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Abstract

Statistical analysis shows tha t the main reason for the failure of machines 

is not breakage but wear of the moving parts resulting from rubbing stress. 

Although the laws of friction are fairly well substantiated, there are still no 

satisfactory quantitative laws of wear.

However, significant progress has been made in calculating how asperity 

contacts strain a wearing surface and in estim ating how this may relate to 

wear rates. Among many attem pts to develop quantitative models, the rigid- 

plastic approach neglects elastic effects and allows slipline field theory to be 

used. Combining this with a damage rule, wear rates can be predicted from 

the strain calculations and the mechanical properties of the wearing material. 

In this theory, the hard asperity is represented as a rigid wedge, which is a 

lim itation. Real asperities are more likely to have rounded tips and a more 

realistic approach is to model them with cylinders.

The present investigation proposes a new rigid-plastic asperity contact, 

which models a wave of plastically deformed m aterial pushed ahead of a cylin­

der. This model is valid for small values of surface roughness parameters and 

good lubrication conditions. For given loading and lubrication conditions, 

this model is able to predict the friction coefficient and the strains involved 

within each pass of the asperity. Maps are provided in this thesis, which give 

calculated friction coefficients and strains for a wide range of roughness and 

lubrication conditions.

Scaled-up model asperity experiments are presented, where a rigid cylinder 

slides across two non-ferrous metals. It is shown tha t friction is influenced



by both elastic effects and the presence of a third body layer, trapped at the 

interface between the cylinder and the soft metal. Slipline field theory predicts 

friction satisfactorily above a given load, whose value depends on the degree of 

elasticity of the deforming material and on the lubrication parameter. Below 

this load, elastic effects cannot be neglected to predict friction. Experiments 

are also performed with a cut cylinder, whose trailing side has been removed 

which show that, under this new configuration both elastic effects and the 

influence of a third body layer are reduced. Slipline field theory can predict 

friction well for the two materials tested.

When compared with the measured strains observed after model asperity 

experiments in previous work, our numerical model appears to predict well the 

highly strained layer near the surface. This new model provides thus a new 

quantitative tool to relate calculated strains to the detachment of particles.
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Nomenclature and 

abbreviations

Latin symbols

A , D , C , D , E points defining the slipline field

As Ag ~   ̂ ^

Ao,A Ao: initial grid area,

A: grid area

C , D m aterial constants for the

Coffin-Manson relation

C.D.N. Cubic Boron Nitride

err or (i), err or local local error a t the point

erroTaver average error

E* reduced modulus of the contact

ED interface

E/ay degree of elasticity

f Tresca factor or lubrication

param eter, f  =  r / k

f fraction of surface at the interface

not covered by boundary film



F  resultant frictional force

per unit width

h given depth in the deformed

layer, with h < hmax 

hjnax depth of the deformed layer

H, Hy hardness of the material

imax imax =  number of alines

k, kg shear flow stress

k, kfjiax number of a given streamline,

with kmax — O

K  A rchard’s wear coefficient

L sliding distance

m +  1 number of (3 lines to describe

the fan (EBC)

N  resultant normal force

per unit width

Nf  number of cycles to failure

N / k R  load param eter

n number of points to describe

numerically the free surface (ED)  

o number of streamlines

p  hydrostatic stress

Pw mean pressure on front face

of wedge in chapter (1)

Ps asperity shakedown pressure

P  contact pressure
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Qs }  Qi }  Q r j  Q w

r

R 2

r

R

R.A.

Rc

SuS2

S\al) S2al 

^ i c o r  S2C0

S B V P l ,  SB V P 2 ,  S B V P 3

SiMj,SsM,

ir.k

U

V.,Vy

v,u

maximum Hertzian pressure 

flows of solid particles defined 

in chapter (5)

index of a point on a streamline 

radius of the circle defining 

the free surface 

ratio of plastic to total work 

radius of the cylinder 

reduction in area (%) in 

tensile test

combined asperity tip radius 

full cylinder tests, 

cut cylinder tests 

tests for aluminium 

tests for copper

stress boundary value problems

mechanism of velocity

accommodation

time of Mr,it, point on

the streamline

velocity component measured

in the a  direction

velocity component in the

P direction

velocity component in (x,y) 

rigid material velocity

xvni
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Greek symbols

Tij/) Tr

la

aline

/31ine

</»

9

Pcalci.^^) / )̂ (̂ E

Ptan  (0 

1̂

A t

e

V

coordinates of the nodal points

defining the field

arrays to store the data

width of the cylinder

normal load

tensile yield strength

shear strain, ratchetting strain 

finite shear strain 

first shear line, or direction 

of maximum shear stress 

second shear line 

anticlockwise angle of the 

slipline a  measured from a 

fixed reference axis 

angle of the interface 

cylinder/deformed material 

slope of the velocity vector 

at the point of the free surface 

slope of the vector tangent 

to the free surface at the point 

overall friction coefficient 

time step for the grid 

e =  ^ arccos(/)



A7e maximum effective shear strain

To true shear strength of the

material

ÂO intrinsic /i of boundary film

fa; ^xx reversing strain, direct strain

plasticity index

a combined rms roughness

of the two surfaces

T,Ts shear strength of the interface

a asperity angle (wedge) or

chord angle (cylinder)

^X't ^ y j  '^xy stress components in (x,y)

O' angle of the free surface

A. spacing between the streamlines

Ax spacing between the transverse

lines of the distorted grid

^Sr,k distance of the segment

^ T — \ , k ^ T , k

^ l x , y shear strain increment

Oy yield strength

e/ true strain to fracture

/?c angle between the leading

edge and the center line of

the cut cylinder

Oil) 0^2 effective attack angle

of the cylinder



$  angle defined in the

wave model [2]
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General introduction

Statistical analysis shows that the main reason for the failure of machines 

is not breakage but wear of the moving parts resulting from rubbing stress. 

Although the laws of friction are fairly well substantiated, there are still no 

satisfactory quantitative laws of wear[13].

When one metal slides across another, frictional energ}  ̂ is generally dis­

sipated both by shearing an interfacial layer, or third body, and by plastic 

strain in the metal surfaces themselves. It has now become clear from the ex­

amination of worn surfaces and of wear particles that the accumulation of this 

surface strain is linked to the detachment of wear particles. The calculation 

of mechanical wear rates thus requires a model which can predict the extent 

and rate of strain due to sliding, and the amount of strain needed to produce 

wear particles. It must begin with an idealized asperity contact model which 

is able to calculate the strain imposed on a wearing surface by an asperity 

sliding across it, and then be combined with a damage rule or damage rules 

so that the beginning and the rate of debris generation can be found. Finally, 

a way of characterizing the surface texture must be found in order to extend 

this single asperity to a real surface.

Over the last few years, quantitative models of wear based on the calcula­

tion of plastic strains induced by hard asperities sliding against soft surfaces 

have been developed. One approach is to assume a rigid-plastic behaviour 

of the wearing material, neglecting elastic effects and allowing slipline field 

theory to be used. Combining this with a damage rule, wear rates can be 

predicted from the strain calculations and the mechanical properties of the
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wearing material. Recent investigations have shown that this approach can 

predict well friction and wear of some non-ferrous metals [14, 15, 16, 6]. The 

hard asperity is simulated by a rigid wedge, which pushes a wave of plastically 

deformed material ahead of it. Well-established slipline fields then allow the 

measured friction and wear coefficients to be related to calculated stresses and 

strains via a Coffin-Manson low cycle fatigue rule. While the general features 

of the rigid-plastic model described above are compatible with observations, 

the representation of the asperity by a simple two dimensional wedge is clearly 

a limitation. Asperities on real surfaces are three-dimensional and are likely 

to have their peaks rounded. A more realistic approach is to model the hard 

asperity with a cylinder; but slipline fields for this type of contact are not so 

well established.

The general aim of the present investigation is to understand and predict 

wear for engineering contacts.

The first aim is to develop a new rigid-plastic asperity contact, which 

models a wave of plastically deformed material pushed ahead of a cylinder. 

This model must provide friction coefficient and strain pattern associated with 

the deformation process.

The second aim is to perform scaled-up model asperity experiments, where 

a hard cylinder slides across the surface of a softer metal and test the predic­

tions of the developed model.

This thesis is composed of eight chapters:

1. In chapter (1), the quantitative models developed over the last few years 

to calculate how asperity contacts strain a wearing surface and to esti­

mate how this may relate to wear rates are presented. It is shown that 

there are two distinct system approaches: the first, the elastic-plastic 

model is the extension of an elastic-plastic model of rolling contact to an 

asperity contact, which is most appropriate at low strain. The second 

is a rigid-plastic asperity model which neglects elastic effects. As the
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present investigation uses the rigid-plastic approximation, more details 

are given concerning this approach. Some models of boundary friction 

to describe the interface, or third body, are also presented.

2. In chapter (2), the basis of slipline field theory and the formulation of 

the problem of constructing a slipline field are described. The differ­

ent methods for solving statically indeterminate problems, such as the 

problem of the present work are presented. A critical analysis of their 

advantages, drawbacks and limitations leads to the choice of an approach 

to solve the sliding cylinder problem. It is shown that there is no sys­

tematic solution procedure and that a trial and error process has to be 

carried out.

3. In chapter (3), it is presented in detail how the trial and error process 

has been successfully applied to determine the slipline field solution for 

the sliding cylinder problem. The general structure of the solution is 

described and the conditions imposed by the problem are enumerated. 

Starting from these conditions, the procedures used to generate the sli­

pline field solution and velocity field solution are described. Finally, the 

procedures developed to determine the strain pattern undergone by the 

material going through the plastic region are described.

4. Chapter (4) presents the main results of the developed model: the shape 

and extent of the plastic region, the overall friction coefficient n associ­

ated with the process and finally the plastic strain cycle undergone by 

the material during the deformation process predicted. The results are 

also compared to elasto-plastic finite element analysis.

5. In chapter (5), the two parts of the experimental investigation are de­

scribed.

• The first part consists of testing the predictions of our numerical 

model when a rigid cylinder slides across two non-ferrous metals.

3



In order to decrease elastic effects, an additional experimental in­

vestigation with the use of a cut cylinder has been performed too. 

Details of the experiments and the equipment involved are given.

• The second part of the experimental work consists of investigating 

the influence of detached particles accumulated around the contact 

when a rigid cylinder slides across a soft surface. For the present 

work, the technique of visualization through a transparent tool, 

developed in the L.M.C. (Laboratoire de Mecanique des Contacts, 

I.N.S.A. de Lyon, FYance) has been used. Details concerning the 

visualisation technique and the tests performed for the present in­

vestigation are also presented.

6. In chapter (6), the friction results are presented and compared to our 

numerical model for the two tested materials and for the full cylinder 

configuration and the cut cylinder configuration. Then the results of the 

visualisation investigation are presented for both materials: the dynamic 

observations of the particle flows observed at the interface through the 

transparent tool are correlated to the static observations of the friction 

track after the test. These results are extrapolated to the tests under 

investigation. The analysis allows to determine whether the detached 

particles are trapped inside the contact area and flow at the interface.

7. In chapter (7), we discuss the ability of the new model proposed in this 

thesis to predict quantitatively friction and strain patterns. Deviations 

in friction from theory observed in our experimental results are discussed 

by integrating the relative influence of elastic effects and the presence of 

third body at the interface. Then, the strain pattern predicted by our 

numerical model is compared to the results of previous work.

8. Finally, the main conclusions of the present work are recalled and pre­

sented in the general context of friction and wear predictions. Perspec­

tives are then proposed.
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Chapter 1 

Relating surface strains to a 

wear model

1.1 Introduction

It has long been realized [17] th a t metallic wear may involve significant plas­

tic strains in the wearing surfaces. Observations of wear tracks and of cross 

sections normal to the worn surfaces reveal large plastic strains and strain 

gradients adjacent to the sliding interface [18]. The local m icrostructure that 

develops is consistent with work hardening (or work softening in some cases) 

and with microstructures produced by other methods of achieving large plastic 

strains. For ductile m aterials such as copper and silver, the microstructure of 

the surface layer is very similar to the fine equiaxed cell structure which is 

generated in high strain  torsion-compression or rolling tests [19, 20]. In hard­

ened steels, white-etching m icrostructures are formed due to the large plastic 

strains which develop under high hydrostatic stress in both rolling and sliding 

contacts, which also have an extremely fine cell size [21, 22, 23, 24, 25].

The wear debris produced also has this structure. It is thus logical to 

suppose tha t detachment of wear debris is linked to the accumulation of this 

surface strain [26, 27, 21, 28] and to develop a wear model of debris detachment 

based on fatigue in the plastic regime.



The calculation of mechanical wear rates thus requires a model which can 

predict the extent and rate of strain due to sliding, and the amount of strain 

needed to produce wear particles. It must begin with an idealized asperity 

contact model which is able to calculate the strain imposed on a wearing 

surface by an asperity sliding across it, and then be combined with a damage 

rule or damage rules so that the beginning and the rate of debris generation 

can be found. Finally, the way of characterizing the surface texture must be 

found in order to extend this single asperity to a real surface [29].

Over the past few years, quantitative models of wear have been developed, 

based on the calculation of plastic strains induced by hard asperities sliding 

against soft surfaces [2, 30, 31, 32, 33, 34]. In all these models, friction energy 

is assumed to be dissipated both by plastic deformation in the metal surface 

and by shearing an interfacial layer, or third body. Two distinct approaches 

have been proposed:

•  The first is the extension of an elastic-plastic model of rolling contact to 

an asperity contact [32, 33, 34], which is most appropriate at low strain.

• The second is a rigid-plastic asperity model which neglects elastic effects 

[2, 30, 31],

In this chapter, these two different approaches will be described and com­

pared. It will be seen that each model of asperity interaction leads to a distinct 

way of characterizing surfaces, and has a range of application, which is gov­

erned by its underlying assumptions.

Finally, some models of boundary friction to describe the interface, or third 

body, will be given.
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1.2 E lastic-plastic m odels

1.2.1 The theory of strain in rolling contact

Elasto-plastic models are based on observations made by Crook [35], who 

showed significant plastic deformation in the rolling direction for pure rolling 

contacts. Subsequent theoretical studies of the stress-strain cycle in rolling 

contact, [32, 33], have been performed with loads too small to cause gen­

eral yield. It was predicted then that a cumulative forward displacement of 

the surface would be expected from the nature of the stress-strain cycle in 

rolling contact. In the case where the contact loads are greater than the yield 

strength, Johnson [33] suggested that the plastic strain can be estimated by 

assuming that the total strain is the same as in the absence of yield. This led 

to a reasonable estimation of the shakedown limit (i.e. the load that can be 

carried purely elastically in the steady state) but the predicted deformations 

were smaller than in the experiments. Bhargava et al [36] confirmed the pre­

vious prediction of the shakedown limit with a more accurate finite element 

analysis and their predictions of plastic strain cycles were very close to exper­

imental results. A more accurate semi-analytical model, using the movement 

of edge dislocations to model small plastic strains, was developed by Hearle 

and Johnson [37]. It gave results that were very close to those of the finite 

element analysis, which required much more computing time. Since there were 

still some restrictions to the application of the above theory, it was then de­

veloped further to allow for strain hardening [38]. The predictions of strain 

accumulations in copper and in rail steel loaded just beyond the shakedown 

limit were accurate.

It should be noted that the strain cycle induced by the rolling/sliding 

contact of cylinders consists of two components:

1. a fully reversing strain £q,

2. an accumulating, also called ratchetting strain 7 .̂
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A typical s tra in  cycle induced by a rolling and sliding roller is shown in 

figure (1.1). Rolling con tact fatigue lives could be related  to  an accum ulation 

over m any cycles of 7 r to  a  critical value, or they could be related to  the  closed 

p a rt of the  s tra in  cycle Cq [33].

Stress

Ratchctting
Strain

Strain

Reversing
Strain

Figure 1.1: S train  cycle induced by a  rolling and sliding roller: =  reversing

strain; 7  ̂ ra tche tting  stra in
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1.2.2 Extension to sliding wear calculations

All the previous studies were focused on the understanding of rolling contacts. 

However, as sliding wear is controlled also by plastic strain, this gave the idea 

to several authors to apply this theory to sliding contacts.

As a starting  point, Crook’s observations [35] of forward flow in the surface 

of rolling discs were correlated to the observations made by Akagaki and Kato 

[39, 40] regarding the extrusion of thin silvers from the crest of the asperities 

on a hard steel surface using a pin-on-disc configuration. The flakes break off 

to form wear particles when sufficient material has been extruded.

These experiments suggested tha t the extrusion phenomenon, also called 

filmy wear could be modelled, using the techniques developed for rolling con­

tact, as a progressive accumulation of ratchetting strain 7  ̂ a t the tip of the 

asperities.

This prompted Kapoor et al [41, 42] to devise an experiment, where they 

loaded sector-shaped copper pads against steel rings which were machined to 

different finishes. The test results turned out to be very similar to the work of 

Akagaki and Kato [39, 40]: when the load was increased above a critical value, 

the copper experienced continuous incremental deformation which gradually 

extruded sideways causing nominal contact pressure to fall to a value at which 

the extrusion ceased. This final shakedown pressure was strongly dependent 

on the surface finish. In order to model these results and correlate these exper­

iments, Kapoor et al [41, 42] used spherical tipped asperities as an idealised 

surface texture to model the surface since the equations describing the rolling 

elastic contact were initially applied to curved surfaces. Following the work of 

Greenwood [43] and of W hitehouse [44], a plasticity index was defined as:

where the plasticity index, is a function of the asperity shakedown pres­

sure Ps, the reduced modulus of the contact E * , the combined rms roughness



of the two surfaces cr, and the combined asperity tip radius R e-

An im portant point, resulting from equation (1.1), is tha t the shakedown 

pressure can be related to surface characteristics and the loading conditions. 

But principally, this plasticity index describes the transition from elastic to 

plastic contacts. When the nominal pressure of the contact is below the shake- 

down limit, the system remains in a steady state  and will carry the load purely 

elastically and give a very low wear rate. Above this limit, the steady state 

will not be elastic and the cumulative incremental plastic flow will be encoun­

tered. Wear by extrusion can occur and could in principle be predicted by 

calculating the ratchetting strain at the asperity tips.

Kapoor and Johnson [34] presented an analysis of the asperity contact in 

which lamellar debris is generated by the process of plastic ratchetting, under 

the repeated pummeling by the asperities of a harder m ating surface. They 

showed how wear could be predicted using the above theory.

This approach to the strain induced by sliding predicts many phenomena 

very well and in principle the model enables an absolute value of the wear rate 

to be calculated. However, so far, the difficulty of defining the plasticity index 

of a surface with sufficient precision, [44], limits the value of this theory as a 

tool for the quantitative prediction of wear rates for real contacts.

1.3 R igid-plastic m odels 

1.3.1 Friction calculation

Another approach to the calculation of strains in asperity contact is to neglect 

elastic effects entirely. Assuming plane strain and ideal plasticity, the stresses 

and strains in a contact between a hard asperity and a soft surface can be 

calculated by a slip-line field.

Challen and Oxley [2] introduced a slipline field model of asperity defor­

m ation to describe the interaction between a hard asperity and a soft surface.
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which is similar to the slipline fields proposed by Green [45] for a weak junc­

tion. As shown in figure (1.2), the hard asperity is idealised as a rigid wedge, 

which pushes a wave of plastically deformed material ahead of it as it slides 

across the softer surface. This steady state slipline field corresponds to the 

situation when the shear strength of the interface r  is less than the shear 

strength of the metal k and is more adapted to mild wear calculation. For 

more severe wear conditions, a wear model (wave removal model) and a cut­

ting model (or chip formation model) were proposed to model abrasive wear 

and seizure respectively [2].

In the construction of the slipline field (see figure(1.2)), the independent 

variables are the asperity angle a, and the normalised strength, ( /)  of the 

interfacial film along ED.  Therefore, friction in this model may be taken as 

being related to a single surface parameter a and a lubrication parameter, / ,  

and thus combines the adhesion and ploughing mechanisms which have been 

studied independently in previous theories [46], and allows interaction between 

them.
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hardaspciity

7 1 / 4 1
s

soft material

(A)SLIP-LINE FIELD

V*
V nV ab

Io
V ed

(B) HODOGRAPH

Figure 1.2: Slipline field proposed by Challen and Oxley [2] for the sliding 

wedge problem
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All the details concerning the calculation of the angles of the slipline field 

and the stresses are given in appendix (A). Calculation of the stresses on the 

hard asperity allows the normal load N, and frictional load F, per unit width, 

and hence the friction coefficient, to be determined as follows,

F  {Ag.cos{a) + sin{2e — a)).ED.kg  , ,
^  N  {As.cos{a) + sin{2e — a)).ED.kg

where:

^s  =  l  +  |  +  2e — 2 arcsin[sin a / y / { l  — /)]  — 2a,

2e =  arccos / ,  

f  = ^J  A : , ’

kg is the shear strength of the soft material,

Tg is the shear strength of the interface.

Results calculated from equation (1.2) showing the influence of the rough­

ness param eter a  and the interfacial film strength param eter /  are in agree­

ment with the trends usually observed in experiments, th a t // is predicted to 

increase with an increase in a  and / .

O ther researchers have also investigated the wave model. Petryk [47] sug­

gested an alternative slipline field to represent wave formation but found that 

the model of figure (1.2) is the most acceptable because for a given set of 

conditions it gives the smallest frictional force. Avitzur et al [48] have cov­

ered much the same ground as Challen and Oxley but have used the upper 

bound method in preference to the slipline field method. At about the same 

time as th a t of Challen and Oxley, Johnson [49] investigated the transitional 

period from initial indentation to the wedge reaching the surface. He did this 

by constructing a series of slipline fields representing the progression of the 

deformation.

Experiments have been performed by several authors [50, 51, 6] to check 

the wave model and to determ ine the accuracy of equation (1.2). They made 

scaled-up model asperity experiments, in which a hard wedge was indented
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into the surface of a softer material and then slid along it with the normal 

load held constant. The results obtained showed that equation (1.2) gives 

accurate predictions of n for a wide range of a and /  values. The above 

experiments showed also that a wave can be formed by plastic deformation 

without fracture being involved. An example of the plastic wave is given in 

figure (1.3).

<—  Motion of metal

l l f l W i W l W i i l i

Figure 1.3; Two views of the plastic wave after wedge shape experiments on 

copper: (a) A section parallel to wear track and (b) normal to the worn surface. 

Taken from [6]
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In considering real asperities as opposed to scaled-up model-asperities, 

Moalic et al [52] have shown that equation (1.2) predicts // accurately for 

actual surfaces as long as a  is measured from those regions of the asperities 

actually in contact during sliding.

Pointing out that the representation of the asperity by the single wedge- 

shape is unrealistic, Challen and Oxley [1] proposed the chord approximation 

model, as shown in figure (1.4). In this model, the asperity is idealised as 

a rigid cylinder. If the area of contact between the asperity and the de­

formed material is approximated by its chord, the slipline field and associated 

hodograph previously established by Challen and Oxley [2] for wedge-shaped 

asperities can be used. The main difference is that for a cylindrical asperity 

of radius R, the asperity angle a  and the length of the interface ED  are now 

interrelated and depend on the geometrical and loading conditions.

Petryk [47] also developed a slipline field model that he proposed for the 

sliding of a rigid wedge-shaped asperity over a flat ductile surface, to account 

for an asperity with a rounded wedge tip. The proposed slipline field was 

associated with a severe type of deformation process, which was adhesion 

of the deformed material to the wedge combined with localized large plastic 

strains.

