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Abstract

The processing power available in today’s commodity parallel hardware has en-
abled realism and detail in graphics that has never before been possible. With the
advent of the programmable Graphics Processor Unit (GPU), the full potential of
parallel architectures to accelerate graphics algorithms has become apparent. This
parallelism is becoming more ubiquitous in other processors, and research that ex-
ploits this parallelism is ongoing.

In this thesis we apply the knowledge learned of rendering clusters to the design
of a new tightly-coupled cluster architecture for parallel rendering, and describe a
software infrastructure for implementing distributed rendering by taking advantage
of the unique mix of parallel hardware available. We then concentrate on the ap-
plication of this commodity parallel hardware to two important fields of computer
graphics applications; scientific visualisation and entertainment.

Under scientific visualisation, we describe the use of the programmable pipeline
for direct volume rendering of datasets captured by confocal fluorescence microscopy;,
as well as introducing a simple method for fast volumetric simplification which al-
lows broad feature preservation while allowing faster isosurface extraction and noise
reduction when applied to confocal datasets. We also introduce a novel algorithm
for performing isosurface extraction on Cell, the recently developed high-profile mul-
ticore processor from IBM, Sony and Toshiba. We give an overview of the processor
and detail how to exploit it for algorithmic acceleration.

In the field of entertainment applications, we describe the use of the programmable
graphics pipeline to accelerate and improve the rendering of impostor-based crowds
made up of a large number of virtual humans. We discuss the shortcomings of pre-
vious methods when applied to state of the art graphics hardware, and detail a new

algorithm that can be applied to achieve superior results.
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Chapter 1
Introduction

Since the introduction of the modern integrated circuit, computing power has been
increasing rapidly due to improvements in technology and manufacturing methods.
Furthermore, this power does not come at a commensurate price. Quite the opposite
is true; in 1997 the equivalent price of one gigaflop of power was $30,000 [140]. Today
in 2006, that price has dropped to under $1 in the case of the most recent Graphics
Processor Units (GPUs).

The widespread availability and low price of computing power has been the cause
of a major boom in personal computing and the consequent ubiquity of desktop
workstations seen today. Even a moderate desktop computer is now capable of
billions of floating point operations per second - orders of magnitude faster than
a machine that would have been termed a ‘supercomputer’ 30 years ago. The low
cost of this hardware enables ordinary commodity off-the-shelf (COTS) systems to
perform complex simulations in real-time at interactive rates to a degree that was
never before possible without extremely expensive hardware or dedicated custom
architectures.

However, this continuing growth is not just because of increasing chip speeds
and decreasing costs. Indeed, the physical limitations of current manufacturing
techniques are becoming apparent as the performance gains that can be had by
further miniaturisation start to reach diminishing returns. Therefore a different
approach is being turned to in order to supply the need for ever-increasing processing

speed. Modern systems can exploit parallelism at many levels in order to scale to



1.1 Parallelism

multiple processors and take advantage of the inherently parallel nature of many

algorithms.

1.1 Parallelism

The key concept of parallel computing is the decomposition of a problem into discrete
components that can be solved individually. This can be carried out in two forms,
classified by where in the system the parallelism is implemented.

Implicit parallelism, where the system automatically partitions work to be dis-
tributed among processors, can be seen in systems such as the GPU pipeline and
certain SIMD-optimising compilers. In this case the developer does not need to spec-
ify any details of how work will be segmented. However, for performance-oriented
applications it still helps to take it into consideration at the design stage, in order
to allow the work to be parallelised as efficiently as possible.

On the other hand, explicit parallelism can be seen in areas such as multi-
threaded applications or distributed systems. In this case, developers must specifi-
cally design the application around the distribution model, taking into account all
the performance implications and communication restrictions that accompany the
underlying architecture in order to perform the maximum amount of computation
at any stage.

Although explicit parallelism is not a new area per se, its use in modern pro-
cessors is beginning to become more important than ever before. Multicore and
parallel architectures such as the new Cell processor necessitate a fundamental shift
in system design, requiring applications to be developed with new approaches to
system usage. Just as cache access behaviour is a concern for the efficient usage of
sequential processors, factors such as data distribution, synchronisation and mem-
ory access latency become an important consideration for the efficient use of parallel

systems.




1.2 Context and Scope

1.2 Context and Scope

The work contained in this thesis began as part of a HEA-funded project: the
Institute for Information Technology and Advanced Computation (IITAC), with the
author’s particular remit being to study cluster-based rendering frameworks (such as
Chromium - see Section 2.2.3) and their use for scientific visualisation. Specifically,
the study of the protozoa Trypanosoma Brucei was to be the subject of visualisation
in association with the Cell Membrane Group in Trinity College Dublin. Interactive
visualisation necessitated the investigation of programmable graphics hardware in
order to allow real-time rendering of the datasets being captured by the confocal
microscopes used to study this organism.

While this research was being carried out, it was recognised that work being
carried out by others on the same project, on crowds and virtual human rendering,
could benefit greatly from the knowledge gained of graphics hardware. This was
applied to accelerate crowd rendering and enable large numbers of humans to be
simulated in real-time.

From this earlier work, a new project arose in association with the Computer
Architecture Group (CAG) and funded by Science Foundation Ireland (SFT). This
project aims to build upon the knowledge of clusters and commodity graphics hard-
ware gained in the previous research to produce a new hardware framework that
incorporates the advantages of both architectures. It also encompasses knowledge
gained by researchers in the CAG in relevant areas such as Field Programmable
Gate Arrays and the Scalable Coherent Interconnect in order to produce a new
parallel cluster architecture for distributed rendering and simulation. The author’s
particular remit in this project was the investigation of the required software infras-
tructure and the exploitation of the framework for different types of applications, in
particular, entertainment and scientific visualisation.

Most recently, an opportunity arose to investigate the application of the new Cell
processor for accelerating graphics algorithms. From the experience gained in both
volume visualisation of microscopy data and the use of parallel graphics hardware,
it was recognised that this new parallel architecture could be used to substantially

accelerate the area of surface extraction, necessary for isolating particular structures

inside a dataset.




1.3 Contributions

Therefore, the following chapters present the research performed in these projects.
Specifically, the parallel architectures that were used and their application to the
areas of scientific visualisation (volume rendering and surface extraction) and enter-

tainment (crowd and virtual human rendering).

1.3 Contributions

In this thesis, we will look at how both implicit and explicit parallel systems can be
employed in order to accelerate existing graphics algorithms. The major contribu-

tions are as follows:

e An overview of a variety of parallel architectures including both distributed
systems and parallel processors. We investigate their exploitation for acceler-

ating graphics algorithms and discuss their use in previous research.

e Details of a new hardware cluster for accelerating distributed rendering. We
describe the low-level mechanism of existing graphics drivers and outline a
software infrastructure to exploit the unique assortment of heterogeneous
parallel hardware in the cluster to provide acceleration of both simulation and

rendering algorithms.

e The use of the programmable pipeline for direct volume rendering of
datasets captured by confocal fluorescence microscopy. We also introduce
a simple method for quick volumetric simplification which allows broad
feature preservation while allowing faster isosurface extraction and noise re-

duction when applied to confocal datasets.

e A description of a novel algorithm for performing isosurface extraction on
Cell, the recently developed high-profile multicore processor from IBM, Sony
and Toshiba. To our knowledge this is one of the first applications to be
published which is aimed specifically at this new parallel architecture. We also
give an overview of the processor and detail how to exploit it for algorithmic

acceleration.




1.4 Summary of Chapters

e The use of the programmable graphics pipeline to accelerate and improve the
rendering of impostor-based crowds made up of a large number of virtual
humans. We discuss the shortcomings of previous methods when applied to
state of the art graphics hardware and detail a new algorithm that can be

applied to achieve superior results.

1.4 Summary of Chapters

The rest of this thesis is divided up into the following chapters:

Chapter 2 describes the different parallel architectures we will be exploring through-
out the rest of the thesis; GPUs, commodity clusters, FPGAs and the Cell
Broadband Engine. Related research in each area is also presented, with a

particular focus on their applications to graphical algorithms.

Chapter 3 presents a new hardware framework built at Trinity College Dublin in
association with the Computer Architecture Group. We describe the under-
lying architecture, composed of custom-built FPGA-based boards attached to
commodity graphics cards and connected by an SCI interconnect with dis-
tributed shared memory. We also discuss the inner workings of a graphics
driver based on technical specifications supplied by ATI, and propose a suit-

able software infrastructure for exploiting such an architecture.

Chapter 4 explores the area of scientific visualisation. We give an overview of
volume rendering, both direct and indirect, before describing the contributing
work of this thesis in the areas of volume rendering, volumetric simplification

and isosurface extraction on commodity parallel hardware.

Chapter 5 details the use of commodity parallel hardware in the field of entertain-
ment applications. We concentrate on crowd rendering, exploring previous
methods and describing an algorithm for producing hardware-optimal lit and

varied humans that can be used in a hybrid impostor/geometry crowd system.

Chapter 6 provides a summary of these contributions, as well as a discussion of

future work and the direction of commodity parallel hardware in general.



Chapter 2

Background and Related Work

There are many different levels of parallel architectures. Some exhibit parallelism by
distributing work to discrete components of the system. Others employ internal par-
allelism; the job is broken up into steps to be processed simultaneously in a pipelined
fashion. However, all architectures are advancing rapidly due to improvements in
design and manufacturing methods.

This chapter looks at four distinct parallel hardware architectures, including
distributed cluster systems and parallel chips. It gives an overview of each and
details previous research performed with each architecture in relation to graphics

algorithms.

2.1 Graphics Hardware

In the early days of real-time 3D graphics, the CPU was required to handle all
transformations and rasterisation required to produce a final rendered image. Given
the limited amount of computational power available, much of the processing time
was consumed by these costly operations, leaving less time for simulation and other
processing required to generate the 3D data in the first place. Additionally, having
the CPU perform rasterisation placed an extra burden on memory bandwidth, which
was required to access and update a software frame buffer and depth buffer. The
need for specific dedicated hardware was obvious; a Graphics Processing Unit (GPU)

co-processor could offload the cost of these operations from the CPU.

|
B
|
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2.1 Graphics Hardware

2.1.1 Hardware Acceleration

3D graphics acceleration through dedicated commodity hardware is not a new topic.
The first generation of affordable commodity 3D accelerator cards arrived in 1996
with the widespread adoption of 3Dfx’s Voodoo range of expansion cards. When the
price of memory dropped substantially in the same year, these cards could finally
be manufactured and sold at affordable prices. Soon competitors such as ATI and
NVIDIA were producing similar products. With upwards of 4MB of video memory,
these cards were able to take over rasterisation from the CPU, allowing 16-bit frame
buffers and depth buffers. Soon afterwards they were also performing hardware
primitive assembly, given transformed vertices by the CPU.

More importantly, they performed texture mapping and texture filtering. These
operations were severely limited in software implementations that required real-time
frame rates, because of the large amount of processing and bandwidth required to
filter and project a texture of reasonable size in 3D. The improvements in image
quality and rendering speed given by these cards were immediately apparent and
3D graphics hardware was soon a prerequisite for many games and other 3D appli-
cations.

After texturing and rasterisation, the next step in hardware acceleration was
to perform vertex transformation, clipping and lighting (TCL). NVIDIA’s GeForce
range was the first to introduce this feature, thus moving all of the graphics pipeline
(see Section 2.1.3) processing into hardware. This relegated the CPU to the role of
submitting vertex and texture data to the GPU, freeing more CPU cycles to devote
to application areas that are non-specific to graphics, such as physics, artificial in-
telligence, scene graph management etc. Initially there was some concern over the
advantages of hardware TCL, due to benchmark performances being well below that
of software CPU performance. However, as hardware improved and mesh sizes cor-
respondingly increased, full utilisation of hardware TCL yielded better performance

than equivalent software implementations ever could.

2.1.2 Embarrassingly Parallel

An often quoted metric of the recent rate of improvement in GPU power is “Moore’s

Law cubed”. Moore’s Law [93] is based upon the empirical observation that, due
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to the rate of increase in circuit complexity versus size and cost, computing power
doubles roughly every 18 months!. Correspondingly, GPU speeds double roughly
every six months. This is due to a combination of increasingly better manufacturing
processes, 3D-specific algorithmic advances, but most importantly the nature of the
computations taking place.

In parallel computing terms, 3D graphics rendering is an embarrassingly parallel
problem. In other words, it is a problem that can be easily divided into many
steps, each step having little or no effect on the computation of other steps. These
steps can therefore be worked on in parallel, the results being combined to form the
solution. The GPU exploits this parallelism in acting as a stream processor [139)].
A stream processor operates by scatter/gather; data is gathered from disparate
sources (usually random or sequential blocks of memory), fed through one or more
computational kernels and then scattered back to memory. Each kernel performs
the same operation on every part of the stream that passes through it. In the case of
the GPU, the kernels are the vertex processor and the pixel processor, as described
in Section 2.1.3.

In comparing this to a CPU’s need to perform every instruction in sequential
order, we get an insight into why the GPU can greatly out-perform the general
purpose processor - even ignoring the obvious speed advantages of parallel processing
over serial processing. Pushing CPU speeds higher and higher places a strain on the
speed at which memory can be accessed, as advances in memory latency have not
been in keeping with those of the CPU for a long time [145]. The fact that every
instruction and piece of data must share the same path to memory exacerbates the
problem. To alleviate this growing speed/latency gap, the CPU needs to devote
larger amounts of chip area to cache, to the point that the Pentium 4 actually
contains more cache than it does logic.

On the other hand, the nature of the GPU allows many operations to happen in
parallel, each coming from a dedicated path in the stream and leaving via another
dedicated path - in many cases (texture lookups being the obvious exception) these

operations need little or no memory access. Cache can therefore be kept to a mini-

Tt should be noted that the original article to which the law is attributed never mentions the
commonly accepted timespan of 18 months. Instead, Moore estimated that transistor counts would
double approximately every two years, a figure which has proven in retrospect to be much more
accurate. Nevertheless, the most commonly accepted usage of the Law refers to an 18-month cycle.
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mum; even on the latest GPUs, the texture cache is no more than a few kilobytes.
Thus with less cache, more chip area can be devoted to processing and the efficiency
of the entire chip increases as a result.

The latest graphics chip currently on offer is ATI's R580, which powers the
X1900 XTX boards and is comprised of 8 vertex pipelines and 48 pixel pipelines.
The general trend is for games and applications to perform much more computation
on fragments than on vertices, hence the imbalance. This allows unprecedented

rendering parallelism and results in a theoretical peak of 10.4 gigapixels per second.

2.1.3 The Graphics Pipeline

The graphics pipeline is the process that every polygon goes through to become a
pixel or group of pixels in the frame buffer (see Figure 2.1). It is broken down into

the following categories:

Vertex Processing: Given a model-space vertex as an input, the vertex processor
applies matrix transformations in order to output a screen-space vertex. If
performing per-vertex lighting, the vertex processor is responsible for evalu-
ating the lighting equation at each vertex. It also performs per-vertex colour
application and any necessary normal transformation or texture coordinate

generation.

Primitive Assembly: Each vertex sent through the vertex processor also has an
edge flag associated with it. These edge flags specify which polygon the ver-
tex belongs to and describe its connectivity with the other vertices of that
polygon. From these parameters a polygon is constructed and forwarded for

rasterisation.

Rasterisation: Rasterisation converts the continuous polygons from the primitive
assembly stage into discrete fragments. A fragment can be thought of as a
‘potential pixel’, with the attributes of colour and depth - it has made it as
far as being rasterised, but still may be removed from the pipeline by pixel
tests as detailed below. This stage is also responsible for interpolating per-
vertex attributes (such as texture coordinates, colour etc.) across the polygon

assembled by the previous stage.
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Fragment Processing: The fragment processor’s purpose is to calculate the final
colour of the fragment. It usually does this by combining texture lookups with

the interpolated vertex colours.

Pixel tests: Finally, the fragment is subject to a series of pixel tests to determine
if it should end up in the frame buffer. These are tests such as the alpha test,

depth test, stencil test etc.

o
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Figure 2.1: The Graphics Pipeline

Fixed Function Graphics Pipeline

The system of processing every vertex and pixel in hardware via a non-configurable
pipeline implementation is referred to as the fired function pipeline. In hardware it
is more efficient to implement and easier to optimise a pipeline of specific operations
in a specific order than it is to implement generalised logic. This was originally the
way graphics hardware was able to achieve sufficient 3D acceleration.

There are two main APIs that the graphics card vendors support for interfac-
ing with the hardware through their drivers - OpenGL and Direct3D. While the
underlying hardware uses the same implementation for both APIs, the feature set
and language semantics differ from version to version. However, the most noticeable
difference between the two is their release dates. OpenGL tends to update its core
functionality relatively infrequently, preferring a hierarchical extension mechanism
that puts new additions to the API through a series of architectural reviews be-
fore they get promoted to the core. This more stringent process is a result of the

differing interests expressed by the multiple members that make up the OpenGL
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Architecture Review Board (ARB). On the other hand, Microsoft has complete au-
tonomy in deciding which features get included in Direct3D. This results in more
regular Direct3D releases, usually accompanying the release of a new graphics card
generation. In any case the underlying hardware functionality is always the same,
it is just exposed differently by the two APIs.

In the case of the core OpenGL graphics API up until version 1.5 [119], the fixed
function pipeline was the only option for rendering with hardware acceleration.
It was essentially a black box - it had various parameters to alter properties like
transformations, materials and texture attributes, but how these properties were
applied to the scene for rasterisation was set in hardware and could not be altered.

In the fixed function vertex processor, the only option for lighting was to use
Blinn-Phong lighting [10] combined with Gouraud shading [44]. This model played
to the strengths of the hardware - only evaluating the lighting equation at each
vertex and using the fast hardware interpolation needed to colour each point on the
surface. Despite this method missing specular highlights on low-tesselated models,
this was an acceptable model for most 3D applications. Similarly, the fixed function
fragment processor only allowed limited methods of texture lookups, a fixed set of
blending modes and no interaction with the depth buffer.

The result of a single unalterable rendering equation was that every rendered
scene always had the same lighting and the same feel to it. It did not allow for
variation in the projection of vertices, nor did it give the developer much control
of texture addressing or material application, beyond the limited parameters of
the OpenGL rendering equation. For this reason, the fixed function processors were
discarded and replaced with new programmable engines once GPUs became powerful

enough.

Programmable Pipeline

The switch to the programmable graphics pipeline was a gradual one. Cards did
not suddenly change from having fixed function processors to programmable ones,
but rather the changes came in increments.

The first manufacturer to take a step toward general programmability was again
NVIDIA with their GeForce cards. As well as introducing hardware TCL in 1999,

11
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the GeForce 256 also had the first implementation of what NVIDIA called register
combiners [123]. Register combiners were to be the first step towards generalising
the fragment processing stage, allowing a programmable process to decide the final
colour of a pixel. They consisted of a chain of 4-input combiner units, each combiner
being able to perform operations such as multiplication, addition or dot products
on the data being passed through. Additionally, a final combiner could perform
interpolation on the outputs of the previous stages. The power of register combiners
came from their configurability - the input of any combiner could be the output of
any earlier combiner in the chain. While the number and nature of the operations
were restrictive, it still allowed a great flexibility on how colours and textures could
be combined to produce a fragment.

Soon afterwards NVIDIA produced tezture shaders [33], a superset of conven-
tional OpenGL texture operations which were to supplement the register combiners
by adding extra texture addressing operations. In addition to the regular 1D, 2D
and 3D texture addressing available in OpenGL 1.2.1 (the latest version at the time),
texture shaders added cube mapping, dependent texturing, offset texturing and dot
product texturing. Together with the register combiners, texture shaders allowed
the fragment processing stage to be much more flexible than the core OpenGL spec-
ification allowed.

The following year saw the introduction of the vertex program [146]. Vertex pro-
grams introduced complete programmability of the vertex processing stage through
an assembly language interface composed of special GPU instructions. This was
the first truly programmable part of the graphics pipeline, completely bypassing
the fixed function vertex processing stage. However, some restrictions were still in
place. As in the fixed function pipeline, for every untransformed vertex submitted
to the vertex processor, one transformed vertex was output. This was in keeping
with the stream processing model, where the processors only affect the stream data
being passed through and do not actually insert new data into the stream. Vertex
creation and deletion therefore was not possible, and the vertex program written
was required to do the vertex transformation manually and output a transformed
vertex. Optionally, it could perform any other arbitrary calculations to generate
texture coordinates, perform vertex lighting, and output any other attributes to be

interpolated across the polygon during rasterisation.
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The corresponding extension for the fragment processor was the fragment pro-
gram [56]. In a similar fashion to the vertex program, the fragment program was
a set of assembly language instructions which was given complete control of the
fragment processing stage in order to write the final colour of the fragment being
processed. Attributes from the vertex processor which were interpolated by the
rasteriser are passed into the fragment program as parameters.

Shader development was not easy given the assembly language interface to ver-
tex and fragment programs. Any shader of even moderate complexity was hard
to read and even harder to debug, and any modularity that might help code reuse
was difficult to maintain. For these reasons it was not long before high level shad-
ing languages were designed; the OpenGL Shading Language (GLSL) [68] and for
Direct3D the High Level Shading Language (HLSL). These are high level shading
languages, both loosely based on the syntax of the C programming language with
extra vector types to take into account the vector-based nature of the underlying
hardware. The driver then compiles these shading languages into hardware calls
suitable to the hardware that the application is being run on. NVIDIA has also de-
veloped another shading language called Cg [98, 40]. Cg aims to overcome the API
differences by building a shading language on top of both OpenGL and Direct3D.
A program written in Cg can be compiled to target a specific platform, such as the
combination of a particular GPU with a particular API. It then produces code that
will work correctly on that platform. Cg was particularly useful when it was the
only other option to assembly language shader programs. Although this aspect of
Cg’s utility has been overshadowed by the appearance of GLSL and HLSL, it is still
highly successful for cross-API shader programming, and keeps up with the latest
GPU developments through support from NVIDIA. It should also be noted that the
API for the Playstation 3’s graphics chip (the RSX, produced by NVIDIA) is PSGL,
a conglomeration of extended OpenGL-ES 1.0 and Cg for shader functionality.

In more recent GPUs, the hardware implementation of the fixed function pipeline
has been replaced completely by the programmable pipeline. Any fixed function calls
made by an application will be emulated in shader hardware by the programmable
processors.

The next major release of Direct3D, version 10, will also include an extra pro-

grammable unit called the geometry shader. This processor will be placed between
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the vertex processor and fragment processor, and will run a shader program on a
per-primitive basis. Unlike the vertex processor it will allow the creation of new
vertices and have access to both primitive type and vertex adjacency information.
Additionally, it will be possible to recirculate the newly created primitives to the
beginning of the pipeline so that they can be operated on by the vertex processor.
This will allow a new class of GPU-based algorithm to be implemented, such as
procedurally created geometry which can be transformed by the vertex shader and
lit - all while never having to pass across the bus to the CPU. When the underlying
hardware implementation of this new concept is produced, it will also be exposed

via the OpenGL extension mechanism.

2.1.4 Exploiting Graphics Hardware

The impressive parallel processing power offered by recent GPUs, combined with this
general level of programmability, has resulted in much research into using the GPU
not just as a 3D accelerator but as a general processor for suitably parallelisable
algorithms. Termed GPGPU [47] by Mark Harris [55], this model expands upon
the stream-based nature of the GPUs to replace the 3D processing kernel usually
implemented in the programmable processors with a kernel for general computation,
specific to the problem domain to which it is applied.

These kernels use texture maps as gather memory and the frame buffer as scatter
memory. By employing render-to-texture methods, this memory can be used as a
feedback input to the same or different kernels. GPGPU applications typically
perform much of their computation in the fragment processor, as this is where the
hardware affords the most parallelism - the computational kernel will be executed
for every pixel in the output frame buffer. These output values might be the desired
final result, or they may be stored and reused for additional computation.

