
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Visualising Small World Graphs using Agglomerative
Clustering around Nodes of Interest

Fintan McGee

August 23, 2013

A thesis submitted to the University of Dublin, Trinity College in candidacy

for the degree of Doctor of Philosophy in Computer Science.

TRINITY COLLEGE

- < MAR 2014

.LIBRARY DUEL-M

(02-^^

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise

for a degree at this, or any other University, and that unless otherwise stated, is my own

work. I agree that Trinity College Library may lend or copy this thesis upon request.

Summary

The difficulty of visualising large graphs lies not just in processing pow^er and display size
but in the inherent visual complexity of a large data-set, as the noise and clutter from large
numbers of nodes and an order of magnitude more of edges negatively impacts the compre­
hensibility of any visualisation. Small world graphs are a classification of graph that occurs
frequently in models of real world networks such as computer systems and social networks.
The overall objective of our research is to allow users to get a better comprehension of the
relationships between data entities in the visualisation of real world systems.

The layout of a graph has a significant impact on its comprehensibility. Automated
layouts may be used to cope with graphs containing a large numbers of nodes and edges.
However, this may only provide a globally optimised layout, and may not necessarily focus
on the nodes which might be of interest of the end user.

We introduce a novel approach for making large small world graphs more comprehen­
sible by decomposing the graph into clusters, using an agglomerative clustering process
based around user defined nodes of interest. We propose using clustering coefficient, a
prominent feature of small world graphs that relates to local graph structure, as a heuristic
to guide the agglomerative clustering process. We validate the effectiveness of our cho­
sen heuristic experimentally against a large range of graphs and in comparison to other
clustering heuristics.

We extend our clustering to generate a clustering hierarchy which reflects the clusters
around the user’s nodes of interest at multiple levels. We utilise this hierarchy to perform a
multilevel layout providing users with a view of the graph, which reflects the relationships
between the clusters defined by the user’s nodes of interest. We also utilise our clustering
hierarchy for edge bundling, a recently popular cluster reduction technique, in the graphs
produced by our layout.

We provide an empirical user evaluation of edge bundling, the first of its kind to our
knowledge. Our results show that while edge bundling negatively impacts understand­
ing of low level node connectivity it does aid in the identification of higher level trends
between clusters. We have also extended edge bundles into three dimensions for stereo­
scopic viewing and evaluated it empirically. Somewhat surprisingly, our results show that
the stereoscopic viewing of edges with three dimensional depth offers no significant benefit
to users.

VI

Acknowledgements

First and foremost I’d like to thank my family for their unconditional support and encour­
agement throughout months and years of my PhD journey.

I believe the role of supervisor is very important and has a big influence on the path of
a PhD. I was very fortunate to have an excellent supervisor, John Dingliana. Without his
advice, support and his seemingly endless patience the submission of this PhD would not
have been possible.

My colleagues in GV2 also played a vital role in this work. I am grateful to them all
for their support, aid in developing experiments, experiment participation, proof reading,
advice and general good company. Special thanks go to Ludovic Hoyet and Sophie Joerg
for consistent moral support throughout and excellent advice and help in the submission
of papers.

Contents

List of Figures xii

Chapter i Introduction i
1.1 Motivation... 3
1.2 Key Concepts ... 4
1.3 Contribution.. 5
1.4 Scope.. 5
1.5 Related Publications .. 6
1.6 Thesis Layout.. 6

Chapter 2 Background and Related Work 9
2.1 Graphs ... 9

2.1.1 Graph Visualisations... 10
2.1.2 Small World Graphs.. 10
2.1.3 Graph Centralities... 15
2.1.4 Graph Edge Density.. 17

2.2 Graph Clustering... 18
2.2.1 Clustering Overview... 18
2.2.2 Clustering Approaches... 19
2.2.3 Clustering Evaluation... 21

2.3 Graph Layout ... 24
2.3.1 Force directed layouts... 24
2.3.2 Fruchterman Reingold Layout... 24
2.3.3 Multilevel Layouts... 26
2.3.4 Hierarchy Based.. 28
2.3.5 Algebraic Approaches... 29
2.3.6 Circular layouts.. 29

2.4 Graph Visualisation Evaluation.. 32
2.4.1 Evaluation Graphs... 33
2.4.2 Graph Aesthetics.. 36
2.4.3 Evaluating User Performance... 37

CONTENTS ix

2.5 Edge Routing.. 41

2.5.1 Edge Bundling... 41

2.6 Three Dimensional Stereoscopic Vision and Graphs..................................... 47

2.6.1 Stereoscopic Display of Graphs.. 47

2.6.2 Stereo rendering.. 49

2.6.3 Three dimensional layout of graphs.. 52

2.7 Implementation of Graph Rendering and Processing................................... 52

2.7.1 Graphics Hardware.. 53

2.7.2 GPU Processing.. 53

Chapter 3 Agglomerative Clustering around Nodes of Interest 55

3.1 Motivation for Clustering... 56

3.2 Related work.. 56

3.2.1 Clustering... 57

3.2.2 Clustering Evaluation Metrics... 57

3.2.3 Edge Density... 58

3.3 Calculating Average Local Clustering Coefficient .. 58

3.4 Initial Investigation of Clustering Coefficient... 59

3.4.1 Introduction... 59

3.4.2 Initial Clustering Algorithm... 60

3.4.3 Evaluation Approach... 61

3.4.4 Results... 62

3.4.5 Conclusions of our Initial Investigation... 72

3.5 Maximising Clustering Coefficient Approach... 73

3.5.1 Clustering Approach... 73

3.5.2 Chosen Heuristics... 73

3.5.3 Initial Cluster Set Up... 75

3.5.4 Assignment of Nodes to Clusters... 76

3.6 Clustering evaluation... 77

3.6.1 Evaluation Graphs... 77

3.6.2 Results and Analysis.. 78

3.6.3 Comparison with Edge Betweenness Centrality Clustering........... 86

3.6.4 Evaluation Conclusions.. 89

3.7 History of Infoviz Data-Set Example... 90

3.7.1 Clustering Approach... 93

3.7.2 Clustering Evaluation... 93

3.8 Conclusions and Future Work... 99

X CONTENTS

Chapter 4 Graph Layout 101
4.1 Motivation.. 102
4.2 Related Work..103
4.3 Circular Layout of Clusters ..103

4.3.1 Initial Node Ordering... 104
4.3.2 Cluster Rotation Implementation.. 106
4.3.3 Circular sifting.. 107

4.4 Layout and Hierarchy Generation ..108
4.4.1 Generating a clustering hierarchy.. 108
4.4.2 Hierarchical Clustering Layout.. 111
4.4.3 Multilevel Cluster Layout.. 111

4.5 Results ... 113
4.5.1 Hierarchical Layout.. 114
4.5.2 Multilevel Layout... 116
4.5.3 Hierarchical Edge Routing... 116

4.6 Conclusions and Future Work... 118

Chapter 5 Edge Routing 121
5.1 Edge Bundling Evaluation...122

5.1.1 Evaluation Motivation .. 122
5.1.2 Previous Experimental Approaches.. 123
5.1.3 Evaluation Hypotheses..124
5.1.4 Experiment Bundling Approach..125
5.1.5 Experiment Graphs.. 125
5.1.6 Experiment Methodology.. 128
5.1.7 Results... 131

5.2 Stereoscopic Three Dimensional Edge Bundling... 139
5.2.1 Motivation.. 139

5.2.2 Edge Routing in three Dimensions with stereoscopic viewing . . . 140
5.2.3 Defining Curve Depth ..142

5.3 Three Dimensional Bundling Experimental Evaluation................................... 143
5.3.1 Hypothesis.. 143
5.3.2 Choice of graphs and experiment factors...144
5.3.3 Initial Experimental Results...149
5.3.4 Follow On Path Tracing Experiment... 155
5.3.5 Results... 158

5.4 Conclusions... 160
5.4.1 Edge Bundling..160
5.4.2 Three Dimensional Stereoscopic Edge Bundling............................. 161

CONTENTS xi

Chapter 6 Conclusions and Future Work 163
6.1 Conclusions... 163

6.1.1 Graph Clustering .. 163
6.1.2 Graph Layout...164
6.1.3 Edge Routing...164

6.2 Future Work... 165
6.2.1 Graph Clustering .. 165
6.2.2 Graph Layout...166
6.2.3 Edge Routing... 167

Bibliography 169

List of Figures

1.1 Minard’s flow map of Napoleon’s Russian Campaign of 1812........................ 2
1.2 Simple artificial social network graph... 2

2.1 An undirected graph modelling the social connections of the karate club
studied by Zachary[Zac77]... 11

2.2 A simple graph showing the local clustering coefficient of each vertex. ... 13
2.3 The shortest path between the two green nodes (10 and 4) is via the two

yellow nodes (2 and 5) .. 13
2.4 A simple graph illustrating the betweenness centrality of each vertex. ... 15
2.5 A simple graph illustrating the betweenness centrahty of edges................... 16
2.6 An example of the node sets used by Auber etal.. 17
2.7 Example of clustered graphs with different MQ values (clusters are denoted

by node colour).. 23
2.8 Force Directed Layout of a graph containing 91 vertices.............................. 25
2.9 FM3 multi-level layout example.. 27
2.10 A simple circular layout of a 10 node graph.. 30
2.11 An example of a balloon tree layout .. 31
2.12 A clustered circular layout.. 31
2.13 100 node ring lattice .. 35
2.14 A fully random procedurally gerneated graph .. 35
2.15 A small world graph generated by Watts and Strogatz’ approach................ 36
2.16 Hierarchical edge bundling, software system example................................. 43
2.17 Migration example using geometric edge clustering................................... 43
2.18 Edge Clustering example... 45
2.19 Example image taken from [ZYC+08], showing the effect of Zhou’s Hi­

erarchical edge bundling. The graphs are unbundled in the top row and
bundled in the bottom)... 45

2.20 A World War 2 stereoscope and Case... 47
2.21 Single camera projection... 50
2.22 Stereo camera projection.. 51

LIST OF FIGURES xiii

2.23 The vergence angle of the eyes 6 changes depending on the distance to the
object being focused on... 52

3.1 Wikipedia graph with 91 vertices and 567 edges laid out using a simple
force directed algorithm... 63

3.2 Graph from Figure 3.1 using our approach.. 63
3.3 The modularity of graphs containing 60 nodes and increasing in density,

using the described clustering approaches for building 4 clusters.................. 64
3.4 Modularity for building 5 clusters... 65
3.5 Modularity for building 6 clusters.. 65
3.6 The modularity of graphs containing 60 nodes and 240 edges increasing

in clustering coefficient, when clustered using 4 nodes of interest................. 66
3.7 The modularity of graphs increasing in clustering coefficient, when clus­

tered using 5 nodes of interest... 67
3.8 Sports club graph with 100 vertices and 803 edges laid out using a simple

force directed algorithm... 67
3.9 Graph from figure 3.8 using our approach... 68
3.10 Layout of the Genealogy of Influence graph.. 70
3.11 Clustered layout of the Genealogy of Influence graph..................................... 71
3.12 The number of correctly clustered nodes... 72
3.13 A simple illustrative clustering example... 76
3.14 The average clustering coefficient of test graphs... 78
3.15 Evaluation of graphs with 200 Nodes and a density of 0.03 (d/ = 3), and an

increasing level of randomness, denoted by p value... 79
3.16 Evaluation of graphs with 200 Nodes and a density of 0.07 (d/ = 7), and an

increasing level of randomness, denoted by p value... 81
3.17 Evaluation of graphs with 200 Nodes and a density of 0.07 (d/ = 7), and an

increasing level of randomness, denoted by p value... 82
3.18 Evaluation of a graphs with 200 Nodes and a density of 0.51 (d/ = 51), and

an increasing level of randomness, denoted by p value.................................... 83
3.19 Evaluation of a graph with 200 Nodes and a constant input rewiring prob­

ability p = 0.1, and an increasing density.. 84
3.20 Evaluation of a graph with 200 Nodes and a constant input rewiring prob­

ability p = 0.95 , and an increasing density... 86
3.21 Evaluation of AC3 vs. Edge betweenness for graphs of increasing random­

ness... 87
3.22 Evaluation of test graphs when clustered using Newman and Girvan’s Edge

Betweenness Centrality clustering (EBC) and our clustering coefficient heuris­
tic (AC3) for comparison... 88

xiv LIST OF FIGURES

3.23 Number of clusters generated using Edge betweenness Centrality Clustering. 88
3.24 The infoviz data set laid out using FM3.. 91

3.25 Infoviz edge betweenness centrality example... 92
3.26 The infoviz data set split into 4 clusters using the AC3 approach................... 94
3.27 The infoviz data set split into 4 clusters using the AC3 approach, keyword

highlighted... 97

3.28 The infoviz data set split into 4 clusters using the modularity approach,
keyword highlighted... 98

3.29 The infoviz data set split into 4 clusters using the BPS approach, keyword
highlighted... 98

4.1 A100 node procedural small world graph clustered around 4 nodes............103
4.2 Node reordering and cluster rotation example..104
4.3 A simple example illustrating node reordering with 2 clusters.......................... 105

4.4 Node reordering example.. 105
4.5 Three level deep hierarchical clustering example...107
4.6 Hierarchical Clustering, simple example... 109
4.7 Hierarchy generation example, node assignment... no
4.8 Hierarchical force directed layout example.. 112
4.9 Multilevel layout processing illustration.. 112
4.10 100 node small world graph, hierarchy approach... 114
4.11 400 node small world graph, hierarchy approach.. 115
4.12 100 node small world graph, multilevel approach.. 116
4.13 400 node small world graph, multilevel approach... 117
4.14 Hierarchically edge bundled versions of 100 node Small World Graph. ... 118

5.1 Edge experiment dense graph example... 123

5.2 An example of a graph generated for our experiments, rendered with tightly
bundled edges...124

5.3 Illustration of the visual impact of different levels of bundling strength . 129
5.4 The impact of bundling on user accuracy and response time (in seconds) . 132
5.5 The impact of node count on the effectiveness of bundling for the cluster

connectivity experiment.. 135

5.6 The impact of edge density on the effectiveness of bundling for the cluster
connectivity experiment... 136

5.7 Overall Results for the path tracing experiment...137
5.8 Overall Results for the Cluster Connectivity experiment....................................138
5.9 An example of the three dimensional bundles created by Lambert et al.

[LBAioa]... 139

LIST OF FIGURES xv

5.10 Illustration of extension of bundling into 3D..140
5.11 Shifting edge points and edge control points.. 141
5.12 Different types of control point shift..142
5.13 An illustration of the difference between the depth functions..................... 143
5.14 Illustration of the visual impact of rotating clusters and reordering nodes

in clusters ^ = 0.0... 145
5.15 Illustration of the impact of adding depth to straight line edges = 0.0 . . 146
5.16 Low density experiment graph example..147
5.17 Unweighted means of the two significant single factors resulting from the

Analysis Of VAriance for the path tracing experiment.................................... 150
5.18 Unweighted means of the accuracy and user time taken for the depth fac­

tors, resulting form the ANOVA for the path tracing experiment..................150
5.19 The depth types show significant results when analysed based on layout type. 153
5.20 Interaction effects from the cluster connectivity experiment..................... 155
5.21 An experiment random graph shown with and without edge shading. ... 157
5.22 Interaction effects between bundling, layout and depth for the follow on

path tracing experiment.. 159
5.23 Interaction effect between bundling, depth and path length for the follow

on path tracing experiment.. 160

Chapter i

Introduction

WE LIVE IN AN ERA WHERE MORE DATA IS PUBLICLY AVAILABLE THAN EVER BEFORE.

The internet makes large volumes of data searchable, relatable and filterable. Peo­
ple model and enhance their real world social networks through websites such as Facebook
and Linked-in, and generate further linked content through blogs and services such as twit­
ter. Modern governments often release large volumes of data, ranging from internal emails
to census results and social statistics. Technological, medical and scientific advances have
allowed researches to generate huge volumes of information about the low-level workings
of the universe and the basic genetic code of life. In 2010 Eric Schmidt, CEO of Google,
claimed that every two days mankind was generating as much information as it had from
the dawn of civilisation until 2002. While the accuracy of Schmidts claim may be debat­
able, it is clear that more information is produced daily by mankind than ever has been
prior to this in our history.

In his foreword to Ware’s 2004 book [Waro4] on Information Visualisation, Card suc­
cinctly describes Information Visualisation as “the use of interactive visual representations
of abstract data to amplify cognition”. Information Visualisation has only emerged as a dis­
tinct field of academic research in the last two decades, but representing data with images
to help with understanding is not such a recent idea. One of the most widely known visu­
alisations is Minard’s 1869 visualisation of Napoleon’s campaign against Russia, which per
Edward Tufte “may well be the best statistical graphic ever drawn” [Tufoi]. The visualisa­
tion, seen in figure 1.1 succinctly conveys information about the size of Napoleon’s army,
the position of the army, the direction of the army’s movement and the weather condition
over the temporal duration of the campaign in a single graphic.

Graph visualisation often represents data visualisation at its most abstract. In the sim­
plest of terms, graphs can be considered as a mapping of relationships between entities.
Graphs are often visualised as node-link diagrams, where nodes represent the entities and

Section

Figure i.i: Minards flow map of Napoleons Russian Campaign of 1812.

/ \

Figure 1.2: A small contrived example of a social social network, where the nodes represent
people and the edges represent a friendship between two people.

the lines between nodes represent relationships. An example can be seen in figure 1.2. A
small graph like this is easy to lay out manually and understand, as there are not many
nodes and only a few connections between them. It is not difficult to see that “Sean” is the
most popular person (or well connected node). However, when a graph models hundreds
or thousands of items and orders of magnitude more connections between them, it can
become very difficult to comprehend or even display on a computer screen. An automated
layout may be used to cope with large munbers of nodes and edges, however this may only
provide a globally optimised layout, and may not necessarily focus on the nodes which
might be of interest to the user.

This thesis concerns providing end users of a graph application the means to rearrange
graphs around nodes of interest and how best to display the resulting graphs to the user.

Chapter i. Introduction

1.1 Motivation

The difficulty of visualising large dense graph data sets lies not just in processing power
and display size but also in the inherent visual complexity of a large data set. Visualisation
of large data sets is an outstanding challenge in the field of visualisation in terms of com­
prehending the data as well as scaling algorithms for tasks such as layout and clustering
[Cheo5, Newo4, Schoy] and many attempts have been made at addressing the visualisa­
tion of large graphs in terms of system scalability and comprehension [FvNo6, ETNG^oS,
ACJM03, Wil97]. Clutter is defined by Rosenholtz et al [RLMJ05] as “the state in which
excess items, or their representation or organization, lead to a degradation of performance at
some task”. Clutter resulting from thousands of nodes and an order of magnitude more of
edges negatively impacts comprehensibility. Therefore the minimisation of clutter should
be a concern of any graph visualisation. Graph analysis, clustering and visualisation are
used to help give users a better understanding of topics such as software engineering [KL08,
BD07], social networks [Zacyy, ACJM03] computer networks [Wilpy], citation network
analysis [ET07] and biological structures [ETNG^oS].

Frequently visualisation applications are designed with a specific target domain or dataset
in mind in mind. Examples of such include computer program visualisation [KL08], vi­
sual exploration of the Internet Movie Database (IMDB) [ACJM03] and visualisation of
scientific citation networks [ET07]. Such a targeted development of an application is able
to take advantage of characteristics of the data being visualised. Prior knowledge of the
structure or characteristics of graph data allows for a targeted choice of cluster or layout
algorithms that will be most suitable for the data.

Graphs with random edge distributions, where the distribution of edges among the ver­
tices follows a Poisson distribution, are often generated procedurally and used to provide
insight into graph theory. However, graphs modelling real world systems are not com­
pletely random and often contain an element of structure. We propose that this structure
can be used by an agglomerative clustering algorithm to generate clusterings of graphs that
aid in comprehension and layout, based on the user specification of nodes of interest. While
traditional layout methods such as force directed layouts are very effective when it comes to
laying out low-density graphs, real world graphs are frequently quite dense[Melo6]. How­
ever as graphs become more dense these layout approaches struggle in terms of aesthetics
and comprehensibility, as well as in terms of algorithm execution time. The resulting lay­
out can often contain groups of densely connected nodes in unreadable tight clusters with
a large amount of edge overlaps. Also, while there is often a range of input parameters for
force directed layouts, the user very often has little control over the final result. Different
users may require different perspectives, and most layout algorithms do not provide this
flexibility in terms of influencing the basic layout. We aim to provide the user with the abil­
ity to lay out a graph based around nodes of interest selected by them, to allow different

Section 1.2. Key Concepts

perspectives of the same data set to be generated.

The overall objective of our research is to allow users to get a better comprehension
of the relationships between data entities in the visualisation of real world systems. In
addition to our clustering and layout, we also evaluate edge routing techniques to show
how these sort of graphs may be best visualised by a user to reduce the clutter caused by
the edge density.

1.2 Key Concepts

Graph Visualisation is an extremely broad field covering many related topics. As part of
this research we have engaged in many different aspects of the fields, such as clustering, lay­
out, edge routing, graph generation, evaluation edge routing and the stereoscopic display
of graphs. The purpose of graph layout algorithms is to allow for an easier understanding
of the data by positioning nodes in such a way that the graph is more aesthetically pleasing
to a user[HJo6]. As well as layout, the routing of edges also plays a large role in compre­
hensibility [WPCM02].

A clustered graph is a graph with recursive clustering structure over the vertices. Eades
and Feng [EF97] give examples of two dimensional clustered graphs as well as describing
an approach for visualising a graph with a multilevel clustering hierarchy in three dimen­
sions. In their example, the clustering structure is an attribute of the graphs and vertices.
However, in many cases, if a graph is to be clustered there may be no intrinsic attribute
or parameter which describes the clustering hierarchy. Therefore,this structure may need
to be determined by a clustering algorithm. There are different algorithmic approaches to
clustering, some of which rely on the underlying structure of the graph, such as Newman
and Girvan’s top-down divisive clustering [NG04].

The analysis of various different types of networks has shown that many networks
across different fields have similar characteristics and can be classified as small world graphs
[WS98, CF09, ACJM03, vHWoSa]. Small world networks are characterised by a high level
of clustering and short path lengths. The term “small world” is based on the commonly
known concept of there being six degrees of separation between any two people ahve. It
does not refer to the size of the graph, so many very large graphs can be considered small
world graphs. Given the clustered structural nature of small world graphs, a suitable clus­
tering algorithm may prove effective in dividing a large small world graph into more com­
prehensible clusters for visualisation.

Edges are one of the main sources of clutter in dense graphs. Edge Bundling [H0I06]

Chapter i. Introduction

is a technique by which an attempt is made to reduce edge clutter by grouping edges to­
gether into “bundles” of curves. Though often cited as a clutter reduction technique, edge
bundlings claimed effectiveness has little basis in empirical evidence.

Three-Dimensional stereoscopic displays are becoming more widely available as com­
modity hardware. Research has shown [WMo8] that users can more easily comprehend
large graphs when utilising three dimensional display techniques.

1.3 Contribution

Our goal of improving the comprehensibility of small world graphs has been broken down
into multiple contributions.

• Our initial contribution is our novel approach to agglomeratively clustering small
world graphs around nodes of interest. We propose average local clustering coeffi­
cient of a cluster as a heuristic to guide this agglomerative clustering.

• We demonstrate the effectiveness of our chosen heuristic by evaluating it against
other metrics using a large range of graphs.

• We extend our clustering to generate a hierarchical clustering which reflects the re­
lationships between the clusters created by our approach.

• We utilise our hierarchical clustering to perform a multilevel layout of the graph and
aid in the routing of edges in the resulting layout. We also demonstrate an approach
to reduce edge crossings in circularly laid out clustering hierarchies.

• We empirically evaluate "Edge-Bundling” a popular clutter reduction technique, which
we utilise in our graph presentation.

• To support our evaluation we developed an approach to create procedurally gener­
ated graphs suitable for such experiments.

• We extend edge bundling into three dimensions and empirically evaluate the use of
three dimensional stereoscopic depth to determine its effectiveness at reducing the
impact of edge bundling on low level path tracing tasks.

1.4 Scope

The scope of this thesis covers many different aspects of graph presentation. The layout and
agglomerative clustering of a graph are one form of presentation, the routing of the edges is

Section 1.5. Related Publications

another. The common focus of each of these areas is how to best improve user performance.
Our scope does not cover a full comparison of all clustering and layout approaches. We
provide low level evaluations of the techniques described in this thesis. Such evaluations
yield results which are not domain specific and can be generalised across many fields. High
level domain specific evaluation experiments, using domain experts as participants, are
beyond the scope of this thesis.

1.5 Related Publications

Some of the research described in this has previously been peer reviewed and published at
international conferences. The following papers contain materials which were created as
part of out research into this Phd. thesis.

1. [MDi2a] An Empirical Study on the Impact of Edge Bundling on User Compre­
hension of Graphs:
Fintan McGee, John Dingliana
Advanced Visual Interfaces 2012 in cooperation with ACM-SIGCHI, Capri Island,
Italy

2. [MDi2b] VISUALISING SMALLWORLD GRAPHS: Agglomerative clustering of
Small World Graphs around nodes of interest:
Fintan McGee, John Dingliana;
International Conference on Information Visualisation Theory and Applications 2012
(IVAPP 2012), Rome, Italy

3. [MDioJAn Evaluation of the use of Clustering Coefficient as a Heuristic for the
Visualisation of Small World Graphs:
Fintan McGee, John Dingliana;
Theory and Practice of Computer Graphics, UK 2010 (TPCG2010), Sheffield, UK

1.6 Thesis Layout

The rest of this thesis is laid out as follows:

• Chapter two provides a background on graph theory and describes the related work
for this thesis. An overview of layout, clustering, graph evaluation, edge routing and
three dimensional stereoscopic visualisation of graphs is also provided along with an
examination of the state of the art in each.

• Chapter three covers graph clustering techniques. We present a new agglomerative
clustering to allow users rearrange graphs around nodes of interest. We suggest a

Chapter i. Introduction

heuristic, based on the structure of small world graphs and evaluate it against other
heuristics across a wide range of graphs.

Chapter four covers graph layout. We extend our clustering from chapter three to
generate a clustering hierarchy. We utilise this clustering hierarchy for multilevel
layouts of graphs, which reflect the users selected nodes of interest. We also utilise
this hierarchy to route edges in the resulting graph.

Chapter five examines the role of edge routing in hierarchically clustered graphs. We
provide an empirical evaluation of edge bundling. We extend edge bundling into
three dimensions for stereoscopic viewing of graphs and evaluate the impact it has
on user performance.

Chapter six describes our conclusions and directions for future work.

Section 1.6. Thesis Layout

Chapter 2

Background and Related Work

Graph visualisation is a broad field of research, covering many topics includ­
ing computer graphics, mathematics, graph theory, art and human perception. In

this chapter we present the basic concepts necessary to understand what follows, and we
describe the related research that the chapters following this are built upon.

2.1 Graphs

When the term, “Graph” is used, many people immediately conjure up an image of a vi­
sual representation of a graph, forgetting that underlying this is a mathematical defini­
tion which exists completely independently from any visual interpretation. An undirected
graph G = (V,E) is defined by a set of vertices v € V = {v„ V2...v„} and a set of edges e e E
connecting vertices x € V and y e Vwith e{x, y) = e{y, x). If a graph is a weighted graph
there is an associated numerical weight for each edge w{e{x,y)).

For a directed graph e(x,y) ^ e{y,x). A directed graph can be transformed into an
undirected graph by ignoring the edge direction. An unweighted graph can be considered
to be a weighted graph where w(e) = i, Vee£. An edge in a directed graph is considered
to have one vertex that is the edge source and one that is the edge target. If a vertex is the
target, the edge is considered an in-edge to that vertex. If a vertex is the source, the edge is
considered an out-edge edge to that vertex.

In practical terms the vertices of a graph model entities in the real world, and the edges
model relationships between those entities. Social networks are an often encountered ex­
ample, in which the vertices model people and the edges model a friendship or other social
relationships between the people. A simple example of a social network can be seen in the
work done by Zachary [Zac77], in which the members of a karate club were modelled as
vertices for a graph, and their interactions were modelled as the edges. Zachary was able
to process this social network to provided information about the future state of the group,
which split into separate subgroups. Visualisations of this group can be seen in figure 2.1.

Section 2.1. Graphs 10

Directed graphs are frequently used to model systems where the direction of the re­
lationship between vertices is important, such as a graph modelling predator and prey
relationships in an ecosystem. This impacts how a graph can be traversed (i.e. moving
from one vertex to another following the direction of the edges). However for tasks such
as the laying out of vertices of a graph, it is often possible to ignore edge direction and still
achieve a good result. For the remainder of this thesis, we assume all of the graphs that we
are visualising are undirected graphs. However many of the techniques we use could also
be applied to directed graphs.

2.1.1 Graph Visualisations

Most frequently graph visualisations take the form of node-hnk diagrams, consisting of
nodes representing the vertices of the graphs and links between them depicting the edges,
as can be seen in figure 2.1a. Matrix based visualisations offer an alternative approach (see
figure 2.1b and for a recent large scale example see [ETNG^oS]). Both approaches offer
their own challenges. When using a node-link visualisation, the layout of the nodes and
links has a significant impact on user comprehensibility [Purpy]. Analogous to this for ma­
trix visualisation is vertex ordering. The node link form of visualisation is considered more
intuitive than the alternative of matrix based layout [GFC04, FvNo6]. Node-link diagrams
also allow for a more flexible use of the display space, for example the use of hyperbolic or
three dimensional space for layout [Mun98, WM08]. There are also visualisations which
take a hybrid approach combining both matrix and node-link visualisation [HFM07]. This
thesis focuses exclusively on the node-link style of visualisation. Usually when referring to
a node link style of display, vertices are referred to as nodes, as for most purposes the terms
node and vertex are inter-changeable.

2.1.2 Small World Graphs

Small world graphs are a category of graphs encountered frequently in models of real world
systems. Milgram [Mil67] first identified the phenomenon in his work focused on social
networks. The concept was more recently revived by Watts and Strogatz [WS98] and Watts
[Wat03] and has been shown to hold true for a variety of networks, such as the relation­
ships between actors and films [ACJM03] as well as computer systems [CF09] and citation
networks [VH04]. Small world networks are defined by two main characteristics. The first
concerns the average of the shortest path lengths between each pair of vertices for the en­
tire graph. The second characteristic is the average local clustering coefficient of the graph,
which is defined as the average of the clustering coefficients for each vertex. To determine
if a graph can be considered a small world graph, it is compared to a randomly generated
graph with the same number of vertices and edges. A small world graph will have approx-

11 Chapter 2. Background and Related Work

' %*.. • ‘

.
7.- ^

■''> ‘.V. 0 •

'7,‘" i' e ’
y

(i a
. '. A;'- •

X-''

(a) Node-link Visualisation. (b) Matrix Visualisation.

Figure 2.1; An undirected graph modelling the social connections of the karate club studied
by Zachary[Zac77].

imately the same average path length, but a considerably higher (by orders of magnitude)
average local clustering coefficient.

To define the average local clustering coefficient of a vertex, we first need to define the
neighbourhood of a vertex.

Vertex Neighbourhood definition

The neighbourhood of a vertex v , denoted Fy is defined as the set of all vertices adjacent
to V, not including v itself. We can extend this to a set of vertices defined by an induced
subgraph S = (Vj,£j) (where Vj c V and £j c £, and E, c (v,, v^), Vv,, Vj e V,,). An
induced subgraph is a subgraph where for every edge that exists between nodes in the
the subgraph at the parent level, there is a corresponding edge at the subgraph level. This
results in Fs being defined as the set of vertices adjacent to all v e Vj but not including those
vertices which are part of the subgraph. If S = Fy then it follows Fs = F(Fy) = Fy. The size of
the neighbourhood of a vertex is often referred to as the degree of a vertex. For a directed
graph, there is both an in-degree and out-degree associated with each vertex. The in-degree
is the the number of in-edges and the out degree is the number of out-edges.

Clustering Coefficient Definition

The clustering coefficient for a vertex, denoted by yy, is most commonly defined as the ratio
of edges connecting the neighbours of a vertex to the maximum number of edges that
could possibly connect the neighbours of the vertex [Wato3]. The clustering coefficient c

Section 2.1. Graphs 12

for a vertex v in an undirected graph is given by

|£(r>)l
{‘■)y. =

where |£(rv)| is the magnitude of the set of edges connecting neighbours of the vertex, k
is the neighbourhood size of the vertex, (i.e.lFvl) and (*”) is maximum possible number of

edges in Fy. From the above it can be seen that a vertex needs at least two neighbours to
have a valid clustering coefficient value. For a directed graph the clustering coefficient is
given by

k(,k-i)

This is due to the fact that a directed graph can have double the amount of edges and
k{k -1) - The average local clustering coefficient for a graph, often referred to as
the global clustering coefficient of the graph, is given by

yc =
Ev yv

|V|
Figure 2.2 shows a simple graph and the local clustering coefficients associated with each
node. If a node has a clustering coefficient of 1.0, its neighbourhood can be said to form a
clique, a set of nodes where each node is adjacent to every other node in the set. As part
of our clustering discussed in chapter 3 we use the concept of an average cluster cluster­
ing coefficient. The average clustering coefficient of a cluster, reflects the level of inter­
connectivity of nodes within the cluster. Therefore when calculating the clustering coef­
ficient of nodes with a cluster, to generate the average cluster clustering coefficient, only
neighbours within the same cluster are considered. A graph cluster with a high average
cluster clustering coefficient, indicates that all of the nodes within the cluster have many
interconnected neighbours within that cluster.

Average Shortest Path Length

The shortest path between two vertices (often referred to as the geodesic distance) is the
smallest possible set of vertices it takes to traverse from one vertex to another. Often there
may be more than one shortest path between a pair of nodes. The average shortest path
length reflects the connectivity of a graph. As graphs become more dense the average short­
est path length generally decreases, as there are more edges to traverse between vertices.
Calculating the average shortest path length of a graph requires calculating the shortest
path length between all possible pairs of nodes, which is a computationally intensive task.
While Dijkstra’s shortest path algorithm [Dij59] is suitable for finding the shortest paths
from a single node, it is not efficient for calculating the shortest path for all nodes. Two of

13 Chapter 2. Background and Related Work

Figure 2.2: A simple graph showing the local clustering coefficient of each vertex (in brack­
ets). Note that the green node has a coefficient of 1 as all of its neighbours (the blue nodes)
are connected to each other.

12 J "

Figure 2.3: The shortest path between the two green nodes (10 and 4) is via the two yellow
nodes (2 and 5)

©...

Section 2.1. Graphs 14

the most commonly used algorithms for all pairs shortest part calculations are Johnson’s
[Johyy] algorithm, which is of complexity 0(| VUEI/o^I V|), and the Floyd-Warshall algo­
rithm [FI062], which is of complexity OdVl^). Due to the relative complexities Johnsons
algorithm is preferred for less dense graphs, and Floyd-Warshall for more dense ones.

Small World Graph Specific Visualisation Approaches

As so many real world graphs fall within the domain of small world graphs, much re­
search has been done on developing graph clustering and layout techniques specific to
the small world model. Auber et al. [ACJM03] developed an application called SWViz,
which provided multi-scale visualisation of small world networks. The author’s observed
that if networks display small world properties, their highly connected components also
display small world properties. They utilised this observation to create a multi-scale visual­
isation. The highly connected components are determined by a decomposing the network
into strongly connected components by removing edges using the edge clustering index
described in section 2.1.3.

McPherson et flfJMMOos] describe a system for discovering parametric clusters in
social small world graphs. They describe an application that utilises Markov Clustering
(described in section 2.2.2) to assign cluster identifiers to nodes. The system provides an
initial tree based layout of the graph and allows users to resize and colour nodes based on
attributes (such as node degree and clustering coefficient), as well as selected sub-graphs
based on attributes. The system allows further clustering by combining node attributes
such as the previously described cluster identifier, node degree, local clustering coefficient
or any arbitrary value assigned to a node. These clusters are defined as part of a lay-out tech­
nique referred to as a Self Organising Map which projects form vector of input attributes
onto a two dimensional grid. This layout is then further enhanced by a customised ver­
sion of the Fruchterman Reingold layout (described in section 2.3.2), which allows for user
input. McPherson et al. demonstrate this approach providing images of the result when
clustering a social small world graph. The system can be used for any attributes, not nec­
essarily local clustering coefficient, so it is not clear as to why it could not be used more
generally than for specifically small world graphs.

Van Ham and Wattenberg [vHWoSa] use edge betweenness centrality (described in
section 2.1.3) as a basis for building a minimum spanning tree to aid with the layout of small
world graphs (a minimum spanning tree is a subgraph that contains every vertex and the
minimal set of edges which does not disconnect the parent graph). The clustered nature
of small world graphs means that nodes which are unrelated to each other (with a large
geodesic distance between them) will be positioned further away form each other in the
spanning tree used as an input to layout. If the edges were distributed evenly or randomly
there would be no benefit offered in the resulting layout. In van Ham and Wattenberg’s

15 Chapter 2. Background and Related Work

Figure 2.4: A simple graph illustrating the betweenness centrality of each vertex.

example nodes which are related to each other by an external classification do appear closer
to each other in the final graph layout.

The preceding approaches demonstrate that the characteristics of a small world graph
can be utilised as input into their clustering and layout. We utilise these characteristics for
our clustering described in chapter 3. Our clustering is also used as an input to our layout
described in chapter 4.

2.1.3 Graph Centralities

Centrality is a measure of importance of a vertex, or an edge in a graph [Newio]. There
are many different types of centrality measure, those described here are the most relevant
subset. Centralities can also be used to guide algorithms for clustering by Newman and
Girvan [NG04], or layout done by van Ham and Wattenberg [VHWoSb].

Vertex Degree: This is one of the most straightforward centrality measures. For an undi­
rected graph it is the number of edges connected to a vertex, or as stated above the size of
a vertex’s neighbourhood. For example in the a social network of friendships, the degree
centrality rates those with more friends as more important.

Vertex Betweenness Centrality: Vertex betweenness centrality is a measure of how many
shortest paths a vertex appears on. To derive vertex betweenness centrality for all ver­
tices appears to require the complexity of the all pairs shortest paths algorithms men­
tioned previously. However, Brandes [Braoi] has developed an optimised approach which
is 0(1 VllEl). Figure 2.4 shows a simple graph with the vertex betweenness of each node.

Edge Betweenness Centrality: Edge betweenness centrality is a measure of how many
shortest paths a specific edge appears on. It can also be calculated in 0(|V||£|) using

Section 2.1. Graphs 16

Figure 2.5: A simple graph illustrating the betweenness centrality of edges. The fractional
values of some edges are a result of them appearing on multiple shortest paths of the same
length.

an adapted version Brandes algorithm. Figure 2.5 illustrates edge centralities in a simple
graph.

Local Clustering Coefficient: The local clustering coefficient of a vertex can also be con­
sidered a form of centrality. A vertex with a high clustering coefficient indicates that it is
part of a strongly connected set of nodes, if the clustering coefficient is 1.0 the vertex is
part of a clique. As commented by Newman, [Newio], it is similar to vertex betweenness
centrality in that it reflects the importance of a vertex based on its connections. However
vertex betweenness centrality extends beyond the vertex’s immediate neighbourhood and
if a node has a high clustering coefficient, it most likely will have a relatively low vertex be­
tweenness, as its neighbours will offer alternative shorter paths from more distant nodes.

