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ABSTRACT: The gamma process and the inverse Gaussian process are widely used in condition-based main-
tenance. Both are suitable for modelling monotonically increasing degradation processes. Hence, one challenge
for practitioners is determining which of the two processes is most appropriate in light of a real data set. This
paper proposes an efficient and broadly applicable test statistic for model selection. The construction of the test
statistic is based on the Fisher information. We conduct extensive numerical study to demonstrate the efficiency
(in terms of sample size) of the proposed test statistic. We also indicate the conditions under which a gamma
process can be well approximated by an inverse Gaussian process or the other way around.

1 INTRODUCTION

The gamma process and the inverse Gaussian pro-
cess were proposed by Dufresne et al. (1991) and
Wasan (1968), respectively. Dufresne et al. (1991)
proved that a gamma process is a limit of compound
Poisson processes. They also constructed an inverse
Gaussian process from compound Poisson processes.
Hence, both the gamma process and the inverse Gaus-
sian process are appropriate for stochastic modelling
of monotonic and gradual deterioration. The gamma
processes were satisfactorily fitted to data on creep of
concrete, fatigue crack growth, corroded steel gates,
thinning due to corrosion, and chloride ingress into
concrete; see van Noortwijk (2009) for a review. Ap-
plications of the inverse Gaussian process can be
found in Al Labadi and Zarepour (2013), Ivanov
(2013), Zhang et al. (2013), Zhang et al. (2014) and
Peng (2015).

Mathematically, the gamma distribution with shape
parameter α (> 0) and scale parameter β (> 0), de-
noted by Ga(α,β), has probability density function

fGa(x; α,β) =
βα

Γ(α)
xα−1 exp(−βx), x > 0.

Here Γ(α) is the gamma function evaluated at α.
The cumulative distribution function is the regular-
ized gamma function:

FGa(x; α,β) =
∫ x

0

βα

Γ(α)
yα−1 exp(−βy)dy

= γ (α, βx)/Γ(α), x > 0.

Here γ (α, βx) is the lower incomplete gamma func-
tion. The mean and variance of the gamma distribu-
tion are αβ−1 and αβ−2, respectively. A stochastic
process {X(t), t ≥ 0} is a gamma process if

• non-overlapping increments are independent;

• ∀ t > s ≥ 0, the random increment X(t)−X(s)
has the gamma distribution Ga(α(t− s), β).

The marginal distribution of the gamma process
{X(t), t ≥ 0} at time t is the gamma distribution
Ga(αt, β). {X(t), t ≥ 0} is a stationary process
having mutually independent, stationary and non-
negative increments.

The inverse Gaussian distribution with mean u (>
0) and shape parameter λ (> 0), denoted by IG(u,λ),
has probability density function

fIG(x; u,λ) =

√
λ

2πx3
exp

(
−λ(x− u)2

2u2x

)
, x > 0,

and cumulative distribution function

FIG(x; u,λ) = exp(2λ/u)Φ

−
√
λ

x

(
x

u
+ 1

)

+Φ

√λ
x

(
x

u
− 1

) , x > 0.

Here Φ(·) is the standard normal cumulative distribu-
tion function. The variance of the inverse Gaussian
distribution is u3/λ. A stochastic process {Y (t), t ≥
0} is an inverse Gaussian process if



• non-overlapping increments are independent;

• ∀ t > s ≥ 0, the random increment Y (t)− Y (s)
has the inverse Gaussian distribution IG(u(t−
s), λ(t− s)2).

Therefore, the marginal distribution of the inverse
Gaussian process {Y (t), t≥ 0} at time t is the inverse
Gaussian distribution IG (ut, λt2). {Y (t), t ≥ 0} is
a stationary process of which the increments are mu-
tually independent, stationary and non-negative.

Both the gamma process and the inverse Gaussian
process are suitable for modeling gradual damage in-
troduced by continuous use. Therefore, given degra-
dation data, the uppermost problem is selecting be-
tween the two processes the “right” model. The prob-
lem of model selection or model-misspecification de-
tection has received much attention. A representa-
tive sample of works on model selection or model-
misspecification detection includes Bachoc (2013),
Richmond and Horowitz (2015) and Spokoiny and
Zhilova (2015). This paper proposes an efficient and
broadly applicable test statistic for model selection by
quoting the theorems in White (1982). The test statis-
tic is built on the notion of information equivalence:
under mild regularity conditions, the information ma-
trix can be expressed in either the Hessian form or the
outer product form. Hence, the difference between the
two information matrices will indicate whether or not
the model is misspecified.

