttom 2i] =  bottom[^] -  top[^]-; 

bottom^^] =  bo ttom ^] -  top^^;

bottom^Sj = bottomJ^j -  topŜ .̂;

(f) D a t a  A u g m e n t a t i o n

For each i =  1 , . . . ,  5, j  =  1 , . . . ,  44 simulate 

from B inom ial

f ro m  RinoTTiiril I /V‘ ■ — —  I •trom l:5inomial j ,

n \^1^ from Binomial ^ N i j  —

(g) s e t N i ; i  =  N , , - Y : t i N l ; l

top^;),
bottom45-j
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(h) G ib b s S a m p lin g

Simulate from Gamma n \̂ \ +  q;i, 5 Yhj C jA j  +  b]^.

Simulate /32  ̂ from G a m m a N-jl +  a 2 ,o  Yjj  TjAj  +  62̂

For each z =  1 , . . . ,  5, A: =  1 , . . . ,  44,

simulate from G a m m a i V ^ 5’fc+2 +  +  9̂)  ■

(i) R a n d o m  W alk  M etr o p o lis  S tep  to  U p d a te  p

i. Simulate Ptest =  +  Normal(mean, var) such that Ptest ^  0-

ii. For j  =  1 , . . .  ,22, k =  1, . . .  , 22 calculate

('■)/+ ^ I l ĵkl‘̂ ;V(test) = ^ ^ ^ e x p
^ ^ ^ t e s t  V  ^ ^ t e s t

iii. For j  =  1, . . .  ,22,  k =  23, . . .  , 44

=  o>

iv. For J =  2 3 , . . . ,  44, k =  23, . . .  , 44 repeat Step (i)ii. 

V.  For j  =  2 3 , . . . ,  44, A: =  1 , . . . ,  22 repeat Step (i)iii.

vi. Accept Ptest probability

^(Ptest) 1min < 1, /■ ,

see Appendix A .1.2 for full details of the acceptance probability,

vii. If Ptest accepted set p̂ ''̂  =  Ptest> otherwise p̂ ’'̂  =

(j) r =  r +  1.
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B.2 M CM C A lgorithm  for Continuous Initiation  

M odel

The following is the MCMC algorithm used to obtain samples from the posterior 

distribution for each of the parameters: Pi, ^ 2 , P and rij{ds) of the continuous spatial 

initiation model.

1. Input of D ata and Initialisation of Param eters

(a) For i = (specimen); j  =  1,2 (window); k =  {Kij is

the to tal number of cracks in window j  of specimen i) input the data: 

for each crack we have its spatial location lij^ and its a ttribu te  vector

^ijk — {CijkiTij}^ .

(b) In order to calculate Yhj f x  and f x  X 2 {x)oj{dx) (see Equa

tions 5.4 and 5.5) we use an approximation. We divide each window into 

a fine grid and calculate the stress value, through kriging, at the centroid 

of each segment of the grid. Thus each segment on the grid has a vec

tor {Cjg, Tjg) and one of Cjg and Tjg will be zero as there cannot be both 

a compression and a tension value at a single point. For g =

and j  = 1,2  input the vector {Cjg, Tjg). Also input the area of each seg

ment of the grid, Ajg and the coordinates of the centroid of each segment 

Cjg. The approximations are as follows: Xi{x)uj{dx) ^  Yhg^jg^jg

X2{x)u{dx)  ^  Y^gTjgAjg.

(c) Set the param eter values for each of the priors, a\ ,hi ,  a 2 , 62, o t g ,  b g ,  fi, and 

a.

(d) Initialise the param eters, Pi, 132, p, and Tintiijk) for all i , j ,  and k, where

~  k{lijk, ^)Tij{ds) .

(e) Initialise the Gamma random field.
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2. For r  ^ to ta l number of iterations:

138

(a) First D ata A ugm entation Step

i. For each crack calculate

A.‘; l  =

ii. Set P, =  C y t /? r 'V A S -

iii. Simulate B\  ~  Bernoulli(Pi). If 5 i  =  1 increase Niji by 1.

iv. If =  0 set P2 =

V. Simulate B 2 ~  Bernoulli(P2 )- If B2 =  1 increase Nij2 by 1. 

vi. If i ?2 =  0 increase Nijs by 1, and keep a record of this crack location 

that has been attributed to the latent factor by setting = Ujk.

(b) Second D ata A ugm entation Step

i. For each z, j ,  /c =  1, . . . ,  Nij^, and for each m = 1 , . . . ,  M calculate the 

following:

) ^ijm)
7 7 7 7

2 ^ m = l  ^ i j m )

For each latent crack choose a corresponding point <7̂ * in Sj  based on 

the probabilities Pijm- Let Sijk =  cTij*.

ii. R andom  Walk M etropolis Step see Note 1.

Let Sijk =  CTjj* +  r, where r ~  Gaussian. Accept Sijk with probability 

min {1, a} where

___________ k(̂ i7fc ___________
) + 7 i j  * ^  ( k j ^ i j k )a = ------------------------------ .

 )___
If ,aijm)

If Sijk =  cTij* +  ?■ is not accepted then Sijk =  (Jij*.