Therefore the ideal application areas for GPGPU are those that have high com-
putational costs with large datasets, exhibit high data-parallelism, and have low
dependency on those parts of the dataset not being processed. Many data-parallel
domains have benefitted from this work; research has been published in such varied
areas as sorting [46], collision detection [45], bioinformatics [15] and computational

geometry [11]. Additionally, the middleware physics company Havok [57] heve re-
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cently announced the implementation of a physics system implemented entirely on
the GPU, named Havok FX. This framework allows for thousands of particles and

rigid bodies to be simulated in real-time for special effects purposes.

2.1.5 Bottlenecks

The pipelined nature of graphics hardware has the inherent implication that the
entire system can only proceed at the speed of its slowest section. The vertex
transformation stage of a particular application may be very fast, but if an extremely
long shader program is causing the fragment processor to struggle, any speed-ups
gained in the vertex stage is lost. In optimising GPU-accelerated applications, the
biggest gains will be made by identifying and increasing the speed of the slowest
stage. Any other optimisations will not move the bottleneck and consequently will

not make a difference to the application’s performance.

Pipeline Bottlenecks

The most common bottleneck in the graphics pipeline is either the vertex stage
or the fragment stage; the primitive assembly and rasterisation stages are rarely
the cause of a drop in frame rates. The nature of a pipeline bottleneck is entirely
application-dependent. In the case of a simple model viewer that applies a single
texture to a very highly tessellated model, the pipeline will be slowest in the vertex
transformation stage. Similarly, a model viewer that views only low-polygon models
but applies many complex per-pixel effects to the model’s surface will be bound by
the speed of the fragment processor.

Some applications are not limited by any pipeline stage; instead it is the sub-

mission of data in the first place that cannot keep up with the GPU’s speed.

Transfer Bottlenecks

The complexity of the operations performed by current graphics cards necessitates
the transfer of a large amount of data to the GPU for both geometry and textures.

Up until recently, one major drawback to using the GPU as a general purpose
co-processor was its inability to read back the computed results at speeds sufficient

to keep up with the rate of processing. This was due to the prevalent graphics card
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bus being the Accelerated Graphics Port (AGP). AGP is a dedicated bus based
upon the PCI specifications and specifically designed for interfacing the graphics
card with the rest of the system. It does so by interfacing with the motherboard’s
north bridge, thereby having a dedicated link to both system memory and the CPU.
This was a major improvement over PCI, the previous bus used by graphics cards.
PCI cards are connected to the rest of the system through the south bridge, and as
such have to share the PCI bus with every other PCI card such as network cards
and sound cards, as well as other I/O devices such as USB and hard drives. Any
one of these devices could easily overwhelm the PCI peak transfer rate of 133MB/s,
leaving little for the graphics card to use.

At its highest speed (termed AGP 8x), the AGP bus can achieve peak transfer
rates of 2GB/s from system memory to video memory. However, due to the design
of AGP as a dedicated bus for writing data to the GPU, reading data back occurs
at a much lower transfer rate. This rate was improved upon by later graphics cards,
but it was still a limiting factor for GPGPU.

However, recently a new bus has been developed named PCI Express (PCI-
E [106] - not to be mistaken with PCI-X [107], a variation on the original PCI
specification). AGP is being phased out in favor of this new bus, and all new
graphics cards are being developed with PCI-E exclusively. The current standard
version for graphics cards, PCI-E 16x, has a peak transfer rate of 4GB/s - twice
that of the highest AGP version. However, more importantly PCI-E allows for the
bandwidth to be split between reads and writes at the same time; AGP could either
read or write, but not both simultaneously and switching between the two was non-
trivial. PCI-E also allows for more than one graphics card to be present at the same
time, allowing the possibility of linking two GPUs together to double the processing
power. Both ATI and NVIDIA are already producing cards with this capability,
named Crossfire [3] and SLI [99] respectively.

This new bus removes any potential data transfer bottlenecks for the foreseeable
future, allowing ever larger amounts of processing to occur on the GPU, general

purpose or otherwise.
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2.2 Commodity Clusters

A commodity cluster is a group of off-the-shelf computers that are networked to-
gether in order to distribute and therefore lower the computational expense of a
suitably partitioned problem. They are usually connected via a high-speed local
area network such as fast ethernet (100Mb/s) or gigabit ethernet (1Gb/s). The
speed of the connecting network is an important factor, as the ability to transfer
data to be processed in a timely manner is usually the limiting factor of the overall
computational ability of the cluster as a whole. Clusters are seen as a cost-effective
alternative to single monolithic machines of comparable power, although they intro-
duce extra difficulties such as load balancing, data coherency and concurrent shared

resource access which must be addressed by developers wishing to use the cluster.

2.2.1 Using commodity parts

Using commodity parts for a cluster has many advantages over using a single cluster
solution such as the SGI Prism [121]. Costs are kept down by using mass-produced

components. Powerful graphics cards capable of rendering large amounts of data

robust, as any faulty part can be quickly replaced with an approximately equivalent
part. Upgrading can be accomplished easily and incrementally be replacing individ-
ual components. Finally, the competitiveness of the commodity component market

\
|
take care of the actual rendering work on each node. A heterogeneous cluster is more
|
|
|
ensures regular increases in component performance compared to cost.

|

2.2.2 Parallel Rendering on Clusters

Parallelisation per se comes in two broad categories; functional parallelism and data
parallelism. Functional parallelism is based on the idea of decomposing the problem
into discrete functional blocks. Each parallel process then performs one of these
blocks in a pipelined fashion - an example of this is the graphics card pipeline seen
in the previous section. On the other hand, data parallelism is the partitioning of
data for identical parallel processing on separate processors.

Data parallelism is often the preferred option for parallel rendering on clusters, as

it generally requires less communication overhead to implement. Molnar et al. [92]
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describe several taxonomies for data parallelism in rendering; sort-first, sort-middle
and sort-last. These approaches are classed according to where in the graphics
pipeline (see Figure 2.1) the distribution of rendering work occurs. In the following
descriptions, transformation is considered to be composed of both the vertex pro-
cessing and primitive assembly stages, and rasterisation represents the other stages

of the pipeline - rasterisation, fragment processing and pixel testing.

Sort-first distributes the work before any geometry is transformed or rasterised.
Each processor is entirely responsible for a section of the final frame and the
processing of all geometry that falls within that section. Therefore before
the distribution can occur, the ‘pre-transformation’ of geometry is required
to decide which processor to assign each piece of data to. This is usually
done coarsely by a simple method such as the bounding box of the object
to which the geometry belongs. Each processor then carries out the entire
transformation and rasterisation process for all its geometry and displays the
result, typically as part of a large tiled display. Load balancing can be a
problem in sort-first parallelisation - if all scene geometry ends up in one section
of the screen, that processor must handle all the rendering while leaving the
other processors idle. The extra work of pre-transformation also adds to the

overall processing costs of sort-first.

Sort-middle occurs between transformation and rasterisation. All scene geometry
is arbitrarily assigned to a processor, where it is fully transformed. The re-
sulting screen-space primitives are then reassigned to rasterisation processors,
which again are completely responsible for a section of the final frame. In
this respect, load balancing can be a problem for rasterisation, although the
geometry can be spread evenly across all processors for the transformation

stage.

Sort-last completely transforms and rasterises every polygon on an arbitrary pro-
cessor, only distributing the final fragments for compositing. This method is
the easiest to distribute evenly, although the resulting amount of pixel data
which needs to be transferred for each frame can be prohibitive. Additionally,
extra processing needs to be performed in order to composite all fragments

properly in order of depth for the final frame.
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2.2.3 Related Work

Perhaps the most researched architecture for rendering on commodity clusters is
Chromium, developed by Humphreys et al. [60]. Based on the earlier work of
WireGL [59], Chromium is an extensible architecture for interactive rendering on
workstation clusters, supporting both sort-first and sort-last techniques. On running
an interactive application on a workstation, Chromium replaces the existing graph-
ics card 3D driver with its own driver, intercepting all OpenGL API commands.
It then distributes these rendering calls to rendering nodes on the cluster, where
the calls are decoded and dispatched to the normal graphics drivers. In this way
applications can be run unaware of Chromium, but all rendering will instead occur
on separate nodes.

A by-product of this architecture is that the intercepted rendering calls can first
be manipulated by Stream Processing Units or SPUs. These SPUs can affect any or
all rendering calls without needing to alter the application itself. For example, by
intercepting all glPolygonMode calls, an SPU can force any application to render
in wireframe regardless of the application’s original programming. Niederauer et
al. [96] used this functionality to partition and visualise the architecture of a game
level without modification.

Related custom architectures such as SGI's VizServer [122] perform similar trans-
parent API interception in order to render on a remote dedicated server, returning
the rendered image for display on the client machine. Lightning-2 [125] is a dedi-
cated image compositing hardware system, aimed at accelerating the final stage of
sort-last cluster architectures. On a larger scale, Pomegranate [37] aims to replace
the cluster completely, instead containing up to 64 complete rendering pipelines and
implementing a novel scalable “sort-everywhere” architecture which keeps the load
balanced at every stage of the pipeline.

Much other research has been carried out on parallel rendering, such as the
work on parallel ray tracing by Green et al. [50] and Menzel et al. [89], or the

implementation of a parallel volume renderer by Giertsen et al. [42] among others.
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2.3 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are programmable digital logic chips. A
programmable logic device (PLD) is one that can be programmed after manufactur-
ing, in order to perform a specific task in hardware much like an application-specific
integrated circuit (ASIC). However, the difference is that once an ASIC is manu-
factured, its functionality is set and cannot be altered further. On the other hand,
an FPGA can be updated after manufacturing, having its functionality updated or

completely replaced - hence the term ‘Field Programmable’.

2.3.1 Background

An FPGA is based on the idea of a ‘logic cell’. Logic cells are the basic component
of an FPGA, and are composed of a memory element, a lookup table and some logic
gates. Each of these logic gates can be reconfigured to duplicate the functionality of
either simple logic gates (AND, OR, XOR, etc.) or more complex functionality such
as a memory block or a mathematical function. Individually these cells are not able
to perform much computation, but an FPGA can contain hundreds of thousands
of logic cells, and each cell can be connected to other cells through interconnect
wiring. With the right configuration, an FPGA can be made to perform thousands
of parallel calculations at every clock cycle. Some more modern FPGAs have the
additional ability of partial reconfiguration, where one part of the FPGA can be
configured while another part is still running. This has had a great impact in the
area of reconfigurable computing.

FPGAs are popular for use in embedded systems, where their design and large
number of gates allow for their use as a ‘system-on-a-chip’ [38]. Their reconfigura-
bility and quick turnaround time from design to implementation mean that they are
popular for use in prototyping ASICs - small changes can be made without having to
remanufacture a static design. FPGAs are used widely in areas such as Digital Sig-
nal Processing [27], telecommunications [39], military and aerospace hardware [18],
computer vision [24], encryption [129] and many others. While originally intended
as a simple chip for implementing system board component interface logic, they
became more popular for implementing full systems as they grew in size, complexity

and speed.
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2.3.2 Advantages

There are a number of advantages for using FPGAs in application-specific areas.
These advantages center around the chip’s parallel nature and low design and im-
plementation costs.

The FPGA’s ability to be reconfigured quickly and easily is its biggest advantage.
When designing an ASIC, a costly procedure of design, development and manufac-
turing must take place. This reduces the time between incremental versions of the
hardware and therefore reduces time to market. Using an FPGA for prototyping
and testing greatly reduces this lead time, resulting in faster chip production and
greater profits.

The FPGA’s reconfigurable nature allows a single chip to be used for widely
varying applications, while a corresponding ASIC can only be used for its intended
purpose. FPGAs are also preferable to designing a system board to perform the same
task, as all operations happen inside the actual chip, meaning faster communication
and processing.

FPGAs are capable of a large amount of simultaneous parallel calculations. By
building a functional unit that performs some specific computation out of a number
of logic gates, that unit can then be replicated across the chip and each one can
perform the same calculation in parallel.

In lower volumes, the production of FPGAs is more cost effective than ASICs,
which need the non-recurring engineering cost of setting up a manufacturing plant
to produce the ASIC. Additionally, bugs or updates to the chip design can be issued

after the FPGA is deployed, which is something that is simply not possible with
ASICs.

2.3.3 Disadvantages

While more flexible, overall FPGAs are slower than ASICs, capable of less complex
designs, and consume more power. Even taking into account the added cost of
design, development and manufacturing, ASICs are still the preferred choice for
large-scale production of custom chips due to their lower per-unit cost.

From the point of view of a software developer looking to parallelise an algorithm

in hardware, FPGAs are far from an ideal choice. The approach needed to design
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an FPGA is considerably different to that of software design. The most common
language used for programming FPGAs is VHDL - VHSIC (Very High Speed Inte-
grated Circuit) Hardware Description Language, and other popular choices include
HandelC and SystemC. However, the use of these latter languages requires under-
standing various concepts such as clock signals and channels, and their implications
on the design and efficiency of the chip. Any hardware description language can
make it easy for the uninitiated to produce a design that is grossly inefficient, or
simply cannot be implemented on the target hardware. This is especially true for
HandelC and SystemC, as their syntactic similarities to ANSI-C can lead to the use

of programming methods that are entirely inappropriate for hardware design.

2.3.4 FPGAs and Graphics

Research into the use of FPGAs for accelerating graphics applications has intensified
recently due to the advances being made in the hardware’s speed and capabilities.
This research is largely based around the area of rendering due to the inherent
parallelism as discussed in Section 2.1.2.

Woop et al. [128] have introduced an FPGA-based implementation of a fully pro-
grammable ray tracing hardware architecture. With an FPGA prototype running at
66Mhz they demonstrate results comparable to a software ray tracer implemented
on a 2.6GHz Pentium 4, despite the comparatively small amount of memory band-
width available to the FPGA. They also demonstrate the scalability of their design
to multiple FPGAs working in parallel. Given the speed and power advantages a
full ASIC implementation would have over the current FPGA one, they envisage
the future widespread availability of ray tracing GPUs similar to today’s rasterising
GPUs.

Other rendering methods have also been explored. Beeckler et al. [9] have demon-
strated a particle system (including the application of a set of forces to each particle)
running on an FPGA that is capable of simulating over 2 million particles per frame.
Herout et al. [58] have implemented a 3D point cloud rendering system capable of
rendering 5 million points per second. Meifiner et al. [88] have produced a PCI
FPGA-based card that performs shaded and classified volume rendering of large

datasets in real-time. Stewart et al. [124] implement a view-independent rendering
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system on an FPGA that generates all possible views of a scene and contains a
hardware 4D frame buffer.

In other areas, Atay et al. [2] have presented a collision detection chip imple-
mented with an FPGA. They claim speed-ups of up to 36 times that of a 3GHz Pen-
tium 4 for general non-convex rigid bodies. Similarly, Raabe et al. [111, 112] describe
an FPGA-optimised collision detection architecture that performs with fixed-point
arithmetic. Their results compare well to CPU-based software implementations, and

they report speedups of 30 times over a 1.8Ghz Pentium 4 [73].

2.4 The Cell Broadband Engine

The newest parallel architecture developed is the Cell Broadband Engine (CBE).
Cell is the result of a collaboration between 3 major media technology companies;
Sony, Toshiba and IBM (collectively referred to as STI). Talks of joining together to
create a new processor design began in 2000, with the STI Design center formally
opening in 2001 at a joint investment of approximately $400m. FEach company
brought with it a particular special interest - Sony as a content provider, Toshiba
as a high-volume manufacturer and IBM as a microprocessor developer. The most
high-profile commercial application of the Cell processor is the Playstation 3 games
console, due for release at the end of 2006. IBM is already producing Linux-based
servers running on Cell, and Toshiba has demonstrated Cell’s ability to decode
many MPEG-2 streams simultaneously, presumably as a precursor to Cell-powered

televisions and multimedia centers.

2.4.1 Design aims

General purpose processor speeds have been improving steadily in recent years,
largely due to increases in processor frequencies. However, memory access speeds
have not been increasing at the same rate, leading to many applications being lim-
ited by memory latency rather than processing speed or bandwidth. This increased
memory latency needs to be hidden by the processor with complex chip logic. As a
result, more of the chip area has to be devoted to instruction speculation and deeper

pipelining, thus reducing available bandwidth and the amount of actual work the
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chip is capable of performing. On the other hand, power requirements and heat
output are not reduced, so overall power efficiency is reduced. Similarly, deeper
pipelines increase the performance penalty of mispredicted branches, leading to di-
minishing returns as pipeline depth is increased.

The CBE design aims to alleviate these problems by increasing power efficiency

and reducing both memory latency and pipeline depths.

2.4.2 Architecture

A single Cell chip consists of nine processors - one main processor called the Pow-
erPC Processor Element (PPE) and eight co-processors called Synergistic Processor
Elements (SPEs). All nine processors are connected via the Element Interconnect
Bus (EIB), a high-bandwidth memory-coherent bus which is used by the processors
to communicate with each other, external memory and I/O devices (see Figure 2.2).
It should be noted that a Cell does not necessarily have the complete set of eight
functioning SPUs - for manufacturing the Playstation 3, two SPUs have actually

been disabled in order to increase the yield.

SPE SPE = SPE

Memory Interface
Controlier

PPE Element Interconnect Bus

Broadband Engine
Interface

SPE SPE SPE SRE

Figure 2.2: Cell Processor Overview
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The PowerPC Processor Element

The PPE is the main processor that controls the CBE. It consists of a dual-threaded
SIMD 64-bit RISC PowerPC processor and a storage subsystem that governs mem-
ory requests from the PPE and external requests to the PPE from other processors
(see Figure 2.3). The PPE is a general-purpose processor optimised for running
control-intensive software such as an operating system, coordinating all processes
running on Cell. The processor itself contains a 32KB level 1 instruction cache,
and a 32KB level 1 data cache. It also contains a VMX (Altivec) unit for SIMD
computations [28]. The storage subsystem includes a 512KB level 2 unified data

and instruction cache.

PowerPC Processor Element (PPE) |
32KB
PowerPC L1 cache
Processor
Unit (PPU) | vMmx (Altivec)
SIMD Unit
PowerPC
Processor 512 KB
Storage
L2 h
Subsystem cache
(PPSS)
- ) A
. Tothe EIB

Figure 2.3: The PowerPC Processor Element (PPE)

The Synergistic Processor Elements

The SPEs are where the bulk of Cell’s computational work is executed. Each SPE
consists of a specialised 128-bit SIMD RISC processor (the Synergistic Processor
Unit or SPU) and a Memory Flow Controller (MFC) (see Figure 2.4). The SPUs
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2.4 The Cell Broadband Engine

are optimised to run compute-intensive code at the expense of branch-prediction
and out-of-order-processing hardware, allowing more of the chip to be dedicated
to computational work and reducing pipeline depth. Instead of dealing directly
with main memory, each SPU contains both a 128-entry register file and 256KB of
Local Store SRAM. The SPU uses this to store both data and instructions. Like
the PPU, each SPU also contains a VMX vector unit for SIMD operations. These
128-bit SIMD operations can work on a variety of data sizes in parallel; one 128-bit
quadword, two 64-bit double words, four 32-bit words, eight 16-bit shorts or sixteen
8-bit chars. However, despite the similarities, the SPU’s instruction set is different
to that of the PPU, meaning separate compilers must be used for the different
Processors.

The SPU contains two instruction pipes, and can dispatch two instructions si-
multaneously to their respective execution units. The first, named the ‘even’ pipe,
issues fixed/floating point and related bitwise operations. The ‘odd’ pipe covers
load/store, branch, and word shuffle instructions. Therefore, maximum SPE execu-
tion speeds can be obtained by the careful ordering of instructions to ensure that
the pipeline can operate at full dual-issue rates.

Each MFC is responsible for transferring data in and out of the Local Store of its
corresponding SPU. It does this through a local DMA controller allowing the SPU,
PPU, or another SPU to request a data transfer to or from main memory. In this
way the SPE’s DMA controller can autonomously transfer data to the Local Store
while the SPU is processing other data, thus double buffering and hiding the memory
latency behind computation time. Each DMA transfer can be up to 16,384 bytes
in size, and an SPU can have up to 16 outstanding DMA requests queued (or 2,048
if using a special DMA-list construct, ideally suited for scatter/gather operations).
Theoretical peak bandwidth between the MFC and EIB is 25.6GB/s, with a total
EIB peak bandwidth of 204.8GB/s. In practice, approximately 17-20GB/s SPU
throughput it typically achievable.

The Element Interconnect Bus

The EIB is a 4-ring structure used for passing data between processors and 1/0O

devices such as main storage. Apart from the PPU and SPUs, the EIB is also

26




2.4 The Cell Broadband Engine
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Figure 2.4: The Synergistic Processor Element (SPE)

connected to the Memory Interface Controller (MIC) and the Broadband Engine
Interface (BEI).

The MIC supports connections to two Rambus Extreme Data Rate (XDR) mem-
ory channels. Compatible devices such as another Cell can be attached through the
BEI forming a cluster of Cells - indeed the original patent filing for the Cell showed
four cores on a single die. This leads to scalability in two dimensions; the number of
processors enabled in any single Cell, and the number of Cells networked together
by the BEL

2.4.3 Programming Cell

IBM released the Cell SDK at the beginning of November 2005 [61]. Included in
the SDK is a GNU toolchain which includes everything needed to compile, link and
debug a native Cell application. Also included is a full system simulator which
replicates the entire functionality of Cell and can be used to emulate a PowerPC-

based Linux kernel compatible with Cell. Applications written in C/C++ and
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compiled in this simulator using the provided toolchain can then be run on real Cell
hardware without alteration.

However, using the GNU compilers require the programmer to have a detailed
understanding of Cell’s architecture, and to keep in mind every factor that affects
performance of the PPE and SPEs. For programmers who have less time to devote
to re-implementing existing applications for Cell, IBM are developing the Octopiler
compiler [36]. While both the GNU compilers produce executables compatible with
Cell’s different processor instruction sets, Octopiler is capable of compiling and opti-
mising code specifically for execution on the heterogeneous multiprocessor architec-
ture of Cell. Work is partitioned for execution on all nine cores, and communication
and memory usage are determined automatically. This is no inconsiderable task, and
will be the subject of continuing research on behalf of IBM’s compiler designers.

There are three broad programming models for Cell - pipelined, parallel, and
service-oriented (see Figure 2.5). The pipelined model has each SPU chained to
the next one, using the output of one as the input of another. This allows for
high throughput, but is difficult to load-balance. The parallel model runs the same
program on each SPU, partitioning and distributing the data to be processed in
parallel. The services model is similar to the parallel mode, but each SPU instead

processes its data in a different way.

PPE «

PPE

SPE

=PE

A 4

PPE
SPE

= \
SEE M SPESPE SPE SPE

NSPE /
AN

A 4

Pipelined Parallel Services

Figure 2.5: Cell programming models
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Two sets of program modules are written - one module for the PPU and a
separate one for each distinct SPU function (ie., one program for the parallel model
but many for the pipelined/services models). All necessary data for the application is
loaded and formatted by the PPU., which then distributes the SPU modules to each
SPU for execution. The SPUs run, retrieving data from main memory as necessary
via DMA requests. The PPU then waits for all SPUs to finish their computation

(performing further processing on the results if required) before exiting.

2.4.4 Cell-Related Research

Being a relatively new architecture, the full potential of the Cell processor is still
being explored. However, some preliminary work has been published by both IBM
and Sony Research and Development.

Masaharu et al. demonstrate a Cell implementation of the Feldkamp algorithm
for medical imaging [118]. They compare the performance of the PPE on its own to
parallel execution of the PPE and one SPE with SIMD instructions. Compared to
the PPE alone, their results indicate an increase in speed of over 20 times for the
case of using both PPE and SPE on a 1.8Ghz Cell prototype.

