
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

E xploiting C om m odity Parallel H ardware for

C om puter G raphics A pplications and

A rchitectures

A Thesis

Subniitted to the Office of Graduate Studies

of

University of DubUn, Trinity College

in Candidacy for the Degree of

Doctor of Philosophy

by Keith O ’Conor

April 2006

2 1

^ LIBRARY DU3L1N ^

s

D eclaration

I, the undersigned, declare th a t this work has not previously been subm itted as

an exercise for a degree a t this, or any other University, and tha t unless otherwise

stated, is my own work. This thesis may be borrowed or copied upon request with

the permission of the Librarian, Trinity College, University of Dublin. The copyright

belongs jointly to the University of Dublin and Keith O ’Conor.

Keith O'Conor

January 29, 2007

For Elaine

Acknowledgments

First and foremost, my sincerest thanks to my supervisor Carol O'Sullivan. Carol

has never been anything less than enthusiastic and supportive of all my endeavours

here at the ISG, and I would not be where I am today w ithout her.

The ISG has been a great place to w'ork and live over the last four years. The

people I have met here have become good friends, and I will not soon forget them.

My thanks go to John Dingliana for taking on the final year project th a t led to

my position in the ISG. Thanks also to Simon for the engaging work we have done

together, and for all the entertaining chats about everything from graphics to jazz.

I also owe a big thanks to Andrew Brosnan for his late-night proofreading during

the final crunch.

To my parents and my brother Hugh who have always believed in me, even when

I didn’t believe in myself. They are a constant source of encoiuagement, strength

and inspiration.

Finally, to my friend and my love, Elaine. She makes it all worthwhile.

K e i t h O ’C o n o r

University of Dublin, Trinity College

A pril 2006

R elated Publications

Isosurface Extraction on the Cell Processor

K. O’Conor, C. O’Sulhvan and S. Collins.

Proceedings of Eurographics Ireland Workshop, October 2006

A Scalable and Reconfigurable Shared-M emory Graphics A rchitecture

M. Manzke, R. Brennan, K. O’Couor, J. Dingliana and C. O’Sullivan.

Proceedings of ACM SIGGRAPH 2006 Sketches &; Applications, 2006, p. 182

Geopostors: A R eal-Tim e G eom etry/Im postor Crowd Rendering System

S. Dobbyn, J. Hamill, K. O’Conor and C. O’Sullivan.

ACM Transactions on Graphics, 24(3), 2005

Geopostors: A R eal-Tim e G eom etry/Im postor Crowd Rendering System

S. Dobbyn, J. Hamill, K. O’Conor and C. O’Sullivan.

Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games

2005, pp. 95 - 102

Perceptually A daptive Graphics

C. O'Sullivan, S. Howlett, Y. Morvan, R. McDonnell and K. O’Conor.

Eurographics State of the Art reports, September 2004. pp. 141-164. Also to appear

in Computer Graphics Forum.

3D Visualisation of Confocal Fluorescence M icroscopy D ata

K. O’Conor, H.P. Voorheis and C. O’Sullivan.

Proceedings of Eurographics Ireland Workshop 2004, pp. 49 - 54 (Best Paper Award)

A bstract

The processing power available in today’s commodity parallel hardware has en­
abled realism and detail in graphics th a t has never before been possible. W ith the
advent of the progrannnable Graphics Processor Unit (GPU), the full potential of
parallel architectures to accelerate graphics algorithms has become apparent. This
parallelism is becoming more ubiquitous in other processors, and research th a t ex­
ploits this parallelism is ongoing.

In this thesis we apply the knowledge learned of rendering clusters to the design
of a new tightly-coupled cluster architecture for parallel rendering, and describe a
software infrastructure for implementing distributed rendering by taking advantage
of the unique mix of parallel hardware available. We then concentrate on the ap­
plication of this commodity parallel hardware to two im portant fields of computer
graphics api)lications; scientific visualisation and entertainment.

Under scientific visualisation, we describe the use of the programmable pipeline
for direct volume rendering of datasets captured by confocal fluorescence microscopy,
as well as introducing a simple method for fast volvmietric simplification which al­
lows broad feature preservation while allowing faster isosurface extraction and noise
reduction when applied to confocal datasets. We also introduce a novel algorithm
for performing isosurface extraction on Cell, the recently developed high-profile mul­
ticore processor from IBM, Sony and Toshiba. We give an overview' of the processor
and detail how to exploit it for algorithmic acceleration.

In the field of entertainm ent applications, we describe the use of the programmable
graphics pipeline to accelerate and improve the rendering of impostor-based crowds
made up of a large number of virtual humans. discuss the shortcomings of pre­
vious methods when applied to state of the art graphics hardware, and detail a new
algorithm that can be applied to achieve superior results.

Contents

C hapter 1 In trod u ction 1
1.1 Para lle lism .. 2
1.2 Context and S c o p e ... 3
1.3 C o n tr ib u tio n s ... 4
1.4 Summary of Chapters .. 5

C hapter 2 B ackground and R elated W ork 6
2.1 Graphics H a rd w a re ... 6

2.1.1 Hardware A cce le ra tio n ... 7
2.1.2 Embarrassingly Parallel .. 7
2.1.3 The Graphics P ip e l in e ... 9
2.1.4 Exploiting Graphics H ardw are .. 14
2.1.5 B o ttle n e c k s ... 15

2.2 Commodity C lu s t e r s .. 17
2.2.1 Using commodity p a r t s ... 17
2.2.2 Parallel Rendering on C lu ste rs .. 17
2.2.3 Related W o r k .. 19

2.3 Field Programmable Gate A r r a y s .. 20
2.3.1 B a c k g ro u n d ... 20
2.3.2 A d v a n ta g e s ... 21
2.3.3 D isadvantages.. 21
2.3.4 FPGAs and G raph ics ... 22

2.4 The Cell Broadband E n g in e .. 23
2.4.1 Design a i m s ... 23

i

2.4.2 A rch itec tu re ..24
2.4.3 Programming Cell .. 27
2.4.4 Cell-Related Research ..29

C hapter 3 Towards a N ew Fram ework 31
3.1 Proposed C l u s t e r .. 32

3.1.1 Cluster O v e rv ie w ..33
3.1.2 Scalable Coherent Interface ... 36
3.1.3 Distributed Shared M e m o ry ... 38
3.1.4 A im s ... 39

3.2 Graphics H a rd w a re ... 40
3.2.1 Graphics D r iv e r s ..40
3.2.2 Hardware R eg is te rs .. 43
3.2.3 The AGP A p e r tu re .. 44
3.2.4 Employing Hardware A cceleration... 45

3.3 Software In fra s tru c tu re .. 49
3.3.1 M olnar’s Taxonomies R e v is i te d ...49
3.3.2 W orkstation Parallelism .. 51
3.3.3 Connnunicating with the D r iv e r .. 52
3.3.4 Connnunicating with the FPGA Co-i)rocessors............................ 54

3.4 Comparison with the Cell P ro cesso r... 55
3.5 Example Applications .. 57

C hapter 4 Scientific V isualisation 60
4.1 Volume V isu a lisa tio n ... 61

4.1.1 Direct Volume R endering .. 61
4.1.2 Volume Rendering on Commodity Graphics H ardw are 64
4.1.3 Isosurface E x tra c tio n .. 67
4.1.4 Accelerating Isosurface E x trac tio n ... 70
4.1.5 Isoextraction on Graphics Hardware .. 71

4.2 Accelerated Visualisation with Parallel Hardware 73
4.2.1 Confocal Fluorescence M icroscopy... 73
4.2.2 Interpolated slices... 74

n

4.2.3 Hardware Accelerated Transfer F unctions..................................... 75
4.3 Volume Simplification ... 77
4.4 Isosurface Extraction on the Cell P ro cesso r.. 80

4.4.1 Cell Applicability to Marching T e tr a h e d r a 81
4.4.2 Im p lem en ta tio n ... 81
4.4.3 Volume Partitioning .. 82
4.4.4 D ata t r a n s f e r .. 82
4.4.5 P rocessing ... 84

4.5 R e su lts ... 85
4.5.1 Isosurface S im p lifica tion .. 85
4.5.2 Cell Iso ex trac tio n ... 90

4.6 Cluster Implementation .. 95
4.6.1 Volume V isualisa tion .. 95
4.6.2 Volume Simplification ... 96
4.6.3 Isosurface E x tra c tio n .. 97

C h a p te r 5 E n te r ta in m e n t 98
5.1 Parallel Hardware in Entertainment Applications 99

5.1.1 Graphics Hardware in G a m e s .. 99
5.1.2 Crowd R en d e rin g ... 100
5.1.3 Reducing Rendering W o r k ...102
5.1.4 A Further Level of Detail; Im p o s to r s ...103
5.1.5 Hardware Implications of Impostor Usage106
5.1.6 Introducing V aria tion ...107
5.1.7 Dynamic Impostor L ig h t in g ... 109

5.2 Accelerating Crowd R endering ..110
5.2.1 Disadvantages of Multi-pass Algorithms .. I l l
5.2.2 Dynamic Impostor L ig h t in g ... 112
5.2.3 Impostor V a r ia tio n .. 114
5.2.4 Authoring O u tf its ..116

5.3 R e su lts ... 117
5.4 Cluster Implementation ..119

i i i

C hapter 6 C onclusions and Future W ork 121
6.1 Summary of C ontribu tions... 121
6.2 Future W ork... 123

6.2.1 Isosurface Extraction and Volumetric Simplification................... 123
6.2.2 Parallel Commodity C lu s te r ..124

6.3 The Future of Parallel H ardw are..125

IV

List of Figures

2.1 The Graphics P ip e h n e .. 10
2.2 Cell Processor O v e rv ie w ... 24
2.3 The PowerPC Processor Element (PPE) ... 25
2.4 The Synergistic Processor Element (SPE) ... 27
2.5 Cell programming models .. 28

3.1 A custom board with graphics card and SCI Link Controllers 34
3.2 A cluster node with attached SCI PCI card .. 35
3.3 An overview of the proposed cluster .. 37
3.4 Distributed Shared Memory implemented in hardware 39
3.5 Photo of the first prototype custom b o a r d ... 40

4.1 Evident proxy geometry in 2D texture-based volume rendering 66
4.2 The 14 possible cases of Marching C u b e s ... 69
4.3 Decomposition of a cube and triangulation in Marching Tetrahedra . 70
4.4 Cross-eyed stereo and DVR screenshot of Trypanosoma Brucei 74
4.5 Inserting interpolated slices .. 76
4.6 DVR and corresponding extracted isosurfaces 77
4.7 Volumetric simplification of the Head Aneurysm dataset78
4.8 Volumetric simplification of the Chromatid Separation dataset 79
4.9 Volume slice divided into chunks for distribution to 4 S P U s 83
4.10 Trypanosoma Brucei # 1 s im p lif ic a tio n .. 87
4.11 Trypanosoma Brucei # 2 s im p lif ic a tio n .. 87
4.12 Chromatid separation sim plification... 88
4.13 Bonsai Tree s im p lif ic a tio n .. 88
4.14 Trypanosoma Brucei # 1 simplification screenshots............................ 89

V

4.15 Trypanosom a Brucei 7^2 simplification sc reen sh o ts 89

4.16 C hrom atid Separation sim plification s c re e n s h o ts 89

4.17 Bonsai Tree sim plification sc re e n sh o ts .. 89

4.18 Spherical shell volume after isoextraction on Cell 91

4.19 Bonsai Tree volume after isoextraction on C e l l ... 91

4.20 Test results for th e 1024^ and 512^ spherical shell volumes 92

4.21 Test results for th e 256^ and 128^ spherical shell v o lu m e s 92

4.22 Test results for th e 64^ and 32^ spherical shell v o lu m e s 93

4.23 Test results for the Bonsai Tree and Head A neurysm volumes 93

4.24 Isosurface ex traction s p e e d s .. 94

5.1 N orm al m apping in the Unreal 5 e n g in e ... 101

5.2 D eserted streets in GTA: San A ndreas ... 102

5.3 Im postor viewpoints ...105

5.4 Unconvincing c r o w d s ...107

5.5 Lack of crowd variation in Fight Night Round 3 ..108

5.6 An im postor normal nrap for a single frame of a n im a t io n110

5.7 T exture in d i r e c t io n ...114

5.8 T he single-pass im postor shading and colouring process115
5.9 T he outfit tool used for choosing im postor colour m a p s 117

5.10 Im postor and G eom etry c o m p a r is o n s .. 118

List of Acronyms

AGP Accelerated Graphics Port
API Application Programming Interface
ARB OpenGL’s Architecture Review Board
ASIC Application-Specific Integrated Circuit
BAR Base Address Registers
BEI Broadband Engine Interface
CBE Cell Broadband Engine
COTS Commodity Off-The-Shelf
CP Conunand Processor
CPU Central Processing Lhiit
CT Computerised Tomography
DLL Dynamic Link Library
DMA Direct Memory Access
DSM Distributed Shared Memory
DVI Digital Visual Interface
DVR Direct Volume Rendering
EIB Element Interconnect Bus
FIFO First In First Out
FPGA Field Programmable Gate Array
CART Graphics Address Remapping Table
GLSL OpenGL Shading Language
GPGPU General-Purpose Com putation on GPUs
GPU Graphics Processing Unit
HLSL DirectSD’s High Level Shading Language
HPC High-Performance Computing

IBR Image Based Rendering
LC Link Controller
LOD Level Of Detail
LRU Least Recently Used
MFC Memory Flow Controller
MIC Memory Interface Controller
MIMD Multiple Instructions Multiple D ata
MMIO Memory M apped Inpu t/O u tpu t
MPI Message Passing Interface
MRI Magnetic Resonance Imaging
MT Marching Tetrahedra
NUM A Non-Uniform Memory Access
PCI Peripheral Component Interconnect
PIO Programmed Inpu t/O u tpu t
PLD Programmable Logic Device
PPE PowerPC Processor Element
PPU PowerPC Processor Unit
PSGL Playstation Graphics Language
PVM Parallel V irtual Machine
RISC Reduced Instruction Set Computer
SCI Scalable Coherent Interface
SDK Software Development Kit
SIMD Single Instruction Multiple D ata
SMP Symmetric Multiprocessing
SPE Synergistic Processor Element
SPU [Cell] Synergistic Processor Unit
SPU [Chromium] Stream Processing Unit
SRAM Static Random Access Memory
TCL Transform, Clipping and Lighting
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

Chapter 1

Introduction

Since the introduction of the modern integrated circuit computing power has been
increasing rapidly due to improvements in technology and manufacturing methods.
Furthermore, this power does not come at a commensurate price. Quite the opposite
is true; in 1997 the equivalent price of one gigaflop of power was $30,000 [140]. Today
in 2006, th a t price has dropped to under $1 in the case of the most recent Graphics
Processor Units (GPUs).

The widespread availability and low price of computing power has been the cause
of a major boom in personal computing and the consequent uljiquity of desktop
workstations seen today. Even a moderate desktop computer is now capable of
billions of floating point operations per second - orders of m agnitude faster than
a machine th a t would have been termed a ‘supercom puter’ 30 years ago. The low
cost of this hardware enables ordinary commodity off-the-shelf (COTS) systems to
perform complex simulations in real-time at interactive rates to a degree th a t was
never before possible without extremely expensive hardware or dedicated custom
architectures.

However, this continuing growth is not just because of increasing chip speeds
and decreasing costs. Indeed, the physical limitations of current manufacturing
techniques are becoming apparent as the performance gains th a t can be had by
further miniaturisation start to reach diminishing returns. Therefore a different
approach is being turned to in order to supply the need for ever-increasing processing
speed. Modern systems can exploit parallelism a t many levels in order to scale to

1

1.1 P arallelism

mviltiple processors and take advantage of the inherently parallel na tu re of m any

algorithm s.

1.1 Parallelism

The key concept of parallel com puting is the decom position of a problem into discrete

com ponents th a t can be solved individually. This can be carried out in two forms,

classified by where in the system th e parallelism is implemented.

Im plicit parallelism , where th e system autom atically partitions work to be dis­

trib u ted am ong processors, can be seen in systems such as the G PU pipeline and

certain SIM D-optim ising com pilers. In this case the developer does not need to spec­

ify any details of how work will be segmented. However, for perform ance-oriented

applications it still helps to take it into consideration a t the design stage, in order

to allow th e work to be parallelised as efficiently as possible.

On the o ther hand, explicit parallelism can be seen in areas such as m ulti­

th readed applications or d is tribu ted systems. In this case, developers nnist specifi­

cally design the application around the distribu tion model, taking into account all

the perform ance im plications and com m unication restrictions th a t accom pany the
underlying arch itecture in order to perform the maximvun am oimt of com putation

a t any stage.

A lthough explicit parallelism is not a new area per >se, its use in m odern pro­

cessors is begiiming to become m ore im portan t than ever before. M ulticore and

parallel architectures such as th e new Cell processor necessitate a fundam ental shift
in system design, requiring applications to be developed with new approaches to

system usage. Ju s t as cache access behaviour is a concern for the efficient usage of

sequential processors, factors such as d a ta d istribu tion , synchronisation and m em ­

ory access latency become an im p o rtan t consideration for the efficient use of parallel

systems.

2

1.2 C on text and Scope

1.2 C ontext and Scope

The work contained in this thesis began as part of a HEA-funded project; the
Institute for Information Technology and Advanced Computation (IITAC), with the
au thor’s particular remit being to study cluster-based rendering frameworks (such as
Chromium - see Section 2.2.3) and their use for scientific visualisation. Specifically,
the study of the protozoa Trypanosoma Brucei was to be the subject of visualisation
in association with the Cell Membrane Group in Trinity College Dublin. Interactive
visualisation necessitated the investigation of programmable graphics hardware in
order to allow real-time rendering of the datasets being captured by the confocal
microscopes used to study this organism.

While this research was being carried out, it was recognised th a t work being
carried out by others on the same project, on crowds and virtual human rendering,
could benefit greatly from the knowledge gained of graphics hardware. This was
applied to accelerate crowd rendering and enable large numbers of humans to be
simulated in real-time.

From this earlier work, a new project arose in association with the Computer
Architecture Group (CAG) and funded by Science Foundation Ireland (SFI). This
project aims to build upon the knowledge of clusters and connnodity graphics hard­
ware gained in the previous research to produce a new hardware framework that
incorporates the advantages of both architectures. It also encompasses knowledge
gained by researchers in the CAG in relevant areas such as Field Programmable
G ate Arrays and the Scalable Coherent Interconnect in order to produce a new
parallel cluster architecture for distributed rendering and simulation. The author’s
particular remit in this project was the investigation of the required software infras­
tructure and the exploitation of the framework for different types of applications, in
particular, entertainm ent and scientific visualisation.

Most recently, an opportunity arose to investigate the application of the new Cell
processor for accelerating graphics algorithms. From the experience gained in both
volume visualisation of microscopy data and the use of parallel graphics hardware,
it was recognised th a t this new parallel architecture could be used to substantially
accelerate the area of surface extraction, necessary for isolating particular structures
inside a dataset.

3

1.3 C ontrib ution s

Therefore, the following chapters present the research performed in these projects.
Specifically, the parallel architectures th a t were used and their application to the
areas of scientific visualisation (volume rendering and surface extraction) and enter­
tainm ent (crowd and virtual human rendering).

1.3 Contributions

In this thesis, we will look at how both implicit and explicit parallel systems can be
employed in order to accelerate existing graphics algorithms. The m ajor contribu­
tions are as follows:

• An overview of a variety of parallel architectures including both distributed
systems and parallel processors. We investigate their exploitation for acceler­
ating graphics algorithms and discuss their use in j)revious research.

• Details of a new hardware cluster for accelerating distributed rendering. We
describe the low-level mechanism of existing graphics drivers and outline a
softw are infrastructure to exploit the uniciue assortment of heterogeneous
parallel hardware in the cluster to provide acceleration of both sinuilation and
rendering algorithms.

• The use of the programmable pipeline for direct volum e rendering of
datasets captured by confocal fluorescence microscopy. W'e also introduce
a simple method for quick volum etric sim plification which allows broad
feature preservation while allowing faster isosurface extraction and noise re­
duction when applied to confocal datasets.

• A description of a novel algorithm for performing isosurface ex traction on
Cell, the recently developed high-profile nuilticore processor from IBM, Sony
and Toshiba. To our knowledge this is one of the first applications to be
published which is aimed specifically at this new parallel architecture. We also
give an overview of the processor and detail how to exploit it for algorithmic
acceleration.

4

1.4 Summary of Chapters

• The use of the programmable graphics pipeline to accelerate and improve the
rendering of im postor-based crowds made up of a large number of virtual
humans. We discuss the shortcomings of previous methods when applied to
state of the art graphics hardw^are and detail a new algorithm that can be
applied to achieve superior results.

1.4 Summary of Chapters

The rest of this thesis is divided up into the following chapters:

C hapter 2 describes the different parallel architectures w'e will be exploring through­
out the rest of the thesis; GPUs, commodity clusters, FPGAs and the Cell
Broadband Engine. Related research in each area is also presented, with a
particular focus on their applications to graphical algorithms.

C hapter 3 presents a new hardware framework built at Trinity College Dublin in
association with the Computer Architecture Group. We describe the under­
lying architecture, composed of custom-built FPGA-based boards attached to
commodity graphics cards and connected by an SCI interconnect with dis­
tributed shared memory. We also discuss the inner workings of a graphics
driver based on technical specifications supplied by ATI, and propose a suit­
able software infrastructure for exploiting such an architecture.

Chapter 4 explores the area of scientific visualisation. We give an overview of
volume rendering, both direct and indirect, before describing the contributing
work of this thesis in the areas of volume rendering, volumetric simplification
and isosurface extraction on commodity parallel hardware.

C hapter 5 details the use of commodity parallel hardware in the field of entertain­
ment applications. We concentrate on crowd rendering, exploring previous
methods and describing an algorithm for producing hardware-optimal lit and
varied humans that can be used in a hybrid impostor/geometry crowd system.

C hapter 6 provides a summary of these contributions, as well as a discussion of
future work and the direction of commodity parallel hardware in general.

5

Chapter 2

Background and R elated Work

There are many different levels of parallel architectures. Some exhibit parallelism by
distributing work to discrete components of the system. Others employ internal par­
allelism; the job is broken up into steps to be processed simultaneously in a pij^elined
fashion. However, all architectures are advancing rapidly due to improvements in
design and manufacturing methods.

This chapter looks a t four distinct parallel hardware architectures, including
distributed cluster systems and parallel chips. It gives an overview of each and
details previous research performed with each architecture in relation to graphics
algorithms.

2.1 G raphics Hardware

In the early days of real-time 3D graphics, the CPU was required to handle all
transformations and rasterisation required to produce a final rendered image. Given
the limited amount of computational power available, much of the processing time
was consumed by these costly operations, leaving less time for simulation and other
processing required to generate the 3D da ta in the first place. Additionally, having
the CPU perform rasterisation placed an extra burden on memory bandwidth, which
was required to access and update a software frame buffer and depth buffer. The
need for specific dedicated hardware was obvious; a Graphics Processing Unit (GPU)
co-processor could offload the cost of these operations from the CPU.

6

2.1 G raphics H ardware

2.1.1 Hardware A cceleration

3D graphics acceleration through dedicated commodity hardware is not a new topic.
The first generation of affordable commodity 3D accelerator cards arrived in 1996
with the widespread adoption of SDfx’s Voodoo range of expansion cards. When the
price of memory dropped substantially in the same year, these cards could finally
be manufactured and sold at affordable prices. Soon competitors such as ATI and
NVIDIA were producing similar products. W ith upwards of 4MB of video memory,
these cards were able to take over rasterisation from the CPU, allowing 16-bit frame
buffers and depth buffers. Soon afterwards they were also performing hardware
primitive assembly, given transformed vertices by the CPU.

More importantly, they performed texture mapping and texture filtering. These
operations w'ere severely limited in software implementations tha t required real-time
frame rates, because of the large amount of processing and bandwidth required to
filter and project a texture of reasonable size in 3D. Tlie improvements in image
quality and rendering speed given by these cards were immediately apparent and
3D graphics liardware was soon a prerequisite for many games and other 3D appli­
cations.

After texturing and rasterisation, the next step in hardware acceleration was
to perform vertex transformation, clipping and lighting (TCL). NVIDIA’s GeForce
range was the first to introduce this feature, thus moving all of the graphics pipeline
(see Section 2.1.3) processing into hardware. This relegated the CPU to the role of
subm itting vertex and texture data to the GPU, freeing more CPU cycles to devote
to application areas th a t are non-specific to graphics, such as physics, artificial in­
telligence, scene graph management etc. Initially there was some concern over the
advantages of hardware TCL, due to benchmark performances being well below that
of software CPU performance. However, as hardware improved and mesh sizes cor­
respondingly increased, full utilisation of hardware TCL yielded better performance
than equivalent software implementations ever could.

2.1.2 Em barrassingly Parallel

An often quoted metric of the recent rate of improvement in GPU power is “Moore’s
Law cubed” . Moore’s Law [93] is based upon the empirical observation tha t, due

7

2.1 G raphics H ardware

to the rate of increase in circuit complexity versus size and cost, computing power
doubles roughly every 18 months^. Correspondingly, GPU speeds double roughly
every six months. This is due to a combination of increasingly better manufacturing
processes, 3D-specific algorithmic advances, but most importantly the nature of the
computations taking place.

In parallel computing terms, 3D graphics rendering is an embarrassingly parallel
problem. In other words, it is a problem that can be easily divided into many
steps, each step having little or no effect on the computation of other steps. These
steps can therefore Ije worked on in parallel, the results being combined to form the
solution. The GPU exploits this parallelism in acting as a stream processor [139],
A stream processor operates by scatter/gather; data is gathered from disparate
sources (usually random or sequential blocks of memory), fed through one or more
computational kernels and then scattered back to memory. Each kernel performs
the same operation on every part of the stream that passes through it. In the case of
the GPU, the kernels are the vertex processor and the pixel processor, as described
in Section 2.1.3.

In comparing this to a CPU’s need to perform every instruction in sequential
order, we get an insight into why the GPU can greatly out-perform the general
purpose processor - even ignoring the obvious speed advantages of parallel processing
over serial processing. Pushing CPU speeds higher and higher places a strain on the
speed at which memory can be accessed, as advances in memory latency have not
been in keeping with those of the CPU for a long time [145]. The fact that every
instruction and piece of data must share the same path to memory exacerbates the
problem. To alleviate this growling speed/latency gap, the CPU needs to devote
larger amounts of chip area to cache, to the point that the Pentium 4 actually
contains more cache than it does logic.

On the other hand, the nature of the GPU allows many operations to happen in
parallel, each coming from a dedicated path in the stream and leaving via another
dedicated path - in many cases (texture lookups being the obvious exception) these
operations need little or no memory access. Cache can therefore be kept to a mini-

*It should be noted th a t the original article to which the law is attributed never mentions the
commonly accepted timespan of 18 months. Instead, Moore estimated that transistor coinits would
double approximately every two years, a figure which has proven in retrospect to be much more
accurate. Nevertheless, the most commonly accepted usage of the Law refers to an 18-month cycle.

8

2.1 G raph ics H ard w are

mum; even on the latest GPUs, the texture cache is no more than a few kilobytes.
Thus with less cache, more chip area can be devoted to processing and the efficiency
of the entire chip increases as a result.

The latest graphics chip currently on offer is ATI’s R580, which powers the
X I900 XTX boards and is comprised of 8 vertex pipelines and 48 pixel pipelines.
The general trend is for games and applications to perform much more computation
on fragments than on vertices, hence the imbalance. This allows unprecedented
rendering parallelism and results in a theoretical peak of 10.4 gigapixels per second.

2.1.3 T he Graphics P ipehne

The graphics pipeline is the process that every polygon goes through to become a
pixel or group of pixels in the frame buffer (see Figure 2.1). It is broken down into
the following categories:

V ertex P rocessing : Given a model-space vertex as an input, the vertex processor
applies matrix transformations in order to output a screen-space vertex. If
performing per-vertex lighting, the vertex processor is responsible for evalu­
ating the lighting equation at each vertex. It also performs])er-vertex colour
application and any necessary normal transformation or texture coordinate
generation.

P rim itiv e A ssem bly: Each vertex sent through the vertex processor also has an
edge flag associated with it. These edge flags specify which polygon the ver­
tex belongs to and describe its connectivity with the other vertices of that
polygon. From these parameters a polygon is constructed and forwarded for
rasterisation.

R as te risa tio n : Rasterisation converts the continuous polygons from the primitive
assembly stage into discrete fragments. A fragment can be thought of as a
‘potential pixel’, with the attributes of colour and depth - it has made it as
far as being rasterised, but still may be removed from the pipeline by pixel
tests as detailed below. This stage is also responsible for interpolating per-
vertex attributes (such as texture coordinates, colour etc.) across the polygon
assembled by the previous stage.

9

2.1 G raphics H ardw are

Fragm ent P rocessing: The fragment processor’s purpose is to calculate the final
colour of the fragment. It usually does this by combining texture lookups with
the interpolated vertex colours.

P ix el tests: Finally, the fragment is subject to a series of pixel tests to determine
if it should end up in the frame buffer. These are tests such as the alpha test,
depth test, stencil test etc.

Vertex
Pixel!
- m

Textures
cr

a .Position,
Color,

Normal
Tex Coords,

Texture Addressing
Colour Combining

etc
Model

Transformations,
Lighting

etc

Camera

Vertex Stage Fragment Stage

Figure 2.1: The Graphics Pipeline

F ixed F unction G raphics P ip elin e

The system of processing every vertex and pixel in hardware via a non-configurable
pipeline implementation is referred to as the fixed function pipeline. In hardware it
is more efficient to implement and easier to optimise a pipeline of specific operations
in a specific order than it is to implement generalised logic. This was originally the
way graphics hardware was able to achieve sufficient 3D acceleration.

There are two main APIs th a t the graphics card vendors support for interfac­
ing with the hardware through their drivers - OpenGL and DirectSD. While the
underlying hardware uses the same implementation for both APIs, the feature set
and language semantics differ from version to version. However, the most noticeable
difference between the two is their release dates. OpenGL tends to update its core
functionality relatively infrequently, preferring a hierarchical extension mechanism
th a t puts new' additions to the API through a scries of architectural reviews be­
fore they get promoted to the core. This more stringent process is a result of the
differing interests expressed by the multiple members tha t make up the OpenGL

10

2.1 G raphics H ardw are

Architecture Review Board (ARB). On the other hand, Microsoft has complete au­
tonomy in deciding which features get included in DirectSD. This results in more
regular DirectSD releases, usually accompanying the release of a new graphics card
generation. In any case the underlying hardware functionality is always the same,
it is just exposed differently by the two APIs.

In the case of the core OpenGL graphics API up until version 1.5 [119], the fixed
function pipeline was the only option for rendering with hardware acceleration.
It was essentially a black box - it had various parameters to alter properties like
transformations, materials and texture attributes, but how these properties were
applied to the scene for rasterisation was set in hardware and could not be altered.