(c) Sim ulation of the Gamma Random  Field

i. Set CTijfji ^ijmi 1 ^  ^  ^  ^ij3'

ii. Generate independent locations ~  II(ds) for Nijz ^  m ^  M.
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iii. Set bGRFm =  + <yijm)^jgi where we use the approximation

S g  CTijm)^jg ~ k(3̂ , G i j Y ] T ^ U } { d x ^ .

iv. Generate successive jump times of a standard Poisson process by gener

ating M  exponentially distributed random variables, {ej}, then setting 

tm — X ltli for each m.

V. If iVys > 0,

let ■jiji — ei.bORFi,

for ?7l =  2, . . . , Nij3 let yijm — (^m ^m—l^bGRFYny 

for m > Nij3 let jijm = E~\{em -  / ag)hGRFm-

vi. If Nij^ =  0, then for m =  1 , . . . ,  Af let jijm =  {em/cig)bGRFm-

(d) Sim ulation of the /3's

(e) Random  Walk M etropolis Step for p’s

Let Ptest = P + '>’■> where r ~  Gaussian. Accept Ptest probability 

min {1, a}, where

Simulate

~  Gamma(X]y iViji +  5 CjgAg +  hi) and

Gamma(X;ij + «2, 5 TjgAg  + 62)-

a

where the approximation

is used.
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(g) r =  r +  1.
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Note 1: Step 2(b)(ii) is optional. Without this extra random walk Metropolis step it 

is highly likely that the same augmentation points (o-jj*) will be continuously chosen 

and this can slow the convergence of the algorithm, this was also noted by Wolpert 

and Ickstadt (1998a).

B.3 M CM C A lgorithm  for Growth M odel

We present the MCMC algorithm used to obtain samples from the posterior distribu

tion for each of the parameters: r , a, P, A, M/, r/, My  and ry for the growth model. 

When simulating from a distribution, a reference is given to the equation number that 

provides full details of the parameters of the distribution.

1. Input of D ata and Initialisation of Param eters

(a) For i =  1, . . . ,  5 (specimen); j  =  1, . . . ,  44 (polygon); k =  1, . . . ,  Kij, {Kij 

is the total number of cracks in polygon j  of specimen i) input the data: 

lijk, Cj and Tj. For each pre-crack input lijk, the logarithm of the length 

of the pre-crack at the start of stressing.

(b) For each pre-crack set tij^ = 0.

(c) Initialise T , a ,  13, X, M j , t i ,  M y , t y ,  {liji,.}, {B.ji,}, {Y\jk}, and {h^jk>}.

(d) Set the parameter values for each of the prior distributions for each of the 

parameters, see Section 6.3.5.

2. For r  ^  tota l number of iterations: 

(a) Gibbs Sampling

Simulate the following parameters:

7-('’) r,.. Gamma(,) 6.1;

Normal(,) 6.2;
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^  N orm al(,) 6.3;

~  B e ta (,) 6.4;

~  N orm al(,) 6.5;

~  G am m a(,) 6.6;

My  ̂ ~  N orm al(,) 6.7;

Ty^ ~  G am m a(,) 6.8.

(b) For each load-crack simulate its initiation length: lljl .  ~  N orm al(,) (6.9) 

and simulate its initiation time h[^l, N orm al(,) (6.13).

(c) For each crack simulate whether or not there is a jum p in its length: B^jl ~  

Bernoulli(.) (6.10).

(d) Depending on whether or not b [jI is 1 simulate a jum p size accordingly: 

for each crack k: ~  Normal(.) (6.11) if B^^l = 0 and ~  Normal(.)

(6.12) i f S g  =  l.

(e) r = r + 1.

B .4  Trace P lo ts

We present in the following figures trace plots for the various param eters of the three 

models discussed in this thesis. As detailed in Section 3.3.6, after a number of it

erations (burn-in) the Markov chain resulting from the MCMC algorithm, is said to 

have converged. When examining trace plots an indication th a t convergence has been 

reached is if the chain exhibits the same qualitative behaviour. It appears th a t the 

trace plots presented in the following figures exhibit the same qualitative behaviour 

and so we conclude th a t there exists no evidence for lack of convergence and we believe 

th a t the chains presented are samples from the corresponding posterior distributions.
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Figure B .l: Trace plots of samples obtained after convergence for param eters of the 

discrete initiation model, (a) shows a trace plot of sample values for pi (2000 samples); 

(b) shows a trace plot of sample values for j32 (2000 samples); (c) shows a trace plot 

of sample values for p (7000 samples); (d) shows a trace plot of sample values for 

^ 1 0  Efc (1000 samples).
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Figure B.2: Trace plots of samples, for various parameters of the discrete initia

tion model, obtained after convergence, (a) ^ 1 5  (1000 samples); (b)

A 40 ^ 4 0 ,kj4 ,k (1000 samples); (c) 71^22 (1000 samples); (d) 73,29 (1000 samples);

(e) 74,6 (1000 samples); (f) 75,21 (1000 samples).
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Figure B.3: Trace plots of samples obtained after convergence for the param eters of 

the continuous initiation model, (a) shows a trace plot of sample values for Pi (2500 

samples); (b) shows a trace plot of sample values for P2 (2500 samples); (c) shows a 

trace plot of sample values for p (2500 samples).
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Figure B.4: Trace plots of samples, for various parameters of the growth model, 

obtained after convergence, (a) r  (3000 samples); (b) a  (1000 samples); (c) j3 (1000 

samples); (d) tj (1000 samples); (e) M y (3000 samples); (f) ry  (3000 samples).
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