Note that, to select a model for the underlying
degradation process is essentially to select a dis-
tribution for the degradation increments. Therefore,
in what follows we focus on selecting between the
gamma distribution and the inverse Gaussian distribu-
tion the right one for collected degradation data. The
remainder of the paper is organised as follows. Sec-
tion 2 derives a general expression of the test statis-
tic when the underlying stochastic law is unspeci-
fied. Section 3 conducts extensive numerical study to
demonstrate the efficiency of the test statistic. Con-
clusions are outlined in Section 4.

2 A GENERAL FRAMEWORK

Due to the lack of space, we explain our idea by tak-
ing the gamma process as an example. For the in-
verse Gaussian process, the appropriate translations
are similar.

We might assume that the underlying degradation
process is stationary. Hence both the inverse Gaus-
sian process and the gamma process are suitable for
fitting the degradation measurements. The following
data-collecting scheme will be adopted. Let X(t) de-
note the degradation of a target device measured at
time t, with X(0) = 0. The degradation of the de-
vice is measured every ∆(> 0) units of time. The
data-collecting scheme is terminated at time n∆,
n = 1,2, .... Denote the collected degradation data

by Xn = {x1, x2, ..., xn} in which xi = X(i∆) −
X ((i− 1)∆), i = 1,2, ..., n. The independent ran-
dom increments {x1, x2, ..., xn} have the same dis-
tribution function, denoted by G(x), x > 0. G(x) is
the unknown underlying stochastic law. Let g(x) de-
note the corresponding probability density function.
We below approximate G(x) by the gamma distribu-
tion, Ga (α∆, β). To simplify the notation which fol-
lows, define two vectors of parameters: θ= (θ1, θ2) =
(α∆, β) and ϑ = (ϑ1, ϑ2) = (u∆, λ∆2).

Given the degradation data Xn, consider a quasi
log-likelihood function of θ:

`Ga(θ; Xn) =
1

n

n∑
k=1

log(fGa(xk; θ))

= n−1
n∑
k=1

[(θ1 − 1) log(xk)− θ2xk]

+θ1 log(θ2)− log(Γ(θ1)).

Find a value of θ that maximizes `Ga (θ; Xn). De-
note the maximizer by θ̂ = (θ̂1, θ̂2). θ̂ is termed
as the quasi maximum-likelihood (QML) estimator
for θ. Notably, given the data Xn, n`Ga (θ; Xn) =
n∑
k=1

log(fGa(xk; θ)) is the log-likelihood function

of θ. Hence, the QML estimator θ̂ is indeed the
maximum-likelihood estimator for θ. The maximized
quasi log-likelihood `Ga(θ̂; Xn) is exactly 1/n of the
maximized log-likelihood. The QML estimator for θ2
has a closed form: θ̂2 = nθ̂1/

n∑
k=1

xk. The QML esti-

mator for θ1, i.e. θ̂1, is the solution of

log(θ1)− ψ(θ1) = log

(
1

n

n∑
k=1

xk

)
− 1

n

n∑
k=1

log(xk),

which can be solved numerically. Here, ψ(θ1) is the
digamma function evaluated at θ1.

The maximization of `Ga (θ; Xn) is analogous
to the minimization of the Kullback-Leibler diver-
gence of FGa(x; θ) from G(x). The Kullback-Leibler
divergence (Kullback and Leibler 1951) is a non-
symmetric measure of the difference between two
probability distributions. Assume that G1 and G2 are
two probability measures over a set S, and G1 is ab-
solutely continuous with respect to G2. The measure
is non-symmetric in that the Kullback-Leibler diver-
gence of G1 from G2 is very often different from
the Kullback-Leibler divergence of G2 from G1. The
Kullback-Leibler divergence ofG2 fromG1 is defined
to be

I(G2, G1) =
∫
S

log(dG1/dG2)dG1.

dG1/dG2 is the Radon-Nikodym derivative of G1

with respect to G2. I(G2, G1) measures the informa-
tion lost when G2 (typically, a specified probability



distribution) is used to approximate G1 (typically, the
true stochastic law).

