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Abstract 

The purpose of this article is to derive a lower confidence limit for reliability given a grouped 

data set. This is done by using a quantile filling algorithm which generates pseudo failure data 

from grouped data. A general framework of this approach is first introduced. The cases for the 

exponential distribution, Weibull distribution, and lognormal distribution are used to illustrate 

this approach. Simulation studies are carried out and the results show that it is a useful method 

handling grouped data. Two field lifetime data sets are also analyzed to demonstrate its 

feasibility. Some further improvements are discussed as well. 
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1. Introduction 

Grouped data is one type of incomplete data for which data are categorized into intervals 

(Murthy et al., 2003). Generally, these intervals are non-overlapped. Grouped data is common in 

many disciplines such as engineering, finance, and biostatistics. In view of its prevalence, 

feasible and powerful methods should be explored as grouped data contains quite small 

information in survival time. Various approaches to analyze grouped data have been developed, 

via frequentist, Bayesian view or fuzzy logic. Kalbfleisch and Prentice (1973) developed a Cox 

proportional hazards model for grouped data. Davison and Tsai (1992) extended generalized 

linear model to grouped data. Yang and Yu (2005) proposed a method to estimate the parameters 

in fuzzy class models using a fuzzy clustering algorithm. Recently, many techniques have been 

studied concerning grouped data, e.g., Bassetti et al. (2007), Meister (2007), Rivero and Valdes 

(2008), Lambert (2011) and Ryan et al. (2011). 



Data completion is a general statistical method for the analysis of incomplete data sets. It is 

natural as the most challenging is the lack of information when dealing with incomplete data. 

Data completion (or imputation) technique has been extensively developed to handle missing 

data. Rubin (1976) first came up with the multiple imputations to estimate incomplete data 

regression model. Some articles further studied the relative accuracy of multiple imputations e.g., 

Reiter and Raghunathan (2007), Reiter (2007) and Holan et al. (2010). While for  

censored/truncated data, different approaches have been studied  on data completion, including 

regression models for parameters like the survival function in a single point, the restricted mean 

survival time, and transition or state occupation probabilities in multi-state models, e.g., the 

competing risks cumulative incidence function. Buckley and James (1979) adopted a data 

completion technique (replacing the censored observations by their estimated conditional 

expectations) to estimate the parameters of linear regression model. Lai and Ying (1991b) proved 

that a modified Buckley-James estimator is consistent and asymptotically normal under certain 

conditions. Wang et al. (2008) related high dimensional genomic data to survival outcomes using 

a semi-parametric accelerated failure time model, with a doubly penalized Buckley-James 

method used for estimation. Liu et al. (2011) proposed a robust multiple imputation approach 

directly imputes restricted lifetimes over the study period on a model of the mean restricted life 

as a linear function of covariates. Andersen (2010) presented a review of recent works on the 

application of pseudo observations in survival and event history analysis. 

Yu and Dai (1996) and Yu and Guo (2001) developed an algorithm, called quantile filling 

algorithm, to generate complete data from censored data on the basis of maximum likelihood 

estimates. One of the drawbacks of the original procedure is the cumbersome computation 

caused by maximum likelihood estimation (MLE). Besides, the convergence and consistency for 

these algorithms have not been studied. Jiang (2008) proposed an alternative quantile filling 

algorithm using moment invariance criterion and proved the convergence of the algorithm as 

well as the consistency of the estimators. Considering this, the combination of moment 

estimation and conditional quantile filling is not only feasible, efficient but also convenient. 

An important  purpose of this paper is to compute a lower confidence limit for reliability, 

based on pseudo complete data. With respect to the performance, we usually require an 

assurance regarding the minimum value of some indices. Hence, lower confidence limits are of 

interest. Heard and Pensky (2006) considered the construction of confidence intervals for 



reliability when the sample size is relatively small. Some works on lower confidence limit can be 

found in Weerahandi (1993), Liu and Lindsay (2009) and McKane et al. (2005). The lower 

confidence limit for reliability in these papers is a standard one-sided interval estimation based 

on pivot statistics. A precondition for this approach is the complete lifetime data. When dealing 

with incomplete data, we utilize the quantile filling algorithm and replace the incomplete data by 

its corresponding pseudo complete data.  

The rest of this article is organized as follows. The general framework of grouped data, 

quantile filling algorithm, and a lower confidence limit for reliability are introduced in Section 2.  