Edge Clustering Index: The clustering coefficient of a node is often also referred to as
the clustering index. Auber et al. [ACJM03] following on from Chiricota et al [CJM03] use
a metric, originally defined by Alper[AK95], which generalises the previous definition for
clustering coefficient for a vertex to apply to edges. This edge clustering index is used by
Auber et al. to determine the strength of edges within the graph, and thus allows clusters
to be determined by removing weak edges (those with a low clustering coefficient), similar
to the way edge betweenness centrality is used by Newman and Girvan [NG04]. Their ap­
proach is as follows: Given an edge consisting of nodes u and v, the edge’s neighbourhood
is divided into 3 sets. M(u) is the set of nodes that are neighbours of u but not v. M(v) is
the set of nodes that are neighbours of v but not u. W(w, v) is the set of aU nodes which are
neighbours of both. Clearly these 3 sets are distinct, however they also may be connected
by edges which do not contain either m or v (see figure 2.6).

Let s{A,B) denote the strength of connectivity between two set of (distinct) nodes.

17 Chapter 2. Background and Related Work

Figure 2.6: An example of the node sets used by Auber et al. [ACJM03] in calculating
clustering index of an edge e = (u,v)

Let r(A, B) be equal to the number of edges between two nodes in set A and the nodes
in set B, then s(A,B) = r(A, B)/|A| • |B|. This is in effect calculating the ratio of amount
of connections between sets A and B and the maximum possible number of connections
between the set A and B. Note that any edges that go between any 2 of the sets M{u), M(v)
and W(«, v) are part of a cycle of 4 edges that passes through (u, v). A cycle is a path that
begin and ends with the same vertex. 4 is the maximum path length of any cycle between
the sets.

The definition of W'(w, v) means that there are as many cycles of length 3 as there are
nodes in W(«,v). The proportion of possible length 3 cycles is given by|W(u,v)|/(|M(u)|+
\M (v)| +1 W(w, v)|). Summing the ratios calculated for each pair of connected sets, the ra­
tio calculated for the set W(m, v) with itself and the proportion of possible cycles of length
3, provides the edge clustering index y^.

ye - s(M(u), W(u,v)) + s{W{u,v),M(v)) + s{M{u),M{v))

+s(W(m,v), W(m,v)) + |W(m,v)|/(|M(u)| + |M(v)| + |W(m,v)|)

2.1.4 Graph Edge Density

In their taxonomy of clutter reduction Ellis and Dtx describe clutter as the result of “too
much data on too small an area of the display” [ED07]. In a dense graph, edge congestion
is the primary source of clutter. The links in a node link visualisation convey important
information. However if they become too dense the graph becomes less comprehensible,
resulting in nodes and other links becoming obscured. In terms of graph theory the density
of a graph is usually considered to be the ratio of edges to the maximum possible number

Section 2.2. Graph Clustering 18

of edges in the graph [CM83]. For an undirected graph this can be described as

\E\
|(y|(|y|-i)/2) (2.1)

A graph is then considered dense in mathematical terms if this ratio approaches 1.0, a graph
with density 1.0 is called a complete graph. If a graphs density is close to 0.0 it is considered
to be a sparse graph. However in practical real world examples of graph visualisation, which
may contain huge numbers of nodes, a density approaching 1.0 is rarely seen. A complete
graph with 1000 nodes would have 499,500 edges. Visualising a graph approaching this
level of density using a standard node-link approach would not serve any useful purpose
as the individual edges would be unreadable.

Another common measure of the density of a graph is the ratio of edges to nodes,
referred to as the linear density

\E\
di- |V| (2.2)

where |£| denotes the number of edges in the graph. Most real-world graphs have a value
of di <= 10 [Melo6], which is still enough to cause a large amount of clutter. Mela^on
et al. [Melo6] give an example of real world graphs which have even higher densities,
such as web-crawl based graphs with di = 25.57. Given the frequency that dense graphs
are encountered in the real world it is important to include edge density as part of any
graph evaluation. It is clear that graph theoretic density scales the number of edges more
dramatically for a change in vertex count, so for comparison of densities between graphs
with different node counts linear density provides a clearer comparison.

2.2 Graph Clustering

2.2.1 Clustering Overview

Fades and Feng [EF97] describe clustered graphs as “graphs with recursive clustering struc­
ture over the vertices”. In their work they provide examples of two-dimensional clustered
graphs and describe an approach for visualising graphs with a multilevel clustering hier­
archy in three dimensions. In their examples, the clustering structure is an attribute of
the graphs and vertices. However, in many cases if a graph is to be clustered there may
be no intrinsic attribute or parameter which describes the clustering hierarchy. There are
many different approaches to graph clustering (or partitioning as it is often referred to).
Some methods use an algebraic approach, working on a mathematical representation of the
graph [Chu97]. Other methods such as Edge Betweenness Centrality Clustering [NG04]
use a graph theoretic based approach, calculating graph theory characteristics of vertices
or edges that are then used to partition the graph into clusters. Some clustering algorithms.

19 Chapter 2. Background and Related Work

such as edge betweenness centrality clustering take a top down, or divisive approach split­
ting the graph into separate clusters. Others take a bottom-up or agglomerative approach,
merging sets of nodes together to form clusters.

Many approaches generate a flat clustering of the graph, while others produce clustering
hierarchies. Clustering hierarchies are clusterings where the clusters of a graph are them­
selves recursively clustered into sub-clusters. Graph clustering is a difficult problem that is
NP complete [NG04]. Algorithmically defined clusters may not match what an authority
on the graph data believes is a good clustering. In their comparison of graph clustering
algorithms for recovering software architecture module views, Bittencourt and Guerrero
[BG09] comment that “fully automated clustering techniques alone cannot recover mod­
ule views in a sensible way”. Schaeffer [Schoy] provides an in depth review of clustering
methods and related topics.

2.2.2 Clustering Approaches

One of the most widely know forms of clustering is K-means clustering [HW79]. This is a
very general clustering algorithm that is used for many purposes, not just graph clustering.
In this approach the data points to be clustered (nodes in the case of a graph) are placed
randomly in k clusters. The center of gravity of each cluster is calculated and each node
is assigned to the nearest cluster based on a distance function between data points and a
cluster’s center of gravity. The distance function is often, but not always, the euclidean dis­
tance. The process is repeated until the changes in clustering falls beneath a pre-determined
threshold. The vectors used as an input to the distance metric may represent position in
two or three dimensions, resulting in a geometric clustering. However K-means clustering
may also be done with a vector of any level of dimensionality, representing other values
than position in a graph space. For example, in Hopcraft et aVs [HKKS03] use of k-means
clustering of a citation network, the data point vector used for the distance function rep­
resents the citations between papers, and has as many dimensions as there are citations in

the paper.
Within graph visualisation, the aim of geometric clustering is to have vertices that are

geometrically close to each other share a cluster and distant vertices appear in separate
clusters. K-means clustering is an effective way to accomplish this. An example of such a
clustering is given by Quigley and Fades’ FADE algorithm [QEoi] in which a quad-tree is
used alongside a modified force directed algorithm. The clustering provides different levels
of abstraction at which a graph can be viewed.

Agglomerative Clustering

Agglomerative clustering is a bottom-up approach to clustering, merging nodes together
iteratively to form clusters. Depending on the approach clusters can be merged together

Section 2.2. Graph Clustering 20

or individual nodes can be added to clusters. When merging nodes and clusters together
a similarity function is used to determine the suitability of the merge.

Hopcroft et al. [HKKS03] provide an agglomerative clustering of a co-citation network
as part of their analysis on finding natural communities. They use a snapshot of a citation
database or approximately 250,000 papers. The nodes in the extracted graph represent pa­
pers and the edges represent citation between them. The function used to determine which
nodes should be agglomerated together is based on the product of the nodes’ neighbour­
hood sizes, divided by the size of the intersection between the two neighbourhoods. The
smaller this value, the closer the nodes are together and more suitable they are for merging.

Nodes can be merged together to form a flat clustering or a hierarchical clustering can
be generated by repeatedly merging clusters as done by Hopcroft et al. This was also done
by Newman [Newo4] using modularity, a metric utilised by Girvan and Newman in their
previous work on edge betweenness centrality clustering [NG04], as a guiding heuristic
for a greedy agglomerative clustering process. This agglomerative clustering produces a
hierarchy of clusters. Modularity is then used as a metric to determine which level of the
hierarchical clustering provides the best clustering. Modularity is described in more detail
in section 2.2.3.

Algebraic Clustering

Algebraic methods work on algebraic representations of a graph. The most common al­
gebraic form of a graph is an adjacency matrix. For an undirected unweighted graph
G = (V,E), the adjacency matrix is a square matrix with |y| rows and columns. Given
two nodes v, and Vj, i,j < | V"!, the value at entry (v,, Vj) is equal to 1 if (v,, v^) e E, oth­
erwise it is o. Algebraic methods work on this matrix and other algebraic matrices related
to the graph such as the Laplacian matrix which is derived from the adjacency matrix and
the degree matrix. The degree matrix of G is a | V| x | V| matrix where the diagonal entries
(i, i) equal the degree of the node of V. The Laplacian matrix is equal to the adjacency
matrix minus the degree matrix. The analysis of these matrices and their characteristics,
such as eigenvalues and eigenvectors, form the basis of the field of spectral graph theory
[Chu97].

Spectral graph theory partitioning methods are used by Frishman and Tal [FT07] to
cluster graphs as part of their GPU based layout. Algebraic techniques are also used for
graph layout, for example the algebraic multigrid method (ACE) of Koren et al [KCH03].
Van Dongen’s Markov Clustering (MCL) [vDoo] uses algebraic matrix representations of a
graph as the transition matrix of the Markov chain used in his clustering approach. Clearly
algebraic methods can provide many viable clustering approaches for graphs. However, our
research focuses on graph theoretic approaches as these relate more closely to the visuali­
sation of the graph on a display than the algebraic methods.

21 Chapter 2. Background and Related Work

Edge Betweenness Centrality Clustering

Edge Betweenness Centrality Clustering is a divisive graph theoretic graph clustering method
developed by Newman and Grivan [NG04]. Edge betweenness centrality is a measure of
how important an edge is within a graph. It is determined by the number of shortest paths
that an edge appears on out of all shortest paths for the graph as a whole. This algorithm
is expensive, with a straight forward implementation being in 0(|£|| V^|^), however Bran-
des [Braoi] proposes an alternative in 0(|£|| Vj). Similarly to Edge betweenness centrality,
vertex betweenness centrality is defined as a measure of the number of shortest paths on
which a vertex appears.

Newman and Girvan show that edge betweenness centrality can be used to partition a
graph into clusters (or as they refer to them communities) based on the graph structure.
Their approach consists of calculating the edge betweenness centrality for all edges, and re­
moving the edge with the highest value. This is repeated until eventually the graph breaks
into separate components and ultimately individual vertices. The partitioning at differ­
ent stages of the algorithm is evaluated using modularity as a metric, and the iteration of
the algorithm which produced the most modular components is used to assign vertices to
clusters.

2.2.3 Clustering Evaluation

There are many different metrics used to evaluate clusterings. Boutin and Hascoet [BH04]
discuss many other clustering evaluation approaches (referred to by them as clustering
validation indices). They note that these evaluations are often difficult to interpret and
compare. Evaluating the authoritativeness of a clustering is a difficult problem, not always
readily solvable by a metric. Wu et al. [WHH05] use external clusterings in their evalua­
tion of clustering algorithms for software systems to evaluate their chosen algorithms. They
use the directory structure of the software system to create an authoritative clustering that
reflect experts (i.e. the software developer). Clustering evaluation depends on the target
application of the clustering. Bittencourt and Guerrero [BG09] and Wu et al. [WHH05]
evaluate clustering algorithms in the domain of software analysis. Their evaluation metrics
include distribution of cluster size (avoiding singleton clusters and clusters which consist
of the majority of nodes), clustering stability (the clustering of a graph does not change
much for a small change of the input graph) and authoritativeness (based on an external
measure). These metrics are very useful for the the application domain of software eval­
uation, however they are not as suitable for our agglomerative clustering around nodes of
interest which we describe in chapter 3. We describe next two of the metrics from the liter­
ature (which have also been used as heuristics to guide clustering), which are of relevance
to our clustering evaluation in chapter 3.

Section 2.2. Graph Clustering 22

Modularity

Newman and Girvan [NG04] define a measure of the quality of a division of a network
graph, referred to as modularity. The measure is used to evaluate their community detec­
tion algorithm (which is essentially a top-down clustering algorithm). The measure has
also been used in work by Newman [Newo4] as a heuristic value which is to be optimised,
and hence guides the clustering rather than evaluate the quahty of it. This metric is based
upon the number of edges that start and end in the same cluster (referred to as communi­
ties in Newman and Girvan’s paper). The modularity, Q, is calculated as

Q = XKe.i-fl?)
i

where e, i is the fraction of all edges that start and end in cluster i and a, is the fraction
of all edges that terminate in cluster i. A high level of modularity indicates a low number
of inter-cluster edges. We believe that modularity provides a good metric, that translates
across apphcation fields.

Modularisation Quantity

Auber et al [ACJM03] and Chiricota et al.[CJMo3] use a quality measure developed by
Mancoridis et al [MMR'^pS] and utilised in Mancoridis et al’s clustering tool ’’Bunch” [MMCG99].
This measure, denoted MQ (Modularisation Quantity) computes a value for any given par­
tition of a graph. Chiricota et al. and Auber et al. use a slightly modified version of MQ
that is defined only for undirected graphs as an evaluation measure. The MQ value is used
by the Bunch tool as an function to be optimised to provide a good clustering (rather than
evaluate one). Let A and B be two sets of disjoint nodes in a graph G = (V, £), let s equal
the ratio of edges between the two sets to the maximum possible number of edges between
the two sets.

Note that this ratio can be calculated for a set with itself For a cluster A in an undirected
Graph without self linking edges

s(A,A) =
2(e(A,B))
|A|-(|A|-i)

If cluster A is a clique s(A, A) = 1. If none of the nodes in A are connected s(A, A) = o.
Given a partition (also referred to as a clustering) C = (Q, Q,...., Cp) that divides the
graph G = (V,E) into p partitions the MQ score for that partition is given by:

MQ(C;G) =
g.,5(c,.c,) Ef.7E?.,„i(c„c,)

p pip - 0/2

23 Chapter 2. Background and Related Work

(a) A tri-partite graph clustered
so that MQ = -1

'UV^-

'■■■ V-y/''-

fjt'A'
rX- j

tf-%

t

« '

(c) A connected clique no
matter how partitioned
will result in MQ = o

(b) A graph consisting on un­
connected cliques clustered so
that MQ = 1

(d) An example of a connected
graph with well defined clusters
, resulting in MQ= 0.96

Figure 2.7: Example of clustered graphs with different MQ values (clusters are denoted by
node colour)

Essentially this is a measure of the difference between the s ratio of intra-cluster edges
denoted by 5(C,, C,) and the s ratio of inter-cluster edges, denoted by 5(C,, Cj). The mini­
mum value of MQ is -1, representing a K-partite graph, where no nodes in a given cluster­
ing are connected to each other, but are connected to every other node in the graph. The
maximum value is 1, representing a non-connected graph where each cluster is a clique that
is not connected to any other cluster.

Difference Between Modularity and Modularisation Quantity

The MQ metric differs to Newman and Girvan’s modularity measure. Modularity com­
pares the fraction of all edges that are intra-cluster edges to fraction of all edges that are
inter-cluster edges. MQ is a measure of the difference between the average ratio of actual
intra-cluster edges to the maximum amount of intra-cluster edges possible and the average
ratio of the amount of inter-cluster edges to the maximum amount of inter-cluster edges
possible. This means that modularity depends purely on the number of edges (which is
bounded to the number of nodes) and MQ depends on the number of edges and the num­
ber of nodes directly (as the maximum possible number of edges between two clusters is a

Section 2.3. Graph Layout 24

function of the number of vertices).

2.3 Graph Layout

There are many different approaches to graph layout, each with the same aim of produc­
ing an image that is in some way aesthetically pleasing to a user and improving the users
ability at some task. The different approaches encompass many different representations
of a graph. Force directed layouts work by modelling a graph as a connected physical sys­
tem. Algebraic approaches work directly on the adjacency matrix representation of a graph.
Many layout approaches lay out an entire graph at once, while multi-level approaches cre­
ate higher level representations of a graph and lay these out, using them as a basis for the
positioning of the final graph nodes.

2.3.1 Force directed layouts

One of the most common types of layout is force directed layout. The early force directed
approach by Fades [Ead84] was based on modelling an undirected graph as a system of
springs. This was further enhanced by Kamada and Kawai [KK89] by addition of cal­
culating an ideal layout between vertices which are not connected, and formulating the
layout problem as an energy optimisation problem. Gansner et all [GKN05] have fol­
lowed on from this, replacing Kamada and Kawai’s local Newton-Raphson minimization
of the energy function with a global approach called majorization from the field of Multi-
Dimensional Scaling (an approach used for layout by Harel and Koren). Fruchterman and
Reingold [FR91] developed a physics based algorithm which models attractive and repul­
sive forces between vertices as well as using the concept of a global energy value to limit
the movement of nodes during layout. GEM[FLM95] is another force directed algorithm
for undirected graphs where the vertices of the graph are modelled as charges repelling
each other and the edges are modelled as springs. There are more recent versions of forced
directed layout which employ a multilevel approach, such as such as GRIP[GKoi], the
Fast Multi-Scale method of Harel and Koren, [HKoi], and the Fast Multi-pole Multi-Level
Method of Hachul and Jiinger [HJ05].

2.3.2 Fruchterman Reingold Layout

Force directed layout algorithms work by modelling a graph as a system of attractive and
repulsive forces between vertices. The positions of the vertices are updated based on these
forces, until stability is reached. Stability is not guaranteed so some external bounds are
placed on the size of the forces. One of the most common force directed algorithms is

25 Chapter 2. Background and Related Work

• ® o a •
• a **

• • •

a • ♦

Figure 2.8: Force Directed Layout of a graph containing 91 vertices and 567 edges. Each
node is a unit distance across. The ideal distance K has been set to 15. The grid variant
version has not been used, so repulsive forces are applied to all nodes regardless of distance
between them

the Fruchterman-Reingold force directed algorithm [FR91]. This algorithm works on the
basis of having an ideal distance between connected vertices. This ideal distance, usually
denoted k is used in the derivation of the attractive and repulsive force between vertices.
These attractive and repulsive forces cancel each other out when two connected vertices are
the ideal distance apart. The ideal distance can be considered like the length of a relaxed
spring between two connected nodes. If the nodes move closer than the ideal distance the
spring pushes them apart. If the nodes move further away from each other than the ideal
distance the spring pulls them together. The attractive forces, fa and repulsive forces fr are
defined as follows:

f.W = j

where d is the distance between a pair of vertices and k is the ideal distance between a pair
of connected nodes. The forces acting on each individual vertex are calculated as follows.
The total repulsive force for an individual vertex is calculated by the summation of the
forces between that vertex and every other vertex in the graph. The total attractive force is
calculated by the summation of the attractive forces between vertices and every vertex it is
connected to. The final force for a vertex is the sum of the attractive and repulsive forces,
and it is this final force which is used to displace the vertex.

CijQEi i*j,Vj€V

Where £,is the set of all edges connect to the vertex i and V is the set of all vertices in the
graph. The algorithm for calculating the forces for a single vertex can be seen in algorithm
listing 1.

These calculations are repeated for each vertex over many iterations. An upper bound

Section 2.3. Graph Layout 26

Algorithm 1 Algorithm for calculating Fruchterman-Reingold forces acting on a single
node

VG V

for all w e V do
if u ^ w then

S V.position - u.position
V.displacement := v.displacement + (5/|d|) * /r(|5|)

end if
end for
for all M e V do

if {u,v} e E then
S := V.position - u.position
v.displacement := v.displacement - (<5/|d|) * /a(|d|)

end if
end for

on the magnitude of displacement, referred to as the temperature, is set and decreased at
each iteration, resulting in increasingly smaller adjustments in position until the graph is
in a stable state, usually determined by when a minimal displacement between iterations
is reached. This algorithm is used to lay out undirected graphs; however a directed graph
can also be laid out using this technique simply by ignoring the directionality of edges
and limiting the number of edges between a pair of vertices to one. One issue with force
directed algorithms is the algorithmic complexity of the approach. The calculations of
the repulsive forces requires 0(| V]^) operations and the attractive forces requires 0(|£|)
operations resulting in a per iteration complexity of

0(|l'|- + |£|)

per iteration. Given that an instance of the layout algorithm may execute several hundred
iterations, performance can be a significant issue, particularly for large sized graphs. Opti­
misations such as the Grid Variant Algorithm suggested by Fruchterman and Reingold, or
some of the multilevel approaches reduce complexity of the repulsive forces to 0(| V| +1£|)
for most practical use cases.

2.3.3 Multilevel Layouts

Multilevel algorithms are an approach which aim to improve the layout of basic force di­
rected algorithm by accelerating the algorithm and giving a global quality to the place­
ment. The concept was introduced by Walshaw [Waloi] and independently also by Harel
and Koren[HKoi], who refer to is as multi-scale layout. A key part of multilevel algorithms
is the coarsening phase. A coarse version of a graph is simply an abstracted graph of the
original, where multiple nodes in the original graph are represented by a single node in the

27 Chapter 2. Background and Related Work

o
o

Figure 2.9: Layout of the graph from figure 2.8 using Hachul and Jiinger s FM3 multi-level
layout algorithm with a input inter-node distance of 15 (equivalent to a k value of 15). Each
node in the image has a radius of 1. The implementation used is the Open Graph Drawing
Framework [TD0G13] version of the FM3 algorithm

coarse version. A multilevel layout being performed on a graph G = {V,E), produces a
hierarchy of coarse graphs. The graph with the finest level of detail Go is the original graph.
Gi is produced by running a coarsening algorithm on Gq. The hierarchy is generated by
repeated coarsening the graph G, to form G,+, until the minimally sized coarse graph is
achieved. The approach to coarsening of a graph is a distinguishing factor between many
different multilevel approaches.

Walshaw utilises an approach known as matching to combine pairs of nodes in order
to generate a coarse version of a graph. The matching is done by generating a set of graph
edges known as a maximally independent edge set. This is a subset of all edges in the graph
with the property that that no 2 edges in the set share a common vertex, (i.e. no two edges
are adjacent), it is maximal when no more edges can be added to the set without breaking
this property. All the pairs of nodes defined by the edges in that set are collapsed to form a
single node in the coarse graph. Therefore, a node at each level of the coarsening hierarchy
represents two nodes at the level below, except for the bottom level which is the original
graph.

GRIP [GKoi] generates a coarsened version of a graph Gj from graph (Gi_i) by applying
a maximal independent set filtration. A maximal independent set filtration is a subset of

vertices such that V d V,, V; d V^...Vk-i c V* 0- is a maximal subset of if the
graph distance between each of its elements is at least 2'~* -1-1, i.e no vertices in the subset
contain a common edge, and no more vertices can be added without introducing one.

In the coarsening phase of Hachul and Jiinger’s Potential Field Based Multi-level Algo­
rithm (often referred to as FM3) [HJ05], vertices are partitioned into what the authors refer
to as solar systems, characterising each vertex as sun planet or moon. Each solar system is
collapsed to the sun node in the next tier of the coarsening hierarchy.

Section 2.3. Graph Layout 28

Frishman and Tal[FTo7] use an algebraic technique called spectral partitioning to par­
tition the graph in to clusters of nodes which can be represented as single nodes in the
coarser versions of the graph. This is a top down approach to multilevel layouts as op­
posed to the bottom up approach of maximal independent set filtration. The coarsening of
the graph using spectral partitioning requires post-processing to avoid small disconnected
clusters, a problem not encountered in the bottom up approaches such as Walshaw’s use of
vertex matching.

Once the coarsening phase is complete the layout phase applies a layout to each graph in
the N hierarchy, progressing from the most coarse level GAf_ito the finest Gq. The choice of
layout algorithm, differs between multilevel approaches, but they all use some variant of the
force directed model. Part of the advantage of multilevel approaches is that the placement
of vertices in a more coarse version of a graph provides a good initial placement for the
layout of the next less coarse graph. The most straightforward strategy is that the nodes in
graph G, are initially placed at the position corresponding to their representative node in
the more coarse graph G,+i. This is the approach used by Walshaw, but other approaches
use different methods. For example Hachul and Jiinger’s method uses their solar system
structure in graph G, to derive a position for vertices in G;-,.

When laying out a coarse graph as one of the levels of the multilevel layout, care has
to be taken so that a layout of the graph G, does not completely disrupt the layout of the
previous more coarse graphs at levels G,_i and above. Walshaw does this by weighting the
relaxed spring distance k of the Fruchterman-Reingold algorithm based on the level used
by the previous levels coarse graph.

An example of results of a Hachul and Jiinger’s multi-level layout can be seen in figure
2.9. The results are similar to the basic Fruchterman-Reingold algorithm, seen in figure
2.8. This is to be expected as both are force directed algorithms, the difference is that FM3
offers faster performance and lower algorithmic complexity, particularly for much larger
graphs.

A more comprehensive list and evaluation of multi-level algorithms can be found in
Bartel et al.s evaluation of several multilevel algorithmsjBGKMii] as well as Hachul Jiinger’s
comparison of fast algorithms for drawing large general graphs [HJ06]. Bartel et al. also
describe many different approaches to graph coarsening and initial node placement in the
different levels of graph.

2.3.4 Hierarchy Based

Frequently if a graph has an associated hierarchical clustering (i.e. it is a compound graph),
it can be laid out using a hierarchical geometric approach such as a tree layout, a cone tree,
a balloon tree or a tree map. These are graphs where the hierarchical nature of the graph
clustering is embedded in the geometry of the layout. Tree-maps developed by Johnson and

29 Chapter 2. Background and Related Work

Shneiderman [JS91] display data hierarchies (not necessarily graphs with adjacency rela­
tionships outside of the hierarchy) where items in the hierarchy are displayed as subregions
of their parent items in the hierarchy. Sugiyama’s layout [STT81] is an early hierarchical lay­
out, under which child nodes are positioned in layers beneath their parents is such a way
as to reduce crossings. Cone Trees[RMC9i] are three dimensional displays of node hierar­
chies where each node is laid out such that it is at the apex of a cone, and all of its children
in the hierarchy are positioned around the circumference of the base of the cone. Balloon
trees such as that used by Holten[Holo6] are essentially a projection of a cone tree layout
onto a 2D plane [CK95]. Each low-level cluster is essentially a circular graph. An example
of a balloon layout can be seen in figure 2.11. Herman et al cover a variety of tree bases
layout in their survey of graph visualisation and navigation techniques (200o)[HMMoo].

2.3.5 Algebraic Approaches

Force directed algorithms are not the only approach to graph layout, there are also algebra
based algorithms for drawing graphs, such as ACE (Algebraic multi grid Computation of
Eigenvectors)) [KCH03] which uses an algebraic multi-grid optimisation approach as well
as High Dimensional Embedding (HDE)[HKo2]. HDE creates a drawing (in a conceptual
sense, this is just a positioning of the nodes) in m dimensions (m is defined as an input)
and projects it down to a two or three dimensional drawing, for visualisation. The m di­
mensional drawing is created by selecting m vertices from the graph as pivot nodes which
form the basis of the axes. The position of each node in the graph along an axis is based on
its graph theoretic distance from the pivot node corresponding to the axis. Once the nodes
are positioned in the m dimensions, the drawing is projected down to two (or possibly 3)
dimensions for visualisation using PCA (Principle Component Analysis), a technique by
which multi-dimensional data is reduced to fewer dimensions. One key advantage of HDE
is the speed of the algorithm as it has a time complexity of 0(m • [Ej + • | V|). Given that
m is independent of graph size, complexity only increases linearly with vertex and node

count.

2.3.6 Circular layouts

Circular layouts are a restrictive but simple approach to geometrically laying out a graph.
The nodes are evenly spaced around the circumference of the circle with the edges passing
thorough the interior of the circle, see figure 2.10 for a simple example. As with all graph
layouts it is desirable to reduce the number of edge crossing [Pur97]. Obviously the number
of crossings in a graph is dependent on the ordering of the nodes around the circle edges,
an NP-hard problem to solve [MKNT87]. Many different approaches and heuristics exist
to produce better circular layouts. Six and Tollis [ST99] order their vertices so that the

Section 2.3. Graph Layout 30

/

number of edges drawn close to the edge of the circle is maximised. While this does reduce
the number of crossings, it is not clear that it will make the graph more legible, as for larger
dense circular drawings, many edges close to the edge of the graph will not only cross, but
do so with a very acute crossing angle which per Weidong et al. [WSHE08] makes them
more difficult to read. It is possible to maximise the crossing angles in the circle layout
using an approach such as that suggested by Nguyen et al [NEHHii], but such a technique
would not improve matters much as it does not change the sort order of the nodes in the
circle, and can also result in a slightly misleading visual clustering of the nodes in the circle.
Baur and Brandes [BB05] developed an ap­
proach to reducing crossing within circular
layouts, which consists of an intelligent initial
placement of nodes, followed by a circular sift­
ing approach, which rotates the position of a
node around the circle circumference, and as­
signing its final position as the one which re­
sulted in the least number of crossings. Ganser
and Koren [GK07] have developed techniques
which lower the edge density within a cir­
cular layout. They use a three pronged ap­
proach, consisting of ordering nodes in such
away that edge lengths are reduced, adapting
edge bundling for use within a circular layout,
and routing edges external to the circle using
curves. Circular graphs can also display clustered hierarchies, as can be seen in figure 2.12
where the clustering hierarchy is conveyed by the positioning of nodes and the grouping
of edges.

4

Figure 2.10: A simple circular layout of a
10 node graph

It is possible that a graph consists of multiple circular layouts. For example different
clusters within a graph could be laid out as circular sub-graphs, as done in a balloon tree
layout, or as with approaches such as Topolayout[AMAo7] circle layouts can feature as
one of multiple approaches utilised in graph layout. When multiple circle layouts are used
within a graph, inter-circle edges and their crossings should also be considered. Crossing
can be reduced by rotation of circles as well as ordering of the constituent nodes within the
circle. Many approaches model physical torque, with the edges to other circles applying a
rotational force on the source circle. Essentially an energy function is minimised to provide
a good rotation to a circle. Examples of this include the GEM layout of Frick et al. [FLM95],
as well as Symeonidis and ToUis [ST04], who use a polar coordinate based form of force
directed layout.

31 Chapter 2. Background and Related Work

Figure 2.11: An example of a balloon tree layout of a 60 node graph. The hierarchy nodes
are coloured black, connected by the red lines. The hierarchy levels are also circled in green
to clarify the hierarchy structure .

Figure 2.12: The same graph as in figure 2.11 under a clustered circular layout. The grey
hierarchy nodes are shown for illustrative purposes.

Section 2.4. Graph Visualisation Evaluation 32

Other approaches

Other approaches have included using space-filling curves as a framework for vertices [MM08]
and genetic algorithms [BBoo] and topology based layout[AMA07]. Space filling curves
[MM08] position nodes along a curve designed to take up the full graph display space. The
order of the nodes along the curve is decided by an ordering function, which is dependent
on a good clustering. The primary advantage of this approach is the speed of layout, which
makes it much faster than the force directed approaches, particularly for exceptional large
dense graphs. Barreto and Barbosa’s [BBoo] genetic layout approach uses graph aesthetics
such as edge crossings and vertex distances to select the input layouts used to create succes­
sive generations or graph layout. Archambault et al’s Topolayout [AMA07] is an innova­
tive approach for the layout of graphs. It decomposes a graph using topological features, to
form a hierarchy. Topological features are graph structures such as cliques (a set of nodes
that are fully connected to each other), connected components, and trees. Topolayout uses
other layout algorithms, such as a basic circular layout and High Dimensional Embedding
to layout the various topological features at lower levels of the hierarchy, depending on
which layout is more suitable for the feature. The authors also increase comprehensibility
by applying edge crossing reduction techniques to the identified features in their graph.

2.4 Graph Visualisation Evaluation

Evaluation is a challenge in the field of visuahsation, be it scientific visualisation, infor­
mation visualisation or graph visualisation. Frequently, graph visualisation paper authors,
particularly if the topic is the visual presentation of a graph, have to rely solely on displaying
images of their technique. For example Holten [H0I06, HW09] and Cui [CHH+08] rely
on the visual presentation of their edge bundling techniques as part of their evaluation.
Such an approach is necessary, particularly for a technique as visual as edge bundling, but
it is hmited in the number of cases that can be shown within the space of a paper. Chen
[Cheos] describes the lack of “intrinsic quality measures” as one of the unsolved visualisa­
tion problems of information visualisation.

The notion of a quality measure that is intrinsic to information visualisation, and hence
not dependent on the application or subject matter or any external reference point, is im­
portant as it allows a consistent evaluation of quality between an evaluation based on user
assessment and one based on an evaluation metric. In graph visualisation such intrin­
sic measures, often referred to as aesthetics, do exist. In addition to intrinsic metrics of
a visualisation, user performance is important as the ultimate goal of visuahsation is to
aid human understanding. User performance can only be measured by empirical exper­
iment, although it can be shown to correlate with some metrics. For example Purchase’s
work [Pur97, Pur98, WPCM02] investigating graph aesthetics does so using user experi-

33 Chapter 2. Background and Related Work

ments. Empirical evaluation can be done through low level abstract tasks such as indicat­
ing the distance between two vertices in a graph are connected by two or 3 hops [WM05],
or through higher level domain specific tasks such as considering where a new web page
should be added to in a websites directory structure [RCMCoo].

When evaluating the real word effectiveness of a clustering or layout technique it can
be difficult to subjectively quantify its effectiveness without a high level task. This section is
concerned with describing how intrinsic measures are used and evaluated as well as general
evaluation techniques.

2.4.1 Evaluation Graphs

when evaluating a technique related to the presentation of a graph, e.g. evaluating a graph
layout or a visual effect such as the use of colour, it is obviously necessary to chose a graph
(or graphs) that will be the basis of the experimental evaluation. The choice of graph has
a very significant role in the experiment. Graphs vary in size structure and density de­
pending on what they are modelling. The choice of graphs should also be suitable for the
visualisation technique being evaluated. Preferably, it should allow the evaluation of the
efficacy of the technique under a range of experimental conditions.

In her 2004 paper on the challenges of information visualisation (not specifically graph
Visualisation), Plaisant [Plao4] suggests the creation of repositories of data and tasks as the
next step in providing a solution to the problem of information visualisation evaluation.
In the conclusions of their 2011 state of the art survey on the visual analysis of large graphs
von Landesberger et al. [vEKS"^!!] comment in their conclusions on the need for more
taxonomies for aspects of visualisation such as tasks and measures for quality, as well as
benchmarks for comparing techniques and “although several taxonomies and sample data
sets exist, a more broader scope of theory and data aspects is needed”. While more and more
data sets have become available, it is not always clear which data set is the most suitable for
testing a specific data visualisation approach. A wide range of task specific data sets would
help standardise graph evaluations across different techniques.

In their evaluation of large graph layout algorithms Hachul and Jiinger [HJ06] used
11 graphs from real-world graph sets. These real-world graphs consisted of a subset of the
AT&T graph Library [AT12], a subset of Walshaw’s graph collection [Wali2], and a single
social network graph of 2113 people.

Using a real-world graph to test a specific visualisation technique is limiting as there is
no flexibility in graph parameters. Unless the visualisation technique is only targeted at a
very specific data set, it may not be enough to target it at such a limited range of data. In
order to evaluate graph visualisation it is often useful to procedurally generate graphs, as
the characteristics of the graph can be defined beforehand in such a way that the technique
is tested under a variety of conditions.

Section 2.4. Graph Visualisation Evaluation 34

There exist many procedural approaches to generating graphs, and these have been
used in the past to test graph layout algorithms. Hachul and Junger [HJ06], in addition to
the real world graphs set, created many graphs using simple procedural approaches. These
result in graphs which display regular patterns which are apparent by visual inspection
(depending on layout of course). These patterns are reflected by the names given by the
graph authors: the snowflake graph, the flower graph and the Sierpinski graphs (based on
Sierpinski triangles).

Apart from loading real world graphs from external libraries, real world graph data can
be generated by parsing data sets such as program source code, website links or data-base
relations. In chapter 3 we present some examples of graphs data created by parsing data
from Wikipedia. It is very useful to be able to randomly generate large sets of small world
graphs to analyse the effectiveness of a particular algorithm on graphs with a wide range
of properties (such as size, edge density, graph clustering coefficient, level of randomness).
When procedurally generating graphs characteristics can be determined as an input to an
algorithm which can still generate graphs with some level of randomness. This can allow
for an algorithm to be tested against a wide range of graphs with different parameters and
also to be tested against multiple graphs with the same parameters.

Random Graph Generation

One of the earliest common methods of generating graphs is the Erdos-Renyi model [ER59]
of random graphs, also known as the Poisson Random Graph. While this is one of the best
known random graph models and has provided many insights into the field of network
graph theory, it does not accurately reflect the structure of many real world graphs in terms
of edge distribution. It may not also provide graphs suitable for the evaluations of different
visualisation approaches, e.g. if an edge routing evaluation depends on different levels of
edge connectivity between clusters. As mentioned by Lancichinetti et al. [LFR08], cluster
size edge distribution vary in real world graphs. In section 5.1 we will see an example of
graphs generated for the specific task of evaluating edge routing in a compound graph
utilising a distribution of edges not found in a simple Poisson Random Graph.

In some cases, such as evaluating clustering algorithms, it may be desirable to know
in advance what the optimum clustering of a specific graph is. However graph partition­
ing is an NP complete problem. So for a completely randomly generated graph finding
the best possible clustering requires analysing all possible permutations of clustering for
that graph. As graph get larger this becomes more and more impractical. Moussiades and
Vakali [MV09] propose an approach for generating random graphs where optimal cluster­
ing is known. This is useful when a naturally occurring clustering or community structure
(as demonstrated in Zachary’s karate club example) is desired from the input graph. How­
ever, if extra constraints are required, such as a specific characteristics, e.g. a high average

35 Chapter 2. Background and Related Work

Figure 2.13: A ring lattice of 100 nodes each with a degree of 4, the starting point of the
Watts and Strogatz’ small world generation algorithm

Figure 2.14: A random graph equivalent to that in figure 2.13, generated using Watts and
Strogatz’ small world generation algorithm with in input probability of 1.0 and laid out
using a force directed algorithm. The graph has an average path length of = 3.37636 and an
average local clustering coefficient of 0.012

local clustering coefficient, or some node based constraints, e.g.limiting node degree, such
an approach may not be possible.

Random Small World Graph Generation

The small world graphs described in section 2.1 demonstrate characteristics of real world
graphs. It is possible to procedurally generate small world graphs. We use Watts and Stro­
gatz’ approach for creating small world graphs [WS98] for use in the evaluation of our
agglomerative clustering in chapter 3. In generating these graphs we have control over the
graph size, edge density and level of randomness, allowing us to create graphs of various
degrees of “small world-ness”.

