Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in part, the material for valid purposes, providing the copyright owners are acknowledged using the normal conventions. Where specific permission to use material is required, this is identified and such permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising from use of the thesis for whatever reason. Information located in a thesis may be subject to specific use constraints, details of which may not be explicitly described. It is the responsibility of potential and actual users to be aware of such constraints and to abide by them. By making use of material from a digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms \& Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from Trinity College Library is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for your research use or for educational purposes in electronic or print form providing the copyright owners are acknowledged using the normal conventions. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

School of Natural Sciences, Trinity College Dublin Ireland

Characterisation of Miscanthus genetic resources: a combined analysis of plastid and nuclear microsatellites, nrDNA sequences, flow cytometry and morphology

A thesis submitted for the degree of Doctor of Philosophy
August 2012

By
Mariateresa de Cesare

Declaration

I, the undersigned, hereby declare that I am the sole author of this dissertation and that the work presented in it, unless otherwise referenced, is my own.

I also declare that the work has not been submitted, in whole or in part, to any other university or college for a degree or other qualification.

I authorize the library of Trinity College Dublin to lend or copy this dissertation on reauest.

Dedicated to my mother and sister for their love and support. And to Gabriele, for the joy he is going to bring in our lives!

ACKNOWLEDGEMENTS

I am very grateful to:

My supervisors Dr. Trevor R. Hodkinson and Dr. Susanne Barth for their help, advice and support throughout this research.

Dr. John Finnan and Dr. Kerstin Diekmann for sharing their experience in the field and in the laboratory respectively.

The few but precious friends met in Ireland, in particular Gianluigi Bigio and Marialaura Destefanis for being my family far from home, and Paola Ugoletti and Muriel Thomasset for their statistically significant support during hard times.

All the people met in Warwickshire for being there for me and for making me feel that all my work was worthwhile.

My family, for their love and patience in all these years.

Giulio, whose memory always gives me the strength to go on.

Financial support for this work was provided by a Teagasc Walsh Fellowship and the National Development Plan (NDP).

Summary

Miscanthus is a highly important forage and horticultural genus of perennial grasses (Poaceae) primarily native to South East Asia. Miscanthus is under intense global investigation as a biomass source for renewable energy production and several breeding initiatives are underway to develop new genotypes optimized for improved biomass and tolerance to a range of environmental stress conditions. A collection of 128 accessions belonging to the genus Miscanthus was established in Oak Park, Teagasc, Carlow, in 2008 and was investigated for morphological and molecular variation. Morphological traits were measured at the end of the second growing season and were compared with herbarium specimens of Miscanthus. Vegetative and inflorescence traits were scored and analysed using basic summary statistics, tests of normality and Principal Components Analysis (PCA). A large degree of morphological variation was recorded in the collections. The PCA of herbarium specimens was able to separate some species from others but there was also considerable overlap among species in the ordination, especially M. sacchariflorus, M. sinensis, M. condensatus and M. floridulus. These are known to be closely related and can interbreed. The PCA of the specimens from the Oak Park collection was less informative because of missing data due to lack of inflorescences (accessions did not flower). It was clear that morphology alone is often insufficient to distinguish taxa especially when inflorescence characters and ploidy information is lacking.

The ploidy level of the accessions in the collection was evaluated through flow cytometry. The ploidy included di-, tri- and tetraploids. All individuals labelled as M. \times giganteus showed a triploid status, together with the newly bred M. sacchariflorus \times M. sinensis hybrids. Most M. sinensis were diploids. Miscanthus sinensis Tea-62 was triploid and comparable to the value of the M. \times giganteus. A different situation was found for other non-diploid M. sinensis, in particular four M. sinensis 'Goliath' and the M. sinensis 'Zebrinus' Tea-33. In these the ratio measured by the flowcytometer was in between the values of the triploid M. giganteus and tetraploid M. sacchariflorus standards. The 'Goliath-like' hybrid is likely an autotriploid with three M. sinensis haploid sets, whereas M. \times giganteus is an allotriploid that is supposed to have two genomes from M. sinensis and one from M. sacchariflorus, which has a lower amount of DNA per haploid genome.
DNA sequences of the internal transcribed spacer of the nrDNA were obtained for 76 genotypes in the collection and compared for polymorphism. The SNPs were particularly
useful for differentiating M. sinensis, M. sacchariflorus and M. \times giganteus accessions and in combination with ploidy and morphology offer high potential for taxon identification.

To gather more markers for population level diversity and differentiation studies, new microsatellite markers for both plastid and nuclear genomes were developed. For the development of plastid markers the chloroplast genome information of Saccharum officinarum was used. The nuclear SSRs (nSSRs) were developed from the sequences of 192 clones obtained from microsatellite enriched library. New primer pairs for the amplification of nineteen nuclear loci and six chloroplast loci were developed. Both chloroplast (cpSSR) and nSSR primers were used to characterise DNA variation, to help establish gene pools and to better understand hybridization and introgression. Huge genotypic variation was found within the genus, mostly in the species M. sinensis. The markers showed wide utility across a large number of Miscanthus species and also some closely related genera. The analysis of the cpSSRs showed a high number of different haplotypes but with a clear bias in allele composition between M. sinensis and the two species M. sacchariflorus and M. \times giganteus, thus confirming M. sacchariflorus as the maternal lineage of the hybrid M. \times giganteus. The nSSRs were found to be highly polymorphic across the collection and transferable to closely related genera such as Saccharum. The new markers were also used in UPGMA clustering and Bayesian structuring analysis to group individuals according to their similarity. Three major clusters of individuals were defined using the Bayesian STRUCTURE analysis with nuclear markers (nSSRs) and two with plastid markers (cpSSRs).

In conclusion, the morphological, ploidy, sequence and microsatellite results highlighted the high level of diversity still unexplored in the genus and have clarified taxon identity of many accessions in the collection. A large set of new markers have been developed for the plant breeding and systematics community. The newly developed markers will be useful to further explore this diversity and to select useful traits for breeding of new and improved genotypes for biomass production.

Table of contents

Chapter 1: General introduction to the characterisation of genetic and morphological diversity of a collection of Miscanthus. 1

\qquad1.1.1 Miscanthus1
1.1.2 Miscanthus for energy production 2
1.1.3 Other uses of Miscanthus 6
1.1.4 Molecular markers for breeding 8
1.2 General aim of the thesis 10
Chapter 2:Morphological and cytological characterization of a collection of Miscanthus 11
2.1 Introduction 11
2.1.1 Origin and distribution of Miscanthus 11
2.1.2 Morphological description of Miscanthus s.s. species 13
2.1.3 Cytogenetics of the genus Miscanthus 18
2.1.4 Genome size studies in Miscanthus using flow cytometry 20
2.1.5 Sequencing of the internal transcribed spacer (ITS) of the nuclear ribosomal DNA 21
2.2 Aims 22
2.3 Material and methods 23
2.3.1 Plant material 23
2.3.2 Morphological characterization 23
2.3.3 Evaluation of ploidy 26
2.3.4 DNA sequencing 26
2.4 Results 28
2.4.1 Morphological characterization 28
2.4.2 Evaluation of ploidy 45
2.4.3 DNA sequencing 50
2.5 Discussion 54
2.5.1 Morphological diversity 54
2.5.2 Ploidy and molecular variation 55
2.6 Conclusions 58
Chapter 3: Characterisation of genetic diversity and population structure in a collection of Miscanthus and related species using newly developed chloroplast DNA microsatellite markers 59
3.1 Introduction 59
3.1.1 The chloroplast genome 59
3.1.2 Chloroplast molecular markers 61
3.1.3 Chloroplast molecular markers in Miscanthus 63
3.2 Aims 64
3.3 Materials and methods 65
3.3.1 Plant material and DNA isolation 65
3.3.2 Primer design, amplification and SSR selection 65
3.3.3 Genotyping 67
3.3.4 Data analyses 67
3.4 Results 70
3.4.1 Analysis of the cpSSR sequences 70
3.4.2 Genotyping 71
3.4.3 Cluster analysis with STRUCTURE 73
3.4.4 UPGMA tree 80
3.4.5 AMOVA analysis 82
3.4.6 Principal coordinates analysis 83
3.5 Discussion 85
3.6 Conclusions 89
Chapter 4: Characterisation of genetic diversity and population structure in a collection of Miscanthus and related species using newly developed nuclear DNA microsatellite markers 90
4.1 Introduction 90
4.1.1 Nuclear molecular markers 90
4.1.2 Nuclear molecular markers in Miscanthus 91
4.2 Aims 93
4.3 Materials and methods 94
4.3.1 Plant material and DNA isolation 94
4.3.2 Primer design 94
4.3.3 Amplification and SSRs detection 95
4.3.4 Genotyping 96
4.3.5 Data analyses 97
4.4 Results 99
4.4.1 Principal coordinates analysis 102
4.4.2 Cluster analysis with STRUCTURE 104
4.4.3 AMOVA analysis 111
4.5 Discussion 113
4.5.1 Nuclear molecular markers development. 113
4.5.2 Genetic characterisation of the germplasm collection 115
4.6 Conclusions 117
Chapter 5: General discussion to the characterisation of genetic and morphological diversity of a collection of Miscanthus 118
5.1 Introduction 118
5.1.1 Morphological and cytological characterization of a collection of Miscanthus 118
5.1.2 Characterization of genetic diversity using newly developed cpSSRs markers 120
5.1.3 Characterization of genetic diversity using newly developed nSSRs markers 121
5.2 Overview of the findings and future work 123
6 Reference 125
7 Appendices 136

List of Figures

Figure 1.1.1 Miscanthus \times giganteus trial at Oak Park Research Centre, Carlow and harvesting of dry culms ..3-4
Figure 1.1.2 Miscanthus sinensis and M. sacchariflorus and M. xgiganteus spikelets............ 5
Figure 2.1.1 Geographical distribution of Miscanthus s.s. species 18
Figure 2.4.1 Histograms with fitted curves displaying the distribution of data for herbarium specimens of nine Miscanthus species 31-32
Figure 2.4.2 Principal component analysis displaying the morphological variation in herbarium specimens of nine Miscanthus species.. 34

Figure 2.4.3 Histograms displaying the distribution of data for the Oak Park collection for each of the two replicates established in the field. 37-39
Figure 2.4.4 Plots using the Kolmogorov-Smirnov test for each character in the two replicates. 41-43

Figure 2.4.5 Histogram with fitted normal distribution curves and plots using the Kolmogorov-Smirnov test for the log transformed character raceme number in the first replicate.44
Figure 2.4.6 Principal component analysis displaying the morphological variation in the first replicate of the Oak Park collection 45
Figure 2.4.7 Flow cytometry results for, from top to bottom, a diploid M. sinensis 'Strictus', a triploid M. \times giganteus and a tetraploid M. sacchariflorus used as standard to estimate the ploidy 46
Figure 2.4.8 Internal transcribed spacer sequences of four polymorphic sites in M. \times giganteus, M. saccharifloris and M. sinensis. 51
Figure 3.1.1 Circular structure of the chloroplast genome of Lolium perenne. 61
Figure 3.4.1 Variation in chloroplast simple sequence repeat (cpSSR) motifs and flankingregions of cpSSR markers Sac-2 and Sac-10 in a range of Miscanthus accessions................ 70
Figure 3.4.2 Graphical representation of the Evanno parameters for the estimation of the Kvalue.74
Figure 3.4.3 Structure barplot assigning each accession to cluster I and cluster II. 75
Figure 3.4.4 UPGMA tree showing inter-relationships of individuals using a combination of
\qquad6 cpSSR markers.81-82
Figure 3.4.5 Graphical representation of the analysis of molecular variance (AMOVA) 83
Figure 3.4.6 Principal coordinates analysis scatterplot for the cpSSRs data 84
Figure 4.3.1 An example of amplification of the initial sample using Mis-14 and Mis-15 markers. 95
Figure 4.4.1 UPGMA tree showing inter-relationships of individuals using a combination of19 SSR markers.100-101Figure 4.4.2 Principal coordinates analysis scatterplots in three dimensions and relative two-dimensional projections for the nuclear SSR data.103
Figure 4.4.3 Graphical representation of the Evanno parameters for the estimation of the K value. 106
Figure 4.4.4 Structure barplot assigning each accession to cluster I, cluster II and cluster III110

List of Tables

Table 2.4.1 Summary statistics for qualitative traits in herbarium specimens of Miscanthus 28-31
Table 2.4.2 Eigenvalues for the first three components of the PCA on herbarium specimens dataset. 34
Table 2.4.3 Summary statistics for 17 morphological traits in the Oak Park collection for each of the two replicates established in the field. 36
Table 2.4.4 Kolmogorov-Smirnov statistics and p-values for each log transformed character in the two replicates. 40
Table 2.4.5 Eigenvalues of the PCA of field measurements from the first replicate. 44
Table 2.4.6 Ploidy variation in the Oak Park collection. 47-49
Table 2.4.7 Nucleotides in four polymorphic positions of the ITS-1 for 76 genotypes of the Oak Park collection. 52-53
Table 3.3.1 List of primer pairs developed for cpSSR amplification in Miscanthus. 66
Table 3.4.1 List of cpSSRs 71
Table 3.4.2 Allele sizes of the six cpSSR loci grouped by species. 72-73
Table 3.4.3 Evanno parameters calculated over three repetitions for each K value ranging from 1 to 8 74
Table 3.4.4 Accessions assigned to each cluster according to STRUCTURE analysis. 76-80
Table 3.4.5 Analysis of molecular variance (AMOVA) between clusters as shown by the cluster analysis with STRUCTURE. 83
Table 3.4.6 Percentages of variation, for each axis and cumulative, explained by the first three axes. 84
Table 4.3.1 List of 30 primer pairs developed for SSR amplification and genotyping. 96
Table 4.4.1 Expected heterozygosity (He) and PIC values for 19 nuclear SSR markers 99
Table 4.4.2 Eigenvalues and percentage of variation expressed by each axis for nSSRs dataset. 102
Table 4.4.3 Evanno parameters calculated for each of the three runs for K values from one to eight. 105
Table 4.4.4 Accessions assigned to each cluster according to STRUCTURE analysis. 106-1 -110
Table 4.4.5 Analysis of molecular variance (AMOVA) between groups as shown by the principal coordinates analysis112
Table A List of accessions used in this study. 136-140
Table B Characters and relative scores for herbarium specimens of Miscanthus. 141-146
Table C Morphological characters scored in the Oak Park collection for the first replicate.147-151Table D Morphological characters scored in the Oak Park collection for the second replicate.152-156
Table E Haplotype information obtained with cpSSRs 157
Table F 80 nSSRs developed from a microsatellite enriched library for Miscanthus 158-159

Chapter 1

General introduction to the characterisation of genetic and morphological diversity of a collection of Miscanthus

1.1 Introduction

1.1.1 Miscanthus

Miscanthus is a perennial rhizomatous C_{4} grass genus native to East Asia, where it is found in a wide range of climatic conditions. The genus belongs to the 'Saccharum complex' together with Erianthus, Narenga, Saccharum and Sclerostachya due to the ability of the five genera to produce fertile offspring. Some authors include the southern African species known as Miscanthidium in the genus Miscanthus on the basis of morphology but it is likely that their close similarity is due to convergence (Hodkinson et al. 2002a). Miscanthus sensu stricto (s.s) is well defined and has a basic chromosome number of 19 compared to most of its close relatives that have $\mathrm{x}=10$ (Linde-Laursen 1993).

Miscanthus is native to eastern or south-eastern Asia. Its natural range extends from northeastern Siberia, $50^{\circ} \mathrm{N}$, in the temperate zone to Polynesia $22^{\circ} \mathrm{S}$, in the tropical zone, westward to central India and eastward to Polynesia (Clifton-Brown et al. 2008). Miscanthus species are therefore adapted to a wide range of climatic zones, from the coast up to high mountain, and to different habitats. Some species such as M. floridulus (Labill.) Warb. generally grow best at sea level in tropical climates, whereas other species such as M. paniculatus (B. S. Sun) Renvoize \& S. L. Chen can tolerate high elevation conditions (Chen and Renvoize 2006).

Miscanthus was introduced in Europe in the $19^{\text {th }}$ century as an ornamental plant. Later, in 1935, the hybrid M. \times giganteus Greef et Deuter ex Hodkinson \& Renvoize, was collected in Yokohama, Japan, by the Danish botanist Aksel Olsen and was distributed throughout Europe. This hybrid has raised interest in the last decades as a potential bioenergy crop due to its ability to produce high yields of biomass (Clifton-Brown et al. 2008).

1.1.2 Miscanthus for energy production

Currently, Miscanthus is ranked among the top nine potential perennial energy crops (Głowacka et al. 2010). Some characteristics of Miscanthus make these plants particularly attractive over other crops for bioenergy. Miscanthus is a C_{4} genus belonging to the tribe Andropogoneae which all share C_{4} photosynthesis (C4-NADP type). In fact nearly half (ca. 4500 spp.) of all grass species (ca. 11,000 spp.) are C_{4} (Grass Phylogeny Working Group II 2012). C4 grasses dominate in climates with sporadic rainfall, as they can photosynthesise better than C3 plants under warm temperature water stress. In such conditions they show a higher growth rate compared to C_{3} plants (Monteith 1978), thanks to a better water utilization during CO_{2} fixation.

In addition, unlike other C_{4} grasses, Miscanthus maintains high levels of photosynthesis at low temperature, with two key enzymes, pyruvate orthophosphate dikinase (PPDK) and Rubisco less affected by cold than its C_{4} relatives (Naidu et al. 2003), thus allowing Miscanthus species to adapt to a broad range of climatic conditions including temperate regions where C_{3} grasses usually predominate (Chen and Renvoize 2006).

Miscanthus is a perennial outbreeding grass genus. At the end of the growing season, minerals are translocated to the rhizomes, allowing the plant to re-use these nutrients in the following growing season (Jones and Walsh 2001). For agriculture this has the benefit of reducing the amount of fertilizer needed in the following season. It is also resistant to pests and diseases, and it is often hybridized with Saccharum in sugarcane breeding programmes to transfer such genes (James 2004).

Since 1983 field trials of Miscanthus \times giganteus have been carried out in Northern Europe, followed in 1993 by trials in Southern Europe, proving its potential in biomass production, as well as its limits. Field trials of Miscanthus \times giganteus in the 1990's did not survive the first winter after establishment in cold regions of Northern Europe (Pude et al. 1997), where M. sinensis hybrids were found to perform better (Clifton-Brown and Lewandowski 2000). It is an active area of research for Teagasc Research Station, Carlow Ireland (Figure 1.1.1). Recent field trials in China have also demonstrated the adaptability of the species and shown
it to tolerate a wide range of habitats. For example, Yan et al. (2012) used field trials on M. sinensis, M. sacchariflorus and M. lutarioriparius (B. S. Sun) Renvoize \& S. L. Chen across a range of sites in China and were able to select genotypes best suited to each of the contrasting habitats.
(a)

Figure 1.1.1 (a) Miscanthus \times giganteus trial at Oak Park Research Centre, Carlow . Photo by John Finnan, with permission.

Figure 1.1.1 (b) Harvesting of dry culms in a Miscanthus \times giganteus trial at Oak Park Research Centre, Carlow. Photo by John Finnan, with permission.

As a sterile hybrid with $2 \mathrm{n}=3 \mathrm{x}=57$ chromosomes, Miscanthus \times giganteus could be propagated only vegetatively through tissue culture or rhizome division. In nature Miscanthus reproduces through seeds, and the possibility of using direct sowing would reduce the costs of field establishment. Furthermore, clonality increases the susceptibility of Miscanthus fields to pests and diseases (Clifton-Brown et al. 2008).

For all these reasons, attention has recently turned towards the putative parents of Miscanthus \times giganteus, i.e. M. sinensis and M. sacchariflorus to obtain new hybrids (Jones and Walsh 2001). Among all Miscanthus species, M. sinensis has the widest geographical distribution in Asia, reflected in a considerable phenotypic variation for crucial traits, whereas M. sacchariflorus has a more limited distribution (Clifton-Brown et al. 2008). Miscanthus floridulus also has a wide distribution but is more tropical in its distribution, extending out in to Indonesia and the pacific from SE Asia but it is not generally considered a cold tolerant 4
genus (Hodkinson et al. (2002b); Chapter 2 this thesis). Therefore the species with most potential for biomass and bioenergy production are considered to be M. sacchariflorus, M. sinensis and \times giganteus. Miscanthus sinensis is distinguished from M. sacchariflorus and M. \times giganteus by its awned spikelets and shorter callus hairs (Figure 1.1.2). It also generally does not have culm buds that are characteristic of the other two species. Distinguishing M. \times giganteus from M. sacchariflorus requires detailed genetic analysis and ploidy determination (see Chapter 4)

Figure 1.1.2 (a) Miscanthus sinensis and (b) M. sacchariflorus and M. xgiganteus spikelets. $\mathrm{G}=$ glumes, $\mathrm{L}=$ lemma, $\mathrm{S}=$ spikelets, $\mathrm{INF}=$ inflorescence (Modified from Osada (1989).

In order to make crosses, the first problem to overcome is the delay in flowering time between the two species. Tests carried out at five different locations in Europe showed that M. sinensis is day neutral while in M. sacchariflorus some genotypes requires similar conditions to M. sinensis for flowering and some others are day sensitive (Lewandowski and Clifton Brown 2000).

Flowering time is an important trait that could also affect yield quality and quantity in Miscanthus (Jensen et al. 2011). In trials of Miscanthus genotypes, Jensen et al. (2011) showed that M. sinensis genotypes were the earliest to flower and differences in flowering time across the entire collection ranged from 160 to 334 days (June to November), and photoperiods between 7.8 and 16.6 h , in Wales, UK. Early flowering shortens the growing season, but when plants do not flower before the autumn frost in northern regions, the reuptake of nutrient by rhizomes is less effective, resulting in the loss of important elements for growth as well as a higher ash content (Clifton-Brown et al. 2008).

The composition of the biomass is also influenced by the amount of fertilizer used, the genotype and the harvest time, that should follow the ripening, because leaves contribute most to ash, and allow for the translocation of nutrients (Clifton-Brown et al. 2008). In Europe, most of the Miscanthus is used in combustion, in both straw-burning power station and in co-combustion with coal. Combustion in pure biomass-burning power stations and production second generation fuels such as ethanol are going to be the future utilizations for Miscanthus (Vermerris 2008).

1.1.3 Other uses of Miscanthus

Paper pulp production

The European deficit in new cellulose fibre has raised interest in the use of non-woody crops for paper pulp production. The raw materials which are most widely used are straw, bagasse and bamboo. Miscanthus sacchariflorus is one of the most used raw materials in China. Investigation had been carried out both in China and in different European countries in order to improve the yield and quality of the paper pulp produced using conventional and innovative processes (Jones and Walsh 2001).

Miscanthus has been also investigated as a source of fibre to be used in building materials (Jones and Walsh 2001). Miscanthus fibre is particularly suitable for the production of medium density fibre-board (MDF) with features comparable with those made from wood chips. A light natural sandwich material (LNS) with wood-based layers and a core of Miscanthus stalks has been developed in the Wilhelm-Klauditz-Institute at Braunschweig in Germany (Visser and Pignatelli 2001). LNS could have a wide range of application, substituting plastic or light metal materials as well as wood-based ones.

For centuries Miscanthus has been used as thatching material in Japan (Visser and Pignatelli 2001). In Denmark local thatchers have shown interest in substituting reed (Phragmites australis L.) with Miscanthus, as the quality seems similar. Plots of selected clones of M. sinensis have been grown, since this species looks more suitable than $M . \times$ giganteus, whose stems are too thick. The stems from these plots were used to thatch small huts. The stability is thought to be the same as for reed. Miscanthus tinctorius is also used in Japan for thatching. Both M. sinensis and M. tinctorius are now planted at the Research Centre Foulum, DIAS (Danish Institute of Agricultural Science, Denmark). Harvesting tests were also carried out showing that it is possible to use existing machines for harvesting Miscanthus for thatching with few modifications. In comparison with reed, Miscanthus grows also on dry land and the cost for harvesting has been estimated to be at least 50% lower than reed (Jones and Walsh 2001).

Bioremediation

Intensive agriculture, industrialization, and other factors has led in last centuries to the expansion of areas that are badly damaged, contaminated or destroyed by human activity. Since contaminated lands are not suitable for food production, they can be converted to production of non-food crops, such as Miscanthus, avoiding aerial dispersion, runoff and improving visual impact (Visser and Pignatelli 2001). Miscanthus \times giganteus is able to grow on heavy metal polluted soils as in Cornwall, UK, where its growth and heavy metal uptake was tested on lands subjected for centuries to intense tin mining activity to study the implication of the combustion of such plants for energy production (Visser and Pignatelli
2001). Results show that the uptake of heavy metals was not higher than plants grown on unpolluted soils, even if biomass production was lower, and that heavy metals content is not related to soil concentration.

Another study in Monte de Caparica in Portugal was performed to investigate the use of sewage sludge as fertiliser for Miscanthus, monitoring accumulation of heavy metals in the above-ground and below-ground biomass. At harvest, only roots and rhizomes contained a significant amount of metals from the sewage sludge, whereas there was no difference in metal concentration in the above ground fraction between plants grown on polluted and unpolluted soils, allowing the use of such plants for energy production (Jones and Walsh 2001).

Composting

Miscanthus has been also tested as a component for composts, mulches and plant growth substrates. Another possible use is as biological consolidation of wet organic waste. A decrease of organic matter was observed after six months by co-composting Miscanthus with sewage sludge and paper pulp effluents (Jones and Walsh 2001). This compost could be good as fertiliser, but there are still problems in cadmium and chromium content (Visser and Pignatelli 2001).

1.1.4 Molecular markers for breeding

Despite all the promising features of Miscanthus, breeding for biomass in Europe is still in its infancy. Huge phenotypic variation has been observed in M. sinensis and M. sacchariflorus for all the interesting traits for biomass production. Starting from its putative parents, breeding of new and improved genotypes of $M . \times$ giganteus suitable for different growing conditions throughout Europe, is feasible and underway in several research institutes such as Teagasc, The Institute of Biological, Environmental and Rural Sciences (IBERS) in Aberystwyth Wales, and Plant Research International (Wageningen, the Netherlands). However, there is a need for molecular tools that allow for quick selection of hybrids with desirable traits.

Molecular markers such as simple sequence repeats (SSRs) or single nucleotide
polymorphism (SNPs) could be used for Marker Assisted Selection (MAS) (Ribaut and Hoisington 1998) to associate genotypic and phenotypic differences in order to screen new genotypes with no need to wait for the plants to reach a mature phenotype (usually three years in temperate zones) for selection, as well as a first step to map genes of interest along the Miscanthus genome (Clifton-Brown et al. 2008). For example a recent paper by Kim et al. (2012) used SSR markers to map 261 loci spanning 40 linkage groups and 1,998.8 cM, covering an estimated 72.7% of the genome.

1.2 General aim of the thesis

The primary aim of this work was to characterise the morphological and genetic diversity of a collection of Miscanthus established in Teagasc, Oak Park. Chloroplast and nuclear microsatellite markers, and morphological characters were used to determine genetic diversity, to assess the relationships between genotypes, to classify unidentified individuals, and to develop markers suitable for plant breeding initiatives such as quantitative trait loci (QTL) mapping and MAS.
In detail, the objectives of this thesis were to:

- assess morphological diversity in Miscanthus, using measurements of morphological characters from a collection of plants (Chapter 2);
- compare the morphological variation of the collection with the variation observed in herbarium specimens of selected Miscanthus species (Chapter 2);
- determine the ploidy level of the accessions in the collection (Chapter 2);
- investigate nuclear DNA variation in a collection of Miscanthus accessions using DNA sequencing of the highly polymorphic nuclear ribosomal region (ITS) (Chapter $2)$;
- design and optimize a new set of chloroplast simple sequence repeat (cpSSR) markers for Miscanthus (Chapter 3);
- describe cpDNA allelic and haplotypic diversity and assess the potential of the set of cpSSR markers for the definition of cytoplasmic pools (Chapter 3);
- design and optimize a new set of nuclear simple sequence repeat (nSSR) markers for Miscanthus (Chapter 4);
- assess genotypic variation in the collection and relationships between genotypes (Chapter 4)

A peer-reviewed publication has already been published in an international journal from Chapter 3 of this thesis (de Cesare et al. 2010) and others are in preparation for each of the other chapters.

Chapter 2

Morphological and cytological characterization of a collection of Miscanthus

2.1 Introduction

2.1.1 Origin and distribution of Miscanthus

The genus name Miscanthus (from the Greek mischos $=$ pedicel and anthos $=$ flower) was first used by Andersson in 1855 referring to 15 grass species (Andersson 1855). The genus belongs to the tribe Andropogoneae, subtribe Saccharinae, in the family Poaceae and it is closely related to other genera of the "Saccharum complex" including Erianthus, Narenga, Saccharum, and Sclerostachya (Hodkinson et al. 2002c).

The description of the genus by Chen and Renvoize (2006) is:
"Perennial, tufted or rhizomatous. Culms slender to robust, erect, solid. Leaves basal or cauline; leaf blades large, linear, flat, broad or narrow; ligule membranous. Inflorescence a panicle, often large and plumose, of racemes arranged on a long or short axis; raceme axis tough, internodes slender, spikelets paired, both spikelets pedicelled, pedicels slender, flattened, slightly clavate. Spikelets similar, lanceolate, dorsally compressed; callus bearded with hairs shorter than, as long as, or longer than the spikelet; glumes papery or membranous; lower floret usually represented by a hyaline sterile lemma; upper floret bisexual, lemma hyaline, awned or awnless. Stamens 2-3. Caryopsis oblong or ellipsoid. Fourteen species, mostly in SE Asia and the Pacific Islands, extending to tropical Africa; seven species (two endemic) in China. This genus is readily recognized by its paniculate inflorescence of racemes, which have a tough rachis, and also by its paired spikelets, both of which are pedicelled. "

In 1930 Honda divided the genus into two sections, Triarrhena and Eumiscanthus, including 20 species and 10 varieties. Afterwards, several researchers (Ohwi 1942; Keng 1957; Swallen 1961) disagreed with this classification, reducing the number of recognised species in the genus.

On the basis of both cytological and morphological studies on the Japanese Miscanthus species, Adati (1962) divided the genus Miscanthus into 3 sections:

1. Triarrhena Honda;
2. Eumiscanthus Honda;
3. Kariyasua Ohwi.

The section Triarrhena includes several varieties of M. sacchariflorus and it is characterized by creeping stout rhizomes, dense bristles on the leaf sheath when young and culm nodes from which aerial branches and roots develop.
The section Eumiscanthus includes M. sinensis and M. floridulus and lacks branching from culm nodes.
The section Kariyasua includes the species M. tinctorius, M. oligostachyus and M. intermedius all of which are endemic to Japan.
In 1964, Lee separated the Asian species of Miscanthus into four sections:

1. Triarrhena Honda;
2. Miscanthus - Eumiscanthus Honda;

- Subsect. Sinensis
- Subsect. Miscanthus
- Subsect. Condensati

3. Kariyasua Ohwi ex Hirayoshi;
4. Diandra Keng.

The section Diandra included M. nepalensis.

The use of molecular phylogenetics (Hodkinson et al. 2002c) shows that some species included in Miscanthus s.l. (s.l.: in broad sense) are more closely related to other genera than Miscanthus. For example the 4 species from Africa, sometimes classified under the genus Miscanthidium, were clearly separate from the Asian Miscanthus. These also differ in their basic chromosome number ($x=10$ instead of $x=19$). Synonymy is a large problem in the genus. To illustrate the problem of synonymy, Clifton-Brown et al. (2008) listed the species names given in 'The International Plant Names Index' (IPNI at
http://www.ipni.org/index.html). Over 60 Miscanthus species are listed but only 11-12 of these arerecognized as valid names under Miscanthus s.s.

The genus Miscanthus sensu stricto can be restricted to a dozen species and one hybrid that are morphologically well characterized (Clifton-Brown et al. 2008):

- M. condensatus Hack. (=M. sinensis ssp. condensatus (Hack.) T. Koyama)
- M. floridulus (Labill.) Warb.
- M. intermedius (Honda) Honda
- M. longiberbis Nakai
- M. lutarioparius (B. S. Sun) Renvoize \& S. L. Chen
- M. oligostachyus Stapf.
- M. paniculatus (B. S. Sun) Renvoize \& S. L. Chen
- M. sacchariflorus (Maxim.) Hack.
- M. sinensis Anderss.
- M. tinctorius (Steud.) Hack.
- M. transmorrisonensis Hayata
- M. \times giganteus Greef \& Deuter ex Hodkinson and Renvoize

They are all perennial rhizomatous, or sometimes tufted, grasses with erect cane-like stems up to 7 m tall (M. lutarioparius). The inflorescence is terminal with a cluster of plumose racemes bearing awned or awnless spikelets in pairs, both pedicellate. The inflorescence axis may be short with the inflorescence subdigitate with long racemes, as found in M. sinensis, or it may be long bearing short racemes, as in M. floridulus.

Miscanthus was introduced in Europe in the $19^{\text {th }}$ century as an ornamental plant. Later, in 1935, the hybrid M. \times giganteus, was collected in Yokohama, Japan, by the Danish botanist Aksel Olsen and was distributed throughout Europe (Clifton-Brown et al. 2008).

2.1.2 Morphological description of Miscanthus s.s. species

Modified from Osada et al. (1989); Chen and Renvoize (2006)

Miscanthus condensatus is similar to M. sinensis in its gross morphology and many taxonomists considered this a variety of M. sinensis. However some evidence pointed out that this species is completely independent from M. sinensis and may derive from M. floridulus (Hodkinson et al. 2002a). Miscanthus condensatus has a densely tufted culm, erect, 1-2.5 m tall and with a diameter over 2 cm . The leaf blades are $20-80 \mathrm{~cm}$ long and $15-40 \mathrm{~mm}$ wide, flat, light green in colour, glossy on the above surface and glaucous beneath. The margins appear smooth but look dentate at magnification. The ligules are 2 mm tall and truncate and glabrous. The panicle is made up of densely clustered racemes, thicker and denser than in M. sinensis. The spikelets are $5-7 \mathrm{~mm}$ long and bearded at their base with $5-8 \mathrm{~mm}$ long hairs. Awns are exserted. For distributions of species see Figure 2.1.1.

Miscanthus floridulus

Miscanthus floridulus is densely tufted in large clumps $1.5-3.5 \mathrm{~m}$ tall. The leaf blades are flat, $30-80 \mathrm{~cm}$ long and $15-35 \mathrm{~mm}$ wide with very rough margins, white midrib, glabrous except on their base. The ligules are 2 mm tall and fimbriate on upper margin. The radical leaves in Miscanthus floridulus could remain green during the winter. The panicle is two times longer than wide, with numerous racemes $8-20 \mathrm{~cm}$ long on an axis $30-50 \mathrm{~cm}$ long. The spikelets are 3-3.5 mm long with white hairs $4-6 \mathrm{~cm}$ long. The glumes are alike, as long as the spikelets, glabrous or with short hairs on their back. The lower lemma is hyaline and nerveless, the upper one is deeply bifid and bears an awn $8-15 \mathrm{~mm}$ long. For distributions of species see Figure 2.1.1.

Miscanthus intermedius

Miscanthus intermedius has tufted or solitary culms, 1-1.8 m tall and with a diameter of 5 mm . The leaf blades are $20-60 \mathrm{~cm}$ long and 1-2.5 cm wide, rough on margins, glaucous and sparsely pilose beneath. The ligules are truncate, 1-2 mm tall. The panicle bears $6-10$ racemes $10-15 \mathrm{~cm}$ long digitated on a short axis. The spikelets are alike, $7-8 \mathrm{~mm}$ long with white hairs $5-7 \mathrm{~mm}$ long at their base. The two glumes are alike, both 3- or 5 - nerved with sparse hairs on their back. The awns are shorter than in M. oligostachyus and hardly exserted. The upper
lemma is hyaline with a hardly exserted awn 4-7 mm long. Miscanthus intermedius has a larger vegetative part than M. oligostachyus. For distributions of species see Figure 2.1.1.

Miscanthus lutarioriparius

Miscanthus lutarioriparius is characterised by stout cane-like culms, 3-7 m tall and with a diameter of $10-20 \mathrm{~mm}$ at the base, branching at nodes. The nodes are glabrous in the lower part of culms and hairy in the upper part, with lower nodes bearing adventitious roots. The leaf blades are flat and linear, $50-90 \mathrm{~cm}$ long and $1.5-3 \mathrm{~cm}$ wide, with a prominent midrib, pilose at base and acuminate at apex. The ligule is 0.5 mm tall with pilose margin. The panicle is large and with a glabrous main axis and $20-40$ racemes $10-30 \mathrm{~cm}$ long. The spikelets are 4 6.5 mm long, pilose and without awns, with hairs at base exceeding the spikelet. The glumes are unequal but both with attenuate apex. The lower is 3-5-veined, pilose on its back with 10 mm long hairs; the upper is 3 -veined, glabrous on back but with pubescent margins. The lower lemma is lanceolate and hyaline, nerveless and pilose; the upper is similar but smaller. For distributions of species see Figure 2.1.1.

Miscanthus oligostachyus

Miscanthus oligostachyus is characterised by a few tufted or solitary culms, $60-90 \mathrm{~cm}$ tall and with a diameter of 1-3 mm. The 4-6 nodes along it are tomentose. The blades of the lower leaves are linear, 13-40 cm long and 6-14 mm wide, whereas the upper ones are narrowly lanceolate with an obtuse base and less than 10 cm long. Leaves are thinner and softer than in M. sinensis, with smooth margins and are loosely pilose on the lower or on both surfaces. The ligule has a lacerate and ciliate upper margin. The panicle is composed by 2-5 racemes 7-15 cm long, subdigitatelly arranged on the main axis. The spikelets are alike, tawny, $7-8 \mathrm{~cm}$ long and with hairs at their base. The glumes are as long as spikelets, the lower 3-nerved and with two teeth and the upper 3- or 5-nerved and acuminate at apex. The lower lemma is hyaline, faintly 1-nerved; the upper lemma is 4-5 mm long, hyaline, awned at apex with an awn 8-15 mm long and exserted. For distributions of species see Figure 2.1.1.

The culms of M. paniculatus are $30-100 \mathrm{~cm}$ tall with a diameter of 3-4 mm and 3-4 nodes. The leaf blades are flat and linear, $10-40 \mathrm{~cm}$ long and $2-8 \mathrm{~mm}$ wide, glabrous or pilose, acuminate at apex and narrowed to midrib at base. The ligules are $0.5-1.5 \mathrm{~mm}$ tall and ciliate. The panicle is $5-15 \mathrm{~cm}$ long, with a glabrous main axis bearing short racemes of $2-6 \mathrm{~cm}$. The spikelets are lanceolate, 5-6 mm long with short hairs at base. The two glumes are unequal. The lower glume, 5 mm long, is pilose on back, faintly 2 - or 3- nerved or nerveless, with apex 2 -toothed. The upper glume is 6 mm long, faintly 3 - or 5 - nerved, with pilose margins and apex acuminate. The lower lemma is lanceolate and $4.5-6 \mathrm{~mm}$ long, 3 - or 5 - nerved, the upper one is $\sim 5 \mathrm{~mm}$ long, 1 - or 3- nerved, acuminate with pilose margins and a straight awn, 2 mm long. For distributions of species see Figure 2.1.1.

Miscanthus sacchariflorus

The culms in M. sacchariflorus are solitary and erect, 1-2.5 m tall and with a diameter of 11.5 cm at their base. The leaf blades are $20-80 \mathrm{~cm}$ long and $1-3 \mathrm{~cm}$ wide, with scabrous margins and glaucous beneath. The ligules bear a fringe of short hairs. The panicle is composed by numerous racemes $20-35 \mathrm{~cm}$ long and pendulous, subdigitated on a short central axis. Spikelets are paired, 5-6 mm long and bearded on base with white hairs 10-15 mm long. The glumes are both 3 - nerved, the lower long as the spikelet, the upper shorter, rounded and hairy on back. The lower lemma is nerveless or faintly nerved, whereas the upper lemma is awnless or short-awned. For distributions of species see Figure 2.1.1.

Miscanthus sinensis

The species M. sinensis is characterised by a densely tufted culms, erect, $0.6-2 \mathrm{~m}$. tall and with a diameter of $3-7 \mathrm{~mm}$ at their base. The leaf blades are $20-60 \mathrm{~cm}$ long and $6-20 \mathrm{~mm}$ wide, with rough margins and a prominent white midrib. The ligules are $\sim 1.5 \mathrm{~mm}$ tall and shortly ciliate on the upper margin. The panicle is nodding, bearing $10-25$ racemes $10-30 \mathrm{~cm}$ long on a central axis shorter than racemes. The spikelets are paired, alike, a short and a long pedicellate one, $5-7 \mathrm{~mm}$ long with white or purplish hairs $7-12 \mathrm{~mm}$ long at their base. The two glumes are equal, as long as the spikelets. The lower is 5- or 7-nerved, whereas the upper
is 3-nerved. The lower lemma is membranous, hyaline and nerveless. The upper lemma is bifid with an awn $8-15 \mathrm{~mm}$ long, exserted and geniculate. For distributions of species see Figure 2.1.1.

Miscanthus tinctorius

Miscanthus tinctorius has a loosely tufted culm, $60-100 \mathrm{~cm}$ tall, with a diameter of 2-4 mm and tomentose nodes. The leaf blades are $8-20 \mathrm{~cm}$ long and $6-12 \mathrm{~mm}$ wide, glabrous except at their base. The sheath can be hairy or not. The ligules are rounded and $2-3 \mathrm{~mm}$ tall. The panicle is composed by 3-10 racemes $7-12 \mathrm{~cm}$ long on a short axis. The spikelets are $5-6 \mathrm{~mm}$ long, with short hairs at the base. The glumes are tawny, as long as the spikelets and pilose on their back. The lower is 3 - nerved and bifid at apex, the upper one acute. The lower lemma is lanceolate, faintly 1 - nerved; the upper lemma is 1 -nerved, unawned or short- awned. M. tinctorius is smaller than M. sinensis, with shorter but erect racemes and lanceolate uppermost leaf. For distributions of species see Figure 2.1.1.

Miscanthus transmorrisonensis

The species Miscanthus transmorrisonensis is similar to M. sinensis but characterised by leaves less than 5 mm wide and panicle-branches usually not tufted. The panicle has a main axis two thirds as long as the inflorescence and is usually purplish. The spikelets are less than 4 mm long. For distributions of species see Figure 2.1.1.