From Sections 3 to 5, we derive the corresponding quantile filling algorithm and a lower 

confidence limit for reliability based on exponential distribution, Weibull distribution, and 

lognormal distribution, respectively. Section 6 provides three illustrative examples: a simulation, 

an application to characterize the lifetime distribution of aluminum coupon and an application to 

model the distribution of ball bearing. Some further discussions and concluding remarks are 

given in Section 7. 

2. Quantile Filling Algorithm and Lower Confidence Limit for Reliability 

Before introducing the data completion algorithm and the lower confidence limit for 

reliability, a list of notation is given here. 

LCLR lower confidence limit for reliability 

QF quantile filling 

ME moment estimation 

k sampling number 
 sample size of the ith sampling 
 failure number at the ith sampling 

,  pseudo complete data got at the mth step of QF algorithm for the 

jth item of the ith sampling 

,  pseudo complete data vector got at the mth step of QF algorithm 

for the ith sampling 

,  pseudo complete data vector got at the mth step of QF algorithm 

 

Suppose that at the ith inspection time   ,     units are drawn at random from the population 

and the number of expired units    is recorded (         ). We hence obtain a grouped data 

(          ) with sample sizes (          ) and sampling times (          ), where   is a 

pre-assigned constant. We can simply denote this grouped data set as {(                   }. 



Assume that the survival times are independent and identically distributed random variables 

from a continuous distribution with distribution function       , where   is the unknown 

parameter vector to be estimated. Let   
   

      
   

        

   
        

   
        

   
  denote the result 

(pseudo complete data) obtained after   cycles of the QF algorithm. Set      to be the moment 

estimation vector of the unknown parameter vector  , calculated from 

        
   

   
   

     
   

  (       ). 

Based on moment invariance criterion, the QF algorithm starts with an initial guess at the 

parameter vector     .      can be derived by regular parameter estimation techniques. QF 

algorithm seeks to replace the grouped data and to estimate the unknown parameters by 

iteratively applying the following two steps: 

QF step: Replace   
     

      
     

        

     
        

     
        

     
  by 
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 (         ,        ) is given by 
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and where   
   

         ⏟    
  

 . 

ME step: Calculate the mth moment estimate vector      based on 

        
   

   
   

     
   

 , using standard complete-data methods. 

Stop when                  , some pre-assigned tolerance limit.      is the estimate of 

the unknown parameter vector and      is the pseudo complete survival times. The tolerance 

limit   should be small enough to guarantee the accuracy. 
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where               is the survival time random variable. 

 

Below we derive a lower confidence limit for reliability based on this pseudo survival time 

data     . We do not give a derivation of the algorithm used to obtain the LCLR, but the 

following example should clarify its application. 

Suppose that the survival time T of a component is a random variable following the 

cumulative distribution        given before. The reliability function, say       , is then 

reduced to 

                        

The   lower confidence limit for reliability at time t, to be denoted by      , is given by 

  (2.1) 

It should be noted that the LCLR is a bivariate function of t and  . 

For convenience, we denote      (  
   

   
   

     
   

) as                   , where 

  ∑   
 
   . As can be evidenced,            is a random sample from       . It is assumed 

that                   is a pivotal quantity for   and that   follows a well-known sampling 

distribution, say chi-square distribution with n-1 degrees of freedom. By denoting   as   

                 , (2.1) can be rewritten as 

 (       )    

where 

  (2.2) 

Sample from chi-square distribution with n-1 degrees of freedom so we have data 

          . By substituting    into (2.2) we have data           , where    

 (                    ). The empirical distribution of random variable   is then obtained 

based on data           . The   lower quantile of this empirical distribution is the estimate 



for      , i.e. the lower confidence limit for reliability at time t under confidence level  . We 

can augment the sample size   to improve the estimation accuracy. 

3. The Case of Exponential Distribution 

Consider the simplest case when T follows the exponential distribution with the cumulative 

probability distribution given by 

  (3.1) 

where     and      is the scale parameter. The moment estimator of the unknown parameter 

  is 

 ̂    

where   is the sample mean. 

Given a grouped data {(                    } described in Section 2, from the 

exponential distribution (3.1), the QF algorithm can be specified as follows: 

QF step: Replace   
     

      
     

        

     
        

     
        

     
  by 

  
   

      
   

        

   
        

   
        

   
  where     

   
 (         ,        ) is given by 

 

and where   
   

         ⏟    
  

 . 