The approach starts with a ring lattice graph of n nodes where every node has k links
connecting it to its neighbours (i.e. every node has a degree k, resulting in |£| = A:| V|). This
can be considered a fully structured graph, where a completely random graph could be
considered full unstructured. Such a lattice with 100 nodes and a degree of 4 is displayed

Section 2.4. Graph Visualisation Evaluation 36

Figure 2.15: A small world graph equivalent to that in figure 2.13, generated using Watts
and Strogatz’ small world generation algorithm with in input probabihty of 0.1 and laid
out using a force directed algorithm. The graph has an average path length of = 5-53879
and an average local clustering coefficient of 0.396

in figure 2.13. We consider a specific vertex and consider the edges connecting it to one of
its neighbours in a clockwise sense. Each edge is rewired to a randomly selected neighbour,
with a probability of p. Duplicate edges and loops are forbidden. Each vertex in the graph
is processed in a clockwise order. The input value of p has a large impact on the resulting
graph. For a value of p = 1.0 the result is a randomly wired graph, as seen in figure 2.14.
For low values of p (e.g. p = 0.1) the result is a small world graph as displayed in figure 2.15.

The combination of the real world-like characteristics of these procedurally generated
graphs, as well as the ability to control the edge density, graph size and level of structure
makes these graphs very useful for performing experiments on the efficacy of clustering
algorithm. In addition to this the non-deterministic aspect of their generation allows for a
variety of graphs to be generated for the same input parameters.

2.4.2 Graph Aesthetics

One approach to evaluate a graph layout is based on the aesthetics of the resulting lay­
out. Aesthetics in this context refers to measurable attributes which reflect the quality of a
resulting layout.

Reduction of edge crossing has long been identified as a desirable graph layout aesthetic
for 2 dimensional graph layouts. Crossing reductions has been used as an approach to
heuristically improve algorithms for some time. For example Sugiyama [STT81] states that
“ The greatest difficulty in tracing paths is line crossings” and he uses crossing reduction as a
step to improve the layout of hierarchies.

Many aesthetics have been postulated, often as part of the goal of a particular graph
drawing algorithm. These aesthetics have included graph symmetry [Ead84], minimising
the number of edge crossings [STT81], minimising the number of bends in edges [Tam87],

37 Chapter 2. Background and Related Work

and path continuity [WPCM02]. The efficacy of various aesthetics has been evaluated in
user experiments and some have shown to be more important than others. Purchases
work [Pur97] has demonstrated that edge crossings are by far the most important aesthetic,
impacting both user response time and accuracy, with symmetry and edge bends being of
lesser importance but having significant results. Later work with Ware et al. [WPCM02],
showed that continuity of paths (i.e. keeping path between more distant nodes that traverse
multiple edges as straight as possible) is also an important factor.

For many graphs (those which are not planar) crossings cannot be omitted altogether,
Huang and Fades [WSHE08] demonstrated that maximising the crossing angle so that in­
tersecting edges are perpendicular reduces the negative effects of edge crossing. Huang
and Huang [HHio] have followed up on this work and demonstrated that 38% of variance
in performance is attributable to crossing angle and the rest is attributable to the crossing
number of the graph (in cases where there was a performance variance). So where fur­
ther crossing minimisation is not possible, maximimising crossing angles can be used as a
secondary aesthetic.

More recent work by Purchase et al. [PPP12] has indicated that when users manually
create graphs, they use edge crossing reduction as an aesthetics and also align nodes and
edges to an underlying grid.

2.4.3 Evaluating User Performance

To fully evaluate the effectiveness of any graph algorithm or suggested aesthetics, its benefit
to the end user needs to be measured. Different tasks to evaluate user performance, and
implicitly graph comprehensibility, have been suggested.

For experiments considering the impact of graph aesthetics [Purpy] as well as the im­
pact of various graph layout algorithms [Pur98], Purchase utilises a path tracing task (spec­
ifying the shortest path between two nodes), as well as questions concerning the graph
structure, such as “how many nodes must be removed to disconnect two highlighted nodes?”
These tasks are designed to reflect the experiment participants understanding of the rela­
tional nature of the graph being displayed.

Ware et al. [WPCM02] use a path tracking task in their evaluation of the aesthetics
of graph edges. This includes features such as edge crossings, path directness and average
geometric edge length. For each displayed graph the user is asked to determine the shortest
path distance between two nodes and is given an option of three, four or five to choose from
as their answer. The time to answer and error rate is recorded for analysis.

In Ware and Mitchell’s [WM08] experiments on the comprehensibility of 3D graph
visualisation, they use a path tracing task where the paths distances were limited to either
two or three hops. In Huang et al.’s [WSHE08] evaluation of the effect of crossing angles
of a graph, the task is again path tracing with paths of length from four to seven hops

Section 2.4. Graph Visualisation Evaluation 38

long. In Huang et al’s study of graph evaluation [HEH08], the authors used path tracing as
part of an eye-tracking study, as well as questionnaires which were used to evaluate user’s
perception of node importance and node grouping.

These above experiments involve low level relational tasks which are not domain spe­
cific. For a broader system evaluation, experiments are based on high level, interpretive
tasks. For example, in Risden et al’s [RCMCoo] study on ease of use of 2D and 3D visuali­
sation of web content, they used a search task related to directory management of a website
with all of the participants of the experiment having technical experience. Assessing per­
formance at high level tasks which require domain knowledge is difficult. In Purchase et
al’s study on comprehension of UML diagrams [PMCCoi], the study was limited by the fact
that university students, given a tutorial on UML diagrams, were used as subjects rather
than experienced software engineers.

High level tasks are useful for evaluating visualisations designed for specific purposes.
However it is difficult to generalise any results across general node-link diagrams as the
high level task itself, or the visualisation application domain, may have a strong influence
on the graph characteristics. For example the directory structure for Risden et al’s experi­
ment was a tree structure, so it is not clear if their results will generalise to other types of
graph. Given that domain knowledge also plays a significant role, it may be better to use a
low level task, such as path tracing, that can be generalised to a higher level task. Table 2.1
provides a summary of tasks used in previous experiments.

Graph Properties in Previous Experiments

Tables 2.1 shows the size of graphs in previous works. While the largest graph was used by
Risden et al, the experiment was performed on a single graph, used for a high level task, as
opposed to a series of graphs or a large size with varying different properties. Therefore it
is difficult to see how the scale characteristic contributes to the result.

Clearly the choice of graphs for a study reflects the goals of the study. Ware and Mitchell
[WM08] utilise 4 different graph sizes, with the same varying edge distribution between
nodes for each size, reusing the same graphs under different viewing conditions for their
experiment. This reflected the aims of the experiment, which concerned the impact of
stereoscopic three dimensional viewing as graph size increased. Other evaluations of graph
aesthetics such as [Pur98, Pur97] use only a single graph in their evaluation. In these
experiments Purchase evaluated very specific effects of graph layout, and introducing a
larger range or graphs may have introduced confounding factors. Determining the range
of graphs to be used as inputs is a difficult issue. If a wide variety of graphs are used, there
is an increased risk of introducing factors external to those under investigation, which may
impact results. If only a small number, or single graph is used, results may not generalise
to graphs with different properties to the ones used for an experiment.

39 Chapter 2. Background and Related Work

Study Authors Year Task Goal
Purchase 1998 Path tracing,

Node removal,
Edge removal

How long is the shortest path be­
tween two given nodes? How many
nodes must be removed to discon­
nect two highlighted nodes? How
many edges must be removed to dis­
connect two highlighted nodes?

Purchase 1997 Path tracing.
Node removal.
Edge removal

How long is the shortest path be­
tween two given nodes? How many
nodes must be removed to discon­
nect two highhghted nodes? How
many edges must be removed to dis­
connect two highlighted nodes?

Ware and Purchase 2002 Path tracing How many hops between high­
lighted nodes?

Mitchell and Ware 2008 Path tracing How many hops between high­
lighted nodes?

Ware and Franck 1996 Path tracing Does a path exist between nodes?
Risden et al. 2000 Node Inser­

tion
Using the graph to aid in the addi­
tion of new nodes to a hierarchy

Huang et al. 2008 Path tracing Determining the number of links in
path, measuring the time for a cor­
rect answer, ignoring incorrect ones

Table 2.1: User tasks in previous graph based empirical studies

Section 2.4. Graph Visualisation Evaluation 40

Study Authors Year Node Count Edge to Node Ratio Layout
Purchase 1998 16 1.69 Multiple type of

layout
Purchase 1997 16 1.69 Graph layout was

derived from the
aesthetics being
evaluated

Ware et al. 2002 42 1.0 - 5.0 Force Directed
With Simulated
Anneahng

Mitchell and Ware 2008 33. 100, 333,
and 1000

Max degree of 5 A modified ver­
sion of Force Di­
rected Fruchter-
man Reingold
layout

Ware and Franck 1996 21-291 1-333 Random Layout
Risden et al 2000 1200 unspecified Hierarchy com­

bined with list
layout for the pur­
pose of 2D and
3D comparison

Huang et al 2008 N/A Full
graphs were
not used,
only small
graph-like
stimuli

N/A N/A

Table 2.2: Graph sizes in previous graph based empirical studies

41 Chapter 2. Background and Related Work

2.5 Edge Routing

Keeping edge crossing to a minimum is important for two dimensional graphs. However
for a graph of any considerable size and density, there will be a significant number of edge
crossings, and maximising edge crossing angles may be ineffective due to constraints of
the graph layout or the sheer number of edges. Therefore, a huge number of edge cross­
ings is often unavoidable in a very large dense graph. Example subjects of such graphs
are complex computer programs and file systems [H0I06, BD07], graphs representing air
traffic [CHH+08, HW09] (using a map and geometrically fixed nodes). Other approaches
are necessary to reduce the amount of clutter introduced by a larger volume of edges and
clarify the paths taken by edges. Edge bundling is a recently popular technique by which
edges are grouped together and drawn using curves which share a common path from
their source to destination, if they have a common geometric destination or a common
conceptual basis. It is often used in dense graphs where straight edges become indistinct
due to the clutter cause by the number of edges as clutter reduction techniques such as the
reduction of edge crossings are impractical or ineffective.

2.5.1 Edge Bundling

The edges which contribute to a grouping of edges, referred to as a bundle, may be deter­
mined by graph structure, such as a hierarchy [H0I06, BD07], or the geography of nodes
[CHH^oS, BD07, HW09]. Once the edges for a specific bundle have been defined, they
are drawn using curves known as splines. In a spline the individual curve points are calcu­
lated using a polynomial function which interpolates values based on an input set of con­
trol points. There are many different type of splines, however the most commonly utilised
splines for edge bundling are Bezier curves and B-splines. Other types of curves such as
/3-splines have be tested [H0I06] but never adopted. Bezier curves are significantly eas­
ier to calculate than B sphnes. The calculations consist of simply multiplying a geometry
matrix, defining the control points, by a Bezier basis matrix, which defines the polyno­
mial function. This allows long curves to be created using multiple Bezier segments with
overlapping control points. B-sphnes require a more significant amount of calculation, as
a different basis has to be worked out for different line segments using the Cox De Boor
recursive algorithm. However B-splines result in a much higher level of control of the re­
sulting curve and this allows a much more flexible routing. B-splines are a better approach,
as long as graph size does not result in their computational complexity being an issue. Dif­
ferent approaches to bundling are characterised by how edges are chosen to be bundled
together, which spline type is used to draw the edges as curves, and how the control points
are defined for the curves.

Section 2.5. Edge Routing 42

Hierarchical Edge bundling

Developed by Holten, the hierarchical edge bundling algorithm [H0I06] is one of the most
effective forms of edge bundling. It is, however, limited to compound graphs that are laid
out in the form of a hierarchy. In the basic form, the nodes of the graph are positioned
using a hierarchical layout, and hierarchy node positions are utihsed as control points for
drawing the splines. Piecewise splines are used to draw the edges between nodes. These
edges are referred to as adjacency edges to discern them form the edges of the hierarchy
(which are not drawn). The set of control points for the edges is the set of nodes on the
shortest path between the source and target nodes in the hierarchy. B-Sphnes are chosen
as the spline representation. Beta splines and Bezier curves were also considered, however
they were found lacking . Bezier curves did not provide the desired level of control and
beta splines required extra process to achieve results which were achievable with regular
B-Splines and an external straightening parameter. This straightening parameter is used
as two splines with similar sets of control points will overlap, however by adjusting the
straightening parameter the spline are drawn at slightly different positions. The straight­
ening parameter adjusts the control points of each individual spline that makes up a bundle
based on their position in the curve and the relative position of the initial and end control
points. The initial and end control points are the positions of the source and destination
nodes of the edge. For a curve using N control points, beginning at Pq and ending at Pn-^,
the straightened position P' of control point P, is given by:

P' = ^ ■ P, + (1 - ^)(P„ + — (Pn-. - Po))

j3 is the straightening parameter. It lies in the range [o, 1.0], with j3 = 0.0 resulting in
straight lines between curves and j3 = 1.0 resulting in tightly bundled overlapping curves.
Holten also uses alpha blending of the edges to help convey the density of bundles, and to
help pick out bundles where large numbers of edges overlap. The edges of the visualised
graph are directed edges with the direction indicated by a changing colour gradient which
may also have an impact on the readability, as a differing change in gradient between edges
may help distinguish them. The results of Holtehs edge bundling approach using two dif­
ferent layouts can be seen in figure 2.16.

In later work, Holten and Van Wijk [HVW08] utilised hierarchical edge bundles as
a technique to aid in the visual comparison of hierarchically organised data. The edge
bundles visually emphasize the splits, joins, and relocations of sub-hierarchies between
data sets being compared.

43 Chapter 2. Background and Related Work

(a) Hierarchical circle layout. (b) Radial circle layout.

Figure 2.16: Images taken from [H0I06] visualising a graph showing the structure of a
software system, using hierarchical edge bundling

(a) Unbundled (b) Bundled, with colour indicating edge
density

Figure 2.17: Images taken from [CHH'^oS], visualising a graph showing migration between
states in the U.S., using Cui and Zhou’s geometric edge clustering

Section 2.5. Edge Routing 44

Geometric Edge Clustering

Cui et al. have developed a purely geometric approach to bundling edges [CHH^oS] ,
following on from previous work by Qu et al. [QZW07]. This approach involves generating
a control mesh for the graph. The control mesh is generated by a Delaunay Triangulation,
a technique by which geometric space is divided into a set of triangles, based on a set of
input points. The resulting triangles have the property that no point in the inputs set lies
within the circum-circle of any of the triangles generated.

A set of input points can be selected by the user or determined automatically. These
points are not nodes within the graph but points which are to form the vertices of the De­
launay triangulation (edges to be included can be specified too). In the case where the
mesh is determined automatically the graph is subdivided into a grid and for each cell in
the grid the number of graph nodes and links passing through are calculated. The authors
then store the direction of each edge in a feature vector and perform a Kernel Density Es­
timation. This gives them a probability curve of direction for each grid square. If there
is a strong probability of all curves going is a specific direction then this is the primary
direction assigned to the square. Grid cells are then merged with cells containing a similar
primary direction (i.e. the difference between orientations is within some threshold angu­
lar distance). Cells are merged into a larger region until the difference between all primary
directions is beyond some threshold specified as an input.

Once the mesh is generated actual clustering of the edges begins. For each edge of
the mesh, one or more control points are generated. The input to the smoothing is the
points at which the graph edges intersect the mesh triangle edges. The authors use K-
means clustering of these intersection points to determine the actual control points to be
used (if only one control point is desired this is in effect the average position). This results
in noticeably tight bundles (see figure 2.18). However, this can be partially rectified by using
a higher resolution of grid and adjusting the threshold angle for merging grid squares. Due
to the kernel density estimate and averaging (and K-means clustering) some edges might be
periodically be bundled in the wrong direction resulting in difficult to follow meandering
links in the final visualisations. To overcome this problem, the authors performs local edge
smoothing. The smoothing is local as it only considering alternate paths for the edge within
nearby triangle of the mesh. The authors determine which edges need to be smoothed by
examining a metric which is a combination of the bundled edges angular difference for the
original straight edge and Euclidean distance difference for the straight edge. The weighting
of the two quality attributes is decided by the user. Using this metric, poor quality links are
identified and an alternative is sought by searching the mesh triangles that the edge passes
through, as well as some of the neighboiu-ing mesh triangles.

It can be seen from the above that this approach is algorithmically more complex than
hierarchical edge bundling, requiring extra smoothing an less intuitive generation of con-

45 Chapter 2. Background and Related Work

Figure 2.18: Example given by Cui[CHH+o8] of Edge clustering by control points: (a) a
graph with a control mesh, (b) the intersections and the control points and (c) the merged
graph.

trol points. The results of Cui and Zhou’s approach can be seen in figure 2.17, on a graph
representing migration patterns between states in the US. This type of graph, where node
positions are fixed absolutely (as they represent states on a map), benefits the most from
Cui’s approach as the clustering hierarchy necessary for hierarchical edge bundling is not
present.

Other Geometric approaches

Zhou et al. [ZYC'^o8] build on Cui’s approach allowing for a
hierarchical bundling of edges (see figure 2.5.1 for an exam­
ple) using an energy based approach to determine the con­
trol points for the bundled hierarchy edges. The resulting im­
ages bundle edges tightly and care has to be taken about the
reading of the graph, as the bundled edges could be misin­
terpreted as a visualisation of a hyper edge in a hyper graph.
The authors admit that sometimes the edge direction is not
always entirely clear. This approach differs to [H0I06] and
[CHH+08] as when edges share a common path they can
overlap entirely for some of that path.

Lambert et al [LBAiob] provide an approach that is
slightly similar to Cui et al. It includes a similar spatial sub­
division, but instead of Cui et als grid it uses a hybrid quad­
tree / Voronoi diagram approach. The grid is also used to
route edges. The edges of the grid act in a similar manner
to the Delaunay triangulation performed by Cui et al, how­
ever the strength of these edges is determined by calculating
a shortest path algorithm on the original graph and calculating how many edges from the
original graph cross each grid edge. The authors have also extended their edge bundling

Figure 2.19: Example im­
age taken from [ZYC'^o8],
showing the effect of
Zhou’s Hierarchical edge
bundhng. The graphs
are unbundled in the top
row and bundled in the
bottom).

Section 2.5. Edge Routing 46

into 3D [LBAioa], displaying 3D edge bundles running across a spherical geographic map
of earth. The authors also use visual techniques such as bump mapping to aid in the visual
display of the edges.

Force Directed Edge Bundling

Holten and van Wijk [HW09] also developed an edge bundling approach which has no
need for a hierarchy, as edges are routed using a force directed algorithm. In this approach,
edges are subdivided into points that interact with each other in a manner similar to a force
directed layout. This approach leads to very high levels of bundling so edge compatibility
measures are used, to determine which edges should be bundled together. Edges are bun­
dled together only if they are compatible in orientation and in length. The resulting edges
are then smoothed using a Gaussian kernel to adjust the position of the internal points of
the edges. The strength of the bundhng can be adjusted in manner similar to the bundles
in [H0I06]. The resulting colour of the edges is determined from a gradient scale related
to the number of edges intersecting a specific pixel.

Other Occurrences Gansner and Koren [GK07] use edge bundling to reduce clutter as
part of their improved circular layout. Edges are bundled tightly, merging to a single line,
leaving the connectivity of node pairs to be inferred by the user based on the order of
nodes at either end of the bundle. The approach used for winding roads [LBAiob] has also
been expanded to generate 3D edge bundles for use with spherical geographical layouts
[LBAioa]. 3D Edge bundling also features as a component of Balzer and Deussen’s level of
detail visualisation of clustered graphs [BD07]. Edges are grouped together based on inter
cluster connectivity and divided into segments which are routed together algorithmically.
Bezier curves are utilised to smooth the resulting edge segments, but are not utilised as
part of their routing. Pupyrev et al [PNBH12] also use an approach similar to the mesh
based approach described previously, creating a grid graph for edge routing. This routing
graph is used to route edges so that they do not obscure nodes, as opposed to Cui et al. who
use the mesh to generate control points. Bundles are drawn using Bezier curves, which are
evenly spaced apart (rather than using a straightening parameter), and ordered in such a
way that edged crossing are reduced. Luo et al. [LLCM12] also utilise a geometry based
approach using spatial partitioning to bundle edges ijn order to reduce edge ambiguity.
Their approach is interactive and on demand. Bundhng only takes place in areas of a graph
where a user desires it, to reduce edge ambiguity and improve readability.

Bundling Interactivity

Approaches such as Cui s geometric edge bundling and Holten’s hierarchical edge bundles
produce an edge routing which is global for the whole graph. The edge bundling is in-

47 Chapter 2. Background and Related Work

teractive in the sense that parameters can be altered and the edge bundling redone. Other
techniques such as Edgelens [WCG03] distort edges in a local fashion which can be consid­
ered related to bundling. Edge lens distorts edge around a focal point (the lens) using edge
curvature to allow the user to see any obfuscated data, such as nodes, or to separate closely
routed edges. Edge lens derives from edge plucking [WC07], which is a technique which
allows users to interact with edges directly, moving them using the cursor (like plucking a
guitar string) in order to clarify any ambiguity about their path. Riche et al. describe an
interactive local bundling approach refered to as link magnets [RDLC12] as part of their
overview of interactive edge routing approaches. This approach requires user interaction
to position “magnets” in the graph which distort edges to allow the user to see graph aspects
more clearly.

2.6 Three Dimensional Stereoscopic Vision and Graphs

Stereoscopic viewing of objects has been know about since the Victorian era. It was iden­
tified by Charles Wheatstone in 1838 [Whe38], who also developed the Wheatstone stere­
oscope (and coined the term stereoscope). A stereoscope is a device which, when used to
view two images side-by-side, provides the illusion of depth. The images must correspond
to the left and right eye view of a scene. During World War two, as part of operation Cross­
bow, allied reconnaissance planes took multiple photographs of the landscape of Nazi long
range missile sites in Europe.

These were then viewed using a stereoscope, of
the design shown in figure 2.20. The use of stereo­
scopic 3D allowed the allied analysts to measure the
height of new structures at the site.

2.6.1 Stereoscopic Display of Graphs

Much research has been done in visualising graph
structures using three dimensional displays [WF96,
WM08, SM93, HHLio]. Displaying a graph in
stereoscopic 3D usually requires specialised hard­
ware. Stereoscopic vision depends on delivering a
different image to each eye. Many approaches re­
quire the user to wear glasses, while a screen displays
images for both the users left and right eye.

Figure 2.20: A World War 2 stereo­
scope and Case.

Section 2.6. Three Dimensional Stereoscopic Vision and Graphs 48

Stereoscopic display approaches

Early promising results on visualising network
graphs in three dimensions was produced by Ware and Franck [WF96] using active shutter
glasses. Active shutter 3D glasses require a display which alternates between rendering the
left eye view and right eye view for each frame. The active shutters of the glasses are syn­
chronised with the display frequency so that each eye only sees the frame that is targeted
at that eye. Passive glasses systems are usually projector based and require overlapping po­
larised projections of each eye image onto the display. The passive glasses act as filters so
that each eye only sees the image intended for that eye. Most contemporary three dimen­
sions cinema displays utilise passive 3D, which many home television and computer three
dimensional displays utilise active 3D. Previous generations of shutter glasses were often
bulky and quite uncomfortable, however more recent consumer oriented products have
improved the form factor and reduced the size of shutter glasses. It is also possible to dis­
play a three dimensional stereoscopic image without the use of glasses. Auto-stereoscopic
displays [Delos, HHLio] are a more recent technology at consumer level, however they
very often require an large number of images to be rendered for each frame, compared to
the usual two for most other stereoscopic visualisation techniques. This can significantly
damage interactivity as a high level of scene complexity results in a greatly reduced frame
rate.

Anaglyph 3D is an alternative to using the complex hardware required for shutter glasses.
This approach uses red/cyan or similarly coloured glasses on a regular display but with
specially altered renderings. Anaglyph stereo has been used for three dimensional exper­
iments, for example van Shooten et al. [vSvDZS^io]. However the distracting nature of
the coloured lenses as well as the loss of colour as an information channel makes anaglyph
stereo a last resort and only if no other means of stereoscopic vision is possible.

In [WM08], Ware and Mitchell used an adaptation of a Wheatstone mirror stereo­
scope to allow for higher resolution stereoscopic display. This device, rather than requiring
glasses, requires the user to look into an apparatus where two mirrors reflect images from
a pair of high resolution displays, one for each eye. While allowing for high resolution
image that reduces artefacts such as image ghosting, which affect other approaches, this
apparatus is not practical for everyday user interaction with a display.

Head Tracked displays often go hand in hand with stereoscopic displays and add an
extra level of immersion for users [WAB93, WF96, HHLio]. When head tracking is used
the images displayed are updated depending on the position and orientation of the users
head. Effectively the virtual camera rendering a scene is controlled by the users head mo­
tions. This adds motion parallax which adds to the perception of three dimensionality in
addition to the stereoscopic effect.

One final option is a head moimted display, which is essentially a large pair of glasses

49 Chapter 2. Background and Related Work

with a separate display for each eye as well as a means of head tracking. These devices
generally require complete immersion in a visualisation by a user and limit interactivity
with an external stimuli and hence are quite impractical for many real world visualisations.

Stereoscopic and motion depth cues

Both stereoscopic and motion cues provide depth information to the user. However the
level of contribution of each, as well as the impact of combining both cues, is not consistent
across all previous work comparing the impact of stereoscopic and motion cues on user

performance.
Sollenberger and Milgrams experiments [SM93] showed that both motion cues and

stereoscopic display improve user performance at a tree based path tracing task. The mo­
tion cues were based on rotation of the graph structure back and forth, and their task was
focused on selecting the correct root node for a tree containing a highlighted leaf node. The
authors state that the motion cues improver user performance more than the stereoscopic
cues. Ware et al. [WAB93] conducted a similar experiment, except the rotation was the
result of head tracking, coupled with the stereoscopic display, and found similar results.

In Ware and Francks 1996 paper [WF96] users performed head tracked path tracing
tasks on randomly laid out three dimensional graphs. Once again motion is better, but
stereo also has a strong effect. In later work, from Ware and Mitchell which re-visited the
topic of stereoscopic display of graph visuahsations [WM05, WM08], the authors used a
spring embedder layout as opposed to a random layout, as well as a much higher reso­
lution display than previous experiments. They discovered a larger positive effect from
use of 3D depth cues (both motion and stereoscopic) than previously noted. In particu­
lar, that the viewer could comprehend larger graphs more easily. There was no significant
difference between motion and stereo cues for novice users (14 of which were used in the
experiment). In their work on path tracing tasks using depth with multi-view (i.e. auto-
stereoscopic) displays Hassaine et al’s [HHLio] results show that when comparing motion
cues, in this case motion parallax as a result of head tracking, combined with stereoscopic
cues, stereoscopic depth cues play a larger role in user understanding of the graph. The au­
thors postulate that this may be because motion parallax only has an additive effect if there
is a significant amount of occlusion in the 3D graph rendering. They also note that previous
work [BPGoo, AGB96] has shown that the benefit of motion parallax and stereopsis de­
pends greatly on context and can be influenced by the task, as well as by the experunental

procedure.

2.6.2 Stereo rendering

Given a common dual image based approach for stereoscopic display a visualisation ap-
pUcation must the take the rendering hardware and display hardware into consideration.

Section 2.6. Three Dimensional Stereoscopic Vision and Graphs 50

Figure 2.21: A simple single camera set up, the image projected onto the near projection
plane is that which is seen by the user.

The OpenGL graphics API provides extensions that allow applications to render to sepa­
rate display buffers for the left eye and the right eye. In order for an application to render
an image to be viewed on a stereoscopic display the scene is rendered from the perspective
of the left eye and rendered to the left display buffer and then from the perspective of the
right eye to the right display buffer.

Each display buffer requires a different scene projection to reflect the fact the image
is targeted to a specific eye. The standard approach to rendering a scene in a visualisa­
tion application is to model a camera with a position and set of orientation vectors in the
rendering space. A viewing frustum is also defined. This is used to specify the projection
matrix which maps from the three dimensional model of a scene (which may just be a sim­
ple graph visualisation) to the two dimensional projection plane as seen in figure 2.21. The
parameters of this frustum can be specified as the position and size of near and far clipping
planes. Alternatively, these parameters can be defined like those of a camera are, repre­
senting a field of view (also know as aperture) and an aspect ratio, with a maximum and
minimum viewing distance. The aspect ratio is the proportion of the height of a projection
plane to the width of the projection plane. In a simple single camera setup the projection
plane can often be thought of as the near clipping plane of the viewing frustum. As there
is only a single camera position, the view transformation being applied to the scene needs
to only consider the camera position and orientation

To render a scene using a stereo camera it is necessary to know the position of each eye
(which can be determined from a value for the eye separation) as well as build a separate
viewing frustum for each. Because these viewing frustums have separate origins, but the
same near and far planes, they are not the symmetric frustums as seen in the single camera

51 Chapter 2. Background and Related Work

Figure 2.22: A stereo camera set up. The eye positions are offset along the right vectors of
the camera by the eye separation value. The overlapping frustums are not symmetrical like
the frustum used for the single camera eye setup

case (as can be seen in figure 2.22), we also need to define a focal length parameter, which
is the distance form the camera position to the projection plane. This directly impacts the
3d effect of stereoscopic viewing. Objects which are closer to the camera than the projec­
tion plane will appear to pop out in front of the display (negative parallax). Objects which
are further away will recede into it (positive parallax). The matrix which models the view­
ing transformation applied to the rendered scene by the camera also needs to be updated
between left eye and right eye rendering passes. The camera orientation is the same for
each eye, however the position of the camera for the left eye rendering and the right eye
rendering depends on the eye separation.

Eye Strain

The stereoscopic parameters described above can have a significant effect on a users ability
to perceive the graph as a 3D object. If there is a mismatch in values, such as the eye
separation being to large relative to the focal length, there may be excess parallax (positive
or negative) as an object becomes more distant from the focal length. As a result, the
disparity between the left eye and right eye images is too large and the viewers brain is
unable to combine them into a 3D object, so the stereoscopic effect is lost.

Even if the viewing setup still allows stereoscopic vision, in many cases the setup can

Section 2.7. Implementation of Graph Rendering and Processing 52

Figure 2.23: The vergence angle of the eyes 6 changes depending on the distance to the
object being focused on.

tax the human visual system so heavily that physical discomfort can occur. One of the main
causes of this strain is related to a mismatch between the focal length of the eyes and what
is referred to as the vergence. Vergence describes the convergence of the eye orientation
when we look at an object. A more distant object will result in a narrower vergence angle
as can be seen in image 2.23. When a user looks at an image on a stereoscopic display all
objects are at the same focal length, regardless of how deep they appear to be. The vergence
angle of an object combined with the disparity between the left eye and right eye images
does provide enough information for a user to perceive the objects in 3D . However the
the lack of correct focus information combined with the vergence may be the cause of eye-
strain that is frequently associated with stereoscopic viewing [WRMW95].

2.6.3 Three dimensional layout of graphs

Many graph layout algorithms can be easily extended from the usual two dimensional lay­
out to three dimensions. For example Ware and Mitchell used an 3D dimensional spring
layout for their experiments[WMo8]. Extending a force directed layout into three dimen­
sions is a simple case of extending the force vectors and positions of the nodes into three
dimensions. However three dimensional layout of graphs causes significant issues of oc­
clusion, depending on the viewing angle of the graph.

2.7 Implementation of Graph Rendering and Processing

As described in section 2.1 graphs are most often visualised as node link diagrams. When
rendering a node Unk diagram, there are many low level technical implementation aspects
to be considered in order to execute the techniques described in this thesis to render the
associated graphs to a display. We have developed a graph visualisation application to
demonstrate and test our approaches. All images in this thesis, unless credited otherwise

53 Chapter 2. Background and Related Work

are generated from this application.

Our implementation uses the C++ programming language. This was chosen due to
the high performance offered, in terms of speed, as well as the wide choice of available
libraries to support graph analysis and rendering. To aid in our processing of graph data
we have utilised the BOOST graph library, which offer graph data structures and algo­
rithms. BOOST is a cross-platform open source set of libraries that provides a wide range
of functionality for C++ application development [Libi2]. For rendering our graphs we use
OpenGL, a cross platform 3D graphics library.

2.7.1 Graphics Hardware

Hardware accelerated graphics are a common feature of modern commodity PCs. Mod­
ern graphics cards use a Graphics Processing Unit (GPU) with many cores capable of pro­
cessing data in parallel, ideal for accelerating raster based rendering. Modern graphics
hardware includes specialised memory, separate from main computer memory, that stores
graphical data, allowing it to be processed by GPUs and displayed quickly. Within OpenGL
a 3D object or model is specified as a set of vertices (representing points in 3D). These are
then processed by the Graphics GPU to produce fragments of a (pixel based) raster image.
These fragments are then processed further, combined into pixels and placed in an area of
memory called a display buffer. The display buffer data is sent to a display device such as
a monitor or projector for viewing. OpenGL utilises Vertex Buffer Objects (VBOs), which
are structures in graphics memory which store the vertices of a 3D object to be drawn.
Storing graph data in VBOs allows large interactive graphs to be rendered more quickly
than if the date is passed form main application memory.

2.7.2 GPU Processing

Modern graphics hardware, though originally designed for enhancing 3D rendering per­
formance, is also capable of being used for other computational tasks. It is extremely ben­
eficial when calculations are discrete and capable of being done in parallel, such as the
calculations of forces acting on an individual node for a force directed layout as seen in Fr-
ishman and Tal [FT07]. Programmable GPUs allow the user to create small pieces of code
called shader programs which execute on graphics primitives such as the vertices of a 3D
model and the pixel fragments of a raster display (and more recently geometric primitives).

In earlier attempts to utilise GPUs to aid in graph layout the GPU was utilised using an
approach know as General Purpose GPU programming. The performance optimisations
offered by the GPU are focused on graphics operations and as a result the programming
model is structured for that specific field. Effectively GPGPU is an approach by which
an algorithm is disguised as a graphics rendering pass, during which the programmable

Section 2.7. Implementation of Graph Rendering and Processing 54

shaders process the input graph data. Rather than outputting a pixel colour to the screen
buffer, the output information is read back to the CPU and interpreted by the calling pro­
gram. This programming model limits the range of problems that can be ported to the
GPU.

Since Frishman and Tal’s work [FT07], GPGPU has been replaced as an approach to
programming graphics hardware. CUDA (Compute Unified Device Architecture) is an
programming model realised by nVidia to specifically allow access to programmers to
graphics hardware for non graphics purposes. It is a C based programming language that,
while reflecting the underlying multi-core architecture of the GPU, is free of many of the
restrictions of GPGPU programming.

Harish and Narayanan [HN07] showed the benefit of CUDA for accelerating graph
algorithms. The authors showed significant benefits using basic CUDA implementations,
for random general graphs Breadth First Search was 20 to 50 times faster than a corre­
sponding implementation on the GPU. A Single Source Shortest Paths algorithm ran 70
times faster on the GPU than on the CPU. However such a dramatic performance was not
seen for graphs which were scale-free. This meant that some vertices had considerably
more edges than others, which impacted the performance. However the GPU approach
still outperformed the CPU approach. For an example real world graph of low degree,
the CPU actually outperformed the GPU. This was as on a low degree graph these algo­
rithms are not easily parallelisable as the graph is almost linear, so the benefit offered by
GPU parrallelisation is lost. Luo et al [LWHio] have produced an effective Breadth First
Search algorithm. In terms of layout Godial et al. [GHGH09] have demonstrated a CUDA
implementation of Hachul and Junger’s Fast multi-pole multi-level Method (FM3)[HJo5]
which performs at least 20 times faster than the CPU based version and is 30% faster than
Frishman and Tals GPGPU approach.

CUDA has also been used to optimise other aspects of graph visuahsation than cluster­
ing and layout. For example in Ersoy et aVs Skeleton-Based edge bundling [EHP+11], the
algorithm for calculating a skeleton structure for graph edges ran 100 times faster using a
GPU based CUDA solution, when compared to a CPU implementation.

Chapter 3

Agglomerative Clustering around Nodes
of Interest

As THE AMOUNT OF INFORMATION TO BE VISUALISED by a graph becomes larger or more
dense, the graph becomes more difficult for a user to comprehend. Use of a clus­

tering structure on top of the classical node-link model can help provide information, as
nodes that are clustered together have an implicit relationship. A graph may not have an
intrinsic data structure and any clustering provided by a generic clustering algorithm may
not align with a user’s task.

In this chapter we present an approach for agglomeratively clustering graphs based on
user input. As part of our approach a user can specify nodes of interest, which form the
basis of the clusters. We build clusters around these nodes using a heuristic which we have
chosen based on the structure of the often encountered Small World Graphs described in
section 2.1.2.

We chose clustering coefficient, described in section 2.1.2, as a heuristic. We build clus­
ters agglomerative by adding nodes to clusters based on their impact on the resulting av­
erage clustering coefficient of the cluster. If a cluster has a high average cluster clustering
coefficient, it indicates that all of the nodes within the cluster have many interconnected
neighbours within that cluster.

Chapter structure: This chapter is structured as follows:

• In sections 3.1 and 3.2 we describe our motivation and the related work for this chap­
ter and in section 3.3 we describe how we calculate clustering coefficients.

• Section 3.4 describes our initial investigations into using clustering coefficient as a
heuristic to guide the agglomerative clustering around nodes of interest.

• Section 3.5 describes an approach which maximises the average cluster clustering
coefficient of clusters.

Section 3.1. Motivation for Clustering 56

In section 3.6 we provide a detailed evaluation of our approach across a wide range
of graphs, comparing it to other heuristics. We also compare our approach to a well
known top-down clustering algorithm.

In section 3.7 we apply our approach to a benchmark data set and examine the results
against the existing classification of the nodes.

In section 3.8 we describe our conclusions and potential avenues for future work.

3.1 Motivation for Clustering

Our motivation is to make graphs more comprehensible and we use graph clustering to
support this aim. We are focusing on small world graphs specifically. This is due to the
presence of groups of highly connected nodes, the strong likelihood of cluster structures
within the graph, as well as the common occurrence of small world properties in real world
networks. If a user is investigating nodes of specific interest to them, reorganising the
layout of the graph based on the nodes of interest may aid in their analysis. For example a
user may want to view a graph describing a large program focusing on specific classes, or
a biologist may wish to view a predator-prey network focusing on certain animals.

The purpose of our clustering approach is to aid in the layout by clustering nodes
around the user’s nodes of interest. The clustering assigns nodes in such a way that they are
clustered around nodes that they are more conceptually related to, based on graph struc­
ture. If grouping a node with one node set over another results in a higher heuristic score
for that cluster, we can infer that the node conceptually belongs more to it. In less dense
graphs a clustering may be obvious as there will be few links between clusters. However,
for more dense graphs, useful clusterings may not be so obvious. The density of edges can
make the graph more difficult to read and the relationships between nodes may be ob­
scured. A node may also have strong relationships with several other nodes, and allowing
the user to rearrange a graph based on nodes of interest allows the user to see clearly the
relationships that are most pertinent.