In the fixed function vertex processor, the only option for lighting was to use
Blinn-Phong lighting [10] combined with Gouraud shading [44]. This model played
to the strengths of the hardware - only evaluating the lighting equation at each
vertex and using the fast hardware interpolation needed to colour each point on the
surface. Despite this method missing specular highlights on low-tesselated models,
this was an acceptable model for most 3D applications. Similarly, the fixed function
fragment processor only allowed limited methods of texture lookups, a fixed set of
blending modes and no interaction with the depth buffer.

The result of a single unalterable rendering equation was tha t every rendered
scene always had the same lighting and the same feel to it. It did not allow for
variation in the projection of vertices, nor did it give the developer much control
of texture addressing or material application, beyond the limited param eters of
the OpenGL rendering equation. For this reason, the fixed function processors were
discarded and replaced with new programmable engines once GPUs became powerful
enough.

P rogram m able P ip elin e

The switch to the programmable graphics pipeline was a gradual one. Cards did
not suddenly change from having fixed function processors to progranmiable ones,
but rather the changes came in increments.

The first manufacturer to take a step toward general programmability was again
NVIDIA with their GeForce cards. As well as introducing hardware TCL in 1999,

11

2.1 G raphics H ardw are

the GeForce 256 also had the first implementation of what NVIDIA called register
combiners [123]. Register combiners were to be the first step towards generalising
the fragment processing stage, allowing a programmable process to decide the final
colour of a pixel. They consisted of a chain of 4-input combiner imits, each combiner
being able to perform operations such as multiplication, addition or dot products
on the da ta being passed through. Additionally, a final combiner could perform
interpolation on the outputs of the previous stages. The power of register combiners
came from their configurability - the input of any combiner could be the output of
any earlier combiner in the chain. While the number and nature of the operations
were restrictive, it still allowed a great flexibility on how colours and textures could
be combined to produce a fragment.

Soon afterwards NVIDIA produced texture shaders [33], a superset of conven­
tional OpenGL texture operations which were to supplement the register combiners
by adding extra textm'e addressing operations. In addition to the regular ID, 2D
and 3D texture addressing available in OpenGL 1.2.1 (the latest version at the time),
texture shaders added cube mapping, dependent texturing, offset texturing and dot
product texturing. Together with the register combiners, texture shaders allowed
the fragment processing stage to be much more flexible than the core OpenGL spec­
ification allowed.

The following year saw the introduction of the vertex program [146]. Vertex pro­
grams introduced complete programmability of the vertex processing stage through
an assembly language interface composed of special GPU instructions. This was
the first truly programmable part of the graphics pipeline, completely bypassing
the fixed function vertex processing stage. However, some restrictions were still in
place. As in the fixed function pipeline, for every untransformed vertex subm itted
to the vertex processor, one transformed vertex was output. This was in keeping
with the stream processing model, where the processors only affect the stream data
being passed through and do not actually insert new da ta into the stream. Vertex
creation and deletion therefore was not possible, and the vertex program w ritten
was required to do the vertex transform ation manually and output a transformed
vertex. Optionally, it could perform any other arbitrary calculations to generate
texture coordinates, perform vertex lighting, and output any other a ttributes to be
interpolated across the polygon during rasterisation.

12

2.1 G raphics H ardware

The corresponding extension for the fragment processor was the fragment pro­
gram [56]. In a similar fashion to the vertex program, the fragment program ŵ as
a set of assembly language instructions w’hich was given complete control of the
fragment processing stage in order to write the final colour of the fragment being
processed. A ttributes from the vertex processor which were interpolated by the
rasteriser are passed into the fragment program as parameters.

Shader development was not easy given the assembly language interface to ver­
tex and fragment programs. Any shader of even moderate complexity ŵ as hard
to read and even harder to debug, and any modularity th a t might help code reuse
was difficult to maintain. For these reasons it ŵ as not long before high level shad­
ing languages were designed; the OpenGL Shading Language (GLSL) [68] and for
DirectSD the High Level Shading Language (HLSL). These are high level shading
languages, both loosely based on the syntax of the C programming language with
extra vector types to take into account the vector-based nature of the imderlying
hardware. The driver then compiles these shading languages into hardware calls
suitable to the hardware th a t the application is being run on. NVIDIA has also de­
veloped another shading language called Cg [98, 40]. Cg aims to overcome the API
differences liy building a shading language on top of both OpenGL and DirectSD.
A program written in Cg can be compiled to target a specific platform, such as the
combination of a particular GPU with a particular API. It then produces code tha t
will work correctly on th a t platform. Cg was particvilarly useful wdien it was the
only other option to assembly language shader programs. Although this aspect of
Cg’s utility has been overshadowed by the appearance of GLSL and HLSL, it is still
highly successful for cross-API shader programming, and keeps up with the latest
GPU developments through support from NVIDIA. It should also be noted th a t the
API for the Playstation 3’s graphics chip (the RSX, produced by NVIDIA) is PSGL,
a conglomeration of extended OpenGL-ES 1.0 and Cg for shader functionality.

In more recent GPUs, the hardware implementation of the fixed function pipeline
has been replaced completely by the programmable pipeline. Any fixed function calls
made by an application will be emulated in shader hardware by the programmable
processors.

The next major release of DirectSD, version 10, will also include an extra pro­
grammable unit called the geometry shader. This processor will be placed betw^een

13

2.1 G raphics H ardw are

the vertex processor and fragment processor, and will run a shader program on a
per-primitive basis. Unlike the vertex processor it will allow the creation of new
vertices and have access to both primitive type and vertex adjacency information.
Additionally, it will be possible to recirculate the newly created primitives to the
beginning of the pipeline so th a t they can be operated on by the vertex processor.
This will allow a new class of GPU-based algorithm to be implemented, such as
procedurally created geometry which can be transformed by the vertex shader and
lit - all while never having to pass across the bus to the CPU. When the underlying
hardware implementation of this new concept is produced, it will also be exposed
via the OpenGL extension mechanism.

2.1.4 E xploiting G raphics Hardware

The impressive parallel processing power offered by recent GPUs, combined with this
general level of programmability, has resulted in much research into using the GPU
not just as a 3D accelerator but as a general processor for suitably parallelisable
algorithms. Termed GPGPU [47] by Mark Harris [55], this model expands upon
the stream-based nature of the GPUs to replace the 3D processing kernel usually
implemented in the progrannnable processors with a kernel for general computation,
specific to the problem domain to which it is applied.

These kernels use texture maps as gather memory and the frame buffer as scatter
memory. By employing render-to-texture methods, this memory can be used as a
feedback input to the same or different kernels. GPGPU applications typically
perform much of their com putation in the fragment processor, as this is where the
hardware affords the most parallelism - the computational kernel will be executed
for every pixel in the output frame buffer. These output values might be the desired
final result, or they may be stored and reused for additional computation.

Therefore the ideal application areas for G PGPU are those th a t have high com­
putational costs with large datasets, exhibit high data-parallelism, and have low
dependency on those parts of the dataset not being processed. Many data-parallel
domains have benefitted from this work; research has been published in such varied
areas as sorting [46], collision detection [45], bioinformatics [15] and com putational
geometry [11]. Additionally, the middleware physics company Havok [57] have re-

14

2.1 G raphics H ardw are

cently announced the im plem entation of a physics system im plem ented entirely on

the G PU , nam ed Havok FX. This framework allows for thousands of particles and

rigid bodies to be sim ulated in real-tim e for special effects purposes.

2.1.5 Bottlenecks

T he pipelined natu re of graphics hardw are has the inherent im plication th a t the

entire system can only proceed a t the speed of its slowest section. T he vertex

transform ation stage of a particu lar application may be very fast, but if an extrem ely

long shader program is causing the fragm ent processor to struggle, any speed-ups

gained in the vertex stage is lost. In optim ising G PU -accelerated applications, the

biggest gains will be m ade by identifying and increasing th e speed of th e slowest

stage. Any o ther optim isations will not move the bottleneck and consequently will

not make a difference to the application 's perform ance.

P ip elin e B ottlen eck s

The most common bottleneck in the graphics pipeline is either the vertex stage

or the fragm ent stage; the prim itive assembly and rasterisation stages are rarely

the cause of a drop in frame rates. The na tu re of a pipeline bottleneck is entirely

application-dependent. In the case of a simple model viewer th a t applies a single

tex tu re to a very highly tessellated model, the pipeline will be slowest in the vertex

transform ation stage. Similarly, a model viewer th a t views only low-polygon models

bu t applies m any complex per-pixel effects to the m odel’s sm’face will be bound by

the speed of th e fragm ent processor.

Some applications are not lim ited by any pipeline stage; instead it is the sub­

mission of d a ta in the first place th a t cannot keep up w ith the G P U ’s speed.

Transfer B ottlen eck s

The com plexity of the operations perform ed by current graphics cards necessitates

the transfer of a large am ount of d a ta to the G PU for bo th geom etry and textures.

Up until recently, one m ajor draw back to using the G PU as a general purpose

co-processor was its inability to read back the com puted results a t speeds sufficient

to keep up w ith the ra te of processing. This was due to the prevalent graphics card

15

2.1 G raphics H ardw are

bus being the Accelerated Graphics Port (AGP). AGP is a dedicated bus based
upon the PCI specifications and specifically designed for interfacing the graphics
card with the rest of the system. It does so by interfacing with the m otherboard’s
north bridge, thereby having a dedicated link to both system memory and the CPU.
This was a major improvement over PCI, the previous bus used by graphics cards.
PCI cards are connected to the rest of the system through the south bridge, and as
such have to share the PCI bus with every other PCI card such as network cards
and sound cards, as well as other I/O devices such as USB and hard drives. Any
one of these devices could easily overwhelm the PCI peak transfer rate of 133MB/s,
leaving little for the graphics card to use.

At its highest speed (termed AGP 8x), the AGP bus can achieve peak transfer
rates of 2G B/s from system memory to video memory. However, due to the design
of AGP as a dedicated bus for writing data to the GPU, reading data back occurs
a t a nnich lower transfer rate. This rate w'as improved upon by later graphics cards,
but it was still a limiting factor for GPGPU.

However, recently a new' bus has been developed named PCI Express (PCI-
E [106] - not to be mistaken with PCI-X [107], a variation on the original PCI
specification). AGP is being phased out in favor of this new bus, and all new
graphics cards are being developed with PCI-E exclusively. The current standard
version for graphics cards, PCI-E 16x, has a peak transfer rate of 4G B /s - twice
th a t of the highest AGP version. However, more im portantly PCI-E allows for the
bandwidth to be split between reads and writes at the same time; AGP could either
read or write, but not both sinmltaneously and switching between the tŵ o was non­
trivial. PCI-E also allows for more than one graphics card to be present at tlie same
time, allowing the possibility of linking two GPUs together to double the processing
power. Both ATI and NVIDIA are already producing cards with this capability,
named Crossfire [3] and SL I [99] respectively.

This new bus removes any potential da ta transfer bottlenecks for the foreseeable
future, allowing ever larger amounts of processing to occur on the GPU, general
purpose or otherwise.

16

2.2 C om m od ity C lusters

2.2 C om m odity C lusters

A commodity cluster is a group of off-the-shelf computers th a t are networked to­
gether in order to distribute and therefore lower the com putational expense of a
suitably partitioned problem. They are usually connected via a high-speed local
area network such as fast ethernet (lOOMb/s) or gigabit ethernet (IG b/s). The
speed of the connecting network is an im portant factor, as the ability to transfer
data to be processed in a timely manner is usually the limiting factor of the overall
com putational ability of the cluster as a whole. Clusters are seen as a cost-effective
alternative to single monolithic machines of comparable power, although they intro­
duce extra difficulties such as load balancing, da ta coherency and concurrent shared
resource access which nmst be addressed by developers wishing to use the cluster.

2.2.1 U sing com m odity parts

Using conunodity parts for a cluster has many advantages over using a single cluster
solution such as the SGI Prism [121], Costs are kept down by using mass-produced
components. Powerful graj)hics cards capable of rendering large amounts of data
take care of the actual rendering work on each node. A heterogeneous cluster is more
robust, as any faulty part can be quickly replaced with an approximately equivalent
part. Upgrading can be accomplished easily and incrementally be replacing individ­
ual components. Finally, the competitiveness of the commodity component market
ensures regular increases in component performance compared to cost.

2.2.2 Parallel R endering on C lusters

Parallelisation per se comes in two broad categories; functional parallelism and data
parallelism. Functional parallelism is based on the idea of decomposing the prol^lem
into discrete functional blocks. Each parallel process then performs one of these
blocks in a pipelined fashion - an example of this is the graphics card pipeline seen
in the previous section. On the other hand, da ta parallelism is the partitioning of
da ta for identical parallel processing on separate processors.

D ata parallelism is often the preferred option for parallel rendering on clusters, as
it generally requires less communication overhead to implement. Molnar et al. [92]

17

2.2 C om m od ity C lusters

describe several taxonomies for da ta parallelism in rendering; sort-first, sort-middle
and sort-last. These approaches are classed according to where in the graphics
pipeline (see Figure 2.1) the distribution of rendering work occurs. In the following
descriptions, transformation is considered to be composed of both the vertex pro­
cessing and primitive assembly stages, and rasterisation represents the other stages
of the pipeline - rasterisation, fragment processing and pixel testing.

Sort-first distributes the work before any geometry is transformed or rasterised.
Each processor is entirely responsible for a section of the final frame and the
processing of all geometry th a t falls within tha t section. Therefore before
the distribution can occur, the ‘pre-transform ation’ of geometry is required
to decide which processor to assign each piece of data to. This is usually
done coarsely by a simple method such as the bounding box of the object
to which the geometry belongs. Each processor then carries out the entire
transform ation and rasterisation process for all its geometry and displays the
result, typically as part of a large tiled display. Load balancing can be a
problem in sort-first parallelisation - if all scene geometry ends up in one section
of the screen, that processor must handle all the rendering while leaving the
other processors idle. The extra work of pre-transformation also adds to the
overall processing costs of sort-first.

Sort-m idd le occurs between transform ation and rasterisation. All scene geometry
is arbitrarily assigned to a processor, where it is fully transformed. The re­
sulting screen-space primitives are then reassigned to rasterisation processors,
which again are completely responsible for a section of the final frame. In
this respect, load balancing can be a problem for rasterisation, although the
geometry can be spread evenly across all processors for the transformation
stage.

Sort-last completely transforms and rasterises every polygon on an arbitrary pro­
cessor, only distributing the final fragments for compositing. This method is
the easiest to distribute evenly, although the resulting amount of pixel d a ta
which needs to be transferred for each frame can be prohibitive. Additionally,
extra processing needs to be performed in order to composite all fragments
properly in order of depth for the final frame.

18

2.2 C om m od ity C lusters

2.2.3 R elated Work

Perhaps the most researched architecture for rendering on commodity clusters is
Chromiimi, developed by Humphreys et al. [60]. Based on the earlier work of
W’ireGL [59], Chromium is an extensible architecture for interactive rendering on
workstation clusters, supporting both sort-first and sort-last techniques. On running
an interactive application on a workstation, Chromium replaces the existing graph­
ics card 3D driver with its owai driver, intercepting all OpenGL API commands.
It then distributes these rendering calls to rendering nodes on the cluster, where
the calls are decoded and dispatched to the normal graphics drivers. In this way
applications can be run unaware of Chromium, but all rendering will instead occur
on separate nodes.

A by-product of this architecture is tha t the intercepted rendering calls can first
be m anipulated by Stream. Processing Units or SPUs. These SPUs can affect any or
all rendering calls without needing to alter the application itself. For example, by
intercepting all glPolygonMode calls, an SPU can force any application to render
in wireframe regardless of the application’s original programming. Niederauer et
al. [96] used this fvmctionality to partition and visualise the architecture of a game
level w ithout modification.

Related custom architectures such as SGI’s VizServer [122] perform similar trans­
parent API interception in order to render on a remote dedicated server, returning
the rendered image for display on the client machine. Lightning-2 [125] is a dedi­
cated image compositing hardware system, aimed at accelerating the final stage of
sort-last cluster architectm'es. On a larger scale, Pomegranate [37] aims to replace
the cluster completely, instead containing up to 64 complete rendering pipelines and
implementing a novel scalable “sort-everywhere” architecture which keeps the load
balanced at every stage of the pipeline.

Much other research has been carried out on parallel rendering, such as the
work on parallel ray tracing by Green et al. [50] and Menzel et al. [89], or the
implementation of a parallel volume renderer by Giertsen et al. [42] among others.

19

2.3 F ield Program m able G ate Arrays

2.3 F ield Program m able G ate Arrays

Field Programmable G ate Arrays (FPGAs) are programmable digital logic chips. A
programmable logic device (PLD) is one th a t can be programmed after m anufactur­
ing, in order to perform a specific task in hardware much like an application-specific
integrated circuit (ASIC). However, the difference is th a t once an ASIC is manu­
factured, its functionality is set and cannot be altered further. On the other hand,
an FPGA can be updated after manufacturing, having its functionality updated or
completely replaced - hence the term ‘Field Program m able’.

2.3.1 Background

An FPGA is based on the idea of a ‘logic cell". Logic cells are the basic component
of an FPGA, and are composed of a memory element, a lookup table and some logic
gates. Each of these logic gates can be reconfigured to duplicate the functionality of
either simple logic gates (AND, OR, XOR, etc.) or more complex functionality such
as a memory block or a m athem atical function. Individually these cells are not able
to perform much computation, but an FPGA can contain hundreds of thousands
of logic cells, and each cell can be connected to other cells through interconnect
wiring. W ith the right configuration, an FPGA can be made to perform thousands
of parallel calculations a t every clock cycle. Some more modern FPGAs have the
additional ability of partial reconfiguration, where one part of the FPGA can be
configured while another part is still running. This has had a great impact in the
area of reconfigurable computing.

FPGAs are popular for use in embedded systems, where their design and large
number of gates allow for their use as a ‘system-on-a-chip’ [38]. Their reconfigura­
bility and quick turnaround time from design to implementation mean th a t they are
popular for use in prototyping ASICs - small changes can be made without having to
remanufacture a static design. FPGAs are used widely in areas such as Digital Sig­
nal Processing [27], telecommunications [39], military and aerospace hardware [18],
computer vision [24], encryption [129] and many others. While originally intended
as a simple chip for implementing system board component interface logic, they
became more popular for implementing full systems as they grew in size, complexity
and speed.

20

2.3 F ield P rogram m able G ate Arrays

2.3.2 A dvantages

There are a number of advantages for using FPGAs in application-specific areas.
These advantages center around the chip’s parallel nature and low design and im­
plementation costs.

The FP G A ’s ability to be reconfigured quickly and easily is its biggest advantage.
\Mien designing an ASIC, a costly procedure of design, development and manufac­
turing must take place. This reduces the time between incremental versions of the
hardware and therefore reduces time to market. Using an FPG A for prototyping
and testing greatly reduces this lead time, resulting in faster chip production and
greater profits.

The FP G A ’s reconfigurable nature allows a single chip to be used for widely
varying applications, while a corresponding ASIC can only be used for its intended
purpose. FPGAs are also preferable to designing a system board to perform the same
task, as all operations happen inside the actual chip, meaning faster comnnmication
and processing.

FPG As are capable of a large amount of simultaneous parallel calculations. By
l)uilding a functional unit that performs some specific comi)utation out of a number
of logic gates, tha t unit can then be replicated across the chij) and each one can
perform the same calculation in parallel.

In lower volumes, the production of FPGAs is more cost effective than ASICs,
which need the non-recurring engineering cost of setting up a manufacturing plant
to produce the ASIC. Additionally, bugs or updates to the chip design can be issued
after the FPG A is deployed, which is something tha t is simply not possible with
ASICs.

2.3.3 D isadvantages

\Miile more flexible, overall FPGAs are slower than ASICs, capable of less complex
designs, and consume more power. Even taking into account the added cost of
design, development and manufacturing, ASICs are still the preferred choice for
large-scale production of custom chips due to their lower per-unit cost.

From the point of view of a software developer looking to parallelise an algorithm
in hardware, FPGAs are far from an ideal choice. The approach needed to design

21

2.3 F ield P rogram m able G ate A rrays

an FPG A is considerably different to th a t of software design. The most common
language used for programming FPGAs is VHDL - VHSIC (Very High Speed Inte­
grated Circuit) Hardware Description Language, and other popular choices include
HandelC and SystemC. However, the use of these latter languages requires under­
standing various concepts such as clock signals and channels, and their implications
on the design and efficiency of the chip. Any hardware description language can
make it easy for the uninitiated to produce a design th a t is grossly inefficient, or
simply cannot be implemented on the target hardware. This is especially true for
HandelC and SystemC, as their syntactic similarities to ANSI-C can lead to the use
of programming methods th a t are entirely inappropriate for hardware design.

2.3.4 F P G A s and Graphics

Research into the use of FPGAs for accelerating graphics applications has intensified
recently due to the advances being made in the hardware's speed and capabilities.
This research is largely based around the area of rendering tlue to the inherent
parallelism as discussed in Section 2.1.2.

Woop et al. [128] have introduced an FPGA-based imi^lementation of a fully pro­
grammable ray tracing hardware architecture. W ith an FPGA prototype running at
66Mhz they dem onstrate results comparable to a software ray tracer implemented
on a 2.6GHz Pentium 4, despite the comparatively small amount of memory band­
width available to the FPGA. They also dem onstrate the scalability of their design
to multiple FPGAs working in parallel. Given the speed and power advantages a
full ASIC implementation would have over the current FPGA one, they envisage
the future widespread availability of ray tracing GPUs similar to today’s rasterising
GPUs.

O ther rendering methods have also been explored. Beeckler et al. [9] have demon­
strated a particle system (including the application of a set of forces to each particle)
running on an FPGA th a t is capable of simulating over 2 million particles per frame.
Herout et al. [58] have implemented a 3D point cloud rendering system capable of
rendering 5 million points per second. MeiBner et al. [88] have produced a PCI
FPGA-based card th a t performs shaded and classified volume rendering of large
datasets in real-time. Stewart et al. [124] implement a view-independent rendering

22

2.4 T he C ell B roadband E ngine

system on an FPGA th a t generates all possible views of a scene and contains a
hardware 4D frame buffer.

In other areas, Atay et al. [2] have presented a collision detection chip imple­
mented with an FPGA. They claim speed-ups of up to 36 times th a t of a 3GHz Pen­
tium 4 for general non-convex rigid bodies. Similarly, Raabe et al. [I l l , 112] describe
an FPGA-optimised collision detection architecture th a t performs with fixed-point
arithm etic. Their results comj)are well to CPU-based software implementations, and
they report speedups of 30 times over a l.SGhz Pentium 4 [73].

2.4 T he Cell B roadband E ngine

The newest parallel architecture developed is the Cell Broadband Engine (CBE).
Cell is the result of a collaboration between 3 m ajor media technology companies;
Sony, Toshiba and IBM (collectively referred to as STI). Talks of joining together to
create a new processor design began in 2000, with the STI Design center formally
opening in 2001 at a joint investment of approximately $400m. Each company
brought with it a particular special interest - Sony as a content provider, Toshiba
as a high-volume manufacturer and IBM as a microprocessor developer. The most
high-profile connnercial application of the Cell processor is the Playstation 3 games
console, due for release at the end of 2006. IBM is already producing Linux-based
servers running on Cell, and Toshiba has dem onstrated Cell's ability to decode
many M PEG-2 streams sinmltaneously, presumably as a precursor to Cell-powered
televisions and multimedia centers.

2.4.1 D esign aims

General purpose processor speeds have been improving steadily in recent years,
largely due to increases in processor frequencies. However, memory access speeds
have not been increasing at the same rate, leading to many applications being lim­
ited by memory latency rather than processing speed or bandwidth. This increased
memory latency needs to be hidden by the processor with complex chip logic. As a
result, more of the chip area has to be devoted to instruction speculation and deeper
pipelining, thus reducing available bandwidth and the amount of actual work the

23

2.4 T he Cell B roadband E ngine

chip is capable of performing. On the other hand, power requirements and heat
output are not reduced, so overall power efficiency is reduced. Similarly, deeper
pipelines increase the performance penalty of mispredicted branches, leading to di­
minishing returns as pipeline depth is increased.

The CBE design aims to alleviate these problems by increasing power efficiency
and reducing both memory latency and pipeline depths.

2.4.2 A rchitecture

A single Cell chip consists of nine processors - one main processor called the Pow­
erPC Processor Element (PPE) and eight co-]:>rocessors called Synergistic Processor
Elements (SPEs). All nine processors are connected via the Element Intercoimect
Bus (EIB), a high-bandwidth memory-coherent bus which is used by the processors
to communicate with each other, external memory and 1 /0 devices (see Figure 2.2).
It should be noted th a t a Cell does not necessarily have the complete set of eight
functioning SPUs - for manufacturing the Playstation 3, two SPUs have actually
been disabled in order to increase the yield.

PPE

SPE SPE SPESPE

SPESPE SPESPE

Memory Interface
Controller

Broadband Engine
Interface

Element In te rconnect Bus

Figure 2.2: Cell Processor Overview

24

2.4 T he C ell B roadband E ngine

T h e P ow erP C Processor E lem ent

The PPE is the main processor that controls the CBE. It consists of a dual-threaded
SIMD 64-bit RISC PowerPC processor and a storage subsystem that governs mem­
ory requests from the PPE and external requests to the PPE from other processors
(see Figure 2.3). The PPE is a general-purpose processor optimised for rmining
control-intensive software such as an operating system, coordinating all processes
running on Cell. The processor itself contains a 32KB level 1 instruction cache,
and a 32KB level 1 data cache. It also contains a VMX (Altivec) unit for SIMD
computations [28]. The storage subsystem includes a 512KB level 2 unified data
and instruction cache.

PowerPC Processor E lem ent (PPE)

32 KB
PowerPC LI cache
Prnrp«;<;nr
Unit (PPU) VMX (A lt ivec)

SIMD U nit

PowerPC
Processor
Storage 512 KB

L2 cacheSubsystem
(PPSS)

ik

To the EIB ;

Figure 2.3: The PowerPC Processor Element (PPE)

T h e Syn erg istic P rocessor E lem en ts

The SPEs are where the bulk of Cell’s computational work is executed. Each SPE
consists of a specialised 128-bit SIMD RISC processor (the Synergistic Processor
Unit or SPU) and a Memory Flow Controller (MFC) (see Figure 2.4). The SPUs

25

2.4 T he C ell B roadband E ngine

are optimised to run compute-intensive code at the expense of branch-prediction
and out-of-order-processing hardware, allowing more of the chip to be dedicated
to com putational work and reducing pipeline depth. Instead of dealing directly
with main memory, each SPU contains both a 128-entry register file and 256KB of
Local Store SRAM. The SPU uses this to store both data and instructions. Like
the PPU, each SPU also contains a VMX vector unit for SIMD operations. These
128-bit SIMD operations can work on a variety of data sizes in parallel; one 128-bit
quadword, two 64-bit double words, four 32-bit words, eight 16-bit shorts or sixteen
8-bit chars. However, despite the similarities, the SPU’s instruction set is different
to th a t of the PPU, meaning separate compilers must be used for the different
processors.

The SPU contains two instruction pipes, and can dispatch two instructions si­
multaneously to their respective execution units. The first, named the ‘even’ pipe,
issues fixed/floating point and related bitwise operations. The ‘odd’ pipe covers
load/store, branch, and word shuffle instructions. Therefore, maximum SPE execu­
tion speeds can be obtained by the careful ordering of instructions to ensure tha t
the pipeline can operate at full dual-issue rates.

Each MFC is responsil)le for transferring da ta in and out of the Local Store of its
corresponding SPU. It does this through a local DMA controller allowing the SPU,
PPU, or another SPLI to request a data transfer to or from main memory. In this
way the SPE’s DMA controller can autonomously transfer da ta to the Local Store
while the SPU is processing other data, thus double buffering and hiding the memory
latency behind com putation time. Each DMA transfer can be up to 16,384 bytes
in size, and an SPU can have up to 16 outstanding DMA requests queued (or 2,048
if using a special DMA-list construct, ideally suited for sca tter/ga ther operations).
Theoretical peak bandwidth between the MFC and EIB is 25.6GB/s, with a to tal
EIB peak bandwidth of 204.8GB/s. In practice, approximately 17-20GB/s SPU
throughput it typically achievable.

T h e E lem ent In tercon n ect B us

The EIB is a 4-ring structure used for passing da ta between processors and I/O
devices such as main storage. A part from the PPU and SPUs, the EIB is also

26

2.4 T he C ell B roadband E ngine

Synergistic Processor Element (SPE)

Synergistic 128-entry
Register file

Processor
Unit (SPU) 256KB

Local Store

Memory
Flow DMA
Controller Controller
(MFC)

ik

To the EIB

Figure 2.4: The Synergistic Processor Element (SPE)

connected to the Memory Interface Controller (MIC) and the Broadband Engine
Interface (BEI).

The MIC supports connections to two Rambus Extreme D ata Rate (XDR) mem­
ory channels. Compatible devices such as another Cell can be attached through the
BEI forming a cluster of Cells - indeed the original patent filing for the Cell showed
four cores on a single die. This leads to scalability in two dimensions; the number of
processors enabled in any single Cell, and the number of Cells networked together
by the BEI.

2.4 .3 P rogram m in g C ell

IBM released the Cell SDK at the beginning of November 2005 [61]. Included in
the SDK is a GNU toolchain which includes everything needed to compile, link and
debug a native Cell application. Also included is a full system simulator which
replicates the entire functionality of Cell and can be used to emulate a PowerPC-
based Linux kernel compatible with Cell. Applications written in C/C-I--1- and

27

2.4 T he C ell B roadband E ngine

compiled in this simulator using the provided toolchain can then be run on real Cell
hardware w ithout alteration.

However, using the GNU compilers require the programmer to have a detailed
understanding of Cell’s architecture, and to keep in mind every factor th a t affects
performance of the PPE and SPEs. For programmers who have less time to devote
to re-implementing existing applications for Cell, IBM are developing the Octopiler
compiler [36]. While both the GNU compilers produce executables compatible with
Cell’s different processor instruction sets, Octopiler is capable of compiling and opti­
mising code specifically for execution on the heterogeneous nniltiprocessor architec­
ture of Cell. Wbrk is partitioned for execution on all nine cores, and communication
and memory usage are determined automatically. This is no inconsiderable task, and
will be the subject of continuing research on behalf of IBM ’s compiler designers.

There are three Ijroad programming models for Cell - pipelined, parallel, and
service-oriented (see Figure 2.5). The pipelined model has each SPU chained to
the next one, using the output of one as the input of another. This allows for
high throughput, but is difficult to load-balance. The parallel model nm s the same
program on each SPU, partitioning and distributing the da ta to be processed in
parallel. The services model is similar to the parallel mode. l:)ut each SPU instead
processes its da ta in a different way.