The Kullback-Leibler divergence of FGa(x; θ)
from G(x) is

I(FGa, G) = E[log(g(x)/fGa(x; θ))]

= E[log(g(x))]−E[log(fGa(x; θ))].

Here, and in what follows, expectations are all taken
with respect to the true stochastic law g(x). The first
term of the right-hand side, i.e. E[log(g(x))], is in-
dependent of θ. The minimization of I(FGa, G) is
equivalent to the maximization of E[log(fGa(x; θ))].
Notably, the quasi log-likelihood `Ga(θ; Xn) is a
(strongly) consistent estimator for E[log(fGa(x; θ))].
Let θ∗ denote the optimal parameter vector minimiz-
ing the Kullback-Leibler divergence:

θ∗ = arg min
θ>0

I(FGa, G) = arg max
θ>0

E[log(fGa(x; θ))].

If the stochastic law lies within the family of gamma
distributions (i.e., g(x) = fGa(x; θ0) for some θ0 >
0), then I(FGa, G) attains its unique minimum at
θ∗ = θ0. The value of θ∗ is inaccessible. It is clear that
θ̂ is a consistent estimator for θ∗, because `Ga (θ; Xn)
is a consistent estimator for E[log(fGa(x; θ))].

Define two 2× 2 matrices AGa(θ) and BGa(θ):

[AGa(θ)]ij = E

[
∂2 log(fGa(x; θ))

∂θi∂θj

]
,

and

[BGa(θ)]ij = E

[
∂ log(fGa(x; θ))

∂θi

∂ log(fGa(x; θ))

∂θj

]
.

Here, we have utilized the fact that differentiation
can be taken inside integral. AGa(θ) and BGa(θ)
can be respectively consistently estimated by matri-
ces AnGa(θ) and Bn

Ga(θ):

[AnGa(θ)]ij = n−1
n∑
k=1

∂2 log(fGa(xk; θ))

∂θi∂θj
,

and

[Bn
Ga(θ)]ij =

n−1
n∑
k=1

∂ log(fGa(xk; θ))

∂θi

∂ log(fGa(xk; θ))

∂θj
.

If the matrices AGa(θ) and AnGa(θ) are invertible,
which can always be guaranteed, define

CGa(θ) = AGa(θ)−1BGa(θ)AGa(θ)−1,

and

Cn
Ga(θ) = AnGa(θ)−1Bn

Ga(θ)AnGa(θ)−1.

The superscript “-1” above a matrix denotes the in-
verse operator. Cn

Ga(θ) is a consistent estimator for
CGa(θ).

Proposition 1 The distribution of
√
n(θ̂ − θ∗) is

asymptotically normal with mean zero and covari-
ance matrix CGa(θ

∗). The sequence Cn
Ga(θ̂) con-

verges almost surely towards CGa(θ∗): Cn
Ga(θ̂)

a.s.→
CGa(θ

∗), element by element. Specifically, if g(x) =
fGa(x; θ0) for some θ0 > 0, then

• θ̂ is a (strongly) consistent estimator for θ0;

•
√
n(θ̂− θ0) is asymptotically normal with mean

zero and covariance matrix CGa(θ0).

Proof. The assumptions A1-A6 in White (1982) all
hold. The proposition follows from Theorem 3.2 of
White (1982), and the proof is complete.

If the underlying stochastic law is correctly spec-
ified and if differentiation can be taken inside inte-
gral, the information matrix can be expressed in either
the Hessian form, i.e. −AGa(θ0), or the outer product
form, i.e. BGa(θ

0). The information-matrix equiva-
lence indicates that the sum AGa(θ

0) +BGa(θ
0) can

be used for detecting model misspecification. Specif-
ically, the failure of the sum AGa(θ

∗) + BGa(θ
∗)

equalling zero states that the stochastic law is mis-
specified. The values of the elements in AGa(θ

∗) +
BGa(θ

∗) are inaccessible. Yet, by Proposition 1,
AGa(θ

∗) +BGa(θ
∗) can be consistently estimated by

AnGa(θ̂) + Bn
Ga(θ̂). Hence, the remaining work is to

investigate the distributional property of the elements
in AnGa(θ̂) +Bn

Ga(θ̂).
Define a vector-valued function: δGa(x; θ) =

(δ1(x; θ), δ2(x; θ), δ3(x; θ))t in which

δ1(x; θ) =
∂ log(fGa(x; θ))