Miscanthus \times giganteus

Miscanthus \times giganteus has erect culms, unbranched, $\sim 2 \mathrm{~m}$ tall with a diameter of $5-10 \mathrm{~mm}$ with cauline leaves. The leaf blades are flat, $50-66 \mathrm{~cm}$ long and $2.2-2.5 \mathrm{~cm}$ wide, with scabrid margins, glabrous and acuminate. The ligules are membranous, 2 mm long and ciliate dorsally. The panicle holds 24 racemes $10-20 \mathrm{~cm}$ long on a glabrous axis 12 cm long. The spikelets have glabrous pedicels $1-3.5 \mathrm{~mm}$ long. Each spikelet is 2-flowered, lanceolate and $4.5-5.5 \mathrm{~mm}$ long. The glumes are both coriaceous, as long as spikelet, acuminate. The lower glume has hairs on the back; the upper one is ciliate on the upper margin. The lemma is hyaline, with ciliate margins. For distributions of species see Figure 2.1.1.

Figure 2.1.1 Geographical distribution of Miscanthus s.s. species (source Hodkinson, unpublished; with permission).

2.1.3 Cytogenetics of the genus Miscanthus

The basic chromosome number in the genus Miscanthus is $x=19$ (Clayton and Renvoize 1986). Miscanthus sinensis usually has $2 \mathrm{n}=38$. This species exhibits a regular meiosis. All 46 M. sinensis pollen mother cells (PMC) analysed (Linde-Laursen 1993) showed 19 ring bivalents at diakinesis, indicating that this species is a diploid. The karyotype obtained through a chromosome spread performed on root tips includes 2 metacentric satellite chromosomes (SAT- chromosome) with a long proximal nucleolar constriction in their short arms. A diploid number of $2 \mathrm{n}=38$ has been reported also for M. sinensis var. gracillimus, M. sinensis var. variegatus and M. sinensis var. zebrinus. Aneuploids in this species have also been observed, ranging from 35-41 chromosomes (Takizawa et al., 1952).

Miscanthus sacchariflorus has a chromosome number of $2 \mathrm{n}=76.38$ bivalents were observed in most meiotic preparations examined by Adati (1958). As expected, M. sacchariflorus has only one pair of SAT- chromosomes morphologically similar to the one in M. sinensis
(Linde-Laursen 1993). A $3 x$ - hybrid was produced crossing a diploid M. sinensis var. condensatus and a tetraploid M. sacchariflorus (Hirayoshi et al. 1955). Meiosis in this hybrid showed 17-21 bivalents, univalent and occasionally trivalents at first division. This can be explained assuming that M. sacchariflorus has 2 genomes, one from M. sinensis and one from an unidentified species with partial homology with M. sinensis (it would now be considered to be $M . \times$ giganteus).

Miscanthus \times giganteus is sterile: it produces few seeds which give rise to a highly variable offspring (Nielsen 1987) and can be propagated only vegetatively. A first cytogenetic study showed that metaphase preparations from root tips have $2 \mathrm{n}=58$ or in few cells, $2 \mathrm{n}=57$ chromosomes (Linde-Laursen 1993). The chromosomes are all metacentric except 8 acrocentric ones, and only 1 SAT- chromosome is present. Some metaphases exhibit small bodies positive to the Feulgen staining used that are thought to be accessory (B) chromosomes. The analysis of PMCs at diakinesis shows few trivalents but an equal number of bivalents and univalents, suggesting the presence of two highly homologous genomes and a third genome with low homology with the two. M. \times giganteus is probably an hybrid between a diploid and a tetraploid having a genome in common. The diploid parent is supposed to be M. sinensis, whereas the tetraploid one is probably a M. sacchariflorus, which has stout rhizomes like $M . \times$ giganteus and unlike all the other Japanese species.

A subsequent study disagreed with this finding, suggesting a karyotype for M. \times giganteus of $2 \mathrm{n}=57$ (Lafferty and Lelley 1994), with only metacentric and submetacentric chromosomes found. The presence of 2 SAT- chromosomes very similar in morphology suggests an allotriploid origin for this hybrid. Furthermore, no B-chromosome was observed. Meiosis was irregular and characterized by stickiness of chromosomes.

To confirm the hybrid origins of $M . \times$ giganteus a molecular study was necessary (Hodkinson et al. 2002b). AFLP data were used to build a neighbour joining (NJ) tree for M. \times giganteus and its putative parental species, M. sinensis and M. sacchariflorus (Hodkinson et al. 2002b) . DNA fragments obtained from the AFLP analysis with four primer pairs were scored. The NJ tree shows that $M . \times$ giganteus is equally distant from both M. sinensis and M. sacchariflorus, in contrast with a higher distance between the two species. DNA sequencing and cytogenetic analysis using in situ hybridisation also confirmed the hybrid nature of $M . \times$ giganteus
(Hodkinson et al. 2002c). Two different 2 n sets has been found in M. condensatus ($=$ M. sinensis ssp. condensatus): $2 \mathrm{n}=38$ and 57 . The latter exhibits an irregular meiosis with a high number of trivalents (Adati and Mitsuishi 1956; Adati 1958) suggesting that this might be an autotriploid.

Miscanthus oligostachyus and M. tinctorius have a diploid set of $2 \mathrm{n}=38$ with normal bivalents in meiosis and one pair of SAT- chromosome each in somatic cells, whereas M. intermedius has been found to be hexaploid with a $2 \mathrm{n}=114$, of which 6 are SATchromosomes, with formation of multimers at diakinesis (Adati 1958).

2.1.4 Genome size studies in Miscanthus using flow cytometry

To estimate the ploidy level in plants flow cytometry has become the most popular method. The process requires only a small quantity of fresh leaf material and the results are ready in a few minutes (Doležel et al. 2007). The preparation of the tissue can be divided in two phases: extraction and staining. During the first phase, a small piece of leaf is chopped with a razor blade in a suitable buffer to extract whole nuclei from the tissue. The liquid obtained is then filtrated and stained with a fluorochrome that binds specifically DNA. For ploidy estimation, the fluorochrome of choice is usually DAPI ($4^{\prime}, 6$-diamidino-2-phenylindole), that binds preferentially AT-rich regions, while for measuring the genome size of a species, intercalating stains such as propidium iodide (PI) with no base preference are more suitable.

The fluorescence emitted by the stained nuclei is proportional to the DNA amount and it is measured through a flow cytometer (Doležel et al. 2007).

The genome size of M. \times giganteus, M. sacchariflorus and M. sinensis has been evaluated using flow cytometry (Rayburn et al. 2008). The nuclear DNA content was found to be 7.0 pg in triploid M. \times giganteus, 5.5 pg and 4.5 pg for diploid samples of M. sinensis and M. sacchariflorus respectively, even though they share the same chromosome number $2 \mathrm{n}=2 \mathrm{x}=38$. The DNA content of $M . \times$ giganteus is in accordance with the postulated hybrid origin of $M . \times$ giganteus resulting from the union of a haploid genome of M. sinensis with a diploid genome of M. sacchariflorus (Linde-Laursen 1993).

2.1.5 Sequencing of the internal transcribed spacer (ITS) of the nuclear ribosomal DNA

The nuclear ribosomal DNA (nrDNA) is composed by a highly tandem repeated cluster of genes that code for the ribosomal RNA (rRNA) (Brown and Shaw 1998). Multiple copies of the region are homogenized through concerted evolution leading to uniformity in the sequence of rDNA loci. Each cluster contains the genes for the rRNA $18 \mathrm{~S}, 5.8 \mathrm{~S}$ and 26 S , separated by two spacers, ITS-1 and ITS-2, which are transcribed together with the genes but are not part of the final product, allowing them to diverge more quickly compared to the rDNA (Baldwin et al., 1995). Nevertheless, these regions seem to play a role in the cleavage of the rRNA, thus being subject to a certain level of conservation. The ITS sequences shows low level of length variation in closely related taxa. The conservation of length make it easier to compare sequences, that are variable enough to be interesting for phylogenetic analyses (Baldwin et al. 1995; Hodkinson et al. 2010).

Sequencing of the ITS regions have been previously used to investigate the origin of M. \times giganteus (Hodkinson et al. 2002c). As pointed out by Hodkinson et al. (2002b), homogenization could occur only through gene conversion, but not unequal crossing-over in sterile hybrids like M. \times giganteus and two different parental ITS sequences were still detectable.

2.2 Aims

The aim of this chapter was to assess morphological variation in Miscanthus using measurements of morphological characters from a collection of plants using summary statistics and multivariate ordination (PCA) in comparison with herbarium specimens. It also aimed to compare the morphological results to ploidy variation in the collection and DNA sequencing of the internal transcribed spacer (ITS) of the nuclear rDNA.

In detail the objectives were:

- To describe morphological diversity in a collection of Miscanthus established in Oak Park, Carlow;
- To compare the morphological data to herbarium specimens to help classification of unidentified individuals;
- To assess ploidy variation in the collection;
- To determine if morphological information describes a similar pattern of diversity as DNA content and sequence.

2.3 Material and methods

2.3.1 Plant material

Rhizomes of 33 Miscanthus sinensis were provided by Svalöf Weibull, Sweden; 80 individuals of $M . \times$ giganteus, M. sacchariflorus and M. sinensis, including different ornamental varieties, were collected from TCD Botanic Gardens, Dublin, Ireland; 15 additional genotypes of the three species were made available by the University of Hohenheim, Germany (Clifton-Brown and Lewandowski, 2002).

All the rhizomes collected were potted in the autumn of 2007 and plants were kept in a glasshouse for the winter. Plants were transferred in the field in Oak Park, Carlow, in spring 2008. Plants were spaced 2 m apart from each other and arranged in different order in two replicates of three rows of 42 plots each. Stems were cut every year in late winter before the new growing season began. A full list of accessions is given in Table A in the Appendix.

2.3.2 Morphological characterization

Scoring of characters

Each plant was scored in the field in late summer 2009 for the following morphological characters:

- growth habit (spread or clumped);
- space between culms (cm);
- culm wax (yes/no (Y/N));
- maximum culm width (cm);
- culm buds or branching (Y/N);
- plant height (cm);
- approximate leaf number;
- leaf variegation $(\mathrm{Y} / \mathrm{N})$;
- internode length (cm);
- maximum leaf length (cm);
- maximum leaf width (cm);
- leaf hair (Y/N);
- inflorescence production $(\mathrm{Y} / \mathrm{N})$.

Where present, inflorescences were collected, pressed and dried. The following characters were subsequently scored:

- inflorescence length (cm);
- inflorescence axis length (cm);
- axis hairs (Y/N);
- raceme length (cm);
- raceme number;
- raceme hairs (Y/N);
- raceme internode length (cm);
- upper pedicel length (cm);
- lower pedicel length (cm);
- pedicel hairs (Y / N);
- spikelet length (cm);
- spikelet callus hair length (cm);
- awn length (where present).

Herbarium specimens

Specimens belonging to Miscanthus were collected from the following herbarium:

- Royal Botanic Gardens, Kew, UK
- Trinity College, Dublin, Ireland
- University of Copenhagen, Denmark
- Royal Botanic Gardens, Edinburgh, UK
- British Museum, UK

The specimens were grouped according to species and the following characters were scored for each sample:

- culm height (cm);
- culm width (cm);
- leaf length (cm);
- leaf width (cm);
- leaf hairs (Y / N);
- inflorescence length (cm);
- inflorescence axis length (cm);
- raceme number;
- raceme length (cm);
- raceme internode length (cm);
- peduncle hairs $(\mathrm{Y} / \mathrm{N})$;
- axis hairs (Y/N);
- raceme axis hairs (Y/N);
- upper pedicel length (cm);
- lower pedicel length (cm);
- raceme internode length (cm);
- pedicel hairs (Y/N);
- spikelet length (cm);
- spikelet callus hair length (cm);
- awn length (where present).

The species scored for this study, based on availability, are: M. condensatus, M. floridulus, M. nepalensis, M. nudipes. M. oligostachyus, M. sacchariflorus, M. sinensis, M. sorghum and M. Tinctorius (Table A in Appendix).

Data analysis

Descriptive statistics for morphological characters were calculated using Minitab ${ }^{\circledR}$ 16.2.0 (2007) to assess the basic properties of data distributions. For quantitative data, means and standard deviation were computed and a histogram for each character was used to display the distribution of data. To determine if characters follow a normal distribution, a normality test was performed using the Kolmogorov-Smirnov (KS) test: characters with a p-value greater than the value from the normality test were considered normally distributed. Where
characters were shown not to be normally distributed, transformations were attempted using natural log transformation to achieve a normal distribution for the transformed dataset.

A principal component analysis (PCA) was performed on both quantitative data from herbarium specimens and the field collection in Oak Park, Carlow. A two-dimension scatterplot was constructed to visualise the distribution of the eigenvalues and eigenvectors for each sample using Minitab® 16.2.0 statistical software.

2.3.3 Evaluation of ploidy

A few cm^{2} of fresh leaf material from each accession was chopped with a razor blade in a Petri dish together with leaf material of a non-Miscanthus plant (Ilex) as internal standard and an ice-cold buffer to extract intact nuclei from the plant cells. The DNA buffer contained 5 mM Hepes, 10 mM magnesium sulphate heptahydrate, 50 mM Potasium chloride, 0.2% Triton X-100, 0.1 \% DTT (Dithiothreitol), $2 \mathrm{mg} / 1$ DAPI at pH 8 , modified after (Arumuganathan and Earle 1991). DAPI is a fluorescent dye which complexes with doublestranded DNA to give a product that fluoresces at 465 nm . After chopping, 2 ml of the buffer solution is passed through a nylon filter of $50 \mu \mathrm{~m}$ mesh size. The solution with stained nuclei is sent through a CyFlow ML (Partec GmbH, Otto Hahnstrasse 32, D-4400 Münster, Germany) flowcytometer with a high-pressure mercury lamp. When the samples are run with the appropriate filter-settings for excitation, the fluorescence of the stained nuclei is measured by a photomultiplier and converted into voltage pulses. These voltage pulses are electronically processed to yield peak signals and to produce DNA histograms that are then analysed using Flomax version 2.4d (Partec).

A ratio between the fluorescence of the sample and the internal standard was calculated for each accession and compared to the ratio from three samples of known ploidy used as references: M. sinensis 'Strictus' as diploid standard, M. \times giganteus as triploid standard, and M. sacchariflorus as tetraploid standard.

2.3.4 DNA sequencing

The internal transcribed spacer (ITS) of the nuclear ribosomal DNA (nrDNA) was amplified by PCR for 81 accessions using the primer pairs 17SE-ITS2 and ITS3-26SE (White et al. 1990; Sun et al. 1994) for the ITS-1 and ITS-2 regions respectively. A template DNA volume of $5 \mu \mathrm{l}\left(40 \mathrm{ng} \mathrm{gl}^{-1}\right)$ was amplified with an initial denaturation of 1 min at $97^{\circ} \mathrm{C}$ followed by 30 cycles each with a denaturation of 1 min at $97^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at a $51^{\circ} \mathrm{C}$ and an extension of 3 min at $72^{\circ} \mathrm{C}$, followed by a final extension at $72^{\circ} \mathrm{C}$ for 7 min . The reaction mixture (final volume of $50 \mu \mathrm{l}$) contained $10 \times$ reaction buffer (New England Biolabs) containing 2 mM MgSO 4 , $0.125 \mu \mathrm{M}$ dNTPs, $0.25 \mu \mathrm{M}$ of each primer, 0.5 U of Taq DNA polymerase (New England Biolabs). The PCR products were sequenced by a commercial sequencing company (AGOWA GmbH, Germany) and the electropherograms were viewed by using Chromas Lite version 2.01 (Technelysium Pty Ltd, Australia). Sequences were subsequently aligned using ClustalW (Thompson et al. 1994) as implemented in MEGA version 3.1 (Kumar et al. 2001).

2.4 Results

2.4.1 Morphological characterization

Summary statistics for herbarium specimens

Mean values and standard deviation were computed for a set of herbarium specimens of the species M. condensatus, M. floridulus, M. nepalensis, M. nudipes. M. oligostachyus, M. sacchariflorus, M. sinensis, M. sorghum and M. tinctorius (Table 2.4.1, raw data in Table B in Appendix) and fitted curves, as implemented in Minitab ${ }^{\circledR}$ 16.2.0 statistical software, were built for each character to display the results (Figure 2.4.1).

Table 2.4.1 Summary statistics for qualitative traits in herbarium specimens of M. condensatus, M. floridulus, M. nepalensis, M. nudipes. M. oligostachyus, M. sacchariflorus, M. sinensis, M. sorghum and M. tinctorius. $\mathrm{N}=$ number of samples; $\mathrm{N}^{*}=$ number of missing value; SE Mean= standard error of mean; $\mathrm{StDEv}=$ standard deviation; $\mathrm{Min}=$ lowest value; Median = middle of the range data; $\mathrm{Max}=$ higher value; $\mathrm{Q} 1-\mathrm{Q} 3=$ first and third quartile; * $=$ absent.

Species	N	N^{*}	Mean	$\begin{array}{\|c\|} \hline \text { SE } \\ \text { Mean } \end{array}$	StDev	Min	Q1	Median	Q3	Max
Culm height										
M. sinensis	4	6	62.3	25	49.9	0	12	66.5	108.3	116
M. sacchariflorus	8	2	97.4	14.9	42.1	40	62.3	90	137.8	163
M. floridulus	8	3	65.63	3.38	9.55	50	57.5	66.5	73.75	79
M. condensatus	9	2	87.1	15.7	47.2	35	46	80	118.5	183
M. oligostachyus	9	0	71.44	8.45	25.34	37	51	72	83	123
M. tinctorius	4	0	117.6	18	36	74	81.5	120.8	150.6	155
M. sorghum	3	0	133.3	28.5	49.4	92	92	120	188	188
M. nudipes	6	1	68.2	15.6	38.3	25	25	75	103.8	106
M. nepalensis	13	3	69.62	7.18	25.9	30	52	64	90	126
Culm width										
M. sinensis	10	0	0.5	0.0537	0.17	0.2	0.4	0.5	0.625	0.8
M. sacchariflorus	10	0	0.32	0.0389	0.1229	0.2	0.2	0.3	0.425	0.5
M. floridulus	11	0	0.4909	0.061	0.2023	0.2	0.4	0.4	0.7	0.9
M. condensatus	10	1	0.76	0.113	0.357	0.5	0.5	0.7	0.825	1.7
M. oligostachyus	9	0	0.1889	0.0111	0.0333	0.1	0.2	0.2	0.2	0.2
M. tinctorius	4	0	0.3	0.0408	0.0816	0.2	0.225	0.3	0.375	0.4
M. sorghum	3	0	0.4667	0.0333	0.0577	0.4	0.4	0.5	0.5	0.5
M. nudipes	7	0	0.2357	0.0322	0.0852	0.15	0.2	0.2	0.3	0.4
M. nepalensis	16	0	0.2625	0.0315	0.1258	0.1	0.2	0.25	0.3	0.5

Table 2.4.1 (continued)

Species	N	\mathbf{N}^{*}	Mean	SE Mean	StDev	Min	Q1	Median	Q3	Max
Leaf length										
M. sinensis	8	2	53.25	5.59	15.82	27	38	58	63	75
M. sacchariflorus	9	1	41.56	4.25	12.76	24	29	39	53.5	57
M. floridulus	11	0	39.82	5.39	17.87	20	20	40	47	71
M. condensatus	9	2	52.22	5.52	16.57	32	41.5	47	63	87
M. oligostachyus	9	0	24.94	2.66	7.99	12	19.75	23	30	40
M. tinctorius	4	0	39.75	4.21	8.42	32	32.25	39.5	47.5	48
M. sorghum	3	0	62	6.43	11.14	52	52	60	74	74
M. nudipes	7	0	21.14	4.43	11.73	7	10	22	30	40
M. nepalensis	14	2	27.71	3.95	14.79	3	14.75	29.5	39.25	50
Leaf width										
M. sinensis	10	0	0.93	0.175	0.552	0.4	0.575	0.8	1.075	2.3
M. sacchariflorus	10	0	1.03	0.18	0.568	0.3	0.55	0.9	1.525	2
M. floridulus	11	0	1.145	0.233	0.772	0.3	0.8	0.8	1.1	2.7
M. condensatus	10	1	1.59	0.209	0.662	0.6	1.2	1.45	2.05	3
M. oligostachyus	9	0	1.0333	0.0707	0.2121	0.6	0.9	1.1	1.2	1.2
M. tinctorius	4	0	1.225	0.202	0.403	0.8	0.85	1.2	1.625	1.7
M. sorghum	2	1	0.45	0.15	0.212	0.3	*	0.45		0.6
M. nudipes	7	0	0.4714	0.036	0.0951	0.4	0.4	0.4	0.6	0.6
M. nepalensis	14	2	0.843	0.227	0.851	0.1	0.35	0.75	1	3.5
Inflorescence length										
M. sinensis	9	1	29.11	4.2	12.61	13	19.5	28	39	50
M. saccharifiorus	10	0	21.9	1.46	4.63	16	17.5	22	25.25	30
M. floridulus	11	0	30.09	2.57	8.53	17	23	33	36	41
M. condensatus	9	2	26.78	2.49	7.48	18	20.5	24	34	38
M. oligostachyus	9	0	11.89	1.27	3.82	5	10	11	15	18
M. tinctorius	4	0	17.88	1.94	3.88	14	14.5	17.25	21.88	23
M. sorghum	3	0	46.67	5.55	9.61	38	38	45	57	57
M. nudipes	7	0	11.93	1.61	4.27	8	8	10.5	16	19
M. nepalensis	16	0	14.84	1.5	6	5	12.25	14.5	16.75	31
Inflorescence axis										
M. sinensis	9	1	12.94	4.05	12.16	0	2	12.5	23.5	33
M. sacchariflorus	9	1	6.59	1.01	3.02	2	5	5.8	9	11.5
M. floridulus	10	1	15.75	2.75	8.7	6	9.38	11.5	22.25	34
M. condensatus	7	4	12.07	2.43	6.44	7	7	9.5	20	22.5
M. oligostachyus	5	4	2.42	0.825	1.846	1	1	2.1	4	5.5
M. tinctorius	3	1	1.333	0.167	0.289	1	1	1.5	1.5	1.5
M. sorghum	3	0	33	6.43	11.14	21	21	35	43	43
M. nudipes	6	1	4.22	1.69	4.13	0.8	1.33	3	6.75	12
M. nepalensis	16	0	5.63	1.12	4.48	0.5	3	4.5	7.42	19
Raceme number										
M. sinensis	10	0	27.6	4.55	14.38	8	17	27.5	35	50
M. sacchariflorus	10	0	22.8	4.58	14.5	6	9.5	22.5	32	50
M. floridulus	11	0	47.27	9.05	30.03	20	20	50	60	100
M. condensatus	9	2	38.89	6.76	20.28	20	25	30	55	80
M. oligostachyus	9	0	2.778	0.324	0.972	1	2	3	3.5	4
M. tinctorius	4	0	7	1.87	3.74	2	3.25	7.5	10.25	11
M. sorghum	3	0	66.67	3.33	5.77	60	60	70	70	70
M. nudipes	7	0	11.29	3.28	8.67	4	4	6	20	25
M. nepalensis	16	0	28.94	7.33	29.33	5	11.25	20	30	100

Table 2.4.1 (continued)

Species	N	N*	Mean	$\begin{gathered} \text { SE } \\ \text { Mean } \end{gathered}$	StDev	Min	Q1	Median	Q3	Max
Raceme length										
M. sinensis	10	0	14.9	0.951	3.007	8	13.125	16	17	18
M. sacchariflorus	10	0	13.95	0.973	3.077	9	11.75	13.5	16.875	18
M. floridulus	11	0	14.91	1.54	5.11	7	12	14	19	23
M. condensatus	9	2	14.78	1.16	3.49	8	12	16	18	18
M. oligostachyus	9	0	10	0.799	2.398	5	8.5	11	11.5	13
M. tinctorius	4	0	14.88	1.05	2.1	13.5	13.63	14	17	18
M. sorghum	3	0	8	1.53	2.65	6	6	7	11	11
M. nudipes	7	0	7.071	0.727	1.924	4	6	7	9	9.5
M. nepalensis	16	0	9.219	0.855	3.42	4	6.25	10	11.75	16
Raceme internode length										
M. sinensis	10	0	0.69	0.0605	0.1912	0.5	0.5	0.7	0.825	1
M. sacchariflorus	10	0	0.58	0.0467	0.1476	0.4	0.5	0.5	0.7	0.9
M. floridulus	11	0	0.4909	0.0368	0.1221	0.3	0.4	0.5	0.5	0.7
M. condensatus	9	2	0.3222	0.0364	0.1093	0.2	0.2	0.3	0.4	0.5
M. oligostachyus	9	0	0.9444	0.0784	0.2351	0.6	0.75	1	1.05	1.4
M. tinctorius	4	0	0.6	0.0408	0.0816	0.5	0.525	0.6	0.675	0.7
M. sorghum	3	0	0.6	0.115	0.2	0.4	0.4	0.6	0.8	0.8
M. nudipes	7	0	0.5571	0.0481	0.1272	0.3	0.5	0.6	0.6	0.7
M. nepalensis	15	1	0.3467	0.0274	0.106	0.2	0.3	0.3	0.4	0.6
Upper pedicel length										
M. sinensis	10	0	0.145	0.0263	0.0832	0	0.1	0.125	0.2	0.3
M. sacchariflorus	10	0	0.195	0.0157	0.0497	0.1	0.1875	0.2	0.2	0.3
M. floridulus	11	0	0.1545	0.0157	0.0522	0.1	0.1	0.2	0.2	0.2
M. condensatus	9	2	0.15	0.0167	0.05	0.1	0.1	0.15	0.2	0.2
M. oligostachyus	9	0	0.2111	0.0261	0.0782	0.1	0.15	0.2	0.3	0.3
M. tinctorius	3	1	0	0.0577	0.1	-0.1	-0.1	0	0.1	0.1
M. sorghum	3	0	0.2333	0.0441	0.0764	0.15	0.15	0.25	0.3	0.3
M. nudipes	7	0	0.1929	0.0202	0.0535	0.15	0.15	0.2	0.2	0.3
M. nepalensis	15	1	0.1333	0.0174	0.0673	0	0.1	0.15	0.2	0.2
Lower pedicel length										
M. sinensis	10	0	0.35	0.0619	0.1958	0	0.2	0.4	0.525	0.6
M. sacchariflorus	10	0	0.46	0.034	0.1075	0.3	0.4	0.4	0.6	0.6
M. floridulus	11	0	0.3455	0.0282	0.0934	0.2	0.3	0.3	0.4	0.5
M. condensatus	9	2	0.3444	0.0377	0.113	0.2	0.25	0.3	0.45	0.5
M. oligostachyus	9	0	0.6667	0.0471	0.1414	0.5	0.5	0.7	0.8	0.8
M. tinctorius	4	0	0.35	0.0645	0.1291	0.2	0.225	0.35	0.475	0.5
M. sorghum	3	0	0.483	0.117	0.202	0.25	0.25	0.6	0.6	0.6
M. nudipes	7	0	0.45	0.0393	0.1041	0.3	0.35	0.5	0.5	0.6
M. nepalensis	15	1	0.28	0.0145	0.0561	0.2	0.2	0.3	0.3	0.4
Spikelet length										
M. sinensis	10	0	0.49	0.0314	0.0994	0.3	0.4	0.5	0.6	0.6
M. sacchariflorus	10	0	0.43	0.0213	0.0675	0.3	0.4	0.4	0.5	0.5
M. floridulus	11	0	0.4	0.0357	0.1183	0.3	0.3	0.4	0.5	0.6
M. condensatus	9	2	0.4889	0.0261	0.0782	0.4	0.4	0.5	0.55	0.6
M. oligostachyus	9	0	0.8556	0.0475	0.1424	0.6	0.75	0.9	1	1
M. tinctorius	4	0	0.575	0.025	0.05	0.5	0.525	0.6	0.6	0.6
M. sorghum	3	0	0.4	0	0	0.4	0.4	0.4	0.4	0.4
M. nudipes	7	0	0.4429	0.0429	0.1134	0.2	0.4	0.5	0.5	0.5
M. nepalensis	16	0	0.3	0.0242	0.0966	0.2	0.2	0.3	0.3	0.5

Table 2.4.1 (continued)

Species	N	\mathbf{N}^{*}	Mean	SE Mean	StiDev	Min	Q1	Median	Q3	Max
Spikelet hairs length										
M. sinensis	10	0	0.52	0.0249	0.0789	0.4	0.5	0.5	0.525	0.7
M. sacchariflorus	10	0	0.98	0.102	0.322	0.6	0.7	0.9	1.3	1.6
M. floridulus	11	0	0.4636	0.0388	0.1286	0.3	0.4	0.4	0.6	0.7
M. condensatus	9	2	0.5	0.0236	0.0707	0.4	0.45	0.5	0.55	0.6
M. oligostachyus	9	0	0.4889	0.0309	0.0928	0.3	0.45	0.5	0.55	0.6
M. tinctorius	4	0	0.3	0.0408	0.0816	0.2	0.225	0.3	0.375	0.4
M. sorghum	3	0	0.2667	0.0333	0.0577	0.2	0.2	0.3	0.3	0.3
M. nudipes	7	0	0.4857	0.0553	0.1464	0.4	0.4	0.4	0.5	0.8
M. nepalensis	16	0	0.675	0.0393	0.1571	0.5	0.525	0.65	0.775	1
Amn length										
M. sinensis	10	0	0.51	0.0407	0.1287	0.3	0.4	0.5	0.625	0.7
M. sacchariflorus	0	10		*	*	*	*	*	*	*
M. floridulus	11	0	0.6273	0.0506	0. 1679	0.4	0.5	0.6	0.8	0.9
M. condensatus	9	2	0.8556	0.0766	0.2297	0.5	0.7	0.8	1.05	1.2
M. oligostachyus	9	0	0.9222	0.0813	0.2438	0.5	0.75	1	1.05	1.3
M. tinctorius	0	4	*	*	*	*	*	*	*	*
M. sorghum	3	0	0.3333	0.0333	0.0577	0.3	0.3	0.3	0.4	0.4
M. nudipes	7	0	0.871	0.119	0.315	0.5	0.6	0.8	1.3	1.3
M. nepalensis	16	0	1.0313	0.053	0.212	0.5	0.9	1	1.2	1.3

Figure 2.4.1 (continued)

Figure 2.4.1 Fitted curves displaying the distribution of data for herbarium specimens of nine Miscanthus species: 1-M. sinensis, 2- M. sacchariflorus, 3- M. floridulus, 4- M. condensatus, 5- M. oligostachyus, 6- M. tinctorius, 7- M. sorghum, 8- M. nudipes, 9-M. nepalensis. x-axis: length of characters (cm), y-axis: frequency.

All the characters analysed showed different mean values among species as well as a high standard deviation. It should be taken into account in the interpretation of these results, that only a small number of plants (and sometimes not an entire plant) was represented in the herbarium samples, thus leading to a possible overestimation of the variation within species.

For the culm height, the highest mean was found in M. sorghum $(133.3 \mathrm{~cm})$ and the lowest in M. sinensis (62.3 cm), the shortest plant being was a M. nudipes with a culm length of 25 cm and the tallest an M. sorghum of 188 cm . The culm width ranged from 0.1 cm in M. oligostachyus $($ mean $=0.19 \mathrm{~cm})$ to 1.7 cm in M. condensatus (mean $=0.76 \mathrm{~cm}$). Where entire leaves were present, length and width at the widest point were measured. The mean length values span from 21.14 cm for M. nudipes to 62 cm for M. sorghum, and width values range from 0.45 cm to 1.59 cm .

The mean length of the inflorescence varies between 11.89 cm for M. oligostachyus and 46.67 cm for M. sorghum. Miscanthus sorghum also had the longest mean inflorescence axis (33 cm) with the shortest mean value belonging to M. tinctorius (1.33 cm). The mean number of racemes for inflorescence ranged from between 2.78 for M. oligostachyus to 66.67 for M. sorghum, while their length varied between 7.07 cm for M. nudipes to 14.9 cm for M. floridulus and M. sinensis. Along the racemes, the raceme internode length between spikelet pairs was found to be between 0.32 cm for M. condensatus and 0.94 cm for M. oligostachyus. In the spikelet pairs, the length of the pedicels ranged between 0.28 cm in M. nepalensis and 0.67 cm in M. oligostachyus for the lower pedicel, and from the highest mean value of 0.23 cm in M. sorghum to virtually no pedicel in M. tinctorius (for the upper one). The length of the spikelets was found in the range of $0.4-0.6 \mathrm{~cm}$ for most of the species, with the exception of M. nepalensis $($ mean $=0.3 \mathrm{~cm})$ and M. oligostachyus $($ mean $=0.86 \mathrm{~cm})$. Miscanthus sorghum and M. tinctorius had the shortest spikelet callus hairs among species (approximately 0.3 cm on average), whereas M. sacchariflorus is characterised by long hairs up to 1.6 cm (mean $=0.98 \mathrm{~cm}$). Both M. sacchariflorus and M. tinctorius have no awn in their spikelets. Where present, the awn length ranges between 0.33 cm for M. sorghum and 0.92 cm for M. oligostachyus.

A principal component analysis (PCA) on the data was performed. As shown in Table 2.4.2, the first component accounts for 26% of the total variation, the second for 21% (cumulative 47%) and the third for an additional 12% (cumulative 59\%).

Table 2.4.2 Eigenvalues for the first three components of the PCA on herbarium specimens dataset with relative percentage of variation.

Components	1st	2nd	3rd
Eigenvalue	3.6418	2.9088	1.7098
\%of variation	0.26	0.208	0.122
Cumulative	0.26	0.468	0.59

The eigenvectors were plotted in a two-dimensional scatterplot (Figure 2.4.2).

Figure 2.4.2 Principal component analysis displaying the morphological variation in herbarium specimens of nine Miscanthus species: 1-M. sinensis, 2- M. sacchariflorus, 3- M. floridulus, 4- M. condensatus, 5- M. oligostachyus, 6- M. tinctorius, 7- M. sorghum, 8- M. nudipes, 9-M. nepalensis.

Some species appeared to be resolved along the two axis (especially in pairwise comparisons): M. oligostachyus and M. nudipes are well separated between them and from M. sacchariflorus, M. floridulus, M. condensatus and M. sorghum along the first axis, and from of M. nepalensis along the second axis. The two dimensions were not able to separate M. sacchariflorus, M. floridulus, M. condensatus and M. sinensis.

Summary statistics for the Oak Park collection

Mean values and standard deviations were calculated for quantitative traits in both replicates of the Miscanthus collection in Oak Park, Carlow (Table 2.4.3). Histograms were built to display the results (Figure 2.4.3).

Table 2.4.3 Summary statistics for 17 morphological traits in the Oak Park collection for each of the two replicates established in the field. $\mathrm{N}=$ number of samples; $\mathrm{N}^{*}=$ number of missing values in the dataset; SE Mean= standard error of mean; $\mathrm{StDEv}=$ standard deviation; Min= lowest value; Median= middle of the range data; Max= higher value; Q1-Q3= first and third quartile; $/ 1$ and $/ 2=$ from replicate 1 and 2 respectively.

Replicate 1	\mathbf{N}	$\mathbf{N *}$	Mean	SE Mean	StDev	Min	Q1	Median	Q3	Max
Leaf length/1	118	2	52.57	1.2	13.02	29	42.19	50.88	64.19	80.75
Leaf width/1	118	2	1.7323	0.0443	0.4813	0.2875	1.4188	1.7375	2.0875	3.075
Space between culms/1	116	4	8.323	0.638	6.875	0	4	5.75	10	36
Plant height/1	116	4	131.05	3.85	41.5	2.2	100	130	160	230
Max culm width/1	116	4	0.7871	0.0259	0.2793	0.3	0.5	0.7	1	1.5
Leaf number/1	116	4	183.9	10.9	117.8	8	90	160	240	600
Internode Iength/1	115	5	9.859	0.355	3.808	2.8	7	9.5	12	22
Inflorescence length/1	59	0	25.975	0.648	4.974	14	23	26	29	38
Inflorescence axis/1	59	0	10.61	0.601	4.616	0.5	8	11	13	19
Raceme length/1	59	0	15.5	0.362	2.781	11	13	15	18	22
Raceme number/1	59	0	28.22	1.22	9.4	8	22	26	35	53
Internode length/1	59	0	0.578	0.0149	0.1146	0.4	0.5	0.6	0.6	1.1
Upper pedicel length/1	59	0	0.4932	0.0132	0.1015	0.3	0.4	0.5	0.6	0.7
Lower pedicel Iength/1	59	0	0.2051	0.0082	0.0628	0.1	0.2	0.2	0.2	0.3
Spikelethairs length/1	59	0	0.7051	0.018	0.1382	0.5	0.6	0.7	0.8	1
Spikelet length/1	59	0	0.4559	0.0074	0.0565	0.4	0.4	0.5	0.5	0.6
Awn length/1	52	7	0.4808	0.0213	0.1534	0.2	0.4	0.5	0.6	0.8

Replicate 2	\mathbf{N}	$\mathbf{N *}$	Mean	SE Mean	StDev	Min	Q1	Median	Q3	Max
Leaf length/2	117	7	49.63	1.06	11.51	30	39	48.75	60.25	74
Leaf width/2	117	7	1.7439	0.0348	0.3769	0.875	1.5	1.725	1.9875	2.7
Space between culms/2	107	17	7.86	0.527	5.454	1	4	6	10	32
Plant height/2	109	15	134.68	4.06	42.37	30	110	140	160	220
Max culm width/2	109	15	0.8009	0.024	0.2504	0.3	0.6	0.8	1	1.4
Leaf number/2	109	15	166.3	10.6	110.4	7	80	150	240	520
Internode length/2	109	15	9.138	0.333	3.478	2	6	9	11	20
Inflorescence length/2	56	0	27.161	0.748	5.601	15	23	27.5	30	39
Inflorescence axis/2	56	0	13.179	0.565	4.23	4	11	13.5	16	23
Raceme length/2	56	0	15.161	0.398	2.977	11	13	15	17	21
Raceme number/2	56	0	32.84	1.67	12.49	10	22.25	34	40	65
Internode length/2	56	0	0.5625	0.0162	0.1214	0.3	0.5	0.5	0.6	1
Upper pedicel length/2	56	0	0.5	0.0132	0.0991	0.3	0.4	0.5	0.6	0.7
Lower pedicel length/2	56	0	0.2036	0.0095	0.0713	0.1	0.2	0.2	0.3	0.3
Spikelet hairs length/2	56	0	0.7214	0.0163	0.1217	0.5	0.6	0.7	0.8	1
Spikelet length/2	56	0	0.4732	0.009	0.0674	0.4	0.4	0.5	0.5	0.6
Awn length/2	49	7	0.4755	0.0181	0.1267	0.2	0.4	0.5	0.6	0.8

Figure 2.4.3 (continued)

Figure 2.4.3 (continued)

Figure 2.4.3 Histograms and relative fitting curves displaying the distribution of data for the Oak Park collection for each of the two replicates established in the field. x-axis: length of characters for the first (/1) and second (/2) field replicates (cm); y-axis: frequency.

None of the histograms showed a clear normal distribution appearance in the shape of a bell curve. To test for normality, a Kolmogorov-Smirnov test was performed. The results of the test are summarized in Table 2.4.4 and probability plots are displayed in Figure 2.4.4.

Table 2.4.4 Kolmogorov-Smirnov (KS) statistics and p-values for each log transformed character in the two replicates. $/ 1$ and $/ 2=$ from replicate 1 and 2 respectively.

Replicate 1	KS	p-value
Leaf Iength/1	0.085	0.04
Leaf width/1	0.065	>0.150
Plant height/1	0.07	>0.150
Max culm width/1	0.165	<0.010
Leaf number/1	0.132	<0.010
Internode Iength/1	0.095	<0.010
Inflorescence length/1	0.091	>0.150
Inflorescence axis/1	0.093	>0.150
Raceme length $/ \mathbf{1}$	0.112	0.066
Raceme number/1	0.126	0.029
Internode length/1	0.237	<0.010
Upper pedicel length/1	0.194	<0.010
Lower pedicel Iength $/ \mathbf{1}$	0.312	<0.010
Spikelet hairs length $/ \mathbf{1}$	0.217	<0.010
Spikelet length $/ \mathbf{1}$	0.313	<0.010
Awn length/1	0.184	<0.010

Replicate 2	KS	p-value
Leaf Iength/2	0.093	0.02
Leaf width/2	0.058	>0.150
Plant height/2	0.093	0.03
Max culm width/2	0.119	<0.010
Leaf number/2	0.112	<0.010
Internode Iength/2	0.118	<0.010
Inflorescence Iength/2	0.092	>0.150
Inflorescence axis/2	0.09	>0.150
Raceme length/2	0.141	<0.010
Raceme number/2	0.077	>0.150
Internode Iength/2	0.232	<0.010
Upper pedicel Iength/2	0.196	<0.010
Lower pedicel length/2	0.252	<0.010
Spikelet hairs Iength/2	0.195	<0.010
Spikelet Iength/2	0.262	<0.010
Awn length/2	0.189	<0.010

According to the Kolmogorov-Smirnov test, the length of the inflorescence and of its axis had a normal distribution, together with the leaf width. The result of the test for the plant height and the raceme number is unclear since they appear to have a normal distribution in only one out of two replicates.

Figure 2.4.4 (continued)

Figure 2.4.4 (continued)

Figure 2.4.4 Plots using the Kolmogorov-Smirnov test for each character in the two replicates. x-axis: length of characters for the first (/1) and second (/2) field replicates (cm); y-axis: percentile.

Data for non-normally distributed characters were transformed using a log transformation in the attempt to obtain a normal distribution for data that showed a skewed distribution: histograms were constructed and normality was tested using the Kolmogorov-Smirnov test statistics. Only the log transformed data for the raceme number in replicate 1 showed a normal distribution with a p-value greater than the KS statistic (Figure 2.4.5).

Figure 2.4.5 Histogram with fitted normal distribution curves and plots using the Kolmogorov-Smirnov test for the log transformed character raceme number in the first replicate. x -axis: natural logarithm of length of character (cm); y-axis histogram: frequency; y-axis plot: percentile.