SPE

SPE

SPE

SPESPE SPE

SPE

SPE

SPE

PPE

PPE

PPE

Pipelined Parallel S e rv ic e s

Figure 2.5: Cell programming models

28

2.4 T h e C ell B roadband E ngine

Two sets of program modules are written - one module for the PPU and a
separate one for each distinct SPU function (ie., one program for the parallel model
but many for the pipelined/services models). All necessary data for the application is
loaded and form atted by the PPU, which then distributes the SPU modules to each
SPU for execution. The SPUs run, retrieving data from main memory as necessary
via DMA requests. The PPU then waits for all SPUs to finish their computation
(performing further processing on the results if required) before exiting.

2.4.4 Cell-Related Research

Being a relatively new architecture, the full potential of the Cell processor is still
being explored. How'ever, some preliminary work has been published by both IBM
and Sony Research and Development.

M asaharu et al. dem onstrate a Cell implementation of the Feldkamp algorithm
for medical imaging [118]. They compare the performance of the PPE on its own to
parallel execution of the PPE and one SPE with SIMD instructions. Compared to
the PPE alone, their results indicate an increase in speed of over 20 times for the
case of using both PP E and SPE on a l.SGhz Cell prototype.

Chow et al. exploit the parallel architecture of Cell to accelerate Fast Fourier
Transform (FFT) calculation through the efficient distribution of the computational
workload over all available SPEs [17]. On a 3.2Ghz Cell, they demonstrate processing
speeds of 46.8 gigaflops per second, over 50 times tha t of a “leading brand” 2GHz
workstation.

Minor et al. also provide an overview of a terrain rendering algorithm on Cell
using a ray casting rendering technique [91]. They describe a ray casting technique
for height fields and its adaptation for implementation on Cell. An Apple G5 system
is used as a client, which interfaces with a Cell-based rendering server over gigabit
Ethernet. They claim performance improvements of over one order of magnitude,
compared to a single-threaded processor at similar clock speeds.

At a recent Game Developers Conference, Reynolds described the simulation of
crowds on the Cell-powered Playstation 3 [115]. He ignores the steering behaviour
of the individual units and instead concentrates on their interaction with each other.
By using a bucket-based space subdivision algorithm, he parallelises the execution of

29

2.4 T he C ell B roadband E ngine

update computations and achieves the simulation and rendering of crowds of 10,000
simple polygonal entities (in this case fish) at 60 frames per second. He expects this
rmmber to increase as more effective methods are explored.

In a paper published a t the same conference, Kokkevis et al. talked about physics
simulation on Cell [75]. They gave an overview of Cell-oriented optimisations for
various problem domains such as cloth, rigid bodies, fluid dynamics and particle
simulations. In each case they gave an example of how best to partition the problem
so th a t individual independent subsystems can process data in parallel, using the
Cell architecture to its fullest.

These papers all indicate substantial speedups compared to conventional pro­
cessors due to the high bandwidth and parallel nature of the system. Many more
papers on exploiting Cell for various compute- and bandwidth-intensive problem do­
mains can be expected to appear as availability and popularity of the architecture
increases.

30

Chapter 3

Towards a N ew Framework

111 this chapter we present the design of a new scalable and reconfigurable graph­
ics cluster, built in association with Michael Manzke and Trinity College’s Com­
puter Architecture Group. The cluster incorporates many of the advantages of both
custom-built hardware and commodity rendering clusters while keeping communi­
cation costs down and maintaining a high level of programmability. Additionally,
the amount of custom-built hardware is limited in order to keep the resulting man­
ufacturing costs to a miiiinumi.

The design of this cluster encompasses the parallel systems described in the pre­
vious chapter, particularly FPGAs and commodity graphics hardware. In addition,
many similarities can be drawn between the architecture of the cluster and the Cell
processor. The Cell processor contains shared memory th a t is used by all sub-
I)rocessors as well as local memory for faster access, just as the cluster does. Where
the Cell uses the EIB and DMA engines for da ta transfer, the cluster uses SCI and
distributed shared memory. The SPU co-processors perform the same function as
the cluster’s FPGAs, albeit with substantially different prograniming paradigms.

These similarities are not intentional (indeed, details of the Cell architecture
were not available when the cluster was being designed), but they do indicate a
solid foundation upon which to build. Such a system has many applications in the
areas of parallel processing and rendering. As well as being a suitable substitute
for expensive all-in-one rendering solutions, it adds the extra advantage of exposing
another layer of parallel programmability with FPGAs.

31

3.1 P roposed C luster

The cluster utilises commodity GPUs to perform all rendering work, and draws
upon the research done on graphics hardware and Chromium in order to provide a
suitable software framework for rendering. However, as the hardware of the cluster
does not contain an operating system th a t is supported by the GPU vendors, the bi­
nary drivers provided by them cannot be used to drive the graphics cards. Therefore
new drivers must be implemented th a t directly interface with the graphics hardware.
In order to do this, knowledge of both the underlying hardware and the operating
procedure of the driver is needed. Although modern drivers are unified (i.e., a single
driver can be installed th a t will support every generation of GPU released by the
vendor), the cluster’s drivers must be tailored to the exact GPU chipset th a t is being
employed. This was a major focus of the research done for this project.

The following sections detail the inner workings of each component of the cluster.
Section 3.1 gives an overview of the entire system architecture, and describes how
the components interact with each other. Section 3.2 details the workings of existing
graphics drivers, and describes how this is adapted to supply the cluster’s commod­
ity graphics hardware with suitably form atted rendering commands. Section 3.3
details the software infrastructure necessary to run the cluster, Section 3.4 draws
comparisons between the cluster and the Cell processor, and finally Section 3.5 re­
views some potential applications th a t could make full use of all the computational
resources exposed by such a framework.

3.1 P roposed C luster

Current solutions for large-scale parallel rendering architectures are generally either
custom-built hardware with set specifications and shipped in a singular package,
or they are a homogeneous or heterogeneous collection of standard workstations,
connected by an ethernet connection as described in Section 2.2.

Both architectures have their respective strengths and weaknesses, and are suit­
able for different tasks. Packaged architectures such as the SGI Prism [121] are
high-quality products th a t have been thoroughly tested and developed, and tuned
for high performance as large-scale visualisation solutions. Using proprietary parts
and interfaces can lead to im portant internal optimizations tha t enhance overall
performance. However, this performance comes at a high price which makes such

32

3.1 P roposed C luster

products only viable for purchase by large organisations. While scalability of such
solutions is possible, it requires even more complex hardware which comes at an
even higher price. Another serious limitation is the restriction of upgrade paths;
the system is designed and balanced in such a way that upgrading the processing
or rendering power requires replacing large parts of the system, leading to further
costs. Similarly, the specialisation of the hardware used in these solutions requires
a qualified technician for support, and simple problems are not necessarily quickly
reparable.

At the other end of the scale, commodity clusters are easily supported by anyone
with experience in maintaining commodity computer hardware. While the process­
ing performance attained might not reach th a t of proprietary solutions due to im­
balances in the overall cluster topology, this is compensated for by the flexibility of
the system. Parts can be easily replaced at minimal cost, and scalability is usually
a case of finding another workstation and plugging it in to the network. Again,
upgradability can be performed incrementally and with the mininnnn of effort, and
can be done so as to address any performance bottlenecks th a t might be limiting
the overall cluster’s performance.

3.1.1 C lu ster O verview

Our cluster aims to draw upon the strengths of both solutions, containing both
commodity parts and custom hardware. It has the high bandwidth and processing
power of proprietary solutions, which still maintaining the scalability and low cost
of commodity clusters.

Broadly speaking, it consists of a tightly coupled cluster of custom-built boards
th a t provide an AGP port for attaching commodity graphics cards. These boards
are connected by a high-bandwidth, low-latency Scalable Coherent Interface (SCI)
interconnect which implements hardware Distributed Shared Memory (DSM). They
are also equipped with two Xilinx FPGAs and a north bridge connecting the chips
and SCI to a bank of memory. One of these FPGAs (the “Control FPG A ”) is
used for system control, to govern the SCI services and provide logic to control the
board’s functions, as well as controlling access to the graphics card. The other (the
“Bridge FPG A ”) is available to be used as a co-processor to augment any algo-

33

3.1 P rop osed C luster

ritlims that might be implemented on the cluster, and also manages the distributed
shared memory (described below). See Figure 3.1 for an example of the significant
components on a single custom board.

o SCI Link
Controller
ONE

SCI Link
Controller
TWO

Custom-built
GPU Interface

FPGA

j S ystem Control

Sparc Soft CPU
in clud ing OS or
Control Logic

FPGA

R econfigurab le
Graphics A lgorithm

Shared M em ory
M a n a g e m e n t Unit

DVI IN

1 GB

M em ory

AGP8X

Display M em ory GPU

Com m odity Graphics Accelerator Card

Figure 3.1: A custom board with graphics card and SCI Link Controllers

As well as these boards, the system also utilises commodity SCI subsystems in
the form of PCI cards that interface with workstation PCs through a PCI bridge
rnoimted on the card. These workstations are where the actual applications are
executed. See Figure 3.2 for an example of an SMP workstation with SCI card
attached. The number of workstations can be scaled independently of the number
of custom boards being used in the cluster - for example an application may be
executed on a single workstation and then have work distributed to many boards
for processing and rendering.

In this way, the entire cluster forms a four-level parallel system:

34

3.1 P rop osed C luster

CPU 1 m
O pera t in g System

Graphics
5 Application

Memory North

CPU 2 :
O p era t in g System

Graphics
Application

:ZZZZa2EE5^

Commodity
SMPPC

, , Jfaiii 11> I '

Commodity
SCI Card

SCI Link
Controller
ONE

SCI Link
Controller
TWO

Figure 3.2; A cluster node with attached SCI PCI card

• The connection of workstation PCs through the SCI cards forms a traditional
cluster th a t can be used to work on problems in parallel.

• The connection of the custom boards through the SCI interconnect enables
parallel co-processor computation using the on-board FPGAs.

• These FPGAs are themselves inherently parallel, being able to perform a large
number of calculations simultaneously.

• The GPUs connected to each board are internally parallel and can be used
to augment the computational power of the custom boards by using standard
GPG PU techniques, as well as being used for normal rendering work.

A prim ary advantage of the system is being tightly coupled while still having
discrete components. This allows individual parts to be upgraded - most impor­
tantly the graphics cards, but also the board memory, the SCI cards and the PC

35

3.1 P roposed C luster

workstations. Similarly, the reconfigurable nature of the FPGAs allows architectural
changes as well as the testing of new computationally intensive algorithms without
needing to remanufacture and replace the whole board. It should be noted th a t
while current prototypes use AGP ports for interfacing with the graphics cards, fu­
ture boards will incorporate PCI Express as standard. Additionally, the PC cluster
nodes can also be upgraded to use PCI Express SCI cards, as available commercially
from Dolphin ICS Inc. This will considerably improve transfer rates over the PC
cluster.

See Figure 3.3 for an illustration of the entire system. Altogether, it incorpo­
rates the general com putational abilities of the workstation CPUs, the large parallel
processing capacity of the FPGAs, and the high throughput stream processing capa­
bilities of the GPUs. This flexibility and large amount of parallel and heterogeneous
processing capabilities gives the cluster its edge when compared to traditional par­
allel architectures.

3.1.2 Scalable Coherent Interface

An integral part of the cluster design is the SCI interconnect which links all boards
and PC nodes together. SCI is a high-speed computer bus which is chiefly used in
the high performance computing (HPC) sector. Defined in 1992 as IEEE standard
1596-1992 [1], SCI is a system area point-to-point interconnect tha t has both low
latency and high bandwidth, making it very suitable for the implementation of a
high performance chister such as this. In addition, a central part of the standard is
its scalability - it supports up to 64,000 nodes on an interconnect. The application
of SCI has also been proven in real world critical systems, including those aboard
the Mirage F I and Joint Strike Fighter military jets, the Charles de Gaulle aircraft
carrier, and the International Space Station Training Simulator.

Every cluster node (both PC nodes and custom boards) contains two unidirec­
tional SCI Link Controllers (LC). Each LC has an input and output port, and the
output of every LC is connected via a cable to the input of the next LC in the
ring. Every PC node is connected in a ring, and similarly every custom board is
connected in another ring. These two rings are also connected together, forming a
2D torus ring topology, as seen in Figure 3.3, so th a t any node in the ring (either PC

36

3.1 P rop osed C luster

PC node 1 C ustom -built FPGA/GPU no d e 1

FPGACPU 1 CPU 2

NorthN o rth , ^
Bridg^ Commodity

SMPPC
 PCs to GPUs

PCs to PCs
GPUs to GPUs

C o m m o d ity GPU

C u stom -bu ilt FPGA/GPU no d e 2

FPGAC o m m o d itf ll SCI
SCI Card

North
FPGA

PC node n
C om m odity GPU

CPU 1 CPU 2
C ustom -built FPGA/GPU node n

North , _
Bridge] Commodity

SMPPC
FPGA

North
FPGA

C o m m o d itH SCI C om m odity GPUSCI Card

Com m odity PC Cluster SCI Fabric GPU/FPGA Cluster

Figure 3.3: An overview of the proposed cluster

or custom board) can talk to any other node. These links are 16-bit parallel connec­
tions with a bandwidth of 667MB/s. Packets are routed over the LCs by forwarding
them according to local routing tables, which are constructed upon initialisation,
thus eliminating the need for an expensive central switch.

Two significant advantages of using SCI as an interconnect are its high bandwidth
and low latency due to the fact th a t inter-node communication can be performed
in hardware without having the overhead of software protocol or system calls. Dol­
phin’s current PCI-SCI card offers 3261\IB/s throughput [32], over twice the speed
possible with Gigabit Ethernet solutions. Additionally, they cite 1.4 microsecond
application-to-application latency, one of the lowest latencies currently possible ac­
cording to the HPC Challenge 2005 [23]. This is a marked improvement on other

37

3.1 P rop osed C luster

common cluster interconnects, such as Myrinet’s average of 19//s, Gigabit Ethernet’s
42.23/is, or Fast Ethernet’s 603.15^s. In the case of the custom boards without the
overhead of having to go through the PCI bus, internal FPGA-SCI latency would
be reduced to the order of nanoseconds.

The SCI standard also offers the option of cache coherency. In this context,
cache coherency refers to a local copy of data from a remote piece of memory being
up-to-date from the point of view of the local cache. In a distributed system with
cache coherency, cached data must be updated to reflect any changes that occur in
the original data. Maintaining this consistency adds a performance overhead to the
overall memory system, and was not included as part of the cluster.

3.1 .3 D istr ib u ted Shared M em ory

Most importantly, using SCI allows the local memory of each node to be mapped
into a shared memory address space. On the PC nodes, this is implemented by the
conunodity PCI cards using the on-board PCI-SCI bridge which can translate PCI
transactions into SCI transactions. Therefore, when a PC makes a memory reference
into its own PCI address space, the l^ridge can translate it into an SCI transaction,
transferring it to a remote node. There, the transaction is translated back into a
memory access of the remote node’s memory, thus implementing distributed shared
memory. In this way, distributed Progrannned I/O and Direct Memory Access
(DMA) can be implemented in hardware without the overhead of system calls, and
at very low latencies.

On the custom boards, this shared memory fimctionality is implemented by
the Bridge FPGA. Because this FPGA is connected directly to both local memory
and the on-board SCI link controller through the north bridge, it avoids any extra
latency or bandwidth restrictions that might be introduced by the PC node’s PCI
bus operations. See Figure 3.4 for an illustration of the implementation of DSM in
the cluster.

The connection of heterogeneous nodes through SCI results in the cluster being
a Non-Uniform Memory Access (NUMA) architecture. This means that each node
contains its own local memory, and that memory access times differ depending
on the location of the memory. Specifically, access by a node to a local memory

38

3.1 P rop osed C luster

Board 1

FPGAs

3 ^
GPU Card

Local Shared Memory

Scalable

• • •
FPGAs

Board n

J f̂cPUCard

Local Shared Memor^

Distributed Shared Memory
Single Address Space

Im plem ented through a High Speed Interconnect

Local Shared Memorv

CPU

PC Board 1

• •

Scalable
' \ i

Local Shared Memory

n
CPU

PC Board n

Figure 3.4: Distributed Shared Meinory iniplenrented in hardware

location is faster than an access to remote nieniory. This has consequences for the
data access schenies used by the cluster to share data, view remote data, and resolve
conciurency problems, all of w-liich must be kept in mind when designing or choosing
conununication i:>rotocols.

3.1.4 A im s

The prim ary function of the cluster is as a platform for parallel rendering, augmented
by the extra com putational power of the Bridge FPGAs. The implementation of
DSM eliminates the need to replicate da ta across nodes of the cluster, and the low
latency and high bandwidth afforded by SCI allow large amounts of geometry- and
texture da ta to be processed and rendered interactively. It also operates as a test bed
for the implementation of new parallel hardware algorithms on the Bridge FPGAs.
The scalability of such a cluster is addressed by the use of SCI as an interconnect.

It should be noted th a t the current state of the cluster is a single prototype cus­
tom board. It has been manufactured (see photo in Figure 3.5) and is currently being
debugged by researchers in the CAG. A second revision of the board is expected soon
which will resolve outstanding problems th a t arose during manufacturing. Once the

39

3.2 G raphics H ardware

l)oard is ready, multiple copies can be produced and implementation of the software
infrastructure can proceeed.

The cost of the prototype custom board is currently approximately €3000. How­
ever, due to the economics of fabrication, this price can be expected to drop to that
of a high-end PC in the case of large scale board manufacturing.

Figure 3.5: The first prototype custom board, with connnodity graphics caril at­
tached and SCI cables plugged into the Link Controllers.

3.2 G raphics Hardware

Central to the design of the whole cluster are the graphics cards plugged into the
custom boards. These cards are used as the rendering engines of any graphics
algorithms that are executed on the cluster. This section details the traditional
relationship between operating system and graphics hardware, and describes how
this mechanism is adapted to work on our custom-built nodes.

3.2.1 G raphics D rivers

Modern operating systems such as Windows, Linux and Mac OS are only able to
interface with commodity graphics cards through vendor-released device drivers.
These drivers abstract away the proprietary hardware interface of the graphics card

40

3.2 G raphics H ardw are

and allow developers to use common APIs such as Direct3D and OpenGL to perform
hardware-accelerated 3D operations. Any new functionality added to these APIs
(such as a new- OpenGL extension) will not be available for use until the video
driver exposes this functionality to the application. Similarly, new capabilities of
the GPU are not available unless exposed by the driver. If a particular feature
is not available in hardware but is required for conformance to API specifications,
the video driver may choose to implement it in softw'are instead. In this way, the
driver is an extra layer between the hardware and operating system, and as such
can incorporate newly-discovered software optimisations (such as vertex submission
optimisations or texture packing methods for example) without needing to change
either the hardware or the API interface. By regularly releasing updated drivers,
the apparent performance of a card can be increased significantly over its lifetime.

The reason for proprietary drivers is that the internal workings of graphics cards
are confidential details which GPU vendors do not freely distribute. Through con­
tacts in ATI we were able to obtain the Technical Reference Manual [6] and Register
Reference [7] for the R200 series of chips. This chipset forms the basis of GPUs from
the ATI Radeon 8500 (the R200) to the Radeon 9200 (the RV280), used in cards
released in 2002. We have chosen to use 9200-based cards, being the most advanced
chip in this range and because it is one of the only versions to supjjort the high­
est AGP transfer rate (8x). See Table 3.1 for further specifications. While this
is not cutting edge graphics hardware by today’s standards, it is recent enough to
support a progranmiable pipeline exposed in the form of the OpenGL extensions
ARB_vertex_program and ATI .fragment _shader. Thus it is advanced enough to be
used as proof of concept in the cluster prototype, with the hope that more recent
technical specifications would be released to us by ATI once the feasibility of the
cluster as a whole is demonstrated.

Based upon comparison to a similar technical reference of the earlier Rage 128
chipset [5] also developed by ATI, we are confident that the fundamental ideas
behind the hardware interface will remain largely unchanged in the future, and
that the methods described here will still be applicable upon migration to a newer
generation of ATI GPUs. Therefore, while the rest of this section is based upon
information pertaining to the R200 series specifically, it is reasonable to assume
that the inner w^orkings of more recent chipsets (and by extension their drivers) are

41

3.2 G raphics Hardware

A T I Radeon 9200 (RV280)
B u s T ype AGP 8x
C lock Speed 250Mhz
M em ory 128MB DDR @ 400MHz
M em ory B andw id th 6.4GB/S
V ertex P ip elin es 1
P ix e l P ip elin es 4
T exture U n its 6
F ill R ate 1 Gpixel/sec
G eom etry R ate 62.5 M triangles/sec

Table 3.1: Specifications of the Radeon 9200 (RV280 chipset) [4].

not significantly different.
Although proprietary graphics drivers are the only way to achieve hardware ac­

celeration of 2D and 3D operations, cards also provide a VGA mode for performing
simple non-accelerated 2D drawing. This is done via the industry-standard Video
Electronics Standards Association (VESA) Video BIOS Extension (VBE) program­
ming interface. Providing support for this interface allows the graphics card to be
used as a simple video adapter without the system needing to know any specific
details about the miderlying hardware, and can therefore use a generic VBE driver.

A certain am ount of related work has been done by the open source Direct
Rendering Infrastructure (DRI) project [105]. This project aims at providing an
open source Linux implementation of drivers for ATI GPUs up to and including the
RV280, again based upon technical references provided by ATI to certain members
of this project. While a limited amount has been learned from the source coce, it is
poorly documented and mainly aimed at separating kernel-space functionality from
user-space in order to provide a secure method of accessing hardware, as well as
concentrating on allowing multiple clients on a single machine to have simultane­
ous access to the graphics hardware. However, neither concurrent access nor kernel
integrity are a concern with respect to the cluster, and access to the original doc­
um entation from ATI precludes the need to rely on information gleaned from this
project.

42

3.2 G raphics H ardware

3.2.2 Hardware R egisters

A hardware register is a Umited storage area (typically the most efficient size for the
processor to interface with - in this case 32 bits) located on a peripheral th a t allows
high-speed I/O , control and configuration. Rather than being accessed directly by
the CPU, these registers are typically mapped into the memory space of the host
system, and accessed via reads and writes to memory. This is referred to as Memory
M apped I/O (MMIO).

Upon initialisation of a PCI or AGP peripheral, either the system BIOS or the
operating system assigns an area in the system’s memory address space (which
is a to ta l of 4GB for 32-bit architectures) for each of the peripheral’s I/O regions,
ensiu'ing th a t the allocated memory regions do not conflict with the areas of physical
memory. This typically happens at boot time, although this is not necessarily the
case for hot-pluggable devices which can be inserted and removed while the system
is running. The peripheral is unable to be accessed until these memory regions
are allocated. In the case of a PCI or AGP video card, there are two regions
to be m apped - the I /O registers for MMIO and the card’s video memory (also
referred to as the frame buffer - not to be confused with the frame buffer of the
graphics pipeline tha t only represents the area of video memory that contains the
final image to be drawn on-screen). The addresses of these mapped memory regions,
referred to as Base Address Registers (BARs), are then assigned to the peripheral
via PCI Configuration Space. This is a standardised area of 256 bytes located on
the peripheral th a t describes it with IDs such as Vendor ID and Device ID. In this
way, the system can iterate through every PCI device and assign the required BARs
for each device without needing to probe the devices, which can cause unwanted
side-effects if the wrong address is probed.

Every a ttribu te and function of the RV280 is accessible by reading from or writing
to the relevant register. These registers are listed in the Register Reference [7]
and describe each register, its purpose and its MMIO offset. For an example see
Table 3.2; this particular register describes the type of memory installed on the
card. By reading the 32 bits (one word) at offset 0x158 from the MMIO base
address in system memory and isolating bit 30, the RAM type can be determined.
Similar registers are available for every aspect of the card. Some are just for reading

43

3.2 Graphics Hardware

attributes such as memory type and size, monitor type etc., and others are for
writing to and have side effects such as a change in video mode, causing something
to be drawn etc.

Similarly, writing values to the correct portion of the mapped frame buffer causes
on-screen pixels to change color. We have already implemented and demonstrated
the initialisation of a 9200 with a custonr driver written from scratch for Linux
Fedora Core 4 using an adapted 2.6.11 kernel, based upon the documents supplied
by ATI. Writing the appropriate values to the correct registers causes the adapter
to change video mode, and then any writes to the frame buffer draw a solid colour
of that value directly to the screen. However, while useful for diagnostic testing,
direct frame buffer writing does not take advantage of any 2D or 3D hardware
acceleration available in the card. Section 3.2.4 below describes how to employ
hardware acceleration properly.

M EM _SD R A M _M O D E_R EG - RW - 32 b its - [M M Reg:0xl58]
F ield N am e B its D efau lt D escrip tion

MEM_CFG_TYPE 30 0x0 0=SDR
1=DDR

Table 3.2; An example of an entry in the R200 Register Reference.

3.2 .3 T h e A G P A p ertu re

As well as providing a direct point-to-point connection from the graphics card to
system memory and the CPU, AGP also allows system memory to be used to aug­
ment the video memory local to the card. When video memory is full, this AGP
memory can be used for caching textures and geometry. Although access to AGP
memory is many times slower than video memory, its use is preferable to putting a
hard limit on the amount of data that is available to the GPU.

AGP memory requires a significant amount of system memory to be re-raapped.
Data that is stored in AGP memory is not swapped into video memory before being
used, it is referenced directly. Therefore it is essential that the data be present in
a contiguous area of memory, in order to allow the most efficient access possible
without costly software reordering. However, this is incompatible with the memory

44

3.2 G raphics H ardware

allocation procedures of operating systems, which keep a pool of free memory pages
(each page usually being 4k in size) to allocate dynamically. This can lead to large
fragmented regions of memory which are unusable as AGP memory.

As a result, an intermediate step is needed in order to present a single large
contiguous area of physical memory to the GPU. An area of contiguous memory
is reserved in the system address space and forms the AGP ApeHure. Each page
in this aperture corresponds to a (possibly discontiguous) page of allocated system
memory. The mapping from the AGP aperture to system memory is governed by
the Graphics Address Remapping Table (GART). When a page inside the aperture
is addressed by the graphics card, it is converted to a real system address by looking
up the GART and returning the actual physical address represented by tha t aperture
page. This remapping is done by address translation logic in the north bridge.

W ith respect to the graphics cards attached to the custom boards of the cluster,
the AGP apertiu'e can be created inside an area of shared memory so th a t it can
be seen and accessed by any other cluster node. This allow's a texture resident in
system memory of one node to be directly accessed by the graphics card of another
node, eliminating the need to replicate the texture on every node th a t requires it.
This also applies to geometric data. The SCI interconnect ensures th a t the latency
of this shared memory access will remain extremely low, and tha t the data will be
transferred directly to the GPU in a timely m anner due to the high bandwidth. By
including the system memory of the PC nodes in the shared address space, data can
also be accessed from there by the GPUs.

3.2.4 Em ploying Hardware A cceleration

In order to achieve hardware acceleration of both 2D and 3D draw calls, the RV280
allows two separate methods of instructing the GPU - Progrannned Inpu t/O u tpu t
(PIO) mode and Conunand Processor (CP) mode. Both methods are used to fill
a FIFO command buffer internal to the GPU, the entries of wdiich are processed
by the rendering engine to draw into the frame buffer. However, they differ in the
processes used to transfer commands to this buffer.

45

3.2 G raphics H ardw are

P rogram m ed In p u t/O u tp u t M ode

PIO mode is the more direct and simpler method of the two. In this mode, the
driver fills the FIFO command buffer by directly writing to the MMIO registers
th a t control 2D and 3D drawing. This is referred to as the Push Model because
commands are ‘pushed’ into the buffer by the driver. Although it would be possible
to implement PIO mode access to the cluster’s GPUs over DSM, doing so would raise
concurrency issues th a t are not easily resolved if two or more nodes tried to write to
the same register simultaneously. This could be overcome by using an intermediate
queue, but this problem is already resolved by CP mode as described below. Being
less efficient, PIO is most useful as a method of debugging. Additionally, the size of
the FIFO command buffer is limited by on-board storage, something tha t is not a
problem for CP mode.

C om m and P rocessor M ode

CP mode does not deal directly with the connnand FIFO, but instead sends com­
mands via comm,and packets th a t are interpreted by an on-board microengine. The
command packets comprise a 32-bit header which describes the packet type, followed
by a payload of data, the size of which is specified in the header. A single packet can
represent the same effect as multiple register writes, which simplifies many common
drawing operations. Ui)on activation of the card, the microengine is initialised by
loading in 256 quadwords of microcode data which are supplied by ATI. It can then
parse the command packets, filling the internal FIFO buffer with commands. As in
PIO mode, this buffer is then processed to perform hardware accelerated rendering.

There are two ways to transfer packets in CP mode. The first is similar to PIO
mode - the packets are written directly in through the MMIO registers. However, it
is much more efficient to queue the command packets in a buffer in system memory,
and then initiate a transfer of all packets into the GPU using bus mastering. As
opposed to the push model of PIO mode, this mode is referred to as the Pull Adodel
because the GPU ‘pulls’ da ta in from AGP memory. This allows for C PU /G PU
concurrency and lets the CPU continue with other processing while the graphics
card transfers the packets for parsing and rendering. Bus mastering in this way is
done via two separate but related buffers; the Ring Buffer and the Indirect Buffer.

46

3.2 G raphics H ardw are

These buffers are used to store the command packets th a t are to be fed into the
command FIFO.

The prim ary buffer used is the ring buffer. This is a contiguous block of memory
which is stored in AGP memory, and is seen as a circular buffer by both the GPU
and the driver. Every time the driver writes a packet to the end of the ring buffer,
it increments a ‘w rite’ pointer w'hich is visible to both driver and GPU. Similarly,
whenever the GPU reads a packet from the front of the ring buffer, it increments
a ‘read’ pointer to point at the next available packet. When one end of the buffer
is reached, it wraps around to the beginning in a circular fashion. Once the write
pointer equals the read pointer, the ring buffer is considered to be empty. Initialisa­
tion occurs upon start-up, when the driver allocates the buffer and writes the AGP
memory location and size of the ring buffer to the relevant GPU registers, along
with the address of the read and write pointers.