∂θ1

∂ log(fGa(x; θ))

∂θ1

+
∂2 log(fGa(x; θ))

∂θ1∂θ1
,

δ2(x; θ) =
∂ log(fGa(x; θ))

∂θ1

∂ log(fGa(x; θ))

∂θ2

+
∂2 log(fGa(x; θ))

∂θ1∂θ2
,

and

δ3(x; θ) =
∂ log(fGa(x; θ))

∂θ2

∂ log(fGa(x; θ))

∂θ2

+
∂2 log(fGa(x; θ))

∂θ2∂θ2
.

By the superscript “t”, we mean the transpose of a
vector or a matrix. Define

δ̄nGa(θ) = n−1
n∑
k=1

δGa(xk; θ).



δ̄nGa(θ̂) consists of all the distinct elements in
AnGa(θ̂) + Bn

Ga(θ̂). Hence, we below investigate the
asymptotic joint distribution of δ̄nGa(θ̂). Take expec-
tation of δGa(x; θ) with respect to g(x):

δ̄Ga(θ) = E[δGa(x; θ)]

= (E[δ1(x; θ)], E[δ2(x; θ)], E[δ3(x; θ)])t .

The respective 3× 2 Jacobian matrices of the vector-
valued functions δ̄nGa(θ) and δ̄Ga(θ) are

[JnGa(θ)]ij = n−1
n∑
k=1

∂δi(xk; θ)

∂θj
,

and

[JGa(θ)]ij =
∂E[δi(x; θ)]

∂θj
= E

[
∂δi(x; θ)

∂θj

]
.

The partial derivative with respect to θ of the loga-
rithm of fGa(x; θ) is

∇ log(fGa(x; θ))

=

(
∂ log(fGa(x; θ))

∂θ1
,
∂ log(fGa(x; θ))

∂θ2

)t
.

The nabla symbol “∇” denotes the vector differential
operator. Define two 3× 3 matrices

VGa(θ) = E[vGa(x; θ)vGa(x; θ)t],

and

V n
Ga(θ) = n−1

n∑
k=1

v̈Ga(xk; θ)v̈Ga(xk; θ)t.

The column vectors vGa(x; θ) and v̈Ga(xk; θ) are
defined by

vGa(x; θ) = δGa(x; θ)

−JGa(θ)AGa(θ)−1∇ log(fGa(x; θ)),

and

v̈Ga(xk; θ) = δGa(xk; θ)

−JnGa(θ)AnGa(θ)−1∇ log(fGa(xk; θ)).

Proposition 2 If g(x) = fGa(x; θ0) for some θ0 > 0,
then

•
√
nδ̄nGa(θ̂) is asymptotically normally dis-

tributed with mean zero and covariance matrix
VGa(θ

0);

• the sequence V n
Ga(θ̂) converges almost surely to

VGa(θ
0);

• V n
Ga(θ̂) is nonsingular almost surely for all suffi-

ciently large n;

• the asymptotic distribution of the test statistic
ζnGa = nδ̄nGa(θ̂)tV n

Ga(θ̂)−1δ̄nGa(θ̂) is chi-squared
distribution with three degrees of freedom.

Proof. The assumptions A1-A10 in White (1982) all
hold. The proposition follows from Theorem 4.1 of
White (1982), and the proof is complete.

ζnGa serves as a test statistic in a hypothesis test. A
hypothesis test can be constructed with the null hy-
pothesis given by

H0 : g(x) = fGa(x; θ), ∃ θ > 0

and the alternative hypothesis given by

H1 : g(x) 6= fGa(x; θ), ∀ θ > 0.

If the null hypothesis is true, the test statistic ζnGa is
chi-squared distributed with three degrees of freedom.
To carry out the test, one calculates ζnGa and compares
it to the critical value of the χ2

3 distribution. If ζnGa ex-
ceeds the critical value, one rejects the null hypothesis
and concludes that the specified family of probability
distributions is inappropriate.

Remark 1 Note that ζnGa also measures how well the
density function g(x) could be approximated by a
gamma density function. Specifically, for a given sam-
ple size n, the smaller the value of ζnGa, the better
the density function g(x) could be approximated by
a gamma density function.