A principal component analysis was undertaken on data from the first replicate including the herbarium samples of M. sinensis and M. sacchariflorus in the calculation for comparison. The resulting eigenvalues and percentage of variation for the first three components are shown inTable 2.4.5.

Table 2.4.5 Eigenvalues of the PCA of field measurements from the first replicate.

Components	1st	2nd	3rd
Eigenvalue	9.1698	1.7565	0.6618
Proportion	0.655	0.125	0.047
Cumulative	0.655	0.78	0.828

The first component accounts for 66% of the total variation in the dataset, the second component explains 13% of variation (cumulative 78%) and the third an additional 5% (cumulative 83%). A two-dimensional scatterplot of the eigenvectors is displayed in Figure 2.4.6.

Figure 2.4.6 Principal component analysis displaying the morphological variation in the first replicate of the Oak Park collection (green). Data for herbarium specimens of M. sinensis (black) and M. sacchariflorus (red) were included as reference. \% of variation displayed in the scatterplot $=78 \%$.

As expected from the high value of the first eigenvalue, two groups are clearly separated along the x -axis, the one on the left side of the graph including all the plants that did not flower during the season 2009. For the plants that produced inflorescences (right side of the scatterplot) no clear pattern is visible as well as for the specimens used as reference.

2.4.2 Evaluation of ploidy

The ploidy of the Miscanthus collection established in Oak Park were evaluated using flow cytometry. Three samples for different levels of ploidy were used as standards: a diploid M. sinensis 'Strictus', a triploid M. \times giganteus and a tetraploid M. sacchariflorus (Figure 2.4.7).

Figure 2.4.7 Flow cytometry results for, from top to bottom, a diploid M. sinensis 'Strictus', a triploid $M . \times$ giganteus and a tetraploid M. sacchariflorus used as standard to estimate the ploidy.

The level of ploidy was estimated as ratio between the fluorescence of each samples and the fluorescence of an internal standard not related to Miscanthus (Ilex). The obtained ratio was then compared to the ones from the three Miscanthus standards of known ploidy. The results are summarised in Table 2.4.6.

Table 2.4.6 Ploidy variation in the Oak Park collection. The ratio of the fluorescence of each samples and the fluorescence of an internal standard not related to Miscanthus is reported together with the ploidy estimated by comparing the ratio of each sample with the diploid M. sinensis Strictus', triploid M. \times giganteus and tetraploid M. sacchariflorus used as reference.

ID	Ratio	Ploidy
M. sinensis 'strictus' 2X	1.68	Diploid standard
M. xgiganteus 3X	2.25	Triploid standard
M. sacchariflorus 4 X	2.66	Tetraploid standard
M. condensatus Tea-44	1.77	2 x
M. sinensis 'gross fontane' Tea-35	1.72	2 x
M. sinensis 'gross fontane' Tea-36	1.73	2 x
M. sinensis 'malaparteus' Tea-61	1.74	2 x
M. sinensis 'sirene' Tea-58	1.69	2 x
M. sinensis Tea-100	1.74	2 x
M. sinensis Tea-101	1.80	2 x
M. sinensis Tea-102	1.78	2 x
M. sinensis Tea-103	1.74	2 x
M. sinensis Tea-104	1.67	2 x
M. sinensis Tea-105	1.77	2 x
M. sinensis Tea-106	1.70	$2 x$
M. sinensis Tea-107	1.72	2 x
M. sinensis Tea-108	1.72	2x
M. sinensis Tea-109	1.72	2x
M. sinensis Tea-110	1.76	2 x
M. sinensis Tea-111	1.71	2x
M. sinensis Tea-112	1.74	2x
M. sinensis Tea-113	1.78	2x
M. sinensis Tea-114	1.73	2 x
M. sinensis Tea-115	1.76	2 x
M. sinensis Tea-13	1.74	2 x
M. sinensis Tea-14	1.73	2 x
M. sinensis Tea-30	1.70	2x
M. sinensis Tea-40	1.77	2x
M. sinensis Tea-76	1.74	2x
M. sinensis Tea-77	1.74	2x
M. sinensis Tea-78	1.78	2x
M. sinensis Tea-79	1.76	2x
M. sinensis Tea-80	1.77	2 x

Table 2.4.6 (continued)

ID	Ratio	Ploidy
M. sinensis Tea-86	1.74	2 x
M. sinensis Tea-88	1.73	2 x
M. sinensis Tea-95	1.71	2 x
M. sinensis Tea-96	1.76	2x
M. sinensis Tea-97	1.76	2x
M. sinensis Tea-98	1.76	2x
M. sinensis Tea-99	1.76	2 x
M. sinensis 'zebrinus' Tea-3	1.70	2 x
Miscanthus sp. Tea-130	1.73	$2 x$
Miscanthus sp. Tea-16	1.82	2x
Miscanthus sp. Tea-18	1.71	2 x
Miscanthus sp. Tea-22	1.76	2 x
Miscanthus sp. Tea-24	1.76	2x
Miscanthus sp. Tea-25	1.75	2x
Miscanthus sp. Tea-26	1.72	2 x
Miscanthus sp. Tea-27	1.72	2 x
Miscanthus sp. Tea-29	1.73	2x
Miscanthus sp. Tea-38	1.73	2x
Miscanthus sp. Tea-41	1.75	2 x
Miscanthus sp. Tea-42	1.70	2 x
Miscanthus sp. Tea-43	1.71	2 x
Miscanthus sp. Tea-45	1.72	2 x
Miscanthus sp. Tea-46	1.79	2 x
Miscanthus sp. Tea-47	1.74	2 x
Miscanthus sp. Tea-73	1.76	2 x
Miscanthus sp.Tea-37	1.73	2x
Miscanthus sp.Tea-39	1.75	2x
Miscanthus sp.Tea-54	1.74	2x
M. sacchariflorus x M. sinensis Tea-116	2.29	3 x
M. sacchariflorus x M. sinensis Tea-117	2.31	3 x
M. sacchariflorus x M. sinensis Tea-118	2.22	3 x
M. sacchariflorus x M. sinensis Tea-119	2.27	3 x
M. sacchariflorus x M. sinensis Tea-120	2.26	3 x
M. sacchariflorus x M. sinensis Tea-121	2.22	3 x
M. sacchariflorus x M. sinensis Tea-122	2.25	3 x
M. sacchariflorus x M. sinensis Tea-123	2.23	3 x
M. sacchariflorus x M. sinensis Tea-124	2.23	3 x
M. sacchariflorus x M. sinensis Tea-125	2.31	3 x
M. sacchariflorus x M. sinensis Tea-126	2.30	3 x
M. sacchariflorus x M. sinensis Tea-127	2.22	3 x
M. sinensis Tea-62	2.31	3 x
M. xgiganteus Tea-17	2.22	3 x
M. xgiganteus Tea-20	2.27	3 x
M. xgiganteus Tea-31	2.24	3 x
M. xgiganteus Tea-4	2.27	3 x
M. xgiganteus Tea-5	2.28	3 x
M. xgiganteus Tea-64	2.31	3 x
M. xgiganteus Tea-65	2.27	3 x
M. xgiganteus Tea-66	2.30	3 x

Table 2.4.6 (continued)

ID	Ratio	Ploidy
M. xgiganteus Tea-74	2.31	3 x
M. xgiganteus Tea-81	2.29	$3 x$
M. xgiganteus Tea-82	2.27	3 x
M. xgiganteus Tea-83	2.34	3 x
M. xgiganteus Tea-93	2.32	3 x
M. xgiganteus Tea-94	2.29	$3 x$
Miscanthus sp. Tea-1	2.27	$3 x$
Miscanthus sp. Tea-10	2.25	$3 x$
Miscanthus sp. Tea-131	2.31	3 x
Miscanthus sp. Tea-15	2.23	$3 x$
Miscanthus sp. Tea-21	2.29	3 x
Miscanthus sp. Tea-28	2.25	3 x
Miscanthus sp. Tea-32	2.24	3 x
Miscanthus sp. Tea-34	2.29	3 x
Miscanthus sp. Tea-48	2.29	3 x
Miscanthus sp. Tea-49	2.32	3 x
Miscanthus sp. Tea-50	2.34	$3 x$
Miscanthus sp. Tea-51	2.30	$3 x$
Miscanthus sp. Tea-52	2.32	3 x
Miscanthus sp. Tea-53	2.30	3 x
Miscanthus sp. Tea-6	2.24	3 x
Miscanthus sp. Tea-68	2.32	3 x
Miscanthus sp. Tea-69	2.27	3 x
Miscanthus sp. Tea-7	2.25	3 x
Miscanthus sp. Tea-70	2.30	3 x
Miscanthus sp. Tea-71	2.31	$3 x$
Miscanthus sp. Tea-72	2.29	$3 x$
Miscanthus sp.Tea-55	2.31	3 x
Miscanthus sp. Tea-11	2.34	3 x ?
M. sacchariflorus Tea-128	2.79	4 x
M. sacchariflorus Tea-84	2.78	4 x
M. sinensis 'goliath' Tea-57	2.54	4 x
M. sinensis goliath-like Tea-19	2.63	4 x
M. sinensis goliath-like Tea-85	2.55	$4 x$
M. sinensis 'goliath'Tea-56	2.55	4 x
M. sinensis 'zebrinus' Tea-33	2.51	4 x
Miscanthus sp. Tea-23	2.55	4 x
Miscanthus sp. Tea-8	2.78	4 x
Miscanthus sp. Tea-9	2.68	4 x
Miscanthus sp. Tea-90	3.19	4 x
Miscanthus sp. Tea-91	3.19	4 x
Miscanthus sp. Tea-92	3.04	4 x
M. sacchariflorus x M. sinensis Tea-75	1.59	Aneuploid
M. sacchariflorus x M. sinensis Tea-87	1.57	Aneuploid
M. sinensis 'strictus' Tea-59	1.84	not reliable
M. sinensis 'strictus' Tea-60	1.90	not reliable

All the plants labelled as $M . \times$ giganteus were found to be triploid, together with the hybrids between M. saccharifloris and M. sinensis, with the exception of Tea-75 and Tea-87 that showed a lower ratio than the diploid standard and were estimated as aneuploid genotypes. The accessions of M. sacchariflorus were estimated as tetraploid plants, as well as a group of M. sinensis 'Goliath' and the M. sinensis 'Zebrinus' Tea-33. It should be noticed that the ratio for the tetraploid M. sinensis is lower than the one of the tetraploid standard. With the only exception of accession Tea-62, all the remaining M. sinensis were found to be diploid. As for the Miscanthus sp. genotypes, they are almost equally divided between di- and triploids, with a few tetraploid, too.

2.4.3 DNA sequencing

The sequencing of the internal transcribed spacer nrDNA reveals the presence of base substitutions in the sequence of some accessions. Among these single nucleotide polymorphisms (SNPs), four revealed an interesting peculiarity: plants classified as M. sacchariflorus and M. sinensis clearly differed for the nucleotides in these positions, whereas the accessions belonging to $M . \times$ giganteus showed double peaks of comparable intensity at these sites for both nucleotides present in M. saccharifloris and M. sinensis sequences (Figure 2.4.8).

Figure 2.4.8 Internal transcribed spacer sequences of four polymorphic sites (shown by arrows) in M. \times giganteus, M. saccharifloris and M.

A summary of the four nucleotides found in all the genotypes sequenced is shown in Table 2.4.7.

Table 2.4.7 Nucleotides in four polymorphic positions of the ITS-1 for 76 genotypes of the Oak Park collection.

ID	Nucleotide			
	nt 38	nt 290	nt 330	nt 336
M. sinensis goliath-like Tea-19	T	G	T	T
M. sinensis goliath-like Tea-85	T	G	T	T
M. sinens is 'goliath' Tea-56	T	G	T	T
M. sinensis 'sirene' Tea-58	T	G	T	T
M. sinensis 'zebrinus' Tea-2	T	G	T	T
M. sinensis Tea-14	T	G	T	T
M. sinensis Tea-30	T	G	T	T
M. sinensis Tea-40	T	G	T	T
M. sinensis Tea-77	T	G	T	T
M. sinensis Tea-79	T	G	T	T
M. sinensis Tea-80	T	G	T	T
M. sinensis Tea-86	T	G	T	T
M. sinensis Tea-88	T	G	T	T
M. sinensis Tea-95	T	G	T	T
M. sinensis Tea-96	T	G	T	T
M. sinensis Tea-97	T	G	T	T
M. sinensis Tea-98	T	G	T	T
M. sinensis Tea-99	T	G	T	T
M. sinensis Tea-100	T	G	T	T
M. sinens is Tea-101	T	G	T	T
M. sinens is Tea-102	T	G	T	T
M. sinensis Tea-103	T	G	T	T
M. sinensis Tea-104	T	G	T	T
M. sinensis Tea-105	T	G	T	T
M. sinensis Tea-106	T	G	T	T
M. sinens is Tea-107	T	G	T	T
M. sinensis Tea-108	T	G	T	T
M. sinensis Tea-109	T	G	T	T
M. sinensis Tea-110	T	G	T	T
M. sinensis Tea-111	T	G	T	T
M. sinens is Tea-112	T	G	T	T
M. sinensis Tea-113	T	G	T	T
M. sinensis Tea-114	T	G	T	T
M. sinensis Tea-115	T	G	T	T

Table 2.4.7 (continued)

ID	Nucleotide			
	nt 38	nt 290	nt 330	nt 336
M. sacchariflorus x M. sinensis Tea-75	T/C	G/A	T	T
M. sacchariflorus \times M. sinensis Tea-87	C	G/A	T	T
M. sacchariflorus \mathbf{x} M. sinensis Tea-117	T/C	G/A	T/C	T/C
M. sacchariflorus \mathbf{x} M. sinensis Tea-118	T/C	G/A	T/C	T/C
M. sacchariflorus \mathbf{x} M. sinensis Tea-119	T/C	G/A	T/C	T/C
M. sacchariflorus \mathbf{x} M. sinensis Tea-120	T/C	G/A	T/C	T/C
M. sacchariflorus \mathbf{x} M. sinensis Tea-121	T/C	G/A	T/C	T/C
M. sacchariflorus \mathbf{x} M. sinensis Tea-122	T/C	G/A	T/C	T/C
M. sacchariflorus \mathbf{x} M. sinensis Tea-123	T/C	G/A	T/C	T/C
M. sacchariflorus \times M. sinensis Tea-124	T/C	G/A	T/C	T/C
M. sacchariflorus \mathbf{x} M. sinensis Tea-126	T/C	G/A	T/C	T/C
M. xgiganteus Tea-4	T/C	G/A	T/C	T/C
M. xgiganteus Tea-5	T/C	G/A	T/C	T/C
M. xgiganteus Tea-64	T/C	G/A	T/C	T/C
M. xgiganteus Tea-66	T/C	G/A	T/C	T/C
M. xgiganteus Tea-81	T/C	G/A	T/C	T/C
M. xgiganteus Tea-82	T/C	G/A	T/C	T/C
M. xgiganteus Tea-83	T/C	G/A	T/C	T/C
M. xgiganteus Tea-93	T/C	G/A	T/C	T/C
M. sacchariflorus Tea-84	C	A	C	C
Miscanthus sp. Tea-1	T/C	G/A	T/C	T/C
Miscanthus sp. Tea-9	T/C	G/A	T/C	T/C
Miscanthus sp. Tea-10	T/C	G/A	T/C	T/C
Mis canthus sp. Tea-11	T/C	G/A	T/C	T/C
Miscanthus sp. Tea-18	T	G	T	T
Miscanthus sp. Tea-21	T/C	G/A	T/C	T/C
Miscanthus sp. Tea-22	T	G	T	T
Miscanthus sp. Tea-25	T	G	T	T
Miscanthus sp. Tea-24	T	G	T	T
Miscanthus sp. Tea-26	T	G	T	T
Miscanthus sp. Tea-28	T/C	G/A	T/C	T/C
Miscanthus sp. Tea-32	T/C	G/A	T/C	T/C
Miscanthus sp. Tea-34	T/C	G/A	T/C	T/C
Miscanthus sp. Tea-38	T	G	T	T
Miscanthus sp. Tea-42	T	G	T	T
Miscanthus sp. Tea-43	T	G	T	T
Miscanthus sp. Tea-46	T	G	T	T
Mis canthus sp. Tea-53	T/C	G/A	T/C	T/C
Mis canthus sp.Tea-54	T	G	T	T
Mis canthus sp. Tea-89	T/C	G/A	T/C	T/C
Miscanthus sp. Tea-130	T	G	T	T
Miscanthus sp. Tea-131	T/C	G/A	T/C	T/C

2.5 Discussion

2.5.1 Morphological diversity

Different traits were scored to evaluate the morphological variation in a collection of Miscanthus. As a reference, the same characters were measured in 79 herbarium specimens belonging to the species M. condensatus, M. floridulus, M. nepalensis, M. nudipes. M. oligostachyus, M. sacchariflorus, M. sinensis, M. sorghum, and M. tinctorius. The values scored were consistent with the description of the species given by Ohwi et al. (1965) and Chen and Renvoize (2006).

In particular, M. sinensis is characterized by a culm height between 48 and 116 cm and thickness of 2-8 mm, with leaves $27-75 \mathrm{~cm}$ long and $4-23 \mathrm{~mm}$ wide. The panicle is composed of a long inflorescence axis bearing 8-50 racemes $8-18 \mathrm{~cm}$ long. The spikelets are 5 mm long on average, with hairs of similar length and with an awn up to 7 mm long. In contrast, M. sacchariflorus has a culm up to 163 cm high and 2-5 mm wide, bearing leaves $24-57 \mathrm{~cm}$ long and $3-16 \mathrm{~mm}$ wide. The panicle is composed by a short inflorescence axis and $8-50$ racemes long between $9-18 \mathrm{~cm}$. The spikelets are 4 mm long with hairs 9 mm long and no awn.

Miscanthus condensatus and M. floridulus could not be clearly separated from M. sinensis based on quantitative traits only, whereas M. oligostachyus with its characteristic low raceme number in the inflorescence, and awned spikelets, was resolved from the other species of the Miscanthus s.s. group in the set of specimens analysed. Nevertheless when single traits were compared, they showed a different distribution among species.

The same traits were measured in the Oak Park collection established in Carlow. The statistical analyses revealed that only a few of them are normally distributed in the collection. This could be explained by the presence of different species in the field each with different distributions for the traits in question, as highlighted by the herbarium specimens, which give rise to a concealed multimodal distribution of the data.

Since most of the individuals in Oak Park presumably belongs to M. sacchariflorus, M. sinensis and M. \times giganteus, a principal component analysis (PCA) was performed including
the data for the M. sacchariflorus and M. sinensis specimens. Most of the variation in the data was due to the presence/absence of inflorescences, as half of the plants did not flower in the second growing season from the settling of the Miscanthus field, leading to two separate groups of individuals according to the flowering. The PCA could not resolve the specimens either, and no grouping was possible even for the plants that flowered.

Among the plants that did flower, the majority showed a sinensis-like inflorescence, with few exceptions, where the spikelets were awnless, as in M. sacchariflorus. The saccharifloruslike inflorescence were found in some of the M. sacchariflorus \times. . sinensis hybrids, and in one of the unidentified genotypes (Miscanthus sp. Tea-41) in one of the two replicates.

The morphological data alone were not conclusive in the aim to classify the unidentified individuals, mostly because of the unavailability of inflorescence for the whole collection.

2.5.2 Ploidy and molecular variation

The estimated ploidy levels for the Oak Park collection are consistent with the studies on the cytogenetics of Miscanthus by Adati and Shiotani (1962) and Linde-Laursen (1993). The plants classified as M. sacchariflorus were all found to tetraploid. Furthermore, all the individuals belonging to M. \times giganteus showed a triploid status, together with the new M. sacchariflorus \times. sinensis hybrids.

As for the known M. sinensis, the genotypes were mostly diploid, with a few exceptions. In M. sinensis Tea-62 the ratio of the fluorescence emitted by the nuclei is comparable to the value of the $M . \times$ giganteus used as triploid standard. A different situation was found for other non-diploid M. sinensis, in particular four M. sinensis 'Goliath' and the M. sinensis 'Zebrinus' Tea-33: in this case the ratio measured by the flow cytometer was in between the values of the triploid and tetraploid standards.

According to Clifton-Brown and Lewandowski (2002), the genotype GOFAL7 (i.e. M. sinensis 'Goliath-like' Tea-85) is a triploid sinensis hybrid, as shown by a chromosome count of $2 \mathrm{n}=57$. The higher value in DNA content in this individual compared to the one of the triploid M. \times giganteus used as reference could be explained by the different composition in
haploid sets in the two genotypes: the 'Goliath-like' hybrid is an autotriploid with three M. sinensis haploid sets, whereas $M . \times$ giganteus is an allotriploid that is supposed to have two genomes from M. sinensis and one from M. sacchariflorus, which has a lower amount of DNA per haploid genome (Rayburn et al. 2008).

It could be postulated that all the other M. sinensis with similar fluorescence ratio to Tea-85 are triploid. The triploid nature of M. sinensis 'Zebrinus' Tea-33 and the absence of the white stripes on the leaves typical of the 'Zebrinus' variety, suggest that this plant could have been misclassified.

As for the Miscanthus sp. genotypes, the information about the ploidy is not sufficient to support a tentative classification, but it could be a useful tool in addition to supplementary data, such as the sequencing of the ITS region.

Genotypes whose sequence for the ITS-1, the internal transcribed spacer between the genes for the nrRNA 18 S and 5.8 S , was obtained, showed a preference in base composition according to species: M. sacchariflorus and M. sinensis differ for the nucleotides present in four positions, whereas $M . \times$ giganteus sequence is ambiguous for the presence of both nucleotides found in the two putative parents in each of the four positions. This seems to confirm the hypothesis that M. \times giganteus is an interspecific hybrid between M. sacchariflorus and M. sinensis (Linde-Laursen 1993) in which concerted evolution has not homogenized the sequences in the rDNA clusters yet, as expected for a sterile hybrid where unequal crossing-over is not possible (Hodkinson et al. 2002c).

When compared to the ploidy of the genotypes, the ITS in diploid genotypes showed a preference for a sinensis-like sequence, both in individuals known to be M. sinensis and in diploid Miscanthus sp., suggesting these individual could be M. sinensis too. Two out of three triploid M. sinensis 'Goliath' exhibit a sinensis-like sequence, while the genotype Tea-56 had a mixture of the two different sequences, as observed in the other three groups of triploids: M. \times giganteus, M. sacchariflorus \times M. sinensis hybrids and 3 x -Miscanthus sp .

The tetraploid M. sacchariflorus Tea-84 is the only genotype with a sacchariflorus-like sequence.

These data, together with the information from the morphological characterization, suggest that the Oak Park collection is composed by diploid plants mostly belonging to M. sinensis, three tetraploid M. sacchariflorus, 18 triploids belonging to the variety M. sinensis 'Goliath' and to the group of M. sacchariflorus \times. sinensis hybrids, while the remaining 3 x plants are mostly M. \times giganteus.

2.6 Conclusions

The morphology of a collection of Miscanthus has been evaluated through the measurement of key qualitative and quantitative traits and then compared with the morphology of herbarium specimens of relevant Miscanthus species. In addition, the ploidy of the plants has been estimated. The results showed great morphological diversity among individuals and different levels of ploidy, with the presence of tetraploid M. sacchariflorus, triploid M. \times giganteus, and both diploid and triploid M. sinensis. A classification of unidentified genotypes has been attempted with the support of DNA sequencing, which proved to be a useful tool to discriminate between species, thanks to single nucleotide polymorphisms (SNPs) species-specific identified in the ITS-1 region of the nrDNA.

Chapter 3

Characterisation of genetic diversity and structure in a collection of Miscanthus and related species using newly developed chloroplast DNA microsatellite markers

3.1 Introduction

3.1.1 The chloroplast genome

For a long time the chloroplasts were regarded as organs that differentiated in an ancient cell from colourless protoplasm (Wilson, 1902). In 1885, Shimper demonstrated that although chlorophyll arises de novo, the plastids (chloroplasts) are already in the plant as leucoplasts and never appear de novo. This contrasted with the then used definition of an organ as a discrete part of an organism arising from primordia in the germplasm.

Following this evidence, Mereschkowsky (1905) speculated that chloroplasts (chromatophore) were foreign organisms (i.e. a cyanobacteria prokaryotes) that invaded the cell and entered into a symbiotic existence with it. To support what is today known as the 'endosymbiotic theory', Mereschkowsky reported five observations: 1) chloroplasts never arise de novo, but always through division of pre-existing plastids; 2) chloroplasts are highly independent of the nucleus; 3) chloroplasts possess a complete analogy with zoochlorellae; 4) Cyanophyceae are organisms that can be regarded as free-living chloroplasts; 5) Cyanophytes actually live as symbionts in cell protoplast.

The presence of DNA inside plastids was first demonstrated by Ris and Plaut (1962). They found, in the chloroplasts of Feulgen-stained Chlamydomonas cells, one or more small bodies with an intensity of reaction similar to the one observed in the nucleus. These bodies disappeared after treatment of the cells with ribonuclease. The endosymbiotic origin of plastids is now well documented and primary and secondary endosymbiotic events are believed to have resulted in the green and red algal symbionts and glaucophytes (Primoplantae) and several other Eukaryotic plant lineages (in the Chromalveolates, Excavates, and Rhizaria supergroups) (Palmer et al. 2004).

The first chloroplast genome (cpDNA) sequences became publicly available in 1986 (Ohyama et al. 1986; Tanaka et al. 1986) and the number has increased exponentially in the last decades. So far, over 250 plastid genomes have been published (http://www.ncbi.nlm.nih.gov/), providing general information about the structure of the chloroplast genome. Mainly the molecules are circular and they contain much less DNA than their contemporary prokaryotic relatives. This discrepancy in size is due to DNA transfer between chloroplast, mitochondria and nucleus, leading to the acquisition of genes important for the plastid biochemistry by the nuclear genome (Kleine et al. 2009). In Arabidopsis at least 2000 nuclear genes are of cynobacterial origin (Martin et al. 2002). In angiosperms, the size of the cpDNA ranges between 115 and 165 kb and consists of two large inverted repeats (IRs) dividing the single-copy part of genome into a small and a large region (SSC and LSC respectively) (Diekmann et al. 2009). The gene content and order is highly conserved, with genes coding for ribosomal and transfer RNA, ribosomal proteins, RNA polymerase subunits, and most of the polypeptides of Photosystem I, Photosystem II, the cytochrome $\mathrm{b}_{6} \mathrm{f}$ and the ATP synthase (Green 2011). A typical plastid DNA genome is shown in Figure 3.1.1. This is from (Diekmann et al. 2009) for Lolium perenne (perennial ryegrass).

Figure 3.1.1 Circular structure of the chloroplast genome of Lolium perenne. Genes written on the outside are transcribed clockwise, genes on the inside counter-clockwise, annotated genes are colour coded according to their function, genes containing introns are highlighted with an asterisk; LSC, large single copy region; SSC, small single copy region; IR, inverted repeat From Diekmann et al. (2009) with permission.

The cpDNA is present in high copy number in the cell and it is uniparentally inherited. These features, together with the general homoplasmy and lack of recombination, have made the chloroplast genome an eligible tool for phylogenetic analyses in plants (Provan 2001) and the genetic resource characterization of cytoplasmic DNA diversity in crop plants (Flannery et al. 2006).

3.1.2 Chloroplast molecular markers

Different approaches have been used for phylogenetic and genetic resource characterization of germplasm with cpDNA (Olmstead and Palmer 1994; Flannery et al. 2006; McGrath et al.
2007). One of the earliest methods used was the analysis of restriction fragment variation. Despite the advantage of being simple to set up and the presence of many independent restriction sites along the genome, this methodology shows a lower limit due to the high level of conservation in the cpDNA among closely related species, and an upper limit where restriction site homology becomes difficult to be assessed (Olmstead and Palmer 1994).

More recently chloroplast genome sequences have proved useful in phylogenetic analysis including grasses (GPWG 2001; Hodkinson et al. 2002a). Several genes and intergenic spacer have been used, including genes the rbcL, ndhF, matK, atpB, rpll6 and the non-coding regions trnL intron and trnL-trnF intergenic region (Ravi et al. 2007).

The discovery of mononucleotide repeats in the chloroplast genome of all the partial and total cpDNAs sequenced so far widened the possibility to large scale screening of polymorphism associated with the chloroplast genome. The need for DNA sequence in order to design specific primers to amplify microsatellite containing regions is counterbalanced by the crossamplification in related species (Provan 2001).

Despite its conserved gene order and a lack of recombination, chloroplast DNA (cpDNA) shows length polymorphism associated with mononucleotide and less commonly polynucleotide repeats (Provan 2001; Diekmann et al. 2009). Non-coding intron and intergenic spacers are particularly variable and contain microsatellite and non-microsatellite polymorphisms even between closely related individuals and taxa in a range of plant groups (Provan 2001; Flannery et al. 2006; McGrath et al. 2007).

Chloroplast simple sequence repeat (cpSSR; also known as chloroplast microsatellite) markers have been useful to assess genetic variation in plants (Provan 2001). SNPs and indels are also common (Kelchner 2000) and provide useful markers. cpSSRs have been proven useful in gene flow studies to estimate seed and pollen contribution (McCauley 1995) and in phylogeographic analyses (McGrath et al. 2007).

3.1.3 Chloroplast molecular markers in Miscanthus

Two chloroplast loci, the $\operatorname{trn} L$ intron and the $\operatorname{trn} L-F$ intergenic spacer, have previously been used to reconstruct the phylogenetic relationships in Miscanthus (Hodkinson et al. 2002a) and demonstrated considerable variation in the Miscanthus plastid genome. There is a shortage of reliable plastid genome markers available for plant genetic resource activity. The availability of plastid markers for this genus would facilitate the selection of parental lines with distinct plastid genomes. It will also help understand the complex polyploid and hybrid origins of some of its taxa.

3.2 Aims

The aims of the chapter were to develop new chloroplast SSR markers for the genus Miscanthus and to determine genetic diversity in a collection of M. \times giganteus, M. sacchariflorus and M. sinensis established in Teagasc, Oak Park, Carlow.

In detail, the objectives were:

- To design and optimise new primer pairs to amplify regions containing microsatellites;
- To determine the informativeness of the newly developed SSRs by testing them on several species of the genus Miscanthus and on representative species of related genera;
- To assess the genetic variation in the Miscanthus collection in Teagasc;
- To clarify the taxonomic status of unknown accessions in the collection.

3.3 Materials and methods

3.3.1 Plant material and DNA isolation

Fresh leaf material from a collection of 128 individuals of the genus Miscanthus was used for this study. Rhizomes of 33 M. sinensis were provided by Svalöf Weibull, Sweden; 80 individuals of M. \times giganteus, M. sacchariflorus and M. sinensis, including different ornamental varieties, were collected from TCD Botanic Gardens, Dublin, Ireland; 15 additional genotypes of the three species were made available by the University of Hohenheim, Germany (Clifton-Brown and Lewandowski 2002). Specimens for other Miscanthus, Saccharum and related grasses (subfamily Panicoideae) were collected from the living collections at the Royal Botanic Gardens, Kew, Surrey, UK and ADAS, Arthur Rickwood Research Station, Cambridge, UK. Details on the number of individuals per species analysed are shown in Table 2. Fresh leaves were frozen in liquid nitrogen and ground manually to a fine powder. Total genomic DNA was extracted following a modified cetyltrimethyl ammonium bromide (CTAB) method (Doyle and Doyle 1987) or by following the CTAB protocol in Hodkinson et al. (2002a).

3.3.2 Primer design, amplification and SSR selection

Regions of cpSSRs were identified in the complete chloroplast genome sequence of Saccharum officinarum (GenBank Accession No. AP006714.1) using 'find_microsat_Win32' (Salamin, personal communication) and primers were developed to amplify 30 loci, each, with one exception, including a A / T repetition ranging from 8 bp to 15 bp (Table 3.3.1).

Table 3.3.1 List of primer pairs developed for cpSSR amplification in Miscanthus. Locus position, SSR motifs and expected length of the PCR products refer to the Saccharum officinarum chloroplast genome used as template for primers design. In grey PCR products that were sequenced, darker for primer pairs used for genotyping.

Name	Locus position	cpSSR	Forward Primer	Revers Primer	Length	Ampl.
Sac-1	IGSpsbE-petL	$(\mathrm{A})_{9} \mathrm{t}(\mathrm{A})_{8}$	tgaccaaacagcaagcatgg	agaaaagcattocacgacoc	230	Y
Sac-2	Int-trnK	$(\mathrm{A})_{15}$	aoctttcectgcattaggca	agaccacgactgatcctcaa	260	Y
Sac-3	IGStps 16-tmQ	(T) 14	aocaaagaaaagaaggacge	tctacggataggactctat	269	Y
Sac-4	Int-rps 12;infA	(T) ${ }_{10}+(\mathrm{T})_{10}$	ggatgatcggtcattctctagg	ggtaatggecgeacctatag	214	Y
Sac-5	IGSytmT-tmE	(T) 14	ggyetttcacttaggyag	gcaatttaact ctg gettcg	207	Y
Sac-6	IGSndhK-ndhC	(T) 14	cttgttggt cgagaacgg	cgacgtattgrytatccg	197	Y
Sac-7	Rpl16-Int-rps 12	(T) ${ }_{13}+(\mathrm{T})_{8}$	cagtttattaacocgget getc	ggat toccatgygatgg	173	Y
Sac-8	IGSpsbM-petN	(A) ${ }_{12}$	aagg gegagat gett caatcga	gaaagggegattatagtaact	226	N
Sac-9	IGSrpl33-rps18	(T) 12	cttcttctggtctggatca	acgectacgaaaaggtgttgg	218	Y
Sac-10	IGSrps 1 1-rpl36	$(\mathrm{T})_{12}+(\mathrm{T})_{9}$	taaaacgggcattcotacge	cogaagcataaacaaagacag	285	Y
Sac-11	IGSpsbK-psbI	$(\mathrm{A})_{11}$	ccaatcgygatgytatge	taggeccagutagtagaay	259	Y
Sac-12	IGSrps 16-trnQ	(T) ${ }_{11}$	cttcttcgactcgaataaca	gcgaaaacgatctcgatctgfg	238	Y
Sac-13	IGStimG-trnfM	(T) ${ }_{11}$	ggottcgagggcgeaaatt	cagagcgagtagagcagt	293	Y
Sac-14	IGSatpI-atpH	(T) ${ }_{11}$	agg gaat ccat graagg catc	cotacaactctaggt tgat	158	Y
Sac-15	trnR;IGStrnR-	(T) ${ }_{11}+(\mathrm{T})_{11}$	cof gt tagtagaagagzatcg	attatttctettgtcogag	238	Y
Sac-16	IGSpsaI-ycf4	(T) ${ }_{11}$	gattgtctagaaacgacgag	gocttcag agctagtactcet	282	Y
Sac-17	IGSmat K-1ps 16	$(\mathrm{A})_{10}$	tacaocggacgct cet gitcaaa	ttgrooctcttgcatgact	232	Y
Sac-18	IGSorfl47-trnT	$(\mathrm{A})_{10}$	gttattatgcoccttgge	aacacgatctcgtacgactcac	132	Y
Sac-19	rpoc2	$(\mathrm{A})_{10}$	aaaagct gcoctacgaggtc	graaacgegotctctgatg	261	Y
Sac-20	intpetB;intrps 12	$(\mathrm{A})_{10}+(\mathrm{A})_{10}$	gaaagggoctgtatctcta	gagtctcttttggraaac	222	Y
Sac-21	IGSndh5-rpl32	(A) ${ }_{10}$	cagaatggyttagtactg	caattacgaacaacagagctc	175	
Sac-22	psbC	(G) ${ }_{10}$	gttaggt ctagg getttc	acaatccatcettctccoce	174	Y
Sac-23	orf43	(T) ${ }_{10}$	tagat cgegcaaggeaaga	getctctat gratgggy	203	Y
Sac-24	IGStrnC-rpoB	(T) ${ }_{10}$	tgrat ttocagt cgragget	ocgatttaagagt cgttcac	133	Y
Sac-25	IGSaptI-aptH	(T) ${ }_{10}$	cocgatagagct tagaagt tgg	agcagtaocttgaccaactc	182	Y
Sac-26	intatpF	(T) 10	gagtg gt gogagt tot cta	accaat gaat cgegaaatge	175	Y
Sac-27	IGSatpB-rbcL	(T) ${ }_{10}$	gacgegaagtagtagattg	gcaacgaaat caagt gcgag	191	Y
Sac-28	IGSatpB-rbcL	(T) ${ }_{10}$	gracgtacacaggot gtaca	caggotctactcgatatga	161	Y
Sac-29	IGSpetG-trnW	(T) ${ }_{10}$	agcgogattattcgtgactg	cgatgr cotagyt tcaaatcc	214	Y
Sac-30	IGSpsaJ-rpl33	(T) 10	gattcttcgtgacat gacg	ctttgeocttggocat gaac	357	Y

DNA from twelve samples was amplified with an initial denaturation of 5 min at $95^{\circ} \mathrm{C}$ followed by 35 cycles each with a denaturation of 1 min at $95^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at a primer-specific annealing temperature (see results section 3.4), and an extension of 1 min at $72^{\circ} \mathrm{C}$, followed by a final extension at $72^{\circ} \mathrm{C}$ for 10 min . The reaction mixture $(10 \mu \mathrm{l})$ contained $10 \times$ reaction buffer (New England Biolabs) containing $2 \mathrm{mM} \mathrm{MgSO} 4,0.125 \mu \mathrm{M} \mathrm{dNTPs}, 0.25 \mu \mathrm{M}$ of each primer, 0.5 U of Taq DNA polymerase (New England Biolabs) and 40 ng template DNA.

The PCR products were loaded on 3\% MetaPhor ${ }^{\circledR}$ Agarose (Lonza, Rockland, ME, USA) gels. For primers which produced weak amplification, PCR conditions were optimized using a gradient PCR, with temperatures ranging from $48^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, and the amplification test was repeated using the optimal annealing temperature. Twelve primer pairs producing the best amplification (highlighted in grey in Table 3.3.1) were selected and used to amplify a set of 24 genotypes. The PCR products were subsequently sequenced by a commercial sequencing company (AGOWA GmbH, Germany) to confirm length polymorphism in the microsatellite motifs. The sequences were aligned using ClustalW (Thompson et al. 1994) as implemented in MEGA version 3.1 (Kumar et al. 2004). Six markers did not show polymorphism in the microsatellite sequence and where therefore discarded. Further analyses were carried out on the remaining six cpSSRs (in dark grey in Table 3.3.1).

3.3.3 Genotyping

Forward primers were fluorescently labelled so that they could be used for automated genotyping. A polyA treatment at $65^{\circ} \mathrm{C}$ was applied for 30 min to the PCR products. The PCR products were then sized using the LIZ500 internal sizing standard on an ABI 3130x1 automated DNA sequencer with GENEMAPPER ${ }^{\text {TM }}$ V4.0 software (Applied Biosystems).

3.3.4 Data analyses

Genetic distance

Allele number and size range were calculated for each locus. Due to the haploid nature of the chloroplast markers, it was necessary to transform the data matrix into a binary matrix scoring 1 for presence of alleles and 0 for absence. Genetic similarity (GS) indices were calculated using the Jaccard's coefficient for all possible pairwise comparisons. The Jaccard's coefficients disregards the conjoint absence of alleles in the pairwise comparison, reducing the risk of over-estimating similarity. Jaccard's coefficients were calculated using the software FreeTree (Pavlícek et al. 1999) and used to cluster genotypes according to similarity. The UPGMA (unweighted pair group method using arithmetic means) clustering
tree building approach was used, with internal support assessed using 1000 bootstrap replicates. UPGMA tree was visualized using FIGTREE 1.2.1 (Rambaut 2007).

Structure

The software STRUCTURE 2.3.3 (Pritchard et al. 2000) was used to infer the genetic structure of the collection. A series of simulations were run with the number of clusters K ranging from 1 to 8 , with three independent runs for each K value. Each run consisted of a burn-in period of 10,000 steps and 100,000 MCMC (Monte Carlo Markov Chain) replicates, assuming an admixture model and uncorrelated allele frequencies. No prior information about the structure of the population was defined. The most likely value of K was chosen following (Evanno et al. 2005) and used to run a simulation with a burn-in period of 10,000 steps followed by $100,000 \mathrm{MCMC}$ replicates.

AMOVA

An analysis of molecular variance (AMOVA; Excoffier et al. (1992)) was carried out with GenAIEx 6 (Peakall and Smouse 2006) starting from the raw data to estimate the components of genetic variation between and within groups as observed in the output of the cluster analysis performed with STRUCTURE 2.3.3. A value of 999 permutations was used to test for statistical significance.

PCA

A principal coordinates analysis (PCA) was carried out with GenAIEx 6 (Peakall and Smouse 2006). Starting from raw data, a Nei genetic distance matrix was calculated as
$G D=-\ln \frac{J_{x y}}{\sqrt{J_{x} J_{y}}}$,
where:
$J_{\mathrm{xy}}=\sum_{i=1}^{k} p_{\text {ix }} p_{\text {iy }}$
$J_{\mathrm{x}}=\sum_{i=1}^{k} p_{i x}^{2}$
$J_{\mathrm{y}}=\sum_{i=1}^{k} p_{i y}^{2}$
with p_{ix} and p_{iy} as the frequencies of the $\mathrm{i}_{\text {th }}$ allele in populations x and y . For multiple loci, $\mathrm{J}_{\mathrm{xy}}, \mathrm{J}_{\mathrm{x}}$ and J_{y} are calculated by summing over all loci and alleles and dividing by the number of loci. These average values are then used to calculate the genetic distance matrix used to perform the PCA with the algorithm described in Orloci, 1978 (cited in GenAlEx 6) as implemented in GenAlEx 6.

3.4 Results

3.4.1 Analysis of the cpSSR sequences

Sequencing of the Miscanthus accessions revealed the nature of the detected length variation. They contained mononucleotide repeats ranging from 10 bp to 21 bp in all six loci (Table 3.3 .1), with species-specific length polymorphisms due to A / T indels of $1-4 \mathrm{bp}$. The region amplified with the Sac-2 primer pair included two mononucleotide repeats which were both polymorphic and were separated by 68 bp (Figure 3.4.1a). The combination of the length variation of the two microsatellites results in an allele number of four at this locus in the sequenced genotypes. All other loci sequenced included a single microsatellite with two to three alleles (Figure 3.4.1b).

