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Summary

This thesis is concerned with Bayesian identification of parameters of linear models. Linear models are 

used in many important problems of Digital Signal Processing (DSP). Computationally efficient meth­
ods of parameter inference are available under certain restrictive assumptions, such as known transfor­

mation of system output, known number of signal sources, etc. These assumptions, however, limit the 
applicability of these models. In this thesis, we study four important special cases of the linear model as 
listed below. When we relax the restrictive assumption, in each case, the Bayesian inference becomes 
intractable. Tractability is restored using the Variational Bayes (VB) approximation technique. Special 
attention is paid to computational efficiency and flow of control of the associated inference algorithms.

Chapters 2 and 3 review the relevant state-of-the-art knowledge. In Chapter 2, the basics of Bayesian 
parameter inference, and the most common approximation techniques, are reviewed. The Variational 
Bayes (VB) method is chosen as a reasonable trade-off between accuracy and computational require­
ments. In Chapter 3, the linear model is introduced and existing Bayesian inference methods are re­
viewed for this context. At the end of Chapter 3, in Section 3.5, four special cases of the linear model 
are selected for detailed consideration in the rest of the thesis. For each of these models, a computa­
tionally efficient Bayesian inference technique is not currently available and the aim of the thesis is to 
derive one.

The main contributions of the thesis are presented in Chapters 4-7 , in the context of each of these 
four models:

Chapter 4: the AutoRegressive (AR) model with unknown transformation of its output is studied. 

The unknown transformation is approximated by a finite mixture of known candidates. What 
follows is a new Mixture-based Extension of the AR model (MEAR). Computationally efficient 
inference algorithms for the MEAR model are derived. The model is successfully applied to the 

reconstruction of an AR process corrupted by outliers, burst noise, and in a speech reconstruction 
problem respectively.

Chapter 5: the AR model with non-stationary parameters is studied. We relax the assumption of 

known forgetting factor underlying an established Bayesian approach to this problem. The re­
sulting recursive Bayesian identification algorithm has better tracking ability with respect to the 

non-stationary parameters. Improvements over the standard fixed-forgetting approach are demon­
strated in a simulation study involving an AR process with abrupt changepoints.

Chapter 6: the problem of Bayesian Principal Component Analysis (PCA) is studied. The traditional 
Maximum Likelihood (ML) estimation of model parameters is numerically efficient. However,
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it does not provide an estimate of the number of relevant principal components, nor any associ­
ated uncertainty bounds. The known Bayesian solutions do not take into account the rotational 
ambiguity inherent in the model and are, therefore, computationally inefficient. We show that an 

approximate Bayesian solution can be found with a computational cost comparable to that of the 
ML solution. This VB solution is potentially attractive in the many scientific areas where PCA is 

used, but where, currently, inference of rank, and measures of uncertainty are unavailable.

Chapter 7: the problem of functional analysis of medical image data is studied. The standard mathe­

matical model used for this task is reformulated. The complexity of the model demands that the 
standard approach to parameter estimation is achieved in three separate steps: (i) pre-processing, 

(ii) orthogonal analysis, and (iii) oblique analysis. We show that the VB-approximate inference 
unifies all these steps. Moreover, the resulting Bayesian inference solves tasks that were not 
addressed before, such as selection of the number of relevant physiological sources.

Conclusions and suggestions for further work, are presented in Chapter 8.



Acknowledgement

I am grateful to Anthony Quinn for being my supervisor for this thesis and for his support and inspira­
tion.

I am also thankful to Miroslav Karny for his insightful thoughts, and to Petr Nedoma for the use of his 
excellent software MixTools.

I thank Martin Samal for introducing me to medical imaging, for his support, and for the use of his data.

Finally, I would like to thank my family, for their love and support over the years.

The financial support of the EU 1ST Project No. 1999-12058, ProDaCTool, is gratefully acknowledged.
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Chapter 1

Introduction

Mathematics looks like a pile of abstract facts, axioms and theorems to most people. It is hard to imagine 
that in some branches of mathematics, there are unresolved controversies about the meanings of basic 
notions such as Probability. Statistics is one of these branches, where researchers can be divided into 
various "schools of thought". This division further propagates into all scientific areas where statistics is 
applied, notably in (statistical) Digital Signal Processing (DSP).

Traditionally, DSP is dominated by classical methods, such as least squares and maximum likelihood 
methods, Wiener theory, etc. [1]. The classical interpretation sees each probability as a long-run relative 
frequency. On the contrary, the Bayesian school sees probability as a quantified degree-of-belief (or 
plausibility). However, what may sound like a minor philosophical disagreement can lead to very 
different ways of solving practical problems. In scenarios with plenty of observed data, the differences 
in results obtained using these philosophies are negligible.

The amount of available data is often limited however. For example, in medical applications, the 
measurement of data is expensive and may be uncomfortable for the patient. In these cases, classical 
methods have been found to be unreliable and the Bayesian approach has provided better results [2 ,3 ,4]. 
In DSP, these scenarios arise in image processing, analysis of medical data, signal-source separation, 
and non-stationary processing.

Bayesian inference is analytically tractable only for a limited class of models. The full Bayesian 
solution for more complicated and realistic models is not tractable and must be approximated. This 
problem has been studied in many scientific areas and many approximate methods have been proposed. 
The Markov Chain Monte Carlo (MCMC) approximation is now a popular approximation in DSP and 

statistics. As an alternative, the method known as Mean Field Theory has been developed in statistical 
physics [5]. This latter principle was introduced to the machine learning community [6], which de­
veloped it as the Variational Bayes (VB) method [7, 8]. Further research into this approach is now an 
inter-disciplinary activity, ranging over many scientific fields [9]. Its impact in DSP has yet to be felt.

In this thesis, we study the application of the Variational Bayes (VB) method in DSP. The main con­

cern in DSP is with computational efficiency and implementation of inference algorithms. Quite often, 
implementational restrictions— in terms of memory size and processor speed— must be taken into ac­

count when designing a new algorithm. This is very important, for example, in real-time and adaptive 
signal processing. These implementational restrictions influence the choice of mathematical models, 
as well as the inference methods employed. The preferred mathematical models are simple— i.e. ones 
with a small number of parameters and with computationally cheap operations— and primarily of the
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1. INTRODUCTION

linear model kind. Computationally cheap inference methods are also preferred, such as least squares 
methods. However, such methods have limited modelling capabilities and do not perform well in areas 
such as model order selection, non-stationary processing, and treatment of non-linear distortions. Many 
extensions of classical linear models have been proposed to address these problems. Inference of pa­
rameters of such extended models has proved intractable, and various approximations— often ad hoc or 
heuristic—have had to be made, in order to achieve tractability.

In this thesis, we are concerned with extensions of linear models which allow for computationally 
efficient Bayesian inference. In order to achieve this, we start with a basic linear model for which a 
computationally efficient inference is known. Applicability of this model is, however, limited by the 
restrictive assumptions it depends on. When we relax the assumption, the Bayesian solution becomes 
intractable. The Variational Bayes (VB) approximation is used to overcome these difficulties. Compu­
tational issues in the resulting inference algorithm are addressed and, where possible, computationally 
efficient solutions are proposed.

This experience encourages us to study a range of important DSP problems where, currently, severe 
restrictions are needed to achieve tractability. Approximative Bayesian analysis using the VB approach 
allows us to achieve effective and numerically efficient results in the much broader contexts where these 
restrictions are relaxed.
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Chapter 2. 

Distributional Approximations in Bayesian 
Inference

The Bayesian methodology is a well established approach to statistical inference [10], It is appreciated 
as a consistent framework for dealing with uncertainty [11]. While this is also important for DSP, 
practical benefits are the primary concern in this field. The Bayesian framework has advantages over 
other approaches, notably in model order selection [12, 13] and decision making [14, 15]. In this 
Chapter, we briefly review the parts of the theory we need for further development in DSP.

In Section 2.1, we review the basics of Bayesian theory. Two basic scenarios are considered: (i) the 
off-line scenario, where all data are available for the inference procedure, and (ii) the on-line scenario, 
where the data are acquired incrementally and the inference is re-evaluated for each new data record. 
Numerically efficient inference can be achieved only for a limited class of problems. For more com­
plicated models, full Bayesian treatment of a problem may be computationally prohibitive. Therefore, 
various approximating techniques are employed to lower the computational load.

The approximations used in the off-line scenario are briefly reviewed in Section 2.2, with emphasis 
on accuracy and computational cost. The Variational Bayes (VB) method (Section 2.2.4) is chosen for 
further development as a promising compromise between computational requirements and accuracy. 
Therefore, this method is studied in detail, with proofs of basic theorems. The approximations used in 
the on-line scenario are reviewed in Section 2.3. Once again, our concern is with the Variational Bayes 
approximation.

2.1. The Basics of Bayesian Theory

Let the measured data be denoted by D. A parametric probabilistic model of the data is then usually 
given by the probability density function (pdf), /  [D\6), conditioned by knowledge of the parameters, 
9. In this thesis, we will use notation /  (■) for both continuous and discrete parameters. In this way a 
significant simplification and unification of all formulas can be achieved. One only has to keep in mind 
that the integration has to be replaced by regular summation wherever the argument is discrete'.

The basic concept underlying Bayesian theory is the treatment of the unknown parameter 0 as a 
random variable. In this thesis, we suppose that the data D  are composed of n  p-dimensional data

'T his can also be achieved by employment of measure theory, operating in a consistent way with probability densities 
generalized in the Radon-Nikodym sense [16], The practical effect is the same and therefore is neither necessary nor 
helpful for our purposes.
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2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

records, di e  3?̂ , i = 1 , . . .  ,n.  These are aggregated together as follows: D  =  [ d i , . . .  ,dn]. We 
recognize two scenarios of parameter inference: (i) off-line scenario, when the number of observations, 
n, is fixed and all data are available before the inference procedure, and (ii) on-line scenario, when the 
data are acquired incrementally. In the latter case, the number of data available at each moment has the 
role of time index t, and the available data at time t are called the data history, Dt = [di , . . .  ,dt\. 

Bayesian inference of the model parameters, 6, is based on application of Bayes’ rule:

f { D )  -  J , f { D\ e ) f { 9 ) d 9 -

Here, /  (6\D) will be known as the posterior distribution, /  {D\0) as the observation model, and /  {9) 
as the prior distribution of the parameter 9 (i.e. initial belief of the parameter distribution without any 
information from the measured data). /  {D) will be referred to as the normalizing constant,

C ^ f { D ) =  f  f { D,  9) d 9 ^  f  f  {D\9) f  {9) d9. (2.2)
Je Je

Bayes’ rule (2.1) can be re-written as

/  {9\D) =  {D\9) f { 9 ) c Kf  {D\9) f  (9) , (2.3)

where a  means equal up to the normalization constant, The posterior is fully determined by the 
product /  {D\9) f  {6), since the normalization constant follows from the requirement that /  {9\D) be a 
pdf; i.e. /  {9\D) =  1. Evaluation of the normalizing constant can be computationally expensive, or 
even intractable. If the normalizing constant (2.2) is not finite, the distribution is called improper [17]. 
The posterior pdf with explicitly known normalization will be called the full pdf.

The task of evaluation of the full posterior pdf will be called parameter identification in this thesis. 
We favor this phrase over the alternative—density estimation—used in some decision theory texts [15]. 
The full posterior distribution is a complete description of uncertainty in parameters of the assumed 
model. For many practical tasks, we need to derive conditional and marginal distributions of model
parameters, and their moments. Consider the model parameters to be partitioned into two subsets
9 = [9i ,92\. The marginal distribution of 9\ is defined as

f { 9 i \ D ) =  !  f {9u92\D)d92.  (2.4)
Je2

The moments of the pdf, i.e. expected values of functions of parameters, g (9), will be denoted

^ m D ) { g m =  f  g{d) f {9\D)d9,  (2.5)
J 6

In context, where it is clear which pdf /  {9\D) is associated with the parameter 9, the notation can be 

simplified further to E/(6i|d) {9 (^)) =  ^e\D {9 (^)) =  9 (^)-

4



2.1. The Basics of Bayesian Theory

2.1.1. Choice of prior pdf

The required prior distribution (2.1) is a function which must be elicited by the designer of the model. 
It is an important part of the inference problem. Its use has been widely discussed from a philosophical 

point-of-view. See [17], for example. In this thesis, we are concerned with practical aspects of priors. 
The prior distribution is used for:

1. supplementing the data in order to reach an estimate, in cases where there is insufficient data 

and/or a poorly defined model; This will be called regularization (via the prior);

2. imposing various restrictions on the parameter 9 reflecting physical constraints. For example, if a 
prior distribution on a subset of parameter support is zero, then the posterior distribution will also 
be zero on this subset;

3. appropriately acknowledging our prior ignorance about 6. If the data are assumed to be informa­

tive enough, we prefer to choose a non-informative prior (i.e. prior with minimal impact on the 
posterior pdf). The choice of non-informative priors was studied, for example, in [18].

In this thesis, we use priors in all three roles described above. However, in case 3., we do not perform full 
analysis of nan-informative priors. Instead, we choose the form of the prior using other principles (such 
as conjugacy, to be explained in the next Section) and we achieve non-informativeness by choosing its 
statistics such that the prior is flat [16]. This choice of prior will be called a non-commital prior.

2.1.2. Conjugate prior pdfs

In the on-line scenario, our concern is with the inference of unknown model parameters at all obser­
vation times, t =  1 ,2 ,3 , . . . .  The Bayesian perspective therefore requires evaluation of a probability
distribution on these unknowns at all t. Tractability is assured when the form of the posterior distribu­
tion is identical for all t. Such a distribution is known as self-replicating [16], or conjugate [10]. This 
principle is briefly reviewed in this Section.

The observation model of the data observed at time t is f  {dt\0, A - i ) ,  where D q =  {} by assign­
ment. From Bayes’ rule:

/  (0| A )  oc /  {dt\e, A - i )  /  (0 \D t- i ) . (2.6)

Since (2.6) is recursive, analytical tractability of the update is assured if distributions f  (9\Dt) and 

/  {9 \D t-i)  are of the same form. This is achieved if there exists a mapping, St = s  (D f) , s  G 3?̂ , 
satisfying the condition:

f  {9\Dt) = f  {9 \a t), (2.7)

with s  (■) time-invariant and finite-dimensional, i.e. q < oo. s t are known as the sufficient statistics at 
time f [10]. Substituting (2.7) into (2.6), it follows that

/  (0|s<) a  /  {dt\9, A - i )  /  ( 0 |s t - i ) . (2.8)

5



2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

The distribution is then uniquely determined by st  and the functional recursion (2.6) can be replaced by 
an algebraic recursion on

St = s { s t - i , D t ) , t = 1 , 2 , 3 , . . .  (2.9)

with initializer sq being the parameter of the prior /  (0|so). from (2.7). Note that evaluation of (2.9)
may be difficult as s  (•) is a function of the whole history Dt.  A numerically efficient procedure is
assured if s  (•) is a function of the last observation only:

st  = s ( s t - i , d t ) ,  t  = 1 , 2 , 3 , . . .  (2.10)

Then, /  (0|-) is said to be conjugate to the observation model, /  {dt\6, -D t-i). One consequence of this 
is seen when f =  1 in (2.8). Then, the prior, /  (0|so), must also be conjugate to the observation model.

It has been proven that a conjugate distribution exists for every observation model belonging to the 

exponential family [19], In this case, algebraic recursion (2.10) achieves Bayesian identification of 9, 
Vi, guaranteeing a numerically tractable procedure. If the observation model does not have a conjugate 
distribution on parameters, the computational complexity of full Bayesian inference is condemned to 
grow with time t. To restore computational tractability, we seek approximate inference techniques, as 
discussed in Section 2.3.

2.2. Off-line Distributional Approximations

Tractability of the full Bayesian analysis— i.e. application of Bayes’ rule (2.1), normalization (2.2), 
marginalization (2.4), and evaluation of moments of posterior distributions (2.5)— is assured only for a 
limited class of models. Numerical integration can be used, but it is often computationally expensive, 
especially in higher dimensions.

The problem can be avoided by approximating the true posterior distribution by a distribution that is 
computationally tractable:

f  {9\D) ^  f  { e \ D) . (2.11)

Then, all subsequent operations, such as normalization, marginalization and evaluation of moments, are
performed on the approximating pdf, /  {9\D).  Various approximation strategies have been developed.

In this Section, we review the most common approximation techniques.

2.2.1. Certainty Equivalence Approximation

In many engineering problems, dealing with full pdfs is avoided. A point estimate, i.e. one value of 
parameter 9, is considered as the summarizing result of parameter inference. This approach will be 
called parameter estimation in this thesis.

The point estimate, 9 = 9 (D),  can be interpreted as an extreme approximation of the posterior pdf 

by the function <5 (•):
/  {9\D)  «  f { 9 \ D )  = 6 ( ^ { 9 - 9 ) \ d ) ,  (2.12)
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2.2. Off-line Distributional Approximations

where 6 is the chosen point estimate of parameter 6, and 5 {x) is the Dirac delta function

/  5{x  -  x)  g { x ) d x  = g { x ) ,
X

if X is a continuous variable, and the Kronecker function

1, if X =  0 
0, otherw ise

if X is a discrete variable.
This approximation is known as the certainty equivalence principle [20]. It remains to determine an 

optimal value of the point estimate. This value should be optimal with respect to some criterion, popular 
choices are:

•  Maximum A Posteriori (MAP) estimate:

This approach may be computationally attractive, as we do not need to evaluate the normalizing 
constant (2.2).

•  Mean value:

Evaluation of the mean value may be computationally expensive, owing to the required integra­
tion. Therefore, further approximation are usually necessary for this approach.

Remark 2.1 (Maximum likelihood (ML) estimation) is a classical method o f  parameter point esti­

mation [1], From a Bayesian perspective, M L estimation corresponds to M A P  estimation with uniform 
prior distributions [17, 18]. The philosophical difference between those two methodologies has been 
discussed in [ 17].

Remark 2.2 (Approximations of Marginals by Conditionals) In the point-based context, the true marginal 
distribution (2.4) can be approximated via

again, subject to the chosen criterion o f optimality.

Algorithm 2.1 (Expectation Maximization (EM) algorithm) is a well known algorithm for M L estimation— 

and by extension for M A P  estimation— o f model parameters 9 = [6 1 , 6 2 ] [21]. Here, we follow an 
alternative derivation o f  EM  via distributional approximations [22], The task is to estimate parameter 
6 \, o f  the (intractable) marginal distribution (2.4). Using Jensen’s inequality, it is possible to obtain a 
lower bound on (2.4) which is numerically tractable [22]. The resulting inference algorithm is then a 
cyclic iteration o f  two basic steps:

6 =  arg m ax /  { 6 \ D) . (2.13)

6 = 6 =  [  6 f { 6 \ D ) d 6 .  

f  {6i \D) ^  f  ( 9 i \ D, §2)  , (2.14)

i.e. the conditional distribution o f  6 1  given a fixed estimate o f  6 2 . The choice o f  point estimate 6 2  is.

1



2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

E-Step: compute approximate distribution o f  parameter 62, o f  type (2.14), at iteration i:

(2.15)

M-step: using approximate distribution from the E-step, find new estimate ;

=  argmax f  /W In /  (0i, 2̂ , £>) (2.16)
Je2

It was proven that this algorithm monotonically increases the marginal likelihood, f  (D \6i), thus con­

verging to a local maximum [23].

Note that the posterior, /  {9\D) and the joint distribution /  {9, D ) differ only in the normalization con­
stant (2.3), which is independent of 9. Hence, (2.16) can also be written as a function of In f  (9i ,92\D)  

in place of In /  (0i, 0 2 > D ). We prefer to use the form of (2.16), as it is clear that the normalization 
constant does not have to be known.

2.2.2. Laplace’s Approximation

This method is based on local approximation by a Gaussian distribution at the MAP estimate 9, of the 

posterior pdf /  {9\D) [24], 9 €  3? .̂
Formally, Laplace’s method approximates the posterior (2.1) as follows

f { 9 \ D )  «  (2.17)

where 9 is the MAP estimate (2.13), and H  e  is the (negative) Hessian matrix of the logarithm of 
the joint pdf /  {9, D)  with respect to 9, evaluated a\.9 = 9,

H  = -
d H o g f { 9 , D )

89id9j , i , j  =  l , . . . , p ,  (2.18)
e=e

The asymptotic error of approximation was studied in [24].

2.2.3. Fixed-form Minimum Distance Approximation

The approximating distribution f  {0\r]) is chosen as a tractable distribution with parameter t]. The 
optimal approximation /  {9\f])— given the fixed-form function /  (.)— is then determined as

77 =  arg mm

where A (^ / ( • } , / ( • ) )  is an appropriate measure of distance between two pdfs. Various measures 
are used for specific problems, such as Kullback-Leibler, Levy, chi-squared, L 2 -norm, etc. These are



2.2. Off-line Distributional Approximations

reviewed in [25]. Specifically, the Kullback-Leibler (KL) distance [26] from /  {d\D) to /  (0|r/),

KL ( /  (e\D)  11/(91,)) =  1 1 W D )  In ( in  , (2.20)

is important for two reasons:

1. statistical inference via KL distance was shown to be optimal in statistical utility sense [27].

2. minimization (2.19) with respect the KL distance (2.20) has a unique—and therefore global— 
solution [28].

Moreover, the KL distance is also used in many practical applications [29, 30, 31]. It has the following 
properties:

1 . KL[f{e\D)\\he\n))>^-,

2. K L  ( f̂ (9\D) 11/ =  0 iff /  {0\D) =  f  {9\r]) almost everywhere;

3. K L [ f { e \ D ) \ \ f { e \ r j ) )  =  oo iff on a set of a positive measure /  {9\D) >  0 and /  {6\r]) =  0;

4. K L  {0\D) 11/ {0\r])j ^  K L  ^ /  {6\r}) | | /  and KL distance does not obey the triangle 
inequality.

Given 4., care is needed in the syntax describing K L  (•). We say that (2.20) is from f  {6\D) to f  

2.2.4. Variational Bayes (VB) Approximation

Variational Bayes (VB) approximation [7, 4, 8] is also known as Ensemble Learning [32, 33], or 
naive Mean Field Theory [5, 34]. Here, we prefer its interpretation as functional minimization of the 
Kullback-Leibler (KL) distance. Compared to fixed-form minimum distance approximation (2.19) there 
are two key differences:

1. the approximating distribution is not confined to a given form, but it is restricted functionally, 
using the assumption of conditional independence:

/  {e\D) «  f {9 \ D)  =  f { 6 , \ D)  f { e 2 \ D ) . . .  /  { e , \ D) , (2.21)

where 6 =  . . .  ,6'^' is the multivariate parameter partitioned into q elements. Notation
/  (•) is used to denote an unspecified functional variant (‘wildcard’ function) used in optimization 
procedure which yield the approximating distribution.

2. for reasons of tractability, the VB procedure does not minimize the ‘original’ KL distance from 
f  {6\D) to f  (0 |t /) (2.20) but the ‘reverse’ KL distance K L  { j  {6\D)\ \ f  (0|£))^,from /  [d\D) to

These have, respectively, the following consequences:

9



2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

1. conditional independence:

• the VB approximation can be used only for models with more than one parameter,

• cross-corelation between variables 9\ and 62 is not modelled. Intuitively, the correlated 
multivariate distribution is modelled as a product of approximating marginals.

2. the use of ‘reverse’ KL distance:

• from property 4. of the KL distance (Section 2.2.3), the ‘reverse’ KL distance is not equal 
to the ‘original’ one and therefore, it is less optimal in the statistical utility sense [27].

• minimum distance approximation via K L  (•) | | /  (-)^ is not guaranteed to have a unique 
minimum [28].

These disadvantages are, however, outweighted by computational advantages: (i) functional (i.e. free 
form) optimization has an analytical solution, and (ii) parameters of the optimal approximating posteri­
ors can be evaluated using an alternating algorithm of the EM kind (Algorithm 2.1). These advantages 
are now described in detail.

Theorem 2.1 (Variational Bayes) Let f  {0\D) be the posterior p d f o f multivariate parameter 9. The 
parameter 6 is partitioned into 6 =  [0'j, • • • i /  (^1-^) approximate pd f restricted to
the set o f conditionally independent distributions o n 9i , 92, . . . ,  9g:

f {0 \ D)  =  f { 9 u 9 2 , .. . , 9 , \D)  =  {Oi\D). (2.22)

Then, the minimum o f the KL distance,

f i 9 \ D ) = a . v g m m K L ( f { 9 \ D ) \ \ f { 9 \ D ) ) ,  (2.23)
/(■)  ̂ ^

is reached for

f i{9i \D)  oc exp (ln(/(6>,Z?)})) , i = (2.24)

where 9/^ denotes the complement o f  9i in 9, and ]^  h
/  {9\D) (non-unique, see 2. above) as the Variational Extreme. Conditionally independent elements o f 
(2.24) will be called VB-marginals. The parameters o f the posterior distributions (2.24) will be called 
VB-statistics. A t the extreme (2.24), the KL distance form the approximant, f  (•), to the true posterior, 

f  (•). is
K L  (^f{9\D) \ \ f {9\D))  =  In f { D)  -  In (0) +  (in ( / / ,  (•})) • (2.25)

for any i G { 1 , . . . ,  q}, where Q = exp (In /  (9, D)) d9i.

10



2.2. Off-line Distributional Approximations

Proof: The KL distance from (2.23) can be rewritten as follows:

K L  ( f { e \ D ) \ \ f { 6 \ D ) )  ^

-  X  J W ) ------JW)
=  f  f i { e i \ D ) f ^ i { d ; i \ D )  In f i ( e i \ D ) d d  

Je

-  jfi{ei\D)f,i{en\D)\nf{e,D)de+
Je

+  f  f i [ e i \ D ) f ^ i { e / i \ D )  \ l n J / i { e / i \ D ) + \ n f { D )  
Je  L

=  f  f i  {e^\D) In f i { e i \ D ) d e i  +  \ n f { D )  + 7]
JOi

de

[  f i { Oi \ D)  f  f / i { e / i \ D ) \ n f { 9 , D ) d d ; i
J0i Je,i

dOi . (2.26)

Here For any non-zero scalar Q  it holds:

K L  [ f { 9 \ D ) \ \ f { e \ D ) )  =

=  [  f i  { 9i \ D)  \n f i { 6 i \ D ) d e i  + I n  f { D )  +  r,
JOi

f i { 9 i \ D )  i^ln 

f i { Oi \ D)

dOi

L dOi +  In f { D )  -  In(Ci) +  r), (2.27)

If Q  is chosen as the following normalizing coefficient of exp E. (■),

Q =  [  exp (In /  (<̂ . ^ ) )  dOi,
J  Ox

the last equality in (2.27) can be rewritten in terms of a KL distance:

K L ( f { e \ D ) \ \ f { e \ D ) )  =  K L U { 9 i \ D ) \ \ ^ e x ^ E j ^ g ^ ^ ^ ^ ^ { \ n f { 9 , D ) )

+  l n f { D ) - \ n  {Q)  +  v- (2.28)

The only term on the right hand side of (2.28) dependent on / j  (•) is the KL distance. Hence, minimiza­
tion of (2.28) with respect to f i  (Oi \D),  keeping / / ,  [ 9 / i \ D)  fixed, is achieved by minimization of the 
first term. Invoking non-negativity (Property 1) of the KL distance (Section 2.2.3), the minimum of the 

first term is zero. The minimizer is almost surely f  ( 9 i \ D)  =  f  {9 i \ D)  oc exp
(i.e. (2.24)), using the second property of the KL distance (Section 2.2.3). I

11



2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

This proof is— our own— simpler alternative to the proofs in the literature, which use Lagrange multi­
pliers [33],

The extreme (2.24) is dependent on the data via the joint distribution /  [6, D) ,  not /  {0\D).  This is 
important, as the expensive normalization (2.2) is thereby avoided.

The main computational problem of the VB approximation is that the Variational Extreme (2.24) is 
not given in closed-form. For example, with q = 2, the moments of / i  (•), are needed for evaluation 

of /2 (•)» ^nd vice-versa. The solution of (2.24) is usually found via an iterative algorithm that is 
suggestive of the EM algorithm (Remark 2.1), but where all steps involve expectations of the kind in 

(2.16), as follows.

A lgorithm 2.2 (Variational EM  (VEM)) Consider the case where q = 2, i.e. 0 =  [9[, 6 ',^, then cyclic 
iteration o f  the following steps, i =  1 , 2 , . . . ,  converge to a VB extreme (2.24).

E -S tep: compute approximate distribution o f  parameter 0 2  at iteration i:

/ «  (0 2 p )  cx exp [  { 9 i \ D ) \ n f  {6 1 , 6 2 , D ) d 6 i. (2.29)
Jei

M -step : using approximate distribution from the ith E-step compute approximate distribution o f  pa­

rameter 6 1  at iteration i:

/W (0 i|L » )o cex p  /  f [ ^ \ 6 2 \D) \n f(^6 , , 6 2 , D ) d 6 2 . (2.30)
J 62

Where the initializers, i.e. VB-statistics o f  (•) and (•), may be chosen randomly. Conver­

gence o f the algorithm to fixed VB-marginals, (6 i \D),  Vz, was proven in [35] via natural gradient 
technique [36].

In general, the algorithm requires q steps— one for each 6 i, i = I , . . . ,  q— in each iteration. Following 
the nomenclature of the ‘EM algorithm’, this algorithm should be called an ‘E^ algorithm’. However, 
we will use the name Variational EM (VEM) for compatibility with other publications, e.g. [37].

Rem ark 2.3 (M arginal Lower Bound) A n alternative derivation o f  (2.24) is via the marginal posterior 

distribution o f  data [7]. For an arbitrary approximating density, f  {9\D),  it is true that

\ n f ( D )  =  In f  f  (6 , D ) d 6 =̂ In f (6 , D ) d 6 ,
Je Je f  { 6 \ D)

> f  f { 6 \D) In (2.31)
-  y / ' '  f { 6 \D)

= In f { D )  -  K L  ( / ( 0 |D )  11/ (0 |D )) , (2.32)

using Jensen’s inequality [7], M inimizing the K L distance on the right-hand side o f  (2.31)—e.g. via the 
VB procedure (Theorem 2.1)— error in the approximation

f { D )  «  e x p J j ' { 6 \ D ) \ n ^ J ^ d d ,  (2.33)
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2.2. Off-line Distributional Approximations

is minimized.

2.2.5. Quasi-Bayes (QB) Approximation

The iterative evaluation of the Variational Extreme via the VEM algorithm (Algorithm 2.2) may be 
prohibitive, e.g. in the on-line scenario. Therefore, we seek a modification of the original Variational 
Bayes approximation that yields a closed-form solution.

Corollary 2.1 (of Theorem 2.1, Restricted Variational Bayes (RVB)) Let f  {0\D) be the posterior 
p d f o f  multivariate parameter 6 = [6[ , 02 , ■ ■ ■ , 0 '^^, and f  [6 / i \ D)  be a fixed posterior distribution o f  

6/1 =  [^2 ) • • •, i-et /  {6 \D) be a conditionally independent approximation o f  f  [B\D) o f  the kind

f  [e\D) = f  {91,92, . . . ,  e , \D)  =  A (9 , \D)  7/1 (0/1 |D ) . (2.34)

Then, the minimum o f  the KL distance, K L  { j  {9\D) | | /  {9\D)^,  is reached for

f \ {9^ \ D)  oc e x p (E 7 ^ ^ (,^ ^ p )( ln ( /(0 ,L » } ))) . (2.35)

Proof: Follows directly from (2.24), for choice i =  1. ■
Note that Corollary 2.1 is equivalent to the first step of the VEM algorithm (Algorithm 2.2). However, 
with distribution / / i  {9/x\D)  being known, the equation (2.35) is a closed-form  solution. This greatly 

reduce the computational load needed for evaluation, since no iterations are required. Since / / i  (0 /i) 
is fixed, the KL distance of Variational Extreme (2.24) is less than or equal to the KL distance of the 
RVB minimum (2.35). These distances can be compared via (2.25).

The quality of the approximation strongly depends on the choice of the fixed approximating distribu­
tion / / I  (•) in (2.34). If / / I  (•) is chosen close to the VB-optimal posterior (2.24), i.e. / / i  (•) «  / / i  (•), 
then one step of the RVB algorithm avoids many iterations of the original VEM algorithm. Here, we 

propose one such strategy for choice of / / i  (•).

Remark 2.4 (Quasi-Bayes (QB)) RVB solution (2.35) holds for any choice o f  distribution f  (0 /i|£ )). 

We seek a reasonable choice for this function. We choose q = 2 for notational clarity, i.e. / / i  (0 /i) == 

/ / 2  (^2 ). however the result is also valid for the general case.
The VB extreme (2.23) is

h  {92\D) =  a rgm in  ( i m n K L  (^f {9 \ D) \ \ f  {9\D)^  j  . (2.36)

13



2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

A s noted (Algorithm 2.2), a solution to (2.36) cannot be found in closed form. Hence we seek a 
reasonable ‘firstguess'. Rewriting the K L distance in (2.36) as

i.e. exact marginal distribution o f  the jo in t posterior f  [0\D). The global minimum o f  (2.37) is not 

reached as the first term in (2.31) is also dependent on /2  (0 2 |-D). Therefore we consider (2.38) as the 
best analytical choice we can make.

The name Quasi-Bayes (QB) was first used in the context of finite mixture models [25], There, the 
choice of (2.14) for the approximation was based on point-estimation arguments (Remark 2.2), choosing 
§ 2  as the expected value of the true posterior marginal:

Note that, iff In /  (0i, 0 2 , D ) is linear in 6 2 , then, using (2.35), the RVB approximation (Corollary 2.1) 
yields results equivalent to (2.14) [37]. The choice of /2  {O2 ) (Remark 2.4) yields (2.39). Therefore, we 
consider Remark 2.4 to be a generalization of the QB idea expressed in [25].

2.2.6. Markov Chain Monte Carlo (MCMC) Approximation

In this approach, the posterior pdf is approximated by a piece wise constant density on a partitioned sup­
port, i.e. via a histogram constructed from a sequence of random samples, . . . } ,

of variable 6 .

The sequence of random samples is called a Markov chain if the n-th sample is generated from 
a chosen conditional distribution

For mild regularity conditions on /  (-I-) (2.40), then, as n  —> 0 0 , ~  /« {6 ), the (time-invariant)

may be drawn via an appropriate choice of kernel (2.40), if n  is chosen sufficiently large. Typically, the 
associated computational burden is high, especially for high-dimensional parameters.

f i { e i \ D ) h { e 2 \ D )
f{ei\e2,D)f{e2\D)

f { 0 2 \ D )
(2.37)

we note that the second term in (2.37) is K L  ( f 2 (^2 !^ )  which is minimized for

f 2 { e 2 \ D)  =  f { 9 2 \ D ) =  [  f { d \ D ) d d
J 6 i

(2.38)

^2 =  EgjID (6*2) ■ (2.39)

(2.40)

which depends only upon the previous state of the chain 0 "̂

stable distribution of the Markov chain defined via the kernel (2.40). Hence i.i.d. samples from fs  {6 )

14



2.3. Distributional Approximations for Recursive Identification

2.2.7. Summary

The methods described in this Chapter were ordered with increasing complexity and accuracy of ap­
proximation. In signal processing, the full distribution must often be collapsed to a point estimate in 
order to complete a typical task. Therefore, in many applications, point estimates are evaluated with­
out any reference to their full posterior distribution. The Laplace approximation is known in the DSP 
community in the context of criteria for model order selection, such as the Schwarz criterion or Bayes 
Information Criterion (BIC), both of which were derived using the Laplace method [24], Sampling 
methods—e.g. MCMC—are valued for their ability to provide arbitrarily close approximation. How­
ever, for closer and closer approximation, more and more computational power is required. Thus, this 
approximation is mostly used for low-dimensional problems evaluated off-line (e.g. [38]).