While using a ring buffer allows much more efficient transferring of d a ta to the
GPU. the packets placed into the buffer are consumed and discarded as soon as they
are used. This means tha t every time a particular command packet is needed to
perform some function, it must be constructed and placed into the ring buffer. If this
packet is u.sed very frequently, the overhead of constructing the j^acket and placing
it in the liuffer each time goes some way to negating the advantages of using a ring
buffer in the first place. For this reason, the command processor is also capable
of reading from the indirect buffer. The indirect buffer is a linear buffer, also a
contiguous block of AGP memory, which does not employ any wrapping mechanism.
Command packets can be placed into this buffer in an arbitrary order, and the
command processor can be instructed to process them by writing the location and
size of the packets to the relevant registers. Alternatively, command packets with
this information can Vje inserted into the ring buffer to be processed. The im portant
distinction between the ring buffer and the indirect buffer is that packets in the
indirect buffer are not replaced once they are used, allowing them to be used multiple
times. For example, a packet pointing to a collection of vertices th a t describe a model
can be inserted into the indirect buffer, and when the model is to be drawn, a packet
is inserted into the ring buffer describing the location and size of the packets in the
indirect buffer. The command processor then switches to retrieving the packets from
the memory pointed to in the indirect buffer packet, processing them and drawing

47

3.2 G raphics H ardw are

the model until they have all been accounted for. It then returns to processing the
next packet from the ring buffer. This means th a t no copying needs to be done
from system memory to the ring buffer, since the packets describing the location
and properties of the model will not be overwritten and do not need to be refreshed.

D istr ib u tin g th e C om m and P rocessor

The fact th a t these buffers are located in AGP memory instead of video memory is
an im portant one. It means th a t we can choose to allocate a node’s buffers in the
global shared memory address space, and place packets into them from any node.
One node can decide to make a remote node draw a model by placing the relevant
packets into its indirect buffer, and then placing a packet into the remote ring buffer
describing where to find the model. Alternatively, all nodes could be made to share
one big indirect buffer located in the shared memory address space, the physical
location of which is spread over all nodes equally. Thus the da ta (whether it is
geometric or texture data) only needs to be stored once and pointed to once in the
cluster, and no replication is necessary.

However, for this scenario to be feasible, an arbitration method of accessing a
node’s ring l)uffer is necessary in order to avoid the situation of two different nodes
trying to write to the same location, or updating the write pointer simultaneously.
Similarly, two nodes could a ttem pt to place packets in the same location of the
indirect buffer, one overwriting the other. This can be avoided with the use of
m utual exclusion algorithms from the area of concurrent programming. However, as
mentioned in Section 3.1.3, the cluster’s NUMA architecture means th a t the method
of arbitration must be carefully chosen in order not to generate more interconnect
traffic than necessary. The use of semaphores to synchronize access could potentially
solve the problem, with nodes continually checking to see if the semaphore is free
to write to the buffer. Ring buffer and indirect buffer writes will generally be very
short, so no single node would be made to wait an unacceptable amount of time
before. However, the traffic generated by nodes continually checking the semaphore
could become unacceptable. This could be solved by using a queue mechanism for
allowing nodes to add their packets to the end of a queue local to the ring buffer’s
node, which is then fed into the ring buffer in a timely fashion.

48

3.3 Softw are Infrastructure

The most conmioii and efficient method for a GPU to access texture and geom­
etry d a ta is for tha t data to be located in on-board video memory. It is transferred
there by a connnand packet th a t instructs the graphics card to fetch the da ta from
AGP memory. By exploiting this, we can have one copy of any texture or geometry
data located in shared memory and then instruct any graphics card th a t requires
tha t da ta to fetch it remotely for storage in local video memory. This retains the
performance gains achieved by having the data in high-speed local memory, while
removing the need to also keep a copy in the node’s system memory.

3.3 Softw are Infrastructure

In order to drive the entire cluster, rendering nmst be initiated by a graphics ap­
plication running on one or more workstation nodes. To do this, a software infras­
tructure must be in place th a t converts regular OpenGL rendering commands into
distributed, hardware-specific command packets and routes them to the right node
for timely rendering. The details of how this is done depends on the nature of the
rendering and the setup of the cluster.

3.3.1 M oln ar’s T axonom ies R ev is ited

For the system to fulfill its primary role as a parallel rendering cluster, we must take
another look a t the taxonomies of Molnar et al. as described in Section 2.2.2 and
explore how they can be applied to take maximum advantage of the unique mixture
of parallel hardware available to us.

Sort-first: In a traditional parallel cluster rendering system such as Chromium [60],
operating in sort-first mode, pre-transformation must be performed by the
application in order to determine where the geometry needs to be sent to be
transformed and rasterised. While this pre-transformation can be as simple
as calculating a screen-space bounding box for each model (at the cost of 6
conditional assignments per vertex of the model, plus m atrix transform ation
of the bounding box into screen-space), it still adds an extra burden on the
application node since all pre-transformation must be done before distribution.
We can improve upon this by assigning each model to an arbitrary node and

49

3.3 Software Infrastructure

performing the pre-transformation in the Bridge FPGA, either in-situ through
shared memory or by actually transferring the model into the remote node’s
local memory for faster access. The model can then either be redistributed to
the proper node’s indirect buffer for rendering, or placed in a shared indirect
buffer for remote access by the rendering node. This allows for a more even
load distribution, and reduces the strain on the application node. Sort-first
is primarily used for ‘tile-rendering’ systems, wdiere each rendering node is
attached to a projector which draws one tile of the complete image.

Sort-middle: While sort-middle allows even load-balancing of the transformation
stage, the distribution here occurs with the intermediate screen-space primi­
tives. By employing the GPUs to perform the full transformation stage, these
screen-space primitives are located inside the graphics hardware pipeline and
so are not directly available outside the chip. To implement a sort-middle
architecture, w'e would have to either use the programmable pipeline to pro­
vide the screen-space primitives (by using a vertex shader to calculate them
and then encoding them in an image output by the fragment shader), or else
perform the entire transformation stage in the Bridge FPGAs, ignoring the
GPU's vertex processing capabilities completely. Neither of these solutions
are acceptable, as they do not make full and proper use of the available paral­
lel hardware that is dedicated to performing primitive transformation, i.e., the
GPUs. Therefore, despite being the natiual place to distribute the rendering
work for optimal load-balancing, a sort-middle architecture is not feasible on
the cluster.

Sort-last: Another promising architecture for the cluster would be sort-last. In
a similar fashion to the Lighting-2 system [125], the FPGAs can be made
to perform efficient depth compositing of the images produced by the GPUs.
Instead of a costly read-back over the AGP bus, the DVI inputs attached to
each custom board (see Figure 3.1) can be used to read back the rendered
image produced at each frame at a latency of exactly one frame. The pixel
data can then be transferred across the cluster due to the high bandwidth of
the SCI interconnect, the contributions of all nodes being composited together
to form the final image. In this way, the system as a w'hole can be used for all

50

3.3 Softw are Infrastructure

simulation, rendering, and compositing procedures without needing additional
dedicated hardware for any single step.

There are also other factors th a t must be considered when building a software
infrastructure for a parallel rendering cluster. When the application changes the
graphics state, for example by disabling texturing or changing the current diffuse
colour, this change must be tracked and distributed to each rendering node. Buck
et al. [12] describe a system for updating the graphics state over a cluster by using
‘lazy updates’. This efficiently calculates the difference between two graphics states
and only connnunicates updated attributes when absolutely necessary in order to
keep transmission costs down. A similar mechanism would certainly be applicable
to our cluster, although it may not be necessary if all rendering nodes use the same
graphics state via a shared indirect buffer. In this case, any state changes tha t have
a global effect could be queued in the shared indirect buffer and referred to by each
node’s local ring buffer.

3 .3 .2 W ork station P ara llelism

As well as investigating the infrastructure necessary to perform parallel rendering
on the cluster, we must also consider the software necessary for performing parallel
com putation over the attached workstation nodes (if there are more than one). This
is an area of active research, and many methods exist to distribute work between
computers.

Of course, regular methods of connmmicating over ethernet via T C P /IP are
possible on any machine with a standard operating system and a network adapter.
However, by using these we would be bypassing the available SCI interconnect and
the significant improvements in bandwidth and latency associated witli it. Therefore
we concentrate on the available methods of communicating over SCI.

Traditional parallel computing tasks on heterogeneous clusters often use software
layers to abstract and standardise communication between workstations. The two
most popular standards are Parallel V irtual Machine (PVM) [127] and Message
Passing Interface (MPI) [94], with MPI being arguably the more widespread and
popular of the two. Additionally, while work has been done on implementing a

51

3.3 Softw are Infrastructure

l^VM-based system over SCI (such as the work by Zoraja et al. [148]), the most
lecently released SCI communication software packages are MPI-based.

As the name implies, MPI is a method for parallel processes to communicate
ihrough the passing of messages. It is an open standard which is easy to use, but
also provides significant functionality if required. There are many implementations
of the standard, the most common being the open source MPICH [51] which is
available for many platforms including Windows and Linux. Additionally, \\brringen
('t al. [144] have implemented MPICH over SCI. Therefore the use of MPI as a
])rotocol for communication between workstation nodes would allow compatibility
with the many existing M PI-based parallel programs while also taking advantage of
the SCI interconnect.

Another alternative is to use the open source SuperSockets software supplied by
Dolphin [30]. This is a layer which allows an application to use regular Berkeley
sockets for communication over SCI without SCI-specihc code. Again, sockets are
in widespread use for network da ta transmission, meaning this method would pro­
vide support for many applications while providing much lower latency and higher
bandwidth than regular sockets due to the underlying interconnect. The fact th a t
it is developed by Dolphin also ensures tha t interoperability with the SCI hardware
is as good as possible and th a t the software is updated regularly.

For applications th a t are aware of the underlying cluster architecture and the
SCI interconnect in particular. Dolphin also supplies a lower-level library called
SISCI [31]. This lets the application developer include API calls tha t will interface
with the hardware directly, reducing the amount of system and library calls th a t
introduce overhead and latency in other higher level systems.

3.3.3 C om m unicating w ith the Driver

When a regular Windows OpenGL application makes a call to the API, it is the
driver’s OpenGL Dynamic Link Library (DLL) th a t takes this API call and produces
the command packets as described above. In the case of Linux, it is a Shared
Object (SO) th a t implements the interface. In order to change the behaviour of
the interface, this hbrary must be replaced and all exposed API functions th a t
the application uses must be either re-implemented or forwarded to the original

52

3.3 Softw are In frastru cture

library. The nature of this re-iniplementation is entirely up to the replacement
library, although usually it will perform some sort of non-invasive monitoring of API
calls before passing them onto the original driver for regular rendering. Api)lications
such as gDEBugger [48] and GLIntercept [133] take advantage of this in order to
intercept OpenGL calls and allow the developer to view' statistics and diagnostic
output. They also permit influencing the actual OpenGL functionality through
methods such as replacing textures and changing state variables etc. This can prove
very useful to developers for optimisation and debugging. Chromium also uses this
m ethod to intercept API calls for distribution over the cluster, handing the calls to
a regular vendor-released driver for rendering at each node.

In a similar way, we can replace the system's OpenGL driver with our own library.
This allows a regular application to run normally, even though it is imav/are of the
underlying architecture, while still taking advantage of the distributed rendering
power of the cluster - nnich like Chromium. However, the processing recjuired by
the cluster's replacement library is much more involved than the simple pack-and-
forward operations of Chromiiun's node lil^rary. In our case, we need to do the work
of both the distribution lil^rary and the vendor’s driver. This involves deciding which
custom board node to distril)ute the rendering calls to (depending on rendering
method, i.e., sort-first etc.), and constructing the corresponding command packets
to feed to the destination node’s GPU.

It makes sense to condense these two steps into a single library call in order
to minimise the latency caused by multiple shared library calls. Therefore, instead
of simply packing the OpenGL API calls into a network stream for transmission,
the replacement driver will translate these calls into command packets and submit
them to the relevant ring buffer or indirect buffer. This eliminates the need for
conmiand packet construction on the FPGAs, which is beneficial as details of both
the OpenGL API and the logic used to interface with the hardware are subject
to change. A software driver is easier to upgrade and encapsulate than hardware
changes, meaning the view from outside the driver is essentially remains the same
throughout upgrades.

In order to avoid driver bottlenecks due to the extra overhead of command packet
construction and distribution, care will have to be taken to ensure th a t API calls
make as efficient use of the hardware as possible. However, this should already

53

3.3 Softw are Infrastructure

be the case for ordinary performance-oriented 3D apphcations. Additionally, the
available processing power of the FPGAs offloads some of the work from the CPU,
giving it more cycles to devote to the driver.

3.3.4 C om m unicating w ith the F P G A C o-processors

In the case of applications th a t have been designed specifically for the architecture
of the cluster, the extra processing power available on the custom boards must be
exposed to the developer in order to be usable.

The imderlying logic for any co-processing functionality will first need to be im­
plemented in the FPGAs, through VHDL or another hardware description language.
It would not generally be possible to allow the developer to implement arbitrary
logic progrannnatically, due to the fundamental differences in architecture between
a regular 3D graphics application and an algorithmic implementation on FPGA.
Therefore, a library of modules will have to be built up as different requirements are
realised. This may initially be something as fundamental as hardware accelerated
linear algebra calculation, leading to more specialised imi)lementations later on as
new and existing applications are implemented on or ported to the cluster.

Conmiunication with the FPGAs is achieved through the SCI fabric and the
single shared address space. D ata structures specific to the algorithm being pro­
cessed are written into shared memory, and computation is initiated by writing to
special FPG A registers or command ports which are also accessible via shared mem­
ory. The results of these calculations are then placed back into memory, w'here they
are available to be read back into the application for further processing. In special
cases where further com putation is unnecessary, these results could be formatted
by the FPG A to be directly accessible to the GPU as texture or geometry data,
avoiding further latency th a t would be introduced by passing da ta back over the
w orkstation’s I/O bus.

Although this work would initially be part of the replacement system driver,
eventually a new driver and API will be designed to abstract away any hardware
access. This would make the F P G A ’s capabilities available to developers indepen­
dently of the GPU functionality, leading to the increased modularity and flexibility
of the overall system.

54

3.4 Comparison w ith the Cell Processor

3.4 C om parison w ith th e Cell Processor

There are many aspects of the chister that invite comparisons to the Cell Broadband
Engine described in Section 2.4. Both are parallel systems on multiple levels and
both have similar methods of transferring, storing and processing data.

M em ory access: The memory access methods used by both the cluster and the
CBE are very similar. The NUMA architecture implemented by both leads to
a two-level concept of fast local memory and slower remote memory accesses.
On the CBE, the local memory is restricted to the SPU’s 256kb local store,
wiiich is much more restrictive than the cluster’s local memory. However the
design of the SPU’s local store as on-chip Static RAM (SRAM) means that it
can be accessed and written to faster than the chister’s DRAM. At the same
time, remote memory accesses on the CBE must take place through the DMA
transfer mechanism, whereas the cluster can access memory more transpar­
ently through the single global address space. In both cases, an application’s
memory access pattern must take into account the cost of retrieving data from
both local and remote locations.

D istributed processing: The closest comparisons l)etween the two systems can
be drawn from their distributed processing cajjabilities. Both are capable
of executing multiple programs in parallel, distributing them across discrete
processors and allowing inter-process communication. Alternatively, both are
also capable of performing in a pipelined fashion or using a service-oriented
paradigm. The only difference here is that while the cluster can distribute
processing symmetrically across all processing nodes, the asymmetrical nature
of the CBE is more suited to data-intensive processing on the SPUs with
control-intensive processing on the PPU.

Internal parallelism: As well as the explicit parallelism of multiple distributed
processors, both systems are also capable of internal parallelism on each pro­
cessor. The Cell’s PPU can execute two hardware threads simultaneously as
well as containing an Altivec unit for SIMD code execution, which the SPUs
are also capable of. However, each cluster node has the potential for much
higher parallelism due to the FPGA implementation. Neither system can be

55

3.4 C om parison w ith th e Cell Processor

said to be superior to the other; the advantages of each are data-dependent
and the suitabihty of the algorithm being executed determines how well each
design performs.

In terconnect arch itecture: Each systems requires an interconnect for communi­
cation between processors; the Cell’s EIB is comparable to the cluster’s SCI
interconnect. Both are implemented in a ring topology, with the consequence
of adjacent nodes communicating faster than physically more distant nodes.
The communication systems differ however - the SCI fabric implements the
global shared memory address space, performing address translation for the
application. Conversely, applications on the CBE must perform and manage
the DMA data transfers explicitly.

Scalability: Again, both systems correspond with their potential for scalability.
Multiple CBEs can be connected through the Broadband Engine Interface,
increasing the processing power available to an application. The cluster also
scales by adding more nodes. In the cluster’s case, this also implicitly increases
the rendering power available to the system as a whole, due to the graphics
cards attached to each node.

Program m ability: The programmability of each system is where the designs di­
verge most significantly. Programming the Cell will be inunediately more fa­
miliar to software developers, even taking into account the considerations th a t
must be given to the CBE’s unique architecture. While applications on the PC
nodes of the cluster can execute conventional programs written in languages
such as C/C-I--I-, more hardware-specific expertise is required to implement the
FPGA side of the applications. This has the potential to offset any advantages
th a t might arise from the large amount of parallelism provided by the FPGAs
if the application developer is unable to efficiently exploit them.

As mentioned previously, the many coincidental similarities between the clus­
ter and such a highly-developed commercial system suggest a solid foundation for
the cluster’s architecture and validate many of the design choices made during its
inception.

56

3.5 Exam ple Applications

3.5 Exam ple A pplications

There are many potential applications that could take advantage of the large amount
of parallel processing power offered by the cluster. Although standard sort-first tile
rendering is the primary application of the cluster, it is by no means the only one.
Here we wall look at some of the most popular areas that stand to benefit most from
all the available parallel computational power;

• V ideo Processing: Another group involved in this project is Trinity College’s
Signal Processing and Media Applications Grouj) (SigMedia). They perform
research on motion estimation - the study of extracting motion information
from visual media processing systems. They have already demonstrated the
use of commodity GPUs to accelerate motion estimation [65, 66], and cite poor
frame buffer readback speeds as the main hindrance to a complete solution.
By employing the cluster in tliis respect and using the iDuilt-in DVl readback
port, this problem will be resolved. The parallel computation afforded by the
FPGA co-processors can also be used to achieve further acceleration in this
respect, as can the fact that multiple GPUs are used by the cluster in the first
place.

• Volume Rendering: As discussed in the next chapter, volume rendering
is an area ripe for parallelisation. Recent work has been done by Strengert
et al. [126] on texture-based direct volume rendering of large datasets using
GPU clusters, with impressive results; on a Myrinet-based cluster of 16 1.6GHz
AMD Athlons with NVIDIA GeForce4s, they achieve 5.7 frames per second for
a 2048 X 1024 x 1878 volume in a 1024^ viewport. Using sort-last compositing,
they note that performance is restricted by both the blending computation
and the intercomiect latency. Both of these problems can be addressed in our
cluster - the FPGAs for parallel sort-last compositing and the low latency of
SCI for data transfer. Additionally, using the DVl readback would further
improve compositing rates compared to readback over the bus.

• Isosurface Extraction: The methods described in Section 4.4 for isosurface
extraction on Cell can equally be applied to the architecture of the cluster, with

57

3.5 E xam ple A pp lications

the additional advantage of being able to distribute the resultant geometry to
multiple GPUs for sort-first rendering.

• R ay Tracing: An obvious graphical application to such an inherently paral­
lel architecture is ray tracing. Each component of the cluster lends itself to
ray tracing acceleration in a different way. The FPGAs can be employed to
perform ray tracing as dem onstrated b}̂ the SaarCOR project [128] on a single
FPGA - using the many FPGAs of the cluster in parallel would provide many
times the performance of th a t architecture. The fact tha t a ray can travel
anywhere in a scene leads to the problem of needing to replicate all scene
da ta on every node in a classical cluster ray tracing architecture - the shared
memory provided by the SCI interconnect would eliminate this need and also
allow fast transfer of the data. GPUs are only now becoming i)owerful enough
to perform ray tracing, and research is still ongoing as to the best methods of
implementing it on such a specialised architecture [110]. As such, they can still
be used to accelerate parts of the ray tracing, or perform hardware accelerated
image-based post processing.

• C ollision D etection : As discussed in Section 2.3.4, Raabe et al. have al­
ready dem onstrated large improvements in collision detection algorithms im­
plemented on reconfigurable hardware. This can be extrapolated to the clus­
te r’s parallel FPGAs being able to accelerate collision detection even further,
as part of a larger simulation and rendering system involving the workstation
nodes and GPUs.

• A rbitrary H ardw are Shaders: One potential application of the FPGA co­
processors is as another arbitrary shader stage. In this ŵ ay they could emulate
an extra processor stage in the progranmiable pipeline. An example would be
implementing a hardware subdivision surfaces [26] shader, tessellating geome­
try in the FPGAs and forwarding the produced geometry to the GPUs.

• C rowd sim ulation: The independent nature of individuals in a crowd is
very amenable to parallelisation on such a cluster. The crowd could be par­
titioned, spatially or otherwise, and distributed evenly across the cluster for

58

3.5 E xam ple A pp lications

advanced behavioural simulation before being rendered on the same node using
the methods described in Section 5.2.

• O ther C om pu te-B ound A pplications: A part from graphics and image-
related algorithms, the large amount of parallel processing power available
on the cluster can be applied to any other compute-bound problem domain.
The large bandwidth and low latency of the interconnect combined with the
distributed shared memory space provides efficient, fast and transparent data
transfer between nodes, allowing very large datasets and good scalability. Any
algorithms th a t can be adapted to use the GPUs for G PG PU can expect fur­
ther increases in speed, without the usual G PG PU drawback of slow readback,
thanks to the DVI feedback feature on the custom boards.

In this chapter we have described a tightly-coupled rendering cluster th a t em­
ploys many different levels of parallelism to accelerate simulation and rendering.
The remainder of this thesis presents the first potential applications th a t will be
implemented on this cluster framework, scientific visualisation and entertainm ent
algorithms, and the research that has been done on improving these algorithms to
take advantage of commodity parallel hardware.

59

Chapter 4

Scientific V isualisation

The real-time, interactive visualisation of scalar volumetric fields is a desirable goal
for many scientific applications. In medical fields, the application of volume render­
ing and surface extraction for rapid and meaningful visual represent ation of datasets
such as CT (Computerised Tomography), MRI (Magnetic Resonance Imaging), Ul­
trasound and PE T (Positron Emission Tomography) scans can make an im portant
difference in the speed of surgical planning, diagnosis and treatm ent. It is also a use­
ful tool in surgical sinrulation and medical education. However, volume visuahsation
is not only useful for medical imaging, but also for other areas such as rendering the
datasets caj)tured by confocal microscopy, and for extracting polygonal structures
and surfaces from these vohmies.

Section 4.1 gives an overview of the area of scientific visualisation, concentrating
on volume rendering and surface extraction on commodity parallel hardware. Sec­
tion 4.2 details the research done on the visuahsation of confocal microscopy data.
Section 4.3 presents a method for simplifying volumetric datasets for faster surface
extraction and improving the quality of confocal dataset surfaces. Section 4.4 de­
scribes a novel algorithm for performing fast surface extraction on the Cell processor
in order to take advantage of its parallel architecture. Finally, Section 4.5 presents
the results of this research.

60

4.1 V olum e V isualisation

4.1 Volum e V isualisation

A vohim.e can be defined as a 3-dimensional array of point samples. Each sample
is called a voxel, an abbreviation of Volume Element and analogous to the role of a
pixel in a 2D image. A volume may represent any 3D field of discrete scalar data,
usually in the form of a rectilinear grid of values th a t have been sampled from the
original continuous domain that the volume represents. For example, a single voxel
in a volume captured by a CT scan represents the radiodensity (in Hounsfield units)
of the subject sampled at th a t particular point. Volumes can also be based on other
topographical grids, such as curvilinear or unstructured fields of points. Voxels are
generally either 8, 16 or 32 bits in size.

In this section we will concentrate on two problems; the actual volume visual­
isation of collected data in both software and hardw'are, and the reconstruction of
polygonal surfaces from the volume data. The efficient and meaningful rendering
of volumes such as these is just as im portant as the capture itself, as being able to
acquire such data is of no use without the ability to extract meaningful information
from it. The two most popular methods of achieving this goal are direct volume
rendering and isosurface extraction.

4.1.1 D irect Volum e R endering

Direct Volume Rendering (DVR) is concerned with the rendering of a volume with­
out the intermediate step of extracting explicit polygonal da ta from the volume. In
order to carry out DVR, three items are needed; an optical model of the volume, a
m ethod of classification, and a method to project the volume into the frame buffer.

O ptical M odels

Firstly an optical model of the volume is needed. This model determines how each
particle in the volume reacts to light, and how they will be rendered into the frame
bufi^er. The most common optical models used in DVR are as follows, summarised
from [86]:

A bsorption: Particles are completely black and absorb all incoming light without
scattering it to nearby particles, or emitting their own light. In absorbing the

61

4.1 V o lu m e V is u a l is a t io n

incoming light, they occlude o ther particles.

E m iss io n : Particles do not absorb incoming hght, bu t only em it their own Ught.

S c a t te r in g : Any incoming light to the particle is scattered to other nearby particles

In general, a com bined em ission/absorption model is used, together w ith a light­

ing model. This m eans th a t particles in the volume b o th absorb and em it light and

react to the ligh t’s direction and colour, bu t do not sca tte r incoming light to nearby

particles.

C la s s if ic a tio n

In order to convert the scalar voxel values of the initial volume d a ta into meaningful

optical properties such as colour and opacity, a transfer function is needed. Trans­

fer functions are generally im plem ented as one-dim ensional colour lookup tables,

m apping the scalar values d irectly to an RGBA value.

The transfer function can be applied directly into the tex tiu ’e d a ta upon initial

generation of th e stacks, replacing the scalar values w ith the results of the transfer

function lookup. This is known as pre-classification. However, there are a num ber of

disadvantages associated w ith pre-classification. It is inefficient, as the entire volume

needs to be regenerated and updated whenever th e transfer function is altered.

In addition, it leads to artefacts in in terpolation. An in terpolated pre-classified

colour m ight not be th e same as the colour th a t would result from evaluation of an
in terpolated voxel value by th e transfer function.

Post-classification is used instead, where the voxel d a ta is stored in the tex tures
directly and only converted into optical properties upon rendering, and after fil­

tering. Post-classification can be accomplished in one of two ways: the first is to

use O penG L colour tables, where an 8-bit texel intensity value is used to look up

a one-dim ensional colour table. The alternative is to use dependent tex tu re reads,

where certain channels of th e fragm ent colour resulting from one tex tu re lookup

are used as tex tu re coordinates for a second tex ture. W hile som ew hat slower, de­

pendent tex tu ring is m ore flexible th a n O penG L colour tables, and can be used for

im plem enting m ulti-dim ensional transfer functions [72].

62

4.1 V olum e V isu a lisa tion

V olum e projection

W ithout an exphcit geometric model to display through the normal rasterisation
pipeline, an alternative method is required in order to convert the 3D volume into a
projected 2D image in the frame buffer. This is usually done by ray casting [135, 79].
Ray casting is the procedure of sending rays through the image plane into the
volume, re-sampling the volume at regular intervals. Because the volume of voxels
represents a discrete sampling of the original continuous data, this re-sampling is
necessary in order to reconstruct the original data as closely as possible. It is
performed by using a filter such as trilinear interpolation. Classification occurs
either before or after this filtering step, depending on the type of classification being
used (pre- or post-classification). The contribution of each voxel encountered along
the ray is then integrated to produce the final pixel colour. The nature of this
contribution is governed by the optical model chosen for the DVR procedure, as
described above. It is possible to achieve very high image quality by increasing the
number of interpolated samples along each ray, a t the expense of processing speed.

R elated W ork

After the original work on ray casting was published, there were a number of papers
on accelerating and optimising its performance. Levoy [80] proposes two key ideas for
reducing rendering costs; adaptive ray term ination which term inates rays early when
their accinnulated opacity reaches a certain threshold, and a hierarchical spatial
partitioning scheme for fast traversal of empty areas of the volume. Danskin and
Hanrahan [22] compare a number of ray casting acceleration techniques, and adapt
tw'o of the techniques in order to produce an improved algorithm tha t increases
performance without degrading image quality.

Another class of volume rendering is splatting. This is where the voxels are
sorted from back to front, and the projection of each voxel is composited as a splat
into the frame buffer [142, 78]. However, the image quality produced by splatting
is not comparable to tha t of ray casting. One advantage of splatting is th a t it is
more parallelisable than ray casting; the volume can be partitioned and distributed
to many nodes, where each node only needs the information local to the voxels
being splatted. Mueller and Yagel [95] propose a hybrid method of splat-based ray

63

4.1 V olum e V isualisation

casting, and present an efficient method of addressing and intersecting the splats.
This combines the speed of splatting with the acceleration techniques possible for
ray casting, such as early ray term ination and bounding volumes.

Ray casting can also benefit from parallel processing, much as ray tracing can by
distributing rays to different computational nodes in a divide-and-conquer approach.
Ma et al. [83] describe a system for parallel processing of ray casting for volumes,
and subsequent parallel composition of the resulting partial images using binary-
swap compositing. They demonstrate communication costs as being only a small
overhead of the overall processing time, indicating successful parallelisation.

A new approach to DVR was presented in 1994 by Lacroute and Levoy, called
shear-warp [77]. This is a high-performance volume rendering algorithm th a t elim­
inates the costly voxel viewing transform ation overhead of other methods. It does
this by shearing the volume slices in order to be able to easily project them onto an
image plane, which is then warped to produce the final image. Although shear-warp
has the potential to produce inferior images compared to ray casting due to less
accurate sampling, this fact is compensated for by its speed as a volume renderer.
Additionally, Levoy notes th a t the la tter steps of the algorithm are very suitable for
parallelisation.

W ith the exception of the shear-warp algorithm, software volume rendering al­
gorithms are generally too slow to use for interactive real-time vohmie rendering.
Therefore it was not long before researchers started to look towards graphics hard­
ware in order to increase the rendering speed and interactivity of volume viewing.

4.1.2 V olum e R endering on C om m odity G raphics H ardware

In recent years, research in the area of volume visualisation has advanced rapidly due
to the increased availability of high speed, low-cost commodity graphics hardware.
Volume da ta th a t could previously only be interactively explored using expensive
workstation hardware can now be rendered at interactive rates on a common desktop
PC by taking advantage of the texture mapping hardware in today’s commodity
graphics cards.

Much like ray casting, the process of texture mapping is concerned with re­
sampling discrete data. A continuous domain is sampled into the discrete units of a

64

4.1 V olum e V isualisation

texture (texels), which approximate the original data. Texture mapping hardware
then filters this texture in order to re-sample the data and map it onto a polygonal
surface. The similarity between these two procedures can be exploited in order to
perform the repetitive re-sampling task of ray marching, but with the advantage of
being hardware accelerated.

The basic method of visualising stacks of images such as these is by using 2D-
textured axis-aligned slices [141, 71]. The volume is separated into textured slices,
each slice being a two-dimensional section of the volume, one voxel in depth. Proxy
geometry is generated in the form of a quad for each texture slice. For example,
a volume of dimensions 128 x 128 x 64 would be separated into 64 textures, each
128 X 128 in size. These textures are arranged to give the illusion of a solid volume by
blending each slice from back to front into the frame buffer using the graphics hard­
ware’s support for texture blending. Blending the textures together approximates
the ray integration step of ray marching, thereby producing a rendered volume.