Chow et al. exploit the parallel architecture of Cell to accelerate Fast Fourier
Transform (FFT) calculation through the efficient distribution of the computational
workload over all available SPEs [17]. On a 3.2Ghz Cell, they demonstrate processing
speeds of 46.8 gigaflops per second, over 50 times that of a “leading brand” 2GHz
workstation.

Minor et al. also provide an overview of a terrain rendering algorithm on Cell
using a ray casting rendering technique [91]. They describe a ray casting technique
for height fields and its adaptation for implementation on Cell. An Apple G5 system
is used as a client, which interfaces with a Cell-based rendering server over gigabit
Ethernet. They claim performance improvements of over one order of magnitude,
compared to a single-threaded processor at similar clock speeds.

At a recent Game Developers Conference, Reynolds described the simulation of
crowds on the Cell-powered Playstation 3 [115]. He ignores the steering behaviour
of the individual units and instead concentrates on their interaction with each other.

By using a bucket-based space subdivision algorithm, he parallelises the execution of
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update computations and achieves the simulation and rendering of crowds of 10,000
simple polygonal entities (in this case fish) at 60 frames per second. He expects this
number to increase as more effective methods are explored.

In a paper published at the same conference, Kokkevis et al. talked about physics
simulation on Cell [75]. They gave an overview of Cell-oriented optimisations for
various problem domains such as cloth, rigid bodies, fluid dynamics and particle
simulations. In each case they gave an example of how best to partition the problem
so that individual independent subsystems can process data in parallel, using the
Cell architecture to its fullest.

These papers all indicate substantial speedups compared to conventional pro-
cessors due to the high bandwidth and parallel nature of the system. Many more
papers on exploiting Cell for various compute- and bandwidth-intensive problem do-
mains can be expected to appear as availability and popularity of the architecture

mcreases.
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Chapter 3
Towards a New Framework

In this chapter we present the design of a new scalable and reconfigurable graph-
ics cluster, built in association with Michael Manzke and Trinity College’s Com-
puter Architecture Group. The cluster incorporates many of the advantages of both
custom-built hardware and commodity rendering clusters while keeping communi-
cation costs down and maintaining a high level of programmability. Additionally,
the amount of custom-built hardware is limited in order to keep the resulting man-
ufacturing costs to a minimum.

The design of this cluster encompasses the parallel systems described in the pre-
vious chapter, particularly FPGAs and commodity graphics hardware. In addition,
many similarities can be drawn between the architecture of the cluster and the Cell
processor. The Cell processor contains shared memory that is used by all sub-
processors as well as local memory for faster access, just as the cluster does. Where
the Cell uses the EIB and DMA engines for data transfer, the cluster uses SCI and
distributed shared memory. The SPU co-processors perform the same function as
the cluster’'s FPGAs, albeit with substantially different programming paradigms.

These similarities are not intentional (indeed, details of the Cell architecture
were not available when the cluster was being designed), but they do indicate a
solid foundation upon which to build. Such a system has many applications in the
areas of parallel processing and rendering. As well as being a suitable substitute
for expensive all-in-one rendering solutions, it adds the extra advantage of exposing

another layer of parallel programmability with FPGAs.
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The cluster utilises commodity GPUs to perform all rendering work, and draws
upon the research done on graphics hardware and Chromium in order to provide a
suitable software framework for rendering. However, as the hardware of the cluster
does not contain an operating system that is supported by the GPU vendors, the bi-
nary drivers provided by them cannot be used to drive the graphics cards. Therefore
new drivers must be implemented that directly interface with the graphics hardware.
In order to do this, knowledge of both the underlying hardware and the operating
procedure of the driver is needed. Although modern drivers are unified (i.e., a single
driver can be installed that will support every generation of GPU released by the
vendor), the cluster’s drivers must be tailored to the exact GPU chipset that is being
employed. This was a major focus of the research done for this project.

The following sections detail the inner workings of each component of the cluster.
Section 3.1 gives an overview of the entire system architecture, and describes how
the components interact with each other. Section 3.2 details the workings of existing
graphics drivers, and describes how this is adapted to supply the cluster’s commod-
ity graphics hardware with suitably formatted rendering commands. Section 3.3
details the software infrastructure necessary to run the cluster, Section 3.4 draws
comparisons between the cluster and the Cell processor, and finally Section 3.5 re-
views some potential applications that could make full use of all the computational

resources exposed by such a framework.

3.1 Proposed Cluster

Current solutions for large-scale parallel rendering architectures are generally either
custom-built hardware with set specifications and shipped in a singular package,
or they are a homogeneous or heterogeneous collection of standard workstations,
connected by an ethernet connection as described in Section 2.2.

Both architectures have their respective strengths and weaknesses, and ere suit-
able for different tasks. Packaged architectures such as the SGI Prism [121] are
high-quality products that have been thoroughly tested and developed, and tuned
for high performance as large-scale visualisation solutions. Using proprietary parts
and interfaces can lead to important internal optimizations that enhance overall

performance. However, this performance comes at a high price which makes such
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products only viable for purchase by large organisations. While scalability of such
solutions is possible, it requires even more complex hardware which comes at an
even higher price. Another serious limitation is the restriction of upgrade paths;
the system is designed and balanced in such a way that upgrading the processing
or rendering power requires replacing large parts of the system, leading to further
costs. Similarly, the specialisation of the hardware used in these solutions requires
a qualified technician for support, and simple problems are not necessarily quickly
reparable.

At the other end of the scale, commodity clusters are easily supported by anyone
with experience in maintaining commodity computer hardware. While the process-
ing performance attained might not reach that of proprietary solutions due to im-
balances in the overall cluster topology, this is compensated for by the flexibility of
the system. Parts can be easily replaced at minimal cost, and scalability is usually
a case of finding another workstation and plugging it in to the network. Again,
upgradability can be performed incrementally and with the minimum of effort, and
can be done so as to address any performance bottlenecks that might be limiting

the overall cluster’s performance.

3.1.1 Cluster Overview

Our cluster aims to draw upon the strengths of both solutions, containing both
commodity parts and custom hardware. It has the high bandwidth and processing
power of proprietary solutions, which still maintaining the scalability and low cost
of commodity clusters.

Broadly speaking, it consists of a tightly coupled cluster of custom-built boards
that provide an AGP port for attaching commodity graphics cards. These boards
are connected by a high-bandwidth, low-latency Scalable Coherent Interface (SCI)
interconnect which implements hardware Distributed Shared Memory (DSM). They
are also equipped with two Xilinx FPGAs and a north bridge connecting the chips
and SCI to a bank of memory. One of these FPGAs (the “Control FPGA”) is
used for system control, to govern the SCI services and provide logic to control the
board’s functions, as well as controlling access to the graphics card. The other (the

“Bridge FPGA”) is available to be used as a co-processor to augment any algo-
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rithms that might be implemented on the cluster, and also manages the distributed
shared memory (described below). See Figure 3.1 for an example of the significant

components on a single custom board.

System Control
Sparc Soft CPU
including OS or
Control Logic

Reconfigurable

Graphics Algorithm

| Shared Memory
Management Unit

Custom-Dbuilt
GPU Interface

Figure 3.1: A custom board with graphics card and SCI Link Controllers

As well as these boards, the system also utilises commodity SCI subsystems in
the form of PCI cards that interface with workstation PCs through a PCI bridge
mounted on the card. These workstations are where the actual applications are
executed. See Figure 3.2 for an example of an SMP workstation with SCI card
attached. The number of workstations can be scaled independently of the number
of custom boards being used in the cluster - for example an application may be
executed on a single workstation and then have work distributed to many boards
for processing and rendering.

In this way, the entire cluster forms a four-level parallel system:
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Figure 3.2: A cluster node with attached SCI PCI card

e The connection of workstation PCs through the SCI cards forms a traditional

cluster that can be used to work on problems in parallel.

e The connection of the custom boards through the SCI interconnect enables

parallel co-processor computation using the on-board FPGAs.

e These FPGAs are themselves inherently parallel, being able to perform a large

number of calculations simultaneously.

e The GPUs connected to each board are internally parallel and can be used
to augment the computational power of the custom boards by using standard

GPGPU techniques, as well as being used for normal rendering work.

A primary advantage of the system is being tightly coupled while still having
discrete components. This allows individual parts to be upgraded - most impor-

tantly the graphics cards, but also the board memory, the SCI cards and the PC
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workstations. Similarly, the reconfigurable nature of the FPGAs allows architectural
changes as well as the testing of new computationally intensive algorithms without
needing to remanufacture and replace the whole board. It should be noted that
while current prototypes use AGP ports for interfacing with the graphics cards, fu-
ture boards will incorporate PCI Express as standard. Additionally, the PC cluster
nodes can also be upgraded to use PCI Express SCI cards, as available commercially
from Dolphin ICS Inc. This will considerably improve transfer rates over the PC
cluster.

See Figure 3.3 for an illustration of the entire system. Altogether, it incorpo-
rates the general computational abilities of the workstation CPUs, the large parallel
processing capacity of the FPGAs, and the high throughput stream processing capa-
bilities of the GPUs. This flexibility and large amount of parallel and heterogeneous
processing capabilities gives the cluster its edge when compared to traditional par-

allel architectures.

3.1.2 Scalable Coherent Interface

An integral part of the cluster design is the SCI interconnect which links all boards
and PC nodes together. SCI is a high-speed computer bus which is chiefly used in
the high performance computing (HPC) sector. Defined in 1992 as IEEE standard
1596-1992 [1], SCI is a system area point-to-point interconnect that has both low
latency and high bandwidth, making it very suitable for the implementation of a
high performance cluster such as this. In addition, a central part of the standard is
its scalability - it supports up to 64,000 nodes on an interconnect. The application
of SCI has also been proven in real world critical systems, including those aboard
the Mirage F1 and Joint Strike Fighter military jets, the Charles de Gaulle aircraft
carrier, and the International Space Station Training Simulator.

Every cluster node (both PC nodes and custom boards) contains two unidirec-
tional SCI Link Controllers (LC). Each LC has an input and output port, and the
output of every LC is connected via a cable to the input of the next LC in the
ring. Every PC node is connected in a ring, and similarly every custom board is
connected in another ring. These two rings are also connected together, forming a

2D torus ring topology, as seen in Figure 3.3, so that any node in the ring (either PC
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Figure 3.3: An overview of the proposed cluster

or custom board) can talk to any other node. These links are 16-bit parallel connec-
tions with a bandwidth of 667TMB/s. Packets are routed over the LCs by forwarding
them according to local routing tables, which are constructed upon initialisation,
thus eliminating the need for an expensive central switch.

Two significant advantages of using SCI as an interconnect are its high bandwidth
and low latency due to the fact that inter-node communication can be performed
in hardware without having the overhead of software protocol or system calls. Dol-
phin’s current PCI-SCI card offers 326MB/s throughput [32], over twice the speed
possible with Gigabit Ethernet solutions. Additionally, they cite 1.4 microsecond
application-to-application latency, one of the lowest latencies currently possible ac-

cording to the HPC Challenge 2005 [23]. This is a marked improvement on other
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common cluster interconnects, such as Myrinet’s average of 19us, Gigabit Ethernet’s
42.23us, or Fast Ethernet’s 603.15us. In the case of the custom boards without the
overhead of having to go through the PCI bus, internal FPGA-SCI latency would
be reduced to the order of nanoseconds.

The SCI standard also offers the option of cache coherency. In this context,
cache coherency refers to a local copy of data from a remote piece of memory being
up-to-date from the point of view of the local cache. In a distributed system with
cache coherency, cached data must be updated to reflect any changes that occur in
the original data. Maintaining this consistency adds a performance overhead to the

overall memory system, and was not included as part of the cluster.

3.1.3 Distributed Shared Memory

Most importantly, using SCI allows the local memory of each node to be mapped
into a shared memory address space. On the PC nodes, this is implemented by the
commodity PCI cards using the on-board PCI-SCI bridge which can translate PCI
transactions into SCI transactions. Therefore, when a PC makes a memory reference
into its own PCI address space, the bridge can translate it into an SCI transaction,
transferring it to a remote node. There, the transaction is translated back into a
memory access of the remote node’s memory, thus implementing distributed shared
memory. In this way, distributed Programmed 1/O and Direct Memory Access
(DMA) can be implemented in hardware without the overhead of system calls, and
at very low latencies.

On the custom boards, this shared memory functionality is implemented by
the Bridge FPGA. Because this FPGA is connected directly to both local memory
and the on-board SCI link controller through the north bridge, it avoids any extra
latency or bandwidth restrictions that might be introduced by the PC node’s PCI
bus operations. See Figure 3.4 for an illustration of the implementation of DSM in
the cluster.

The connection of heterogeneous nodes through SCI results in the cluster being
a Non-Uniform Memory Access (NUMA) architecture. This means that each node
contains its own local memory, and that memory access times differ depending

on the location of the memory. Specifically, access by a node to a local memory
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Figure 3.4: Distributed Shared Memory implemented in hardware

location is faster than an access to remote memory. This has consequences for the
data access schemes used by the cluster to share data, view remote data, and resolve
concurrency problems, all of which must be kept in mind when designing or choosing

communication protocols.

3.1.4 Aims

The primary function of the cluster is as a platform for parallel rendering, augmented
by the extra computational power of the Bridge FPGAs. The implementation of
DSM eliminates the need to replicate data across nodes of the cluster, and the low
latency and high bandwidth afforded by SCI allow large amounts of geometry and
texture data to be processed and rendered interactively. It also operates as a test bed
for the implementation of new parallel hardware algorithms on the Bridge FPGAs.
The scalability of such a cluster is addressed by the use of SCI as an interconnect.
It should be noted that the current state of the cluster is a single prototype cus-
tom board. It has been manufactured (see photo in Figure 3.5) and is currently being
debugged by researchers in the CAG. A second revision of the board is expected soon

which will resolve outstanding problems that arose during manufacturing. Once the
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board is ready, multiple copies can be produced and implementation of the software
infrastructure can proceeed.

The cost of the prototype custom board is currently approximately €3000. How-
ever, due to the economics of fabrication, this price can be expected to drop to that

of a high-end PC in the case of large scale board manufacturing.

Figure 3.5: The first prototype custom board, with commodity graphics card at-
tached and SCI cables plugged into the Link Controllers.

3.2 Graphics Hardware

Central to the design of the whole cluster are the graphics cards plugged into the
custom boards. These cards are used as the rendering engines of any graphics
algorithms that are executed on the cluster. This section details the traditional
relationship between operating system and graphics hardware, and describes how

this mechanism is adapted to work on our custom-built nodes.

3.2.1 Graphics Drivers

Modern operating systems such as Windows, Linux and Mac OS are only able to
interface with commodity graphics cards through vendor-released device drivers.

These drivers abstract away the proprietary hardware interface of the graphics card
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and allow developers to use common APIs such as Direct3D and OpenGL to perform
hardware-accelerated 3D operations. Any new functionality added to these APIs
(such as a new OpenGL extension) will not be available for use until the video
driver exposes this functionality to the application. Similarly, new capabilities of
the GPU are not available unless exposed by the driver. If a particular feature
is not available in hardware but is required for conformance to API specifications,
the video driver may choose to implement it in software instead. In this way, the
driver is an extra layer between the hardware and operating system, and as such
can incorporate newly-discovered software optimisations (such as vertex submission
optimisations or texture packing methods for example) without needing to change
either the hardware or the API interface. By regularly releasing updated drivers,
the apparent performance of a card can be increased significantly over its lifetime.

The reason for proprietary drivers is that the internal workings of graphics cards
are confidential details which GPU vendors do not freely distribute. Through con-
tacts in ATT we were able to obtain the Technical Reference Manual [6] and Register
Reference [7] for the R200 series of chips. This chipset forms the basis of GPUs from
the ATIT Radeon 8500 (the R200) to the Radeon 9200 (the RV280), used in cards
released in 2002. We have chosen to use 9200-based cards, being the most advanced
chip in this range and because it is one of the only versions to support the high-
est AGP transfer rate (8x). See Table 3.1 for further specifications. While this
is not cutting edge graphics hardware by today’s standards, it is recent enough to
support a programmable pipeline exposed in the form of the OpenGL extensions
ARB_vertex_program and ATI fragment_shader. Thus it is advanced enough to be
used as proof of concept in the cluster prototype, with the hope that more recent
technical specifications would be released to us by ATI once the feasibility of the
cluster as a whole is demonstrated.

Based upon comparison to a similar technical reference of the earlier Rage 128
chipset [5] also developed by ATI, we are confident that the fundamental ideas
behind the hardware interface will remain largely unchanged in the future, and
that the methods described here will still be applicable upon migration to a newer
generation of ATT GPUs. Therefore, while the rest of this section is based upon
information pertaining to the R200 series specifically, it is reasonable to assume

that the inner workings of more recent chipsets (and by extension their drivers) are
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1 ATI Radeon 9200 (RV280) |

Bus Type AGP 8x

Clock Speed 250Mhz

Memory 128MB DDR @ 400MHz
Memory Bandwidth | 6.4GB/s

Vertex Pipelines 1

Pixel Pipelines 4

Texture Units 6

Fill Rate 1 Gpixel/sec
Geometry Rate 62.5 Mtriangles/sec

Table 3.1: Specifications of the Radeon 9200 (RV280 chipset) [4].

not significantly different.

Although proprietary graphics drivers are the only way to achieve hardware ac-
celeration of 2D and 3D operations, cards also provide a VGA mode for performing
simple non-accelerated 2D drawing. This is done via the industry-standard Video
Electronics Standards Association (VESA) Video BIOS Extension (VBE) program-
ming interface. Providing support for this interface allows the graphics card to be
used as a simple video adapter without the system needing to know any specific
details about the underlying hardware, and can therefore use a generic VBE driver.

A certain amount of related work has been done by the open source Direct
Rendering Infrastructure (DRI) project [105]. This project aims at providing an
open source Linux implementation of drivers for ATT GPUs up to and including the
RV280, again based upon technical references provided by ATI to certain members
of this project. While a limited amount has been learned from the source coce, it is
poorly documented and mainly aimed at separating kernel-space functionality from
user-space in order to provide a secure method of accessing hardware, as well as
concentrating on allowing multiple clients on a single machine to have simultane-
ous access to the graphics hardware. However, neither concurrent access nor kernel
integrity are a concern with respect to the cluster, and access to the original doc-

umentation from ATI precludes the need to rely on information gleaned from this

project.
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3.2.2 Hardware Registers

A hardware register is a limited storage area (typically the most efficient size for the
processor to interface with - in this case 32 bits) located on a peripheral that allows
high-speed 1/0, control and configuration. Rather than being accessed directly by
the CPU, these registers are typically mapped into the memory space of the host
system, and accessed via reads and writes to memory. This is referred to as Memory
Mapped 1/0 (MMIO).

Upon initialisation of a PCI or AGP peripheral, either the system BIOS or the
operating system assigns an area in the system’s memory address space (which
is a total of 4GB for 32-bit architectures) for each of the peripheral’s I/O regions,
ensuring that the allocated memory regions do not conflict with the areas of physical
memory. This typically happens at boot time, although this is not necessarily the
case for hot-pluggable devices which can be inserted and removed while the system
is running. The peripheral is unable to be accessed until these memory regions
are allocated. In the case of a PCI or AGP video card, there are two regions
to be mapped - the I/O registers for MMIO and the card’s video memory (also
referred to as the frame buffer - not to be confused with the frame buffer of the
graphics pipeline that only represents the area of video memory that contains the
final image to be drawn on-screen). The addresses of these mapped memory regions,
referred to as Base Address Registers (BARs), are then assigned to the peripheral
via PCI Configuration Space. This is a standardised area of 256 bytes located on
the peripheral that describes it with IDs such as Vendor ID and Device 1D. In this
way, the system can iterate through every PCI device and assign the required BARs
for each device without needing to probe the devices, which can cause unwanted
side-effects if the wrong address is probed.

Every attribute and function of the RV280 is accessible by reading from or writing
to the relevant register. These registers are listed in the Register Reference [7]
and describe each register, its purpose and its MMIO offset. For an example see
Table 3.2; this particular register describes the type of memory installed on the
card. By reading the 32 bits (one word) at offset 0x158 from the MMIO base
address in system memory and isolating bit 30, the RAM type can be determined.

Similar registers are available for every aspect of the card. Some are just for reading
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attributes such as memory type and size, monitor type etc., and others are for
writing to and have side effects such as a change in video mode, causing something
to be drawn etc.

Similarly, writing values to the correct portion of the mapped frame buffer causes
on-screen pixels to change color. We have already implemented and demonstrated
the initialisation of a 9200 with a custom driver written from scratch for Linux
Fedora Core 4 using an adapted 2.6.11 kernel, based upon the documents supplied
by ATI. Writing the appropriate values to the correct registers causes the adapter
to change video mode, and then any writes to the frame buffer draw a solid colour
of that value directly to the screen. However, while useful for diagnostic testing,
direct frame buffer writing does not take advantage of any 2D or 3D hardware
acceleration available in the card. Section 3.2.4 below describes how to employ

hardware acceleration properly.

MEM_SDRAM MODE REG - RW - 32 bits - [MMReg:0x158]
Field Name Bits | Default Description
MEM_CFG_TYPE | 30 0x0 0=8DR
1=DDR

Table 3.2: An example of an entry in the R200 Register Reference.

3.2.3 The AGP Aperture

As well as providing a direct point-to-point connection from the graphics card to
system memory and the CPU, AGP also allows system memory to be used to aug-
ment the video memory local to the card. When video memory is full, this AGP
memory can be used for caching textures and geometry. Although access to AGP
memory is many times slower than video memory, its use is preferable to putting a
hard limit on the amount of data that is available to the GPU.

AGP memory requires a significant amount of system memory to be re-mapped.
Data that is stored in AGP memory is not swapped into video memory before being
used, it is referenced directly. Therefore it is essential that the data be present in
a contiguous area of memory, in order to allow the most efficient access possible

without costly software reordering. However, this is incompatible with the memory
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allocation procedures of operating systems, which keep a pool of free memory pages
(each page usually being 4k in size) to allocate dynamically. This can lead to large
fragmented regions of memory which are unusable as AGP memory.

As a result, an intermediate step is needed in order to present a single large
contiguous area of physical memory to the GPU. An area of contiguous memory
is reserved in the system address space and forms the AGP Aperture. Each page
in this aperture corresponds to a (possibly discontiguous) page of allocated system
memory. The mapping from the AGP aperture to system memory is governed by
the Graphics Address Remapping Table (GART). When a page inside the aperture
is addressed by the graphics card, it is converted to a real system address by looking
up the GART and returning the actual physical address represented by that aperture
page. This remapping is done by address translation logic in the north bridge.

With respect to the graphics cards attached to the custom boards of the cluster,
the AGP aperture can be created inside an area of shared memory so that it can
be seen and accessed by any other cluster node. This allows a texture resident in
system memory of one node to be directly accessed by the graphics card of another
node, eliminating the need to replicate the texture on every node that requires it.
This also applies to geometric data. The SCI interconnect ensures that the latency
of this shared memory access will remain extremely low, and that the data will be
transferred directly to the GPU in a timely manner due to the high bandwidth. By
including the system memory of the PC nodes in the shared address space, data can

also be accessed from there by the GPUs.