ME step: Calculate the mth moment estimate      based on         
   

   
   

     
   

 : 

          

where      is the sample mean. 

Stop when                , some pre-assigned tolerance limit.      is the estimate of 

the unknown parameter vector and      is the pseudo complete survival times.  

 

It is assumed that random variables            are independent and identically distributed 

from distribution (3.1) and let   ∑   
 
   . The pivotal quantity        has the chi-square 



distribution with    degrees of freedom, namely      
 . We express the unknown parameter as 

a function of pivotal quantity, that is        . The reliability function can hence be rewritten 

as 

       
 
    

  
   

For a given confidence level   of the LCLR at time t, we have 

 

As can be evidenced that                is an upper   quantile of the chi-square distribution 

with    degrees of freedom. In other words, given the upper   quantile of the chi-square 

distribution with    degrees of freedom denoted by    
    , the LCLR at time t is 

        
     

    
   

Mix all the ultimate pseudo complete data obtained from the above QF algorithm as 

        
   

     
   

 , where   ∑   
 
   . The algorithm for the LCLR is given as follow: 

Step 1：Calculate   ∑   
    

    and    
     where    

      is the upper   quantile of the 

chi-square distribution with    degrees of freedom; 

Step 2：Calculate         
     

    

  ; 

 

4. The Case of Weibull Distribution 

Weibull distribution is probably the most commonly used distribution in reliability modeling 

when the hazard rate is not constant. Assume that random variable T is distributed according to 

the Weibull model with the cumulative distribution function given by 

  (4.1) 



where         is the scale parameter and     is the shape parameter. Let       , then 

random variable   follows the extreme value distribution with the cumulative distribution 

function parameterized in terms of       and       

  (4.2) 

Note that         and    . The moment estimators of parameters   and   reduce to 

 ̂  
√ 

 
√                 ̂      ̂ 

where   is sample mean,        is sample variance and              is the Euler constant. 

Models (4.1) and (4.2) are equivalent models in the sense the procedure developed under 

one model can be easily used for the other model. For simplicity, we only consider the extreme 

value distribution (4.2) here. 

Generate a grouped data {(                   } from the extreme value distribution (4.2) 

as follows: 

At the ith round, draw randomly    items from the population. Record the number of units as 

  , whose values are no more than    (          ). In practice,    is the logarithm 

transformation of inspection time   . 

Let   
   

      
   

        

   
        

   
        

   
  denote the result (pseudo sample values) got 

after   cycles of the QF step (        and        ).                   is the moment 

estimate vector of the unknown parameter vector calculated based on 

        
   

   
   

     
   

 . 

The QF algorithm in which the population has the extreme value distribution (4.2) is 

constructed as follows: 

QF step: Replace   
     

      
     

        

     
        

     
        

     
  by   

   
 

     
   

        

   
        

   
        

   
  where     

   
  (       ,        ) is given by 

 



and where   
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 . 

ME step: Calculate the mth moment estimate vector      based on 
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where      is the sample mean and           is the sample variance. 

Stop when                  , some pre-assigned tolerance limit.      is the desired 

estimate vector and      is the ultimate pseudo complete data. 

Independent and identically distributed random variables        , denoting survival times, 

have extreme value distribution (4.2). Consider two dependent pivotal quantities:       

     and          where 
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The reliability function can be rewritten in terms of    and   : 
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For a given confidence level    of the LCLR at time t, we have 

 

We denote the upper   quantile of random variable   as   . As can be evidenced, the LCLR 

can be expressed as a function of   , which is given by: 

           
 



Combine all the pseudo complete data obtained from the above QF algorithm as      

(  
   

   
   

     
   

)            where   ∑   
 
   . The LCLR algorithm for       is 

given as follows: 

Step 1：Calculate   
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∑          

   ; 

Step 2：Draw independent and identically distributed sample from standard extreme value 

population, denoted as          ; 

Step 3：Compute 

    
 

 
∑   

 

   

             
 

   
∑         

 

 

   

  

Step 4: Repeating Step 2-Step 3   times so we have  and 

; 

Step 5: The empirical distribution    of random variable   is then obtained by computing 

; 

Step 6：Calculate            
  where    is the upper   quantile of  ; 

5. The Case of Lognormal Distribution 

Lognormal distribution is another commonly used distribution in reliability and lifetime data 

analysis. We assume that the random variable T follows a lognormal distribution with parameters 

  and  . The probability density function for the lognormal distribution is given by 

  (5.1) 

where         and     . The moment estimators of parameters   and    are 

 

where   is the sample mean and        is the sample variance. Let      , then random 

variable   is normally distributed with the probability density function reduced to 



  (5.2) 

The moment estimators of parameters   and    are thus given by 

 ̂               ̂          

  is the sample mean and         is the sample variance calculated on logarithm transformed 

data. 