More recently, Bressan et al [53] developed the chord approximation model 

of Challen and Oxley [1], in order to account for an interface which exhibits a 

shear strength which is a known function of the local pressure, a fact not taken 

into account with the Tresca factor / .  The authors compared their numerical 

results with friction coefficients obtained for constant values of / ,  as assumed 

in the chord model [1]. In some cases, they observed noticeable deviations in 

friction from the chord model.
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Figure 1.4: Chord approxim ation  m odel developed by Challen and Oxley [1] 

1.3.2 Strain calculation

An in teresting  feature of the  wave m odel is th a t m aterial th a t passes through 

the wave is retarded relative to  the rest of the m ateria l and the surface is 

plastically  worked, which is a com mon observation in practice. Challen et al 

[30] have shown how w ith each wave pass the m axim um  effective shear strain  

A 7 e induced in the surface can be calculated from a simplified wave model, 

where the  centred fan has been replaced by a velocity discontinuity. More 

accurate analyses of the s tra in  cycle have been proposed by K apoor [54] and 

Yang and Torrance [15]. T he la tte r  au thors have described how the direct, 

or cyclic stra in  and ra tch e ttin g  stra in  7 ^, involved in wave form ation can 

be calculated  and given equations for th is purpose. An exam ple of the cyclic 

and ra tch e ttin g  strain  cycle experienced as m aterial passes through the wave 

is given in figure (1.5). As in rolling and sliding contact, it consists of two 

parts:

1 . a direct, or cyclic s tra in  cycle €a, which fully reverses,

2 . a shear, or ra tche tting  stra in  cycle 7 ^, which accum ulates.
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Cyclic S train

R a tchetting  S train

Figure 1.5: Typical plastic strain cycle induced by a sliding asperity.

Experiments have been performed by several authors [55, 7, 6], where the 

plastic strains left by model wedge shaped asperities were measured by visio- 

plastic methods as shown in figure (1.6). The specimen observed presents a 

highly strained layer near the surface and the strains gradually decrease to 

zero at the boundary of the deformed layer. This last feature is not consistent 

with the strain pattern predicted by the wave model, which states a homoge­

neously deformed layer left at the exit of the wave. So far, strain-hardening 

[55, 7] and elastic effects [56, 57] have been the main effects investigated to 

explain these last observations for wedge shaped asperities. However, it has 

been observed in Yang’s experiments that the tip of the wedge used rapidly 

became rounded, so that it could be better described as cylindrical. Neverthe­

less, the chord model [1] is based on the wave model and thus cannot predict 

the experimental observations.

Torrance [29] performed finite element analysis for the sliding wedge prob­

lem. As predicted by slipline field theory, he found that there is a highly 

strained layer at the surface. However, although the general level of strain in 

the layer is close to that predicted by the wave model [2], it is not uniform with 

depth, and instead rises to a maximum beneath the surface, which confirms 

the experiments of Kopalinsky [55, 7].
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Motion

Figure 1.6; Experimental deformed grid after wedge experiments taken from

1.3.3 Mild wear calculations

On the assumption that wave formation is fully plastic and the process of 

debris detachment is one of low cycle fatigue, the passage of the hard asperity 

leaves a plastically strained layer. After a critical number of strain cycles (TV/) 

this layer will be detached as wear particles. To determine Nf ,  a relationship 

must be found which relates it to the strain cycle and the material properties.

As a starting point, Challen et al [30] suggested that it would be related to 

the maximum effective shear strain increment in each pass, by a Coffin- 

Manson low cycle fatigue relation:

N,  =  (1.3)

where C and D are material constants which must be found experimentally.

Equating the plastic work needed to generate a wear particle calculated 

from equation (1.3), and the total plastic work determined from the frictional 

force, Challen et al [30] established an expression for the wear volume V oc­

curring in a sliding distance L as follows;

18



where r, ratio of plastic to total work, and A7e can all be determined 

from the wave model in terms of a and /  [30, 6]. N is the normal load per unit 

width acting on the surface and H is the hardness of the wearing material. 

The Archard’s wear coefficient K is then equivalent to ;

Experimental wear results [58] have been shown to be in reasonable agree­

ment with the predictions of equation (1.5) by Challen et al [59] by choosing 

appropriate values of C and D. However, in order to use this theory in a predic­

tive manner, the constant C and D must be determined independently. Yang 

and Torrance [15, 16] devised the wedge wear test for this purpose.

An alternative approach has been suggested by Kapoor [54], who proposed 

two competing failure mechanisms: low-cycle fatigue with the equation:

W/ =  ( - ) "  (1-6)

and ratchetting, with the equation

N, = (— ) (1.7)
Tr

Kapoor argued that, although the reversing strain cycle will produce low 

cycle fatigue, in most cases, the failure mechanism would be ratchetting as 

the ratchetting strain would be much larger than the reversing one. These 

competing mechanisms have been investigated by several authors [14, 15, 16, 

6], who performed wear tests on non-ferrous metals. The authors showed 

that, for aluminium and brass experiments, although ratchetting was involved 

in wear, the dominant damage mechanism seems to be best described by low- 

cycle fatigue. However, as pointed out by Torrance [29], when the strain per 

asperity contacts is very low, ratchetting wear will certainly occur and will
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be better analysed by elasto-plastic models [41, 42], However, to date, the 

discussions on the roles of these mechanisms in determining failure in the 

wear process have been inconclusive.

1.3.4 Limits of rigid-plastic m odels

The rigid-plastic model is best suited to situations where the strains are high. 

It is easy to apply to real surfaces as the friction coefficient is related to only 

one surface roughness parameter, compared to the elasto-plastic model which 

requires two parameters. Furthermore, work has already been carried out on 

defining an unequivocal method of measuring surface slopes [52, 60, 61] and 

has been verified for real surfaces and shown to predict friction well for simple 

boundary lubricated contacts, [52, 62, 60]. It has also been used successfully 

in predicting wear [31, 29].

However, the disadvantage of a rigid plastic model is that one surface has 

to be deformed plastically, which will not be the case at low asperity slope. In 

that case, the elastic contribution to deformation becomes significant and the 

simplifications inherent in any slipline field model are less realistic.

Torrance [29] has shown by using finite element analysis, that plastic mod­

els break down at low asperity slopes as the plastic strains become equal to or 

smaller than the elastic strains. Torrance et al [8, 63, 64] developed a simple 

method for calculating the pressure on elasto-plastic asperities, and verified 

this by finite element analysis. The main contribution of this work has been to 

extend the existing wave model [2] to smoother surfaces with lower slopes. The 

authors have shown that when the asperity angle a  falls below a critical value, 

the normal and tangential stresses begin to deviate significantly from those 

given by slipline field theory. This is shown in figure (1.7), where the average 

pressures predicted by this model as a function of a  are compared to results 

obtained from finite element analysis and slipline field theory. The effect this 

has on friction depends on the nature of the boundary film, or third body, 

separating the surfaces and on its mechanical properties. Basically, higher
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friction coefficients are expected for low asperity angles when the boundary 

film has a constant shear strength.
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Figure 1.7: Mean pressure pw on front face of wedge versus a  for E* f Y  =  200 

(The solid line is from the analytical model of Torrance et al [8], the dotted line 

is from slipline field theory [2] and the points are from finite element analysis 

[8]).

Bressan et al [53] investigated the effect of elastic distortions when using 

asperities with cylindrical profiles by finite element analysis in the elasto- 

plastic range. The authors showed that when the deforming m aterial is less 

than fully rigid, a portion of the imposed deformation can be accommodated 

elastically. For m aterials with strength to modulus ratios characteristic of most 

engineering materials, this effect is not insignificant, leading to lower friction 

coefficients than those predicted by the chord model [1] when no friction is 

considered at the interface (i.e. f=0).
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1.4 Boundary friction w ith fatty  acids

In this work, stearic acid was chosen as the boundary lubricant for all the 

experiments, as its properties are well known, and it has been used in many 

previous studies [65, 66].

1.4.1 Stearic acid as a boundary lubricant

In asperity models, such as those presented in section (1.3), it is assumed that 

the film formed at the interface between the asperity and the deformed ma­

terial, will be exceedingly thin so that boundary rather than hydrodynamic 

lubrication occur. Under these conditions, the load is carried largely by asper­

ity deformation, but thin films or contaminants are present in the load bearing 

areas [67].

Boundary lubrication describes the process by which friction and wear be­

tween surfaces in relative motion are reduced by boundary films when fluid film 

formation is not possible [68]. Commercially avalaible lubricating oils nearly 

always contain small quantities of chemical compounds, known as boundary 

additives, which enhance the boundary lubricating properties of the oil by 

forming protective thin films. The boundary additives, such as fatty acids 

(like stearic acid), are either adsorbed (physisorption), or chemically attached 

to the metal surface (chemical reaction). Effective lubrication will depend on 

the adsorption of the fatty acid and on its reactivity with the metal substrate 

to form a metallic soap [65].

1.4.2 Boundary friction

Various theories and models have been developed to explain the forces gener­

ated between two moving surfaces under conditions of boundary friction, such 

as the interfacial shear strength ratio, or Tresca factor f, used in Bowden and 

Tabor’s theory [65, 46]. This is defined as the ratio of the shear strength of 

the boundary lubricated interface, r , to the shear yield stress of the deforming
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material, /Cj, which is assumed to be constant [2],

where 0 < /  < 1.

The normalised interfacial film strength, / ,  is therefore a unique property 

of the lubricant and the material tested. Challen et al [50] estimated the shear 

strength of the interfacial film in the case of the wave model [2], as shown in 

figure (1.8) by resolving the forces along the wedge/wave interface as follows,

r  =  (F. cosa — Â. s ina)/£ 'D  (1.9)

where,

F  is the frictional force per unit width,

N  is the normal load per unit width, 

a  is the asperity angle,

ED  is the length of the interface.

aM

 /

Figure 1.8: Slipline field proposed by Challen and Oxley [2] for the sliding 

wedge problem
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Bowden and Tabor [65, 46] considered that the shear strength of the inter­

face arose from defects in the boundary film covering the contacting surfaces, 

leading to local micro-welds at the gaps in the film. The value of /  was taken 

to be the fraction of the contact not covered by the boundary film. This 

implies that the shear strength of the boundary film itself can be ignored.

However, it has become clear that the mechanical properties of fatty acids 

and soaps are invariably sensitive to the locally generated pressures, a fact not 

taken into account with the interfacial shear strength ratio / .  Briscoe et al 

[66] showed that boundary films had measurable shear strengths, which could 

be represented at constant temperature as:

where,

To is the true shear strength of the material,

/Zo is a constant,

P  is the contact pressure.

For lubricating fluids at the typical asperity contact pressures found in 

metals, the second term of equation (1.10) generally dominates so that the 

shear stress is approximatly proportional to the pressure [67]. In such cases 

Black et al [69] showed that an expression for the friction coefficient could be 

derived without reference to asperity deformation. This expression allows the 

interfacial film strength to be specified as follows:

One disadvantage is immediately obvious with Black’s model: the effect 

of the material properties are not taken into account. This would suggest 

that different materials with the same average asperity slope and lubricated 

with the same oil and under the same conditions, will have the same friction 

coefficient.

(1.10)

// =  tan (a  +  arcian(//o)) ( 1 .11 )
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However, in the more general case, the shear strength of the boundaxy 

lubricated interface may be a more complex function than  the linear expression 

of equation (1.10). The true  shear strength of the m aterial t q  in equation

(1.10) may be significant, or the interface may not be completely covered by 

an organic layer, as Bowden and Tabor suggested. If both occur, then the 

interfacial shear strength of the fraction of the rubbing surface not covered by 

boundary film will be due to the softer m aterial’s shear strength, k ^ ,  while the 

rest will be due to the shear strength of the boundary film, Tg [8]. Equation

(1.10) thus becomes:

r  =  {i i ,P +  T o ) { l - n  +  k J '  (1 .12)

where f  is the fraction of surface not covered by the boundary film.

The interfacial shear strength may now be found as follows.

/ = (1 (1.13)
Kg

There is also the possibility th a t debris or oxide may be trapped in the 

interface and mix with the organic layer to form a paste.

1.4.3 Lim its o f boundary lubrication m odels

As pointed out by Johnson [67], the strength properties of such oxide films 

are of great practical im portance and much less understood. If the oxide 

takes the form of compacted powder, or a paste mixed with water or grease, 

such as found on the running surface of railway rails [70], classical bound­

ary lubrication theory may not hold anymore. Beagley [70] investigated the 

Theological properties of track contam inants often observed a t the wheel/rail 

interface, the resulting films being formed from autum n leaves or fiange lubri­

cator grease combined with solid rail debris. It was shown th a t the boundary 

lubrication model, which uses a proportional relationship between shear stress
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and pressure holds when the rail is free from solid debris. However, when sur­

face interactions are significantly hindered by the presence of trapped debris, 

some other rheological models must be invoked. The mechanical behaviour of 

the interface will depend on the amount of contamination, its viscosity and 

shear strength, on the train speed, and the size and shape of the contacts 

formed between wheel and rail [70]. The paste at the interface may have both 

“solid” and “viscous” properties.

While there is some information available on the relevant properties of solid 

layers when they are formed or applied as boundary or solid lubricants, the 

mechanical and rheological properties of layers of compacted debris, although 

they have been observed in practice, have very much less often been studied 

in detail [13].

In recent years, much progress has been made in the understanding of 

friction in particular with the introduction of the third body concept [71, 12, 

72, 9]. Recent experimental studies [73, 10, 74] with solid lubricant have been 

associated with theoretical studies, such as the development of granular flow 

models [75, 76, 77]. These studies constitute a first step in the construction of 

a rheological model for the solid third body [78].
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Chapter 2 

Analysis of the m ethods for 

constructing a slipline field

2.1 The slipline field theory

In this section, the main points of the slipline field theory are recalled. Further 

details regarding this theory have been extensively described by several authors 

[4], [79], [5].

The main assumptions under which the theory applies can be stated as 

follows:

1. the m aterial is isotropic and homogeneous.

2. the m aterial is rigid-perfectly plastic. This implies firstly th a t the elastic 

components of strain  are neglected. There is thus no change in the 

volume of the plastic material during deformation. Secondly the shear 

flow stress of the m aterial k is constant (no work-hardening).

3. the deformations occur under plane strain  conditions.

4. the possible effect of tem perature, strain-rate and time are not consid­

ered.
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The basic theory of plane plastic flow provides the following set of equations 

involving stress, strain and the yield criterion to describe the behaviour of 

m aterial in the plastic region:

-  Oyf +
dr.+ xy

dx dy
dr.xy +

da„
dx dy

=  0

(2 . 1)

^  + ^ = 0  1
_  d V x j d y  + d V y / d x  f  ̂ ^

Ox -  Oy dV^jdx  -  d V y / d y  )

where Ox, Oy and Txy are the stress components and Vx and Vy are the 

velocity components with reference to a Cartesian system of coordinates (a;, y).

Under plane-strain conditions, the two orthogonal families of curves whose 

directions at every point coincide with those of the maximum shear stress or

shear strain rate are known as the sliplines a  and (3. A slipline field consists of

a network of these sets of curves which are drawn to indicate the directions a  

and (3 at any point in the plastic region. A slipline field is usually associated 

with a hodograph, which is a graphical representation of the velocity at each 

point of the plastic zone. Referred to these sliplines, the state  of stress at any 

point of the plastic region consists of a superposition of a hydrostatic stress, 

p, on a pure shear stress k, as illustrated in figure (2.1a).

In the slipline field theory, equations (2.1) and (2.2) are transformed to a 

slipline coordinate system {a, (3) to simplify the formulation of the problem. 

This transform ation leads to the derivation of one equivalent set of four equa­

tions involving four unknowns. Firstly, the Hencky stress equations equivalent 

to the stress equilibrium equations (2.1) can be written in their finite difference 

form, which is the form used in this thesis, as follows:
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a: Stresses. Taken from [4] b: Velocities. Taken from  [79]

Figure 2.1: S ta te  of stress and velocity in the  a. and  /? slipline directions

where p  is the hydrosta tic  (compressive) stress which acts norm al to  the 

sliplines, k  is the  shear flow stress of the  m aterial (assum ed constan t) and (f) is 

the  anticlockwise angle of the  slipline a  m easured from a fixed reference axis.

Secondly, th e  G eiringer velocity equations, equivalent to  the  velocity com­

p atib ility  equations (2.2) are w ritten  in the ir finite difference form as:

where u  and v are th e  velocity com ponents m easured in the  a  and (3 di­

rection respectively, as shown in figure (2.1b).

Solving a slipline field problem  consists of determ ining the  four sets of 

unknowns p, (j), u and v, using the system  of four equations (2.3) and  (2.4) and 

th e  available boundary  conditions. T he two unknowns p  and (j) are sufficient to 

com pletely specify the geom etry of the slipline field and the stress conditions. 

Thus for a  given problem , if there  are enough stress boundary  conditions, the 

p lastic  region and the s ta te  of stress can be determ ined w ithou t considering
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the velocities using the Hencky stress equations (2.3). The velocities u and 

V can be determined afterwards using the Geiringer velocity equations (2.4). 

Such a problem is statically determinate.

However, in many plasticity problems the stress boundary conditions are 

not sufficient to define a unique slipline field and this is usually compensated for 

by using more velocity conditions. In that case, the Hencky stress equations 

(2.3) and the Geiringer velocity equations (2.4) have to be solved together 

using both the stress and velocity boundary conditions. Such a problem is 

statically indeterminate. The methods for computing a slipline field solution 

when the boundary conditions are of this mixed nature are presented in section 

(2 .2 ).

A complete solution consists of a statically admissible stress field (which 

satisfies the Hencky stress equations and the stress boundary conditions) and 

a velocity field kinematically admissible relative to the stress field . However, 

for complete acceptance, a slipline field should be checked to see that the rate 

of plastic work is always positive and that the stresses in the surrounding non­

deformed material are below the yield point. The methods available to check 

both conditions are presented in section (2.4).

A network of sliplines possesses several geometrical properties which are 

very useful in finding a slipline field solution. The main geometrical property, 

given by Hencky’s first theorem and used in the present work is recalled in 

appendix (C).
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2.2 M ethods available for constructing a sli- 

pline field: Choice of an approach for the  

present problem

2.2.1 Introduction

The shpline field theory has been developed extensively over the last 50 years 

and has been successfully used to analyse the deformation and stress fields in 

many plane strain metal forming processes [4], [5], [80], [79]. However there 

are still difficulties in computing slipline field solutions, especially for statically 

indeterm inate problems and so far, no system atic procedure suitable for all 

types of problem has been provided.

The problem of the present work is statically indeterminate. Indeed none 

of the sliplines have a pre-defined or known shape, nor is the stress free sur­

face shape known as shown in figure (2.2a). This difficulty can be partially 

overcome by examining the existing solution of the wave model developed by 

Challen and Oxley [2] (see figure (2.2b)). This well established slipline field 

solution, which only differs from the present problem in the interface geometry, 

can provide some guidance in the construction of the possible field. One might 

expect tha t the field of the present work will be of a similar shape. However, 

the wave model presents a straight interface, a straight free surface and the 

sliplines are straight or circular in the fan. Regarding the curved interface 

of our problem, one can expect a curved free surface and some curvature in 

the slipline network. This prevents us proposing a new slipline field using an 

intuitive procedure, which is usually successful when the new slipline field is 

expected to have a simple geometry, as when both families of sliplines are 

straight or when there is a centred fan zone as in Challen and Oxley’s field [2],
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a: sketch of the possible solution b: wave model taken from [2]

Figure 2.2: Slipline field proposed by Challen and Oxley [2] for the sliding 

wedge problem and sketch of a possible solution for the sliding cylinder prob­

lem

2.2.2 The trial and error process

For this type of problem where neither the shape of the sliplines nor their 

hodograph images can be deduced in advance, no specific method exists in the 

literature; a trial and error process has to be used. This has been schematicized 

in figure (2.3).

This usually consists of assuming an initial slipline shape. This provides 

the missing stress boundary conditions. The complete slipline field can then be 

constructed. The velocity field is then computed using those velocity boundary 

conditions tha t are necessary for the purpose. The solution is then tested to 

see if the remaining velocity boundary conditions are satisfied and if not, the 

assumptions made to generate the slipline field are modified and the procedure 

repeated until the agreement is satisfactory. The problem is to find a suitable 

way of correcting the assumptions made in order to have the problem converge 

to the solution. A geometrical convergence criterion has thus to be determined.
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Figure 2.3: Trial and error process

2.2.3 M ethods available to assist with the trial and er­

ror process

To assist in this trial and error process, three main methods have been devel­

oped:

1. Graphical methods: these methods of constructing approximate solu­

tions are based on Prager’s graphical procedure for constructing the sli- 

pline field network together with a trial and error procedure for finding 

the shape of the initial slipline [81]. This technique has been applied 

successfully to many problems [82, 83, 84], However, as pointed out 

by Dewhurst and Collins [85], this m ethod does suffer from the obvi­

ous shortcoming of requiring a prohibitive amount of time to obtain the 

solution for a single geometry. Indeed, this method requires significant 

drafting efforts and seems quite heavy to set up.

2. Numerical methods: These methods of constructing a slipline field are 

based on the finite difference formulation of the Hencky Stress equations
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(2.3) and the Geiringer velocity equations (2.4) and also the geometrical 

properties of any slipline field. From an assumed slipline, slipline fields 

are constructed step by step using the detailed procedures given by Hill 

[4] for the numerical determ ination of slipline fields and velocity fields 

for different boundary value problems. Many authors have used these 

methods [86, 87]. An example of such an approach has been given by 

Shimmin and Oxley [87] for the problem of plane strain drawing through 

circular dies. These authors suggested numerical techniques based on 

Hill’s work and adapted to the construction of the slipline field of their 

problem. An initial slipline was assumed. The slipline field and velocity 

field were constructed numerically. They then developed optimization 

techniques, based on a geometrical criterion to successively change the 

assumed slipline shape so tha t the resulting hodographs finally converge.

3. M atrix operation method: This m ethod has been proposed by Collins 

[88] and developed later by Dewhurst and Collins [85]. The developed 

formulation reduces the problem to one in linear algebra and the problem 

of finding the initial slipline reduces to a simple m atrix inversion. This 

provides a system atic computational procedure which greatly facilitates 

the solution of statically indeterm inate problems, which are too complex 

to treat by trial and error procedures either numerically or graphically. 

This has been used successfully by Petryk [89] for the sliding of a wedge- 

shaped asperity. This third method is tem pting but unfortunately the 

use of the m atrix operator is limited to problems with boundary condi­

tions which lead to linear integral equations. A boundary condition such 

as the curved boundary present in our problem will result in a non-linear 

integral equation which cannot be handled by this method.
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2.2.4 Conclusion: choice of a m ethod

In this section it has been shown that the statically indeterminate problem of 

the present work must be solved by a trial and error process. Three main meth­

ods have been described which aid the trial and error process. As the problem 

of the present work cannot be handled by the Matrix operation method, the 

trial and error process has thus to be solved either graphically or numerically. 

It was decided to use a numerical method to generate the fields in the same 

way as Shimmin [87]. It was believed that this would not only decrease the 

hours of drafting efforts required in graphical methods but would also make 

modifications easier and make the method more accurate. The basis of this 

approach is presented in the next section.