3.2 Related work

The characteristics, origins and relevance of Small World Graph are described in detail in
section 2.1.2. The background and state of the art of clustering is described in section 2.2.1
and evaluation techniques for clusterings are described in section 2.2.3. A brief summary
of cluster and evaluation is provided here to provide context for this chapter.

57 Chapter 3. Agglomerative Clustering around Nodes of Interest

3.2.1 Clustering

There are many different approaches to graph clustering (or partitioning as it is often re­
ferred to). Some methods use an algebraic approach, working on a mathematical repre­
sentation of the graph, [FT07, vDoo]. Other methods such as Edge Betweenness Cen­
trality Clustering [NG04] use a graph theoretic based approach, calculating graph the­
ory characteristics of vertices or edges that are then used to partition the graph into clus­
ters. Some clustering algorithms, such as edge betweenness centrality clustering take a
top down, or divisive approach splitting the graph into separate clusters. Others take a
bottom-up or agglomerative approach, merging sets of nodes together to form clusters

[Newo4, HKKS03, QEoi].

3.2.2 Clustering Evaluation Metrics

Newman and Girvan [NG04] define a measure of the quality of a division of a network
graph, referred to as modularity. The measure is used to evaluate their community de­
tection algorithm (which is essentially a top-down clustering algorithm). The measure has
also been used in work by Newman [Newo4] as a heuristic value for agglomeratively build­
ing clusters. This metric is based upon the number of edges that start and end in the same
cluster (referred to as communities in Newman and Girvan’s paper). Auber et al [ACJM03]
and Chiricota et al. [CJM03] use a quality measure developed by [MMR^98] and utilised in
their clustering tool “Bunch”. This measure, denoted MQ (Modularisation Quantity) com­
putes a value for any given partition of a graph. Chiricota et al. and Auber et al. use a
slightly modified version of MQ that is defined only for undirected graphs as an evaluation
measure. The MQ value is used by the Bunch tool as a function to be optimised to provide
a good clustering, rather than as a metric to evaluate one. Both modularity and MQ score
are described in detail in section 2.2.3. Boutin and Hascoet [BH04] discuss many other
clustering evaluation approaches (referred to by them as clustering validation indices) and
they note that these evaluations are often difficult to interpret and compare. Bittencourt
and Guerrero [BG09] and Wu et a/.[WHHo5] evaluate several clustering metrics in the

context of software system analysis.

In their work on the layout of small world graphs [vHWoSa], van Ham and Wattenberg
utilised a social network based on the the influences between prominent historical figures,
the “genealogy of influence” [Lovio]. In this network, individuals are connected if one
of them was an influence on the work of another. For example Socrates influenced Plato,
therefore there is an edge between the nodes representing each of these individuals in the
network. The purpose behind the use of such a network is that the profession of each
individual provides an extrinsic clustering of nodes, and such a clustering can be used to
evaluate a layout (or in our case a clustering).

Section 3.3. Calculating Average Local Clustering Coefficient 58

3.2.3 Edge Density

In section 2.1.4 we discussed graph density and differentiated between graph theoretic edge
density and linear density. As mentioned previously, many real world graphs have a, linear
density value of di <= 10. However some examples such as web-crawl graphs have even
higher densities, such as web-crawl graphs with d/ = 25.57 [Melo6]. Increasing edge density
alters the structure of a graph, and impacts the behaviour of a agglomerative clustering
algorithm. The more dense a graph is, the larger the number of neighbour nodes that are
available for agglomeration into a cluster. Clearly graph density needs to be considered
as part of an evaluation of an agglomerative clustering algorithm. It is clear that graph
theoretic density scales the number of edges more dramatically for a change in vertex count,
so for comparison of densities between graphs with different node counts linear density
provides a clear comparison.

Purchase [Pur97] has demonstrated how the crossing of edges is the graph aesthetic
which affects most human understanding of the graph. Unfortunately, in large dense graphs,
edge crossings are unavoidable. We hope that by clustering the graph intelligently, strongly
related nodes will appear closer to each other within the same cluster. This will reduce long
edges and the likelihood of edge crossings.

3.3 Calculating Average Local Clustering Coefficient

Calculating the clustering coefficient of a single is node is straight forward and is described
in section 2.1.2. A simple algorithm for calculating the clustering coefficient of an individ­
ual node within a cluster is shown in algorithm 2. The average clustering coefficient of
a graph, sometimes referred to as the global clustering coefficient, is the sum of all node
clustering coefficients divided by the number of nodes. The average clustering coefficient
of a cluster, reflects the level of inter-connectivity of nodes within the cluster. Therefore
when calculating the clustering coefficient of nodes within a cluster, to generate the aver­
age cluster clustering coefficient, only neighbours within the same cluster are considered.

In our approach, we set the clustering coefficient of a node to zero if it has less than
two neighbours. Sometimes, as done by Schank and Wagner, clustering coefficient is only
considered for nodes with more than two neighbours. This results in the global clustering
coefficient being the sum of all node clustering coefficients, divided by the number of nodes
which have two or more neighbours.

The calculation of the clustering coefficient for a large set of nodes can be a time con­
suming task. The time taken to calculate the clustering coefficient of a node does not just
depend on the size of its neighbourhood, but also on the size of the neighbourhood of each
node in the original node’s neighbourhood. Therefore calculating the clustering coefficient
for each node in a graph depends not only on the number of vertices | V"! and the number

59 Chapter 3. Agglomerative Clustering around Nodes of Interest

of edges |£| but also the distribution of edges in the graph, (see [Newio]). Fortunately the
clustering coefficient for each node in a graph can be calculated in parallel.

We have implemented the calculation of the clustering coefficient of each node within
a graph or cluster on the GPU. The result is averaged by the CPU to determine the aver­
age clustering coefficient for the nodes within a cluster. The input data required for this
algorithm are the nodes within the cluster, and the edge list for the graph. For extremely
large graph an approximation may preferable, Schank and Wagner [SW05] describe and an
approach for approximating clustering coefficient quickly. However for building clusters
agglomeratively using clustering coefficient we will calculate exact values.

Algorithm 2 Algorithm for calculating clustering coefficient of a node within a cluster

ve Vc
for all u 6 Vc

if {M,v}6£cthen
v.neighbourhoodSize ■- v.neighbourhoodSize + 1
for all w € Vc do

if u ^ w A {u, w} 6 £c A (w, v} e V {v, w} e Ec then
v.neighbourhoodEdgeCount v.neighbourhoodEdgeCount + 1
{As w is also a neighbour of v}

end if
end for

end if
end for
if V.neighbourhoodSize > 1 then

V.clusteringCoefficient := v.neighbourhoodEdgeCount/v.neighbourhoodSize*
{v.neighbourhoodSize -1)

else
v.clusteringCoefficient = o

end if

3.4 Initial Investigation of Clustering Coefficient

3.4.1 Introduction

In this section we describe our initial investigation into the use of average cluster clustering
coefficient as a heuristic. In order to determine its potential we evaluated it against both
procedurally generated and real-world graphs. Our approach consists of agglomeratively
merging nodes, one at a time, into the cluster which results in the highest heuristic score
for the node being clustered.

Section 3.4. Initial Investigation of Clustering Coefficient 60

3.4.2 Initial Clustering Algorithm

To determine which cluster a node conceptually belongs to, the average clustering coeffi­
cient of a cluster is used as a heuristic. The clustering process is as follows:

1. Specify the nodes of interest used as a basis for clusters.

2. Add one neighbour node to each node of interest to form a basic cluster.

3. Build a list of remaining nodes in the graph, sorted by distance from a node of interest
and node neighbourhood size.

4. Add each node to the cluster, that has the highest resulting average cluster clustering
coefficient if the new node is included in the calculation

5. Assign the single neighbour nodes to the clusters of their neighbours.

Each cluster initially only contains a single node of interest, selected by the user. For
each node of interest a single neighbour is added as the calculation of a clustering coeffi­
cient requires a node to have more than one neighbour. The node added to the cluster is
the neighbour of the node of interest, with the largest neighbourhood size. This results in
each cluster containing two connected nodes.

A nodes neighbourhood is the set of nodes which it is directly connected to. The graph
distance between a node and its neighbours is exactly one. The set of all nodes of the
graph that have a neighbourhood size large than one and have not already been assigned
to clusters is then stored in an ordered node list, built by traversing the graph from each
of the nodes of interest using a breadth first search. Nodes are stored, primarily, in order
of their increasing graph distances from a node of interest and secondarily by the size of
the node’s neighbourhood from largest to smallest. Nodes that are connected to only one
other node (i.e. it has a neighbourhood size of one), are not added to the Ust. The reasoning
behind this is that a node which only has one neighbour is guaranteed to have a negative
impact on the local clustering coefficient value of a cluster. Given that the node can only
ever be added to the cluster that it is connected to, it is added to the cluster that its only
neighbour is assigned to once all other nodes are assigned.

The motivation for ordering the list secondarily by neighbourhood size is to allow
nodes of a lower neighbourhood size to be added to a node where as many as possible
of their neighbours have already been added. If nodes of a large neighbourhood size al­
ready are processed first then any node added is more likely to find several of its neighbour
nodes already assigned to the cluster. Furthermore, this ordering results in more balanced
cluster sizes, as it will prevent the clusters which are initially based on more highly con­
nected nodes from taking all the nodes with a small neighbourhood size. A more balanced

6i Chapter 3. Agglomerative Clustering around Nodes of Interest

clustering is more likely to result in a more symmetrical graph, which per Purchase’s exper­
iments [Pur97] is a graph aesthetic which affects human understanding (although nowhere
near as strongly as the number of edge crossings).

In the next stage of the algorithm, the ordered list is iterated through adding each node
temporarily to a cluster. When a node is added to a cluster the average clustering coefficient
of the cluster is recalculated to determine the impact of adding the node to the cluster. The
node is then permanently added to the cluster which has the highest resulting coefficient.
Finally, once all other nodes have been assigned to a cluster, the single neighbour nodes
are then assigned to the cluster of their neighbour.

3.4.3 Evaluation Approach

In order to evaluate the effectiveness of the clustering we compare our algorithm to varia­
tions where cluster coefficient impact was not taken into account. For the “Round robin”
clustering approach, nodes are initially sorted in the same manner as before, but assigned
to each cluster in a sequential fashion. Nodes are only assigned to clusters which they are
connected to. A more thoroughly random approach was also taken, by assigning nodes to
a cluster chosen entirely at random, from a list of all clusters that neighbours of the node
have already been assigned to. Furthermore we have also evaluated using the change of the
clustering coefficient (which we refer to as the clustering coefficient delta). In this approach
nodes are assigned to the least negatively impacted cluster, instead of assigning the node
to the cluster with the highest resulting cluster clustering coefficient.

Evaluation Graphs

We evaluated our algorithm using a wide variety of graphs. For an evaluation using real
world data, we generated a set of four graphs, based on connectivity between Wikipedia
articles. We evaluate these graphs using Newman and Girvans modularity metric.

We also randomly generated small world graphs which are clustered using our ap­
proach and as well as the round robin and random approaches. We used Watts and Stro-
gatz’ approach for creating small world graphs [WS98] as described in section 2.4.1. These
randomly generated graphs contained 60 nodes and vary in edges density. We also gener­
ated a second set of 20 graphs of consistent size and density, with an increasing probability
of rewiring. This results in a set of graphs with a decreasing clustering coefficient. These
procedurally generated graphs were evaluated based on the modularity of the resulting

clustering.
In order to analyse how effective the use of the average local clustering coefficient of a

cluster is in building conceptually related clusters, we created an artificial social network
data set modelling activities at a sports club. Our model contained 100 nodes each repre­
senting a member of the club. Each member is assigned a level of interest in six activities.

Section 3.4. Initial Investigation of Clustering Coefficient 62

between o and 1.0. The sum of a member s interest across all activities is equal to 1. In order
to generate the graph we calculated the Euclidean distance between each member s 6 levels
of interest. If the Euclidean distance was less than a threshold value of 0.5 we assume, due
to the common amount of activities, that the members are socially connected. Therefore
we added an edge to the graph connecting the nodes representing the members. The re­
sulting graph contains 803 edges. Using this graph to evaluate our clustering we can see
exactly the ratings for each node for each activity and hence determine if they have been
placed in a conceptually correct cluster. The node of interest selected for each cluster is a
person who undertakes only one activity with the maximum level of interest. This means
that each cluster member should have some level of interest in the activity of the node of
interest.

We also use our algorithm to cluster and layout a real-world social network data set.
We chose the influence data set [Lovio] as used by van Ham and Wattenberg[vHWo8a].
This data set contains prominent figures in the field of art, science and entertainment and
relates them using ’’influenced by” relationship. The generated graph contains 1929 nodes
and 4364 edges.

Evaluation Metric

We used Newman and Girvan’s modularity metric [NG04], which is described in section
2.2.3. Modularity depends solely on the relationships between nodes. Where contextual
meta-data about the node clustering is available, we use this to determine if the node con­
ceptually fits in with the cluster it is assigned to.

3.4.4 Results

Wikipedia Data Set

The clustering coefficient based, round robin and random algorithms were each run on
the Wikipedia test graphs, where the four nodes with the highest degree were selected for
clustering. The random clustering was run three times for each graph and averaged, as
it resulted in a different clustering each time. The resulting modularity of each graph is
displayed in Table 3.1. The use of clustering coefficient as a metric produces a significantly
higher level of modularity than a round robin or random assignment of nodes to clusters.

Randomly Generated Small World Graphs

For the randomly generated small world graphs, we compare the change in modularity over
graphs of increasing density of edges relative to nodes with the four different approaches.
We use the clustering coefficient approach, round robin assignment and a random assign­
ment as well as the delta of the clustering coefficient in determining the assignment of

63 Chapter 3. Agglomerative Clustering around Nodes of Interest

Figure 3.1; Wikipedia graph with 91 vertices and 567 edges laid out using a simple force
directed algorithm.

C*tn

Italy’s Acre

Figure 3.2: Graph from Figure 3.1 using our approach.

Section 3.4. Initial Investigation of Clustering Coefficient 64

IV^I \E\ Clustering
Coefficient

Round
Robin

Random
Average

91 567 0.1279 0.049 0.561
358 3729 0.0931 0.038 0.0424
506 3962 0.1545 0.0692 0.0645

1000 28534 0.0251 0.0038 0.005

Table 3.1: Modularity values for Wikipedia based graph using different approaches to clus­
tering.

60 Nodes, 4 Clusters

“CC Clustering

•Round Robin

-CC Delta

“Randorr

Figure 3.3: The modularity of graphs containing 60 nodes and increasing in density, using
the described clustering approaches for building 4 clusters.

nodes to clusters. In each case the use of clustering coefficient as a heuristic showed an
improvement. Figure 3.3 shows the improvement in using clustering coefficient over the
round robin and random method for creating 4 cluster for a graph with 60 nodes and edge
density increasing from 120 to 660 edges. On average use of the maximum average cluster­
ing as opposed to the delta of the average clustering coefficient resulted in a more modular
clustering but the difference is not as distinct as with the other approaches. Similar results
can be seen for forming 5 or 6 clusters (see Figures 3.4 and 3.5).

We also analysed the effect of altering clustering coefficient for a graph of a given size
and density. Global clustering coefficient is altered implicitly by changing the rewiring
probability when generating the graph. As can be seen from figure 3.6 the impact of chang­
ing the global clustering coefficient is not consistent, but use of the clustering coefficient
as a heuristic still improves modularity even as the graph becomes less small world like.

65 Chapter 3. Agglomerative Clustering around Nodes of Interest

60 Nodes, 5 Clusters

-CC Clustering

> Round Robin

“CC Delta

- Random

Figure 3.4: Modularity for building 5 clusters.

Figure 3.5: Modularity for building 6 clusters.

Section 3.4. Initial Investigation of Clustering Coefficient 66

60 Nodes 240 Edges 4 Clusters
0.45

0.4

0J5

03

Q.2S

03

0.15

0.1
0.05

0

__■__ .
■^1

0.1 0.2 03 0.4 0-5

Clusterfanf C-oefRcient

0.6 0.7

Figure 3.6: The modularity of graphs containing 60 nodes and 240 edges increasing in
clustering coefficient, when clustered using 4 nodes of interest.

Clustering Coefficient Round Robin
Soccer 0.9 0.9

Swimming 0.6038 0.5877
Tennis 0.4208 0.5563
Gym 0.565 0.441304

Running 0.9 0.4088
Cycling 0.925 0.010265

Table 3.2: Level of interest in the sport of the node of interest by cluster.

The fluctuation in modularity is a result of the randomness in generating the graphs and
the fact that the most well connected nodes are automatically selected as nodes of interest,
which can change significantly for each random graph. It can can be seen in Figure 3.7 that
a similar result was achieved for 5 clusters.

“CC clustering

-CX: Delta

-Round Robin

• Randonn

Sports Club Data Set

We generated 6 clusters for the sports club data set and compared the use of the clustering
coefficient approach to the round robin approach. For each cluster we calculated the sum
of the levels of interest in each activity for each person in the group and normalised this
value by dividing it by the number of people in the group. In Table 3.2 we display the scores
for the specific activity associated with the cluster. It can be seen that for every activity apart
from tennis, use of clustering coefficient results in a equal or better score for the cluster. The
lower value for tennis compared to using the round robin approach results from a larger
number of members being interested in tennis, but not as their primary activity.

67 Chapter 3. Agglomerative Clustering around Nodes of Interest

Figure 3.7: The modularity of graphs increasing in clustering coefficient, when clustered
using 5 nodes of interest.

abelle

11a

an
l^ax

Figure 3.8: Sports club graph with 100 vertices and 803 edges laid out using a simple force
directed algorithm.

Section 3.4. Initial Investigation of Clustering Coefficient 68

le

Daniel

Jessica
Jaju^j^an
SoiAlLfly

Ava

Adam
jtate

Figure 3.9: Graph from figure 3.8 using our approach.

69 Chapter 3. Agglomerative Clustering around Nodes of Interest

Examining the number of members assigned to clusters that they have no interest in
reveals a clear result. Using the clustering coefficient approach, this only happened for four
members. Using the round robin approach, 17 members are assigned to clusters where the
node of interest represents a sport that they have no interest in.

Influence Data Set

Clustering Coefficient Round Robin C.C. Delta
Correct Incorrect Correct Incorrect Correct Incorrect

Actor 286 37 282 41 286 37
Artist 54 154 104 104 59 149
Mathematician 23 147 60 no 47 123
Musician 44 115 68 91 27 132
Philosopher 520 66 183 403 393 191
Scientist 133 350 151 331 40 443
Total 1060 869 848 1081 854 1075
Total % 54.9508 45.0493 43.9606 56.034 44-27164 55.72836

Table 3.3: Correct assignments of nodes by profession to clusters using each approach.

For our analysis of the influence data set each node, representing a person, has been
labelled with a primary profession (as also done by van Ham and Wattenberg [vHWoSa]).
The classification by professions were as follows: Actor (including comedians, 321 nodes),
artist (209 nodes), mathematician (170 nodes), musician (159 nodes), philosopher (586
nodes) and scientist (484 nodes). The previously described clustering and layout approach
has been applied to this data set, with the nodes of interest being manually selected as one
prominent individual from each set. Respectively these individuals were George Carlin,
Vincent van Gogh, Carl Gustav Jakob Jacobi, Ludvig Van Beethoven, Friedrich Nietzsche,
and Albert Einstein.

A completely accurate assignment of nodes to clusters based on profession is not ex­
pected as there are many other characteristics which affect relationships between nodes,
such as indistinct boundaries between professions (particularly for mathematicians, philoso­
phers and scientists). Also the era in which the person chosen as a node of interest lived
impacts relationships and influence. The selected nodes of interest were chosen as people
who were strong examples of each field, the nodes representing them were well connected,
and their professions were more clearly defined. However, choice of node of interest does
have a large impact on the data set. For example if a more contemporary musician such as
Miles Davis is marked as a node of interest, many of the classical musicians end up being
associated with the Philosophers cluster.

The breakdown of the correctness of resulting clusterings, categorised by profession,
can be seen in Table 3.3. We performed a comparison using the round robin approach
and clustering coefficient delta approaches of assigning nodes to clusters. It can be seen

Section 3.4. Initial Investigation of Clustering Coefficient 70

Vi

• ■ .‘V ^
'> -■. ■• ■ ■ ■

■. •-■ 'i: •'■ '''■'- /■
s V-*' ' '’V^PV', '•■ '•

.■•• .■■••‘"■'•V- ■ ■ •■ ‘^5-

wti .■ ■
■• ■. *■ ’

X-. ■

1 ^ V i •.* • •

Figure 3.10: Genealogy of Influence graph with 100 vertices and 803 edges laid out using a
simple force directed algorithm.

71 Chapter 3. Agglomerative Clustering around Nodes of Interest

r’ •

* " '♦*'*-* I.*' *» ^ »*•

VI. - '• »■/'

J-. ’

r “* ’

w • ^

r <-• •

Figure 3.11: Graph from figure 3.10 using our approach. The purpose of this diagram is to
convey the scale of the data set and to show the impact of clustering on layout. The actual
results of our approach are described in table 3.3 and figure 3.12

Section 3.4. Initial Investigation of Clustering Coefficient 72

60 ;

50 4
i

40 j-
i

30

20 f-
10 4

0

■ Clustering
Coefficient

■ Round Robin

■ Delta

Figure 3.12: Chart indicating the number of correctly clustered nodes averaged over 20
different input sets of nodes of interest. The error bars indicate the standard deviation.

from the above tables that using clustering coefficient as a heuristic resulted in nodes being
assigned to clusters that they were more conceptually related to in terms of profession. It
is also clear that assigning nodes to the cluster with the largest resulting average clustering
coefficient categorized the nodes more effectively than using the average local clustering
coefficient delta or round robin approach.

To verify this we also ran our algorithm over 20 different sets of nodes of interest built
using popular nodes for each profession. On average the clustering coefficient approach
was correct 46.9% of the time, the round robin approach 42.5% of the time and the average
cluster coefficient delta 23.9% of the time (see figure 3.12). The delta approach fared poorly
as there were many cases where a disproportionately large number of nodes ended up in
a small number of clusters. The clustering coefficient approach outperformed the round
robin approach in 17 out of the 20 cases. In the worst of these 3 cases, the round robin ap­
proach scored 1.71% higher than the clustering coefficient approach. In the best case overall
the clustering coefficient approach scored 11.15% higher than the round robin approach.

3.4.5 Conclusions of our Initial Investigation

It can be seen from the above examples that using clustering coefficient as a heuristic re­
sulted in nodes being assigned to clusters that they were more conceptually related to. It
is also clear that assigning nodes to the cluster with the largest resulting average clustering
coefficient categorized the nodes more effectively than using the average local clustering
coefficient delta. The previous evaluation has been useful in providing an initial evaluation
of clustering coefficient as a heuristic in a broad range of apphcations, however a more thor­
ough evaluation is required against a larger set of graphs with well defined characteristics,
as well as a comparison to other heuristics. We provide such an evaluation in the following
section.

73 Chapter 3. Agglomerative Clustering around Nodes of Interest

3.5 Maximising Clustering Coefficient Approach

The preceding work shows us that there is some benefit in using clustering coefficient as
a heuristic. However the preceding evaluation does not include comparison with other
heuristics, and the approach is dependent on the sorting of nodes, to provide an order­
ing of addition of nodes to clusters. We have since taken an alternative approach which
aims to maximise the clustering coefficients by adding the node to a cluster which results
in a higher cluster clustering coefficient than the addition of any node to any other clus­
ter. This also removes the dependency of using a breadth first search to determine node
distances from a node of interest, and the requirement for a secondary sort of nodes by
neighbourhood size. Maximising clustering coefficient regardless of cluster size prevents
cluster node distribution becoming unfairly balanced. We also use a stronger metric than
largest degree to determine the second node of a cluster. We also provide a more thorough
evaluation against a much larger set of graphs.

3.5.1 Clustering Approach

Our newer approach consists of a clustering algorithm which agglomerates clusters, based
on maximising the heuristic score of the resulting clustering incrementally. We grow the
clusters around each of the nodes of interest by iteratively adding individual nodes to clus­
ters so that the heuristic score for the graph will be increased as much as possible each
iteration. In order to evaluate our approach thoroughly we use alternative cluster agglom­
eration heuristics for comparison. We describe our heuristics in the following section, and
include any impact made to the initial cluster setup and node assignments for these heuris­
tics in the description of our approach.

3.5.2 Chosen Heuristics

For our experiment heuristics we have chosen:

• Modularity, which we denote MOD.

• Modularisation Quantity, which we denote MQ.

• Average cluster clustering coefficient, which we denote AC3.

• Random assignment to a connected cluster, which we denote RAND.

Modularity (MOD)

We have previously used Newman and Girvan’s modularity as a metric and now we also
use it as a heuristic. Modularity is described in detail in section 2.2.3.

Section 3.5. Maximising Clustering Coefficient Approach 74

Modularisation Quantity (MQ)

Modularisation Quantity (MQ) is a measure developed by Mancoridis et a/[MMR^98]and
utilised in the “Bunch” tool as a function to be optimised to provide a good clustering.
Auber et al [ACJM03] and Chiricota et al.[CJMo3] use it as a quality metric to evaluate
clusterings. It is described in more detail in section 2.2.3.

Average Cluster Clustering Coefficient (AC3)

When we calculate the average clustering coefficient of a cluster (AC3 score), we only con­
sider the nodes and their neighbours from within that cluster. The AC3 score of a cluster
describes how well inter-connected the nodes of a cluster are. This implies that the higher
the clustering coefficient of a cluster the more strongly related to each other the nodes
within the cluster are.

Random Assignment (RAND)

In order to provide a comparison clustering in which no heuristic is used, we have also
implemented a random assignment of nodes to clusters. A node is chosen at random from
the combined neighbourhood of the clusters and then randomly assigned to one of the
clusters that it is connected to. The process is then repeated until all nodes are assigned.
Nodes can only be assigned to clusters in which they have a neighbour, to allow a reasonable
comparison with the preceding heuristics.

Heuristics as Evaluation Metrics

Each of these heuristics, apart from random assignment, can also act as a quality measure
to evaluate clusterings of a graph. Therefore we use them not only to create our clusterings
but also the evaluate the quality of our resulting clusterings. When utilising clustering co­
efficient as a metric we take the average clustering coefficient of each the clusters generated
so far. This is unlike MOD and MQ as they provide a score for the clustering of the graph
across all clusters. Therefore a high average of the AC3 score for each cluster does not im­
ply that all clusters have a high average clustering coefficient. A large standard deviation
between the AC3 score of the clusters indicates that some clusters have been created with a
low quality of clustering. Therefore we also measure and report the standard deviation of
the AC3 score for each cluster.

In the cases where a clustering using a heuristic other than clustering coefficient pro­
duces clusters containing only one or two nodes, it is not possible to calculate the AC3
score of the cluster as a metric. Therefore, in such a case we assign the cluster a clustering
coefficient of-1.0. This results in a suitably decreased score that reflects the poor quahty of
the clustering, when rating the graph using the average AC3 score as a metric.

75 Chapter 3. Agglomerative Clustering around Nodes of Interest

Analysis of the average AC3 score and it’s standard deviation will also indicate if there
is an unjustifiably extreme clustering. If a clustering has resulted in an extreme distribu­
tion of nodes, such that one cluster contains most of the nodes that cluster will have a very
low clustering coefficient. If some small clusters are formed with very high clustering co­
efficients, the remaining clusters will have much lower values, which will be reflected in
the standard deviation. These combination of these two metrics avoids the necessity for a
metric such as Wu et al’s Non Extreme Distribution [WHH05].

3.5.3 Initial Cluster Set Up

The initial set of nodes of interest that are to form the basis of the clustering is selected
by the user. If our heuristic is either MOD or MQ, or we are using the random approach
(RAND), we can begin to add further nodes to the clusters once the initial cluster nodes
have been specified. This is because it is possible to calculate modularity and MQ heuristic
value, or randomly choose a node, if a cluster contains only 1 node.

However this is not the case for the AC3 heuristic, as we need to have at least two nodes
existing already in the cluster before we can calculate a valid heuristic value for a new node
being added. Therefore, before we start adding candidate nodes to the cluster using AC3 as
a heuristic, we need to add a second node to the cluster of each of the nodes of interest. The
nodes that are candidates for addition are nodes within the neighbourhood of the node of
interest.

We would like to add a node that is similar as possible to each of the nodes of interest, so
we use the Jaccard index of the node of interest and the candidate second node’s respective
neighbourhoods.

The Jaccard index p of two sets of nodes A and B, is defined as:

p{A,B) =
|A| n |E|
|A| u |B|

(3-1)

If the node of interest is denoted by v and the candidate node is denoted by u we can write

the Jaccard index as

p(r(v).r(«)) = r(v)nr(M)
(3.2)r(v)ur(u)

The node which is used as the secondary node of the cluster based around v is the node
u for which p(r(v), r(M)) is the largest. Ideally we aim to select a node where the neigh­
bourhood Jaccard index is 1. If the node chosen has already been assigned as a neighbour of
one of the other nodes of interest, we assign the node to the node of interest which results
in the best Jaccard neighbourhood index. The node of interest with the lower resulting
Jaccard index is assigned its neighbour node with the next highest resulting Jaccard index.
If this replacement node has also been assigned, we repeat the revaluation until all nodes

Section 3.5. Maximising Clustering Coefficient Approach 76

\

Figure 3.13: An example considering whether the green node should be clustered with ei­
ther the red or blue clusters using the clustering coefficient heuristic. The green node is
added to the blue cluster increasing the clusters AC3 score to 0.48. Adding it to the red
cluster would reduce AC3 score to 0.33. If the MQ or MOD heuristics were used new scores
would be calculated for the graph as a whole for the addition of each node the cluster. The
clustering with the highest final score is made permanent.

of interest have been assigned distinct neighbours. Our previous approach simply used the
largest degree neighbour of a node of interest. Using the Jaccard index ensures that there
is an overlap in neighbourhoods, and as a result a stronger similarity between the initial
nodes of the cluster.

3.5.4 Assignment of Nodes to Clusters

Once the initial clusters are created, we store the neighbourhood of each cluster and use
this as input set of nodes which can be potentially added to a cluster. Given a clustering
of p clusters C = {Q, C2,..... Cp} where each element of C contains a disjoint subset of
the graph G = {V,E) such that C, = {vh,v,2, ...v,„}, n - |C,| and C, c V^, we define the
neighbourhood of a cluster i as

r(c.) = (rG(v0urG(v2)...urG(v„)) (3-3)

Each of the candidate nodes is added temporarily to a cluster and a score based on
that addition is calculated. The node which maximises the heuristic score of the graph (or
of each cluster) is permanently added to the cluster. Once a node is added the process is
repeated until all nodes have been assigned to clusters. The MOD and MQ heuristics are
scored across all clusters, so once a node is added, the scores will have to be recalculated
in the next round of assignments. If the AC3 heuristic is being used, only the score of the
cluster which has had a node added will have changed. The AC3 scores calculated for the
other clusters and their candidate nodes will be unchanged from previous rounds. This
allows caching of the results for later reuse, which decreases computation time.

77 Chapter 3. Agglomerative Clustering around Nodes of Interest

3.6 Clustering evaluation

3.6.1 Evaluation Graphs

We use Watts and Strogatz’s beta approach for creating small world graphs, described in
section 2.4.1, for evaluating the effectiveness of the heuristics. This approach allows us to
create a large set of graphs of various densities and various levels of structure, from regular
lattices, to small worlds graphs, to completely random graphs. Each graph in our test set
consists of 200 vertices. We have generated graphs varying the input probability to the beta
model from 0.5 to 0.95. We have also varied the Edge density of the graph from a graph
theoretic value of value of d = 0.03 to d = 0.59 , resulting in the most dense graph having
11,800 edges. This is equivalent to a range of linear edge densities from d; = 3 to d; = 59.
We have clustered each graph using our described heuristics. Four nodes with the largest
neighbourhoods have been selected as the nodes of interest, resulting in four clusters. Due
to the random nature of the graph generation we have averaged each result across 3 graphs
generated with the same input parameters. Our full test set of data consists of 285 graphs
for each of the three generation runs. We chart the results of the clustering, for each metric,
for a sample of two lower density graphs (d/ = 7 and d/ = 3),in figures 3.15 and 3.16, a sample
of high density graphs in figures 3.18 and 3.17, a sample of the more structured graphs in
figure 3.19 and a sample of the more random graphs in figure 3.20. The standard deviation
of the heuristics across the 3 graphs is displayed as the error bounds. The chart displaying
metric scores for specific densities display a range of graphs progressing from nearly fully
structured p - 0.05 to nearly full random p = 0.95. The charts displaying metric scores
for specific levels of structure, with densities ranging from d; = 0.03 to d; = 51. The charts
displayed in these figures encompass 191 distinct graphs. The maximum number of edges
the a 200 vertex undirected graph can have is 19,900 which is approximately 100 times the
number of vertices. This means that for our graph set the linear density is approximately
100 times the graph theoretic edge density.

Evaluation Graph Clustering Coefficient

Each of the graphs in our evaluation has 200 nodes. The constant node count impacts the
small world characteristics of the graphs as they become more dense. It can be seen from
figure 3.14 that, for lower density graphs d/ = 3 (d = 0.03) and d/ = 7 (d = 0.07), there
is a very large difference between the clustering coefficients of the more structured graphs
p = 0.1 and the nearly random graphs p = 0.95. However as the graphs become more dense
the difference diminishes. This is not an effect of the linear density. Instead it is caused be
the graph theoretic density. At d = 0.5, 50% of all possible connections in the graph will be
made. This means that many of a nodes neighbours will be connected to each other, even
if the graph is fully random (hence the clustering coefficent value of approximately 0.5, for

Section 3.6. Clustering evaluation 78

Figure 3.14: The average clustering coefficient of structured test graphs {p - 0.1) and almost
fully unstructured test graphs (p = 0.95) across a range of densities. The error bars indicate
one standard deviation.

graphs with an edge density of 0.5). We include the full range of graphs for our analysis to
ensure a thorough evaluation, but it is worth bearing in mind that it is at the lower densities
that the small world characteristics are strongest.

3.6.2 Results and Analysis

The effectiveness of each heuristic differs depending on the density of the graph, how ran­
dom the graph is as a result of the input probability p of the generation algorithm, and
the metric used for evaluation. In the more dense graphs, it can be seen that the random
approach of assignment of nodes to clusters generally scores close to zero when evaluated
using MQ or modularity. This is to be expected as both of these metrics lie in the range
[-1,1], with zero being equivalent to a clustering with no level of structure. In the less
dense graphs, sometimes the random approach does score slightiy above zero for a low
input probability p, when the graphs are less random. This is because of the fact that our
random approach does rely on nodes to be connected to the clusters they are added to,
reducing the number of options for less well connected nodes. For higher density graphs
this is not evident as a node will have a larger set of clusters it can be assigned to.

It is clear from each of these figures that a graph scores well when it is rated with a metric
that is also used as the heuristic to build the clusters. It also seems surprising that using
MQ as a heuristic often results in a high average per cluster clustering coefficient, however
looking at the standard deviation of the per cluster clustering coefficients shows that the

79 Chapter 3. Agglomerative Clustering around Nodes of Interest

individual clusters vary wildly in quality. This is a result of a very imbalanced clustering,
which will not be of benefit to a user if the majority of nodes are placed in a cluster with a
low average clustering coefficient. This means that the nodes within the cluster will be less
strongly related to each other.

Lowest Density Graphs (d; = 3)

Figure 3.15 shows the resulting modularity, MQ and clustering coefficient values when the
algorithm is rvm on graphs of increasing randomness with a relatively low density, d/ = 3.
Due to the relatively low density, there are fewer nodes to be chosen from when adding
new nodes to the clusters, so nodes being added to a cluster are more likely to closely relate
to several of the other nodes within the cluster. This is reflected by the higher scores for
the random layout approach for each heuristic for a low levels of rewiring probability.

d = 0.03

(a) Resulting graph modularity for each

(c) Resulting average cluster clustering co­
efficient for each heuristic.

(b) Resulting graph MQ score for each
heuristic.

(d) The standard deviation of the average
cluster clustering coefficient of each of the
four clusters for each heuristic.

Figure 3.15: Evaluation of graphs with 200 Nodes and a density of 0.03 (d/ = 3), and an
increasing level of randomness, denoted by p value.

Rating the graph based on modularity (figure 315a) results in the best results for the
MOD heuristic with the AC3 approach not far behind for the more structured graphs
(p = 0.1), but the gap widening as structure randomness increases. The reason for the
large drop off in clustering coefficient performance is to do with the basis for clustering

Section 3.6. Clustering evaluation 80

coefficient as a calculation. If a node has less than two neighbours we assign a clustering
coefficient of 0. In a graph with 200 vertices and 600 edges many nodes will have less
than two neighbours. Those nodes that have 2 or more neighbours are also quite unlikely
to have any neighbourhood overlap. The ability to calculate useful clustering coefficients
depends not only on edge count, but also the edge distribution. When the graph is more
structured we are more likely to see an overlap in neighbourhood, hence the closeness in
performance between for the more structure graphs. MQ scores very poorly, while the
random approach does surprisingly well. This is due to the constraint on nodes only being
randomly assigned to clusters that they are connected. The low number of connections
means that node may have only one viable cluster to be added to, each iteration.

Rating the graph based on MQ (figure 3.15b) results in a consistently high score regard­
less of the level of randomness when using MQ as a heuristic. This is true for all densities
of graph evaluated. Using AC3 as a heuristic results in a low score of 0.2 for the more struc­
tured graphs, which increases while fluctuating as the graph becomes more random. The
MOD heuristic performs worse starting at approximately 0.1 and diminishing to less than
0.05.

Rating the graph using AC3 (figure 3.15c), we can see that AC3 and MOD perform best
and they also perform similarly for the full range of graph structure. The MQ heuristic
produces lower quality result with a larger variation for each of the 3 input graphs, where
the other approaches are more consistent in their results. Examining the AC3 of each of the
clusters created by the MQ heuristic (figure 3.i5d), shows that the quality of the clustering
is quite poor until the graphs become more random. A large standard deviation of the
average of the AC3 scores of the 4 clusters indicates that while some clusters have a high
clustering coefficient others will have a very poor one. This means the MQ does not in
fact provide a good consistent average cluster clustering coefficient, therefore clusters will
be created where adjacent nodes do not have many mutual neighbours, and will be less
conceptually alike.

Conclusions: For graphs of the lowest density (d/ = 3) MOD is the preferred heuristics
across all levels of structure. However AC3performs very closely in terms of modularity.
As the graphs become more random modularity becomes the sole preferred heuristic, in
terms of reducing the number of edge crossings.

Low Density Graphs (d/ = 7)

Figure 3.16 shows the resulting MOD, MQ and AC3 values when the algorithm is run on
graphs of increasing randomness with a relatively low density, d = 0.07, d; = 7. Due to the
relatively low density, there are fewer nodes to be chosen from when adding new nodes to
the clusters, so nodes being added to a cluster are more likely to closely relate to several
of the other nodes within the cluster. This is reflected by the higher scores for the random

8i Chapter 3. Agglomerative Clustering around Nodes of Interest

layout approach for each heuristic for a low levels of rewiring probability.

d = 0.07

(a) Resulting graph modularity for each
heuristic.

d = 0.07
e
S 0
<« 0 no

5
9 i/v tr vq

(c) Resulting average cluster clustering co­
efficient for each heuristic.

d = 0.07

(b) Resulting graph MQ score for each

(d) The standard deviation of the average
cluster clustering coefficient of each of the
four clusters for each heuristic.