3.2.4 Employing Hardware Acceleration

In order to achieve hardware acceleration of both 2D and 3D draw calls, the RV280
allows two separate methods of instructing the GPU - Programmed Input/Output
(PIO) mode and Command Processor (CP) mode. Both methods are used to fill
a FIFO command buffer internal to the GPU, the entries of which are processed
by the rendering engine to draw into the frame buffer. However, they differ in the

processes used to transfer commands to this buffer.
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Programmed Input/Output Mode

PIO mode is the more direct and simpler method of the two. In this mode, the
driver fills the FIFO command buffer by directly writing to the MMIO registers
that control 2D and 3D drawing. This is referred to as the Push Model because
commands are ‘pushed’ into the buffer by the driver. Although it would be possible
to implement PIO mode access to the cluster’s GPUs over DSM, doing so would raise
concurrency issues that are not easily resolved if two or more nodes tried to write to
the same register simultaneously. This could be overcome by using an intermediate
queue, but this problem is already resolved by CP mode as described below. Being
less efficient, PIO is most useful as a method of debugging. Additionally, the size of
the FIFO command buffer is limited by on-board storage, something that is not a

problem for CP mode.

Command Processor Mode

CP mode does not deal directly with the command FIFO, but instead sends com-
mands via command packets that are interpreted by an on-board microengine. The
command packets comprise a 32-bit header which describes the packet type, followed
by a payload of data, the size of which is specified in the header. A single packet can
represent the same effect as multiple register writes, which simplifies many common
drawing operations. Upon activation of the card, the microengine is initialised by
loading in 256 quadwords of microcode data which are supplied by ATI. It can then
parse the command packets, filling the internal FIFO buffer with commands. As in
PIO mode, this buffer is then processed to perform hardware accelerated rendering.

There are two ways to transfer packets in CP mode. The first is similar to P1IO
mode - the packets are written directly in through the MMIO registers. However, it
is much more efficient to queue the command packets in a buffer in system memory,
and then initiate a transfer of all packets into the GPU using bus mastering. As
opposed to the push model of PIO mode, this mode is referred to as the Pull Model
because the GPU ‘pulls’ data in from AGP memory. This allows for CPU/GPU
concurrency and lets the CPU continue with other processing while the graphics
card transfers the packets for parsing and rendering. Bus mastering in this way is

done via two separate but related buffers; the Ring Buffer and the Indirect Buffer.
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These buffers are used to store the command packets that are to be fed into the
command FIFO.

The primary buffer used is the ring buffer. This is a contiguous block of memory
which is stored in AGP memory, and is seen as a circular buffer by both the GPU
and the driver. Every time the driver writes a packet to the end of the ring buffer,
it increments a ‘write’ pointer which is visible to both driver and GPU. Similarly,
whenever the GPU reads a packet from the front of the ring buffer, it increments
a ‘read’ pointer to point at the next available packet. When one end of the buffer
is reached, it wraps around to the beginning in a circular fashion. Once the write
pointer equals the read pointer, the ring buffer is considered to be empty. Initialisa-
tion occurs upon start-up, when the driver allocates the buffer and writes the AGP
memory location and size of the ring buffer to the relevant GPU registers, along
with the address of the read and write pointers.

While using a ring buffer allows much more efficient transferring of data to the
GPU. the packets placed into the buffer are consumed and discarded as soon as they
are used. This means that every time a particular command packet is needed to
perform some function, it must be constructed and placed into the ring buffer. If this
packet is used very frequently, the overhead of constructing the packet and placing
it in the buffer each time goes some way to negating the advantages of using a ring
buffer in the first place. For this reason, the command processor is also capable
of reading from the indirect buffer. The indirect buffer is a linear buffer, also a
contiguous block of AGP memory, which does not employ any wrapping mechanism.
Command packets can be placed into this buffer in an arbitrary order, and the
command processor can be instructed to process them by writing the location and
size of the packets to the relevant registers. Alternatively, command packets with
this information can be inserted into the ring buffer to be processed. The important
distinction between the ring buffer and the indirect buffer is that packets in the
indirect buffer are not replaced once they are used, allowing them to be used multiple
times. For example, a packet pointing to a collection of vertices that describe a model
can be inserted into the indirect buffer, and when the model is to be drawn, a packet
is inserted into the ring buffer describing the location and size of the packets in the
indirect buffer. The command processor then switches to retrieving the packets from

the memory pointed to in the indirect buffer packet, processing them and drawing
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the model until they have all been accounted for. It then returns to processing the
next packet from the ring buffer. This means that no copying needs to be done
from system memory to the ring buffer, since the packets describing the location

and properties of the model will not be overwritten and do not need to be refreshed.

Distributing the Command Processor

The fact that these buffers are located in AGP memory instead of video memory is
an important one. It means that we can choose to allocate a node’s buffers in the
global shared memory address space, and place packets into them from any node.
One node can decide to make a remote node draw a model by placing the relevant
packets into its indirect buffer, and then placing a packet into the remote ring buffer
describing where to find the model. Alternatively, all nodes could be made to share
one big indirect buffer located in the shared memory address space, the physical
location of which is spread over all nodes equally. Thus the data (whether it is
geometric or texture data) only needs to be stored once and pointed to once in the
cluster, and no replication is necessary.

However, for this scenario to be feasible, an arbitration method of accessing a
node’s ring buffer is necessary in order to avoid the situation of two different nodes
trying to write to the same location, or updating the write pointer simultaneously.
Similarly, two nodes could attempt to place packets in the same location of the
indirect buffer, one overwriting the other. This can be avoided with the use of
mutual exclusion algorithms from the area of concurrent programming. However, as
mentioned in Section 3.1.3, the cluster’s NUMA architecture means that the method
of arbitration must be carefully chosen in order not to generate more interconnect
traffic than necessary. The use of semaphores to synchronize access could potentially
solve the problem, with nodes continually checking to see if the semaphore is free
to write to the buffer. Ring buffer and indirect buffer writes will generally be very
short, so no single node would be made to wait an unacceptable amount of time
before. However, the traffic generated by nodes continually checking the semaphore
could become unacceptable. This could be solved by using a queue mechanism for
allowing nodes to add their packets to the end of a queue local to the ring buffer’s

node, which is then fed into the ring buffer in a timely fashion.
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The most common and efficient method for a GPU to access texture and geom-
etry data is for that data to be located in on-board video memory. It is transferred
there by a command packet that instructs the graphics card to fetch the data from
AGP memory. By exploiting this, we can have one copy of any texture or geometry
data located in shared memory and then instruct any graphics card that requires
that data to fetch it remotely for storage in local video memory. This retains the
performance gains achieved by having the data in high-speed local memory, while

removing the need to also keep a copy in the node’s system memory.

3.3 Software Infrastructure

In order to drive the entire cluster, rendering must be initiated by a graphics ap-
plication running on one or more workstation nodes. To do this, a software infras-
tructure must be in place that converts regular OpenGL rendering commands into
distributed, hardware-specific command packets and routes them to the right node
for timely rendering. The details of how this is done depends on the nature of the

rendering and the setup of the cluster.

3.3.1 Molnar’s Taxonomies Revisited

For the system to fulfill its primary role as a parallel rendering cluster, we must take
another look at the taxonomies of Molnar et al. as described in Section 2.2.2 and
explore how they can be applied to take maximum advantage of the unique mixture

of parallel hardware available to us.

Sort-first: In a traditional parallel cluster rendering system such as Chromium [60],
operating in sort-first mode, pre-transformation must be performed by the
application in order to determine where the geometry needs to be sent to be
transformed and rasterised. While this pre-transformation can be as simple
as calculating a screen-space bounding box for each model (at the cost of 6
conditional assignments per vertex of the model, plus matrix transformation
of the bounding box into screen-space), it still adds an extra burden on the
application node since all pre-transformation must be done before distribution.

We can improve upon this by assigning each model to an arbitrary node and
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performing the pre-transformation in the Bridge FPGA, either in-situ through
shared memory or by actually transferring the model into the remote node’s
local memory for faster access. The model can then either be redistributed to
the proper node’s indirect buffer for rendering, or placed in a shared indirect
buffer for remote access by the rendering node. This allows for a more even
load distribution, and reduces the strain on the application node. Sort-first
is primarily used for ‘tile-rendering’ systems, where each rendering node is

attached to a projector which draws one tile of the complete image.

Sort-middle: While sort-middle allows even load-balancing of the transformation

stage, the distribution here occurs with the intermediate screen-space primi-
tives. By employing the GPUs to perform the full transformation stage, these
screen-space primitives are located inside the graphics hardware pipeline and
so are not directly available outside the chip. To implement a sort-middle
architecture, we would have to either use the programmable pipeline to pro-
vide the screen-space primitives (by using a vertex shader to calculate them
and then encoding them in an image output by the fragment shader), or else
perform the entire transformation stage in the Bridge FPGAs, ignoring the
GPU’s vertex processing capabilities completely. Neither of these solutions
are acceptable, as they do not make full and proper use of the available paral-
lel hardware that is dedicated to performing primitive transformation, i.e., the
GPUs. Therefore, despite being the natural place to distribute the rendering
work for optimal load-balancing, a sort-middle architecture is not feasible on

the cluster.

Sort-last: Another promising architecture for the cluster would be sort-last. In

a similar fashion to the Lighting-2 system [125], the FPGAs can be made
to perform efficient depth compositing of the images produced by the GPUs.
Instead of a costly read-back over the AGP bus, the DVI inputs attached to
each custom board (see Figure 3.1) can be used to read back the rendered
image produced at each frame at a latency of exactly one frame. The pixel
data can then be transferred across the cluster due to the high bandwidth of
the SCI interconnect, the contributions of all nodes being composited together

to form the final image. In this way, the system as a whole can be used for all
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simulation, rendering, and compositing procedures without needing additional

dedicated hardware for any single step.

There are also other factors that must be considered when building a software
infrastructure for a parallel rendering cluster. When the application changes the
graphics state, for example by disabling texturing or changing the current diffuse
colour, this change must be tracked and distributed to each rendering node. Buck
et al. [12] describe a system for updating the graphics state over a cluster by using
‘lazy updates’. This efficiently calculates the difference between two graphics states
and only communicates updated attributes when absolutely necessary in order to
keep transmission costs down. A similar mechanism would certainly be applicable
to our cluster, although it may not be necessary if all rendering nodes use the same
graphics state via a shared indirect buffer. In this case, any state changes that have
a global effect could be queued in the shared indirect buffer and referred to by each

node’s local ring buffer.

3.3.2 Workstation Parallelism

As well as investigating the infrastructure necessary to perform parallel rendering
on the cluster, we must also consider the software necessary for performing parallel
computation over the attached workstation nodes (if there are more than one). This
is an area of active research, and many methods exist to distribute work between
computers.

Of course, regular methods of communicating over ethernet via TCP/IP are
possible on any machine with a standard operating system and a network adapter.
However, by using these we would be bypassing the available SCI interconnect and
the significant improvements in bandwidth and latency associated with it. Therefore
we concentrate on the available methods of communicating over SCI.

Traditional parallel computing tasks on heterogeneous clusters often use software
layers to abstract and standardise communication between workstations. The two
most popular standards are Parallel Virtual Machine (PVM) [127] and Message
Passing Interface (MPI) [94], with MPI being arguably the more widespread and

popular of the two. Additionally, while work has been done on implementing a
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PVM-based system over SCI (such as the work by Zoraja et al. [148]), the most
recently released SCI communication software packages are MPI-based.

As the name implies, MPI is a method for parallel processes to communicate
through the passing of messages. It is an open standard which is easy to use, but
also provides significant functionality if required. There are many implementations
of the standard, the most common being the open source MPICH [51] which is
available for many platforms including Windows and Linux. Additionally, Worringen
et al. [144] have implemented MPICH over SCI. Therefore the use of MPI as a
protocol for communication between workstation nodes would allow compatibility
with the many existing MPI-based parallel programs while also taking advantage of
the SCI interconnect.

Another alternative is to use the open source SuperSockets software supplied by
Dolphin [30]. This is a layer which allows an application to use regular Berkeley
sockets for communication over SCI without SCl-specific code. Again, sockets are
in widespread use for network data transmission, meaning this method would pro-
vide support for many applications while providing much lower latency and higher
bandwidth than regular sockets due to the underlying interconnect. The fact that
it is developed by Dolphin also ensures that interoperability with the SCI hardware
is as good as possible and that the software is updated regularly.

For applications that are aware of the underlying cluster architecture and the
SCI interconnect in particular, Dolphin also supplies a lower-level library called
SISCT [31]. This lets the application developer include API calls that will interface
with the hardware directly, reducing the amount of system and library calls that

introduce overhead and latency in other higher level systems.

3.3.3 Communicating with the Driver

When a regular Windows OpenGL application makes a call to the API, it is the
driver’s OpenGL Dynamic Link Library (DLL) that takes this API call and produces
the command packets as described above. In the case of Linux, it is a Shared
Object (SO) that implements the interface. In order to change the behaviour of
the interface, this library must be replaced and all exposed API functions that

the application uses must be either re-implemented or forwarded to the original
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library. The nature of this re-implementation is entirely up to the replacement
library, although usually it will perform some sort of non-invasive monitoring of API
calls before passing them onto the original driver for regular rendering. Applications
such as gDEBugger [48] and GLIntercept [133] take advantage of this in order to
intercept OpenGL calls and allow the developer to view statistics and diagnostic
output. They also permit influencing the actual OpenGL functionality through
methods such as replacing textures and changing state variables etc. This can prove
very useful to developers for optimisation and debugging. Chromium also uses this
method to intercept API calls for distribution over the cluster, handing the calls to
a regular vendor-released driver for rendering at each node.

In a similar way, we can replace the system’s OpenGL driver with our own library.
This allows a regular application to run normally, even though it is unaware of the
underlying architecture, while still taking advantage of the distributed rendering
power of the cluster - much like Chromium. However, the processing required by
the cluster’s replacement library is much more involved than the simple pack-and-
forward operations of Chromium’s node library. In our case, we need to do the work
of both the distribution library and the vendor’s driver. This involves deciding which
custom board node to distribute the rendering calls to (depending on rendering
method, i.e., sort-first etc.), and constructing the corresponding command packets
to feed to the destination node’s GPU.

It makes sense to condense these two steps into a single library call in order
to minimise the latency caused by multiple shared library calls. Therefore, instead
of simply packing the OpenGL API calls into a network stream for transmission,
the replacement driver will translate these calls into command packets and submit
them to the relevant ring buffer or indirect buffer. This eliminates the need for
command packet construction on the FPGAs, which is beneficial as details of both
the OpenGL API and the logic used to interface with the hardware are subject
to change. A software driver is easier to upgrade and encapsulate than hardware
changes, meaning the view from outside the driver is essentially remains the same
throughout upgrades.

In order to avoid driver bottlenecks due to the extra overhead of command packet
construction and distribution, care will have to be taken to ensure that API calls

make as efficient use of the hardware as possible. However, this should already
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be the case for ordinary performance-oriented 3D applications. Additionally, the
available processing power of the FPGAs offloads some of the work from the CPU,

giving it more cycles to devote to the driver.

3.3.4 Communicating with the FPGA Co-processors

In the case of applications that have been designed specifically for the architecture
of the cluster, the extra processing power available on the custom boards must be
exposed to the developer in order to be usable.

The underlying logic for any co-processing functionality will first need to be im-
plemented in the FPGAs, through VHDL or another hardware description language.
It would not generally be possible to allow the developer to implement arbitrary
logic programmatically, due to the fundamental differences in architecture between
a regular 3D graphics application and an algorithmic implementation on FPGA.
Therefore, a library of modules will have to be built up as different requirements are
realised. This may initially be something as fundamental as hardware accelerated
linear algebra calculation, leading to more specialised implementations later on as
new and existing applications are implemented on or ported to the cluster.

Communication with the FPGAs is achieved through the SCI fabric and the
single shared address space. Data structures specific to the algorithm being pro-
cessed are written into shared memory, and computation is initiated by writing to
special FPGA registers or command ports which are also accessible via shared mem-
ory. The results of these calculations are then placed back into memory, where they
are available to be read back into the application for further processing. In special
cases where further computation is unnecessary, these results could be formatted
by the FPGA to be directly accessible to the GPU as texture or geometry data,
avoiding further latency that would be introduced by passing data back over the
workstation’s 1/O bus.

Although this work would initially be part of the replacement system driver,
eventually a new driver and API will be designed to abstract away any hardware
access. This would make the FPGA’s capabilities available to developers indepen-
dently of the GPU functionality, leading to the increased modularity and flexibility

of the overall system.
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3.4 Comparison with the Cell Processor

There are many aspects of the cluster that invite comparisons to the Cell Broadband
Engine described in Section 2.4. Both are parallel systems on multiple levels and

both have similar methods of transferring, storing and processing data.

Memory access: The memory access methods used by both the cluster and the
CBE are very similar. The NUMA architecture implemented by both leads to
a two-level concept of fast local memory and slower remote memory accesses.
On the CBE, the local memory is restricted to the SPU’s 256kb local store,
which is much more restrictive than the cluster’s local memory. However the
design of the SPU’s local store as on-chip Static RAM (SRAM) means that it
can be accessed and written to faster than the cluster’s DRAM. At the same
time, remote memory accesses on the CBE must take place through the DMA
transfer mechanism, whereas the cluster can access memory more transpar-
ently through the single global address space. In both cases, an application’s
memory access pattern must take into account the cost of retrieving data from

both local and remote locations.

Distributed processing: The closest comparisons between the two systems can
be drawn from their distributed processing capabilities. Both are capable
of executing multiple programs in parallel, distributing them across discrete
processors and allowing inter-process communication. Alternatively, both are
also capable of performing in a pipelined fashion or using a service-oriented
paradigm. The only difference here is that while the cluster can distribute
processing symmetrically across all processing nodes, the asymmetrical nature
of the CBE is more suited to data-intensive processing on the SPUs with

control-intensive processing on the PPU.

Internal parallelism: As well as the explicit parallelism of multiple distributed
processors, both systems are also capable of internal parallelism on each pro-
cessor. The Cell’'s PPU can execute two hardware threads simultaneously as
well as containing an Altivec unit for SIMD code execution, which the SPUs
are also capable of. However, each cluster node has the potential for much

higher parallelism due to the FPGA implementation. Neither system can be
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said to be superior to the other; the advantages of each are data-dependent
and the suitability of the algorithm being executed determines how well each

design performs.

Interconnect architecture: Each systems requires an interconnect for communi-

cation between processors; the Cell’'s EIB is comparable to the cluster’s SCI
interconnect. Both are implemented in a ring topology, with the consequence
of adjacent nodes communicating faster than physically more distant nodes.
The communication systems differ however - the SCI fabric implements the
global shared memory address space, performing address translation for the
application. Conversely, applications on the CBE must perform and manage
the DMA data transfers explicitly.

Scalability: Again, both systems correspond with their potential for scalability.

Multiple CBEs can be connected through the Broadband Engine Interface,
increasing the processing power available to an application. The cluster also
scales by adding more nodes. In the cluster’s case, this also implicitly increases
the rendering power available to the system as a whole, due to the graphics

cards attached to each node.

Programmability: The programmability of each system is where the designs di-

verge most significantly. Programming the Cell will be immediately more fa-
miliar to software developers, even taking into account the considerations that
must be given to the CBE’s unique architecture. While applications on the PC
nodes of the cluster can execute conventional programs written in languages
such as C/C++, more hardware-specific expertise is required to implement the
FPGA side of the applications. This has the potential to offset any advantages
that might arise from the large amount of parallelism provided by the FPGAs

if the application developer is unable to efficiently exploit them.

As mentioned previously, the many coincidental similarities between the clus-

ter and such a highly-developed commercial system suggest a solid foundation for

the cluster’s architecture and validate many of the design choices made during its

inception.
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3.5 Example Applications

There are many potential applications that could take advantage of the large amount
of parallel processing power offered by the cluster. Although standard sort-first tile
rendering is the primary application of the cluster, it is by no means the only one.
Here we will look at some of the most popular areas that stand to benefit most from

all the available parallel computational power:

e Video Processing: Another group involved in this project is Trinity College’s
Signal Processing and Media Applications Group (SigMedia). They perform
research on motion estimation - the study of extracting motion information
from visual media processing systems. They have already demonstrated the
use of commodity GPUs to accelerate motion estimation [65, 66|, and cite poor
frame buffer readback speeds as the main hindrance to a complete solution.
By employing the cluster in this respect and using the built-in DVI readback
port, this problem will be resolved. The parallel computation afforded by the
FPGA co-processors can also be used to achieve further acceleration in this
respect, as can the fact that multiple GPUs are used by the cluster in the first

place.

e Volume Rendering: As discussed in the next chapter, volume rendering
is an area ripe for parallelisation. Recent work has been done by Strengert
et al. [126] on texture-based direct volume rendering of large datasets using
GPU clusters, with impressive results; on a Myrinet-based cluster of 16 1.6GHz
AMD Athlons with NVIDIA GeForceds, they achieve 5.7 frames per second for
a 2048 x 1024 x 1878 volume in a 10242 viewport. Using sort-last compositing,
they note that performance is restricted by both the blending computation
and the interconnect latency. Both of these problems can be addressed in our
cluster - the FPGAs for parallel sort-last compositing and the low latency of
SCI for data transfer. Additionally, using the DVI readback would further

improve compositing rates compared to readback over the bus.

e Isosurface Extraction: The methods described in Section 4.4 for isosurface

extraction on Cell can equally be applied to the architecture of the cluster, with
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the additional advantage of being able to distribute the resultant geometry to

multiple GPUs for sort-first rendering.

Ray Tracing: An obvious graphical application to such an inherently paral-
lel architecture is ray tracing. Each component of the cluster lends itself to
ray tracing acceleration in a different way. The FPGAs can be employed to
perform ray tracing as demonstrated by the SaarCOR project [128] on a single
FPGA - using the many FPGAs of the cluster in parallel would provide many
times the performance of that architecture. The fact that a ray can travel
anywhere in a scene leads to the problem of needing to replicate all scene
data on every node in a classical cluster ray tracing architecture - the shared
memory provided by the SCI interconnect would eliminate this need and also
allow fast transfer of the data. GPUs are only now becoming powerful enough
to perform ray tracing, and research is still ongoing as to the best methods of
implementing it on such a specialised architecture [110]. As such, they can still
be used to accelerate parts of the ray tracing, or perform hardware accelerated

image-based post processing.

Collision Detection: As discussed in Section 2.3.4, Raabe et al. have al-
ready demonstrated large improvements in collision detection algorithms im-
plemented on reconfigurable hardware. This can be extrapolated to the clus-
ter’s parallel FPGAs being able to accelerate collision detection even further,
as part of a larger simulation and rendering system involving the workstation

nodes and GPUs.

Arbitrary Hardware Shaders: One potential application of the FPGA co-
processors is as another arbitrary shader stage. In this way they could emulate
an extra processor stage in the programmable pipeline. An example would be
implementing a hardware subdivision surfaces [26] shader, tessellating geome-

try in the FPGAs and forwarding the produced geometry to the GPUs.

Crowd simulation: The independent nature of individuals in a crowd is
very amenable to parallelisation on such a cluster. The crowd could be par-

titioned, spatially or otherwise, and distributed evenly across the cluster for
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advanced behavioural simulation before being rendered on the same node using

the methods described in Section 5.2.

e Other Compute-Bound Applications: Apart from graphics and image-
related algorithms, the large amount of parallel processing power available
on the cluster can be applied to any other compute-bound problem domain.
The large bandwidth and low latency of the interconnect combined with the
distributed shared memory space provides efficient, fast and transparent data
transfer between nodes, allowing very large datasets and good scalability. Any
algorithms that can be adapted to use the GPUs for GPGPU can expect fur-
ther increases in speed, without the usual GPGPU drawback of slow readback,

thanks to the DVI feedback feature on the custom boards.