However, when the texture stack is rotated past a certain point, gaps between the
slices become apparent and the proxy geometry becomes evident (see Figure 4.1).
To avoid this, 3 stacks must be generated, one for each principal axis. The original
stack is used for the Z-axis, with interpolated stacks generated from tliis data used
for the X- and Y-axes. As the volume is rotated, the stack th a t is most orthogonal
to the viewing direction is displayed, thus preserving the illusion of solidity. The
main drawback of this method is th a t it consumes 3 times the amount of texture
memory as the original stack. However, this is imlikely to cause a major problem
given the large amount of texture memory on modern graphics cards together with
the increasing amount of bandwidth available for mapping AGP and PCI-Express
texture memory. Another drawback of using axis-aligned slices is tha t there is a
visible transition between the three different stack representations of the volume.

An alternative tha t eliminates this memory consumption requirement is the use
of 3D textures, as observed by Cabral et al. in their work implementing a real-time
volume renderer on the SGI Reality Engine [13]. Graphics hardware supports the
binding of the entire volume as a single 3D texture. Geometry can then be texture-
mapped using three texture coordinates at each vertex to apply any arbitrarily-
oriented section of the volume to the polygon’s surface. By taking advantage of this
fimctionality, the axis-aligned proxy geometry can be converted into view-aligned

65

4.1 V olum e V isualisation

Figure 4.1: A single stack of textures at 0°, 30°, 60° and 90°. Upon each rotation,
the underlying proxy geometry becomes more evident.

slices th a t are generated dynamically as the viewpoint is altered. This eliminates
any visible transition th a t might be apparent using axis-aligned slices. The hardware
will then filter the 3D texture using trilinear interpolation in order to sample texture
for mapping to the slices, leading to improved image quality. However, 3D texture
support on graphics hardware is slower than regular 2D texturing [117], so a trade-off
decision must be made between memory usage, image quality and rendering speed,
depending on the target platform and application needs.

C u stom V olum e R endering H ardw are

Given the specific nature of volume rendering, the widespread areas of application,
and the inherent parallelism in its implementation, a number of custom-built hard­
ware solutions have been published over the last ten years.

Pfister and Kaufman’s work on the Cube-4 [109] builds upon previous iterations
of the Cube architecture. Cube-4 is a scalable array of vohune rendering pipelines
and associated memory modules, which work on local voxels in parallel and process
them with a modified ray casting algorithm. The system scales linearly with the
number of rendering pipelines, and is aimed at implementation in an ASIC. Osborne
et al. continued their work and presented EM-Cube [101], a feasible architecture for
using the Cube-4 in a PCI card th a t could process 16-bit 256^ volumes at interactive
rates.

At around the same time, Kreeger and Kaufman were working on PAVLOV [76],
a parallel architecture with SIMD elements. While PAVLOV is capable of volume
rendering, it is also designed to be programmable, allowing the use of different

66

4.1 V olum e V isualisation

rendering algorithms and properties such as feature extraction and segmentation.
In 1999, Pfister et al. produced the VolumePro [108], a PCI volume rendering

board manufactured by Mitsubishi. It was a commercial implementation of the
EM-Cube architecture, costing around $3,000 at the time of release. VohunePro
was capable of 500 million interpolated, illuminated and composited samples per
second, enough to display a shaded 256^ volume a t 30 frames per second. Today,
the VolumePro range is sold by TeraRecon Inc., and the latest incarnation (the
VolumePro 1000 D) is capable of real-time visualisation of volumes up to 512^.

Most recently, MeiBner et al have published the Vizard II [88], another vohnne
rendering PCI card. However, unlike other custom volume rendering hardware, the
Vizard II is implemented on an FPGA, thereby allowing a customisable feature set
and quick implementation of upgrades and optimisations. While the Vizard II is
only capable of a maximum of 50-100 million samples per second depending on board
speed, they claim a superior image quality to the VohunePro, and a more efficient
and correct implementation of the ray casting algorithm.

4 .1 .3 Isosurface E xtraction

The alternative to Direct Volume Rendering is Indirect Volume Rendering. This
is where an ex])licit polygonal surface is extracted from the volume as an inter­
mediate step and rendered using the traditional triangle rasterisation pipeline of
modern graphics cards. These surfaces are called isosurfaces - in the same way tha t
isobars demarcate areas of equal pressure on a weather map, isosurfaces are the
representations of areas of equal data values (referred to as isovalues) in a volume.

Besides the obvious applications of isosurface extraction for visualising internal
organs and bones in a medical dataset, isosurface extraction is also useful in other ar­
eas where specific surface visualisation can allow for the more meaningful exploration
and illustration of collected data, such as in Pharmacology [134], Chemistry [103]
and Heliology [62].

Methods for calculating and extracting isosurfaces from a given scalar volumetric
dataset have been the subject of much research. Early w'ork by Keppel et al. [67]
involved the reconstruction of surfaces by connecting applicable contours on adjacent
slices, but was subject to ambiguities concerning how to connect contours when more

67

4.1 Volum e V isu a lisa tion

than one exists on a slice. Miller et al. [90] use ‘Geometrically Deformed Models’
which are grown from a seed placed in the model and deformed according to a set
of constraints. They produce closed models, and relate the computational time of
their algorithm to the size of the surface produced, not the size of the volume itself.

However, the most popular isosurface extraction algorithm has been in use since
Lorensen and Cline introduced Marching Cubes in 1987 [81]. Marching Cubes con­
structs a cube or ‘8-cell’ from eight voxels, four each from two adjacent slices. It
then iterates through every cube in the volume, comparing the voxel values a t each
corner of the cube and determining whether an isosurface for a desired isovalue
would intersect the cube. If all eight of the cube’s values are below the desired
isovalue, the surface will not intersect it. Likewise if all values are above the desired
isovalne. The other cases are where the surface needs to be generated - some values
are below and some are above. Each voxel therefore has two states - either above (or
equal to) or below the isovalue, and eight voxels in a cube leads to 2*̂ = 256 possible
cube states with respect to isosurface intersection for a given isovalue. However,
many of these states are identical except for rotational symmetry differences. By
eliminating these duplicate cases, the number of possible cube states is reduced to
a more manageable 14. These cases can be seen in Figure 4.2. When it is known
which edges the surface intersects, the exact location of these intersections can be
calculated by performing a linear interpolation between the two voxel values of each
edge. A number of interpolated triangles are then constructed according to which
case the cube falls into, and all the triangles created form the volume’s isosurface
for the given isovalue.

While Marching Cubes is a simple algorithm th a t is easy to implement and
produces good surfaces, it suffers from the problem of ambiguous cases where there
is more than one way to triangulate a given cube. This can lead to holes in the
resulting isosurface. Further research was done by Van Gelder and Wilhelms [138]
and Nielson and Hamann [97] on adaptations of Marching Cubes to overcome this
problem. An extension of Marching Cubes called Marching Tetrahedra [52, 14]
solves the problem by separating each 8-cell into a number of tetrahedra, eliminating
potential ambiguities and producing a finer tesselated surface.

A cube can be decomposed into a minimum of five tetrahedra. Each tetrahedron
has four vertices, so the number of possible isosurface intersection cases is 2 ̂ = 16.

68

4.1 V olum e V isualisation

My
o V

Figure 4.2: The 14 possible cases of Marching Cubes, including the empty case 0.

Again, the m ajority of these are duplicate synnnetric cases which can be eliminated
in order to reduce the number of unique intersections to three. See Figure 4.3 for
an illustration. These cases do not contain the ambiguities inherent in Marching
Cubes, although they do have the j)otential to produce more triangles. In the worst
case. Marching Cubes creates four triangles per cube. Marching Tetrahedra, with
a maxinmm of two triangles per tetrahedron and five tetrahedra per cube, has a
worst case of ten triangles per cuV̂ e, over twice th a t of Marching Cubes. Another
implication of tetrahedral decomposition is th a t the edges of tetrahedra in adjacent
cubes do not match up, so the edges of any surfaces created in these tetrahedra will
not match up either, thus producing holes in the surface. This can be overcome
by increasing the number of tetrahedra in a cube to six, but at the expense of an
even higher triangle count in the resulting isosurface. Instead, the orientation of
each alternate 5-tetrahedra cube can be changed so th a t adjacent tetrahedra always
match up.

69

4.1 V olum e V isualisation

' f
Figure 4.3; The decomposition of a cube into 5 tetrahedra, along with the 3 possible
triangulation cases of Marching Tetrahedra.

4.1.4 A ccelerating Isosurface E xtraction

Given the desire to interactively explore volumetric datasets (i.e., being able to
generate new surfaces for a given isovalue param eter at responsive frame-rates),
many techniques have been developed in order to accelerate isosurface extraction by
Marching Cubes or Marching Tetrahedra.

A popular method of acceleration is by pre-processing the data in order to allow
for rapid identification of subsections of the volume known to include a desired iso­
value. Wilhelms and Van Gelder propose a modified octree subdivision method [143],
keeping storage costs down by using what they call ‘Branch-on-need octrees'. Simi­
larly, Cignoni et al. use interval trees [35] to accelerate the identification of 8-cells
th a t contain a desired isosurface [19]. These methods dram atically improve pro­
cessing speeds at the expense of additional memory usage for the required data
structures, thus red^icing the memory available for the dataset.

Others achieve acceleration by amortising the com putational cost through paral-
lelisation. Hansen and Hinker were one of the first to propose the parallelisation of
Marching Cubes, developing an adapted version of the algorithm th a t takes advan­
tage of SIMD architecture [54]. At the same time, Mackerras implemented Marching
Cubes on a MIMD Fujitsu A P I 000 with 128 processors [85]. More recently, Jinzhu
and Shen dem onstrated a parallel multi-pass view-dependent algorithm for isosur­
face extraction on a 40-processor SG I Origin [41]. They employed octrees to cull
large empty areas of the dataset, and used multi-pass occlusion culling to only ex­
tract the areas of the isosurface th a t will be visible in the final frame. Udeshi and
Hansen parallelise both isoextraction and isosurface rendering by using the multiple
processors and multiple graphics cards of the SGI Onyx2 Reality Monster, using a
sort-last paradigm for image recomposition [136].

70

4.1 Volume Visualisation

However, these implementations required expensive high-end multi-processor
server architectures. Zhang et al. instead use a cluster of commodity machines
and exploit the parallel processing and parallel disk accesses available to such a
cluster [147]. They also employ interval trees to reduce the amount of I/O traffic
necessar}^ The result is a scalable, out-of-core architecture capable of extracting
isosurfaces from arbitrarily large volume datasets.

4.1.5 Isoextraction on Graphics Hardware

The recent trend of exploiting programmable graphics hardware for general compu­
tation has also led to isosurface extraction being performed on the GPU itself by
taking advantage of the graphics pipeline’s inherent parallel nature.

Pascucci published the first example of isoextraction via Marching Tetrahedra
on the GPU in 2004 [104]. He uses the vertex processor to offload all isosurface com-
I)utation from the CPU. In addition, he introduces a streaming mechanism w'hich
exploits the persistent nature of the vertex processor’s registers to allow the spec­
ification of a new- tetrahedron by only transferring a single vertex, as opposed to
all four. He also demonstrates a tetrahedral stripping scheme in order to optimise
data transfer, and view-dependent refinement to reduce the amount of unnecessary
computation. The result is a peak processing speed of approximately 2.1 million
tetrahedra per second on a GeForce4. Reck et al. also demonstrate an implemen­
tation of Marching Tetrahedra in the vertex processor, employing interval trees in
order to reduce the amount of da ta transfer and video memory consumption [113].
Goetz et al. [43] also perform similar isoextraction in the vertex shader, but use
the original Marching Cubes algorithm due to the reduced number of vertices in
the resulting isosurface, reducing the amount of bandwidth and vertex processing
necessary.

The lim itation of these methods is th a t the vertex processor is unable to either
create or delete vertices, only process them. Therefore, for every tetrahedron tha t
is potentially part of the final isosurface, two triangles must be subm itted for pro­
cessing whether they are used or not. Vertices th a t are not needed are rendered as
degenerate triangles of zero surface area, and are culled efficiently by the hardware.
However, these extraneous vertices must still be transferred, thereby unnecessarily

71

4.1 V olum e V isu alisation

using bandwidth and video memory space th a t is already at a premium. As dis­
cussed previously, the amount of computation performed in the fragment shader
is necessarily more than th a t of the vertex processor, and this difference will only
increase as more fragment pipelines are added to next generation GPUs. Therefore,
it makes sense to move as much computation to the fragment processor as possible
in order to take advantage of this increased parallelism.

As a result, the most recent papers on isosurface extraction on the GPU do so in
the fragment processor. Klein et al. [70] report a peak of 7.2 million tetrahedra per
second on an ATI Radeon 9800, using an experimental ATI_super_buffer OpenGL ex­
tension which allows rendering directly to a texture (this extension has since been al­
tered and accepted by the ARB, and is currently known as EXT_framebuffer_object).
This texture can then be bound as a vertex array and used as the source of a vertex
stream, w ithout having to be copied over the bus. Kipfer and W estermann [69] per­
form a similar procedure, but approach it with the aim of minimising the number of
operations and memory accesses. They achieve this by sorting the element vertices
and processing them with an edge-based algorithm that allows the entire isosurface
to be constructed with less w'ork than previous methods. By using an interval tree,
they achieve an isoextraction processing time of 69.4 million tetrahedra per second.
An additional step of normal computation and final lit rendering of the isosurface
results in a speed of 57.1 million tetrahedra per second.

It should be noted th a t all of the performance numbers quoted in the above
GPU-based isosurface extraction methods are only achievable if the isosurface to be
generated fits entirely in video memory. If this is not the case, vertex or texture
data will be swapped out to AGP memory, resulting in a severe drop in processing
speed. As a result, GPUs can achieve extremely high isosurface processing speeds
due to the large amount of internal parallelism, but the size of the volumes tha t can
be processed at this speed is relatively restricted.

72

4.2 A ccelerated V isu a lisa tion w ith Parallel H ardware

4.2 A ccelerated V isualisation w ith Parallel H ard­
ware

This section is concerned with accelerating the visualisation of confocal microscopy
datasets. Although much of the current work on volume visualisation is aimed at
visualising medical scans acquired by CT or MR I, many of the same methods can
be applied to the display of confocal fluorescence microscopy data.

4.2.1 C onfocal F luorescence M icroscopy

The essential principle of confocal fluorescence microscopy relies on the fact tha t
there are two pinholes in the optical path. The first intercepts the light beam after
leaving the light source and before striking the specimen, and the second intercepts
the light after leaving the specimen and before entering the detector. Then, at any
fixed distance Ijetween pinholes and fixed position of lenses, only one plane normal
to the light path will be in focus within the specimen, i.e., will be confocal with
respect to both pinhole positions. In the commercial instruments availai)le, the
most connnon way to produce optical sections is to move the specimen in successive
stej^s in a line between the two pinholes, termed the “z” direction, thus bringing into
focus successive planes within the specimen. The thickness of the plane in focus is
inversely related to the diameter of the pinholes and has a practical limit of about
0.2 of a micron. This oj)tical arrangement effectively removes light from the planes
within the specimen th a t are not in focus, commonly known as stray light and,
consequently, sharpens the image at the focal plane recorded by the detector. Most
of the image recording methods rely upon a raster scan of each of these optical z-
planes using a laser light source and a photomultiplier detector coupled to a digitiser
to produce a set of ordered datasets. Each dataset consists of an ordered array of
data pairs tha t specify position and optical intensity at th a t position.

Various methods of presenting the data have been used in the past. These meth­
ods range from displaying each optical section as elements in a planar array of images
arranged in step-order of z-direction, to creation of a pair of stereoscopic views by
reconstructing the image from two separate angles through the three dimensional
dataset. The angles are chosen to approximate those formed by a pair of human eyes

73

4.2 A ccelerated V isu a lisa tion w ith P arallel H ardw are

viewing a specimen. Finally, the most common approach has been simply to super­
impose all of the z-stack images in one single image. This last technique produces
a sharper image than can be collected with ordinary epi-fiuorescence microscopy
because of the elimination of stray light in each plane, but has the disadvantage
of losing the z-directional information. New methods of presenting the d a ta th a t
reconstruct a partially transparent 3D image with perspective along the Z-axis for
ease of publication and easy viewing by the reader are highly desirable.

Current commercial methods for visualising confocal da ta such as stereoscopic
cross-eyed images (where the user must cross their eyes in order to view the image in
3d - Figure 4.4(a)) are difficult to use and do not lend themselves well to viewing or
publication, nor allow for interactive investigation of the volume. By contrast, the
stacks of image data collected by confocal microscopes can be readily used to create
an interactive and customisable rendering of the entire volume (Figure 4.4(b)) using
hardware-accelerated volume rendering methods.

(a) (b)

Figure 4.4: (a) Cross-eyed stereo depiction of Trypanosoma Brucei. (b) Interactive
texture-based Direct Volume Rendering application with the same dataset.

4.2.2 Interpolated slices

Given the sub-micron scale of da ta generally collected by confocal microscopes, often
the resolution limits the number of slices collected to a small amount. Displaying
this da ta while preserving the scale and spacing of slices in the original specimen
produces gaps and banding artefacts. While these problems can be remedied by
inserting extra interpolated slices upon initial generation of the principal-axis stacks,

74

4.2 A ccelerated V isu a lisa tion w ith Parallel Hardware

this unnecessarily increases the amount of texture nien:iory used by a factor of two
or more, depending on the number of slices inserted.

Instead, slices can be inserted during run-time and interpolated without extra
memory usage by employing multi-texturing and programmable graphics hardware,
as dem onstrated by Rezk-Salama et al [116]. We use NVIDlA’s Register Com­
biners [123] to perform this interpolation. As described in Section 2.1.3, the final
combiner can be used to perform interpolation on the outputs of previous combiner
stages. Possible inputs to any stage include texture lookups, prim ary/secondary
colours and application-set constants. Thus it is possible to use the final combiner
to interpolate between two texture slices by assigning the start and end textures to
two inputs, and an interpolation factor to a third inpiit signifying the distance of
the inserted slice between the two existing slices.

Bilinear image filtering can be performed on 2D textures using graphics hard­
ware. By combining this with the linearly interpolated extra slices, the outcome is
trilinear interpolation with similar results to th a t performed with 3D textures, but
at improved frame rates. The number of extra slices inserted can be altered during
run-time; in order to preserve interactive frame rates, these interpolated slices are
only displayed when user input is not being received. Therefore, a large number
of extra slices can be introduced to achieve dramatically increased image quality
without hindrance to the user. We can see in Figure 4.5 the significant increase in
ciuality th a t even one extra slice can give.

4 .2 .3 H ardw are A ccelera ted Transfer F un ction s

N V lD lA ’s Texture Shaders [33] extend OpenGL’s standard texture addressing op­
erations, allowing for an additional variety of operations such as dot product opera­
tions, offsetting and dependent texturing. There are two difi^erent types of dependent
texture shaders, Alpha-Red and Blue-Green. These deternrine which colour chan­
nels of the first texture unit are used as texture coordinates for the second m iit’s
addressing operation (as already seen in Figure 5.7).

We implement the transfer function using an Alpha-Red texture shader. When
the initial textures are being uploaded, their internal format is set to GL_ALPHA8,
so each density value is stored as an 8-bit alpha value. This is bound to the first

75

4.2 A ccelerated V isu alisation w ith Parallel H ardware

Figure 4.5: Left: a rendering of a 128^ CT scan of a foot. Right: the same rendering
with one slice inserted dynamically with programmable hardware.

texture unit, and a one-dimensional RGBA texture representing the transfer function
is bound to the second unit. When texture shaders are enabled, the alpha value of
the slice texture is converted into the corresponding colour and opacity according
to the transfer function texture. This texture can be edited while the application is
rvmning and re-uploaded to alter the visualised colours in real-time. An example of
the transfer function used for Figure 4.4(b) can be seen in the bottom left corner,
upon which is superimposed a logarithmic histogram of density values present in the
volume. While opacity information can be included in the transfer function texture
and applied to the resulting visualisation, we have found th a t given the inherent
noisy nature of confocal microscopy data, better results can often be obtained by
using purely opaque colours. We have also implemented the transfer function using
the GLSL high-level shading language.

76

4.3 V olum e Sim plification

4.3 V olum e Sim plification

The Marching Tetrahedra algorithm (as described in Section 4.1.3) was also imple­
mented for indirect volume rendering of extracted isosurfaces, both from medical
imaging machines and from confocal microscopes (see Figure 4.6).

Figure 4.6: Top: a 64^ simulated volume of fuel injection into a combustion chamber,
DVR (left) and isosurface wireframe (right). Bottom: a confocal microscopy scan
of Trypanosoma Brucei, DVR (left) and isosurface wireframe (right).

However, the performance of un-optimised Marching Tetrahedra for any reason­
ably sized volume precludes real-time interaction or investigation of the dataset.
Additionally, the noisy images captured by confocal microscopy can produce overly
spiky isosurfaces tha t do not satisfactorily convey the shape of the desired surface
(for example see Figure 4.8(b)). To achieve this, we have investigated the simplifi­
cation of the dataset before generation in order to reduce the amount of processing
necessary to produce the surface.

77

4.3 V olum e Sim plification

The approach taken was to remove a number of voxels from the volume, but still
attem pt to keep the overall shape and salient details of the dataset. A naive attem pt
of simply skipping every n voxels in the dataset produces an overly blocky surface
which quickly loses the details of the original dataset (see Figure 4.8(c)). However,
it does dramatically decrease computation time, so an attem pt was made to improve
upon this method by incorporating the data from the excluded voxels into the re­
maining voxels. This was done with a 3D averaging filter using a Gaussian kernel.
In order to attempt to retain the shape of the surface and prevent degradation, any
excluded voxel that has a value of zero is not included in the filter. The value of n
can be varied depending on the level of simplification recjuired.

The result is a simplified and reduced version of the volume that can be used
for isosurface extraction with the usual Marching Tetrahedra algorithm (see Fig­
ure 4.8(d)). The produced surface still retains the rough shape of the represented
isosurface up to a point, but excessive simplification results in an isosurface that
bears no resemblance to the original dataset. Due to the method of averaging, fine
details such as tendrils or other thin or narrow structures are quickly lost in the
first couple of simplification levels, but the overall shape of the sm-face can still be
discerned (see Figure 4.7).

(a) (b) (c)

Figure 4.7: Volume simplification of the 512'̂ Head Aneurysm dataset for different
values of n. (a) n = 1, (b) n = 2, (c) n = 3. At each level, thin structures and fine
detail get lost.

For this reason, this method is a perfect candidate for quick isosurface simpli­
fication that does not require the entire surface to be fully represented. Typical
examples of this are Level Of Detail representations for distant objects, where the

78

4.3 V olum e Sim plification

evaluation of an isosurface a t every voxel is not necessary and contributes little to

the final image. A nother use is the progressive transm ission of isosurfaces. Very sim­

ple coarse representations of th e vohuiie can be tran sm itted first and reconstructed,

giving a broad overview of th e volume and costing little in term s of bandw idth and

transm ission tim e. If a more detailed surface is required, the excluded voxels can

be subsequently tran sm itted and inserted into the already-constructed volume. A

more detailed isosurface can then be ex tracted .

(b)

(c) (d)

F igure 4.8; Volume simplification, (a) The original ‘chrom atid separa tion ’ datase t of
size 256 x 256 x 79, rendered w ith tex ture-based DVR. (b) T he isosurface extracted
from th e original unaltered da tase t, (c) Naive simplification by skipping voxels, (d)
Im proved sim plification using 3D G aussian filtering where n — 1.

An additional advantage of th is m ethod is th a t small levels of simplification can

actually im prove th e visual quality of noisy volume polygonal representations, such

79

4 .4 Isosurface E xtraction on th e C ell P rocessor

as those produced by confocal microscopy. This results in a smoother surface th a t is
a better candidate for illustrative or structural identification purposes (for example,
compare Figure 4.8(b) and Figure 4.8(d)).

At the same time, it should be noted th a t the more the size of the simplification
kernel is increased, the more volume data is averaged and as a result high frequency
details are lost. This tends to produce holes in the resulting simplified surface, which
restricts the usefulness of this algorithm to the first few simplification levels. This
is especially true in low resolution datasets, where any over-simplification can cause
significant features of the volvmie to be lost.

This algorithm increases runtim e isosurface extraction time by introducing an
offline simplification step which can be done as by pre-processing the dataset. While
this can be performed once for each simplification level and stored along with the
dataset, this step could itself be further accelerated by using the GPU to perform the
filtering. This can be accomplished by using GPGPU methodologies to interpret the
dataset voxels as texture samples and implementing a filtering kernel in the fragment
processor to compute the averages of multiple texels, accumulating the results into
interm ediate textures. By doing this in slices in both the X-Y and Z-Y dimensions,
we can build up a filtered volume in nniltiple passes and read back the resultant
simplified dataset to main memory via the framebuffer.

Indeed, the Cell processor could also be used to perform simplification in much
the same way as it can be used for the isoextraction algorithm itself, as described
in the next section.

4.4 Isosurface E xtraction on th e Cell Processor

In this section we describe a new algorithm for performing isoextraction on the new
Cell processor architecture. W hen dealing with large datasets such as those used in
medical visualisation, a significant amount of data must be processed in order to ex­
trac t a desired isosurface. In this section we focus on accelerating the com putation of
isosurface extraction through the parallelisation of a marching tetrahedra algorithm
on the Cell processor. Cell provides significant increases in memory bandwidth and
processing speeds while still being available at prices comparable to desktop proces­
sors - this allows algorithms such as isoextraction, which were previously the domain

80

4.4 Isosurface Extraction on the Cell Processor

of supercomputers and workstation clusters, to be executed on desktop machines.

4.4.1 Cell A pplicability to M arching Tetrahedra

Cell is particularly suitable for isosurface extraction by Marching Tetrahedra (MT)
in two areas; parallelisation and data transfer latency/bandwidth.

Parallelisation: Like the graphics pipeline, isosurface extraction is also an em­
barrassingly parallel problem. In MT, the processing of each tetrahedron is
independent from the next, requiring no knowledge of its neighbours in order to
determine the location of the intersecting isosurface (if any). This means that
any tetrahedron can be distributed to any SPU for independent processing.

D ata transfer bandwidth latency; Any algorithm dealing with volumetric
datasets nmst process large amoimts of data, which can c^uickly become a
l)ottleneck if the system executing the algorithm is incapable of keeping the
processor fed with data. The high bandwidth of the CBE, combined with the
SPU’s DMA mechanism for hiding storage latency, eliminates any potential
data transfer bottlenecks.

4.4.2 Im plem entation

This sections details the adaptation of the MT algorithm for implementation on the
Cell processor. Broadly speaking, the process is as follows:

1. The volume is partitioned into slices.

2. The slices are partitioned into chunks.

3. The chunks are assigned to different SPUs.

4. Each SPU iterates over every pair of slices and processes the assigned chunks
of those slices.

5. Tetrahedra are constructed by iterating through every 8-cell associated with
each voxel in the chunk - four from each adjacent slice.

6. Triangles are produced by evaluating each tetrahedron according to MT.

81

4.4 Isosurface E xtraction on th e C ell P rocessor

This involves three steps; volume partitioning, da ta transfer, and processing.

4.4.3 V olum e P artition ing

For each SPU to perform a comparable amoimt of work, the dataset must be parti­
tioned before it can be distributed. We accomplish this via a two-level partitioning
scheme, with the additional aim of minimising both data replication and transfer
costs.

First, the volume is logically divided into slices. A 3D volume of dimensions
(a:, y, z) can be considered as being a collection of ^ 2D slices, with each slice con­
sisting of y number of rows where every row contains x voxels. We determine these
slices according to contiguous areas of da ta in memory, as it is more efficient to ac­
cess and transfer a few large contiguous blocks of memory than many small blocks.
This format is typically how the da ta is stored offline on disk.

Then, every slice is split into n chunks for distribution to n available SPUs (see
Figure 4.9 for an exanii)le where n = 4). A chunk consists of several row's of data,
each chunk overlapping adjacent chunks by one row. The reason for this is th a t
for each tetrahedron, the MT algorithm requires data from two adjacent rows in
order to build an isosurface. An SPU works with two chunks at a time for the same
reason, these chunks coming from two adjacent slices. For each chunk except the
last one, the number of rows is calculated by the formula romid{(r + (s — l)) /s) ,
where r is the number of rows not yet assigned to an SPU, and s is the remaining
number of SPUs including the current one. The inclusion of (s — 1) is to account
for the overlapping rows. The final chunk is then assigned all remaining rows.

This m ethod ensures th a t each SPU receives an approximately equal section of
the overall volume. For example, if n — 8 and y — 128, a chunk size of 16 rows will
be assigned to the first SPU, with the other seven SPUs being assigned chunks of 17
rows. Thus a to tal of 135 rows have been assigned; 128 rows plus the 7 overlapping
rows which have been assigned to two SPUs.

4.4 .4 D ata transfer

As described above, the SPU has 256KB of storage innnediately available to it,
which puts a limit on its ability to process locally stored data. Additionally, the

82

4.4 Isosurface E xtraction on th e C ell P rocessor

> X

Figure 4.9: Volume slice divided into chunks for distribution to 4 SPUs. Each colour
represents a separate SPU.

only way to transfer data to and from the SPU’s local store is via DMA transfers,
which have a size limit of 16KB. However, the high bandwidth of the EIB and the
ability to buffer transfers while still performing computation means that streaming
the data becomes an efficient method of processing. Thus, the size of the volume
being processed is not limited by SPU storage space.

As a result, a third level of data partitioning is needed in order to enable the SPU
to process chunks of any size. If the size of a chunk is bigger than 16KB, it needs
to be broken into sub-chunks of below 16KB for transferring. The SPU therefore
decides how many complete row's can fit into a single DMA transfer, and iterates
through the slices, processing adjacent sub-chunks to create the isosurface.

This has a direct influence on the amount of data replication necessary. Normally,
if a chunk fits entirely in one DMA transfer, a volume distributed over n SPUs would
need 2 x x x (?? — 1) pieces of replicated data. But for chunks of over 16KB, the
amount of replication needed is 2 x ,r x (s — 1), where s is the number of sub-chunks
required.

Whether processing full chunks or sub-chunks, the transfer and processing proce-

83

4.4 Isosurface E xtraction on th e Cell Processor

dure is the same. See Algorithm 1 for an overview. Each chunk is used twice by ;he
MT algorithm - once as the 8-cell front voxels and once as the 8-cell back voxels. By
looping through the slices like this, only one chunk needs to be transferred dimng
any iteration. This keeps data transfer to a minimum, and the buffering can etill
happen during processing due to the autonomous DMA controller. Processing any
reasonably-sized chunk takes longer than transferring it, so usually no time is spent
waiting for the buffering to complete.