3 NUMERICAL EXAMPLES

To demonstrate the efficiency of the proposed test
statistic, we study the problem of model selection be-
tween the gamma process and the inverse Gaussian
process. In Section 3.1, we simulate data from the in-
verse Gaussian process but fit the gamma process to
the simulated data. In Section 3.2, we simulate data
from the gamma process but fit the inverse Gaussian
process to the simulated data.

3.1 Fit Data by the Gamma Process

Assume that the underlying stochastic law is an in-
verse Gaussian process. Randomly simulate n obser-
vations, denoted by Xn, from the inverse Gaussian
distribution fIG(x; ϑ). Fit the gamma distribution
to the data Xn. Maximize the quasi log-likelihood
`Ga(θ; Xn) to obtain the QML estimate of θ, i.e. θ̂.
Given the data Xn and the QML estimate θ̂, calculate
the value of the test statistic ζnGa. The critical value
of the chi-square distribution with 3 degrees of free-
dom at significance level 0.05 is 7.815. Hence, if ζnGa



is larger than 7.815, we say that the gamma process is
inappropriate for the data set.

The parameter setting is described as follows. We
increase the shape parameter ϑ2 from 0.2 to 6 with
step size 0.2. The mean ϑ1 takes in turn the following
three values: {1,10,50}. (Experiments showed that,
when ϑ1 > 60 and n is small, the matrix V n

Ga(θ̂) is
likely to be singular.) Gradually increase the sample
size n from 20 to 100 with step size 5. For each com-
bination of ϑ1, ϑ2 and n, we generate 1000 data sets.
Calculate ζnGa for each data set. Two statistics are stud-
ied: (1) the average of the 1000 values of ζnGa, and (2)
the percentage of ζnGa being larger than 7.815.

Plot the evolution of the two statistics in Figure 1.
In Figure 1, the red curve (with circular points) corre-
sponds to ϑ2 = 0.2, and the green curve (with square
points) corresponds to ϑ2 = 6. The dashed line in
the left three panels corresponds to the critical value
7.815, and in the right three panels corresponds to per-
centage 0.5. The top two panels correspond to ϑ1 = 1;
the middle two panels correspond to ϑ1 = 10; the bot-
tom two panels correspond to ϑ1 = 50.

The green curves in the top two panels show that,
even if the sample size is 100, there is only a small
percentage of the 1000 ζnGa’s whose values are larger
than 7.815. The red curves in the bottom two panels
show that, even if the sample size is only 20, there
is a large percentage of the 1000 ζnGa’s whose values
are larger than 7.815. Hence, we can conclude that an
inverse Gaussian process, with a large shape parame-
ter and a small mean, can be closely approximated by
a gamma process. In Figure 1, when the mean value
is relatively large, the percentage Pr(ζnGa > 7.815) in-
creases rapidly with the sample size, implying that the
test statistic is efficient.

Table 1 lists, for each combination of ϑ1 and ϑ2, the

Table 1: The required sample size for the expected value of ζnGa
being larger than 7.815.

ϑ1 ϑ1

ϑ2 1 10 50 ϑ2 1 10 50
0.2 30 20 20 3.4 >100 35 20
0.6 50 20 20 3.8 >100 35 25
1.0 65 25 20 4.2 >100 40 25
1.4 75 25 20 4.6 >100 40 25
1.8 95 30 20 5.0 >100 45 25
2.2 >100 30 20 5.4 >100 45 25
2.6 >100 35 20 5.8 >100 45 25
3.0 >100 35 20 6.0 >100 50 25

required sample size for the expected value of ζnGa be-
ing larger than 7.815. Table 1 further verifies that an
inverse Gaussian process, with a large shape param-
eter and a small mean, can be closely approximated
by a gamma process. In Table 1, when the shape pa-
rameter is small and the mean is relative large (e.g.,
ϑ2 = 1.4 and ϑ1 = 10), the required sample size for
the expected value of ζnGa being larger than 7.815 is
very small. When ϑ1 = 50, for all the studied values

of ϑ2, the required sample size is always small, show-
ing the efficiency of the proposed test statistic in such
case.