In addition to microsatellite length polymorphism, two species-specific SNPs were detected in the sequence amplified with the marker Sac-10 (Figure 3.4.1b). The hybrid M. \times giganteus and the species M. sacchariflorus share the same sequence at this locus, whereas M. sinensis may be differentiated.

Figure 3.4.1 Variation in chloroplast simple sequence repeat (cpSSR) motifs and flanking regions of cpSSR markers Sac-2 (a) and Sac-10 (b) in a range of Miscanthus accessions. Grey boxes: allele groups, lined boxes: simple sequence polymorphisms (SNPs). In (a) the alignment shows two polymorphic regions. Within the flanking markers, the sequence is interrupted by a dotted line to indicate the presence of a non-displayed and non-polymorphic sequence between the two microsatellite motifs.

3.4.2 Genotyping

The number of alleles detected by genotyping of 165 Miscanthus accessions ranged from four within locus Sac-26 to ten within locus Sac-10. Additional alleles were detected in related grass species (Table 3.4.1).

Table 3.4.1 List of cpSSRs with locus name, GenBank accession number, chloroplast genome region in Saccharum, primer sequences, dye for the 5^{\prime} 'labelling of the F primer, annealing temperature, SSR motif, size range of the PCR product and allele number in all species analysed and in the genus Miscanthus only (in brackets).

cpSSR marker	GenBank Accession numbers	Chloroplast genome region	Dye	Ta $\left({ }^{\circ} \mathrm{C}\right)$	Repeat motif	Size range (bp) (Miscanthus)	Allele no. (Miscanthus)
Sac-2	$\begin{aligned} & \text { FN64379 to } \\ & 82 \end{aligned}$	tmK intron	Pet	58	(T) ${ }_{11} /(\mathrm{A})_{21}$	$\begin{aligned} & 236-257 \\ & (247-256) \end{aligned}$	11 (9)
Sac-3	FN646383 to 86	$\begin{aligned} & \text { rps16-trnQ } \\ & \text { IGS } \end{aligned}$	Vic	56	(T) ${ }_{16}$	$\begin{aligned} & 262-272 \\ & (262-270) \end{aligned}$	10 (9)
Sac-10	$\begin{aligned} & \text { FN646387 } \\ & \text { to } 90 \end{aligned}$	$\begin{aligned} & \text { rps } 11-\mathrm{rpl} 36 \\ & \text { IGS } \end{aligned}$	Fam	52	(T) 12	$\begin{aligned} & 269-294 \\ & (271-287) \end{aligned}$	16 (10)
Sac-13	$\begin{aligned} & \text { FN646391 } \\ & \text { to } 94 \end{aligned}$	$\begin{aligned} & \text { trnG-trnfM } \\ & \text { IGS } \end{aligned}$	Ned	62	(T) ${ }_{15}$	$\begin{aligned} & 283-291 \\ & (283-291) \end{aligned}$	9 (8)
Sac-17	$\begin{aligned} & \text { FN646395 } \\ & \text { to } 98 \end{aligned}$	$\begin{aligned} & \text { matK-rps16 } \\ & \text { IGS } \end{aligned}$	Fam	60	(A) ${ }_{12}$	$\begin{aligned} & 217-238 \\ & (227-235) \end{aligned}$	9 (7)
Sac-26	$\begin{aligned} & \text { FN646399 } \\ & \text { to } 02 \end{aligned}$	atpF intron	Fam	58	(T) ${ }_{10}$	$\begin{aligned} & 169-178 \\ & (172-177) \end{aligned}$	7 (4)

The six markers were tested on 73 individuals of M. sinensis, nine M. sacchariflorus individuals and 15 M . \times giganteus individuals. 14 out of $15 \mathrm{M} . \times$ giganteus analysed shared the same haplotype. The other two species showed a high level of polymorphism for all markers, but with a preference for the frequency of certain alleles (Table 3.4.2).

Table 3.4.2 Allele sizes of the six cpSSR loci grouped by species. Numbers of individuals per species are shown (N), the most frequent allele within a species is in bold.

Species	N	Marker					
		Sac-2	Sac-3	Sac-10	Sac-13	Sac-17	Sac-26
Miscanthus species							
Miscanthus capense	2	251,253	266, 267	273,275	287	227, 229	176
M. condensatus	1	255	269	275	288	230	176
M. ecklonii	2	253, 255	266	275	287	229, 230	176
M. erectum	1	253	266	273	287	229	176
M. fusca	2	249, 251	265	287	291	228	175
M. \times giganteus	15	252	266	276,277	290	227	175
M. junceum	3	$\begin{aligned} & 249, \quad 251, \\ & 252 \end{aligned}$	264, 268	273, 284	289	229	176,177
M. nepalensis	1	250	262	284	288	229	175
M. nudipes	4	$\begin{aligned} & 247, \quad 248, \\ & 250 \end{aligned}$	266	283, 286	285, 287	228, 229	176
M. oligostachyus	1	252	269	284	288	229	177
M. sacchariflorus	9	252, 255	$\begin{aligned} & 264,265, \\ & 266,269 \end{aligned}$	$\begin{array}{ll} 271, \quad 276, \\ 277 \end{array}$	$\begin{array}{ll} 288, \quad 289, \\ 290 \end{array}$	227, 230	175,176
M. sinensis	73	$\begin{array}{ll} 251, & 252, \\ 253, & \mathbf{2 5 5}, \\ 256 & \end{array}$	$\begin{aligned} & 266, \quad 267, \\ & 268, \\ & \mathbf{2 6 9}, 270 \end{aligned}$	$\begin{aligned} & 274, \mathbf{2 7 5}, \\ & 276,277 \end{aligned}$	$\begin{aligned} & 283,287, \\ & \mathbf{2 8 8}, 290 \end{aligned}$	$\begin{aligned} & 227, \quad 229, \\ & 230, \\ & 234, \\ & 235 \end{aligned}$	$\begin{aligned} & 172, \quad 175, \\ & 176,177 \end{aligned}$
M. sorghum	1	251	265	273	286	229	176
M. $s p$.	42	$\begin{aligned} & 251,252, \\ & 255,256 \end{aligned}$	$\begin{aligned} & 265, \quad 266, \\ & 267, \quad 268, \\ & 269,270 \end{aligned}$	$\begin{array}{ll} 275, & 276, \\ 277 \end{array}$	$\begin{aligned} & 287,288, \\ & 289,290 \end{aligned}$	$\begin{aligned} & 227, \quad 228, \\ & 229, \\ & 230,234 \end{aligned}$	175,176
M. teretifolium	1	251	263	273	286	227	175
M. transmorrisonensis	1	255	269	275	288	230	176
M. tinctorius	2	252, 256	265, 269	275,276	288	227, 230	176
M. violaceum	4	251	264, 267	273,275	288, 290	227, 228	175
Related species (Panicoideae)							
Cymbopogon citratus	1	257	n.a.	279	n.a.	230	175
Eulalia quadrinervis	1	247	n.a.	283	283	234	174
Eulalia tripsicata	1	251	263	269	284	238	174
Eulalia villosa	1	249	262	278	n.a.	234	174
Pennisetum sp.	1	236	265	294	290	229	178
Saccharum contortus	1	250	264	283	n.a.	229	176

Species	N	Marker					
		Sac-2	Sac-3	Sac-10	Sac-13	Sac-17	Sac-26
Saccharum officinarum	2	252, 253	267	275, 284	291	228	176
Saccharum porphyrocoma	1	n.a.	266	277	288	n.a.	175
Saccharum spontaneum	1	252	263	289	291	229	176
Sorghum halpense	1	251	262	273	283	217	175
Spodiopogon rhizophorus	1	248	n.a.	278	n.a.	n.a.	169
Spodiopogon sibricus	1	248	n.a.	279	285	230	169
Zea diploperennis	1	250	272	285	290	227	175

3.4.3 Cluster analysis with STRUCTURE

The genetic structure of the population was detected using a model-based clustering method (Pritchard et al. 2000) as implemented in STRUCTURE 2.3.3. A series of three independent runs for each value of K (i.e. the number of populations in the collection) was run. For each run, the estimated \log probability of data $\operatorname{Pr}(\mathrm{X} \mid \mathrm{K})$ for each value of K is given (Table 3.4.3). The mean likelihood, indicated as $\mathrm{L}(\mathrm{K})$ afterwards, over the three runs for each K was first plotted against K (Figure 3.4.2). $\mathrm{L}(\mathrm{K})$ could be seen increasing dramatically until $\mathrm{K}=3$, after which it slowly decrease. In order to harvest the true value for K , three additional steps were introduced, following (Evanno et al. 2005). In the second step, the mean difference between successive values of likelihood of $\mathrm{K}^{\prime}(\mathrm{K})=\mathrm{L}(\mathrm{K})-\mathrm{L}(\mathrm{K}-1)$ was calculated and in the third step, the absolute value of the difference between successive values of $\mathrm{L}^{\prime}(\mathrm{K}),\left|\mathrm{L}^{\prime \prime}(\mathrm{K})\right|=$ $\left|L^{\prime}(\mathrm{K}+1)-\mathrm{L}^{\prime}(\mathrm{K})\right|$ (Table 3.4.3). Finally the value $\Delta \mathrm{K}$ is estimated as the mean of $\left|\mathrm{L}^{\prime \prime}(\mathrm{K})\right|$ averaged over the three runs divided by the standard deviation of $\mathrm{L}(\mathrm{K}), \Delta \mathrm{K}=\mathrm{m} \mid \mathrm{L}$ " $(\mathrm{K}) \mid /$ $\mathrm{s}[\mathrm{L}(\mathrm{K})]$.

Table 3.4.3 Evanno parameters calculated over three repetitions for each K value ranging from 1 to 8 .

\mathbf{K}	Reps	Mean LnP(K)	Stdev LnP(K)	$\mathbf{L n}^{\prime}(\mathbf{K})$	$\left\|\mathbf{L n}^{\prime \prime}(\mathbf{K})\right\|$	Delta K
$\mathbf{1}$	3	-1501.4	0.1	NA	NA	NA
$\mathbf{2}$	3	-1103.5333	0.4163	397.86667	209.43333	503.0426
$\mathbf{3}$	3	-915.1	1.3748	188.43333	181	131.65813
$\mathbf{4}$	3	-907.6667	1.5044	7.433333	19.933333	13.249689
$\mathbf{5}$	3	-920.1667	0.3215	-12.5	2.833333	8.814089
$\mathbf{6}$	3	-935.5	0.781	-15.333333	4.333333	5.548265
$\mathbf{7}$	3	-955.1667	2.9143	-19.66667	5.7	1.955851
$\mathbf{8}$	3	-969.1333	2.2723	-13.966667	NA	NA

Figure 3.4.2 Graphical representation of the Evanno parameters for the estimation of the K value.

Plotting $\Delta \mathrm{K}$ against the values of K , the highest value of $\Delta \mathrm{K}$ represents the true value of K for the data, in our case at $K=2$. A simulation for this value of K was then run in order to 74
assign the individuals to each of the two clusters. The result is summarized in Table 3.4.4 and in Figure 3.4.3.

Figure 3.4.3 Structure barplot assigning each accession to cluster I (red) and cluster II (green).

Table 3.4.4 Accessions assigned to each cluster according to STRUCTURE analysis.
Percentage of missing data is indicated. Shading indicates the assigned cluster.

ID	\% Missing	Inferred cluster	
		I	II
Miscanthus sp. Tea-1	0	0.009	0.991
M. sinensis 'zebrinus' Tea-2	0	0.008	0.992
M. sinensis 'zebrinus' Tea-3	-33	0.012	0.988
M. xgiganteus Tea-4	-16	0.991	0.009
M. xgiganteus Tea-5	0	0.993	0.007
Miscanthus sp. Tea-6	0	0.993	0.007
Miscanthus sp. Tea-7	0	0.993	0.007
Miscanthus sp. Tea-8	-33	0.449	0.551
Miscanthus sp. Tea-9	0	0.992	0.008
Miscanthus sp. Tea-10	0	0.993	0.007
Miscanthus sp. Tea-11	0	0.993	0.007
M. sinensis Tea-13	0	0.013	0.987
M. sinensis Tea-14	0	0.008	0.992
Miscanthus sp. Tea-15	0	0.993	0.007
Miscanthus sp. Tea-16	0	0.992	0.008
M. xgiganteus Tea-17	0	0.992	0.008
Miscanthus sp. Tea-18	0	0.007	0.993
M. sinens is goliath-like Tea-19	0	0.008	0.992
M. xgiganteus Tea-20	0	0.993	0.007
Miscanthus sp. Tea-21	0	0.993	0.007
Miscanthus sp. Tea-22	0	0.007	0.993
Miscanthus sp. Tea-23	-16	0.948	0.052
Miscanthus sp. Tea-24	-16	0.827	0.173
Miscanthus sp. Tea-25	0	0.007	0.993
Miscanthus sp. Tea-26	0	0.949	0.051
Miscanthus sp. Tea-27	0	0.007	0.993
Miscanthus sp. Tea-28	-16	0.838	0.162
Miscanthus sp. Tea-29	0	0.008	0.992
M. sinensis Tea-30	-16	0.027	0.973
M. xgiganteus Tea-31	0	0.992	0.008
Miscanthus sp. Tea-32	0	0.993	0.007
M. sinensis 'zebrinus' Tea-33	0	0.007	0.993
Miscanthus sp. Tea-34	0	0.993	0.007
M. sinensis 'gross fontane' Tea-35	0	0.009	0.991
M. sinensis 'gross fontane' Tea-36	0	0.009	0.991
Miscanthus sp.Tea-37	0	0.008	0.992
Miscanthus sp. Tea-38	0	0.858	0.142
Miscanthus sp.Tea-39	-16	0.176	0.824
M. sinensis Tea-40	0	0.007	0.993
Miscanthus sp. Tea-41	0	0.124	0.876
Miscanthus sp. Tea-42	0	0.015	0.985
Miscanthus sp. Tea-43	0	0.008	0.992
M. condensatus Tea-44	-33	0.01	0.99

Table 3.4.4 (continued)

ID	\% Missing	Inferred cluster	
		I	II
Miscanthus sp. Tea-45	0	0.187	0.813
Miscanthus sp. Tea-46	0	0.047	0.953
Miscanthus sp. Tea-47	0	0.993	0.007
Miscanthus sp. Tea-48	0	0.992	0.008
Miscanthus sp. Tea-49	0	0.993	0.007
Miscanthus sp. Tea-50	0	0.993	0.007
Miscanthus sp. Tea-51	0	0.993	0.007
Miscanthus sp. Tea-52	0	0.993	0.007
Miscanthus sp. Tea-53	0	0.993	0.007
Miscanthus sp.Tea-54	0	0.007	0.993
Miscanthus sp.Tea-55	0	0.993	0.007
M. sinens is 'goliath'Tea-56	0	0.008	0.992
M. sinensis 'goliath' Tea-57	0	0.011	0.989
M. sinens is 's irene' Tea-58	0	0.008	0.992
M. sinensis 'strictus' Tea-59	0	0.008	0.992
M. sinens is 'strictus' Tea-60	0	0.019	0.981
M. sinens is 'malaparteus' Tea-61	0	0.008	0.992
M. sinensis Tea-62	0	0.993	0.007
M. sinensis 's irene' Tea-63	0	0.008	0.992
M. xgiganteus Tea-64	0	0.993	0.007
M. xgiganteus Tea-65	0	0.993	0.007
M. xgiganteus Tea-66	0	0.993	0.007
Miscanthus sp. Tea-68	0	0.993	0.007
Miscanthus sp. Tea-69	0	0.993	0.007
Miscanthus sp. Tea-70	0	0.993	0.007
Miscanthus sp. Tea-71	0	0.993	0.007
Miscanthus sp. Tea-72	0	0.993	0.007
Miscanthus sp. Tea-73	0	0.008	0.992
M. xgiganteus Tea-74	-16	0.991	0.009
M. sacchariflorus $\times \mathrm{M}$. sinens is Tea-75	0	0.27	0.73
M. sinensis Tea-76	0	0.007	0.993
M. sinensis Tea-77	0	0.008	0.992
M. sinensis Tea-78	-16	0.479	0.521
M. sinensis Tea-79	0	0.008	0.992
M. sinensis Tea-80	0	0.008	0.992
M. xgiganteus Tea-81	0	0.993	0.007
M. xgiganteus Tea-82	0	0.993	0.007
M. xgiganteus Tea-83	0	0.993	0.007
M. sacchariflorus Tea-84	-16	0.957	0.043
M. sinens is goliath-like Tea-85	-16	0.009	0.991
M. sinensis Tea-86	0	0.009	0.991
M. sacchariflorus \times M. sinens is Tea-87	0	0.772	0.228
M. sinensis Tea-88	0	0.056	0.944

Table 3.4.4 (continued)

ID	\% Missing	Inferred cluster	
		1	II
Miscanthus sp. Tea-89	0	0.993	0.007
Miscanthus sp. Tea-90	-16	0.991	0.009
Miscanthus sp. Tea-91	0	0.992	0.008
Miscanthus sp. Tea-92	0	0.992	0.008
M. xgiganteus Tea-93	0	0.993	0.007
M. xgiganteus Tea-94	0	0.993	0.007
M. sinens is Tea-95	-16	0.009	0.991
M. sinens is Tea-96	0	0.008	0.992
M. sinens is Tea-97	0	0.008	0.992
M. sinens is Tea-98	0	0.007	0.993
M. sinens is Tea-99	0	0.008	0.992
M. sinens is Tea-100	0	0.024	0.976
M. sinens is Tea-101	0	0.032	0.968
M. sinens is Tea-102	0	0.025	0.975
M. sinens is Tea-103	0	0.025	0.975
M. sinens is Tea-104	0	0.007	0.993
M. sinens is Tea-105	0	0.009	0.991
M. sinens is Tea-106	0	0.008	0.992
M. sinens is Tea-107	0	0.008	0.992
M. sinens is Tea-108	0	0.008	0.992
M. sinens is Tea-109	0	0.008	0.992
M. sinens is Tea-110	-16	0.009	0.991
M. sinens is Tea-111	0	0.008	0.992
M. sinens is Tea-112	0	0.007	0.993
M. sinens is Tea-113	0	0.008	0.992
M. sinens is Tea-114	0	0.924	0.076
M. sinens is Tea-115	0	0.008	0.992
M. sacchariflorus x M. sinens is Tea-116	0	0.008	0.992
M. sacchariflorus xM . sinens is Tea-117	0	0.008	0.992
M. sacchariflorus xM . sinens is Tea-118	,	0.008	0.992
M. sacchariflorus xM . sinens is Tea-119	0	0.008	0.992
M. sacchariflorus x M. sinens is Tea-120	0	0.008	0.992
M. sacchariflorus \times M. sinens is Tea-121	-16	0.009	0.991
M. sacchariflorus xM . sinens is Tea-122	0	0.008	0.992
M. sacchariflorus x M. sinens is Tea-123	0	0.007	0.993
M. sacchariflorus \times M. sinens is Tea-124	0	0.041	0.959
M. sacchariflorus \times M. sinens is Tea-125	0	0.007	0.993
M. sacchariflorus x M. sinens is Tea-126	-16	0.991	0.009
M. sacchariflorus \times M. sinens is Tea-127	0	0.007	0.993
M. sacchariflorus Tea-128	0	0.992	0.008
M. sacchariflorus Tea-129	0	0.992	0.008
Miscanthus sp. Tea-130	0	0.469	0.531
Miscanthus sp. Tea-131	0	0.993	0.007

Table 3.4.4 (continued)

ID	\% Missing	Inferred cluster	
		I	II
M. sinensis 'variegatus' Kew 1	0	0.008	0.992
Sorghum halpense Kew 6	0	0.981	0.019
M. condensatus Kew 7	0	0.008	0.992
M. oligostachyus Kew 16	0	0.404	0.596
M. nepalensis Kew 25	0	0.896	0.104
M. sinens is 'goliath' Kew 27	0	0.008	0.992
M. sinens is 'gracillimus' Kew 28	0	0.008	0.992
M. sinensis 'roland' Kew 29	0	0.008	0.992
M. sinens is Kew 30	0	0.008	0.992
M. sinens is 'gross fontane' Kew 31	0	0.008	0.992
M. sacchariflorus Kew 61	0	0.992	0.008
M. sinens is 'yakushimanum' Kew 63	0	0.345	0.655
M. transmorris onensis Kew 65	0	0.007	0.993
M. fusca Kew 82	-50	0.97	0.03
M. violaceum Kew 84	-33	0.983	0.017
M. violaceum Kew 85	0	0.75	0.25
M. ecklonii Kew 86	0	0.568	0.432
M. ecklonii Kew 87	-16	0.057	0.943
M. junceum Kew 88	-83	0.709	0.291
M. junceum Kew 89	0	0.957	0.043
M. fusca Kew 91	0	0.987	0.013
M. violaceum Kew 92	-50	0.97	0.03
M. violaceum Kew 93	-16	0.887	0.113
M. capense Kew 94	0	0.925	0.075
M. capense Kew 95	-16	0.619	0.381
M. teretifolium Kew 96	0	0.99	0.01
M. junceum Kew 97	-16	0.909	0.091
Saccharum officinarum Kew 104	0	0.503	0.497
M. sorghum Kew 105	0	0.959	0.041
M. erectum Kew 106	0	0.922	0.078
M. yunnanensis Kew 107	-33	0.712	0.288
M. nudipes Kew 109	-16	0.868	0.132
M. nudipes Kew 110	0	0.92	0.08
M. nudipes Kew 111	0	0.898	0.102
M. tinctorius Kew 112	0	0.008	0.992
Saccharum spontaneum Kew 117	0	0.954	0.046
Narenga porphyrocoma Kew 120	-33	0.944	0.056
Saccharum contortus Kew 121	-16	0.842	0.158
Spodipogon rhizophorus Kew 125	-50	0.672	0.328
Spodipogon sibiricus Kew 128	-16	0.232	0.768
Eulalia villosa Kew 132	-16	0.957	0.043
Eulalia quadrinervis Kew 134	-16	0.921	0.079
Eulalia tripsicata Kew 138	0	0.942	0.058

Table 3.4.4 (continued)

ID	Inferred cluster					
		\% Missing		I		II
M. sinens is 'morning light' Kew 155	0	0.044	0.956			
M. Sacchariflorus Kew 159	0	0.992	0.008			
M. sacchariflorus Kew 160	0	0.905	0.095			
M. tinctorius 'nana variegata' Kew 161	0	0.922	0.078			
M. sinens is 'goliath' Kew 194	0	0.009	0.991			
Cymbopogon citratus	-16	0.808				
Pennisetum sp.	-33	0.192	0.02			
Saccharum officinarum	0	0.98	0.02			
Zea diploperennis	0	0.956	0.044			

The cluster analysis shows a clear separation of the Miscanthus collection in two clusters. All the M. \times giganteus and M. sacchariflorus clones belong to Cluster I, together with most of the Miscanthus sensu lato species (except M. tinctorius Kew 112 and M. ecklonii Kew 87) and the non-Miscanthus species (except only Cymbopogon citratus and Spodipogon sibiricus). In contrast, the Miscanthus sensu stricto can be found in Cluster II, together with most of the M. sinensis (apart from Tea-62 and Tea-114). The M. sacchariflorus \times M. sinensis hybrids fall in Cluster II, with the exception of Tea-87 and Tea-126.

3.4.4 UPGMA tree

The matrix of Jaccard coefficients was calculated for all the accessions based on the cpSSR markers. The UPGMA tree (Figure 3.4.4) shows two clearly separated clusters: Cluster I, highlighted in yellow, and Cluster II in blue. Cluster I groups together all the M. \times giganteus and M. sacchariflorus clones. With the exception of only two genotypes (Tea-62 and Tea78), all the Miscanthus classified as sinensis fall in the second cluster, as well as the M. sacchariflorus \times M. sinensis hybrids (except Tea-126) and the clones belonging to other Miscanthus s.s. species. The Miscanthus species of the sensu lato group are equally divided between the two clusters. These results are consistent with the clustering obtained with STRUCTURE, except for two accessions of M. sinensis, Tea-78 and Tea-114, and the hybrid Tea- 87, that were assigned to a different cluster in the UPGMA analysis.

The Saccarhum species included in the study appear to be more closely related to M. sinensis than to M. \times giganteus and M. sacchariflorus, in contrast with the results from STRUCTURE. In both clusters subgroups can be recognized of individuals sharing the same haplotype (i.e. where no variation was detected among accessions).

Figure 3.4.4 (continued)

0.05

Figure 3.4.4 UPGMA tree showing inter-relationships of individuals using a combination of 6 cpSSR markers. Labels: Red $=M . \times$ giganteus; Green $=M$. sinensis; Yellow $=M$. sacchariflorus; Blue $=$ M. sacchariflorus \times M. sinensis hybrids; Light blue $=$ Miscanthus s.s; Violet $=$ other Miscanthus; Black $=$ non-Miscanthus species and unclassified Miscanthus accessions; Yellow box = Cluster I; Blue box = Cluster II.

3.4.5 AMOVA

An analysis of molecular variance was carried out to evaluate how the genetic variation is partitioned within and among populations. In this case, the two clusters obtained with

STRUCTURE 2.3.3 were used as supposed populations for the AMOVA. The output is summarised in Table 3.4.5 and Figure 3.4.5.

Table 3.4.5 Analysis of molecular variance (AMOVA) between clusters as shown by the cluster analysis with STRUCTURE 2.3.3. $\mathrm{df}=$ degrees of freedom; $\mathrm{SS}=$ sum of squares; MS= mean square; Est.Var. $=$ Estimated variation; \%= percentage of molecular variance.

Source	df	SS	MS	Est. Var.	\%
Among Pops	1	46712.221	46712.221	302.561	2%
Within Pops	179	3460298.96	19331.279	19331.279	98%
Total	180	3507011.18		19633.84	100%

Figure 3.4.5 Graphical representation of the analysis of molecular variance (AMOVA) between using cluster I and II from STRUCTURE output as populations.

The AMOVA shows clearly that the genetic diversity within clusters accounts for the most of the diversity, with a percentage of 98%.

3.4.6 Principal coordinates analysis

In Table 3.4.6 are shown the percentages of variation explained by the first three axes of the PCA.

Table 3.4.6 Percentages of variation, for each axis and cumulative, explained by the first three axes.

Axis	$\mathbf{1}$	$\mathbf{2}$	3
\%	47.21	24.4	14.57
Cum \%	47.21	71.61	86.19

The first eigenvalue accounts for 47.21% of the total variation, the second 24.40% of the total variation (cumulative 71.61%) and the third 14.57% of the total variation (cumulative 86.19%). The eigenvectors were plotted in a two dimensional scatterplot (Figure 3.4.6).

Figure 3.4.6 Principal coordinates analysis scatterplot for the cpSSRs data with the first coordinate as x -axis and the second as y-axis. Groups: \diamond Cluster I; \square Cluster II.

Four groups of accessions can be identified in the scatterplot: a core group of individuals (at the crossing of the axes in Figure 3.4.6), a smaller group at the opposite side of the plot along the first axis, and two additional small groups separated along the second axis.

The PCA does not show an obvious pattern of separation between the two clusters highlighted by previous analyses: all four groups include individuals from both clusters.

3.5 Discussion

Primer pairs used in this study were developed from non-coding regions, containing mononucleotide repeats, of the Saccharum chloroplast genome, a genus closely related to Miscanthus (Clayton and Renvoize 1986).

Thirty primer pairs were designed to target possible polymorphic regions in the chloroplast genome of Miscanthus and were tested on a small number of individuals belonging to M. sinensis, M. sacchariflorus and M. \times giganteus to check for transferability of primers from Saccharum to Miscanthus. With only one exception, all primer pairs amplified in Miscanthus. To confirm the presence of mononucleotide repeats, PCR products from twelve loci were sequenced on 24 accessions equally divided among M. sinensis, M. sacchariflorus and M. \times giganteus and sequences were aligned to check for length polymorphism in the simple sequence repeats (SSRs).

The alignment of sequences highlighted a species-specific polymorphism in six chloroplast microsatellite markers used (Figure 3.4.1), with M. sacchariflorus and M. \times giganteus sharing the same alleles for five out of six loci. This finding was confirmed by the genotyping performed on a large number of accessions belonging to the three species, where although polymorphism was found within species, it appeared to be a bias in the presence of certain alleles in M. sinensis compared to the alleles found in M. sacchariflorus and M. \times giganteus.

The six primer pairs amplified non-coding regions of the chloroplast genome, in detail four intergenic spacer (IGS) regions and two intronic regions of genes trnK and $a t p F$ respectively (Table 3.3.1). For each marker locus, size range and allele number was determined (Table 3.3.1) on 165 individuals belonging to 17 species of the genus Miscanthus and 13 related species. Between seven (Sac-26; atpF intron) and 16 alleles (Sac-10; IGS rps11-rpl36) were found per locus for all the grasses tested and between four (Sac-26) and ten (Sac-10) alleles for Miscanthus accessions.

The number of haplotypes ranges between 50 when only accessions that amplified in all six loci are taken into account, and 85 considering missing data as null alleles (Table E in

Appendix). Three haplotypes are the most frequent (shared between 36,34 and 16 individuals respectively), whereas 76 are unique to only one accession.

It is clear that a combination of alleles results in a large number of haplotypes that can be used for comparative analyses. This compares to 511 found in Lolium perenne (McGrath et al. 2006) using twelve loci to genotype 1,575 individuals across 104 accessions. Lolium was found to be highly diverse in its plastid DNA variation. Miscanthus is less diverse but the variation detected is of use for genetic resource characterization.

The markers were shown to be transferable among Miscanthus s.l. species tested (M. capense, M. condensatus, M. ecklonii, M. erectum, M. fusca, M. junceum, M. nepalensis, M. nudipes, M. oligostachyus, M. sorghum, M. teretifolium, M. transmorrisonensis, M. tinctorius and M. violaceum) and also related genera (Cymbopogon citrates, Eulalia quadrinervis, Eulalia tripsicata, Eulalia villosa, Pennisetum sp., Saccharum contortus, Saccharum officinarum, Saccharum porphyrocoma, Saccharum spontaneum, Sorghum halpense, Spodiopogon rhizophorus, Spodiopogon sibricus and Zea diploperennis) (Table 3.4.2). Therefore the markers should be of value as 'universal' plastid DNA markers in grasses and especially in Panicoideae grasses the subfamily that Miscanthus belongs. Several other economically important crops are found in this group including Saccharum (sugarcane), Zea (maize) and Sorghum.

All the known $M . \times$ giganteus share the same haplotype, with just an exception for locus Sac10 in M. ×giganteus Tea-17 whereas more variation is present in the M. sacchariflorus accessions. This could be explained by the sterile nature of the allotriploid M. \times giganteus that has been mostly propagated vegetatively in Europe since it was first introduced from Japan in 1935 (Hodkinson et al. 2002). It is therefore encouraging that variation exists in the chloroplast genome of our genetic resource collection of M. sacchariflorus. It represents a novel source of genes for plant breeding purposes. It is not possible to determine the total number of M. \times giganteus genotypes from the cpDNA data presented here but the nuclear DNA variation (reported in chapter 4) shows that several genotypes exist and the material is not all clonal. However, they all share the same cpDNA halplotype which indicates that they are closely related and of limited cytoplasmic diversity in comparison to Miscanthus as a whole sampled in this study.

In the pioneering study by Adati and Shiotani (1962), it was theorized that many plants classified as M. sacchariflorus may be hybrids with a genome inherited by M. sinensis and one of unknown origin. Linde-Laursen (1993) demonstrate that so called M. sinensis 'Giganteus' are allotriploid with two genomes with high homology and one with lower homology. Hodkinson et al. (2002c) demonstrated with the use of ITS sequencing, that these allotriploids are indeed M. \times giganteus whose putative parents are M. sinensis and M. sacchariflorus. Moreover the sequencing of the plastid trnL intron and $\operatorname{trnL} L-F$ intergenic spacer suggested that the maternally inherited cpDNA in M. \times giganteus originates from M. sacchariflorus.

Some artificial crosses of M. sinensis and M. sacchariflorus were included in our study. In several of these the hybrid has the plastid genome of M. sinensis showing that hybridisation is possible in both directions (with both species as maternal parent). There is no reason to believe that the formation of $M . \times$ giganteus in the wild is unidirectional but our study suggests that this could be the case as all the M. \times giganteus accessions have M. sacchariflorus plastid DNA. This unidirectional hybridisation can be caused by several factors including nuclear cytoplasmic DNA incompatability (Anderson and Maan 1995) effects or by population factors. For example if M. sinensis was rare and M. sacchariflorus common (or if phenological differences created such a pattern), the vast number of seeds set would be from M. sacchariflorus ovule donors. However, a small number of M. sinensis plants can potentially father a large number of $M . \times$ giganteus seed.

When additional Miscanthus and related species were introduced in the study, all six loci proved polymorphic both within Miscanthus and Saccharum and across all grass species analysed.

Among Miscanthus s.s. species, some authors have treated M. condensatus as a separate species and others have treated it as a subspecies of M. sinensis. The data presented here supports the latter hypothesis. Likewise, M. transmorrisonensis from Taiwan is clearly closely allied with M. sinensis. Both M. condensatus and M. transmorrisonensis shared the most common sinensis haplotype (coded as ' 1 ' in Table E) for cpSSRs. This is in contrast with the findings of Hodkinson et al. (2002b) on M. transmorrisonensis based on AFLP data, where this species showed significant divergence from M. sinensis.

As for the Japanese endemic species M. oligostachyus and M. tinctorius, the first shares the same alleles with most of M. sinensis in four loci and one with M. sacchariflorus. The Sac-10 allele in M. oligostachyus was not found in any other Miscanthus s.s. species, but only in some Miscanthus s.l. species (M. junceum and M. nepalensis) as well as in Saccharum officinarum. This is consistent with the classification of M. oligostachyus in the Miscanthus s.s. group in Hodkinson et al. (2002b) together with M. sinensis and M. sacchariflorus.

3.6 Conclusions

Six new plastid SSR markers were developed from the complete cpDNA sequence in Saccharum officinarum and tested on a collection of Miscanthus accessions belonging to 17 different species in the genus as well as on 13 species from related genera. All markers proved to be polymorphic within and between species, with a species-specific preference for certain alleles.

These are among the first cpSSR and SNP markers developed for Miscanthus. These new markers will be useful in breeding programs for Miscanthus, for testing maternal inheritance of the chloroplast genome and for species differentiation. The cross amplification of the markers in other species and genera of the subfamily Panicoideae was also proved.

All the M. \times giganteus accessions have M. sacchariflorus plastid DNA indicating that hybridisation might be unidirectional. However, more wild populations will need to be screened to confirm this phenomenon occurs in a general sense. Variation has been detected in the M. sacchariflorus germplasm collection and this will be of value to future breeding efforts that combine M. sacchariflorus and M. sinensis genomes.

Chapter 4

Characterisation of genetic diversity and population structure in a collection of Miscanthus and related species using newly developed nuclear DNA microsatellite markers

4.1 Introduction

4.1.1 Nuclear molecular markers

Molecular markers are useful tools to detect and analyse genetic variation in plants. An ideal molecular marker should be highly polymorphic and evenly distributed along the genome, easy to detect, inexpensive, with high reproducibility and no need for prior information about the genome of the organism to study (Agarwal et al. 2008). Several techniques to generate molecular markers have been developed and are now well established, such as restriction fragment length polymorphism, RFLP (Botstein et al. 1980), random amplified polymorphic DNA, RAPD (Williams et al. 1990), amplified fragment length polymorphism, AFLP (Vos et al., 1995) and microsatellite or simple sequence repeats, SSRs (Tautz and Renz 1984)

RFLP was among the first molecular markers developed to detect DNA polymorphism and works by hybridization of labelled probes with DNA previously digested with restriction endonucleases. Though highly informative, RFLP markers are not as widely used as PCR based methods because of the need for a high quantity of DNA and long reaction time. After the invention of PCR, most of the molecular markers were developed based on this technique, with two different approaches: (1) sequence non-specific markers and (2) sequence targeted markers (Agarwal et al. 2008). RAPD and AFLP belong to the first group, whereas SSR are sequence-specific markers.

RAPD uses short random oligonucleotides to amplify genomic DNA without prior knowledge of the genome needed to design primers. The polymorphism detected is due to rearrangements in the sequences at or between the primer binding sites. This technique is fast and produces a large number of markers, but the reproducibility of the results is deeply affected by the reaction conditions (Bardakci 2001).

AFLPs are generated by PCR amplification of selected fragments obtained through digestion of the genomic DNA using restriction enzymes. The amplification produces 50-100 bands per reaction, mostly uniquely positioned along the genome, thus allowing for these markers to be used for both physical and genetic mapping (Yin et al. 1999). Both RAPD and AFLP are dominant markers and are thus unable to distinguish between homo- and heterozygotes.

Microsatellites or SSRs, on the other hand, are codominant markers. A microsatellite is typically a short nucleotide sequence ($1-5 \mathrm{bp}$) repeated in tandem (Tautz and Renz 1984). They are relatively abundant in all eukaryotic genomes. Polymorphism is due to variation in the number of repeats caused by slippage of the polymerase during replication that leads to a high number of alleles per locus. Each microsatellite can be detected through PCR using primers that recognize the flanking non-repetitive regions. The downside of this technique is the need for prior sequence information to design new primers. However, once the primers are available, its use is relatively inexpensive and straightforward. Depending on conservation of the flanking regions and the stability of the microsatellite, SSRs have proven to be transferable to species in the same genus or in related genera (Thomas and Scott 1993).

Microsatellites have found several applications in plants. SSR linkage maps are today available for a number of plant genomes (Röder et al. 1998; Temnykh et al. 2000) and interesting traits have already been tagged to help for marker-assisted selection (MAS) in plant breeding as a way of speeding up the selection of useful traits. Due to the high number of alleles per locus, SSRs have been shown to be more effective in discriminating among cultivars (Thomas and Scott 1993; Rongwen et al. 1995) compared to other molecular markers, and in assessing genetic variation in the genepool of crop plants, and thanks to their codominant nature, they also permit discrimination of parental contributions in hybrids (Powell et al. 1996).

4.1.2 Nuclear molecular markers in Miscanthus

An early attempt to characterise genetic diversity in Miscanthus and to clarify the taxonomy of the genus was conducted using AFLP fingerprinting on a collection of plants including clones of M. \times giganteus, M. sacchariflorus and M. sinensis sampled in botanic and market gardens in Europe (Greef et al. 1997). The taxonomic identity of some European Miscanthus
has been investigated further using AFLP in conjunction with additional molecular markers such as inter-simple sequence repeat, ISSR PCR (Hodkinson et al. 2002b) and DNA sequencing of nuclear (ITS) and chloroplast ($\operatorname{trnL-F}$) regions (Hodkinson et al. 2002a) who also extended their analyses to other Miscanthus species. A preliminary genetic linkage map was built using RAPD markers (Atienza et al. 2002). RFLP and SSR markers from maize (Hernández et al. 2001) and more recently from Brachypodium distachyon (Zhao et al. 2011) have been successfully applied to Miscanthus. New nuclear SSR markers have been developed for M. sinensis and tested for cross-amplification on M. floridulus (Ho et al. 2011), M. sacchariflorus and M. lutarioriparius (Zhou et al. 2011). There is a need to develop more SSR markers for Miscanthus and to use these to characterise genetic diversity in a broad range of germplasm including the hybrid M. \times giganteus, and species outside the Miscanthus s.s. group and closely related genera.

4.2 Aims

The aims of the chapter were to develop new nuclear SSR markers for the genus Miscanthus and to determine genetic diversity in a collection of Miscanthus including M. \times giganteus, M. sacchariflorus and M. sinensis established in Teagasc, Oak Park, Carlow.

The detailed objectives were:

- To design and optimise new primer pairs to amplify regions containing microsatellites;
- To determine the informativeness of the newly developed SSRs by testing them on several species of the genus Miscanthus and on representative species of related genera;
- To assess the genetic variation in the Miscanthus collection in Teagasc;
- To clarify the taxonomic status of unknown accessions in the collection.

4.3 Materials and methods

4.3.1 Plant material and DNA isolation

Rhizomes of 33 Miscanthus sinensis were provided by Svalöf Weibull, Sweden; 80 individuals of $M . \times$ giganteus, M. sacchariflorus and M. sinensis, including different ornamental varieties, were collected from TCD Botanic Gardens, Dublin, Ireland; 15 additional genotypes of the three species were made available by the University of Hohenheim, Germany (Clifton-Brown and Lewandowski 2002). Specimens for other Miscanthus, Saccharum and related grasses (subfamily Panicoideae) were collected from the living collections at the Royal Botanic Gardens, Kew, Surrey, UK and ADAS, Arthur Rickwood Research Station, Cambridge, UK. Fresh leaves were frozen in liquid nitrogen and ground manually to a fine powder. Total genomic DNA was extracted following the cetyltrimethyl ammonium bromide (CTAB) method (Doyle and Doyle 1987) or a modification of it (Hodkinson et al. 2002b).

4.3.2 Primer design

Total genomic DNA from the Miscanthus sinensis clone SW217 was isolated to build a nuclear microsatellite enriched library. A small amount of genomic DNA ($>0.5 \mu \mathrm{~g}$) was provided to ATG Genetics Inc., Canada. After digestion with multiple 4 cutter restriction enzymes, enrichment for SSRs containing fragments was obtained through biotinylated TC_{n}, TG_{n} and $\mathrm{GATA}_{\mathrm{n}}$ simple sequence motifs.

The selected fragments were cloned into the EcoRI site of the plasmid pUC19 and screened for positive clones using ${ }^{32} \mathrm{P}$ labelled $\mathrm{TC}_{\mathrm{n}}, \mathrm{CA}_{\mathrm{n}}$ and $\mathrm{GATA}_{\mathrm{n}}$ simple sequence motifs. Two 96well microtitre plates containing single positive bacterial colonies in 0.2 ml LB plus 15% glycerol, one selected for the presence of dinucleotide repeats and the second for tetranucleotides, were sent back for analysis. The 192 clones were sequenced by a commercial sequencing company (AGOWA GmbH, Germany) and SSRs were identified in the clones using 'find microsat Win32' (Salamin, unpublished).