A lgorith m 1 D ata transfer
1 Transfer chunks from slices 1 and 2
2 for z = 1 to n u m S P U s do
3 if i < {num SP U s — 2) th en
4 Start buffering chunk from slice i + 2
5 end if
6 Wait for chunks from slices i and i -1- 1 to finish buffering
7 Process chunks (see Algorithm 2)
8 end for

4 .4 .5 P ro cessin g

For every voxel in a chunk, an 8-cell is created consisting of four voxels each from the
two adjacent chimks - two voxels from each of two adjacent rows. Five tetrahedra
are constructed from this 8-cell as described in Koide et al. [74]. Each tetrahedron
is then processed by MT in order to produce zero, one or two triangles.

A lgorith m 2 Processing
1 Given two chimks f r o n t and back
2 for all rows r in chunk f r o n t do
3 for all voxels v in row r do
4 Create 8-cell from voxels v and f -1-1 from rows r and r + 1 in chunks fro n t

and back
5 Decompose 8-cell into five tetrahedra
6 Process tetrahedra
7 end for
8 end for

Once the te trahedra have been constructed, they are processed by a regular MT

84

4.5 R esu lts

algorithm such as the one proposed by Gueziec et al. [52],
Taking into account the specialised nature of the SPU hardware, certain opti­

misations can make a difference in execution speed. The lack of branch prediction
means th a t non-predicted branches should be eliminated wherever possible. We
build an interpolation table based on the 16 potential outcomes of tetrahedral eval­
uation, and perform vertex interpolation and triangle construction according to the
results of a lookup in this table. This is similar to the methods used by Pascucci et
al. [104] and Reck et al. [113], where isosurface extraction is performed on graphics
hardware th a t has no branching capabilities.

Similarly, the SIMD capabilities of the SPU must be exploited in order to make
full use of the capabilities of Cell. This class of acceleration has been the subject
of previous research by Hansen and Hinker [54] as applied to Marching Cubes, and
much of this work is still relevant to implementing Marching Tetrahedra on Cell.

4.5 R esu lts

In this section we look at the results of testing the methods described in the previ­
ous sections. First we look at how isosurface simplification can significantly improve
isoextraction performance, before analysing the speeds achieved with the above al­
gorithm for isoextraction on Cell.

4.5 .1 Isosurface S im plification

Tests of our isosurface simplification algorithm were done on a 2GHz Pentium 4
with 1GB of RAM and an ATI Radeon 9800 Pro graphics card. Four datasets were
tested; three captured by confocal microscopy and one by medical imaging.

Four levels of detail were measured, with level 0 being the original dataset. Each
subsequent level of detail represents the number of voxels removed, and consequently
the size of the Gaussian filter kernel used to approximate the dataset. Generally,
levels of detail beyond these reduce the dataset so much th a t the resulting volume
bears little relation to the original.

In each case we measure the number of tetrahedra in the resulting dataset, and
the time it takes to extract an isosurface from this dataset. Also measured is the

85

4.5 Results

amount of time it takes to perform the simphfication - although for any level of
detail, the simphfication only needs to be performed once. Isosurfaces can then be
extracted from the simplified dataset as many times as desired, at the listed speeds.
See Figures 4.10 - 4.13 for specific details. For each dataset, two graphs are given;
one detailing the number of tetrahedra at each level of detail, and one with the
resulting time it takes to extract an isosurface from the reduced dataset. Below the
graphs is a table stating the time it takes to reduce the original dataset for a given
level of detail.

W’e can immediately see th a t even at the first level of detail beyond the original
dataset, the number of tetrahedra is significantly reduced by a factor of between
eight and ten. This has a direct effect on the time taken to extract an isosurface
from the reduced dataset.

Generally, the datasets th a t have a high amount of empty space will perform the
best in isosurface extraction, since many of the 8-cells can be ignored without need­
ing to be decomposed into tetrahedra or tested for isosurface intersection. When
simplification is performed on a dataset with a large amount of high-frequency noise,
this noise will either be reduced or removed entirely by the averaging jjrocess, de­
pending on the level of simphfication. This in turn produces a dataset that will
perform better in isosurface extraction that its original counterpart. A simplified
dataset th a t had no noise in the first j)lace will still perform better in isoextraction
than the original, but the increase in performance will not l)e as dram atic and can
only be attribu ted to the reduction in dataset size rather than a reduction of the
ratio of 8-cells th a t need to be processed against those th a t do not.

Therefore, the datasets th a t achieve the highest decrease in isoextraction time
after simplification are high-frequency, noisy datasets th a t can be reduced to lower-
frequency, less noisy datasets. Conversely, the datasets th a t gain the least improve­
ments in speed after simphfication are those th a t are already well-formed and with
low-frequency surfaces, as the ratio of populated 8-cells beforehand to empty 8-
cells after simplification will be lower. In both cases, the first simplification level
of detail will always achieve the highest increase in speed, as this is the step most
likely to remove the small amounts of noise inherent to the imaging process. The
increase in speed and reduction in number of tetrahedra from further simplification
are dependent on the nature of the data.

86

4.5 Results

Trypanosoma Brucei #1 LOD:
Number of tetrahedra

32 ,640.125

3 ,548,380
999,635

L e v e l o f D e ta il

317,520

3

T rypanosom a Brucei # 1 LOD:
Iso su rface Extraction Time

5.766

0.719

1

0.203

2

0.062

3

L e v e l o f D e ta il

LOD 1 1 2 3
SimDlification Time 1 1.031s 1.125s 1,078s

Figure 4.10: T rypanosom a B rucei # 1 : This is a 512 x 512 x 26 dataset captured
by a confocal fluorescence microscope. It is a scan of the Trypanosoma Brucei, a
single-celled parasite that is resiJonsil)le for the disease African Sleeping Sickness.
See Figure 4.14 for screenshots.

Trypanosoma Brucei #2 LOD:
Number of tetrahedra

16 ,972.865

1,612,900
428.415

1 2

L e v e l o f D e ta il

Trypanosom a Brucei # 2 LOD:
Iso su rface Extraction Time

1.917

0.016

1 2

L e v e l o f D e ta il

LOD 1 2 3
SimDlification Time 0.5s 0.547s 0.437s

Figure 4.11; T rypanosom a B rucei # 2 : A scan of another Trypanosoma Brucei,
this time 512 x 512 x 14 in size. See Figure 4.15 for screenshots.

87

4.5 R esu lts

Chromatid Separation LOD:
Number of tetrahedra

25 ,359.750

826,680

L e v e l o f D e ta il

345,960

3

Chromatid S eparation LOD:
Isosu rface Extraction Time

(/)

0)
E
i- 'IfSic
o
u
(D

0)
o ' M r

0,656
0.188

1 2

L e v e l o f D e ta il

0.078

3

LOD 1 2 3
SimDlification Time 0.641s 0.75s 0.828s

Figure 4.12: C h ro m atid S eparation : A coiifocal fluorescence microscope scan of
a chromosome separating into chromatids during cellular mitosis, 256 x 256 x 79 in
size. See Figure 4.16 for screenshots.

Bonsai Tree LOD:
Number of tetrahedra

82 ,906,875

10 ,001,880
2 ,858,935

1 2

L e v e l o f D e ta il

1, 191,640

3

Bonsai T ree LOD:
Iso su rface Extraction Time

6.063

1.219

1 2

L e v e l o f D e ta i l

0.203

3

LOD 1 2 3
Simplification Time 1.812s 2.172s 2.453s

Figure 4.13: B onsai Tree: A dataset of a bonsai tree, 256 x 256 x 256 in size,
captured by CT. See Figure 4.17 for screenshots.

88

4 .5 R esu lts

Figure 4.14; T rypanosom a B rucei :̂ 1̂: Simplification levels from r? = 0 to r? = 3

) I i i
* m

Figure 4.15: T rypanosom a B rucei # 2 : Simplification levels from n = 0 to n = 3

Figure 4.16: C hrom atid Separation: Simplification levels from r; = 0 to r? = 3

Figure 4.17: B onsai Tree: Simplification levels from n = 0 to n — 3

89

4.5 R esults

4.5.2 Cell Isoextraction

While much of the development of our Cell isoextraction system was done using the
Full System Simulator provided with the Cell SDK, we optimised and tested the
performance of our technique on an IBM dual Cell “Blade” server located at the
IBM T .J. W atson Research Center. This server consists of two 8-SPU Cell processors
running at 2.1GHz, with 512MB of XDR DR AM. The dual Cell server contains two
Cell processors connected to each other via the Broadband Engine Interface. When
an application assigns work to an SPU, an idle SPU is chosen at random from the 16
available SPUs. We also tested an equivalent serial isosurface extraction algorithm
for baseline comparison on a 2.0GHz Pentium 4 system with IGB of RAM.

Performance tests were carried out on a variety of 8-bit datasets, ranging in
size from 32^ to 512^. The amount of free memory on the test machine precluded
vohnnes larger than these - however, we did provisionally test a 1024' ̂ volume by
reusing the 512^ dataset 8 times. This result does not take into account the different
DMA sizes, cache utilisations and memory access patterns tha t would occur with a
volume of th a t size. Nonetheless, it is included pvu’ely as a processing stress test.

The prim ary dataset used w'as a test “spherical shell” 8-bit volume (see Fig­
ure 4.18), constructed so th a t each scalar value is the Euclidian distance from that
point to the center of the volume, modulated by 255 to fit inside a byte. This pro­
duces multiple shell isosurfaces for any specified isovalue. Also tested was the 256' ̂
Bonsai tree dataset^ (see Figure 4.19), and a 512^ “Head aneurysm” dataset^.

We can immediately see in Figure 4.20 a demonstration of the improvement
in performance achieved using Cell. Even with one SPU, the processing speed
of 5.94M tets/s is higher than the CPU speed of 5.17M tets/s. This is more than
likely due to a combination of the SPU ’s architecture being more suitable for purely
compute-intensive operations, plus the fact tha t the SPU’s clock speed is slightly
higher than th a t of the CPU. At 8 SPUs - one full Cell processor - the processing
speed of 47.4M tets/s is roughly eight times th a t of the CPU. W ith both Cells oper­
ating at their full capacity for a total of 16 SPUs, the speed rises to 94.7M tets/s -
just under 16 times the C PU ’s speed.

^Courtesy of S. Roettger, VIS, University of S tuttgart
^Courtesy of Michael MeiBner, Viatronix Inc., USA.

90

4.5 R esu lts

Figure 4.18: The 128' ̂ spherical shell volume. Each colour represents the isosurface
extracted by a different SPU.

-y/ > /, \'V'

Figure 4.19: The 256^ Bonsai tree volume. Again, the distribution of chunks is
depicted by separate colours for each SPU.

91

4.5 R esu lts

S pherical Shell d a ta s e t (1024^)

M illions o f te t r a h e d r a p e r se c o n d

Spherical Shell d a ta s e t (512^)

M illions of t e t r a h e d ra p e r se c o n d

1

2

4

6

12

16

■ CPU ■ SPUs

Figure 4.20: Test results for the 1024^ and 512^ spherical shell volumes

Similarly, Figure 4.21 demonstrates th a t the Cell continues to show marked im­
provement over the CPU for smaller volumes. However, looking carefully at the
results of the 128^ volume, we can see th a t this improvement starts to slow down as
the number of SPUs involved grows. This is due to the size of DMA used to transfer
da ta between the cores. At 16 SPUs, dividing each 128 x 128 slice equally gives 8
rows to one SPU and 9 each to the others. This corresponds to DMA sizes of 1024
bytes and 1152 bytes respectively. At this size, the efficiency of the DMA transfer
starts to drop due to the cost of setting up and initiating the transfer.

Spherical Shell d a ta s e t (256^) S pherica l Shell d a ta s e t (128^)

M illions of te t r a h e d r a p e r se c o n d M illions o f t e t r a h e d ra p e r se c o n d
0 10 20 30 40 S0 60 70 B0 90 100 0 10 20 30 40 SO 60

[■ CPU B SPU s ■ CPU o SPUs

Figure 4.21; Test results for the 256^ and 128^ spherical shell volumes

As we reach the smaller volumes of 64^ and 32^ (see Figure 4.22), this trend
starts to become more pronounced. As DMA sizes drop further, so too does the
advantage of adding more processors, until we reach a turning point a t 8 SPUs for

92

4.5 R esults

the 64^ volume and 2 SPUs for the 32^. Both of these points mark DMA sizes of
approximately 512 bytes per transfer. Below th a t point, further distribution of work
is actually detrim ental to the overall processing speed of the system.

Spherical Shell d a ta s e t (64^)

M illions o f te t r a h e d r a p e r se c o n d

S pherical Shell d a ta s e t (32^)

M illions of te t r a h e d r a p e r se c o n d

Figure 4.22: Test results for the 64^ and 32^ spherical shell volumes

As w'e turn to real datasets, the maximum j^rocessing speed jjossible increases to
over 100 million tetrahedra per second for the Bonsai and Head Aneurysm datasets
(see Figure 4.23). The reason for this is tha t these volumes are composed of more
enij^ty space than the spherical shell - if all 8 voxels of an 8-cell have an isovalue of
0, the whole cell can be skipped safely without being tested thoroughly for intersec­
tions, leading to an increase in tetrahedron throughput.

Bonsai T ree d a ta s e t (256^)

M illions o f t e t r a h e d ra p e r se c o n d

Head A neurysm d a ta s e t (512^)

M illions o f t e t r a h e d r a p e r se c o n d

■ CPU BSPU S

Figure 4.23; Test results for the Bonsai Tree and Head Aneurysm volumes

It should be noted that the quoted Cell clock speed of 2.1Ghz on our test system
is well below the possible limits of the hardware, and is due to the system being an

93

4.5 R esults

internal IBM test platform. The Cell processors in use in the Playstation 3 console
are clocked at a considerably higher 3.2GHz. Cell has the potential to reach 5GHz,
albeit at a tem perature th a t would exceed commercial safety limits. Reducing power
consumption could lower this tem perature and thus increase clock speeds - this has
been identified by IBM as a future direction.

Furthermore, our results also compare extremely favorably to quoted GPU speeds
of 9 million tetrahedra per second [113] via a vertex processor implementation.
However, the comparison is only a superficial one, as current GPU implementations
take advantage of spatial acceleration structures which our method currently does
not. Indeed, Kipfer et al.’s processing speeds of 69.4m tetrahedra per second in
the fragment processor [69] are dependent on the use of interval trees. GPU speeds
also include rendering time, whereas our results only measure processing time; an
entire processing and rendering pipeline would need to be implemented on both
architectures for a fair comj^arison to be made. Additionally, GPU implementations
are subject to the condition tha t the dataset fits entirely into relatively limited video
memory.

Iso su rfa c e ex trac tion

1024

Figure 4.24: Comparison of isosurface extractions speeds: dataset size vs. nnmber
of processors vs. M tets/sec.

94

4.6 C luster Im p lem en tation

Finally, in Figure 4.24 we can see a 3d plotted surface of the isosurface extraction
speeds taken from the graphs in Figures 4.20 - 4.22. From this we can see a general
trend th a t - as expected - the more processors involved in surface extraction, the
faster the processing speed. The obvious exception from this the 32^ dataset which
suffers from excessive DMA transfer overhead as previously mentioned. Otherwise
it becomes obvious from observing this graph that as dataset sizes increase and this
overhead becomes insignificant, a more linear increase in processing speed can be
expected.

4.6 C luster Im plem entation

This section examines tlip advajitages and disadvantages of applying the above al­
gorithms to our custom Cluster architecture. In each case, the cluster offers the
potential for greatly accelerating the algorithm compared to single-processor imple­
mentations.

4.6 .1 V olu m e V isu a lisa tion

The cluster is a natural platform for i)erforming hardware-accelerated volume visu­
alisation. The Vizard II [88] has already demonstrated the apj^licability of FPGA
hardware for performing ray casting and volume visualisation. By storing the orig­
inal dataset in shared memory and assigning a section of the final rendered image
to each node in much the same way as sort-first rendering, volume rendering speed
can be increased by adding more nodes to the cluster. In this respect, extremely
large datasets can be processed by distributing the storage across all memory banks
available across the cluster. Altering the viewport will cause nodes to access dif­
ferent portions of this distributed volume according to the ray casting algorithm,
but the SCI interconnect would minimize the penalties of extra latency introduced
by accessing remote memory. The global address space implemented by the cluster
would cause this switch from local memory to remote memory to be transparent to
the application, simplifying implementation.

Additionally, if enough storage space was available to store the dataset multiple
times, it would be possible to replicate portions of the dataset in multiple memory

95

4.6 C luster Im plem entation

banks. By distributing the dataset evenly across the cluster and localising the
portions of the volume in memory local to the node processing th a t portion, access
speeds would be increased compared to remote accesses to the same data. This
would also increasing cache utilisation and reduce access times by eliminating stalls
th a t might be introduced by multiple nodes accessing the same memory location
in order to process the same portion of the volume. Compared to a similar Cell-
based implementation of ray casting, having the entire global memory of the chister
available to each node’s processor (as opposed to the limited local store of the SPUs)
at high speeds with low latency provides a significant advantage. This is because the
integration of samples over the ray from an arbitrary viewpoint requires accessing
voxels in a non-linear way th a t is not amenable to the SPU’s method of transferring
chunks of d a ta by DMA to the local store.

The existing GPU-based acceleration methods described earlier in this chapter
can still be implemented on each node, performing texture-based direct volume ren­
dering of the dataset. However this would preclude the use of each node’s available
FPGA, under-utilising the potential processing power available to the application.
Instead, a hybrid approach can be emi)loyed by performing the bulk of the i)rocessing
on the FPGA via ray-casting, and then using the GPUs for image post-processing
and image-space lighting. Further investigation is needed to evaluate the potential
of this approach.

4.6.2 V olum e Sim plification

Again, the locality of da ta necessary for the volume simplification algorithm de­
scribed in Section 4.3 would translate very appropriately to a cluster implementa­
tion. The gaussian filter employed restricts data references to a small area inside
the volume, allowing for a partitioning of the dataset into discrete sections with
minimal overlap. Each node can then process and produce a simplified version of its
partition, allowing efficient parallelisation and acceleration of the algorithm. This
is comparable to the Cell implementation of isosurface extraction.

Each partition need not necessarily be programmatically partitioned and read
into each node’s local memory, but rather the partitioning can be done logically and
the actual d a ta can still reside distributed across the shared memory. Compared to

96

4.6 C luster Im plem entation

a similar implementation on Cell, the overhead of setting up DMAs and transferring
all the volume data to the SPUs for a relatively small amount of processing is
an inefficient use of the processing power, despite the suitability of the SPUs for
performing the filtering on the data. This is not to say th a t Cell would not perform
well, but using the distributed shared memory would avoid this situation altogether
on the cluster.

4.6 .3 Isosurface E xtraction

However, performing volumetric simplification on the cluster may not be necessary
at all if its application is solely for increasing surface extraction speeds, and not
for Level of Detail or noise reduction purposes. Instead we can use the cluster to
increase the speed of the isosurface extraction itself.

The algorithm described in Section 4.4 for performing isosurface extraction on
Cell would transfer very well directly onto the cluster, with a few additional benefits.
Like volume simplification, the logical partitioning of data for processing would be
facilitated by distributed shared memory, avoiding memory copies while keeping
access times low via the SCI fabric.

The most significant advantage of the cluster over a Cell implementation is the
rendering capabilities of each node. Whereas the Cell needs to transfer the generated
geometry back from the SPUs to main memory for rendering, a cluster node can
feed it directly to its associated GPU for immediate rendering. The resultant image
fragments could then be composited over the cluster in a sort-last manner into a
final rendered isosurface.

Alternatively, the geometry could be inserted directly into a shared conunand
buffer for even distribution of rendering work. Additionally, having a GPU on each
node results in more raw rendering power than a single graphics card associated
with a Cell processor. Multiple graphics cards could possibly be attached to a
network of Cell processors, but a t the expense of the general processing power needed
for coordination, which detracts from the power available to the application itself.
This contrasts to the cluster which is designed from the ground up for distributed
rendering and has dedicated hardware for managing the extra complexity layer.

97

Chapter 5

Entertainm ent

For entertainm ent applications such as games, the user is often an active partici­
pant in a virtual world. In order to convey this participation, applications require
not only a high and steady frame rate, but also a believable and consistent repre­
sentation of the world in which their avatar exists. As processing power increases
and simulation becomes more sophisticated, users expect these virtual worlds to
resemble the real world more and more closely. Similarly, as development studios
compete to produce superior visual effects and budgets for top-rated games escalate
(the eagerly anticipated title Spore due in 2007 is estim ated to have a budget of
approximately $30 million [114]), they push the hardware to its limits to improve
the realism and immersiveness of their games.

In this chapter we look at the use of commodity parallel hardware for accel­
erating the graphics algorithms used in entertainm ent applications - si)ecifically,
image-based crowd rendering. Section 5.1 gives a brief overview of the use of GPUs
in games before concentrating on crowd rendering. Section 5.2 describes research
on the development of a single-pass crowd rendering algorithm, optimised to take
advantage of the programmable graphics hardware pipeline to render humans with
fully customisable lighting and texture-based variation. Section 5.3 presents results
based upon the use of this algorithm in a full crowd rendering system.

98

5.1 Parallel H ardware in E nterta inm en t A pplications

5.1 Parallel H ardware in E ntertainm ent A pplica­
tions

As chips get smaller and sequential architectures reach their limit in terms of silicon
size and heat output, the real benefit of parallel architectures becomes apparent.
Games are composed of many individual tasks, including but not limited to ren­
dering. Artificial intelligence is required to give the virtual world some life, and to
provide the player with lifelike allies and adversaries. A physics engine gives the
world a sense of solidity and authenticity; pushing an object and seeing it fall in a
realistic way naakes the object seem that much more real to the player. As broad­
band internet access becomes widespread, more and more games are focusing on the
potential of multiplayer interaction - this in turn requires sophisticated prediction
code to compensate for the latency introduced by the network. All of these tasks
can be run in parallel with minimal interaction. For example, collision detection
for a timibling wall of bricks can be computed at the same time as the path finding
algorithm of a virtual agent.

It makes sense therefore th a t in order to maximise the amount of work capable
of being done at any one time, all three of the major next generation games consoles
contain multicore parallel processors. Sony’s Playstation 3 contains the Cell proces­
sor, as described in Section 2.4. Microsoft's Xbox 360 contains the Xenon Processor
produced by IBM, which in itself contains 3 dual-threaded PowerPC cores allowing
for 6 simultaneous hardware threads to be run in parallel. Finally the Nintendo
W ii’s Broadway CPU is rumoured to contain either 1 or 2 PowerPC-based dual-core
processors (again {produced by IBM) - Nintendo has not released final specifications
at the time of writing.

5.1 .1 G raphics H ardw are in G am es

The most obvious and widespread application of parallel hardware to the enter­
tainm ent industry is graphics hardware. Since the first 3D accelerator card came
out, the games industry has always been a driving force behind the advancement of
GPUs. Similarly, advances in graphics hardware have allowed many new techniques
to be pioneered by games developers. In all of today’s 3D games, a GPU of a certain

99

5.1 Parallel H ardw are in E nterta in m en t A pp lications

level is a prerequisite in order for the game to run.
Many of the advanced effects th a t give games their unique look and feel are the

results of GPU-based algorithms. In recent years, one of the biggest improvements
in visual quality and realism came from a technique called normal mapping [21, 20].
This is an effect which allows the interaction of light on an object’s surface to be
independent of its tessellation by encoding the surface’s normal in a texture map.
\^''hen evaluating the lighting equation at each pixel in the fragment processor, a
shader looks up the normal vector for th a t point encoded in the normal map, and
uses this instead of the actual interpolated surface normal. The effect is dramatic
- models of drastically reduced polygon comit can use high resolution textures and
normal maps and still produce virtually the same image th a t a very highly tesselated
model would.

Figure 5.1 show's an example from Epic Games’ forthcoming Unreal 3 engine.
A rtists first create an extremely detailed version of the model with 2 million poly­
gons, as seen in Figure 5.1(a). This model is then reduced to a mesh of 5,287
polygons, w’hich will be the version used in the game (see Figure 5.1(b)). A ray-
casting engine is then used to cast rays out from the low resolution version to the
high resolution one. The normal is determined at the intersection point, and stored
in the normal map for tha t point on the low resolution model. This normal map
is then used for all lighting calculations for tha t model in-game, resulting in a final
rendering as seen in Figure 5.1(c). Upon closer inspection of the outline, the loŵ
resolution basis of the rendering is revealed. However, the effect is still extremely
convincing, even more so when animated. The underlying techniques of normal m ap­
ping have spaw'ned a whole class of texture-space effects, such as relief mapping [100]
and parallax mapping [64].

5.1.2 Crowd R endering

A m ajor part of any virtual world is the people inhabiting it. Human and crowd
rendering is both an im portant and difficult area. The im portance of a crowd is
most conspicuous by its absence, when a user would expect to see crowds of people
such as in an urban environment. All of the recent titles from Rockstar’s bestselling
and notorious Grand Theft Auto series suffered from this problem (see Figure 5.2),

100

5.1 P arallel H ardw are in E nterta inm en t A pplications

(a) High-resolution model (b) Low-resolution model

(c) Final in-game image

Figure 5.1: High-resolutiou, low-resolution and final rendered image of a model from
the Unreal 5 engine (© Epic Games)

where streets were modeled in great detail and filled with a variety of vehicles, but
the number of human pedestrians visible at any time was limited to a handful. This
gave the virtual city a somewhat deserted feel.

On the other hand, the difficulty of crowd rendering comes from the number
of individual humans th a t make up a crowd. A large crowd requires tha t a large
number of humans be rendered and animated, which can consume a lot of simulation
and rendering time. The more varied the crowd is, the more polygons and textures
must be stored in video memory. This can be a problem, as crowds are usually

101

5.1 Parallel H ardw are in E nterta inm en t A p p lica tion s

Figure 5.2; Deserted streets in Grand Theft Auto: San Andreas (© R ockstar Games)

a background element in many entertainm ent applications and not the main focus
of the scene. Therefore the proportion of the total polygon and texture memory
budget allocated to the crowd is less.

5 .1 .3 R ed u cin g R en d erin g W ork

There are a number of methods for lowering the rendering cost associated with
polygonal crowds. Level Of Detail (LOD) is a method of reducing the polygonal
detail of a model according to certain criteria, usually distance from cam era or
importance in a scene [82]. O'Sullivan et al. [102] describe a framework for human
and crowd LOD, also incorporating behavioral levels of detail. The main advantage
of LOD is the reduction of the amount of polygonal da ta required to be drawn.

102

5.1 Parallel H ardware in E nterta inm en t A pp lications

therefore reducing the to tal primitive count of the scene and lessening the burden
on the GPU.

However, there is another hidden cost associated with rendering large amounts
of objects th a t does not relate to the polygonal complexity of the object. Assuming
an object resident in video memory (as opposed to immediate mode rendering where
the geometry is specified every frame and transm itted across the graphics bus), an
API function call needs to be subm itted for every object drawn. If this draw call
invalidates the current rendering state (for example by changing texture, changing a
shader constant etc.), then the corresponding state changes need to be implemented
in hardware before the rendering can proceed. This is particularly true for high
level shading languages such as GLSL that have to map variable names to hardw-are
registers. This blocks the pipeline and interrupts the organisation th a t the driver
does in order to rearrange the primitives in optimal format for submission to the
hardware. The extra API calls needed to change the state can easily make the
application become CPU limited, resulting in performance degradation th a t scales
with tlie number of objects being drawn. This can be offset by sorting the rendered
objects according to their state, and rendering all objects of the same state together.
However, the degree of success of this process depends on how many objects are to
be rendered altogether, and how many share the same state.

To alleviate this effect, recent GPUs have support for ‘mesh instancing’ [34, 49].
This enables multiple objects with the same geometry to be draw'u with a single API
call, while still allowang properties such as the transformation m atrix and material
properties to be changed per-instance. This could be useful for rendering small
crowds of identical humans. However, the GPU is still required to transform and
rasterise every object in the scene, which can be extremely costlj' for many highly
detailed objects. If the application is not CPU-limited by API calls, instancing will
not bring any advantages.

5.1.4 A Further Level o f Detail: Im postors

There is only so much simplification a model can undergo before it bears no resem­
blance to the model it represents. Therefore another level of detail is needed below
th a t of the simplest geometric representation.

103

5.1 Parallel H ardw are in E nterta inm en t A pp lications

In 1995, Maciel et al. [84] first put forward the idea of using pre-generated images
of geometric models as the lowest level of detail in an LOD system. These planar
impostors provide a shortcut for rendering geometric models - instead of needing to
render the entire model, it is rendered to a texture in an offline process and then
used interactively for the rendering price of a single texture-m apped quad. Given
the large increases in frame rates achieved by using impostors, a large amount of
research has been done, leading to advances in the area of Image Based Rendering
(IBR). An overview of these methods is given by Jeschke et al. [63].

Impostors have been used for many years in the computer games industry. They
represent a cheap alternative for rendering complex geometric objects such as trees
and plants. First-generation 3D games such as iD software’s Wolfenstein 3D and
Doom, developed for systems without the advantages of dedicated GPUs or even
moderately fast CPUs, made extensive use of impostors for every game object except
the level architecture. This led to the description of the technology as “two-and-a-
half-D” .

Impostors are a good solution for reducing the rendering costs associated with
the large numbers of Imnians present in a crowd. Tecchia et al. [130] propose using
one impostor j)er human, pre-generating nmltiple images for each viewpoint that
the impostor will be viewed from. They choose 16*8 images - 16 viewpoints around
the Y-axis for each of 8 elevations around the X-axis. These images are mirrored
to produce a to tal of 32 viewpoints for each elevation, with a difference of 11.25
degrees between them (see Figure 5.3). Then during simulation a billboard facing
the camera is rendered for every human in a crowd, textured w'ith the viewpoint
image appropriate for the angle a t w'hich th a t human is being viewed. A ‘popping’
artefact can sometimes be seen when changing from one viewpoint image to another,
but at the distances th a t crowds are normally viewed at, this does not become a
severe problem.

Rendering static images of humans from any angle is not in itself very useful.
Especially in crowds, humans are constantly animated and moving. Tecchia et al.
address this problem by creating 10 different animation frames and encoding these
as impostors.

In contrast, Aubel et al. [8] propose an impostor-based technique for accelerat­
ing human rendering, but use dynamically generated impostors instead of a prepro-

104

5.1 Parallel H ardware in E nterta inm en t A pp lications

Figure 5.3: T he 8 elevation and 17 ro ta tion viewpoints captured to form an im postor.

cessing step. This has the advantage of consuming far less tex tu re memory than

pre-generated im postors, a t the expense of the ex tra rendering work th a t needs to

be done to update each im postor.