3.2 Fit Data by the inverse Gaussian Process

Assume that the underlying stochastic law is a gamma
process. Randomly simulate n observations from the
gamma distribution fGa(x; θ). Fit the inverse Gaus-
sian distribution to the data Xn. Maximize the quasi
log-likelihood to obtain the QML estimate of ϑ, i.e.
ϑ̂. Given the data Xn and the QML estimate ϑ̂, cal-
culate the value of the test statistic ζnIG.

We increase the shape parameter θ1 from 1.8 to 7
with step size 0.2. (Experiments showed that, when
θ1 < 1.8 and n is small, the matrix V n

IG(ϑ̂) is likely to
be singular. Hence, we start from 1.8 instead of from
0.2.) The scale parameter θ2 takes in turn the follow-
ing three values: {1,10,100}. Gradually increase the
sample size n from 20 to 100 with step size 5. For
each combination of θ1, θ2 and n, we generate 1000
data sets. Calculate ζnIG for each data set. Likewise,
two statistics are studied: (1) the average of the 1000
values of ζnIG, and (2) the percentage of ζnIG being
larger than 7.815.

Plot the evolution of the two statistics in Figure 2.
In Figure 2, the red curve (with circular points) corre-
sponds to θ1 = 1.8, and the green curve (with square
points) corresponds to θ1 = 7. The dashed line in
the left three panels corresponds to the critical value
7.815, and in the right three panels corresponds to per-
centage 0.5. The top two panels correspond to θ2 = 1;
the middle two panels correspond to θ2 = 10; the bot-
tom two panels correspond to θ2 = 100.

Form Figure 2 it is observed that ζnIG is insensi-
tive to the value of the scale parameter θ2: the three
left panels are quite similar and so are the right three
panels. In Figure 2, for some large values of θ1, the
percentage Pr(ζnIG > 7.815) increases slowly with the
sample size. But most of the percentage curves are
above the 0.5 line, implying that we are prone to reject
the misspecified model. The green curves in Figure 2
further show that a gamma process with a large shape
parameter can be closely approximated by an inverse
Gaussian process.

Table 2 lists, for each combination of θ1 and θ2, the

Table 2: The required sample size for the expected value of ζnIG
being larger than 7.815.

θ2 θ2
θ1 1 10 100 θ1 1 10 100
1.8 20 20 20 4.6 20 20 20
2.2 20 20 20 5.0 20 20 20
2.6 20 20 20 5.4 25 20 20
3.0 20 20 20 5.8 25 20 20
3.4 20 20 20 6.2 25 20 20
3.8 20 20 20 6.6 25 20 20
4.2 20 20 20 7.0 25 20 20
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Figure 1: The evolution of the averaged value of ζnGa, and the evolution of the probability Pr(ζnGa > 7.815). In each panel, each curve
corresponds to a value of ϑ2 (increasing from 0.2 to 6). The top two panels correspond to ϑ1 = 1; the middle two panels correspond
to ϑ1 = 10; the bottom two panels correspond to ϑ1 = 50. The dashed line in the left three panels corresponds to the critical value
7.815, and in the right three panels corresponds to percentage 0.5.
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Figure 2: The evolution of the averaged value of ζnIG, and the evolution of the probability Pr(ζnIG > 7.815). In each panel, each curve
corresponds to a value of θ1 (increasing from 1.8 to 7). The top two panels correspond to θ2 = 1; the middle two panels correspond
to θ2 = 10; the bottom two panels correspond to θ2 = 100. The dashed line in the left three panels corresponds to the critical value
7.815, and in the right three panels corresponds to percentage 0.5.



required sample size for the expected value of ζnIG be-
ing larger than 7.815. From the expected value point
of view, the proposed test statistic is quite efficient
for testing if an inverse Gaussian process is appropri-
ate for a given data set, and Table 2 implies that the
inverse Gaussian distribution is not capable of well
fitting a gamma distributed data.

4 CONCLUSIONS

This paper proposed a test statistic for model selection
(or, model-misspecification detection). The gamma
process and the inverse Gaussian process were used
for illustration, due to their wide applications and es-
sential similarities. It was found that an inverse Gaus-
sian process with a large shape parameter and a small
mean can be well approximated by a gamma process.
A gamma process with a large shape parameter can
also be closely approximated by an inverse Gaussian
process. In general, the gamma process is more flex-
ible than the inverse Gaussian process. More simula-
tion studies need be conducted to compare the pro-
posed test statistic with other test statistics.
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