In this thesis, we are concerned mostly with the Variational Bayes approximation. The main ad­
vantage of the VB approximation is its ease of use. Note that the form of the approximate posterior 
distribution is found explicitly. Evaluation of the VB-statistics of these posterior distributions can be 
achieved by a general iterative algorithm (Algorithm 2.2). Therefore, we see VB as a good starting 
point in the search for an optimal trade-off between accuracy and computational complexity of the 
identification procedure. If the accuracy of the VB-posterior distributions is not acceptable, we can use 
more sophisticated (and thus more computationally expensive) approximations (e.g. mean field theory 
[34, 39], or sampling methods (MCMC)). In this thesis, we assume that the accuracy of the VB approx­
imation is acceptable, while the computational cost of the iterative VEM algorithm is not acceptable. 
Therefore, much of our effort will be dedicated to studying further simplifications and approximations 
of the implied VB-posteriors.

2.3. Distributional Approximations for Recursive Identification

If the observation pdf does not belong to the exponential family—i.e. finite-dimensional sufficient statis­
tics is not available—the full history of data has to be used in each step. Hence, computational com­
plexity grows with each step. To achieve computational tractability, we have to find an approximate 
representation of the data history at each step. In contrast to the previous Section, we do not seek a 
single approximation (2.11), but a sequence of approximations:

f  {9\Dt) ^  f  {9\Dt) , t  = l , . . . , o o  (2.41)

In this Section, we review the relevant approaches to this problem. The following list is by no means 
complete. It is provided, by way of introduction to the VB approximation, which is the main subject of 
the thesis.

2.3.1. Bayes-closed Approximation

The problem of recursive estimation with limited memory was addressed in general in [40], There, the 
problem was defined as finding a functional form, /  (0), of approximating distributions that is closed
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2. DISTRIBUTIONAL APPROXIMATIONS IN BAYESIAN INFERENCE

under Bayes’ rule, i.e.

f ( 6 \ D t )  oc /  {dt\e, D t - i )  f  (0| A - i ) . (2.42)

where /  {9\Dt-i )  and /  {0\Dt) are of the same functional form. Moreover, the form must depend only 
on a finite-dimensional statistics, St G such as

fie\Dt) = f{e\st),

where q is assigned, and may be chosen arbitrarily small. Note that St plays the role of sufficient 

statistics, however, in this case it is not sufficient for full description of the posterior.
The approximating family was found in the form of probabilistic mixture of q fixed (known) pdfs 
{9), i = 1 , . . .  ,q,  weighted by elements of st. Non-sufficient statistics st  is then updated by a linear 

functional, I (•),

Si,t =  +  , f  { d t , 9 \ D t - i ) )  , i ^ l , . . . , q .  (2.43)

Alternatively, the choice of q fixed pdfs, (0), can be replaced by the choice of q functionals k  (•), 
such as

”1“ h i f  {dt, 0 |i?t_ i)) .

It was proven then the approximate on-line identification (2.42) is globally optimal^, [41].
Practical use of the approximation is, however, rather limited. The method requires time- and data- 

invariant linear operators, (•) to be chosen a priori. Design criteria for these operators are available 

only for special cases. The method was demonstrated to be applicable to low-dimensional problems 
only.

2.3.2. One-Step Approximation

In this case, the requirement for the approximation family to be closed under Bayes’ rule is relaxed. 
The form of the posterior, /  {0\Dt), is given a priori and fixed for all t. It is the Bayes’ rule what is 
aproximated at each step [25, 42]. If the posterior distribution, /  (6\Dt),  has a form different from the 
prior, /  an approximation of the posterior is found in the family of the prior distribution

7  {9\Dt) «  /  (9\Dt) oc /  {dt\9, A - i )  7 (0| A - i )  (2.44)

The approximation (2.44) is used as prior in the next step. As the efficient recursive estimation can be 

achieved only for the exponential family, /  (•) is chosen from this family.
There are two basic approaches to the choice of the approximation in (2.44):

1. probability fitting: the approximation (2.44) is optimized with respect to a chosen distance (Sec­
tion 2.2.3).

2. moment fitting (also known as the probabilistic editor [25]): parameters of the approximating 
distribution are chosen so that moments of the approximating distribution match moments of the 
true posterior.

^with respect to orthogonal projection on the trae posterior distribution.
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2.3. Distributional Approxim ations for Recursive Identification

Note that one-step approxim ation is only locally optimal (i.e. optim al only for one step, not for the 

whole trajectory), and so the error of approximation may grow with time. Typically, the quality of the 

approxim ation is studied asymptotically, i.e. for t  oo. Furtherm ore, the approxim ation is not closed 

under B ayes’ rule. In practice, this means that on-line identification given a set o f i.i.d. observations 

yields different results depending on the order in which the data are processed [25].

2.3.3. On-line Variational Bayes

The general VB approxim ation (Section 2.2.4) was extended to the on-line scenario in [35]. It is found 

that the on-line VB m ethod is a special case of one-step approxim ation, namely distribution fitting, with 

Theorem  2.1 used to satisfy (2.44). Convergence o f the m ethod was also proven in [35], by showing 

on-line VB to be a special case of stochastic approxim ation, which is known to converge [43].

Off-line VB approxim ation (Section 2.1) is a functional optim ization o f the KL distance. This func­

tional optimization can be extended to the on-line scenario (2.6) as follows:

f { 9 \ Dt )  =  /  {dt\9,  A - i )  /  i O \ D t - i ) . (2.45)

We seek an optimal approxim ation o f  the true posterior under the conditional independence constraaint 

(assume q =  2 for algebraic simplicity):

f ( e \ D t )  =  f  ( e i \Dt )  f  ( 0 2 \ Dt ) , (2.46)

f ( 0 \ D t - i )  =  / ( 0 i | A - i ) / ( ^ 2 | A - i ) .  (2.47)

Then, using (2.45) and (2.46) in Theorem  2.1, the VB-optimal form  o f (2.46) is found in the following 

form:

f { 9 i \ Dt )  oc exp  ( l n / ( d t | 0 , A _ i ) ) - f  ln /(6 > i |D t_ i) )  ,

oc exp  ( l n / ( d 4 |0 ,  A _ i ) ) ^ / ( 6 > i |A - i )  • (2.48)

Equation (2.48) can be rewritten as:

f { 9 i \ Dt )  =  f v B { d t \ e , D t - i ) f { O i \ D t - i ) ,  i =  l ,2 ,  (2.49)

f v B { d t \ Q , D t - i )  a  exp  ( l n / ( d t | 0 ,  A - i ) ) )  • (2.50)

Then, (2.49) is the VB-approxim ate update of param eter distribution, where f v B  ( d t |0 ,  A - i )  plays 

the role o f VB-approxim ate observation model. Hence, the choice o f f  (9i\-) conjugate with the VB 

observation model (2.50) yields a numerically tractable recursive identification algorithm. This VB- 

conjugate distribution can be found if  the VB observation m odel (2.50) is from  the exponential family.

Note that (2.50) is, in fact, in the form o f the Bayes-closed approxim ation (2.43) with Ê -̂ g (•)

playing the role of linear operator li (•). However, the expected value, Ej^g (•), is conditioned by 

D t and is, therefore, time-variant. This is not allowed for the linear operators used in the Bayes-closed 

approxim ation. Therefore, the on-line VB approxim ation (2.49) is not closed under B ayes’ rule.
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Chapter 3. 

Linear Models: Classes and Their Inference

Classification of an observation model into linear and non-linear classes is of primary importance. Non­
linear models are intrinsically more more flexible but imply bigger intellectual challenges for their 
identification. Linear models—which have been studied for a very long time—have many attractions, 
including (i) analytical tractability, and (ii) computationally efficient evaluation (resulting from (i)). The 
main drawback of linear models are their modelling limitations. Various non-linear methodologies were 
proposed to match real-life problems, but these are often analytical intractable, and computationally 
expensive. Thus, linear models,continue to be used, almost exclusively, in areas like real-time data 
processing or processing of high-dimensional data, where computational tractability is essential.

In this Chapter, we review the published Bayesian solution to special cases of the linear model. We 
focus on some special cases for which an efficient parameter inference procedure is available, namely, 
the AutoRegressive (AR) model (Section 3.2) and Principal Component Analysis (PCA) (Section 3.3). 
The use of the PCA model in the area of medical image processing is described in Section 3.4. In 
Section 3.5, we introduce possible extensions of these models and formulate the principal challenges of 
the thesis.

3.1. Bayesian Methods for Linear IVIodeis

We define a linear model as one to satisfying two conditions. First, it is assumed that the observed data 
are additively decomposed into an underlying signal and additive noise

D = M  + E,  (3.1)

where D € are the observed data, M  G is the signal, and E  G is the noise. Second, 
the signal, M,  is a linear combination,

M  =  AX,  (3.2)

of underlying parameters A  G and X  G Naming conventions for A  and X  differ in
different application contexts. For the purpose of this thesis, we call A  the matrix parameter and X  
the regressor. The rich linear model class described above, (3.1) and (3.2), has been studied with many 
different restrictive assumptions, yielding other rich classes constituting distinct research directions. We 
will review the most important models in this Chapter.
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3. LINEAR MODELS: CLASSES AND THEIR INFERENCE

We start the classification of (3.1) and (3.2) by consideration of the dimensionality of the matrices A 

and X.  Note that the role of p  and n  is interchangeable, as transposition of (3.1) yields the same model 
(with roles of A  and X  swapped). However, for the sake of clarity, we adopt a common convention, 
that the observed data matrix D  is composed of n  observations of the p-dimensional variable, di,  i =  

1 , . . . ,  n, i.e. D  =  [ d i , . . . ,  d„]. We recognize two basic cases of model parameter inference based on 
the nature of the observation process;

off-line: the data has been acquired, and n  data records have been saved. The task is to infer unknown 
A  and X  given all data, D,  at once.

on-line: data are acquired incrementally with n growing possibly up to infinity. The task is to infer 
unknown A  and X  given all available data at given time t, as discussed in Section 2.1.2. It is 
useful to rewrite the model (3.1), (3.2) in terms of the time-indexed observation, dt  '.

dt =  Axt  +  et,  (3.3)

The accumulated data available at time t  will be denoted Dt =  [ d i , . . .  ,dt\ .  Hence, t  replaces n  
in (3.1), (3.2).

Further classification of linear models is related to a priori knowledge available about A  and X .  We 
recognize two families:

Regression models: either .A or X  is assumed to be known. The task is to infer the other. In this 

scenario, dimension r  typically satisfies r >  P-

Signal separation models: where both A  and X  are assumed to be unknown. The task is to infer 
both of them. In this scenario, the dimension r  typically satisfies r <  P-

Further sub-classed can be defined with respect to an assumed distribution for the noise, /  (E).  In this 
thesis, we focus our attention to models with Normal distributed noise. The most general case of the 

Normal distribution of E  can be written as

/  (vec (£■))=  TV (vec (p e ) , ^ £ ; ) ,

with: mean value, pE  G transformed into a vector, vec (p e ) S and symmetric, positive
definite covariance matrix G Note that is typically a large matrix, with ^ {pn +  I) pn

distinct elements. It is therefore much larger than the number pn  of available data D.  Therefore, a 
restricted covariance structure must be considered. One such restriction comes from confining /  (E)  to 

the following matrix Normal distribution (Appendix A .l):

/ ( .E )  =A /'(M J5,Sp(8>S„), (3.4)

where p s  S while Ep E and E„ G 5?"^" are symmetric, positive definite matrices. The
covariance matrix E^; =  Ep ® E„ has now ^{p +  \ ) p  +  ^{ n  +  \ ) n  distinct elements, which is, once 
again, more than the number pn  of available data D.  A typical further restriction in regression models
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3.1. Bayesian Methods for Linear Models

is independent identically distributed (i.i.d.) assumption defined via a time-invariant distribution for the 
noise vector, Cj:

/ ( e t | | i e ,S e )  =  A/'(Aie,Se) , (3.5)

with /ie  S Ee €  constant for alH  =  1 , . . . ,  and et, Cg independent for t ^  s. This can be
written in the matrix Normal distribution form as:

n

f  {E\fjLe, S e) =  /  (et|/Xe, Sg) =  M  ® /„ )  •
t = l

Thusfar, we have defined the Normal distribution in terms of its covariance matrix E. However, for 
some problems, it is more convenient to work with the precision matrix, instead of the covariance 

matrix, in which case, we denote E =

The above mentioned classes and scenarios can be mutually combined to yield a wide class of iden­
tification problems. Further restriction and assumptions often constitute research directions (e.g. Factor 
Analysis, General Linear Models, etc.). The most important special cases of the linear model, (3.1) and 
(3.2), are listed in Table 3.1. The name of each model often comes from the associated inference tech­
nique (e.g. PCA or FA) since the inference technique was developed before its associated assumptions 
were recognized as constituting a special case of the linear model. In these cases, by convention, we 
will use the name of the method as part of the name of the model, such as Factor Analysis (FA) Model. 
We list references to both point-based inference (ML or MAP) and Bayesian inference methods in Table
3.1.

General Linear Models (GLM) are traditional statistical models for modelling time-series and for 
forecasting [17, 54]. Typically, the on-line scenario is considered. Assumptions underlying the 
model often vary, the most common being a known matrix of parameters A, unknown x t,  and 
Gaussian distribution of noise

f { E ) = M  (Op,„, I n)  ,

with scalar precision parameter w >  0. A full Bayesian solution is available in [17].

Various extensions of the model has been studied, such as Dynamic Generalized Linear Models 
[54]. The extensions impose extra parameterization that should be known a priori. The model 
is then identified using Kalman-filter theory (which can be interpreted as approximate Bayesian 

identification [55]) or using an MCMC approach [56]. These models are traditionally applied in 
analysis of econometric data, where computational cost is not critical. However, recently, it was 
successfully used in real-time processing [57].

Autoregressive Models (AR) can be considered as a special case of GLMs. However, they were 
developed independently, and for different application contexts, such as control theory [16, 58], 

Typical assumptions are that the parameter A  is unknown, and regression vector x t  is known, 
being a function of previously observed data. Noise is considered to be Normal,

f  ( E )  =  ^  I t ) ,
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model name A X E ML/MAP full Bayesian
General Linear Model (GLM) K u Analytical [17, 44] Analytical [17, 44]
AutoRegressive Model (AR) U K N  ( O p ®  In) ,  n  positive definite Analytical [45] Analytical [16]
Generalized AR Model (GAR) U K / ( f )  = f i e t )  =  

^/p)with unknown weights
ai , i  =  1 . . .  c

VB [46]

(Probabilistic) Principal Component Analysis 
Model (PPCA)

U u A/" In) Full [47], EM[48] VB [7]

Factor Analysis Model (FA) U* u J\f {fill^n, S  ® In),  S  diagonal Iterative [47], EM [49] Partial [50], VB [4]
Independent Component Analysis Model 
(ICA)

u u E  =  Op,„ EM[51] VB[33]

Independent Factor Analysis Model u* u A /'(p tli,„ ,E  (g) In),  E diagonal EM [52] VB[53]
Legend: U - unknown, i.e. to be inferred.

K - known a priori.
* methods differ in prior distributions imposed on A.

Figure 3.1.: Table of established linear models



3.1. Bayesian Methods for Linear Models

with symmetric, positive definite precision matrix ft e  Recursive Bayesian identification
is available in [16], using the principle of conjugacy. The model can be extended while pre­
serving conjugacy to cases of a known transformation of the system output, and non-stationary 
parameters, as will be discussed in Section 3.2.

A popular extension of the AR model is via state-space modelling. In the state-space model, 
xt  is considered unknown but modelled by another linear model [59], Hence, we consider the 
state-space model to be bi-linear. In general, full analytical recursive Bayesian identification of 
parameters of the state-space model cannot be achieved. An approximate Bayesian inference of 
the parameters of the state-space model, using the VB approximation, was presented in [60].

G eneralized AR M odels (GAR) are extensions of the AR model to allow a mixture type noise [46],

C

1= 1

with =  {Qi , . . . ,  fic}, fJ'e — [â I) • • •) Ate], and o; =  [ a i , . . . , being the mixture weights. 
An approximate Bayesian identification was presented in [46], using the VB approximation. 
However, recursive identification was not achieved.

A utoRegressive Moving Average Models (ARMA) are AR models with correlated noise. The 
noise distribution is then

/  c ) ^ N  (op,„, ® [$ (C)]-'),

with parameterization extended via a symmetric positive definite matrix, $  (C) € where
C  € is formed by the coefficients of the order-m Moving Average (MA) part of the model
[61]. Full Bayesian identification is achieved if C  is known [61]. Bayesian identification for 
unknown C  was addressed in [62], using mixture-based methods and Quasi-Bayes (QB) approx­
imation [25].

Probabilistic PCA (PPCA) is a probabilistic formulation of the Principal Component Analysis (PCA) 
method. The model assumes a Normal distribution of noise:

f  { E ) = M  (Op,„, (g) In) ■

Its MAP inference was published in [63], and extended to full Bayesian inference in [7] using a 
VB approximation.

Factor Analysis (FA) is a classical model for addressing the signal separation problem [47], Both A 
and X  are assumed to be unknown, and r <  min (p, n) is typically assumed to be known. There 
may be various restrictions on A or X.  The noise is normally distributed,

(3.6)
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3. LINEAR MODELS: CLASSES AND THEIR INFERENCE

with positive definite matrix assumed diagonal. The inference is traditionally done via the 
ML approach [47]. The Bayesian solution was studied in [50] and evaluated using an MCMC 
approximation [64]. The Variational Bayes approximation was published in [4],

Independent C om ponent Analysis (ICA) is a new, popular model for addressing the signal sepa­
ration problem. The noise is typically considered to be zero, hence D  is fully modelled by A X  
with r = p. The signal-noise separation is achieved with respect to columns of A  and rows of 
X  respectively. Separation of A  and X  is achieved by imposing priors (typically non-Normal) 
on columns Cj of parameter A. An iterative MAP estimation was published in [52]. Bayesian 
identification was considered in [33] using a VB approximation.

Independent Factor A nalysis is an extension of the ICA idea to include the noise model of Factor 
Analysis (3.6). The product A X  is modelled in the same way as for ICA. An iterative MAP 
estimation was published in [53].

The above list of methods is by no means exhaustive. Further extensions of model assumptions can be 
(and indeed are being) made to extend modelling capability of the basic linear model. The resulting 
inference schemes naturally involve more parameters, thus increasing the number of samples which 
must be generated by MCMC, or the number of iterations in prospective EM or VEM algorithms.

In this thesis, our concern is with computational tractability of the VB distributional approximation. 
For better understanding of the problem, we start with simple models such as (i) the AutoRegressive 
(AR) model, and (ii) Principal Component Analysis (PCA). Both models enjoy, under certain modelling 
restrictions, analytically tractable inference. Relaxation of these restrictions leads to a loss of analytical 
tractability, which has to be restored via further approximations. Successful application of VB approx­
imation has been reported for (i) mixture-based extension of an AR process [46], and (ii) Bayesian 
identification of the PPCA model with unknown rank r  [7]. Both methods use the VEM algorithm (Al­
gorithm 2.2) for evaluation of the parameter inference. We seek a simplification of the inference method 
(or re-parameterization of the model), yielding results comparable to these VEM-based solutions but at 
significantly lower computational cost.

3.2. The Multivariate AutoRegressive (AR) IVIodel

Linear AR processes are widely applied in filtering [65], speech analysis [66], spectrum analysis [67], 
control [68], etc. The main advantage of the model is analytical tractability which results in compu­
tationally efficient and stable estimation algorithms. However, its underlying assumptions (i.e. linear 
combination of measured values, and Gaussian distribution for the residue) are rarely met in practice. 
Physical models, typically requiring complex non-linear modelling, may be used to fit the observed 
data. Attempts to extend the AR model itself have also been made [46, 69]. However, these solutions 
are computationally expensive and thus unsuitable for processing of large amounts of data or for on-line 
(real-time) evaluation. Typically, therefore, AR models continue to be used even in these cases.

In this Section, we study an extension to the AR model that preserves its analytical tractability, al­
lowing fast on-line estimation of the model. Of particular concern is the study of numerically tractable
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3.2. The Multivariate AutoRegressive (AR) Model

recursive algorithms. Recursive estimation algorithms are widely used for on-line control applications 
[58], and for adaptive filtering [70]. Computational simplicity is a key requirement for real-time adap­
tive estimation. In off-line cases, the emphasis on computational issues and recursive methods can also 

pay off, for example in the off-line processing of massive datasets [31].

3.2.1. Bayesian Inference of the AR model

As outlined in Section 3.2, the AR model is a special case of the recursive linear model (3.3) with the 

noise distributed as

f{ e t \Q )  =  A ^ (O p ,Q -i) . (3.7)

The noise vectors e<, Cr are independent for t ^  t . Q €  is an unknown positive definite matrix. 
Parameters A, U are considered time-invariant, and so the observation process (3.3) is stationary. This 
assumption will be relaxed in Section 3.2.3.

Regressor x t  is assumed to be known, i.e. it may contain any observed variables or their known 
transformations. Formally,

Xt = g  { D t - i ,W t ) , (3.8)

where auxiliary variable, W t, may contain any known variables, such as a measured external (exoge­
nous) signal, time variable, t, for time-variant systems, etc.

The model described above is rather general. For better intuition we list a few special cases;

1. Univariate autoregressive (AR) model:

r

^  akd t-k  + et, (3.9)
f c = i

where x t  = g  ( A - i )  =  [d t-i, ■ ■ ■ This is illustrated on Figure 3.2 (left) in standard
signal flow graph form.

2. The ARX model, i.e. AR with exogenous observed input wt- In this case, the model becomes

m  r

dt — ^   ̂cikdt—k “I" ^  fc+m+i “I" 6t- (3.10)
/c=l k=m+l

The external input, Wt, can be seen as a time-variant auxiliary variable, W t, and the transformation 

set, g =  [gi , . . . ,  gr]', is defined as:

r n  i =Xi-,t =  9 i { D t - i , W t )  =  <
[ wt-i+m+i i =  m +  l , . . . , r

Remark 3.1 (Order of an AR model) The choice o f  g  {Dt) does not im ply that the regressor must

contain all historical values. Such a formulation would not be tractable. Typically, only a finite length
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- 1
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Figure 3.2.: Signal flow graphs of the AR (left) and EAR (right) models.

of historical data is used: Xt =  g  (d t_i, ■ ■ ■ i d t-q ). The maximum delay, q, o f  an observation 
used in the regression will be called the order. It follows that (3.3) is valid only for t >  q. Specifically, 
for the univariate AR model (3.9) q =  r.

Remark 3.2 (Classical approach) In the classical literature, a univariate case is usually considered, 
i.e. p  =  1. The classical solution to this problem is based on the prediction-error criterion. The pre­
dictor is a Wiener filter with unknown coefficients. Parameter estimates are obtained by solution o f the 
normal equations. Two principal approaches to its solution are the covariance and correlation methods 
respectively [45], There are many techniques for the numerical solution o f these equations, including 

recursive ones, such as the Recursive Least Squares (RLS) algorithm [58].

The problem of Bayesian inference is to find posterior distributions of the unknown, real parameters, Q 
and A, of this model. Combining (3.3), and (3.7) we obtain the conditional distribution of observations, 

dt:
f { d t \A,n ,x t ) ^Af {Axt ,n -^) .  (3.11)

Inference of the unknown parameters 0  and A follows from Bayes’ rule:

/  {A, n\Dt, Xt) oc /  (dt\A, n, Xt-i)  f  (A, n \Dt - i ,X t ) . (3.12)

The model (3.11) belongs to the exponential family, and so both a conjugate prior and sufficient
statistics are available (Section 2.1.2). The conjugate distribution of parameters for (3.11) is of the
Normal-Wishart (A/^W) type [10]:

^fyVA,niV, jy) =  exp [ - I p ,  A] F  [ - I p ,  , (3.13)

Cj^ w { V , u ) =  r p Q ( t / - r  +  p  +  l ) ^  X

(3.14)

V =  K =  (3.15)
^ a d  * a a
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3.2. The Multivariate AutoRegressive (AR) Model

with Vrfd being the p x p  upper-left sub-block o f matrix y .  F, i/are the sufficient statistics o f (•)•
is the Multi-Gamma function

.7  =  1

■i + 1 )

with r  (•) baing the Gamma function [71].

In this Section, we are concerned with on-line identification, i.e. we evaluate distribution (3.13) at 

each time t  >  q. We will distinguish statistics at each time moment by subscript t, i.e. Vt,Ut. If the 

variable already has a subscript, this time index will be separated from it by a semi-colon, e.g. Vdd\t- 

The statistics o f the conjugate prior distribution, Vq, uq, are chosen to reflect our initial knowledge 

of parameters. If we do not have any preference, we use a very flat (non-committal) M W  distribution. 

Typically Vb =  s ip+r,  where and £ is a small positive scalar. We choose u >  r  — 2 'm order that the 

normalizing constant (3.14) be finite.

Substituting (3.11) into (3.12) and invoking (3.13) at time t — 1, then the posterior distribution at time 

t >  q i s

f  { A , n \ D t , X t )  =  , (3.16)

dt
Xt

[d't,x't]
= V t - i  -I- y t y ' t  =  Vb + ^  V iV i ,  

i = q + l

v t  =  V t - \  -I- 1 =  1̂ 0 +  (^ -  9 ) ■

(3.17)

(3.18)

Vt ---
---

---
---

}

a
.

1

p1

(3.19)

Here,
dt

g{Dt-uWt),
is the extended regression vector. The outer product, y t y [  will be called a dyad  in this thesis. The 

history o f the extended regressor will be denoted by Ft =  [2/ 1 , . . . ,  yt] ■ Since the recursion begins at 

t =  q +  1, Vq and Ug are chosen to be Vq =  Vq and Uq =  vq. This is equivalent to choosing the 

distribution on parameters to be stationary for 0 <  i  <  q, o f the form given by prior. Finally, from 

(3.18), note i>t acts as a counter o f incoming data samples.

Remark 3.3 (Moments of the distribution) Note, from Appendix A.2, that the mean values o f poste­

rior distribution (3.13) are

At = VUtVaa]t,
fit =  ----------- A r^

v t - r  +  p + l

3.2.1.1. Computational Issues

(3.20)

(3.21)

The Bayesian posterior estimates presented above are closely related to approaches available in the 

signal processing literature. Key properties are now summarized:
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L (3.20)-(3.21)— evaluated via recursions (3.17, 3.18)— are algorithmically identical to the covari­

ance method [45], and are valid, Vi >  q, as derived.

2. Vt (3.15), (3.17) is asymptotically Toeplitz, and so (3.20) becomes algorithmically the same as the 

correlation method iff t —> oo. Only then do the computational benefits o f Toeplicity accrue to the 

Bayesian approach, namely ease of updating and storage of r  rather then r (r +  1) /2  numbers. 

While this simplification is popular in real-time applications such as audio processing [72], it is 

unreliable for t  small and/or for non-stationary data.

3. A numerically efficient solution to (3.17), (3.20) is based on the LD decomposition [73], i.e. Vt =  

LtTtL't, where Lt is lower triangular and Tt is diagonal. The update o f the sufficient statistics 

(3.17) is replaced by recursions on Lt and Tt [74]. This approach is superior to accumulation of 

the full matrix Vt for the following reasons:

a) Compactness: all operation are performed on triangular matrices, i.e. (r +  p) {r  +  p)  /2  

values, compared to {r  +  p)^ for full Vt.

b) Computational Efficiency: the estimation update requires O  ^(r operations in each

step to re-evaluate L t ,T t ,  followed by evaluation o f the normalizing coefficient (3.14) with 

complexity 0 { r  +  p)  and finally evaluation of (3.20) with complexity O  ^(r -I- p )^ ^  In

contrast, operations (3.14) and (3.20) are of O  ^(r +  p)^j for full matrix Vt. Implementa­

tion o f the update with full matrix Vt using the matrix inversion lemma [16, 58] is o f the 

same complexity as using the LD decomposition.

c) Regularity: elements o f Tt are certain to be positive, which guarantees positive-definiteness 

of Vt. This property is unique to the LD decomposition.

3.2.1.2. Prediction

One of the main benefits o f AR modelling o f time series is its appropriatness for prediction o f future 

observations. The one-step-ahead predictive distribution is given by the ratio of normalizing coefficients 

(3.14), a result established in general for the exponential family in [10]. For the AR model:

r / j  11̂  N Ca/w  ( V t + 1 )
f  { d t+ i \Y t ,x t+ i )  =  i2n)  2 --------  (J^wiVt i t̂)-----------

This is the Student-f distribution with i>t — r  +  p  +  I degrees of freedom [16]. The mean value o f this 

distribution is readily found to be

E (d f+ i|y i)  =  AtXt+1 =  d t+ i ,  (3.23)

which is equal to the intuitively appealing result from classical theory [45].

3.2.1.3. IVIodel S tructure Determ ination

The structure o f the regression model is determined by choice of the set o f transformation functions 

g  { D t - i ,W t ) .  This is the choice o f  the model designer. The problem o f choice o f the appropriate
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3.2. The Multivariate AutoRegressive (AR) Model

model is called model structure determination problem, treated in detail in [75]. We can assemble a 

finite set of possibilities G — { g i , g 2 , ■ ■ ■ ,9c}< where denotes the ith possible choice of regressor 

structure. It is then necessary to calculate the a posteriori probabilities of all cases in G.  Using Bayes’ 

rule:

where =  [2/ 9 (1) + ! , . .  ■ ,y t ] ,  and q{i) is the longest data memory with respect to Dt  across all

functions gi.

Here, we use notation Vt {gi) to emphasize the fact that the statistics Vt (3.17) are accumulated differ­

ently for each choice of the structure gi in G. In situations where it is clear which structure was used to 

obtain the statistics, we will use the simplified notation Vt.

Note that (3.24), (3.25) engenders Ockham’s Razor since the involved determinant term in (3.14) 

penalizes candidates of greater complexity [13]. (3.24) provides a posterior inference for unknown g e 

G,  going the way towards relaxing the former restriction on regression models that the transformations 

be known.

3.2.2. The Extended AutoRegressive (EAR) Model

In this section, we review the widest cass of models for which the algorithms in Section 3.2 remain valid. 

The favourable algorithmic properties for the AR model are based on the elegant recursive form (3.17), 

(3.18) of the A/^W sufficient statistics (3.13), and so this feature must be conserved under any extension. 

We note that the posterior distribution remains TVW if  the extended regressor, yt,  is constructed from

Vdyt gd{Dt,Wt)
Xt gx ( A - i )  Wt)

as compared to (3.19). Here, ya-t denotes transformed data, dt, corresponding to the model

This model structure is illustrated in Figure 3.2 (right), see page 26. The distribution of observations is 

now obtained by transformation of (3.11):

/  {gi\yt) OC /  { Y t \ g ^ i ) \ Y g ^ i ) , g i )  f  { g i ) , z =  1 , . . .  ,c. (3.24)

From (3.22):

yd;t =  Axt  +  fl 2 et, 

dt =  ĝ  ̂ {yt,Dt-i ,Wt) .

(3.27)

(3.28)

/  {dt\A, n ,  Y t - i )  =  \Jt { d t ) \ M  { - A y t ,  n - ^ )  , (3.29)
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where Jt is the Jacobian of transformation ga (■) (3.26); i.e. Jt {dt) =  G This creates an
additional restriction that 5 d (  ) be a differentiable one-to-one (bijective) mapping for each setting of 
Wt- Moreover, gd{-) (3.27) must explicitly be a function of dt in order that Jt ^  0. This ensures the 
necessary uncertainty propagation from &t to dt (Figure 3.2 (right)). In conclusion, Bayesian estimation 
with this model is, by design, of the same form as for the AR model (3.13)-(3.18).

The EAR model class (3.29) includes the following important cases [16];

1. An AR process with bijective known non-linear transformation of observations: dt = T{yt). 
The transformation g  is then defined as the inverse of this non-linearity: ga (■) =  (•), and

g x(-) = r~^ (■)■

2. The ARMA model with a known MA part, i.e. an AR model driven by coloured noise of known 
covariance matrix. Transformation g  is then the necessary pre-whitening filter on the collored 
innovations. This process has a numerically efficient recursive identification [61].

3. The incremental AR process with the regression defined on increments of the measurement pro­

cess.

Both prediction and model structure identification must be adjusted for the observation model (3.29). 
The marginal predictive distribution becomes, from (3.22),

f  {d t+ ,\Y t,x t+ ,) = \Jt+x ( d m ) l  (27t)-5 (3.30)

and model structure identification is adjusted from (3.25) using (3.30), as follows:

/(A\,«)|0,(.).9.) = (2>r) > (si)! vllY

j=g(i)+l

Remark 3.4 (Linear transformations) Note that i f f  Jacobian Jt (3.29) is independent o f dt (i.e. i f f

gd{-) (3.27) is a linear transformation), then (3.30) implies that the expected prediction is

dt+i = g2^ (^ -A tx t+ i^  , (3.32)

in analogy with (3.23). Moreover, i f  the transformation ga  (•) constitutes a simple scaling (i.e. ya  t =  

a d t, so that Jt = a), this is further simplified to:

dt+i = -A tx t+ ia ^ '^ .  (3.33)
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3.2. The Multivariate AutoRegressive (AR) Model

3.2.3. Modelling Time-Varying Parameters of Non-Stationary AR Models Using 
Forgetting

The assumption of constant parameter values is rarely met in practice. In many applications, however, a 

complete model of parameter variations is not known. The problem is then under-determined, obviating 
the full Bayesian solution and leading to many heuristic techniques. The standard batch (off-line) 
algorithm uses windowing [76]. Alternatively, the concept of forgetting [77] is used in adaptive signal 
processing [78] and recursive estimation [58].

3.2.3.1. Explicit Modelling of Parameter Evolution

Non-stationarity of the parameters is handled by modelling dt =  as a new random variable
for each time t. Then, the observation model (3.11), /  , does not update the posterior
distribution of parameters at time t  — 1, f  . This can be overcome by the explicit modelling
of parameter evolution by a pdf /  { d t \ 9 t - i , Y t - i ) . The joint distribution is then

/  { d u e t \ e t - i , Y t - i )  =  /  {dt\eu i t - O  /  F t - O . (3.34)

The update of parameter distributions via (3.34),

/  {duet^i\Yt)  oc /  {du e t \ 9 t - i .Yt - { )  f  {Ot - i lYt - i ) , (3.35)

causes proliferation of random variables, in that a new random variable dt is introduced at each step. 
Hence, the parameter distributions at times t  and t  — 1 have different functional forms, violating conju- 
gacy. Therefore, computationally efficient on-line identification cannot be achieved.

9t - \  can be eliminated from (3.35) by marginalization;

f {e t \Yt )  oc f { d t \ e u Y t _ , , x t ) f { e t \ Y t - , ) ,  (3.36)

f { e t \ Y t - i )  =  [  f { 9 t \ e t - i , Y t - i ) f i e t - i \ Y t - i ) d e t - i .  (3.37)
J 0 t - 1

The choice of the parameter evolution model /  {6t \ 9 t - i ,Yt - i )  is discussed in [79]. Integration of (3.37) 

is feasible, for example, for a random-walk process

f { e t \ e t - u S ) = M { e t - u S ) ,  (3.38)

where 5  is a covariance matrix of dimensions p {2p +  r ) x p  {2p +  r),  chosen a priori. In many practical 

situations, we may not have any guide about how to choose 5 , and wrong choice may lead to poor 
performance of the identification.

3.2.5.2. Modelling of Time-varying Parameters via Forgetting

As an alternative approach, the technique of forgetting was suggested in [79]. There, the explicit model 

o f parameter evolution (3.34), and the subsequent integration (3.37), are replaced via a probabilistic
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operator:

f  [et\Yt-u<l>t) cx [/(0^-1 J X  7 , ( 0 , ( 3 . 3 9 )

The notation /  (-)ĝ  indicates the replacement of the argument of /  (•) by 6u where 6t is the time- 
variant unknown parameter set at time t. f  (•) is a chosen alternative distribution, expressing auxiliary 
knowledge about dt at time t. Coefficient 0 < < 1 is known as the forgetting factor. From (3.39),
the limits are interpreted as follows:

for 4>t =  1: prior information, at time t, about the new variable 9t is identical to the posterior of 9t-i  
att — 1:

This is consistent with the choice 9t =  9t-\ ,  i.e. the time-invariant parameter assumption.

for 4>t =  0: prior information, at time t, about the new variable 6t is chosen as the alternative distribu­
tion:

f {9 t\Y t- i ,( t> t)= l{9 t \Y t- i ) .