Any im postor technique breaks down when the im postor approaches th e cam era,

and the two-dim ensional basis of the technique becomes apparent in two ways; the

popping artefacts Ijecome extrem ely noticeable due to the lim ited nim iber of view­

points, and the im postor images themselves become overly pixellated and the lack

of fine detail becomes obvious. Both of these problem s are a function of the num ber

of im postor viewpoints and the resolution of th e im postor images, bu t they will

eventually affect any im postor-based solution. In oiu' I3D paper [29], w'e overcome

th is by using a hybrid crowd representation of b o th geom etric models and im pos­

tors called geopostors. Geom etric rejjresentations are used for hum ans close to the
cam era, switching to im postors for those further away. To avoid popping, we switch

im perceptibly between the two by using a ‘pixel-to-texel’ ratio. This ratio is used

to determ ine when the size of an im postor im age’s rasterised texel is larger than a

pixel. In th is instance, aliasing will occur and so the geom etric version needs to be

used.

The m ain focus of th is paper was the hybrid representation and switching be­

tween geom etry and im postors. This was enabled by employing progrannnable

graphics hardw are to m atch the im postor’s rendering to th a t of its geom etric coun­

te rp a rt, as detailed in the contributions of this thesis in Section 5.2.

105

5.1 Parallel H ardware in E nterta inm en t A pp lications

5.1.5 Hardware Im plications o f Im postor U sage

In term s of hardware usage, the increase in frame rates achieved by using impostors
is due to the reduced load on both the vertex processor (having to transform just
4 vertices of a quad as opposed to every vertex in the geometric model) and the
fragment processor only having to texture map a single quad. Additionally, being
almost purely the domain of the fragment processor, impostors will continue to
provide improvements in rendering speed as the number of pixel pipelines increase
and more pixels can be processed in parallel.

As mentioned earlier in this section, it is best to minimise state changes dming
rendering a frame in order to take full advantage of the graphics hardware pipeline
and avoid any stalls. For this reason, the number of texture changes should be kept
to a mininmm. Tecchia et al. take this into account by j^acking each 64 x 64 impostor
viewpoint for a given animation frame into a single 1024 x 512 texture. We improve
upon this by observing th a t for any given camera placement, the overall number of
elevations used by all impostors in a scene is limited to only a few. We therefore sort
the textures not by animation frame, but according to elevation. This keeps frame
rates more constant and reduces the amount of texture thrashing th a t occurs when
the to tal size of textures used in a scene exceeds the size of available video memory.
When video memory is low, the driver swaps texture(s) out to system memory over
the AGP bus, using a least recently used (LRU) algorithm. However, if all of the
textures are needed in every frame, this swapping will happen continuously and the
application will s tu tte r as the textures are swapped in and out. Since all animation
frames are invariably used over a maximum of ten frames, every animation texture
will be needed by the application. By keeping only the subset of elevation textures
th a t are used, the size of textures kept in video memory is nuich lower while the
camera stays at a constant height.

However, there are some drawbacks to using impostors as substitutes for fully
geometric models. The amount of texture memory required to represent a human
from every required viewpoint is not inconsiderable and, depending on the applica­
tion’s video memory budget devoted to the crowd, this can be prohibitive. These
effects can be somew'hat ameliorated by texture compression, but still represent a
major barrier for the widespread use of impostors. Similar to the widening gap

106

5.1 Parallel H ardware in E n terta in m en t A pp lications

between CPU speed and memory latency, G PU s are going to continue increasing in

perform ance faster th a n the memory th a t they access, which will lead to m em ory

assets becoming more precious as requirem ents increase.

A nother related bottleneck of im postor rendering is the use of hardw are m em ory

bandw idth . Being representations of convex and concave polygonal models, the

m ajority of im postors contain large areas of transparency. In order to perform

blending or alpha testing, accesses to the frame buffer m ust be m ade from the

fragm ent processor, which can be costly in term s of b o th memory bandw idth and

fill rate due to overdraw. Fill ra te is the ra te a t w'hich a G PU is capable of rasterising

polygons into the fram e buffer, usually m easured in millions of pixels per second.

O verdraw occurs when a polygon th a t has already been rendered to th e frame buffer

is draw n over by another polygon, hence the fill ra te for the first polygon was wasted.

Thus the more overdraw occurring, the less fill ra te is available for the entire frame.

As a result, the w idespread use of im postors in a scene can lead to a memory

bandw idth or fill ra te bottleneck in the rendering system , thus lim iting performance.

5 .1 .6 In trodu cing V ariation

Even with individually anim ated im postors, a sea of unlit identical hum ans does

not make a very convincing crowd (for an exam ple see F igure 5.4). V ariations in

clothing, and dynam ic lighting, are essential to make the 2D illusion of im postor
crow’d representations a convincing substitu te for the corresponding 3D geom etric

models.

V

Figure 5.4: Unconvincing crowds in [130].

107

5.1 P arallel H ardw are in E nterta inm en t A pp lications

In an extension of their previous work, Tecchia et al. [131] introduce both colour
variation and lighting to their crowd rendering system. They perform colour vari­
ation by splitting the impostor into regions encoded in the alpha channel. For
example, one region might be the skin of the hiunan, another region the trousers,
etc. A multi-pass rendering algorithm then draws every impostor in multiple itera­
tions. One pass is used for every region th a t is to be rendered in a different colour.
At each pass, the alpha test function is set to discard every fragment th a t does not
match the alpha value of the current region. The colour is then set, and the region
is rendered with th a t colour. This method lets a single impostor be rendered many
different times using differently coloured regions in each case, giving the impression
of many different and varied Immans instead of a single human model ‘cloned’ across
the scene. This level of crowd variation is often overlooked in games. For example,
Electronic A rts’ next-generation console title Fight Night Round 3 contains crowds
tha t are obviously composed of the same models replicated many times (see Fig­
ure 5.5). A simple alteration of clothing colours would give the crowd a much more
varied and interesting look.

Figure 5.5; Scenes from Fight Night Round 3 (© Electronic Arts). Note the lack of
crowd variation in the indicated areas.

De Heras Ciechomski, Ulicny et al. [25, 137] take the alternative route of us­
ing various levels of detail to produce crowds composed of low-polygon models. To
introduce variation, they reuse the same geometric model but apply different tex-

108

5.1 Parallel H ardw are in E ntertainm ent A p p lication s

tiires, colours and scaling factors in order to give the appearance of a diverse crowd
of people. They apply this model to a scene involving a crowded am phitheatre in
ancient Rome as well as a modern urban setting, rendering hundreds of anim ated
and varied humans at interactive frame rates.

5.1.7 D ynam ic Im postor Lighting

Even more im portant than introducing colour variation into a crowd scene is the
lighting of the impostors, especially when using a hybrid impostor/geometry system.
A complete lack of lighting would be immediately obvious and is not sufficient. Pre­
baking lighting into the impostor image is a better solution, but fails under various
circumstances; a human will be lit identically no m atter whether it is daytime or
nighttime, they will be lit from the same direction regardless of their orientation,
and most imj^ortantly their lighting will not match the lighting of any geometric
representations to which they should switch in a hybrid system. The polygonal
versions of the humans will invariably be lit dynamically with whatever lighting
equation is deemed suital)le; for example Blinn-Phong for the regular OpenGL fixed
function pipeline. Upon switching to an impostor representation, any changes in
lighting will become painfully obvious and seen as a visible pop. This detracts from
the visual quality of the overall scene. Therefore if the switch from impostor to
geometry and vice versa is to be seamless, the lighting of the impostors must match
precisely.

In [132], Tecchia et al. address the dynamic lighting issue by using a multi­
pass algorithm. An additional texture is generated for every impostor image in an
extra step of the pre-generation procedure. This image contains the normals of its
respective impostor. The x ,y ,z of the normal at every j)ixel is range compressed and
encoded into RGB channels. Presuming a well-formed normal in the range [—1,1],
the mapping from normal to 8-bit RGB value is:

R ^ { { x +1) X 0.5) X 255
G {{y + l) x 0.5) X 255
B ^ { { z + l) x 0.5) X 255

They use the OpenGL 1.3 D0T3_RGB_ARB extension to perform a dot product
of the normal a t every pixel and a per-impostor light vector, evaluating a lighting

109

5.2 A cceleratin g Crowd R endering

equation approximately equal to th a t of the OpenGL fixed function pipeline. Each
component of the equation is rendered in a separate pass, which is accumulated in
the frame buffer and combined with the multi-pass colour variation method to give
a coloured, djmamically lit final impostor. This is done with a to tal of 8 passes; 5
passes for lighting and an additional 3 to add colour variation.

An example normal map of a single frame of animation from every viewpoint can
be seen in Figure 5.6. Here the individual impostor images have been tightly packed
to fit into the smallest texture possible, reducing video memory consumption.

Figure 5.6; A 1024 x 1024 impostor normal map for a single frame of animation

5.2 A ccelerating Crowd R endering

When dealing with the large numbers of individuals th a t comprise a crowd of hu­
mans, any increase in the rendering performance of a single unit will lead to a larger

110

5.2 A ccelerating Crowd R endering

increase of performance for the crowd as a whole, aUowing more detailed simulation
or an increase in the nimiber of impostors for the same computational cost. There­
fore close attention nmst be paid to maximising use of the hardware architecture
upon which the crowd is being rendered.

The methods outlined by Tecchia et al. as discussed in Sections 5.1.6 and 5.1.7
perform well on previous generation graphics cards, but suffer from a number of
deficiencies when it conies to implementation on the latest parallel hardware. This
section outlines these problems and details solutions tha t overcome each in order to
improve the rendering acceleration of every impostor, and by extension the entire
crowd.

5.2.1 D isadvantages o f M ulti-pass A lgorithm s

The main weakness of the algorithms used in [131] and [132] are their reliance
on multi-pass techniques. Multi-pass techni(}ues can be extremely beneficial for
algorithms which cannot be composited into one pass, and require the accumulation
of renderings - using the output of one pass as an input to the next pass. However,
the prim ary disadvantages of multi-pass algorithms compared to single-pass are as
follows:

M ore driver overhead: For every pass, the driver is going to spend time in the
API calls necessary to set the state for the next pass. This state may be
different from the state of the last pass - a different texture bound to the
texture unit, different material properties, different lighting or different texture
filtering. This means th a t the current state is invalidated and the pipeline must
be flushed. The acceleration achieved by highly parallel GPUs is dependent on
having many vertices and pixels being processed simultaneously, so flushing the
pipeline is extremely undesirable. Having this sort of state thrashing happen
for every pass of every impostor for every frame can result in severely degraded
performance and a CPU bottleneck in the driver.

M ore vertex transform ation: Every time an impostor is rendered for a pass in
the multi-pass algorithm, the four vertices of tha t impostor must be trans­
formed. This means th a t for an 8-pass algorithm, 32 vertices are being trans-

111

5.2 A ccelerating Crowd Rendering

formed for every impostor. This represents a major increase in the amount of
work that must be done by the vertex processor, possibly introducing another
application bottleneck.

M ore fill rate: This is possibly the most damaging aspect of nmlti-pass rendering
in the case of impostors. Impostors are already heavily reliant on the fill
rate speed of the GPU because they are an entirely image-based method. All
the blending and alpha testing required to render a non-opaque polygon are
amplified by the multi-pass method of culling any fragment except those with
a particular alpha value. As in the impact of extra vertex transformation,
an 8-pass algorithm will cause eight times the amount of fragment processing
to occur. In addition, redrawing the same quad many times results in nnich
overdraw, further reducing the fill rate of the overall frame.

To overcome these problems, we propose a generalised single-pass solution im­
plemented on progranmiable hardware that allows dynamic lighting and impostor
colour variation to a greater extent than previously possible. This has also been
published in ACM Transaction on Graphics, at I3D, and presented at SIGGRAPH
2005.

5.2.2 D ynam ic Im postor Lighting

While the use of the OpenGL D0T3_RGB_ARB extension allows Tecchia et al.
to compute a per-pixel dot product, the coefficients of the dot product they use
are the normal vector (encoded in the normal map) and per-impostor light and
half-angle vectors as per the Blinn-Phong lighting equation. The reason they use
per-impostor instead of per-pixel vectors is to avoid the overwhelming computation
of computing both vectors for every pixel, which could not be performed in hardware
using the fixed function pipeline. While the result is correct for a light source set
at an infinite distance (as each per-pixel vector for an infinite light source would
be parallel anyway), the invariance of the light vectors over the impostor leads to
an inaccuracy that increases as the light gets closer to the impostor. With a light
source directly beside the impostor, a lack of accurate light vectors would lead to
incorrect lighting that would differ significantly from the lighting of the impostor’s

112

5.2 Accelerating Crowd Rendering

geometric counterpart.
An additional restriction of using the fixed function pipeline, even with the per-

pixel capabihties of D0T3_RGB_ARB, is that the lighting equation used is restricted
to purely Blinn-Phong. While this is a perfectly acceptable model for the diffuse
lighting of human impostors, it precludes the possibility of using an alternative
lighting equation such as anisotropic lighting (for a human wearing material such as
velvet, for example). This is true for both the impostor and the geometric version,
as the lighting equations must match in order to avoid artefacts when switching
from one representation to another.

To avoid these problems, we implement both geometric and impostor lighting
using programmable hardware. We use a simplified version of the OpeuGL lighting
equation which removes the specular, emission and shininess contributions in order
to reduce the amount of computation needed. The final impostor shading equation
is:

P ixelf iCB =(({ L ■ N) X R e g i o n R G s) + Ambientr g b) x DetailrtcB (5-1)

where L is the light vector from that])ixe] to the light, interpolated over the
impostor's quad by the rasteriser and normalised in the fragment processor. N is
the decomjjressed normal for that pixel retrieved from the normal map. RegionRGB
is tlie colour for the region of that pixel given by the colour variation algorithm as
described in the next section. Ambient r g b is a constant ambient colour. Detail r g b

is a detail map that is used to add extra details such as face and clothing varia­
tions. It should be noted that while this lighting equation suits the rendering of
plain-clothed humans, any other lighting equation could be used instead by simply
changing the shader associated with both the impostor and geometric model. For
example, an anisotropic metallic shader could be implemented for rendering both
impostors and geometric versions of cars including specular highlights and even
environment-mapped reflections, subject to performance constraints.

Using this single-pass impostor lighting method implemented with programmable
hardware eliminates the excess overdraw introduced by an equivalent multi-pass
algorithm and allows any lighting equation to be used for both the impostor and
the geometric representation. It also eliminates the extra API calls necessary for

113

5.2 A cceleratin g Crowd R endering

setting up impostor lighting with D0T3_RGB_ARB, reducing the potential for a
CPU bottleneck in the driver. By exploiting the programmable pipeline, we allow'
for a more powerful and generalised impostor rendering algorithm at a reduced cost
compared to the multi-pass fixed function pipeline implementation.

5.2 .3 Im p ostor V ariation

As dynamic lighting can be implemented in a single pass by employing programmable
graphics hardware, a m ethod to introduce colour variation for impostors in the same
pass is also required or else the advantages of avoiding a multi-pass algorithm will
be lost.

Texture , Bound Output ,, .. Texcoords t ^ , Unit Texture Colour

1 (S , T)
2D te x tu re 1

2 (Ao, Ro) --—

2D te x tu re

► RiĜ B̂ Â̂

Figure 5.7; Texture indirection, using the red and alpha channels of a 2D texture
lookup as the texture coordinates of another 2D lookup.

We achieve this by using a feature of programmable hardware called texture
indirection. This is where any channel of the RGBA value resulting from one texture
lookup can be used as the texture coordinates of a subsequent texture lookup (see
Figure 5.7). We already have the different colouring regions encoded in the alpha
channel of each impostor, so ŵ e can use this alpha value to perform another lookup
into a special colour map. This colour map is simply a one-dimensional texture
where every pixel corresponds to the colouring of a particular region in the impostor.
After this second texture lookup, we have an unshaded impostor th a t has each region
coloured according to the colour map supplied. This is then combined with the rest
of the impostor shading equation (see Equation 5.1) to produce the final impostor
image. An illustration of the entire impostor shading procedure can be seen in

114

5.2 A cceleratin g Crowd R endering

Figure 5.8.

LIGHT
VECTOR

DOT

S h a d e d '
D iffuse Map X

D iffuse MapNorm al Map

+ A m bient

f
' m/D ep en d en t

L o o k u p I T
Final

I m p o s t o r

A lp h a -E n c o d e d C o lo ur Map C oloured R eg ion Map
Colouring R e g io n s

Figure 5.8; The single-pass impostor shading and colouring process

In a multi-pass algorithm, one pass must be made for every colour region in
the impostor, bringing with it the additional CPU, vertex and fill rate overhead
tha t each extra pass requires. By employing this texture indirection technique in
programmable hardware, the number of colouring regions available to an impostor
is instead onh' limited by the precision of the alpha channel. For a regular impostor
with 8 bits per channel, this allows a maximum of 255 differently coloured regions.
This is reduced to 16 regions if S3 texture compression [120] is employed to reduce the
amount of texture memory used by an imposter, because under S3 compression the
alpha channel is compressed to a 4-bit representation. It should also be noted tha t
due to the occurrence of only a single instance of texture indirection in this algorithm,
shading performance is independent of the number of regions being coloured; one big
colour region will have the same performance as many small regions being coloured

115

5.2 A cceleratin g Crowd R endering

differently.
For similar reasons as for single-pass dynamic lighting, using the fragment shader

to control colouring with texture-encoded colour maps means th a t the API calls used
in a multi-pass algorithm to set the diffuse colour at each pass are not necessary.
Again, this reduces the number of API calls necessary for every single impostor,
further reducing the possibility of a function-call bottleneck in the driver.

5.2.4 A uthoring Outfits

When dealing with a large crowd of coloured impostors, the chosen colours used for
outfits are very im portant. A randomly-chosen set of colours can produce garish
outfits tha t are jarring to the eye and detract from the believability and realism of a
scene. In addition, specifying which colours to use programmatically can be difficult
and inefficient without adding the extra comjjlexity of a scripting language interface
to the impostor rendering algorithm.

By employing texture indirection and encoding impostor colours into textures,
it is possible to shift the control of outfit authoring into an artist-controlled tool
tha t constructs textures quickly and easily. This allows for the rapid generation and
display of many different outfits tha t are appropriate to the impostor in question,
with a mininnnn of programming overhead. An example of the outfit authoring tool
designed for our impostors is shown in Figure 5.9. These colour maps can also be
exported and applied to the geometric models, ensuring an exact match and thus
minimal artefacts when switching between representations.

The storage space required to store each colour map is negligible, as only one
pixel is required to represent each colour region. Therefore, over 1000 different
outfits with 4 different regions each could be designed for an impostor and only
require approximately 100k of memory. Furthermore, with careful assignment of
colouring regions, the same colour map can be used for more than one type of
impostor.

116

5.3 R esults

Figure 5.9: The outfit tool used for choosing impostor colour maps

5.3 R esu lts

We measured the j)erforrnance of the impostors as part of the Geopostor crowd
rendering system, as this was the system that they were developed for. All of our
tests were performed using a Pentium 4 2Ghz processor, with 512Mb RAM and a
GeForce 4 Ti4600 3D card with 128MB of video memory.

We ran tests investigating how the number of virtual humans and the represen­
tation used affected the frame rate. These tests used an impostor and a geometric
representation (consisting of approximately 2200 triangles) for 1, 10, 100, 250, 500
and 1000 virtual humans as shown in Figure 5.10(a). It should be noted that for
each test, all of the virtual humans were fully lit but never frustum or occlusion
culled and were therefore always on-screen.

We also tested how using our two LOD representations affected the systems per-

117

5.3 R esu lts

formance in comparison to just using an impostor representation. These tests were
carried out for 1,000 - 10,000 virtual humans at 1,000 human intervals. A maximum
of 10,000 virtual humans was chosen as this was considered to be the maximum
amount th a t would be needed on-screen for scenes such as an army of characters
or a stadium of spectators. In these tests, the number of virtual humans using the
geometric representation was set to 100 to keep their rendering cost constant thus
allowing the performance impact of using the impostors to be measured. The graph
in Figure 5.10(b) illustrates tha t in the impostor/geom etry case, the impostor rep­
resentation has a minimal impact on the rendering time as the number of virtual
humans increases.

1400

1200

M 800

2 600

u. 400 -

200

100 250 500
N um ber of Virtual H um ans

750 1000
High LOD Geometry
Impostor

250

200

100

50

0

- Im postor/Geom etry
N um ber of Virtual Hum ans

(a) (b)

Figure 5.10: (a) Impostor vs Geometry, (b) Impostor vs Im postor/Geom etry

Our results so far have convinced us tha t human impostors are a excellent substi­
tu te for geometry, not only because of proven rendering efficiency gains, but also in
terms of visual fidelity. At certain distances, it is virtually impossible to determine
whether the high-resolution model or the impostor is being rendered. Furthermore,
these results have been validated by perceptual experiments [87, 53] which also de­
termined the thresholds at which switching between the impostor and geometric
representations are indistinguishable. This would not have been possible without
programmable graphics hardware and the methods described in this chapter for
matching exactly both the lighting and the colour variation of the two representa­
tions.

118

5.4 C luster Im plem entation

5.4 Cluster Im plem entation

The implementation of a crowd rendering system is not as directly relevant to the
cluster as the previous algorithms such as isosurface extraction. This is largely due
to the fact th a t the problem here is a rendering one, and as such is quite different
to the processing-bound applications in scientific visualisation.

While programmable graphics hardware allows us to render large crowds of con­
vincing impostor-based human representations, the major limiting factors are in the
graphics card itself; texture memory is limited and as such the amount of different
impostor textures th a t can be stored is also limited. A cluster implementation of
the crowd rendering system will also encounter this limitations, as it uses the same
commodity graphics hardware to perform the rendering work; every card that needs
to render an impostor will require the impostor's texture to be resident in video
memory, as texturing directly from system memory has shown to cause texture
thrashing and is detrimental to frarnerate.

However in the context of a crowd rendering system, the entire resources of the
cluster can still be put to good use. Along with the rendering system, a sophisticated
simulation engine is needed to drive a large-scale crowd. Artificial intelligence, path
finding, obstacle avoidance, behaviour planning and many other factors need to
be evaluated at eveiy frame in order to produce a convincing, dynamic group of
hmnans. W ith care, these processes can be partitioned among the cluster’s nodes
and parallelised on the FPGAs in order to sinmlate a very large crowd at interactive
rates. The most obvious partitioning would be a world-space one, where humans
in one sector of the virtual world all reside on one node of the cluster. This would
allow humans close to each other to interact with each other without having to access
remote memory locations. Having the low-latency SCI interconnect allows the nodes
to communicate at high speeds and therefore allows the behavioural algorithms of
more distant individtials in the crowd to still interact with each other, perhaps at a
lower update rate than those in close proximity.

Taking further advantage of the cluster’s architecture can also provide other
methods of sinmlating the crowds. An asymmetric approach could be taken, where
one node is responsible for generating the actual impostor textures in real-time by
rendering to textures and providing these textures to the other nodes for use in the

119

5.4 C luster Im p lem entation

main human rendering system. This would provide a more consistent rendering look,
rather than mixing pre-generated images with live rendered geometry. Alternatively,
the humans could be distributed between the nodes based on the impostor textures
used. Each node would be entirely responsible for rendering certain impostors,
and then the final frame would be composited as a post-processing step. This would
alleviate the problem of every video card needing to contain a copy of every impostor
texture, allowing for more variety in the scene and therefore more realism.

Implementing a crowd system on the Cell processor would certainly allow for par-
allelisation of the simulation among the many SPUs. How'ever as rendering speed
is a large part of the bottleneck in the crowd system, there is a limit to the use­
fulness of increasing the amount of processing without a corresponding increase in
rendering. In the cluster’s case, being able to scale the rendering powder along with
the processing power has many obvious benefits and allows for a larger and more
detailed crowd.

120

Chapter 6

Conclusions and Future Work

This thesis has described the exploitation of commodity parallel hardware for graph­
ics algorithms and architectures. In this final chapter we sunnnarise our contribu­
tions and suggest potential future avenues of investigation based upon this work, as
well as briefly discussing the future of comniodity parallel hardware.

6.1 Sum m ary o f C ontributions

N ew cluster softw are infrastructure: We have described a new tightly-coupled,
scalable cluster framework composed of heterogeneous conunodity compo­
nents, combined with a minimal custom hardware element. This cluster takes
advantage of the strengths of its constituent parallel parts, and is connected
by a low'-latency, high-bandwidth SCI interconnect which implements a single
distributed shared memory space to reduce data replication. Additional pro­
cessing power is provided by reconfigurable FPGAs. A software framework
has been proposed to implement a distributed graphics driver based upon ATI
driver specifications for the R200, giving the cluster the potential to signifi­
cantly accelerate existing and future parallel rendering algorithms.

V olum e visualisation: We have presented an overview of a volume visualisation
system for generating publishaljle images of scientific data, particularly confo-
cal fluorescence microscopy data. It uses programmable graphics hardware in
the form of texture shaders and register combiners to achieve a performance

121

6.1 Sum m ary o f C ontributions

increase and improve image quality, as well as implementing an adaptation of
the marching cubes algorithm in order to generate polygonal surfaces of equal
isovalues.

V olum e sim plification: In an a ttem pt to reduce the amount of work th a t needs to
be done during isosurface extraction of a complete vohnne, we have presented
a simple, quick and effective method of volume simplification th a t retains the
coarse features of the volume. We have demonstrated th a t even one level of
simplification can reduce the size of the volume considerably, by up to a factor
of ten. This method has also been shown to improve the visual quality of the
inherently noisy surfaces extracted from coufocal microscopy datasets.

Isosurface ex tra ctio n on Cell: A novel algorithm for isosurface extraction on
the new Cell processor has been demonstrated. We have dem onstrated peak
processing speeds of over 100 million tetrahedra per second on a dual Cell
server, or over 47 million tetrahedra per second on a single Cell. We have
shown tha t these increases have come about through the combination of a
streaming and parallelisation scheme that takes advantage of Cell’s ability to
effectively eliminate memory latency by hiding it behind processing time. We
have also given a general overview of the Cell processor and described how'
to leverage its power in the adaptation of an existing algorithm. This same
approach can be used for other compute- and bandwidth-boimd algorithms
suitable for parallelisation, and similar improvements in processing times can
be expected. Moreover, the fact th a t these improvements can be achieved using
a commodity processor means tha t it is a superior alternative for applications
where more processing power is needed, but the cost of expensive dedicated
hardware would be prohibitive.

C row d rendering: The methods used by Tecchia et al. [132] have been built upon
and improved to produce a lit and varied human impostor in a single rendering
pass. We have implemented a method tha t is controllable by artist-generated
textures and allows many more regions of variation at no extra cost. Addi­
tionally, the use of the programmable pipeline perm its the use of arbitrary
lighting equations for impostors, an im portant consideration for other classes

122

6.2 Future W ork

of material such as cloth or metal.

6.2 Future W ork

6.2.1 Isosurface E xtraction and V olum etric Sim plification

The approach to isosurface extraction on Cell described in Section 4.4 concentrates
on eliminating memory latency and efficiently transferring data to the SPUs for
processing. It does not address the issues of further acceleration by using spatially
hierarchical da ta structures such as octrees [143] or interval trees [19]. There is
little doubt tha t since the current limit of our method is the processing time needed
by the SPUs, reducing the amount of da ta to be processed would lead to further
increases in speed.

Another issue to be investigated is that of mixing SPU application models in
order to improve overall system performance. For example, some SPUs could be
dedicated to isosurface extraction while the others perform mesh simplification on
the polygons already produced. A broad range of load-balancing implications are
introduced by the two-tier P P E /S P E split, and these need to be explored.

Given the streaming methods presented here, there is no limit on the size of
tlie dataset to l ê processed. However, as with conventional processors, the size of
system memory still limits the amount of data th a t can be held at any time. This
j)uts a limit on the speed of very large volume isosurface extraction, so out-of-core
execution methods such as those proposed by Chiang et al. [16] will also have to be
investigated with respect to implementation on Cell.

The volumetric simplification presented in Section 4.3 could also be applied to
isosurface extraction on Cell. Due to the buffering methods, transfer time is not
an issue. Therefore, simplification could be done on the SPUs before performing
extraction. However it remains to be seen whether this would be beneficial to
execution time or not. It would also require more replication in the SPUs to properly
perform a high level of the 3D filtering, as the overlap between chunks and slices
would need to be higher.

There is much future work to be done in this area of isosurface extraction on
Cell, and on Cell hardware in general. Because it is a relatively new architecture,

123

6.2 Future W ork

its usefulness for compute-, latency- and bandwidth-bound problems is just becom­
ing apparent. A significant change in a ttitude towards system design is needed in
order to use it to its full potential, but as the hardware l^ecomes more widespread
and support tools improve, so too will the programming paradigms specific to this
platform.

6.2.2 Parallel C om m odity C luster

A working prototype of at least two boards will be needed before a lot of the imple­
mentation and testing can be done. When this is possible, there are many design
choices th a t must be validated before committing fully to them.

The implications of accessing remote buffers must be e\^aluated and compared
to the local buffers usually accessed by the normal graphics driver in AGP memory
with respect to access times and bandwidth. If remote indirect and ring buffer
fetches are feasible, it allows a much more flexible and distributed model to be used
when designing the cluster-based driver.

Another area tha t needs careful consideration is the concurrency mediation m eth­
ods th a t are used to arbitrate simultaneous accesses to a custom board’s local ring
buffer. Using the shared memory space for the transfer of connnand packets is a
powerful method of communicating quickly and efficiently with the cluster’s GPUs,
so a lightweight and yet robust solution to this problem must be found.

The possibility of reducing data rei)lication with shared memory must be weighed
carefully against the speed of da ta access. Due to the NUMA architecture of the
cluster, it would be faster to keep a copy of the da ta in the local memory of every
node th a t requires it. However, this would be a less efficient use of available memory
and should be avoided if possible. Due to the fact th a t data is only loaded into video
memory once and then accessed from there by the GPU, it is likely th a t the cost of
transferring the data over the interconnect would be acceptable in order to eliminate
replication.

124

6.3 T he Future o f Parallel H ardware

6.3 T he Future o f Parallel Hardware

Given the recent improvements in commodity parallel hardware such as FPGAs
and the Cell processor, and the research being published here and elsewhere on
how best to exploit them for computer graphics algorithms, it is becoming clear
th a t the future of processors (and therefore computing in general) lies in parallel
systems. Even processor manufacturers such as hitel and AMD are recognising
this fact and planning accordingly. In April of 2005, Intel announced the Pentium
Extrem e Edition, its first dual-core product. It has since modified its overall strategy
to specify multicore functionality as a central feature of its future CPU architectural
designs, also producing supporting software to help developers take full advantage
of multicore platforms. The new Core M icroarchitecture th a t Intel is promoting
as the basis of the next generation of Intel products is fm'ther evidence of Intel’s
commitment to parallel hardware as the w'ay forward.