2.3 The num erical calculation of slipline field

As previously mentioned, Hill [4] proposed procedures for the numerical de­

termination of the nodal points of a slipline field for different situations en­

countered in plasticity problems, called the stress boundary value problems. 

These procedures are based on the Hencky equations and also on the conse­

quent geometrical properties of a slipline field. In this section one of the three 

stress boundary value problems which repeatedly occurs in the present work 

is briefly described. It will be called the first stress boundary value problem 

(or SBVPl). This shows how any slipline field, once all the stress boundary 

conditions have been assumed, can be constructed and the associated numer­

ical techniques used to generate it are outlined. The description of the other 

two stress boundary problems (SBVP2 and SBVP3) identified in the present 

problem can be found in appendix (C).

Hill [4] also proposed procedures for different velocity boundary value prob­

lems. The velocity boundary value problem, analogous to the stress boundary 

value problem of this section is also described here. It will be called the first 

velocity boundary value problem. The other velocity boundary value problems
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encountered in the present problem can be found in appendix (C).

Consider a section of a curvilinear slipline field bounded by the two known 

sliplines OtAt  and OtBt  as shown in figure (2.4). The two sliplines OtAt  

and OtBt  can be subdivided into an arbitrary number of small arcs n  and m  

respectively. If the elemental section {Ot, M q̂ i , Mi^i) is considered, the 

slope associated with the nodal point Mi i of this network as well as its 

coordinates and its hydrostatic pressure can be determined from

the points Ot, M i ^  and Mq,i by the following relationships :

4>l,l — 4>\,0 + ~  <t>0,0̂

Pl,l =  Pi,o+Po,\ -Po,o 

2/1,1 -  2/0,1 =  (tan (  — -  Xo,i)

/ , /(<?̂ l,l +  ^l,o)w N2/1,1 -  yo,i =  - ( c o t (    )(xi,i -  xi,o).z

P line

Nti.o;

a  line

Figure 2.4 : Portion of a slipline field subdivided into elemental sections

The procedure can be extended step by step over the whole field up to 

point Ct-

Now once the slipline field has been generated and if the components of 

velocity u and v are given along the sliplines OtAt  and OtBt,  direct application
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of the  Geiririger equations allows the  determ ination  of and ?;o,i a first 

step  using:

^̂ 1,1 — ^0,1 — 2 — 00,i)

^ 1,1 “  '^ ^ 1,0 =  ~ 2

(2 .6 )

u and V can then  be derived step  by step  anywhere in the field by working 

along the  sliplines.

2.4 R equirem ents for a com plete solution

In section (2.1), it has been seen th a t for com plete acceptance, a slipline field 

should be checked to  see th a t:

•  the  ra te  of p lastic work is always positive.

•  the stresses in the  surrounding non-deform ed m aterial are below the yield 

point.

Frequently in the  litera tu re , slipline field solutions are proposed, assum ing 

these two conditions w ithout rigorous proof.

However, a simple te st to  check th a t the p lastic  energy dissipation is pos­

itive has been suggested by Ford [80]. Basically, it consists of checking th a t 

an  elem ental section of slipline field will deform consistently w ith the sign of 

the  shear stress applied to  its boundaries. Shim m in [90] gave num erical for­

m ulations based on these techniques suggested by Ford [80]. They are given 

in appendix  (F) and will be used in the present work.

Concerning the  s ta tica lly  adm issible extension of a  slipline field into all of 

the  non-deform ing regions, the stresses m ust be calculated in the  surrounding 

rigid region and be shown to  be below yield. Hill [91] presented a m a th em at­

ical analysis and proposed a  criterion for checking the stress conditions inside 

w edge-shaped zones, where the tip  of the wedge is a point of stress singularity.
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However, as pointed out by Johnson [5], this analysis is only true for fric- 

tionless tool faces and is thus not directly applicable for the present problem. 

Petryk [89] developed a method to extend the stress field below the boundary 

slipline of the slipline field solution for the wedge indentation problem. The 

tractions applied on this boundary slipline are the stress boundary conditions 

for the assumed non-deformed region and a new slipline field is constructed in 

th a t surrounding region. Through a stress analysis, he proved th a t the yield 

condition was never violated for the type of solution considered. Olver et al 

[92] performed a similar analysis for the problem of the indentation of a rigid 

die into a rigid-plastic half-space. They obtained the stresses in the plastic 

region with the slipline field solution and those in the contained plastic region 

(below the boundary slipline field of the plastic solution) by constructing an 

approximate slipline field, an extension of the previous one. In this work, it 

is clear tha t the surrounding region was expected to be elastoplastic in a real 

material.

However, the application of these analyses to the problem of the present 

work is not straightforward. An extension of the slipline field has to be as­

sumed in a suitable m anner and a stress analysis must be performed. This has 

not been performed in the present work. Regarding the time requirements of 

this project, it was believed th a t using the results of the developed model to 

better understand the physics of the process was more useful than to attem pt 

to demonstrate m athem atically tha t the solution is unique.

Conclusion

In this section, it has been shown that solving a slipline field problem consists 

of determining the four sets of unknowns p,4>,u and v, using the system of 

four sets of equations (2.3) and (2.4) and the available boundary conditions.

It has also been shown that there is no systematic procedure for the solution 

of the statically indeterm inate problem of the present work. A trial and error
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process has to be used.

Three main methods have been described to implement the trial and error 

method. The most attractive is the Matrix operation method developed by 

Dewhurst and Collins [85]. Unfortunately, the problem of the present work 

cannot be handled by this method because the presence of a curved boundary 

leads to non-linear equations. The trial and error process must thus be imple­

mented either graphically or numerically. It was decided to use a numerical 

method to generate the fields. A description of how this can be done using 

the procedures given by Hill [4] has been given for a given boundary value 

problem.

From this analysis, it can be noted that the solution of the present problem 

is not straightforward. The main problem is to find a suitable way of correcting 

the assumptions made about the stress boundary conditions to generate a field 

so that successive hodographs converge. In other words, an initial slipline 

shape or free surface shape has to be chosen to start the generation of a slipline 

field. Once the associated velocity field has been generated, the solution has 

to be tested, thus an error function has to be defined. The initial geometry 

has then to be corrected in a suitable way so that the hodographs converge. 

The main difficulty consists in defining a geometrical convergence criterion. 

How this has been successfully performed in the problem of the present work 

is described in the next chapter.
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Chapter 3

Theoretical analysis: 

developm ent of a slipline field 

for the sliding cylinder problem

3.1 The general slipline field structure and 

m ethod of construction

3.1.1 General features of the field

X
HARD

CYI.INDER Interface

SOFT MATERIAL

Boundary slipline

Stress free 
surface

TJ

V

rigid re g io n
(V E L O C fT Y O F  THE 

MATERIAL RELATIVELY 

TO THE FIXED CYLINDER)

Figure 3.1: Sketch of the shpUne field
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To start the construction of the field a general form has to be established. 

As previously mentioned in chapter (2), the well established wave model de­

veloped by Challen and Oxley [2], which only differs from the present problem 

in the interface geometry, provides some guidance in the construction of a pos­

sible field. It is expected that the field of the present work will be of similar 

shape, as shown in the approximate sketch of the solution in figure (3.1). The 

essential features of the field can be enumerated as follows:

1. The boundary slipline ABCD  between the plastic region and the non­

deformed material is not a line of velocity discontinuity as was the case 

in the wedge-shaped asperity model of Challen and Oxley [2]. This can 

be justified by the fact that the free surface and the interface constitute 

a streamline of flow and the velocity must remain tangential to it. As 

no geometrical discontinuity exists at the bottom point of the cylinder 

A, no velocity discontinuity can thus exist when the material crosses the 

boundary slipline (AD).

2. The free surface (ED) is tangential at D to the non deformed surface, 

following 1.

3. An abrupt change in the direction of flow occurs when the material meets 

the cylinder at E. A rapid change in stress, velocity and strain rate is 

expected: E is therefore a singularity and there is thus a centred fan at 

E.

4. The material outside the wave is rigid and moves with constant velocity 

V.

5. As the process does not involve removal of the deformed material, the 

straight line joining A and D must be parallel to the velocity V to satisfy 

conservation of volume.
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3.1.2 B oundary C onditions 

Stress boundary conditions :

Certain limitations are imposed on the angles at which the sliplines will 

intersect the boundaries in order that the yield criterion not be violated. They 

are now stated for the two boundary conditions of the problem.

•  The stress boundary conditions at some point Mj of the interface (AE) 

between the cylinder and the deformed material are shown in figure 

(3.2a). If the shear stress tangential to the interface at point M is r, it 

can be shown that for equilibrium, the slipline a  must meet the interface 

at an angle 7 such that:

k cos 2e =  T with

Under conditions of boundary lubrication, r  is the shear strength of the 

boundary film and by introduction of the Tresca factor / ,  which is the 

ratio of r, shear strength of the interfacial layer to the shear fiow stress 

of the soft material k, equation (3.1) becomes:

cos2e =  /  (3.2)

•  The stress boundary conditions at some point My of the stress free sur­

face (ED) are shown in figure (3.2). The sliplines must meet the stress- 

free surface at 45°. This is a special case of the previous stress boundary 

condition with t  —  0 .
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Figure 3.2: Stress boundary conditions at the interface and at the free surface

Velocity boundary conditions : (Refer to figure (3.1))

• All points of the boundary slipline (AD) have the same constant velocity 

V.

• The velocity vector at any point on the interface (AE) must be tangential 

to the cylinder.

• The velocity vector at any point on the free surface (ED) must be tan­

gential to the free surface.

3.1.3 C onstruction  o f th e  slipline field solution

H A R D  i 
C Y L lN D E p. Stress free 

\  surfaceInterfai

SlipiineXfield

Figure 3.3: Construction of the nodal point of the slipline field

The following description refers to figure (3.3) where the field has been 

subdivided with only a small number of points to simplify the description of 

the procedure.
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To start the construction of the slipline field, one of the stress boundary 

conditions defined by Hill [4] must be identified. Initially no sliplines are 

known and the shape and extent of the free surface (ED) are not defined. To 

get the field started therefore, the shape of the free surface (E.ol.D) and the 

position of the point D are assumed. As mentioned in section 3.1.2 the sliplines 

must meet the stress-free surface (ED) at 45°. This last situation sets up a 

second stress boundary value problem (SBVP2), as described in appendix (C) 

allowing the computation of the points o2 and o6. Then a first stress boundary 

value problem (SBVPl) is identified in the quadrilateral (ol.o2.C.o6) and the 

field can be extended up to C by working along the aline (o6C) and the /?line 

(o2C). The slipline (Eo2C) being established and E being a singularity, the 

field can be extended up to o3 as a special case of the SBVPl. This establishes 

the aline (o2o3) and the field can then be extended up to B using an SBVPl 

and by working along the aline (CB) and the /31ine (o3B). So far the field 

has been extended to the fan (EBC). The point of the interface o4 is then 

obtained considering an SBVP3 via an iterative routine, working along the 

aline (o3o4). Then an SBVPl leads to the extension of the field up to o5. 

Finally the field can be extended up to A using an SBVP3 by working along 

the slipline (o5A). However, the position of the point A is already known. The 

position of D is then adjusted through an iterative routine so that the overall 

construction converges to the point A. Details of these calculations are given 

in section (3.2.2).

3.1.4 Construction of the velocity field

The following description still refers to figure (3.3). Once the slipline field has 

been generated one of the velocity boundary value problems has to be identified 

to start the construction of the velocity field. In the present configuration the 

velocity components are known along the boundary slipline (ABCD). The 

starting point of the construction is the point o5. As a velocity boundary 

condition is known along the interface (AE) (the velocity must be tangential
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to the surface), the velocity field can be extended up to o4 using a third

velocity boundary value problem working along the /31ine (o4o5). Then by

working along the aline (o4o3o2ol), successive first velocity boundary value 

problems can be identified. This establishes the velocity distribution all over 

the aline (o4.o3.o2.ol). Similar procedures allow the complete computation of 

the velocity distribution over the whole field. In this construction, the velocity 

boundary condition along the free surface (the velocity must be tangential to 

the free surface) is not used. This remaining condition will be used to assess 

the quality of the solution by comparing the velocities computed along this 

free surface with the known boundary condition along it. Details of these

calculations are given in section (3.2.3).

3.2 D etails o f the program m e

3.2.1 General organisation and flow diagram for the 

programme

To allow a complete description of a slipline field solution, the following five 

parameters are needed: the coordinates X, Y  of the nodal points defining the 

field, the local angular rotation cf) of the aline from the x axis and the velocity 

components u and v measured in the slipline direction. It was decided to store 

the computed values of these parameters in five arrays Xij ,  Yij, (pij, Uij 

and Vij where i and j refer to the a  and f3 lines respectively. The structure 

of these arrays is shown in figure (3.4).

The inputs of the programme for a given simulation were (see figure (3.4)):

• R, the radius of the hard cylinder

• 9, the angle of the cylinder-deformed material interface. This last pa­

rameter sets up the position of E and A and the curve defining the 

interface.
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Figure 3.4: Array to store the data
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•  / ,  the Tresca factor, which sets up the angle 7  such that cos 27 =  / ,  at 

which the alines meet the normal to the interface (see section (3.1.2).

•  k, the shear flow stress of the material

•  n, number of points to describe numerically the free surface (ED)

•  m,  with m +  1 the number of /?lines to describe the fan (EBC)

Some details will now be given concerning the procedure used to solve the 

problem. All the following explanations refer to the schematic diagram of 

figure 3.5.

3.2.2 Slipline field com putations

Before the main calculation starts, the known boundary conditions have to be 

set up. Along the interface (AE), referring to figure (3.6), the conditions are:

As a first approximation, and for geometrical reasons, a circular arc has 

been chosen for the free surface. The position of D (D = Mi^i) on the axis 

{A,x)  is decided. The free surface (ED) is split into n points Mj j which 

generates n alines with imax = n sX the point E. This provides the missing 

boundary conditions to start the generation of the slipline field. The boundary 

conditions along the free surface (ED) referring to figure (3.6), are:

X i , m + 2 n - i  =  i?sin(7i), 

^i,m + 2 n —i —  ^  ■^*^Os(Ti))

(3.3)

(3.4)

(3.5)(t>i,m+2n - i  =  --a rcco s(Z ) +  arctan[ i,m + 2n—i

i,m + 2n—i
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Figure 3.5: Procedure of the construction of a solution
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^ i , i  — R 2 sin 7j- +  X o ,  

y i , i  =  R 2 - R 2  cos 7',

=  7 +  a r c t a n ( ^ — with

li =

4 

-  1)

Yi i — R-2

( n -  1)
f f

(3.6)

(3.7)

(3.8)

(3.9)

R2

;n>

Figure 3.6: Boundary conditions

The fan (ECB) is divided into (m +  1) /3 lines which sets up the slopes at 

which the /? lines meet E:

^ n ,j  4*n,n {j m
for j  — n ,n  + m (3.10)

Once these conditions are set up, the slipline field construction can be 

performed as explained in section 3.1.3 starting from the n points defining the 

free surface. The last step of this construction is the calculation of the point 

A. The construction is repeated adapting the position of D on the (A,a;) axis 

until the procedure converges to A.

3.2.3 Velocity field com putations

Before starting the velocity calculations from the generated slipline field and 

referring to figure (4.3), the velocity boundary conditions along the boundary
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slipline are:

(3.11)

(3.12)

The velocity boundary conditions along the interface (AE) are that the 

velocities must be tangential to the interface.

The velocity field construction is started at the nodal points of the in­

terface as explained in section (3.1.4) and is performed step by step until the 

calculation of the velocities of the nodal points of the free surface is completed.

3 .2 .4  O p t im iz a t io n

Once the slipline field has been generated and the velocity field computed up 

to the free surface, the boundary condition expressed in 3.1.2 concerning the 

direction of the velocity along the free surface has not been used. This last 

condition is used to assess the error associated with a given computed solution.

The local error at each nodal point Mj_j of the free surface is computed as 

follows :

error(i) =  /3coZc(0 “  A an(0 (3-13)

where /3caZc(0 the slope of the velocity vector referred to the (A,x) axis 

at the nodal point  ̂and Ptan{i) is the slope of the vector tangent to the free

surface referred to the {A,x)  axis at the same point M,_j. An average error is

also defined and is computed as follows :

Pcalci'i') ~~ P ta n iP )  / o  i
erroiaver =  >  ^ ^ ----------  (3. 14)n — Ii=2

For a wide range of 9 and / ,  it was found that the circular arc is a good 

approximation of the free surface as small values of error aver were computed

u\, j  =  - V  cos(? îj

Vij = V  sin (pij; for j  — 2, m  + 2n — 1
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when the parameters n and m  were high enough. However, regarding the 

local error values, systematic significant local errors were observed close to the 

singularity E. In other words, in that area of the free surface, the deviations 

between the computed velocity directions and the tangent directions were 

more important. In order to make the errors converge to zero, it was decided 

to correct the shape of the free surface by using the slope of the velocity vector 

computed at the point E. This slope becomes the tangent to the curve at the 

point E and an ellipse was thus defined as the new free surface to restart the 

overall construction of the slipline field. This geometrical correction sets up the 

new boundary conditions along the free surface, which have been formulated 

in appendix (D).

The procedures used to compute the slipline field and the velocity field are 

completely identical to the ones described in sections (3.2.2) and (3.2.3). Suc­

cessive ellipses were corrected this way via an iterative procedure described in 

the schematic diagram of figure (3.5). The trial and error process was observed 

to be successful as the errors converge to zero after about 5 corrections. This 

is shown quantitatively in chapter (4).

3.2.5 C om putation  of stresses and friction coefficient

The hydrostatic pressure distribution all over the field could not be found until 

a value of this pressure was found at one point of the plastic region. From 

a known value of p along any a  or /? line, the Hencky stress equations (2.3) 

allow the determination of the hydrostatic pressure everywhere in the slipline 

field network. This value was found using the stress boundary conditions at 

the free surface. As seen in section (3.1.2) and in [79], the condition that the 

yield criterion not be violated along a given point of the stress free surface 

imposes the condition:

p = k (3.15)
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Starting from any point of the stress-free surface and working along the 

alines using the Hencky Stress Equations (2.3), the pressure distribution over 

the whole plastic region was computed.

Once the stresses at the interface were known, they were integrated to 

obtain N  and F  the normal and frictional resultant force per unit width re­

spectively and thus fj, the overall resulting friction coefficient of the process 

could be calculated. Details of these calculations are given in appendix (E).

3.2.6 Checks on plastic work

In chapter (2), it has been seen that for complete acceptance, a slipline field 

should be checked to see that the rate of plastic work is always positive. To 

verify that the condition is satisfied, we used the formulations given by Shim- 

min [90] based on the techniques suggested by Ford [80]. They are expressed 

in appendix (F). It was checked that it was everywhere positive for the range 

of 9 and /  considered.

3.3 Strain analysis

Introduction

The first aim of this model was to predict the shape and extent of the plastic 

region and to calculate the overall friction coefficient // associated with the 

process. The second aim is to determine the plastic strain cycle undergone 

by the material during the deformation process because it has been shown 

in chapter (1) that the highly strained layer left behind the asperity after 

the wave has some relevance to the detachment of particles and hence wear. 

Data obtained from the previous part of the programme presented in the 

previous sections were stored for later use by the programme STRAIN. This 

programme, presented in this section consists of three main tasks:

• To generate the streamlines of flow from the generated slipline field and
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velocity field.

• To compute a deformed grid in order to visualize the deformation un­

dergone by the material flowing through the wave.

•  To calculate from this deformed grid the precise strain pattern undergone 

by the material going through the wave.

3.3.1 Deformed grid generation

E

Mr,k'hmax

ocB

Figure 3.7: Generation of the streamlines

The plastically deformed layer was divided into a number o of equally 

spaced streamlines as shown in figure (3.7), having initially a spacing of:

(3.16)

An initially square grid was established by making Ax = Ay  ahead of 

the plastic region. By taking V = 1, since the wave is assumed to be steady 

state, the transverse lines represent lines of equal time interval, the basic time 

interval being:

A t
A t = ~  = Ax  (3.17)

The streamlines of flow were first generated using simultaneously the sli- 

pline field and the velocity field in a similar manner to that of Shimmin [87] for
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the drawing process. The method is based on the fact that the velocity vector 

of a material particle must remain tangential to the streamline. As shown in 

figure (3.7), from which is the (r — 1)*̂  point generated on the

streamline (with kmax  =  o ) ,  a  straight line was drawn using a slope equal to 

the velocity vector The value of the velocity vector at the point M ^ , ^ ,

the intersection of the straight line with one of the surrounding sliplines was 

interpolated from the Geiringer Velocity Equations. A new straight line was 

then constructed using a slope equal to the mean of the velocity directions of 

and An iterative routine was then used to achieve the desired

location accuracy for Mr^k ,  defining thus the coordinates X s r , k  and Y S r ,k -

Once an intersection point has been found, the time taken for a particle to 

go from M r - i , k  to M r ,k  was computed using the mean velocity and the distance 

of the segment M j . - \ ^ k ,  Mr^k •

tr,k — t r - l , k  +  q (t^  ̂ tT ) ^ ^ r , k  (3.18)
^ K , k  y r - i , k

ASr,k =  y f  {XSr ,k  -  XSr,k)'^ +  (YSr ,k ~  Y S r , k Y  (3-19)

Following this procedure all over the field for different depths, all the points, 

intersection of the streamlines with the sliplines were computed and so were 

their associated relative times.

From the streamlines, the distorted grid was simply derived by interpolat­

ing the location of points equally spaced in time along each streamline. Their 

coordinates and Y g ^  k and their velocity were interpolated from

the location and velocity of the points defining the streamlines.

3.3.2 Strain calculation

It was decided to compute the evolution of the direct strain €xx and the shear 

strain acting parallel to the surface involved in the process. These strains, 

also called cyclic and ratchetting strains respectively, have been calculated by
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Figure 3.8; Finite strain calculation

Yang and Torrance [15] for the wedge wave model by resolving the increments 

of maximum shear strain into direct and shear strain components acting paral­

lel to the surface using the hodograph (see chapter (1)). Unfortunately for the 

present work, the hodograph analysis is prohibitively difficult and the calcula­

tions used in the previous work cannot be used. Neither could the direct and 

shear strain-rates, as calculated by Farmer and Oxley [93] from a distorted 

grid and the velocity field, be integrated along streamlines because the wave 

process is a non-coaxial strain path as the principal axes rotate. It was decided 

then not to use the strain-rate pattern but to analyse the distorted grid by 

applying the basic definitions of the finite strains as formulated by Ford [80]. 

The direct and shear finite strains were calculated for a given grid element 

(ABCD),  distorted into the parallelogram {A'B'CD'),  as stated in equations 

(3.20) which refer to figure (3.8). The shear strain 7^ was also calculated as 

in Yang’s work [6] by comparing directly the changes in the angles of the grid 

lines compared with their original directions as stated in equation (3.21) which 

refers to figure (3.8).
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A 'B ' r,---------------  ̂ 1
^  -  1 =  V i T + i U  -  1 , ,

 ̂ (3.20)
sin(7 ) * ( 1  -  4 e2 j  =  J

tan(o;) =  7 ^ (3.21)

Conclusion

In th is chapter, details have been presented of how th e  tria l and error pro­

cess has been successfully im plem ented to  determ ine the  slipline field solution 

m odelling the  wave of p lastically  deformed m aterial pushed ahead of a rigid 

cylinder.