This is consistent with the choice of independence between 9t and 6t-i ,  i.e.

/  {9t, 9 t-x \Y t- ,)  = f  {et\Yt-i) f  {9t-x |F t - i ) .

The forgetting factor is typically considered as fixed and it is chosen by the designer of the model. The 
choise of (j)t close to 1 models slowly varying parameters. The choise of 4>t close to 0 models rapidly 
varying parameters.

We require (3.39) to be conjugate to the observation model (3.11), i.e. belong to the A/’W family
(3.13). The N W  family is closed under the convex combining (i.e. geometric mean) in (3.39) yielding
another member of the same family. Therefore, the M W  distribution with parameters 1 ,̂17 is used as 
the alternative /  (•). It is typically chosen as a flat distribution, e.g. with the same parameter values as 
the prior: V  = Vq,V = vq. Substituting (3.39) and (3.11) into (3.12) yields the following recursive 
update of the A/’W  statistics:

f{At,Vlt\Yt) =  My\^A,u{Vui^t), (3.40)

Vt =  (j)tVt-\ +  yty't + { I  -  (j)t)V, (3.41)

ut =  +  1 +  (1 -  0 t)F . (3.42)

When <pt = 1, the update is identical to the stationary equations (3.17,3.18).
For the case Vq =  0, î o =  0, and (f)t = <p constant, the method is known as exponential forgetting 

because (3.41) implies a sum of dyads weighted by a discrete exponential sequence,

t

Vt = + (3-43)
i = q + l

t

=  Y 1  (3.44)
t = p + i
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This interpretation is helpful, since it provides an intuitive choice for (f), as follows.

Remark 3.5 (Intuitive choice of forgetting factor) Here, we compare the exponential forgetting tech­
nique with the windowing approach. First, we identify a stationary AR model on the observation win­
dow o f h samples. We assume that the prior was chosen as regular, i.e. i/q > q. Then the degrees o f 
freedom o f the posterior distribution is from (3.18):

Vh = h -  q + uq. (3.45)

Second, we identify a non-stationary AR model using exponential forgetting with V =  < 1.
This time, we assume that the identification is done on-line, i.e. based on large number o f samples. 
Then, from (3.44):

, t ^ O C  1  , , ,  , , ,
I'h = —;-T -  +  "̂0 —  ̂  r  +  ^0- (3.46)I — (p 1 ~  0

Equating (3.45) and (3.46):

0 =  = 1 - ^ .  (3.47)n — q n — q

The interpretation o f this choice o f (f) is that it yields Bayesian posterior estimates for Ah and 
which— under both scenarios— have an equal number o f degrees o f freedom in their uncertainty.

3.3. Probabilistic Principal Component Analysis (PPCA)

Principal Component Analysis (PCA) is one of the classical data analysis tools for dimensionality reduc­
tion. It is used in many application areas including data compression, de-noising, pattern recognition, 
shape analysis and spectral analysis. For an overview of its use, see [80]. A typical example in DSP is 
spectral analysis [1] or functional analysis of dynamic image data [81].

Probabilistic Principal Component Analysis (PPCA) [63] is a special case of the linear model (3.1),
(3.2), with the following assumptions:

M(r) =  AX',  r < m m ( p , n ) ,  (3.48)

f ( E \ u )  = A/" (Op,n,o;“ ^/p (8)/t)  , (3.49)

where scalar a; >  0 denotes precision, and other symbols have their usual meaning (Section 3.1), i.e. 
D  e  A e  X  e  E  e  and M(^) G Note that (3.48) is a special case of
(3.2) with restriction r  <  min (p, n) and using X' ,  instead of X,  for notational simplicity in the sequel. 
The restriction on rank, r, implies that rank (M(r)) =  r, which is explicitly denoted by subscript M(r). 
The original model of [63] contains an extra parameter /i, modelling a common mean value for the 
columns, rrii, of M(r). In this work, we do not impose the restriction of common mean value, i.e. we 
assume that the common mean value p, = Op j .  This issue is further discussed in Section 6.5.

Model (3.1), complemented by (3.48), (3.49), yields:

/  {D\A, X,  u j , r ) = M  {AX',  ® h )  . (3.50)
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Inference of the parameters of the model (3.50) is now reviewed.

3.3.1. Maximum Likelihood Inference

The maximum (3.50), viewed as a function of A, X  and lj, but with given r  (i.e. the likelihood function) 

is reached for
^  ^ 'pTl

/2 ’ (3.51)
l ^ i = r + \  D ,i

Here, Ur-,D  ̂and Vr-D are the first r  columns of the matrices Ud , and Vq  respectively, obtained from the 

SVD [73]

Lr,r;D IS the r  X r  upper-left sub-block of matrix L d -

Remark 3.6 (Rotational ambiguity) M L  estimates o f A  and X  in (3.48), using (3.51), are not unique, 

because (3.48) exhibits multiplicative degeneracy; i.e.:

for any invertible matrix, T  € This is known as rotational ambiguity in the factor analysis

literature [47].

The method of Principal Component Analysis (PCA) was originally developed without any explicit 

noise model [82]. Correspondence of PCA to M L  estimation (3.51) of the PPCA model (3.50) was 

shown later [47, 48]. We briefly review the connection between (3.51) and the classical PCA now.

The classical method of Principal Component Analysis (PCA) is concerned with projections of p- 

dimensional vectors d i, i — 1 , . . .  ,n,  into an r-dimensional subspace. Optimality of the projection was 

studied from both a maximum variation [83], and least squares [82] point-of-view. In both cases, the 

optimal solution leads to eigen-decomposition of the sample covariance matrix

where A =  diag (A) is a matrix of eigenvalues of S,  and U  is the matrix of associated eigenvectors. 

The columns Ui, i =  1 , . . .  , r  of  U  corresponding to the largest eigenvalues Aj, Ai >  A2 . . .  >  A ,̂ form 

a basis for the optimal projection sub-space.

Consider the following decomposition of the M L  estimate (3.51) of the linear model (3.50)

D  =  Ud L d Vd - (3.52)

(3.53)

S =  —^ D D '  =  U A U \
n — 1

(3.54)

A  —  U r , D i  ^  —  ^ r , r ; D ^ r ; D ' (3.55)

From (3.52), it follows that

D D ' =  U d L d V[)Vd L d U'd  =  Ud L d L d U'd - (3.56)
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Hence, comparing (3.54) with (3.56), and using (3.55), the following equalities hold:

A =  Ur-,D =  U r„  L D  =  ( n - l ) ^ A 5 .  (3.57)

Equalities (3.57) formalize the relation between PCA and ML estimation of the PPCA model.

Remark 3.7 (Ad hoc choice of rank, r ) Rank r has been assumed to be known a priori. I f  this is not 
the case, many heuristic methods for selection o fr  exist [80], One is based on asymptotic properties o f  
the noise. Specifically, from (3.1), (3.49):

Ee { D D ' )  =  Ee { M M ' ) + M E e { E' )  +  Ee { E ) M ' +  E e { E E ' ) ,  (3.58)

=  M M ' + nu>~^Ip.

Using the SVD decomposition, M M ' — Um L \ j U'i^ , and noting the equality, Um U'i^  =  Ip, then, from 
(3.58), (3.56):

lim U d L I U ' d  -  Um L I j U'm  +  tuj- ^ U m U'm . (3.59)

It follows that lim„_»oo Um = Ud, snd that

,2 _  ) Îm  +  i
—

nu)  ̂ i  >  r,
(3.60)

Hence, the index, i, for which the singular values I^d , i > i are constant is considered to be an estimate 
o f rank r. In finite samples, however, (3.60) holds only approximately. The estimate can be chosen 
by visual examination o f the graphed singular values [80], looking for the characteristick ‘knee’ in the 
graph. In finite samples, it follows from (3.60):

(3.61)

+ P n t ^ ~ ^ -  (3.62)
2 = 1

From ordering o f singular values, > h;D > . . .  > Ip-o, it follows that Ip-o < p-l+ i Y a =t 1̂,d - 
Hence, using (3.61), we assign an upper bound on u>, namely < tuj~^. From (3.62), it follows that 
Z^f=i î-D >  forming a lower bound on uj. This leads to the following choice o f interval foru):

v n  ^  n
^  < Q <  (3.63)

nuj~
i= r+ l

V r

i = l
»  E

i = l

i 2  ^  ^  ; 2
2 -^ i= \ ^ i\D  P',D

3.3.2. Maximum A Posteriori Inference

An alternative inference of parameters of the PPCA model (3.50) do not maximize directly the like­
lihood (3.50), but complement (3.50) by a Gaussian prior on X ,  f  ( X )  — N  {Or,ni I r  ^  In )  and 
marginalize over X  [48, 47]. The resulting maximum of the marginal likelihood, conditioned by r.
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is then reached for given by (3.51) and

Ar =  Ur-D {Lr,r-D ~~ Ir) R-  (3.64)

Here, C/r;£>, ^r,r;Z) are given by (3.52), and R  e  is any orthogonal (i.e. rotation) matrix. In this 
case, indeterminacy of the model is reduced from an arbitrary invertible matrix T  (3.53) to an orthogonal 
matrix R.  This reduction is a direct consequence of the restriction imposed on the model via the prior 
on X.

3.3.3. Variational Bayes Inference

Bayesian inference of the parameters of the PPCA model (3.50) was considered in [7], using a VB 
approximation (Section 2.2.4). The observation model (3.50) was complemented by the following 
priors:

f { A \ v )  =  A^ ( Op , r , / p®T- i ) ,  (3.65)

f { X )  =  A f { O r , n , I r ^ I n ) ,  (3.66)

f {vi \ao,Po)  =  G(ao,Po),  i =  l , . . . , r ,  (3.67)

/(w|?9o,Po) =  G(^o,Po),  (3.68)

where T  G is a diagonal matrix of hyper-parameters, T  =  diag {v), v  ~  [wi,. . . ,  Vr]', and 
aO) /5oi ^ 0 ) Po are known scalar parameters. Complementing (3.50) by (3.65)-(3.68) the joint likelihood 
is:

/(D ,A ,X ,T ,a;|ao ,/3o ,i?o ,Po ,r-) =  M  { A X , oj-^  I p® h )  (3.69)

(Op.r, Ip ® T " l)  A/" (0;.,„, Ir ® In)

[ a K , / 3 o ) r a ( ^ o , P o ) .

The posterior distribution of the model parameters is then obtained using Bayes’ rule:

f  { D, A , X , T , u i \ r )  
f  { A , X , T , ( j \ D , r )  = ------- f  jD\r) ---------’

Here, conditioning by qq, /3oj ^Oi Po, was dropped for brevity. Exact posterior inference from (3.70) is 
not available.

Corollary 3.1 (Corollary 1 of Theorem 2.1) Consider the following conditionally independent factorizatioi 

f  {A, X ,  T , lj\D, r) = f  {A\D, r) f  {X\D,  r) f  {T\D,  r) f  {cj\D, r ) . (3.71)
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Using (3.70) and (3.71) in Theorem2.1, the VB-marginals in (3.71) are found as follows:

f { A \ D , r )  = (3.72)

f ( X \ D , r )  = (3.73)

f {v i \D,r)  = Q{ai,(3i), i =  l , . . . , r ,  (3.74)

}{u^\D,r) =  G{d,p),  (3.75)

with the following VB-statistics:

HA = Q D X ' Z a , (3.76)

S a =  +  w X X ' +  f )  , (3.77)

MX =  OExA'D,  (3.78)

S x  — (^P^A  +  uA ' A  +  , (3.79)

oti = «o +  | ,  i  =  l , . . . , r ,  (3.80)

A =  /?o +  ^ +  S'iOi) , t =  l , . . . , r ,  (3.81)
2
nj
"2

p = po +  i t r  (Z) -  J  , (3.83)

(j)'E aX 'X  + p n T ,A ^x  + n H x A ' A ^  .

In (3.81), notation Oj denotes the ith column o f matrix A, so that A  = [ a i , . . . ,  a„]. A, X , Vi and Q 
denote the expectation with respect to the VB marginals (3.72)-(3.75), so that the associated moments 
are: A  =  pA> X  =  px^  anda) =  The VB-statistics—pA, p x ,  ^ x ,  ot =  [qi, . . .  , a r ^ ,
/9 =  [/?!, . . . ,  and p—are evaluated via the VEMalgorithm (Algorithm 2.2).

Remark 3.8 (Automatic Rank Determination (ARD) Property of VPCA) The VB-statistics a. and 
(3 can be used for rank selection. It is observed that for some values o f the index, i, the posterior 
expected values Vi = on/^i converge to the prior value Vi —> ao/Po. This can be explained via 
prior domination, i.e. the observed data are not informative in those dimensions. Therefore, the rank 
is determined as the number o f v i  that are significantly different from the prior value ao/Po- This 
observation will be called the as Automatic Rank Determination property (ARD)'.

Remark 3.9 (Laplace approximation) Estimation o f the rank o f the PPCA model via the Laplace 
approximation (Section 2.2.2) was published in [84]. There, the parameter A  was restricted by orthogo­
nality constraints A 'A  =  Ir. The parameter X  was treated in the same way as in the VB approximation 
above, i.e. as a matrix random value with prior (3.66).

'in  the machine learning community, it is known as the Automatic Relevance Determ ination property. In our case, however, 
the relevance is with respect to the unknown rank.
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3.4. Functional Analysis of Medical Image Sequences (FAIVIIS)

Functional analysis of dynamic image data (i.e. sequences of images) is an established area in medical 

imaging. Its aim is to visualize physiological function o f biological organs in living creatures. The 

physiological function is typically measured by volume o f a physiological liquid involved in the process. 

This liquid is marked by a contrast material (e.g. radiotracer) and a sequence o f pictures is taken. The 

key assumption is that there is no relative movement between the camera (e.g. scintigraphic) and the 

imaged tissues. Under this assumption, the problem can be modelled as a special case o f the linear 

model (3.1), (3.2). The model is closely related to the FA model (3.6). The problem is described in [81] 

as Factor Analysis o f Medical Image Sequences (FAMIS), a nomenclature we will adopt, and review 

briefly in this Section. Functional analysis is an example o f the linear model where parameters have a 

physical meaning. Therefore, naming conventions used in this area are rather specific. We will follow  

these conventions, but the general conventions for linear models will be used when the models are 

discussed in a wider context.

3.4.1. Physiological Model

The task is to analyze the sequence o f n  images taken at times t =  1 , . . .  , n .  Each image stored 

column wise as a p-dimensional vector o f observations dt ,  while the whole sequence forms the matrix 

D  e  It is assumed that each image in the sequence is formed from a linear combination o f r <  n

images o f the physiological organs. Formally,

where a j ,  j  =  1 , . . . ,  r are the underlying images o f the physiological organs, known as the factor  

images, and Xj-t is the weight assigned to the jth  factor image at time t. The vector o f weights x j  — 

[xj ; i , . . . ,  Xj-n]' is known as the factor  curve or the activity curve of the jth factor image. The product 

a j X j  is known as the j t h factor. Vector et  models the observation noise.

The main application area o f  functional analysis is in nuclear medicine. In this context, additional 

restrictions arise. Each pixel o f the observation image is acquired as a count o f  radioactive particles. 

This has the following consequences:

1. all pixels aggregated in the matrix D ,  are positive. The factor images. A,  are interpreted as 

observations o f isolated physiological organs, hence, the a js  are also assumed to be non-negative. 

The factor curves, X ,  are interpreted as the variable activity o f  the associated factor images, 

which, at each time t, acts to multiply each pixel by the same amount. Therefore, the XjS are 

assumed to be non-negative:

r
(3.84)

j = i

a i j  >  0, 2 =  l , . . . , p ,  j  =  l , . . . , r ,  

X ij  >  0, 2 =  l , . . . , r ,  j  =  l , . . . , n .

(3.85)
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2. the observed data are known to be Poisson-distributed:

/  K ;t)  =  7^0 j  , i =  l , . . . , p ,  j  =  (3.86)

However, inference of model parameters with this distribution is analytically intractable.

Analysis of the sequence is traditionally decomposed in sub-problems which are solved independently. 
The basic steps are [81]: (i) data pre-processing, (ii) orthogonal analysis, and (iii) oblique analysis.

3.4.2. Data pre-processing

The aim of the pre-processing step was to transform the data model into the PPCA model (3.50). The 
first task is to approximate the intractable Poisson distribution by a suitable replacement. The problem 
has been studied theoretically [85, 86, 87, 88], and it was concluded that, asymptotically, the data 
distribution may be approximated by a Gaussian:

/  {D\A, X ,  Qp, =  X  ( A X ' ,  ® . (3.87)

where A X '  models the mean value of the signal, and VLp G €  5?"^” are positive-definite
precision matrices. (3.87) implies the following additive decomposition: D  =  A X  +  E,  hence it is 
another case of the linear class (3.1), (3.2). If the covariance matrices and are known a pr/on, 
the data may be pre-processed as follows:

b  = 9 ^ D Q l .  (3.88)

1 i  i
Here, denotes the matrix square-root fipfJp =  fip [73]. Then, D  can be modelled by the proba­
bilistic PCA model (3.50)

f  [ D \ A , X , % , r t n )  = A f ( n l A x ' n h i p ^ i n ^ ,

using elementary properties of the matrix Normal distribution (Appendix A .l, equation (A.3)). The 

whitening operation (3.88) is known in the factor analysis literature as scaling.

The optimal scaling for the Poisson distribution (3.86) is known as correspondence analysis [89]:

d{,

(!Cfc=l ^k,j ■ J2l=l ^i,l) ^
d i j  = ------------------- r- (3-89)

This corresponds to choosing diagonal matrices,

Qp =  d i a g ( D l „ , i ) - \  (3.90)

=  diag

in the asymptotic model (3.87), where D  is the observation matrix.
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Appropriatness of the correspondence analysis for the medical sequences was experimentally com­
pared with other ad hoc scaling techniques in [90].

3.4.3. Orthogonal analysis

Following the pre-processing, the transformed data, D, may be modelled using the PPCA model (3.88). 
From now on, it is assured that the data, D, has been pre-processed in this way (i.e. we drop the tilde 

fro notational conventions). Next, the problem is to find a low rank representation of D, i.e. to infer 
parameters A  and X .  Traditionally, inference of A  and X  is addressed using the ML approach, as 

reviewed in Section 3.3. However, this approach is not sufficient as it does not provide a solution to the 
following problems;

Number of relevant factors: the ML solution is available only if the number of relevant factors, 
r, is known a priori. Various methods for selection of r—based on both ad-hoc and formal 

criteria— are available [80]. However, the problem is typically neglected in functional analysis 
as it is assumed that r  may be reasonably guessed from the biological knowledge. However, this 
assumption is valid only for healthy organs. If the organs are damaged, the number of factors in 
the sequence can increase significantly, and indeed, become a key indicator in the diagnostics of 
disease states.

Rotation: the probabilistic PC A model does not impose restrictions of positivity on its parameters. 

The ML solution, A  and X ,  is confined only to the sub-space spanned by the columns of M^r) 
(3.53) (Remark 3.6). Uniqueness of the solution is assured if the parameters A  and X  are orthog­
onal matrices, this will be studied in Section 6.3.1.

It is assumed that the optimal positive-constrained solution is found close to the r-dimensional sub­
space inferred by the ML solution (3.53). Therefore, in this step, the orthogonal solution (3.55) is 
evaluated and rotation towards the physiological factors is addressed in the next step.

3.4.4. Oblique analysis

In this step, the physiologically restricted solution is being searched close to the optimal sub-space 
(3.53), identified in the previous step. Physiological restrictions of a general nature may be imposed, 
such as positivity (Section 3.4.1). Alternatively, specific biological knowledge may be used to rotate to 
valid physiological factors [87]. Extensive discussion on these restrictions can be found in [91].

Uniqueness of decomposition (3.2) under the assumption of positivity of A  and X  (3.85) was studied 

in [92]. It was concluded that the decomposition is unique if there exists at least one pixel, at j ,  in each 
factor image, aj ,  for which all corresponding pixels in the remaining factor images are equal to zero:

Vj =  1 , . . . ,  r, 3z : ai-j >  0 Ui-k =  0, \ /k -  I , . . .  , r,  k ^  j .

This assumption is known as simple structure. An algorithm for rotation of the orthogonal estimates 
towards valid physiological factors was published in [91], by exploiting this uniqueness property.
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3.4.5. The FAMIS model

The name “factor analysis” usually denotes the method o f inference o f parameters, A,  X ,  and ui o f the 

model (3.50). Therefore, we denote (3.50) as the factor analysis model. In the same spirit, we define 

the FAMIS model now.

The basic model used for functional analysis is the probabilistic PCA (3.50) with additional assump­

tion on the noise (3.87) and positivity o f all elements o f A  and X .  These extensions are handled 

independently as pre-processing (Section 3.4.2) and oblique analysis (Section 3.4.4) respectively. This 

can be summarized in a unified model as

/  {D\ A,  X , Qp, Un) =  M  [ A X ' ,  ® Q ; ' )  , (3.91)

where the covariance matrices fip are considered known. However, this is rarely true in practice. 

The presented method— i.e. scaling (3.90)— is optimal for a large number, n  —> co, of samples. We 

seek a solution that is optimal in finite number of samples.

Hence, we now consider covariance matrices, fip and as unknown parameters with diagonal 

structure Up — diag [ t j p ) , u>î p >  0, i =  1 , . . .  ,p,  and =  diag (u>„), >  0, z =  1 , . . . ,  n.

This has the following consequences:

•  The measured data are corrupted by additional artefacts that are considered as noise from med­

ical point-of-view. The relaxation of known fip, allows these artefacts to be captured, and 

modelled as noise. This should lead to a better signal and noise separation.

•  The assumption o f diagonality is similar to that o f the Factor Analysis (FA) model (3.6). In 

consequence, inference o f the FA model parameters yields a signal and noise separation in such 

a form that the correlated part of the data is taken as the signal, and the uncorrelated part as the 

noise^ [47].

•  Identification o f the model with unrestricted precision matrices is not feasible because the number 

of parameters is then higher than number of available data. The introduced restriction ( covariance 

in the form o f Kronecker product and diagonality) keeps the number o f estimated parameters well 

below the number of available data.

•  Approprietness o f the method may be compared with the asymptotic result (3.90). If the under­

lying assumptions are valid, the expected value of fip and Q,n should be similar to (3.90).

Inference o f model parameters in (3.91) is, again, analytically intractable.

3.5. Open problems

In this Chapter, we have presented a review of linear models. Special cases o f  the linear model— of con­

cern in this thesis— were reviewed in detail. Namely, the AutoRegressive (AR) model (Section 3.2), the

^This may not be appropriate for som e applications in medical imaging. In such cases, other restrictions on the precision 
matrices f2p, and must be introduced.
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Probabilistic PCA (PPCA) model (Section 3.3), and the Factor Analysis for Medical Image Sequences
(FAMIS) model (Section 3.4). For these models, a numerically efficient inference of parameters is
available under the following restrictive assumptions, respectively:

AR model: the full Bayesian inference is available under assumptions of: (i) known transformation 

of the system output (Section 3.2.2), and (ii) stationary or slowly-varying parameters (Section 
3.2.3).

PPCA model: computationally efficient inference is achieved for the ML and MAP inferences under 
the assumption of known rank (Section 3.3). The approximate Bayesian inference of the PPCA 
model (Section 3.3.3) is computationally expensive.

FAMIS model: in order to achieve tractability, the parameter inference is done in three steps (Section 
3.4): (i) data pre-processing, (ii) orthogonal analysis, and (iii) oblique analysis. The Bayesian 
solution is available only for the orthogonal analysis, which is identical to the PPCA problem. The 
remaining two steps, and indeed the overall problem, has not been addressed from the Bayesian 
perspective yet.

The aim of this thesis is to relax the above mentioned restrictions and derive numerically tractable
inference algorithms for parameter identification in each case. We study the following special cases:

Unknown observation transform ation (AR): The parameter inference is analytically tractable if 
the transformation g  is known (Section 3.2.2). Note that modelling of the observation transfor­
mation g  via an additional linear model is known as the state-space approach [58]. In our forth­
coming approach, we do not impose any model on g. We seek a numerically efficient inference 
algorithm for the model with an unknown g.

Non-stationary param eters (AR): can be modelled by means of the forgetting operator (Section 

3.39). The technique of forgetting itself is an optimized approximation of the intractable model 
involving posterior distribution /  {6\Dt~\) and alternative /  {0\Dt) [79]. The analytical solution 
is preserved if the forgetting factor, (j}t, is known at each time t, a priori. Typically, it is chosen as 
time-invariant known constant (j)t =  (p. This is appropriate only for processes with slowly varying 

parameters. We seek a numerically efficient inference algorithm for the model with an unknown 
4>t. This would greatly extend the tracking abilities of the inference algorithm for non-stationary 
AR processes with rapid variations of parameters.

Inference of rank (PPCA): (i.e. number of relevant principal components) is not provided by the 
ML approach. It can be obtained using Variational Bayes approximate inference for the PPCA 
model (VPCA) (Section 3.3.3). The computational load of the VPCA algorithm is, however, 
much higher than that associated with the ML or MAP solution. Moreover, VPCA provides only 

a point estimate of the rank. In this case, we seek a numerically efficient Bayesian inference of 
all posterior densities, including distribution for the rank.
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Unknown scaling  an d  rank  (FAMIS): the standard solution is based on assumptions of (i) known 
scaling for the pre-processing step, and (ii) known rank (number of relevant factors) for the or­

thogonal analysis step. The second assumption have been already relaxed since orthogonal anal­
ysis is achieved using (Probabilistic) PCA. However, the chosen VB approximation allows to 
develop a joint identification procedure for the whole model.

For each of these problems we will derive: (i) an analytical analysis of the correct Bayesian solution and 
justification of the VB approximation; (ii) a Variational Bayesian inference; (iii) a numerically efficient 
inference algorithm (or, at least, a discussion of this topic); and (iv) experiments on simulated or real- 

life data. In general, progress in all these tasks will be achieved using the ‘gateway’ of the Variational 
Bayes (VB) approximation.
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Chapter 4. 

Mixture-Based Extension of tlie EAR (IVIEAR) 
model

The Extended AutoRegressive model was introduced in Section 3.2.2. The model was designed to ex­
tend modelling abilities of the AR model (Section 3.2). This is achieved under the assumption of known 
and stationary transformation g. In this Chapter, we relax this assumption using a probabilistic mixture 
approach. Our approach is similar to those in [46, 62]. OUr aim is to achieve recursive identification of 
the EAR model parameters. A, fl, for a wide class of transformations and distortions.

4.1. The MEAR Model

Following the Bayesian methodology, we treat the unknown time-variant transformation, as a prob­
ability entity, 7 t, drawn from a space, Q, of candidates. The conditional distribution (3.29) is then 
replaced by the marginal

/(d t |A ,Q , A - i )  =  f  f  { d t \ A , n , D t - i , - / t )  f  { - r t \ A , Q , D t - i ) d ' Y t ,  (4.1)
Jg

where, tacitally, a continuous space is assumed. Evaluation of this distribution is usually prohibitive 
because the space G may be extremely rich (recall that the EAR model allows for arbitrary, smooth, 
non-linear functions with dynamics (Section 3.2.2)). The challenge is to restrict the space G  and reach 
algorithmically affordable complexity. We assume that Q may be partitioned into a finite number, c, of 
disjoint subsets:

C

Q = \ j G i .  (4.2)
i = l

Moreover, we assume that the partition can be designed to ensure that effects of all filters in any one 
subset, Gi ,  are very similar. This requirement is summarized in the following conditional independence 
property for (3.29):

f  {d t \A , ^ l ,D t - i , j t  e G i )  ^  f  { d t \ A , Q , D t - i , g i ) , (4.3)
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where gi €  is a representative transformation in the subset Qi. Substituting (4.3) into (4.1), it follows 

that:

C

f  {dt\A,Q,, D t - \ )  ~  f  {d t \A,Q, ,D t- \ ,g i )  (4.4)
i=l
=  / ( d j | A , f i , A - i , G ) ,  (4.5)

where

a i { A , Q . , D t - i )  = [  f  { ' y t \ A ,Q ,D t - i ) d j t ,  (4.6)
JQi

G  =  =  l , . . . , c } .  (4.7)

(4.4) is a probabilistic mixture with components, /  (df |^ ,  r2, Dt- i ,Qi) ,  with respective weights (v4, Dt-  
which are data- and, thus, time-dependent. Note, trivially, that

/  {dt\A,  n ,  D t - i )  = /  {dt\A,  Q, Dt_i ,  7  € G ) .

Then, from (4.4):

/  (dt \A,  Q, A - i ,  7  G a)  «  /  {dt\A, Q, A - i ,  G) •

Hence, approximation (4.4) is valid iff the set G  is chosen to satisfy certainty equivalence [20]. (4.7) 

constitutes a filter-bank designed in such a way as to meet this certainty equivalence requirement.
The integral (4.6) can be evaluated only if the partition Gi is available explicitly. In many practical 

cases, this will prove difficult to achieve. Therefore, we propose— following the Bayesian methodology— 
to model the uncertain quantity a* (4.4) by a probabilistic model. We introduce a labelling transforma­

tion:

k  { i t )  = 1  ^  2 =  1 , . . . ,  c. (4.8)
[O i t ^ G i ,

That can be written in a vector form as I (7 t) =  [/i (74) , lc (7i)]^- From (4.2), it follows that 

I h t )  e  { e i , . . .  ,Cc}, where

Ci =  5c (i) =  [<̂ (* -  1) > ^ -  2 )) , ■ • •, ^ -  c ) ] ', i =  1, . . . ,  c.

Considering Gi as unknown, we can define a new random variable Zj =  Z (7f), with pdf:

f { k  = ei\■) = P T { ^ t e G ^ \ ■ ) = ^  (4.9)
JQi

Note that the last term in (4.9) is in the form of the mixture weight (4.6). Hence, using (4.9), we can 

assign

Qj (A,Q,  A - i )  = f { k  = e i \ A , ^ , D t - i , G i )  ■ (4.10)

However, the weight (4.10) requires an explicit model of the space Gi- This is prohibitive from
a computational point of view. Therefore, most of the literature on statistical mixtures (e.g. [25])
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approximates
/  {lt\A, Q, A - i )  ~  /  ik \a )  = M ui, ( a ) ,

i.e. a multinomial distribution with time-invariant vector parameter a  =  [ a i , . . .  ,Q;c]  ̂ This yields a 
mixture model with stationary weights dj [A, D t- \)  =  oti. This assumption is however, not realistic
for non-stationary processing. We address the problem as follows.

Proposition 4,1 (Markov weights) Variable It constitutes a hidden field which we model via a first- 
order Markov chain with transition matrix T  G [0, ;

C C

ai (^n ,  A-i)  ^  f  =  Mui,
i= \j=l

i.e. P r {It = ei\T , It^i = ej)  =  t i j ,  the ijth  element o fT . Mui^ (•) denotes the multinomial distribu­
tion.

Recall, from Section 3.2, that the Extended AR (EAR) model is an AR model on transformed data:

yd;t =  A x t + n ~ ^ e t, 

x t  =  g a ;{D t-i,W t) .

For algebraic simplicity, we have introduced an extended regressor, yt = [yd-,t,xt] =  g (D t-i,W t) , 
which is dependent on the transformation g{-). In this Chapter, the time-invariant transfromation g {■) 
was replaced by a filter-bank G = [gi , . . . ,  9c]- The regressor corresponding to the ith transformation 
will be denoted as follows:

Vi , t  =  g i { D t - i , W t ) , i =  l , . . . , c .  (4.12)

The history of the regressor—which is used mostly in contitioning part of the posterior pdfs—is adapted
to Yt =
data under all considered transformations.

Substituting (4.11), into (4.4), the observation model is

. Intuitively, it denotes the knowledge of all observed

/  {dt\A, n, T, Yt-i,G, It-i) =  X n ’ (4.13)
i=l j=l

where the conditioning set A, Q, Yt-\,G has been augmented by T, It-i-

4.2. Bayesian Formulation

Consider the joint distribution of the observation d t  and the label It".

f  {dt,lt\A, Q,T, Yt-i,G, It-i) =  /  {dt\A, n, Yt-i,G, h)  f  {lt\T, h - i ) . (4.14)

Then, the marginal distribution of (4.14) over It is the observation model (4.13). Next, consider the 
posterior distribution of model parameters of (4.14) at time < — 1, i.e. /  {A, Q, T, lt-i\Dt-i,G). This
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is updated by (4.14) according to Bayes’ rule:

/  {A, n,  T,  It, l t - i \Yt ,  G) a  /  {A,  T, / t _ i \ Y t - uG)  f  {dt, l t \A,  n,  T, l t - i , Y t - u G ) . (4.15)

The update introduces, at each step, an extra random variable, It. Hence, the parameter distributions 
at times t and t  — I have different functional forms, violating conjugacy. After t updates, t random 

variables will have been generated, with possible states. This scenario has been used in the off-line 
case [46], but it is unsuitable for on-line identification.

The exponential explosion of terms, described above, is overcome via the following conditional in­
dependence approximation of the posterior distribution at time t (4.15);

f { A , n , T , l t , l t - i \ Y t , G ) ^ f { A , ^ , T \ Y t , G ) f { l t \ Y t ) f { l t - i \ Y t ) ,  (4.16)

where the /  (•) denote ‘wildcard’ approximating distribution. Using (4.16) at both t  and  ̂ — 1 (i.e. for 
the first two terms in (4.15) respectively), we see that /  {A, U, T\Yt)  is updated in the step from  ̂ — 1 
to t  independently of the label sequence It, avoiding the exponential explosion.

4.3. Variational Bayes (VB) Approximation

The conditional independence (4.16) is the underlying assumption of the VB approximation method 

(Section 2.2.4). In order to achieve conjugacy-based recursive identification, we seek a posterior dis­
tribution on parameters, A,Q,, T,  at time  ̂ -  1 to be of the same form as at time t. The functional 
optimization achieved by the VB approximation allows us to choose the posterior distribution conju­
gate to the VB-optimized observation model (Section 2.3.3).

4.3.1. VB-conjugate Prior

Let the distribution of model parameters at time i — 1 to be of the form (4.16). It is updated by the 
extended observation model (4.14) to yield the posterior distribution (4.15). Taking the logarithm of the 

joint distribution, then

C

\n f  { d t , l t , A , Q . , T , l t - \ \ Y t - i , x t , G )  =  ^  k̂ t
i=l

in /  (dt\A,  Q, Xi-t, Qi-t) +  h, t - i  In Uj
j = i

(4.17)

+  In f { A ,  Q, T\ Yt - i )  +  In /  ( /jlY i-i) +  In /  H t - i \ Y t - i ) .
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4.3. Variational Bayes (VB) Approximation

Using Theorem 2.1 for (4.17) with restrictions (4.16), the VB-approximate distribution on A , Q , T  is 
found to be

\nf{dt \A,Cl ,yi^t ,gi , t )  +  In^ij
j=i

f { A , Q, T\ Yt )  oc exp I
V  i = i

+  \ n f { A , n , T \ Y t - i ) j ,

c ^  c c ^  ^

a  /  (^ ,  T\Yt - i )  n  /  (dt\A,  0 ,  J] II
(4.18)

(4.19)
i=l i = \ j= \

The expected values k-t of /  {ItlYt) and will be evaluated shortly. These approximate distributions of It 
and I t - i  are found in the form

i=l
c

t=i

Vi-,t =  exp Tit-1 (  ~  [yi,ty'i,t] ^ ] ')
c

+  h, t -l  I n  +  I n  j  >

(4.20)

(4.21)

j= i

Ki-t =  exp ^T,h (
i= i

where rji-t and Ki-t, i — I , . . .  , c  are statistics of distributions (4.20) and (4.21) respectively.
In order to achieve tractable recursive identification we want to choose approximate distributions 

/  (•) to be closed under these VB updates (i.e. VB-conjugacy, Section 2.3.3). We note the following:

•  if /  {A,  fl, T \Y t - i )  is chosen in the form /  {A,  /  (T |y i_ i)— i.e. with independence be­

tween the AR parameters A,  Q and weights T — the approximate posterior (4.19) is also indepen­
dent.