In this chapter we have described a tightly-coupled rendering cluster that em-
ploys many different levels of parallelism to accelerate simulation and rendering.
The remainder of this thesis presents the first potential applications that will be
implemented on this cluster framework, scientific visualisation and entertainment
algorithms, and the research that has been done on improving these algorithms to

take advantage of commodity parallel hardware.
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Chapter 4

Scientific Visualisation

The real-time, interactive visualisation of scalar volumetric fields is a desirable goal
for many scientific applications. In medical fields, the application of volume render-
ing and surface extraction for rapid and meaningful visual representation of datasets
such as CT (Computerised Tomography), MRI (Magnetic Resonance Imaging), Ul-
trasound and PET (Positron Emission Tomography) scans can make an important
difference in the speed of surgical planning, diagnosis and treatment. It is also a use-
ful tool in surgical simulation and medical education. However, volume visualisation
is not only useful for medical imaging, but also for other areas such as rendering the
datasets captured by confocal microscopy, and for extracting polygonal structures
and surfaces from these volumes.

Section 4.1 gives an overview of the area of scientific visualisation, concentrating
on volume rendering and surface extraction on commodity parallel hardware. Sec-
tion 4.2 details the research done on the visualisation of confocal microscopy data.
Section 4.3 presents a method for simplifying volumetric datasets for faster surface
extraction and improving the quality of confocal dataset surfaces. Section 4.4 de-
scribes a novel algorithm for performing fast surface extraction on the Cell processor
in order to take advantage of its parallel architecture. Finally, Section 4.5 presents

the results of this research.
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4.1 Volume Visualisation

A wvolume can be defined as a 3-dimensional array of point samples. Each sample
is called a vozxel, an abbreviation of Volume Element and analogous to the role of a
pixel in a 2D image. A volume may represent any 3D field of discrete scalar data,
usually in the form of a rectilinear grid of values that have been sampled from the
original continuous domain that the volume represents. For example, a single voxel
in a volume captured by a CT scan represents the radiodensity (in Hounsfield units)
of the subject sampled at that particular point. Volumes can also be based on other
topographical grids, such as curvilinear or unstructured fields of points. Voxels are
generally either 8, 16 or 32 bits in size.

In this section we will concentrate on two problems; the actual volume visual-
isation of collected data in both software and hardware, and the reconstruction of
polygonal surfaces from the volume data. The efficient and meaningful rendering
of volumes such as these is just as important as the capture itself, as being able to
acquire such data is of no use without the ability to extract meaningful information
from it. The two most popular methods of achieving this goal are direct volume

rendering and isosurface extraction.

4.1.1 Direct Volume Rendering

Direct Volume Rendering (DVR) is concerned with the rendering of a volume with-
out the intermediate step of extracting explicit polygonal data from the volume. In
order to carry out DVR, three items are needed; an optical model of the volume, a

method of classification, and a method to project the volume into the frame buffer.

Optical Models

Firstly an optical model of the volume is needed. This model determines how each
particle in the volume reacts to light, and how they will be rendered into the frame
buffer. The most common optical models used in DVR are as follows, summarised
from [86]:

Absorption: Particles are completely black and absorb all incoming light without

scattering it to nearby particles, or emitting their own light. In absorbing the
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incoming light, they occlude other particles.
Emission: Particles do not absorb incoming light, but only emit their own light.

Scattering: Any incoming light to the particle is scattered to other nearby particles

In general, a combined emission/absorption model is used, together with a light-
ing model. This means that particles in the volume both absorb and emit light and
react to the light’s direction and colour, but do not scatter incoming light to nearby

particles.

Classification

In order to convert the scalar voxel values of the initial volume data into meaningful
optical properties such as colour and opacity, a transfer function is needed. Trans-
fer functions are generally implemented as one-dimensional colour lookup tables,
mapping the scalar values directly to an RGBA value.

The transfer function can be applied directly into the texture data upon initial
generation of the stacks, replacing the scalar values with the results of the transfer
function lookup. This is known as pre-classification. However, there are a number of
disadvantages associated with pre-classification. It is inefficient, as the entire volume
needs to be regenerated and updated whenever the transfer function is altered.
In addition, it leads to artefacts in interpolation. An interpolated pre-classified
colour might not be the same as the colour that would result from evaluation of an
interpolated voxel value by the transfer function.

Post-classification is used instead, where the voxel data is stored in the textures
directly and only converted into optical properties upon rendering, and after fil-
tering. Post-classification can be accomplished in one of two ways: the first is to
use OpenGL colour tables, where an 8-bit texel intensity value is used to look up
a one-dimensional colour table. The alternative is to use dependent texture reads,
where certain channels of the fragment colour resulting from one texture lookup
are used as texture coordinates for a second texture. While somewhat slower, de-

pendent texturing is more flexible than OpenGL colour tables, and can be used for

implementing multi-dimensional transfer functions [72].
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Volume projection

Without an explicit geometric model to display through the normal rasterisation
pipeline, an alternative method is required in order to convert the 3D volume into a
projected 2D image in the frame buffer. This is usually done by ray casting [135, 79].
Ray casting is the procedure of sending rays through the image plane into the
volume, re-sampling the volume at regular intervals. Because the volume of voxels
represents a discrete sampling of the original continuous data, this re-sampling is
necessary in order to reconstruct the original data as closely as possible. It is
performed by using a filter such as trilinear interpolation. Classification occurs
either before or after this filtering step, depending on the type of classification being
used (pre- or post-classification). The contribution of each voxel encountered along
the ray is then integrated to produce the final pixel colour. The nature of this
contribution is governed by the optical model chosen for the DVR procedure, as
described above. It is possible to achieve very high image quality by increasing the

number of interpolated samples along each ray, at the expense of processing speed.

Related Work

After the original work on ray casting was published, there were a number of papers
on accelerating and optimising its performance. Levoy [80] proposes two key ideas for
reducing rendering costs; adaptive ray termination which terminates rays early when
their accumulated opacity reaches a certain threshold, and a hierarchical spatial
partitioning scheme for fast traversal of empty areas of the volume. Danskin and
Hanrahan [22] compare a number of ray casting acceleration techniques, and adapt
two of the techniques in order to produce an improved algorithm that increases
performance without degrading image quality.

Another class of volume rendering is splatting. This is where the voxels are
sorted from back to front, and the projection of each voxel is composited as a splat
into the frame buffer [142, 78]. However, the image quality produced by splatting
is not comparable to that of ray casting. One advantage of splatting is that it is
more parallelisable than ray casting; the volume can be partitioned and distributed
to many nodes, where each node only needs the information local to the voxels

being splatted. Mueller and Yagel [95] propose a hybrid method of splat-based ray

63



4.1 Volume Visualisation

casting, and present an efficient method of addressing and intersecting the splats.
This combines the speed of splatting with the acceleration techniques possible for
ray casting, such as early ray termination and bounding volumes.

Ray casting can also benefit from parallel processing, much as ray tracing can by
distributing rays to different computational nodes in a divide-and-conquer approach.
Ma et al. [83] describe a system for parallel processing of ray casting for volumes,
and subsequent parallel composition of the resulting partial images using binary-
swap compositing. They demonstrate communication costs as being only a small
overhead of the overall processing time, indicating successful parallelisation.

A new approach to DVR was presented in 1994 by Lacroute and Levoy, called
shear-warp [77]. This is a high-performance volume rendering algorithm that elim-
inates the costly voxel viewing transformation overhead of other methods. It does
this by shearing the volume slices in order to be able to easily project them onto an
image plane, which is then warped to produce the final image. Although shear-warp
has the potential to produce inferior images compared to ray casting due to less
accurate sampling, this fact is compensated for by its speed as a volume renderer.
Additionally, Levoy notes that the latter steps of the algorithm are very suitable for
parallelisation.

With the exception of the shear-warp algorithm, software volume rendering al-
gorithms are generally too slow to use for interactive real-time volume rendering.
Therefore it was not long before researchers started to look towards graphics hard-

ware in order to increase the rendering speed and interactivity of volume viewing.

4.1.2 Volume Rendering on Commodity Graphics Hardware

In recent years, research in the area of volume visualisation has advanced rapidly due
to the increased availability of high speed, low-cost commodity graphics hardware.
Volume data that could previously only be interactively explored using expensive
workstation hardware can now be rendered at interactive rates on a common desktop
PC by taking advantage of the texture mapping hardware in today’s commodity
graphics cards.

Much like ray casting, the process of texture mapping is concerned with re-

sampling discrete data. A continuous domain is sampled into the discrete units of a
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texture (texels), which approximate the original data. Texture mapping hardware
then filters this texture in order to re-sample the data and map it onto a polygonal
surface. The similarity between these two procedures can be exploited in order to
perform the repetitive re-sampling task of ray marching, but with the advantage of
being hardware accelerated.

The basic method of visualising stacks of images such as these is by using 2D-
textured axis-aligned slices [141, 71]. The volume is separated into textured slices,
each slice being a two-dimensional section of the volume, one voxel in depth. Proxy
geometry is generated in the form of a quad for each texture slice. For example,
a volume of dimensions 128 x 128 x 64 would be separated into 64 textures, each
128 x 128 in size. These textures are arranged to give the illusion of a solid volume by
blending each slice from back to front into the frame buffer using the graphics hard-
ware’s support for texture blending. Blending the textures together approximates
the ray integration step of ray marching, thereby producing a rendered volume.

However, when the texture stack is rotated past a certain point, gaps between the
slices become apparent and the proxy geometry becomes evident (see Figure 4.1).
To avoid this, 3 stacks must be generated, one for each principal axis. The original
stack is used for the Z-axis, with interpolated stacks generated from this data used
for the X- and Y-axes. As the volume is rotated, the stack that is most orthogonal
to the viewing direction is displayed, thus preserving the illusion of solidity. The
main drawback of this method is that it consumes 3 times the amount of texture
memory as the original stack. However, this is unlikely to cause a major problem
given the large amount of texture memory on modern graphics cards together with
the increasing amount of bandwidth available for mapping AGP and PCI-Express
texture memory. Another drawback of using axis-aligned slices is that there is a
visible transition between the three different stack representations of the volume.

An alternative that eliminates this memory consumption requirement is the use
of 3D textures, as observed by Cabral et al. in their work implementing a real-time
volume renderer on the SGI Reality Engine [13]. Graphics hardware supports the
binding of the entire volume as a single 3D texture. Geometry can then be texture-
mapped using three texture coordinates at each vertex to apply any arbitrarily-
oriented section of the volume to the polygon’s surface. By taking advantage of this

functionality, the axis-aligned proxy geometry can be converted into view-aligned
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Figure 4.1: A single stack of textures at 0°, 30°, 60° and 90°. Upon each rotation,
the underlying proxy geometry becomes more evident.

slices that are generated dynamically as the viewpoint is altered. This eliminates
any visible transition that might be apparent using axis-aligned slices. The hardware
will then filter the 3D texture using trilinear interpolation in order to sample texture
for mapping to the slices, leading to improved image quality. However, 3D texture
support on graphics hardware is slower than regular 2D texturing [117], so a trade-off
decision must be made between memory usage, image quality and rendering speed,

depending on the target platform and application needs.

Custom Volume Rendering Hardware

Given the specific nature of volume rendering, the widespread areas of application,
and the inherent parallelism in its implementation, a number of custom-built hard-
ware solutions have been published over the last ten years.

Pfister and Kaufman'’s work on the Cube-4 [109] builds upon previous iterations
of the Cube architecture. Cube-4 is a scalable array of volume rendering pipelines
and associated memory modules, which work on local voxels in parallel and process
them with a modified ray casting algorithm. The system scales linearly with the
number of rendering pipelines, and is aimed at implementation in an ASIC. Osborne
et al. continued their work and presented EM-Cube [101], a feasible architecture for
using the Cube-4 in a PCI card that could process 16-bit 256% volumes at interactive
rates.

At around the same time, Kreeger and Kaufman were working on PAVLOV [76],
a parallel architecture with SIMD elements. While PAVLOV is capable of volume

rendering, it is also designed to be programmable, allowing the use of different
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rendering algorithms and properties such as feature extraction and segmentation.
In 1999, Pfister et al. produced the VolumePro [108], a PCI volume rendering
board manufactured by Mitsubishi. It was a commercial implementation of the
EM-Cube architecture, costing around $3,000 at the time of release. VolumePro
was capable of 500 million interpolated, illuminated and composited samples per
second, enough to display a shaded 256 volume at 30 frames per second. Today,
the VolumePro range is sold by TeraRecon Inc., and the latest incarnation (the
VolumePro 1000 D) is capable of real-time visualisation of volumes up to 5123
Most recently, Meifiner et al have published the Vizard II [88], another volume
rendering PCI card. However, unlike other custom volume rendering hardware, the
Vizard II is implemented on an FPGA, thereby allowing a customisable feature set
and quick implementation of upgrades and optimisations. While the Vizard II is
only capable of a maximum of 50-100 million samples per second depending on board
speed, they claim a superior image quality to the VolumePro, and a more efficient

and correct implementation of the ray casting algorithm.

4.1.3 Isosurface Extraction

The alternative to Direct Volume Rendering is Indirect Volume Rendering. This
is where an explicit polygonal surface is extracted from the volume as an inter-
mediate step and rendered using the traditional triangle rasterisation pipeline of
modern graphics cards. These surfaces are called isosurfaces - in the same way that
isobars demarcate areas of equal pressure on a weather map, isosurfaces are the
representations of areas of equal data values (referred to as isovalues) in a volume.

Besides the obvious applications of isosurface extraction for visualising internal
organs and bones in a medical dataset, isosurface extraction is also useful in other ar-
eas where specific surface visualisation can allow for the more meaningful exploration
and illustration of collected data, such as in Pharmacology [134], Chemistry [103]
and Heliology [62].

Methods for calculating and extracting isosurfaces from a given scalar volumetric
dataset have been the subject of much research. Early work by Keppel et al. [67]
involved the reconstruction of surfaces by connecting applicable contours on adjacent

slices, but was subject to ambiguities concerning how to connect contours when more
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than one exists on a slice. Miller et al. [90] use ‘Geometrically Deformed Models’
which are grown from a seed placed in the model and deformed according to a set
of constraints. They produce closed models, and relate the computational time of
their algorithm to the size of the surface produced. not the size of the volume itself.

However, the most popular isosurface extraction algorithm has been in use since
Lorensen and Cline introduced Marching Cubes in 1987 [81]. Marching Cubes con-
structs a cube or ‘8-cell’ from eight voxels, four each from two adjacent slices. It
then iterates through every cube in the volume, comparing the voxel values at each
corner of the cube and determining whether an isosurface for a desired isovalue
would intersect the cube. If all eight of the cube’s values are below the desired
isovalue, the surface will not intersect it. Likewise if all values are above the desired
isovalue. The other cases are where the surface needs to be generated - some values
are below and some are above. Each voxel therefore has two states - either above (or
equal to) or below the isovalue, and eight voxels in a cube leads to 2% = 256 possible
cube states with respect to isosurface intersection for a given isovalue. However,
many of these states are identical except for rotational symmetry differences. By
eliminating these duplicate cases, the number of possible cube states is reduced to
a more manageable 14. These cases can be seen in Figure 4.2. When it is known
which edges the surface intersects, the exact location of these intersections can be
calculated by performing a linear interpolation between the two voxel values of each
edge. A number of interpolated triangles are then constructed according to which
case the cube falls into, and all the triangles created form the volume’s isosurface
for the given isovalue.

While Marching Cubes is a simple algorithm that is easy to implement and
produces good surfaces, it suffers from the problem of ambiguous cases where there
is more than one way to triangulate a given cube. This can lead to holes in the
resulting isosurface. Further research was done by Van Gelder and Wilhelms [138]
and Nielson and Hamann [97] on adaptations of Marching Cubes to overcome this
problem. An extension of Marching Cubes called Marching Tetrahedra [52, 14]
solves the problem by separating each 8-cell into a number of tetrahedra, eliminating
potential ambiguities and producing a finer tesselated surface.

A cube can be decomposed into a minimum of five tetrahedra. Each tetrahedron

has four vertices, so the number of possible isosurface intersection cases is 2* = 16.
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Figure 4.2: The 14 possible cases of Marching Cubes, including the empty case 0.

Again, the majority of these are duplicate symmetric cases which can be eliminated
in order to reduce the number of unique intersections to three. See Figure 4.3 for
an illustration. These cases do not contain the ambiguities inherent in Marching
Cubes, although they do have the potential to produce more triangles. In the worst
case, Marching Cubes creates four triangles per cube. Marching Tetrahedra, with
a maximum of two triangles per tetrahedron and five tetrahedra per cube, has a
worst case of ten triangles per cube, over twice that of Marching Cubes. Another
implication of tetrahedral decomposition is that the edges of tetrahedra in adjacent
cubes do not match up, so the edges of any surfaces created in these tetrahedra will
not match up either, thus producing holes in the surface. This can be overcome
by increasing the number of tetrahedra in a cube to six, but at the expense of an
even higher triangle count in the resulting isosurface. Instead, the orientation of
each alternate 5H-tetrahedra cube can be changed so that adjacent tetrahedra always

match up.
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VW

Figure 4.3: The decomposition of a cube into 5 tetrahedra, along with the 3 possible
triangulation cases of Marching Tetrahedra.

4.1.4 Accelerating Isosurface Extraction

Given the desire to interactively explore volumetric datasets (i.e., being able to
generate new surfaces for a given isovalue parameter at responsive frame-rates),
many techniques have been developed in order to accelerate isosurface extraction by
Marching Cubes or Marching Tetrahedra.

A popular method of acceleration is by pre-processing the data in order to allow
for rapid identification of subsections of the volume known to include a desired iso-
value. Wilhelms and Van Gelder propose a modified octree subdivision method [143],
keeping storage costs down by using what they call ‘Branch-on-need octrees’. Simi-
larly, Cignoni et al. use interval trees [35] to accelerate the identification of 8-cells
that contain a desired isosurface [19]. These methods dramatically improve pro-
cessing speeds at the expense of additional memory usage for the required data
structures, thus reducing the memory available for the dataset.

Others achieve acceleration by amortising the computational cost through paral-
lelisation. Hansen and Hinker were one of the first to propose the parallelisation of
Marching Cubes, developing an adapted version of the algorithm that takes advan-
tage of SIMD architecture [54]. At the same time, Mackerras implemented Marching
Cubes on a MIMD Fujitsu AP1000 with 128 processors [85]. More recently, Jinzhu
and Shen demonstrated a parallel multi-pass view-dependent algorithm for isosur-
face extraction on a 40-processor SGI Origin [41]. They employed octrees to cull
large empty areas of the dataset, and used multi-pass occlusion culling to only ex-
tract the areas of the isosurface that will be visible in the final frame. Udeshi and
Hansen parallelise both isoextraction and isosurface rendering by using the multiple
processors and multiple graphics cards of the SGI Onyz2 Reality Monster, using a

sort-last paradigm for image recomposition [136].
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However, these implementations required expensive high-end multi-processor
server architectures. Zhang et al. instead use a cluster of commodity machines
and exploit the parallel processing and parallel disk accesses available to such a
cluster [147]. They also employ interval trees to reduce the amount of 1/0 traffic
necessary. The result is a scalable, out-of-core architecture capable of extracting

isosurfaces from arbitrarily large volume datasets.

4.1.5 Isoextraction on Graphics Hardware

The recent trend of exploiting programmable graphics hardware for general compu-
tation has also led to isosurface extraction being performed on the GPU itself by
taking advantage of the graphics pipeline’s inherent parallel nature.

Pascucci published the first example of isoextraction via Marching Tetrahedra
on the GPU in 2004 [104]. He uses the vertex processor to offload all isosurface com-
putation from the CPU. In addition, he introduces a streaming mechanism which
exploits the persistent nature of the vertex processor’s registers to allow the spec-
ification of a new tetrahedron by only transferring a single vertex, as opposed to
all four. He also demonstrates a tetrahedral stripping scheme in order to optimise
data transfer, and view-dependent refinement to reduce the amount of unnecessary
computation. The result is a peak processing speed of approximately 2.1 million
tetrahedra per second on a GeForced. Reck et al. also demonstrate an implemen-
tation of Marching Tetrahedra in the vertex processor, employing interval trees in
order to reduce the amount of data transfer and video memory consumption [113].
Goetz et al. [43] also perform similar isoextraction in the vertex shader, but use
the original Marching Cubes algorithm due to the reduced number of vertices in
the resulting isosurface, reducing the amount of bandwidth and vertex processing
necessary.

The limitation of these methods is that the vertex processor is unable to either
create or delete vertices, only process them. Therefore, for every tetrahedron that
is potentially part of the final isosurface, two triangles must be submitted for pro-
cessing whether they are used or not. Vertices that are not needed are rendered as
degenerate triangles of zero surface area, and are culled efficiently by the hardware.

However, these extraneous vertices must still be transferred, thereby unnecessarily

71



4.1 Volume Visualisation

using bandwidth and video memory space that is already at a premium. As dis-
cussed previously, the amount of computation performed in the fragment shader
is necessarily more than that of the vertex processor, and this difference will only
increase as more fragment pipelines are added to next generation GPUs. Therefore,
it makes sense to move as much computation to the fragment processor as possible
in order to take advantage of this increased parallelism.

As a result, the most recent papers on isosurface extraction on the GPU do so in
the fragment processor. Klein et al. [70] report a peak of 7.2 million tetrahedra per
second on an ATT Radeon 9800, using an experimental ATI super_buffer OpenGL ex-
tension which allows rendering directly to a texture (this extension has since been al-
tered and accepted by the ARB, and is currently known as EXT_framebuffer_object).
This texture can then be bound as a vertex array and used as the source of a vertex
stream, without having to be copied over the bus. Kipfer and Westermann [69] per-
form a similar procedure, but approach it with the aim of minimising the number of
operations and memory accesses. They achieve this by sorting the element vertices
and processing them with an edge-based algorithm that allows the entire isosurface
to be constructed with less work than previous methods. By using an interval tree,
they achieve an isoextraction processing time of 69.4 million tetrahedra per second.
An additional step of normal computation and final lit rendering of the isosurface
results in a speed of 57.1 million tetrahedra per second.

It should be noted that all of the performance numbers quoted in the above
GPU-based isosurface extraction methods are only achievable if the isosurface to be
generated fits entirely in video memory. If this is not the case, vertex or texture
data will be swapped out to AGP memory, resulting in a severe drop in processing
speed. As a result, GPUs can achieve extremely high isosurface processing speeds
due to the large amount of internal parallelism, but the size of the volumes that can

be processed at this speed is relatively restricted.
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4.2 Accelerated Visualisation with Parallel Hard-

ware

This section is concerned with accelerating the visualisation of confocal microscopy
datasets. Although much of the current work on volume visualisation is aimed at
visualising medical scans acquired by CT or MRI, many of the same methods can

be applied to the display of confocal fluorescence microscopy data.

4.2.1 Confocal Fluorescence Microscopy

The essential principle of confocal fluorescence microscopy relies on the fact that
there are two pinholes in the optical path. The first intercepts the light beam after
leaving the light source and before striking the specimen, and the second intercepts
the light after leaving the specimen and before entering the detector. Then, at any
fixed distance between pinholes and fixed position of lenses, only one plane normal
to the light path will be in focus within the specimen, i.e., will be confocal with
respect to both pinhole positions. In the commercial instruments available, the
most common way to produce optical sections is to move the ‘spe('imen in successive
steps in a line between the two pinholes, termed the “z” direction, thus bringing into
focus successive planes within the specimen. The thickness of the plane in focus is
inversely related to the diameter of the pinholes and has a practical limit of about
0.2 of a micron. This optical arrangement effectively removes light from the planes
within the specimen that are not in focus, commonly known as stray light and,
consequently, sharpens the image at the focal plane recorded by the detector. Most
of the image recording methods rely upon a raster scan of each of these optical z-
planes using a laser light source and a photomultiplier detector coupled to a digitiser
to produce a set of ordered datasets. Each dataset consists of an ordered array of
data pairs that specify position and optical intensity at that position.