Figure 3.16; Evaluation of graphs with 200 Nodes and a density of 0.07 (d/ = 7), and an
increasing level of randomness, denoted by p value.

Rating the graph based on MOD (figure 3.16a) results in the best results for the MOD
heuristic and, once again, the AC3 approach is not far behind. The MQ approach noticeably
scores similarly to the random approach. Rating the graph based on MQ (figure 3.16b)
results in a consistently high score regardless of the level of randomness when using MQ
as a heuristic. Using the average cluster clustering coefficient as a heuristic results in a low
score of 0.2 for the more structured graphs, but this diminishes toward 0.0 as the graph
becomes more random, making it no more effective than the random approach. The MOD
heuristic scores similarly to the AC3 heuristic , for structured graphs and also diminishes,

but to a lesser degree than the AC3 approach.
Rating the graph using AC3 (figure 3.16c), we can see that AC3 and MOD heuristics

perform similarly for structured graphs and diverge as the graphs become more random.
We can also see from the error bounds that the MQ heuristic produces varying results for
each of the 3 input graphs, where the other approaches are consistent in their results. Even
with the large error bounds, once the graph becomes sufficiently random, MQ appears to
provide the highest average AC3 score of the resulting clusters. However, if we look at the
standard deviation of the AC3 score of each of the clusters created by the MQ heuristic

Section 3.6. Clustering evaluation 82

(figure 3.i6d), as for the the d/ = 3 set of graphs, we can see that the quality of the clustering
is very poor and the resulting clusters will not be conceptually alike.

Conclusions: For the test graphs of density di = 7 AC3 and MOD are the preferred
heuristics when the graph contains structure. As the graphs become more random MOD
becomes the sole preferred heuristic.

(a) Resulting graph modularity for each
heuristic.

(b) Resulting graph MQ score for each

(d) The standard deviation of the average
cluster clustering coefficient of each of the
four clusters for each heiu-istic.

Figure 3.17: Evaluation of graphs with 200 Nodes and a density of 0.07 (d/ = 7), and an
increasing level of randomness, denoted by p value.

High Density Graphs (d/ = 23)

Changing the density of the graph has an impact on the performance of each of the heuris­
tics. Figure 3.17 show results for graphs with a high density, d = 0.23, d/ = 23. Rating the
graphs by the modularity metric, we see that they overall scores are lower than the pre­
vious less dense graphs. We can also see that while AC3 performs much better than the
random or MQ based heuristics, MOD scores nearly double for most levels of structure.
When we examine the MQ ratings, we can see MOD and AC3 perform better than before
as heuristics. This is due to the increased edge density, as more clusters now have a higher
level of intra-cluster edges, compared to the maximum possible. MOD also out performs
AC3 in a manner similar to how it did when using modularity as a metric. Modularity MQ

83 Chapter 3. Agglomerative Clustering around Nodes of Interest

score scores very highly as expected.

When we rate the graphs based on AC3 score we can see that, as has occurred in the

other density of graphs, MQ offers an imbalanced clusterings. The AC3 and MOD heuris­

tics perform best and track closely together for all levels of structure.

Conclusions: MOD is the clear preferred heuristic. AC3 performs the second best. It

results in more inter-cluster edges, indicated by it’s modularity score. However it does also

form cohesive clusters, as indicated by the average cluster clustering coefficient.

Very High Density Graphs (d/ = 51)

Figure 3.18 show results for graphs with a high density, d = 0.51, d/ = 51. Rating the graphs

based on modularity (figure 3.18a), we see that overall the scores are lower when compared

to the less dense graphs. The difference between AC3 and MOD for the structured graphs

is more pronounced than before.

(a) Resulting graph modularity for each
heuristic.

d = 0.51

(c) Resulting average cluster clustering co­
efficient for each heuristic.

(b) Resulting graph MQ score for each
heuristic.

(d) The standard deviation of the average
cluster clustering coefficient of each of the
four clusters for each heuristic.

Figure 3.18: Evaluation of a graphs with 200 Nodes and a density of 0.51 (d/ = 51), and an
increasing level of randomness, denoted by p value.

Rating the graphs based on MQ score (figure 5.3d), we again see the MQ heuristic per­

forms well. A noticeable difference is the improved performance of the AC3 heuristic for

the more structured graphs. The MOD heuristic performs better relative to AC3 as graphs

become more random, but the scores are less consistent, with larger standard deviations.

Section 3.6. Clustering evaluation 84

Rating the graphs based on average AC3 scoreresults in the clustering coefficient heuristic
performing the best for the more structure graphs. As the graphs become more random,
the MQ heuristic performance does appear to perform slightly better, but the larger stan­
dard deviation in results across the input graphs reveals it does not do so. Also, as for the
less dense graphs, the standard deviation of the average AC3 score (figure 3.i8d) of each
cluster is much higher than the AC3 approach. It is noticeable that for most of the graphs
the MOD heuristic performs even worse than using the random approach and that the
clusters generated vary largely in average clustering coefficient.

Conclusions: AC3 is the most consistently high performing heuristic across all metrics.
MOD results in a large deviation in the AC3 scoret of individual clusters within a graph as
long as there is some structure in it.

Low Randomness Graphs

p=0.1

-oi ^ ^ ^ ^ ^o” O’ O' O O O’ o' O^ O’ o o o o^ o^ o

-AC3 —MOO —MQ ftANO

(a) Resulting graph modularity for each
heuristic.

___ J
(b) Resulting graph MQ score for each
heuristic.

(c) Resulting average cluster clustering co­
efficient for each heuristic.

(d) The standard deviation of the average
cluster clustering coefficient of each of the
four clusters for each heuristic.

Figure 3.19: Evaluation of a graph with 200 Nodes and a constant input rewiring probability
p = 0.1, and an increasing density.

These are the graphs which exhibit small world properties. Rating the graphs based
on modularity (figure 3.19a), we see the MOD heuristic score best as expected, however
the score decreases as the graphs become more dense. AC3 scores best out of the other
heuristics and also decreases similarly to the modularity approach as the graphs become

85 Chapter 3. Agglomerative Clustering around Nodes of Interest

more dense. For the lower density graphs, MOD and AC3 are quite close. When the density
becomes greater than 0.15, the difference becomes larger, which is also show in figure 3.17a

Using MQ as a heuristic, MOD behaves erratically, with large error bars and scores
worse than random for the less dense graphs, and similar to random for the more dense
graphs, with a large standard deviation.

Rating the graphs based on MQ (figure 3.19b), we see the expected high score for MQ.
Interestingly we see low scores for MOD for both the less dense and most dense graphs,
however for graphs in the mid range of densities it does improve considerably, just about
outperforming the clustering coefficient approach.

Looking at the average AC3 score (figure 3.19c), we see clustering coefficient performs
the best at all densities, with close competition from modularity at lower graph densities.
The average AC3 rating for the MQ heuristic still exhibits a large standard deviation be­
tween individual clusters (3.19b) for all densities. For more dense graphs, the use of MOD
as a heuristic performs quite poorly.

Conclusions: The AC3 heuristic performs relatively well across all levels of density for
all metrics. The closest rival is MOD, which is similarly effective, in terms of average AC3
score until a density of approximately 0.38 (d/ = 38) is reached. Modularity does provide
the fewest inter-cluster edges for the full range of densities, but the is quite small for the
lowest and highest density graphs.

High Randomness Graphs

These are the graphs which exhibit a high level of randomness, and thus exhibit no small
world properties. These graphs can give us insight into what approaches are affected most
by the absence of a high clustering coefficient. All heuristics other than modularity per­
form poorly when rated using graph modularity (figure 3.20a). Rating the graph using MQ
(figure 3.20b), we see, as expected, MQ performs very well, with MOD performing poorly
but better than random or the AC3.

When we rate the graphs using average AC3 score (figure 3.20c) we see that there are
some small improvements over RAND using MOD and AC3 as heuristics, and that as graph
density increases the scores for these approaches increases in a manner similar to the ran­
dom approach. This is to be expected given the random nature of the graph. From this
figure and figure 5.3d, we can see that when using MQ as a heuristic and rating the final
clustered graph using MQ, the results are not reliable as they appear to be independent of
graph randomness and only slightly affected by graph density.

Conclusions: Overall the best heuristic for graphs which are more random and less
structured appears to be MOD, until the graphs become very dense d - 0.51, (d/ = 51),
when AC3 becomes marginally better. This is due to the fact that when the graphs become
extremely dense, the global clustering coefficient of the graph increases.

Section 3.6. Clustering evaluation 86

(a) Resulting graph modularity for each
heuristic.

(c) Resulting average cluster clustering co­
efficient for each heuristic.

p=0.95

w 04 .
.1

i 0
^12 ■{>' ■9' ■#>' ■v'' 4? ^ S' S S 4<y o- o- Or c>~ o o- 0^0-0 o o

-AC3 -------MOO ------- MQ ——«U«)

(b) Resulting graph MQ score for each
heuristic.

p=0.95

“AC3 —MOO -------MQ —RAM>

(d) The standard deviation of the average
cluster clustering coefficient of each of the
four clusters for each heuristic.

Figure 3.20: Evaluation of a graph with 200 Nodes and a constant input rewiring probability
P = 0.95 , and an increasing density.

3.6.3 Comparison with Edge Betweenness Centrality Clustering

To provide a comparison with a state of the art clustering approach we performed a sim­
ilar analysis on our test data set having applied Edge Betweenness Centrality clustering
[NG04], using the d/ = 7 and di = 51 densities of graphs. This is a top town clustering
approach which tries to find naturally occurring clusters within the data. Unlike our ap­
proach, the number of clusters is not usually specified and there is no equivalent of a user
specifying nodes of interest. However it is an effective algorithm which can distinguish
the clusters which naturally occur within a small world graph. Tlie algorithm generates a
hierarchy of partitions. The partitioning with the best modularity score is chosen from this
hierarchy as the final clustering. This can result in a high number of clusters depending on
the density and structure of the graph, as can be seen in figure 3.23. In many cases a very
large number of clusters are created. Therefore, for our comparison we are constraining the
number of clusters formed by the Newman and Girvan approach to 4, the same number
used for our agglomerative clustering analysis. Evaluation uses the same approach as that
used for evaluating our clustering heuristics and the results can be seen in figures 3.21 and
3-22.

87 Chapter 3. Agglomerative Clustering around Nodes of Interest

-P*0.HCSC(p*095(tBC) —psOKACaj-

(a) Graph modularity.

-P'OllEK) p«0»S(tKI ——P=CHIAC3I p*0»MAC3>

(b) Graph MQ score.

dValur

—P«0.1(t#CI —p»0»S«8C) ——p»0.1lAtS) p»09S(AC3»

(c) Average cluster clustering coefficient of
the 4 clusters.

<0 .•S .A jA gA
O' O Q 9 ^ Q o' O’^ O O O 4 O' O'

dVilur

—peOJiEKJ P»0*5(teC> — p« 0 «AC3) —“p« 0 WiACSI

(d) The standard deviation of the average
cluster clustering coefficient of each of the
clusters.

Figure 3.21: Evaluation of test graphs when clustered using Newman and Girvans Edge
Betweenness Centrality clustering (EBC) and our clustering coefficient heuristic (AC3) for
comparison. The graphs display the metrics for well structured (p = 0.1) and unstructured
graphs (p = 0.95) of increasing density, where the number of clusters is constrained to 4.

Lower Density Graphs (d/ = 7)

Compared to the AC3 heuristic agglomerative approach, the cluster count limited version
of Edge Betweenness Centrality clustering predictably scores higher on modularity (figure
3.22a). This is as the clustering is not constrained by the user specifying nodes of interest to
form the basis of clusters and the algorithm is very effective at finding the small amount of
clusters in the more structured graphs (see figure 3.23). Predictably as the graph becomes
more random this difference diminishes until the AC3 approach produces cluster with a
higher level of modularity, as there are fewer naturally occurring communities for more
random graphs.

For the MQ score, (see figures 3.22b , 3.21b) Edge Betweenness Centrality clustering is
superior, however the difference is not as large, and once the graphs become less structured
the performance of the approach drops off significantly. In terms of average AC3 score.
Edge Betweenness Centrality clustering performs similarly for the more structured graphs
but drops off significantly as the graphs become more random.

Very dense graphs (d/ = 51)

From figure 3.21 it can be seen that graphs with stronger small world graph characteristics
modularity is slightiy better for Edge Betweenness Centrality clustering, but the AC3 ap-

Section 3.6. Clustering evaluation 88

ftSTtfiK)-------«>flL5idao —«*«.07iAcs) —4>asu«cii

(a) Graph Modularity.

(c) Average cluster clustering coefficient of
the 4 clusters.

|S|S«S*2!3SS«SeJSSS

(b) Graph MQ score.

4>OA7(aC) 4«SSI0O 4>f)r)nAC3} —*8*0.»UAU»

(d) The standard deviation of the average
cluster clustering coefficient of each of the
clusters.

Figure 3.22: Evaluation of test graphs when clustered using Newman and Girvans Edge
Betweenness Centrality clustering (EBC) and our clustering coefficient heuristic (AC3) for
comparison. The graphs display the metrics for low density (d = 0.07) and the highest
density graphs (d = 0.51) with an decreasing level of structure (p increasing), where the
number of clusters is constrained to 4.

(a) Graphs with a constant density. (b) Graphs with a constant rewiring proba­
bility

Figure 3.23: Number of clusters generated using Edge betweenness Centrality Clustering.

89 Chapters- Agglomerative Clustering around Nodes of Interest

proach performs better once the graphs become slightly more random (at approximately
p = 0.2, so the underlying structure is still quite strong). However for the MQ score we
find that, for the more dense graphs, the AC3 heuristic consistently outperforms the Edge
Betweenness Centrality clustering approach. Our AC3 approach also provides equiva­
lent and better average clustering coefficient for clusters and far higher clustering coef­
ficient values for the more random graphs (due to all of the singleton clusters). Our ap­
proach also maintains more consistently high average AC3 scores for the most dense graphs
{d > 0.352, di > 35) than Newman and Girvan’s approach. The low standard deviation be­
tween the AC3 scores also indicates that the resulting average cluster clustering coefficient
is balanced across multiple clusters.

3.6.4 Evaluation Conclusions

Based on the preceding analysis the most consistently effective heuristics for agglomerative
clustering around nodes of interest are AC3 and MOD. Where a graph has small world
characteristics, AC3 performs very well and produces clusters with a high average cluster
clustering coefficient that is balanced across all clusters. The MQ scores for all heuristics
other than MQ are generally quite low, but the AC3 heuristic does perform well for dense
graphs and with a high level of structure. The AC3 was also was more stable when run over
different graphs generated with the same input parameters, as evidenced by the smaller
error bars on the preceding charts.

Modularity (MOD) also works as an effective heuristic for agglomerative clustering,
and is more effective than AC3 approach when the graphs become more random. Its effec­
tiveness is mainly in terms of reducing inter-cluster edges (i.e. having a high score when
rated by modularity), but it also still produces clusters with a high average AC3 score.

It is worth emphasising that the purpose of using the AC3 heuristic is not only to reduce
inter-cluster edges, it is also provide clusters where a nodes neighbours in a cluster have
similar relationships to the node. This will not always ahgn with edge crossing reduction
as a node will be clustered with its neighbours that have a similar neighbourhood, rather
than with its neighbours that have completely disjoint neighbourhoods.

MQ performed the least successfully of the heuristics when used for agglomerative
clustering, particularly in terms of producing a high average AC3 score across clusters,
with a balanced distribution across all clusters.

We also compared our agglomerative approach using AC3 as a heuristic to Newman
and Girvan’s Edge Betweenness Centrality algorithm, constrained to produce four clus­
ters. The comparison is not a direct one as the agglomerative algorithm focuses on building
clusters around nodes of interest and the betweenness centrality algorithm defines clusters
without any such constraints. As expected the Edge Betweenness Centrality clustering al­
gorithm performs very well on structured graphs with low density. However as the graphs

Section 3.7. History of Infoviz Data-Set Example 90

become more dense the agglomerative algorithm, using AC3 as a heuristic, performs close
to the level of the centrality algorithm and by some metrics (MQ and AC3 score) it out­
performs the algorithm for graph with a density of d = 0.255, di = 25.373. Given that the
agglomerative approach is designed to focus around nodes of interest to aid in visualisa­
tion rather than discover communities, we feel our algorithm compares favourably with
the Edge Betweenness Centrality algorithm.

3.7 History of Infoviz Data-Set Example

In order to further show the practicality of our approach to agglomeratively build clusters
around nodes of interest, we present an example using a known data set. The “history of
infoviz” data-set [YuFo8]is a benchmark data set that was originally presented as part of
the IEEE 2004 Infoviz Data Contest. The nodes of the graph produced from the data set
represent papers published in the field of visualisation. The edges of the graph represent
citations between papers in the data set. The graph contains 605 nodes and 1953 edges.

Author information has been provided for each article. 419 of the 605 papers contain
keywords, which are the original keywords submitted by the authors of the paper. Sanitised
forms of the keywords,in terms of spelling and similar terminology, have been provided as
part of the data set. These keyword can be considered an identified set of features, which
can be used to categorise the nodes. The data set can be seen in figure 3.24. It consists of
articles from the field of information visualization (often referred to as infoviz) from 1995
to 2002, as well as the citations between them, which are represented as edges. An example
of a case study using this graph is given by van Ham [VH04], and the data set has also been
used as an evaluation dataset for later research such as CiteWiz[ETo7], an application for
visualising scientific citation networks. As van Ham notes, not all of the provided keywords
are useful. For example the keyword “information visualisation” is specified for 100 of the
records, but does not help distinguish the contents of the such papers from the others in
the data set. The graph can be considered a small world graph as it has an average path
length of 3.974 and an average local clustering coefficient value of 0.158. An equivalent
random graph was generated for comparison and had an average path length of 3.657 and
an average local clustering coefficient value of 0.0115, a full order of magnitude smaller.
While the linear density of the graph is relatively low compared to some of our experiment
graphs (di = 3.23) the distribution of edges is different and it can be seen in figure 3.24 that
the the density of the graph impacts layout, resulting in a very dense core of nodes.

91 Chapter 3. Agglomerative Clustering around Nodes of Interest

name " Virtual emrlromnenta £or geographic visualization: potential and challenges
Subtitle •• i-lan H. HacEachren, Liu^lan Qian, Raytnon Hasters, Robert Edsall, Ryan Baxter, Sven ruhnnann,
JLdditonal Text ■ collaboration, interactivity, maps, scientific visualization, virtual reality

Figure 3.24: The infoviz data set laid out using Hachul and Jiinger s FM3 multi-level lay­
out algorithm with a input inter-node distance of 15 (equivalent to a k value of 15). Each
node in the image has a radius of 1. The implementation used is the Open Graph Drawing
Framework [TD0G13] version of the FM3 algorithm. There are 605 nodes and 1953 edges.
The text overlay displays the information for the highlighted green node.

Section 3.7. History of Infoviz Data-Set Example 92

Figure 3.25: The infoviz data set split into 4 clusters using edge betweenness centrality clus­
tering. Each cluster is laid out using our Fruchterman Reingold implementation (utilising
a k-value of 5 and a grid size of 2k). The colours are used to distinguish the clusters and do
not imply a relationship with the nodes of interest used for agglomerative clustering.

93 Chapter 3. Agglomerative Clustering around Nodes of Interest

Title Keywords Cluster colour
Hierarchical flip zoom­
ing enabling parallel ex­
ploration of hierarchi­
cal visualizations

flip zooming; focus+context visualization;
hierarchies; information visualization 0

Techniques for non-
Unear magnification
transformations

data visualisation; domain constraint;
efficiency; expressiveness; magnifications
combination; multiple transformations
combination; nonlinear magnification
transformations; normal views; piecewise
linear methods; smooth interpolation

•
Pad++: a zoomable
graphical interface
system

authoring; hypertext; information navi­
gation; information visualization; inter­
active interfaces; multimedia; multiscale
interfaces; navigation; world wide web;
zooming

•
IVEE: an environment
for automatic creation
of dynamic queries ap­
plications

database query; dynamic queries; infor­
mation exploration; information visual­
ization; tight coupling •

Table 3.4: The nodes of interest for the history of infoviz example.

3.7.1 Clustering Approach

Using the edge betweenness centrality clustering algorithm on this data set produces 91
clusters. If we limit the number of clusters to a more practical values such as 4, the re­
sulting graph contains 3 small clusters and one very large dense one on as seen in figure
3.25. Neither result allows the viewer to gain any further insight into the graph. There is no
selection of nodes as an input to this top down clustering.

Figure 3.26 shows the result of using our AC3 approach to creating four clusters. We
have selected four papers as nodes of interest, detailed in table 3.4. Each of the papers has a
list of keywords and has several well connected neighbours. For the figures displaying the
resxilting graphs we have utilised our own Fruchterman Reingold implementation for the
cluster layout and have faded the intensity of the inter-cluster edges in order to make the
internal structure of the clusters more apparent.

3.7.2 Clustering Evaluation

For clustering around the four nodes of interest we utilise our modularity and AC3 ap­
proaches, as well as the random breadth first search approach in order to provide a heuris­
tic free comparison. We omit using MQ score as a heuristic and metric due to its poor
performance as a heuristic in the previous experiment.

Section 3.7. History of Infoviz Data-Set Example 94

Figure 3.26: The infoviz data set split into 4 clusters using the AC3 approach. Each cluster
is coloured based on the cluster colour associated with each node of interest, seen in table
3-4-

95 Chapter 3. Agglomerative Clustering around Nodes of Interest

Chosen Heuristic AC3 Score CC std. Dev Mod score
AC3 0.24657 0.0167651 0.251933
MOD 0.176172 0.0174256 0.372124
BFS 0.129411 0.0342558 0.173883

Table 3.5: The results for evaluating the infoviz graphs using the approach from section 3.6.
The values for the randomised breadth first search are averaged over 3 runs of the clustering
algorithm.

Heuristic Results

We performed an evaluation on the resulting clusterings using the approach described in
section 3.6. The resulting scores can be seen in table 3.5. As with the previous experiments
both the AC3 and Mod heuristics performed best when used as their own evaluation met­
rics. The AC3 score and modularity scores for the randomised breadth first search seem
quite high for a random approach, particularly given the relatively low linear density of
the graph. However it is worth noting that 135 of the 605 papers only have a single neigh­
bour. This results in fewer inter-cluster edges (improving modularity) and a higher level
of interconnectivity of node neighbourhoods (improving the average cluster clustering co­
efficient). Both the AC3 and MOD heuristics show effectiveness when compared to the
random BPS approach. The AC3 approach provides clusters which are more strongly inter­
connected, with a larger overlap of node neighbourhoods indicated by the high clustering
coefficient. The MOD approach (which can be seen in figure 3.28) results in lower ratio
of intra-cluster to inter-cluster edges. The two approaches do provide quite different re­
sults in terms of how the nodes are clustered. For example the bottom right cluster around
the node “IVEE: an environment for automatic creation of dynamic queries applications”
contains far more nodes using the MOD approach. It is difficult to determine which is
preferable for a user without the user of some higher level information, so we also examine
the distribution of nodes containing a keywords related to each the nodes of interest.

Keyword Results

In order to demonstrate the difference in impact of our agglomerative approaches, we have
chosen a distinctive keyword from each node of interest. These terms were “focus+context”,
“hypertext”, “transform” and “query”, (see table 3.6). In order to obtain nodes containing
both “query” and “queries” as a keyword the search term “quer” was user when selecting
nodes by keyword.

In figures 3.27,3.28 and 3.29 we have coloured each node related to the specified key­
words. All other nodes are coloured grey and each cluster is in the same relative position
for each graph rendering. For example, the top left cluster always uses the paper “Pad+-t-:
a zoomable graphical interface system” as its node of interest. Table 3.7 shows how many

Section 3.7. History of Infoviz Data-Set Example 96

Keyword Node Count Cluster colour
focus+context 15 Q

transform 7
hypertext 14 s

query 30
query, focus+context 30 #

query, hypertext 30 #

Table 3.6: The cluster colours associated with each keyword. The colours match the colours
of the original nodes of interest that are associated with each keyword, except for the two
cases where 2 keyword are applicable to a node.

AC3 MOD BFS
Matching
Cluster

Other
Cluster

Matching
Cluster

Other
Cluster

Matching
Cluster

Other
Cluster

9 5 3 11 9 5
17 13 10 20 8 22o 9 6 9 6 9 6
3 4 2 5 2 5

1 0 0 1 0 1
1 0 0 1 1 0

Total 40 28 24 44 29 39

Table 3.7: Assignment of keyword nodes to clusters matching the original node of inter­
est. The nodes with 2 matching keyword are considered matching if either of its selected
keywords are shared with the node of interest in the assigned cluster.

nodes with with the specified keywords were matched to the cluster based around the cor­
responding node of interest. It can be seen that more nodes end up in the same cluster as
their original node of interest for the AC3 approach than for the modularity approach. For
example using the modularity approach most of the nodes with the keyword “hypertext”
(red nodes) end up in the cluster belonging to the node of interest associated with the key­
word “transform” (blue node). When using the AC3 approach most of the nodes associate
with the term with “query” (Green) are assigned to the correct cluster. Using modularity
as a heuristic these nodes are distributed across all cluster of the graph. Overall the AC3
approach assigns 40 of the selected keyword nodes to a cluster with a matching node of
interest, while the MOD approach only assigns 24. An iteration of the BFS approach even
out performs the MOD approach in this case. The most probable reason for this is that
MOD aims aims to reduce the number of inter-cluster crossing, taking into consideration
the amount of connections between cluster. This may result in adjacent highly connected
nodes being placed in a cluster together to reduce the number of inter-cluster edges. The
AC3 approach does not take take inter cluster edge count into consideration, only how well
a nodes neighbours are interconnected, when a node is being added to a cluster. The BFS
approach chooses neighbouring nodes at random, independent of their characteristics so

97 Chapter 3. Agglomerative Clustering around Nodes of Interest

Figure 3.27: The infoviz data set split into 4 clusters using the AC3 approach. Nodes are
highlighted by keyword. Their colour corresponds to the colour of the node of interest
associated to the keyword. The turquoise and magenta nodes represent papers which share
2 keywords. Each cluster has the same relative postion as in figure3.26.

there is no bias towards well connected nodes being assigned together.

Infoviz Data Set Conclusions

In terms of evaluating the heuristics using AC3 and MOD as metrics there is no clear supe­
rior heuristic for the infoviz graph. However in examining the distribution of nodes with
a shared distinctive keyword it is evident that the AC3 approach resulted in more concep­
tually alike clusters. This evaluation provided an illustrative example of the use of the two
heuristics to guide agglomerative clustering. The resulting clusters do depend on the initial
choice of nodes and the distribution of keyword related nodes does depend on choice of
a distinctive keyword. Use of a more vaguely applicable keyword term such as “informa­
tion visualisation” would convey very little information to the user about cluster structure.
Selection of a node with only one neighbour would most likely not result in clusters that
are conceptually alike to the node of interest. However, it is evident that given a sensible
choice of input node and a sensible node classifier, our agglomerative clustering approach,
using clustering coefficient as a heuristic, provides the user with a different perspective on
the graph structure which may be an aid to gaining insight.

Section 3.7. History of Infoviz Data-Set Example 98

Figure 3.28: The infoviz data set split into 4 clusters using the modularity approach (MOD).
Nodes are highlighted by keyword. Each cluster has the same relative position as in fig-
ure3.26.

^4 i

Figure 3.29: The infoviz data set split into 4 clusters using the randomised breadth first
approach. Nodes are highlighted by keyword. Each cluster has the same relative position
as in figure3.26. This rendering is of the first of the 3 runs using this clustering approach.

99 Chapter 3. Agglomerative Clustering around Nodes of Interest

3.8 Conclusions and Future Work

In this chapter we introduced our approach to agglomerative clustering of small world
graphs around nodes of interest. An important difference between our clustering approach
and many existing approaches is that we use a set of input nodes specified by the user as
the basis for building the clustering. Each node of interest specified by the user forms a
basis or a cluster, which is grown agglomeratively.

We initially suggested that average clustering coefficient of clusters could be an effec­
tive heuristic for our agglomerative clustering, testing its use on a mix of procedurally
generated and real world graphs. We then evaluated using average clustering coefficient of
a cluster (AC3) as a heuristic, for agglomerative clustering around nodes of interest. We
have compared it to using other heuristics to guide to agglomerative process, as well as
comparing it to an established top down clustering algorithm. We have established that
the average clustering coefficient of a cluster provides an effective heuristic to guide ag­
glomerative clustering around nodes of interest.

We also provided a practical example using a benchmark dataset. Ihe history of in-
foviz dataset describes over 600 papers and the citations between them over several years
in the field of information visuahzation, and exhibits small world graph properties. We
demonstrated the effectiveness of the AC3 approach to agglomerative clustering, using the
author s keyword classifications as validation.

One possible avenue for future work is the automation of the selection of nodes of in­
terest to create a more general approach, for when the user does not have nodes of interest
in mind prior to graph analysis. For practical reasons, in our experiments we automated
the selection of nodes of interest by selecting nodes based on node degree. This approach
was purely practical, ensuring that the similar nodes were selected for each run of the al­
gorithm for different graphs. There are other centralities such as vertex betweenness or
node clustering coefficient which could be used to specify an initial node set for the ag­
glomerative clustering. These centrahties could possibly be used in conjunction with an
independent set filtration, as used by the GRIP layout algorithm[GKoi], to ensure a distri­
bution of nodes across the diameter of the graph. Any approach used to generate an initial
node set would need to be thoroughly evaluated experimentally against a wide range of in­
put graphs and varying agglomerative clustering input node sets, to be sure that resulting
clusterings are of high quality and stable across a range of input graphs. The performance of
our agglomerative clustering with different sizes of automated initial nodes sets, on graphs
with different characteristics such as size density and edge distribution could also prove
significant in terms of automating the input node set.

In terms of further future evaluation, a higher level user qualitative evaluation, based
around real data and a high level task and a user survey, such as that of Risden et al
[RCMCoo], would help gauge how useful subject matter expert users find different met-

Section 3.8. Conclusions and Future Work 100

rics to guide the agglomeration process. It would also help definitively determine how
users would use the ability to rearrange graphs around nodes of interest, to aid in a task.

Chapter 4

Graph Layout

T
he aesthetics of graph layout play a large role in the user understanding of a

graph visualisation [Pur97]. In the preceding chapter we presented and analysed
our approach for agglomerative clustering of small world graphs around nodes of interest.
Our primary contribution of this chapter is the utilisation of our clustering approach, de­
scribed in chapter 3, as the basis for a graph layout which allows for the use of edge routing
techniques and structures the layout reflecting the relationship between the clusters. Our
layout approaches are developed from our clustering approach by extending it from a flat
hierarchy into a hierarchical clustering, making the associated graph a compound graph.
The different layers of our clustering hierarchy are utilised as an aid to graph layout. The
hierarchy is also used to route edges using Hierarchical Edge Bundling [H0I06]. We also
address how to optimise the circular layout of clusters within a clustering hierarchy. This
approaches described in this chapter are useful for generating graph layouts which reflect
top level inter-cluster relationships. However laying out complex graphs is a difficult prob­
lem, so we acknowledge that rather than providing a complete solution our approaches
provide an initial step which may be enhanced by future work.

Chapter structure: The chapter is structured as follows:

• In sections 4.1 and 4.2 we describe our motivation and the related work for this chap­

ter.

• Section 4.3 describes our approach to improving the positioning of nodes in circular

clusters.

• Section 4.4.1 describes how we extend our flat agglomerative clustering into a clus­
tering hierarchy.

• Section 4.4.2 describes how we layout the cluster hierarchy using a hierarchical lay­

out.

Section 4.1. Motivation 102

Section 4.4.3 describes how we layout the cluster hierarchy using a multilevel layout.

In section 4.5 we show the results of our approach to layout.

4.1 Motivation

When laying out graphs clustered with the approach described in the preceding chapter
it is possible to lay out the clusters, separately using a force directed approach as we did
for our influence graph example, in the preceding chapter (see figure 3.11), and as can be
seen in figure 4.1. While this approach is effective for smaller graphs, there is not much
information provided for edge routing and no consideration is given for the inter-cluster
relationships of nodes.

Our motivation is to convey the relationships between the clusters generated based
on the user’s selection of nodes of interest. We propose that this can be achieved by the
generation of a hierarchy reflecting the relationships between the graph’s agglomerative
clusters, and the layout of the graph utilising that hierarchy as an input.

103 Chapter 4. Graph Layout

Figure 4.1: A100 node procedurally created small world graph clustered around 4 nodes of
interest. The cluster nodes are positioned using a per cluster Fruchterman-Reingold force
directed layout.

4.2 Related Work

An overview of graph layout approaches is given in section 2.3. Our approaches to the lay­
out or circular clusters are influenced by the circle rotation approaches utihsed by Topolay-
out [AMA07], [FLM95], as well as Symeonidis and Tollis [ST04]. Edge routing techniques
are described in section 2.5. Holtehs hierarchical edge bundling technique [H0I06], which
we utilise in this chapter, is described in section 2.5.1.

Multilevel layouts are described in section 2.3.3. For our multilevel layout we follow
the approach taken by Walshaw [Waloi] as this was the most suitable for the reuse of our
clustering as a basis for generating a clustering hierarchy. An approach such as Hachul
and Jiinger s [HJ05] requires a more complex partitioning of data which was less readily
adaptable to our clusters, as was the spectral partitioning approach used by Frishman and
Tal [FT07] and the maximally independent vertex set approach of GRIP [GKoi]. These
methods are closely entwined to their approaches to graph coarsening in terms of the layout
phase. We wish to maintain our concept of nodes of interest throughout our multilevel,
hierarchy. Walshaw’s use of the Fruchterman and Reingold’s force directed layout is also
suitable for apphcation to our generated hierarchy with the least amount of modification.

4.3 Circular Layout of Clusters

As described in section 2.3.6 circular layouts provide a simple approach to graph layout.
Figure 4.2a shows a small graph with 3 clusters, each laid out using a circular layout. This
graph is laid out simply with no consideration given to the number of edge crossing result­
ing from the node positions. We utilise an intelligent initial placement of nodes combined

Section 4.3. Circular Layout of Clusters 104

(a) Unoptimised layout with 1392 edge in­
tersections and 459 inter-cluster edge inter­
sections.

(b) Optimised layout with 772 edge inter­
sections and 79 inter-cluster edge intersec­
tions.

Figure 4.2: An example small world graph containing 60 nodes and 180 edges, illustrating
the impact of node reordering combined with cluster rotation. The graph is clustered using
our approach with clustering coefficient as a heuristic. The three nodes with the largest
degree have been selected as nodes of interest.

with a force directed rotation of the circular clusters in order to reduce the number of edge
crossings as illustrated in figure 4.2b. As part of their topology based approach to graph
layout [AMA07], Archambault et al. utilise force based rotation of circular chques, min­
imising the torque caused by edges terminating outside of the chque, in an approach that
they have adapted from Frick et ais GEM layout[FLM95].

4.3.1 Initial Node Ordering

We initially place nodes in each cluster is such a way that nodes with inter-cluster edges
are positioned closer to their neighbour nodes, which lie in other clusters, as shown by the
simple example in figure 4.3. To initially place nodes we calculate the average position of
neighbours in other clusters for each node. We assume an even distribution of cluster nodes
around each clusters circumference. Each node has a potential position in a slot around
the circumference. Each node is given an ideal position, where a line between the cluster
center and the average neighbour position intersects the cluster circumference. The nodes
are sorted in order of ideal position. The nodes are then assigned to the empty slot closest
to their ideal position. If a node is assigned to a slot which is occupied by a preceding node
it is assigned to the next available slot. This can lead to multiple nodes with similar ideal
positions being assigned slots progressively further away form their ideal position as seen
in figure 4.4b. This effect is counteracted by the rotation phase, as seen in figure 4.4c.

105 Chapter 4. Graph Layout

8

O^^k

30n

8 1 6 3

11 3 0..
s 4

6
S^ah

1*

I
#•

i

9 A17

11 ^^hlc

1
IS^ta

17^oa

l^^a

l<5.a j
1

n(^ot /

lS0ca Il^^an

13(^a ie(^x 1. ^hli

15^^ ta

la^^ai. 14^^ an ia0a>

13^^ca

(a) Before reordering. (b) After reordering.

Figure 4.3; A simple example illustrating node reordering with 2 clusters.

■o-.

•O- ■<©-i*^(*

(a) Before reordering. (b) After reordering.

>1 .0-

is^<.

(c) After reordering and rota­
tion.

Figure 4.4: A simple example illustrating node reordering with overlapping ideal node
positions, combined with rotation.

Section 4.3. Circular Layout of Clusters 106

4.3.2 Cluster Rotation Implementation

Our approach is a version of the torque calculation of Archambault et al. [AMA07]. It
is executed after the node ordering phase as this means cluster nodes with neighbours in
the same cluster will be positioned near each other. It is essentially a force directed layout
except the forces are not repositioning clusters, but rotating them about their normal axis.
For our two dimensional graphs, each clusters normal axis is perpendicular to the graph
plane.

Given a circular clustering of p clusters C = {C,, C^,.....Cp} where each element of C
contains a disjoint subset of the graph G = {V,E) such that C, = {v,i, v,2, ...v,„}, n = |C,|
and C, c V, for each cluster C; there exists a set of edges which contains the set of all
edges e, = (v^:, v^) where e C, or Vy € C, but (v^, Vy} i C,, i.e. E'^,, is the set of all inter­
cluster edges which have a node in C, . We denote the set of nodes which have neighbours
in other clusters as

For each element Cj e we calculate the a vector Vx which indicates the direction
between v* and average position of Vy, as v*. We average v* for aU edges in E'^,^ that contain
Vx a We also calculate a vector px describing the position of Vx relative to the center of
cluster C,. We calculate angle in the range [-n,+n] required to rotate the cluster C,, in
an anti-clockwise fashion about the cluster normal, so that px is parallel to v*. For a two
dimensional graph the cluster normal would be constant for all clusters.The final rotation
applied to the cluster is the average of all such rotations for all e, e .

Algorithm 3 Algorithm for calculating rotation angle for an individual cluster,
cluster-rotation = o
for all e, = {vx, v^) e E'f. ,Vx e C,, Vy i C,- do

Vx = Vp.position - Vx.position
px = V;c.position - Opposition

= getAntiClockwiseAngle(Vx,px)
cluster-rotation = cluster .rotation + Ug.

end for
cluster-rotation = cluster-rotation / ICjl

When calculating the angle between Vx and px, we use the dot product of the two vec­
tors , in conjunction with a cross product to ensure that the rotation is anti-clockwise about
the cluster normal. Applying multiple rounds of node ordering followed by cluster rotation
will generally reduce node crossings further.

We apply this algorithm iteratively in a manner similar to a standard force directed
layout. The algorithm is applied to all clusters, each iteration. We also utilise the force
directed layout concept of a cooling function, to force the rotations to converge to a final
value.