A circular free surface was chosen to  get an approxim ate solution and suc­

cessive ellipse corrections m ade the overall construction converge to  a  solution 

which satisfies all the conditions affecting the p lastic zone. Furtherm ore, the 

ra te  of plastic energy d issipation has been found to  be everywhere positive 

when using the  ellipse solution of the  iterative process for the definition of 

the free surface. The solution proposed in this chap ter is thus kinem atically 

adm issible and represents a t least an upper bound of the  com plete solution.

To check w hether the present solution is unique or not, the stresses must 

be calculated  in the surrounding  rigid region and be shown to  be below yield. 

This is not a straightforw ard analysis as it consists of analysing the stresses 

in the  half space, whose boundary  condition is the boundary  slipline of the 

p lastic  region. As the m athem atical analysis used by previous authors, such 

as [91], [89], [92] is no t d irectly  applicable to  the present problem , th is has 

not been perform ed in the  present work. Regarding th e  tim e requirem ents of 

th is p ro ject, it was believed th a t using the results of the developed model to  

b e tte r  understand  the  physics of the  process was m ore useful th an  a ttem p ting  

to  dem onstra te  m athem atically  th a t the solution is unique. T hus the solution
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presented here has to be considered incomplete until a statically admissible 

extension of the plastic stress field into rigid regions is proved to exist. 

Finally the developed model is a tool which is able to:

• predict the shape and extent of the plastic region and calculate the 

overall friction coefficient n associated with the process.

• predict the plastic strain cycle undergone by the material during the 

deformation process.

These results are presented in the next chapter and compared with the 

results of previous work.
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Chapter 4

Results of the model

4.1 M ain features of the solution

4.1.1 The slipline field and velocity field solution

The slipline field (4.2) was obtained with a circular free surface and the input 

parameters given in figure (4.1). In figure (4.2), the dotted lines represent the 

sliplines which have some curvature and their intersections are the nodal points 

calculated by the programe. To simplify the analysis, the usual hodograph 

drawn in most plasticity problems to represent the velocity field is not used in 

the present work. The alternative velocity field analysis introduced in chapter 

3 and presented here is equivalent to ensuring consistency or convergence of the 

traditional hodograph. The velocity distribution calculated from the slipline 

field of figure (4.2) is plotted in figure (4.3) where the arrows represent the 

velocity vector expressed in the reference frame ( X, Y)  at each nodal point of 

the field.

58



Y
/R

INPUT PARAMETERS

r=lm m  : radius of the cylinder 

d=0.2 rad : angle of the interface 

f=0,25 Tresca factor

n=10 number o f points to define the interface 

m=6 number o f points to define the fan

CYLINDER

Figure 4.1: Inputs of the simulation
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Figure 4.2: Slipline field solution
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Figure 4.3: Velocity field solution 

4.1.2 O ptim ization

To construct the velocity field, the velocity boundary condition along the free 

surface is not used. In figure (4.3), it can be seen that the velocity vectors 

computed along the free surface (ED) are reasonably tangential to it and thus 

the circular arc is a good approximation to the free surface shape solution. The 

deviations from this last condition are quantified by the local errors calculated 

at each nodal point of the free surface as explained in 3. They are plotted 

in figure (4.4) against the X coordinates of the nodal point (lines with stars). 

The computed errors are small (less than 0.5°). The associated average error 

is err or aver = 0.087 deg, which is surprisingly small considering the different 

underlying approximations used to construct this numerical solution. This 

would confirm the choice of the circular arc which might be the correct free 

surface shape of a possible analytical solution of the present problem, or at 

least very close to it.
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To improve the accuracy of the calculations, the first approach is to increase 

the number of nodal points n and m  to define the circular free surface and 

the fan respectively. Table (4.1) shows how the average local error and the 

maximum local error vary with the parameters n and m. It can be seen that 

increasing the number of nodal points leads to a slight decrease of the average 

error. However, the maximal local error remains constant. It can be argued 

that for a numerically obtained solution, the errors are very small. However, 

a proper trial and error process has not yet been performed.

Thus, the previous solution has been numerically optimized by adjusting 

the shape of the free surface via the iterative procedure explained in chapter 

3. In figure (4.4), the full lines represent the evolution of the local errors after 

successive corrections of the free surface using ellipses. It can be seen that the 

use of the successive ellipses make the error converge to near zero.

n 10 100 200 500

m 6 100 200 500

error aver 1° 0.087 0.071 0.07 0.07

maximum erroriocai/° 0.25 0.25 0.25 0.25

Table 4.1: Evolution of the errors with the parameters n and m
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Figure 4.4: Evolution of the  local errors after the  free surface shape corrections

No significant differences were observed in the friction and strain  results 

w hether a circular arc or an ellipse was taken for th e  free surface. Thus all 

the following results, when not otherw ise specified have been obtained w ith a 

circular arc.

4.1.3 Lim itations o f  the m odel

It has been verified th a t the developed model is su itable for a wide range of 

/  and 9. However, it was observed th a t it becomes increasingly more difficult 

to  make the  solution converge when /  and 9 are increased. F igure (4.5) shows 

the d ram atic  increase of {error)aver for high values of 9 and / .  Futherm ore the 

condition concerning the p lastic  work dissipation is no longer obeyed for high 

values of /  and 9, w hether th e  free surface is a circular arc or an ellipse. This 

last trend  is no t surprising as a change of regim e is expected when the asperity  

penetra tion  becomes g reater and the lubrication poorer. This establishes the
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basis of the limits of application of the model which is more suitable for small 

values of 9 and / .  This was also predicted by the chord approximation model 

of Challen and Oxley [1] who proposed a chip formation model (double chord 

model) as an alternative to the single chord model which was no longer suitable 

for high loads and very poor lubrication.

O)
0)

■Q
C

o

4;
O )ro
>
CO

f=0.3

0 105 15 20 25
angle of the interface in degrees

Figure 4.5; Evolution of the average error with 9

4.2 Friction results

4.2.1 E volution o f friction as a function  o f 6 , the angle 

of the interface and / ,  the Tresca factor.

For the wedge-shaped asperity model of Challen and Oxley [2], a,  the angle of 

the wedge was an independent variable. Thus it was not related to changes in 

the normal load N  which had only the effect of changing the contact length at
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the interface and thus the scale of the plastic region. However for the model 

developed in the present work and as pointed out by Challen and Oxley [1], the 

contact length and a, the angle of the chord at the interface, are inter-related. 

The angle a  or the equivalent angle 9 used in the present work, are influenced 

by changes in the normal load as is /j, the friction coefficient. The evolution of 

the angle 0 has been plotted in figure (4.6) as a function of the non dimensional 

parameter N /k R ,  where N  is the normal load per unit length, k is the shear 

flow stress of the deformed material and R  is the radius of the cylinder, for 

different values /  of the Tresca factor. The evolution of the friction coefficient 

jji has been analyzed as a function of the non dimensional parameter N/kR .

A friction map has been established in figure (4.7) from the predictions of 

the developed model. It can be seen that for a given interfacial film strength 

/ ,  it is predicted that the friction coefficient ji increases with the angle of 

the interface 9 over the entire range of conditions considered. This increase 

of friction with surface roughness is in agreement with the trends usually 

observed in experiments (see chapter (1)).

It can be observed also that a decrease in /  (i.e., for better lubrication 

conditions) is predicted to reduce n- For the highest values of /  considered, 

even a small reduction in /  can cause /x to fall rapidly.
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4.2.2 Comparison with the chord approximation model 

developed by Challen and Oxley [1]

As mentioned before, one attem pt to provide a simple slipline field for the 

configuration under investigation is the chord approximation model suggested 

by Challen and Oxley [1] as shown in figure (4.8a). In this model, the circular 

interface between the hard cylinder and the deforming material is approxi­

m ated by its chord allowing the use of the well established wedge wave model 

slipline field [2]. In figure (4.8b), both slipline fields calculated with the pa­

rameters used in the previous section are plotted. It can be seen tha t the 

plastic zone predicted by the numerical model is relatively less extended than 

as predicted by the chord model (This last field is plotted as (A.Bw.Cw.Dw.E) 

in figure (4.8b)). This can be simply explained by the fact tha t the interface 

of the chord model is straight and th a t there are some restrictions placed on 

the geometry of any slipline field such as, for example, the straight slipline 

or uniform stress state  areas imposed for this field; it follows tha t the chord 

model has to extend deeper and further ahead of the cylinder to meet the 

straight free surface a t 45°than the numerical model which is curvilinear.

However, these geometrical differences become meaningless when the fric­

tion coefficient predictions of the two models are compared for the lowest loads. 

In figure (4.9), the friction coefficient predictions of the chord model (stars) are 

plotted against N / k r  with the friction coefficient predictions of the numerical 

model of the present work (full lines). It can be clearly seen th a t both models 

are in good qualitative agreement in terms of friction predictions. However, 

the predictions of the numerical model are always higher than the chord model 

and this becomes significant for high loads, which can be explained by the geo­

metrical differences pointed out previously. Especially for low loads where the 

chord closely approximates the arc of the circle at the interface, both models 

are in excellent agreement.
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Figure 4.8: Comparison between the wave model and the model developed in 

the present work.
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4.3 Strain results

4.3.1 D eform ation o f a grid

From the velocity field of section 4.1.1, the deformation of a grid has been gen­

erated in figure (4.10a). The originally horizontal grid lines are the streamlines 

of flow and their intersection points with the originally vertical lines represent 

points of equal time interval along the streamlines.

The accuracy of this distorted grid depends on the number of sliplines and 

thus on the parameters n  and m. One way to assess this accuracy is to compute 

the evolution of the grid element areas during the deformation process. Under 

two-dimensional plane strain conditions, these areas must remain reasonably 

constant to have the constant volume conditions satisfied. In figure (4.10b), 

the evolution of the area A  of the grid elements compared to the initial grid 

element area A„ has been plotted along the streamlines for different depths. 

The deviations from the initial grid area are quite low whatever the depth 

with a maximum of 1%. This means that the method used so far is reasonably 

accurate because the constant volume condition in plane strain is satisfied as 

closely as the finite difference technique allows.

Observation of the grid shows that the type of plastic flow is shear relative 

to the non-deformed material. The incremental shearing of the material can 

be followed along the streamlines and appears to depend on depth. This last 

feature is not predicted by the single chord approximation model of Challen 

and Oxley [1]. The velocity field analysis of their chord model leads to a 

homogeneously deformed layer and the shearing represents an average within 

the deformed layer. The model obtained in the present work seems to offer 

more detailed information concerning the deformation pattern. The analysis 

and calculation of section (4.3.2) will give a quantitative estimate of the strain 

cycle undergone by the material and shed light on the depth-dependent highly 

strained layer often observed beneath the surface.
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4.3.2 Strain calculation

Figures (4.11a) and (4.11b) show how the direct and ratchetting strains 

and 7xj, are predicted to vary along a selection of streamlines of the distorted 

grid of figure (4.10a). The strain cycle is not fully reversing; the direct strain 

cycle 6xx fully reverses but the shear strain cycle ' jxy does not reverse at all. 

There is a shear strain increment A j ^ y .  The direct strain cycle Cxx, though 

fully reversing, was not directly observable on the distorted grid. However 

it must be considered as it might be of some relevance in the failure of the 

surface as was described in chapter (1).

Figure (4.12a) shows how these strain cycles compare with the predictions 

of the chord model [1] for the same conditions. As previously observed on 

the distorted grid of section (4.3.1), the main difference is that the strains 

calculated from our model vary with depth, being higher than the predictions 

of the chord model near the surface, and falling to zero at the boundary of 

the field. This is reflected also in the shear strains left in the surface once the 

wave has passed as shown in figure (4.12b) .

Furthermore, the rigid-plastic boundary of the chord model [1] is a line of 

velocity discontinuity. Thus, as stated by Kopalinsky [7], a direct consequence 

of this is that their model predicts an infinite strain rate and hence a sudden 

increase in strain at the bottom of the plastic region. This is not realistic in 

terms of material behaviour. This problem is avoided by the field we have 

proposed here.
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4.3.3 C om parison w ith  fin ite elem ent analysis

One potential defect of the slipline field theory is that it takes no account 

of elasticity. It is often argued that elastic effects cannot be neglected, espe­

cially for the cylinder/plane configuration and the simplifications inherent in 

any slipline field solution are less realistic. To investigate this further, some 

elastoplastic finite element models have been constructed using commercial 

software (ANSYS 5.4) to represent a hard cylinder indenting and sliding over 

an aluminium alloy for various loads N/ kR.  No friction was considered at the 

interface (i.e. /  =  0). The basic finite element model and conditions for the 

different simulations are described in appendix (J). The deformation pattern 

obtained for a simulation { N/ k R = 1.6, /  =  0) is plotted in figure (4.13).

As predicted by our num.erical model, the deformation pattern shows the 

presence of a plastically deformed wave pushed ahead of the cylinder in the 

soft material. It would confirm the presence of a strained layer at and beneath 

the surface of the softer material. However, the finite element simulation of 

figure (4.13) shows the presence of a trailing wave behind the center line of the 

cylinder. This trailing wave does not exist in our slipline field model, where 

the last point in contact between the cylinder and the soft material is on the 

center line of the cylinder.

In figure (4.15), the friction predictions of the finite element models (circles) 

are compared to the predictions of our numerical model (line). It can be 

seen that the friction coefficients are predicted to increase with load as in our 

numerical model but are lower for the load range considered. These results 

confirm the finite element analysis results of Bressan et al [53] for an elasto­

plastic wave pushed ahead of a cylinder. The authors found also lower values 

of friction coefficients than slipline field theory in the elasto-plastic range and 

a friction free interface.

In order to investigate the influence of the trailing interface and elastic 

effects, some elasto-plastic finite element models with a cut cylinder have been
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developed to create a geometrical discontiimity and in this way to remove 

the trailing interface. The basic model is presented in appendix (J) and a 

simulation is shown in figure (4.14) { N/ kR =  1.3, /  =  0).

In figure (4.15), the friction predictions of these finite element models (full 

diamonds) are compared to the predictions of our numerical model (line). It 

can be seen tha t friction coefficients are higher than for the full cylinder con­

figuration , once the trailing wave is removed and elastic effects are decreased. 

However, friction coefficients are still lower than  slipline field theory.

<—  Motion of the cylinder

Figure 4.13: Deformation pattern  obtained by finite element analysis with a 

full cylinder - N / k R  =  1.6, /  =  0
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Motion of the cylinder

Figure 4.14; Deformation pattern  obtained by finite element analysis with a 

cut cylinder - N / k R  =  1.3, /  =  0
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Conclusion

In this chapter, the results of the num erical slipline field developed to  model 

the plastic wave pushed ahead of a hard  cylindrical slider have been presented. 

The m ain results can be sum m arized as:

•  T he friction predictions are in good agreem ent w ith the  chord approxi­

m ation model proposed by Challen and Oxley [1] in the  loading condi­

tions considered. However, for the  highest loads, friction is predicted to 

be higher. Therefore, b o th  models can be used to  com pute the friction 

coefficient fj, for given /  and 9 a t lower values of /  and 6.

•  The stra in  p a tte rn  calculated by the model presented differs from the 

predictions of the chord model [1]. T he m ain difference is th a t the strains 

vary w ith depth, being higher th a n  the  predictions of the  chord model 

near the surface, and falling to  zero a t the  boundary  of the field. Thus 

our num erical model offers more refined inform ation concerning the de-
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formation pattern. Appendix (G) shows a series of maps, that give the 

evolution of the strain pattern for a wide range of conditions.

•  The model is not quantitatively suitable to predict friction and defor­

mation of a material when elasticity is significant. Elastoplastic finite 

element analysis shows the presence of a trailing wave, which has the 

effect of decreasing the friction and deformation associated with the pro­

cess. However, when the trailing edge of the cylinder is removed, elastic 

effects are decreased. Friction coefficients rise but are still lower than 

predicted by our numerical model.

These results are expected because for a real material and for low loads, 

the elastic contribution to deformation becomes significant and the sim­

plifications inherent in any slipline field solution less realistic.

• The complete simulation (slipline field and velocity field calculations, 

friction and strain calculations) presented in this chapter [9 = 0.2rad, 

/  =  0.25, n =  100, m  =  100), took approximatly 2 minutes on 350MHz 

Pentium PC with 64 Mb RAM.
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Chapter 5 

Experimental m ethods

The first part of the experimental investigation consists of testing the predic­

tions of slipline field theory when a rigid cylinder slides across a soft surface. 

Details of the experiments and the equipment involved are given in this chap­

ter.

The second part of the experimental work consists of investigating the in­

fluence of detached pajticles accumulated around the contact when a rigid 

cylinder slides across a soft surface. To do so, a joint project has been car­

ried out between our team and the Laboratoire de Mecanique des Contacts, 

I.N.S.A. de Lyon, France. This French team  is specialized in the analysis of 

solid lubrication or solid third body and has experimental expertise in the 

dynamic observation of solid particle flows and rheology as an aid to friction 

interpretation. For the present work, the technique of visualization through a 

transparent tool, developed in the L.M.C. has been used. Details concerning 

the visualisation technique and the tests performed for the present investiga­

tion are also presented in this chapter.
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5.1 Experim ental investigation of a hard cylin­

der in C .B .N . sliding across two non-ferrous 

m etals

5.1.1 Objectives

The objectives of the first part of the experimental work were to:

1. use a single cylindrical asperity indenting a soft surface with different 

loads per unit width N  or equivalent non-dimensional param eters N / k R  

and obtain the friction coefficient /i.

2. use a single cylindrical asperity, whose trailing edge has been removed, 

indenting a soft surface with different loads per unit width N  and obtain 

the friction coefficient //.

3. collect the detached particles for further examination.

4. approximate plane-strain conditions.

5.1.2 Experim ental set-up

M A TE R IA L  AND G E O M E T R Y

M aterials tested

The materials selected for these tests were :

•  aluminium alloy, spec. 2011.

•  hard-drawn copper, spec. BS2874 C101(99% pure copper)

The m aterial properties are shown in figure (5.1). These two non-ferrous 

materials were chosen because they have differing ductilities and different ratio 

{E/ay),  which quantifies the degree of elasticity of the materials.
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Furthermore, copper presents almost no strain-hardening as shown by the 

compression test presented in appendix (L). This means that copper is ex­

pected to have a behaviour close to ideal plasticity for high strain.

The test pieces were bar-shaped , as shown in figure (5.2), with a diameter 

of approximately 30 mm.

Hardness k s
(MPa) (MPa)

E (GPa) Reduction 
in Area

ALUMINIUM
ALLOY

123 Hv 232 402 80 16% 0.17 199

COPPER 95 Hv 179 310 95 78% 1.51 306

C.B.N. 550

Notes: £j- obtained from £j-=-lnl(100-R.A.)/100]

Gy =9.81Hv/3

Figure 5.1: Material properties

Figure 5.2: Bar of tested material
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Tools

Two sets of tests  Si and S2  were perform ed w ith  two different tools. A two- 

dim ensional view of these tools in C.B.N. (Cubic Boron N itride) is shown in 

figures (5.3a), (5.4a) and the  resulting con tact geom etries are shown in figures 

(5.3b), (5.4b). These tests  can be described as follows:

1. T he first set of tests Si was perform ed w ith  a full cylinder of radius of 

1.57 m m , as shown in figure (5.3).

2. T he second set of tests S2  was perform ed w ith a  cut cylinder, as shown in 

figure (5.4). I t can be observed th a t the  leading side of the  cylinder has 

been partly  removed. In o ther words, the  lowest point in contact between 

the tool and the  workpiece will not be on th e  centre line of the cylinder. 

The reason is th a t the  cu t cylinder has been obtained  by grinding an 

in itia l cylinder and the lack of accuracy in the  grinding operation caused 

the leading side of the  cylinder to  be p artly  removed. In order to  account 

for this configuration, the chord m odel [1 ] has already been developed 

by Busquet and Torrance [3]. E quations for th is developed model are 

given in appendix (B).

The tools were 3.15mm in width.

It should be noted th a t a sort of very th in  alum inium  or copper coating 

was observed on the  C.B.N. tools ju s t after th e ir first use even after cleaning 

with acetone. Two d istinct cylinders were used for the  tests Siai and Sico for 

alum inium  and copper respectively in order to  reduce possible m odifications of 

the pfiysical-chem istry a t the interface (due to  a m ix tu re  copper/alum inium ) 

and thus the  Tresca factor / .

However, as the ginding operation to  ob ta in  th e  cu t cylinder was not re­

peatable w ith a high accuracy and as we w anted to  com pare the  results be­

tween the two m aterials, the same cut cylinder was used for the tests 8 2 a/ and 

S2 C0  for alum inium  and copper respectively.
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For a given material and for a given set of tests, the same tool was used 

for all the friction measurements, since no significant wear of the C.B.N. was 

observed. Between each test, the C.B.N. tool was cleaned with acetone and 

then put in a new position on the metal bar for the next test.

R =1.57m m

cylinder in
side v iew  o f  the set-up

w =3.15m m

Roi^u>n oKthe 
disc \  \

*
cylinder in / 
soft material /

R =15m m

/
friction track

a: full cylinder 6; geometry of the contact 

Figure 5.3: Si set

a: cut cylinder

cut cylinder  
in C .B .N ^ side v iew  o f  the set-up

cylinder in 
soft material

friction track

b: geometry of the contact 

Figure 5.4; S2 set
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SET-UP

The set-up, developed in previous work [15, 16, 6], is shown schematically in 

figure (5.5). The C.B.N. tool (wedge or cylinder) was mounted in the loading 

arm and was pressed against the periphery of the softer metal bar rotating on 

a lathe, by tightening the loading bolt. One end of the soft metal bar was held 

in the lathe chuck and the other end was supported on a running centre.

The tool, its holder and the loading set-up were mounted on a 3 axis 

Kistler 8257B dynanometer fixed to the saddle of the lathe. The signal was 

fed through two Kistler 5011 Charge amplifiers, connected to a chart recorder 

and a personal computer with the DASH 300 software package so that normal 

and frictional forces could be controlled and recorded during the tests.

Lubrication was provided by 1% stearic acid in white medicinal oil (refer 

to chapter (1)). This was fed onto the surface of the bar through a sponge 

(quantity: < 2.5ml).

Load arm
Loading bolt.

Hard cylinder

Al, Cu specimen

Oil wick

: C 1

DYNAMOMETER

Figure 5.5: Schematics of the set-up used
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5.1.3 Experim ental procedure

Before a test, the position of the hard asperity relative to the test piece was 

carefully adjusted. This was to ensure that the lowest line of the cylinder was 

positioned to contact the bar at its highest point. The lathe was set rotating 

at 35rev/min, the minimum velocity that the lathe could achieve.

After the chart recorder and Dash 300 were set for operation, the loading 

bolt was tightened to apply the test load. The normal and tangential forces 

measured by the dynamometer were processed and determined by the deflec­

tions of the pens of the chart recorder which gave the value of the normal load. 

In order that the normal load remains constant during the selected running 

time, the loading bolt had to be adjusted from time to time in accordance with 

the readings of the chart recorder. When the time was finished, the loading 

bolt was released and the normal load reduced to zero while the test-piece was 

still running. Tests ran between 1 and 2 minutes.

After some of the tests, the tool was carefully dismounted and directly 

observed with an optical microscope. The detached particles accumulated 

around the contact area during a test could then be directly observed on 

the tool. These particle conglomerates were then deposited on a filter paper, 

cleaned and preserved for further observation with electron microscopy.