•  parameters A, Cl are present in the VB-approximate observation model (4.19), only via the condi­

tioning part of the distribution of data dt- This distribution is the product of Normal distributions 
being therefore a Normal distribution. Hence, /  {A, r2|y<_i) of the Normal-Wishart type is con­
jugate to it.

•  parameter T  is present in (4.19), only via the product of multinomial distributions which is also a 

multinomial distribution. Hence, /  (T\Yt) of the Dirichlet type is conjugate to it.

•  both /  ( l t \Yt- i)  and /  (Z t_ i|y t_ i) in (4.20) and (4.21) are self-replicating if they are chosen as 
Multinomial.
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

• /  is, in fact, the prior distribution on It, as It was not considered in previous updates.
We choose it to be uniform on [ 1 , ,  c], i.e. Mui^ (c“ ^ lp j) .

This VB-conjugate approximate distribution (4.16) is then of the form:

f  { A , Q , T , l t , h - i \ V t - i , i ' t - i , ^ t - i )  =  J ^ y ^ A , Q { V t - i , i ' t - i ) ' ^ i T

M u i^  (c“^lp,i) { w t - i )  ■ (4.22)

Here, A/’W^,n (Vt_i, t 't- i)  is the Normal-Wishart distribution with statistics Vt-i and Ut\ V i j  
denotes the Dirichlet distribution with statistics $ i_ i G Appendix A.3; and {wt - \ )
denotes the Multinomial distribution with statistics Wt~\ G

4.3.2. VB-optimized Posterior Distribution

Substituting (4.22) into (4.15) yields the following joint distribution:

f  { d t , l t A ~ x , A , n , T \ Y t )  =  { d t \ A , ^ l , y i , t , 9 u t A  I R  H
\ i= i  /  \ t= i j= i  /

{Vt-i,i^t-i)Mui^ (c "4 p ,i)  Mui^_, ( w t - i ) . (4.23)

Corollary 4.1 (Corollary 1 of Theorem 2.1) Using (4.16) and (4.23) in Theorem 2.1, the VB-optimal 
form o f (4.16) is found via the following assignments:

f { A , n \ Y t )

f {T\Yt )

f { l t \ Y t )

f { l t - i \ Y t )

J^y^A,n (Vt,i't):

(^*t),

Mui^ (wt ) , 

-WUi.-l (“i) >

(4.24)

(4.25)

(4.26)

(4.27)

with VB-statistics

j = l  

^t-\  +  1,

Wi;t OC |Ji;t|exp 

1

o Vi.t [ - I p ,  a ] ' Q -Ip, A Vi,t

j= i

OC Wj-t—l ^  
J=1

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

The constants o f proportionality in (4.31), and (4.32) follow from normalizations, — 1.
and J2j=i — 1. respectively. Moments o f (4.24), i.e. A  =  ^A\Vt,vt (^) ^  =  ^Q.\Vuvt (^)>
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4.3. Variational Bayes (VB) Approximation

are given by (3.20) and (3.21) respectively. The moment o f (4.25) required for (4.31), (4.32), i.e. 
In t i j  = (In t i j ) ,  is given in Appendix A.3, namely (A.22). The first moment o f (4.26) and (4.27) 
are It =  [wi-t, • • •, Wĉ t] and I t- i  = [ui-t, ■■■, Uc-,t] respectively.

Proof: Logarithm of the joint distribution (4.23) is:

In f  {dt, It, k - i ,  A,  Q\a,Yt)  =

i=l
I n /  (dt\A ,^,yi^tiQ i,t) ^  y

j=i

(4.33)

(4.34)

+  lnA/'W^,n (V t-ijt 't- i)  +  In P it (^>t_i) +  In Mui^ { w t - i ) ,
c

Inl t /^j f l  “f“ ^  ^=  -^ ln (2 7r )  +  i l n | Q |  +
1 = 1

i=l

+ ^ u t- i  In |Q| -  InCvw {V t-i,i^ t-i) -  [-Ip,  A] Vi-i [-Ip,  A]'
c c c

1 I n t j j  +  ^  li,t-i
1=1 j  = l 1=1

From Theorem 2.1, distributions (4.24) and (4.25) are obtained as proportional to exponential of the 
expected value of (4.33) over /  {lt\dt,Yt). As (4.33) is linear in It and I t - i ,  the expectation is just 
a replacement of It by It, and it_i by I t - i  Removing all terms independent of A , f l  from (4.33) and 
normalizing we obtain (4.24) with assignments (4.28) and (4.29). Removing all terms independent of 
T  from (4.33) and normalizing, we obtain (4.25) with assignment (4.30).

Distribution (4.26) is proportional to exponential of expected value of (4.33) with respect to distri­
butions (4.24) and (4.25). All terms independent of It become part of the normalizing constant, hence 
(4.26) is obtained, via assignment

Wi-t OC exp - tr  (Q [ Ip,A\ [yi,tyi^t\ [ Ip ,A \ ) +  u,j j
j=i
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

Using elementary properties o f the t r  (•) operator and the properties o f the matrix Normal distribution 

(Appendix A .l) , namely (A .2):

W i\t OC |Jj;i|exp 

OC |Jj;f|exp
n -QA

-A 'Q  A'QA yi,t I + tj ĵ
/  j  = l

a  |Ji;(|exp 

OC |Ji;t|exp -^yl t^-Ip,A^ Q

n - f i A

- A ’n + y i,t I ^
/  3=1

Ip,  A yi,t

j= i
1,3

prooving (4.31). The mean value o f (4.26) follow^s trivially from the fact that all possible realizations of 

It are elementary basis functions. ■

VB-statistics (4.28)-(4.32) can be evaluated via the standard VEM algorithm  (Algorithm 2.2). However, 

as the VB approxim ation is applied to a single step, we need to iterate the solution for each step o f the 

on-line algorithm, as follows:

For each t:

1. collect data record d t

2. assign initial values w f ' \  u ' ^ \  (e.g. =  V t_i, etc.)

3. iterate (4.28)-(4.32) using the VEM algorithm (Algorithm  2.2) until convergence is reached 

at, say, the m th  iteration.

4. assign the approxim ate statistics at time t  as: Vt =  V t ^ \  Ut =  w t  =
(m ) (m)wl ',ut = u\

end

This, of course, may prove im practical for applications requiring real-tim e processing, since the con­

vergence of step 3 is not guaranteed in a given num ber o f operations. This problem can be addressed by 

setting a threshold mmax on the m axim um  allowed number of iterations o f the VEM algorithm, as sug­

gested, for example, in [35] where mmax =  1- For time-invariant m odels, the algorithm asymptotically 

(i.e. for t  —> d o )  converges to the local Variational extreme, but, it does not hold for the time-varying 

models. Alternatively, we can use the Restricted VB approxim ation (RVB) as introduced in Section 

2.2.5. We consider this next.
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4.4. Quasi-Bayes (QB) Approximation

4.4. Quasi-Bayes (QB) Approximation

In this Section, we derive an alternative identification algorithm using Restricted Variational Bayes 

(RVB) (Section 2.2.5). The RVB approximation requires all but one VB-marginal to be known. More­

over, the Quasi-Bayes (QB) approximation (Remark 2.4) use the analytical marginals o f the true poste­

rior distribution. Here, we note that It is a dicrete variable with c <  oo states, hence, marginalization 

over this label field is analytically tractable.

4.4.1. Fixing the VB-marginal for the Label Field

Label variables in (4.23), namely It and I t - i  together possess possible states. Evaluation of 

possibilities may be prohibitive for large c. Therefore, we make the follow ing choice o f fixed VB- 

marginals in the RVB approximation (2.34):

Hence, (4.35) was chosen as fixed at the previous time-data step, and (4.36) was chosen as suggested 

by Remark (2.4).

Marginal (4.36) o f the jo in t distribution (4.23) over A, T, dt, is a discrete distribution o f the form

j = i

where 0 /w  (•) is given by (3.14) and (p j (■) is given by (A .20) in Appendix A.20. The constant of 

proportionality for (4.39) is easily determined from normalization o f (4.37), i.e. Yl‘j= \  =  1-

f { l t - i \Y t )  =  f  { l t - i \ Y t - i ) , (4.35)

f  (dt ,A,  0 , T, l t , l t - i \ Y t - i , x t )  ddtdAdndT. (4.36)

C

(4.37)
1=1

Where Wi t̂ can be found via

Wj-̂ t—i f  dt _ 1 j Xtj t̂—i — ) dA d^ dT

W j- t - i f  i A ^ , T , l t  =  e i ,d t \Y t - i ,X t , l t - i  =  e j )dAdQ.dT

f{dt\A,^,T,yi,t)NWA,u {Vt-i,vt-i) +

C

Wi-tT^ir /  [It =  e i|T , U - i  =  Cj) dA dQ. dT (4.38)
j= i

C

oc Catw {Vt-i  +  yi,tvlu  +  1) X ]  Wj-t-i<^vi i^i,j-,t-i +  1) (4.39)
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

4.4.2. QB-optimal Posterior Distribution

The full updating algorithm follows from Corollary 4.1, using the RVB approach (Corollary 2.1, Section 
2.2.5).

Corollary 4.2 (Quasi-Bayes (QB) estimation of the MEAR model) Using (4.16) with assignments (4.35), 

and (4.36) in Corollary 2.1, the RVB-optimal form o f (4.16) is found via the following assignments:

f {A, n\ y t )  =  (4.40)

f { T \Y t )  =  (4.41)

with statistics

C

Vt =  V t-i + '^ W i- ty i , ty l t^  (4.42)
i = l

Ut =  Ut-i + 1, (4.43)

(4.44)

Proof: (4.40)-(4.44) are of the same form as (4.24) and (4.25). Expected value It follows form
(4.37). Substituting It =  w t  and lt~ \ — Wt~\ from (4.39) into (4.28)-(4.30) proves (4.42)-(4.44). ■

4.5. Viterbi-Like (VL) approximation

Note that the matrix Vt is updated c-times by a dyad weighted by corresponding weight Wi-f Dyadic 
update is a rather expensive operation (Section 3.2.1.1). In situations where one weight w^t dominant, 
it may be unnecessary to perform dyadic updates for the remaining c — 1 dyads with low weights. This 
motivates the following ad hoc proposition.

Proposition 4.2 (Viterbi-like Algorithm) Further simplification o f  the QB algorithm may be achieved 
using an even coarser approximation o f  the label-field distribution, namely certainty equivalence (Sec­

tion 2.2.1):

f { l t \ Y t )  = 6 ( i t - i t ) ,  (4.45)

in place o f (4.36). Here, It is the M A P  estimate from (4.37), i.e.

it =  arg m ax /  {l t \Yt ) . (4.46)
It

This corresponds to the choice o f  one ‘active’ model with index it £ { I , . . . ,  c], such as It = The 
idea is related to the Viterbi algorithm [93]. Replacing (4.37) in the Corollary 4.2 by (4.45), we obtain
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Wt-l

Vc.t

O.P. O.P

O.P

O.P

Eq. (4.39)

Eq. (4.39)

Eq. (4.39)

m

Figure 4.1.: The Recursive summed-dyad computational scheme for Quasi-Bayes identification of the 
MEAR model. O.R denotes outer product (dyad). For clarity, dependence of Eq. (4.39) on 
V t-i and fct_i is not shown.

the approximating distributions in the same form as (4.40)-(4.41), but with statistics

Vt =  Vt-1 +  Vi,,tyl;t^ (4.47)

ut -  u t-i + \, (4.48)

+ Wiw't_i. (4.49)

Note that the update o f ^ t  (4.49) is computationally cheap. Weights Wt are already available for evalu­
ation o f (4.45), hence, is updated as in the QB algorithm (Corollary 4.2, equation (4.44)).

4.6. Inference with the MEAR model

4.6.1. Computational Issues

We have introduced three methods for recursive identification of the MEAR model:

1. Variational Bayes (VB) algorithm (Corollary 4.1)

2. Quasi-Bayes (QB) algorithm (Corollary 4.2)

3. Viterbi-Like (VL) algorithm (Proposition 4.2)

The computational flow is the same for all algorithms involving updates of statistics Vt,

The recursive scheme for computation of (4.42)-(4.44) via the QB algorithm is displayed in Figure
4.1. The computational scheme for the VB algorithm is, in principle, the same, but the statistics, Wi t̂, 

and Vt, must be iterated in each time using the VEM algorithm. This is difficult to visualize. The
main points of interest are the weight evaluation, i.e. Eq. (4.39), and summation of dyads.

W eights are computed via (4.31) for VB, and by (4.39) for the QB and VL algorithms. The operations 
required for this step are:
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

Table 4.I.: Computational complexity of recursive identification algorithms for the MEAR Model.
algorithm computational complexity of one-step estimation

VB m  (2c -1- 1) X O ^(r -1- p)^^

QB 2c X 0  (^{r + + c x  0  {r + p)

Viterbi-like (c - 1 - 1 )  X  0  ^ ( r  - t -  p)^^ + c x  0 { r  + p)

m  denotes number of iterations of the VEM algorithm (for VB only) 
c is the number of components in the MEAR model 
p and r  are the dimensions of measured data and regressor, respectively

VB: (i) evaluation of A,  fl, Vaa;u (ii) evaluation of (4.31) c-times. All operations in (i) and 
each operation in (ii) are of complexity O  ^ (r +  (Section 3.2.1.1). Moreover, these 

evaluations must be repeated for each step of the Variational EM algorithm.

QB: (i) update of Vt c-times in the (4.39), and (ii) evaluation of the corresponding normalization 
constant (4.39). Computational complexity of normalization is O (r  +  p).

VL: same as QB plus determination of maxima (4.46).

This operation can be done in parallel for each condidate transformation in all cases.

Update of Vt is done via dyadic updates (4.28), (4.42), and (4.47) for VB, QB, and VL respectively.

VB: LD update of Vt, c-times 

QB: LD update of Vt, c-times 

VL: one LD update of Vt.

This operation must be done sequentially.

The overall computational complexity is summarized in Table 4.1.
The main drawback of the VB algorithm is that the number of iterations, m , of the VEM algorithm 

at each step, t, is unknown a priori. For stationary processes, i.e. 6t =  9, it can be expected that with 
growing number of data, the new data record dt will cause just a small shift in the expected values of 
parameters. Hence, the VEM algorithm will converge fast and m  may be as low as m  =  2 or m  =  L

Remark 4.1 The layout o f  the scheme (Figure 4.1) suggests a multiple model approach [94]. This 
similarity is not surprising, since the approximation used there is based on the principle o f  partitioning 
[95], which is equivalent to the conditional independence assumption (4.3) in this work. The M EAR  
scheme, with its restrictions (namely a fixed filter bank (4.7)), represents a special case o f  the inter­

acting multiple model [96]. Specifically, the interactive multiple model updates the covariance matrix 
(corresponding to Vt) at time t with a vector, this vector being a combination (interaction) o f  candidate 
states. Hence, the covariance matrix is updated with a matrix o f  rank L This corresponds to the update 
of Vt  by one dyad, as was the case for the Viterbi-like algorithm for the M EAR model. On the other 
hand, matrix Vt is updated in the VB and QB algorithms with a weighted sum o f  dyads. Hence, Vt is 
updated by a matrix o f  rank m in {p +  1, c).
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It is emphasized that the VB, QB and Viterbi-like algorithms are alternative strategies for collecting 
the approximate statistics Vi, i/f, in (4.22). All subsequent operations, namely prediction and model 
structure determination, are determined by the form of the yielded posterior, which is the same in all 
three cases. Hence, these tasks can now be addressed in the following sections without reference to the 
chosen approximation.

4.6.2. MEAR-based Prediction

The MEAR predictor can be found by marginalization, using (4.13) (replacing th y  t + 1), (4.22) and 
the chain rule:

f  {dt+\\yt+\,G)  =  f  f  {dt+1 , A,Q ,l t+i ,T , l t \Y t+i ,G)  dadada.  (4.50)

which is a task similar to (4.36). The predictor is found as

C

f{dt+i\Yt+i ,G) = = ^ a i , t f { d t + i \ Y t , 9 i ) ,  (4.51)
i = l

which is a mixture of EAR predictors (3.30), weighted by the respective component weights ai-f-

E Cvi +  1)
'^r,t - T — 7T  •

Cvi

In typical signal processing applications, only moments of these distributions are of interest:

c

d t + l  =
i =  l

where di^t+i is the prediction of each candidate, in special case it is given by (3.32), (3.33). Note, in 
general, that all non-central moments of (4.51) can be obtained as this weighted algebraic mean of the 
respective non-central moments of the candidates. However, this does not hold for the central moments 
[97].

4.6.3. MEAR Model with Non-stationary Parameters

In Section 3.2.3, we relaxed the assumption of stationarity of parameters A,  Q by means of a forgetting 
operator (3.39). The same can be done for the MEAR model with parameters A,  a ,  since A, 
has the same distribution as in the AR model and T  has Dirichlet distribution, which belongs to the 
exponential family. Distributions on A, Cl and T  were chosen conditionally independent (Section 4.3). 
Hence, we choose distinct forgetting factors, <p̂ /■w and 4>Di, respectively. The prior at time t is then 
chosen as

-------
f{Aunt,at\Yt) = [f{At-u t̂-i\Yt-i)^^^at\ [f{At,^t\Yt)

(4.52)
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Where /  {At, |>t) and /  {oit\Yt) are alternative distributions chosen by the designer.
Replacing prior (4.22) by (4.52), and choosing /  {At, flt\Yt) =  A/'W { V , v )  , J  {Tt\Yt) =  V i  ( $ ) ,  

stationary for all t, then all foregoing algorithms maintain their structure, with the following modifica­
tion of the statistics update mechanism:

C

Vt =  (j)AfwVt-i +  '^Ti^tyi,ty'i,t +  i '^-<PMw)Vt,  (4.53)
1= 1

=  (/’ATvvt't-i +  1 +  (1 -  (4.54)

+  Iti't-l ~  (4.55)

This is the form for VB and QB variants. The required modification of the Viterbi-Like (VL) variant is 
of the same kind.

4.6.4. MEAR Model Structure Determination

The key restriction of the MEAR model— namely, common AR parameters A, Q. (4.13)— implies that 
all filter candidates, Qi G G,  must have the same dimension, p +  r. The estimation of the MEAR model 
does not provide inference of the model structure and additional treatment is required.

The likelihood of the whole data set, Dt,  can be obtained from the one-step-ahead predictor (4.51), 
using the chain rule:

t

f { D t \ , \ D „ G { q ) ) < x  I ]  f { d j \ Y , _ i , G { q ) ) .  (4.56)
j = q + l

From Bayes’ rule, we can evaluate the inference on G {q) as:

/  (G (g) I A )  cx /  ( G {q)) f  {G { q ) ) . (4.57)

Note that the one-step-ahead predictor (4.50) is based on the expected values of the label. It. One of 
the immediate consequences is that the trajectory of It with respect to t must be recalculated for each 

setting of G {q).

4.7. Inference of an AR Model Robust to Outliers

One of the main limitations of the AR model is sensitivity of the estimates to outliers in measurements. 
In this section, we analyse the problem of estimation of a scalar (p =  1) AR process (3.9) of order 
q =  r, with observations corrupted by isolated outliers. An isolated outlier is not modelled by the AR 
model because the outlier-affected observed value does not take part in the future regression. Instead 

the process is autoregressive in internal (i.e. not directly measured) variable zt, i.e.

zt =  A x t  +  uj~^et, x t  =  [ z t - i , . . . , z t - q ] ' , (4.58)
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which is observed via

(4.59)

Here, denotes a possible outlier at time t. Moreover, for an isolated outlier it holds that

(4.60)

The AR model is identified via /  {A,u)\Dt) (3.12) (i.e. not via /  (A, tj\Zt)) and so the outlier degrades 
estimation iff it enters the extended regressor yt  =  [zt, . . . ,  zt-q] (3.17).

4.7.1. Filter-Bank Design

Since yt  is of finite length, and since the outliers are isolated, it is easy to define a finite number of 
mutually exclusive scenarios. Each of these scenarios can be captured via an EAR model and combined 
together using the MEAR approach, as follows:

1. None of the values in yt  is affected by an outlier, i.e. dt-i  = z t - i , i  =  0 , . . . q .  The set of 
transformations (3.26), (4.2) is then the singleton set:

2. The observed value, dt, is affected by an outlier, and so all delayed values are unaffected, given 
assumption (4.60); i.e. dt-i  =  z t - i , i  =  1 , . . .  g. For convenience, realization of can be ex­
pressed as a multiple of realized value et, via unknown multiplier ht > 0:

parameterized by variable ht. The Jacobian of all g € Q2 is J 2 =

3. The observed value is not affected by an outlier, but a A:-steps-delayed observation, dt-k, k G 
{1 , . . . ,  q}, is. In this case, the transformation should replace this value by an appropriate AR

=  {g\yt =  [dt,dt-i,... ,dt-q\] . (4.61)

( t̂ =  h tU  2 6 t . (4.62)

Then (4.58), (4.59) can be rewritten as:

dt -  A x t  + {1 + ht) u) 2e<, x t  [d t- i , . . .  ,d t -q] ' .

This can now be transformed to the form

Therefore, the space of transformations in this case is

(4.63)
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process estimate, Zt-k- The set o f transformations for each k =  1 , . . .  g is then:

Qk+ 2  =  {g \yt  =  [dt, ■ ■ ■, dt-q]' +  Sg+i {k +  1) {zt-k -  d t -k ) , V£i_fc =  Pk {Dt)  ]  , (4.64)

where Sp{i) =  (1 — i ) , . . . ,  J (p — i) ]. The elements o f Qk+ 2  are indexed by every possible

function, pk, denoting an estimator o f unobserved quantity Zt-k from data Dt-  The Jacobian o f 

all possible transformations g  G Gk+ 2  is Jk+ 2  — 1-

We have described c =  q +  2 different modes (partitions), Qu o f an ideal filter transforming observation 

process, dt, to a process, yt, for which an AR model is valid. For each o f these partitions, a representative 

candidate, gi, should be chosen (4.3). The choice o f candidate gi  =  Gi is trivial. Choosing g 2 is 

equivalent to choosing a known fixed ht =  h. Alternatively, i f  the variance o f outliers is known to 

vary significantly, we can split Q2 into finer subsets and choose u candidates with fixed values hi  <  

h2 <  ■ ■ ■ <  hu- The transformation sets, Gk+2  ̂must each be represented by a function pk defined with 

respect to a known reconstruction (smoothing) filter. We have tested the algorithm for pk chosen as the 

A;-steps delayed values zt -k  o f the expected value % at time t, given Dt'.

C

=  E^,|it=e, {zt) f  ih  =  ei \Dt,  G ) . (4.65)
i=l

Using (3.33), expected value (4.31) o f the Multinomial distribution (4.26), and the fact that Zt =  dt, for 

a lH  =  1 , 3 , . . . ,  c, the reconstruction filter is

C

z t - d t  ^  Wj-t +  W2-tAtXt-k- (4.66)
j = i j / 2

Here, the Bayesian predictor, (3.33) has been used to replace the outlier arising in scenario 2 above.

In our simulations, the interpolation strategy chosen is Zt-k =  Pk {Dt )  =  pk ( D t - k )  (i-e. filtering). 

This choice requires only one calculation o f Zt-k for each t. Adopting the non-causal (smoothing) 

choice, Zt-k =  Pk {Dt ) ,  would require q calculations o f zt-k  for each t, with, presumably, negligible 

benefit over the causal (filtering) choise.

4.7.2. Simulation Study

A second-order stable AR model with parameters A  — [1.85, —0.95]',a; =  100, was simulated with a 

random outlier on every 30th sample. The total number o f samples was n =  200. A  segment o f the sim­

ulated data ( i =  5 5 , . . . ,  100) is displayed in Figure 4.2 (dotted line) along with the reconstruction (solid 

line) (4.66), and corrupted data (dots). Two outliers occurred during the displayed period: a ‘small’ out­

lier at f  =  60 and ‘b ig ’ outlier at f  =  90. The MEAR model with four candidate transformations— Q\ 

(4.61), G2 (4.63) with ht — h =  10, Qz and (4.64) as derided in the previous Section— was used 

for identification o f the AR parameters A,ui. The prior distribution was chosen as A/^W (Vq, vq) with
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Figure 4.2.: Reconstruction of an AR(2) process corrupted by isolated outliers. Results for VB, QB, 
and VL algorithms, respectively, are shown. There are outliers at f =  60 and t  =  90.
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

and uq =  \. This choice of prior corresponds to point estimates with
0.1 0 0

Vo =  0 0.001 0
0 0 0.001

A =  [0,0] (3.20), and w =  10 (3.21).
Note that when an outlier occurs, all candidate filters are sequentially used, as seen in Figure 4.2 

(middle and right columns). Thus, the outlier is removed from the estimation formulae (4.28)-(4.30) 

very effectively. We note that all considered algorithms— i.e. VB, QB, and VL—have performed well 

when the ‘big’ outlier occurred. The estimated weights and reconstructed values are almost identical 
across the procedures. However, when ‘small’ outlier occurred, the VB algorithm identified the weights 
more accurately than the QB and VB algorithms.

The terminal— i.e. t  =  n — posterior distribution of A, (A. 10) is illustrated (via the mean value and 
2 standard deviation ellipse) for the various identification methods in the left (overall performance) and 
right (detail) of Fig 4.3. In the left diagram, the scenarios are (i) AR identification of the AR process 

corrupted by outliers (boxed); (ii) AR identification of the AR process uncorrupted by outliers (boxed). 
In the right, we zoom in on the boxed area surrounding (ii) above, revealing the three MEAR-based 
identification scenarios: (iii) MEAR identification using the VB approximation; (iv) MEAR identifi­
cation using the QB approximation; (v) MEAR estimation using the Viterbi-like (VL) approximation. 
Impressively, the MEAR-based strategies perform almost as well as the AR strategy with uncorrupted 
data, which is displayed via the full line. The posterior uncertainty in the estimate of A  appears, there­
fore, to be due to the AR process itself, with all deterious affects of the outlier process removed.

4.8. Inference of an AR Model Robust to Burst Noise

The previous example relied on outliers being isolated (4.60), permitting the assumption that there is 
only one outlier in the extended regressor yt. In such a case, additive decomposition (4.59) allowed 
successful MEAR modelling of dt via a finite number {q +  2) of candidates.

4.8.1. Filter-Bank Design for Burst Noise

A burst noise scenario, in contrast, requires more than one outlier to be considered in the regressor, 
obviating the filter bank design in the previous example. To address this problem, we need to transform 

the underlying scalar AR model (4.58) into state-space form [58];

zt+ \ = B z t  + kLL>~^et. (4.67)
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4.8. Inference of an AR Model Robust to Burst Noise

We choose the model with state variable assignment Zt = [d t , . . . ,  dt-q]' .  Therefore:

- a i -0 2 -0 3  • ■ • Clq ’  1 '

1 0 0 • • • 0 0

B  = 0 1 0 , k  = 0

0
0 0 1 0 0

(4.68)

where B  € 3?^^  ̂and r  G . The process with burst noise is modelled as

dt = c'zt + htiJ 2Ct) (4.69)

where c =  [ 1 ,0 , . . . ,0]'g and Ct is A/"(0,1), independent of ej. denotes the standard
deviation of the burst noise which is assumed strictly positive during any burst, and is zero otherwise. 
Note that the autoregressive part of the model (4.67, 4.68) is identical to the AR model in the previous 
example. The key difference is in the corruption process (4.69) compared to (4.59), (4.60). Once 
again, we identify a finite number of mutually exclusive—but now non-exhaustive— scenarios that can 
be modelled using an EAR process:

1. The current observation dt and the last q observations, d t - i , .. ■, dt-q are all distortion-free; i.e. 
ht =  ht-i  = . . .  = ht-q =  0. Formally, Q\ =  {g\yt =  z j ,  a singleton set.

2. The measurements are all affected by burst noise; we set ht = ht- i  =  . . .  
state-space model (4.67,4.69) is now defined by the joint distribution;

f  (z t,dt \a,uj ,z t- i ,h)  =  Af

h t^ q h. The

(4.70)

(4.70) cannot be modelled directly as an EAR process because it contains unobserved state vector 
Zt- Using standard Kalman-filter theory [16, 58], we can marginalize (4.70); i.e. we use the chain 
rule t times and integrate over the unobserved trajectory—namely over { z \ . . .  z t}— to obtain 
the direct observation model:

A f (
B z t - i

, U )  ^
rr ' 0

\ 1 1

0

f  {dt\a,ui,Dt-i,h) = J\f {az t , 0J V j)

with moments defined recursively as follows:

at =  h + c'St-ic,

St =

Zt =  Bzt- i  +  h~^Stc {dt -  c 'Bz t - i )  

St = r r '  + BStB' .

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)
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(4.71) can be expressed as a valid EAR model (3.29), if  £< and at are independent of the unknown 

AR parameters, A,u). Unfortunately, both, Zt and at are functions of matrix B  and thus of 

A. In order to obtain a valid EAR model, we replace B  =  B  (^ )  (4.68) in (4.74,4.75) by its

with time-variant Jacobian, Jt =  a f^  ( A - i )  evaluated, recursively using (4.72). The space Q2 

is parameterized by the unknown h.

3. Cases 1) and 2) do not consider the situation where hk is not constant on a regression interval 

k e [t — q,t] (i.e. a transitional phase). Complete modelling for all such a cases is too difficult, 

and so these scenarios are ignored. However, our experiments suggest that this has little impact 

on performance.

The final step is to define candidates to represent Q2 (9 i =  Q\ is trivial). One candidate may be chosen 

for Q2 if  the variance of burst noise is reasonably well known a priori. In other cases, we can partition 

Q2 with respect to intervals of h. Candidates are chosen as one element from each interval. The best 

experimental results were achieved for multiple partitioning of ^ 2 . with at least one candidate, gi — 

g {h =  hi) in (4.76), where hi is below the true value of h, and at least one candidate, Qu =  g {h =  hu) 

in (4.76) where /i„ is above the true value of h. hi and hu can conveniently be chosen as the prior lower 

and upper bounds, respectively, on h. Increasing the number of candidates drawn from Q2 generates a 

richer set, G, which better spans the subset ^ 2 - This improves the quality of approximation.

4.8.2. Simulation Study

A non-stationary AR(2) process was studied, with a\-t in the interval [—0.98, —1.8] (as displayed in 

Figure 4.4 (top-right)), a2 -t =  0 2  =  0.98, ujt =  ^  =  100, and n =  200. Realizations are displayed in 

Figure 4.4 (top-left, solid line). For t <  95, ai;( is increasing, corresponding to faster signal variations. 

Thereafter, a\-̂ t decreases, yielding slower variations. These variations of a\-̂ t do not influence the 

absolute value of the complex poles of the system, but only their polar angle. The process was corrapted 

by two noise bursts (samples 50-80 and 130-180), with parameters h =  8 and h =  6 respectively 

(4.69). Realizations of the burst noise process imposed on the simulated signal are displayed in Figure

4.4 (top-left, dotted line).

The process was estimated using c =  3 filter candidates; namely the unity transformation, G i, along 

with G 2 {h =  5) and G 2 {h =  10). Identification results, are displayed in the right column in Figure

4.4 as follows: (i) simulated data, (ii) AR model for uncorrupted data, (iii) VB variant of the M EAR  

model for corrupted data, (iv) QB variant of the M EA R  model, (v) V L  variant of the M E A R  model. 

Specifically, the 95% Highest Posterior Density (HPD) interval, via (A. 13) and (A. 15), of the marginal 

Student i-distribution of ai-t and a2 -t respectively, is displayed. The process was identified using forget­

ting factors (4.52) =  0.92, (pxn =  0.9, and non-comittal, stationary, alternative jV W  distribution, 

f  {A, (jj) =  A/’W a.h (^ )^ ) -  Furthermore, the matrix parameter, $ ,  of the stationary, alternative V i

expected value, Bt — 

of transformations:

B  via (3.20). Then, (4.71) is a valid EAR model defined by the set

(4.76)
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4.9. Application o f the MEAR model in Speech Reconstruction

distribution, /  (T) (4.52), was chosen to be diagonally dominant with ones on the diagonal. This dis­

courages frequent transitions between filters.

Note that all methods (VB, QB and VL) achieved robust identification o f the process parameters 

during the first burst. As already noted, i =  2 , . . .  , c,  (which denotes the reconstructed state vector 

(4.74) with respect to the zth filter), is correlated with A t - \ ,  which may undermine the tracking o f time- 

varying AR parameters. At.  In this case, each Kalman component predicts observations poorly, and 

receives low weights, W2 -t and wz- t̂ (4.31), in (4.53). This means that the first component— which does 

not pre-process the data— has a significant weight, wi-^f Clearly then, the Kalman components have not 

spanned the space o f necessary pre-processing transformations well, and need to be supplemented.

Extra filters can be ‘plugged in’ in a naive manner (in the sense that they may  improve the spanning 

of the pre-processing space, but should simply be rejected, via (4.31), if  poorly designed). During the 

second burst (Figure 4.4), the process is slowing down. Therefore, we have extended the bank of KF 

filters by a simple arithmetic mean Low-Pass Filter (LPF) on the observed regressors:

(4.76) and (4.77) yield EAR models with the same AR parameterization, and so they can be used 

together in the MEAR filterbank. Reconstructed values for the KF variant are derived from (4.65):

3

using (3.20). For the KF-i-LPF variant, the term (d« - I -  d t - i  +  d t - 2 ) is added to (4.78), where W4-t  

is the estimated weight o f the LPF component (4.31), (4 .53)-(4.55).

Identification and reconstruction o f the process using the KF-i-LPF filter-bank is displayed in Figure 

4.5, in the same layout as Figure 4.4. The distinction is most clearly seen in the final column of each. 

During the second burst, the added LPF filter received high weights, W4 -tj Figure 4.5 (middle column). 

Hence, identification o f the parameter A  is improved during the second burst.

4.9. Application of tlie iVIEAR model in Speech Reconstruction

The MEAR filter-bank for the burst noise case (KF variant) was applied in the reconstruction o f speech. 

A c =  4 M EAR model was used, involving G i  (yt  =  x t) ,  G 2 (h =  3), G 2 (h — 6), G 2 (h =  10). The 

speech was modelled as AR with order q — 8 (3.9). The forgetting factors (4.52) were =  <l>Di =  

0.95. Once again, a diagonally-dominant $  was chosen for /  (T ).

During periods o f silence in speech, statistics (4.53) are effectively not updated, creating difficulties 

for adaptive identification. Therefore, we use an informative stationary alternative distribution, /  {A, uj), 

of the A/’W  type (3.13) for the AR parameters in (4.52). To elicit an appropriate density, we identify the 

time-invariant alternative statistics, V,  V, using 1800 samples o f unvoiced speech. /  (A,u>) was then 

flattened to reduce F from 1800 to 2. This choice moderately influences the accumulating statistics at 

each step, via (4.53). Specifically, after a long period o f silence, the influence o f data in (4.53) becomes 

negligible, and Vt is reduced to V.