Models (5.1) and (5.2) are equivalent models in the sense the procedure developed under 

one model can be easily used for the other model. For simplicity, we below just consider the 

normal distribution (5.2). 

Generate a grouped data {(                   } from the normal distribution (5.2) as 

follows: 

At the ith round, draw randomly    items from the population. Record the number of units as 

  , whose values are no more than    (       ). In practice,    is the logarithm transformation 

of inspection time   . 

Let   
   

      
   

        

   
        

   
        

   
  denote the result (pseudo sample values) got 

after   cycles of the QF step (        and        ).                   is the moment 

estimate vector of the unknown parameter vector calculated based on 

        
   

   
   

     
   

 . 

The QF algorithm in which the population has the normal distribution (5.2) is constructed as 

follows: 

QF step: Replace   
     

      
     

        

     
        

     
        

     
  by   

   
 

     
   

        

   
        

   
        

   
  where     

   
 (        and        ) is given by 

 

and where   
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 . 

ME step: Calculate the mth moment estimate vector      based on 
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     √                             

where      is the sample mean and            is the sample variance. 

Stop when                  , some pre-assigned tolerance limit.      is the desired 

estimate vector and      is the ultimate pseudo complete data. 

Independent and identically distributed random variables        , denoting survival time, 

have normal distribution (5.2). Consider two independent pivotal quantities: 
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The reliability function can be rewritten in terms of    and   : 
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For a given confidence level   of the LCLR at time t, we have 

. 

We denote the upper   quantile of random variable   as   . As can be evidenced, the LCLR 

can be expressed as a function of   , which is given by: 

               



Combine all the pseudo complete data obtained from the above QF algorithm as      

(  
   

   
   

     
   

)            where   ∑   
 
   . The LCLR algorithm for       is 

given as follows: 

Step 1：Calculate   
 

 
∑   

 
       

 

   
∑          

   . 

Step 2：Draw   independent and identically distributed samples from standard normal 

population, denoted as . 

Step 3 ： Draw   independent and identically distributed samples from chi-square 

population (    degrees of freedom), denoted as . 

Step 4: The empirical distribution    of random variable   is then obtained by computing 

. 

Step 5：Calculate              , where     is the upper   quantile of  . 

6. Numerical Examples 

Three illustrative examples are used here to show the applications of the proposed 

algorithms. Without loss of generality, we let the sample sizes equal to each other, namely 

           . 

 

6.1 Simulation on Exponential Distribution 

The simulation is run 10000 times for each combination of      . Various sampling 

schemes are considered, namely for fixed sample size   to increase sampling times   and vice 

versa. Four statistics are calculated: the average of the 10000 estimates of the unknown 

parameter, the coverage probability, the upper   quantile of the lower confidence limits for 

reliability at confidence level  , and the mean squared error of these lower confidence limits. 

Coverage probability is a widely used tool measuring prediction accuracy of confidence interval, 

see Wang (2008) and Kabaila and Leeb (2006). By the definition of lower confidence limit for 

reliability at inspection time t with confidence level  , we have 

 . (6.1) 



(6.1) can be rewritten as                 which means that      is the upper   quantile of 

     . Therefore the upper   quantile of the lower confidence limits, at confidence level  , is an 

estimator of the reliability     . 

Suppose that the true value of   in (3.1) is 60. We consider the reliability when the survival 

time is     (           ). The confidence level   is set to be 0.95. All the indices except 

the confidence level are selected arbitrarily. Results are given in Table 1. 

Because all the results in the fifth and sixth columns of Table 1 are satisfactory, the 

performance will be measured by two statistics: average estimate and coverage probability. It is 

observed that sampling frequency k has effects on MSE, smaller MSE along with lager k. The 

precision however mainly depends on the sample size n, higher precision along with larger n. In 

decision making, we pay more attention to sample size. Note that the result of sampling scheme 

               shows high degree of veracity. The coverage probability is almost the same 

as the confidence level. The upper   quantile of the lower confidence limits is also identical to 

the true reliability. The average estimate well coincides with the true value, with biasness less 

than 1.5%. The small MSE also demonstrates the accuracy of prediction. 