Our previous examples show simple flat clusterings , however if a clustering hierar-

107 Chapter 4. Graph Layout

(a) Unoptimised, with 7712 total edge inter- (b) Unoptimised, with 2803 total edge in­
sections and 2092 inter-cluster edge inter- tersections and 1926 inter-cluster edge in­
sections. tersections.

Figure 4.5: An example using a three level deep hierarchical clustering of a randomly gen­
erated graph containing 120 nodes and 282 edges. The hierarchy is indicated by the blue
nodes and lines.

chy is present our approach can be applied in a bottom up fashion, initially applied to the
leaf clusters and and then to the higher level clusterings as shown in figure 4.5. We will
utilise this optimisation for some of our hierarchical clustered graphs for our edge routing
experiments in chapter 5 as well as our hierarchically laid out graphs in section 4.5.

4.3.3 Circular sifting

Our approach to ordering the nodes places them closer to their neighbours external to the
cluster, reducing edge length, which imphcitly reduces the likelihood of crossings. How­
ever approaches do exist which directly reduce edge crossings. Baur and Brandes’ [BB05]
circular sifting approach reduces edge crossings by rounds of swapping neighbour nodes
in the circular layout, using edge crossing count as a heuristic. Such an approach could be
altered to consider the crossing of inter-cluster edges, rather than internal edge crossings.
However inter-cluster sifting of edges so a less finitely bound problem, as the reduction of
crossings based on node order will be strongly dependent on the order of nodes in other
clusters.

Section 4.4. Layout and Hierarchy Generation 108

4.4 Layout and Hierarchy Generation

Inspired by multilevel approaches of Walshaw and others [Waloi, GKoi, HKoi, HJ05] we
propose two approaches to graph layout, a hierarchical layout approach and a multilevel
approach. We use our clustering approach to define the coarsest level of graph abstraction.
We extend our flat agglomerative clustering into a multi-level clustering hierarchy, creating
less coarse clustering abstractions based on the relationships between the cluster nodes and
the clusters defined at the hierarchy level above. It is through the relationships of a cluster s
nodes with other clusters that we maintain the concept of nodes of interest throughout the
generated graph hierarchy. The clustering hierarchy also provides us with a means to route
edges in the graph using hierarchical edge bundhng [H0I06].

The hierarchical approach, while laying out clustered abstractions of the graph in de­
creasing levels of coarseness, is not a full multilevel approach as described by Walshaw.
Our layout algorithms, both force directed and circular, only consider the nodes within
the current clustering abstraction independently of all other abstractions being laid out.
Interaction between nodes in different clusters at the same clustering level are prevented
by strict cluster bounds and a lack of connectivity between clusters which do not have the
same parent cluster node, and not by definition of node forces and an optimisation grid
across each entire level as done for multilevel algorithms. While influenced by the ap­
proach of Walshaw et al, particularly in terms of forces between cluster abstractions with
a common parent, the approach could more accurately be described as a hierarchical lay­
out than a multilevel one. The advantage of this approach over a multilevel approach is that
hierarchy clusters will always remain close to their parent cluster, allowing for better reuse
of the hierarchy as an aid to edge routing.

The multilevel approach utilises each level of the generated hierarchy as an abstraction
of the level below it. Each level is positioned using a force directed layout, and the position
of the cluster at that level are used to provide initial starting positions for the next level
of the hierarchy. The forces applied to each level of the hierarchy are modified so that the
lower level layouts do not disrupt the positions of the higher level layouts.

For both the hierarchical and multilevel approaches we utilise a circular layout of the
leaf cluster nodes, to avoid the layout of the individual nodes of the original graph disrupt­
ing the previous levels of layout, and allow for the repositioning of nodes with inter-cluster
edges.

4.4.1 Generating a clustering hierarchy

The initial top level of our hierarchical clustering is done by our agglomerative method
described in chapter 3. This is the first stage where the user has specified their nodes of
interest. We aim to replicate the relationship between nodes of interest through the multi-

109 Chapter 4. Graph Layout

(b) Clusters are subdivided based on inter­
cluster relationships

Figure 4.6: A simple example of hierarchical clustering, using 3 clusters. The relationship
between cluster A b and C are reflected in the sub-clustering of each cluster.

pie levels of the clustering hierarchy. The number of nodes of interest defines the number
of clusters at the top level. It also defines the maximum number of sub-clusters for each
top level cluster. Each top level cluster is sub-divided based on which of the other top level
clusters it’s constituent nodes more conceptually belong to. As a simple example, consider
a clustering of a graph around 3 nodes of interest as per figure 4.6. Each sub cluster only
considers the level above it within the hierarchy. For example, cluster A will be subdivided
into clusters as follows:

• Nodes which have no relationship with nodes outside of A, and can only belong to
A are assigned to AA

• Nodes which have a stronger conceptual relationship with nodes from cluster B are

assigned to AB

• Nodes which have a stronger conceptual relationship with nodes from cluster C are
assigned to AC

Each cluster AA, AB and AC can be subdivided again recursively, based on the rela­
tionships between those sub-clusters. The number of sub-clusters in a subdivision depend
on how many sibling clusters the cluster being subdivided has. To implement this approach
to clustering, we need to be able to determine how strongly a node relates to the other peer
clusters, in a manner similar to how we define our top level clustering.

We describe our hierarchy in terms of levels. Lq is the clustering hierarchy tree root
and L, is the top level of the clustering hierarchy, representing the clusters defined by our
agglomerative clustering algorithm. contains all clusters subdivisions of Li. In multilevel

Section 4.4. Layout and Hierarchy Generation no

clusters consist of nodes from the yellow cluster and are assigned to each green cluster
based on their relationships with the Lj yellow nodes’ two sibling clusters (coloured blue).
The yellow and blue nodes are siblings because of their common parent, coloured red.

layout terms , L, can be considered a more coarse version of L^. For a given level L,, its
clusterings represent the relationships between a parent nodes siblings from L,_|. This is
illustrated in figure 4.7.

If the clustering hierarchy has N levels, it is not correct to say that level L„_i contains
the full set of graph nodes, as we are not building a balanced hierarchy. Clusters most
likely have different sizes, resulting in some being further subdivided than others. The
graph nodes are the leaf nodes of each branch of the clustering hierarchy tree. Repeated
subdivision of clusters to sizes of one or two nodes, results in some very deep leaf nodes
and is aesthetically not pleasing in terms of layout so we set a maximum cluster size in
terms of leaf nodes. If a cluster in a level has less than the maximum number of leaf nodes
it is not subdivided any further. In addition to the maximum cluster size we also utilise a
maximum hierarchy depth to avoid the creation of deep leaf nodes.

Cluster Subdivision Function

For our top level clustering we were able to agglomerate nodes to form clusters. However
for our subsequent clusterings we cannot simply re-run our top level approach at each
level of the clustering hierarchy. One significant reason is that it would be unrealistic for
users to specify sub-nodes for each subsequent level, and it would also be difficult for an
agglomerative approach to reflect previous hierarchy structure. Therefore we are using a
divisive or top down approach as described above. When a node from L,_i is being assigned
to a subcluster in L, we assign a score for each subcluster to that node. The node is assigned

Ill Chapter 4. Graph Layout

to the L,subcluster that corresponds to the L,_i sub cluster with the highest score. We use
node inter-cluster degree as a metric to assign a cluster score to each node. We add the node
to the sub-cluster representing the parent level cluster that it is most strongly connected to.
In effect this is similar to using modularity, as we are assigning the node to the subcluster,
corresponding to the parent cluster, that would have resulted in fewest inter-cluster edges.

4.4.2 Hierarchical Clustering Layout

Each level of our hierarchical clustering is laid out using a Force directed algorithm algo­
rithm. We use a weighted version of Fruchterman and Reingold s basic algorithm [FR91].
For the layout of nodes within the leaf level clusters we use a circular layout. The circular
layout is applied to each cluster initially. At this stage we are not concerned with the inter­
cluster edges as the full hierarchy has not been laid out, so no optimisation is necessary.
The initial circular layout provides us with size bounds for the leaf clusters, which we use
in determining the spring weights for higher levels.

We apply the force directed layout algorithm on a per level basis in a bottom up ap­
proach. Given N levels of a hierarchy, we begin at Ljv_2 and apply the force directed layout
algorithm to the child clusters of each cluster in that level. The nodes in each cluster in
Ln-1 have already been positioned as part of the circular layout. Once the layout of the
levels clusters is complete, the position of the nodes contained in the cluster are updated
to reflect the change of the clusters position. The resulting radius of the parent cluster is
also updated. This process is repeated moving up the hierarchy until finally the clusters
representing the initial agglomerative clustering (i.e. LJ are positioned as the children of
Lo.

Our force directed layout of sibling clusters in each hierarchy level uses a weighted ideal
distance between clusters. We use the cluster radius as a weight, which results in different
clusters with different radii having a different ideal distance between them. The user can
also specify a scaling value to be applied to the cluster weights during layout see figure 4.8.
The sibling clusters being positioned as part of the force directed layout are only considered
connected if there is an edge between the clusters at a lower level.

4.4.3 Multilevel Cluster Layout

We have also implemented a multilevel algorithm, which rather than laying out the nodes
of a clustering level as separate sets of sibling nodes, performs a layout of the entire cluster
level simultaneously. While based of Walshaw’s approach, ours has some fundamental dif­
ferences. Walshaws algorithm uses a bottom up clustering , merging pairs of nodes. This
ensures a balanced clustering. Our approach is top town and clusters are not even in terms
of the underlying nodes they represent, nor is the hierarchy balanced in terms of depth.

Section 4.4. Layout and Hierarchy Generation 112

(a) Hierarchy force directed layout with no
scaling (s = 1.0)

(b) Hierarchy force directed layout with
scaling (s= 1.3)

Figure 4.8: An example of the hierarchical force directed layout on the single level hierarchy
with different sized clusters, illustrating the effect of scaling the forces.

Level 0

Level 1

Level 2

Level 3

Figure 4.9: An illustration of the processing of different levels as part of the multilevel
layout for a clustering hierarchy with N = 4 levels. The red nodes are positioned using a
force directed layout. Next each of the blue clusters is assigned an initial position based on
its parent red cluster. The blue clusters are positioned using a force directed layout, with
different ideal spring lengths to the nodes of the previous level. Note that for the lowest
level of this hierarchy Lj, nodes are extended from if they have no children.

113 Chapter 4. Graph Layout

To ensure a proper layout of the lowest hierarchy level clusters on a N-deep hierarchy, it is
necessary to extend the hierarchy leaf clusters which are not in level through the hier­
archy, so that all leaf level clusters are represented on level Ln-i> see figure 4.9. Leaf clusters
are extended to lower levels by duplicating them then assigning the original cluster as the
parent of the duplicate.

Default spring length: A key component of the force directed layout is the default spring
length. This value, denoted k, represents the ideal distance between a pair of connected
nodes, and conceptually represents a spring between two nodes at its rest length. For dif­
ferent levels in the multi-level layout different spring levels are used, this avoids lower level
layouts disrupting the layout of higher level abstractions. Use of an optimisation grid, usu­
ally proportional in size to the spring forces, at each level also help avoid distant uncon­
nected vertex pairs form disrupting the effects of higher level layout

Walshaw’s approach uses a spring length at each level which is derived from the spring
utilised at the level above, ki = aki-^, with a = However as part of his clustering
algorithm, every node in level L,_, represents the same amount of nodes in level L; unlike
our top down clustering. Clusters at any given level will represent different numbers of
nodes in the main graph. Therefore we apply a weighted force directed layout at each level

Rather than adjust the k value for each level, we weight the spring distance between
two cluster clusters in each level using the the number of graph nodes represented by each
cluster. Given two clusters Q, C2 e L, we weight the default spring distance between them
as the square root of the sum of the squares of their node counts: fcc,.Ca = \/|QF+|C^,

where |C,j represents the number of nodes in cluster i, by the number of graph nodes
represented by |C,|. As the algorithm progresses through the clustering hierarchy levels,
the number of nodes represented by each cluster gets smaller, as the clusters on level L;
will contain fewer, or possibly the same amount of nodes as level Li - 1.

We derive our layout temperature and square size for our optimisation grid, for each
level, based on the maximum spring length kmax between two clusters at that level. We
have found a values of ^kmax to he effective for grid size and temperature. We cease the
round of force directed layout when the average displacement for the level reaches 0.01/c.

4.5 Results
We generated two small world graphs using the approach described in section 2.4.1 to
demonstrate our layouts. These are a 100 node graph with 400 edges and a 400 node graph
with 1600 edges. We show the resulting graphs under the each layout, as well as in edge
bundled form. The nodes of interest for each graph were selected based on maximum node
degree. For the 400 node graph, 5 nodes of interest were selected and a hierarchy depth was
limited to 5 levels deep and a maximum cluster size of 30 nodes was used. For the 100 node

Section 4.5. Results 114

• P

Figure 4.10: A layout of the loo-node small world graph clustered around 4 nodes of inter­
est using the hierarchy approach, combined with our node ordering and rotation optimi­
sation. The large blue nodes indicate the nodes of interest.

graph, 4 node of interest were selected and a maximum cluster size of 10 was used. A sin­
gle level agglomerative clustering of the 100 node graph, using a per-cluster force directed
layout, was shown in figure 4.1.

4.5.1 Hierarchical Layout

The results of using out hierarchical layout on each graph can be seen in figures 4.10 and
4.11. The hierarchical layout does not consider connections between non-sibling clusters
at each level, therefore requires the use of our node ordering and rotation optimisation
to ensure that unconnected clusters are not adjacent to each other in the layout. In both
figures, it can be seen that clusters that are not in the top tier of the hierarchy are positioned
quite closely together. This is because the inter-cluster connections between sibling clusters
in the hierarchy are a reflection of the parent nodes relationship with its siblings. As a result
there are many connections pulling the clusters together, and the forces cancel each other
out only when the nodes are very close to each other. Using the scaling factor does not
alleviate this issues as it scales both the attractive and repulsive forces for every cluster.

115 Chapter 4. Graph Layout

Figure 4.11: A layout of the 400 node small world graph clustered around 5 nodes of interest
using the hierarchy approach, combined with our node ordering and rotation optimisation.
The large blue nodes indicate the nodes of interest.

Section 4.5. Results 116

Figure 4.12: A layout of 100 node small world graph clustered around 4 nodes of interest
using the multilevel approach. The large blue nodes indicate the nodes of interest.

4.5.2 Multilevel Layout

The multilevel layouts provide a clearer distinction between clusters at all levels of the hi­
erarchy, as can be seen in figures 4.12 and 4.13. Due to the interaction of forces between all
clusters in a layout level, cluster are well positioned relative to the clusters so there is no
need for a hierarchical rotation to separate clusters in different branches of the hierarchy.

4.5.3 Hierarchical Edge Routing

Both approaches allowed the hierarchy to be used for edge routing, as can be seen in figure
4.14. However, the lack of spacing between clusters at lower levels for the hierarchical
approach obscures the edge bundles, resulting in the multilevel layout being the better
approach if edge bundling is utilised.

117 Chapter 4. Graph Layout

Figure 4.13: A layout of 400 node small world graph clustered around 5 nodes of interest
using the multilevel approach. The large blue nodes indicate the nodes of interest.

Section 4.6. Conclusions and Future Work 118

(a) Hierarchy layout.
(b) Multilevel layout.

Figure 4.14: Hierarchically edge bundled versions of the 100 nodes small world graphs,
using a bundling strength of = 0.9.

4.6 Conclusions and Future Work

We have introduced two approaches to graph layout utilising our agglomerative clustering
as an input. Our approaches both utilise a clustering hierarchy. We built the clustering
hierarchy based on the relationships between nodes at the top level of the clustering to
maintain the concept of node of interest throughout the multiple levels. We use this clus­
tering hierarchy as the input for two approaches to graph layout. This hierarchy allows for
multilevel layout an also provides a structure to allow the routing of edges using hierarchi­
cal edge bundling.

Of our two approaches to graph layout, the multilevel approach is the favoured one,
due to the superior spacing of clusters at different levels of the clustering hierarchy.

As stated in the introduction to this chapter , laying out complex graphs is a difficult
problem. The approaches described here are an initial step, and not a complete solution.
We have illustrated the usefulness of generating a hierarchy to aid in graph layout and edge
routing. However, further work is required on the weighting of graph nodes for force di­
rected layout for both the hierarchical and multilevel approaches. The limitations of the
generated clustering hierarchy need to be further examined, particularly in terms of use­
fulness of clustering beyond the initial cluster subdivisions. We also need to examine the
impact of much larger scales of graph, as well as the practicality of other layouts (such as
some form of force directed layout) for the nodes of leaf clusters. Another potential av­
enue of research is the usefulness of our layout approach as an initial starting point for
graph analysis. When a user is analysing a graph, further manual editing of an existing
layout may help them find answers to their questions about the data the graph represents.
Research by Purchase et al. [PPP12] suggests that graph drawing systems should integrate

119 Chapter 4. Graph Layout

automatic layout with the users manual editing process. Our approach to layout provides
a view of graph structure that can be used as a starting point for graph analysis.

Section 4.6. Conclusions and Future Work 120

Chapter 5

Edge Routing

I
N CHAPTER 4 WE DESCRIBED OUR CLUSTERED HIERARCHICAL LAYOUT OF GRAPHS. How­

ever, this is only one aspect of the presentation of a graph to an end user. Often edges
are the main source of clutter, and as a result they become the main cause of degradation at
graph analysis tasks. As graphs become more dense, edges obscure each other and become
difficult to trace, making it more difficult to see the relationships between nodes and spot
high level trends in edge flow. Force directed layouts, as described in section 2.3 work ex­
ceptionally well for low density graphs, however as density increases force directed layout
often results in overlapping edges being indiscernible. In order to reduce the clutter asso­
ciated with graph density, the routing of the edges which cause much of the clutter needs
to be considered.

In section 4.5 some of the graphs were displayed using edge bundling, an edge routing
technique, described in section 2.5. While this approach has become very popular and has
led to many variations [H0I06, CHH'^oS, ZYC'^oS, BD07, LBAiob, LBAioa, HW09, GK07,
PNBHi2, LLCM12, RDLC12], there is a lack of empirical evaluation of edge bundling, with
much of the existing literature displaying images of the result of their technique, but not a
formal user evaluation of it. To our knowledge this chapter is the first attempt at such an
evaluation.

Previous work has also shown that user performance at a low level graph task is im­
proved with three dimensional layout and stereoscopic display of a graph [WF96, WM05,
SM93, HHLio]. We extended the standard edge bundling technique, so that the bundles
utilise three dimensional depth, and render them stereoscopically. We have performed a
second empirical user evaluation using a stereoscopic display to determine if the addition
of stereoscopic depth improves user performance.

Chapter structure: This chapter is focused on two main concerns. The first is the evalu­
ation of edge bundling in 2D. The second is the extension of edge bundling into 3D and an
associated evaluation.

Section 5.1. Edge Bundling Evaluation 122

In section 5.1 we describe our evaluation of edge bundling in 2D. This section is further
broken down as follows;

• In sections 5.1.1, 5.1.2, 5.1.3 and 5.1.4 we describe our evaluation motivation, previous
experiment approaches, our hypotheses and our choice of edge bundling approach.

• In section 5.1.5 we describe out approach to generating graph suitable for our edge
routing experiment, as well as how they were displayed to the end user.

• In section 5.1.6 we describe our experiment methodology.

• In section 5.1.7 we provide the results and analysis of our experiment.

In section 5.2 we describe our approach to extending edge bundling into 3D, as well as
our motivation for utilising stereoscopic 3D. This is followed by an empirical evaluation in
section 5.3. We describe our conclusions in detail in section 5.4.

5.1 Edge Bundling Evaluation

There is very little empirical data on the impact of effectiveness of edge bundling as a graph
visualization technique, despite it’s popularity as a graph visualisation technique. There­
fore, we experimentally evaluated the impact of edge bundling on user performance using
graphs of different size and density, as well as with different levels of bundling on graph
edges.

5.1.1 Evaluation Motivation

Purchase [Pur97] has demonstrated how the crossing of edges is the graph aesthetic which
affects most human understanding of a graph. Unfortunately in large dense graphs, edge
crossings are unavoidable, as once a graph has more than (3I V| - 6) edges, where |y| de­
notes the number of nodes, it is mathematically impossible to lay out the graph in a planar
fashion such that no edges cross. While Weidong et al. [WSHE08] have shown that the
maximising of angles where edges cross also helps increase comprehensibility, bundled
edges can frequently overlap and cross paths and intersect at acute angles. Bundling also
introduces bends to edges, which have been demonstrated to have a significant effect on
user errors and an approaching significant effect on user reaction times for low level rela­
tional tasks [Pur97]. Bundled edges also lack the good edge continuity identified by Ware
et al. [WPCM02] as an important graph aesthetic.

123 Chapter 5. Edge Routing

P-i fe •

Figure 5.1: An example of one of the more dense graphs used in our experiments, di = 5.26.

Edges and Dense Graphs

In section 2.1.4 we discussed graph density and differentiated between graph theoretic edge
density and linear density. While most real-world graphs have a value of d; <= 10 [Melo6],
this is still enough to cause a large amount of clutter. Given the frequency that dense graphs
are encountered in the real world, the fact that bundling is considered a clutter reduction
technique and the fact that edges can be a major source of clutter in a graph, it is important
to include edge density as part of our analysis. Therefore for our experiments we consider
edge density as one of the experiment factors. One of the more dense graphs used in our
experiments can be seen in figure 5.1, while a smaller lower density one can be seen in

figure 5.2.

5.1.2 Previous Experimental Approaches

As described in section 2.4.3, empirical evaluations of graph visualisation techniques fre­
quently use a simple low level relational task, such as path tracing or a similar variant, as
a basis for the evaluation [Pur97, WPCM02, WSHE08, WM08, HVW09]. In some cases,
such as Risden et al’s work [RCMCoo], a high level task is used, such as determining where
files should be placed in a directory structure. However, this type of high level evaluation
usually only applies to a specific visualisation problem and does not necessarily generalise
to a wider category of visualisation. While path tracing is a simple task, it a common one

Section 5.1. Edge Bundling Evaluation 124

Figure 5.2: An example of a graph generated for our experiments, rendered with tightly
bundled edges.

within node-link graph analysis. However it is also a very low level specific task and it is
not the only way in which a graph can be read. For example, if a graph is clustered us­
ing a hierarchy, higher level trends of connectivity can be spotted from the links between
clusters at different levels of the branches. Knowing that node A is connected to node C
by a graph distance of two is useful, but also knowing that node A and node C are in two
very strongly connected clusters may also be useful. These high level trends are important
in graphs particularly when graph sizes and edge density become large, and the analysis
for individual paths contributes less to the understanding of the graph as a whole. Other
approaches than using path tracing tasks exist. For example Huang et al. [WSHE08] inves­
tigate the impact of crossing angles using specifically designed diagrams containing edge
crossings. Techniques such as eye-tracking and user surveys can also be used [HEH08].
These other techniques often provide information on the how and why of a specific effect,
however evaluation is concerned with the consequences of bundling, not the how and why.

5.1.3 Evaluation Hypotheses

Our primary hypotheses are that bundling improves user comprehension of low level con­
nectivity tasks and also user comprehension of higher level trends. Our secondary hy­
potheses are that bundling improves user performance at both levels as graph size and
edge density increase, relative to using straight hne edges.

We have performed two user experiments to this end. The first examines user perfor­
mance at a path tracing task to evaluate user comprehension of the connectivity between

125 Chapters. Edge Routing

individual nodes. The second examines user understanding of higher level inter-cluster
connectivity trends, by asking the user to identify which cluster is most strongly connected
to a highlighted cluster. We performed our experiments using compound graphs of various
size and density, with different levels of edge bundling and laid out using a simple balloon
tree layout.

5.1.4 Experiment Bundling Approach

We adopt Holten’s [H0I06] hierarchical approach, described in section 2.5 to edge bundling
for our experiments. This approach naturally lends itself to the hierarchies we generate as
part of our multi-level layout described in chapter 4. This approach also does not neces­
sitate any techniques to smooth the curves once they are drawn and allows us to generate
test graphs which are consistent in bundling for different node sizes and different densities.
The level of bundling can also be easily controlled as an input parameter to the experiment.
The clusters of the graphs are also well defined as a result of the use of the clustering hier­
archy, reducing ambiguity in what the user perceives as a cluster and what the experiment
design defines as a cluster.

5.1.5 Experiment Graphs

We generated graphs for our experiments that reflect practical real world densities. How­
ever the focus of our experiments is on the impact of edge bundling, particularly in terms
of how well users read bundled inter-cluster edges. Therefore it is the inter-cluster edge
count that must scale between different edge densities, not just the general edge density.
As mentioned by Lancichinetti et al. [LFR08], cluster size and edge distribution vary in real
world graphs. We distribute our inter-cluster edges randomly between clusters, however
the inter-cluster edge count is determined using a power law so there is a realistically wide
range of inter-cluster edge counts distributed among the clusters. Adjusting the cluster
sizes in a similar manner would result in some very large and very small clusters, provid­
ing extra information to the user when determining shortest paths or determining which
clusters are most strongly connected. Therefore we distribute the nodes amongst the clus­
ters evenly. Undirected compound graphs were used as the basis for the experiment. A
clustering hierarchy 3 layers deep is used. The first layer contained 4 child nodes, the sec­
ond layer contained 3 children for each of the 4 parent nodes. The actual graph nodes were
assigned evenly to the 12 third tier hierarchy nodes. The number of nodes in the graph | U]
is always proportional to the number of leaf-level clusters (12) Avithin the graph, resulting
in an even number of nodes in each cluster. The graph area for each is directly proportional
to the number of nodes in the graph to reduce overcrowding of the display space for the
larger graphs. Each graph is displayed extending the full height of the screen. An example

Section 5.1. Edge Bundling Evaluation 126

of the resulting graphs generated can be seen in figures 5.2 and 5.1. For our test graphs
we have small, medium and large graphs, using node counts of | V| = 60,120,180. Larger
sizes than this resulted in the display becoming too crowded, and would have excessively
impacted user performance, independently of bundling.

Choice of Graph Density The focus of our experiments is on the impact of edge bundling,
particularly in terms of how well users read bundled inter-cluster edges. It is not appro­
priate to simply assign edges to nodes at random, as such an approach will not necessarily
result in an even scahng of the number of inter-cluster edges along with graphs size and
density. The number of inter-cluster edges is the difference between the total number of
edges and the number of intra-cluster edges and hence is also related to cluster size. We
denote the number of intra-cluster edges |£j„(| (internal) and the number of inter-cluster
edges is denoted |£e*f I (external). The number of intra-cluster edges is a result of the inter­
nal cluster density of the graph which we refer to as d(£,„,). We refer to the inter-cluster
density as the external density, d(Ecxt)- For path-tracing in particular, if the intra-cluster
edges are so dense that the individual cluster edges form cliques, the participants will be
able to infer connectivity without considering the internal edge structure of the cluster.
The same can be said if the cluster’s nodes form disjoint sets, with no edges between them.
For the experiment to be valid the user will need to be forced to trace edges within a clus­
ter. Towards this end, we fix the intra-cluster density such that each edge is connected to a
consistent ratio of the other nodes within its cluster, setting the clusters to have an internal
graph theoretic density d(|£,„(|) = 0.3. Using the linear definition for density d; = |£|/| V^|
would result in intra-cluster edge count having a differing impact on the likelihood of an
edge being traceable through a cluster depending on cluster size. This leaves the inter­
cluster graph density as the means by which edge density will change between graphs. We
can show that for our experiment graphs the only factor determining the maximum possi­
ble value is the node count, allowing us to use the ratio inter-cluster edges to the number of
vertices as a measure of inter cluster edge density (i.e. d; (Eext) = \^ext\l\)• Given a graph
with leaf level clusters forming a clustering C = (cq, c^, ...c„_i) where |C| = «, a cluster i has
its internal density defined by d{Ei„t)Ci = |£(c,)|/£(c,)„,ax where £(c,)„,ax denotes the
maximum number of edges possible in the cluster c, . The maximum number of internal
cluster edges in the graph is defined by

\E.intlmax
|C,|(|C,| -1)

127 Chapter 5. Edge Routing

The maximum possible number of intra-cluster edges is the difference between this and
the maximum number of edges for the graph as a whole.

-'ext I max ~
|y|(|v|-') -h-ic.km-i)

If we assume, as is the case for our experiment graphs, that each cluster is evenly sized, i.e.
IV"! = a|C|,a 6 / then \cx\ - iV’l/jCl and

■‘ext\max
imici--)

2|C|

Based on the graph theoretic density, we define the graph external density as d^E^xt) =
\Eext\l\Eext\max- From above, it is clear the maximum graph theoretic external edge density,
\Eext\max is proportional to the square of the number of vertices in the graph. If|C| remains
constant across all graphs, as it does for our experiments, it is the only variable that \Eext\max
depends on. Therefore we can state that for our experiment graphs di(Eext) - |Fex»|/| V"].

For our path tracing experiment we used three different levels of density. For the cluster
connectivity experiment we added a fourth level of density, which was not used for the path
tracing experiment due to the difficulty of the path tracing in such a dense graph. For our
experiments we wanted to choose values for di(Eext) which visually corresponded to low,
medium, high and very high densities. Through visual examination of the generated graphs
we found that values of d; = 1, ^5, Vio and v/20 produced an acceptable visual progression
of graph density. A larger linear density would not be frequently encountered in real world
situations with graphs of these sizes and would result in a very crowded presentation of the
graphs. Linear edge density of less than 1 results in a low necessity for edge bundling for
our test graphs. A table of our test graph sizes and the resulting density values can be seen
in table 5.1.

Graph Layout and Display It is very difficult to rate one layout algorithm as being better
than another in terms of simple relational tasks [Purpy]. We use a simple balloon tree lay­
out, which is essentially a projection of a cone tree layout onto a zD plane [CK95] and it can
be seen in figures 5.2 and 5.1. This allows us to use a visually consistent layout for each of our
test graphs. One impact of using this layout is that nodes which are close together in terms
of graph distance will not necessarily be closely related in terms of geometric distance:
two nodes which are neighbours may appear on opposite sides of the graph. If we were
to use a force directed layout, related nodes would appear geometrically closer together.
However the graph layout would be significantly different between graphs adding an even
more significant confounding factor when trying to determine the impact of bundling on
rendering edges. Our experiment graphs were rendered onto a 24” wide screen display.

Section 5.1. Edge Bundling Evaluation 128

IV^I E\ Ei„t\ \Eext dl(Ee) di Task
60 96 5 36 60 1 1.6 1,2
60 170 5 36 134 nA 2.83 1,2
60 226 5 36 190 a/Io 3-77 1,2
60 304 5 36 268 \/^ 5.07 2
120 282 10 162 120 1 2.35 1,2
120 430 10 162 268 n/5 3.58 1,2
120 541 10 162 379 \Ao 4-51 1,2
120 699 10 162 537 y/lO 5.83 2
180 558 15 378 180 1 3.1 1,2
180 780 15 378 402 %/5 4-33 1,2
180 947 15 378 569 \/io 5.26 1,2
180 1183 15 378 805 \/^ 6.57 2

Table 5.1: Experiment Graph properties, and which experiment they were used for.

with full screen anti-aliasing enabled. All of the graph renderings are static, the user was
not able to manipulate the graph or alter their view of the graph (e.g. using pan or zoom
functionality). Per Holten [H0I06], we also use alpha blending to allow individual edges
to be more easily discerned within the bundles, by drawing shorter curves at a higher level
of opacity than longer curves. Curves within the unbundled = 0.0) drawings are also
blended based on length. Some of the previously described approaches use colour hue to
indicate edge direction [H0I06, CHH'^oS] (as the underlying graph is a directed graph)
or edge density [HW09, LBAiob]. We feel that this may add an extra confounding factor
to the graphs, therefore all edges are shaded with no hue. The shortest edges are black,
blended to grey with the white background for longer edges.

Bundling Strength The different levels of edge bundling offered by the implemented ap­
proach do not scale hnearly in their visual impact (see figure 5.4). A bundling level of
0.25 offers relatively little difference when compared to a bundling level of 0.0 (i.e. straight
lines with no bundling). We have chosen bundling levels of jS = 0.0,0.7 and 0.9 for the
path tracing experiment, and the same levels with an additional level of /I = 1.0 (the max­
imum tightness of bundles) for the cluster connectivity experiment. The ^ = 1.0 level of
bundling is not used in the path tracing experiment as edges will frequently overlap as one
line, making path tracing impossible in all cases.

5.1.6 Experiment Methodology

For each experiment the participant was shown a sequence of graphs on screen and was
asked to perform a task specific to that experiment. To ensure the user comprehended the
task and to reduce the impact of any training effect, the initial six graphs displayed were

129 Chapter 5. Edge Routing

(c) jS = 0.7

Figure 5.3: Illustration of the visual impact of different levels of bundling strength 0.0

is not shown as it simply corresponds to a straight line between nodes.

Section 5.1. Edge Bundling Evaluation 130

training graphs and the participant’s answers for these graphs are not used in the analysis
of the results. The actual experiment graphs displayed after the training graphs were shown
in a random order. In order to ensure a rapid response from the participant and to avoid
excessive experiment durations, each graph was only displayed for at most 20 seconds. The
expiration of the time limit is considered a wrong answer. The participants were told to
answer the question as accurately as possible, however if the answer is not clear, to answer
with what they beheve to be the most hkely correct answer. The experiments were ordered
so that half of the participants began with experiment 1, the other half with experiment 2.
Prior to each experiment the user was given an information sheet describing the task for
the graph, and was also verbally instructed on the task. All experiment participants, bar 2
from the total of 21, had a background in computer science and had some level of familiarity
with the node-link display of graphs.

Path Tracing Experiment For the path tracing experiment we have four different factors
that differentiate the task trials displayed to the user: 3 node counts (small, medium, large)
X 3 edge densities (low, medium, high) x 3 bundling levels (0.0,0.7,0.9) x 3 path lengths (1,
2,3). The participant was shown a total of 81 trials. In each trial two nodes were highUghted
and the user was asked to indicate the shortest path between the highlighted nodes, by
pressing the corresponding key on the keyboard. The shortest path length between the
highlighted nodes was always either 1, 2 or 3 and each path length was used once for all
other combination of factors. The experiment graphs were displayed in a random order.
The nodes were highlighted by being coloured blue and drawn with a square glyph, while
the rest of the nodes were red and drawn with a circular glyph (see figure 5.2). This results in
a pre-attentive effect, reducing the amount of effort the user needs to find the target nodes.
The highlighted nodes were selected at random from the list of all node pairs that have the
required shortest path distance between them. An additional constraint was placed so that
the nodes are contained in separate clusters. This avoids simple cases where participants
would only have to trace edges within a single cluster.

Cluster Connectivity Experiment For the cluster connectivity experiment the user was
shown a total of 96 trials presented in random order: 3 node counts (small, medium, large)
X 4 edge densities (low, medium, high, very high) x 4 bundling levels (0.0, o.7,o.9, 1.0)
X 2 repetitions (i.e. Each combination of factors was displayed twice). The average score
and time for the two repetitions was used for the results analysis. In each trial, one cluster
was highlighted at random and the user was required to left-click on the cluster that was
most strongly connected to the highlighted one. The most strongly connected cluster is
the one that shares the most edges with the highlighted cluster. The highlighted cluster
was coloured blue and the nodes of the cluster were square instead of circular, as can be
seen in figure 5.1. The rest of the clusters in the graph are coloured based on a random

131 Chapter 5. Edge Routing

selection from a list of colours, in order to make the clusters appear more distinct.

5.1.7 Results

In order to evaluate our hypotheses, we must test for statistically significant differences in
responses to the factors. We are interested in both Main Effects (i.e., when a particular vari­
able or factor has an overall effect, independently of the other variables); and Interaction
Effects (i.e., when the effect of a variable differs depending on the level(s) of one or more
of the other variables). To test for such effects, we use Repeated Measures Analysis of Vari­
ance (ANOVA) on the data from all our experiments. When we find main or interaction
effects, we explore what is causing these effects further using a Neuman-Keuls post-hoc
test for pair-wise comparisons of means. We only report effects that are significant at the
95% level, i.e., where the probability that the difference between means occurred by chance
is less than 5% (i.e., p < 0.05). When evaluating the user’s accuracy, we score the user 1.0
for a correct answer and 0.0 for every incorrect answer. The average response times and
the average accuracy across all participants for both experiments can be seen in figures 5.7
and 5.8.

Path Tracing Experiment

For this first experiment we performed a 4 way repeated measures ANOVA with within-
subjects factors: node count x edge density x bundling level x path length. We found that
users performed significantly worse with both levels of bundling used for the path tracing
experiment, compared to when the graphs were rendered using straight edges (see 5-4^).
This clearly contradicts our primary hypothesis that bundling improves the participant’s
performance at tracing paths. Bundling hindered the participants performance at tracing
graph paths. This is consistent with prior work which indicated that straight edges and
path continuity improve the comprehensibility of graph [Pur97, WPCM02]. Bundhng at
either strength also caused a significant increase in the amount of time taken to answer.
Tables.2 sums up the noteworthy significant effects.

Our results also contradict our secondary hypotheses as edge bundling did not improve
the participant’s performance as the graph edge density and graph size increases. There is
no significant interaction effect (p > 0.05) between bundling and node count in term of
accuracy or in terms of time. Nor were there any significant interaction effect (p > 0.05)
for edge density and bundling.

The level of bundling turned out to have a significant impact depending on the path
length {p = .0003), in that the effectiveness of the tighter level of bundling improved over
the longer paths. This maybe due to the fact that 3 was the maximum path length available
to the user for selection, so we cannot say that bundling helps with tracing longer paths.

Section 5.1. Edge Bundling Evaluation 132

(a) Path Tracing Accuracy. (b) Path Tracing Time.

(c) Cluster Connectivity Accuracy. (d) Cluster Connectivity Time.

Figure 5.4: The impact of bundling on user accuracy and response time (in seconds) for
each of the experiments. The vertical error bars denote +/-1 standard deviation.

133 Chapter 5. Edge Routing

Measure Effect F-test post-hoc
Accuracy Bundling F(2, 40

)=9.8268,
p=.ooo34

The two levels of bundling significantly
degrade performance when compared to
straight lines. The performance at each of the
bundhng levels was identical

Accuracy Node
Count

F(2, 40)
=6.3469,
p=.00404

The medium and high node counts cause
a significant deterioration in performance
when compared to the lowest. There was
no significant deterioration between the
medium and large graphs

Accuracy Edge
Density

F(2, 40)
=2-8313.

p=.07079

While there was no significant impact across
all densities the Neuman-Keuls post-hoc
analysis revealed that there was an approach­
ing significant differences between the lowest
edge density and the other two densities (P =
0.06 for the medium density and p = 0.09 for
high density)

Accuracy Bundling
X path
length

F(4. 80)
=3.8084,
p=.00694

For the 0.9 level of bundling , participants
could significantly more easily identify the
paths of length 2 and 3

Time Bundling F(2, 40)
=11.641,
p=.00010

Both levels of bundling cause a significant in­
crease in time over straight edges, with no
significant difference between the bundling
levels

Time Node
Count

F(2, 40)
=16.357.
p=.00001

Increasing the number of nodes caused a sig­
nificant increase in the amount of time taken,
however the difference between the medium
and large size graphs was not significant

Time Edge
Density

F(2, 40)
=46931.
p=.01476

Increasing the number of edges caused a sig­
nificant increase in the amount of time taken,
however the difference between the medium
and high density was not significant

Table 5.2: Results for the four way repeated measures ANOVA for the user performance at
the path tracing task.