80 primer pairs were designed manually or using Primer3 software (http://frodo.wi.mit.edu/primer3/) to amplify the SSR regions. The 80 sets were selected in order to have an equal ratio between di- and tetranucleotide SSRs (Table F in Appendix)

4.3.3 Amplification and SSRs detection

To select the most suitable set of primers among the total of 80 , an amplification test was conducted on eight genotypes for each pair. The eight genotypes were chosen to have at least two representatives of each of the three species (M. \times giganteus, M. sacchariflorus and M. sinensis). A template DNA volume of $1 \mu 1\left(40 \mathrm{ng} \mu \mathrm{l}^{-1}\right)$ was amplified with an initial denaturation of 5 min at $95^{\circ} \mathrm{C}$ followed by 35 cycles each with a denaturation of 1 min at $95^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at a primer-specific annealing temperature (Table 4.3.1), and an extension of 1 min at $72^{\circ} \mathrm{C}$, followed by a final extension at $72^{\circ} \mathrm{C}$ for 10 min . The reaction mixture (final volume) contained $1 \times$ reaction buffer (New England Biolabs) containing 2 mM MgSO 4 , $0.125 \mu \mathrm{M}$ dNTPs, $0.25 \mu \mathrm{M}$ of each primer, 0.5 U of Taq DNA polymerase (New England Biolabs).

The PCR products were loaded on 3\% MetaPhor® Agarose (Lonza, Rockland, ME, USA) gels. For primers which showed weak amplification, PCR conditions were optimized using a gradient PCR, with temperatures ranging from $48^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, and the amplification test (on eight samples) was repeated using the optimal annealing temperature. 30 primer pairs producing the best amplification were selected to be used on the full dataset.

Figure 4.3.1 An example of amplification of the initial sample using Mis-14 and Mis-15 markers.

Table 4.3.1 List of 30 primer pairs developed for SSR amplification and genotyping. T $\left({ }^{\circ} \mathrm{C}\right)$ indicates the annealing temperature used for PCR based on gradient. Shading highlights pools for genotyping runs on the genetic analyzer.

Primer name	Clone	SSR motif	Dye	$\begin{gathered} \text { Poo } \\ 1 \end{gathered}$	Forward sequence$5^{\prime}-3^{\prime}$	Reverse sequence$5^{\prime}-3^{\prime}$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Sequence length (bp)	SSR size (bp)
M is -01	SSR1A10	(TCTA) 20	FAM	1	CA GTCCTTGGA GCA GGCTAT	AAGATCTCAAA CCTATAGTC	54	202	80
M is -23	SSR1G9	$(\text { ATCT })_{15}$	TAMRA	1	CACGAACTGAATCAGCATGC	GTAGCTGCAACTGCTAGTGT	60	240	60
M is -22	SSR1G8	(TAGA) ${ }_{17}$	VIC	1	CGAGCGAGCCTGCATGTGTG	TTGA CGTCA GCAAGATATTG	54	173	68
M is -37	SSR2D9	(TC) ${ }_{34}$	FAM	2	GAATGCA GTCATCA GCA GCT	TGGACATCTCTAGGTTGATC	54	218	68
M is -52	SSR2C11	(GA) ${ }_{19}$	NED	2	TTATTGGTGCOCAAAGGTGT	AACAA GCCCTCAAGCTTCCT	60	370	38
M is - 50	SSR2H9	(GA) 21	ROX	2	TACGGACGATTAACCAAGCC	CGCAAGGTGCAGGACCATCA	54	230	42
M is -66	SSR1D5	$(\text { CTAT })_{13}$	VIC	2	CATGGCTACAGGCACCTAAAA	ATAACGAGAAATGGCCGATG	60	165	52
M is -14	SSR1F12	(GATA) ${ }_{15}$	FAM	3	GTAGCTGCAACTGCTAGTGT	ACTCGCATTGGTTGGTATGA	59	141	60
M is -78	SSR2G11	(CT) ${ }_{15}$	NED	3	TCTGCAGGTGACAA GGAAGA	GTCAACCGGCATAGTTCGAT	60	167	30
M is -41	SSR2F5	$(\mathrm{GA})_{24}$	ROX	3	ATAATGCAGGTCAGTTCAAC	CGCAGCTAGCTGCTIGTCAG	54	226	48
M is -67	SSR1E10	(TCTA) ${ }_{13}$	VIC	3	CCTCTGCGGATATGAGGTGT	GAAGTGACAACATGCGATGG	60	175	52
M is -15	SSR1F2	(ATCT) 16	FAM	4	ACTACTGCATGCATCATGATG	TGCTTCGCGGCGAAGTTTCA	59	195	64
M is -20	SSR1G12	(TCTA) ${ }_{17}$	TAMRA	4	TAGCTGAGCTGTCTATGGTA	TAGCCA TTGAGGCTAAGGAT	54	249	68
M is -24	SSR1H10	$(\mathrm{AGAT})_{15}$	VIC	4	ATACACGATCCAAACATGTC	ATGTGCTCACCCAAGA GATG	60	324	60
M is -60	SSR2C3	$(\mathrm{GA})_{16}$	FAM	5	AGATGGCAGCTTGCTCTIGT	CCATTTGTTGAGCACGATGT	60	190	32
M is -69	SSR1F4	(TCTA) 13	NED	5	CCTCTGCGGATA TGA GGTGT	GAAGTGACAACATGCGATGG	60	175	52
M is -63	SSR1G3	(TCTA) 14	VIC	5	AGGCTAGCACTTCCTCCAAA	CTGCCTGGTGA CCCCTATAA	60	234	56
M is -59	SSR2B3	$(\mathrm{GA})_{16}$	FAM	6	GAGCTGATCGCGTAGCAAG	TTCGATAAACAGGGGATTGG	60	152	32
M is -54	SSR2A11	(CT) ${ }_{18}$	NED	6	TAAGAAACGCAGCAGCAGAA	AGTCTCCGGCTTTCTCACAA	60	226	36
M is-13	SSR1F10	(TAGA $)_{19}$	ROX	6	CGGACTAACTTGTGAATCTT	GTCCTTGGA GCAGGCTATGA	54	230	76
M is -71	SSR1D3	(TAGA) ${ }_{12}$	VIC	6	CAACCATGAGCACTTCTCCA	AACATAGGAGGCCAAGCAAA	60	179	48
M is -51	SSR2G4	$(\mathrm{TC})_{20}$	FAM	7	GATCCATCACGGATTCATCA	ATCATAGGCAAAACGGATCG	60	164	40
M is -70	SSR1B10	$($ TATC) 12	NED	7	TCGCACCTTTAATITTTGCAT	TTATGAACCCGACAGGGAGA	60	249	48
M is -79	SSR2G9	(CT) ${ }_{15}$	VIC	7	GCCAACTCGTGGATTTGAGT	CGTAGCAAGAGGGGAACAAA	60	248	30
M is -53	SSR2G10	(GA) ${ }_{19}$	FAM	8	AGGCAGCACCTCACAAAACT	GGTGGAGA TGCTCTTCTIGC	60	173	38
M is -64	SSR1G6	(AGAT) ${ }_{14}$	NED	8	TCCCCTTAGTGTCCGTGAAG	GAGGCAGGTGTAGTCGGAGA	60	236	56
M is -55	SSR2B9	(GA) ${ }_{18}$	VIC	8	CGGCTTCGAGTGATACCTIT	TACCGGATTTAAGGGGCTIT	60	250	36
M is -42	SSR2F6	(AG) ${ }_{31}$	FAM	9	GCCGCCAGGCTCCCAAGCCT	ATCCGA GCCATGTATGCACG	54	206	62
M is -33	SSR2B7	(CT) 20	TAMRA	9	TGACATAGGGCTACACATAT	CGAGTGA GGCA GCTAGTTCA	48	242	40
M is -16	SSR1F5	$(\text { TATC })_{13} /(\text { TCTA })_{16}$	VIC	9	ATCTIGCCTAGGATGCATTAG	TGGTCTATTACAACAAGGCT	60	264	$52+64^{*}$

* Mis-16 was a compound microsatellite with two repetitive sequences separated by a non-
polymorphic region.

4.3.4 Genotyping

Five different fluorescent dyes were used for primer labelling to allow multiplexing, in pools, as shown by the shading in Table 4.3.1. A polyA treatment at $65^{\circ} \mathrm{C}$ was applied for 30 min to the PCR products. $0.5 \mu \mathrm{l}$ from each pool was added to $9.5 \mu \mathrm{l}$ of a mix of $9.25 \mu \mathrm{l}$ formamide + $0.25 \mu 1$ LIZ500 internal sizing standard. The PCR products were then sized using an ABI 3130×1 automated DNA sequencer and the resulting peaks were scored with GENEMAPPER ${ }^{\text {TM }}$ V4.0 software (Applied Biosystems). 11 loci were not consistently amplified across our
collection and were discarded from further analyses. Our final analysis therefore included 19 SSR markers (Table 4.3.1).

4.3.5 Data analyses

Allele number and size range were calculated for each locus. The polymorphism information content (PIC) values were calculated according to Röder et al. (1995) as $1-\Sigma\left[p_{i}\right]$, where p_{i} is the frequency of the i th allele.

Genetic distance

Due to the extensive occurrence of polyploidy in the collection (as determined by flow cytometry; Chapter 2), many samples had more than two alleles at a particular locus. It was therefore necessary to transform the data matrix in to a binary matrix scoring 1 for presence of alleles and 0 for absence. Genetic similarity (GS) indices were calculated using the Jaccard's coefficient $\left(\mathrm{S}_{\mathrm{j}}\right)$ for all possible pairwise comparisons. The Jaccard's coefficients were calculated as $S j=a_{12} /\left(a_{12}+a_{1}+a_{2}\right)$, where a_{12} is the number of alleles shared between two genotype, a_{1} is the number of alleles unique to the first genotype, and a_{2} the number of bands unique to the second genotype. Sj disregards the conjoint absence of alleles in the pairwise comparison, reducing the risk of over-estimating similarity. Jaccard's coefficients were calculated using the software FreeTree (Pavlícek et al. 1999) and used to cluster genotypes according to similarity. The UPGMA (unweighted pair group method using arithmetic means) clustering tree building approach was used, with internal support assessed using 1000 bootstrap replicates. The UPGMA tree was visualized using FIGTREE 1.2.1 (Rambaut 2007).

PCO

Principle coordinates analysis was performed on the data using NTSYSpe v2.2 software (Rohlf 2008) starting from the binary matrix. Sj coefficients were calculated using the SIMQUAL module and the resulting similarity matrix was transformed to scalar product form using the DCENTER module in order that eigenvalues and eigenvectors could be determined. This 'double centers' the distance matrix by first replacing the off-diagonal
element. The row and column means are then subtracted from each element and the grand mean is added on. Using the EIGEN module, this matrix is factored so that the elements of the eigenvectors corresponding to positive eigenvalues can be interpreted as the coordinates of each point in a Cartesian space. For a better interpretation of the results, a three dimensional graph of the eigenvectors and eigenvalues was construct using Minitab ${ }^{\circledR}$ 16.2.0 (2007) software.

Structure

The software STRUCTURE 2.3.3 (Pritchard et al. 2000) was used to infer the genetic structure of the collection. A series of simulations were run with the number of clusters K ranging from 1 to 8 , with three independent runs for each K value. Each run consisted of a burn-in period of 10,000 steps and 10,000 MCMC (Monte Carlo Markov Chain) replicates, assuming an admixture model and uncorrelated allele frequencies. No prior information about the structure of the population was defined. The most likely value of K was chosen following Evanno et al. (2005) and used to run a simulation with a burn-in period of 10,000 steps and $100,000 \mathrm{MCMC}$ replicates.

AMOVA

An analysis of molecular variance, AMOVA, (Excoffier et al. 1992) was carried out with GenAlEx 6 (Peakall and Smouse 2006) to estimate the components of genetic variation between and within groups as observed in the UPGMA dendrogram and in the PCO. 999 permutations were used to test for statistical significance.

4．4 Results

Polymorphism at 19 microsatellite loci was studied in a collection of 176 individual grasses， mostly belonging to the species M．sinensis，M．sacchariflorus and M．\times giganteus． 14 individuals belonging to closely related genera were also included．All markers revealed considerable length polymorphism，with the number of alleles ranging from 13 to 44 ，with an average of 27.5 （Table 4．4．1）．PIC values ranged from 0.65 to 0.91 ，with an average of 0.83 ． Thirteen out of 19 primer pairs showed cross－amplification in non－Miscanthus species（Table 4．4．1）．

Table 4．4．1 Expected heterozygosity（He）and PIC values for 19 nuclear SSR markers． Cross－amplification in Miscanthus species other than M．sinensis，M．sacchariflorus and M． \times giganteus and in non－Miscanthus species（in blue）is shown（ $v=$ yes；$\times=$ no）．

	Alleles	Size	He	PIC				$\begin{aligned} & \text { E } \\ & \text { U } \\ & \text { © } \\ & \text { ¿ } \\ & \Sigma \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ 0 \\ 3 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & \text { E } \\ & \text { む } \\ & \text { U } \\ & \text { E } \\ & \text { ミ } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { B } \\ & \text { 号 } \\ & \text { B } \\ & \text { ㄹ } \end{aligned}$					$\begin{aligned} & 0 \\ & \ddot{0} \\ & \frac{\pi}{0} \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{\text { gix }}{\frac{1}{6}} \\ & \frac{1}{3} \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline \\ E \\ 0 \\ 0 \\ 0 \\ 0 \\ \dot{n} \\ \hline \end{array}$				$\begin{array}{\|c\|} \hline 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$		Zea diploperennis	
M is－ 1	20	125－256	0.86	0.85	x	v	x	x	x	x	x	x	x	x	x	v	x	x	x	x	x	x	x	x	x	x	x
M is－14	33	71－208	0.91	0.90	x	v	x	x	X	x	v	v	x	x	x	x	X	x	x	x	x	v	v	v	x	x	x
M is－15	21	144－205	0.78	0.75	x	v	x	x	x	x	v	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
M is－20	33	197－300	0.83	0.82	x	v	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
M is－22	16	103－174	0.68	0.66	x	v	x	x	x	x	x	x	x	x	x	v	x	x	x	x	x	X	x	x	X	x	x
M is－23	30	176－314	0.91	0.90	x	v	x	x	x	x	x	x	x	x	x	v	x	x	x	x	x	\mathbf{x}	x	x	x	x	x
M is－24	23	248－361	0.85	0.84	x	v	x	x	X	x	v	x	x	x	x	x	x	x	x	x	v	v	v	x	x	x	x
M is－37	33	169－226	0.89	0.88	x	V	x	x	x	x	v	x	x	x	x	x	x	x	x	x	v	\mathbf{x}	x	x	x	x	v
M is－41	44	131－512	0.90	0.89	x	v	x	X	X	x	v	x	x	x	x	x	x	x	x	X	v	v	x	x	X	x	X
M is－42	29	121－247	0.91	0.90	x	v	x	x	x	x	x	x	x	x	x	x	X	x	x	x	x	x	x	x	x	x	v
M is－50	30	199－260	0.82	0.81	x	v	x	x	x	x	v	x	X	X	X	X	X	x	X	x	v	x	x	x	x	x	x
M is－51	27	132－176	0.82	0.81	x	v	v	v	v	v	v	x	x	v	x	v	v	x	x	v	x	x	x	x	x	x	x
M is－52	22	132－207	0.85	0.83	x	v	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
M is－54	20	207－244	0.87	0.86	x	v	x	X	x	X	x	x	x	x	x	x	x	x	x	x	x	x	x	x	v	v	v
M is－59	13	123－162	0.76	0.72	x	v	x	x	x	x	\mathbf{x}	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
M is－64	40	177－286	0.91	0.91	x	v	x	x	x	x	v	x	x	x	x	v	x	V	x	\mathbf{x}	x	x	x	x	x	x	x
M is－69	24	105－220	0.85	0.83	x	v	x	x	x	v	v	x	x	x	x	v	v	x	x	v	V	x	x	x	x	x	x
M is－70	31	211－328	0.82	0.80	x	v	X	x	x	x	x	X	x	x	x	x	x	x	x	x	x	x	x	x	x	v	x
M is－79	34	224－276	0.92	0.91	x	\checkmark	x	x	v	x	v	x	x	x	x	v	x	x	X	x	v	X	v	v	x	v	X
Average	27.5			0.84																							

The UPGMA constructed from the matrix of the Jaccard＇s coefficients is shown in Figure 4．4．1．

Figure 4.4.1 (continued)

0.06

Figure 4.4.1 UPGMA tree showing inter-relationships of individuals using a combination of 19 SSR markers. Accessions names are coloured according to species: Red $=M . \times$ giganteus; Green $=$ M. sinensis; Yellow $=$ M. sacchariflorus; Blue $=$ M. sacchariflorus \times M. sinensis hybrids; Light blue $=$ Miscanthus s.s; Violet $=$ other Miscanthus; Black $=$ non-Miscanthus species and unclassified Miscanthus accessions.

The UPGMA tree shows a cluster of $42 \mathrm{M} . \times$ giganteus accessions (highlighted in green) that are clearly separated from the remaining samples. The closest group to this cluster includes three individuals of the M. sacchariflorus genotype M11 MATREC11 (Tea-84, Tea-128 and Tea-129) and a group containing Tea-91, Tea-92 and Tea-8.

With the exception of the genotype Tea-126, all the triploid individuals from the Swedish germplasm collection group together (lilac) and are sister to the above mentioned group. The diploid Swedish genotypes are split into clearly separated clades, but they are not exclusive, as they include also other individuals of the species M. sinensis. Among the different M. sinensis varieties, only the individuals of the 'Goliath' type form a definite cluster.

4.4.1 Principal coordinates analysis

Table 4.4.2 shows four axes of the PCO analysis that cumulatively account for 23.97% of the variation.

Table 4.4.2 Eigenvalues and percentage of variation expressed by each axis for nSSRs dataset.

Axis	Eigenvalue	Percent	Cumulative
$\mathbf{1}$	21.85993359	13.93	13.93
$\mathbf{2}$	6.65572614	4.24	18.18
$\mathbf{3}$	4.84701806	3.09	21.27
$\mathbf{4}$	4.22192863	2.69	23.96

The first eigenvalue accounts for 13.94% of the total variation, the second 4.2% of the total variation (cumulative 18.18%) and the third 3.09% of the total variation (cumulative 21.27%). The eigenvectors were plotted in both two- and three-dimensional scatterplots (Figure 4.4.2). For a better comparison of the results, some of groups defined by the UPGMA analysis were labelled.

Figure 4.4.2 Principal coordinates analysis scatterplots in three dimensions and relative two-dimensional projections for the nuclear SSR
data. Groups : A (\diamond) M. sinensis (A-II var. 'sirene'; A-III var. 'Goliath'; A-IV Swedish clones); B ($\mathbf{\Delta}$) M. sacchariflorus; C (\triangleleft) M.
\times giganteus; D () Swedish M. sinensis \times M. sacchariflorus; E (\bullet green) other Miscanthus sensu stricto; F (\bullet red) Miscanthus sensu lato;
$\mathrm{G}(\bullet$ blue) non-Miscanthus species; I (*) Miscanthus sp.
103

A group of 42 accessions (group C in Figure 4.4.2) was clearly separated from the remaining individuals. This group correspond to the cluster of $M . \times$ giganteus in the UPGMA tree. Along the first axis, the group closest to C is B-I, which includes the three M11 MATREC11 individuals of M. sacchariflorus. Along the second dimension what is noticeable in both scatterplot (b) and (c) is the spread of the individuals belonging to M. sinensis (group A). Two subgroups of M. sinensis separate from the core batch: group A-II and A-III. Group AIII corresponds to the Goliath-like group in the UPGMA tree, whereas A-II includes two individuals of M. sinensis var. sirene that are the most closely related to the Goliath group in the tree. The introduction of the third dimension allows the resolution of two further groups (tagged as F and D in Figure 4.4.2). Group D includes all the triploid hybrids of the Sweden genotypes, with the exception of Tea-126, which falls in group C. The diploid genotypes (tagged as A-IV), on the other hand, are not resolved from the core group. Group F includes individuals belonging to Miscanthus species that are not classified as Miscanthus sensu stricto (Clifton-Brown et al. 2008). As in the UPGMA tree, the genotypes Tea-89, Tea-90, Tea-91 and Tea-92 (group B-II) form two separated pairs, with one closely related to the M11 MATREC11 group. Species classified as Miscanthus s.s other than M. sinensis, M. sacchariflorus and M. \times giganteus (group E) and the non-Miscanthus species included in the study do not form any obvious groupings in the PCO.

4.4.2 Cluster analysis with STRUCTURE

The genetic structure of the population was detected using a model-based clustering method (Pritchard et al. 2000) as implemented in STRUCTURE 2.3.3. A series of three independent runs for each value of K (i.e. the number of populations in the collection) was run. For each run, the estimated \log probability of data $\operatorname{Pr}(\mathrm{X} \mid \mathrm{K})$ for each value of K is given (Table 4.4.3). The mean likelihood, indicated as $\mathrm{L}(\mathrm{K})$ afterwards, over the three runs for each K was first plotted against K (Figure 4.4.3). $\mathrm{L}(\mathrm{K}$) could be seen increasing dramatically until $\mathrm{K}=3$, after which it reaches a plateau. In order to harvest the true value for K , three additional steps were introduced, following (Evanno et al. 2005). In the second step, the mean difference between successive values of likelihood of $\mathrm{K}^{\prime}(\mathrm{K})=\mathrm{L}(\mathrm{K})-\mathrm{L}(\mathrm{K}-1)$ was calculated and in the third step, the absolute value of the difference between successive values of $L^{\prime}(\mathrm{K}),\left|\mathrm{L}^{\prime \prime}(\mathrm{K})\right|=$ $\left|\mathrm{L}^{\prime}(\mathrm{K}+1)-\mathrm{L}^{\prime}(\mathrm{K})\right|$ (Table 4.4.3).

Table 4.4.3 Evanno parameters calculated for each of the three runs for K values from one to eight.

Run \#	K	Raw STRUCTURE output			Raw Evanno Data Table		
		Est. Ln Prob of Data	Mean value of Ln likelihood	Variance of In likedlihood	LnP(K)	L'(K)	\| $\mathrm{L'}^{\prime \prime}(\mathrm{K}) \mid$
1	1	-14143.5	-13957.8	371.6	-14143.5	N.A.	N.A.
2	1	-14154.2	-13957.9	392.6	-14154.2	N.A.	N.A.
3	1	-14148.9	-13957.7	382.3	-14148.9	N.A.	N.A.
4	2	-12471.8	-12068.8	805.9	-12471.8	1671.7	663.1
5	2	-12172.6	-11787.8	769.7	-12172.6	1981.6	1260.2
6	2	-12129.6	-11759.6	740.1	-12129.6	2019.3	1361.7
7	3	-11463.2	-10943.1	1040.1	-11463.2	1008.6	510.6
8	3	-11451.2	-10903.6	1095.1	-11451.2	721.4	217.6
9	3	-11472	-10939.6	1064.8	-11472	657.6	174.9
10	4	-10965.2	-10287.3	1355.8	-10965.2	498	617.3
11	4	-10947.4	-10288.6	1317.7	-10947.4	503.8	349.1
12	4	-10989.3	-10290.1	1398.3	-10989.3	482.7	344.2
13	5	-11084.5	-10096.8	1975.4	-11084.5	-119.3	447.6
14	5	-10792.7	-10032.1	1521.2	-10792.7	154.7	102.2
15	5	-10850.8	-10042.3	1617	-10850.8	138.5	51.7
16	6	-10756.2	-9882.1	1748.1	-10756.2	328.3	338.7
17	6	-10740.2	-9871.8	1736.9	-10740.2	52.5	129.3
18	6	-10764	-9920.5	1686.8	-10764	86.8	55.1
19	7	-10766.6	-9835.6	1862	-10766.6	-10.4	1.4
20	7	-10817	-9820.6	1992.7	-10817	-76.8	182.5
21	7	-10732.3	-9835.3	1794.1	-10732.3	31.7	8.1
22	8	-10775.6	-9755.5	2040.1	-10775.6	-9	N.A.
23	8	-10711.3	-9751	1920.6	-10711.3	105.7	N.A.
24	8	-10708.7	-9762.8	1891.8	-10708.7	23.6	N.A.

Finally the value $\Delta \mathrm{K}$ is estimated as the mean of $|\mathrm{L} "(\mathrm{~K})|$ averaged over the three runs divided by the standard deviation of $L(K), \Delta K=m\left|L^{\prime \prime}(K)\right| / s[L(K)]$.

Figure 4.4.3 Graphical representation of the Evanno parameters for the estimation of the K value.

Plotting $\Delta \mathrm{K}$ against the values of K , a peak is detected corresponding to the true value of K for the data, in our case at $\mathrm{K}=3$. A simulation for this value of K was then run in order to assign the individuals to each of the three clusters. The results are summarized in Table 4.4.4 and in Figure 4.4.4.

Table 4.4.4 Accessions assigned to each cluster according to STRUCTURE analysis.

| ID | Groups | $\%$ Missing | Inferred clusters | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | I | II | III |
| Miscanthus sp. Tea-1 | C | 28 | 0.998 | 0.001 | 0.001 |
| M. sinensis 'zebrinus' Tea-2 | I | 57 | 0.011 | 0.004 | 0.986 |
| M. sinensis 'zebrinus' Tea-3 | I | 84 | 0.004 | 0.007 | 0.989 |
| M. xgiganteus Tea-4 | C | 25 | 0.998 | 0.001 | 0.001 |
| M. xgiganteus Tea-5 | C | 28 | 0.998 | 0.001 | 0.001 |
| Miscanthus sp. Tea-6 | C | 28 | 0.999 | 0.001 | 0.001 |
| Miscanthus sp. Tea-7 | C | 32 | 0.998 | 0.001 | 0.001 |
| Miscanthus sp. Tea-8 | I | 42 | 0.963 | 0.032 | 0.005 |

Table 4.4.4 (continued)

ID	Groups	\%Missing	Inferred clusters		
			I	II	III
Miscanthus sp. T ea-8	1	94	0.814	0.041	0.145
Miscanthus sp. Tea-9	C	0	0.999	0.001	0.001
Miscanthus sp. Tea-10	C	28	0.999	0.001	0.001
Miscanthus sp. Tea-11	C	32	0.998	0.001	0.001
M. sinensis Tea-13	1	55	0.015	0.281	0.704
M. sinensis Tea-14	1	55	0.002	0.996	0.002
Miscanthus sp. Tea-15	C	25	0.999	0.001	0.001
Miscanthus sp. Tea-16	1	68	0.005	0.006	0.989
M. xgiganteus Tea-17	C	25	0.999	0.001	0.001
Miscanthus sp. Tea-18	1	57	0.002	0.002	0.996
M. sinensis goliath-like Tea-19	A-III	21	0.015	0.001	0.985
M. sinensis goliath-like Tea-19	A-III	36	0.001	0.001	0.998
M. xgiganteus Tea-20	C	25	0.999	0.001	0.001
Miscanthus sp. Tea-21	C	25	0.998	0.001	0.001
Miscanthus sp. Tea-21	1	52	0.007	0.002	0.991
Miscanthus sp. Tea-22	1	60	0.003	0.004	0.993
Miscanthus sp. Tea-23	1	78	0.35	0.003	0.646
Miscanthus sp. Tea-23	A-III	26	0.001	0.001	0.998
Miscanthus sp. Tea-24	1	57	0.002	0.009	0.988
Miscanthus sp. Tea-25	1	63	0.031	0.909	0.06
Miscanthus sp. Tea-26	1	60	0.004	0.125	0.871
Miscanthus sp. Tea-27	1	81	0.004	0.01	0.986
Miscanthus sp. Tea-28	C	25	0.998	0.001	0.001
Miscanthus sp. Tea-29	1	63	0.002	0.004	0.994
M. sinensis Tea-30	A-III	50	0.001	0.001	0.998
M. xgiganteus Tea-31	C	25	0.999	0.001	0.001
Miscanthus sp. Tea-32	C	25	0.999	0.001	0.001
M. sinensis 'zebrinus' Tea-33	A-III	15	0.001	0.001	0.998
Miscanthus sp. Tea-34	C	25	0.999	0.001	0.001
Miscanthus sp. Tea-34	C	28	0.999	0.001	0.001
M. sinensis 'gross fontane' Tea-35	1	55	0.004	0.002	0.994
M. sinensis 'gross fontane' Tea-36	1	57	0.004	0.974	0.022
Miscanthus sp.Tea-37	1	55	0.005	0.983	0.013
Miscanthus sp. Tea-38	1	57	0.072	0.059	0.869
Miscanthus sp.Tea-39	1	92	0.977	0.012	0.011
M. sinensis Tea-40	1	52	0.002	0.991	0.007
Miscanthus sp. Tea-41	1	84	0.842	0.067	0.091
Miscanthus sp. Tea-41	1	73	0.003	0.031	0.966
Miscanthus sp. Tea-42	1	57	0.004	0.94	0.057
Miscanthus sp. Tea-43	1	81	0.003	0.004	0.993
Miscanthus sp. Tea-43	1	60	0.001	0.002	0.996
M. condensatus Tea-44	E	57	0.01	0.037	0.953
Miscanthus sp. Tea-45	1	78	0.204	0.341	0.455
Miscanthus sp. Tea-46	1	63	0.002	0.948	0.05
Miscanthus sp. Tea-47	C	50	0.998	0.001	0.001
Miscanthus sp. Tea-48	C	25	0.999	0.001	0.001
Miscanthus sp. Tea-49	C	36	0.998	0.001	0.001
Miscanthus sp. Tea-50	C	48	0.998	0.001	0.001
Miscanthus sp. Tea-51	C	28	0.998	0.001	0.001
Miscanthus sp. Tea-52	C	44	0.998	0.001	0.001
Miscanthus sp. Tea-53	C	40	0.998	0.001	0.001
Miscanthus sp.Tea-54	1	57	0.002	0.23	0.768
Miscanthus sp.Tea-55	C	28	0.999	0.001	0.001
M. sinensis 'goliath'Tea-56	A-III	15	0.001	0.001	0.999
M. sinensis 'goliath' Tea-57	A-III	5	0.001	0.001	0.999
M. sinensis 'sirene' Tea-58	A-II	65	0.003	0.002	0.995
M. sinensis 'strictus' Tea-59	1	44	0.004	0.002	0.993
M. sinensis 'strictus' Tea-60	1	73	0.005	0.009	0.986

Table 4.4.4 (continued)

ID	Groups	\%Missing	Inferred clusters		
			I	II	III
M. sinensis 'malaparteus' Tea-61	A-1	65	0.002	0.002	0.995
M. sinensis Tea-62	C	32	0.998	0.001	0.001
M. sinensis 'sirene' Tea-63	A-II	63	0.003	0.003	0.994
M. x giganteus Tea-64	C	52	0.998	0.001	0.001
M. xgiganteus Tea-64	C	25	0.999	0.001	0.001
M. xgiganteus Tea-65	C	32	0.998	0.001	0.001
M. x giganteus Tea-66	C	25	0.999	0.001	0.001
Miscanthus sp. Tea-68	C	28	0.998	0.001	0.001
Miscanthus sp. Tea-69	C	28	0.998	0.001	0.001
Miscanthus sp. Tea-70	C	28	0.999	0.001	0.001
Miscanthus sp. Tea-71	C	28	0.999	0.001	0.001
Miscanthus sp. Tea-72	C	28	0.999	0.001	0.001
Miscanthus sp. Tea-73	1	63	0.002	0.996	0.002
M. xgiganteus Tea-74	C	84	0.924	0.069	0.007
M. sacchariflorus x M. sinensis Tea-75	1	52	0.018	0.008	0.973
M. sinensis Tea-76	A-1	57	0.002	0.995	0.003
M. sinensis Tea-77	A-1	55	0.002	0.997	0.002
M. sinensis Tea-78	A-1	92	0.064	0.159	0.776
M. sinensis Tea-79	A-1	55	0.001	0.996	0.003
M. sinensis Tea-80	A-1	60	0.004	0.953	0.043
M. xgiganteus Tea-81	C	25	0.999	0.001	0.001
M. xgiganteus Tea-82	C	28	0.999	0.001	0.001
M. xgiganteus Tea-83	C	25	0.999	0.001	0.001
M. sacchariflorus Tea-84	B-I	10	0.988	0.005	0.007
M. sinensis goliath-like Tea-85	A-III	5	0.001	0.001	0.999
M. sinensis Tea-86	1	57	0.004	0.006	0.989
M. sacchariflorus \times M. sinensis Tea-87	1	55	0.099	0.041	0.86
M. sinensis Tea-88	1	55	0.002	0.002	0.996
Miscanthus sp. Tea-89	B-II	57	0.314	0.006	0.681
Miscanthus sp. Tea-90	B-II	31	0.472	0.002	0.526
Miscanthus sp. Tea-91	B-II	31	0.984	0.007	0.009
Miscanthus sp. Tea-92	B-II	21	0.929	0.011	0.06
M. x giganteus Tea-93	C	25	0.999	0.001	0.001
M. x giganteus Tea-94	C	28	0.999	0.001	0.001
M. sinensis Tea-95	A-IV	57	0.002	0.931	0.068
M. sinensis Tea-96	A-IV	57	0.002	0.01	0.988
M. sinensis Tea-97	A-IV	60	0.002	0.124	0.875
M. sinensis Tea-98	A-IV	50	0.002	0.778	0.22
M. sinensis Tea-99	A-IV	55	0.008	0.916	0.077
M. sinensis Tea-100	A-IV	55	0.001	0.914	0.085
M. sinensis Tea-101	A-IV	55	0.013	0.847	0.141
M. sinensis Tea-102	A-IV	52	0.011	0.788	0.202
M. sinensis Tea-103	A-IV	52	0.002	0.917	0.081
M. sinensis Tea-104	A-IV	63	0.002	0.92	0.078
M. sinensis Tea-105	A-IV	52	0.002	0.399	0.599
M. sinensis Tea-106	A-IV	52	0.01	0.98	0.01
M. sinensis Tea-107	A-IV	52	0.01	0.98	0.01
M. sinensis Tea-108	A-IV	55	0.002	0.963	0.035
M. sinensis Tea-109	A-IV	57	0.002	0.795	0.203
M. sinensis Tea-110	A-IV	63	0.003	0.993	0.004
M. sinensis Tea-111	A-IV	55	0.002	0.98	0.017
M. sinensis Tea-112	A-IV	57	0.007	0.99	0.003
M. sinensis Tea-113	A-IV	55	0.001	0.022	0.977
M. sinensis Tea-114	A-IV	55	0.042	0.921	0.037
M. sinensis Tea-115	A-IV	55	0.003	0.765	0.232
M. sacchariflorus x M. sinensis Tea-116	D	25	0.132	0.867	0.001
M. sacchariflorus \times M. sinensis Tea-117	D	30	0.019	0.98	0.001
M. sacchariflorus \times M. sinensis Tea-118	D	32	0.002	0.997	0.001

Table 4.4.4 (continued)

ID	Groups	\%Missing	Inferred clusters		
			I	II	III
M. sacchariflorus x M. sinensis Tea-119	D	28	0.001	0.998	0.001
M. sacchariflorus \times M. sinensis Tea-120	D	28	0.002	0.997	0.001
M. sacchariflorus \times M. sinensis Tea-121	D	36	0.002	0.997	0.001
M. sacchariflorus \times M. sinensis Tea-122	D	32	0.005	0.994	0.001
M. sacchariflorus \times M. sinensis Tea-123	D	44	0.092	0.906	0.001
M. sacchariflorus x M. sinensis Tea-124	D	40	0.007	0.992	0.001
M. sacchariflorus \times M. sinensis Tea-125	D	28	0.003	0.996	0.001
M. sacchariflorus x M. sinensis Tea-126	C	28	0.999	0.001	0.001
M. sacchariflorus x M. sinensis Tea-127	D	28	0.008	0.99	0.002
M. sacchariflorus Tea-128	B-I	47	0.987	0.003	0.01
M. sacchariflorus Tea-129	B-I	44	0.994	0.002	0.004
Miscanthus sp. Tea-130	1	60	0.006	0.775	0.219
Miscanthus sp. Tea-131	C	25	0.999	0.001	0.001
M. sinensis 'variegatus' Kew 1	A-1	97	0.022	0.945	0.033
Sorghum alpense nKew 6	G	92	0.107	0.78	0.112
M. condensatus Kew 7	E	68	0.009	0.009	0.982
M. oligostachyus Kew 16	E	100	0.334	0.334	0.331
M. nepalensis Kew 25	F	60	0.002	0.002	0.996
M. sinensis 'goliath' Kew 27	A-III	48	0.001	0.001	0.998
M. sinensis 'gracillimus' Kew 28	A-1	76	0.004	0.008	0.988
M. sinensis 'roland' Kew 29	A-1	63	0.002	0.002	0.996
M. sinensis Kew 30	A-I	73	0.004	0.024	0.972
M. sinensis 'gross fontane' Kew 31	A-1	63	0.002	0.002	0.995
M. sacchariflorus Kew 61	B-I	100	0.334	0.335	0.331
M. sinensis 'yakushimanum' Kew 63	A-1	63	0.023	0.973	0.004
M. transmorrisonensis Kew 65	E	65	0.003	0.173	0.824
M. fusca Kew 82	F	94	0.046	0.104	0.849
M. violaceum Kew 84	F	94	0.052	0.756	0.192
M. violaceum Kew 85	F	100	0.334	0.333	0.333
M. ecklonii Kew 86	F	97	0.019	0.598	0.383
M. ecklonii Kew 87	F	100	0.333	0.334	0.332
M. junceum Kew 88	F	97	0.019	0.583	0.398
M. junceum Kew 89	F	94	0.009	0.56	0.43
M. fusca Kew 90	F	97	0.787	0.037	0.176
M. fusca Kew 91	F	100	0.332	0.335	0.332
M. violaceum Kew 92	F	100	0.333	0.335	0.333
M. violaceum Kew 93	F	100	0.333	0.332	0.334
M. capense Kew 94	F	100	0.334	0.334	0.333
M. capense Kew 95	F	100	0.332	0.334	0.333
M. teretifolium Kew 96	F	100	0.333	0.331	0.336
M. junceum Kew 97	F	100	0.334	0.334	0.332
Saccharum officinarum Kew 104	G	100	0.333	0.336	0.331
M. sorghum Kew 105	F	97	0.018	0.586	0.396
M. erectum Kew 106	F	97	0.02	0.59	0.39
M. yunnanensis Kew 107	F	97	0.016	0.027	0.957
M. nudipes Kew 109	F	97	0.065	0.126	0.809
M. nudipes Kew 110	F	100	0.334	0.334	0.332
M. nudipes Kew 111	F	100	0.335	0.335	0.33
M. tinctorius Kew 112	E	100	0.333	0.337	0.33
Saccharum spontaneum Kew 117	G	92	0.308	0.497	0.195
Narenga porphyrocoma Kew 120	G	97	0.233	0.335	0.432
Saccharum contortus Kew 121	G	94	0.013	0.623	0.364
Spodipogon rhizophorus Kew 125	G	98	0.27	0.392	0.338
Spodipogon sibiricus Kew 128	G	97	0.223	0.465	0.311
Eulalia villosa Kew 132	G	100	0.332	0.332	0.335
Eulalia quadrinervis Kew 134	G	97	0.968	0.016	0.016
Eulalia tripsicata Kew 138	G	100	0.332	0.335	0.333
M. sinensis 'morning light' Kew 155	A-1	76	0.005	0.009	0.987

Table 4.4.4 (continued)

Figure 4.4.4 Structure barplot assigning each accession to cluster I (red), cluster II (green)
and cluster III (blue).

All individuals belonging to group C fall in cluster I (red), together with group B-I. Consistently with the UPGMA dendrogram and the PCO, the group B-II has two individuals (Tea-91 and Tea-92) in the same cluster with B-I, whereas the other two individuals belongs to cluster III. Cluster I is completed by the presence of Tea-8 and Tea-39 from group I, Saccharum officinarum, Zea diploperennis, Eulalia quadrinervis (Kew 134) and M. fusca (Kew 90).

Unlike the UPGMA tree, the cluster analysis groups together both the diploid and the triploid genotypes from Sweden in Cluster II, with few exceptions: Tea-126, already assigned to group C, and four diploid individuals (Tea-96, Tea-97, Tea-105 and Tea-113) that fall in the third cluster. Cluster III includes all the individuals in groups A-II, A-III, M. transmorrisonensis (Kew 65) and M. condensatus (Kew 7 and Tea-44) from group E. Apart from Tea-62, all other know M. sinensis are evenly distributed between Cluster II and III, as well as the Miscanthus species in group F, with the only exception of M. fusca (Kew 90).

4.4.3 AMOVA

A pairwise comparison between some of the groups revealed by PCO and by the UPGMA tree was carried out. When comparing group C with other groups, the variation among groups accounted for the most of the diversity, from 61% with the closest group B-I to 77% in the comparison with A-III genotypes (Table 4.4.5).

Table 4.4.5 Analysis of molecular variance (AMOVA) between groups as shown by the principal coordinates analysis

Source of variation	df	SS	MS	Est. Var.	\%
D vs. A-IV					
Among Pops	1	130.747	130.747	7.626	27\%
Within Pops	30	619.472	20.649	20.649	73\%
Total	31	750.219		28.275	100\%
D vs. B-I					
Among Pops	1	58.086	58.086	5.703	29\%
Within Pops	15	207.091	13.806	13.806	71\%
Total	16	265.176		19.509	100\%
C vs. D					
Among Pops	1	256.467	256.467	14.224	66\%
Within Pops	52	378.533	7.279	7.279	34\%
Total	53	635		21.504	100\%
C vs. B-I					
Among Pops	1	101.089	101.089	9.059	61\%
Within Pops	47	267.442	5.69	5.69	39\%
Total	48	368.531		14.749	100\%
C vs. A-III					
Among Pops	1	305.868	305.868	18.512	77\%
Within Pops	51	279.642	5.483	5.483	23\%
Total	52	$\mathbf{5 8 5 . 5 0 9}$		23.995	100\%
A-III vs. B-I					
Among Pops	1	80.925	80.925	9.76	56\%
Within Pops	14	108.2	7.729	7.729	44\%
Total	15	189.125		17.488	100\%

Within groups variation was lower also between Goliath-like individuals when compared with M. sacchariflorus. In contrast, the group of Swedish triploid showed higher variation within group when compared with either M. sacchariflorus or the diploid ones.

4.5 Discussion

4.5.1 Nuclear molecular markers development

The genetic diversity of 176 individuals, mostly belonging to the species M. sinensis, M. sacchariflorus and M. \times giganteus, and 14 individuals belonging to closely related genera was characterised using 19 newly developed nuclear SSR markers. The loci amplified included a tetranucleotide repetition in nine cases and a dinucleotide repetition in the remaining ten. No bias was observed between di- and tetranucleotide microsatellite in their ability to detect variation (Table 4.4.1).