G3 : yn — g ( ® n  1 ^ n —2 ) • (4.77)

(4.78)
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

Three sections of the b b c n e w s .w a v  speech file, sampled at 11 kHz, were corrupted by additive 
noise. Since we are particularly interested in performance in non-stationary epochs, we have consid­
ered three transitional cases: (i) voiced-to-unvoiced transition corrupted by zero-mean, white, Gaussian 
noise, with a realized Signal-to-Noise Ratio (SNR) of - 1  dB during the burst; (ii) an unvoiced-to- 
voiced transition corrupted by zero-mean white uniform noise at — 2 dB; and (iii) a silence-to-unvoiced 

transition corrupted by a click of type 0.25 cos (3^) exp (—0.3f), superimposed on the silence period.
Reconstructed values using VB, QB and VL methods respectively are displayed in Figure 4.6. All 

three methods successfully suppressed the burst in the first two cases. In the third case, the click 
was suppressed by all methods. However, the QB and VL methods also had the deteriorious effect of 
suppressing the unvoiced speech.

4.10. Discussion

The MEAR model (4.13) proposes a relatively rich extension of the classical AR model. It allows 

transformations on regressors, which relates it to semi-physical modelling [98]. Being a mixture-based 
extension, it is also related to the multiple model approach [94], to mixtures of AR processes [99], and 
to the Generalized AR (i.e. GAR) approach [46]. It must be remembered, though, that the MEAR 
model is a single AR model subject to an unknown transformation of observations. This is formalized 
as a mixture with common AR parameters (4.13). There are two main consequences. Firstly, the 
MEAR model is appropriate in cases where the transformation/distortion process is independent of the 
underlying AR process. Secondly, the AR parameter inference (4.24) requires a single sufficient statistic 
matrix, Vn (4.28), updated via a linear combination of c dyads, each calculated from one component in 
turn.

The restriction to common AR parameterization across all components can easily be relaxed via 
obvious changes to the recursive algorithm (4.28)-(4.30). Each AR component would then experience 
a local rank-1 update, and there would be no inter-component interaction. Such a model would be 
over-parameterized, as each component would then have unknown AR parameters and an unknown 
transformation gi, causing identification problems. The common AR parameterization in the MEAR 
model overcomes this problem. It can be seen as a model-based regularization.

We have derived three variants of the identification algorithm: (i) Variational Bayes (VB), (ii) Quasi- 
Bayes (QB), and (iii) Viterbi-Like (VL). The VB algorithm is the optimal in the sense of KL mini­

mization (Section 2.2.4), while the QB and VL variants are computationally simpler methods derived 
as approximations of the VB solution. All variants yield acceptable solutions in particular contexts, as 

demonstrated in Section 4.9.
The statistics, Vt, are updated by a structure of rank c in the VB and QB variants as stated already. 

This implies an interaction of regressors from each component, which appears to be a key benefit of the 
MEAR model, since it allows a small number of candidate models to span a larger transformation space. 

The concept of interaction between a finite set of components has been exploited in other techniques. 
The Kalman-based Interacting Multiple Models (IMMs) [94] linearly combine state vectors (i.e. cer­
tainty equivalents) evaluated using each filter, before using it in the Kalman updates. Again, however, 
this corresponds to a rank-1 update in our framework as in the VL variant (Section 4.6.1).
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4. MIXTURE-BASED EXTENSION OF THE EAR (MEAR) MODEL

Bayesian identification unifies all tasks of inference into a single, model-consistent framework. In the 
burst noise example of Section 4.8, the MEAR algorithm combines the pre-processing tasks (of burst 
detection and signal reconstruction) with on-line identification. It is the dynamic weights (4.31) which 
balance the dyadic update contributed by each component at every step (4.28). This contrasts with the 

previously reported methods. For example, in [100], a Boolean detection decision is made concerning 
presence of oudiers. During a detected burst, a Kalman filter is used for reconstruction, and updating 

of statistics is interrupted. In our approach, the updating of statistics is never interrupted. Components 

which, in effect, pre-process noisy data, contribute dyads constructed from filtered data. Furthermore, 
exponential forgetting is used to handle time-varying AR parameters, in place of the extended Kalman 
filter in [100]. In difficult cases, such as silence regions of speech, forgetting with informative alternative 
distributions (3.39) might be used, as it was in Section 4.9.

A Quasi-Bayes (QB)-based approximate update of sufficient statistics was employed in [62], for 

estimating an ARMA model using a mixture-based extension (known as ARMMAX). The ARMMAX 
model is a special case of the MEAR model, but with time-invariant component weights, instead of 
(4.11), and with moving-average whitening filters as candidate transformations (3.26). The candidates, 
G  (4.7), used to represent the continuous multidimensional space of whitening filters, were designed 
using a simplex method. This is an example of a technique for filter-bank design, which was achieved 
at the price of loss of recursivity in the identification method.

In our work, we model the possible degradations of the AR process, and design the filter-bank, G 
(4.7), in an attempt to span all possibilities. The parallel architecture of the summed-dyad algorithm 
(Figure 4.1) permits extra candidates to be ‘plugged in’ with ease, in order to supplement the set. We 
saw in Section 4.8, for instance, how this can improve identification. When the extra candidate is 
not relevant, its contributing dyads are weighted by low component weights in (4.28), and become 

negligible.
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Chapter 5.

Bayesian Inference of Non-stationary 
AutoRegressive Models Using Time-variant 
Forgetting

In Section 3.2.3, we reviewed the Bayesian inference of non-stationary parameters of the AR model. 
Analytical solution is available under the assumption of known forgetting factor, 0. The value of <f> is 
chosen by the designer and always represents a trade-off: higher cf) gives lower variance of estimates in 
stationary scenarios, and lower (j) provides better tracking ability during non-stationary epochs. Intu­
itively, we would like to develop ‘smart’ forgetting, one which keeps cj) high when the identified model 
is in agreement with the observed data, and which decreases <p when incoming data do not correspond 
to this model. This idea was studied in the context of window-based processing [101], and using a 
gradient-based MAP approach [102]. The min-max criterion approach of adaptive forgetting was pro­
posed in [103]. The idea has also been studied in the context of Recursive Least Squares (RLS) [104].

In this Chapter, we seek a joint Bayesian inference of the non-stationary AR parameters of the mul­
tivariate AR model in tandem with the time-variant forgetting factor. The method will be extended to 
the MEAR model in Section 5.3. Progress in these areas is made possible via the VB-approximation of 
Section 2.2.4.

5.1. Bayesian Formulation

Following the Bayesian methodology, we treat uncertain 4>t as a random variable. We seek a joint 

identification of both 6 t  and 4>t. From (3.11), (3.39) the joint posterior distribution is then

/  { 9 t ,  a  /  { d t \ e t ,  Y t - u x t )  f  f  , (5.1)

where the prior on 4>t is uniform, Vi, in the interval 0 <  <  1:

/ (< / . t |F t_ i ) -W ( [0 ,l ] ) .  (5.2)

Note that (5.1) is conditionally independent of the previous parameters 6 t - \  and given Y t .  This 
is achieved via the forgetting operator (3.39) and the choice of prior (5.2). Hence, the proliferation of 
new random variables is avoided. Computationally feasible recursive identification is achieved if the
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posterior distribution
/  [Ot, 4>t\Yt) =  f  { e S u  Yt) f  {4>t\Yt), (5.3)

is chosen as conjugate with the observation model (3.29). This is possible for known forgetting, choos­
ing /  Yt- i )  from A/’W  family (Section 3.2.3). However, this cannot be achieved for the joint
posterior (5.3).

Therefore, we seek an approximate posterior in conditionally independent form:

f{6u<j>t\Yt) =  h m t ) h < t > t \ Y t ) .  (5.4)

5.2. Variational Bayes (VB) Approximation

The conditional independence (5.4) is the basic assumption of the Variational Bayes (VB) approxima­
tion method (Section 2.2.4). In order to achieve recursive identification, we demand that the posterior 
distribution on parameters at time  ̂— 1 be of the same form as that at time t. The functional optimization 
achieved by the VB approximation allows us to choose the posterior distribution to be conjugate with 
the VB-optimized observation model (Section 2.3.3).

5.2.1. VB-conjugate Prior

Assume that the distribution of model parameters at time t -  1 is of the form (5.4). It is updated by the 
observation model (3.11) to yield a posterior distribution. Then, the logarithm of the joint distribution 
is:

\n f {9 t , ( f ) t ,d t \Y t- i ,x t )  =  In f  {d t \9t ,Y t- i ,x t )  +  (et\Yt-i) +

+  (1 -  <Pt) \nJ i6 t \Y t - i )  -  InC • (5.5)

Here C {(pt) is the ‘wildcard’ for normalizing constant of the forgetting operator (3.39), which depends 
on the form of the optimized distribution f  Using (5.5) and (5.4) in Theorem 2.1, the VB-
optimized form of (5.4) is found in the following form:

f  {9t\Yt) (X exp(^lnf{dt\9t,Yt-i,xt) +  ^tinf{9t\Yt-i)  +

oc f { d t \ 9 t ,Y t - u X t ) f { 0 t \Y t - i f ^ 7 i 9 t \ Y t - i ) ^ - ^ ^ ,  (5.6)

f{<Pt\Yt) oc exp(</.^Ee, ( l n / ( 0 ^ | n _ i ) - l n / ( 0 t | y t _ i ) ) - l n C ( 0 t ) ) .  (5.7)

Note that the VB-approximate update (5.6) is in the form the standard forgetting for the AR model
(Section 3.2.3), with the forgetting factor given by =  E0,|yj (0t). Therefore, using results from
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Section 3.2.3, a conjugate update is possible if both /  {9t\Yt-\),  and /  {Ot\Yt-\),  are of the A/’W form:

} { e t \ Y t - i )  =  (5.8)

l { e t \ Y t - i )  =  A /'W (F i_ i,F i_ i) . (5.9)

5.2.2. VB-optimal Posterior Distribution

For the choice of priors (5.8) and (5.9), we can evaluate the ‘wildcard’ normalizing constant of the 

forgetting operator (3.39), as

|Vaa (5.10)

V{4>t) =  (t>tVt-i +  { l - ( t > t ) V t - u  (5.11)

=  ( p t V t - \  +  { I  -  (5.12)

Equation (5.10) defines a complicated function in 4>f Moreover,  ̂ determines the approximate pos­
terior distribution /  (<pt\Yt) via its logarithm in (5.7). No standard distribution of this form is known to 
us. Moreover, evaluation of moments of f  {(f)t\Yt), involving (5.10), would be numerically intractable. 
Therefore, we seek an approximation of ((/)f). We take advantage of the fact that it is computationally 
simple to evaluate the normalizing coefficient of the A f W  distribution Ca /'w  (  ) using LD decomposi­
tions (Section 3.2.1.1). Hence, we evaluate (5.10) at the extrema of its support:

C(0) =  CaTw (T7,f ) ,  (5.13)

C (l) =  (5.14)

Using these, we will now approximate (5.10) by interpolation between  ̂(0) and (  (1).

Proposition 5.1 (Approximate Normalization of the Forgetting Operator) Let us choose the approx­
imation o f (5.10) in the following form:

{(pt) =  exp {hi +  h2<f)t), (5.15)

where h\ and h2 are unknown constants. Matching (5.15) at extrema (5.13), and (5.14) we obtain:

hi =  in , (5.16)

/i2 =  In Cvw (Vt_i,i^t_i) -  In Ca^w . (5.17)

Under this proposition, and using priors (5.8), (5.9), the joint log-distribution (5.5) is then approximated
by

\n f { e t , ( p t , d t \ Y t - i , x t )  w \nJ\f +  (f>tAfyVA,n{Vt-i,i't-i) +

+  (1 -  4>t)MWA,Q { V t - l , V t - i )  + h i +  h2(t>u (5.18)
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where h\ and h2 are given by (5.16) and (5.17) respectively. Note that the choice (5.15) ensures that 

(5.18) is linear in (j)t.

Corollary 5.1 (Corollary 3 of Theorem 2.1, Variational Extreme for time-variant forgetting) Using 

(5.4) and (5.18) in Theorem 2.1, the VB-optimal form o f  (5.4) is found via the following assignments:

f(9 t \Y t)  =

f{<Pt\Yt) w t £ x p { b , [ 0 , l ] ) ,

(5.19)

(5.20)

with VB-statistics:

Vt

b

+ VtVt ~  ^ ’

+  1 +  — </>< j  I ',

(ut-1 -  V) i ^ l  -  i p t r  {{Vaa-,t-l -  Vaa)  KTa;t) 

- I n  CA^w(Vi_i,i/t_i) -M n CaAW

(5.21)

(5.22)

Qt -Ip, Ai (5.23)

The required moments o f  the o f  the matrix Normal distribution (5.19), A t, fit, In (Qt), and the first 
moment o f  the truncated Exponential distribution (5.20), (pt, are given in Appendix A. I, and Appendix 
A. 1 respectively.

Proof: (5.19), and the VB-statistics (5.21) and (5.22), follow from (5.6), using conjugacy of
Normal distribution with Normal-Wishart, and closure of M W  distributions under geometric mean. 

(5.20) follows from (5.7) evaluating the expected value in there, using (5.8), and (5.9)

-  -Ee,  ( tr  ((V t_i -  V )  i - I p , A t ] ' n t  [ -Ip,  At])) , 

(l/t-i -  V) In \nt\ -  ^ptT ((Vaa.t-l -  Vaa) V ^ j)

I p
2 ^ ‘

t r  I (V(_i — y) —Ip, At  r2( —Ip,A- (5.24)

We have used elementary properties of the trace operator, and property (A.2) of the Matrix Normal 
distribution were used. Moments A t, Q* are given by (A.13), and (A .14) respectively. Truncation of the 

VB-posterior of 4>t to interval [0,1] follows from prior restriction (5.2). ■
The Variational Extreme (5.19), (5.20) can be found by iterating the implicit set of functions (5.21)- 

(5.23) to convergence via the VEM algorithm (Algorithm 2.2).

Remark 5.1 (Numerical Simplification) In this case, it is difficult to find a numerical simplification 
o f  the VEM algorithm. The Restricted VB (Corollary 2.1) can be used. However, we cannot use the 

Quasi-Bayes principle (Remark 2.4), because exact marginal distributions are not tractable. Hence,
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5.3. Time-variant Forgetting for the MEAR model

instead we use a threshold for the number o f  iterations o f  the VEM  algorithm. This was proposed in 
[35], as on-line VB for models with time-invariant parameters, where the number o f  iterations can be 
restricted to one. In our case, i.e. model with non-stationary parameters, one iteration per time step 
is equivalent to standard forgetting with an initial guess for the forgetting factor. In order to achive an 
improvement, we fix the number o f  steps at each VEM  iteration to two.

Remark 5.2 (MAP solution via EM algorithm) The classical E M  algorithm for M A P  estimation is 

similar to the Variational approximation, as described in Section 2.2.4. Specifically, the M-step involves 
maximization o f (5.5) with respect to (j)t. Note, however, that under Proposition 5.1, (5.5) is linear in 
4>t, ^nd so the maximum is reached at one o f  the boundaries, i.e. 0 or 1. Thus M A P  estimation via EM  
algorithm is possible only under a different approximation than that o f  Proposition 5.1.

5.3. Time-variant Forgetting for the l\/IEAR model

Identification of the MEAR model with non-stationary parameters was discussed in Section 4.6.3, using 
time-invariant forgetting factors, and (pz>i- Note that the posterior distribution of the AR parame­
ters of the MEAR model, A  and Q (4.24), is in A fW  form which was studied in the previous Section.
Hence, these results can be used for inference of an unknown forgetting factor for the MEAR 
model as follows:

/  (<pMw,tiyt) ~  t£ x p  (bj^w , [0 ,1]), (5.25)

where b_\/-w is given by (5.23).
A time-variant forgetting factor of the Dirichlet distribution (4.25), (f>vi,t, can be derived in a similar 

manner to the one for 4>j\rŵ t- Once again, the normalizing constant of the forgetting operator for the 
Dirichlet distribution is not tractable. Hence, we invoke an approximation of the type in Proposition 
5.1:

Cvi {(t>Vi,t) ~  exp {hi + (t>vi,th2 ) , (5.26)

where

hi =  In Cto (^ )  ,

/i2 =  In (-Di — In Cvi ( ^ )  •

It is easy to verify that Theorem 2.1, applied to (4.23) extended by (5.26), yields the following approx­
imate posterior:

f  i<l>Vi,t\yt) «  [0 ,1]), (5.27)

bm = -  In Cvi + In Cvi (^)
^  C C

~9 X ] ^Tt\Yt (Intjj) .
j= l i=l
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The posterior distributions of the MEAR model paraineters, A , Q, T , It, I t - i ,  are identical to (4.24)- 
(4.27) with VB-statistics (4.53)-(4.55), but with fixed values, (pj^w and 4>Di, replaced now by expected 
values, 4>j\/-w-t and from (5.25) and (5.27) respectively. This result is intuitively appealing.

It is necessary to mention that the Bayesian interpretation of forgetting [79] invokes a mixture-type 
model. The first component is the posterior distribution at time t — and the second component is the 

alternative distribution (3.39). Hence, the forgetting factor 4>t plays the same role as label It. These 
differ in two respects:

•  is a continuous variable on support [0,1], while k  is a discrete random variable with c possible 
states { e i , . . . ,  Cc}.

•  each component of the MEAR model is an EAR model (3.29), which must be strictly data driven 
(that being achieved via the requirement of a non-zero Jacobian of (3.26) in Section 3.2.2). There 
is no such condition on the alternative distribution in forgetting (3.39). Typically, alternative 
distributions are chosen as non-committal priors, i.e. fixed and flat Vt.

Remark 5.3 Note that the update o f  the VB-statistics, Vt (4.28), for the M EAR model havs the follow­

ing form:

Vt = V  -\- wi-^ty\,t +  ■.. +  Wc;tVc,t +  <Pt (Vt-1 — y )  ■ (5.28)

We have introduced the notation Vi t̂ =  yi,ty 'it- ^ o te  that the statistic at time t is, therefore, a weighted 
Unear combination o f  statistics from different sources: (i) expert knowledge, V , (ii) c transformations 

o f the data source, Wi-tVi.t, and (Hi) accumulated statistics from the past data, V t~\. The same is 
composition can also be shown for the remaining statistics, 4>f, i/ f  This structure is common in al­

gorithms for on-line identification o f  non-stationary models, however, all the weights are typically as­

sumed to be known. In this Section, we have assumed that all weights involved in the update (5.28), 

i.e. wi-ty • • •) 'Wc\t and (pt, are unknown. The resulting algorithm, balances, in effect, the contributions 
being made by past data, current data, and expert knowledge. It achieves this on-line.

From (5.28), we note that, in effect, the alternative distribution is balanced with respect to components 
in the MEAR model. Therefore, choice of the alternative distribution must be considered as a part of 

the filter-bank design.

5.4. Inference of an AR process with Switching Parameters

This experiment is designed to verify the ability of time-variant forgetting to detect sudden changes in 
parameters (changepoints) and to adjust the forgetting factor accordingly. A univariate second-order 

stable AR model (i.e. Xt =  [ d t - i ,d t - 2]') with parameters w =  1, and

[L8, —0.98] if m od {t, 30) =  m od {t, 60)
A  = i

-0.29, —0.98] if m od {t, 30) ^  m od {t, 60)

where mod {t, x )  denotes the modulo function, i.e. remainder after division. The model was identified 
via VB-posteriors (5.19) and (5.20) using the VEM algorithm (Algorithm 2.2) to complete the asso-
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ciated VB-statistics (5 .2 1 )-(5 .2 3 ). In our simulation, w e have chosen the alternative statistics to be

F  =  d iag  ( [1 ,0 .0 0 1 ,0 .0 0 1 ]')  , F  =  10, (5.29)

corresponding to the prior estim ates A q =  [0,0], v a r ( a i)  =  v a r (a 2 ) =  1000, wq =  0.1. The prior

distribution is chosen equal to the alternative distribution. The initial value o f  the forgetting factor was

=  0.7. The full VEM  algorithm was stopped when | <  0 .001. The restricted VEM

algorithm was stopped after two steps. The results o f  identification are displayed in Figure 5.1.

N ote that the method— to within one time-step— correctly detects a change o f  parameters and esti­

mates the forgetting factor as low  as (pt =  0 .05 (at t  =  33), which achieves alm ost instant replacement 

o f  statistics Vt, v t by alternative (prior) values V ,V . Thus, identification process is restarted. Note that 

number o f  iterations o f  the VEM  algorithm is significantly higher at the changepoint. Therefore, at 

these points, the expected value o f  forgetting factor, (pt, obtained using the restricted VEM  algorithm  

(Remark 5.1), remains too high compared to the converged value o f  the full VEM  algorithm (Figure 

5.1). For comparison, the results o f  identification with stationary forgetting, 4>t =  0 .9 , are displayed in 

Figure 5.1. The best parameter tracking is achieved using the VB posterior distributions evaluated via 

VEM  iterated to convergence. Identification o f  the process using restricted VEM  is acceptable i f  the 

parameter variations are not too rapid.

5.5. Inference of a Stationary AR Process using Time Variant 
Forgetting

The forgetting technique can be used even for on-line identification o f  stationary processes. In on­

line scenario, the early estim ates are heavily dependent on the chosen prior distribution, /  (0), which  

can negatively influence the convergence o f  the identification algorithm. Therefore, various discount 

schedules  have been proposed to overcom e this problem [35].

We now compare the performance o f  our method with the discount schedule proposed in o f  [35], 

w hich can be seen as a heuristic choice o f  forgetting factor in the form

4>t =  l -  ^  . (5.30)
r?i ( t - 2 )  +  t]2

where r?i, and t]2 are a p r io r i  chosen constants. N ote that (?!)( ^  1 as t  —> oo. The aim o f  this schedule 

is to discount the influence o f  the (possibly wrong) prior statistics at the beginning o f  identification. As 

the posterior becom es data-dominant, the forgetting factor approaches unity, resulting in standard AR  

identification. The rate o f  forgetting is, however, chosen by the designer via rji and 772- In our approach, 

this rate is inferred from data.

A  univariate second-order, stable, AR m odel (i.e. x t  =  [d t_ i, d t - 2 ]) w ith parameters yl — [1 .8 ,—0.98]', u; 

1, was simulated. The results o f  parameter identification using VB posterior distributions (Corollary 5.1) 

are displayed in Figure 5.2. For com parison, identification using the discount factor (5 .30) was also un­

dertaken (Figure 5.2), via standard AR identification with forgetting (Section  3 .2 .3), for the choise o f  

non-stationary forgetting factor (5.30) with 771 =  772 =  1.
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Figure 5.1.: Results of identification of a non-stationary process using time-variant forgetting. In sub­
figures (i)-(iii), full lines denote simulated values of parameters, dashed lines der.ote pos­
terior expected values, and dotted lines denote uncertainty bounds.
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Note that for t < 15, the expected value of the unknown forgetting factor, 4>t, is very close to the 
discount factor. However, as i —» oo the (f>t does not converge to one but a smaller invariant value (in this 
simulation, «  0.92 for i >  20). This is a consequence of the stationary alternative distribution, /  (■). 
Note that for stationary forgetting, (j)t = <p (Section 3.2.3), parameters of the alternative distribution, V  
and V, are always present in Vt_i, Vt-i (3.43), (3.44). Hence, limj_»oo <t>t is determined by the chosen 
alternative /  {V,V). The alternative statistics were chosen as (5.29).

We believe that, in many practical applications, it is easier to choose a reasonable prior from expert 
knowledge, than to tune the discount schedule, via parameters rji and t]2 - The latter must be done 
experimentally, which may be time-consuming.

Note that number of iterations of the VEM algorithm is rather low (Figure 5.2). Hence, the truncation 
of VEM cycles (Remark 5.1) yields almost identical results to the full VB scheme, which achieves 
convergence at each time-step. The results of the latter were not, therefore, shown in this experiment.

5.6. Discussion

The technique of forgetting is used in many estimation methods for non-stationary processes [58, 105], 
with the forgetting factor considered to be time-invariant and known. Attempts to relax the assump­
tion of a priori known forgetting factor were made, especially for the Recursive Least Square (RLS) 
algorithms [58]. The method presented in [102] is the closest to our approach. It is a gradient-based 
estimation of the forgetting factor for the RLS algorithm. We note the following differences:

• The RLS algorithm is based on the assumption of a Normal distribution of parameters. The 
Bayesian interpretation of forgetting (Section 3.2.3) can be applied to any class of posterior dis­
tributions that is closed under the geometric mean (3.39). This was demonstrated in Section 5.3, 
where we applied variable forgetting to the identification of the non-stationary parameters of the 
Markov model.

•  In our approach, we minimize the KL distance from the approximating to the true posterior dis­
tribution at each time t. This allows for rapid changes (i.e. switching) of the model parameters. 
The criterion of asymptotic mean square error minimized in [102] addresses slower variations of 
parameters.

• The posterior inference of the forgetting factor (5.20) is sensitive to the chosen alternative pdf of 
the parameters, via V  and V in (5.23). They play a similar role to the tuning parameters (a  and fi) 
in [102]. The alternative distribution can be chosen using the available expert knowledge of the 
problem, via formal prior elicitation procedures [106]. The tuning parameters of [102] must be 
adjusted experimentally.

We have noted that the optimal posterior distribution of the forgetting factor is not tractable and it 
must be approximated to achieve a numerically efficient identification algorithm (Proposition 5.1). The 
choice of approximation, of course, influences the quality of results of the inference algorithm. TTie 
proposed approximation is simple and it may be inappropriate for certain tasks. Other approximations 
might be investigated in such cases, to improve performance.
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Chapter 6. 

Bayesian Treatment of Principal Component 
Analysis

In this Chapter, we study the Bayesian inference of parameters of the Probabilistic PCA (PPCA) model 
(Section 3.3). An approximate inference of the model, using the VB approximation, was reviewed 
in Section 3.3.3. The parameters of the posterior distribution are evaluated via the VEM algorithm 

(Algorithm 2.2), which is computationally intensive in the high-dimensional contents where PCA is 
typically applied. In this Chapter, we new VB identification algorithms, which are significantly faster. 

Recall, that the PPCA model (3.50) is

/  {D\A,  X ,  u , r ) = N  { AX' ,  ® h )  .

Hence, throughout the Chapter, we assume the identity covariance matrix of the additive noise. Results 
achieved in this Chapter can also be used even for colored. Normal distributed noise of known covari­
ance matrix. In this case, the results are valid for a matrix of pre-processed D  (3.88). Identification for 
the Factor Analysis model— i.e. the PPCA model with unknown covariance— will be adressed in the 
next Chapter.

The model is first studied at the lowest possible dimension, i.e. scalar variables, to gain insight 
into the problem. Detailed analysis of this toy problem  leads to (i) faster evaluation of the posteriors 
for PPCA, and (ii) interest in the orthogonal parameterization of the PPCA model. The orthogonal 
PPCA model is then proposed and its Bayesian inference is developed. Performance of both methods is 
compared on simulated data. Application of the resulting algorithms to real data is deferred to Chapter 
7.

6.1. Toy Problem: Scalar Decompositions

In this Section, we reduce the model (3.50) to the simplest case. Reducing (3.50) to minimal dimensions, 

i.e. p  =  n =  r  =  1, we obtain a scalar model:

d — ax + e. (6.1)

Model (6.1) is clearly over-parameterized, with three unknown parameters (a, x , e) for one measure­
ment, d. It expresses any additive/multiplicative decomposition of a real number. Separation of the
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‘signal’ , ax, from the ‘noise’ , e, is not possible without further information, i.e. the model (6.1) must 

be regularized. Towards this end, let us assume that noise e is distributed as A f  (0, (Tg). Then,

f  {d\a,x,ae) =  M  {ax ,ae ) , (6.2)

where ag is assumed to be known.

The likelihood function for this model for d =  1, ag =  1 is displayed in the upper row o f Figure

6.1, in surface plot (left) and contour plot (right) froms. The maximum o f the likelihood is reached 

anywhere in the manifold defined by the signal estimate

dx =  d. (6.3)

This illustrates the rotational ambiguity problem (3.53) o f Section 3.3. Further regularization is clearly 

required.

6.1.1. Bayesian Formulation

It can also be appreciated from Figure 6.1 (upper-left), that volume under the likelihood function is

infinite. This means that /  (a, x|cJ, <7e) a  /  (d|a, x,ag) f  (a, x)  is improper (unnormalizeble) when the

parameter prior /  (a, x)  is itself improper (uniform in 3? )̂. Prior-based regularization is clearly required 

to achive a proper posterior distribution via Bayes’ rule. Under the assignment,

f { a \a a )  =  A f {0 ,aa ) ,  (6.4)

f { x \ ( Tx )  =  A/'(0,CTx), (6.5)

the posterior distribution is;

. (  1 (ax -  d)^ 1
/(a,x|d,(Te,(Ta,CTa;) a  exp  -------------------------------- . (6.6)

y  J  C Jq  Z 2  d x  J

(6.6) is displayed in the lower row o f Figure 6.1, for cxa == 10, ax =  20, d =  1, ae =  L  The model

is now regularized, with the consequence that the posterior (6.6) is normalizable (proper) with point

maximizers (M AP estimates) as follows:

1. For d >  , then

X =  ± ( d . f ^ - — Y ,  (6.7)
\  V  ^ a j

1

a =  ± [ d . f ^  - - Y  . (6.8)

Note that product o f maxima is
n /r =  d  —

\ /
ax =  d  ;= = ■  (6.9)
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Probability surface Contour plot

unregularized

- 5- 5
X

regularized 
(via prior)

O

- 5̂ 5
X

Figure 6.1.: Illustration of scaling ambiguity in the toy problem. Upper row: the likelihood function 
/  {d\a, X, cTe) for d =  1 (dash-dotted line denotes manifold of maxima). Lower row: pos­
terior pdf /  (a, x\d, (Ta, (T i, CTe) for d — I, with priors ag = 1, Ua =  10, ax =  20. Cross 
marks denote maxima.

From (6.9), the signal estimate has been shifted towards the coordinate origin compared to (6.3). 
For the choice, aa and (j^ <C the prior strongly influences the posterior and is therefore 

informative. For the choice, a a ^  (y& and ^  the prior has negligible influence on the 
posterior and can be considered as non-commital.

2. For d <

Clearly, the quantity d =  constitutes an important inferential breakpoint. For d > d, a non-zero
signal is inferred, for d < d, the observation is considered to be purely noise.

6.1.2. Full Bayesian Solution

The posterior distribution (6.6) is normalizable, but the normalizing constant cannot be expressed in 
closed form. Integration of (6.6) over x G SR yields the following marginal distribution for a:

/ ( a | d , o - e , ( j a , c r x )  DC ^ e x p  ) [vr^o-a - I -1)]  , (6 .10 )
2 V 2 cTa {a^ax 1) '  ^
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Figure 6.2,: Analytical marginals (of distribution from Figure 6.1). Ce = 1, a a  = 10, a x  ~  20, and

whose intergral over a is not available in closed form. Structural symmetry with respect to a and x  in 
(6.1) implies hat the marginal inference for x  has the same form as (6.10).

The maximum of the marginal (6.10) is reached for

The same symbol, a, is used to denote the (distinct) joint (6.8) and marginal (6.11) MAP estimates. No 
confusion will be encountered. Both cases of (6.11), respectively, are demonstrated in Figure 6.2, for 
d = I (left) and d = 2 (right).The curves were normalized by numerical integration.

The only operation on the marginal posterior that can be evaluated analytically, is the maximum 
(6.11). Most importantly, analytical normalization of the marginal posteriors is not available, and so 
the moments of the posterior must be evaluated using numerical methods. Recall, that purpose of 
this analysis is to understand the Bayesian inference of the multivariate PPCA model (3.50). The full 
Bayesian solution presented in this section can, indeed, be extended into multivariate case [50]. The 
multivariate posterior distributions suffer the same difficulties as those of the toy problem: normaliza­
tion of the marginal posteriors and their moments must be evaluated using numerical methods, such as 
MCMC (Section 2.2.6) [64]. Hence, we now seek an approximation of the posterior distribution using 
a Variational Bayes approximation.

6.1.3. Variational Bayes (VB) Approximation

Corollary 6.1 (Corollary 4 of Theorem 2.1) Consider the following conditionally independent factor­
ization o f (6.6):

d = 1 (left), d = 2 (right).

a = <
0

± CTgCTx—  2 g e  +  -\/<7aCTj; (g „ C T x  + 4 d ^ ) 

2<Tx (6 . 11)

f  x\d, (Jg,  ( J a ,  (Jx) — /  {o,\d, <7g, ( J q ,  (7x} f  <̂ x) • (6 . 12)
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6.1. Toy Problem: Scalar Decompositions

Then, using (6.12) and (6.6) in Theorem 2.1, the VB-optimal form o f  (6.12) via found in the following 
assignments:

f  { x \ d , a e , ( T a , a x )  =  

f  { a\d ,ae , (Ta, (Tx)  =  M { a , ( t ) a ) ,

with VB-statistics

X — d(T Q

a =  (icTg 4>â i

(Px =  (<T'^ (0 a +  o S )  +

</’a =  (0-7^ (</>x +  2 ^ )

(6.13)

(6.14)

(6.15)

(6.16)

The VB-statistics—a, x, 4>a, </>x—can be found in closed-form from (6.13)-(6.16). There are three 
possible cases:

1. zero-signal inference:

X

a

<px

4̂ a

0 ,

0 ,

(Te

CTe

(6.17)

4(TaCri 
1 +  — ^  -  1

4cTa<7a;1 -h — ^  -  1

2. and 3. non-zero signal inference:

X =  ±

a  =  i

[ ( f  -  (Te) y /C J a U x  ~  d a ,

(d <7qJ yj

4>x =  ^  / % g n ( d 2 - a e ) ,
d V (7a

4̂ a ~
cr,-sg n  [d^ -  (Te) .

(6.18)

(6.19)

d y (7x

Here, sgn (•) returns the sign of the argument.

From (6.19) we note, that extreme 2. and 3. is meaningful only for d > y / ^ .  However, (6.18) collapses 
to i  =  0 (i.e. to the zero-signal inference) for

J  1 +  \ / o 7 i ^ 7 + ^ O a ^  ,----- , CTe
d  —  ---------------- ;------------------  i / ( T e  -I-

2 (Tâ x̂ 2-y/
(6.20)
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5

o 0

5

e 0

- 5-5  0 5 - 5-5  0 5

X  X

Figure 6.3.: Comparison of Laplace and Variational Bayes approximations (for distributions in Figure 
6.1). Ce =  1, cTa — 10, Gx =  20, d =  2. Left: (Laplace approximation): full line 
ellipse corresponds to 2-standard-deviation boundary of the joint Normal approximation; 
dashed line corresponds to product of Laplace marginal approximations (for comparison 
with VB). Right: (Closed-form solution of the VB approximation): VB approximation for 
the zero-signal (6.17) and non-zero-signal modes (6.18) are shown.

Hence, (6.20) denotes the VB-based breakpoint. For d > d, a non-zero signal is inferred (case 2. and 
3.), for d < d, the observation is considered to be purely noise.

These solutions are illustrated in Figure 6.3 (right). This result illustrates a key consequence of the 
VB approximation, namely, absence of any cross-correlation between variables, in direct consequence 
of the conditional independece assumption. For comparison, the result of a Laplace approximation (Sec­
tion 2.2.2) is displayed in Figure 6.3 (left). The Laplace approximation does model cross-correlation 
between variables.

The availability of a closed-form VB solution is rare. Therefore, we have the opportunity to study 
properties of the standard VEM algorithm in this case. Trajectory of the VEM iterations for mean values 
of VB-posteriors (6.17), (6.17), are shown in Figure 6.4, for d =  2 (left) and d = I (right). These two 
cases demonstrate the two distinct modes of solution of equations (6.13)-(6.16). Though there are no 
limiting conditions for the mode in origin, iterative algorithm typically converge to the positive (or 
negative) solution for d > ae- This suggest that for d > ae the zero-signal solution is a local extreme 
of the KL distance.

These results, along with Colorary 6.1, suggest the following:

• The prior distribution is indispensable; as it regularizes the model, and necessary for yielding 
finite VB statistics. With uniform priors, i.e. aa oo and ax oo, none of the derived 
solutions is valid.

• From (6.18), the ratio of the posterior expected values a /x  is fixed by the priors.