Various methods of presenting the data have been used in the past. These meth-
ods range from displaying each optical section as elements in a planar array of images
arranged in step-order of z-direction, to creation of a pair of stereoscopic views by
reconstructing the image from two separate angles through the three dimensional

dataset. The angles are chosen to approximate those formed by a pair of human eyes
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viewing a specimen. Finally, the most common approach has been simply to super-
impose all of the z-stack images in one single image. This last technique produces
a sharper image than can be collected with ordinary epi-fluorescence microscopy
because of the elimination of stray light in each plane, but has the disadvantage
of losing the z-directional information. New methods of presenting the data that
reconstruct a partially transparent 3D image with perspective along the Z-axis for
ease of publication and easy viewing by the reader are highly desirable.

Current commercial methods for visualising confocal data such as stereoscopic
cross-eyed images (where the user must cross their eyes in order to view the image in
3d - Figure 4.4(a)) are difficult to use and do not lend themselves well to viewing or
publication, nor allow for interactive investigation of the volume. By contrast, the
stacks of image data collected by confocal microscopes can be readily used to create
an interactive and customisable rendering of the entire volume (Figure 4.4(b)) using

hardware-accelerated volume rendering methods.

(a) (b

)

Figure 4.4: (a) Cross-eyed stereo depiction of Trypanosoma Brucei. (b) Interactive
texture-based Direct Volume Rendering application with the same dataset.

4.2.2 Interpolated slices

Given the sub-micron scale of data generally collected by confocal microscopes, often
the resolution limits the number of slices collected to a small amount. Displaying
this data while preserving the scale and spacing of slices in the original specimen
produces gaps and banding artefacts. While these problems can be remedied by

inserting extra interpolated slices upon initial generation of the principal-axis stacks,
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this unnecessarily increases the amount of texture memory used by a factor of two
or more, depending on the number of slices inserted.

Instead, slices can be inserted during run-time and interpolated without extra
memory usage by employing multi-texturing and programmable graphics hardware,
as demonstrated by Rezk-Salama et al [116]. We use NVIDIA’s Register Com-
biners [123] to perform this interpolation. As described in Section 2.1.3, the final
combiner can be used to perform interpolation on the outputs of previous combiner
stages. Possible inputs to any stage include texture lookups, primary/secondary
colours and application-set constants. Thus it is possible to use the final combiner
to interpolate between two texture slices by assigning the start and end textures to
two inputs, and an interpolation factor to a third input signifying the distance of
the inserted slice between the two existing slices.

Bilinear image filtering can be performed on 2D textures using graphics hard-
ware. By combining this with the linearly interpolated extra slices, the outcome is
trilinear interpolation with similar results to that performed with 3D textures, but
at improved frame rates. The number of extra slices inserted can be altered during
run-time; in order to preserve interactive frame rates, these interpolated slices are
only displayed when user input is not being received. Therefore, a large number
of extra slices can be introduced to achieve dramatically increased image quality
without hindrance to the user. We can see in Figure 4.5 the significant increase in

quality that even one extra slice can give.

4.2.3 Hardware Accelerated Transfer Functions

NVIDIA’s Texture Shaders [33] extend OpenGL’s standard texture addressing op-
erations, allowing for an additional variety of operations such as dot product opera-
tions, offsetting and dependent texturing. There are two different types of dependent
texture shaders, Alpha-Red and Blue-Green. These determine which colour chan-
nels of the first texture unit are used as texture coordinates for the second unit’s
addressing operation (as already seen in Figure 5.7).

We implement the transfer function using an Alpha-Red texture shader. When
the initial textures are being uploaded, their internal format is set to GL_ALPHAS,

so each density value is stored as an 8-bit alpha value. This is bound to the first
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Figure 4.5: Left: a rendering of a 1283 CT scan of a foot. Right: the same rendering
with one slice inserted dynamically with programmable hardware.

texture unit, and a one-dimensional RGBA texture representing the transfer function
is bound to the second unit. When texture shaders are enabled, the alpha value of
the slice texture is converted into the corresponding colour and opacity according
to the transfer function texture. This texture can be edited while the application is
running and re-uploaded to alter the visualised colours in real-time. An example of
the transfer function used for Figure 4.4(b) can be seen in the bottom left corner,
upon which is superimposed a logarithmic histogram of density values present in the
volume. While opacity information can be included in the transfer function texture
and applied to the resulting visualisation, we have found that given the inherent
noisy nature of confocal microscopy data, better results can often be obtained by
using purely opaque colours. We have also implemented the transfer function using

the GLSL high-level shading language.
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4.3 Volume Simplification

The Marching Tetrahedra algorithm (as described in Section 4.1.3) was also imple-
mented for indirect volume rendering of extracted isosurfaces, both from medical

imaging machines and from confocal microscopes (see Figure 4.6).

Figure 4.6: Top: a 64 simulated volume of fuel injection into a combustion chamber,
DVR (left) and isosurface wireframe (right). Bottom: a confocal microscopy scan
of Trypanosoma Brucei, DVR (left) and isosurface wireframe (right).

However, the performance of un-optimised Marching Tetrahedra for any reason-
ably sized volume precludes real-time interaction or investigation of the dataset.
Additionally, the noisy images captured by confocal microscopy can produce overly
spiky isosurfaces that do not satisfactorily convey the shape of the desired surface
(for example see Figure 4.8(b)). To achieve this, we have investigated the simplifi-
cation of the dataset before generation in order to reduce the amount of processing

necessary to produce the surface.
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4.3 Volume Simplification

The approach taken was to remove a number of voxels from the volume, but still
attempt to keep the overall shape and salient details of the dataset. A naive attempt
of simply skipping every n voxels in the dataset produces an overly blocky surface
which quickly loses the details of the original dataset (see Figure 4.8(c)). However,
it does dramatically decrease computation time, so an attempt was made to improve
upon this method by incorporating the data from the excluded voxels into the re-
maining voxels. This was done with a 3D averaging filter using a Gaussian kernel.
In order to attempt to retain the shape of the surface and prevent degradation, any
excluded voxel that has a value of zero is not included in the filter. The value of n
can be varied depending on the level of simplification required.

The result is a simplified and reduced version of the volume that can be used
for isosurface extraction with the usual Marching Tetrahedra algorithm (see Fig-
ure 4.8(d)). The produced surface still retains the rough shape of the represented
isosurface up to a point, but excessive simplification results in an isosurface that
bears no resemblance to the original dataset. Due to the method of averaging, fine
details such as tendrils or other thin or narrow structures are quickly lost in the
first couple of simplification levels, but the overall shape of the surface can still be

discerned (see Figure 4.7).

Figure 4.7: Volume simplification of the 512* Head Aneurysm dataset for different
values of n. (a) n =1, (b) n =2, (¢) n = 3. At each level, thin structures and fine
detail get lost.

For this reason, this method is a perfect candidate for quick isosurface simpli-
fication that does not require the entire surface to be fully represented. Typical

examples of this are Level Of Detail representations for distant objects, where the
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evaluation of an isosurface at every voxel is not necessary and contributes little to
the final image. Another use is the progressive transmission of isosurfaces. Very sim-
ple coarse representations of the volume can be transmitted first and reconstructed,
giving a broad overview of the volume and costing little in terms of bandwidth and
transmission time. If a more detailed surface is required, the excluded voxels can
be subsequently transmitted and inserted into the already-constructed volume. A

more detailed isosurface can then be extracted.

(c) (d)

Figure 4.8: Volume simplification. (a) The original ‘chromatid separation’ dataset of
size 256 x 256 x 79, rendered with texture-based DVR. (b) The isosurface extracted
from the original unaltered dataset. (c) Naive simplification by skipping voxels. (d)
Improved simplification using 3D Gaussian filtering where n = 1.

An additional advantage of this method is that small levels of simplification can

actually improve the visual quality of noisy volume polygonal representations, such
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as those produced by confocal microscopy. This results in a smoother surface that is
a better candidate for illustrative or structural identification purposes (for example,
compare Figure 4.8(b) and Figure 4.8(d)).

At the same time, it should be noted that the more the size of the simplification
kernel is increased, the more volume data is averaged and as a result high frequency
details are lost. This tends to produce holes in the resulting simplified surface, which
restricts the usefulness of this algorithm to the first few simplification levels. This
is especially true in low resolution datasets, where any over-simplification can cause
significant features of the volume to be lost.

This algorithm increases runtime isosurface extraction time by introducing an
offline simplification step which can be done as by pre-processing the dataset. While
this can be performed once for each simplification level and stored along with the
dataset, this step could itself be further accelerated by using the GPU to perform the
filtering. This can be accomplished by using GPGPU methodologies to interpret the
dataset voxels as texture samples and implementing a filtering kernel in the fragment
processor to compute the averages of multiple texels, accumulating the results into
intermediate textures. By doing this in slices in both the X-Y and Z-Y dimensions,
we can build up a filtered volume in multiple passes and read back the resultant
simplified dataset to main memory via the framebuffer.

Indeed, the Cell processor could also be used to perform simplification in much
the same way as it can be used for the isoextraction algorithm itself, as described

in the next section.

4.4 Isosurface Extraction on the Cell Processor

In this section we describe a new algorithm for performing isoextraction on the new
Cell processor architecture. When dealing with large datasets such as those used in
medical visualisation, a significant amount of data must be processed in order to ex-
tract a desired isosurface. In this section we focus on accelerating the computation of
isosurface extraction through the parallelisation of a marching tetrahedra algorithm
on the Cell processor. Cell provides significant increases in memory bandwidth and
processing speeds while still being available at prices comparable to desktop proces-

sors - this allows algorithms such as isoextraction, which were previously the domain
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of supercomputers and workstation clusters, to be executed on desktop machines.

4.4.1 Cell Applicability to Marching Tetrahedra

Cell is particularly suitable for isosurface extraction by Marching Tetrahedra (MT)

in two areas; parallelisation and data transfer latency/bandwidth.

Parallelisation: Like the graphics pipeline, isosurface extraction is also an em-
barrassingly parallel problem. In MT, the processing of each tetrahedron is
independent from the next, requiring no knowledge of its neighbours in order to
determine the location of the intersecting isosurface (if any). This means that

any tetrahedron can be distributed to any SPU for independent processing.

Data transfer bandwidth & latency: Any algorithm dealing with volumetric
datasets must process large amounts of data, which can quickly become a
bottleneck if the system executing the algorithm is incapable of keeping the
processor fed with data. The high bandwidth of the CBE, combined with the
SPU’s DMA mechanism for hiding storage latency, eliminates any potential

data transfer bottlenecks.

4.4.2 Implementation

This sections details the adaptation of the MT algorithm for implementation on the

Cell processor. Broadly speaking, the process is as follows:

1. The volume is partitioned into slices.

8]

. The slices are partitioned into chunks.
3. The chunks are assigned to different SPUs.

4. Each SPU iterates over every pair of slices and processes the assigned chunks

of those slices.

5. Tetrahedra are constructed by iterating through every 8-cell associated with

each voxel in the chunk - four from each adjacent slice.

6. Triangles are produced by evaluating each tetrahedron according to MT.
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This involves three steps; volume partitioning, data transfer, and processing.

4.4.3 Volume Partitioning

For each SPU to perform a comparable amount of work, the dataset must be parti-
tioned before it can be distributed. We accomplish this via a two-level partitioning
scheme, with the additional aim of minimising both data replication and transfer
costs.

First, the volume is logically divided into slices. A 3D volume of dimensions
(x,y, z) can be considered as being a collection of =z 2D slices, with each slice con-
sisting of y number of rows where every row contains x voxels. We determine these
slices according to contiguous areas of data in memory, as it is more efficient to ac-
cess and transfer a few large contiguous blocks of memory than many small blocks.
This format is typically how the data is stored offline on disk.

Then, every slice is split into n chunks for distribution to n available SPUs (see
Figure 4.9 for an example where n = 4). A chunk consists of several rows of data,
each chunk overlapping adjacent chunks by one row. The reason for this is that
for each tetrahedron, the MT algorithm requires data from two adjacent rows in
order to build an isosurface. An SPU works with two chunks at a time for the same
reason, these chunks coming from two adjacent slices. For each chunk except the
last one, the number of rows is calculated by the formula round((r + (s — 1))/s),
where 7 is the number of rows not yet assigned to an SPU, and s is the remaining
number of SPUs including the current one. The inclusion of (s — 1) is to account
for the overlapping rows. The final chunk is then assigned all remaining rows.

This method ensures that each SPU receives an approximately equal section of
the overall volume. For example, if n = 8 and y = 128, a chunk size of 16 rows will
be assigned to the first SPU, with the other seven SPUs being assigned chunks of 17
rows. Thus a total of 135 rows have been assigned; 128 rows plus the 7 overlapping

rows which have been assigned to two SPUs.

4.4.4 Data transfer

As described above, the SPU has 256KB of storage immediately available to it,
which puts a limit on its ability to process locally stored data. Additionally, the
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> X

Figure 4.9: Volume slice divided into chunks for distribution to 4 SPUs. Each colour
represents a separate SPU.

only way to transfer data to and from the SPU’s local store is via DMA transfers,
which have a size limit of 16KB. However, the high bandwidth of the EIB and the
ability to buffer transfers while still performing computation means that streaming
the data becomes an efficient method of processing. Thus, the size of the volume
being processed is not limited by SPU storage space.

As a result, a third level of data partitioning is needed in order to enable the SPU
to process chunks of any size. If the size of a chunk is bigger than 16KB, it needs
to be broken into sub-chunks of below 16KB for transferring. The SPU therefore
decides how many complete rows can fit into a single DMA transfer, and iterates
through the slices, processing adjacent sub-chunks to create the isosurface.

This has a direct influence on the amount of data replication necessary. Normally,
if a chunk fits entirely in one DMA transfer, a volume distributed over n SPUs would
need z x x x (n — 1) pieces of replicated data. But for chunks of over 16KB, the
amount of replication needed is z x x X (s — 1), where s is the number of sub-chunks
required.

Whether processing full chunks or sub-chunks, the transfer and processing proce-
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dure is the same. See Algorithm 1 for an overview. Each chunk is used twice by ~he
MT algorithm - once as the 8-cell front voxels and once as the 8-cell back voxels. By
looping through the slices like this, only one chunk needs to be transferred during
any iteration. This keeps data transfer to a minimum, and the buffering can still
happen during processing due to the autonomous DMA controller. Processing any
reasonably-sized chunk takes longer than transferring it, so usually no time is spent

waiting for the buffering to complete.

Algorithm 1 Data transfer
1: Transfer chunks from slices 1 and 2
2: for i =1 to numSPUs do
3 if i < (numSPUs — 2) then

4: Start buffering chunk from slice 7 + 2

5: end if

6:  Wait for chunks from slices 7 and 7 + 1 to finish buffering
7:  Process chunks (see Algorithm 2)

8: end for

4.4.5 Processing

For every voxel in a chunk, an 8-cell is created consisting of four voxels each from the
two adjacent chunks - two voxels from each of two adjacent rows. Five tetrahedra
are constructed from this 8-cell as described in Koide et al. [74]. Each tetrahedron

is then processed by MT in order to produce zero, one or two triangles.

Algorithm 2 Processing
1: Given two chunks front and back
2: for all rows 7 in chunk front do
3:  for all voxels v in row r do
4: Create 8-cell from voxels v and v+ 1 from rows r and r + 1 in chunks front

and back

5 Decompose 8-cell into five tetrahedra
6 Process tetrahedra
7. end for
8: end for

Once the tetrahedra have been constructed, they are processed by a regular MT
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algorithm such as the one proposed by Gueziec et al. [52].

Taking into account the specialised nature of the SPU hardware, certain opti-
misations can make a difference in execution speed. The lack of branch prediction
means that non-predicted branches should be eliminated wherever possible. We
build an interpolation table based on the 16 potential outcomes of tetrahedral eval-
uation, and perform vertex interpolation and triangle construction according to the
results of a lookup in this table. This is similar to the methods used by Pascucci et
al. [104] and Reck et al. [113], where isosurface extraction is performed on graphics
hardware that has no branching capabilities.

Similarly, the SIMD capabilities of the SPU must be exploited in order to make
full use of the capabilities of Cell. This class of acceleration has been the subject
of previous rescarch by Hansen and Hinker [54] as applied to Marching Cubes, and

much of this work is still relevant to implementing Marching Tetrahedra on Cell.

4.5 Results

In this section we look at the results of testing the methods described in the previ-
ous sections. First we look at how isosurface simplification can significantly improve
isoextraction performance, before analysing the speeds achieved with the above al-

gorithm for isoextraction on Cell.

4.5.1 Isosurface Simplification

Tests of our isosurface simplification algorithm were done on a 2GHz Pentium 4
with 1GB of RAM and an ATI Radeon 9800 Pro graphics card. Four datasets were
tested; three captured by confocal microscopy and one by medical imaging.

Four levels of detail were measured, with level 0 being the original dataset. Each
subsequent level of detail represents the number of voxels removed, and consequently
the size of the Gaussian filter kernel used to approximate the dataset. Generally,
levels of detail beyond these reduce the dataset so much that the resulting volume
bears little relation to the original.

In each case we measure the number of tetrahedra in the resulting dataset, and

the time it takes to extract an isosurface from this dataset. Also measured is the
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amount of time it takes to perform the simplification - although for any level of
detail, the simplification only needs to be performed once. Isosurfaces can then be
extracted from the simplified dataset as many times as desired, at the listed speeds.
See Figures 4.10 — 4.13 for specific details. For each dataset, two graphs are given;
one detailing the number of tetrahedra at each level of detail, and one with the
resulting time it takes to extract an isosurface from the reduced dataset. Below the
graphs is a table stating the time it takes to reduce the original dataset for a given
level of detail.

We can immediately see that even at the first level of detail beyond the original
dataset, the number of tetrahedra is significantly reduced by a factor of between
eight and ten. This has a direct effect on the time taken to extract an isosurface
from the reduced dataset.

Generally, the datasets that have a high amount of empty space will perform the
best in isosurface extraction, since many of the 8-cells can be ignored without need-
ing to be decomposed into tetrahedra or tested for isosurface intersection. When
simplification is performed on a dataset with a large amount of high-frequency noise,
this noise will either be reduced or removed entirely by the averaging process, de-
pending on the level of simplification. This in turn produces a dataset that will
perform better in isosurface extraction that its original counterpart. A simplified
dataset that had no noise in the first place will still perform better in isoextraction
than the original, but the increase in performance will not be as dramatic and can
only be attributed to the reduction in dataset size rather than a reduction of the
ratio of 8-cells that need to be processed against those that do not.

Therefore, the datasets that achieve the highest decrease in isoextraction time
after simplification are high-frequency, noisy datasets that can be reduced to lower-
frequency, less noisy datasets. Conversely, the datasets that gain the least improve-
ments in speed after simplification are those that are already well-formed and with
low-frequency surfaces, as the ratio of populated 8-cells beforehand to empty 8-
cells after simplification will be lower. In both cases, the first simplification level
of detail will always achieve the highest increase in speed, as this is the step most
likely to remove the small amounts of noise inherent to the imaging process. The
increase in speed and reduction in number of tetrahedra from further simplification

are dependent on the nature of the data.
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Figure 4.10: Trypanosoma Brucei #1: This is a 512 x 512 x 26 dataset captured
by a confocal fluorescence microscope. It is a scan of the Trypanosoma Brucei, a
single-celled parasite that is responsible for the disease African Sleeping Sickness.

See Figure 4.14 for screenshots.
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Figure 4.11: Trypanosoma Brucei #2: A scan of another Trypanosoma Brucei,
this time 512 x 512 x 14 in size. See Figure 4.15 for screenshots.
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Figure 4.12: Chromatid Separation: A confocal fluorescence microscope scan of
a chromosome separating into chromatids during cellular mitosis, 256 x 256 x 79 in
size. See Figure 4.16 for screenshots.
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Figure 4.13: Bonsai Tree: A dataset of a bonsai tree, 256 x 256 x 256 in size,
captured by CT. See Figure 4.17 for screenshots.
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Figure 4.14: Trypanosoma Brucei #1: Simplification levels fromn =0 ton =3

I I

Figure 4.15: Trypanosoma Brucei #2: Simplification levels from n = 0 ton = 3

Figure 4.17: Bonsai Tree: Simplification levels from n =0ton =3
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4.5.2 Cell Isoextraction

While much of the development of our Cell isoextraction system was done using the
Full System Simulator provided with the Cell SDK, we optimised and tested the
performance of our technique on an IBM dual Cell “Blade” server located at the
IBM T.J. Watson Research Center. This server consists of two 8-SPU Cell processors
running at 2.1GHz, with 512MB of XDR DRAM. The dual Cell server contains two
Cell processors connected to each other via the Broadband Engine Interface. When
an application assigns work to an SPU, an idle SPU is chosen at random from the 16
available SPUs. We also tested an equivalent serial isosurface extraction algorithm
for baseline comparison on a 2.0GHz Pentium 4 system with 1GB of RAM.

Performance tests were carried out on a variety of 8-bit datasets, ranging in
size from 323 to 512%. The amount of free memory on the test machine precluded
volumes larger than these - however, we did provisionally test a 1024 volume by
reusing the 512° dataset 8 times. This result does not take into account the different
DMA sizes, cache utilisations and memory access patterns that would occur with a
volume of that size. Nonetheless, it is included purely as a processing stress test.

The primary dataset used was a test “spherical shell” 8-bit volume (see Fig-
ure 4.18), constructed so that each scalar value is the Euclidian distance from that
point to the center of the volume, modulated by 255 to fit inside a byte. This pro-
duces multiple shell isosurfaces for any specified isovalue. Also tested was the 2563
Bonsai tree dataset! (see Figure 4.19), and a 512% “Head aneurysm” dataset?.

We can immediately see in Figure 4.20 a demonstration of the improvement
in performance achieved using Cell. Even with one SPU, the processing speed
of 5.94Mtets/s is higher than the CPU speed of 5.17Mtets/s. This is more than
likely due to a combination of the SPU’s architecture being more suitable for purely
compute-intensive operations, plus the fact that the SPU’s clock speed is slightly
higher than that of the CPU. At 8 SPUs - one full Cell processor - the processing
speed of 47.4Mtets/s is roughly eight times that of the CPU. With both Cells oper-
ating at their full capacity for a total of 16 SPUs, the speed rises to 94.7Mtets/s -
just under 16 times the CPU’s speed.

ICourtesy of S. Roettger, VIS, University of Stuttgart
2Courtesy of Michael Meifiner, Viatronix Inc., USA.
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Figure 4.18: The 128 spherical shell volume. Each colour represents the isosurface
extracted by a different SPU.

Figure 4.19: The 256 Bonsai tree volume. Again, the distribution of chunks is
depicted by separate colours for each SPU.
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Spherical Shell dataset (10243) Spherical Shell dataset (5123)
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Figure 4.20: Test results for the 10243 and 5122 spherical shell volumes

Similarly, Figure 4.21 demonstrates that the Cell continues to show marked im-
provement over the CPU for smaller volumes. However, looking carefully at the
results of the 1282 volume, we can see that this improvement starts to slow down as
the number of SPUs involved grows. This is due to the size of DMA used to transfer
data between the cores. At 16 SPUs, dividing each 128 x 128 slice equally gives 8
rows to one SPU and 9 each to the others. This corresponds to DMA sizes of 1024
bytes and 1152 bytes respectively. At this size, the efficiency of the DMA transfer

starts to drop due to the cost of setting up and initiating the transfer.

Spherical Shell dataset (2563) Spherical Shell dataset (1283)
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Figure 4.21: Test results for the 256® and 1282 spherical shell volumes

As we reach the smaller volumes of 64° and 32% (see Figure 4.22), this trend
starts to become more pronounced. As DMA sizes drop further, so too does the

advantage of adding more processors, until we reach a turning point at 8 SPUs for
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the 643 volume and 2 SPUs for the 32%. Both of these points mark DMA sizes of
approximately 512 bytes per transfer. Below that point, further distribution of work

is actually detrimental to the overall processing speed of the system.