Section 5.1. Edge Bundling Evaluation 134

Measure Effect F-test post-hoc
Accuracy Bundling F(3, 6o)=19.o83,

p=.00000
The only significant difference is using the
strongest level of bundling = 1.0, which
significantly damages user performance, and
the other 3 levels p < 0.0002)

Accuracy Node
Count

F(2, 4o)=i6.765,
p=.ooooi

There is a significant difference between the
largest node count and the other two.

Accuracy Edge
Density

F(3, 6o)=27.78i,
p=.00000

There is a significant difference between all
four levels of edge density except the medium
and high levels.

Time Bundling F(3, 6o)=ii.478,
p=.00000

Bundling significantly improves user re­
sponse time when compared to straight lines.
There is no significant difference between the

= 0.7 and = 0.9 levels of bundling and
the significant further improvement with the

= 1.0 level of bundling is irrelevant due to
the significant degradation of performance

Time Node
Count X

Bundling

F(6,
12o)=2.738i,
P=.oi576

Significant for (| Vl = 60), where each of the
bundling levels had significantly shorter re­
sponse times than the straight line edges.

Table 5.3: Results for the ANOVA for the user accuracy and time taken at the cluster con­
nectivity task.

Cluster Connectivity Experiment

For our second experiment we performed a 3 way repeated measures ANOVA with within-
subjects factors: node count x edge density x bundling level.

The significant effects of this experiment are summarised in table 5.3. Results show
there is a significant effect for bundling on participant accuracy. Newman-Keuls post-hoc
analysis show that the only significance is between = 1.0 and the other three bundling
levels (p < 0.0002). From figure 5.4c it can be seen that the significant effect is a negative
one, reducing user accuracy. In terms of response time bundling has a positive significant
effect. Bundling at all levels fi > 0.0 improves response time significantly (p < 0.004). The
time improvement for = 1.0 is irrelevant due to the reduced accuracy. However, as there
is no significant difference between the other bundling levels and = 0.0 we can say that,
with the exception of = 1.0, the cluster connectivity experiments primary hypothesis
that bundling will improve the participants performance at determining the relationship
between clusters has been proven true.

Our results also show that our secondary hypotheses were that bundling > 0.0)
will improve user performance as edge density and node count increase are false. The
performance of each level of bundling under these conditions can be seen in figures 5.5
and 5.6. There was no significant interaction effect for bundling and node count in terms of

135 Chapter 5. Edge Routing

Current effect; F(6. 120)-.64604, p=.69318
3E B=0.0X B=0.7X B=0.9XB«1.0

(a) Accuracy.

Current effect: F(6, 120)»2.7381, p«.01576
X B=0.0 X B=0.7 X B*0.9 X B=1 .0

(b) Response Time.

Figure 5.5: The impact of node count on the effectiveness of bundling for the cluster con­
nectivity experiment. The vertical error bars denote +/- standard errors.

accuracy (p > 0.69) (Figure 5.5a). There is an effect in terms of response time (p < 0.016)
(Figure 5.5b). Post hoc analysis showed that for the small node count the time improvement
was significant (p < 0.015) but the difference dropped below significance for the larger
graphs. There was no significant interaction effect between bundling and edge density in
terms of time (p > 0.16) and accuracy (p > 0.06).

Section 5.1. Edge Bundling Evaluation 136

Current effect; F{9, 180)=1.8427. p=.06344
3E 8-00:5: B-o./XB-ogie-i o

(a) Accuracy.

Current effect: F(9,180)«1.4591, p-.16830
B*0.0 ^ B*0.7 31 B*0.9 31 B=1.0

(b) Response Time.

Figure 5.6: The impact of edge density on the effectiveness of bundling for the cluster con­
nectivity experiment. The vertical error bars denote +/- standard errors.

137 Chapter 5. Edge Routing

c
6

bOc
u

4-*
•5(dcx
•5

Ih.0

u

ucj
u

uu
o
(A3
1)

I

G0
15
<u'G

13"G

v>
<U
GO
V
13o
C

13
}moIm

c

o u
“ &
a c
h *>0<U CVi 5U cd

u

t/)</)oImucd

OJ00cdUi

I Cl.

-s

o
K
lA
a>iH

Section 5.1. Edge Bundling Evaluation 138

i-rl

a

bo

►-I

JO
aC/)
e.
C/)

a
Q
c"C/)

3rD
3

a
i-t

3

Br
o*p

O
3rt
C/)

G-
G-rt
^■
tu
O
G

*-!P
CfQn
CCA

n
o
3
3 rD n

2:
a

n ^

T3o
D

Pn

pn

•I
p
o
PCAfO•t
pr>n
C
*1
Pn
Pn

pn

139 Chapter 5. Edge Routing

5.2 Stereoscopic Three Dimensional Edge Bundling

We have seen in the previous section that, while edge bundling improved participant re­
sponse times when it comes to recognising high level trends, it does negatively impact
performances when it comes to a low level connectivity task such as path-tracing. This
section is concerned with improving on the hmitations of edge bundling by combining it
with another technique which has shown to improve user performance at a low level path
tracing task, stereoscopic rendering of a graph[WF96, WM08, SM93, HHLio]. We com­
bine edge bundling with stereoscopic rendering by adding depth to the bundles, behind the
graph plane. As part of this we determine how to apply depth to the bundles in a consistent
manner.

Our results show that unfortunately stereoscopic depth is a complex technique, which
is impacted by many other factors such as occlusion and graph layout, and the extension
of only edges into 3D does not offer a significant benefit. However, we describe in detail
our approach and experimental results in order to aid any future work on edge bundling
and stereoscopic 3D.

5.2.1 Motivation

Previous work on edge routing has focused
mostly on routing edges in two dimensions
[H0I06, ZYC^oS, CHH^oS]. There is no exist­
ing evaluation or demonstration of the effect of
edge bundling in three dimensions. In their work
on ’3D Edge Bundling for Geographical Data Vi­
sualization” Lambert et al. [LBAioa] put forward
a three dimensional routing of edge bundles in a
geographical visualisation, however this is simply
a case of routing bundles around a globe. Rather

Figure 5.9: An example of the three di-
than using one dimensional lines, the authors use bundles created hy Lambert
bump mapped three dimensional tubes, as can be et al. [LBAioa]
seen in figure 5.9. For graphs laid out in three di­
mensions Ware and Mitchell [WM05] have shown that tubes actually significantly reduce
user performance at path tracing tasks when compared to lines. It is worth nothing that
Lambert et aVs agglomeration of edges does not allow for path tracing and the tube size
reflected the number of edges represented, so the choice of cylinders for edge represen­
tation is not based on edge traceability. In their initial analysis of the impact of stereo
rendering on graph comprehensibility Ware and Franck [WF96] used a random layout,
in the later work of Ware and Mitchell [WM05] a spring layout algorithm was used. The

Section 5.2. Stereoscopic Three Dimensional Edge Bundling 140

(a) Ordinary 2D bundling. (b) Equivalent 3D bundling (c) Side view of 3D bundling
The nodes and edges are in
the same plane

Figure 5.10: Illustration of extension of bundling into 3D.

layout algorithm was selected to allow realistically laid out graphs to be used in evaluation
experiments, rather than provide any specific aid to graph visualisation.

When bundling edges in a two dimensional graph display, tighter edge bundles reduce
the clutter on-screen, however they also make the graph less comprehensible. We propose
that by extending the edges into three dimensions, stereoscopic viewing can allow users to
more clearly see individual edges within the bundle.

5.2.2 Edge Routing in three Dimensions with stereoscopic viewing

Our approach to using stereoscopic-vievdng does not rely on three-dimension positioning
of nodes. All of the nodes are laid out in a two dimension plane, resulting in no obstruc­
tion of nodes when viewed from a perpendicular angle. Our aim is to improve the users
understanding of graphs by extending the edges into 3D. From a two dimensional par­
allel projection of the graph, the bundles will be unchanged, we simply propose to alter
the depth of the bundles edges perpendicular the to the graph plane. This means that un­
der a perspective projection the bundles splines will appear slightly different (depending
on the projection parameters) and under the stereoscopic viewing conditions we suggest
that the individual splines vdll be more distinct to the user. This is not a pure layout of a
graph in three dimensions, but rather the use of three dimensional space and stereoscopy
to attempt to reduce ambiguity in edge bundling. We propose that this routing of edges
combined with stereoscopic viewing will improve user performance at graph tasks.

Adding Depth to Curves

For most two-dimensional graphs an edge is displayed as a one-dimensional line. It may
be tempting to render edges as three dimensional tubes when drawing graphs in three-

141 Chapter 5. Edge Routing

(a) A tightly bundled graph. (b) Equivalent 3D bundling
with the curve points shifted.

(c) Equivalent 3D control
bundling with the control
points shifted.

Figure 5.11: An illustration of the difference between shifting edge curve points and control
points. The same graph is viewed from a side view to allow the bundle depth to be seen
more clearly.

dimensional space, however previous work by Ware and Mitchell [WM05] has shown that
using tubes produced a higher error rate at a path tracing task, when rendered in stereo­
scopic 3D.

In order to move the edge curves into three dimensions the values of the line segments
of the curve can be shifted perpendicular to the node plane, or the values of the control
points of curve can be shifted. If the curve points are simply shifted by a function to de­
termine depth we get the results we see in figure 5.11b. The shift in depth is quite dramatic,
and equal for every point on the curve, except for the first and last (which lie in the original
graph plane). To give the depth a more gradual change, the depth could also be controlled
as the result of a curve depth function. The most straight-forward way to accomplish this
is to shift the control points that are used to build the curve. The curves points interpolate
along the b-spline between the control points, producing a smooth curve as can be seen in
figure 5.11c.

The shape of the resulting curve, perpendicular to the graph plane, depends on the
number of control points in the curve, and how far each point is pushed back. If we simply
push back the control points to the desired depth, we end up with a quite square shaped
curve as can be seen in figure 5.12a, particularly for the longer edges. A smoother, less
square curve is obtained by linearly shifting back the control points of the curve based
on their position in the control point vector. The midpoint of the control point vector is
pushed back the full distance and and control point halfway between the start or end point
and the midpoint would be pushed back half this distance. In the case where there is no
midpoint, due to an even number of control points, one is introduced as an average of the
existing two middle control points.

Section 5.2. Stereoscopic Three Dimensional Edge Bundling 142

(a) Push back control points to a desired
depth.

(b) Interpolate control points to a specific
depth and insert an additional control point
where required.

Figure 5.12; Different types of control point shift, each using hierarchy depth as a depth
function.

5.2.3 Defining Curve Depth

In addition to the question of how we extend the curves into three dimensions, we need to
determine by what depth a curve should be shifted to. The notion of depth here describes
the maximum distance of the curve perpendicular to the graph plane, and parallel to the
view direction. The most straightforward option is to make depth a function of the curve
length. We also looked at making depth a function of the number of control points, used by
the curve, as well as using a more discrete depth function. This allows a number of depth
planes to be specified and the curve control points snap to the closest depth to one of the
planes. For example if the curves have a maximum length of 20 units and there are 5 plains
specified, curves would intersect planes at 5,10,15, 20 units behind the graph plane. Each
of these approaches can be modified by a multiplier value, which can be used to scale them
to similar depth ranges.

As part of our bundling, we still use the splines straightening approach taken by Holten.
This straightening takes place before the curves are shifted into 3D. This is desirable as we
assume the view direction is perpendicular to the graph plane. The straightening process
will then straightening the curves perpendicular to the viewing direction, which makes the
individual splines easier to see for a users perspective.

143 Chapter 5. Edge Routing

(a) Using the hierarchy to de
termine curve depth.

(b) Using curve length.

Figure 5.13: An illustration of the difference between the depth functions

(c) Constraining depths to
planes based on length.

5.3 Three Dimensional Bundling Experimental Evaluation

The goal of our experimental evaluation is to determine whether it is possible to improve
user performance at graph tasks with bundled graphs by extending the edge routing of
those graphs into three dimensions.

For our stereoscopic experiments we reuse the methodology of our previous edge
bundhng experiments with some changes. We are re-using the graphs from the experi­
ment described in section 5.1, in order to have the same structure of hierarchical graph as
before. We adopt the same experiment tasks as well as experimental setup and random
ordering of graphs as seen in our previous user experiment. The key differences in our
experiments compared to previous stereoscopic graph experiments [WM08, vSvDZS^io,

SM93, HHLio], are as follows:

• Our nodes lie in a two dimensional plane, only edges use depth behind the graph
plane. We are focusing purely on the effect of extending edges into 3D. The position
of nodes in 3D would provide an extra confounding factor.

• The graph data is clustered.

• The graphs edges are bundled.

5.3.1 Hypothesis

Our previous experiment has show that edge bundling has a negative impact on user per­
formance at path tracing tasks. Our hypothesis is that adding depth information to the
edge bundles in a direction perpendicular to the graph plane will improve user perfor-

Section 5.3. Three Dimensional Bundling Experimental Evaluation 144

mance when viewing the graph in stereoscopic 3D. We also hypothesise that there will also
be benefits for user performance seen for a higher level cluster connectivity graph task.

5.3.2 Choice of graphs and experiment factors

Factors from the Previous Experiment

In our previous experiment we used three different sizes of graph and while there a main ef­
fect resulting from node count there was no interaction between node count and bundling
(see the results in section 5.1.7). Therefore, for our stereoscopic three dimensional experi­
ments we use a single size of graph, the 120 node graph. The 60 node graph offers a sub­
stantial boost to effectiveness and results in smaller bundles (due to the reduced maximum
edge density of the graph), which reduces the necessity for the addition of depth to distin­
guish edges. There was no significant different between the 120 and 180 node graph sizes, so
we omit the larger size from this experiment. In terms of graph density we also reduce the
number of density levels. However we use two levels as Ware and Mitchell [WM08] have
shown that the relationship between edge count and node count has an significant impact
on error rates for path tracing tasks in 3D. In each of our prior experiments there were no
significant consistent differences between the ^ = 0.7 and ^ = 0.9 levels. Therefore for this
set of experiments we use a single value of ^ = 0.8 in place of the original two. Intra-cluster
edges (those beginning and ending in the same cluster) are not extended into 3D.

For the path-tracing experiment the path lengths, as before, are limited to one two or
three hops. Once again were highlighted the randomly selected node pairs, which cannot
consist of nodes from the same cluster. A summary of all factors can be seen in table 5.5.

Layout Optimisation

In the previous experiment nodes were positioned in cluster without any concern for their
relationships with nodes in other clusters. This can raise ambiguity in the flow of edges,
particularly if an edge needs to pass though the cluster of one of its terminating nodes as
can be seen in figure 5.14a. We optimised the graph layouts using the method described
previously (see section 4.3) and provided the users with optimised and unoptimised ver­
sions of each graph. The main purpose of optimising the layout is to reduce the number
of edge crossings, which is an aesthetic which has been shown to have a significant eflfect
on user comprehension of graphs [Pur97]. Table 5.4 shows the number of edge crossings
in each graph before and after optimisations.

Depth Type

For our experiment graphs we use three different setting of depth These are no depth, hi­
erarchy depth and edge length depth. The hierarchy and length depths are calculated as

145 Chapters- Edge Routing

(a) Unoptimised layout. (b) Optimised layout.

Figure 5.14; Illustration of the visual impact of rotating clusters and reordering nodes in
clusters = 0.0

Density Level Edge Count Edge Crossings (Unoptimised) Edge Crossings (Optimised)
low 282 7.917 2,631
Medium 430 21,049 10,128

Table 5.4: Edge Crossing for each layout type

Section 5.3. Three Dimensional Bundling Experimental Evaluation 146

Factor Count Values Experiment
Layout 2 Un-optimised, Optimised Both
Depth 3 Hierarchy, length, None Both
Path Length 3 1,2,3 Path Tracing Only
Bundling 2 P = 0.0 , ^ = 0.8 Both
Density 2 Medium (£| = 430), low (|£| = 282) Both

Table 5.5: A summary of the various factors considered for the ANOVA analysis of the
experiment data.

(b) Side View (for illustrative purposes).

Figure 5.15: Illustration of the impact of adding depth to straight line edges ^ = 0.0

described previously in section 5.2.2. For the no depth option the graph is still rendered
stereoscopically, but all edges lie in the same plane as the nodes. Regardless of the edge
length, the depths are scaled so that the furthest control point is 50 units behind the graph
plane. Therefore the range of depths is the same for both approaches, it is the distribution
of depths in this range that changes. For the straight edges depth is applied in the exact
same manner as it is for the bundled edges. To allow this to happen the straight edges are
not simply end points, drawn with a straight line in between. They are B-splines where the
control points are set such that the curve is actually a straight line and their depth can be
modified just like the bundled edges. This results in a v shaped line as can be seen in figure
5.15

Graph Colouring

In our previous experiment, graphs were drawn on a white background, with edges shaded
from black to grey based on length. Initial tests with the 3D display showed that the

147 Chapter 5. Edge Routing

Figure 5.16: An example of the lower density experiment graph, unoptimised for layout
and using the same colour scheme as used for the experiment, fi = 0.8.

high contrast and bright white background caused viewer discomfort. To reduce this, the
colours were inverted and the graphs were displayed on a black background, with edges
shaded from white to grey based on length, as can be seen in figure 5.16. The billboarded
glyphs that represent the nodes showed no artefacts when displayed, most likely because
they were spheres and squares, which would not have a visual disparity between a left eye
and right eye image.

In our previous experiments, we also shaded edges based on their length in a manner
similar to Holten [H0I06]. This allowed overdrawn edges to be more distinguishable in a
two-dimensional rendering. It does also unfortunately make shorter edges more promi­
nent as they appear less faded, in particular if there is hne anti-aliasing, as the more solid
lines will appear slightly thicker when blended with the background. Furthermore, the at­
tribute that is encoded in the edge translucency is also used to encode the depth in one of
the experiment depth functions (where edge depth is defined based on length). There is a
risk of this adding a confounding factor and interfering with user performance as the curve
depth will now also relate to its translucency. One way avoid such interferences would be to
remove all alpha blending from the experiment graphs and compare the addition of stereo­
scopic depth to edges to flat graphs without edge shading. However bundling frequently
uses shading information in many implementations, and there would be a risk of stacking
the experiment in favour of stereoscopic depth by removing it. The colouring scheme used
for nodes used is the same as for our previous experiments.

Section 5.3. Three Dimensional Bundling Experimental Evaluation 148

Display Setup

For our display we used a 55” Samsung LCD 3D television. The 3D effect is created using
active shutter glasses. The television display frequency for the experiment was 6oHz , re­
sulting in a frame rate of 30Hz for each eye. The display resolution was 1600 x 1200 pixels
and we rendered in 3D using the OpenGL Quad-Buffered Approach. When graphs were
displayed on-screen they did not occupy the full height of the display to reduce the effect
of frame cancellation [Waro4], an effect by which the screen edge appears to occlude the
graph edge, diminishing the stereoscopic depth effect.

Camera Setup

For our previous experiments we used a perspective projection with an aperture (also know
as field of view) of 60 degrees and with a standard computer monitor aspect ratio. However
as described in section 2.6.2 other parameters are required for stereoscopic 3D.

It is possible to view objects on a stereoscopic display such that the depth and protru­
sion from the screen are exaggerated in comparison to what a viewer might experience
when examining a real world object at a similar scale. However establishing the sort of
bounds in parameters that allow this type of hyper-stereo and its impact is beyond the
scope of our research. Therefore we adopt stereoscopic viewing parameters that model the
scene as if it is a physical object in the real world, in front of the user and occupying the
same space as the display. This should also reduce any eye strain resulting from differences
in vergence, image disparity and focal length.

Due to the consistent graph size across experiments the camera is always at the same
distance from the graph plane. This also allows us to use a constant camera focal length,
set to 140 units. This is equal to the distance from the user to the display, in centimetres.
We wish for the graph to pop out of the screen with some negative parallax, therefore we
display it at 120 units from the user. The graphs were scaled so that their full extents would
be visible on screen at the viewing distance. To ensure that the edges recede far enough
from the graph to induce positive parallax, we set the maximum edge control point depth
to 50 units, resulting in a maximum depth of 30 xmits behind the focal length. This is within
the practical viewing volume of -25% to +60% of the viewer to screen distance described
by Williams and Parrish [WP90]. For the eye separation we use 6 units, approximately the
average interpupillary distance of the human eye. These values were tested by the author
and gave a satisf)ang 3D effect without any resulting eye-strain, headache or discomfort.
The range of graphs used for the experiment have a consistent volume and did not require
any adjustment of these parameters, so they remained static for the length of the experi­
ment. Previous work by Ware et al. [WGP98] and Carvalho [CTD+11] offers approaches
for dynamic adjustment of stereo parameters which may be useful if a wide range of graph
sizes were to be used, or to make the stereoscopic effect more pronounced, but was not

149 Chapter 5. Edge Routing

necessary for our experiments.

Participants

24 participants volunteered for our path tracing experiments there were . A 25th partici­
pant was excluded due to issues viewing stereoscopic 3D. All participants, bar one, had a
background in computer science and had some level of familiarity with node link graphs.
Each participant viewed each combination of factors once during the experiment. This was
a total of 72 graphs, in addition to 6 initial training graphs.

21 participants volunteered for our clustering connectivity experiment. 3 additional
participants were dropped due to an error in the data logging for the experiment. As for the
path tracing experiment all participants, bar one, had a background in computer science
and had some level of familiarity with node link graphs. Each participant viewed each
combination of factors twice and the time and score were averaged across each repetition
of factors. Each participant viewed a total of 48 graph rendering, in addition to six training
graphs.

5.3.3 Initial Experimental Results

Significant Results - Path Tracing

For this experiment we performed a 5 way repeated measures ANOVA with within-subjects
factors: layout x depth x edge density x bundling level x path length.

All significant results for the three dimensional path tracing experiment can be seen in
tables 5.6 and 5.7. Figure 5.17 shows the significant main effects.

As expected from our previous experiments, graph density and bundling are significant
main effects. It is clear that bundling across all the graphs still has a significantly negative
impact (as it it did in the two dimensional edge bundling experiments in section 5.1). There
is however a notable increase in the effectiveness of the straight line edges (figure 5-i7a),
when compared to our previous experiments. This difference is not related to the use of
3D, as it applies to all depth functions and can be attributed to the narrower range of graphs
and densities used in this experiment.

It can also be seen that there is a large difference in performance between the low and
medium density graphs (figure 5.17b). The low level of performance across the medium
density graphs reduces the likelihood of significant results when analysing bundling per­
formance as well as the stereoscopic depth performance. This can be seen clearly in figure
5.19 where the significant difference between each level of bundling for the different layout
types changes from p < 0.02 across all graphs to a more significant value of p = 0.001
across the lower density graphs.

Section 5.3. Three Dimensional Bundling Experimental Evaluation 150

Current effect F(1, 23)-26 B84 p= 00003 Current effect: F(1, 23)*18,366, p= 00028

(a) Bundling (b) Density

Figure 5.17: Unweighted means of the two significant single factors resulting from the Anal­
ysis Of VAriance for the path tracing experiment. The vertical error bars indicate + / -
standard errors.

F(2. 48)- 00293. p=,99707 F(2. 48)=4 0888. p-.02380

(a) Accuracy (b) Time(s)

Figure 5.18: Unweighted means of the accuracy and user time taken for the depth factors,
resulting form the Analysis Of VAriance for the path tracing experiment. The vertical error
bars indicate + ! - standard errors.

151 Chapter 5. Edge Routing

Effect F-test Comment
Bundling F(i,23)=26.884,

p=.00003
As shown by the previous experiment bundling sig­
nificantly impacted user accuracy at path tracing

Density F(i,23)=i8.366,
P=.00028

As expected density significantly impacts user per­
formance at path tracing.

Layout ,
Depth

F(2,46)=4.56i4,
p=.oi559

The two different modes of depth (hierarchy and
length based) are significantly different from each
other, but not from graphs where no depth was
used, see figure 5.19a.

Path
Length ,
Bundling

F(2,46)=5.5297,
p=.00705

Newman keuls post hoc analysis showed that for
answers of Path length 1 or 3 results became sig­
nificantly worse if bundling was used. There was
no significant difference for path length 2, however
this length was significantly worse than the other
path lengths for unbundled edges to begin with.

Bundling,
Density

F(i,23)=6.6957,
p=.01646

The performance difference between the different
levels of bundling was much smaller for the higher
density graphs

Depth, Path
Length,
Bundling

F(4.92)=3-6449.
p=.00840

The impact of each depth function differed depend­
ing on path depth or bundhng, however no clear
conclusions can be drawn

Layout,
Depth,
Density

F(2,46)=5.2946,
P=.oo852

As the large density graph impacted performance,
the impact of layout combined shows as being sig­
nificantly different between densities, see figure
5.19.

Table 5.6: Results for the ANOVA for the user performance at the path tracing task.

Section 5.3. Three Dimensional Bundling Experimental Evaluation 152

Effect F-test Comment
Bundling F(l, 23)=6.7222,

p=.01627
In addition to damaging user accuracy, bundling
also means that user take longer on average to an­
swer

Path
Length

F(2, 46)=69.207,
p=.00000

As previously seen, longer paths require a longer re­
sponse time

Depth F(2, 46)=4.o688,
P=.0236o

Post hoc analysis showed that the only statistical
differences were between the hierarchical depth ap­
proach and length approach (p = 0.039) and the
hierarchical depth and no depth (p = 0.0252). Hi­
erarchical depth had a negative impact on user re­
sponse time.

Density F(i, 23)=5.9729,
p=.02261

Density increased time response. This means not
only did users more likely get the answers wrong
for the more dense graphs, it took them longer to
do so.

Bundling,
Path
Length

F(2, 46)=13.125,
p=.00003

Bundling had a strong negative effect for path
length of 1, a lesser but still negative effect of path
length 2 and a small improvement for path length 3

Table 5.7: Results for the ANOVA for the user time taken at the path tracing task.

The Impact of Stereoscopic Depth

Performing an initial analysis of the the ANOVA results that the addition of stereoscopic
depth has not resulted in a significant performance difference across graphs (as seen in
figure 5.18a), nor is there and interaction effect with density (p = 0.91251). Due to the
large error bounds as well as the extremely high p value, it looks as if there is no significant
effect. In terms of time the hierarchy based approach significantly slowed down users by
approximately half a second (see table 5.7 and figure 5.18b)

However due to the large number of factors there may be some cross-talk (i.e. different
factors cancel each other out). The ANOVA analysis shows a significant effect for a com­
bination of layout and depth type (p = 0.01559, see figure 5.19a). This significant effect is
further exaggerated if we consider only the low density renderings (p = 0.00065, see figure
5.19b).

The previous lack of significant difference, when layout is not taken into consideration,
is because the effects of each of the depth types (hierarchy and length) partially cancel each
other out. The effect of no depth (none) is consistent across both layout types. We suspect
that this occurs because optimising the layout indirectly impacts the depth function for one
of the depth layout types, that is, when edge depth (edge distance from the graph plane) is
set based on edge length. It is worth reiterating that regardless of the edge length the depths
are scaled so that the furthest control point is 50 units behind the graph plane. Therefore

153 Chapter 5. Edge Routing

Current effect: F(2, 46M.5614, p».01559
31 Unoptimised Layout 31 Optimised Layout

Current effect; F(2. 46)-8.6361, p=.00065
Unoptimised Layout 31 Optimised Layout

(a) All graphs (b) Low density graphs only

Figure 5.19: The depth types show significant results when analysed based on layout type.
The significance is even greater when only low density graphs are considered. The vertical
error bars indicate + / - standard errors.

Depth Function Hierarchy Length None
Hierarchy 0.0260166069832669 0.42277286878992
Length 0.0260166069832669 0.114767729422493
None 0.42277286878992 0.114767729422493

Table 5.8; Newman Keuls post-hoc analysis of path tracing accuracy for unoptimised low
density graphs.

the range of depths is the same for both approaches, it is the distribution of depths in this
range that changes. The hierarchy based approach has 3 distinct depths whereas the length
based approach results in a wide range, in proportion from the length of the shortest to
the length of the longest. Post-hoc Newman-Keuls analysis show that the only significant
difference is between the two depth functions as can be see in tables 5.8 and 5.9. There
were no significant differences between any of the layout types and the absence of 3D edge
depth. There is also no significant interaction effect between depth and bundling {p -
0.5742). There were some further interaction effects for user response time which included
density as an effect. Due to the negative impact of density on accuracy these eflfects are not
considered (as tracing incorrect paths more quickly is of no benefit to users).

Significant Results - Clustering Connectivity

For this experiment experiment we performed a 5 way repeated measures ANOVA with
within-subjects factors: layout x depth x edge density x bundling level. Density was the
only individual factor to provide a main effect, and it did so for both accuracy (p = .ooo5i)and

Section 5.3. Three Dimensional Bundling Experimental Evaluation 154

Depth Function Hierarchy Length None
Hierarchy 0.0260166069832671 0.231167958289438
Length 0.0260166069832671 0.247430025996758
None 0.231167958289438 0.247430025996758

Table 5.9: Newman Keuls post-hoc analysis of path tracing accuracy for optimised low
density graphs.

Factor Effect F-test Comment
Acc. Density F(i, 2o)=17.o86,

p=.ooo5i
As for path tracing, density significantly impacted
user accuracy

Acc. Layout,
Depth,
Bundling

F(2, 4o)=3.8383,
p=.02986

Acc. Depth,
Bundling,
Density

F(2, 4o)=3.9796,
P=.02653,

Time Density F(i, 2o)=9.6431,
P=.oo558

Density increased time response. This means that
not only did users more likely get the answers
wrong for the more dense graphs, it took them
longer to do so.

Table 5.10: Results for the ANOVA for the user accuracy and time taken at the Cluster
Connectivity task.

155 Chapter 5. Edge Routing

F(2, 40)»3,9796, p-02653
^ Unbundled 31 Bundled

F(2, 40)*3.8383. p*.029e6
Unbundled 31 Bundled

0.8

0,7

0,6

0.5

0.4

0.3

02
Depth; Length Depth: Length

Hierarchy None Hierarchy None

Medium Density Low Density

(a) Layout, Depth, Bundling

0,75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30
Depth Length

Hierarchy none

Unoptimised Layout

Depth Length
Hierarchy none

Optnnised Layout

(b) Depth, Bundling, Density

Figure 5.20: The significant interaction effects from the cluster connectivity experiment.
The vertical error bars indicate + / - standard errors.

time taken {p = .00558). Unlike for our previous experiment, there was no significant main
effect found for bundling improving user response time, however the value was approach­
ing significance (p = .08619). This can be explained by the smaller number of graphs
displayed to the user as well as possible interaction effects with other factors. Interaction
effects were found between layout depth and bundling as well as between depth bundling
and density see figure 5.20

Depth alone, nor interacting with another single factor, never has a significant impact
on user performance. The fact that this performance depends on two other factors in such
a complex manner suggests that it cannot draw any reliable conclusions about its benefit
in visualising high level trends.

5.3.4 Follow On Path Tracing Experiment

The aim of introducing three dimensional depth was to mitigate the negative impact of
bundhng on low level path tracing tasks. Due to the result of our three dimensional path
tracing experiment where there was an interaction effect between the two types of depth
function, we decided to perform a follow on experiment to clarify the causes of the inter­
action. We aim to validate the effect of optimising layout and depth on user performance
as was seen in the previous experiment (and can be seen in figure 5.19). As part of this goal
we altered the experiment as described in the following subsection.

Experiment Changes

Graph Density Graph density is limited to only one type (low) as the negative impact of
graph density is clear from the preceding experiments.

Section 5.3. Three Dimensional Bundling Experimental Evaluation 156

Three Dimensional Depth 3D depth is limited to only length based depth and no depth.
This is due to the negative impact on time by hierarchy depth and is also to allow the user to
view more rendering within the experiment in order to obtain more statistically significant
results.

Edge Shading Edge shading was not considered a factor in our previous experiment.
However, as we are using edge length as a measure to control edge depth and as this is
the measure used to control the alpha blending of edges, we believe that it might have an
impact on user performance. We therefore display shaded and unshaded edges to the user.
An example of an experiment graph both shaded and unshaded can be seen in figure 5.21.

Experiment Graphs A limited set of random graphs was used in our previous exper­
iment and rotated versions of the graphs were displayed to the user. For our follow on
experiment we created a large set of random graphs structured using the same approach
as before. The graph set contains two layouts of each graph: one optimised and one unop­
timised. The random nature of the graph generation means that the optimisation process
can have a wide range of improvements for graphs. Some graphs have a very large edge
crossing reduction, some have little or none. The average edge crossing reduction across
all graphs was 55.43% of edge intersections with a standard deviation of 27.41%. The average
reduction of inter-cluster edge crossings was 17.08%, with a standard deviation of 11%. In
addition to increasing the number of random graphs, due to participant feed back the trial
time-out was extended to 30 seconds and participants were allowed enter an answer once
the time expired.

Participants 14 participants took part in this experiment, all of whom had a background
in computer science and had some level of familiarity with node link graphs. Each partic­
ipant was shown each combination of factors 3 times, resulting in a total of 144 separate
graph renderings, in addition to 6 training graphs.

Hypothesis

Our main hypothesis is as for our previous stereoscopic path tracing experiment. We hy­
pothesised that adding depth information to the edge bundles in a direction perpendicular
to the graph plane will improve user performance at a path tracing task when viewing the
graph in stereoscopic 3D. If we add depth, perpendicular to the graph plane, to the graph
edges and view the graph stereoscopically, user performance for path tracing of bundled
graphs will be improved. We also want to investigate the impact of edge shading, particu­
larly as edge depth is also based on edge length. Therefore we hypothesise that edge shading
will have a significant impact on the users perception of the bundled edges, resulting in an
improved level of accuracy, when compared to unshaded edges.

157 Chapter 5. Edge Routing

W?^-\ ' " #-•
rs>\ '■ - ■- \ ■ • ■

, Vf i ' ; : ■ ' . .■. \ ' i

/ ■' ''•'^X - ’ A'- V

•i^. V

(a) Shaded (b) Unshaded

Figure 5.21: An experiment random graph shown with and without edge shading.

Factor Count Values
Layout 2 Un-optimised, Optimised
Depth 3 length, None
Path Length 3 1,2,3
Bundling 2 = 0.0 , ^ = 0.8
Shading 2 Unshaded,Shaded

Table 5.11: A summary of the various factors considered for the ANOVA analysis of the
follow-on path tracing experiment.

Section 5.3. Three Dimensional Bundling Experimental Evaluation 158

Effect F-test Comment
Bundling F(i, 13)=ii2.67,

p=.00000
As for previous experiment bundling significantly nega­
tively impacts path tracing accuracy.

Bundling,
Path
Length

F(2, 26)=4.3225,
p=.02395

As for previous experiments,there was an interaction ef­
fect between bundling an path length.

Layout,
Bundling,
Depth

F(i, 13)=4.9136,
p=.04509

The interaction effect due to depth is not very strong.
Newman Keuls post-hoc analysis showed that depth
is never significantly different for the same levels of
bundling and layout. Bundling and layout alone approach
significance (p = 0.068), so we can say depth is not con­
tributing much as part of this interaction

Bundling,
Depth, Path
Length

F(2, 26)=6.4849.
p=.00519

The only combination of other factors that depth is sig­
nificant for is for bundled paths of length 3. The addi­
tion of depth results in accuracy being significantly worse
ip = 0.0363)

Table 5.12: Significant results for the ANOVA for the participant accuracy at the second
path tracing experiment.

5.3.5 Results

For this experiment we average the accuracy and time results across the three repetitions
and performed a 5 way repeated measures ANOVA with within-subjects factors: layout
X depth X edge density x bundling level x path length. The main significant results are
summarised in tables 5.12 and 5.13. It is clear from the results that the addition of depth to
edges does not improve path tracing, whether or not the edges are bundled, as it provided
no significant difference in user score (p = 0.951). While there were some interaction ef­
fects which included depth, (see figures 5.22, and 5.23), its impact as part of the interaction
appears to be quite small. Depth also shows a significantly negative impact on time, with
users averaging 1.37 seconds longer (p = .00467). Edge shading did not play a part in any
significant effects for accuracy or time. Therefore both of our hypotheses for this experi­
ment have been proven false. We discuss why the addition of stereoscopic depth failed to
improve participant accuracy at path tracing for our test graphs in our conclusions.

159 Chapter 5. Edge Routing

Effect F-test Comment
Depth F(i, 13)=ii.6i4,

P=.oo467
Three dimensional depth slowed down users by 1.37 sec­
onds on average

Path
Length,

F(2, 26)=49.6i5,
p=.00000

As for all previous experiments, the larger the geodesic
path, the larger the time taken.

Bundling
Path,
Length

F(2, 26)=23.174,
p=.ooooo

As for our initial stereoscopic experiment bundling had a
strong negative effect for path length of 1, a lesser but still
negative effect of path length 2 and a small improvement
for path length 3

Table 5.13: Significant results for the ANOVA for the participant time taken at the second
path tracing experiment.

Current effect: F(1, 13)=4.9136. p=.04509
^ No Depth ^ Length Depth

Unopt.

Unbundled

Unopt.

Bundled

Figure 5.22: The significant interaction effect between bundling, layout and depth for the
foUow on path tracing experiment. The vertical error bars indicate + / - standard errors.

Section 5.4. Conclusions 160

Current effect; F(2, 26)=6.4849, p=.00519

Unbundled Bundled

none

Path Length = 1

none

Path Length = 2

none

Path Length = 3

Figure 5.23: The significant interaction effect between bundling, depth and path length for
the follow on path tracing experiment. The vertical error bars indicate + / - standard errors.

5.4 Conclusions

5.4.1 Edge Bundling

Path Tracing

From our experimental results it is clear that, within the context of our experimental setup,
bundling does not aid users. It actually hinders them at path tracing tasks, not only in terms
of accuracy but also in terms of time taken to complete the task. An important caveat
for this result is that no visual enhancements for the bundling other than translucency
were used. As previously mentioned, colour is often used in edge bundles. This may have
a significant effect when it comes to distinguish individual edges within bundles even if
Holten and van Wijk’s [HVW09] user study on how best to render directed edges indicated
colouring was not the best option, as this was not in the context of bundled edges. The
use of colour and depth to aid in the perception of bundles is certainly a topic worthy of
further work.

Furthermore, the positioning of nodes within clusters relative to bundles and their as­
sociated control points may have a significant impact. Within the experiments, no con­
sideration was given to the routing of bundles around clusters or nodes in order to avoid
confounding factors between the bundles and straight line graphs. Adjustment to the clus­
ter hierarchy control points, algorithmically or with user intervention, could further reduce
visual ambiguity that results from this.

i6i Chapter 5. Edge Routing

Cluster Connectivity Path Tracing

For recognising high level patterns, bundling offered no significant improvement for in­
termediate levels of bundling, and is a hindrance when the tightest possible bundles are
used. However bundling does produce a significant positive effect on the time taken to
answer, without negatively impacting accuracy. Therefore it can be recommended when
understanding high level connectivity is important. In terms of the level of bundling used
we found no significant differences between the ^ = 0.7 and ^ = 0.9 levels of bundling for
path tracing based task or recognising higher level patterns. While the ji = 1.0 does provide
a clearer view of the graph nodes, it is of no benefit in terms of graph comprehension.