• The inferential breakpoint, d—i.e. value of d above which a non-zero signal is inferred—depends 
on the product of aacrx (6.20).
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- 1

- 2
- 2 - 1 0 21

2.5

0.5

0 1 2 3

X X

Figure 6.4.: VB approximations of the toy problem parameter distributions, using the VEM algorithm.
Dashed line denote initial VB-posterior; full line denotes converged VB-posterior; trajec­
tory of the VB means is also illustrated,cTe — 1, aa =  10, ax =  10. Left: (non-zero-signal 
mode) d = 2. Right: (zero-signal-mode) d = \.

Remark 6.1 (Alternative priors) The choice o f priors in VPCA (3.65), (3.66) corresponds to the fol­
lowing choise o f priors for the toy problem:

=  1, f{<ya\a,P) = g { a , P ) ,

where ax is fixed, but aa is considered as unknown (i.e. random variable o f Q distribution with known 
hyper-parameters a , (3) to be estimated jointly with other parameters. Using this prior structure for the 
toy problem, closed-form VB-statististics can also be found. In fact, the closed form VB-statistics can 
be found for many different choises. For example:

1. symmetric priors

f  { ( ^ a \ a ,  0 )  =  f  { a x \ a ,  0 )  =  Q  (a , /3 ) ,

2. fixed ax, and a  a conditioned by precision uj,

(Tx =  1, /  ((Ta|w, a , l 3 )  =  Q  (q , 0 u )  .

This suggests, that an analytical solution may be achieved for a wider choice o f  multivariate priors. 
This may be significant for the development o f numerically efficient algorithms for o f extended PPCA 
models.

6.1.4. Non-Degenerate Parameterization for the Toy Problem

The inference problems encountered in previous Sections are consequence of degenerate parameteriza­
tion of the mean value: m =  ax.  In the multivariate case, this parameterization was used to model the 
rank restriction in M(r), r  < min (n,p). In this scalar case, n  = p  = r = I. Hence, the multiplicative
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decomposition is not necessary, and we can work witii a purely additive model:

d =  m  +  e. (6 .21)

Once again, we assume that, e is Normally distributed: /  (e) =  N'  expressed via the precision

parameter, ui, for consistency with Section 3.2. Identification o f m  under the assumption o f known uj 

constitutes the trivial identification task o f inferring the mean value of a Normal distribution with known 

variance [17]. The problem is well-posed, and no regularizing prior is needed.

We, therefore, analyze the more complicated problem, where u  is unknown. Then, the observation 

model (6.21) is a Normal distribution conditioned on an unknown mean value and precision. As such, it 

is a special case o f the regression model (Section 3.1), for which a conjugate prior is available (Section

In this case, the analytical form o f the posterior (6.25) is o f the M W  (•) form (3.13), which is regular 

and for which moments are available in Appendix A .2. Recall, from (6.10), that this was not possible for 

the degenerate PPCA decomposition. Hence, for comparison, we now proceed with VB approximation 

of (6.25).

Consider the following conditional independent factorization o f (6.25):

Using (6.26) with (6.25) in Theorem 2.1, the VB-optimal form o f (6.26) is found via the following  

assignments:

3.2)

/  (m , u)  =  A/'W (Vb, uo) . (6 .22)

We choose the prior statistics o f (6.22) to be Vq =  diag ([ei,£2]0> =  £3 . where scalars £ =
[ s \ , £2 ,£' i \  can be chosen small to yield a flat— i.e. non-committal— pdf. The posterior distribution 

is then

/  {m, uj \d , e )  =  ATW (Fq +  [d, 1]' [d, 1], î o +  l )  . (6.23)

From (6.21), and (6.22), the joint distribution is:

f { d , m , u ) \ £ )  =  exp (6.24)

The posterior distribution is found using Bayes’ rule;

f { m , u j \ d , £ )  =
f { d , m , u j \ £ )

f { d \ £ )
(6.25)

f  {m,uj \d)  =  f  {m\d)  f  (Lj\d). (6.26)

(6.27)

(6.28)
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0.5

Figure 6.5.: Illustration of the VB-posterior, (6.27)-(6.28), for the scalar additive decomposition 
(dashed contour). Full contour lines denote the exact A/’W  posterior distribution (6.25).

For this simple case, f  {m,oj\d,s) = Afm {•) Gu; {■) can be compared to the exact posterior (6.23).
Graphical comparison for d =  1 is displayed in Figure 6.5.

We note the following:

• the prior distribution (6.22) can be chosen such that, £2 — ^3 = 0, without loss of tractability. 
This choice corresponds to a uniform (improper) prior on parameter m. Hence, in contrast to the 
PPCA model (6.1), the prior on the mean value has no regularizing role.

•  the hyperparameter, ei, above has a regularizing effect. It is a hyper-parameter of the prior on 
the precision parameter u. Note that we are inferring lj from a single observation only, hence the 
data does not contain any information about uncertainty and the inference must be regularized.

6.1.5. The Lessons Learnt

In this Section, we have studied scalar decomposition in an attempt to understand the nature of the
VPCA approximation for the PPCA model (Section 3.3.3). We have noticed the following, which
generates to the full multivariate context:

1. if the variance of the noise is known, the VB-statistics can be found in closed-form. This elimi­
nates the need to evaluate VB-statistics via an iterative VEM algorithm;

2. inference of the model, d — m  + e, where the mean is not degenerativly poarameterized is 
predictably much simpler. Moreover, the correct posterior distributions of m  and u) exhibits less 
correlation than is the case of a and x. Therefore, the conditional independece assumption of the 
VB approximation is less intrusive in the former case. More formal analysis related to this issue 
can be found in [84].

We will next explore these insights for the multivariate PPCA model (3.50).

89



6 . BAYESIAN TREATMENT OF PRINCIPAL COMPONENT ANALYSIS

6.2. Fast Variational PCA (FVPCA)

In this Section, we study the VB-posterior for the PPCA problem reviewed in Section 3.3.3. Notably, 
we exploit the fact that VB-statistics for the associated toy problem (Section 6.1) can be found in 

closed form. The solution reviewed in Section 3.3.3 uses the VEM algorithm which can be inefficient, 
especially when poor initial conditions are chosen. Hence, we begin with consideration of initial values 

for the VEM algorithm. Here, we use two simple ideas:

•  the closer the initial value of the VB-statistics are to the optimal values, the faster the VEM 
algorithm will converge,

•  the MAP estimate of a parameter is typically not too far from its expected value. This is supported 
by the fact that the approximate posterior distributions (3.72)-(3.73) are of Normal-type for which 

the mean and the maximum are identical.

Recall, that the maximum of the PPCA model (3.50) was reached for an orthogonal solution (3.51). 
Hence, we expect that solution of (3.76) will be very close to (3.55).

Proposition 6.1 (Orthogonal solution of VPCA) Consider a special case o f  distributions o f  random 

variables A  and X ,  with restricted first and second moments. The first moments, A  (3.76) and X  
(3.78), are formed from scaled singular vectors o f  the data matrix, D  (3.52),

A  =  Ur-oKA,  (6.29)

X  =  V r .o K x ,  (6.30)

where K a  =  diag (fc^) G and K x  =  diag { k x )  €  denote matrix constants o f  proportion­

ality. The second moments (3.77), (3.79) are restricted to have a diagonal form:

T,a  =  diag (<7 4 ) ,  (6.31)

T,x =  diag(<T;s:). (6.32)

Then, evaluation o f  the VB-statistics (3.76)-(3.83), via the VEM  algorithm initialized with values in 

the form o f  (6.29)-(6.32), yields results also in the form o f  (6.29)-(6.32).

Proof: By induction: (i) the VEM algorithm is initialized in the form (6.29)-(6.32); (ii) substitut­

ing (6.29)-(6.32) into (3.76)-(3.83) yields results in the form of (6.29)-(6.32). ■
Note that, under Proposition 6 .1, the distribution of A  and X  are determined by the constants of propor­

tionality, kA  and k x ,  and variances, cta and crx, respectively. The iterative algorithm is then greatly 
simplified, since we need only iterate on the 4 r degrees of freedom constituting fe^, k x ,  cta, and a x  
together, and not on A , X ,  E ^ , E x  vvith r { p - \ - n  + 2r) degrees of freedom. Note that (3.76)-(3.83) 

now involve products of diagonal matrices. Hence, we need only evaluate diagonal elements, using 

identities of the kind

K a K x  =  diag (fc^ o k x ) ,
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where o denotes Hadam ard product. Equations (3 .76)-(3.83) can now be re-form ulated in efficient 

diagonal form. Intuitively, the equation for the mean value h a  (3.76) is replaced by an equation for 

its diagonal k A ,  the equation for the covariance matrix, (3.77), is replaced by an equation for its 

diagonal a  a , etc.

kA = o k x  O a  A,

CTA = {Qnax +  wfex o k x  +  ,

k x = u)ax o kA°lr-,D,

o-x — {[jpcrA + l^kAO kA + ll,r)~^ ,
Oli p

=  Q!0 +  2 > i =  I, ■ ■ ■ ,n ,

= ^0 + 5 + ^Xi) > * = !>■■. , , n ,

-  +

p =  p 0 +  2 { '̂d ^D -  i^A °  kx) + {kA o kx) '  {kA o kx)) ,

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

+ ^ 2   ̂ {pcr'^ { k x  o k x )  +  p t k t 'ao -x  +  na-'x {kA  o k A ) )  . (6.40)

Hence, equations (6 .33)-(6.40) can be used as replacem ent for (3 .76)-(3.83).

Note that elem ents o f  vectors <t and k  correspond in such a way that the zth elem ent o f one vector 

depends only on the zth elem ents o f  the remaining vectors, e.g.

=  O l o , i k x , i ( y  A, i -

The only equation that makes them  mutually dependent is (6.40), i.e. the expected value, cD, of u). If Q 

is known, the com plexity o f the problem is now reduced to the com plexity o f the toy problem (Section 

6.1), which is analytically tractable.

Proposition 6.2 Let the posterior expected value Q o f  u> be known. Then, equations (6.29)-(6.36) have 
an analytical solution with two modes: 

the first one for Id  i < v^l — /3q2,

kA ,i =  0, (6.41)

k x , i  =  0 (6.42)

1 2n +  -  (n -  p) I3o0 -  J (n -  p)  ̂+  APonpto
=  t; -------------------------------/ /  n , (6.43)

2 n  (1 — Po<̂ )

o-A-,i =  - — (6. 44)

[n {c rx , i  -  1) +p) crx,iU}
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and the second one for I >

kA,i = z2, (6.46)

[01% ■ -  p ) kA,i
kx,i = -----7-------------^7  (6.47)

Id +  1 j

j +  1
(6.48)

^ \p^D,i -  P)

-  p )
o-Xj =  ---- ^ 7 ---------^  (6.49)

Q l o , i  i + 1J

(ao +  5p) ( O k \   ̂ ((1 -  u (3q) (n -  p) +  l o , i )  +  n +  ^
Pi = ------------ -̂--- '-^zrri------ N----- T ^2------------------------------ (6-50)u>k% i { p - n ) - n  +  uljj .

where the expression denoted as z2 for k^,i is too long and can be found in Appendix B.

Proof: evaluated using the symbolic software package, Maple. See Appendix B for detailed
analysis. ■

Conjecture 6.1 (Soft orthogonality constraints) Prior distributions on A and X , i.e. (3.65) and (3.66), 
were chosen with diagonal covariance matrices. This choice favours such matrices A  and X  whose 
product A 'A  and X 'X  is a diagonal matrix. Hence, the Variational Extreme (Corollary 3.1) converges 
to posterior distributions with orthogonal mean value, even i f  the VEM algorithm was initialized with 
non-orthogonal matrices.

Note that, using Proposition 6.2, the VEM algorithm can be greatly simplified. Substituting (6.41)- 
(6.45) into (6.33)-(6.38), the VB-statistics are determined up to the expected value of the precision 
(6.40). The VB-statistics can be evaluated via a simplified VEM algorithm with one degree of freedom, 
as follows:

Algorithm 6.1 (Fast VPCA)

1. SVD o f the data matrix (3.52)

2. Choose initial value ofu) as' Q = h-,D

3. Evaluate the breakpint point:
y/P+Vn

UJ

4. Split Id intol^^^ =  ^^D,i < andl^^^ =  ^lo,i >  In fact, the number o f elements in 
determines the ARD property, and thus ru-

5. Evaluate solutions o f mode 1, (6.41)-(6.45), forl^^ \ and o f mode 2, (6.46)-(6.50), forl^‘̂ \

'This choice w ill be explained in Section 6.4.
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6. Update estimate using (6.39) and (6.40).

1. I f  difference ofQ^^^ — >  threshold, go to 3.

Comparison with the standard model will be studied in Section 6.4.

6.3. Orthogonal Variational PCA (OVPCA)

In Section 3.3, we have shown that the ML estimation of parameters A  and X  of the PPCA model 

suffers from rotational ambiguity (Remark 3.6). It is a consequence of inappropriate modelling of low- 
rank matrix M(^), which is clearly over-parameterized. This is a complication in the Bayesian treatment, 
where the inference of A  and X  must be regularized via priors, as noted in Section 6.1.1.

However, from an analytical point-of-view, the model contains redundant parameters. For example, 
under the VB approximation, the posterior expected value of the mean,

{ ^ { r ) )  =  ^ A , X  { A X )  =  C /r ;Z ? d ia g  {kr-A o  K-,x)  y^-D^

is found in the SVD form, but the singular values are found as element-wise product of two vectors, 
and k x -  Element-wise ratio of these two vectors is governed by the chosen priors. In this Section, we 
re-parameterize the model in a more compact way.

6.3.1. O rthogonal Param eterization of the PPCA IVIodel

A standard tool for dealing with reduced-rank matrices is the ‘economic’ Singular Value Decomposition 
(SVD) [73]:

M(r) =  A L X ' .  (6.51)

Since the rank r  of the matrix M(^) is known^, we can restrict matrices, A  and X ,  to and 
respectively, with orthogonality restrictions A ' A  = Ir, X ' X  =  Ir- Also L  =  diag (Z) G is a 
diagonal matrix of non-zero singular values, I = [ l i , , Ir]', ordered, without loss of generality, as

k  > I2 > . . .  > Ir > 0- (6.52)

The decomposition (6.51) is unique, up to the sign of the r  singular vectors, (i.e. there are 2'' possible 
decompositions (6.51) satisfying the stated constraints, all equal to within a sign ambiguity).

Model (3.1), extended by (3.49), (6.51), yields:

/  {D\A, L, X ,  u j , r ) = N  { A L X \  u~^Ip  ® /„ )  . (6.53)

To our knowledge, this model [107] has not been considered before in the literature. The maximum 
likelihood estimates of the model parameters, conditioned by known r , are given by

( i , L , X , w )  == arg ma^  f  (D\A,  L,  X , u , r ) ,
\  /  A,L,X,uj

^At present w e suppose it is known. This will be relaxed later.
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with assignments

^  A pjl
A  =  Ur-D, L =  Lr,T-D, X  =  Vr-D, ^  ~  ' (6.54)

2 - /z = r + l  D, i

Here, Ur-o  ̂ and Vr-o are the first r  columns of the matrices Ud , and Vd  of the SVD decomposition of 
the data matrix D  (3.52) respectively, and Lr,r;D is the r  x r  upper-left sub-block of matrix L q .

6.3.2. Bayesian Formulation

The confinement, in the orthogonal model, ambiguity to only a sign-based ambiguity is an advantage 

gained at the expense of orthogonal restrictions which are generally difficult to handle. Specifically, 
parameters A  and X  are restricted to having orthonormal columns, i.e. A'A  =  Ir and X ' X  =  Ir 
respectively. Intuitively, each column a i , i  =  1 . . .  r , of A belongs to the unit hyperball in p  dimensions, 
i.e. ai G Tip. Hence, A  €  Tip, the Cartesian product of r  p-dimensional unit hyperballs. However, the 
requirement of orthogonality— i.e. a 'a ,  =  0, \fi ^  j —confines the space further. The orthonormally

constrained subset, Sp r̂ C Tip is known as the Stiefel manifold [108]. Space Sp r̂ has finite area, which
will be denoted as r  (p, r):

T( p , r )  =  —^ , ---- ;---------------------------------- ) (6.55)

where F (•) is the Gamma function [71]. Both the prior and posterior distributions have a support 

confined to Sp̂ r-
We choose the priors on A  and X  to be the least informative, i.e. uniform on Sp̂ r and Sn,r respec­

tively:

f { A )  =  r  (p ,r ) “ ^x(>5p,r), (6.56)

f ( X )  =  T{ n, r ) - ^x{ Sn, r ) .  (6.57)

There is no upper bound on cj >  0 (3.49). An appropriate prior is therefore (the improper) Jeffreys’ 
prior on scale parameters [18]:

/  (w) oc (jj .̂ (6.58)

Suppose that the sum of squares of elements of D  is fixed, e.g.;

tr  {DD' )  =  1. (6.59)
i = p j = n

This can easily be achieved in a pre-processing step. (6.59) can be expressed, using (3.52), as:

p

t r  { DD' )  =  t r  [Ud L d L d U'd ) =  Y .  =  1-
i = l
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6.3. Orthogonal Variational PCA (OVPCA)

This implies an upper bound on I:
r  p

=  (6.60)
1=1 i= l

This, together with (6.52), confines I to the space

C r =  U h  >  h  >  . ■. >  Ir >  0, (6.61)
i = l  )

which is a section o f a unit hyperball. Constraint (6.60) forms a fu ll hyperball 'Hr, w ith volume

h', =  7 r V r ( ^  +  l ) .  (6.62)

Positivity constraints restrict the allowed volume to hrf2'^,  and hyperplanes {Z, == I j ,  Vi, j  =  1 . . .  r }  

partition the positive section o f the hyperball into r! sections with equal volume, only one o f which 

satisfies condition (6.52). Hence, the volume o f the support (6.61) is

1 Tri
h ’p

' 2^ { r \ )  r(§ +  l ) 2 ’- ( r ! ) '

Therefore, we choose the prior distribution on I to be non-committal— i.e. uniform— on support (6.61):

f i l ) = U { C r ) = y ^ ; \ ( C r ) .  (6.63)

Multiplying (6.53) by (6.56), (6.57), (6.58) and (6.63), and using the chain rule o f probability, we

obtain the jo in t distribution:

f { D , A , L , X , L j \ r )  =  A f { A L X ,  X

(/?“ ^ r ( p , r ) ~ ^ r ( n , r ) ~ \  (6.64)

on support { A  G Sp^r} x  { i  G Cr ]  x  { X  G X { w  >  0 } .

The posterior distribution is then obtained using Bayes’ rule:

f { A , L , X M D , r )  =  (6.65)

Exact posterior inference from (6.64) is not available.

6.3.3. Variational Bayes (VB) Approximation

Corollary 6.2 (C oro lla ry 5 o f Theorem 2.1) Consider the fo llow ing conditionally-independent fac­

torization o f (6.65):

f ( A , L , X M D , r )  =  f { A \ D , r ) f i X \ D , r ) f { L \ D , r ) f { u j \ D , r )  (6.66)
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6. BAYESIAN TREATMENT OF PRINCIPAL COMPONENT ANALYSIS

Using (6.64) and (6.66) in Theorem 2.1, the VB-optimal form o f (6.66) is found via the following 
assignments:

f ( A \ D , r )  = M ( F a ),  (6.67)

f ( X l D , r )  = M ( F x ) ,  (6.68)

f ( H D , r )  = tJ \ f  {fii, s' Îr', C r )  , (6.69)

f {oj \D, r)  = Q{'d,p).  (6.70)

Here, M  (■) denotes the von Mises-Fisher distribution (i.e. normal distribution restricted on the Stiefel 
manifold [108]). Their matrix parameters are Fa  G in (6.67), and F x  S in (6.68). tK  
is the truncated Normal distribution with truncation points given by the lower and upper bounds o f  the 
prior (6.85).

The VB-statistics o f (6.67)-(6.70) are:

Fa  =  S D X L ,  (6.71)

F x  = Q D 'AL, (6.72)

HI = d iag -i ( X 'D 'I )  , (6.73)

(6.74)

^  =  y ,  (6.75)

p = I t r  (^DD' -  2 DX L A ' ^  + (6.76)

These, in turn, are defined in terms o f moments o f distributions (6.67)-(6.70), namely A, X , I, VI and 
cD. These are expressed via the SVD o f parameters Fa  (6.71) and F x  (6.72):

Fa = (6.77)

F x  = Uf^ L f^V ^^ , (6.78)

with L fx L fj  ̂ both in Then,

^  =  Uf^G {p ,L fJ V I ,^ ,  (6.79)

X  = UFxG{n , LFx) V^^ ,  (6.80)

I =  îi + s i p { p n , s ) , (6.81)

I'lr — rs^ + f i ' i l  — SK  [ f i i ,  s ) , (6.82)
d

Q = - .  (6.83)
P

Moments o f M. (•) and tM  {•)— from which (6.79)-(6.82) are derived—are reviewed in Appendices 
A.5 and A.4 respectively. Functions G (•, •), ip (•, •), and k (•, ■) are also defined there.

Proof: Can be handled in the same way as proofs for the previous VB-related Corollaries. It is an
easy but lengthy exercise in probability calculus. ■
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6.3. Orthogonal Variational PCA (OVPCA)

Remark 6.2 (Approxim ate support for L) The correct distribution for I is

f { l \ D , r )  =  t ^ { f i i , s ^ I r - X r ) ,  (6.84)

i.e. a Normal distribution truncated on support, Cr (6.61). However, the m oments o f  distribution (6.84) 

are difficult to evaluate, as Cr forms a non-trivial section o f  the multivariate support. Therefore we 

approximate the support Cr by  its envelope Cr ~  Cr. Note that (6.60) is m axim ized i f l i  — I2 =  ■. ■ — 

Ir, Ir+i =  lr+ 2  =  ■ ■ ■ =  Ip =  0. In this case li =  rlr <  I, which defines an upper bound, Ir <  Ir 

to beJr  =  r “ 2 . Hence, (6.61) has a rectangular envelope:

Cr =  ^l\0  <  k  < l r  ~  , i =  1 . . .  r I . (6.85)

(6.84) is then approximated by (6.69). Note that Cr is a rectangular area. Hence, (6.69) can be written 

as the product o f  univariate truncated Normal distributions, mom ents o f  which are known (Appendix 

A.4). The error o f  approximation is largest at the boundaries, li =  I j ,  i ^  j ,  i , j  E { 1 . . .  r } , and is 

negligible when no two l i ’s are equal.

Once again, the general solution o f the VEM algorithm (Algorithm 2.2) can be used. However, closer 

analysis o f equations (6.71)-(6 .83) reveals that the evaluation for our model can be simplified, as fol­

lows.

Proposition 6.3 (O rthogonal Variational PCA (OVPCA)) We search for a solution o f  A  (6.79) and

X  (6.80) in the space o f  scaled singular vectors o f  matrix D  (3.52):

A  =  [/r;D ^A , (6.86)

X  =  V r;D ^x- (6.87)

Ud  and Vp lure given by (3.52). K a  =  diag(fc^) €  and K x  =  d ia g (fcx ) S denote 

constants o f  proportionality which must be determined. Then, each iteration using equations (6 .71)- 

(6.83) will not leave this space: i.e. (6.86) and (6.87) are true at each iteration step.

Proof: Consider the ith iteration step, t =  1 , 2 , . . . ,  where superscript denotes the optimized 

parameter values in this step. Assume that estimates, at the end o f the previous step^,

are o f the form (6.86), (6.87); i.e.

=  Ur;DK^A~^\ =  Vr-,oK^x~^\ (6.88)

Hence, von Mises-Fisher parameters Fa and F x  are updated, at iteration t, via (6.71) and (6.72) re­

spectively:

p W  ^  {UDLDVly)Vr.,DK^^-^^L^^-^'> =Q^^-^^Ur.,DLr,r;DK^X~'^L^'~"\ (6.89)

=  U ^*-^^U D L D V ij)'U r-D K ^A ~'^L t'^  = Q ^ ^ -^ W r,D L r ,r ;D K ^ r'^ Z t^ \  (6.90)

^Initial conditions, i.e. at i  =  0, w ill be  specified shortly.
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6. BAYESIAN TREATMENT OF PRINCIPAL COMPONENT ANALYSIS

using (3.52). These are in the SVD form of Fa  (6.77), and F x  (6.78) respectively, with assignments:

Uf^ = Ur;D, L g  V F ^ = I r ,  (6.91)

Ufx = Vr;D, Vf^  = Ir- (6.92)

Substituting (6.91) and (6.92) into (6.80) and (6.79) respectively:

IW  =  Ur.,DG(^p,Q^^-^^Lr,r-DK^x^^^Ll*-^^)lr = Ur- ,DKf ,  (6.93)

since function G  (■, ■), with diagonal matrix argument, returns also a diagonal matrix (Appendix A.5.2).
Therefore, new estimates remain of the same type (6.86), (6.87) with assignments:

k P  =  (6.94)

. (6.95)

■
Note that, under Proposition 6.3, the optimal values of A  and X  are determined up to the constants 
of proportionality, and k x -  The iterative algorithm is then greatly simplified, since we need only 
iterate on the 2 r degrees of freedom constituting K a and K x  together, and not on A  and X  with 
r (p + n  — degrees of freedom. To achieve this, we must, however, satisfy the requirement of 
Proposition 6.3, namely we must initialize the iterative scheme to satisfy (6.86) and (6.87), using any 
diagonal matrices K a  and K x ,  with positive elements on their diagonals. In fact, for Kj^^ =  Kj^^ = 
Ir, (6.86) and (6.87) are the ML solutions (6.54), and so an ML-initialized iteration is proposed, leading 
finally to the Orthogonal Variational PCA (OVPCA) algorithm.

Note that:

•  initialization via the ML solution guarantees fast convergence to the unique solution, since (6.64) 
is likelihood-dominated by design.

•  (6.71)-(6.83) now involve products of diagonal matrices. Equations (6.73)-(6.76), (6.94), and 

(6.95) can now be reformulated in efficient diagonal form.

The final OVPCA algorithm is as follows.

Algorithm 6.2 (OVPCA)

1. Initialize estimates using M L solution (6.54): i.e. =  1 ,̂1, =  lr-,D,  =
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6.3. Orthogonal Variational PCA (OVPCA)

2. Evaluate until convergence is reached:

=  G ° k^X (6.96)

=  G ° k̂ A (6.97)

=  k ^ x ~ ^ ' ^  °  l r ; D  o (6.98)

sW (6.99)

f i t ) (6.100)

=  +  r  l i , . , (6.101)

(6.102)

Remark 6.3 (Automatic Rank Determination (ARD) Property of the OVPCA algorithm) It is ob­
served that estimates o f kA,i and kx,i typically converge to zero for i >  r„, for some empirical upper 
bound Tu- A  similar property was used as a rank selection criterion for the OVPCA algorithm (Remark 
3.8). There, the model order was chosen a s f  = ru [7].

Remark 6.4 Equations (6.96)-(6.98) are satisfied for

kA = k x  = fJ.1 = Or,i, (6.103)

independently o f  data, i.e. independently o f Ip. The only parameter to be determined is ui. Solution 
(6.103) is appropriate for data formed only by realizations o f homogeneous Gaussian noise without any 
signal, i.e. r  =  0. This case will then be revealed by the ARD Property (Remark 6.3), i.e. r„ will be 
equal to zero. I f  the ARD Property yields a different estimate, i.e. >  1, then solution (6.103) is a 
local maximum (or saddle point) and the true minimum o f the KL distance has to be found by evaluation 
o f (2.28) for both cases.

With respect to the original PCA (3.57) (Section 3.3), proposition 6.3 reveals an interesting analytical 
insight:

• Collinearity (6.86), (6.87) of the posterior mean with the respective ML estimate (i.e. PCA) 
means that uncertainty bounds on A  are, in fact, uncertainty bounds on principal components 
Ur;Dy (see Appendix A.5.3).

•  We noted 2'" cases of SVD decomposition (6.51), distinct in terms of the signs of the singular 
vectors. Note, however, that Proposition 6.3 separates posterior mean values A  (6.86) and X  
(6.87) into orthogonal and proportional parts. Only the latter (k^  and k x )  are estimated using 
the OVPCA algorithm (Algorithm 6.2). Since the function G(-,-)  is confined to the interval 
[0,1] (see Appendix A.5.2, Figure C.l), estimated values of and k x  are always positive. In 
other words, the VB solution is unimodal, as though approximating only one of the possible 2’’ 
modes. Due to symmetry of all modes, the solution is valid for all of them. This is important, as
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the all-mode distribution of A  is symmetric around the coordinate origin, which would consign 
the posterior mean to 4̂ == Op,r- Note that this symmetry is also reflected in the VB equations 
(6.96)-(6.102) (Remark 6.4).

•  As a consequence of the ARD Property (Remark 6.3), the number of possible modes of the 
approximate posterior distribution is reduced to 2''“ .

6.3.4. Inference of Rank

In the foregoing, we assumed that the rank, r, of the model (6.51) was known a priori. I f  this is not the 
case, then inference of this parameter can be made using Bayes’ rule:

/ ( r |D )  o c / ( j D | r ) / ( r ) , (6.104)

where /  (r) denotes the prior on r, typically uniform on 1 < r  < p. The marginal data posterior 
/  (D\r)  can be approximated by a lower bound (Remark 2.3)

l n / ( D | r )  «  l n f { D \ r ) ~ K L ( ^ f { e \ D , r ) \ \ f { e \ D , r ) )

=  J ^ f { e \ D )  ( \ n f { D , e \ r ) - \ n  ( / (0 |Z ? , r ) ) )  d9. (6.105)

The parameters are 0 =  { A , L , X , u } ,  and f { D , 9 )  is given by (6.64). The optimal approximation, 
/  {0\D, r), is the conditionally independent model, obtained via the VB framework (6.67)-(6.73):

/  (A, L , X , u \ D )  =  f  (A\D, r)  f  {L\D,  r)  f  {X\D,  r )  f  {u\D, r ) . (6.106)

Substituting (6.67)-(6.73) into (6.106), and (6.64) into (6.105), then (6.104) yields:

f  ( r \D)  a  exp I  —^ Ih tt +  r ln 2  +  InF  +  In (r!) (6.107)

+  In oF i ( ^ ^ P ,^ F a F ' ^  -U J  ( k x  oT o  kA ^  ir;D 

+  ln o-Fi Q n ,  - L j ( k x ° ^ ° k A ^  Ir-D

+  ^ l n  erf ^^s\/2^ +  erf ^ ^ s \ /2 j  pj-i

+ r  In -  (i9 +  1) In ,

where kx ,  I, s and u  are the converged solutions of the OVPCA algorithm (Algorithm 6.2), and
Fa and Fx  are functions o f these via (6.89) and (6.90) respectively. Ij is the upper bound on support C
(6.85) o f i .
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6.3. Orthogonal Variational PCA (OVPCA)

We note the following:

•  One o f the main algorithmic advantages o f PCA is that a single evaluation o f all p  eigenvectors, 

i.e. U  (3.54), provides with ease the PCA solution for any rank r  < p ,  via the simple extraction of 

the first r  columns, Ur-,D (3.52), o f Ud - The OVPCA algorithm also enjoys this property, thanks 

to the linear dependence o f solution (6.86) on Ud  (3.57). Furthermore, Vb observes the same 

property. Therefore, in the OVPCA procedure, the optimal solution for given rank is obtained by 

simple extraction o f Ur-,D and K-jd, followed by iterations involving only scaling coefficients, 

and k x -  Hence, p x  {p +  n)  values (those of Ud  and Vd ) are determined rank-independently via 

the M L  solution, and only 4r  +  2 values (those o f k x ,  (J'l, I, s and Q together) are involved 

in the rank-dependent iterations (6.96)-(6.102).

•  As a consequence o f the Automatic Rank Determination (ARD) property, Remark 6.3, values o f 

all parameters, A , L , X , u ,  inferred by the OVPCA algorithm, are almost identical for r  >  r „ .  

Therefore, it is reasonable to evaluate the OVPCA parameters for r  =  p — 1 (we cannot use r  — p 

because uip is not valid (6.54)), and approximate Ar  ~  A p - i ,  V r >  (and similarly for L, X  

and uj). This approximation can significantly reduce the number o f runs o f the OVPCA algorithm 

required for evaluation o f /  ( r |D )  (6.107).

•  The explicit posterior distribution on r, i.e. (6.107), was not provided by previously published 

approaches [4, 7]. In its place, the ARD property o f their algorithms was used to infer rank. 

Since the OVPCA algorithm also possesses the ARD property (Remark 6.3), it w ill be used 

for comparison with the formal Bayesian solution (6.107) in the simulation studies that follow 

(Section 6.4).

6.3.5. Moments of the Model Parameters

The Bayesian solution provides an approximate posterior distribution o f all involved parameters (6.67)- 

(6.70), and (6.107). Moments and uncertainty bounds are then inferable from these distributions.

The first moments o f all involved parameters have already been presented, (6.80)-(6.81) and (6.83), 

since they are required by the OVPCA algorithm (Algorithm 6.2). The second non-central moment o f 

I— i.e. I ' l— was also produced by the algorithm. Parameter u  is Gamma distributed (6.70), and so its 

confidence intervals are therefore available.

The difficult task is to determine uncertainty bounds on orthogonal parameters, A  and X ,  which are 

von Mises-Fisher distributed (6.67), (6.68). To our knowledge, confidence intervals on this distribution 

are not published. Therefore, we develop approximate uncertainty bounds in Appendix A.5.3, using a 

maximum entropy (i.e. Gaussian-based) approach. The pdf o f X  G is fu lly  determined by the 

r-dimensional vector p x -

y x  ( X )  =  d ia g - i {U'jt̂ X V f^ )  =  d iag-^ ( K 'd ^ )  • (6.108)

Therefore, confidence intervals on X  can be mapped to confidence intervals on y x  by (6.108), as shown 

in Appendix A.5.2. The idea is illustrated graphically fo rp  =  2 and r  =  1 in Figure 6.6.
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  space of X  (thickness is proportional to pdf value)
direction of pdf maximum, and also axis of y  

X maximum of pdf 
O mean value

example of projection JVq —» Vb
  confidence interval on f{y)

• ► projection of uncertainty bounds y X_

Figure 6.6.: Illustration of properties of von-Mises-Fisher distribution X  

Hence, lower and upper uncertainty bounds on X  can be defined as follows:

using (6.108) and y,  y  given in Appendix A.5.3, being bounds to the approximating Gaussian distri­
bution of y x  (A.42). In other words, uncertainty bounds (6.109) on X  are those values of X  that are 
projected onto the boundary of the confidence interval for yx-  

Since A  has the same distribution, A  and A, are analogous.

6.4. Simulation Studies

In this section, we study properties of the algorithms described above in the context of simulated data. 
Artificial data were generated using model (3.2) fo rp  =  10, n =  100, and r  =  3. Simulated data are 
displayed in Figure 6.7. Three noise variances were considered: (i) u> =  100, denoted as SIMl (ii) 
a; =  25, (SIM2) and (iii) uj = 10, (SIM3).

6.4.1. VPCA vs. FVPCA

In Section 6.2, we have presented numerically efficient algorithm (FVPCA, Algorithm 6.1) for evalua­
tion of VB-statistics (3.72)-(3.75) for Variational PCA (Corollary 3.1). A significant simplification of 
the algorithm was achieved by confining the space of possible solution to an orthogonal subspace, as 
formalized by Proposition 6.1. It is assumed that the chosen priors confine the space in such a way that 
the solution is found within this orthogonal subspace (Conjecture 6.1). The purpose of this experiment 
is to verify the validity of this Conjecture by simulation.