5.1.4 Test conditions and parameters involved

A series of tests was carried out to fulfil the experimental objectives. The 

main variable parameter was the normal load per unit width N  applied to the 

surface. The test results gave the friction coefficient

The values of the lubrication parameter /  given for each material were de­

termined from the results of tests performed with C.B.N. wedges of various 

angles a, under the same lubrication conditions as for the cylinder tests. This 

method was chosen because, as has already been mentioned in chapter (1), 

several authors [50, 51, 15, 16] checked that Challen and Oxley’s wave model
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for a wedge shaped asperity [2] successfully predicted measured friction coef­

ficients when a hard wedge slides on some non-ferrous materials. The results 

of these tests are presented in appendix (H).

A value of /  =  0.05 was determined this way for both materials.

5.2 The visualisation investigation

5.2.1 Principles of the visualisation technique

Friction coefficient interpretations have been mostly experimentally performed 

through static postm ortem  observations of the friction tracks and /or the sub­

surface m icrostructural changes in the two contacting bodies. When two bod­

ies slide relatively to each other, the velocity discontinuity induces damage 

in these first bodies, leading to the detachment of particles. These particles 

constitute an interface or third body. If they are trapped inside the contact, 

they will contribute to some extent to the velocity accommodation and thus to 

frictional energy dissipation. Friction will depend on the respective contribu­

tion of the velocity accommodation sites and processes : third body shearing?

detachment of particles from the first bodies?  If the main site of velocity

accomodation is the third body, friction will depend directly on the flows and 

rheology of particles inside the contact area [12, 9]. The visualisation technique 

through a transparent tool allows a dynamic observation of these particle flows 

and rheology [94], [73]. It assists the understanding and reconstitution of the 

life of a contact, reducing the role of the imagination in friction interpretation. 

For example, Descartes [95], [10] used this technique to study solid lubrica­

tion with a MoSx coating. The author developed a m ethod of understanding 

the tribological behavior of the MoSx, based on third body flows and rheol­

ogy and their consequences on friction. The visualisation technique associated 

with static observations on both visualisation and blind tests allowed the dy­

namic reconstitution of the tribological behaviour of the MoSx and allowed
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the identification of the significant param eters, mechanisms or scales influenc­

ing friction. Such an approach has been undertaken in the present work to 

investigate the relative contribution of large scale deformation of the wearing 

surface (aluminium alloy) and of the third body flows (detached particles of 

aluminium alloy) on friction.

Some conceptual tools are needed to describe the dynamic observations 

made during the visualisation test of the present work. The particle flows 

which can be activated in the contact are of different origin and can be schema­

tised in figure (5.6). They will be used in the following descriptions and can 

be defined as follows:

1. Qs: the source flow. This flow is associated with the detachment of 

particles and constitutes a “natural” source of third body.

2. Qi: the internal flow. This flow corresponds to the particles trapped 

inside the contact and which flow between the two first bodies.

3. Qr: the recirculation flow. It is constituted by the particles which are 

driven by one of the first bodies outside of the contact area and are then 

drawn back into the contact area.

4. Qw: the wear. These particles are ejected from the contact and do not 

participate again in the velocity accomodation between the contacting 

bodies.

87



Qr:recirculation flow

Qi internal flow Qe:external flow
external source: 

lubricant \
Qw: wear flow

detachment of particles ^
Qs; internal source

Figure 5.6: Tribological circuit. Taken from [9]

5.2.2 O bjectives for the present work

The objectives of the second part of the experimental work were to:

1. use a transparent tool wearing the soft surface, and visualise the detached 

particle flows at the interface through the transparent tool.

2. preserve the tool and test sample for further examination and obtain a 

static view of the associated dynamic observations previously made.

5.2.3 Experim ental set-up

MATERIALS AND GEOMETRY

The materials were the same metals as in section (5.1.2). The test pieces 

were shaped as crowned discs, as shown in figure (5.7). This specimen shape 

leads to an elliptical contact area as shown in figure (5.7b). For geometrical 

and optical reasons, these conditions give good pictures of the contact. The 

tools used were made of glass (E=63GPa, ay =  500MPa).
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106 mm
12.5mm.

plane tool in glass

Rz=26mm

Rx=12.5

w=10nim 
crowned disc in soft material

a: geometry of the contacting bodies

side view  o f  the set-uptransparent tool

rotaticm on Jie  
crownOT disc

crowned disc 
in soft material

friction track

contact ellipse

b: geometry of the contact for the visualisation tests

Figure 5.7: Geometry of the contact for the visualisation tests
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EXPERIMENTAL A P P A R A T U S

The test rig used in these tests, called PEDEBA and developed in the 

L.M.C. is shown in figures (5.8a) and (5.8b) and is schematised in figure (5.9). 

This set-up is divided into two subsets:

1. the horizontal subset with the transparent tool. It is linked to a servo 

hydraulic jack. This can impose a controlled tangential displacement 

over time. For the present tests, the transparent tool was held fixed.

2. the vertical subset with the crowned disc. It is linked to a hydraulic 

jack that imposes the normal load between the two test pieces. A small 

motor was attached the disc to rotate it [Its characteristics: D.C. 50W at 

60rev/min (output from 82.5/1 reduction gearbox), max torque 3.5Nm]. 

A dynamometer gives the values of normal and tangential loads.

The test rig is very stiff. Basically, the set-up allows the plane transparent 

tool in glass, held fixed to be loaded against the periphery of a rotating crowned 

disc in aluminium alloy or copper.

Sensors allow tangential and normal forces and also normal displacements 

to be measured during the test.

The visualisation equipment is composed of:

1. a variable magnification objective

2. a video camera

3. a video recorder

4. a monitor

To give an idea of the magnification obtained, the friction track can be 

visualised full screen on the monitor.
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transparent 
' tool

rotation axis 
o f the crowned 

disc
crowned disc

a: general view b: transparent tool and crowned disc

Figure 5.8: Photographs of the PEDEBA rig.

Bati mecanique du 
simulate m-PEDEBA

£UBAlk-bTn k-p I I f  W*. B t

Figure 5.9: PEDEBA rig. Taken from [10]
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5.2.4 Experim ental procedure

Before each test, the disc was polished down to a value of Ra = O.l/um and 

cleaned with acetate. Lubrication was provided by 1% stearic acid in white 

medicinal oil as in the tests of section (5.1). The oil was deposited on the 

surface of the crowned disc with a cotton bud (volume of lubricant < 2iil). 

The disc was then mounted on the rig. The normal load was applied statically. 

The initial static hertzian contact area was elliptical. The video camera was 

focused onto the contact area, which could be seen directly on the television 

during the test. The crowned disc was then set in rotation. During the test, 

the normal load was controlled and both normal and frictional loads were 

registered. For each test, a video was taped for further analysis. At the end 

of a test, rotation was stopped and the set-up was then unloaded.

After each test, the transparent tool and the crowned disc were carefully 

dismounted and kept uncleaned for further observations with optical and elec­

tron microscopy.

The general test procedure is sketched in figures (5.10) and (5.11).

video camera

cro w n s disc

Visualisation Image extracted from a video 

Figure 5.10: Dynamic observations
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rotation o fw e 
crownm cmc

optical microscope picture of the 
transparent tool

S.E.M. picture of the crowned disc

Figure 5.11: Static post-mortem observations



5.2.5 Test conditions

A series of tests was carried out to fulfil the visualisation objectives. In this 

thesis, one test for each m aterial has been selected. Figure (5.12) presents the 

conditions for these two visualisation tests.

The applied load was low (see figure (5.12)), this lim itation being imposed 

by the mechanical properties of the glass [ o y  =  500M Fa). Above these loads, 

glass was often observed to crack.

The initial roughness of 0.5/xm of the disc led to the formation of a thick 

lubricant layer and no particles were created under these conditions. For this 

reason, the disc was polished down to a value of 0.1//m.

GEOMETR'Y MATERIALS LOAOING

CONDITIONS

LUBRIPICATION
SLIOING
VELOCITY’ Ra in 

M m

VISUALISATION

TBSTS

plane

ellipsoide
Rx=12.5mm

Rz=25inm

G lass
W = 25N

Pmajc (H ertz) 
=286  M Pa

Pm ax (H ertz) 
=300 IVlPa

^ b o u n d a ry  X 
\  lubricatio iw  

w ith 
1% stearic  acid 

in w h ite  oil

(applied on the
disc with a 
cotton bud)

o.oi <0.1
a lu m in iu m

alloy

or

Chopper

Figure 5.12: Test conditions
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Chapter 6 

Experimental results

This chapter presents the results of the two parts of the experimental investi­

gation;

1. In a first part, the friction tests with the use of a full cylinder and 

a cut cylinder are described for both materials. The observations of 

detached particles accumulated around the contact area are presented. 

The friction results are compared with our numerical model.

The tests performed with a full cylinder will be called blind tests (because 

what happens at the interface can not be seen) in order to distinguish 

them from the visualisation tests.

2. The aim of the second part of the experimental investigation is to inves­

tigate the behaviour of the detached particles accumulated around the 

contact area for the full cylinder tests or blind tests.

In this section, the results of the visualisation tests are presented for 

both materials: the dynamic observations of the particle flows at the 

interface are correlated to the static observations of the friction track 

after the test. These results are used to determ ine whether the detached 

particles are trapped inside the contact area and flow at the interface for 

the blind tests.

95



6.1 Friction results and observations when a 

hard cyHnder in C .B .N . slides across two  

non-ferrous m etals

Details concerning friction measurements and experimental data are given in 

appendix (K).

6.1.1 Full cylinder tests: Si

General observations during the tests. Observations of the tool

In the load range of these tests, wear rates were clearly observed to increase 

with load for both materials. For the highest loads, it was thus more easily 

observable that a significant number of particles accumulated, especially in 

front of the tool but also at the sides and even slightly behind it. It should be 

noted that the presence of the lubricating sponge, (see chapter (5)), limited 

this particle accumulation to some extent, acting as a filter.

Figures (6.1) and (6.2) show how the detached particles lie on the cylinder 

after a test on aluminium and copper respectively. For both figures, the entry 

of the contact is on the left. Even if it is possible that some particles have been 

driven into the contact area during the unloading procedure, due to progressive 

decrease of contact pressure, it seems probable that particles are present inside 

the contact area.

The detached particles observed in figures (6.1) and (6.2) have been checked 

to be aluminium and copper respectively by x-ray analysis. However, for 

copper, oxides were found too.
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Motion

AREA
OF

CONTACT

Figure 6.1: Detached particle accumulation for the full cylinder experiment for 

aluminium - Top view of the cylinder - N /kR =0.5 - W idth of the tool=3.15mm

Motion

AREA
OF
CONTACT

Figure 6.2: Detached particle accumulation for the full cylinder experiment 

for copper - Top view of the tool - N /kR =0.5 - W idth of the tool=3.15mm
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Friction results

The friction results of the sets Siai and Sico, where a full cylinder in C.B.N. 

slides across aluminium and copper, are presented in figures (6.3) and (6.4) 

respectively. The circles represent the measured friction coefficients. The 

stars represent the predictions of the plastic model developed in the present 

work, while the full lines represent the predictions of the chord model [1]. For 

both models, a value of /  =  0.05 has been taken (the determ ination of /  has 

been described in appendix (H)). It can be seen th a t for both materials the 

experimental values axe higher than those predicted by both models.

For aluminium, (see figure (6.3)), increasing load does not imply increasing 

jj, as predicted by slipline field theory. The measured friction coefficients are 

roughly constant over the load range of the tests, with ^  =  0.1.

However, for copper (see figure (6.4)), the measured friction coefficients do 

show some increase with load. In figure (6.4), the dotted lines represent the 

predictions of the plastic model developed in the present work for /  =  0.3. It 

can be seen th a t measured friction coefficients fit the predictions of the model 

reasonably well when the boundary conditions of the interface are changed.

Large scatter in the experimental results for a given load can be observed 

for both materials. This can be explained firstly by the practical difficulty 

of positioning the cylinder so th a t it contacts the bar at its highest point 

and some differences in alignment are possible between two different tests. 

This could also be due to the presence of a fairly thick layer of particles 

at the interface between the cylinder and the soft material, as was observed 

in previous section. The features and behaviour of the layer might change 

from one test to another (slight change in lubricant volume, nature of the 

paste inside the contact area ...), which probably changes the test conditions. 

Finally, this could be explained also by the scatter observed, for a given test, 

in the measured frictional and normal forces, as shown in appendix (K).
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Figure 6.3: Experiments with full cylinders. Aluminium

0 4

O ex p e rim en ts  co p p e r -  full cylinder 
—  chord  m odel (f=0 05)

num erical m odel (f=0 05) 
n um encal m odel (f=0.3)__________

0.3

c
o
o

i t
(D
O  0 2
O
co
o

°0

0.40 2 0.8

N/kR

Figure 6.4: Experiments with full cylinders. Copper
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6.1.2 Cut cylinder tests: S2

General observations during the tests- Observations of the tool

Over the load range of these tests, wear rates were observed to be much higher 

than found in the tests with the full cylinders for the same sliding distance. 

They also clearly increase with load. Figures (6.5) and (6.6) show the de­

tached particle organisation on the tool after tests on aluminium and copper 

respectively. For both pictures, the entry of the contact is on the left. These 

pictures show that particles are also present inside the contact area. However, 

it can be observed that there is much less accumulation of particles at the exit 

of the contact (right of both pictures) than with the full cylinder, which is a 

consequence of the removal of the trailing edge.

Motion

EDGE OF 
THE CUT 
CYLINDER

Figure 6.5: Detached particle accumulation for the cut cylinder experiments 

on aluminium - Top view of the tool - N/kR=0.25 - width of the tool=3.15mrn
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Motion

EDGE OF 
THE CUT 
CYLINDER

Figure 6.6: Detached particle accumulation for the cut cylinder experiments 

on copper Top view of the tool— N /k R = 0 .o 2 -  W idth of the tool=3.15m m

Friction results

The friction results of sets S2az and S2C0 , where a cut cylinder in C.B.N. slides 

across aluminium and copper respectively, are presented in figures (6.7) and 

(6.8) for the two materials. The triangles represent the measured friction 

coefficients, while the dotted lines represent the predictions of the developed 

chord model [3] (equations in appendix (B)) for /  =  0.05. For each graph, the 

value chosen for /?c, the angle between the leading edge and the center line of 

the cylinder, is the one which best fits the experimental data.

It can be seen that the friction coefficients are generally higher than with 

the full cylinder (see section (6.1.1)) and that they increase with load as pre­

dicted by the developed chord model. The deviations from the developed 

chord model observed for the highest loads were associated with a change 

of deformation regime. Under these loading conditions, continuous removal 

of material, or rough cutting was observed. However, under less severe con­

ditions, measured friction coefficients for aluminium fit the developed chord 

model predictions well.

There is still large scatter in the experimental results for a given load and
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for both materials, probably because of the presence of a layer of particles 

at the interface, whose features and behaviour might change from one test to 

another. This could be explained also by the scatter observed, for a given 

test, in the measured frictional and normal forces, as shown in appendix (K). 

However, friction coefficients follow the trend of slipline field theory.

As mentioned in chapter (5), the same tool was used for both materials. 

Nevertheless, the angle /?c which best fits the data is 8.5°for aluminium and 

5°for copper. Unfortunately, the lack of accuracy in grinding this tool and 

the practical difficulties of accurately measuring (5̂  on the tool did not allow 

an accurate independent determination of the actual f3c- The different angles 

obtained can be explained to some extent by the rotation of the tool around its 

pivot with progressive wear of the test-piece (set-up described in chapter (5)). 

Copper and aluminium have different wear rates; thus the resulting average 

Pc might differ.

0,4

0  experiments aluminium -  cut cylinder
—  chord model (f=0,05)
-  -  developed chord model (f«0,05 -  beta=8.5deg)

numerical model (f=0.05)_____________________

0,3

00  0.2

0,2 0,4
N/kR

Figure 6.7; Experiments with a cut cylinder: Aluminium
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chord model (f=0.05)

-  -  developed chord model (f=0.05 -  beta=5deg) 
numerical model (f=0.05)___________________

0.3

R 0.2

0^.-<r  0
_  -O '

0.2 0.4 0.6
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Figure 6.8: Experiments with a cut cylinder: Copper

6.2 R esults o f th e visualisation investigation

6.2.1 Introduction: objectives and m ethod

The aim of the visualisation investigation was to investigate the behaviour of 

the detached particles when a cylinder in C.B.N. slides across the two non- 

ferrous materials tested, and especially to answer the following questions:

•  Are the particles trapped in the contact?

• Do they participate in the velocity accommodation between the cylinder 

and the soft material?

The method used to achieve these objectives consists of:

1. Using a transparent tool wearing the soft surface and visualising the 

detached particle flows at the interface through the transparent tool.

2. Preserving the tool and the test sample for further examination and 

obtaining a static view of the surfaces at the end of the test.
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3. S tarting from static observations of the samples involved in the blind 

tests when a full cylinder slides across the soft surface and reconstituting 

what happens dynamically at the interface.

The visualisation tests are used as an aid in the reconstitution of the ac­

tivated flows of detached particles involved in the blind tests. However some 

care has to be taken in the correlation with the blind tests because, as de­

scribed in chapter (5), the contacts are different. The obvious differences can 

be stated as follows:

1. The geometry and the loading conditions.

2. The m aterial (glass instead of C.B.N.).

3. The physical-chemistry (The triplet aluminium (or copper)/glass/stearic 

acid instead of the triplet aluminium (or copper)/glass/stearic acid).

Glass has mechanical, thermo-mechanical and physico-chemical proper­

ties different from C.B.N. This could modify the behaviour in friction. 

This is the reason why no friction results are presented for the visuali­

sation tests.

4. The surface preparation.

All these parameters influence the contact life and the differences have to 

be accounted for. For example, the mechanisms involved in the detachment 

of particles are not necessarily the same for the two sets of tests.

In the following sections, the visualisation analysis is described for both 

materials. Some additional blind tests (tests with a C.B.N. cylinder) were 

performed on the initial test rig and attention has been focussed on observation 

of detached particles collected on the tool and compared with the visualisation 

tests.
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6.2.2 R esu lts for alum inium

RESULTS OF THE VISUALISATION TESTS: CORRELATION 

BETW EEN DYNAM IC AND STATIC OBSERVATIONS

Dynamic observations

Figure (6.9a) shows a picture taken from the video in the last stages of the 

test on aluminium. The conditions for this test have been given in chapter (5). 

Here, only the end of the test is described because the dynamic observations 

made during the last cycles of the test will be directly associated with what 

remains statically on the specimen after the test. Once enough aluminium 

particles have been created, the contact reaches a sort of steady state: the 

contact area remains constant and the particle flows are regular. The activated 

flows of detached particles involved in figure (6.9a) have been sketched in figure 

(6.9b). Basically, there is a mass of non cohesive particles which accumulates 

at the entry of the contact area, which is on the left of the two figures. These 

particles are provided by the recirculation flow, or Qj., which is made up of the 

particles which are driven by the rotating crowned disc outside of the contact 

area and are then drawn back into the contact area (see chapter (1)). Then, 

the particles are driven periodically into the contact area as cohesive groups, 

or load-carrying islands. These flows constitute the internal flow, or Qj, which 

corresponds to the particles trapped inside the contact and which flow between 

the two first bodies and carry the load. This mixture of solid particles and 

lubricant seems to have the rheological behavior of a “very viscous paste” . 

Lateral or longitudinal internal flows of particles can be observed, as shown in 

figure (6.9b) with the direction of the arrows Qi.
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b: schematics of the activated flows

Figure 6.9: Image extracted from a video- Visualisation test on aluminium- 

N=25N- Average width of the friction track ~  0.7mm- velocity ~  lOrev/min.
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Post-mortem static observations

Figures (6.10a) and (6.10b) are SEM pictures of the friction track on the 

crowned disc in aluminum after the visualisation test. The instantaneous 

surfaces observed dynamically in the previous section can be seen on this 

friction track. Longitudinal smooth areas (or platelets) can be associated 

with longitudinal internal flows (which correspond to the longitudinal flows of 

the islands in figure (6.9b)). The smooth laterally oriented areas (or flakes) 

can be associated with the lateral internal flows.

Observations at higher magnification in figure (6.10c) show that the third 

body is sheared along different planes. This has been sketched in figure (6.10d). 

This is also called the S3M3 mechanism, with S3, or site 3 for third body and 

M3, or mechanism 3 for shearing (see appendix (I) and references [96], [9]). 

This suggests that the third body separates completely the two first bodies 

and that the source flow (which corresponds to the detachment of particles) is 

much reduced once a sufficient quantity has been created to ensure the velocity 

accomodation. The recirculation flow, as has been observed dynamically would 

be the main activated flow in the contact under these conditions.

Figures (6.11a) and (6.11b) show how the detached particles lie on the 

transparent tool after the test. There is a long smooth particle in figure 

(6.11b), which is the static view of a longitudinal flow observed on the video 

just before the test stops. This is probably a “layer” of an S3M3 type mech­

anism which remains on the glass. This is clearly quite cohesive and will 

probably lead to one long surface on the disc track shown on the pictures 

(6.10a) and (6.10b), once driven into the contact.
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c: d: S3M3 type of velocity accomodations

Figure 6.10: SEM images of the friction track of the crowned disc after the 

visualisation test on aluminium (see test conditions in figure (5.12))

<—  Motion
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o f the 
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lirun

a: b:

Figure 6.11: Optical microscope images of the transparent tool after the visu­

alisation test on aluminium - (a) overview of the contact - (b) zoom of (a)
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CORRELATION BETW EEN THE VISUALISATION TEST AND  

THE BLIND TESTS FOR ALUMINIUM

Figures (6.12a) and (6.12b) show the detached particle organisation on the tool 

after the blind test (b) and the visualisation test (a) respectively. For both 

pictures, the entry of the contact is on the left. There is a similar organisation 

in front of and behind the contact of non cohesive particles.

Figures (6.13b) and (6.13c) show a conglomerate of particles collected after 

the blind test on the cylinder close to the contact area. Figure (6.13a) shows 

the friction track after the visualisation test. The comparison of the particle 

morphology and organisation suggests a similar S3M3 mechanism in the two 

types of test. However, as shown in figures (6.13b and c), the conglomerates 

collected after the blind test are quite thick and have almost the same width 

as the contact area. For the blind test configuration, it is probable that the 

main direction of particle flow is the sliding direction. Lateral flows, as were 

observed in the visualisation test probably do not occur here. This can be 

explained by the fact that, in the blind test, material is constrained in plane 

strain flow, thus limiting particle side leakage, whereas the contact in the 

visualisation test is more open and lateral particle flows are possible.
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Motion Motion

1mm

a: Visualisation test b: Blind test- w idth=  3.15mm

Figure 6.12: Detached particle organisation on the transparent tool after the 

visualisation test and on the C.B.N. cylinder after a blind test { N / k R  = 0.56)- 

aluminium

a: visualisation test

b: blind test - N /kr=0.5  c: blind test - N /kr=0.5

Figure 6.13: S3M3 sites for the visualisation test and for the blind test 

Aluminium
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6.2.3 R esults for copper

RESULTS OF THE VISUALISATION TESTS: CORRELATION 

BETW EEN DYNAM IC AND STATIC OBSERVATIONS

Dynamic observations

Figure (6.14a) shows a picture taken from the video at 50% of the test du­

ration on copper. The conditions for this test have been given in chapter (5). 