6.2 Lifetime of Aluminum Coupon 

The data set is reported by Birnbaum and Saunders (1958) and it represents the survival 

times (in circles) of aluminum coupon. Lee and Wang (2003) illustrated an application of the 

gamma distribution to these survival times. Upadhyay and Mukherjee (2010) used this data set to 

make a comparison between accelerated Weibull and accelerated Birnbaum-Saunders 

distributions. The 101 observations are listed in Table 2. The sample size and sampling times are 

set to be             . The inspection time vector (in circles) is stochastically set to be 

                                    . We conduct the sampling procedure described 

in Section 2 and obtain a grouped data set:  

                                                             . 

We apply Weibull distribution to model this data set. Via QF algorithm, the estimates of 

scale and shape parameters are obtained as ( ̂   ̂ )                 . The moment estimates, 

based on the original complete data, are ( ̂   ̂ )                 . For comparison, the 

maximum likelihood estimates based on the original complete data are also calculated: 

( ̂   ̂ )                 . We can see that the scale parameter estimates are very close to 



each other, so are the shape parameter estimates. A graphical comparison of the original 

observed data and the fitted cumulative distribution functions is presented in Fig. 1, which shows 

very good agreement. This is corroborated by a chi-square test of goodness of fit which yields a 

probability level of 0.4387. 

The reliability at time       is 0.95, based on the empirical distribution. Via the fitted 

Weibull distribution, the lower confidence limit for reliability (at time      ) is 0.9115 with 

confidence level       . The lower confidence limit is close to 0.95, showing the advantage of 

this method. 

6.3 Lifetime of Deep-Groove Ball Bearing 

The following 23 observations listed in Table 3 are used to illustrate the QF algorithm on 

lognormal distribution. This data set was originally given by Lieblein and Zelen (1956) for the 

lifetime (in millions of revolutions) of ball bearing. These data were later studied by 

Dumonceaux and Antle (1973), Pavur et al. (1992), and Upadhyay and Mukherjee (2008) etc.. 

The sample sizes are set to be                , with sampling time    . The inspection 

time vector (in millions of revolutions) is stochastically set to be                 . We 

conduct the sampling procedure described in Section 2 and obtain a grouped data set: 

                      . 

We use lognormal distribution to model this data set. Via the QF algorithm, the estimates of 

location and scale parameters are obtained as   ̂   ̂                  . The moment 

estimates, based on the original complete data, are   ̂   ̂                  . We can see 

that the two location parameter estimates are almost equal. The relative bias of  ̂  to  ̂ , namely 

  ̂   ̂    ̂ , is 0.0984. Considering the characteristic of grouped data and the sample size, the 

QF algorithm performs quite well. A graphical comparison of the original observed data and the 

fitted cumulative distribution functions is presented in Fig. 2, which also shows very good 

agreement. 

The reliability at time           is 0.95, based on the empirical distribution. Via the 

fitted lognormal distribution, the lower confidence limit for reliability (at time          ) is 

0.9025 with confidence level       . This lower confidence limit is close to 0.95, again 

showing the advantage of this method. 



7. Concluding Remarks 

In this paper, we proposed an approach dealing with grouped data. This technique provides 

us with pseudo complete data based on a quantile filling (QF) approach in Yu and Dai (1996) 

and Yu and Guo (2001). The parameter estimates and lower confidence limit for reliability can 

then be obtained using standard methods for complete data. Three commonly used lifetime 

distribution models are applied to illustrate this approach. Simulation and real data examples are 

presented to demonstrate the feasibility and effectiveness of the QF algorithm. It is observed that 

the QF algorithm works quite well even when the sample size is small. We have observed that 

the group size, n, is more important in determining the estimation accuracy than the grouping 

number, k. Therefore we suggest to reduce the grouping number in order to augment the group 

size in small sample size situation. 

It should be noted that QF algorithm is very flexible that it can be extended to different 

incomplete data types and different lifetime models. On model selection, we might assume 

different lifetime distributions for a given data set and conduct QF algorithm with each model. 

The ideal model is the one that gives the most precise predictions. The QF algorithm we 

suggested here belongs to single completion. Multiple completions can also be implemented. For 

example, we can combine conditional quantile with unconditional or conditional mean. These 

issues could be investigated later.  
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