Despite the presence of triploid and tetraploid plants in the collection of Miscanthus analysed, some markers did not show more than two alleles in all individuals genotyped. For markers where more than two alleles were observed, the additional alleles were not present in all triand tetraploid accessions, thus not allowing an estimation of the ploidy based on nSSRs.

The presence of more than two alleles per marker for some genotypes made it necessary to convert the data in a presence/absence matrix for further analyses, due to the lack of suitable software that allows the analysis of more than two alleles per locus.

A high level of polymorphism was observed at all loci, with an average allele number of 27.5 per locus (Table 4.4.1) and PIC values of 0.84. A higher level of variation was detected within some species, in particular in M. sinensis, compared to other species like M. \times giganteus.

Average allele number was higher than the value of 12 found by Hernández et al. (2001) in a previous study using SSR from maize. The higher number of clones used in our study (190 against sixteen clones) and the introduction of other Miscanthus species other than M. sinensis, M. sacchariflorus and M. \times giganteus could account for the difference in allele number found. However, the average PIC value of 0.836 was consistent with the value of 0.830 in Hernández et al. (2001), both higher than the average PIC value recently found by Zhao et al. (2011) in a study about transferability of 49 microsatellite markers from Brachypodium distachyon to M. sinensis.

In the last few years the first nuclear microsatellite markers for Miscanthus have been developed (Hung et al. 2009; Ho et al. 2011; Zhou et al. 2011). Both studies from Zhao et al. (2011) on transferability from Brachypodium and Hung et al. (2009) on nine new microsatellite loci specific for Miscanthus, were limited to M. sinensis, thus explaining the low level of polymorphism (informativeness) found compared to the markers in this study.

Zhou et al. (2011) extended the test for their 14 newly developed markers to M. floridulus, M. sacchariflorus and M. lutarioriparius, increasing the average number of allele found to 16.1 and the PIC value to 0.757. Miscanthus lutarioriparius is a recently described giant Miscanthus from China and has until now been understudied genetically (Chen and Renvoize 2006).

A different approach was used by Ho et al. (2011) in the development of 12 new primer pairs, where genic microsatellite loci (EST-SSRs) were obtained through transcriptome sequencing and tested on M. sinensis and M. floridulus, with a number of alleles of 7.9 on average.

SSRs from Shaccarum officinarum ESTs have been recently used by Kim et al. (2012) to generate a genetic map of M. sacchariflorus Robustus and M. sinensis with a genome coverage of 72.7% and 84.9% respectively. The numbers of linkage groups found for the two maps (40 for M. sacchariflorus and 23 for M. sinensis) were still higher than the basal chromosome number for Miscanthus ($\mathrm{x}=19$), and additional markers will be required to saturate the map, especially from non-coding regions that are underrepresented in the current maps.

The newly developed primers in the study presented here were found to cross amplify not only within Miscanthus sensu stricto species but also in other members of the Saccharinae, Andropogoneae and even Paniceae. They amplified DNA in Zea (Andropogoneae; Tripsacinae) and Pennisetum (Paniceae). The primers are clearly of high value for genetic characterisation and genetic mapping of Miscanthus species (Kim et al. 2012) but they could be applied to other closely related genera including Saccharum and Erianthus.

The relationship among M. sinensis, M. sacchariflorus and M. \times giganteus using molecular markers had been previously investigated by Greef et al. (1997), Hernández et al. (2001) and Hodkinson et al. (2002b). In the first study 48 samples were screened using AFLP fingerprinting. The results of the three studies were controversial. The cluster analysis based on the 17 SSR markers derived from maize (Hernández et al. 2001) indicated a closer clustering of the $M . \times$ giganteus clone with the M. sinensis cluster than with the M. sacchariflorus cluster. This result is in accordance with the origin of the allotriploid M. \times giganteus postulated by Linde-Laursen (1993), whose cytogenetic analysis of M. \times giganteus revealed the presence of two genomes with high homology to M. sinensis and a third with low homology derived from M. sacchariflorus. However the two cluster analyses based on AFLP revealed a clear association of M. \times giganteus with M. sacchariflorus in Greef et al. (1997) but an equal distance between M. \times giganteus and both putative parents in Hodkinson et al. (2002b).

Both the UPGMA cluster analysis and the PCO obtained with the 19 SSR markers indicated a cluster of three M. sacchariflorus individuals belonging to the MATEREC 11 genotype as the closest to the cluster encompassing all the known M. \times giganteus clones. Nevertheless, M. sacchariflorus named Kew 159 and Kew 160 showed a higher distance from M. \times giganteus clones than M. sinensis clones.

Using the model-based clustering method as implemented in STRUCTURE the relationship among the three species is clearer. The entire collection was reduced to three clusters. Both M. \times giganteus and M. sacchariflorus clones belong to the same cluster, whereas M. sinensis individuals are spread between the remaining two clusters, thus confirming the findings of previous studies that used AFLP fingerprinting to evaluate genetic diversity. However, the estimated membership to cluster I for Kew 159 and Kew 160 is lower compared to other M. sacchariflorus (0.687 and 0.498 respectively against an average of 0.989 for the MATEREC 11 clones).

The groups revealed by the UPGMA and PCO analyses were compared using AMOVA analysis to account for variation within and between groups. When the $M . \times$ giganteus cluster
was included in the pairwise comparison, among group variation was found higher than within group variation. A lower level of genetic diversity in M. \times giganteus would be expected for a triploid sterile clone that has been mostly propagated vegetatively in European breeding programs. Nevertheless a certain level of variation was found in the species, probably due to multiple origin of $M . \times$ giganteus in parts of Asia where the distribution areas of the two putative parents overlap. Similar results were found for the cluster of the triploid variety 'Goliath' of M. sinensis. Due to the lack of information about the origin of this clone, it could only be speculated that the triploid genetic set and the consequent sterility of this variety played a role in reducing polymorphisms in the genome.

4.6 Conclusions

Nineteen new nuclear SSR markers were developed starting from a microsatellite enriched library of M. sinensis and tested on a collection of Miscanthus accessions belonging to 16 different species in the genus as well as on ten species from related genera. The markers proved to be highly polymorphic in Miscanthus and transferable to other genera, including Saccharum. As part of the study, the genetic diversity in the Miscanthus collection established in Teagasc was assessed by UPGMA, PCO and AMOVA, demonstrating a high level of variation among the three species M. sinensis, M. sacchariflorus and M. \times giganteus and within species. Possible association between the markers and valuable biomass traits should be evaluated in further studies.

Chapter 5

General discussion on the characterisation of genetic and morphological diversity of a collection of Miscanthus

5.1 Introduction

The main objectives of this work were to develop new molecular markers for the genus Miscanthus and to characterize morphological and molecular diversity in a collection of Miscanthus established in Oak Park, Carlow. Such characterisation is essential pre-breeding work necessary to define gene pools, identify taxa, establish inter-relationships of the accessions and develop markers suitable for association studies, quantitative trait loci mapping and marker-aided selection.

The plant material used was from three different sources: Svalöf Weibull (Sweden), University of Hohenheim (Germany) and TCD Botanic Gardens (Ireland), and was mostly composed of individuals of M. sinensis, M. sacchariflorus and M. \times giganteus, but with some accession not assigned to any of the three species. The morphological characterization was evaluated by mean of scoring important vegetative and reproductive traits and by comparing the results with a set of herbarium specimens belonging to several species of Miscanthus sensu stricto (s.s.). Molecular diversity of the collection and taxon identity was evaluated using a combination of newly designed DNA markers (chloroplast and nuclear SSRs), sequencing (internal transcribed spacer of the nrDNA) and ploidy estimation through flow cytometry.

5.1.1 Morphological and cytological characterization of a collection of Miscanthus

A selection of traits were scored during the second growing season for a newly established collection of Miscanthus in Oak Park, Carlow. A high level of variation was found for all the traits, with only a few of them showing a normal distribution in the multi-species dataset. When the same traits were measured in herbarium specimens from nine different species of Miscanthus, it was observed that mean values and standard deviation among species varied considerably, thus explaining the non-normal behaviour of a collection with mixed species.

Among all morphological characters, two, both in the inflorescence, are known to be crucial to distinguish M. sinensis from M. sacchariflorus and M. \times giganteus: the presence of an awned lemma in the spikelets and the length of the spikelet callus hairs. Miscanthus sacchariflorus and $M . \times$ giganteus have long callus hairs (much longer than the length of the spikelet) and lack an awn. Miscanthus sinensis is awned and has shorter callus hairs. Miscanthus sacchariflorus and M. ×giganteus are difficult to differentiate as both have gigantic cane-like stature, are awnless and have long callus hairs. The attempt to use the data collected in the field for the classification of unidentified accessions was hampered by the unavailability of inflorescences for approximately half of the plants in the collection, and for the plants that did flower, all had sinensis-like spikelets except for two accessions. It could be argued that only plants of M. sinensis can flower in cold regions (Lewandowski and Clifton Brown 2000). Certainly, only these were able or were mature enough to flower in their second growing season in Carlow. Flowering is influenced by day length and temperature in Miscanthus (Lewandowski et al. 2000) and cold late summer and autumn temperature precludes flowering (if plants are transferred in to a sheltered but unheated glasshouse in Ireland they do flower; personal observation). Morphological identification of these accessions as M. sinensis is in accordance with the data on their ploidy and the DNA sequences of the ITS region.

The ploidy level estimated in the collection ranged from diploid to tetraploid, with the genotypes almost equally divided between di- and triploid, with a few tetraploid. All the M. sacchariflorus were found to be tetraploid, and, as expected, the individuals classified as M. \times giganteus were triploid. Diploids were only recorded in M. sinensis and M. condensatus. Diploid M. sacchariflorus are known (Hodkinson et al. 2002c) but were not found in our collection. Two groups were recognised among the triploids: 1) M. \times giganteus and some new M. sacchariflorus \times M. sinensis hybrids and 2) a few individuals of M. sinensis 'Goliath'; the latter showing a higher DNA content compared to the other triploids. This higher DNA content was probably due to the different content in haploid sets between the autotriploid M . sinensis 'Goliath' with three M. sinensis genomes, and the allotriploid M. \times giganteus, which is likely to have two M. sinensis genomes and one from the other putative parent M. sacchariflorus, that is known to have a lower DNA content per haploid genome, as reported by Rayburn et al. (2008). In a study on genome size in Miscanthus, they estimated the DNA content of a diploid M. sacchariflorus in 4.5 pg , around 22% lower than the value of 5.5 pg
found in diploid M. sinensis. The genome size of 7.0 pg for the triploid M. \times giganteus is in accordance with the presence of two genomes from M. sinensis and one from M. sacchariflorus (Rayburn et al. 2008).

The comparison between the ploidy levels and the data from the inflorescences showed that all the diploids that produced inflorescences had sinensis-like spikelets, while in the triploid group, the accessions identified as M. sinensis 'Goliath' had sinensis-like spikelets, whereas among the M. sacchariflorus \times M. sinensis hybrids, some carried sinensis-like inflorescences and some the sacchariflorus-like ones. None of the plants identified as $M . \times$ giganteus or M. sacchariflorus did flower.

Where available, the sequencing of the ITS-1 region of the nrDNA confirmed that all the diploid plants had a sinensis DNA profile for crucial nucleotide positions that differs between species. This profile was shared with the triploid plants identified as M. sinensis 'Goliath', confirming their autotriploid status. All the remaining triploids, both M. \times giganteus and M. sacchariflorus \times M. sinensis hybrids, showed what appeared to be a mixed sequence of the sacchariflorus and the sinensis DNA profiles. This is not surprising because they are triploid sterile hybrids that have not undergone unequal crossing over and gene conversion (concerted evolution) that would homogenise ITS repeat type (Wendel et al. 1995). The detection of polymorphic sites in the DNA sequence could be useful to support both morphological and ploidy information to define species and distinguish between auto- and allotriploids.

5.1.2 Characterization of genetic diversity using newly developed cpSSRs markers

Starting from the complete sequence of the Saccharum officinarum chloroplast genome, a close ally to Miscanthus, 30 primer pairs were designed to amplify regions containing SSRs. With one exception, they all proved to be transferable to the genus Miscanthus. PCR products for the twelve primer pairs that performed better were sequenced to verify the presence in Miscanthus of microsatellite regions and possible polymorphism. Six markers showed length polymorphism of the repeats, with a species-specific preference in alleles.

The six newly developed cpSSR primers were used to genotype the collection of Miscanthus. Their cross-amplification was also tested in closely related taxa. The results of the cpSSR genotyping revealed a high number of different haplotypes (85 in 181 accessions tested), but
with a clear bias in allele composition between M. sinensis and the two species M. sacchariflorus and $M . \times$ giganteus, thus confirming M. sacchariflorus as the maternal lineage of the hybrid M. \times giganteus. The newly bred M. sacchariflorus \times M. sinensis hybrids on the contrary shared their haplotype with M. sinensis with the only exception of the genotype Tea126, whose haplotype is more similar to that of $M . \times$ giganteus.

Both the Bayesian analysis with STRUCTURE and the UPGMA tree obtained with the cpSSR data confirmed the presence in the screened population of two clusters, one for individuals with haplotypes typical of M. sinensis and one for the M. sacchariflorus and M. \times giganteus haplotypes. Nevertheless a certain amount of variation was found within clusters, as underlined by the AMOVA performed using the two clusters as populations, which showed that 98% of the variation in the dataset was due to the within population component. When other Miscanthus species were considered, it could be observed that other Miscanthus s.s. species tend to cluster with M. sinensis, whereas the remaining Miscanthus s.1. species are more closely related to M. sacchariflorus.

The markers reported here are among the first cpSSR and SNP markers developed for Miscanthus. These new markers will be useful in Miscanthus breeding programmes, for testing maternal inheritance of the chloroplast genome, for population genetic applications and for species differentiation.

5.1.3 Characterization of genetic diversity using newly developed nSSRs markers

New primer pairs for the amplification of nineteen nuclear SSRs loci were developed from the sequences of 192 clones from a microsatellite enriched library. The enrichment of the library was obtained by screening clones for sequences of $\mathrm{TC}_{\mathrm{n}}, \mathrm{TG}_{\mathrm{n}}$ and GATA n_{n} simple sequence motifs. The newly developed primers were used to characterise the genetic diversity in a collection of Miscanthus collection and test their cross-amplification in closely related taxa. All nineteen markers showed high levels of polymorphism with an average number of alleles of 27.5 per locus.

In order to reduce the number of variables accounting for the genetic diversity in the data set, a PCO analysis was performed. The first three axes expressed only 21.3% of variation, but it was possible to identify some groups of accessions. Individuals belonging to M. \times giganteus
were clearly separated from the rest of the plants, due to the lower level of polymorphism observed in this species, as expected from a sterile hybrid that can only be propagated only vegetatively. Another group including the 'Goliath' variety of M. sinensis could be distinguished from the main core of M. sinensis genotypes, as well as a group of M. sacchariflorus \times M. sinensis hybrids.

The same clustering was observed in the UPGMA tree, where M. \times giganteus genotypes cluster together and seemed to be more closely related to a group of M. sacchariflorus accessions than to M. sinensis. Two accessions of M. sacchariflorus appeared to be closer to other Miscanthus s.s. species. Among M. sinensis, the variety 'Goliath' formed a defined cluster, while the relationship of the other accessions could not be resolved.

When groups defined by the PCO analysis and the UPGMA tree were compared using an analysis of molecular variance (AMOVA), variation among populations was higher than within population variation every time $M . \times$ giganteus was included in the calculation, confirming the low level of diversity in this hybrid and the clear separation from other species.

The cluster analysis of the nuclear dataset using STRUCTURE identified three major clusters. One of the clusters included all the M. \times giganteus, together with the M. sacchariflorus accessions that grouped closer to M. \times giganteus in the UPGMA tree, and the non Miscanthus individuals that showed cross-amplification with the nSSRs markers. The other two clusters included M. sinensis accessions, with both the M. sinensis and the M. sacchariflorus \times M. sinensis hybrids from Sweden in a different cluster from M. sinensis ‘Goliath'.

A high level of variation within and among species was demonstrated in Miscanthus. The newly developed markers will be useful to further explore the diversity of the existing collection and the diversity of newly collected or created accessions. They will be used in association mapping of useful plant breeding traits for biomass production, QTL mapping and MAS.

5.2 Overview of the findings and future work

The morphological, ploidy, sequence and microsatellite results have highlighted the high level of diversity still unexplored in Miscanthus. The new molecular tools developed in this study, together with the morphological observation, can be used to establish taxon identity of many accessions in the collection.

Among the Miscanthus sp., all the triploids with a flow-cytometry fluorescence ratio comparable with the M. \times giganteus standard shared their chloroplast haplotype with M. \times giganteus and cluster with M. \times giganteus when nSSRs were analysed. The ITS sequence, where available, confirm a $M . \times$ giganteus profile for these accessions, suggesting that they probably belong to M. \times giganteus. The only exception was Tea-1, which showed a sinensislike chloroplast haplotype.

More complicated is the taxonomical position of the diploid Miscanthus sp., due to the high level of variation observed in M. sinensis. The genotype Tea-47 was peculiar, since it clustered together with M. \times giganteus with both plastid and nuclear SSR markers; however it has a diploid genome. The accessions Tea-16, Tea-24, Tea-26 and Tea-38 shared their chloroplast haplotype with M. \times giganteus and M. sacchariflorus, but they cluster with M. sinensis when nSSRs were taken into account. This might suggest that hybridisation and/or introgression have occurred in the past with these lineages and that they have retained a sacchariflorus cpDNA-type (chloroplast capture). The ITS sequence, available for all but Tea-16, showed a sinensis profile. The remaining unidentified accessions cluster with M. sinensis in all analysis performed. Future work should involve the acquisition of further data from the ITS region and obtaining inflorescences for all accessions (via greenhouse induction) to help clarify the taxonomic status of these genotypes.

Both morphological and molecular characterization highlighted a high level of variation in the genus Miscanthus, in particular in M. sinensis. Variation was observed also in M. sacchariflorus, but the lower number of accessions for this species limited comparisons with M. \times giganteus. New genotypes of M. sacchariflorus could be analysed with the chloroplast and nuclear markers developed in this study. New accessions are being collected in the wild
in China and Russia by TCD researchers as part of an EU FP7 Grass Margins Project coordinated by Teagasc. It will be interesting to use the new markers on those collections.

One paper has already been published from this thesis on the cpDNA markers (de Cesare et al. 2010) and the following are in preparation:
de Cesare et al. The application of a new set of nuclear SSR markers for pre-breeding and diversity studies in Miscanthus (Poaceae). Theoretical and Applied Genetics.
de Cesare et al. Genome size and polyploid evolution in the bioenergy grass Miscanthus. Global Change Biology Bioenergy.
de Cesare et al. Taxon identity and differentiation in Miscanthus based on morphology, genome size and nrDNA sequences.

Reference

2007. Minitab 15 Statistical Software. State College, PA: Minitab, Inc.

Adati S. 1958. Studies on the genus Miscanthus with special reference to the Japanese species suitable for breeding purpose as fodder crops. Bulletin Faculty Agricultural Mie University 17(1-112).

Adati S, Mitsuishi S. 1956. Wild growing forage plants of the Far East, especially Japan, suitable for breeding purposes, part 1, Karyological study in Miscanthus (1). Bulletin of the Faculty of Agriculture Mie University 12: 1-14.

Adati S, Shiotani I. 1962. The cytotaxonomy of the genus Miscanthus and its phylogenetic status. Bulletin of the Faculty of Agriculture Mie University 25: 1-24.

Agarwal M, Shrivastava N, Padh H. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 27: 617-631.

Anderson JA, Maan SS. 1995. Interspecific nuclear-cytoplasmic compatibility controlled by genes on group 1 chromosomes in durum wheat. Genome 38: 803-808.

Andersson NJ. 1855. Om de med Saccharum beslägtade genera. Öfvers Kungl Vet Adad Förh Stockholm 12: 151-168.

Arumuganathan K, Earle E. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Molecular Biology Reporter 9: 229-241.

Atienza G, Satovic Z, Petersen K, Dolstra O, Martín A. 2002. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik 105: 946-952.

Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ. 1995. The its Region of Nuclear Ribosomal DNA: A Valuable Source of Evidence on Angiosperm Phylogeny. Annals of the Missouri Botanical Garden 82: 247-277.

Bardakci F. 2001. Random Amplified Polymorphic DNA (RAPD) Markers. Turkish Journal of Biology 25: 185-196.

Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32: 314-331.

Brown JWS, Shaw PJ. 1998. Small Nucleolar RNAs and Pre-rRNA Processing in Plants. The Plant Cell Online 10: 649-658.

Chen SL, Renvoize SA. 2006. Miscanthus. In Flora of China, Vol 22 (ed. RP Wu ZY, Hong DY), pp. 581-583. Science Press, Missouri Botanical Garden Press, Beijing, St. Louis.

Clayton WD, Renvoize SA. 1986. Genera Graminum, grasses of the world. In Kew Bulletin Additional Series XIII, Springer, New York.

Clifton-Brown J, Chiang YC, Hodkinson TR. 2008. Miscanthus: Genetic resources and breeding potential to enhance bioenergy production. In Vermerris W (ed) Genetic improvement of bioenergy crops, pp. 295-308. Springer, New York.

Clifton-Brown JC, Lewandowski I. 2000. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytologist 148: 287-294.

Clifton-Brown JC, Lewandowski I. 2002. Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. European Journal of Agronomy 16: 97-110.
de Cesare M, Hodkinson TR, Barth S. 2010. Chloroplast DNA markers (cpSSRs, SNPs) for Miscanthus, Saccharum and related grasses (Panicoideae, Poaceae). Molecular Breeding 26: 539-544.

Diekmann K, Hodkinson TR, Wolfe KH, van den Bekerom R, Dix PJ, Barth S. 2009. Complete chloroplast genome sequence of a major allogamous forage species,
perennial ryegrass (Lolium perenne L.). DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes 16: 165-176.

Doležel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233-2244.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620.

Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial dna restriction data. Genetics 131: 479-491.

Flannery ML, Mitchell FJG, Coyne S, Kavanagh TA, Burke JI, Salamin N, Dowding P, Hodkinson TR. 2006. Plastid genome characterisation in Brassica and Brassicaceae using a new set of nine SSRs. Theoretical and Applied Genetics 113: 1221-1231.

Głowacka K, Jeżowski S, Kaczmarek Z. 2010. Impact of colchicine application during callus induction and shoot regeneration on micropropagation and polyploidisation rates in two Miscanthus species. In Vitro Cellular \& Developmental Biology - Plant 46: 161171.

GPWG. 2001. Phylogeny and Subfamilial Classification of the Grasses (Poaceae). Annals of the Missouri Botanical Garden 88: 373-457.

Grass Phylogeny Working Group II. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytologist 193:304-312.

Greef JM, Deuter M, Jung C, Schondelmaier J. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genetic Resources and Crop Evolution 44: 185-195.

Green BR. 2011. Chloroplast genomes of photosynthetic eukaryotes. The Plant Journal 66: 34-44.

Hernández P, Dorado G, Laurie DA, Martín A, Snape JW. 2001. Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. TAG Theoretical and Applied Genetics 102: 616-622.

Hirayoshi I, Nishikawa K, Kato R, Kitagawa M. 1955. Cytogenetical forage studies on forage plants (III): chromosome numbers in Miscanthus. Japanese Journal of Breeding 5: 49-50.

Ho CW, Wu TH, Hsu TW, Huang JC, Huang CC, Chiang TY. 2011. Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae). American Journal of Botany 98: 201-203.

Hodkinson T, Chase M, Lledò MD, Salamin N, Renvoize S. 2002a. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Journal of Plant Research 115: 381-392.

Hodkinson TR, Chase MW, Renvoize SA. 2002b. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Annals of Botany 89: 627-636.

Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA. 2002c. The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). American Journal of Botany 89: 279286.

Hodkinson TR, Ní Chonghaile G, Sungkaew S, Chase MW, Salamin N, Stapleton CMA. 2010. Phylogenetic analyses of plastid and nuclear DNA sequences indicate a rapid late Miocene radiation of the temperate bamboo tribe Arundinarieae (Poaceae, Bambusoideae). Plant Ecology \& Diversity 3: 109-120.

Honda M. 1930. Monographia Poacearum Japonicarum, Bambusoides exclusis. Journal of the Faculty of Science, University of Tokyo, Section III. Botany H1: 484.

Hung K-H, Chiang T-Y, Chiu C-T, Hsu T-W, Ho C-W. 2009. Isolation and characterization of microsatellite loci from a potential biofuel plant: Miscanthus sinensis (Poaceae). Conservation Genetics 10: 1377-1380.

James G. 2004. Sugarcane. Blackwell, Oxford.

Jensen E, Farrar K, Thomas-Jones S, Hastings A, Donnison I, Clifton-Brown J. 2011. Characterization of flowering time diversity in Miscanthus species. GCB Bioenergy 3: 387-400.

Jones MB, Walsh M. 2001. Miscanthus - for energy and fibre. James and James (Science Publishers), London.

Kelchner SA. 2000. The evolution of non-coding chloroplast DNA and its application in plant systematics. Annals of the Missouri Botanical Garden 87: 482-498.

Keng YL. 1957. Claves Generum et Speciarum Graminearum Primarum Sinicarum Appendice Nomenclatione Systematica. Scientific Book Publishers, Shanghai.

Kim C, Zhang D, Auckland S, Rainville L, Jakob K, Kronmiller B, Sacks E, Deuter M, Paterson A. 2012. SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. TAG Theoretical and Applied Genetics: 1-14.

Kleine T, Maier UG, Leister D. 2009. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annual Review of Plant Biology 60: 115138.

Kumar S, Tamura K, Jakobsen IB, Nei M. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245.

Lafferty J, Lelley T. 1994. Cytogenetic Studies of Different Miscanthus Species with Potential for Agricultural Use. Plant Breeding 113: 246-249.

Lee YL. 1964. Taxonomic studies on the genus Miscanthus. (3). Relationship among the section, subsection and species. Journal of Japanese Botanic 38: 197-205.

Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W. 2000. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy 19(4): 209-227.

Lewandowski I, Clifton-Brown J. 2000. European Miscanthus Improvement (FAIR3 CT- 961392). Final Report. p. 260.

Linde-Laursen I. 1993. Cytogenetic Analysis of Miscanthus'Giganteus’, an Interspecific Hybrid. Hereditas 119: 297-300.

Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D. 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences of the United States of America 99: 12246-12251.

McCauley DE. 1995. The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends in Ecology \& Evolution 10: 198-202.

McGrath S, Hodkinson TR, Barth S. 2007. Extremely high cytoplasmic diversity in natural and breeding populations of Lolium (Poaceae). Heredity 99(5): 531-544.

McGrath S, Hodkinson TR, Salamin N, Barth S. 2006. Development and testing of novel chloroplast microsatellite markers for Lolium perenne and other grasses (Poaceae) from de novo sequencing and in silico sequences. Molecular Ecology Notes 6: 449452.

Mereschkowsky C. 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biologisches Centralblatt 25: 593-604.

Monteith JL. 1978. Reassessment of maximum growth rates for C3 and C4 crops. Experimental Agriculture 14: 1-5.

Naidu SL, Moose SP, AL-Shoaibi AK, Raines CA, Long SP. 2003. Cold Tolerance of C4 photosynthesis in Miscanthus \times giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiology 132: 1688-1697.

Nielsen PN. 1987. Vegetativ formering af elefantgraes, Miscanthus sinensis 'Giganteus’ (Vegetative propagation of Miscanthus sinensis ‘Giganteus'). Tidsskr Planteaul 91: 361-368.

Ohwi J. 1942. Gramina Japonica IV. Acta Phytotaxonomica Geobotanica 11: 145-193.

Ohwi J, Meyer FG, Walker EH. 1965. Flora of Japan '(in English)' by Jisaburo Ohwi: A combined much rev. and extended transl. by the author of his Flora of Japan ' (1953) ' and Flora of Japan, Pteridophyta ' (1957) '. Smithsonian Institution.

Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z et al. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572-574.

Olmstead RG, Palmer JD. 1994. Chloroplast DNA systematics: a review of methods and data analysis. American Journal of Botany 81: 1205-1224.

Osada T. 1989. Illustrated grasses of Japan.Heibonsha Ltd., Tokyo.

Palmer JD, Soltis DE, Chase MW. 2004. The plant tree of life: an overview and some points of view. American Journal of Botany 91: 1437-1445.

Pavlícek A, Hrdá S, Flegr J. 1999. Free-Tree--freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biologica 45: 97-99.

Peakall R, Smouse PE. 2006. genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295.

Powell W, Machray GC, Provan J. 1996. Polymorphism revealed by simple sequence repeats. Trends in Plant Science 1: 215-222.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Provan J. 2001. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology \& Evolution 16: 142-147.

Pude R, Franken H, Diepenbrock W, Greef JM. 1997. Ursachen der Auswinterung von einjährigen Miscanthus-Beständen. Pflanzenbauwiss 4: 171-176.

Rambaut A. 2007. FigTree, a graphical viewer of phylogenetic trees. Latest version 1.2.2, March 2009.

Ravi V, Khurana JP, Tyagi AK, Khurana P. 2007. An update on chloroplast genomes. Plant Systematics and Evolution 271: 101-122.

Rayburn AL, Crawford J, Rayburn CM, Juvik JA. 2008. Genome size of three Miscanthus species. Plant Molecular Biology Reporter 27: 184-188.

Ribaut J-M, Hoisington D. 1998. Marker-assisted selection: new tools and strategies. Trends in Plant Science 3: 236-239.

Ris H, Plaut W. 1962. Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. The Journal of Cell Biology 13: 383-391.

Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW. 1998. A microsatellite map of wheat. Genetics 149: 2007-2023.

Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW. 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Molecular \& General Genetics: MGG 246: 327-333.

Rohlf FJ. 2008. NTSYSpc: Numerical Taxonomy System, ver. 2.20. Exeter Publishing, Ltd: Setauket, NY.

Rongwen J, Akkaya MS, Bhagwat AA, Lavi U, Cregan PB. 1995. The use of microsatellite DNA markers for soybean genotype identification. Theoretical and Applied Genetics 90: 43-48.

Shimper AFW. 1885. Untersuchungen uber die Chlorophyllkorner und die ihnen homologen Gebilde. Jahrb Wiss Bot 16: 1-247.

Sun Y, Skinner DZ, Liang GH, Hulbert SH. 1994. Phylogenetic analysis of \<i\>Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. TAG Theoretical and Applied Genetics 89(1): 26-32.

Swallen JR. 1961. The Grasses of Burma, Ceylon, India and Pakistan (Excluding Bambuseae). N. L. Bor. Pergamon, New York, 1960. xviii +767 pp. Illus. $\$ 25$. Science 133: 1125.

Tanaka M, Wakasugi T, Sugita M, Shinozaki K, Sugiura M. 1986. Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): similarity to the S10 and spc operons of Escherichia coli. Proceedings of the National Academy of Sciences 83: 6030-6034.

Takizawa S. 1952. Chromosome constitution of the genus Miscanthus Anderss. La Kromosoma 14: 509-517.

Tautz D, Renz M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research 12: 4127-4138.

Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). TAG Theoretical and Applied Genetics 100: 697-712.

Thomas MR, Scott NS. 1993. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics 86: 985-990.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Research 22: 46734680.

Vermerris W. 2008. Genetic Improvement of Bioenergy Crops. Springer Science+Business Media, LLC. pp. 467.

Visser P, Pignatelli V. 2001. Utilisation of Miscanthus. In Miscanthus for energy and fibre, (ed. MB Jones, M Walsh), p. 192. James \& James, London.

Vos PR, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Kuiper M, Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acid Research 23: 4407-4414.

Wendel JF, Schnabel A, Seelanan T. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Science 92: 280-284.

White TJ, Bruns S.L., J. T. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. MA INNIS, DH GELFAND, JJ SNINSKY and TJ WHITE [eds] PCR protocols a guide to methods and applications, Academic Press, San Diego

Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531-6535.

Wilson EB. 1928. The Cell in Development and Heredity, 3rd revised edtion. Reprinted (1987) by Garland Publishing, New York.

Yan J, Chen W, Luo FAN, Ma H, Meng A, Li X, Zhu M, Li S, Zhou H, Zhu W et al. 2012. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4: 49-60.

Yin X, Stam P, Dourleijn CJ, Kropff MJ. 1999. AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. TAG Theoretical and Applied Genetics 99: 244-253.

Zhao H, Yu J, You FM, Luo M, Peng J. 2011. Transferability of Microsatellite Markers from Brachypodium distachyon to Miscanthus sinensis, a Potential Biomass Crop F. Journal of Integrative Plant Biology 53: 232-245.

Zhou H-F, Li S-S, Ge S. 2011. Development of microsatellite markers for Miscanthus sinensis (Poaceae) and cross-amplification in other related species. American Journal of Botany 98: 195-197.

Appendices

Table A List of accessions used in this study. Genotypes highlighted in grey were part of a field trial in Teagasc, Oak Park, Carlow.

ID	Acquired from	Accession	Notes
Miscanthus sp. Tea-1	T CD Bot.Gardens	TCDP 15	M. sacchariflorus
M. sinensis 'zebrinus' Tea-2	T CD Bot.Gardens	TCDP20	M. sinensis-Zebrinus
M. sinensis 'zebrinus' Tea-3	TCD Bot.Gardens	TCDP21	M. sinensis-Zebrinus
M. xgiganteus Tea-4	T CD Bot.Gardens	TCDP34	M. giganteus
M. xgiganteus Tea-5	TCD Bot.Gardens	TCDP36	M. giganteus
Miscanthus sp. Tea-6	TCD Bot.Gardens		
Miscanthus sp. Tea-7	T CD Bot.Gardens	TCDP48	M. sinensis
Miscanthus sp. Tea-8	TCD Bot.Gardens	TCDP 50	
Miscanthus sp. Tea-9	TCD Bot.Gardens	TCDP51	M. sinensis
Miscanthus sp. Tea-10	T CD Bot.Gardens	TCDP 58	M. sacchariflorus
Miscanthus sp. Tea-11	T CD Bot.Gardens		
M. sinensis Tea-13	T CD Bot.Gardens	TCDP73	M. sinensis
M. sinensis Tea-14	T CD Bot.Gardens	TCDP75	M. sinensis
Miscanthus sp. Tea-15	T CD Bot.Gardens	TCDP 104	M. sp
Miscanthus sp. Tea-16	TCD Bot.Gardens	TCDP 105	M.transmorrisonensis
M. x giganteus Tea-17	TCD Bot.Gardens	TCDP 108	M. giganteus
Miscanthus sp. Tea-18	T CD Bot.Gardens		
M. sinensis goliath-like Tea-19	TCD Bot.Gardens	TCDP 110	SIN-H6
M. xgiganteus Tea-20	T CD Bot.Gardens	TCDP 114	M. giganteus
Miscanthus sp. Tea-21	T CD Bot.Gardens	Unknown	
Miscanthus sp. Tea-22	TCD Bot.Gardens	Unknown	
Miscanthus sp. Tea-23	TCD Bot.Gardens	Unknown	
Miscanthus sp. Tea-24	TCD Bot.Gardens	TCDP 11	M. sinensis
Miscanthus sp. Tea-25	T CD Bot.Gardens	TCDP 11	M. sinensis
Miscanthus sp. Tea-26	T CD Bot.Gardens	TCDP 11	M. sinensis
Miscanthus sp. Tea-27	TCD Bot.Gardens	Unknown	
Miscanthus sp. Tea-28	TCD Bot.Gardens	Unknown	
Miscanthus sp. Tea-29	T CD Bot. Gardens	Unknown	
M. sinensis Tea-30	T CD Bot.Gardens		M. sinensis
M. xgiganteus Tea-31	T CD Bot.Gardens		M. giganteus
Miscanthus sp. Tea-32	T CD Bot.Gardens	Unknown	M. giganteus
M. sinensis 'zebrinus' Tea-33	TCD Bot.Gardens	TCDP 20 (?)	M. sinensis-Zebrinus
Miscanthus sp. Tea-34	TCD Bot.Gardens	Unknown	
M. sinensis 'gross fontane' Tea-35	TCD Bot.Gardens	TCDP30	M. sinensis-Grosse Fontane
M. sinensis 'gross fontane' Tea-36	TCD Bot.Gardens		M. sinensis-Grosse Fontane

Table A (continued)

ID	Acquired from	Accession	Notes
Miscanthus sp.Tea-37	TCD Bot.Gardens	Unknown	
Miscanthus sp. Tea-38	T CD Bot.Gardens	Unknown	
Miscanthus sp.Tea-39	TCD Bot.Gardens	Unknown	
M. sinensis Tea-40	TCD Bot.Gardens	TCDP62	M. sinensis
Miscanthus sp. Tea-42	TCD Bot.Gardens	Unknown	
Miscanthus sp. Tea-43	TCD Bot.Gardens	Unknown	
M. condensatus Tea-44	TCD Bot.Gardens	TCDP94	M. condensatus
Miscanthus sp. Tea-45	T CD Bot.Gardens		
Miscanthus sp. Tea-46	T CD Bot.Gardens		
Miscanthus sp. Tea-47	TCD Bot.Gardens		
Miscanthus sp. Tea-48	T CD Bot.Gardens		
Miscanthus sp. Tea-49	T CD Bot.Gardens		
Miscanthus sp. Tea-50	T CD Bot.Gardens		
Miscanthus sp. Tea-51	T CD Bot.Gardens		
Miscanthus sp. Tea-52	T CD Bot.Gardens		
Miscanthus sp. Tea-53	T CD Bot.Gardens		
Miscanthus sp.Tea-54	TCD Bot.Gardens		
Miscanthus sp.Tea-55	TCD Bot.Gardens		
M. sinensis 'goliath'T ea-56	Teagasc Oak Park field		
M. sinensis 'goliath' Tea-57	TCD Bot.Gardens		
M. sinensis 'sirene' Tea-58	Teagasc Oak Park field		
M. sinensis 'strictus' Tea-59	TRH garden		
M. sinensis 'strictus' Tea-60	T CD Bot.Gardens		
M. sinensis 'malaparteus' Tea-61	TRH Garden		
M. sinensis Tea-62	TRH Garden		
M. sinensis 'sirene' Tea-63	TCD Bot.Gardens		
M. xgiganteus Tea-64	T CD Bot.Gardens		
M. xgiganteus Tea-65	TCD Bot.Gardens		
M. xgiganteus Tea-66	TRH Garden, used for nam	pecies	
Miscanthus sp. Tea-68	TCD Bot.Gardens		
Miscanthus sp. Tea-69	TCD Bot.Gardens		
Miscanthus sp. Tea-70	TCD Bot.Gardens		
Miscanthus sp. Tea-71	TCD Bot.Gardens		
Miscanthus sp. Tea-72	TCD Bot.Gardens		
Miscanthus sp. Tea-73	TCD Bot.Gardens		
M. xgiganteus Tea-74	Germany - from Denmark	M1 Lasei 1	M. giganteus
M. sacchariflorus x M. sinensis Tea-75	Germany	M81 RH 81	M.sacchariflorusxM.sinensis
M. sinensis Tea-76	Germany - From Japan	88-110	M. sinensis
M. sinensis Tea-77	Germany - From Japan	88-111	M. sinensis
M. sinensis Tea-78	Germany - From Japan	90-5	M. sinensis

Table A (continued)

ID	Acquired from	Accession	Notes
M. sinensis Tea-79	Germany - From Japan	90-6	M. sinensis
M. sinensis Tea-80	Germany - From Sweden	SW 217	M. sinensis
M. xgiganteus Tea-81	Germany - from Denmark	M53 IPL 53	M. giganteus
M. xgiganteus Tea-82	Germany	M56 HAGA 56	M. giganteus
M. xgiganteus Tea-83	Germany	M63 GREIF 63	M. giganteus
M. sacchariflorus Tea-84	Germany - from Japan	M11 MATEREC 11	M. sacchariflorus
M. sinensis goliath-like Tea-85	Germany	M7 GOFAL 7	Goliath-like M. sinensis Hybrid
M. sinensis Tea-86	Germany	M42 BERBO 42	M. sinensis Hybrid
M. sacchariflorus x M. sinensis Tea-87	Germany	M43RH43	M.sacchariflorusx M. sinensis
M. sinensis Tea-88	Germany	M78 JESEL 78	M. sinensis Hybrid
Miscanthus sp. Tea-89	Oak Park		
Miscanthus sp. Tea-90	Oak Park		
Miscanthus sp. Tea-91	Oak Park		
Miscanthus sp. Tea-92	Oak Park		
M. xgiganteus Tea-93	IGER/JCB T inPlant trial O	k, Discard plot	
M. xgiganteus Tea-94	Old Trial - Oak Park		
M. sinensis Tea-95	Sweden		
M. sinensis Tea-96	Sweden		
M. sinensis Tea-97	Sweden		
M. sinensis Tea-98	Sweden		
M. sinensis Tea-99	Sweden		
M. sinensis Tea-100	Sweden		
M. sinensis Tea-101	Sweden		
M. sinensis Tea-102	Sweden		
M. sinensis Tea-103	Sweden		
M. sinensis Tea-104	Sweden		
M. sinensis Tea-105	Sweden		
M. sinensis Tea-106	Sweden		
M. sinensis Tea-107	Sweden		
M. sinensis Tea-108	Sweden		
M. sinensis Tea-109	Sweden		
M. sinensis Tea-110	Sweden		
M. sinensis Tea-111	Sweden		
M. sinensis Tea-112	Sweden		
M. sinensis Tea-113	Sweden		
M. sinensis Tea-114	Sweden		
M. sinensis Tea-115	Sweden		
M. sacchariflorus x M. sinensis Tea-116	Sweden		
M. sacchariflorus x M. sinensis Tea-117	Sweden		
M. sacchariflorus x M. sinensis Tea-118	Sweden		
M. sacchariflorus x M. sinensis Tea-119	Sweden		
M. sacchariflorus x M. sinensis Tea-120	Sweden		

Table A (continued)