No quality pictures describing the last stages of the test are available because 

of visualisation problems (brightness of copper, small number of particles in­

volved, set-up not perfectly stiff for this test, ...). However, the particle flows 

described here do not evolve much during the last stages of the test and can 

thus be associated with static observations performed after the test.

As for aluminium, once enough copper particles have been created during 

the test, the contact reaches a sort of steady state: the particle flows are 

regular. The activated flows of detached particles involved in figure (6.14a) 

have been sketched in figure (6.14b). Basically, a regular delocalisation of the 

load-carrying is observed. As a first step, there is a small number of cohesive 

particles which accumulates at the entry of the contact. This area grows slowly 

up to a given quantity of particles, at which point it seems to carry all the load. 

This load-carrying area then moves forward to the center of the contact and 

then to the exit. Instantaneous long, thin surfaces are periodically observed in 

the contact area. This hour-glass process then starts again at the entry of the 

contact. Most of the observed flows are composed of individual non-cohesive 

particles or very thin lines of particles. Large cohesive islands, observed in the 

test on aluminium have not been observed here. Copper may be more reactive 

with stearic acid than aluminium, leading to metallic soap formation and less 

auto-adhesion between its particles [65].

It should be noted that the set-up was not perfectly stiff for this test (we 

realised that one part of the specimen holder was free to move during this 

test); this could have led to a reduction in the contact pressure, and increase
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in contact vibration. This could explain to some extent why there are fewer 

particles created for copper than for aluminium.

Motion

a: movie copper
REGULAR DELOCALISATION OP 

THE LOAD-CARRYING

NON COHESIVE 

ACCUMULATION

NON COHESIVE 

ACCUMULATION
COHESIVE

ACCUMULATION

b: schematics of the activated flows

Figure 6.14: Image extracted from a video- Visualisation test on copper- 

N~25N around- Average width of the friction track ~  1.5mm- velocity 

~  lOrev/min

112



Static post-m ortem  observations

Figures (6.15a), (6.15b), (6.16a) and (6.16b) are SEM pictures of the fric­

tion track on the crowned disc in copper after the visualisation test. The 

instantaneous long thin surfaces observed dynamically in the previous section 

can be observed at different magnification.

Observations at very high magnification in figure (6.16b) show that the 

particles created are very small (< 10//m). Figures (6.15b) and (6.16a) show 

that these individual particles can eventually form more cohesive planes under 

a S3M3 mechanism, as was sketched in figure (6.10d).

Figure (6.17) shows how the detached particles lie on the transparent tool 

after the test. There are long thin particle lines, which are the static view of 

the longitudinal flows observed on the video during the test.

Figure 6.15: SEM images of the friction track of the crowned disc after the 

visualisation test on copper

113



Figure 6.16: SEM images of the friction track of the crowned disc after the 

visualisation test on copper

Motion

width o f  the contact

Figure 6.17: Optical microscope image of the transparent tool - copper
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CORRELATION BETW EEN THE VISUALISATION TEST AND  

THE BLIND TESTS FOR CO PPER

Figures (6.18a) and (6.18b) show the detached particle organisation on the 

tool after the visualisation test (a) and after the blind test (b) respectively. 

For both pictures, the entry of the contact is on the left. There is a similar 

organisation in front of and behind the contact of non cohesive particles.

Figures (6.19c) and (6.19d) show a conglomerate of particles collected after 

the blind test on the cylinder close to the contact area. Figures (6.19a) and 

(6.19b) show the friction track after the visualisation test. A comparison of 

the particle morphology and organisation suggests a similar S3M3 mechanism 

in the two types of test. However, figure (6.19d) shows that, even if the con­

glomerate is compacted and forms an homogeneous layer, it can be observed 

that the layer is composed of very thin longitudinal layers, which appear to 

be less cohesive than the layer found with aluminium. This last feature is 

consistent with the observations of the visualisation, where no real cohesion 

between the particles was observed. As for aluminium, velocity accomodation 

sites are more localised in the visualisation test than in the blind test, where 

material is constrained to plane strain flow.

Motion Motion

a: Visualisation test b: Blind test - N / k R  = 0.5

Figure 6.18; Detached particle organisation on the cylinder after the blind test 

and on the transparent tool after the visualisation test for copper
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a: visualisation test h\ visualisation test

c: blind test - N /kr=0.43 d: blind test - N /kr=0.43

Figure 6.19: S3M3 sites for the visualisation test and for the blind test (full 

cylinder) '  Copper

6.3 Conclusions 

6.3.1 Friction results

The friction results obtained in section (6.1) show that:

•  Measured friction coefficients are higher than the predictions of our nu­

merical model when a cylinder in C.B.N. slides across the two non-ferrous 

metals under investigation.
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• For aluminium, measured friction coefficients are roughly constant, which 

is not consistent with slipline field predictions, where friction is supposed 

to increase with load.

•  The behaviour of copper, however, is closer to a rigid perfectly plastic 

behaviour. The friction results exhibit some increase with load. By 

changing the value of the Tresca factor at the interface, these results 

follow the trends of slipline field theory well.

•  When the trailing edge of the cylinder is relieved, measured friction co­

efficients for both materials follow the predictions of slipline field theory 

well.

6.3.2 Visualisation results

The tests with a full cylinder have been correlated to the visualisation tests. 

Some similarities in the static observations (particle organisation, conglomer­

ate morphology, ...) provide some experimental evidence th a t identical mech­

anisms of velocity accomodation operate in both tests and for both materials. 

The particle conglomerates observed in the blind tests, probably participate at 

least partly in velocity accommodation by carrying load and by being sheared 

along planes.

This suggests th a t for both materials:

•  A significant layer of a mixture of solid particles and lubricant is trapped 

inside the contact area. The distribution of this paste all over the contact 

area might modify the overall geometry of the contact, and thus the 

pressure distribution on the wearing material.

•  This m ixture solid particles/lubricant flows in the contact area. The 

position and the size of the contact areas might thus evolve during the 

contact life, as does the pressure distribution.
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Chapter 7

Discussion

7.1 Friction

7.1.1 Introduction

In chapter (6), two non-ferrous m etals, w ith different m odulus to  streng th  

ra tio  [ E / a y )  have been tested  against the predictions of our num erical model.

For the full cylinder configuration, significant deviations from theory have 

been observed for both  m aterials, which however exhibit a  different behaviour.

For the cut cylinder configuration, m easured friction coefficients for both  

m aterials were found to  follow slipline field theory  more closely.

Furtherm ore, the visualisation investigation provided some experim ental 

evidence th a t a significant layer of a m ixture of solid particles and lubricant 

is trapped  in the contact for the two m aterials and  flows in th e  contact area.

This section is com posed of three parts:

•  In a first part, the  influence of elastic effects on friction for the full 

and cut cylinder configurations is investigated. Firstly, th e  m ain results 

of the finite elem ent analysis are recalled. Secondly, the  predictions of 

the elasto-plastic m odel of Torrance et al [8, 63, 64], which accounts
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approximatly for elasticity when a wedge shape asperity slides across a 

softer surface are compared to our numerical model too.

• In a second part, the influence on friction of a third body layer at the 

interface, as observed in the experiments is discussed for the full cylinder 

and cut cylinder configuration. The consequences of these effects on the 

two parameters 9 and /  which are the inputs of our numerical model are 

analysed.

• Finally, our experimental results for the full cylinder and cut cylinder 

configuration and for the two tested materials are discussed in terms of 

these effects.

7.1.2 Influence of elastic effects 

Finite elem ent analysis

Finite element analysis (see chapter (4)) shows that for the full cylinder con­

figuration, elastic effects induce the formation of a trailing wave behind the 

center line of the cylinder in the soft surface. When no friction is considered 

at the interface (i.e. /  =  0 as in finite element analysis), friction coefficients 

are predicted to increase with load as predicted by our numerical model but 

to be lower.

When a cut cylinder is considered, finite element analysis shows that the 

trailing wave is removed and elastic effects are thus decreased. When no 

friction is considered at the interface, friction coefficients are closer to our 

numerical model.
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Com parison of our numerical m odel w ith the elasto-plastic m odel of  

Torrance et al [8, 63, 64]

By using finite element analysis, Torrance et al [31, 29, 8] have estim ated tha t 

for typical engineering m aterials for which the ratio of modulus to strength 

lies in the range of 100 <  E/ oy  < 400 and for topographies within which the 

effective surface slopes a  are in the range l°-5°, the wave model [2] breaks 

down. Torrance et al [8, 63, 64] proposed an elasto-plastic model, which is the 

extension of the wave model [2] to smoother surfaces with lower slopes. The 

authors showed th a t when elastic effects are considered in conjunction with a 

Tresca factor for a wedge shaped asperity, the normal and tangential stresses 

begin to deviate significantly from those given by slipline field theory for the 

lowest angles.

Using this model in conjunction with a Tresca factor / ,  the friction coeffi­

cient is defined as follows:

11 = idni{a + 6 f )  (7.1)

where,

Of =  a r c ta n ( /^ )  (7.2)

where P  is the mean contact pressure on the front face of the wedge cal­

culated by the model.

In figure (7.1), The friction predictions of this model (dashed lines) are 

compared to our numerical model (stars) for two values of the Tresca factor 

/  using copper [Ejoy  =  300). It can be seen th a t there is a load range, 

which depends on the Tresca factor and on the mechanical properties of the 

deforming m aterial, where predicted friction coefficients are roughly constant. 

They tend to rise very steeply as the load falls further and approaches zero.
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0.4

 e lasto -p lastic  model (f=0.05)
H|H numerical model (f=0.05)
-  -  e lasto -p lastic  model (f=0.3) 
H jh  numerical model (f=0.3)______

0.3

0.40 0.2 0.6 0.8 1
N /kR

Figure 7.1: Comparison between the friction predictions of the elasto-plastic 

model of Torrance et al [8] and our numerical model- E  j o y  — 300
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7.1.3 Influence of a third body layer at the interface

The visuahsation investigation provided evidence that a mixture of sohd par­

ticles and lubricant flow at the interface between the full cylinder and the soft 

material.

In our numerical model, friction is assumed to be controlled by two param­

eters:

1. The surface roughness parameter, which is for a single cylindrical as­

perity, the angle of the interface 6 or the angle of the chord a, with 

0 = 2a.

2. The lubrication parameter or Tresca factor / ,  which represents the shear 

strength of the interface.

The aim of this section is to analyse the consequences of a third body layer 

trapped in the contact on the parameters, which control theory.

Influences on th e  ang le  o f th e  in terface  9 o r th e  equ ivalen t chord 

angle o f th e  in terface  a (9 = 2a)

It has been shown that the layers of particles trapped in the contact participate 

at least partly in velocity accommodation by carrying load and being sheared 

along planes. The distribution of this paste all around and inside the contact 

area may modify the overall geometry of the contact. The presence of this 

layer may increase the contact area well beyond the predictions of the slipline 

field model, which will substantially reduce the real contact pressure.

These effects can be sketched in terms of the chord angle of the interface 

a. Figure (7.2a) shows the contact geometry as assumed in the slipline field 

model. Figure (7.2b) shows how elastic effects affect a. cti is lower than a  due 

to the presence of the trailing wave behind the center line of the cylinder, as 

was shown by finite element analysis in section (7.1.2). Figure (7.2c) shows how 

both the layer of third body and elastic effects may change the initial geometry
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of the contact, with a -2 < ai < a. Consequently, even at the highest loads 

used in our tests, the contact stresses may be too low to provoke very much 

plastic deformation in the first bodies, and at all loads, the main dissipative 

mechanism might be shear in the third body.

For the cut cylinder configuration, elastic effects are much reduced and the 

trailing wave does not exist, as was shown by finite element analysis. Even 

if a layer of third body is trapped, this might lead to a slight decrease of the 

param eter a, but not as significantly as for the full cylinder. The region of 

contact between the cut cylinder and the deformed m aterial is concentrated to 

the leading side of the cut cylinder, inducing high contact pressure close to the 

geometrical discontinuity. The removal of the trailing side of the cylinder prob­

ably creates a clearance angle for the particles to escape. For a wedge-shaped 

asperity, the same features as for the cut cylinder configuration probably occur 

too.

a: model b: elasticity

c: th ird  body layer

Figure 7.2: Influence of elasticity and a third body layer on the param eter a
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Influence on the lubrication param eter /

In the  slipline field model, the Tresca factor / ,  which is the streng th  of the 

interface r  as a fraction of the flow stress of the  deform ing m aterial k, has been 

assessed through wedge shaped asperity  experim ents (see appendix (H)). A 

value of /  =  0.05 has been determ ined for bo th  m ateria ls and used to  analyse 

the results w ith a full and a cut cylinder. We thus assum ed th a t the boundary 

film form ed a t the interface between the  wedge and the  deform ing m ateria l is 

of sim ilar physical and chemical na tu re  as in the  cylinder configuration and 

th a t the  shearing of th is interfacial layer is equivalent, in term s of boundary 

conditions for the deform ing m aterial, to  a constan t shear stress. A lthough 

/  =  0.05 m ight be characteristic of the  shear streng th  of the interfacial layer 

for the  cut cylinder configuration, th is value m ight no t be characteristic any 

more for the  full cylinder configuration. T he full cylinder configuration favours 

the en trapm ent of a fairly thick layer com posed of a m ixture of detached 

particles and lubricant, whereas in the  cu t cylinder configuration, these effects 

are lim ited by factors of geom etry and pressure d istribution .

A paste  formed by detached particles and lubricant, as was observed in the 

experim ents will have rheological properties which depend m ainly on [67, 70]

1. the  am ount of th ird  body involved (thickness of the  layer)

2. the relative solid/fluid content of the  resulting paste

3. the  d istribu tion  all over the contact

4. its rheology: viscosity or shear s treng th

5. the  contact shape.

It is thus possible th a t the streng th  of the  interface is different for the full 

cylinder configuration from th a t for the cu t cylinder and wedge configurations.
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7.1.4 Interpretation of our experim ental results 

The case o f the full cylinder

Figures (7.3) and (7.4) recall the friction results obtained in the experiments 

Si  with a full cylinder (circles on each graph) and compared with the friction 

predictions of our numerical model (stars for each graph) for aluminium and 

copper respectively.

The elasticity of both materials can be quantified non-dimensionnally by 

the ratio of elastic modulus E  to yield strength ay, with [Ejoy =  200) for alu­

minium, and {E/cFy =  300) for copper. In our experiments, the asperity loads 

(N/kR)  lie within the range 0.2-0.8, which values correspond to initial values 

of effective chord angle a,  with 2a =  9, within the range l°-6°. Elastic effects 

are expected to be more important for aluminium than for copper. This is con­

sistent with the experimental results, where friction coefficents measured for 

aluminium deviate from the trends predicted by slipline field theory, whereas 

results for copper are closer.

The presence of a third body layer might imply a decrease of the effective 

chord angle (a) for a given load {N/kR).  In our tests, the asperity loads 

{N/kR)  lie within the range 0.2-0.8. However, the range of effective asperity 

angles might have been actually lower than predicted by slipline field theory 

and within the range predicted by Torrance [29], where friction levels out as 

was shown in figure (7.1). Elastic effects and the third body layer can explain 

both that for both materials, friction coefficients are higher than our numerical 

model predictions.

Furthermore, the value of /  =  0.05 for the Tresca factor, as assessed 

through wedge experiments is probably not characteristic of the shear strength 

of the interface for this configuration. Taking /  =  0.25 and /  =  0.3 for alu­

minium and copper respectively, leads to a reasonable agreement between the 

friction coefficients measured for both materials and the predictions of the 

model of Torrance et al [8] as shown in figures (7.3) and (7.4).
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For the highest loads, this latter model is equivalent to the slipline field 

solution. For lowest loads, there is a load range, which depends on the me­

chanical properties of both materials and on the nature of the boundary film, 

where friction is predicted to be constant and finally to level out as load ap­

proaches zero. The differences in behaviour between aluminium {E/ay = 200) 

and copper {E/ay — 300) in the experiments can be explained by elastic ef­

fects. The load range of the tests corresponds to an elasto-plastic behaviour for 

aluminium and a rigid-plastic one for copper, as shown in figure (7.4) by the 

agreement between our numerical model, for /  =  0.3 and the friction results 

for copper.

0-4

-  -  © lasio -p las lic  m odel (f»0.25)
O  e x p e rim e n ts  a lum inium  -  full cylinder 

num erical m odel (f»0.05)____________

0.3

0)
0  0 2

0.60.2 0.4

N /kR

Figure 7.3: Experimental results and the predictions of the elasto-plastic model 

of Torrance et al [8] - Aluminium
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0 .4

— -  e la s to - p la s tic  m odel (f=0.3)
O  e x p e rim e n ts  c o p p e r  -  full cy linder 

num erica l m odel (f=0,3) 
n um erica l m odel (1^0.05)_________

0.3

0  0.2

0.40.2

N /kR

Figure 7.4; Experimental results and the predictions of the elasto-plastic model 

of Torrance et al [8] - Copper

The case o f the cut cylinder

A better accordance between slipline field theory and experiments with a cut 

cylinder is predicted by finite element analysis. If the trailing wave is removed, 

the plastic deformation is concentrated in a smaller zone and elastic effects 

become less important. A second reason why theory predicts well ^  for this 

configuration is that the entrapment of a third body layer is much reduced. 

Furthermore, the paste of particles and lubricant which flows at the interface 

is probably of similar nature as for the wedge configuration. The value of 

J  =  0.05 assessed for both materials is characteristic of the shear strength of 

the interface for this configuration.
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7.2 Prediction of Strains

7.2.1 Introduction

In chapter (4), our numerical model has been shown to offer more refined 

information concerning the deformation pattern, left behind the cylinder in 

the soft surface than the chord model of Challen and Oxley [1]. The main 

difference is th a t the strains vary with depth, being higher than the predictions 

of the chord model near the surface, and falling to zero at the boundary of the 

deformation field.

Figure (7.5) shows a typical distorted grid predicted by our model. Figure 

(7.6) gives a quantitative estim ate of the strain cycle undergone by the m ate­

rial for different streamlines (or depth) and shows how it compares with the 

predictions of the chord model [1] for the same conditions.

The aim of this section is to compare the strains predicted by our model 

to the strains measured in model asperity experiments.

The strain pattern  predicted by our model is also compared to the mor­

phology of detached particles, collected after wedge experiments.
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Figure 7.5: D istorted grid predicted - Conditions: 6 = 0.2rad, f  =  0.25
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Figure 7.6: e^x versus - full line: chord model[l] - Conditions: 9 = 0.2rad, 

f  = 0.25

129



7.2.2 C om parison w ith  strain patterns observed in pre­

vious work

Com parison w ith the strain patterns obtained after wedge shape 

m odel asperity experim ents

It is interesting th a t the strain  pattern  obtained with our model is much closer 

than  the chord model to what was observed by Kopalinsky [7] and also by Yang 

[6] in experiments where the plastic strains left by model wedge-shaped asper­

ities were measured by visioplastic methods. Figure (7.7) shows an example 

of such a highly strained layer taken from a test in which a wedge of attack 

angle 10°was rubbed against a 5083 aluminium alloy (taken from Yang [6]). 

Kopalinsky argued tha t the higher strains near the surface were a consequence 

of work hardening, which may be true with a perfectly sharp wedge-shaped as­

perity. However Yang observed tha t the tip of the wedge used rapidly became 

rounded, so th a t it could be better described as cylindrical.

Using our numerical model presented here for equivalent conditions with a 

cylindrical slider {9 = 20°, /  =  0.25, kg =  236MPa),  we find th a t the obtained 

distorted grid plotted in figure (7.8), is close to th a t observed by Yang [6]. The 

maximum shear strain jaMAX left at the surface, (see definitions in chapter (3)) 

measured by Yang [6] was approximatly 'jaMAx =  12. Figure (7.9) shows how 

our numerical model predicts the variations of the shear strain 7^ with depth 

for this case. It can be seen th a t a maximum shear strain of 11 is predicted 

near the surface, which is close to the one observed in Yang’s experiment.

It should be noted tha t the grid obtained by Yang [6] was obtained after 95 

passes approximately of the asperity over the same track. Our model predicts 

this strain pattern  after one pass of the asperity. The rigid-plastic theory 

(see chapter (1)) assumes th a t no wear takes place until the deformed layer 

has suffered sufficient damage throughout its volume for failure to occur and 

for m aterial to be removed. This a direct consequence of the fact th a t the 

wave model or the chord model [2, 1] predicts an homogeneously deformed
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layer. There is a difference between theory and observations, which is that 

the layer removed from the surface for each pass seems much thirmer than 

the thickness of the deformed layer [6, 97]. Our numerical results provide 

an explanation for this and suggest that wear would proceed continuously, 

with material becoming steadily more deformed as it approaches the wearing 

surface.

Motion

Figure 7.7: S.E.M. image taken from [6]. Grid size: 100//m
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Figure 7.8: Grid obtained by our model. 9 =  20°, /  =  0.25, kg =  236MPa.
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Figure 7.9: Variation of 7q w ith  depth predicted by our model. 9 =  20°, 

/  =  0.25, kg =  236MPa
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Com parison w ith the strain patterns obtained after cylinder shape  

m odel asperity experim ents

Very recently [11], the strain pattern left by a cylinder in C.B.N. on the 2011 

aluminium alloy tested in this work has been observed by visioplastic meth­

ods. In these experiments, the set-up, the cylindrical tool and the lubrication 

conditions were identical to those described in chapter (5).

Figure (7.2.2) presents a cross section normal to the friction track and 

parallel to the direction of motion, obtained for N / k R  = 0.7 approximately. 

As for the wedge experiments [7, 6], the specimen presents a highly strained 

layer near the surface which gradually decreases to zero at the bottom of 

the deformed layer. Figure (7.2.2) shows how the shear strain (7^) measured 

approximately on this grid varies with depth (stars on the graph). Using our 

numerical model for identical loading conditions and for a Tresca factor within 

the range /  =  0.2 — 0.5 to account for a third body layer (see section (7.1.4)), 

we find that the high shear strains observed near the surface of the specimen 

can be quantitatively predicted for /  =  0.4.

It should be noted that this experimental grid has been obtained after one 

pass of the asperity. Even if further experiments need to be performed under 

more controlled lubrication conditions to confirm this correlation between our 

numerical model and experiments, this suggests that slipline field theory can 

predict quantitatively the high shear strains near the surface for high loads.
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Figure 7.10; Grid taken from [ l l ] , N/ kR  =  0.7, /  =  0.2 —0.5, grid size= 100/im
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Figure 7.11: Comparison of 7  ̂ as a function of h / R  measured from the grid 

and calculated from the numerical model for different values of /
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7.2.3 Comparison with the morphology of wear debris 

collected after wedge experim ents

By careful metallography, Torrance and Zhou [57] observed the cracks and 

the wear particles produced by sliding a wedge over an aluminium alloy {kg =  

nOMPa). At higher angles of attack some flaky wear particles were observed, 

whereas at lower attack angles the particles were block-like and resembled ir­

regular pyramids. They explained the two distinct particle shapes by a change 

in the elastic stress field to the rear of the contact. However, an alternative 

explanation can be proposed. The two conditions studied in their work corre­

spond to a cylindrical slider with 9 =  5deg and one with 9 = 16deg, /  being 

0.275 in both cases. Figure (7.12) shows how the shear strain 7q varies with 

depth in each case. W ith 9 =  16deg, intense shear occurs near the surface, 

which will favour the shear cracking of a thin surface layer to give flaky par­

ticles much thinner than the overall thickness of surface deformation. With 

9 =  5deg, shear is more uniform, which will favour the formation of thicker 

particles as was observed. These findings may have some importance on the 

mechanism of wear particle detachment in ductile metals.