The driving force l^ehind the enormous increase in GPU powder over the last
ten years (the original 3dFX Voodoo was only released in 1996) has undeniably
been the computer games industry. Furthermore, the parallelism inherent in the
modern GPU allows processing speeds th a t are far beyond the capabilities of a
comparable sequential processor - albeit only for a specialised purpose, in this case
3D rendering. Once such a powerful processor became available at an affordable
price, it was inevitable th a t it would be adapted for use in other areas such as
scientific simulation. While the GPU can be adapted to perform these tasks very
well through the methodologies of GPGPU, it is clear tha t having to ‘shoehorn’
such generalised computational tasks into a specific graphics rendering paradigm is
far from ideal. Certain desirable general purpose operations are either restrictive
or impossible because of fundamental differences in the underlying architecture -
writing to an arbitrary location in memory being one example. These currently
have to be overcome by roundabout methods such as multipass algorithms tha t
would not be necessary on a general purpose processor.

At the same time, the speed afforded by the modern GPU is possible because
it is geared toward specific operations. Additionally, the reason th a t the GPU is
so attractive to the proponents of G PGPU is their low cost, w4iich is driven down
by their primary consumers, games players. A general stream processor could allow

125

6.3 T he Future o f Parallel H ardw are

these operations with a more general and useful instruction set, but the demand
would be nowhere near th a t of GPUs, resulting in a much higher market price.

Nevertheless, now th a t the advantages of parallel processing have been made
obvious by GPUs, the need to adapt algorithms to fit into the GPU programming
model will be lessened as other parallel architectures arise. The increase in research
into the application of processors such as FPGAs and Cell shows th a t much more can
be offered besides raw parallel processing power, including much greater flexibility
in implementation, larger memory, and far greater scalability. While its im portance
in general computation may be lessened by other architectures, it is still clear th a t
the GPU will continue to be at the cutting edge of graphics rendering hardware for
the foreseeable future.

126

Bibliography

[1] K. Alnaes, E. Kristiansen, D. Gustavson, and D. James. Scalable Coherent In­
terface. Proceedings of the 1990 IE EE International Conference on Computer
Systems and Software Engineering, pages 446 - 453, May 1990.

[2] N. Atay, J. Lockwood, and B. Bayazit. A collision detection chip on re-
configurable hardware. Proceedings o f 2005 Pacific Conference on Computer
Graphics and Applications (Pacific Graphics), October 2005.

[3] ATI Technologies Inc. Crossfire, http://ww w .ati.coni/teclinology/crossfire.

[4] ATI Technologies Inc. Product comparison guide. h ttp ;//ap p s .ati.com /
ATIcompare.

[5] ATI Technologies Inc. RAGE 128 software development guide. Internal Tech­
nical Reference Manual, 1999.

[6] ATI Technologies Inc. R200 programming reference guide. Internal Technical
Reference Manual, 2001.

[7] ATI Technologies Inc. R200 register reference. Internal Technical Reference
Manual, 2001.

[8] A. Aubel, R. Boulic, and D. Thalniann. Lowering the cost of virtual human
rendering with structured animated impostors. In Proceedings o f WSCG '99,
1999.

[9] J. S. Beeckler and W. J. Gross. FPGA particle graphics hardware. Proceedings
o f the IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM'05), pages 85 - 94, April 2005.

127

BIBLIOGRAPHY

[10] J. F. Blinn. Models of light reflection for computer synthesized pictures. In
SIG G RAPH '11: Proceedings o f the 4th annual conference on Computer graph­
ics and interactive techniques, pages 192-198, New York, NY, USA, 1977.
ACM Press.

[11] T. Boubekeur and C. Schlick. Generic mesh refinement on GPU. Proceedings
o f Graphics Hardware, 2005.

[12] I. Buck, G. Humphreys, and P. Hanrahan. Tracking graphics state for
networked rendering. In H W W S '00: Proceedings of the AC M SIG-
G RA PH /EU R O G R APH IC S workshop on Graphics hardware, pages 87 95,
New York, NY, USA, 2000. ACM Press.

[13] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomo­
graphic reconstruction using texture mapping hardware. In VVS '94'- Pro­
ceedings o f the 1994 symposium on Volume visualization, pages 91-98, New
York, NY, USA, 1994. ACM Press.

[14] B. P. Carneiro, C. Silva, and A. E. Kaufman. Tetra-cubes: An algorithm to
generate 3D isosurfaces based upon tetrahedra. Proceedings of SIB G R A P I
'96, pages 205-210, 1996.

[15] M. Charalambous, P. Trancoso, and A. Stamatakis. Initial experiences i)orting
a bioinformatics application to a graphics processor. Proceedings of the 10th
Panhellenic Conference in Informatics, 2005.

[16] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core iso­
surface extraction. In D. Ebert, H. Hagen, and H. Rushmeier, editors, IEEE
Visualization '98, pages 167-174, 1998.

[17] A. C. Chow, G. C. Fossum, and D. A. Brokenshire. A programming example:
Large FFT on the cell broadband engine. IB M White Paper, 2005.

[18] H. Christopherson, W. Pickell, A. Roller, S. Kannan, and E. Johnson. Small
adaptive flight control systems for UAVs using FPG A /D SP technology. A IA A
3rd “Unmanned Unlimited” Technical Conference, Workshop and Exhibit,
2004.

128

BIBLIOGRAPHY

[19] P. Cignoni, P. Marino, C. Montani, E. Piippo, and R. Scopigno. Speeding up
isosurface extraction using interval trees. IEEE Transactions on Visualization
and Computer Graphics, 3(2): 158-170, 1997.

[20] P. Cignoni, C. Montani, R. Scopigno, and C. Rocchini. A general method
for preserving a ttribu te values on simplified meshes. In VIS '98: Proceedings
of the conference on Visualization '98, pages 59-66, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

[21] J. Cohen, M. Olano, and D. Manocha. Appearance-preserving simplification.
In SIG G RAPH '98: Proceedings o f the 25th annual conference on Com,puter
graphics and interactive techniques, pages 115-122, New York, NY. USA, 1998.
ACM Press.

[22] J. Danskin and P. Hanrahan. Fast algorithms for vohmie ray tracing. In UV'S'
'92: Proceedings of the 1992 workshop on Volume visualization, pages 91-98,
New York, NY, USA, 1992. ACM Press.

[23] DARPA. HPC challenge 2005 results. h tti) ://ic l.cs.utk.edu/hpcc/
hpcc_results.cgi, 2005.

[24] M. A. de Barros and M. Akil. Low level image processing operators on FPGA:
Implementation examples and performance evaluation. ICPR-D, 94:262 267,
1994.

[25] P. de Heras Ciechomski, B. Ulicny, R. Cetre, and D. Thahnann. A case
study of a virtual audience in a reconstruction of an ancient roman odeon in
aphrodisias. VAST '04: The 5th Intei'national Symposium on Virtual Reality,
Archaeology and Cultural Heirtage, pages 9-17, 2004.

[26] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character an­
imation. In SIG G RAPH '98: Proceedings o f the 25th annual conference on
Computer graphics and interactive techniques, pages 85-94, New York, NY,
USA, 1998. ACM Press.

[27] C. Dick and Y. Krikorian. A system-level design approach for FPGA-based
DSP implementations. DSP World, Spring 1999.

129

BIBLIOGRAPHY

[28] K. Diefendorff, P. Dubey, R. Hochspruiig, and H. Scale. Altivec extension to
PowerPC accelerates media processing. IE EE Micro, 20(2):85-95, 2000.

[29] S. Dobbyn, J. Hamill, K. O ’Conor, and C. O ’Sullivan. Geopostors: areal-tim e
geometry / impostor crowd rendering system. In SI3D '05: Proceedings o f the
2005 symposium, on Interactive 3D graphics and games, pages 95 102, New
York, NY, USA, 2005. ACM Press.

[30] Dolphin Interconnect Solutions Inc. Dolphin SuperSockets.
http://ww w .dolphinics.com /products/software/sci_sockets.litm l.

[31] Dolphin Interconnect Solutions Inc. SISCI developer’s kit.
http://ww w .dolphinics.com /products/software/sisci_devkit.htm l.

[32] Dolphin Interconnect Solutions Inc. D331 PCI-SCI adapter card,
h ttp :/ /www.dolphinics.com /products/hardw are/pci64.htm l, 2006.

[33] S. Domine and J. Spitzer. Texture shaders. h ttix //developer.nvidia.com/
o b jec t/texture_shaders.html, 2001.

[34] B. Dudash. DXIO, batching, and performance considerations,
h ttp ://developer.nvidia.eom /object/dxl0-instancing-gdc-2006, 2006.

[35] H. Edelsbrunner. Dynamic da ta structure for orthogonal intersection queries.
Technical Report F59, Inst. Informationsverarb. Tech. Univ. Graz, Graz, Aus­
tria, 1980.

[36] A. E. Eichenberger, J. K. O ’Brien, K. M. O ’Brien, P. Wu, T. Chen, P. H. Oden,
D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao,
M. K. Gschwind, R. Archambault, Y. Gao, and R. Koo. Using advanced
compiler technology to exploit the performance of the cell broadband engine
architecture. IB M Systems Journal, 45(1), 2006.

[37] M. Eldridge, H. Igehy, and P. Hanrahan. Pomegranate: A fully scalable graph­
ics architecture. In SIG G RAPH ’00: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, pages 443-454, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

130

BIBLIOGRAPHY

[38] T. Erjavec. The power in Xilinx: Power architecture technology makes flexi­
ble design easy, http://www-128.ibm .com /developerworks/power/library/pa-
nljun04-xilinx/index.html, 2004.

[39] J. Eyre. FPG A /D SP blend tackles telecom apps. Electronic Engineering
Tim.es, July 2002.

[40] R. Fernando and M. J. Kilgard. The Cg Tutorial: The Definitive Guide to
Programmable Real-Time Graphics. Addison-W^sley Professional, 2003.

[41] J. Gao and H.-W. Shen. Parallel view-dependent isosurface extraction us­
ing multi-pass occlusion culling. In PVG '01: Proceedings o f the IEEE 2001
symposium, on parallel and large-data visualization and graphics, pages 67-74,
Piscataway, NJ, USA, 2001. IEEE Press.

[42] C. Giertsen and J. Peterson. Parallel volume rendering on a network of work­
stations. IEEE Computer Graphics and Applications, 13(6): 16 - 23, November
1993.

[43] F. Goetz, T. Junklewitza, and G. Domik. Real-time marching cubes on the
vertex shader. Eurographics 2005 short presentations, pages 5 9, 2005.

[44] H. Gouraud. Computer display of curA'ed surfaces. IEEE Transactions on
Com.puters, 20(6);623 629, 1971.

[45] N. Govindaraju, S. Redon, M. C. Lin, and D. Manocha. CLTLLIDE; Interac­
tive collision detection between complex models in large environments using
graphics hardware. Proceedings of Graphics Hardware, 2003.

[46] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort: High
performance graphics coprocessor sorting for large database management. Pro­
ceedings o f AC M SIGMOD Conference, 2006.

[47] GPGPU. General-Purpose Computation Using Graphics Hardware,
h ttp ://w w w .gpgpu.org.

[48] Graphic Remedy. gDEBugger. http://www.grem edy.com , 2006.

131

BIBLIOGRAPHY

[49] S. Green. NVIDIA OpenGL update, http ://developer.nvidia.com /object/opeiigl-
nvidia-extensions-gdc-2006.html, 2006.

[50] S. A. Green and D. J. Paddon. Exploiting coherence for multiprocessor ray
tracing. IE EE Comput. Graph. AppL, 9(6): 12-26, 1989.

[51] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI Message Passing Interface Standard. Parallel Com­
puting, 22(6):789-828, 1996.

[52] A. Gueziec and R. Hummel. Exploiting triangulated surface extraction using
tetrahedral decomposition. IE E E Transactions on Visualization and Com­
puter Graphics, l(4):328-342, 1995.

[53] J. Hamill, R. McDonnell, S. Dobbyn, and C. O'Sullivan. Perceptual evaluation
of impostor representations for virtual humans and buildings. Eurographics
2005 Proceedings, Computer Graphics Forum, 24(3), 2005.

[54] C. D. Hansen and P. Hinker. Massively parallel isosurface extraction. In VIS
'92: Proceedings of the 3rd conference on Visualization '92, pages 77-83, Los
Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[55] M. Harris. Real-Time Cloud Simulation and Rendering. PhD thesis. University
of North Carolina, 2003.

[56] E. Hart. ARB fragment program: Fragment level programmability in OpenGL.
http://w w w .ati.com /developer/techpapers-archive.litiiil. Game Developers
Conference 2003.

[57] Havok. http://w w w .havok.com .

[58] A. Herout and P. Zemcik. Hardware pipeline for rendering clouds of circular
points. In WSCG (Full Papers), pages 17-22, 2005.

[59] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan.
WireGL: A scalable graphics system for clusters. SIG G RAPH 2001, Computer
Graphics Proceedings, pages 129-140, 2001.

132

BIBLIOGRAPHY

[60] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and
,]. T. Klosowski. Chromium; A stream processing framework for interactive
graphics on ckisters. SIG G RAPH 2002, Computer Graphics Proceedings, pages
693 - 702, 2002.

[61] IBM. Cell Broadband Engine resource center, http://ww w -128.ibni.com /
developerworks/power/cell, 2005.

[62] H. Isobe, T. Miyagoshi, K. Shibata, and T. Yokoyama. Filam entary structure
on the sun from the magnetic rayleigh-taylor instability. Nature, 434(7032):478
- 481, 2005.

[63] S. Jeschke, M. Wimmer, and W. Purgathofer. Image-based representations for
accelerated rendering of complex scenes. In Eurographics 2005 ST A R Reports,
pages 1- 20, 2005.

[64] T. Kaneko, T. Takahei, M. Inami, N. Kawakami, Y. Yanagida, T. Maeda. and
S. Tachi. Detailed shape representation with parallax maj^ping. Proceedings
of IC A T 2001, Tokyo, Japan, 2001.

[65] F. Kelly and A. Kokaram. Fast image interpolation for motion estimation using
grajjhics hardware. IS& T /SP IE Electronic Imaging - Real-Tim,e Imaging VIII,
January 2004.

[66] F. Kelly and A. Kokaram. Grai)hics hardware for gradient based motion esti­
mation. IS& T /S P IE Electronic Imaging - Embedded Processors fo r Multimedia
and Communications, January 2004.

[67] E. Keppel. Approximating complex surfaces by triangulation of contour lines.
IBM Journal o f Research and Development, 19(1):2-11, 1975.

[68] J. Kessenich, D. Baldwin, and R. Rost. The OpenGL shading language spec­
ification v l. 10.59. http://w 'w w .opengl.org.

[69] P. Kipfer and R. Westermann. GPU construction and transparent rendering
of iso-surfaces. In G. Greiner, J. Hornegger, H. Niemann, and M. Stamminger,
editors. Proceedings Vision, Modeling and Visualization 2005, pages 241-248.
lOS Press, infix, 2005.

133

BIBLIOGRAPHY

[70] T. Klein, S. Stegmaier, and T. Ertl. Hardware-accelerated reconstruction of
polygonal isosurface representations on unstructured grids. In PG '04: Pro­
ceedings of the Computer Graphics and Applications, 12th Pacific Conference
on (PG ’04), pages 186-195, Washington, DC, USA, 2004. IEEE Computer
Society.

[71] J. M. Kniss, K. Engel, M. Hadwiger, and C. Rezk-Salama. High-quality volume
graphics on consumer PC hardware. Siggraph Course notes, 42, 2002.

[72] J. M. Kniss, G. Kindlmann, and C. Hansen. Interactive volume rendering
using multi-dimensional transfer functions and direct manipulation widgets.
Proceedings of IEEE Visualization, pages 255- 262, 2001.

[73] G. Knittel and G. Zachmann. High-performance collision detection hardware.
Technical Report CG-2003-3, University Bonn, Informatikk II, Bonn, Ger­
many, August 2003.

[74] A. Koide, A. Doi, and K. Kajioka. Polyhedral approximation approach to
molecular orbital graphics. J. Mol. Graph., 4(3):149- 155, 1986.

[75] V. Kokkevis, S. Osman, and E. Larsen. High-performance physics solver design
for next generation consoles. Presentation at Game Developers Conference,
2006. http://www.research.scea.corn/research/research.htrnl.

[76] K. Kreeger and A. Kaufman. PAVLOV: a programmable architecture
for volume processing. In HW W S ’98: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 77-ff.,
New York, NY, USA, 1998. ACM Press.

[77] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp fac­
torization of the viewing transformation. In SIGGRAPH '94: Proceedings of
the 21st annual conference on Computer graphics and interactive techniques,
pages 451-458, New York, NY, USA, 1994. ACM Press.

[78] D. Laur and P. Hanrahan. Hierarchical splatting: a progressive refinement al­
gorithm for volume rendering. In SIGGRAPH ’91: Proceedings of the 18th

134

BIBLIOGRAPHY

annual conference on Computer graphics and interactive techniques, pages
285-288, New York, NY, USA, 1991. ACM Press.

[79] M. Levoy. Display of surfaces fronr vohune data. IEEE Computer Graphics
and Applications, 8(3):2937, May 1988.

[80] M. Levoy. Efficient ray tracing of volume data. ACM Trans. Graph., 9(3):245-
261, 1990.

[81] W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3D surface
construction algorithm. Computer Graphics (SIGGRAPH '87 Proceedings),
21(4):163-170, 1987.

[82] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner.
Level of detail for 3D comp^iter graphics. Morgan Kaufmann, 2002.

[83] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume
rendering using binary-swap compositing. IEEE Computer Graphics and Ap­
plications, 14(4):59-68, 1994.

[84] P. W’. C. Maciel and P. Shirley. Visual navigation of large environments using
textured cluster. SI3D '95: Proceedings of the 1995 Symposium, on Interactive
3D Graphics, pages 95-102, 1995.

[85] P. Mackerras. A fast parallel marching-cubes implementation on the Fujitsu
APIOOO. Australian National University, Tech Report(TR-CS-92-10), 1992.

[86] N. Max. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 1(2):99 - 108, June 1995.

[87] R. McDonnell, S. Dobbyn, and C. O’Sullivan. LOD human representations: A
comparative study. Proceedings of the First International Workshop on Crowd
Simulation (V-CROWDS ’05), 2005.

[88] M. MeiCner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. StraBer,
M. Doggett, P. Forthniann, and R. Proksa. VIZARD II: a reconfigurable
interactive volume rendering system. In HW W S '02: Proceedings of the ACM

135

BIBLIOGRAPHY

SIG G RAPH /E U RO G RAPH IC S conference on Graphics hardware, pages IST­
WG, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

[89] K. Menzel. Parallel rendering techniques for multiprocessor systems. In Pro­
ceedings of the Spring School on Computer Graphics (SSCG ’94), pages 91-
103, Bratislava, Slovakia, 1994. Comenius University Press.

[90] J. V. Miller, D. E. Breen, W. E. Lorensen, R. M. O ’Bara, and M. J. Wozny.
Geometrically deformed models: a method for extracting closed geometric
models form volume data. In SIG G RAPH '91: Proceedings o f the 18th annual
conference on Gomputer graphics and interactive techniques, pages 217-226,
New York, NY, USA, 1991. ACM Press.

[91] B. Minor, G. Possum, and V. To. Terrain rendering engine (TRE). IBM White
Paper, 2005.

[92] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of
parallel rendering. IEEE Gomputer Graphics and Applications, pages 23 - 32,
July 1994.

[93] G. E. Moore. Crannning more components onto integrated circuits. Electronics
Magazine, April 19, 1965.

[94] MPI Forum, the MPI-2 standard. h ttp;//w w w -unix.nics.anl.gov/mpi, 2003.

[95] K. Mueller and R. Yagel. Fast perspective volume rendering with splatting
by utilizing a ray-driven approach. In VIS ’96: Proceedings o f the 7th confer­
ence on Visualization '96, pages 65-ff., Los Alamitos, CA, USA, 1996. IEEE
Computer Society Press.

[96] C. Niederauer, M. Houston, M. Agrawala, and G. Humphreys. Non-invasive
interactive visualization of dynamic architectural environments. In SI3D '03:
Proceedings of the 2003 symposium on Interactive 3D graphics, pages 55-58,
New York, NY, USA, 2003. ACM Press.

[97] G. M. Nielson and B. Hamann. The asymptotic decider: resolving the am­
biguity in marching cubes. In VIS ’91: Proceedings of the 2nd conference on

136

BIBLIOGRAPHY

Visualization '91, pages 83-91, Los Alamitos, CA, USA, 1991. IEEE Computer
Society Press.

[98] NVIDIA Corporation, eg: C for graphics. http://developer.nvidia.com /Cg.

[99] NVIDIA Corporation. SLI. http://www.slizone.com .

[100] M. M. Oliveira. Relief Texture Mapping. PhD thesis, University of North
Carolina, 2000.

[101] R. Osborne, H. Pfister, H. Lauer, T. Olikami, N. McKenzie, S. Gibson, and
W. Hiatt. EM-Cube: an architecture for low-cost real-time volume render­
ing. In H W W S ’97: Proceedings of the AC M SIG G RAPH /EU R O G RAP H IC S
workshop on Graphics hardware, pages 131-138, New York, NY, L^SA, 1997.
ACM Press.

[102] C. O ’Sullivan, J. Cassell, H. Vilhjahnsson, J. Dingliana, S. Dol)byn, B. Mc-
Namee, C. Peters, and T. Giang. Levels of detail for crowds and groups.
Computer Graphics Forum, 21(4), November 2002.

[103] C. Parkinson, M. Cooper, I. Hillier, and \V. Hewitt. MAVIS: an interactive
visualization tool for comj^utational chemistry calculations in a distributed
networked environment. In proceedings o f the Pacific Symposium, on Biocom­
puting, Kapalua, Maui, Hawaii, U.S.A., January 1998.

[104] V. Pascucci. Isosurface computation made simple: Hardware acceleration,
adaptive refinement and tetrahedral stripping. Joint Eurographics - IE EE
TVCG Symposium on Visualization (VisSym), pages 293-300, 2004.

[105] B. Paul. Introduction to the direct rendering infrastructure. Tutorial presented
at the LinuxWorld 2000 conference, 2000.

[106] PCI Special Interest Group. PCI-Express specifications,
http: / / www.pcisig.com/specifications/pciexpress.

[107] PCI Special Interest Group. PCI-X 2.0 specifications, http://w w w .pcisig.com /
specifications/pcix_20.

137

BIBLIOGRAPHY

[108] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The Vol-
umePro real-time ray-casting system. In SIGGRAPH ’99: Proceedings of the
26th annual conference on Computer graphics and interactive techniques, pages
251-260, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing
Co.

[109] H. Pfister and A. Kaufman. Cube-4 - a scalable architecture for real-time
volume rendering. In VVS ’96: Proceedings of the 1996 symposium on Volume
visualization, pages 47-fF., Piscataway, NJ, USA, 1996. IEEE Press.

[110] T. J. Purcell. Ray Tracing on a Stream Processor. PhD thesis, Stanford
University, March 2004.

[111] A. Raabe, B. Bartyzel, J. K. Anlauf, and G. Zachniann. Hardware accelerated
collision detection - an architecture and sinuilation results. In DATE ’05:
Proceedings of the conference on Design, Automation and Test in Europe,
pages 130-135, Washington, DC, USA, 2005. IEEE Computer Society.

[112] A. Raabe, S. Hochgiirtel, G. Zachmann, and ,J. K. Anlauf. Space-efficient
FPGA-accelerated collision detection for virtual prototyping. In Design Au­
tomation and Test in Europe (DATE), pages 6-10, Munich, Germany, March
2006.

[113] F. Reck, C. Dachsbacher, R. Grosso, G. Greiner, and M. Stamminger. Real­
time isosiu'face extraction with graphics hardware. Computer Graphics Forum.,
22(3):595-603, 2004.

[114] Red Herring. Will Wright changes EA’s game. Red Herring magazine, March
2006.

[115] C. Reynolds. Crowd simulation on PS3. Presentation at Game Developers
Conference, 2006. http://www.research.scea.com/research/research.html.

[116] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interac­
tive volume on standard PC graphics hardware using multi-textures and

138

BIBLIOGRAPHY

multi-stage rasterization. In HW W S '00: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 109-118,
New York, NY, USA, 2000. ACM Press.

[117] S. Roettger and T. Ertl. A two-step approach for interactive pre-integrated
vohmie rendering of unstructured grids. In Symposium, on Volume Visualiza­
tion and Graphics, pages 23-28, 2002.

[118] M. Sakamoto, H. Nishiyama, H. Satoh, S. Shimizu, T. Sanuki, K. Kamijoh,
A. Watanabe, and A. Asahara. An implementation of the feldkamp algorithm
for medical imaging on cell. IBM White Paper, 2005.

[119] M. Segal and K. Akeley. The OpenGL graphics system: A specification (ver­
sion 1.5). http://www.opengl.org.

[120] SGI OpenGL Extension Registry. GL_EXT_texture_compression
_s3tc. h ttp ://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_com-
pression_s3tc.txt.

[121] SGI. Silicon Graphics Prism, http://www.sgi.com/products/visualization/
prism, 2006.

[122] SGI. Silicon Graphics VizServer. http://www.sgi.coni/products/software/
vizserver, 2006.

[123] J. Spitzer. Textiu'e compositing with register combiners,
http://developer.nvidia.com/object/registercombiners.html, 2000.

[124] J. Stewart, E. P. Bennett, and L. McMillan. PixelView: a view-independent
graphics rendering architecture. In HW W S ’04-' Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 75-84,
New York, NY, USA, 2004. ACM Press.

[125] G. Stoll, M. Eldridge, D. Patterson, A. Webb, S. Berman, R. Levy, C. Cay-
wood, M. Taveira, S. Hunt, and P. Hanrahan. Lightning-2: A high-
performance display subsystem for PC clusters. In E. Fiume, editor, SIG-
GRAPH 2001, Computer Graphics Proceedings, pages 141-148. ACM Press /
ACM SIGGRAPH, 2001.

139

BIBLIOGRAPHY

[126] M. Strengert, M. Magalloii, D. Weiskopf, S. Giithe, and T. Ertl. Hierarchi­
cal visualization and compression of large volume datasets using GPU clus­
ters. Proc. Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV04), pages 41-48, 2004.

[127] V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek. The PVM
concurrent computing system: evolution, experiences, and trends. Parallel
C om put, 20(4):531-545, 1994.

[128] J. S. Sven Woop and P. Slusallek. RPU: A programmable ray processing unit
for realtime ray tracing. In Proceedings o f AC M SIG G RAPH 2005, July 2005.

[129] E. Swankoski, R. Brooks, V. Narayanan, M. Kandemir, and M. Irwin. A
parallel architecture for secure FPGA symmetric encryption. In Proceedings
of R A W 2001 2004.

[130] F. Tecchia and Y. Chrysanthou. Real-time rendering of densely populated
urban environments. Proceedings o f the Eurographics Workshop on Rendering
Techniques, pages 83 88, 2000.

[131] F. Tecchia, C. Loscos, and Y. Chrysanthou. Image based crowd rendering.
IE EE Computer Graphics and Applications, 22(2):36 -43, 2002.

[132] F. Tecchia, C. Loscos, and Y. Chrysanthou. Visualizing crowds in real-time.
Computer Graphics Forwn, 21(4):753-7G5, 2002.

[133] D. Trebilco. GLIntercept. http ://g lin tercept.m itty .org , 2006.

[134] J. Trylska, R. Konecny, F. Tama, C. L. B. 3rd, and J. A. McCammon. Ri­
bosome motions modulate electrostatic properties. Biopolym,ers, 74(6) :423
431, August 2004.

[135] H. K. Tuy and L. T. Tuy. Direct 2-D display of 3-D objects. IEEE Computer
Graphics and Applications, 4(10):29-33, November 1984.

[136] T. Udeshi and C. D. Hansen. Parallel multipipe rendering for very large iso­
surface visualization. In E. Groller, H. Loffelmann, and W. Ribarsky, editors.
Data Visualization ’99, pages 99-108. Springer-Verlag Wien, 1999.

140

BIBL IO G R A PH Y

[137] B. Ulicny, P. de Heras Ciechomski, and D. Thalniann. Crowdbrush; Interactive
authoring of real-time crowd scenes. SC A '04'- Proceedings of the 2004 ACM
SIGGRAPH/EUROGRAPHICS Sym.posium on Computer Animation, pages
243-252, 2004.

[138] A. van Gelder and J. Wilhelms. Topological considerations in isosurface gen­
eration. ACM Trans. Graph., 13{4):337-375, 1994.

[139] S. Venkatasubramanian. The graphics card as a stream computer. Proceed­
ings of IGMOD-DIMACS Workshop on Management and Processing of Data
Streams, 2003.

[140] M. S. Warren, J. K. Salmon, D. J. Becker, M. P. Goda, T. Sterhng, and G. S.
Winckelnians. Pentium Pro inside: I. A treecode at 430 gigaflops on ASCI
Red, II. price/performance of $50/Mflop on Loki and Hyglac. Proceedings of
IEEE Supercomputing '97, 1997.

[141] R. Westermann and T. Ertl. Efficiently using graphics hardware in volume
rendering applications. In SIGGRAPH '98: Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, pages 1C9-177,
New York, NY, USA, 1998. ACM Press.

[142] L. Westover. Footprint evaluation for volume rendering. In SIGGRAPH '90:
Proceedings of the 17th annual conference on Computer graphics and interac­
tive techniques, pages 367-376, New York, NY, USA, 1990. ACM Press.

[143] J. Wilhelms and A. V. Gelder. Octrees for faster isosurface generation. ACM
Trans. Graph., ll(3):201-227, 1992.

[144] J. Worringen and T. Bemnierl. MPICH for SCI-connected clusters. In SCI
Europe ’99, pages 3 11, September 1999.

[145] W. A. Wulf and S. A. McKee. Hitting the memory ŵ all: Implications of the
obvious. Computer Architecture News, 23(l):20-24, 1995.

[146] C. Wynn. OpenGL vertex programming on future-generation GPUs.
http://developer.nvidia.com/object/opengLvertexprogramniing.html.

141

BIBLIOGRAPHY

[147] X. Zhang, C. Bajaj, and W. Blanke. Scalable isosurface visualization of mas­
sive datasets on COTS clusters. In PVG '01: Proceedings o f the IE E E 2001
symposium, on parallel and large-data visualization and graphics, pages 51 58,
Piscataway, NJ, USA, 2001. IEEE Press.

[148] I. Zoraja, H. Hellwagner, and V. Sunderam. SCIPVM: Parallel distributed
computing on SCI workstation clusters. Concurrency: Practice and Experi­
ence, 11(3):121-138, 1999.

142