If Conjecture 6.1 is true, then the posterior moments, f ix  (3.78) and JIa  (3.76), converge to orthogonal 
(but not orthonormal) matrices for each possible initialization. A Monte Carlo study of 100 runs of the 
original VPCA algorithm (Section 3.3.3) was performed with random initial conditions. During the 
iterations, we tested orthogonality of the expected values of matrix X ,  via the assignment

(6.109)

(6. 110)X =. {X: y x { X ) = y x } ,

o { l̂x) =  ||mxVx|1 ,
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Staujaled values: a\

0.5

Simulated values:

0.5

Simulated,

0.5

Simulated values: x\

0.5

- 1 100

Simulated values: X2
0.5

- 1 100
Simulated values: xs

- 2

- 4, 10040

Example of data realization

Figure 6.7.: Simulated data used for testing of PCA-based inference method.
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1.0085 1.009 1.0095 

o (â x )

0 0.5 1 1.5 2 2.5 3 3.5 4

num ber o f iterations
xlO^

Figure 6.8.: Monte Carlo study (100 trials) to illustrate convergence of the VPCA algorithm to an or­
thogonal solution. Left: initial values of o{fj,x) (6.111). Middle: converged values of 
o (fix)- Right: number of iterations required for convergence.

Table 6.1.: Comparison of converged values of obtained from VPCA and FVPCA algorithms.
VPCA, median FVPCA

kA,i 9.989 9.985
kA,7 9.956 9.960
kA,3 8.385 8.386

where ||yl|| =  [|aj,j|] denotes absolute value of a matrix applied element-wise. A criterion of
diagonality is then

/  ^ ln,l^ Ira.l
o (m x ) =  ■ - j r —- 1777/—  i ;  idiag {O (mx))

i.e. the ratio of the sum of all elements of O (fix) over the sum of its diagonal elements. Obviously, 
o (^x ) =  1 for a diagonal matrix, and o {nx) > 1 for a non-diagonal matrix, fix- We stopped the VEM 
algorithm for o{fix) < 1-01, i.e. when the absolute value of non-diagonal elements was less than one 
percent of the diagonal elements.

In all simulated cases, this level was reached, though it took many iteration steps. Results are dis­
played in Figure 6.8: histograms of the orthogonality criterion (6.111) for initial values of matrix jlx 
(left), and for its converged value (middle). The histogram of the number of iterations required to reach 
the stopping rule is displayed in Figure 6.8 (right). The middle picture seems to be redundant, since 
level o (fix) < 1-01 was used as the stopping rule. This criterion is, however, important for comparison 
with the original proposal (threshold on moments of u>). The Variational Extreme is reached with high 
accuracy, even for non-orthogonal solutions (i.e. o {nx)  above the chosen threshold). However, further 
iterations clearly push the solution towards the orthogonal one. This illustrates the flatness of the pos­
terior distribution (see illustration for the toy problem Figure 6.2) and how expensive it is to iterate on 
the full space.

For comparison, values of from VPCA"  ̂ and FVPCA for the SIM 1 data set are listed in Table 
6.1. Clearly, values of obtained by VPCA and FVPCA converge to the same values. Tables of the 
remaining values {kx,  (t a , crx) are not shown for conciseness.

■’Values o f VPCA are sorted here, since the method produces elements o f in random order.
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24 T ■ "r I ----------------1----------------------------- 1----------------------------

23.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  -

<3 23
0 expected value w, FVPCA
= 22.5 - 0  expected value w, OVPCA -
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initial value

Figure 6.9.: Posterior estimates, Q, for the data set SIM2 with respect to different initial values

Thus, we have demonstrated that the VPCA algorithm converges to the same values as FVPCA. 
Hence, in subsequent studies, we will consider FVPCA as a replacement for VPCA.

6.4.2. Initial conditions

Note that both algorithms, FVPCA and OVPCA, have to be initialized by expected value of w, i.e.
In this Section, we study sensitivity of both algorithms to this choice. From asymptotic properties of 
PCA (Remark 3.7), we have a reasonable guess of the interval in which to search for Q:

nv ^ n
^  < D < - 5 — . (6.112)

lp.Q

We have tested initialization of both algorithms using values from the interval (6.112).
The posterior results for the data sets, SIMl and SIM3, converged to the same value for all initial 

conditions in interval (6.112). However, for the data set SIM2, the results of both algorithm differ, as is 
displayed in Figure 6.9. Note that values of FVPCA are robust with respect to chosen initial conditions, 
but OVPCA results have two different modes: (i) the first two values (almost identical with FVPCA), 
and (ii) the majority of the interval, (very close to the simulated value). These two modes correspond 
to different values of the ARD property. FVPCA estimates r„ =  2, while OVPCA results are r„ =  3 or 
Tu — 2 for different initializations (6.9).

The basic idea of the VB approximation is minimization of the KL distance (Section 2.2.4). Hence, 
the value of the KL distance (2.25) for each mode can be used to choose the global minimum. In this 
case, the highest value of KL distance typically corresponds to the mode with highest precision (i.e. 
with the lowest variance). Hence, we choose to initialize the VEM algorithm with the upper bound

=  (6.113)
p;D
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eigenvalues X

SIMl

SIM2

SIM3
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Figure 6.10.: Ad hoc methods for rank estimation for simulated data with different variance of noise.
The methods of visual examination (Remark 3.7) is used for graphs of eigenvalues A =  
eig {DD') and cumulative variance (i.e. cumulative sum of eigenvalues A).

6.4.3. Comparison of Methods for Inference of Rank

In this Section, we study the rank estimation properties of FVPCA and OVPCA. Note that results of 
both methods depend only on singular values Zo of the data matrix D.

The true dimensionality of the simulated data is r  =  3. Many heuristic methods for choice of the 
number of relevant principal components are used in practice [80]. These methods are valuable, since 
they provide an intuitive insight into the problem. For example, the eigenvalues A (3.57) of the simulated 
data, and the criterion of cumulative variation (i.e. cumulative sum of eigevalues) are displayed in Figure 
6 . 10.

Note that the first two eigenvectors are dominant (first column), while the third one is relatively small 
(it contains only 1% of total variation, see Figure 6.10 (right)). In the first row, i.e. case SIM l, the third 
eigenvalue is clearly distinct from the remaining ones. In the second case (SIM2), the difference is not 
very obvious, and it is completely lost in the third row (SIM3). A subjective ad hoc choice of dimen­
sionality using visual inspection (Remark 3.7) and the method of cumulative variance is summarized in 
Table 6.2.

Next, we analyze the same data using formal methods. Results of FVPCA, OVPCA and Laplace 
approximation (Remark 3.9) are compared in Table 6.3.
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Table 6.2.: Rank selection for the simulated data using ad hoc methods.
SIMl SIM2 SIM3

visual inspection 3 2-3 2
cumulative variance 2-3 2 2

Table 6.3.: Comparison of formal rank selection methods for simulated data.
FVPCA OVPCA Laplace

ARD / ( r |Z ) ) , r  = f { r \ D) , r  =
2 3 4 5 2 3 4 5

SlMl 3 3 0 98.2 1.7 0.1 0 82 13 2
S1M2 2 3 96 3.5 0.2 0 70 25 3 0.5
SIM3 2 2 97 3.9 0.1 0 94 5 0.5 0.0
values of /  {r\D) not shown in the table are very c ose to zero <  0.001

Note that for high signal-to-noise ratio, all methods estimated the true dimensionality correctly. In 
this case, data were simulated according to the model. We therefore regard the results of all methods to 
be correct. The differences between posterior probabilities caused by different approximations are, in 
this case, insignificant. The differences will, however, become important for real data.

6.4.4. Comparison of Moments

A direct comparison of parameter moments for both methods is not possible. Therefore, we seek such 
a transformation of model parameters into a common, low dimensional, space in which it is possible 
to compare FVPCA and OVPCA. Note that the signal, M(^) (3.48), is (for both methods) a product 
of parameters, posterior distributions of which are all conditionally independent. Hence, the expected 
values (under different parameterization) of M(^) is:

^FVPCA{M^r)) =  AX' =  Ur,DKAKxV;.u,

^OVPCA i ^ { r ) )  =  A L X '  =  Ur-oKAdi&g {fJ-i) K x V ^ . p .

Where K a of the FVPCA method (6.29) is different from K a of the OVPCA method (6.88). However, 
no confusion can arise, since these quantities are always used independently in their own context, i.e. all 
results related to FVPCA were evaluated using (6.29). Note that, for both methods, the expected values 
of M(r) are determined by singular vectors Ur-,D and This motivates us to intoduce a transformed 
variable:

M^r) = K. DM^ r ) Vr , DeW^^ .  (6.114)

Using, linearity of expectations of the Matrix Normal distribution ((A.3) Appendix A .l) and invariance 
of von-Mises-Fisher distribution under orthogonal transformation (Appendix A.5), the expected values 
of M(r), under both methods, are:

^ f v p c a {M{t^  =  K a K x , (6.115)

^o v p c a { M ( t^  =  K A d i a . g { n i )  K x -
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All elements on the right-hand side above are all diagonal matrices. Therefore, we can com pare perfor­

m ance of FVPCA and OVPCA using m om ents of

=  d iag“  ̂ (-^ (r)) =  diag'^  •

We evaluate it separately for both methods.

FVPCA: The zth elem ent of

(6.116)

where Ui-o^ Vi-D^ denotes the zth vector o f m atrices Ud , Vd , A  and X ,  respectively. The

first moment, i.e. expected values o f (6.116), is then

(6.117)

using (6.29). The second equality in (6.117) follows from  orthogonality o f singular vectors 

UiUj =  0, i ^  j .  The second non-central m om ent is:

^ f{A\D) f ' {X\D)

Kd I Y1 I
J=1

Y 1  [x' jVi .D
kJ=l

(6.118)

(6.119)

— ^  ^ f ( A \D )  ^ f ( x \ D )
J=1

J=1

[ai -A  +  ^ I a ) {cTi-xIn  +  k l x )  +  ^  crj;^CTj;X,
3= 1,i ^ i

(6 . 120)

The result was achieved using properties o f M atrix Norm al distribution (A ppendix A .l)— specifically 

linearity o f expectation (A .3), and second m om ent (A .2)— and orthogonality o f singular vectors 

Ur-D and Vr-,D-
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OVPCA: The ith element of

~  '^ i ; D  i — 1, . . . , I

The first moment, i.e. expected value of (6.121), is then

(6 .121)

î,D I y ] I j )

— i — 1) • • • I (6.122)

using (6.86), (6.87) and (6.81). The second non-central moment can be derived as follows:

'^i\D I (6.123)

=  Ef { A \ D ) f { l \ D ) f { X \ D ) [Koaj]  ̂ >

V  j  =  l

— (6.124)
J=1

here, we note that the second moment of the von-Mises-Fisher distribution is not available and 

we have chosen to approximate it by a Gaussian using maximum entropy principle (Appendix 
A.5.3). Therefore, evaluation of the expected values in (6.124) is equivalent to derivations for the 

FVPCA that follow after (6.119). Hence,

=  l‘'̂ i{<i>i;A + k l A)  i<pi-,xln + k l x )  +  X !  (6.125)

where (f)j-A is a second moment of the von-Mises-Fiseher distribution (6.67), evaluated via (A.40), 

Appendix A.5.3.

The uncertainty bounds on can be— for both methods— evaluated as 2-standard deviation interval,

i.e.

(6.126)
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Table 6.4.: Comparison of inference of the diagonal of the transformed signal M  (6.114), using
FVPCA and OVPCA.

FVPCA OVPCA
row number i simulated tii-M

1 0.825 0.780 0.806 0.833 0.793 0.811 0.829
2 0.492 0.469 0.495 0.521 0.481 0.499 0.517
3 0.038 -0.001 0.000 0.001 0.023 0.035 0.046
4 0.000 -0.001 0.000 0.001 0.000 0.000 0.004
5 0.003 -0.001 0.000 0.001 0.000 0.000 0.004
6 0.002 -0.001 0.000 0.001 0.000 0.000 0.004
7 0.000 -0.001 0.000 0.001 0.000 0.000 0.004
8 0.002 -0.001 0.000 0.001 0.000 0.000 0.004
9 0.002 -0.001 0.000 0.001 0.000 0.000 0.004

where (6.117) and (6.120) are used for FVPCA, and (6.122) and (6.122) are used for OVPCA. The 
results are summarized in Table 6.4. Note that the space fij^—on which we compare the methods—is 
determined by singular vectors {Ur-,D and Vt d̂ ) of the data matrix D  (3.52), which are not orthogonal 
with singular vectors of the simulated signal M^^)- Hence, diagonal of the projected—via (6.114)— 
simulated signal contains non-zero values. These values should also be within uncertainty bounds 
(6.126).

As may be seen of Table 6.4, all projections of simulated values are within HPD regions for OVPCA. 
For FVPCA, the projected values are outside of the HPD regions for i > 2. The value is outside 
because of inaccurate estimation of r„, and those for z > 4 are outside because uncertainty bounds for 
I > r„ are too tight. It is worth noticing that these uncertainty bounds are dependent on hyper-parameter, 
^0 , which was chosen very low in this simulation. OVPCA has no corresponding hyper-parameter, 
which—together with positivity constraints on I—yields more reliable results.

6.5. Discussion

In this Chapter, we have studied the Bayesian approach to Principal Component Analysis. Most of the 
published solutions, e.g. [7, 50] were based on the Probabilistic PCA model [48]. We have studied the 
simplest case of this model in Section 6.1.3, which we called the ‘toy problem’, and we compared the 
approximations available using published methods. The insight gained from this study (Section 6.1.5) 
has been explored in the full multivariate model, yielding two distinct algorithms: (i) fast evaluation of 
the VB-statistics of the VPCA (FVPCA algorithm) (Section 6.2); and (ii) the Variational approximation 
for the orthogonal parameterization (OVPCA) (Section 6.3). Both algorithms provides numerically 
efficient inference of the corresponding model parameters. We note the following differences:

• The orthogonal model (6.51) is a more compact parameterization of the signal M(^), as it does 
not require any regularizing prior distributions to be elicited. On the other hand, for FVPCA, 
the hyper-parameters coming from the priors must be used to regularize the model and find a 
solution.
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• The orthogonal parameterization of the signal, is appropriate only if there are no other 
constraints imposed on the decomposition. For example, orthogonal decomposition of the signal 
under positivity constraints (Section 3.4) is not possible. Therefore, OVPCA can only be used for 
the task of denoising.

• The OVPCA algorithm convergences faster (compared to the corresponding FVPCA algorithm) 
and the stopping rule on increments of parameter estimates (e.g. cD) can be set close to the machine 
precision. Convergence of the FVPCA algorithm is slower and it is sensitive to the choice of the 
stopping rule.

• The most numerically demanding operation in the FVPCA algorithm is evaluation of roots of 
a quadratic function which is an operation well supported by standard software. The OVPCA 
algorithm requires evaluations of hypergeometric functions of multivariate arguments, for which 
a reliable solution is not available, and which must be approximated (as presented in Appendix 
C).

From a practical (user-oriented) point of view, the FVPCA and OVPCA algorithms are almost equiv­
alent. They yield comparable results (see Table 6.4) at comparable computational cost. The OVPCA 
algorithm appears to be more reliable on data with low signal-to-noise ratio (Table 6.4).

Although the orthogonal model (6.51) is a better parameterization—in the sense that it provides 
model-based regularization of the problem—it is complicated to extend it further, e.g. for the noise 
distribution as used in the factor analysis model (3.6). Formulation of the problem is straightforward, 
and so is the application of the Variational Bayes estimation method in this case. However, the resulting 
posterior distributions are of the generalized Bingham type [108], whose moments are not known to us. 
This suggests that efficient numerical evaluation—possible for OVPCA—cannot be achieved for the 
factor analysis model.

The original probabilistic PC A model [48] is based on the full factor analysis model [47], which 
explicitly includes a common non-zero mean value for the data columns, E (dj) =  This was not 
considered as a part of the linear model (3.2) in this thesis. It is easy to introduce a common mean value 
for applications where it is regarded as important, e.g. for mixtures of PC A model [109]. The model 
(3.2) can be readily extended to contain the common mean value, as follows:

M  =  A X  -|- f i l i  ng

with fj, The Variational Bayes (VB) approximation (Theorem 2.1) for this model requires more
algebra, but is straightforward. However, Proposition 6.1 is valid only for fixed estimate Hence, the 
VEM algorithm associated with this model has much higher computational complexity.
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Chapter 7

Bayesian Modelling for Functional Analysis 
of Medical Image Data

In this Chapter, we study the Bayesian inference of parameters of the FAMIS model introduced in 

Section 3.4. The standard parameter inference method for this problem is achieved in three steps in 

order to achieve computational tractability (Section 3.4). One of the steps is PCA, studied in previous 

Chapter. Hence, we now study application of the previous results in this context. The main concern of 
this Chapter is, however, derivation of a unified identification method for the FAMIS model (Section 

3.4.5), using Variational Bayes (VB) method.

7.1. Bayesian Formulation

The FAMIS model (3.91) is, in essence, an extension of the PPCA model (3.50). We seek a Bayesian 

inference of the model parameters A, X,  ujp, u;„. Following the Bayesian methodology, we complement 
the observation model (3.91) by priors on the model parameters.

Prior distributions on the precision matrices were chosen as follows:

V

/  Pp) =  ^  Pi;p) 1 (7-1)
i=l
n

f  Pn) — G Pi\n) i
i=l

with vector hyper-parameters 'dp =  . . . ,  'dp.p], pp =  [pi-p, . . . ,  pp.p], . . . ,  =

[ p i , Pn;n]- These parameters can be chosen to yield a non-committal prior. Alternatively, recall—  

from Section 3.4.2— that pre-processing methods were derived by studying assymptotic properties of 
the noise. Hence, the assymptotic values can be used to elicit priors. These hyper-parameters can be
seen as ‘knobs’ to tune the method to suit clinical practice.

The parameters, A and X,  are modelled in the same way as those in Variational PCA, with the
additional restriction of positivity. Prior distributions (3.65) and (3.66) then become

f { A \ v )  =  W { O p ^ r , I p ^ T - \ { ^ + Y ' ' ' ) ,  (7.2)

f { X )  =  (7.3)

f { v i )  =  G{ao,Po) ,  i  =  (7.4)
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with hyper-parameter T  =  diag {v)  6 designed for inference of rank via the ARD property
(Remark 3.8).

From (3.91), (7.1)-(7.4), the joint distribution is

p
f  { D , A , X , Q p , n n , v )  =  M  {AX,9,p'^ ®0.~^)Y\_G{'di.p,pi-p)

i = \
n

n  G Pi;n) t M  (Op,., /p ® (3?+)'̂ ’’')
i = l

t M  (0,,„, I r  ®  (3?+)’'’") g  ( q o ,  /?o) ■ (7.5)

The posterior distribution is then obtained using Bayes’ rule:

f  ( A V  n, n  ip,\ _  f  { D , A , X , Q p , ^ l n , v )
f  {A, — f  {D) '

Exact Bayesian inference of this model is not tractable.

7.2. Variational Bayes (VB) Approximation

Following the Variational approximation, we can find an approximate posterior inference under the 
assumption of conditional independence. Theorem 2.1.

Corollary 7.1 (Corollary 6 of Theorem 2.1) Consider the following conditional independence factor­
ization o f (7.6):

f  {A, X,  Qp, Qn, v \D)  =  f  [A\D) f  {X\D) f  (Qp|D) /  (Q„1D) /  { v \ D ) . (7.7)

Then, using (7.5) and (7.7) in Theorem 2.1, the VB-optimal form o f (7.7) is found via the following 
assignments:

/(v e c (A ) \D) 

f { v e c { X ) \ D )

(7.8)

(7.9)

f { v \ D ) =  n ^ ( “ » > A ) ,  
2 =  1

(7.10)

f i ^ p \ D )
P

~   ̂(l9j;p, Pi;p) ) 
i = l

(7.11)

I M D )
n

—   ̂ P i;n )  ! (7.12)
i = l
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with VB-statistics

[J'A — J , (7.13)

T,a  — (E;c|£) (g) Q p -1-diag (C) ( g ) , (7.14)

MX =  S ^ v e c  (^A'hpD^n^ , (7.15)

S x  ~  r2pj4^ ® Clji +  / r  ® ) (7.16)

1
ai  = ao + - p ,  z =  l , . . . , r ,

/3 =  (3o + ^diag~'^ {Ea \d  { A ' A ) ) ,
71

Pp — Po,p  ̂ ~  AXC lnD'  — DQ,nX'A'

+ E ^ |ij  (^AEx i d  { x n n x ' )  A ' ) ) , (7.17)

'^n — ^0,n "1" 2 ’

Pn  =  Po,n +  ^ d iag -^  (^D'ClpD — D ' Q p A X  — X ' A 'Q p D

+ E ;f |o  [ x 'Eaid  {a % a )  x ) ) . (7.18)

Posterior distributions o f  A  and X  are not o f the matrix Normal distribution kind (Appendix A .l). 
Therefore, they are written in the form o f the vec (•) operator (Appendix A .l).

Proof: Can be handled in the same way as proofs for the previous VB-related Corollaries. It is an 
easy but lengthy exercise in probability calculus. ■
Evaluation of moments of distributions (7.8) and (7.9) is complicated for two reasons;

1. the VB-statistics involve evaluation of large matrices, e.g. 'La  G

These matrices are block diagonal, hence all the operations involved in evaluation of (7.13)- 
(7.18) can be re-written in terms of blocks of these matrices. This operation is formally trivial but
rather lenghty. Therefore, it will be omitted in this text.

2. moments of the truncated Normal distribution of vector argument are not known to us. Therefore, 

we approximate all involved moments of /  {A\D)  and /  { X \D )  by moments of

7  {A\D) = t M  (^HA, diag (diag"^ (S ^ )) , (3?+)^'"’'^ ,

7{X\D) = iAT (/XX, diag (d iag-

respectively. In effect, we neglect all covariances between elements of A,  and ditto for X .

The Variational Extreme can be found by iterating (7.13)-(7.18) to convergence via the VEM algorithm 
(Algorithm 2.2).
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7.3. Computational Simplifications

In principle, the model (7.5) is an extension of the PPCA model (3.50) for (i) unknown precision matrix 

of the noise, r2p0r2„, and (ii) positivity constraints (7.2), (7.3). These extensions results in a significant 
increase in the computational complexity of the associated VEM algorithm, compared to the VEM 
algorithm associated with VPCA (Section 3.1). The main causes of this are as follows:

1. the structure of covariance matrices of the priors (7.2), (7.3) is different from the covariance struc­
ture of the model (3.91). Therefore, the covariance matrices, (7.14) and (7.16), of the posterior 

pdfs, (7.8) and (7.9), are not in the advantageous Kronecker-product form.

2. positivity restrictions, (7.2) and (7.3), are not satisfied for the orthogonal solution (3.51). There­
fore, a simplification similar to Proposition 6.1 cannot be used. Moreover, no analytical result is 
known to us that can be used to invoke the Restricted VB (Corollary 2.1).

The first problem may be addressed by choice of different priors. The choice of covariance matrix. 

Ip <8> in (7.8), and Ir <S> In  in (7.9), is intuitively appealing. It is a simple choice which imposes the 
same prior on each pixel in the image, and, as a result, it acts as soft orthogonality constraint (Conjecture 
6.1). However, as we have shown in the analysis of the toy problem (Section 6.1), analytical solution 

can be found for other choices of prior (Remark 6.1), as follows.

Proposition 7.1 (Alternative priors) For the following choice o f  priors

f { A \ v , n p )  =  (7.19)

f { X \ n n )  = t J \ f { O r , n , I r ® n - \ { ^ + Y ' ^ ) ,  (7.20)

in place o f  (7.2) and (7.3) the VB approximation (Corollary 7.1) yields the posterior results in the form  
o f (7.8)-(7.12), with VB-statistics (7.14) and (7.16) replaced by

'S a  =  0 rip +  diag (C) (g) , (7.21)

E x  =  0  -f-/r 0  ) (7.22)

respectively. These can be written in Kronecker product form:

S a =  - |-d iag (t} )) 0 ^ p \

S x  =  ( E A \ D { A % A ) + I r y \ n - \

Hence, the posterior distributions, (7.8) and (7.9), are, again, in the form o f  the (truncated) Matrix 

Normal distribution:

f ( A \ D )  = tAf  ® ^ a ' (7.23)

f ( X \ D )  =  (7.24)
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with VB-statistics

tJLA =  D n n X ' ^ - / ,

=  Ex |d +  diag ( t ; ) ,

MX =  ^^A'Q.pD,

=  ^A\D +  Ir-

Note that the priors proposed in Proposition 7.1 are in the following mutually dependent form:

/  (A, X , % )  =  f  (Alflp) /  (X lfl„ ) /  (fip) /  (f^ „ ) ,

which is inconsistent with the assumption of conditional independence of posteriors as enforced by the 
VB approximation (7.7). However, the covariance matrices of the priors (7.19), (7.20) were chosen to 
reflect the structure of the covariance matrices arising from the observation model (as demonstrated by 

operations (7.14), (7.16)). Then, structure of the covariance matrices of the prior (7.19) is similar to that 
of the posterior (7.23), and the posterior is not prior-dominated.

Proposition 7.1 reduces the amount of computation associated with the VEM algorithm. However, 
no further analytical simplification can be made to decrease the number of iterations or number of 

parameters required in iterations (7.13)-(7.18). The main complication is the restriction of the support 
of the posterior Normal distributions (7.23), (7.24) to the set 3?+.

The VB-based identification of the FAMIS model is closely related to Independent Component Anal­
ysis (ICA). Specifically, FAMIS can be seen as a special case of noisy ICA [110]. In fact, our linear 
model D  = A X  + E , (3.1) and (3.2), is identical with that of ICA. In ICA, A  is known as the mixing 

matrix and rows of X  are called sources. Therefore, any method concerning this model may be called 
ICA. This broad meaning attached to ‘ICA’ makes cathegorical comparison rather difficult. However, 
the main keyword of ICA is the word independent. The method is typically defined in relation to the 

classical signal separation methods of Principal Component Analysis (PCA) and Factor Analysis (FA) 

[110]. In PCA and FA, the criteria used for signal separation are based on the sample covariance matrix 
of the signal, i.e. on the second moment of its distribution. In ICA, the criterion for signal separation is 
full statistical independence of sources, which corresponds to the assumption

r

= =  (7.25)
i=l

in our notation. Note that this assumption does not imply any particular functional form of the proba­

bility distribution*. Therefore, inference of parameters has to be adjusted for the chosen pdf. However, 

a template algorithm was developped for maximum-likelihood (ML) estimation [111], for which the 
change of the pdf influences only one operation in the algorithm. Bayesian inference is, however, much 

more complicated, and it is available only for a limited class of prior distributions. The solution for 
Gaussian and truncated Gaussian priors was presented in this thesis (Sections 3.3.3 and 7.2). The solu­
tion for mixtures of Gaussian priors was presented in [33].

‘in fact, for Gausian distribution, the criterion (7 .25) is identical to that o f  PCA.
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From a computational point of view, the ICA method is currently receiving much attention and many 
interesting results has been reported. For example, efficient evaluation of the traditional Maximum 
Likelihood (ML) approach to ICA was achieved using fixed-point approximations [112]. Application 
of these ideas in the context of the Variational Bayes (VB) approach may bring significant computational 
savings.

Reduction of the computational cost for the VEM algorithm can also be achieved using heuristic 

techniques. For example:

• the traditional three-step methods (Section 3.4) can be used as a reasonable initial guess for the 

VEM iterative algorithm.

•  for fixed estimates of the covariance matrices, Clp and evaluation of the remaining parameters 
is somewhat simplified (in analogy to the simplification in Proposition 6.2). It may be useful to 
re-evaluate Qp and f2„ only once for every q steps of the VEM algorithm (e.g. q =  10).

These ad hoc propositions have not been extensively tested and are left for further study.

7.4. Experiments

In this Section, we study performance of the Bayesian inference of the FAMIS model on a sequence 
of scintigraphic images of the chest. In this study, a radiotracer has been administered to the patient to 
highlight the kidneys and bladder. In this context, we perform two experiments: (i) we test application 
of Bayesian PCA in the orthogonal step of the standard approach (Section 3.4.3), and (ii) we test the 
performance of the proposed VB inference of the FAMIS model (Section 3.4.5).

7.4.1. Comparison of Methods for Inference of Rank in Orthogonal Analysis

The advantage of Bayesian PCA over the standard PCA is an explicit estimation of the number of 
relevant principal components (Section 6.3.4). In this study, a scintigraphic dynamic image sequence 
of the kidneys is considered. It contains n =  120 images, each of size 64 x 64. These were analyzed 
using the standard approach, as follows:

Pre-processing:

•  a rectangular area of p  =  525 pixels was chosen as the region of interest at the same location 

in each image.

•  data were scaled by the correspondence analysis method (3.89), which is optimal for scinti­

graphic data [89].

Orthogonal analysis:

Bayesian methods of inference for the PPCA model (Section 6) were tested. The expected mean 
value of both factor images and factor curves are identical with those obtained using standard 

PCA. The methods differ only in the estimated rank of the data.
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Table 7.1.: Comparison of rank selection methods for scintigraphic image data.
OVPCA
f ( r \ D )

OVPCA 
ARD Property

FVPCA 
ARD Property

Laplace
f { r \ D )

P r ( r  =  17|D) =  0.0004 
P r  (r- =  18\D) =  0.2761 
P r  (r =  19\D) =  0.7232 
P r ( r  =  20 D ) =  0.0002

r„  =  45 r„  =  25

P r (r =  47\D) =  0.067 
P r  (r =  48 D ) =  0.622 
P r(r- =  49L>) =  0.195 
P r (r  =  50 L>) =  0.089

Note: where not listed, /  ( r |D ) <  3 x 10 ^

96

*5 95

iS 91

2 4 6 8 10 12 14 16 18 20
number of PCs

Figure 7.1.: Cumulative percentage of total variation for scintigraphic data. For clarity, only the first 20 
elements are shown out of a total of p  =  120.

Oblique ana lys is :  this was not tested.

For these data, we compare methods for selection of relevant principal components. The OVPCA-based 
approximate posterior distribution of rank (6.107) and the ARD properties of both OVPCA (Remark 

6.3) and VPCA (Remark 3.8) infer significantly different optimal rank (Table 7.1). For comparison, 

we also inferred the rank of the data via (i) Laplace approximation [84], and (ii) the ad hoc criterion 
of cumulative percentage of total variation [80] (Figure 7.1). Results are presented in Table 7.1. For 
method (ii), r  =  5 was chosen.

It is difficult to compare performance of the methods since the true dimensionality is not known. From 
a medical point of view, the number of physiological factors should be 4 or 5. This estimate is supported 
by the ad hoc criterion (Figure 7.1). From this perspective, the formal methods appear to over-estimate 
significantly the number of relevant principal components (PCs). The reason for this can be understood 

by reconstructing the data using the number of PCs, r , recommended by each method (Table 7.2). Four 
consecutive frames of the actual scintigraphic data are displayed in the first row. Though the signal-to- 

noise ratio is poor, functional variation is visible in the central part of the left kidney and in the upper 
part of the right kidney, which cannot be accounted for by noise. The same frames of the sequence, 

reconstructed from r  =  5 PCs (Table 7.2, second row), fail to capture this functional information. 
In contrast, the functional information is apparent on the sequence reconstructed using the Bayesian 
estimate— i.e. r  =  19 PCs— and, indeed, on sequences reconstructed using r  >  19 PCs, such as the 
r — 45 choice suggested by the ARD Property of OVPCA (Table 7.2, last row).
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Table 7.2.: Reconstruction of scintigraphic data for different numbers of PCs
number of PCs used frames 48-51 of the dynamic image sequence

Original images (r  =  120)

Ad hoc criterion (r  =  5)

Maximum of f  {r\D) (6.107) 
(r  =  19)

ARD property (r  =  45)

% t % 4 %
1  % 1  \ t % s  %

I! % ^ \ 1  %

<  % f % f %  ̂ I f

7.4.2. V ariational FAIVIIS

The FAMIS model is, in principle, the PPCA model (3.50) extended for unknown precision of noise 
(3.87), and restricted by positivity constraints (3.85). In the previous Section, the results of the PPCA 

model were presented. The precision of the noise was assumed known via the correspondence analysis 

(3.90).
Performance of the VEM algorithm for the FAMIS model (Corollary 7.1) was tested on the same 

data set used in Section 7.4.1, i.e. the scintigraphic study of kidneys of n  =  120 images, each of size 
64 X 64, with selected region of interest of p  =  525 pixels. First, we performed two experiments with 

a priori known precision matrices, fip, corresponding to:

1. homogeneous noise: i.e. Qp =  ojlp, =  In {case 1).

2. correspondence analysis: f ip  =  diag =  diag {case 2).
Note that this is the same pre-processing that was used in the standard analysis (Section 7.4.1).

The results of these experiments are displayed in Figure 7.2 (top-left) and (bottom-left) respectively.
Next, the VEM algorithm for the FAMIS model (Corollary 7.1) was used with non-committal prior 

{■dp =  =  le  — 10 X Ip^i (7.1)). The algorithm was initialized using the same options

as for the fixed matrices, i.e:

1. homogeneous noise: i.e. =  u lp ,  = In {case 3)

2. correspondence analysis: =  diag (D l„ ,i ) “ ,̂ =  diag {D'lp^\)~^ {case 4).

Results of these experiments are displayed in Figure 7.2 (top-right) and (bottom-right) respectively. 

This experiment with real data leads to the following conclusions:
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results using fixed precision
results with estimated precision (noise 

modelling strategy is used as initial condition 
of the VEM algorithm)
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Figure 7.2.: Expected posterior values of factor images and factor curves for four noise modelling strate­
gies.
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Figure 7.3.: Comparison of the posterior expected value of of the precision matrices Qp (left) and 
(right), for different initializations.
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Number of relevant factors, r , estimated using the ARD property associated with the full model 
(Corollary 7.1) is: f  =  3 in case 3, and f  =  4 in all remaining cases (Figure 7.2). This is much 

smaller than the rank estimated using the PPCA model (Section 7.4.1). Moreover, it corresponds 
to the value expected from the physiological knowledge, as discussed in Section 7.4.1. This result 
is achieved for all considered noise modelling strategies. Hence, this result was achieved due to 
the imposition of the positivity constraints (3.85). This will be discussed in Section 7.5.

Scaling is an important step in the analysis. We have tested the algorithm with both fixed and varible 
scaling. We note the following:

•  the expected values, Clp and of the posterior pdf of the precision matrices (7.11), (7.12) 
are similar for both cases of the initialization (cases 3 and 4), and is, in fact, close to the 

correspondence analysis (3.89) (see Figure 7.3). This is in agreement with the assumption 
that the correspondence analysis is optimal for the scintigraphic data [89].

•  for cases 1 and 2— i.e. those with fixed precision matrices— the estimated factor curves 
have sharp peaks at times t  =  25 and t  — 37. This behaviour is not physiologically possi­
ble. These peaks are significantly reduced in cases with unknown (estimated) precision, i.e. 

cases 3 and 4. Note that values of precision, Wt;n, in times t =  25 and t  =  37, are estimated 
significantly lower than those at other times (Figure 7.3).

•  inference of the posterior expected values of factors— i.e. images and curves— is sensitive 
to the choice of initial conditions of the precision (cases 3 and 4). Note that the inferred 
factor images in case 3 (Figure 7.2, top-right) are close to those in case 1 (Figure 7.2, top- 
right). The similarity between factor images in cases 4 and 2 (Figure 7.2 bottom) is also 

obvious. This suggests that there are many local minima of the KL distance, and the initial 
conditions determine which one will be reached by the VEM algorithm.

It is hard to compare these results to state-of-the-art techniques, as the latter do not provide automatic 
rank detemination nor variable scaling. The standard techniques also require a lot of tuning knobs. 

Hence, for an experienced expert, it is possible to produce results similar to those presented in Figure 

(7.2). For real data, there are no exact criteria of quality and so the judgement of the results is always 
subjective.

The results of this experiment may be summarized as follows:

1. the number of relevant physiological factors selected by the VB inference corresponds to that 
predicted by medical experts;

2. if the scaling is estimated, its posterior values are close to the theoretically optimal values for the 

Poisson distribution. However, variable scaling models not only the Poisson errors but all rapid 
(non-biological) changes, such as motion of the camera (or patient) during the study. Therefore, 
it can significantly suppress artefacts caused by the motion.