It should be noted that this correlation only holds if the size, morphology 

and the composition of the debris collected are not significantly different from 

those of the particles when detached from the first bodies, as was the case in 

our full cylinder experiments.
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Figure 7.12: Evolution of 7 0  for a  =  2.5 deg, (9 =  0.087 rad) and a  =  8 deg, 

{8 =  0.28rad) for /  =  0.275.

7.3 conclusions

7.3,1 Friction

The case of the full cylinder

Elastic effects induce the formation of a trailing wave, which will favour the 

entrapment of detached particles at the interface and give higher friction co­

efficients than predicted by our model for the lowest loads. For the highest 

loads, slipline field theory can predict friction.

The presence of a third body layer may induce an increase of the contact 

area, and thus a decrease of the contact pressure on the wearing material. A 

second effect is that the shear strength of the interface is strongly dependent of 

the nature and rheology of the mixture of detached particles/lubricant formed 

at the interface.

Slipline field theory predicts friction well above a given load N / k R ,  which 

value depends on the degree of elasticity E j o y  of the material and on the Tresca
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factor / .  Below this load, elastic effects can not be neglected in predicting 

friction.

The case of the cut cylinder

For the cut cylinder configuration, elastic effects are reduced, due to the re­

moval of the trailing wave. F\irthermore, the Tresca factor can be measured 

independently through wedge shape experiments.

Thus for this configuration, the conditions of our tests approximate closely 

the assumptions of our numerical model. Slipline field theory predicts friction 

coefficients well.

7.3.2 Strains

The main conclusions concerning the strain predictions are:

•  The strain pattern  calculated by our numerical model is much closer than 

the chord model of Challen and Oxley [1] to the strained layers observed 

by several authors in experiments with model asperity experiments, and 

this without referring to strain-hardening or elasticity. Though the com­

parison is based only on a few experiments, some quantitative correlation 

have been found between the high strains near the surface measured in 

experiments and those predicted by our numerical model.

• Furthermore, the morphology of the debris produced during wedge ex­

periments have been explained to some extent by our model. This means 

th a t our model is a new quantitative tool for investigating the mechanism 

of wear particle detachment in ductile metals.
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Chapter 8

Conclusions

8.1 The present investigation

The present investigation assumes tha t the rigid-plastic approximation has the 

possibility to predict wear for engineering contacts.

Both theoretical and experimental approaches have been carried out to 

investigate the sliding cylinder problem.

T heoretica l in vestigation

A new rigid-plastic asperity contact model is proposed, which models the wave 

of plastically deformed m aterial pushed ahead of a rigid cylinder. The slipline 

field proposed is a potential rigid-perfectly plastic solution for the sliding cylin­

der problem. The solution has been shown to be kinematically admissible but 

has to be considered incomplete until a statically admissible extension of the 

plastic stress field into rigid regions is proved to exist. However, the model 

proposed is suitable for small values of surface roughness param eter 9 and lu­

brication param eter / .  For high values of 9 and / ,  the model is not valid any 

more as a change of regime is expected when the asperity penetration becomes 

greater and the lubrication poorer.

This model is able to predict the friction coefficient and the strains as-
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sociated with the process. In friction, our model has been shown to be in 

good agreement with the chord approximation model of Challen and Oxley 

[1]. The main advantage of the new model proposed here lies in strain pattern 

predictions. The main difference is that the strains predicted by our model 

vary with depth, being higher than the predictions of the chord model near 

the surface, and falling to zero at the boundary of the deformed layer. Thus 

this new model offers more refined information concerning the strain pattern, 

being closer to the strained layers observed usually in experiments than the 

existing quantitative models.

This highly strained layer observed near the surface has been already pre­

dicted by finite element analysis [29] for the wedge configuration and in the 

present work for the cylinder configuration. However, finite element analysis 

has the disadvantage of requiring far more computer time.

Experim ental investigation

The friction and strain predictions of our numerical model have been tested 

against the results of scaJed-up model asperity experiments. The main con­

clusions are recalled now:

Friction coefficients

• Scaled-up model asperity experiments, where a full cylinder in C.B.N. 

slides across the surface of two non-ferrous metals have been performed. 

Significant deviations from our numerical model have been observed. 

Elasto-plastic finite element analysis has been performed, which predicts 

deviations for a real m aterial from slipline field theory due to the presence 

of elastic distortions. These elastic effects induce the formation of a 

trailing wave at the rear of the contact, which will furthermore favour 

the entrapm ent of detached particles. The presence of a third body 

layer at the interface between the cylinder and the deformed m aterial
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has been established in our tests. This may induce an increase of the 

contact area, and thus a decrease of the contact pressure on the wearing 

material. A second effect is tha t the shear strength of the interface is 

strongly dependent of the nature and rheology of the mixture of detached 

particles/lubricant formed at the interface.

Both elastic effects and the presence of a third body layer influence 

friction. Slipline field theory predicts friction satisfactorily above a given 

load {N/ kR) ,  whose value depends on the degree of elasticity {E/ay)  of 

the deforming material and on the Tresca factor / .  Below this limiting 

load which has been observed to be different for the two materials tested, 

elastic effects cannot be neglected to predict friction.

•  To decrease the influence of both elastic effects and the third body layer, 

additional experiments have been performed with the use of a cut cylin­

der, whose trailing side has been removed. For this configuration, elastic 

effects and the influence of detached particles have been shown to be re­

duced considerably and the conditions of our experiments approximated 

thus more closely the assumptions of our numerical model. Slipline field 

theory predicts friction satisfactorily for the two tested materials.

Strains

The main conclusions concerning the strain  predictions are:

•  The strain pattern  calculated by our numerical model is much closer than 

the chord model of Challen and Oxley [1] to the strained layers observed 

by several authors in experiments with model asperity experiments, and 

this w ithout reffering to strain-hardening or elasticity. Though the com­

parison is based only on a few experiments, some quantitative correlation 

have been found between the high strains near the surface measured in 

experiments and those predicted by our numerical model.
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•  Furthermore, the morphology of the debris produced during wedge ex­

periments have been explained to some extent by our model. This indi­

cates th a t our model is a new quantitative tool to investigate the mech­

anism of wear particle detachment in ductile metals.

8.2 Perspectives

The new model proposed in the present investigation is a quantitative tool 

which allows friction but especially strains to be predicted for a wide range of 

surface roughness {9) or load ( N / k R)  and of lubrication conditions / .  Some 

maps providing the strains for a wide range of these two param eters have been 

given in this thesis.

Further scaled-up model asperity experiments need to be performed to 

confirm the ability of this model to predict quantitatively friction and plastic 

strains induced in a soft metal within each pass of a rigid cylinder under 

defined conditions.

In order to decrease elastic effects, which cannot be neglected for the lowest 

loads, the use of a cut cylinder has been shown to be successful. Futher 

experiments should be performed with this tool to allow the conditions of the 

tests to be close to the assumptions of the theoretical model.

In this work, a third body approach has been necessary to interpret our 

experimental results. It is clear th a t the entrapm ent of particles was not 

desired in our tests because it leads to a more complex situation, where third 

body effects cannot be neglected. In order to focuss on the debris detachment 

mechanism and not on velocity accommodation mechanisms, solutions must 

be investigated to reduce as much as possible the entrapm ent of compacted 

debris for this configuration.

In terms of wear predictions, the rigid-plastic theory assumed so far tha t no 

wear had taken place until the deformed layer has suffered sufficient damage 

throughout its volume for failure to occur and to be removed. This a direct
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consequence of the fact that the wave model or the chord model [2, 1] predicts 

a homogeneously deformed layer. There is a difference between theory and 

observations, which is that the layer removed from the surface for each pass 

seems much thinner than the thickness of the deformed layer [6, 97]. Observa­

tions and analysis also show that wear is a continuous procedure rather than 

a discontinuous one [6, 97]. The model proposed here allows the existing wear 

theory to be developed, by integrating into wear calculations the strain cycle 

which depends on the depth. Further experiments need to be performed to 

attempt to establish correlation between the thickness of the debris produced 

and the depth of the highly strained layer predicted at the surface.

Finally, it is clear that any conclusions made on the ability of the theory 

to calculate the friction coefficient and the strains may not be meaningful 

because a single cylinder used in experiments cannot represent completely 

a real surface. The extension of the single asperity test for use on a real 

engineering surface needs to be investigated too.
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A ppendix A

The wave m odel [2]: friction  

calculation

haidaspenty

s

soft material

(A)SLIP-LINE FIELD 

V*

(B) HODOGRAPH

Figure A .l; Slipline field proposed by Challen and Oxley [2] for the sliding 

wedge problem
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W ith this model, as shown in figure (A .l), the deformation is represented 

as a standing wave and the straight line joining A and D must be parallel to 

U to satisfy volume constancy. The value of /  determines the inclination of 

the sliplines to DE. These conditions together with the further condition tha t 

the sliplines must be inclined at an angle tt/ 4 to the stress-free surface EA to 

satisfy equilibrium, define the slipline field and it follows from geometry that:

a  +  $  =  i  arccos(/) (A .l)

and

r) =  arcsin[ ] (A.2)

where $  is the angle between CD and U and is measured positive. The 

hodograph shows th a t there is a discontinuity in the tangential component of 

velocity across the slipline ABCD so tha t m aterial which enters and leaves the 

field with a velocity U flows in the directions AE and ED in the regions ABE 

and CDE and along a curved path in the centred fan region BCE, as shown 

by the typical streamline given in figure (A .l).

Sliding at the interface ED is accommodated by shearing of the interfacial 

film. The shear stress kg w'hich acts parallel to the sliplines and the mean 

compressive (hydrostatic) stress p  which acts normal to the sliplines in this 

region are found by starting at the free surface AE where p = kg. Applying 

the stress equilibrium equation referred to sliplines (Hencky equations) along 

the slipline ABCD which gives:

p ^  [1 + 2{^Tr + ^  -  Tj)]ks (A.3)

where ^tt +  $  — ry is the angle subtended at the centre of the fan BCE. By 

resolving forces it can be shown that the tangential force F  and normal force 

N  are given by:
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F  =  [[1 +  2 ( - 7t  +  $  — 77)] sin a  +  cos(o! +  2^)] .ED.kg  (A.4)

=  [[1 +  2 (^ 7T +  $  — 77)] coso; +  sin(o; +  2^)] .ED.ks  (A.5)

where ED is the length of the interface. For a given normal load, ED can 

be found from equation (A .5). The basic laws of friction are therefore satisfied 

with F  proportional to N  and independent o f the area of the contacting sur­

faces. From equations (A.4) and (A.5) and by substituting for $  and t ] from 

equations (A .l) and (A .2) the coefficient of friction fi — F / N  can be expressed 

as:

F  {As.cos{a) +  sin{2e — a) ) .ED. ks  ( \
^ N  {As.cos{a) +  sin{2e — a)) .ED.kg

where:

/Is =  1 +  I  +  arccos(/) — 2r] — 2a,  from which, for 0  <  /  <  cos(2 o;), // will 

lie in the range 0  <  // <  1 .
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A ppendix B

The chord approxim ation m odel 

[1] and the developed chord 

m odel [3]: friction calculation

B .l  The chord approxim ation m odel [1]

In this model shown in figure (B .l), the two-dimensional rigid, circular asperity 

pushes a plastic wave in the softer material. The area of contact between 

the asperity and the deformed m aterial is approximated by its chord and is 

assumed to be confined ahead of the lowest point D  of the circle. The chord 

approximation allows the slipline field and associated hodograph previously 

established by Challen and Oxley [2] for wedge shape asperities to be used. 

In this last model, the asperity angle a  is a constant param eter and only the 

length of the interface E D  and hence the scale of the plastic zone increases 

with the normal load N.  For a circular asperity of radius R, a  and E D  

are now interrelated and depend on the geometrical and loading conditions. 

Introducing this last feature and defining the strength of the interfacial film 

by the Tresca factor f  =  \ ,  where r  is the shear strength of the interfacial 

film and k is the shear flow stress of the soft m aterial, Challen and Oxley [2]
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developed the following equations:

rj =  arcsin[
sin(o;)

(B .l)

$  =  -  arccos(/) — a
Z i

(B.2)

—  =  2 sin (a ) (B 3 )

from the slipline field geometry analysis, where t] and $  are two angles 

describing the slipline field and

from the stress analysis where F  and N  are the frictional and normal forces 

per unit width and fj, the resulting friction coefficient.

This steady-state field is associated with low load conditions, and hence low 

angle a  of the chord. For high angles a,  a double chord model was proposed 

where a continuous chip formation is considered. It is not presented here 

because only the rubbing regime is investigated in the present work.

F  7T
—  =  2 sin (a ) [cos (a  - I -  2 $ )  +  (1 +  2 (— — r;)) sin(o;)] (B.4)
kR  4

—  =  2 sin (a ) [sin ( a  - I -  2 $ )  - I -  (1 -|- 2 (^  - I -  $  — 77)) cos(o;)] (B.5) 
kR  4

[cos(q! - I -  2 $ )  - I -  [1 - H  2 ( |  -h $  — 77)] sin(o:)] 
^ [sin(o; 4 - 2 $ )  +  [1 +  2 ( |  +  $  -  77)] cos(o:)]

(B.6)
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Figure B.l; Chord approximation model developed by Challen and Oxley [1]

B.2 The developed chord m odel [3]

The chord approximation model has been developed for the configuration 

where the lowest point in contact D between the circular asperity and the 

softer material is not on the center line of the circle, as shown in figure (B.2). 

The parameter (5̂  defines the angle between the radius OD and the center line 

as shown in figure (B.2). The hodograph associated with the slipline field is 

equivalent to the one associated with Challen and Oxley’s model [1]. The new 

geometrical relation between the chord ED, the radius R  of the cylinder and 

the two angles a and Pc is as follows:

—  =  2 s in (a - /? )  (B.7)

Equations (B.l), (B.2), (B.6) can still be used but (B.4) and (B.5) become:

—  =  2sin(o: -  /?c)[cos(a +  2$) +  (1 +  2(^  +  $  -  r;)) sin(a;)] (B.8) 
k n  4
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For a given normal load per unit width N,  the associated chord angle a  

is relatively higher for the developed model than the original one, and hence 

associated with higher friction coefficients. This change can be seen in figure 

(B.3) where the dotted lines represent the variations of /z with ( N / k R)  for 

f  — 0 and various values of the parameter /3c- The value of /3c =  0 corresponds 

to the chord approximation model [1].

L m i

soft asperityflow

Figure B.2: The developed chord model
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-  -  developed chord model (beta=2deg, 1=0)
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0.5 1 1.5 20
N/kR

Figure B.3: Variation of // with N /kR  for the chord model [1] and the devel­

oped chord model for different f3c and /  =  0
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Appendix C

Geometrical properties of a 

slipline field - Stress and 

velocity boundary value 

problems [4, 5]

C.0.1 H encky’s first theorem

a

a

Figure C .l: Typical slipline field, dem onstrating Hencky’s first theorem

Consider a curvilinear quadrilateral IJKL, as shown in figure (C .l) bounded 

by two alines, (IL) and (JK), and by two /?lines, (IJ) and (LK). From the 

Hencky stress equations, it follows:
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P k  - P r  =  [p k  -  P j ) +  {p j  -  P j ) =  2 /c(20j  -  (f)K ~  4>i) (C . l )

and

P k  - P t = {p k  -  P l ) + {Pl  ~  P i )  =  ‘2.k{(j)K -  4>i ~  ^4>l) (C.2)

therefore,

<t>K — (t>L =  (t>j — 4>i (C-3)

E quation  (C.3) is known as Hencky’s first theorem . I t s ta tes  th a t if we 

pass from one slipline to  ano ther of the sam e family along any intersecting 

slipline, the  angle tu rned  through and the change in pressure are constant.

C .l Second boundary value problem

Figure C.2: Second boundary  value problem

It concerns the  determ ination  of the  slipline field defined by a curve (IJK L), 

(the stress free surface for exam ple), as shown in figure (C.2) along which the 

stresses are known. Since the  stress com ponents are known, p  and (f) are known.
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If J and K are two adjacent points on the curve (figure (C .2)), the nodal

point M, which is the  intersection of the a line  through J and the  /31ine through

K, can be obtained approxim ately as follows:

1. from the Hencky equations, the value of (/> a t M is;

(f>M =  ^ { P j  -  P k ) +  +  (Î k ) (C.4)

2. the coordinates of M can be found by replacing the  segments of sliplines 

(JM ) and (MK) by stra igh t lines passing through J and K th a t make 

angles (j) and +  | )  w ith the positive x-direction where:

0  =  (C.5)

and

If both  com ponents of velocity are given along the  curve (IJK L ), the p rob­

lem is the same as for the  first boundary value problem : the com ponent u m  

and t»Af can be determ ine as follows:

{ u j  — U m ) — — </’m) =  0 (C-7)

{v k  — V m ) +  2 ^ ^ ^  ' ^M)[(t>K — (/>m ) =  0 (C-8)
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C.2 Third boundary value problem

(C)

K 1

a

Figure C.3: Third boundary value problem

The third boundary value problem arises when a slipline (IL) and a curve 

(C), along which 4> but not p  is known, are given as shown in figure (C.3). The 

procedure to obtain the point K, intersection between the /?line going through 

J (point adjacent to I) and the curve (C) is as follows:

1. K i  is obtained by constructing a straight line in the [5 direction going 

through J to intersect (C).

2. a further straight line through J to meet (C) in is drawn so that it

makes an angle {4> +  | )  with the positive x-direction where 4> =  ^{(pj +

This procedure is repeated until the desired accuracy is obtained.

If both components of velocity are given along the aline (IL) together 

with a boundary condition along the curve (C), and if I is not a singularity, 

the components u k  and Vk  are obtained by solving the following system of 

equations:

Vj  -  Vk — t : { u j  +  uk){(I>j — <I>k )  1
2 (C.9)
function{uK,VK) = 0 J
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Appendix D

Optimisation of the numerical 

solution with an ellipse

ael

Figure D .l: B oundary conditions for the  ellipse

To correct the shape of the  free surface, the  slope of the  velocity vector ( 3 e ,  

(with P e  =  P c a i c { n ) ) ,  com puted in E becomes the tangen t to  the  ellipse a t E 

(refer to figure (D .l)). An ellipse is thus defined, whose radii Q ei and b ^ i can 

be expressed as follows:
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-  '2V ^ +  (X e -  X „ )V c

=  (D.2)
\/|yE-6„| ' '

withe =  (D-3)
tan(/?E)

The new boundary conditions along the ellipse (ED) referring to figure 

(D .l), are:

^U,i  — ~{i  ~  ^) ------— j----- \ - ^D  (D.4)
7X J.
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Appendix E 

Calculation of stresses along the 

interface and of the friction 

coefficient ^

tangential direction

x-direction 

a-direction

Figure E .l: Calculation of stresses at the interface

The stresses rii and Tj at the point Mi^rn+2n-i of the interface, as shown in 

figure (E .l) were computed from Pi^m+2n-i ■̂nd k as follows:

dF

A
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— Pi,m + 2n—i /jsin[2(7^j (pi,m+2n—i)'\ ( ^ '^ )

T'i,m+2n—i ~  k COs\ (̂̂ T]i ^i,m+2n—i)] (^'2)

The elemental forces dNi and dFi acting on the elemental line dl, with 

dl =  R .9 /{n  — 1) were computed as follows:

dNi =  [rii cos(?7i) -  n  sin{r]i)].dl (E.3)

dFi =  [7ijSin(77j) +  rj cos{r)i)].dl (E.4)

The resulting forces per unit width N  and F  were then obtained by inte­

grating the elemental forces along the interface as follows;

n

N  =  ^ d N i  (E.5)
i=l
n

F  =  (E.6)
i=l

Finally the friction coefficient was obtained as follows:

H =  F / N  (E.7)
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Appendix F

Checks on plastic works

Pline

K K’

aline

Figure F .l: An element of slipline field showing correct m aterial deformations

Checks were made to ensure th a t the m aterial deforms in the “correct way” 

under the action of the applied shear stresses. In figure (F .l), the m aterial 

should deform in the manner shown under the action of the shear stresses. 

To ensure th a t this is the case, the velocity of point K relative to point I is 

checked to ensure tha t it has a positive component in the direction from I to 

K. Similarly the velocity of J relative to L is checked to ensure it has a negative 

component in the direction from L to J.

The velocities u, v at all nodal points in the slipline field were transformed 

to X and y component values using,

169



Vj: =  itcos(^) — vsin((p) 

Vy = u sin(0) 4- V cos{(f))

(F .l)

(F.2)

Along the free surface, to ensure that the plastic work done is positive, oi 

must be positive. The equation used to calculate ai is as follows, referring to 

figure (F.2):

ai =  V x ni YK i  -  Yn) -  Vy j , {XKi  -  X n )  (F.3)

free surface

K1P line

a l i n e

Figure F.2: Computation of material deformation directions along the free 

surface

170



Along the interface, to ensure that the plastic work done is positive, 0-2 

must be positive. The equation used to calculate 0 2  is as follows, referring to 

figure (F.3):

02 =  VxK2{Yn -  Yn) -  V y ^ X n  -  X.s) (F.4)

interface

K2

(3 line

Figure F.3: Computation of material deformation directions along the inter­

face
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Anywhere else in the field, to ensure th a t the plastic work done is positive, 

as must be positive. The equation used to calculate as is as follows, referring 

to figure (F.4):

as =  {Vyj^ -  -  ^ s )  -  {Vxj^ -  (F.5)

a-i =  {Vyn -  VyK3){YK3 ~ Y^) -  {Vxks ~  V x n) { X i , ,  -  Xr^) (F.6)

L3 K3

piine

Figure F.4: Com putation of material deformation directions in the field

172



Appendix G

Strain maps

This appendix shows a series of maps and associated data, issuing from our 

numerical model th a t give the evolution of the strain pattern  for a wide range 

of conditions.

The d a ta  associated with the maps shown in chapter (4) are also given.

It should be noted th a t h / h m a x = Q  corresponds to the free surface and 

h / h m a x = - ^  corresponds to the bottom  of the deformed layer.
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G .l Evolution of the angle of the interface 6 

versus ( N/ kR)  for different values of the  

Tresca factor /

The map was given in chapter (4).