ID	Acquired from	Accession	Notes
M. sacchariflorus x M. sinensis Tea-121	Sweden		
M. sacchariflorus x M. sinensis Tea-122	Sweden		
M. sacchariflorus x M. sinensis Tea-123	Sweden		
M. sacchariflorus x M. sinensis Tea-124	Sweden		
M. sacchariflorus x M. sinensis Tea-125	Sweden		
M. sachariflorus x M. sinensis Tea-126	Sweden		
M. sacchariflorus x M. sinensis Tea-127	Sweden		
M. sacchariflorus T ea-128	TCD Bot.Gardens		
M. sacchariflorus T ea-129	TCD Bot.Gardens		
Miscanthus sp. Tea-130	TCD Bot.Gardens	Unknown	
Miscanthus sp. Tea-131	TCD Bot.Gardens	Unknown	
Cymbopogon citratus	TCD Bot.Gardens		
Pennisetum sp.	TCD Bot.Gardens		
Saccharum officinarum	TCD Bot.Gardens		
Zea diploperennis	TCD Bot.Gardens		
M. sinensis 'variegatus' Kew 1	RBG Kew 15404	1969-19093	M. sinensis var. variegatus
Sorghum alpense Kew 6	RBG Kew 15101	1966-54209	Sorghum halpense
M. condensatus Kew 7	RBG Kew 151	1969-19091	M. condensatus
M. oligostachyus Kew 16	RBG Kew 151 (pot)	1995-1864	M. oligostachyus
M. nepalensis Kew 25	RBG Kew TH 4	1985-8388	M. nepalensis
M. sinensis 'goliath' Kew 27	ADAS Steinmann nurseries	MB93/02	M. sinensis 'Goliath'
M. sinensis 'gracillimus' Kew 28	ADAS Piccoplants, Germany	MB94/05	M. sinensis 'Gracillimus'
M. sinensis 'roland' Kew 29	ADAS Piccoplants, Germany	MB94/06	M. sinensis 'Roland'
M. sinensis Kew 30	ADAS Wye College	MB94/07	M. chinensis (Sinensis)
M. sinensis 'gross fontane' Kew 31	ADAS Genft Dogels, Germany	PN95/01	M. sinensis 'Grobe rontane'
M. sacchariflorus Kew 61	RBG Kew 751 MB	1987-2727	M. purpurascens=M.sacchariflorus
M. sinensis 'yakushimanum' Kew 63	RBG Kew 751	1987-1148	M. sinensis 'yakushimanum'
M. transmorrisonensis Kew 65	RBG Kew 732	1990-2748	M. sinensis 'transmorrisonensis'
M. fusca Kew 82	RBG Kew Herbarium	590	M. fusca
M. violaceum Kew 84	RBG Kew Herbarium	7437	M. violaceus
M. violaceum Kew 85	RBG Kew Herbarium	468	M. violaceus
M. ecklonii Kew 86	RBG Kew Herbarium	2347	M. ecklonii
M. ecklonii Kew 87	RBG Kew Herbarium	3228	M. ecklonii
M. junceum Kew 88	RBG Kew Herbarium	1060	M. junceum
M. junceum Kew 89	RBG Kew Herbarium	2309	M. junceum
M. fusca Kew 91	RBG Kew Herbarium	US 56-5-5b	M. fusca
M. violaceum Kew 92	RBG Kew Herbarium	7437 b	M. violaceum
M. violaceum Kew 93	RBG Kew Herbarium	468b	M. violaceum
M. capense Kew 94	RBG Kew Herbarium	2347b	M. capense
M. capense Kew 95	RBG Kew Herbarium	3228b	M. capense
M. teretifolium Kew 96	RBG Kew Herbarium	1060b	M. teretifolium
M. junceum Kew 97	RBG Kew Herbarium	2309b	M. junceum

Table A (continued)

ID	Acquired from	Accession	Notes
M. junceum Kew 97	RBG Kew Herbarium	2309 b	M. junceum
Saccharum officinarum Kew 104	Palm House 4	$1973-12242$	Saccharum officinarum
M. sorghum Kew 105	Herbarium, RGG, Kew	2929	M. sorghum
M. erectum Kew 106	Herbarium, RBG, Kew	247	M. erectum
M. yunnanensis Kew 107	Herbarium, RBG, Kew	30689	M. yunnanensis
M. nudipes Kew 109	Herbarium, RBG, Kew	2007	M. nudipes
M. nudipes Kew 110	Herbarium, RBG, Kew	2517	M. nudipes
M. nudipes Kew 111	Herbarium, RBG, Kew	522	M. nudipes
M. tinctorius Kew 112	Herbarium, RBG, Kew	1466	M. tinctorius
Saccharum spontaneum Kew 117	Herbarium, RBG, Kew	Butt, 1977	Saccharum spontaneum
Narenga porphyrocoma Kew 120	Herbarium, RBG, Kew	2092	Narenga porphyrocoma
Saccharum contortus Kew 121	Herbarium, RBG, Kew	3797	S. contortus (E. contortus)
Spodipogon rhizophorus Kew 125	Herbarium, RBG, Kew	283	Spodiopogon rhizophorus
Spodipogon sibiricus Kew 128	Herbarium, RBG, Kew	210	Spodiopogon sibricus
Eulalia villosa Kew 132	Herbarium, RBG, Kew	1882	Eulalia villosa
Eulalia quadrinervis Kew 134	Herbarium, RBG, Kew	3294	Eulalia quadrinervis
Eulalia tripsicata Kew 138	Herbarium, RBG, Kew	10062	Eulalia tripsicata
M. sinensis 'morning light' Kew 155	RBGKew Living	1996821	M. sinensis 'Morning Light'
M. Sacchariflorus Kew 159	Herbarium, RBG, Kew	35981935	M. sacchariflorus
M. sacchariflorus Kew 160	Herbarium, RBG, Kew	1984	M. sacchariflorus Japan
M. tinctorius 'nana variegata' Kew 161	RBGKew Living	19961065	M. tinctorius 'Nana variegatus'
M. sinensis 'goliath' Kew 194	ADAS	PN96/30	M. 'goliath'

Table B Characters and relative scores for herbarium specimens of Miscanthus

	\hat{O}	\cdots	\cdots	\cdots	0	\cdots	$\stackrel{+}{0}$	\cdots	\cdots	\cdots	$\stackrel{\infty}{\circ}$	\bigcirc	\cdots	\bigcirc
¢ถึนश UMV	3	\cdots	$\widehat{0}$	$\hat{0}$	0	\pm	\bigcirc	\pm.	\bigcirc	\cdots				
ц๐๐๐э 	$\stackrel{0}{0}$	\cdots	$\stackrel{0}{0}$	$\stackrel{\square}{0}$	\bigcirc	$\stackrel{?}{0}$	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\square}{\circ}$	\bigcirc	$\stackrel{\square}{0}$	$\stackrel{\square}{\circ}$	\bigcirc
	z	z	Z	z	z	z	z	Z	z	z				
ןә!рәd дәмот	\bigcirc	$\stackrel{n}{0}$	$\stackrel{\square}{0}$	Ǒ	\bigcirc	${ }^{\text {N/ }}$	$\stackrel{\square}{0}$	$\stackrel{\bigcirc}{0}$	$\stackrel{\square}{0}$	\pm.	$\stackrel{\square}{0}$	$\stackrel{\square}{0}$	$\stackrel{0}{0}$	$\stackrel{0}{0}$
	\bigcirc	\bigcirc	$\stackrel{N}{O}$	5	5.	$\overrightarrow{0}$	$\frac{n}{0}$	\bigcirc	$\stackrel{N}{O}$	5.	\bigcirc	O	$\stackrel{?}{\circ}$	$\xrightarrow{3}$
әроидәи! әшәэву	-	$\stackrel{\infty}{\circ}$	\bigcirc	$\stackrel{n}{0}$	\bigcirc	$\stackrel{n}{0}$	\cdots	$\stackrel{\infty}{\circ}$	$\stackrel{3}{0}$	$\stackrel{n}{0}$	3.	$\stackrel{\sim}{0}$	$\stackrel{ \pm}{\circ}$	\%
SİXE כuәэey	Z	Z	Z	Z	z	Z	Z	Z	Z	Z				
s.upey stixy	z	z	Z	z	z	Z	z	z	Z	z	λ			
$\begin{array}{r} \text { s.ı!ey } \\ \text { эроирод } \end{array}$	Z	Z	Z	Z	Z	Z	z	Z	乙	Z				
ழ๐ิน әшәэะу	\sim	\cdots	∞	\bigcirc	$\begin{gathered} n \\ \underset{0}{2} \end{gathered}$	$\begin{aligned} & n \\ & m \end{aligned}$	$\underline{\sim}$,	$\stackrel{\infty}{\sim}$	^	\propto	$\begin{gathered} n \\ \underline{0} \end{gathered}$	$\stackrel{\infty}{\sim}$	\cdots
.гяиии әШәวغ्र	∞	$\stackrel{\sim}{8}$	∞	\cdots	¢	$\stackrel{1}{2}$	\bigcirc	¢	\cdots	안	\cdots	\cdots	¢	-
	\bigcirc	$\stackrel{n}{n}$	\bigcirc	*	$\stackrel{\sim}{\square}$	\cdots	m	\bigcirc	$\stackrel{\infty}{*}$,	\wedge	$\stackrel{n}{=}$	in	∞
	\because	-	\cdots	$\stackrel{ \pm}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{4}{4}$	'	in	$\underset{*}{*}$	m	$\underset{\sim}{4}$	$\underset{\sim}{*}$	¢	\cdots
л!̣ч уеәт	Z	Z	Z	Z	Z	χ	Z	Z	Z	Z	χ	\succ	\rangle	γ
¢р!м эреןqјеәт	$\stackrel{?}{-}$	$\stackrel{3}{3}$	\pm.	$\begin{aligned} & \infty \\ & 0 \end{aligned}$	∞	$\begin{array}{\|l\|} 0 \\ 0 \end{array}$	\bigcirc	\bigcirc	-	-	\cdots	\bigcirc	\bigcirc	N
	in	ד	त	$\stackrel{+}{*}$	in	n	m		$\stackrel{n}{n}$	8	$\stackrel{\sim}{\sim}$	ल	in	n
чр!м шпп	0	\bigcirc	O	$\stackrel{7}{0}$	\cdots	\bigcirc	\bigcirc	\pm.	\cdots	$\stackrel{7}{0}$	\bigcirc	N	\bigcirc	n
	∞	$\stackrel{\infty}{*}$	$\stackrel{\infty}{+}$	\%	$\stackrel{\sim}{7}$	$\stackrel{\circ}{=}$	$\stackrel{\rightharpoonup}{*}$	*	\bigcirc	$\stackrel{\sim}{\sim}$	\%			-
		Borneo (Harvard)				$\begin{aligned} & 3 \\ & \frac{3}{0} \\ & \sqrt[3]{1} \\ & \frac{1}{6} \\ & \frac{1}{0} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { ㅍ} \\ & 00 \\ & 00 \\ & 0 \\ & \overline{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \text { 긍 } \\ & 7 \\ & 0 \\ & \text { B } \\ & \text { y } \end{aligned}$	
	0 0 0 1 10 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0						M. sinensis And. 000938881	M.sinensis 000938880						

Table B（continued）

 	$\stackrel{0}{0}$	\bigcirc	\bigcirc	$\stackrel{1}{\circ}$	$\stackrel{?}{?}$	－	\cdots	\％	\pm.	\bigcirc	\bigcirc	$\stackrel{7}{\circ}$	$\stackrel{+}{\circ}$	$\stackrel{+}{0}$
¢๐ึนข UnV							0	$\hat{0}$	\bigcirc	$\stackrel{N}{0}$	\bigcirc	$\stackrel{\infty}{\circ}$	$\stackrel{\infty}{\circ}$	\bigcirc
цรึนә ฉәәч！dS	\bigcirc	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{6}{0}$	$\stackrel{\square}{0}$	$\stackrel{\sim}{\circ}$	\pm.	\bigcirc	$\stackrel{\square}{0}$	\cdots	\％	\bigcirc	\bigcirc	$\stackrel{m}{0}$
гэ！̣әd дәмо才	\pm	\cdots	\bigcirc	\pm.	$\stackrel{0}{0}$	$\stackrel{\square}{8}$	$\bigcirc \bigcirc$	\％	$\bigcirc 3$	ก？	$\bigcirc \bigcirc$	$\stackrel{\sim}{0}$	$\stackrel{\sim}{0}$	$\stackrel{m}{6}$
	$\stackrel{3}{O}$	$\overrightarrow{0}$	$\frac{n}{0}$	\bigcirc	$\stackrel{\sim}{\circ}$	$\underset{O}{O}$	${ }_{\mathrm{O}}^{\mathrm{O}}$	$\stackrel{\sim}{O}$	5.	$\overline{0}$	$\overline{0}$	N	$\xrightarrow{3}$	$\overline{0}$
әроиәәи！ әшәэву	$\stackrel{0}{0}$	\cdots	$\hat{0}$	$\stackrel{n}{0}$	$\hat{0}$	\cdots	$\stackrel{\square}{0}$	$\stackrel{\square}{\circ}$	$\stackrel{\sim}{0}$	\bigcirc	\bigcirc	$\hat{0}$	$\stackrel{\sim}{0}$	\sim
$\begin{array}{\|r\|} \hline \text { S.!!ey } \\ \text { s!xe әшәэع्र } \end{array}$	Z	Z			Z	z								
S．I！ey SIXY	Z	z	Z	z	z	z								
$\begin{array}{r} \text { s.ı!モy } \\ \text { эриирә } \end{array}$	z	Z		乙	z	z						λ		
$\begin{array}{\|r\|} \hline \text { чӧиэ! } \\ \text { әшәэву } \end{array}$	$=$	a	N	N	\pm	\bigcirc	9	2	\pm	I	ก	N	∞	त
．ıqumu әшәэв्у	\bigcirc	त2	$=$	\cdots	∞	응	i	$\stackrel{\sim}{2}$	$\stackrel{\sim}{1}$	안	8	$\stackrel{\sim}{\sim}$	in	8
әวuәวsวло［JUI	\sim	N		＝	n	n	の		$\stackrel{\sim}{0}$	त	N	\bigcirc	I	m
	त	त	\checkmark	\sim	\bigcirc	$\stackrel{\infty}{\sim}$	m	m	$\stackrel{\sim}{m}$	\cdots	F	\propto	กิ	\％
л！̣ч Јеәт	Z	z	z	z	z	z	z	z	z	z	z	z	z	z
	$\stackrel{+}{\circ}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\hat{0}$	$\stackrel{+}{-}$	－	3	$\stackrel{0}{\square}$	Э	$\stackrel{\infty}{\circ}$	∞	$\stackrel{\infty}{\circ}$	\bigcirc	\bigcirc	$\stackrel{N}{\mathrm{~N}}$
	$\underset{\sim}{4}$		N	\cdots	$\stackrel{\square}{\sim}$	ल	\bigcirc	\cdots	子	F	ก	N	N	ス
чр！м щІМО	\bigcirc	N゙	$\xrightarrow{\text { Ň}}$	$\stackrel{\square}{0}$	$\stackrel{+}{0}$	${ }^{3}$	$0 .$	$\stackrel{\square}{\circ}$	$\stackrel{+}{0}$	\bigcirc	$\hat{0}$	$\underset{O}{3}$	\bigcirc	$\widehat{0}$
	$\stackrel{n}{n}$	∞	N	$\stackrel{\text { a }}{ }$	\＃	$\stackrel{\infty}{n}$	in	\bigcirc		ϑ		$\widehat{6}$	\cdots	$\stackrel{\sim}{\circ}$
	\sum_{0}^{0} 0 0 0 0 0 0 0	\sum_{0}^{0} 0 0 0 0 0 0 0	\sum_{0}^{0} 0 $\frac{n}{n}$ 0 0 0 0								7 001 0 0 0 0 7			
$\begin{gathered} n \\ e \\ E \\ E \\ 0 \\ \frac{0}{n} \end{gathered}$											M．floridulus E00257680			

Specimens	Location		咅 E E									$\frac{n}{\pi}$					災		E E E 2	
M. sinensis H2008/00313-98	Kwangtungtonkin (Kew)	79	0.4	47	0.8	N	23	11	20	13				0.7	0.2	0.4		0.3	0.4	0.5
E. Floridulus 1509	N. Caledonia (TCD)	62	0.3	20	0.8	N	35	23	60	17				0.4	0.2	0.4		0.4	0.9	0.6
E. Floridulus TCD8	N. Caledonia (TCD)		0.4	40	1.1	N	17	11	30	12				0.3	0.1	0.2		0.3	0.4	0.3
M. condens atus E00257708	Japan (Edinburgh)	48	0.7	41	1.2	N	21		25	18				0.2	0.1	0.2		0.4	1	0.4
M. condens atus E00129460	Japan (Edinburgh)	44	0.6	50	2	N	24	7	20	13	N	N		0.4	0.2	0.4		0.6	1.2	0.5
M. condens atus H2008/00313104	Japan (Kew)	76	0.5	42	1.5	N	21	8	25	16	N	N		0.4	0.2	0.3		0.5	0.7	0.5
M. condens atus H2008/00313103	Japan (Kew)	80	0.7	59	2.2	N														
M. condens atus H2008/00313- 102	Japan (Kew)	35	0.5	45	1.5	N	35	10.5	30	18				0.3	0.1	0.4		0.5	1	0.6
M. condensatus H2008/00313101	Japan (Kew)	81	0.7	47	1.2	Y														
M. condens atus H2008/00313- 100	Japan (Kew)						31	7	50	18	N	N		0.4	0.2	0.5		0.5	0.7	0.5
M. condens atus H2008/0031399	Japan (Kew)	132	1.7	67	3	N	38	20	80	15	N	N		0.2	0.15	0.3		0.4	0.8	0.4
M. condens atus 65/2008-29	Japan (Copenhagen)		0.8		1.4	N	20		25	16	N	N		0.2	0.1	0.2		0.5	1.1	0.5
M. condensatus 65/2008-30	Corea (Copenhagen)	105	0.9	32	1.3	N	18	9.5	35	8	Y	Y		0.3	0.1	0.3		0.6	0.5	0.5
M. JAPONICUS 65/2008-31	(Copenhagen)	183	0.5	87	0.6	Y	33	22.5	60	11	Y	Y		0.5	0.2	0.5		0.4	0.7	0.6

Table B（continued）

 	\bigcirc	$\stackrel{\bullet}{0}$	\bigcirc	$\stackrel{n}{0}$	$\stackrel{\square}{0}$	\bigcirc	$\stackrel{n}{0}$	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\sim}{O}$	$\bigcirc 3$	\pm	？
	3	－	－	－	二	\bigcirc	\bigcirc	3	$?$					？
	$\stackrel{\infty}{\circ}$	－	\hat{O}	\bigcirc	$\stackrel{\infty}{\circ}$	\bigcirc	－	¢	－	$\begin{array}{\|l\|l\|} 0 \\ 0 \end{array}$	\bigcirc	$\stackrel{\square}{0}$	$\stackrel{0}{0}$	$\stackrel{+}{0}$
гэฺ̣әd ләмо才	${ }_{0}^{\infty}$	${ }_{\circ}^{\infty}$	${ }_{\circ}^{\infty}$	$\hat{0}$	\bigcirc	$\stackrel{\sim}{0}$	$\stackrel{0}{0}$	\bigcirc	$\stackrel{\infty}{\circ}$	${ }^{\circ}$	${ }^{\text {N }}$	$\stackrel{\square}{8}$	$\stackrel{n}{0}$	N
	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\sim}{O}$	$\underset{\sim}{\sim}$	5	O̧	$\overline{0}$	\bigcirc	\bar{i}		\bigcirc	$\overline{0}$	$\frac{i n}{0}$
әрои．лди！ әшәэєу	－	$\stackrel{7}{-}$	\cdots	$\bigcirc \bigcirc$	$\stackrel{0}{0}$	\hat{O}	－	$\stackrel{\infty}{\circ}$	－	$\stackrel{6}{0}$	\cdots	$\stackrel{0}{0}$	$\hat{0}$	$\stackrel{+}{0}$
Sİx әuәэEY ${ }^{\text {S．İEY }}$	z			Z					Z			Z		
S．ı！ey S！xY	z	z	Z	Z		z	Z	z	Z			Z	\rangle	
$\begin{array}{r} \text { s.!!ey } \\ \text { әриирәd } \end{array}$	Z	Z	z	Z		z	Z	Z	乙			Z	λ	
ц๐รันә әшәэву	in	＝	$=$	응	9	∞	二	\sim	\cdots	\propto	$\stackrel{n}{n}$	\pm	\pm	$=$
．әәqunu әшәวยу	m	－	n	＊	N	m	N	－	m	N	$=$	∞	N	8
	－	$\overline{\mathrm{i}}$	$\stackrel{\sim}{n}$	\cdots		－				？	－	\cdots		ন
	in	$=$	\propto	\bigcirc	$=$	a	$=$	\simeq	\pm	\cdots	$\stackrel{\sim}{\infty}$	\cdots	\pm	\cdots
．！⿺𠃊 Јеэт	\succ	γ	$>$	Z	λ	Z	γ	λ	\rangle			Z	Z	
$\begin{array}{r} \text { чр!м } \\ \text { әре!qјеэт } \end{array}$	$\stackrel{\infty}{\circ}$	$\stackrel{\sim}{\sim}$	$\xrightarrow{+}$	$\xrightarrow[\sim]{\sim}$	$\stackrel{0}{0}$	－	$\xrightarrow{+}$	－	F	\pm	\bigcirc	－	$\stackrel{\infty}{\circ}$	\bigcirc
	\sim	\cdots	\％	¢	\sim	¢	N	산	$\underset{\sim}{2}$	ल	\downarrow	$\stackrel{\infty}{+}$	ल	N
џр！м ш！	${ }_{\mathrm{N}}^{\mathrm{O}}$	$\underset{\sim}{0}$	N	$\underset{\sim}{\sim}$	$\overline{0}$	O	${ }^{\text {N／}}$	$\underset{\sim}{3}$	${ }^{\text {N }}$	\pm.	\％	\％	$\underset{\sim}{3}$	in
14合！	N	Кู	さ	N	ल	N	N	\％	in	\pm	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{n}$	¢	는
				$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 6 \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 0 \\ & 4 \\ & y \\ & 3 \\ & \frac{1}{5} \\ & 5 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & \underset{y}{0} \\ & \text { En} \\ & 0 \\ & \end{aligned}$							
			M．oligostachyus E00257705				 60 $i=6$ $\sum i$			M．tinctorius $\mathbf{E 0 0 2 5 7 7 0 6}$	M．tinctorius $\mathbf{E 0 0 2 5 7 7 0 7}$	M．tinctorius 65／2008－39	M．tinctorius 65／2008－40	

Table B（continued）

ฉәәч！dS	O_{O}	$\bigcirc \bigcirc$	$\stackrel{\square}{0}$	\bigcirc	${ }_{-}^{\infty}$	$\stackrel{\square}{0}$	\bigcirc	\pm	$\stackrel{+}{0}$	$\hat{0}$	\bigcirc	$\stackrel{n}{0}$	\bigcirc	\bigcirc
	$\stackrel{\square}{0}$	\bigcirc	\bigcirc	0	$\stackrel{\square}{-}$	\bigcirc	$\stackrel{\square}{\square}$	$\stackrel{\infty}{\circ}$	${ }_{0}^{\infty}$	\square	$\stackrel{\square}{\square}$	$\stackrel{\mathrm{N}}{\sim}$	$\stackrel{\sim}{\sim}$	－
	\bigcirc	$\stackrel{\square}{0}$	\bigcirc	$\stackrel{\square}{0}$	\bigcirc	$\bigcirc \bigcirc$	\cdots	${ }^{6}$	\cdots	$\bigcirc 3$	\％	$\stackrel{\square}{0}$	\bigcirc	？
						\rangle								
$\begin{array}{r} \text { Гәэ!̣әd } \\ \text { ләмо } \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	3	\pm.	\cdots	$\begin{gathered} n \\ 0 \\ \hline \end{gathered}$	\bigcirc	\cdots	3	$\bigcirc \bigcirc$		${ }_{3}^{3}$	？
	0^{3}	$\begin{gathered} n \\ 0 \\ 0 \end{gathered}$	$\bigcirc{ }^{3}$	\bigcirc	O_{0}	$\frac{n}{0}$	$\frac{n}{0}$	$\underset{\sim}{\mathrm{N}}$	\cdots	5	$\frac{n}{0}$		\bigcirc	\bigcirc
$\begin{array}{r} \text { әрошюәи! } \\ \text { әшәуе्! } \end{array}$	$\stackrel{\infty}{\circ}$	$\begin{array}{l\|} 0 \\ 0 \end{array}$	$\stackrel{1}{0}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	\bigcirc	\cdots	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	\cdots	\pm		3	？
s．！！eq s！xe әшәэеу				Z		χ	\rangle		Z					
S．İeY SIXV				z		γ	γ	γ	λ	γ	\rangle		z	\rangle
$\begin{array}{r} \text { s.x!ey } \\ \text { әроиро } \end{array}$				Z		λ	λ	\geqslant	λ	$>$	λ	λ	Z	\rangle
	\wedge	\bigcirc	σ	\bigcirc	\bigcirc	＊	∞	～	－	9	\bigcirc	＊	\bigcirc	\checkmark
$\begin{aligned} & \text { ләquйи } \\ & \text { әшәэєу } \end{aligned}$	\bigcirc	\bigcirc	に	\bigcirc	\sim	N	－	n	＊	8	N	\checkmark	तิ	n
	ๆ	\cdots	＊	N	n	\sim		\cdots	$\stackrel{\infty}{\circ}$	\wedge	\cdots	\bigcirc	$\xrightarrow{\mathrm{N}}$	\cdots
	in	そ	\bigcirc	$の$	\cdots	2	∞	$\stackrel{n}{0}$	∞	त	\bigcirc	N	$\begin{aligned} & n \\ & \infty \\ & \infty \end{aligned}$	in
வ！¢ч Јеәт			$خ$	λ	\nearrow	$خ$	λ	7	λ	Z	z	$خ$	Z	\rangle
$\begin{array}{r} \text { чр!м } \\ \text { эрегqјвәт } \end{array}$		\bigcirc	$\stackrel{\square}{0}$	\bigcirc	\bigcirc	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{ \pm}{0}$	$\pm .$	\pm	$\stackrel{\infty}{0}$	0		$\stackrel{+}{-}$	$\stackrel{\rightharpoonup}{0}$
	8	さ	¢	\％	N	\cdots	\pm	N	은	ๆ	\bigcirc		－	m
чрим ш！	\bigcirc	$\stackrel{\square}{\circ}$	$\stackrel{3}{0}$	ก	N	$\stackrel{\square}{0}$	$\xrightarrow{\sim}$	$\frac{n}{0}$	N3	$\stackrel{3}{0}$	\bigcirc	$\overrightarrow{0}$	3	$\overline{0}$
	$\stackrel{\infty}{\infty}$	K	岕	©	\bigcirc	$\stackrel{\circ}{\circ}$	\cdots	ก		す	\cdots	そ	$\mathfrak{7}$	¢
$\begin{aligned} & \text { E } \\ & .0 \\ & \text { E } \\ & \text { en } \end{aligned}$	（мวУ्र）е！səрочप्オ						$\begin{aligned} & 8 \\ & 8 \\ & \text { m } \\ & \text { n } \end{aligned}$		$\begin{aligned} & \text { B } \\ & 00 \\ & \text { on } \\ & \frac{\pi}{J} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				Q	合
		7 0 0 0 0 0 0 0 0 0 0 3 0 0 0 n 2						M．nudipes 7／2008／00313－87	M．nudipes 65／2008－32			Erianthus 8000－1		

Table B（continued）

 	－	0	\hat{O}	3	－	\bigcirc	\bigcirc	$\stackrel{3}{0}$	\bigcirc	$\stackrel{\infty}{\circ}$	\bigcirc
¢๐ึuฑ Unv	\cdots	\bigcirc	$=$	－	3.	－	$\stackrel{\infty}{\circ}$	\cdots	－	0	3
	\bigcirc	\bigcirc	？	$\stackrel{\sim}{O}$	${ }^{3}$	Ǒ	$\underset{O}{3}$	$\stackrel{3}{0}$	$\bigcirc 3$	${ }^{3}$	$\stackrel{n}{6}$
S．I！ey Iəכ！pod											
Гәэ！pəd ләмо才	\bigcirc	\bigcirc	$\stackrel{3}{0}$	$\stackrel{\sim}{O}$	$\stackrel{3}{0}$	$\underset{\sim}{\mathrm{O}}$	\bigcirc	N1	\bigcirc	？	\pm
	$\underset{O}{O}$	$\stackrel{3}{O}$	$\stackrel{N}{O}$	$\overline{3}$	$\frac{12}{0}$	$\overline{0}$	${ }^{3}$	$\overline{0}$	$\frac{n}{0}$	$\frac{n}{0}$	${ }^{3}$
әрои．ぇұи！ эшәэву	\pm.	3	$\stackrel{+}{\circ}$	$\stackrel{N}{O}$	\cdots	\bigcirc	$\stackrel{\square}{\circ}$	${ }_{0}^{0}$	3	3	\bigcirc
S．！！еч S！xe әuәэе्प											
S．İPY SIXV	Z	λ	Z			\rangle	Z	Z	χ	χ	乙
$\begin{array}{r} \text { s.ı!еч } \\ \text { әриирә्d } \end{array}$	Z	λ	Z			\rangle	乙	Z	\rangle	λ	z
ц๐ับэ ашәэву	\simeq	in	\bigcirc	N	\bigcirc	＝	은	\bigcirc	$\underline{\sim}$	บ	\wedge
．әquии әШәэघ्ன	\sim	ก	\bigcirc	\bigcirc	－	N	\sim	\bigcirc	¢	－	8
	n	＊	－	\cdots	m	\bigcirc	\bigcirc	m	∞	$\stackrel{n}{n}$	9
	\pm	\pm	\simeq	∞	\sim	\pm	，	\cdots	\bigcirc	\bigcirc	－
．！еч Јеат	\succ	乙	Z	Z		\rangle	Z	Z	Z	λ	Z
$\begin{array}{r} \text { чр!м } \\ \text { әрегqјеәт } \\ \hline \end{array}$	$\stackrel{\infty}{\circ}$	－	\bigcirc	5	－	$\stackrel{\square}{\circ}$	5	$\stackrel{\infty}{\circ}$		\pm	$\stackrel{n}{n}$
	$\stackrel{\sim}{n}$	N	N	\bigcirc	\％	ल	$\underset{\sim}{*}$	\cdots		$=$	안
чрмм шпО	3	ก̌	Ơ	5	0	${ }_{\sim}^{3}$	\bigcirc	$\stackrel{N}{O}$	$\stackrel{7}{0}$	Ơ	\bigcirc
	人	2	さ	in	$\stackrel{\sim}{2}$	¢	No	8			
			$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \\ & 3 \\ & y \\ & 8 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & y \\ & 1 \\ & 0 \\ & 0 \\ & z \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\pi}{B} \\ & \tilde{0} \\ & 3 \\ & 5 \\ & \frac{1}{0} \\ & \frac{3}{3} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					
					M．nepalensis H2008／00313－84		M．nepalensis H2008／00313－82				Erianthus longisetosus $\mathbf{0 0 0 9 3 8 8 7 4}$

Table C Morphological characters scored in the Oak Park collection for the first replicate.

Table C (continued)

ID												$\frac{\frac{\text { en }}{5}}{\frac{5}{5}}$				$\begin{aligned} & \frac{n}{\frac{0}{c}} \\ & \frac{\pi}{c} \\ & \frac{0}{x} \end{aligned}$										产
Miscanthus sp.										80	$\frac{2.3}{2.6}$															
Tea-28										77	2.7															
	Clumped	5	Y	1.5	Y	220	385	N	10	64	2	N	N	*	.	.
										56	1.9															
${ }_{3}$ M. sinensis Tea-										58	2.1															
	Clumped	2	N	0.5	N	120	175	N	7	62	2.1	Y	Y	21	8	N	14	30	N	0.4	0.6	0.2	N	4	0.6	0.3
										76	2.6															
M. xgiganteus										60	2															
Tea-31	Clumped	5	Y	1.1	Y	180	225	N	13	71	2.9	N	N	.	.	.	*
										71	2.8															
Miscanthus sp.										77	2.5															
	Clumped	15	N	1.1	Y	170	168	N	16	75	${ }_{2}^{2.7}$	N	N	*	*	.	*	.	.	*	.	-	.	.	,	-
										50	1															
M. sinensis										57	1.1															
	Spread	14	N	0.3	N	70	75	N	8	48	1	Y	N	.	,	.	*
										65	1.8															
Miscanthus sp.										62	1.6															
	Clumped	5	Y	1.3	N	150	128	N	12	72	2	Y	N	*	.	-	-	.	-	-
M. sinensis										57	1.4															
'gross fontane'										61	1.4															
Tea-35	Clumped	10	N	0.5	N	80	160	N	9	65	1.6	Y	Y	28	10	N	18	30	N	0.9	0.5	0.2	N	0.4	0.7	0.4
M. sinensis										50	1.9															
'gross fontane'										49	1.8															
Tea-36	Spread	8	N	0.5	N	80	240	N	6	48	1.7	Y	N	.	.	.	-	-	-	.
										39	1.3															
Miscanthus										38	1.3															
sp.Tea-37	Spread	20	Y	0.5	N	50	60	N	5	${ }_{4}^{38}$	1.2	Y	N
										4	1.2															
Miscanthus sp.										37	1															
Tea-38										42	1.3															
	Spread	4	N	0.5	N	70	18	N	8	42	1.3	Y	N	-
										55	${ }^{1.6}$															
sp.Tea-39										43	1.3															
	Clumped	5	N	0.5	N	110	240	N	8	52	1.5	Y	Y	26	6	Y	19	30	N	0.7	0.6	0.3	N	0.5	0.6	0.5
										57	2															
${ }_{40}$ M. Sinensis Tea-										51	${ }^{2}$															
	Spread	10	Y	0.8	N	90	250	N	8	56	2	Y	Y	28	12	N	13	40	N	0.5	0.5	0.2	N	0.4	0.5	0.5
Miscanthus sp.										41	1.5															
Tea-41										42	1.5															
	Spread	30	N	0.5	N	130	90	N	8	49	1.7	Y	Y	25	11	N	17	23	N	0.7	0.5	0.2	N	0.5	0.6	
Miscanthus sp.										36 37	${ }^{1.4}$															
Tea-42										37	1.4															
	Clumped	6	N	0.4	N	100	110	N	12	47	1.4	Y	N	25	4	Y	18	14	N	0.6	0.5	0.2	N	0.4	0.6	0.8
										56	${ }^{1.6}$															
Tea-43										50	1.7															
	Clumped	4	Y	0.9	N	100	84	N	5	61	2	Y	Y	30	13	N	16	35	N	0.5	0.6	0.2	N	0.5	0.6	0.5
										47	1.6															
Tea-44										54	${ }^{1.7}$															
	Spread	10	Y	10	N	110	140	N	6	55	1.7	Y	N	*
										30	2															
Miscanthus sp.										31	3															
	Spread	30	Y	0.7	N	60	65	N	7	32	2.8	N	Y	33	17	N	19	17	N	0.5	0.6	0.3	N	0.5	0.6	0.8
										47	1.2															
Miscanthus sp.										50	1.4															
										57	1.5				
	Clumped	3	N	1	N	140	200	N	12	57	1.6	N	N	.	-	.	-
Miscanthus sp.										58	1.6															
Tea-49										63	1.6															
	Spread	18	N	1	N	110	150	N	8	61	1.4	N	N	.	.	*	*
Miscanthus sp.										.	.															
Tea-51	Clumped	5	N	0.6	N	60	20	*	4	.	-	.	*	,	.	*
										48	1.2															
Miscanthus sp.										55	1.2															
	Clumped	6	N	1.3	N	110	30	N	7	41	1.3	N	N	.	.	-	.	.	.	-
										47	1.3															
Miscanthus										44	1.1															
		.	-	.	-	.	.	N	.	34	1	N	N	.	.	-
										51	1.8															
Miscanthus										67	2.2															
sp.Tea-55	Clumped	4	N	0.9	Y	190	360	N	13	64	1.8	N	N	-	-	-	*	.	-	-
										53	1.4															
M. sinensis										65	1.3															
'goliath'Tea-56	Clumped		Y	0.6	N	120	140		4	61	1.3	Y	Y	36	19	N	22	28	N	06		0	N			
	Clumped	2					140	N	4	$\frac{59}{65}$	1.1	Y	Y	36	19	N	22	28	N	0.6	0.5	0.2	N	0.5	0.6	0.4
M. sinensis										54	1															
'goliath' Tea-57										65	0.9															
	Clumped	5	N	0.5	N	130	240	N	12	56	0.9	Y	N	31	19	N	18	35	N	0.5	0.6	0.3	N	0.5	0.6	0.5

Table C (continued)

Table C (continued)

ID															$\begin{array}{\|l\|} \hline 8 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & \frac{y}{x} \\ & \frac{x}{x} \\ & \frac{9}{x} \\ & \hline \end{aligned}$		응․								衰
M. sinensis										63	1.2															
goliath-like Tea-										63	1.5															
85	Clumped	5	N	0.6	N	100	160	N	9	75	1.4	Y	Y	32	13	N	18	19	N	0.5	0.6	0.3	N	0.5	0.8	0.5
										51	1.4															
M. sinensis Tea-										57	1.3															
										56	1.6															
	Clumped	5	N	0.8	N	90	180	N	4	55	1.5	Y	N	-	.	-	*	.	,	.	.	.	*	.	,	.
M. sacchariflorus										$\frac{38}{43}$	2.1															
x M. sinensis Tea-										42	2															
	Clumped	5	N	0.7	N	120	360	N	12	38	1.8	N	Y	28	7	N	17	25	N	0.7	0.5	0.2	N	0.5	0.8	N
										55	2.1															
M. sinensis Tea-										56	2.3															
	Clumped	4	Y	1	N	120	210	N	5	50	$\frac{2.2}{2.2}$	Y	N	.	*	-	.	.	.	-	.	.	*	*	.	.
Tea-89																										
	Spread	4	N	1	N	60	60	.	3	,		.	.	,	.	.	,	.	*	,	,	.	*	*	.	.
										75	1.8															
Tea-90										82	1.9															
	Clumped	4	N	0.9	N	120	160	N	4	71	1.8	N	N	*	-	*	*	.	.	-	*	.	*	*	*	*
										58	1.9															
Miscanthus sp.										50	1.9															
	Clumped	10	N	1	N	130	150	N	7	59	1.9	N	N	-	.	-	-	.	*	.	-	-	,	*	.	.
										54	1.8															
Miscanthus sp.										51	1.8															
Tea-92										50	1.8															
	Clumped	4	N	1.1	N	100	160	N	4	52	1.6	N	N	-	.	.	.	-	.	-	-	
										64	$\frac{2.2}{2}$															
\|Tea-93										55	2.1															
	Clumped	6	N	1.1	N	170	210	N	10	65	1.8	N	N	-	.	,	*	.	-	-	-	.	-	.	.	.
										70	2.3															
M. xgiganteus										70	2.5															
	Clumped	5	N	1	r	150	210	N	12	60	1.8	N	N	-	-	-	.	-
										45	1.7															
M. sinensis Tea-										53	1.8															
										53	1.5															
	Clumped	4	N	0.7	N	150	120	N	13	47	1.5	Y	Y	26	11	N	18	23	N	0.6	0.6	0.2	N	0.4	0.8	0.5
										62	2.1															
96										58	1.9															
	Spread	14	N	0.9	N	170	80	N	13	61	2.1	Y	Y	38	18	N	19	40	N	0.5	0.4	0.2	N	0.4	0.6	0.4
										48	1.3															
M. sinensis Tea-										48	1.3															
										41	1.4															
	Clumped	4	N	0.6	N	140	90	N	12	52	1.4	Y	Y	27	9	Y	17	23	N	0.6	0.7	0.3	N	0.5	1	0.7
M. sinensis Tea-										47	1.9															
										36	17															
	Clumped	12	N	0.7	N	130	140	N	9	45	1.7	Y	Y	27	9	N	18	25	N	0.6	0.5	0.3	N	0.5	0.8	0.7
										39	1.7															
M. sinensis Tea-										40	1.8															
	Clumped	5	N	0.7	N	150	180	N	10	47	1.8	Y	Y	29	15	N	16	33	N	0.6	0.5	0.2	N	0.4	0.6	0.5
										35	1.5															
M. sinensis Tea-										31	1.5															
										38	1.4															
	Clumped	10	N	0.7	N	150	120	N	7	42	1.5	γ	4	27	15	N	13	45	N	0.5	0.5	0.2	N	0.5	0.6	0.3
										31	1.8															
M. sinensis Tea-										31 35	$\stackrel{2}{18}$															
	Clumped	4	N	0.6	N	130	120	N	8	34	1.7	γ	8	26	13	N	15	25	N	0.6	0.5	0.2	N	0.5	0.8	0.4
										29	1.9															
M. sinensis Tea-										26	1.5															
										30	1.9															
	Spread	8	N	0.9	N	170	90	N	11	35	1.7	Y	8	25	13	N	13	34	N	0.6	0.6	0.3	N	0.4	0.5	0.5
										38	1.4															
M. sinensis Tea-										39	1.4															
	Clumped	8	N	0.5	N	150	90	N	20	34	1.6	Y	2	22	8	N	14	32	N	0.5	0.4	0.1	N	0.5	0.8	0.6
										42	2.1															
M. sinensis Tea-										49	2.4															
										45	2.2															
	Spread	36	N	0.7	N	150	70	N	9	54	2	N	N	24	10	N	15	40	N	0.5	0.5	0.1	N	0.5	0.8	0.7
										45	1.8															
105										45	1.9															
	Spread	9	N	1	N	150	35	N	8	42	1.4	Y	N	25	6	N	16	25	N	0.4	0.4	0.1	N	0.5	0.8	0.6
										49	1.6															
M. sinensis Tea-										50	1.7															
	Spread	11	N	0.6	N	170	80	N	9	47	1.6	Y	1	24	11	N	12	32	N	0.6	0.4	0.1	N	0.5	0.7	0.5
										47	2.3															
M. sinensis Tea-										45	2.1															
										52	2.1															
	Clumped	8	N	0.7	N	180	140	N	10	48	2	Y	2.5	23	9	N	13	43	N	0.4	0.3	0.1	N	0.4	0.6	0.5
										59	1.6															
M. sinensis Tea-										51	1.4															
	Clumped	10	N	0.6	N	130	60	N	9	51	1.1	Y	N	30	11	N	19	20	N	06	0.4	02	N	06		
										39	1.1	r							N				N	0.6	0.9	0.6
M. sinensis Tea-										42	1															
										41	1.2															
	Spread	15	N	0.7	N	160	28	N	8	46	1.2	Y	N	31	10	N	17	21	N	0.5	0.5	0.2	N	0.5	0.6	0.5

Table C (continued)

Table D Morphological characters scored in the Oak Park collection for the second replicate.