3. the method is too sensitive to the choice of initial contitions. Further work on initial conditions 
and convergence of the algorithm is required.
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7.5. Discussion

One of the unsolved problems relating to the standard solution of the FAMIS model is estimation of the 
number of relevant principal components in orthogonal analysis (Section 3.4.3). This problem can be 
addressed using Bayesian PCA, as presented in Chapter 6. Therefore, we have tested the FVPCA and 
OVPCA algorithms, in this Chapter, in the context of Functional Analysis of Medical Image Sequences 
(FAMIS). We noted, in Section 7.4.1, that both algorithms significantly overestimated the number of 
relevant physiological factors. However, the VB inference of the unified FAMIS model (Section 3.4.5) 
yields physiologically acceptable results.

7.5.1. Model Matching

This last result can be explained by considering how each model is matched to the actual medical data. 
The real scintigraphic data are composed of three elements:

D = M  + N  + E.

M  and E  are the modelled elements, M  being the rank-restricted mean value (3.48) with positivity 
constraints (3.85), and E  being the Normally-distributed white noise (3.49). N  is an unmodelled matrix 
of non-Gaussian noise and physiological residuals. Inevitably, then, the OVPCA and FAMIS methods 
provide estimates of the modelled parameters, M  and E, corrupted by the residuals, N , as follows:

=  Af  “ I"  »

E  = E  + N e .

N m  and N e  are method-dependent parts of the residual element, N  — N m  + N e -
If the criteria of separation are (i) rank-restriction with unknown r, and (ii) Gaussianity of the noise, 

then only a small part of N  fulfills (ii), but a large part of N  fulfills (i) as it has unknown rank. Con- 
sequendy, the rank, r, is significandy over-estimated. However, if we now impose a third constraint, 
namely (iii) positivity of the signal M  (3.85), we can expect that only a small part of N  fulfills (iii), 
‘pushing’ the larger part of N  into the noise estimate, E.

7.5.2. Consequence for Medical Applications

We have demonstrated experimentally that the joint Bayesian identification of the FAMIS model has 
the following advantages over the standard approach:

1. identification of the noise distribution—via parameters ujp and u;„— is more accurate than the 
standard scaling technique. Therefore, posterior estimates of the FAMIS model are less sensitive 
to non-standard noise distributions, and are more reliable under low Signal-to-Noise Ratio (SNR).

2. identification of the number of relevant physiological factors yields realistic and reliable results. 
No such method was available in the standard model; i.e., formerly, the number of relevant phys­
iological factors was either chosen constant a priori, or it was selected by a human expert.
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These results should, however, still be considered as preliminary. The method is not ready for appli­
cation in medical imaging as it has not been showed to meet high standards of reliability and accuracy 

required in this area. The following problems must still be overcome:

•  convergence of the algorithm is slow, and the overall computational cost is high (tens of minutes 
of computation on a IGHz machine, for analysis of 100 frames of size 128 x 128). Possible 
approaches to this problem were discussed in Section 7.3;

•  the posterior estimates are sensitive to the chosen initial conditions. Extensive experimental stud­

ies will probably be needed to choose the best initialization of the method;

•  the only restriction imposed on each factor in the FAMIS model was positivity. Hence, the poste­
rior estimates of the factor curves may contain sharp peaks (Figure 7.2) which are not physiologi­
cally possible. A further restriction of the factors is needed, such as the imposition of smoothness 
constraints on the factor curves [113].
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Chapter 8. 

Conclusions

8.1. Discussion of the Work

The aim of this thesis was to extend the modelling capabilities of the linear model and to provide a 
numerically efficient Bayesian inference of the model parameters. Four different extensions of special 
cases of the linear model have been studied, each of them representing an important problem in Digital 
Signal Processing (DSP). In each case, we have derived a novel identification algorithm and shown 

its advantages over the existing techniques. In all cases, we have used the Variational Bayes (VB) 
approximation (Section 2.2.4) to obtain the posterior distributions of model parameters.

We have shown that the VB approximation is particulary appropriate for identification of a non- 
stationary process. A non-stationary process generates a new random variable at each time step. This 

leads to proliferation of random variables and computational intractability in exact Bayesian identifica­

tion. The problem was circumvented by invoking the conditional independence assumption— which is 
the central assumption of the VB approximation— and optimizing it using that same VB procedure.

One of the main concerns of the thesis was computational efficiency, as is appropriate for work in 
DSP. We have shown that the the Variational EM (VEM) algorithm (Algorithm 2.2)— i.e. the stan­
dard algorithm for evaluation of VB-statistics (which are the parameters of the VB-optimal posterior 

distribution)— may be computationally inefficient. In special cases (Chapter 6), the solution of the VB 
posterior distributions can be analytically simplified, yielding significantly faster identification algo­

rithms. Computationally faster algorithms may also be achieved by further approximations of the VB 

method, such as the Restricted VB method (Corollary 2.1), of which Quasi-Bayes (QB) is a significant 
example. Under these simplified procedures, we showed that significant computational savings could 
be achieved at the price of only slight loss of accuracy.

We now discuss in more detail the key contributions of the work.

8.2. Key Contributions of the Thesis

Chapter 2: We reviewed the most common methods for approximation of Bayesian posterior distri­

butions. The main emphasis was on the Variational Bayes (VB) approximation (Theorem 2.1). 
We introduced a Restricted VB approximation (Corollary 2.1) which yields parameters of the 
VB optimal posterior distribution in closed-form (closed-form solution for the non-restricted VB 
approximation is rare, an iterative VEM procedure is almost always implied). We showed that the
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popular Quasi-Bayes (QB) approximation is a special case of this Restricted VB approximation 

method.

Chapter 3: We reviewed the most important special cases of the linear model and their Bayesian 

identification. Many well known multivariate methods— such as Factor Analysis (FA) or Prin­
cipal Component Analysis (PCA)— had already been re-derived in the literature using the linear 

model. We showed that the method known as Factor Analysis of Medical Image Sequences 

(FAMIS) can also be understood this way.

Chapter 4: We extended the AutoRegressive (AR) model to embrace unknown transformations of its 
output. A tractable identification can be achieved only when there is a finite set of candidates. 
What follows is the Mixture-based Extended AR model (MEAR). The MEAR model is a mixture 
of AR components with common AR parameterization, each component modelling the AR pro­

cess with respect to one possible data transformation. These transformations can be interpreted as 

a bank of filters, where each filter is used to pre-process the observed data. We have derived three 
algorithms for Bayesian identification of the underlying AR parameters: (i) Variational Bayes 
(VB), (ii) Quasi-Bayes (QB), and (iii) the Viterbi-Like (VL) algorithm. Each of these repre­

sents a different trade-off between numerical speed and accuracy. The VB algorithm is the most 
accurate, and the VL is computationally the least expensive. We present applications of these 
algorithms in identification of an AR process corrupted by outliers and burst noise respectively. 
The burst noise scenario was then considered in the real-data context of speech reconstruction.

Chapter 5: We have relaxed the standard assumption of known forgetting factor in on-line Bayesian 

identification of non-stationary AR processes. We derived an algorithm for on-line joint identifi­
cation of (i) the unknown time-variant forgetting factor and (ii) the non-stationary parameters of 

the AR process. We showed that the resulting identification algorithm improves the parameter- 
tracking abilities of the standard fixed-forgetting Bayesian approach. This was demonstrated in 
simulation. The derived algorithm constitutes a data-driven procedure for steering the forgetting 

factor.

Later in Chapter 5, we also considered on-line identification of the MEAR model with time- 
variant parameters and unknown time-variant forgetting. The resulting algorithm, balances, in 

effect, the contributions being made by (i) past data (sufficient statistics), (ii) current data (dyadic 
update), and (iii) expert knowledge (parameters of the alternative distribution). It achieves this 

on-line.

Chapter 6: We derived two algorithms for Bayesian Principal Component Analysis (PCA). The first 
one was based on a standard Probabilistic PCA (PPCA) model. We showed that the standard VEM 
algorithm for evaluation of the VB-statistics can be analytically simplified. The computational 
cost of the new algorithm— called Fast Variational PCA (FVPCA)— was, therefore, significandy 

reduced.

We then introduced a new, orthogonal, parameterization of the PCA model and presented the 

associated VB solution: Orthogonal Variational PCA (OVPCA). The model avoids modelling 

ambiguities inherent in the PPCA model, and so no regularization via priors was needed. In
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consequence, identification of this orthogonal model is robust with respect to choice of the prior 
distributions. Moreover, we were able to derive the posterior distribution of the model rank (i.e. 
the number of relevant principal components).

C hapter 7: Bayesian identification of the Factor Analysis of Medical Image Sequences (FAMIS) 
model—introduced in Chapter 3.1—was achieved using VB approximation. We showed that the 
Bayesian identification improves the standard certainty-equivalence-based method in two main 
ways: (i) better identification of the noise properties is achieved, and (ii) automatic estimation of 
the number of relevant physiological factors is possible. This is important in medical applications, 
since it allows more reliable results to be achieved with data manifesting low Signal-to-Noise Ra­
tio (SNR). Furthermore, there is a reduced reliance on external information provided by medical 
doctors and imaging experts.

8.3. Further work

8.3.1. Short Term Extensions

1. In Sections 4.7 and 4.8, we used the MEAR model for identification of an AR process corrupted 
by additive outliers and burst noise respectively. In both cases, the resulting filter-bank was 
composed of linear filters. The MEAR model is, however, capable of dealing with non-linear dis­
tortions of data. It would be interesting to apply the MEAR model, for example, to an AR process 
suffering a memoryless non-linear distortion, such as occurs frequently in audio applications. A 
priority would be to design a suitable partitioning of the continuous space of distortions.

2. The standard VEM algorithm for evaluation of the VB-statistics is not guaranteed to converge in 
a finite number of iterations. Therefore, in an on-line scenario, additional treatment is required to 
achieve computational feasibility. For non-stationary forgetting (Section 5.2), we used the simple 
strategy of imposing a maximum allowable number of VEM iterations. We note that the space 
of unknown forgetting factors is confined to the interval [0,1]. Therefore, more sophisticated 
strategies could be proposed, for exploration of this finite scalar interval.

3. Identification of an AR process using the non-stationary forgetting technique (Chapter 5) can be 
easily applied in changepoint detection in noisy speech.

4. Principal Component Analysis (PCA) is used as a standard data processing black-box in many 
scientific areas. In DSP, it finds an interesting context in the area of sub-space methods and 
spectral estimation, in algorithms such as MUSIC and ESPRIT [67]. Application of the results 
achieved in Chapter 6—namely, estimation of the number, r, of relevant principal components, 
and uncertainty bounds for A, X ,  and r— is straightforward in these areas, and could potentially 
bring significant added value.

5. In Section 7.3, we proposed various heuristic techniques for improving the numerical efficiency of 
the VEM algorithm for the FAMIS model. Implementation of these techniques is straightforward 
but time-consuming.
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8.3.2. Future Research Directions

The Variational Bayes (VB) approximation method was chosen as a trade-off between accuracy and 
computational feasibility. It is not optimal from the statistical point of view (Section 2.2.4). Its key 
advantage is that the approximate posterior distributions are available in analytical form, providing 

computational feasibility. In some cases, such as on-line identification of mixture models, the statis­
tically optimal (Section 2.2.3) approximation was shown to outperform the VB approximation [114]. 

Recent developments in mean field theory [34, 39] suggest that new, more accurate, approximations of 

the allowed posteriors may be found. Computationally efficient evaluation of the resulting approxima­
tions is a future challenge for the DSP community. Potentially, it is an intriguing one, as new kinds of 
computational algorithms and flow-of-control may be revealed.

Applicability of the MEAR model (Chapter 4) is limited by the assumption of an a priori known 
filter-bank. We showed that the filter-bank can be designed using analytical insight into the problem. 
However, this approach can be used only for a limited set of problems, such as 1-D and discretized 

function spaces. An automated approach would gready extend applicability of the model. There has 
already been an attempt at automated filter-bank selection using simplex methods [62].

The VB-approximate posterior distribution of the time-variant forgetting factor in Chapter 5 was 
found to be intractable. Thus, further approximation was needed to achieve a numerically tractable 
solution (Proposition 5.1). The impact of this approximation has not been fully explored in this thesis. 
Also, performance of the method depends on the choice of alternative distribution (Section 3.2.3), which 
must be known a priori. Further work on the treatment of the alternative distribution would greatly 

enhance the applicability of the method in practice.
Preliminary experiments with the Bayesian identification of the FAMIS model (Chapter 7) are very 

promising. However, the list of problems that must be solved in order to apply this method in clinical 

practice is extensive (Section 7.3). For example, better physiological modelling, efficient numerical 
implementation and robustness improvements need to be addressed. Ultimately, clinical studies using 

this unified FAMIS framework are necessary.
The VB-based identification of the FAMIS model (Section 7.2) is closely related to the emerging 

class of algorithms known as Independent Component Analysis (ICA) (Section 3.2.1, Table 7.2). ICA 
is a statistical technique for decomposing a complicated dataset into independent sub-parts. The FAMIS 
model is, in fact, a special case of noisy ICA [110], with a non-stationary noise distribution. The ICA 
method is currendy receiving much attention in signal processing because of its flexibility and ability to 

deal with non-linear models. Furthermore, numerically efficient evaluation of the traditional Maximum 
Likelihood (ML) approach [51] to ICA has been achieved using fixed-point approximations [112]. The 
possible use of these approximations within the Variational Bayes (VB) approach may bring significant 

computational savings in the future.
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Appendix A. 

Required Probability Distributions

A.1. Matrix Normal distribution

We say matrix X  has a matrix Normal distribution, /  (X)  =  M  <2> S „), i f  the matrix X  G 5?^^"
has the joint probability density

f { X )  =  (27t)-P"/2 |5.^|-n/2 |5.^|-p/2

where Sp G and S „ G are symmetric, positive definite matrices.
The distribution has the following properties:

•  first moment is Ex {X )  — f ix,

•  second non-central moments are

Ex{XZX' )  =  tr (ZS„) Sp +

Ex{X' ZX^ =  tr  (ZEp) +  ^ ^ Z / ix ,  (A.2)

where Z  is an arbitrary matrix of appropriate sizes respectively,

•  For any matrices C  G and D  G it holds:

/  {CXD)  =  N  {CfixD,  CEpC' (8) D'EnD) . (A.3)

•  distribution of vec (X ) is again Normal with

/  (vec (X) )  =  J\f (vec ( /x x ) , S „ (g) S p ).

Note that covariance matrix has changed the form compared to the matrix case. This notation is
helpful as it allows to store the pn x pn covariance matrix in p x p and n x n  structures.

This convention greatly simplifies notation, e.g. i f  columns Xi of matrix X  are independently distributed 
with the same Normal pdf

n

f  {XI,X2,. . . ,Xn) =  J ]A r(/X i,S ) =  A ^ ( / ix ,E ® /„ )  =  / ( X ) .  (A.4)
i= l
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Moreover, linear transformation of matrix argument X  (A.3) preserves the decomposed form. This 
allows all operations on moments of X  being done using matrix algebra.

A.2. Normal-Wishart Distribution

The Normal-Wishart distribution of variable 0 =  [A, fi] has pdf

{V, u) =  exp [ -Ip ,  A] y  [ -Ip ,  A ] ' | , (A.5)

with normalizing constant

0^ ^  (y , ^) =  Tp Q  (i. -  r  +  p  +  1)^ l A | - i ( - W i )  |y^^|-0.5p 20.5p(.+p+i)^i ^

and auxiliary values

, A = Vdd-V;,aVaaVad,v  = VcUi
^ a d  V a a

(A.7)

where (A.7) denotes partitioning of 1/ G s)fj(p+i)x(p+i) Jjjjq blocks and Vdd is the upper left sub-block 

of size p X p.
Marginal distributions of A and are [16]:

f {A[n, v ,u)  =

with auxiliary constants

(A.8)

(A.9)

(A.IO)

(A .ll)

(A.12)

S t  denotes the matrix Student-f distribution with r? degrees of freedom, and W  denotes the Wishart 

distribution [115].
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The moments of these distributions are;

E^in (^ ) =  (^ ) =  A,

=  =  - A - \
V

En
2A

\ 2  ’{ v - r )

Ef2 (ln |0 |) =  { ^ { i ' -  r  +  p -  j )

- ^ l n | A |  +  ^ P l n 2 .

Here, conditioning by V, u was dropped for simplicity.

A.3. Dirichlet Distribution

The Dirichlet distribution of the vector variable a  has pdf

/ ( a | / 3 ) = K „ ( / 3 )  =  

with vector parameter (3 =  [/?i, /32, • • •, /?c]  ̂normalizing constant

 ̂ (Q\ _ riLi r (A)Qvi (p ) p  ,

where 7 =  Yli=i A . and with first moment given by:

0^i ^oc|/3 ( ^ i )  ~  ^  ^ 1 , . . . , C.

Expected value of the logarithm is

In a , =  E„|̂ 3 (In ai) = ij} (Pi) -  V’ (7 ),

where ^ (/3 ) =  ^ l n r ( ^ ) .

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A. 18)

(A.19)

(A.20)

(A.21)

(A.22)
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A.4. Truncated Normal Distribution

The truncated normal distribution of scalar random variable x  is defined as normal—with functional 
form H  ( / X ,  s^)—on a restricted support a <  x <  6. Its pdf is

\/2exp

where a  =  B = Moments of (A.23) are
S v 2  5v 2

X — ^  — s ip {/j,, s ) , (A.24)

x^ — + fix — SK (fx, s ) , (A.25)

with auxiliary functions:

co(n [exp (-/3^) -  exp (-a ^ )]
 ̂ (erf ( /3 ) -e r f  (a)) ’  ̂  ̂ ^

k ( u s )  =  v ^ [ ^ e ^ P M ' ) - « e x p ( - Q 2 ) ]
’ V ^ (e r f ( /3 ) - e r f (a ) )  '  ̂ ’

(A.26) and (A.27) with vector arguments—e.g. k (m , s )—are evaluated element-wise. Confidence in­
tervals for this distribution can also be obtained. However, for simplicity, we use the first two moments, 
(A.24) and (A.25), to approximate (A.23) by a Gaussian. The Maximum Entropy (MaxEnt) principle 
[116] ensures, that uncertainty bounds on the MaxEnt Gaussian approximation of (A.23), enclose the 
uncertainty bounds of all distributions with the same first two moments. Hence,

max ^a, — 2y x ^ — <  X  — X  < min ^ 6 ,2 \ J — x ^  . (A.28)

A.5. Von IVIises-Fisher l\/latrix distribution

Moments of the von Mises-Fisher matrix distribution are now considered. Proofs of all unproven results 
are available in [108].

A.5.1. D efinition

The von Mises-Fisher probability density function of matrix random variable, Z  e  restricted to
Z ' Z  =  It, is given by;

f i Z \ F )  = M ( F )  = _ ^ _ ^ e x p ( t r ( F Z ' ) ) ,  (A.29)

C{p,FF' )  =  o F iQ p , ^ F F ' ^ C ( p , n ) ,  (A.30)
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A.5. Von Mises-Fisher Matrix distribution

where F £ is a matrix parameter of the same dimensions as Z, and p > n. ( {p,FF')  is
the normalizing coefficient, o-f’i( ')  denotes a hypergeometric function of matrix argument FF'  [117]. 
C (p, r) denotes the area of the relevant Stiefel manifold Sp^n (6.55).

(A.29) is a Gaussian distribution with restriction Z 'Z  =  It, re-normalized on >Sp,n- It is governed by 
a single matrix parameter F.  Consider the (economic) SVD decomposition

of the parameter F,  where Up £ Lp  G Vp € Then, maximum of (A.29) is reached

Flatness of the distribution is controlled hy Lp.  When diag {Lp) =  O n j  the distribution is uniform on 
Sp̂ n [118]. For —> oo, Vi =  1 . . .  n  the distribution is a Dirac delta function at Z  (A.31).

A.5.2. First Moment

Let Y  be the transformed variable

F =  UpLpVj, ,

at
Z = UpVp. (A.31)

F = U'pZVp,

It can be shown that C (p, FF')  =  C {p, Ljr) ■ The pdf of Y  is then:

(A.32)

f { Y \ F ) exp (tr {LpY)) (A.33)

where y  =  diag (F ). Hence,
f { Y \ F ) c x f { y \ l p ) . (A.34)

First moment of (A.33) is given by [108]:

E{Y\Lp) = (A.35)

where =  diag (-0) is a diagonal matrix with diagonal:

(A.36)

We will denote function (A.36) as

=  G{ p , l p ) , (A.37)

The mean value of the original random variable Z is then [119]:

E {Z) =  Up^Vp =  UpG {p, Lp) Vp, (A.38)

where G {p,Lp)  =  diag (G {p, lp)).
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A.5.3. Second Moment and Uncertainty Bounds

The second central moment of the transformed variable y  — diag {Y)  (A.33) is given by

E {yy'  -  E (y) E (y)') =  «>, (A.39)

with elements,

Transformation (A.32) is one-to-one, with unit Jacobian. Hence, boundaries of confidence intervals on 
variables Y  and Z  can be mutually mapped using (A.32). However, mapping y  =  diag (F ) is many- 
to-one, and so Z —» y is surjective. Conversion of second moments (and uncertainty bounds) of y to Z 
(via (A.32), (A.33)) is therefore available in implicit form only. For example, the upper bound subspace 
of Z  is expressible as follows:

Z ^ [ Z \  diag =  y} ,

where y is an appropriately chosen upper bound on y. The lower bound, Z, is similarly constructed via 
a bound y.

It remains then, to choose appropriately bounds y and y from (A.33). Exact confidence intervals 
for this multivariate distribution are not known to us. Therefore we use the first two moments, (A.35) 
and (A.39), to approximate (A.33) by a Gaussian. The Maximum Entropy (MaxEnt) principle [116] 
ensures, that uncertainty bounds on the MaxEnt Gaussian approximation of (A.33), enclose the uncer­
tainty bounds of all distributions with the same first two moments. Confidence intervals for the Gaussian 
distribution, with moments (A.36), (A.40) are well known, e.g.

P r ( - 2 V ^ <  ( y i- V ’i) < 2 ^ )  = 0 .9 5 , (A.41)

where is given by (A.36), and 4>i by (A.40). Therefore, we choose

Yi = 'tpi + 2 y ^ ,  (A.42)

m = 2 \ / ^ -  (A.43)

The required vector bounds are then constructed as y  =  and ditto for y. The geometric
relationship variables Z  and y  is illustrated graphically for p =  2 and n =  1 in Figure 6.6.

A.6. Gamma Distribution

The Gamma distribution has pdf

/  (x|a, b) = g  (a, b) = exp { -bx)  x  ([0, o o )) , (A.44)
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A.7. Truncated Exponential Distribution

where a >  0, and 6 >  0, and P (a) is the Gamma function [71] evaluated at a. Its first moment is:

^  a

and the second central moment is:

Ex ( { x - x f ' j  =

A.7. Truncated Exponential Distribution

The Truncated Exponential Distribution has pdf

where a < bare boundaries of the support. Its first moment is

^  exp (bk) (1 — bk) — exp (ak) (1 — ak)
^  =  ur  TTS --------- > (^-46)k  (exp (ak) — exp (ofc)j

which is not defined for =  0. Limit at this point is

^  a + b 
hm  X =  —- — . 
fc^o 2

Which is not surprising, as the distribution becomes uniform on interval [a, 6],
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Appendix B. 

Analytical Solution of Fast VPCA, Using 
IVIAPLE

Here, we provide analytical solution of Fast VPCA as obtained using software package Maple. Hence, 
we will present them as commented Maple code, i.e. equations are not numbered.

Initialize the Maple enviroment and invoke some basic assumptions.

> restart;
> assume(k[A]>0); assume(k[X]>0); assume(sigma[A]>0);
> assume(sigma[X]>0); assume(b>0);
> assume(omega>0); assume(n>0); assume(p>0);
> assume(ld>0);assume(alpha>0);

Variational equations for Fast VPCA

> eql:=k[A]-omega*![D]*k[X]*sigma[A]:
> eq2:=sigma[A] - l/(omega*(n*sigma[X]+k[X]“2)+upsilon):
> eq3:=k[X]-omega*sigma[X]*k[A]*1[D] :
> eq4:=sigma[X] - l/(omega*(p*sigma[A]+(k[A] )“2)+l):
> eq5:=upsilon - (p)/(p*sigma[A]+k[A]~2+b);
> EQ:={eql,eq2,eq3,eq4,eq5};

P ^
E Q  : =  { k A  - L o l o k x  cta, v ------- — ^ a x

k x  - o j c r x  kA Id , cta -  — j — _—  , 2\ . , )

p a A  +  k A ‘̂ +  b' u j { p a A  +  k A ^ )  +  l ’

1
u{nax + kx^) + v'

> S;=solve(EQ,{k[A],sigma[A],k[X],sigma[X],upsilon>):

B.1. Closed-form Solution

The first mode (zero-centered):

> S1:=S[1];
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a  r { - n  +  n % l + p ) % l u j
S I :=  { t ;  = --------------------------  , crx =  =  0, fcx =  0,

- 1  + %1 ,
% l u p

%1 ;=  R o o tO f((—n +  bnui ) _Z^ +  {2n — bnuj  +  bcop) _ Z  — n) 

The second mode:

> S2:=S[2];

. j _ p - u j I d ^  _ _  u^% l^ +  l  _ o ^ i ____
c j / d  (o ;% l + 1 )  u {p - lj Id )

(—no; %1^ — n + a; %l^p + lj Id ‘̂ ) t iu  j (%1̂  — cj %l^p
— %1^ 6nu;̂  + — b n u + nw %1^ + n + D̂̂ ),
^ _  ( p - g ; / D ^ ) % l l

/ o ( w % l "  +  l ) J

%1 :=  RootO f(_Z '* na;^ +  {—p^ uj — bnuj'^p +  2ixj'  ̂ P +  b n u ^  Id ^

+  nuP" Id  ̂ — Id ^ — buJ^ Id ^P +  nu>p +  buP‘ p ^ )_ Z ‘̂  — buj^ lo '^

+  p n  — b n u jp  +  buP' + hnuP' Id ^)

B.2. Determination of Acceptabie Soiutions

Note that solution o f both modes depends on evaluation o f forth order polynomial in variable _Z.  

However, it can be rewritten as second order polynomial in _Z^.  Roots o f second order polynomials 

are easy to evaluate, using formula;

> z=(-a[l]+sqrt(R))/(2*a[2]); R:=a[l]"2-4*a[0] *a[2] ;
1 —cti +  \ /R

R  : =  aî  — 4aoa2

An important lim iting condition is then value o f auxiliary variable R, which must be positive. We w ill 

analyze this for both modes.

Zero-centered mode
In this mode, mean values are zero. It remains to make sure that variances are real and positive.

> a[2]:=(-n+b*n*omega): a[l]:=(2*n-b*n*omega+b*omega*p): a[0]:=-n:
> R;=a[l]~2-4*a[2]*a[0]:R:=collect(simplify(R),{b,omega});

R := (n̂  — 2pn +  p^)Lj^b‘̂  +  4bnujp

Clearly, R is always positive, hence, roots are always real.

Values o f the roots are then:
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> zl:=(-a[l]+sqrt(R))/(2*a[2]);
1 —2 n  + bnu) — b i j p +  s j  Abnui  p  + b'  ̂ti?  uj'  ̂ — 2h'^nu>‘̂ p  +  6̂

—n  +  bnuj
> z2;=(-a[l]-sqrt(R))/(2*a[2]);

1 —2 n  + bnoj  — b u j p — A b n u  p  + v? — 2b'^ nu j “̂ p  +  6̂
—n  +  bnuj

> limit(zl,b=0);limit(z2,b=0);
1

1

Note, that the roots evaluated above are, in fact, values of a x ,  which has prior value set to 1. Not 
surprisingly, the limit for very small b is one. The first root, z l ,  approaching from above, the second 
one, z2, from below. Note that sign of cr^ depends on (—a x  +  1), hence only the lower root, z2, is 

valid.

The second mode:

First, let us analyze roots of the polynomial, using the same formula as above.
> a[2]:=n*omega“3*l[D]*2:
> a[1]:=(n*omega*p-p~2*omega+2*omega~2*l[D]~2*p+n*omega“2*l[D]“2+b*n*ome
> ga~3*l[D]~2-omega~3*l[D]~4-b*n*omega"2*p-b*omega~3*l [D]~2*p+b*omega~2*
> p * 2 ) :
> a[0]:=n*p-b*omega“3*l[D]“4-b*n*omega*p+b*omega~2*l[D]~2*p+b*n*omega"2*
> l[D]-2:
> R:=a[l]"2-4*a[2]*a[0] ;

R  :=  {—p^oJ — bnuj^ p +  2 lJ  ̂ p  +  b n u ^  Id '̂

— b P  +  n  UJp +  buP' p^) ' ^

— Ariij^ {pn  — bu^ Id '̂  — bn ujp  +  bu^ p  +  bnuP' Id )̂
> sp:=solve({R>,{l[D]});

sp :=  {

{^D =

{Id  —

{Id  =

{l-D =

Clearly only some of these are positive:

> simplify(-[sp[l,l] ,sp[5,l] ,sp[7,l]}) ;
r ,  ( V P + v ^ )  V l - i ^ b  , - u b  \ y / p -  s/n \ , y/p
{ I d  = ----------  I
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The first singular point is notable, as it is also singular point for values of cr ,̂ ctx- Value of Id  must be 
higher than this limit.

X 10

+2oo
o
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X 10" '

1.50 0.5 1

Figure B.I.: Analysis of singular points of roots of second mode solution of fast VPCA, singular points 
are denoted by cross.

An example of R-value and both roots for certain numerical values is displayed in Figure B .l. Hence, 
the boundary for acceptable solution is at:

Id  —
iVn + Vp) y i - b UJ

For values lower than this bound, the second mode has no acceptable solution, and iterative algorithm 

than converge to zero-centered solutions.

Singular point of uspilon is:
> sp u : =n+n*omega*RootOf (_Z~4*n*omega''3*l [D] ~2+ (n*omega*p-p''2*omega+2*p*
> omega~2*l[D]~2+n*omega“2*l[D ] ''2+b*n*omega~3*l[D]~2-omega~3*l[D]~4-b*n*
> oinega^2+p-b*omega"3*l[D]“2*p+b*omega~2*p~2)*_Z~2+n*p-b*omega"3*l[D]~4-
> b*n*omega*p+b*omega~2*l[D]~2*p+b*n*omega~2*l[D] ~2)*2-om ega*Root0f(_Z~4
> *n*omega~3*l[D]~2+(n*omega*p-p"2*omega+2*p*omega~2*l[D]~2+n*omega~2*l[
> D]~2+b*n*omega~3*l[D]~2-omega~3*l[D]~4-b*n*om ega~2*p-b*om ega~3*l[D]"2+
> p+b*omega~2*p~2)*_Z''2+n*p-b*omega~3*l[D]“4-b*n*omega*p+b*omega'2*l [D]~
> 2*p+b*n*om ega~2*l[D]~2)“2*p-om ega*l[D ]"2:

> s o lv e ( sp u ,{1 [D]} ) ;

UJ

Clearly, it is the same singular point as for a  a  and a x ,  and it is to be compared with the singular point 
for R-value. However, we expect b to be chosen as small as possible, hence, we will consider

Id  =

to be the limit for acceptable solution of the second mode. 

Roots of the polynomial are then:
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B.2. Determination of Acceptable Solutions

> zl:=(-a[l]+sqrt(R))/(2*a[2]):
> z2; = (-a[l]-sqrt(R))/(2*a[2]):

With limits:

> limit(sqrt(zl)/l[D],l[D]=infinity);

> limit(sqrt(z2)/l [D],l[D]=infinity);
0

We see, that the first root is assymptotically approaching Id /  \ /n ,  which is intuitively appealing. The 
second possible root is approaching zero quite rapidly.
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Appendix C. 

Hypergeometric Functions

Numerical evaluation o f the OVPCA algorithm requires evaluation o f the follow ing transformations of 

the hypergeometric function o ^ i o f matrix argument: (i) its natural logarithm (In), for Bayesian rank 

selection (6.104), and (ii) the first derivative o f the In, required for the first moment o f the von Mises- 

Fisher distribution (A .36). Analytical closed form solutions are not known to us. Recently, a very good 

approximation o f qF i o f matrix argument was developed [120]. It is based on the Laplace approxima­

tion at the saddle point. It yields reliable results for use in (i). Unfortunately, the first derivative o f In of 

this approximation for higher singular values, i.e. l i  »  1, are greater than one, thus placing the corre­

sponding mean value E {y i l l p)  (A.36) outside o f the unit circle, which is not permissible (Figure 6.6). 

Therefore, we now develop an approximation which overcomes this difficulty, by first considering the 

hypergeometric function oi^i o f scalar argument.

C.1. Hypergeometric Function of Scalar Argument

The natural logarithm (In) o f the hypergeometric function, qF i [ ^p,  |s ^ ) ,  o f a scalar argument can be 

expressed as

In Q p ,  = l n ^ Q p - l , s ^  +  (In2  -  l n ( s ) ) - F l n T  , (C .l)

where B denotes the modified Bessel function o f the first kind [71]. (C .l)  is plotted as a function o f s 

in Figure C .l (left), for p =  5. The first two derivatives o f (C .l):

=  2
^  { ^ P -  1 ,2s ) ’

B ( I p  -  1,2s)
B  ( b ,  2s)

B { ^ p -  1,2s)

(C.2)

B (hp, 2s)
+ 2-----— ^ . ( C .3 )

sB [ ^p  — 1 ,2s)

The first derivative is illustrated in Figure C .l (right), for the same case, p =  5. (C.2) can be expressed
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w 60

1

0.5

0 , 100

Figure C.I.: In oi^i (5, of scalar argument s (left), and ^  o- î (5, (right), 

as a continuous fraction expansion [71]:

1 +
1+ JF

(f+^)(f+3)+[l + 7r

(C.4)

Furthermore, (C.3) can be expressed in terms of (C.2) and, therefore (C.4). The evaluation of expansion 

(C.4) converges very fast for s <  p. However, when s »  p (say s >  lOp) the convergence is quite slow. 
For large s, a more numerically efficient approximation is obtained via a Taylor expansion of (C.2) at 
s —> oo:

d  / I  1 „ \  / n — 1 \  / t) — . S\
(C.5)exp [  ̂  ̂ ) +  o (5).

4s

Here, o (5) denotes elements of the serie in terms of s This expansion provides an excellent approx­
imation in the case s ^  p.

C.2. Approximation of o^i of i\/iatrix Argument by qF i of Scalar 
Arguments

Consider the special case of the von Mises Fisher matrix distribution (A.29) with Z  =  [zi, Z2] G 

and parameter F  =  [f i ,  f 2 ] G with added constraint that f i , f 2 are mutually orthogonal: f [ f 2 =  
0. Then, the marginal distribution of z \  is [108]:

Note that maximum likelihood estimate of z \  (A.31), i.e.:

z i  =  a r g m a x /(Z |F )  =
Z \

This is orthogonal to / 2 , i-e. z i / 2  =  0, [108]. Therefore, the contribution of the quadratic term in the 
argument of qFi in the numerator of (C.6) would be negligible for values of z \  around z i . Hence, we
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approximate

oFi (p -  1), ^ [Ip -  ^1^1) /2 /2 )  «  oFi Q  (p -  1), , (C.7)

which will be satisfied when /  (z i |F )  is not diffuse, i.e. when / i  —> oo (see Section A.5.1). Under 
this approximation, the leading fraction in (C.6) is independent of z i, and thus acts as a normalizing 
coefficient. Distribution (C.6) is then of the von Mises-Fisher type, namely /  {z\\F)  «  /  ( z i i / i )  =  
M  ( / i )  (A.29). Comparing the normalizing coefficient in (C.6) with that in (A.30) yields

oFi (^-p , «  oFi Q p ,  oFi Q  (p -  1), • (C.8)

Extending (C.6) into higher dimension and using the chain rule of pdfs we obtain an approximation of 
the following type:
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