Spherical Shell dataset (643) Spherical Shell dataset (323)
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Figure 4.22: Test results for the 64% and 32? spherical shell volumes

As we turn to real datasets, the maximum processing speed possible increases to
over 100 million tetrahedra per second for the Bonsai and Head Aneurysm datasets
(see Figure 4.23). The reason for this is that these volumes are composed of more
empty space than the spherical shell - if all 8 voxels of an 8-cell have an isovalue of
0, the whole cell can be skipped safely without being tested thoroughly for intersec-

tions, leading to an increase in tetrahedron throughput.
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Figure 4.23: Test results for the Bonsai Tree and Head Aneurysm volumes

It should be noted that the quoted Cell clock speed of 2.1Ghz on our test system

is well below the possible limits of the hardware, and is due to the system being an
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internal IBM test platform. The Cell processors in use in the Playstation 3 console
are clocked at a considerably higher 3.2GHz. Cell has the potential to reach 5GHz,
albeit at a temperature that would exceed commercial safety limits. Reducing power
consumption could lower this temperature and thus increase clock speeds - this has
been identified by IBM as a future direction.

Furthermore, our results also compare extremely favorably to quoted GPU speeds
of 9 million tetrahedra per second [113] via a vertex processor implementation.
However, the comparison is only a superficial one, as current GPU implementations
take advantage of spatial acceleration structures which our method currently does
not. Indeed, Kipfer et al.’s processing speeds of 69.4m tetrahedra per second in
the fragment processor [69] are dependent on the use of interval trees. GPU speeds
also include rendering time, whereas our results only measure processing time; an
entire processing and rendering pipeline would need to be implemented on both
architectures for a fair comparison to be made. Additionally, GPU implementations

are subject to the condition that the dataset fits entirely into relatively limited video
memory.

Isosurface extraction

Millions
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80

Tets/sec 50

Dataset
14 32
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Figure 4.24: Comparison of isosurface extractions speeds: dataset size vs. number
of processors vs. Mtets/sec.
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Finally, in Figure 4.24 we can see a 3d plotted surface of the isosurface extraction
speeds taken from the graphs in Figures 4.20 — 4.22. From this we can see a general
trend that - as expected - the more processors involved in surface extraction, the
faster the processing speed. The obvious exception from this the 32 dataset which
suffers from excessive DMA transfer overhead as previously mentioned. Otherwise
it becomes obvious from observing this graph that as dataset sizes increase and this
overhead becomes insignificant, a more linear increase in processing speed can be

expected.

4.6 Cluster Implementation

This section examines the advantages and disadvantages of applying the above al-
| s

gorithms to our custom Cluster architecture. In each case, the cluster offers the

potential for greatly accelerating the algorithm compared to single-processor imple-

mentations.

4.6.1 Volume Visualisation

The cluster is a natural platform for performing hardware-accelerated volume visu-
alisation. The Vizard II [88] has already demonstrated the applicability of FPGA
hardware for performing ray casting and volume visualisation. By storing the orig-
inal dataset in shared memory and assigning a section of the final rendered image
to each node in much the same way as sort-first rendering, volume rendering speed
can be increased by adding more nodes to the cluster. In this respect, extremely
large datasets can be processed by distributing the storage across all memory banks
available across the cluster. Altering the viewport will cause nodes to access dif-
ferent portions of this distributed volume according to the ray casting algorithm,
but the SCI interconnect would minimize the penalties of extra latency introduced
by accessing remote memory. The global address space implemented by the cluster
would cause this switch from local memory to remote memory to be transparent to
the application, simplifying implementation.

Additionally, if enough storage space was available to store the dataset multiple

times, it would be possible to replicate portions of the dataset in multiple memory
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banks. By distributing the dataset evenly across the cluster and localising the
portions of the volume in memory local to the node processing that portion, access
speeds would be increased compared to remote accesses to the same data. This
would also increasing cache utilisation and reduce access times by eliminating stalls
that might be introduced by multiple nodes accessing the same memory location
in order to process the same portion of the volume. Compared to a similar Cell-
based implementation of ray casting, having the entire global memory of the cluster
available to each node’s processor (as opposed to the limited local store of the SPUs)
at high speeds with low latency provides a significant advantage. This is because the
integration of samples over the ray from an arbitrary viewpoint requires accessing
voxels in a non-linear way that is not amenable to the SPU’s method of transferring
chunks of data by DMA to the local store.

The existing GPU-based acceleration methods described earlier in this chapter
can still be implemented on each node, performing texture-based direct volume ren-
dering of the dataset. However this would preclude the use of each node’s available
FPGA., under-utilising the potential processing power available to the application.
Instead, a hybrid approach can be employed by performing the bulk of the processing
on the FPGA via ray-casting, and then using the GPUs for image post-processing
and image-space lighting. Further investigation is needed to evaluate the potential

of this approach.

4.6.2 Volume Simplification

Again, the locality of data necessary for the volume simplification algorithm de-
scribed in Section 4.3 would translate very appropriately to a cluster implementa-
tion. The gaussian filter employed restricts data references to a small area inside
the volume, allowing for a partitioning of the dataset into discrete sections with
minimal overlap. Each node can then process and produce a simplified version of its
partition, allowing efficient parallelisation and acceleration of the algorithm. This
is comparable to the Cell implementation of isosurface extraction.

Each partition need not necessarily be programmatically partitioned and read
into each node’s local memory, but rather the partitioning can be done logically and

the actual data can still reside distributed across the shared memory. Compared to
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a similar implementation on Cell, the overhead of setting up DMAs and transferring
all the volume data to the SPUs for a relatively small amount of processing is
an inefficient use of the processing power, despite the suitability of the SPUs for
performing the filtering on the data. This is not to say that Cell would not perform
well, but using the distributed shared memory would avoid this situation altogether

on the cluster.

4.6.3 Isosurface Extraction

However, performing volumetric simplification on the cluster may not be necessary
at all if its application is solely for increasing surface extraction speeds, and not
for Level of Detail or noise reduction purposes. Instead we can use the cluster to
increase the speed of the isosurface extraction itself.

The algorithm described in Section 4.4 for performing isosurface extraction on
Cell would transfer very well directly onto the cluster, with a few additional benefits.
Like volume simplification, the logical partitioning of data for processing would be
facilitated by distributed shared memory, avoiding memory copies while keeping
access times low via the SCI fabric.

The most significant advantage of the cluster over a Cell implementation is the
rendering capabilities of each node. Whereas the Cell needs to transfer the generated
geometry back from the SPUs to main memory for rendering, a cluster node can
feed it directly to its associated GPU for immediate rendering. The resultant image
fragments could then be composited over the cluster in a sort-last manner into a
final rendered isosurface.

Alternatively, the geometry could be inserted directly into a shared command
buffer for even distribution of rendering work. Additionally, having a GPU on each
node results in more raw rendering power than a single graphics card associated
with a Cell processor. Multiple graphics cards could possibly be attached to a
network of Cell processors, but at the expense of the general processing power needed
for coordination, which detracts from the power available to the application itself.
This contrasts to the cluster which is designed from the ground up for distributed

rendering and has dedicated hardware for managing the extra complexity layer.
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Chapter 5
Entertainment

For entertainment applications such as games, the user is often an active partici-
pant in a virtual world. In order to convey this participation, applications require
not only a high and steady frame rate, but also a believable and consistent repre-
sentation of the world in which their avatar exists. As processing power increases
and simulation becomes more sophisticated, users expect these virtual worlds to
resemble the real world more and more closely. Similarly, as development studios
compete to produce superior visual effects and budgets for top-rated games escalate
(the eagerly anticipated title Spore due in 2007 is estimated to have a budget of
approximately $30 million [114]), they push the hardware to its limits to improve
the realism and immersiveness of their games.

In this chapter we look at the use of commodity parallel hardware for accel-
erating the graphics algorithms used in entertainment applications - specifically,
image-based crowd rendering. Section 5.1 gives a brief overview of the use of GPUs
in games before concentrating on crowd rendering. Section 5.2 describes research
on the development of a single-pass crowd rendering algorithm, optimised to take
advantage of the programmable graphics hardware pipeline to render humans with
fully customisable lighting and texture-based variation. Section 5.3 presents results

based upon the use of this algorithm in a full crowd rendering system.
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5.1 Parallel Hardware in Entertainment Applica-

tions

As chips get smaller and sequential architectures reach their limit in terms of silicon
size and heat output, the real benefit of parallel architectures becomes apparent.
Games are composed of many individual tasks, including but not limited to ren-
dering. Artificial intelligence is required to give the virtual world some life, and to
provide the player with lifelike allies and adversaries. A physics engine gives the
world a sense of solidity and authenticity; pushing an object and seeing it fall in a
realistic way makes the object seem that much more real to the player. As broad-
band internet access becomes widespread, more and more games are focusing on the
potential of multiplayer interaction - this in turn requires sophisticated prediction
code to compensate for the latency introduced by the network. All of these tasks
can be run in parallel with minimal interaction. For example, collision detection
for a tumbling wall of bricks can be computed at the same time as the path finding
algorithm of a virtual agent.

It makes sense therefore that in order to maximise the amount of work capable
of being done at any one time, all three of the major next generation games consoles
contain multicore parallel processors. Sony’s Playstation 3 contains the Cell proces-
sor, as described in Section 2.4. Microsoft’s Xbox 360 contains the Xenon Processor
produced by IBM, which in itself contains 3 dual-threaded PowerPC cores allowing
for 6 simultaneous hardware threads to be run in parallel. Finally the Nintendo
Wii’'s Broadway CPU is rumoured to contain either 1 or 2 PowerPC-based dual-core
processors (again produced by IBM) - Nintendo has not released final specifications

at the time of writing.

5.1.1 Graphics Hardware in Games

The most obvious and widespread application of parallel hardware to the enter-
tainment industry is graphics hardware. Since the first 3D accelerator card came
out, the games industry has always been a driving force behind the advancement of
GPUs. Similarly, advances in graphics hardware have allowed many new techniques

to be pioneered by games developers. In all of today’s 3D games, a GPU of a certain
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level is a prerequisite in order for the game to run.

Many of the advanced effects that give games their unique look and feel are the
results of GPU-based algorithms. In recent years, one of the biggest improvements
in visual quality and realism came from a technique called normal mapping [21, 20].
This is an effect which allows the interaction of light on an object’s surface to be
independent of its tessellation by encoding the surface’s normal in a texture map.
When evaluating the lighting equation at each pixel in the fragment processor, a
shader looks up the normal vector for that point encoded in the normal map, and
uses this instead of the actual interpolated surface normal. The effect is dramatic
- models of drastically reduced polygon count can use high resolution textures and
normal maps and still produce virtually the same image that a very highly tesselated
model would.

Figure 5.1 shows an example from Epic Games’ forthcoming Unreal 3 engine.
Artists first create an extremely detailed version of the model with 2 million poly-
gons, as seen in Figure 5.1(a). This model is then reduced to a mesh of 5,287
polygons, which will be the version used in the game (see Figure 5.1(b)). A ray-
casting engine is then used to cast rays out from the low resolution version to the
high resolution one. The normal is determined at the intersection point, and stored
in the normal map for that point on the low resolution model. This normal map
is then used for all lighting calculations for that model in-game, resulting in a final
rendering as seen in Figure 5.1(c). Upon closer inspection of the outline, the low
resolution basis of the rendering is revealed. However, the effect is still extremely
convincing, even more so when animated. The underlying techniques of normal map-
ping have spawned a whole class of texture-space effects, such as relief mapping [100]

and parallax mapping [64].

5.1.2 Crowd Rendering

A major part of any virtual world is the people inhabiting it. Human and crowd
rendering is both an important and difficult area. The importance of a crowd is
most conspicuous by its absence, when a user would expect to see crowds of people
such as in an urban environment. All of the recent titles from Rockstar’s bestselling

and notorious Grand Theft Auto series suffered from this problem (see Figure 5.2),
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(@) High-resolution model (b) Low-resolution model

(c) Final in-game image

Figure 5.1: High-resolution, low-resolution and final rendered image of a model from
the Unreal 3 engine ((©Epic Games)

where streets were modeled in great detail and filled with a variety of vehicles, but
the number of human pedestrians visible at any time was limited to a handful. This
gave the virtual city a somewhat deserted feel.

On the other hand, the difficulty of crowd rendering comes from the number
of individual humans that make up a crowd. A large crowd requires that a large
number of humans be rendered and animated, which can consume a lot of simulation
and rendering time. The more varied the crowd is, the more polygons and textures

must be stored in video memory. This can be a problem, as crowds are usually
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Figure 5.2: Deserted streets in Grand Theft Auto: San Andreas ((©Rockstar Games)

a background element in many entertainment applications and not the main focus
of the scene. Therefore the proportion of the total polygon and texture memory

budget allocated to the crowd is less.

5.1.3 Reducing Rendering Work

There are a number of methods for lowering the rendering cost associated with
polygonal crowds. Level Of Detail (LOD) is a method of reducing the polygonal
detail of a model according to certain criteria, usually distance from camera or
importance in a scene [82]. O’Sullivan et al. [102] describe a framework for human
and crowd LOD, also incorporating behavioral levels of detail. The main advantage

of LOD is the reduction of the amount of polygonal data required to be drawn,

102




5.1 Parallel Hardware in Entertainment Applications

therefore reducing the total primitive count of the scene and lessening the burden
on the GPU.

However, there is another hidden cost associated with rendering large amounts
of objects that does not relate to the polygonal complexity of the object. Assuming
an object resident in video memory (as opposed to immediate mode rendering where
the geometry is specified every frame and transmitted across the graphics bus), an
API function call needs to be submitted for every object drawn. If this draw call
invalidates the current rendering state (for example by changing texture, changing a
shader constant etc.), then the corresponding state changes need to be implemented
in hardware before the rendering can proceed. This is particularly true for high
level shading languages such as GLSL that have to map variable names to hardware
registers. This blocks the pipeline and interrupts the organisation that the driver
does in order to rearrange the primitives in optimal format for submission to the
hardware. The extra API calls needed to change the state can easily make the
application become CPU limited, resulting in performance degradation that scales
with the number of objects being drawn. This can be offset by sorting the rendered
objects according to their state, and rendering all objects of the same state together.
However, the degree of success of this process depends on how many objects are to
be rendered altogether, and how many share the same state.

To alleviate this effect, recent GPUs have support for ‘mesh instancing’ [34, 49].
This enables multiple objects with the same geometry to be drawn with a single API
call, while still allowing properties such as the transformation matrix and material
properties to be changed per-instance. This could be useful for rendering small
crowds of identical humans. However, the GPU is still required to transform and
rasterise every object in the scene, which can be extremely costly for many highly
detailed objects. If the application is not CPU-limited by API calls, instancing will

not bring any advantages.

5.1.4 A Further Level of Detail: Impostors

There is only so much simplification a model can undergo before it bears no resem-
blance to the model it represents. Therefore another level of detail is needed below

that of the simplest geometric representation.

103



5.1 Parallel Hardware in Entertainment Applications

In 1995, Maciel et al. [84] first put forward the idea of using pre-generated images
of geometric models as the lowest level of detail in an LOD system. These planar
impostors provide a shortcut for rendering geometric models - instead of needing to
render the entire model, it is rendered to a texture in an offline process and then
used interactively for the rendering price of a single texture-mapped quad. Given
the large increases in frame rates achieved by using impostors, a large amount of
research has been done, leading to advances in the area of Image Based Rendering
(IBR). An overview of these methods is given by Jeschke et al. [63].

Impostors have been used for many years in the computer games industry. They
represent a cheap alternative for rendering complex geometric objects such as trees
and plants. First-generation 3D games such as iD software’s Wolfenstein 3D and
Doom, developed for systems without the advantages of dedicated GPUs or even
moderately fast CPUs, made extensive use of impostors for every game object except
the level architecture. This led to the description of the technology as “two-and-a-
half-D”.

Impostors are a good solution for reducing the rendering costs associated with
the large numbers of humans present in a crowd. Tecchia et al. [130] propose using
one impostor per human, pre-generating multiple images for each viewpoint that
the impostor will be viewed from. They choose 16*8 images - 16 viewpoints around
the Y-axis for each of 8 elevations around the X-axis. These images are mirrored
to produce a total of 32 viewpoints for each elevation, with a difference of 11.25
degrees between them (see Figure 5.3). Then during simulation a billboard facing
the camera is rendered for every human in a crowd, textured with the viewpoint
image appropriate for the angle at which that human is being viewed. A ‘popping’
artefact can sometimes be seen when changing from one viewpoint image to another,
but at the distances that crowds are normally viewed at, this does not become a
severe problem.

Rendering static images of humans from any angle is not in itself very useful.
Especially in crowds, humans are constantly animated and moving. Tecchia et al.
address this problem by creating 10 different animation frames and encoding these
as impostors.

In contrast, Aubel et al. [8] propose an impostor-based technique for accelerat-

ing human rendering, but use dynamically generated impostors instead of a prepro-
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Figure 5.3: The 8 elevation and 17 rotation viewpoints captured to form an impostor.

cessing step. This has the advantage of consuming far less texture memory than
pre-generated impostors, at the expense of the extra rendering work that needs to
be done to update each impostor.

Any impostor technique breaks down when the impostor approaches the camera,
and the two-dimensional basis of the technique becomes apparent in two ways; the
popping artefacts become extremely noticeable due to the limited number of view-
points, and the impostor images themselves become overly pixellated and the lack
of fine detail becomes obvious. Both of these problems are a function of the number
of impostor viewpoints and the resolution of the impostor images, but they will
eventually affect any impostor-based solution. In our I3D paper [29], we overcome
this by using a hybrid crowd representation of both geometric models and impos-
tors called geopostors. Geometric representations are used for humans close to the
camera, switching to impostors for those further away. To avoid popping, we switch
imperceptibly between the two by using a ‘pixel-to-texel’ ratio. This ratio is used
to determine when the size of an impostor image’s rasterised texel is larger than a
pixel. In this instance, aliasing will occur and so the geometric version needs to be
used.

The main focus of this paper was the hybrid representation and switching be-
tween geometry and impostors. This was enabled by employing programmable
graphics hardware to match the impostor’s rendering to that of its geometric coun-

terpart, as detailed in the contributions of this thesis in Section 5.2.
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5.1.5 Hardware Implications of Impostor Usage

In terms of hardware usage, the increase in frame rates achieved by using impostors
is due to the reduced load on both the vertex processor (having to transform just
4 vertices of a quad as opposed to every vertex in the geometric model) and the
fragment processor only having to texture map a single quad. Additionally, being
almost purely the domain of the fragment processor, impostors will continue to
provide improvements in rendering speed as the number of pixel pipelines increase
and more pixels can be processed in parallel.

As mentioned earlier in this section, it is best to minimise state changes during
rendering a frame in order to take full advantage of the graphics hardware pipeline
and avoid any stalls. For this reason, the number of texture changes should be kept
to a minimum. Tecchia et al. take this into account by packing each 64 x 64 impostor
viewpoint for a given animation frame into a single 1024 x 512 texture. We improve
upon this by observing that for any given camera placement, the overall number of
elevations used by all impostors in a scene is limited to only a few. We therefore sort
the textures not by animation frame, but according to elevation. This keeps frame
rates more constant and reduces the amount of texture thrashing that occurs when
the total size of textures used in a scene exceeds the size of available video memory.
When video memory is low, the driver swaps texture(s) out to system memory over
the AGP bus, using a least recently used (LRU) algorithm. However, if all of the
textures are needed in every frame, this swapping will happen continuously and the
application will stutter as the textures are swapped in and out. Since all animation
frames are invariably used over a maximum of ten frames, every animation texture
will be needed by the application. By keeping only the subset of elevation textures
that are used, the size of textures kept in video memory is much lower while the
camera stays at a constant height.

However, there are some drawbacks to using impostors as substitutes for fully
geometric models. The amount of texture memory required to represent a human
from every required viewpoint is not inconsiderable and, depending on the applica-
tion’s video memory budget devoted to the crowd, this can be prohibitive. These
effects can be somewhat ameliorated by texture compression, but still represent a

major barrier for the widespread use of impostors. Similar to the widening gap
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between CPU speed and memory latency, GPUs are going to continue increasing in
performance faster than the memory that they access, which will lead to memory
assets becoming more precious as requirements increase.

Another related bottleneck of impostor rendering is the use of hardware memory
bandwidth. Being representations of convex and concave polygonal models, the
majority of impostors contain large areas of transparency. In order to perform
blending or alpha testing, accesses to the frame buffer must be made from the
fragment processor, which can be costly in terms of both memory bandwidth and
fill rate due to overdraw. Fill rate is the rate at which a GPU is capable of rasterising
polygons into the frame buffer, usually measured in millions of pixels per second.
Overdraw occurs when a polygon that has already been rendered to the frame buffer
is drawn over by another polygon, hence the fill rate for the first polygon was wasted.
Thus the more overdraw occurring, the less fill rate is available for the entire frame.
As a result, the widespread use of impostors in a scene can lead to a memory

bandwidth or fill rate bottleneck in the rendering system, thus limiting performance.

5.1.6 Introducing Variation

Even with individually animated impostors, a sea of unlit identical humans does
not make a very convincing crowd (for an example see Figure 5.4). Variations in
clothing, and dynamic lighting, are essential to make the 2D illusion of impostor
crowd representations a convincing substitute for the corresponding 3D geometric

models.

Figure 5.4: Unconvincing crowds in [130].
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In an extension of their previous work, Tecchia et al. [131] introduce both colour
variation and lighting to their crowd rendering system. They perform colour vari-
ation by splitting the impostor into regions encoded in the alpha channel. For
example, one region might be the skin of the human, another region the trousers,
etc. A multi-pass rendering algorithm then draws every impostor in multiple itera-
tions. One pass is used for every region that is to be rendered in a different colour.
At each pass, the alpha test function is set to discard every fragment that does not
match the alpha value of the current region. The colour is then set, and the region
is rendered with that colour. This method lets a single impostor be rendered many
different times using differently coloured regions in each case, giving the impression
of many different and varied humans instead of a single human model ‘cloned’ across
the scene. This level of crowd variation is often overlooked in games. For example,
Electronic Arts’ next-generation console title Fight Night Round 3 contains crowds
that are obviously composed of the same models replicated many times (see Fig-

ure 5.5). A simple alteration of clothing colours would give the crowd a much more

varied and interesting look.

Figure 5.5: Scenes from Fight Night Round 3 ((©Electronic Arts). Note the lack of
crowd variation in the indicated areas.

De Heras Ciechomski, Ulicny et al. [25, 137] take the alternative route of us-
ing various levels of detail to produce crowds composed of low-polygon models. To

introduce variation, they reuse the same geometric model but apply different tex-
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tures, colours and scaling factors in order to give the appearance of a diverse crowd
of people. They apply this model to a scene involving a crowded amphitheatre in
ancient Rome as well as a modern urban setting, rendering hundreds of animated

and varied humans at interactive frame rates.

5.1.7 Dynamic Impostor Lighting

Even more important than introducing colour variation into a crowd scene is the
lighting of the impostors, especially when using a hybrid impostor/geometry system.
A complete lack of lighting would be immediately obvious and is not sufficient. Pre-
baking lighting into the impostor image is a better solution, but fails under various
circumstances; a human will be lit identically no matter whether it is daytime or
nighttime, they will be lit from the same direction regardless of their orientation,
and most importantly their lighting will not match the lighting of any geometric
representations to which they should switch in a hybrid system. The polygonal
versions of the humans will invariably be lit dynamically with whatever lighting
equation is deemed suitable; for example Blinn-Phong for the regular OpenGL fixed
function pipeline. Upon switching to an impostor representation, any changes in
lighting will become painfully obvious and seen as a visible pop. This detracts from
the visual quality of the overall scene. Therefore if the switch from impostor to
geometry and vice versa is to be seamless, the lighting of the impostors must match
precisely.