ID			$\begin{aligned} & \underset{y}{z} \\ & \times \\ & \times \\ & \vdots \\ & \frac{E}{J} \\ & \hline \end{aligned}$													$\frac{n}{n}$ $\frac{n}{n}$ $\frac{n}{x}$ $\frac{n}{8}$		응								宕
M. xgiganteus										58 59	1.8 1.7															
Tea-4										61	1.9															
	Clumped	10	N	1.1	N	150	211	N	10	67	1.8	N	N	*	*	.	*	*	.	*	.	.	.	,	.	.
										62	2.5															
M. xgiganteus										67	2.5															
										63	2.2															
	Clumped	10	Y	1.1	Y	220	311	N	12	67	2.6	N	N	*	*	.	*	*	.	*	.	*	*	.	.	*
M. xgiganteus										$\frac{61}{55}$	${ }^{2.5}$															
Tea-17										68	2.3															
	Clumped	6	Y	1.1	Y	220	260	N	20	70	2.3	N	N	*	.	.	*	.	.	.	-	-	.	,	,	.
										60	2.4															
M. xgiganteus										63	2.4															
	Clumped	4	Y	1.2	Y	220	310	N	14	65	2.2	N	N	*	,	.	*	,	.	*	.	*	.	,	-	.
										65	2.4															
M. xgiganteus										70	2															
Tea-31										61	2.3													.		
	Clumped	5	Y	1	Y	220	300	N	14	68	2.3	N	N	-	,	.	-	,	.	,	.	.	.	,	.	.
Miscanthus sp.										66	2															
										62	2.4															
	Clumped	5	Y	1.1	Y	220	260	N	13	67	2.3	N	N	*	*	.	*	*	*	-	.	.	.	,	*	*
M. sinensis										61	1.3															
'sirene' Tea-63										67	1.9															
	Clumped	10	Y	1.1	N	120	110	N	6	70	1.7	N	N	.	.	.	*	*	.	-
										60	1.6															
Tea-64										10	18															
	Clumped	5	Y	1	Y	140	200	N	10	70	1.7	N	N	-	-	-	-	-	-	-	-	.	.	.	-	-
										65	2															
M. xgiganteus										62	2															
	Clumped	15	Y	1	N	170	210	N	10	67	1.9	N	N	-	-	-	-	.	*	-
										69	1.9															
M. xgiganteus										76	2.1															
Tea-74										13	2															
	Clumped	10	N	1.2	N	170	240	N	12	64	2	N	N	-	-	.	-	*	-
										60	2.1															
Tea-81										70	2.1															
	Clumped	7	Y	1	Y	170	210	N	12	71	2.2	N	N	.	-	-	*	-
										64	1.9															
M. xgiganteus										55	1.6															
	Clumped	10	N	1.2	Y	170	240	N	12	66	2.2		N	.	.	.	-	.	*	*
										56	2.7															
M. xgiganteus										60	2.2															
										68	2.4															
	Clumped	8	γ	1.3	Y	210	300	N	13	78	2.6	N	CLOS:	.	.	*	*	*
										67	1.7															
Miscanthus sp.										73	1.6															
	Clumped	4	N	0.9	N	130	160	N	17	69	1.7	N	N	.	.	*	*	*	.
										58	2															
Miscanthus sp.										59	1.9															
Tea-91										59	2															
	Clumped	6	γ	0.8	N	140	160	N	9	55	1.8	N	N	.	.	.	*	.	*	-	.
										49	1.6															
Miscanthus sp.										53	1.7															
Tea-92										49	1.7															
	Clumped	4	Y	1	N	110	160	N	5	49	1.7	N	N	.	.	.	-	*	.	-	.
										65	2.5															
\|Tea-93										64	2.2															
	Clumped	21	N	1.1	N	150	240	N	9	65	2.1	N	N	*	.	*	*	.	*	.	*	.	*	.	*	.
										52	1.6															
M. xgiganteus										57	1.7															
Tea-94	Clumped	6	Y	1	N	140	100	N	11	55	1.7	N	N	*	*	*	.
										55	1.8															
M. sinensis Tea-										55	1.8															
95										51	1.9															
	Clumped	13	N	0.7	N	180	160	N	9	55	1.8	Y	7	29	18	N	13	50	N	0.5	0.5	0.2	N	04	0.6	0.5
										49	1.7															
M. sinensis Tea-										60	1.8															
	Clumped	8	Y	1	N	170	120	N	12	42	1.5	Y	2	39	23	N	19	41	N	0.6	0.5	0.2	N	0.4	0.7	0.3
										34	1.3															
M. sinensis Tea-										38	1.3															
										37	1.3															
	Clumped	5	Y	0.6	N	150	210	N	12	35	1.7	Y	6	20	11	N	16	36	N	0.6	0.6	0.3	N	0.4	0.8	0.5
										52	1.8															
M. sinensis Tea-										52	1.8															
										48	1.7															
	Clumped	16	N	0.7	N	150	120	N	9	50	1.7	Y	1	24	11	N	13	40	N	0.5	0.4	0.1	N	0.5	0.7	0.6
										43	2															
M. sinensis Tea-										39	1.9															
	Clumoed	3	N	0.7	N		120	N	6	50	1.6		2	19	7	N	12	21	N	0.6	0.4	0.1	N			
		3	N	0.7	N	120	120		6	65	${ }_{1}{ }_{1}$	Y	2	19	7	N	12	21	N	0.6	0.4	0.1	N	0.4	0.6	0.4
M. sinensis Tea-										43	1.9															
100										58	1.6															
	Spread	10	N	0.5	N	140	35	N	10	50	1.9	Y	1	24	8	N	11	38	N	0.5	0.5	0.2	N	0.5	0.6	0.3
										36	1.7															
M. sinensis Tea-										42	1.9															
	Clumped	13	Y	0.4	N	140	120	N	9	39	1.9	Y	9	21	11	N	11	30	N	0.5	0.4	0.2	N	0.4	0.8	0.5

Table D (continued)

ID									$$							$\begin{aligned} & \frac{n}{n} \\ & \frac{n}{c} \\ & \frac{n}{x} \\ & \hline \end{aligned}$										
M. sinensis Tea-										${ }^{35}$	$\frac{1.6}{1.4}$															
102										36	1.5															
	Clumped	8	Y	0.5	N	140	160	N	8	36	1.7	Y	2	25	12	N	18	45	N	0.5	0.5	0.2	N	0.4	0.6	0.4
										43	2.3															
M. sinensis Tea-										43	2.1															
										44	2.5															
	Clumped	25	N	0.6	N	150	65	N	9	43	2	N	2	25	14	N	19	65	N	0.5	0.5	0.2	N	0.5	0.8	0.6
M. sinensis Tea-										50	$\frac{2.4}{2.7}$															
										49	2.6															
	Spread	23	Y	1.1	N	120	36	N	6	46	2	Y	3	30	16	Y	20	53	N	0.6	0.4	0.1	N	0.4	0.7	0.5
										47	1.3															
M. sinensis Tea-										53	1.6															
	Clumped	4	N	0.5	N	130	42	N	7	48	1.9	Y	N	18	9	N	11	22	N	0.5	0.4	0.1	N	0.4	0.7	0.5
										40	2															
M. sinensis Tea-										40	1.9															
	Clumped	7	N	0.6	N	150	15	N	7	51	1.9	Y	2	24	15	N	11	60	N	0.4	0.3	0.1	N	0.4	0.6	0.5
										29	1.2															
M. sinensis Tea-										43	1.5															
										39	1.3															
	Clumped	6	N	0.5	N	100	42	N	7	43	1.4	Y	N	27	14	N	18	30	N	0.5	0.4	0.2	N	0.4	0.7	0.6
M. sinensis Tea-										53	1.4															
	Clumped	8	N	0.6	N	150	35	N	10	42	1.4	Y	1	29	16	N	21	20	N	0.7	0.7	0.3	N	0.4	0.7	0.5
										39	1.3															
M. sinensis Tea-										5	1.1															
	Clumped	4	N	0.5	N	160	160	N	9	37	1.1	Y	6	25	10	N	17	35	N	0.8	0.4	0.2	N	0.4	0.5	0.5
M. sinensis Tea-										.	-															
	Clumped	6	N	0.9	N	150	50		7					29	16	Y	15	36	N	0.7		03				
										38	1.3															
M. Sinensis Tea-										38	1.3															
	Clumped	11	N	0.5	N	160	70	N	10	34	1.6	Y	3	25	14	N	15	38	N	0.4	0.4	0.1	N	0.4	0.6	0.5
										31	1.8															
M. sinensis Tea-										33	1.8															
	Clumped	5	N	0.7	N	170	100	N	14	30	1.7	γ	8	28	14	Y	18	40	N	0.7	0.5	0.3	N	0.4	0.7	0.4
										36	1.2															
M. sinensis Tea-										39	1.1															
	Clumped	6	N	0.5	N	150	80	N	6	39	1	Y	1	22	11	N	15	54	N	0.5	0.4	0.1	N	0.4	06	0.4
										51	2															
M. sinensis Tea-										53	1.9															
	Clumped	7	Y	1	N	150	70	N	13	4	1.9															
											1.8	Y	cos:	28	16	N	13	33	N	0.5	0.5	0.2	N	0.5	0.6	0.4
M. saccharifiorus										39	1.8															
x M. sinensis Tea-										39	1.7															
	Clumped	3	N	0.5	N	150	90	N	10	40	1.9	N	Y	22	9	N	11	20	N	0.3	0.3	0.1	N	0.4	1	N
M. sacchariflorus										39	1.8															
x M. sinensis Tea-										39	16															
	Clumped	4	N	0.5	N	150	300	N	10	34	2	N	8	23	11	N	11	25	N	0.5	0.5	0.2	N	0.5	0.9	0.2
M. sacchariflorus										28	1.8															
x M. sinensis Tea-										34	1.7															
	Clumped	6	Y	0.7	N	90	80	N	6	29	1.4	N	4	29	14	N	14	26	N	0.5	0.4	0.2	N	0.4	0.7	N
M. sacchariflorus										51	1.5															
x M. sinensis Tea-										45	1.8															
	Clumped	18	Y	0.8	N	100	210	N	5	39	1.9	N	4	35	20	N	20	35	N	0.7	0.5	0.2	N	0.5	0.6	0.2
M. sacchariflorus										34	1.3															
$\times \mathrm{M}$. sinensis Tea-										38	1.6															
	Clumped	3	N	0.4	N	80	360	N	6	34	1.2	N	N	30	13	N	17	23	N	0.6	0.4	0.2	N	0.5	0.9	N
										43	1.9															
x M. sinensis Tea-										34	1.6															
	Clumped	5	N	0.5	N	60	210	N	4	38	2	N	N	21	9	N	13	14	N	0.7	0.5	0.2	N	0.5	0.9	N
M. sacchariflorus										44	1.4															
x M. sinensis Tea-										55	1.8															
122	Clumped	10	Y	0.9	N	130	240	N	7	54	1.8	N	N	30	16	N	13	25	N	0.6	0.6	0.2	N	0.5	0.9	0.3
M. sacchariflorus										40	1.6															
x M. sinensis Tea-										40	1.6															
	Clumped	3	N	0.5	N	150	300	N	10	34	1.4	N	N	28	16	N	15	35	N	0.7	0.5	0.2	N	0.4	0.8	N
M. sacchariflorus										44	2															
x M. sinensis Tea-										44	1.9															
	Clumped	19	Y	0.9	N	140	400	N	9	43	1.8	N	5	-	-	-	.	*	.	,	*	*	,	-	*	.
M. sacchariflorus										39	1.2															
x M. sinensis Tea-										41	1.1															
	Clumped	12	Y	0.5	N	100	160	N	6	42	1.1	N	N	26	12	N	13	21	N	0.7	0.5	0.2	N	0.6	0.9	N
										52	1.7															
x M. sinensis Tea-										50	1.6															
	Spread	10	N	1.2	N	130	104	N	10	51	1.7	N	N	*	.	.	*	-	-	*	*
M. sacchariflorus										47	1.6															
x M. sinensis Tea-										43	1.7															
	Clumped	7	N	0.8	N	150	210	N	9	41	1.8	N	N	37	19	N	20	39	N	1	0.6	0.3	N	0.5	1	0.3

Table D (continued)

ID																$\begin{aligned} & \frac{y}{\hat{L}} \\ & \frac{1}{c} \\ & \frac{0}{x} \\ & \hline \end{aligned}$							先			
Miscanthus sp.										${ }_{7}^{74}$	${ }^{2.7}$															
Tea-8										80	2.7															
	Spread	19	Y	1	Y	180	310	N	10	70	2.5	N	N	.	*	.	,	.	.	,	.	*	.	*	,	.
M. sacchariflorus Tea-128										62	${ }^{2.3}$															
										62	2.6															
	Spread	32	Y	1.1	N	170	45	N	10	70	2.6	N	N	.	.	.	*
M. sacchariflorus x M. sinensis Tea75										46	1.7															
										43	${ }^{1.6}$															
	Clumped	7	N	0.8	N	170	520	N	10	40	1.8	N	6	26	11	N	15	33	N	0.5	0.5	0.2	N	0.4	0.8	0.3
M. sinensis goliath-like Tea85										68	0.9															
										61																
	Clumped	5	Y	0.7	N	130	140	N	12	62	0.7	Y	N	35	20	N	16	37	N	0.6	0.7	0.3	N	0.6	0.9	0.5
M. sinensis Tea86										${ }^{65}$	1.8															
										60	1.5															
	Clumped	4	Y	0.9	N	140	360	N	9	65	1.9	Y	N	-	-	-
M. sacchariflorus x M. sinensis Tea87										40	$\stackrel{1.6}{1.9}$															
										41	1.7															
	Clumped	5	N	0.8	N	160	400	N	10	36	1.7	N	N	24	13	N	11	27	N	0.4	0.6	0.3	N	0.5	0.7	N
M. sinensis Tea88										52	2.2															
										57	2.2															
	Clumped	6	Y	1.2	N	130	270	N	11	63	2.3	Y	N	.	-	.	.	.	-	.	*	.	.	.	-	.
$\begin{aligned} & \text { Miscanthus sp. } \\ & \text { Tea-68 } \end{aligned}$										59	1.9															
										58	${ }^{1.8}$															
	Clumped	6	Y	1.1	N	170	225	N	10	61	1.6	N	N	-	.	-	.	-	-	-
$\begin{aligned} & \begin{array}{l} \text { Miscanthus sp. } \\ \text { Tea-69 } \end{array} . \end{aligned}$										66	1.8															
										66	1.8															
	Clumped	12	Y	1	N	150	110	N	13	59	1.8	Y	N	.	.	-	.	-	.	.	-	-
Miscanthus sp.Tea-70										44	1.2															
										52	1.															
	Clumped	10	Y	0.9	N	140	90	N	6	43	1.2	N	N	-	.	.	.
Miscanthus sp. Tea-71										61	1.8															
										62	1.4															
	Clumped	8	Y	1	N	130	48	N	9	58	1.5	N	N	*
Miscanthus sp. Tea-72										64	2.2															
										60	2.4															
	Clumped	4	Y	0.7	N	150	150	N	10	65	2.2	N	N	-	.	.	.	-
Miscanthus sp. Tea-73										35	1.2															
										37	1															
	Clumped	8	N	0.5	N	90	80	N	6	30	1.2	Y	2	15	5	N	11	16	N	0.5	0.4	0.1	N	0.5	0.6	0.6
$\left\lvert\, \begin{aligned} & \begin{array}{l} \text { Miscanthus sp. } \\ \text { Tea-45 } \end{array} . \end{aligned}\right.$										31	2															
										29	1.9															
	Spread	13	N	0.5	N	50	28	N	6	28	2	N	2	28	10	N	17	15	N	0.6	0.6	0.3	N	0.5	0.7	0.7
$\begin{aligned} & \begin{array}{l} \text { Miscanthus sp. } \\ \text { Tea-47 } \end{array} . \end{aligned}$										39	1															
										45	1															
	.	.	N	0.4	N	50	7		2	40	0.9						
			N	0.4	N	50	7	N	2	32	1	Y	N		
Miscanthus sp. Tea-48										61	1.7															
										56	1.8															
	N		58	1.3	N	N	*
Miscanthus sp. Tea-49										45	0.9															
										52	1.2															
	N		43	1.5	N	N	*	.	.	*	.	*	*	.	.
Miscanthus sp. Tea-50										49	1.2															
										56	1.6															
	.	*	r	0.8	N	70	8	N	4	58	2.3	N	N	.	.	*	.	.	-	,	*	.	*	.	.	.
Miscanthus sp. Tea-51										49	1.1															
										58	1.6															
	N		$\frac{66}{44}$	${ }^{1.6}$	N	N	*
Miscanthus sp. Tea- 52										61	1.6															
										60	1.8															
		.	-	-	-	.	.	N		69	$\frac{1.7}{1.5}$	N	N	.	.	*	-	-	-	-	-	-	.	.	-	.
Miscanthus sp. Tea-53										38	0.7															
										44	0.8															
										40	1.4															
	Clumped	8	N	0.6	N	50	12	N	3	45	1.1	N	N	.	.	,	-	*	-
Miscanthus sp.Tea-54										55 44	$\frac{1.2}{1}$															
										50	1.1															
	.	.	-	.	-	.	.	N		46	1.4	N	N	.	-	-	-
Miscanthus sp. Tea-6										55	${ }^{1.6}$															
										60	${ }^{1.6}$															
	Clumped	10	N	1.1	N	80	80	N	7	66	1.8	N	N	-	*	-	-	*	.	-	*	.	-	-	.	.
Miscanthus sp. Tea-11										67	${ }^{2.6}$															
										61	2.3															
	Clumped	6	Y	1.1	Y	190	310	N	17	71	2.3	N	N	.	.	.	-	-	.	-	.	*	.	-	.	.
Miscanthus sp.Tea-21										${ }^{59}$	2.4															
										65	2.6															
	Clumped	7	Y	0.9	Y	200	200	N	10	60	2.5	N	N	-	-	.		\cdots

Table D (continued)

IID									$\begin{aligned} & \text { 응 } \\ & \text { E } \\ & 0 \\ & \hline \end{aligned}$							$\frac{2}{\frac{n}{n}}$										
Miscanthus sp.										67 59	${ }_{2}^{2} .1$															
Tea-22										68	2.2															
	Clumped	4	Y	0.7	N	120	400	N	5	71	1.8	Y	N	-	*	.	.	*	.	.	.	*
Miscanthus sp.										$\frac{32}{41}$	$\frac{1.5}{1.6}$															
Tea-27										36	1.6															
	Clumped	4	N	0.6	N	130	80	N	10	34	1.5	N	4	23	11	N	15	20	N	0.6	0.5	0.3	N	0.5	0.7	0.8
										68	2.1															
Miscanthus sp.										71	2.3															
	Clumoed	3	Y	0.9	Y	190	210	N	16	60	${ }_{2}^{2}$	N	N	.	.	*	*	.	*	.	*	-
										52	0.9															
Miscanthus sp.										54	0.9															
	Clumped	4	Y	0.8	N	80	90	B	8	49	0.8	Y	N	37	19	N	21	41	N	0.7	0.6	0.3	N	0.6	0.8	0.4
										38	1.2															
Miscanthus sp.										34	1.3															
Tea-29										33	1															
	Spread	25	Y	0.7	N	50	25	N	3.5	30	1.2	Y	N	-	.	-	-	*	.	-	*	.	.	.	-	-
										53	1.5															
sp.Tea-37										51	1.6															
	Clumped	5	Y	0.5	N	100	270	N	9	50	1.7	Y	N	30	16	N	17	43	N	0.5	0.6	0.3	N	0.5	0.5	0.4
Miscanthus sp.											,															
	Clumped	4	Y	0.5	N	60	80		4		-	-	*	-	*	-	*	*
Miscanthus											\checkmark															
sp.Tea-39																										
	Clumped	5	N	0.5	N	120	50	*	15		.	*	-	26	11	N	16	24	N	0.6	0.5	0.2	N	0.4	0.7	0.5
Miscanthus sp.																										
	Clumoed	5	N	1	N	150	70	*	5		-	.	*	26	14	N	11	35	N	0.8	0.7	0.3	N	0.5	0.6	0.6
Miscanthus sp.										.	.															
Tea-42																										
	Clumped	5	N	0.6	N	100	160	.	11			.	.	28	11	Y	17	20	N	0.7	0.4	0.1	N	0.5	0.8	0.6
Miscanthus sp.										,	.															
	Clumped	4	Y	0.8	N	120	120	*	8			.	-	38	20	N	17	36	N	0.6	0.7	0.3	N	0.5	0.8	0.5
acchiariflorus																										
	Clumped	10	Y	1	Y	170	110	*	10		.	-	-	.	.	*	.	*	.	.	-	*	*	*	.	.
										64	2.2															
Miscanthus sp.										57	2															
	Clumped	5	Y	1	Y	220	300	N	15	65	1.8	N	N	.	.	-	-	.	.	-	-	.
										70	2.3															
Miscanthus sp.										70	2.5															
										74	2.3				-		-	-	.	.	-	.
	Clumped	4	N	1.1	N	140	180	N	7	60	1.8	N	N	.	-	-	-					
Miscanthus sp.										53	1.8															
	Clumoed	6	Y	1.2	N	110	210	N	10	47	1.5	Y	N	.	-	*	,	.	,	*	*	.	*	.	.	.
										62	2.1															
Miscanthus										58	1.9															
sp.Tea-55										60	2.1															
	Clumped	6	Y	0.9	Y	190	480	N	10	61	2.1	Y	1	-	-	-	-	-	-	-	.	-	*	-	,	.
										48	1.3															
										41	1.3															
	.	*	-	.	-	-	-	N		52	1.4	Y	6	-	-	*	-	.	.	-	.	.	-	.	.	.
										41	1.9															
M. sinensis										47	1.7															
'zebrinus:' Tea-3										36	1.7						-									
	Clumped	3	N	0.8	N	120	210	N	5	45 39	1.7	Y	N	-	-	*	-	*	-	-	-	.	-	*	-	*
M. sinenssis										40	1.8															
'zebrinus', Tea-33										40	1.7															
	Clumped	4	Y	0.8	N	110	320	N	6	37	1.8	Y	1	35	15	N	18	48	N	0.5	0.6	0.2	N	0.6	0.8	0.4
										35	1.5															
Tea-7										38	1.5															
	Clumped	7	N	1.1	N	160	140	N	10	42	1.5	Y	4	*	.	*	-	*	*	.	.	*	*	*	.	.
										31	1.8															
Miscanthus sp.										31	2															
Tea-9										35	1.8															
	Clumped	4	Y	1.4	Y	190	325	N	15	34	1.7	Y	8	-	.	*	*	*	*	*	.	*	*	*	.	-
										38	1.4															
M. sinensis Tea-										39	1.4															
	-	-	-	.	-	-	-	N		34	1.4	Y	2	.	.	.	*	*
										42	2.1															
M. sinenssis Tea-										49	2.4															
										45	2.2															
	-	.	-	N		54	2	N	N	-	.	.	*	.	-	*	.	.	*	-	.	.
										45	1.8															
Miscanthus sp.										52	1.9															
Tea-15										45	1.9															
	Clumped	4	Y	1	Y	200	180	N	11	42	1.4	Y	N	*	-	*	*	*	*	,	*	*	*	*	.	,
M. sinenssis										49	1.6															
goliath-like Tea-										52	1.6															
	Clumped	2	Y	0.8	N	150	240	N	6	41	1.6	Y	1	37	17	N	19	44	N	0.4	0.4	0.2	N	0.5	0.8	0.5

Table D (continued)

ID			$\begin{aligned} & \underset{\underset{y}{x}}{ } \\ & \text { X } \\ & \frac{3}{3} \\ & \frac{E}{3} \\ & \hline \end{aligned}$											$\begin{array}{\|l\|} \hline 8 \\ \vdots \\ \hline \\ \hline \end{array}$		$\begin{aligned} & \frac{n}{n} \\ & \frac{n}{n} \\ & \frac{n}{x} \\ & \hline \end{aligned}$										長	
Miscanthus sp. Tea-24	Spread	13	Y	0.6	N	110	150	N	12	47	2.3	Y	2.5	28	11	N	13	30	N	0.4	0.4	0.1	N	0.4	0.8	0.6	
										45	2.1																
										48	$\frac{2.1}{2}$																
Miscanthus sp. Tea-25	Clumped 6		N	0.4	N	100	90	N	6	59	1.6	Y	N	21	4	N	14	15	N	0.5	0.6	0.3	N	0.6	0.6	0.5	
			51							1.4																	
			43							1.1																	
Miscanthus sp. Tea-26	Clumped	3		Y	0.5	N	130	200	N	15	39	1	Y	N	23	13	Y	12	15	N	0.6	0.5	0.2	N	0.5	0.7	(. 6
											42	1															
			41								1.2																
			46								1.2																
M. sinensis Tea30	Clumped	5	Y	0.8	N	120	200	N	9	36	1.1	Y	1.5	33	17	N	19	37	N	0.5	0.6	0.3	N	0.5	0.7	1.4	
										36	1.1																
M. sinensis 'gross fontane' Tea-35	Clumped	10	Y	0.6	N	90	90	N	5	39	1.6	Y	3	28	15	N	13	33	N	0.5	0.6	0.2	N	0.5	0.7	6	
										33	1.5																
										44	1.5																
										38	1.4																
M. sinensis 'gross fontane' Tea-36	Spread	7	Y	0.9	N	90	90	N	7	40	1.5	Y	3	*	.	*	*	*	*	-	,						
										38	1.5																
										32	1.6											.	*	*	-	*	
										42	2																
M. sinensis Tea-										47	2.3																
										55	2.2																
	Spread	10	Y	0.7	N	90	250	N	9	50	2	Y	5	31	17	N	17	50	N	0.6	0.5	0.2	N	0.5	0.5	C. 5	
										34	1.1																
M. sinensis										34	1.2																
'goliath'Tea-56										32	1.2																
	Clumped	6	Y	0.8	N	110	90	N	12	27	1	Y	1	35	15	N	16	51	N	0.5	0.6	0.2	N	0.6	0.8	0.4	
M. sinensis										46	21																
'goliath' Tea-57										40	2																
	Clumped	6	Y	0.9	N	110	49	N	13	48	2	Y	1	32	18	N	15	36	N	0.5	0.5	0.2	N	0.6	0.7	L. 5	
										41	2																
M. sinensis										36	1.8																
'sirene' Tea-58										40	2																
	Clumped	5	Y	0.9	N	80	140	N	5	41	1.7	N		30	13	N	16	33	N	0.6	0.5	0.2	N	0.5	0.7	1.3	
										44	1.8																
M. sinensis										44	2.2																
'strictus' Tea-59										46	2.1																
	Clumped	1	Y	0.3	N	50	100	N	5.5	43	1.8	N	2.5	*	-	*	-	*	-	-	-	-	-	-	-	-	
										29	1.5																
M. sinensis										29	1.6																
'strictus' Tea-60										25	1.5																
	Clumped	5	N	0.8	N	120	275	N	3	37	1.2	N	1	*	*	,	*	*	*	*	-	*	-	*	*	.	
M. sinensis										40	1.6																
'malaparteus' Tea										38	$\frac{1.8}{1.8}$																
	.	.	*	.	*	*	*	N		37	1.4	N	8	*	*	*	*	*	*	*	*	.	.	*	*	*	
										33	1.4																
M. sinensis Tea-										32	1.6																
										38	1.5																
	.	*	*	*	.	.	-	N		29	1.7	N	5	*	-	*	*	*	*	*	-	*	*	-	.	,	
										28	1.5																
M. sinensis Tea-										38	1.5																
										35	1.5																
	.	,	,	.	*	.	.	N		34	1.6	N	3	*	*	-	*	*	*	-	.	*	,	*	*	.	
										50	1.9																
M. sinensis Tea-										48	2																
										50	2																
	Clumped	3	N	0.5	N	120	30	N	6	46	1.9	N	N	18	5	Y	13	13	N	0.5	0.5	0.2	N	0.5	0.9	L. 6	
										41	1.6																
										41	1.7																
										34	1.6																
	*	*	*	*	*	*	*	N		40	1.4	N	1	*	*	.	*	*	*	*	*	*	.	*	*	.	
										58	2																
M. sinensis Tea-										52	2.1																
										60	2.1																
	Clumped	2	N	0.6	N	120	150	N	14	54	1.8	N	3	23	8	Y	15	27	N	0.5	0.4	0.1	N	0.4	0.6	L. 5	
										47	1.4																
M. sinensis Tea-										44	1.3																
80										44	1.4																
	Clumped	5	N	0.4	N	110	60	N	11	44	1.5	N	5	19	4	Y	12	10	N	0.4	0.4	0.1	N	0.5	0.6	${ }_{6} .7$	
										52	1.4																
Miscanthus sp.										50	1.6																
Tea-16										59	1.5																
	-	*	-	*	*	*	*	N	*	59	1.6	N	N	-	*	*	*	*	*	*	.	*	-	*	*	.	
										43	2.1																
M. condensatus										44	1.5																
Tea-44										48	2																
	-	*	-	*	*	*	*	N	.	42	1.5	N	N	*	*	*	*	*	*	*	*	*	,	*	*	.	
										59	2.3																
M. sacchariflorus										56	2.5																
Tea-129										54	2.3																
	Spread	20	Y	0.6	Y	90	40	N	5	63	2.2	N	N	.	.	.	*	*	.	.	.	*	-	*	.	.	

Tablle E Haplotype information obtained with cpSSRs. Count= number of accession sharing the haplotype.

Hapilotype C ode	Count	Sac-2	Sac-3	Sac-10	Sac-13	Sac-17	Sac-26
1	36	255	269	275	288	230	176
2	34	252	266	277	290	227	175
3	16	256	269	275	288	230	176
4	5	252	265	277	289	227	175
5	3	252	266	277	289	227	175
6	3	255	268	275	288	230	175
7	3	255	-1	275	288	230	176
8	2	252	269	284	288	229	177
9	2	253	266	273	287	229	176
10	2	255	270	275	288	230	176
11	1	-1	265	276	288	227	175
12	1	-1	266	277	288	-1	175
13	1	236	265	294	290	229	178
14	1	247	-1	283	283	234	174
15	1	247	-1	286	-1	229	176
16	1	248	-1	278	-1	-1	169
17	1	248	-1	279	285	230	169
18	1	248	266	286	285	228	176
19	1	248	266	286	285	229	176
20	1	249	265	-1	-1	228	-1
21	1	249	264	273	-1	229	176
22	1	249	262	278	-1	234	174
23	1	250	265	275	288	229	176
24	1	250	264	283	-1	229	176
25	1	250	-1	283	287	228	176
26	1	250	262	284	288	229	175
27	1	250	272	285	290	227	175
28	1	251	-1	-1	-1	-1	-1
29	1	251	-1	-1	-1	228	175
30	1	251	263	269	284	238	174
31	1	251	-1	273	-1	228	175
32	1	251	262	273	283	217	175
33	1	251	263	273	286	227	175
34	1	251	265	273	286	229	176
35	1	251	267	275	-1	227	176
36	1	251	267	275	287	230	176
37	1	251	267	275	287	234	176
38	1	251	267	275	287	235	176
39	1	251	264	275	288	227	175
40	1	251	269	275	288	230	176
41	1	251	267	275	288	234	176
42	1	251	267	275	290	-1	175
43	1	251	267	276	287	-1	176
44	1	251	267	276	287	234	175
45		251	267	276	287	234	176
46	,	251	265	276	288	229	176
47	1	251	265	287	291	228	175
48	1	252	266	-1	290	227	175
49	1	252	268	275	-1	228	175
50	1	252	-1	275	287	230	176
51	1	252	-1	275	288	227	176
52	,	252	269	275	288	230	176
53	1	252	267	276	287	234	176
54	1	252	264	276	288	227	176
55	1	252	265	276	288	227	176
56	1	252	266	276	290	227	175
57	1	252	266	277	-1	227	175
58	I	252	266	277	290	-1	175
59	1	252	-1	277	290	227	175
160	1	252	266	277	290	229	175
161	1	252	267	284	291	228	176
162	1	252	263	289	291	229	176
163	1	253	269	275	283	229	176
164	1	253	266	275	287	229	176
165	I	253	269	275	288	230	176
166	1	253	267	275	291	228	176
167	I	255	-1	-1	288	227	175
168	1	255	-1	-1	288	230	176
169	1	255	269	271	288	230	176
70	I	255	268	274	288	230	175
71	1	255	269	275	-1	230	-1
72	,	255	266	275	-1	230	176
73	1	255	269	275	288	229	176
74	1	255	269	275	288	230	172
75	I	255	269	275	288	230	175
76	1	255	266	275	288	230	176
77	1	255	269	275	288	230	177
78		256	269	-1	288	230	175
79	I	256	266	-1	290	227	175
98	I	256	269	274	288	230	176
81	1	256	269	275	-1	230	176
82	1	256	269	275	288	229	175
83	1	256	-1	275	288	230	176
84	I	256	269	275	288	231	176
85	1	257	-1	279	-1	230	175

Table F List of 80 nSSRs developed from a microsatellite enriched library for Miscanthus

Primer name	SSR motif	SSR size	Forward sequence	Reverse sequence	PCR length (bp)
Mis-01	(TCTA)20	80	cagtcectlggagcaggctat	aagatctcaaacctatagtc	202
Mis-02	(TATC) 17	68	acttacaaaacaaacacac	cgaggcgcaagagtcaccat	307
Mis-03	(AGAT) 17	68	acgactgactatacgccatcaa	ttgtatcactgtgcaagtgt	257
Mis-04	(AGAT) 20	80	Htactactgagatcaaagca	aattattgtlcgttggctga	281
Mis-05	(ATAG) 16	64	taaggaggectaatatccelt	togttggtacatcggcatg	253
Mis-06	(GATA)15	60	tatggttatgacttgtcaga	caagcaagttactgaaccta	200
Mis-07	(AGAT) 26	104	gacaacccattlactactga	tacggctataagccaagcg	305
Mis-08	(CATA)60	240	catattccatacatgcatge	cagctuliclaagaglagtg	283
Mis-09	(TATC) 17	68	twacaaaacaaacacacag	cgcgacaattaaccatatgc	219
Mis-10	(TATC) 19	76	gctgcgtagctattgcatca	ctlagatcaatatctcaaat	304
Mis-11	(TACA)26	104	tgagctgctgaactigtag	cgttgcaatagtgtcgatcaa	344
Mis-12	(AGAT)18	72	tlactactgagatcaaagca	tacggcttataagccaagcy	263
Mis-13	(TAGA) 19	76	cggactaacttglgaattt	gtocttggagcaggctatga	230
Mis-14	(GATA)15	60	gtagctgcaactgctagtgt	actrgcattggttggtatga	141
Mis-15	(ATCT) 16	64	actactgcatg catcatgatg	tgcttcgcggcgaagttlca	195
Mis-16	(TATC) $13 /($ TCTA) 16	52+64	atctucctaggatgcattag	tggtctattacaacaagget	264
Mis-17	(ATAC) 17	68	acgctagctgatggacca	tggcgacctetgagcacagc	226
Mis-18	(ATAG) 15	60	tcagccogatcgatggatlag	claccgagcatgcaagta	166
Mis-19	(ATAG) 16	64	atcaatatctcaaatcacat	agcggcgagcagctrgttg	243
Mis-20	(TCTA) 17	68	tagctgagctgtctatggta	tagccattgaggctaaggat	249
Mis-21	(AGAT) 16	64	caggccacatgtccatgcac	ctactgcatgcatcatgatg	169
Mis-22	(TAGA) 17	68	cgagcgagcctgcatgtotg	tgacgtcagcaagatattg	173
Mis-23	(ATCT) 15	60	cacgaactgaatcagcatgc	gtagctgcaactgctagtgt	240
Mis-24	(AGAT) 15	60	atacacgatccaaacatgtc	atgtgetcacccaagagatg	324
Mis-25	(ATAG) 15	60	atatctcaaatcacatctaag	gttggtacatcgg catgtc	226
Mis-26	(TG) 16 (AG) 22	76	atgttlcctgttlccatcag	acattagg catticgccatt	277
Mis-27	(AG)38	76	tcaaccattg ctrctogatg	tglattggtgcaactgcaag	249
Mis-28	(AC) 10 (GA) 25	70	cggcgctrogcgatgctcag	tgacggtaacatclaagtic	266
Mis-29	(TC)24	48	taacaactagccaaggata	atctlaattaggagtcactg	245
Mis-30	(AG)29	58	gtaattctcglatgctgcg	cgtggccggtagctlggtg	282
Mis-31	(AG)20	40	atccaacagtgataggacgt	cctagacccacttggacgat	198
Mis-32	(CT)22	44	aggtgattcagtictcaggtta	ttgctigcggatlagatgg	239
Mis-33	(CT)20	40	tgacatagggctacacatat	cgagtgaggcagctagttca	242
Mis-34	(TC) 25	50	cgcactoccatggccaggac	tgagctggccacagagttgacc	223
Mis-35	(GA)30	60	gtcgaactclaatctaggca	clgcatlagcaagcttagg	175
Mis-36	(TC) 11 C (CT) 21	65	agcactgcatgcottcagat	ggttlatatgattcagcat	231
Mis-37	(TC) 34	68	gaatgcagtcatcagcagct	togacatctctaggttgatc	218
Mis-38	(CT) 40	80	cttgatcagaaggtatgett	agacctitggtaattlitag	212
Mis-39	(GA)22	44	taaggtagctactcacagac	cgoccacgeccagcaaggca	230
Mis-40	(AG)24	48	agtgtaacacgagtcactg	gaaatactatgectgtgagtg	222
Mis-41	(GA)24	48	ataatgcaggtcagttcaac	cgcagctagctgcttgtcag	226
Mis-42	(AG)31	62	gccgccaggctcccaagect	atcogagccatgtatgcacg	206
Mis-43	(CT)27	54	agcatgcatggctgctgagc	tgagctagtctgcatgcatc	271
Mis-44	(CT) 28	56	ggtgoccaacatacacaatc	cogtcgatcaagcgatgaac	148
Mis-45	(AG)26	52	acaaaacggaatcctlgaca	gccagcatcgtgctcatcge	221
Mis-46	(GA) 53	106	tagcaccogcttgtccatga	ctaatgaatccaagacattlac	241
Mis-47	(GA)28	56	atggaagcagcatggcttcg	ataggagttctcgactcacc	179
Mis-48	(CT) 30	60	catgtatgcacggcagcacg	cgocaggctcccaagctaa	194
Mis-49	(GA)26	52	catggttatcagccaagcg	ggaatatgcctlggctcoctg	229
Mis-50	(GA)21	42	tacggacgattaaccaagcc	cgcaaggtgcaggaccatca	230
Mis-51	(TC) 20	40	gatccatcacgattcatca	atcataggcaaaacggatcg	164
Mis-52	(GA) 19	38	tattggtgcccaaaggtgt	aacaagccatcaagcttcet	370
Mis-53	(GA) 19	38	aggcagcacctcacaaaact	ggtggagatgctatctigc	173

Table F (continued)

Primer name	SSR motif	SSR size	Forward sequence	Reverse sequence	PCR length (bp)
Mis-54	(CT) 18	36	taagaaacgcagcagcagaa	agtctccggettctcacaa	226
Mis-55	(GA)18	36	cggcttcgagtgatacctt	taccggattlaaggggctt	250
Mis-56	(CT) 18	36	gctagtcttgectgctgctt	gccatggaagtcatggttt	208
Mis-57	(GA) 17	34	tcgcgtaatgcgtctityta	gcacacagtcaccactcacc	171
Mis-58	(GA)17	34	tgacagtcattgctcettge	ctitcocatcettccatcte	243
Mis-59	(GA)16	32	gagctgatcgcgtagcaag	ttcgataaacaggggattgg	152
Mis-60	(GA)16	32	agatgg cagctlgctcttgt	ccattgttgagcacgatgt	190
Mis-61	(TATC) 15	60	cccaagagatggatggaaaa	gcttgataaaatgccgggta	226
Mis-62	(TCTA) 14	56	catgaattgaggacagggaag	gagccccaaagtgaaacgat	207
Mis-63	(TCTA) 14	56	aggctagcacticcticaaa	ctgcetggtgaccectataa	234
Mis-64	(AGAT) 14	56	tccocttagtgtcogtgaag	gaggcaggtgtagtoggaga	236
Mis-65	(AGAT) 13	52	acgacgoctlag catgtett	gtgcagttrg catctgtgct	245
Mis-66	(CTAT) 13	52	catggctacaggcacclaaaa	ataacgagaaatggccgatg	165
Mis-67	(TCTA) 13	52	cctetgcggatatgaggtot	gaagtgacaacatgcgatgg	175
Mis-68	(AGAT) 13	52	acgacgccttagcatgtctt	gtgcagttrgcatctgtgct	245
Mis-69	(TCTA) 13	52	catctgcgatatgaggtot	gaagtgacaacatgcgatgg	175
Mis-70	(TATC) 12	48	togcaccttaattllycat	tatgaaccogacagggaga	249
Mis-71	(TAGA) 12	48	caaccatgagcactictica	aacataggaggccaagcaaa	179
Mis-72	(TATC) 12	48	aagaggccacaatcaaatgc	cgtcaaccaataacgagtagca	203
Mis-73	(TAGA) 11	44	cggtctcttggacgattigt	cgccaaatctcgtatgtatagaa	246
Mis-74	(AG) 16	32	agccagtggtagacggatg	tottlyctgcaaacttctca	175
Mis-75	(TC) 15	30	atctlag cocttlcogactgg	tegtaccectcactcctcac	485
Mis-76	(CT) 15	30	ccoggctacaataatggtgt	ggcticattlcgttlttga	155
Mis-77	(AG) 15	30	ctgcagtacattgcaggatca	tacggggcatagagttacgg	187
Mis-78	(CT) 15	30	tetgcaggtgacaaggaaga	gtcaaccggcatagttcgat	167
Mis-79	(CT) 15	30	gccaactcgtggatlyagt	cglagcaagaggggaacaaa	248
Mis-80	(GA) 14	28	ggcttgatcettcacttggt	cttgctattccacctigtce	240