9 No/kR N i / k R N2/kR N s / k R N ^ / k R N ^ / kR

0.05 0.252 0.2460 0.240 0.233 0.226 0.217

0.10 0.492 0.4800 0.467 0.453 0.437 0.418

0.15 0.719 0.7000 0.679 0.656 0.630 0.599

0.20 0.931 0.9040 0.874 0.840 0.801 0.754

0.25 1.130 1.0900 1.050 1.000 0.945 0.873

0.30 1.300 1.2500 1.200 1.130 1.050 0.926

0.35 1.450 1.3900 1.320 1.230 1.100

0.40 1.580

0.50 1.74

Table G.l: Evolution of the angle of the interface 9 versus {N/kR)  for different 

values of the Tresca factor /

where N i / k R  corresponds to N / k R  for /  =  0.1.
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G.2 Evolution of the friction coefficient with  

(N/kR)  for different values of the Tresca 

factor /

No/kR /io * 10 N j k R /ii * 10 N^/kR H2 * 10 Ns/ kR /x3 * 10

0.252 0.252 0.2460 0.455 0.240 0.669 0.233 0.896

0.492 0.508 0.4800 0.718 0.467 0.938 0.453 1.17

0.719 0.769 0.7000 0.985 0.679 1.220 0.656 1.46

0.931 1.030 0.9040 1.260 0.874 1.500 0.840 1.76

1.130 1.300 1.0900 1.540 1.050 1.790 1.000 2.07

1.300 1.570 1.2500 1.820 1.200 2.090 1.130 2.40

1.450 1.850 1.3900 2.110 1.320 2.400 1.230 2.74

Table G.2: Evolution of the friction coefficient n vî ith {N/kR)  for different 

values of the Tresca factor /

where [N\ /kR)  and //i corresponds to {N/kR)  and for /  =  0.1.
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N i / k R /i4 * 10 N ^/ k R /i5 * 10

0.226 1.140 0.2170 1.410

0.437 1.430 0.4180 1.710

0.630 1.730 0.5990 2.040

0.801 2.050 0.7540 2.390

0.945 2.390 0.8730 2.790

1.050 2.760 0.9260 3.270

1.100 3.180

Table G.3: Evolution of the friction coefficient jj, with (N/kR)  for different 

values of the Tresca factor /
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hm
ax

/R
G.3 Evolution of the depth of the deformed 

layer (hmax/R) versus (N/kR)  for different 

values of the Tresca factor / .

- 0.02

-0 .04

f=0
-0  06

f=0.4
-0.08

f=0.3
- 0.1

1= 0;2

- 0.12

1= 0.1

-0.14
1=0

- 0  161-  
0.2 0.4 0 6 0.8 1 1.2 1.4 1.6

N/kR

Figure G .l: Evolution of the depth of the deformed layer (hmax/R)  versus 

{N/kR)  for different values of the Tresca factor /
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e h d M A x / R h l M A x / R h 2 M A x / R h i M A x / R h i M A x / R h^MAX /  R
0.05 -0 .00333 -0 .00314 -0 .00295 -0 .00274 -0 .00252 -0 .00227

0.10 -0 .00625 -0 .00587 -0 .00548 —0.00505 -0 .00459 -0 .00408

0.15 -0 .00876 -0 .00819 -0 .00758 -0 .00691 -0 .00620 -0 .00539

0.20 -0 .01090 -0 .01010 -0 .00924 -0 .00833 -0 .00732 -0 .00617

0.25 -0 .01260 -0 .01160 -0 .01050 -0 .00927 -0 .00791 -0 .00631

0.30 -0 .01380 -0 .01260 -0 .01120 -0 .00969 -0 .00793 -0 .00606

0.35 -0 .01470 -0 .01320 -0 .01150 -0 .00960 -0 .00767

0.40 -0 .01510

0.50 -0 .01500

Table G.4: Evolution of the  depth  of the deformed layer { h m a x / R )  versus 9

for different values of the Tresca factor /

where { H i m a x / R )  corresponds to  { H m a x / R )  for /  =  0.1.
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G .4 E vo lu tion  of the  shear s tra in  ( jxy)  versus 

the  dep th  (h/hmax) for /  =  0-3 and for d if­

ferent loads ( N / k R ) .

be1a=0.05 rad, N/kR=0,23 
beta=0.1 rad, N/kR= 0,45 
be1a=0.15rad, N/kR= 0,66 
beta=0.2rad, N/kR= 0,84 
beta=0.25rad, N/kR= 1 
beta=0.3rad, N/kR= 1,13 
beta=0,35rad, N/kR=1.23

0,6 0 8  

shear strain

1,2 1,4

Figure G.2: Evolution of the shear strain versus the depth {h/hmax) for 

/  =  0.3 and for different loads ( N / k R )
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h / h M A X ' ^ x y  *  10

N/kR=0.23

I x y  *  10

N/kR=0.45

7xy * 10

N/kR=0.66

I x y  *  10

N /kR -0.84

-0.05 1.53 3.61 6.05 8.16

-1.50 1.48 3.52 5.88 7.91

-2.50 1.42 3.36 5.60 7.61

-3.50 1.35 3.16 5.26 7.19

-4.50 1.26 2.94 4.88 6.71

-5.50 1.18 2.70 4.44 6.15

-6.50 1.08 2.39 3.91 5.49

-7.50 0.97 2.09 3.31 4.64

-8.50 0.79 1.63 2.64 3.59

-9.50 0.52 1.05 1.47 2.01

-1.00 0.00 0.00 0.000 0.00

Table G.5: Evolution of the shear strain versus the depth (h/hmax) for 

/  =  0.3 and for different angles (N/kR)
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h / h M A X Tiy * 10

N/kR=1.00

7 x y  *  10

N/kR=1.13

7 x y  * 10

N/kR=1.23

-0.05 9.37 9.85 9.97

-1.50 9.16 9.72 9.92

-2.50 8.89 9.54 9.81

-3.50 8.55 9.31 9.67

-4.50 8.10 8.98 9.45

-5.50 7.57 8.56 9.15

-6.50 6.88 7.96 8.72

-7.50 5.93 7.17 8.14

-8.50 4.71 5.92 7.03

-9.50 2.58 3.42 4.78

-1.00 0.00 0.00 0.00

Table G.6: Evolution of the shear strain 'jxy versus the depth {h/hmax) for 

/  =  0.3 and for different angles {N/kR)
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G.5 Evolution of the shear strain (7q,) versus 

the depth {h/hmax) for /  = 0-3 and for dif­

ferent loads {N/kR).

beta=0.05rad, N/kR=0.23 
beta=0.1rad, N/kR=0.45 
beta=0.15rad, N/kR=0.66 
beta=0,2rad, N/kR=0,84 
be1a=0,25rad, N/kR=1 
be1a=0 3rad, N/kR=1.13 
be1a=0.35rad, N/kR=1.23

6 8 
shear strain

Figure G.3: Evolution of the shear strain 7  ̂ versus the depth {h/hmax) for 

/  =  0.3 and for different loads {N/kR)
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h / h M A X 70 * 10 

N /kR =0.23

70 * 10 

N /kR =0.45

70 * 10 

N /kR =0.66

7 0  * 10

N /kR =0.84

-0.05 1.55 3.87 7.60 14.1

-1.50 1.50 3.76 7.27 12.9

-2.50 1.43 3.56 6.76 11.7

-3.50 1.36 3.33 6.19 10.4

-4.50 1.28 3.07 5.58 9.05

-5.50 1.19 2.80 4.95 7.79

-6.50 1.08 2.46 4.25 6.57

-7.50 0.98 2.13 3.51 5.24

-8.50 0.79 1.65 2.74 3.85

-9.50 0.52 1.06 1.48 2.05

- 1.00 0.00 0.00 0.00 0.00

Table G.7: Evolution of the shear strain 70 versus the depth (h/hmax) for 

/  =  0.3 and for different angles {N / k R)
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h / l l M A X 70 * 10 

N /kR =1.00

70 * 10 

N /kR=1.13

70 * 10 

N /kR =1.23

-0.05 26.9 57.2 138.0

-1.50 22.9 41.5 77.6

-2.50 19.5 31.9 50.9

-3.50 16.5 25.4 38.0

-4.50 13.8 20.4 28.9

-5.50 11.6 16.6 22.7

-6.50 9.47 13.2 17.9

-7.50 7.37 10.3 14.0

-8.50 5.34 7.34 9.89

-9.50 2.67 3.64 5.45

-1.00 0.00 0.00 0.00

Table G .8: Evolution of the shear strain 70 versus the depth {h/hmax) for 

/  =  0.3 and for different angles {N/kR)
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G.6 Evolution of the maximum shear strains 

{ixyMAx) and icieuAx) versus the load {N/kR)  

for different / .

0,9

0 8

0.7

0.6

W 0 5

E 0.4
  f=0
  f=0.1
  f=0.2
—  f=0 3 
^  f=0.4

0.3

0.2

0.40.2 0.6 0.8
N/kR

Figure G.4: Evolution of the maximum shear strain {'yxyMAx) versus the load 

(N/kE)  for different /
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Figure G.5: Evolution of the maximum shear strain {jaMAx) versus the load 

{N/kR)  for different /
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N/ k R I d x y M A X  *  10 loeMAx * 10

0.252 0.90 0.91

0.492 2.16 2.21

0.719 3.78 4.08

0.931 5.66 6.87

1.130 7.51 10.1

1.300 8.85 19.0

1.450 9.57 33.1

1.580 9.87 62.5

Table G.9: Evolution of the maximum shear strain {'jxyMAx) and { ' j e M A x )  

versus the load {N/kR)  for /  = 0
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N / k R l \ x y M A X  *  10 J W M A X  *  10

0.246 1.07 1.07

0.480 2.52 2.61

0.700 4.40 4.90

0.904 6.48 8.50

1.130 8.22 1.44

1.300 9.30 2.53

1.450 9.79 4.76

Table G.IO: Evolution of the maximum shear strain ['^xyMAx) and {'jeMAx) 

versus the load {N/kR)  for /  =  0.1

N / k R j 2 x y M A X  *  10 1 2 6 M A X  *  10

0.240 1.27 1.28

0.467 3.01 3.15

0.679 5.17 6.04

0.874 7.32 10.7

1.050 8.86 19.1

1.200 9.63 35.9

1.320 9.92 77.0

Table G .ll: Evolution of the maximum shear strain {'jxyMAx) and {'-feMAx) 

versus the load {N/kR)  for /  =  0.2
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N/ kR I Z x y M A X  *  10 1 3 9 M A X  *  10

0.233 1.53 1.55

0.453 3.61 3.87

0.656 6.05 7.60

0.840 8.16 14.1

1.000 9.37 26.9

1.130 9.85 57.2

1.230 9.97 138.0

Table G.12: Evolution of the maximum shear strain (jxyMAx) and (jeMAx) 

versus the load (N/kR)  for /  =  0.3
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A ppendix H  

D eterm ination of the Tresca 

factor /

H .l Test procedure

The Tresca factor /  is an input of the slipline field model. It depends on the 

materials used and on the lubricant (in our situation, on the triplet C.B.N. 

/  STEARIC ACID /  ALUMINIUM and on the triplet C.B.N. /  STEARIC 

ACID /  COPPER). In order to assess the value of /  in an independent way, 

friction tests were performed with C.B.N. wedges of various angles a, under 

the same lubrication conditions as for the cylinder tests (chapter (5)) for both 

materials.

A picture of one of the wedges used is shown in figure (H.l). The wedge is 

3.15mm in width. The set-up and procedure are the same as those described 

in chapter (5). Several tool holders were made with different orientations to 

get the desired attack angle a. The applied load W  were within the range 

400 -  600N.
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Figure H.l; Wedge in C.B.N.

H.2 Friction results

Measured friction coefficients are compared to the predictions of the wedge 

model in figures (H.2) and (H.3) for aluminium and copper respectively.

The chosen value of /  was the one which best fits the experimental data. 

A value of /  =  0.05 was obtained this way for both materials.

However, deviations from theory can be observed for the lowest and high­

est attack angles tested. These discrepencies can be firstly explained by the 

lack of accuracy of the attack angle measurement. This was done by direct 

measurements on the tool with a microscope after each test. The surface of 

the tool were not perfectly regular and the measurements were not repeat- 

able with a high accuracy. For the lowest loads, these deviations can also be 

attributed to experimental errors as the set-up was not accurate enough for 

small loads. It might also be due to elastic effects [8, 63, 64], For the highest 

loads, a change of regime (sort of cutting as continuous removal of material) 

was observed for the aluminium alloy, which can explain the deviations from 

theory. The copper was tested for only three angles a.

Figures (H.4) and (H.o) show how the detached particles lie on the wedge 

after a test on aluminium and copper respectively. For both figures, the entry 

of the contact is on the left;
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experiments on aluminium
  wave model (f=0)
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 wave model (f=0.1)
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H.2: Experiments with wedge-shaped asperities on aluminium
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Figure H.3: Experiments with wedge-shaped asperities on copper
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Figure H.4; Particle organisation inside the contact area on the wedge - Alu­

minium - W  = 500N

Figure H.5: Particle organisation inside the contact area on the wedge - Copper 

- W  = 500N
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H.3 Data

H.3.1 D ata  for alum inium

a  in degrees

2.4 0.0920

2.4 0.0890

2.4 0.0830

2.4 0.0820

6.5 0.1170

6.5 0.1150

6.5 0.1200

6.5 0.1260

8.7 0.1650

8.7 0.1550

8.7 0.1620

8.7 0.1580

10.1 0.1720

10.1 0.1900

10.1 0.1900

10.1 0.2060

2.55 0.0847

2.55 0.0876

2.55 0.0506

2.55 0.0971

14.3 0.2940

14.3 0.2870

14.3 0.3290

14.3 0.3070

Table H.l: Data for the wedge tests - Aluminium
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H .3.2 D ata for copper

a in degrees

5.75 0.1200

5.75 0.1100

5.75 0.1400

9.91 0.1800

9.91 0.2100

9.91 0.1600

10.4 0.1400

10.4 0.1400

10.4 0.1400

18.95 0.3200

18.95 0.3180

7.2 0.1400

7.2 0.1300

9.7 0.1900

9.7 0.1400

9.7 0.1800

Table H.2: Data for the wedge tests - Copper
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Appendix I 

Velocity accommodation  

mechanism in a three body  

contact

In the third body approach [71, 12, 72, 98, 9], it is considered that the ve­

locity difference between first bodies is accommodated across the interface 

whidi means that the interface possesses its own velocity field and dynamics. 

Progress in understanding and modelling friction in such situations requires 

paste dynamics studies and an identification of both modes (how friction is 

generated) and sites (where is friction generated) of velocity accommodation.

Figure (I.l) is a simple three body contact model. It includes the two first 

bodies or rubbing specimen, the two third body/first body interfaces or screen, 

which have their own specific composition and the third body bulk.

The manner in which the difference in velocity between rubbing solids is 

accommodated across the interface is defined here as the velocity accommoda­

tion mechanism. Velocity acommodation mechanisms, which governs friction 

and wear, have been identified during visualisation tests. Figure (I.l) shows 

that in a three body contact, the velocity can be accommodated at five differ­

ent sites Si which include the two first bodies Si and S2 , the two screens S^ 

and S^, and the third body bulk S3 , and according to four different modes Mj
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at each site which are the elastic Mi,  the rupture M2, the shear M3 and the 

rolling M4 modes. Thus 20 velocity accommodation mechanisms can be en­

countered. Each mechanism is identified by one StMj  code. S3M3 for instance 

signifies that the velocity is accommodated in the third body bulk through 

shear.

a t  S i t e s  h )  M o d e s

Figure I.l: Velocity accommodation in a three-body contact. Taken from [12]
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A ppendix J 

Presentation of the finite 

elem ent m odels

J.0.3 Description of the models

The finite element models were constructed using commercial software (AN- 

SYS 5.4) to represent a hard cylinder and a hard cut cylinder indenting and 

sliding over a softer metal.

The models are shown in figures (J .l)  and (J.2). The dimensions of both 

models are shown in figure (J.3). For both models, the hard cylinder B is 

represented as a perfectly elastic solid with a Young’s modulus of 207 GPa. It 

is supported by a block A of low modulus (4 GPa) to allow it to ride up to 

form a stable plastic wave. The soft metal C is represented as linear isotropic 

hardening solid with a Young’s modulus of 70 GPa, a tensile yield strength 

of 280 M Pa and a hardening modulus of 4 MPa. A value of A: =  180 M Pa 

has been taken for the calculation of N / k R .  Four-noded elements were used 

throughout (Visco 106 for the 2011, Plane 42 for the rest) to allow the contact 

to be modelled with the software’s contact elements (contact 48). The friction 

at the interface was set to  zero, as the model would not converge if friction 

were present.
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AIMSYS

Figure J .l :  Full cylinder model

AMSYS

Figure J.2: Cut cylinder model
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1

5

Figure J.3: Size of the models in mm

J.0.4 Scheme of the simulations

The simulations are split into two parts:

1. firstly, the rigid cylinder is indented into the soft surface to impose some 

degree of penetration. A vertical displacement A y  is imposed on the 

block C.

2. secondly, the cylinder B and the block C are translated horizontally.

The details of the simulations performed are given in tables (J .l)  and (J.2) 

for the full cylinder and for the cut cylinder respectively.

The simulation with a full cylinder and A y  =  0.15 mm requires 17 hours 

of CPU time ruiming on a 450 MHz Pentium 2 PC with 64 Mb RAM.

A sequence for this simulation is shown in figure (J.4), where the friction 

coefficient /i and the effective vertical displacement Aye/B.  of the cylinder 

are plotted versus the imposed horizontal displacement A x / R .  Though the 

friction coefficient reaches a contant value at the end of the simulation, it 

can be seen th a t the cylinder gradually climbs slightly back towards the free 

surface level but does not reach the original free surface level as in the slipline 

field model. Thus steady-state conditions are not perfectly achieved in these 

simulations.
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Ay  in mm N  in N. N / k R

0.15 1024 2.40 0.1600

0.13 911 2.14 0.1400

0.11 793 1.86 0.1100

0.09 660 1.55 0.1000

0.07 514 1.21 0.0700

0.06 433 1.02 0.0300

0.05 358 0.84 0.0300

0.04 277 0.65 0.0290

0.02 131 0.31 0.0050

Table J .l; Details of the FEA simulations for the full cylinder

Ay in mm N  in N. N / k R

0.15 949 2.23 0.2100

0.13 852 2.00 0.1800

0.11 752 1.77 0.1600

0.09 638 1.50 0.1200

0.07 495 1.16 0.0960

Table J.2: Details of the FEA simulations for the cut cylinder
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Figure J.4: dashed line: plot of // - full line: plot of the effective vertical 

displacement ^y^/R of the cylinder - versus Ax/.R, the imposed horizontal 

displacement
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A ppendix K

Friction data

This section provides the experimental d a ta  collected from the tests with the 

use of a full cylinder and a cut cylinder.

For a given test, the frictional and normal forces were time averaged to 

remove the effects of experimental noise and vibrations on the signal. For 

each set of tests, an example of the measured frictional and normal force is 

given.
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K.0.5 Friction tests  on alum inium

FULL CYLINDER EXPERIM ENTS

(/)
y  -100
DCo
LL

, -150

CC
O  -200 
z
Q
Z
<  -250

O  -300 
I—g
cc
U_ -350

-400 •- -  
400 600 800 1000 1200 

time

1400 1600 1800 2000

Figure K .l: Measured normal and frictional forces of a test with a full cylinder 

on aluminium
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in N N / k R

174 0.152 0.1100

211 0.184 0.0950

307 0.267 0.1100

409 0.356 0.1100

515 0.449 0.1100

610 0.532 0.1100

715 0.623 0.1200

795 0.693 0.1100

• 885 0.771 0.1200

635 0.553 0.1100

620 0.540 0.0960

617 0.537 0.1200

213 0.186 0.0930

327 0.285 0.0930

Table K.l: Data for the full

410 0.357 0.0910

510 0.444 0.0890

630 0.549 0.1020

770 0.671 0.1160

272 0.237 0.1140

365 0.318 0.1150

439 0.383 0.1150

555 0.484 0.1200

745 0.649 0.1400

580 0.505 0.1120

257 0.224 0.1240

376 0.328 0.1390

tests - Aluminium
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C U T  CYLINDER EXPERIM ENTS

0 1---------------------- 1-----------------------1-----------------------1-----------------------1----------------------- 1-----------------------r

_25o I___________ I____________I____________I___________ I____________ I____________I____________I____________
400 600 800 1000 1200 1400 1600 1800 2000

time

Figure K.2: Measured normal and frictional forces of a test with a cut cylinder 

on aluminium
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N  in N N / k R

207 0.180 0.1700

297 0.259 0.2270

400 0.349 0.2460

480 0.418 0.2570

255 0.222 0.1790

350 0.305 0.2120

440 0.383 0.2740

207 0.180 0.1760

315 0.274 0.1860

395 0.344 0.2660

205 0.179 0.1930

267 0.233 0.1950

307 0.266 0.1840

346 0.301 0.1970

381 0.332 0.2090

446 0.389 0.2190

504 0.439 0.2260

526 0.458 0.2470

493 0.430 0.2410

187 0.163 0.1010

234 0.204 0.1720

289 0.252 0.1820

301 0.262 0.1970

378 0.329 0.2110

261 0.227 0.182

362 0.315 0.203

460 0.401 0.226

Table K.2: Data for the cut cylinder tests - Aluminium
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K .0.6 Friction tests  on copper

FULL CYLINDER EXPERIM ENTS

C -100

P  -200

O -300

- J  -400

Li_

-600
400100 200 300 500 600

t i m e

Figure K.3: Measured frictional and normal forces of a test with a full cylinder 

on copper
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C U T  CYLINDER EXPERIM ENTS

O  -100

- 5 0

-200

Figure K.4: Measured normal and frictional forces of a test with a cut cylinder 

on copper
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iV in N N / k R 466 0.523 0.1160

245 0.275 0.0780 520 0.584 0.1140

317 0.356 0.0990 560 0.629 0.1430

367 0.412 0.0940 625 0.702 0.1460

410 0.460 0.1220 720 0.809 0.1530

402 0.451 0.1080 505 0.567 0.1620

490 0.550 0.1110 610 0.685 0.1670

530 0.595 0.1330 715 0.803 0.1720

565 0.635 0.1120 520 0.584 0.0980

415 0.466 0.1400 620 0.696 0.0880

450 0.505 0.1500 760 0.854 0.1430

156 0.175 0.1300 460 0.517 0.1200

220 0.247 0.1260 245 0.275 0.1010

267 0.299 0.1130 301 0.338 0.1140

321 0.361 0.1060 362 0.407 0.1040

379 0.426 0.1270 466 0.523 0.1160

414 0.465 0.1260 520 0.584 0.1140

450 0.506 0.1300 560 0.629 0.1430

500 0.562 0.1340 625 0.702 0.1460

545 0.612 0.1440 720 0.809 0.1530

245 0.275 0.1010 505 0.567 0.1620

301 0.338 0.1140 610 0.685 0.1670

362 0.407 0.1040 715 0.803 0.1720
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TV in N N / k R

251 0.282 0.1630

216 0.242 0.1750

314 0.353 0.1450

411 0.462 0.1390

520 0.584 0.2370

193 0.217 0.0778

241 0.271 0.1370

300 0.337 0.1350

337 0.379 0.1620

409 0.459

530 0.595

221 0.248

338 0.379

465 0.522

165 0.185

202 0.227

232 0.261

310 0.348

357 0.401

410 0.470

Table K.4: Data for the cut cylinder tests ■

0.1860

0.2530

0.1060

0.1250

0.2190

0.1400

0.1240

0.1300

0.1240

0.1500

0.1530

Copper
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Appendix L 

Compression tests

The compression tests have been performed using a standard test method. The 

specimen were shaped as bars, with a length of L =  38mm and a diameter 

of  D  =  13mm. In figures (L .l) and (L.2), one of the tests performed are 

presented for aluminium and copper respectively.

400 Speamen: 1
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0.00 0.05 0.10 0.15
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Figure L .l: Compression test on aluminium
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Figure L.2: Compression test on copper
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