In [132], Tecchia et al. address the dynamic lighting issue by using a multi-
pass algorithm. An additional texture is generated for every impostor image in an
extra step of the pre-generation procedure. This image contains the normals of its
respective impostor. The x,y,z of the normal at every pixel is range compressed and
encoded into RGB channels. Presuming a well-formed normal in the range [—1, 1],

the mapping from normal to 8-bit RGB value is:

R— ((x+1)x0.5) x 255
G— ((y+1)x0.5) x 255
B — ((z+1) x 0.5) x 255

They use the OpenGL 1.3 DOT3_RGB_ARB extension to perform a dot product

of the normal at every pixel and a per-impostor light vector, evaluating a lighting
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equation approximately equal to that of the OpenGL fixed function pipeline. Each
component of the equation is rendered in a separate pass, which is accumulated in
the frame buffer and combined with the multi-pass colour variation method to give
a coloured, dynamically lit final impostor. This is done with a total of 8 passes; 5
passes for lighting and an additional 3 to add colour variation.

An example normal map of a single frame of animation from every viewpoint can
be seen in Figure 5.6. Here the individual impostor images have been tightly packed

to fit into the smallest texture possible, reducing video memory consumption.

Figure 5.6: A 1024 x 1024 impostor normal map for a single frame of animation

5.2 Accelerating Crowd Rendering

When dealing with the large numbers of individuals that comprise a crowd of hu-

mans, any increase in the rendering performance of a single unit will lead to a larger
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increase of performance for the crowd as a whole, allowing more detailed simulation
or an increase in the number of impostors for the same computational cost. There-
fore close attention must be paid to maximising use of the hardware architecture
upon which the crowd is being rendered.

The methods outlined by Tecchia et al. as discussed in Sections 5.1.6 and 5.1.7
perform well on previous generation graphics cards, but suffer from a number of
deficiencies when it comes to implementation on the latest parallel hardware. This
section outlines these problems and details solutions that overcome each in order to
improve the rendering acceleration of every impostor, and by extension the entire

crowd.

5.2.1 Disadvantages of Multi-pass Algorithms

The main weakness of the algorithms used in [131] and [132] are their reliance
on multi-pass techniques. Multi-pass techniques can be extremely beneficial for
algorithms which cannot be composited into one pass, and require the accumulation
of renderings - using the output of one pass as an input to the next pass. However,
the primary disadvantages of multi-pass algorithms compared to single-pass are as

follows:

More driver overhead: For every pass, the driver is going to spend time in the
API calls necessary to set the state for the next pass. This state may be
different from the state of the last pass - a different texture bound to the
texture unit, different material properties, different lighting or different texture
filtering. This means that the current state is invalidated and the pipeline must
be flushed. The acceleration achieved by highly parallel GPUs is dependent on
having many vertices and pixels being processed simultaneously, so flushing the
pipeline is extremely undesirable. Having this sort of state thrashing happen
for every pass of every impostor for every frame can result in severely degraded

performance and a CPU bottleneck in the driver.

More vertex transformation: Every time an impostor is rendered for a pass in
the multi-pass algorithm, the four vertices of that impostor must be trans-

formed. This means that for an 8-pass algorithm, 32 vertices are being trans-
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formed for every impostor. This represents a major increase in the amount of
work that must be done by the vertex processor, possibly introducing another

application bottleneck.

More fill rate: This is possibly the most damaging aspect of multi-pass rendering
in the case of impostors. Impostors are already heavily reliant on the fill
-rate speed of the GPU because they are an entirely image-based method. All
the blending and alpha testing required to render a non-opaque polygon are
amplified by the multi-pass method of culling any fragment except those with
a particular alpha value. As in the impact of extra vertex transformation,
an 8-pass algorithm will cause eight times the amount of fragment processing
to occur. In addition, redrawing the same quad many times results in much

overdraw, further reducing the fill rate of the overall frame.

To overcome these problems, we propose a generalised single-pass solution im-
plemented on programmable hardware that allows dynamic lighting and impostor
colour variation to a greater extent than previously possible. This has also been
published in ACM Transaction on Graphics, at 13D, and presented at SIGGRAPH
2005.

5.2.2 Dynamic Impostor Lighting

While the use of the OpenGL DOT3_RGB_ARB extension allows Tecchia et al.
to compute a per-pixel dot product, the coefficients of the dot product they use
are the normal vector (encoded in the normal map) and per-impostor light and
half-angle vectors as per the Blinn-Phong lighting equation. The reason they use
per-impostor instead of per-pixel vectors is to avoid the overwhelming computation
of computing both vectors for every pixel, which could not be performed in hardware
using the fixed function pipeline. While the result is correct for a light source set
at an infinite distance (as each per-pixel vector for an infinite light source would
be parallel anyway), the invariance of the light vectors over the impostor leads to
an inaccuracy that increases as the light gets closer to the impostor. With a light
source directly beside the impostor, a lack of accurate light vectors would lead to

incorrect lighting that would differ significantly from the lighting of the impostor’s
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geometric counterpart.

An additional restriction of using the fixed function pipeline, even with the per-
pixel capabilities of DOT3_RGB_ARB, is that the lighting equation used is restricted
to purely Blinn-Phong. While this is a perfectly acceptable model for the diffuse
lighting of human impostors, it precludes the possibility of using an alternative
lighting equation such as anisotropic lighting (for a human wearing material such as
velvet, for example). This is true for both the impostor and the geometric version,
as the lighting equations must match in order to avoid artefacts when switching
from one representation to another.

To avoid these problems, we implement both geometric and impostor lighting
using programmable hardware. We use a simplified version of the OpenGL lighting
equation which removes the specular, emission and shininess contributions in order
to reduce the amount of computation needed. The final impostor shading equation

is:
s )
Pizelpgp =((( L - N) x Regionggp) + Ambientrap) X Detailgrap (5.1)

where L is the light vector from that pixel to the light, interpolated over the
impostor’s quad by the rasteriser and normalised in the fragment processor. N is
the decompressed normal for that pixel retrieved from the normal map. Regiongap
is the colour for the region of that pixel given by the colour variation algorithm as
described in the next section. Ambient rgp is a constant ambient colour. Detailgap
is a detail map that is used to add extra details such as face and clothing varia-
tions. It should be noted that while this lighting equation suits the rendering of
plain-clothed humans, any other lighting equation could be used instead by simply
changing the shader associated with both the impostor and geometric model. For
example, an anisotropic metallic shader could be implemented for rendering both
impostors and geometric versions of cars including specular highlights and even
environment-mapped reflections, subject to performance constraints.

Using this single-pass impostor lighting method implemented with programmable
hardware eliminates the excess overdraw introduced by an equivalent multi-pass
algorithm and allows any lighting equation to be used for both the impostor and

the geometric representation. It also eliminates the extra API calls necessary for
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5.2 Accelerating Crowd Rendering

setting up impostor lighting with DOT3_RGB_ARB, reducing the potential for a
CPU bottleneck in the driver. By exploiting the programmable pipeline, we allow
for a more powerful and generalised impostor rendering algorithm at a reduced cost

compared to the multi-pass fixed function pipeline implementation.

5.2.3 Impostor Variation

As dynamic lighting can be implemented in a single pass by employing programmable
graphics hardware, a method to introduce colour variation for impostors in the same

pass is also required or else the advantages of avoiding a multi-pass algorithm will

be lost.
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Figure 5.7: Texture indirection, using the red and alpha channels of a 2D texture
lookup as the texture coordinates of another 2D lookup.

We achieve this by using a feature of programmable hardware called tezture
indirection. This is where any channel of the RGBA value resulting from one texture
lookup can be used as the texture coordinates of a subsequent texture lookup (see
Figure 5.7). We already have the different colouring regions encoded in the alpha
channel of each impostor, so we can use this alpha value to perform another lookup
into a special colour map. This colour map is simply a one-dimensional texture
where every pixel corresponds to the colouring of a particular region in the impostor.
After this second texture lookup, we have an unshaded impostor that has each region
coloured according to the colour map supplied. This is then combined with the rest
of the impostor shading equation (see Equation 5.1) to produce the final impostor

image. An illustration of the entire impostor shading procedure can be seen in
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Figure 5.8: The single-pass impostor shading and colouring process

In a multi-pass algorithm, one pass must be made for every colour region in
the impostor, bringing with it the additional CPU, vertex and fill rate overhead
that each extra pass requires. By employing this texture indirection technique in
programmable hardware, the number of colouring regions available to an impostor
is instead only limited by the precision of the alpha channel. For a regular impostor
with 8 bits per channel, this allows a maximum of 255 differently coloured regions.
This is reduced to 16 regions if S3 texture compression [120] is employed to reduce the
amount of texture memory used by an imposter, because under S3 compression the
alpha channel is compressed to a 4-bit representation. It should also be noted that
due to the occurrence of only a single instance of texture indirection in this algorithm,
shading performance is independent of the number of regions being coloured; one big

colour region will have the same performance as many small regions being coloured
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differently.

For similar reasons as for single-pass dynamic lighting, using the fragment shader
to control colouring with texture-encoded colour maps means that the API calls used
in a multi-pass algorithm to set the diffuse colour at each pass are not necessary.
Again, this reduces the number of API calls necessary for every single impostor,

further reducing the possibility of a function-call bottleneck in the driver.

5.2.4 Authoring Outfits

When dealing with a large crowd of coloured impostors, the chosen colours used for
outfits are very important. A randomly-chosen set of colours can produce garish
outfits that are jarring to the eye and detract from the believability and realism of a
scene. In addition, specifying which colours to use programmatically can be difficult
and inefficient without adding the extra complexity of a scripting language interface
to the impostor rendering algorithm.

By employing texture indirection and encoding impostor colours into textures,
it is possible to shift the control of outfit authoring into an artist-controlled tool
that constructs textures quickly and easily. This allows for the rapid generation and
display of many different outfits that are appropriate to the impostor in question,
with a minimum of programming overhead. An example of the outfit authoring tool
designed for our impostors is shown in Figure 5.9. These colour maps can also be
exported and applied to the geometric models, ensuring an exact match and thus
minimal artefacts when switching between representations.

The storage space required to store each colour map is negligible, as only one
pixel is required to represent each colour region. Therefore, over 1000 different
outfits with 4 different regions each could be designed for an impostor and only
require approximately 100k of memory. Furthermore, with careful assignment of
colouring regions, the same colour map can be used for more than one type of

impostor.

116




5.3 Results

[ Colour Map Chooser

245,188,178
FPS |
|

aeaviatoi)

Figure 5.9: The outfit tool used for choosing impostor colour maps

5.3 Results

We measured the performance of the impostors as part of the Geopostor crowd
rendering system, as this was the system that they were developed for. All of our
tests were performed using a Pentium 4 2Ghz processor, with 512Mb RAM and a
GeForce 4 Ti4600 3D card with 128 MB of video memory.

We ran tests investigating how the number of virtual humans and the represen-
tation used affected the frame rate. These tests used an impostor and a geometric
representation (consisting of approximately 2200 triangles) for 1, 10, 100, 250, 500
and 1000 virtual humans as shown in Figure 5.10(a). It should be noted that for
each test, all of the virtual humans were fully lit but never frustum or occlusion
culled and were therefore always on-screen.

We also tested how using our two LOD representations affected the systems per-
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formance in comparison to just using an impostor representation. These tests were
carried out for 1,000 - 10,000 virtual humans at 1,000 human intervals. A maximum
of 10,000 virtual humans was chosen as this was considered to be the maximum
amount that would be needed on-screen for scenes such as an army of characters
or a stadium of spectators. In these tests, the number of virtual humans using the
geometric representation was set to 100 to keep their rendering cost constant thus
allowing the performance impact of using the impostors to be measured. The graph
in Figure 5.10(b) illustrates that in the impostor/geometry case, the impostor rep-
resentation has a minimal impact on the rendering time as the number of virtual

humans increases.
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Figure 5.10: (a) Impostor vs Geometry. (b) Impostor vs Impostor/Geometry

Our results so far have convinced us that human impostors are a excellent substi-
tute for geometry, not only because of proven rendering efficiency gains, but also in
terms of visual fidelity. At certain distances, it is virtually impossible to determine
whether the high-resolution model or the impostor is being rendered. Furthermore,
these results have been validated by perceptual experiments [87, 53] which also de-
termined the thresholds at which switching between the impostor and geometric
representations are indistinguishable. This would not have been possible without
programmable graphics hardware and the methods described in this chapter for
matching exactly both the lighting and the colour variation of the two representa-

tions.
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5.4 Cluster Implementation

The implementation of a crowd rendering system is not as directly relevant to the
cluster as the previous algorithms such as isosurface extraction. This is largely due
to the fact that the problem here is a rendering one, and as such is quite different
to the processing-bound applications in scientific visualisation.

While programmable graphics hardware allows us to render large crowds of con-
vincing impostor-based human representations, the major limiting factors are in the
graphics card itself; texture memory is limited and as such the amount of different
impostor textures that can be stored is also limited. A cluster implementation of
the crowd rendering system will also encounter this limitations, as it uses the same
commodity graphics hardware to perform the rendering work; every card that needs
to render an impostor will require the impostor’s texture to be resident in video
memory, as texturing directly from system memory has shown to cause texture
thrashing and is detrimental to framerate.

However in the context of a crowd rendering system, the entire resources of the
cluster can still be put to good use. Along with the rendering system, a sophisticated
simulation engine is needed to drive a large-scale crowd. Artificial intelligence, path
finding, obstacle avoidance, behaviour planning and many other factors need to
be evaluated at every frame in order to produce a convincing, dynamic group of
humans. With care, these processes can be partitioned among the cluster’s nodes
and parallelised on the FPGAs in order to simulate a very large crowd at interactive
rates. The most obvious partitioning would be a world-space one, where humans
in one sector of the virtual world all reside on one node of the cluster. This would
allow humans close to each other to interact with each other without having to access
remote memory locations. Having the low-latency SCI interconnect allows the nodes
to communicate at high speeds and therefore allows the behavioural algorithms of
more distant individuals in the crowd to still interact with each other, perhaps at a
lower update rate than those in close proximity.

Taking further advantage of the cluster’s architecture can also provide other
methods of simulating the crowds. An asymmetric approach could be taken, where
one node is responsible for generating the actual impostor textures in real-time by

rendering to textures and providing these textures to the other nodes for use in the
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main human rendering system. This would provide a more consistent rendering look,
rather than mixing pre-generated images with live rendered geometry. Alternatively,
the humans could be distributed between the nodes based on the impostor textures
used. Each node would be entirely responsible for rendering certain impostors,
and then the final frame would be composited as a post-processing step. This would
alleviate the problem of every video card needing to contain a copy of every impostor
texture, allowing for more variety in the scene and therefore more realism.
Implementing a crowd system on the Cell processor would certainly allow for par-
allelisation of the simulation among the many SPUs. However as rendering speed
is a large part of the bottleneck in the crowd system, there is a limit to the use-
fulness of increasing the amount of processing without a corresponding increase in
rendering. In the cluster’s case, being able to scale the rendering power along with
the processing power has many obvious benefits and allows for a larger and more

detailed crowd.
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Chapter 6
Conclusions and Future Work

This thesis has described the exploitation of commodity parallel hardware for graph-
ics algorithms and architectures. In this final chapter we summarise our contribu-
tions and suggest potential future avenues of investigation based upon this work, as

well as briefly discussing the future of commodity parallel hardware.

6.1 Summary of Contributions

New cluster software infrastructure: We have described a new tightly-coupled,
scalable cluster framework composed of heterogeneous commodity compo-
nents, combined with a minimal custom hardware element. This cluster takes
advantage of the strengths of its constituent parallel parts, and is connected
by a low-latency, high-bandwidth SCI interconnect which implements a single
distributed shared memory space to reduce data replication. Additional pro-
cessing power is provided by reconfigurable FPGAs. A software framework
has been proposed to implement a distributed graphics driver based upon ATI
driver specifications for the R200, giving the cluster the potential to signifi-

cantly accelerate existing and future parallel rendering algorithms.

Volume visualisation: We have presented an overview of a volume visualisation
system for generating publishable images of scientific data, particularly confo-
cal fluorescence microscopy data. It uses programmable graphics hardware in

the form of texture shaders and register combiners to achieve a performance
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increase and improve image quality, as well as implementing an adaptation of
the marching cubes algorithm in order to generate polygonal surfaces of equal

isovalues.

Volume simplification: In an attempt to reduce the amount of work that needs to
be done during isosurface extraction of a complete volume, we have presented
a simple, quick and effective method of volume simplification that retains the
coarse features of the volume. We have demonstrated that even one level of
simplification can reduce the size of the volume considerably, by up to a factor
of ten. This method has also been shown to improve the visual quality of the

inherently noisy surfaces extracted from confocal microscopy datasets.

Isosurface extraction on Cell: A novel algorithm for isosurface extraction on
the new Cell processor has been demonstrated. We have demonstrated peak
processing speeds of over 100 million tetrahedra per second on a dual Cell
server, or over 47 million tetrahedra per second on a single Cell. We have
shown that these increases have come about through the combination of a
streaming and parallelisation scheme that takes advantage of Cell’s ability to
effectively eliminate memory latency by hiding it behind processing time. We
have also given a general overview of the Cell processor and described how
to leverage its power in the adaptation of an existing algorithm. This same
approach can be used for other compute- and bandwidth-bound algorithms
suitable for parallelisation, and similar improvements in processing times can
be expected. Moreover, the fact that these improvements can be achieved using
a commodity processor means that it is a superior alternative for applications
where more processing power is needed, but the cost of expensive dedicated

hardware would be prohibitive.

Crowd rendering: The methods used by Tecchia et al. [132] have been built upon
and improved to produce a lit and varied human impostor in a single rendering
pass. We have implemented a method that is controllable by artist-generated
textures and allows many more regions of variation at no extra cost. Addi-
tionally, the use of the programmable pipeline permits the use of arbitrary

lighting equations for impostors, an important consideration for other classes
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of material such as cloth or metal.

6.2 Future Work

6.2.1 Isosurface Extraction and Volumetric Simplification

The approach to isosurface extraction on Cell described in Section 4.4 concentrates
on eliminating memory latency and efficiently transferring data to the SPUs for
processing. It does not address the issues of further acceleration by using spatially
hierarchical data structures such as octrees [143] or interval trees [19]. There is
little doubt that since the current limit of our method is the processing time needed
by the SPUs, reducing the amount of data to be processed would lead to further
increases in speed.

Another issue to be investigated is that of mixing SPU application models in
order to improve overall system performance. For example, some SPUs could be
dedicated to isosurface extraction while the others perform mesh simplification on
the polygons already produced. A broad range of load-balancing implications are
introduced by the two-tier PPE/SPE split, and these need to be explored.

Given the streaming methods presented here, there is no limit on the size of
the dataset to be processed. However, as with conventional processors, the size of
system memory still limits the amount of data that can be held at any time. This
puts a limit on the speed of very large volume isosurface extraction, so out-of-core
execution methods such as those proposed by Chiang et al. [16] will also have to be
investigated with respect to implementation on Cell.

The volumetric simplification presented in Section 4.3 could also be applied to
isosurface extraction on Cell. Due to the buffering methods, transfer time is not
an issue. Therefore, simplification could be done on the SPUs before performing
extraction. However it remains to be seen whether this would be beneficial to
execution time or not. It would also require more replication in the SPUs to properly
perform a high level of the 3D filtering, as the overlap between chunks and slices
would need to be higher.

There is much future work to be done in this area of isosurface extraction on

Cell, and on Cell hardware in general. Because it is a relatively new architecture,
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its usefulness for compute-, latency- and bandwidth-bound problems is just becom-
ing apparent. A significant change in attitude towards system design is needed in
order to use it to its full potential, but as the hardware becomes more widespread
and support tools improve, so too will the programming paradigms specific to this

platform.

6.2.2 Parallel Commodity Cluster

A working prototype of at least two boards will be needed before a lot of the imple-
mentation and testing can be done. When this is possible, there are many design
choices that must be validated before committing fully to them.

The implications of accessing remote buffers must be evaluated and compared
to the local buffers usually accessed by the normal graphics driver in AGP memory
with respect to access times and bandwidth. If remote indirect and ring buffer
fetches are feasible, it allows a much more flexible and distributed model to be used
when designing the cluster-based driver.

Another area that needs careful consideration is the concurrency mediation meth-
ods that are used to arbitrate simultaneous accesses to a custom board’s local ring
buffer. Using the shared memory space for the transfer of command packets is a
powerful method of communicating quickly and efficiently with the cluster’s GPUs,
so a lightweight and yet robust solution to this problem must be found.

The possibility of reducing data replication with shared memory must be weighed
carefully against the speed of data access. Due to the NUMA architecture of the
cluster, it would be faster to keep a copy of the data in the local memory of every
node that requires it. However, this would be a less efficient use of available memory
and should be avoided if possible. Due to the fact that data is only loaded into video
memory once and then accessed from there by the GPU, it is likely that the cost of
transferring the data over the interconnect would be acceptable in order to eliminate

replication.
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6.3 The Future of Parallel Hardware

Given the recent improvements in commodity parallel hardware such as FPGAs
and the Cell processor, and the research being published here and elsewhere on
how best to exploit them for computer graphics algorithms, it is becoming clear
that the future of processors (and therefore computing in general) lies in parallel
systems. Even processor manufacturers such as Intel and AMD are recognising
this fact and planning accordingly. In April of 2005, Intel announced the Pentium
Extreme Edition, its first dual-core product. It has since modified its overall strategy
to specify multicore functionality as a central feature of its future CPU architectural
designs, also producing supporting software to help developers take full advantage
of multicore platforms. The new Core Microarchitecture that Intel is promoting
as the basis of the next generation of Intel products is further evidence of Intel’s
commitment to parallel hardware as the way forward.

The driving force behind the enormous increase in GPU power over the last
ten years (the original 3dFX Voodoo was only released in 1996) has undeniably
been the computer games industry. Furthermore, the parallelism inherent in the
modern GPU allows processing speeds that are far beyond the capabilities of a
comparable sequential processor - albeit only for a specialised purpose, in this case
3D rendering. Once such a powerful processor became available at an affordable
price, it was inevitable that it would be adapted for use in other areas such as
scientific simulation. While the GPU can be adapted to perform these tasks very
well through the methodologies of GPGPU, it is clear that having to ‘shoehorn’
such generalised computational tasks into a specific graphics rendering paradigm is
far from ideal. Certain desirable general purpose operations are either restrictive
or impossible because of fundamental differences in the underlying architecture -
writing to an arbitrary location in memory being one example. These currently
have to be overcome by roundabout methods such as multipass algorithms that
would not be necessary on a general purpose processor.

At the same time, the speed afforded by the modern GPU is possible because
it is geared toward specific operations. Additionally, the reason that the GPU is
so attractive to the proponents of GPGPU is their low cost, which is driven down

by their primary consumers, games players. A general stream processor could allow
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these operations with a more general and useful instruction set, but the demand
would be nowhere near that of GPUs, resulting in a much higher market price.
Nevertheless, now that the advantages of parallel processing have been made
obvious by GPUs, the need to adapt algorithms to fit into the GPU programming
model will be lessened as other parallel architectures arise. The increase in research
into the application of processors such as FPGAs and Cell shows that much more can
be offered besides raw parallel processing power, including much greater flexibility
in implementation, larger memory, and far greater scalability. While its importance
in general computation may be lessened by other architectures, it is still clear that
the GPU will continue to be at the cutting edge of graphics rendering hardware for

the foreseeable future.
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