5.4.2 Three Dimensional Stereoscopic Edge Bundling

It is clear from our results that our approach for adding depth to edges did not benefit the
user, and specifically did not counter the negative impact of edge bundling as was originally
expected. Depth frequently played a role in interaction effects, but never had a significant
impact as a measure alone, nor in conjunction with edge bundling. In our initial three
dimensional path tracing experiment, there was an interaction with layout, in terms of
edge crossings. To investigate the relationship further we ran an additional experiment,
where every graph was randomly generated and edge shading was added as a factor. The
fact that no significant effect was found indicates that the interaction between depth and
layout in the initial experiment was derived from characteristics of the graph other than the
layout optimisation. It is clear from this, as well as the fact that depth often interacted with
multiple other factors, that the role of stereoscopic depth when perceiving edges is subtle
and relies on characteristics of a graph other than the ones used to define our experiment
graphs. Another potential source for the lack of significance was the fact that we used quite
straight forward measures to determine the depth of edges, however a more complex depth
function may lead to different results.

Previous work has shown the stereoscopic rendering of three dimensional graphs to be
beneficial [WF96, WM08, SM93, HHLio]. While our work may appear to contradict these
findings, there is one key characteristic about our approach which differentiates our work
from the existing literature, and also explains why we saw no benefit where others did. Our
nodes remained in a flat plane, only the edges were extended into three dimensions. We
avoided the the positioning of nodes in three dimensions to allow us to evaluate the perfor­
mance of three dimensional edges independently of three dimensional node positioning.
However, clearly the position of nodes in three dimensions plays an important role in the
traceability of paths. The continuity of edges in a path being traced is an important graph
aesthetic [WPCM02]. The fact that our three dimensional edges began and ended perpen­
dicular to the graph plane would have resulted in a lack of three dimensional continuity of
the path being traced (in addition to the lack of continuity in the two dimensional graph

Section 5.4. Conclusions 162

plane that bundling can cause).
One potential solution to this would be a clustered graph layout where the clusters lie at

different stereoscopic depths. This would allow for more continuity between edges and the
varying positions of the nodes in three dimensions should make the edges joining them
easier to perceive. Such a layout would have to consider many problems not encountered in
our experiments, such as the occlusion of nodes, the layout of clusters (as a circular layout
of cluster nodes may not be useful within a fully three dimensional layout), as well as a new
method to extend bundling into 3D.

Chapter 6

Conclusions and Future Work

This chapter summarises the conclusions of our research and provides directions for fu­
ture work on visualising dense small world graphs, using agglomerative clustering around
nodes of interest.

6.1 Conclusions
Graph visualisation is an extremely broad field, covering many subtopics. There is more
to the visualisation of a graph than an aesthetically pleasing positioning of nodes. To this
end we examined many different aspects of the field. We examined the clustering of a
graph around nodes of interest to the user. We showed how such a clustering can be used
as a basis for laying out a graph. Once a graph node has been positioned the routing of
edges plays a large role in comprehensibility of a graph, so we also examined edge routing
techniques providing a thorough evaluation based on user performance at low level tasks.
For our clustering and layout we predominantly considered small world graphs, as these
characteristically reflect many real-world graphs and feature a level of structure which we
believed to be useful for graph clustering. It is also possible to procedurally generate small
world graphs, where other characteristics such as node count and edge density could be
altered, to allow for thorough experimentation and validation.

6.1.1 Graph Clustering

In chapter 3 we introduced our approach to agglomerative clustering of small world graphs
around nodes of interest. An important difference between our clustering approach and
many existing approaches is that we use a set of input nodes specified by the user as the
basis for building the clustering. Each node of interest specified by the user forms a basis
or a cluster, which is grown agglomeratively.

We suggested that average clustering coefficient of clusters could be an effective heuris­
tic for our agglomerative clustering, testing its use on a mix of procedurally generated and

Section 6.1. Conclusions 164

real world graphs. We then refined our clustering approach further and evaluated it using
a large range of procedurally created graphs. We also investigated the effects of our clus­
tering approach using a benchmark dataset describing papers in the field of information
visualisation and the citations between them.

We found that clustering coefficient makes an effective heuristic for agglomeratively
clustering small world graphs around nodes of interest. We also demonstrated this using
an example of clustering around four papers of interest in the information visualisation
data set. For our example case, using clustering coefficient as a heuristic produced clusters
which were more aligned with the classification of papers by keyword (provided as part of
the dataset), than when modularity was used as a heuristic. However, modularity, a metric
relating to the number of edges between clusters, was still a useful heuristic. It provided
effective results for procedurally generated small world graphs, and also provided effective
results, compared to other heuristics, for procedurally generated graphs which lacked the
structure of small world graphs.

6.1.2 Graph Layout

Clustering graphs, using our agglomerative approach, groups nodes together around the
nodes of interest specified as an input. However this data must still be presented to the
user. In chapter 4 we discussed approaches to graph layout using a clustering hierarchy. We
demonstrated how clusters can be laid out using circular layouts and demonstrated how
inter-cluster edge crossings can be reduced using intelligent initial placement of nodes and
cluster rotation for hierarchically clustered circle layouts.

In section 4.4 we utilised our agglomerative clustering approach to develop a multi­
level layout. We showed how the relationships between the initial top level clusters can be
replicated throughout the generated graph hierarchy. We demonstrated two approaches
to layout, hierarchical and multilevel, that utilised the hierarchical clustering. The layouts
reinforced the relationships between the clusters formed around the nodes of interest, po­
sitioning sub-clusters closes to the higher level clusters that they were more strongly related
to. Of the two layout approaches, multilevel layout gave a more appealing result in terms of
cluster spacing. We also showed how the hierarchy can be utUised to generate hierarchical
edge bundles, to help clarify the relationships between the clusters.

6.1.3 Edge Routing

Graph layout algorithms primarily position nodes, often giving consideration to the rela­
tionships between nodes, defined by the graph edges. However, most algorithms do not
directly consider edge routing. This results in edges being a source of clutter for many high
density graphs. Edge bundhng is a recently popular clutter reduction technique. In chap-

i65 Chapter 6. Conclusions and Future Work

ter 5 we examined the impact of edge bundling using user experiments, which focused
on user perception of low level node connectivity, as well as higher level edge trends. The
hierarchical nature of our layout, described in chapter 4, naturally lends itself to Holtens
approach of hierarchical edge bundling. We developed an approach for generating hier­
archically clustered graphs for user experiments. In these compound graphs, inter-cluster
edges were distributed using a power-law and intra-cluster edges were given a flat prob­
ability of distribution. We used our test graphs to validate edge bundling over a range of
densities and node counts. We showed that while edge bundling negatively impacts a user’s
ability to trace paths at a low level, it allowed users to recognise higher level trends more
quickly.

Given that previous work has shown that stereoscopic rendering of graphs laid out in
three dimensions aids users at a low level path tracing task, we performed experiments to
determine if stereoscopic viewing could be used to counteract the negative effects asso­
ciated with edge bundling on path tracing. We developed approaches for rendering edges
with stereoscopic depth for a graph drawn in a flat two dimensional plane, by adding depth
perpendicular to the graph plane to edges. We performed user experiments, utilising a
stereoscopic display and active shutter glasses. Our experiments examined the impact of
different approaches to depth, as well as the impact of shading and layout, with respect
to the reduction of edge crossing. The resulting data showed no statistically significant
benefit to using depth when viewed under stereoscopic conditions. Our results illustrate
the difficulty of utilising three dimensional viewing, in that it’s difficult to characterise any
performance impact alone based on stereoscopy, independent from other factors such as
characteristics of the graph.

6.2 Future Work

6.2.1 Graph Clustering

We have demonstrated the effectiveness of our agglomerative approach to graph cluster­
ing, however there are many variations and enhancements possible for future work. Our
current approach begins with a single node of interest per cluster. It would be possible to
allow for multiple nodes to be assigned per cluster initially, allowing users to have more
control over clustering. We have provided a detailed evaluation, however further evalua­
tion is possible. We utilised some established heuristics from the literature and practical
considerations restricted us from including others. Other metrics are available and new
ones will most likely be introduced in the future.

A higher level user qualitative evaluation, based around real data and a high level task
and a user survey, such as that of Risden et al. [RCMCoo], would help gauge how useful
subject matter expert users find different metrics to guide the agglomeration process. It

Section 6.2. Future Work 166

would also help definitively determine how users would use the ability to rearrange graphs
around nodes of interest, to aid in a task. Such an evaluation is a very significant under­
taking, in terms of time and resources, and was beyond the scope of this thesis.

Another possible improvement would be to automate the selection of nodes of interest
to create a more general approach, for when the user does not have nodes of interest in
mind prior to graph analysis. For our experiments in section 3.5, we automated the selec­
tion of nodes of interest by selecting nodes based on node degree. This approach was purely
practical, ensuring that the similar nodes were selected for each run of the algorithm for
different graphs. There are other centrahties such as vertex betweenness or node clustering
coefficient which could be used to specify an initial node set for the agglomerative clus­
tering. These centralities could possibly be used in conjunction with an independent set
filtration, as used by the GRIP layout algorithm[GKoi], to ensure a distribution of nodes
across the diameter of the graph. Any approach used to generate an initial node set would
need to be thoroughly evaluated experimentally against a wide range of input graphs and
varying agglomerative clustering input node sets, to be sure that resulting clusterings are of
high quality and stable across a range of input graphs. The performance of our agglomera­
tive clustering with different sizes of automated initial nodes sets, on graphs with different
characteristics such as size density and edge distribution could also prove significant in
terms of automating the input node set.

6.2.2 Graph Layout

Our graph layout approaches are an initial step, and not a complete solution. As stated
in section 4.6 further work is required on the weighting of graph nodes for force directed
layout. Further analysis is needed on the usefulness of generating a layout using a multilevel
hierarchy of more than a few levels deep. We also need to examine the impact of much
larger scales of graph, as well as the practicality of other layouts (such as some form of
force directed layout) for the nodes of leaf clusters.

Graph layout is one of the largest sub-fields in graph visuahsation, with many publica­
tions focusing solely on the drawing of graphs. There are a wide range of possible layouts,
many of which could be alternatives to the approaches described in this thesis. There exist
comparisons of graph layouts such as such as that by Hachul and Jiinger [HJ06] and Bartel
et al. [BGKMii]. None of the algorithm’s compared are based around specifying an input
set of nodes, therefore a direct comparison to our approach would be difficult. The suc­
cessful development of an automated node selection set, as just described in section 6.2.1,
would allow a proper comparison. The extension of edge routing into 3D failed to provide
us with a significant increase in performance. However, adopting our layout into a 3D ap­
proach, where nodes and clusters are placed a different depths may allow us to reap the
benefits described by Mitchell and Ware[WMo8].

i67 Chapter 6. Conclusions and Future Work

6.2.3 Edge Routing

There are many different approaches to bundling, for our evaluation we utilised the Holten’s
hierarchy based approach [H0I06], which popularised the technique. Holten’s approach
was suitable for our evaluation as our hierarchical layout approach provides the hierarchy
structure required for routing edges. Other approaches exist and may fare differently under
evaluation. Our evaluation of edge routing did not consider node avoidance resulting in
some nodes being drawn over edges that they are not connected to. It may be possible to
develop Holten’s technique further, through the introduction of extra control points, so
that edges bundles avoid nodes that are not part of their source or destination.

Our evaluation of edge bundling with stereoscopic viewing showed that using three
dimensional depth had no significant impact on user performance. Our approach focused
on using three dimensional depth for the edges between nodes. Further experimentation
on utilising edge bundling between clusters at different depths as part of a full three di­
mensional graph layout may produce different results.

i

i

'I

M

Bibliography

[ACJM03]

[AGB96]

[AK95]

[AMA07]

[AT12]

[BBoo]

[BB05]

[BD07]

[BG09]

D. Auber, Y. Chiricota, F. Jourdan, and G. Melancon. Multiscale visualiza­
tion of small world networks. In Information Visualization, 2003. INFOVIS
2003. IEEE Symposium on, pages 75-81, 2003.

B.J. Rogers A. Glennerster and M.F. Bradshaw. Stereoscopic depth constancy
depends on the subjects task. Vision Research, Elsevier, 36(2i):344i - 3456,
1996.

Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist parti­
tioning: a survey. Integration, the VLSI Journal, 19(1-2):! - 81,1995.

D. Archambault, T. Munzner, and D. Auber. Topolayout: Multilevel graph
layout by topological features. Visualization and Computer Graphics, IEEE
Transactions on, 13(2):305 -317, march-april 2007.

AT and T. The at and t graph collection, 2012.
http://www.graphdrawing.org/.

available at

Andre M. S. Barreto and Helio J. C. Barbosa. Graph layout using a genetic al­
gorithm. In SBRN ’00: Proceedings of the VI Brazilian Symposium on Neural
Networks (SBRN’oo), page 179, Washington, DC, USA, 2000. IEEE Com­
puter Society.

Michael Baur and Ulrik Brandes. Crossing reduction in circular layouts. In
Juraj Hromkovic, Manfred Nagl, and Bernhard Westfechtel, editors, Graph-
Theoretic Concepts in Computer Science, volume 3353 of Lecture Notes in
Computer Science, pages 332-343. Springer Berlin / Heidelberg, 2005.

M. Balzer and O. Deussen. Level-of-detail visualization of clustered graph
layouts. In Visualization, 2007. APVIS '07.2007 6th International Asia-Pacific
Symposium on, pages 133-140, 2007.

R.A. Bittencourt and D. Guerrero. Comparison of graph clustering algo­
rithms for recovering software architecture module views. In Software Main-

Section Bibliography 170

tenance and Reengineering, 2009. CSMR ’09. 13th European Conference on,
pages 251 -254, march 2009.

[BGKMii] Gereon Bartel, Carsten Gutwenger, Karsten Klein, and Petra Mutzel. An
experimental evaluation of multilevel layout methods. In Ulrik Brandes
and Sabine Cornelsen, editors. Graph Drawing, volume 6502 of Lecture
Notes in Computer Science, pages 80-91. Springer Berlin / Heidelberg, 2011.
10.1007/978-3-642-18469-7.

[BH04] F. Boutin and M. Hascoet. Cluster validity indices for graph partitioning. In
Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on, pages
376 - 381, july 2004.

[BPGoo] Mark F Bradshaw, Andrew D Parton, and Andrew Glennerster. The task-
dependent use of binocular disparity and motion parallax information. Vi­
sion Research, Elsevier, 4o(27):3725 - 3734, 2000.

[Braoi] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25:163-177, 2001.

[CF09] Du Cai-Feng. High clustering coefficient of computer networks. In Infor­
mation Engineering, 2009. ICIE ’09. WASE International Conference on, vol­
ume 1, pages 371-374, 2009.

[Cheos] C. Chen. Top 10 unsolved information visualization problems. Computer
Graphics and Applications, IEEE, 25(4):i2-i6, 2005.

[CHH'^o8] Weiwei Cui, Zhou Hong, Qu Huamin, Wong Pak Chung, and Li Xiaoming.
Geometry-based edge clustering for graph visualization. Visualization and
Computer Graphics, IEEE Transactions on, I4(6):i277-i284, 2008.

[Chu97] Fan R. K. Chung. Spectral Graph Theory (CBMS Regional Conference Series
in Mathematics, No. 92). American Mathematical Society, February 1997.

[CJM03] Y. Chiricota, F. Jourdan, and G. Melancon. Software components capture
using graph clustering. In Program Comprehension, 2003.11th IEEE Interna­
tional Workshop on, pages 217 - 226, may 2003.

[CK95] J. Carriere and R. Kazman. Research report, interacting with huge hierar­
chies: beyond cone trees. In Information Visualization, 1995. Proceedings.,
pages 74 -81, oct. 1995.

[CM83] Thomas F. Coleman and Jorge J. Mor. Estimation of sparse Jacobian matrices
and graph coloring problems. SIAM Journal on Numerical Analysis, 2o(i):pp.
187-209,1983.

1/1 Bibliography

[CTD+ii] F. Carvalho, D.R. Trindade, P.F. Dam, A. Raposo, and I.H.F. dos Santos. Dy­
namic adjustment of stereo parameters for virtual reality tools. In Virtual
Reality (SVR), 2011 XIII Symposium on, pages 66 -72, may 2011.

[Delos] B. Delaney. Forget the funny glasses [auto-stereoscopic display systems].
Computer Graphics and Applications, IEEE, 25(3):i4 -19, may-june 2005.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269-271,1959. 10.1007/BF01386390.

[Ead84] P Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149-
160,1984.

[ED07] G. EUis and A. Dix. A taxonomy of clutter reduction for information vi­
sualisation. Visualization and Computer Graphics, IEEE Transactions on,
13(6):i2i6 -1223, nov.-dec. 2007.

[EF97] Peter Eades and Qing-Wen Feng. Multilevel visualization of clustered
graphs. In Stephen North, editor. Graph Drawing, volume 1190 of Lecture
Notes in Computer Science, pages 101-112. Springer Berlin Heidelberg, 1997.

[EHP^ii] O. Ersoy, C. Hurter, F.V. Paulovich, G. Cantareiro, and A. Telea. Skeleton-
based edge bundling for graph visualization. Visualization and Computer
Graphics, IEEE Transactions on, I7(i2):2364 -2373, dec. 2011.

[ER59] P. Erdos and A. Renyi. On random graphs. Publicationes Mathematicae
Debrecen, 6:290-297,1959.

[ET07] Niklas Elmqvist and Philippas Tsigas. Citewiz: a tool for the visualization of
scientific citation networks. Information Visualization, 6(3):2i5-232, 2007.

[ETNG‘^o8] N. Elmqvist, Do Thanh-Nghi, H. GoodeU, N. Henry, and J. D. Fekete. Zame:
Interactive large-scale graph visualization. In Visualization Symposium,
2008. PacificVIS ’08. IEEE Pacific, pages 215-222, 2008.

[FLM95] Arne Frick, Andreas Ludwig, and Heiko Mehldau. A fast adaptive layout
algorithm for undirected graphs. In GD ’94: Proceedings of the DIMACS In­
ternational Workshop on Graph Drawing, pages 388-403, London, UK, 1995.
Springer-Verlag.

[FI062] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345->
June 1962.

Section Bibliography 172

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by
force-directed placement. Software: Practice and Experience, John Wiley and
Sons, Ltd., 2i(ii):ii29-ii64, 1991.

[FT07] Y. Frishman and A. Tal. Multi-level graph layout on the gpu. Visualization
and Computer Graphics, IEEE Transactions on, i3(6):i3io-i3i9, 2007.

[FvNo6] Ham Frank van and Krishnan Neeraj. Ask-graphview: A large scale graph
visuahzation system. IEEE Transactions on Visualization and Computer Gr-
pahics, 12(5):669-676, 2006. 1187842 Member - James AbeUo.

[GFC04] M. Ghoniem, J.-D. Fekete, and R Castagliola. A comparison of the readabil­
ity of graphs using node-link and matrix-based representations. In Informa­
tion Visualization, 2004. INFOVIS 2004. IEEE Symposium on, pages 17 -24,
0-0 2004.

[GHGH09] Apeksha Godiyal, Jared Hoberock, Michael Garland, and John Hart. Rapid
multipole graph drawing on the gpu. In loannis Tollis and Maurizio Pa-
trignani, editors, Graph Drawing, volume 5417 of Lecture Notes in Computer
Science, pages 90-101. Springer Berlin / Heidelberg, 2009. 10.1007/978-3-
642-00219-9.

[GKoi] P. Gajer and S.G. Kobourov. Grip: Graph drawing with intelligent place­
ment. LNCS Graph Drawing 2000,1984:222-238, 2001.

[GK07] Emden R. Gansner and Yehuda Koren. Improved circular layouts. In GD’o6:
Proceedings of the 14th international conference on Graph drawing, pages 386-
398, Berlin, Heidelberg, 2007. Springer-Verlag.

[GKN05] Emden Gansner, Yehuda Koren, and Stephen North. Graph drawing by
stress majorization. In Jnos Pach, editor. Graph Drawing, volume 3383 of
Lecture Notes in Computer Science, pages 239-250. Springer Berlin / Heidel­
berg, 2005.

[HEH08] Weidong Huang, Peter Eades, and Seok-Hee Hong. Beyond time and error:
a cognitive approach to the evaluation of graph drawings. In BELIV ’08:
Proceedings of the 2008 conference on BEyond time and errors, pages 1-8, New
York, NY, USA, 2008. ACM.

[HFM07] N. Henry, J.-D. Fekete, and M.J. McGuffin. Nodetrix: a hybrid visuahzation
of social networks. Visualization and Computer Graphics, IEEE Transactions
on, 13(6):i302 -1309, nov.-dec. 2007.

173 Bibliography

[HHio] Weidong Huang and Maolin Huang. Exploring the relative importance of
crossing number and crossing angle. In Proceedings of the 3rd International
Symposium on Visual Information Communication, VINCE ’10, pages io;i-
10:8, New York, NY, USA, 2010. ACM.

[HHLio] Djamel Hassaine, Nicolas S. HoUiman, and Simon P. Liversedge. Investigat­
ing the performance of path-searching tasks in depth on multiview displays.
ACM Trans. Appl. Percept, 8(i):8:i-8:i8, November 2010.

[HJ05] Stefan Hachul and Michael Jiinger. Drawing large graphs with a potential-
field-based multilevel algorithm. In Jnos Pach, editor. Graph Drawing, vol­
ume 3383 of Lecture Notes in Computer Science, pages 285-295. Springer
Berlin Heidelberg, 2005.

[HJ06] Stefan Hachul and Michael Jiinger. An experimental comparison of fast al­
gorithms for drawing general large graphs. In Patrick Healy and NikolaS.
Nikolov, editors. Graph Drawing, volume 3843 of Lecture Notes in Computer
Science, pages 235-250. Springer Berlin Heidelberg, 2006.

[HKoi] David Harel and Yehuda Koren. A fast multi-scale method for drawing large
graphs. In Joe Marks, editor. Graph Drawing, volume 1984 of Lecture Notes
in Computer Science, pages 235-287. Springer Berlin / Heidelberg, 2001.

[HK02] David Harel and Yehuda Koren. Graph drawing by high-dimensional em­
bedding. In MichaelT. Goodrich and StephenG. Kobourov, editors. Graph
Drawing, volume 2528 of Lecture Notes in Computer Science, pages 207-219.
Springer Berlin Heidelberg, 2002.

[HKKS03] John Hopcroft, Omar Khan, Brian Kulis, and Bart Selman. Natural commu­
nities in large linked networks. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’03,
pages 541-546, New York, NY, USA, 2003. ACM.

[HMMoo] I. Herman, G. Melancon, and M.S. MarshaU. Graph visuahzation and nav­
igation in information visualization: A survey. Visualization and Computer
Graphics, IEEE Transactions on, 6(i):24 -43, jan-mar 2000.

[HN07] Pawan Harish and P. Narayanan. Accelerating large graph algorithms on the
gpu using cuda. In Srinivas Aluru, Manish Parashar, Ramamurthy Badri-
nath, and Viktor Prasanna, editors. High Performance Computing fb HiPC
2007, volume 4873 of Lecture Notes in Computer Science, pages 197-208.
Springer Berlin / Heidelberg, 2007. 10.1007/978-3-540-77220-0.

Section Bibliography 174

[H0I06] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. Visualization and Computer Graphics, IEEE Transactions
on, i2(5):74i -748, sept.-oct. 2006.

[HVW08] Danny Holten and Jarke J. Van Wijk. Visual comparison of hierarchically
organized data. Computer Graphics Forum, 27(3):759-766, 2008.

[HVW09] Danny Holten and Jarke J. van Wijk. A user study on visualizing directed
edges in graphs. In Proceedings of the 27th international conference on Human
factors in computing systems, CHI ’09, pages 2299-2308, New York, NY, USA,
2009. ACM.

[HW79] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(i):ioo-io8, 1979.

[HW09] Danny Holten and Jarke J. van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum, 28(3):983 - 990, 2009.

[Johyy] Donald B. Johnson. Efficient algorithms for shortest paths in sparse net­
works. /. ACM, 24(i):i-i3, January 1977.

[JS91] B. Johnson and B. Shneiderman. Tree-maps: a space-filling approach to the
visualization of hierarchical information structures. In Visualization, 1991.
Visualization ’91, Proceedings., IEEE Conference on, pages 284 -291, oct 1991.

[KCH03] Y. Koren, L. Carmel, and D Harel. Drawing huge graphs by algebraic multi­
grid optimization. Multiscale Modelling and Simulation, i(4):645-673, 2003.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inf. Process. Lett., 3i(i):7-i5,1989.

[KL08] Ma Kwan-Liu. Stargate: A unified, interactive visuahzation of software
projects. In Visualization Symposium, 2008. PacificVIS ’08. IEEE Pacific,
pages 191-198, 2008.

[LBAioa] A. Lambert, R. Bourqui, and D. Auber. 3d edge bundling for geographical
data visualization. In Information Visualisation (IV), 201014th International
Conference, pages 329 -335, july 2010.

[LBAiob] A. Lambert, R. Bourqui, and D. Auber. Winding roads: Routing edges into
bundles. Computer Graphics Forum, Wiley, 29{f):8^s - 862, 2010.

175 Bibliography

[LFR08] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Bench­
mark graphs for testing community detection algorithms. Phys. Rev. E,
78(4);o46no, Oct 2008.

[Libi2] BOOST Libraries. Boost libraries, 2012. available at http://www.boost.org/.

[LLCM12] Sheng-Jie Luo, Chun-Liang Liu, Bing-Yu Chen, and Kwan-Liu Ma.
Ambiguity-free edge-bundling for interactive graph visualization. Visual­
ization and Computer Graphics, IEEE Transactions on, i8(5);8io -821, may
2012.

[Lovio] Mike Love. Geneology of influence, 2010. available at http://www.mike-
love.net/genealogy/.

[LWHio] Lijuan Luo, Martin Wong, and Wen-mei Hwu. An effective gpu implemen­
tation of breadth-first search. In Proceedings of the 47th Design Automation
Conference, DAC ’10, pages 52-55, New York, NY, USA, 2010. ACM.

[MDio] Fintan McGee and John Dingliana. An Evaluation of the use of Clustering
Coefficient as a Heuristic for the Visualisation of Small World Graphs, pages
167-174, Sheffield, United Kingdom, 2010. Eurographics Association.

[MDi2a] Fintan McGee and John Dingliana. An empirical study on the impact of
edge bundling on user comprehension of graphs. In Proceedings of the Inter­
national Working Conference on Advanced Visual Interfaces, AVI ’12, pages
620-627, New York, NY, USA, 2012. ACM.

[MDi2b] Fintan McGee and John Dingliana. Visualising small world graphs: Ag-
glomerative clustering of small world graphs around nodes of interest. In
Proceedings of the International Conference on Information Visualisation The­

ory and Applications 2012 (), IVAPP 2012, 2012.

[Melo6] Guy Melancon. Just how dense are dense graphs in the real world?: a
methodological note. In Proceedings of the 2006 AVI workshop on BEyond
time and errors: novel evaluation methods for information visualization, BE-
LIV ’06, pages 1-7, New York, NY, USA, 2006. ACM.

[Mil67] S Milgram. The small world problem. Psychology Today, 2:60-67,1967.

[MKNT87] S. Masuda, t. Kashiwabara, K Nakajima, and Fujisawa T. On the np-
completeness of a computer network layout problem. In Proc. IEEE Inti.
Symp. Circuits and Systems,, pages 292-295,1987.

Section Bibliography 176

[MM08] C. Muelder and Kwan-Liu Ma. Rapid graph layout using space filling curves.
Visualization and Computer Graphics, IEEE Transactions on, i4(6);i30i -
1308, nov.-dec. 2008.

[MMCG99] S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner. Bunch: a clus­
tering tool for the recovery and maintenance of software system structures.
In Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International
Conference on, pages 50 -59,1999.

[MMO05] Jonathan McPherson, Kwan-Liu Ma, and Michael Ogawa. Discovering para­
metric clusters in social smaU-world graphs. In Proceedings of the 2005 ACM
symposium on Applied computing, SAC ’05, pages 1231-1238, New York, NY,
USA, 2005. ACM.

[MMR+98] S. Mancoridis, B.S. MitcheU, C. Rorres, Y. Chen, and E.R. Gansner. Using
automatic clustering to produce high-level system organizations of source
code. In Program Comprehension, 1998. IWPC ’98. Proceedings., 6th Inter­
national Workshop on, pages 45 -52, jun 1998.

[Mun98] T. Munzner. Exploring large graphs in 3d hyperbolic space. Computer
Graphics and Applications, IEEE, i8(4):i8-23,1998.

[MV09] L. Moussiades and A. Vakali. Benchmark graphs for the evaluation of clus­
tering algorithms. In Research Challenges in Information Science, 2009. RCIS
2009. Third International Conference on, pages 197 -206, april 2009.

[NEHHii] Quan Nguyen, Peter Eades, Seok-Hee Hong, and Weidong Huang. Large
crossing angles in circular layouts. In Ulrik Brandes and Sabine Cornelsen,
editors. Graph Drawing, volume 6502 of Lecture Notes in Computer Science,
pages 397-399. Springer Berlin / Heidelberg, 2011.

[Newo4] M. E. J. Newman. Fast algorithm for detecting community structure in net­
works. Phys. Rev. E, 69(6):o66i33, Jun 2004.

[Newio] Mark Newman. Networks: An Introduction. Oxford University Press, Inc.,
New York, NY, USA, 2010.

[NG04] M. E. J. Newman and M. Girvan. Finding and evaluating community struc­
ture in networks. Physical Review E, 69(2):o26ii3, 2004.

[Plao4] Catherine Plaisant. The challenge of information visualization evaluation.
In Proceedings of the working conference on Advanced visual interfaces, AVI
’04, pages 109-116, New York, NY, USA, 2004. ACM.

177 Bibliography

[PMCCoi] Helen C. Purchase, Matthew McGill, Linda Colpoys, and David Carrington.
Graph drawing aesthetics and the comprehension of uml class diagrams:
an empirical study. In APVis ’oi: Proceedings of the 2001 Asia-Pacific sym­
posium on Information visualisation, pages 129-137, Darlinghurst, Australia,
Australia, 2001. Australian Computer Society, Inc.

[PNBH12] Sergey Pupyrev, Lev Nachmanson, Sergey Bereg, and Alexander Holroyd.
Edge routing with ordered bundles. In Marc van Kreveld and Bettina Speck-
mann, editors. Graph Drawing, volume 7034 of Lecture Notes in Computer
Science, pages 136-147. Springer Berlin / Heidelberg, 2012. 10.1007/978-3-
642-25878-7-14.

[PPP12] H.C. Purchase, C. Pilcher, and B. Plimmer. Graph drawing aesthetics - cre­
ated by users, not algorithms. Visualization and Computer Graphics, IEEE
Transactions on, i8(i):8i -92, jan. 2012.

[Pur97] Helen C. Purchase. Which aesthetic has the greatest effect on human un­
derstanding? In Proceedings of the sth International Symposium on Graph
Drawing, GD ’97, pages 248-261, London, UK, 1997. Springer-Verlag.

[Pur98] H.C. Purchase. The effects of graph layout. In Computer Human Interaction
Conference, 1998. Proceedings. 1998 Australasian, pages 80 -86, nov-4 dec
1998.

[QEoi] Aaron Quigley and Peter Eades. Fade: Graph drawing, clustering, and visual
abstraction. In Joe Marks, editor. Graph Drawing, volume 1984 of Lecture
Notes in Computer Science, pages 197-210. Springer Berlin Heidelberg, 2001.

[QZW07] Huamin Qu, Hong Zhou, and Yingcai Wu. Controllable and progressive
edge clustering for large networks. In Michael Kaufmann and Dorothea
Wagner, editors. Graph Drawing, volume 4372 of Lecture Notes in Computer
Science, pages 399-404. Springer Berlin / Heidelberg, 2007.

[RCMCoo] Kirsten Risden, Mary P. Czerwinski, Tamara Munzner, and Daniel B. Cook.
An initial examination of ease of use for 2d and 3d information visualizations
of web content. International Journal of Human-Computer Studies, Elsevier,

53(5):695 - 714. 2000.

[RDLC12] Nathalie Henry Riche, Tim Dwyer, Bongshin Lee, and Sheelagh Carpen-
dale. Exploring the design space of interactive link curvature in network
diagrams. In Proceedings of the International Working Conference on Ad­
vanced Visual Interfaces, AVI ’12, pages 506-513, New York, NY, USA, 2012.
ACM.

Section Bibliography 178

[RLMJ05] Ruth Rosenholtz, Yuanzhen Li, Jonathan Mansfield, and Zhenlan Jin. Fea­
ture congestion: a measure of display clutter. In CHI ’05: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 761-770,
New York, NY, USA, 2005. ACM.

[RMC91] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone trees:
animated 3d visualizations of hierarchical information. In Proceedings of
the SIGCHI conference on Human factors in computing systems: Reaching
through technology, CHI ’91, pages 189-194, New York, NY, USA, 1991. ACM.

[Schoy] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1) :27 -
64, 2007.

[SM93] Randy L. SoUenberger and Paul Milgram. Effects of stereoscopic and ro­
tational displays in a three-dimensional path-tracing task. Human Factors,
Sage, 35:483 - 499,1993.

[ST99] Janet Six and loannis Tollis. Circular drawings of biconnected graphs. In
Michael Goodrich and Catherine McGeoch, editors. Algorithm Engineer­
ing and Experimentation, volume 1619 of Lecture Notes in Computer Science,
pages 662-662. Springer Berlin / Heidelberg, 1999.

[ST04] Alkiviadis Symeonidis and loannis Tollis. Visualization of biological infor­
mation with circular drawings. In Jos Barreiro, Fernando Martn-Snchez,
Vctor Maojo, and Ferran Sanz, editors. Biological and Medical Data Analysis,
volume 3337 of Lecture Notes in Computer Science, pages 468-478. Springer
Berlin / Heidelberg, 2004. 10.1007/978-3-540-30547-7.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual
understanding of hierarchical system structures. Systems, Man and Cyber­
netics, IEEE Transactions on, ii(2):i09 -125, feb. 1981.

[SW05] Thomas Schank and Dorothea Wagner. Approximating clustering coeffi­
cient and transitivity. Journal of Graph Algorithms and Applications, 9:2005,
2005.

[Tam87] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM Journal on Computing, i6(3):42i-444,1987.

[TD0G13] University of Cologne University of Sydney TU Dortmund, Osnabrck Uni­
versity and oreas GmbH. The open graph drawing framework (ogdf), 2013.
available at http://www.ogdf net/.

179 Bibliography

[Tufoi] Edward R. Tufte. The Visual Display of Quantitative Information, 2nd edition.
Graphics Press, 2 edition, May 2001.

[vDoo] S. M. van Dongen. Graph Clustering by Flow Simulation. PhD thesis. Uni­
versity of Utrecht, The Netherlands, 2000.

[vHo4] E van Ham. Case study: Visualizing visualization. In Information Visual­
ization, 2004. INFOVIS 2004. IEEE Symposium on, pages rs-rs, 2004.

[vHWoSa] F. van Ham and M. Wattenberg. Centrality based visualization of smaU
world graphs. In A. Vilanova, A Telea, G Scheuermann, and T Mller, ed­
itors, Eurographics/ lEEE-VGTC Symposium on Visualization 2008, Eind­
hoven, HoUand, 2008.

[VHWoSb] F. Van Ham and M. Wattenberg. Centrality based visualization of small
world graphs. Computer Graphics Forum, 27(3):975-982, 2008.

[vLKS+11] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J.J. van Wijk, J.-
D. Fekete, and D.W. Fellner. Visual analysis of large graphs: State-of-the-art
and future research challenges. Computer Graphics Forum, 3o(6):i7i9-i749,
2011.

[vSvDZS'^io] Boris W. van Schooten, Elisabeth M. A. G. van Dijk, Elena Zudilova-
Seinstra, Avan Suinesiaputra, and Johan H. C. Reiber. The effect of stere­
oscopy and motion cues on 3d interpretation task performance. In Proceed­
ings of the International Conference on Advanced Visual Interfaces, AVI To,
pages 167-170, New York, NY, USA, 2010. ACM.

[WAB93] Cohn Ware, Kevin Arthur, and Kellogg S. Booth. Fish tank virtual reahty. In
Proceedings of the INTERACT ’93 and CHI ’93 conference on Human factors
in computing systems, CHI ’93, pages 37-42, New York, NY, USA, 1993. ACM.

[Waloi] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In
Joe Marks, editor. Graph Drawing, volume 1984 of Lecture Notes in Com­
puter Science, pages 31-55. Springer Berlin / Heidelberg, 2001. 10.1007/3-
540-44541-2.

[Wali2] Christopher Walshaw. The graph partitioning archive, 2012. available at
http://staffweb.cms.gre.ac.uk/ wco6/partition/.

[Waro4] Cohn Ware. Information Visualization: Perception for Design. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2004.

Section Bibliography 180

[Watos] D.J. Watts. Small worlds: the dynamics of networks between order and ran­
domness. Princeton studies in complexity. Princeton University Press, 2003.

[WC07] Nelson Wong and Sheelagh Carpendale. Supporting interactive graph ex­
ploration using edge plucking. In Proceedings of Visualization and Data
Analysis (VDA) 2007, SPIE, volume 6495, pages 649508-649508-12, 2007.

[WCG03] N. Wong, S. Carpendale, and S. Greenberg. Edgelens: an interactive method
for managing edge congestion in graphs. In Information Visualization, 2003.
INFOVIS 2003. IEEE Symposium on, pages 51 -58, oct. 2003.

[WF96] Cohn Ware and Glenn Franck. Evaluating stereo and motion cues for visu­
alizing information nets in three dimensions. ACM Trans. Graph., i5(2):i2i-
140, April 1996.

[WGP98] C. Ware, C. Gobrecht, and M.A. Paton. Dynamic adjustment of stereo dis­
play parameters. Systems, Man and Cybernetics, Part A: Systems and Hu­
mans, IEEE Transactions on, 28(i):56 -65, jan 1998.

[Whe38] Charles Wheatstone. Contributions to the physiology of vision.part the first.
on some remarkable, and hitherto unobserved, phenomena of binocular vi­
sion. Philosophical Transactions of the Royal Society of London, Vol. 128:371
- 394., 1838.

[WHH05] J. Wu, A.E. Hassan, and R.C. Holt. Comparison of clustering algorithms in
the context of software evolution. In Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference on, pages 525 - 535, sept.
2005.

[Wil97] Graham J Wilis. Nicheworks - interactive visualization of very large graphs.
In Proceeding of the 5th international Symposium on Graph Drawing GD 97,
pages 403-414, Rome, 1997. Springer.

[WM05] Cohn Ware and Peter MitcheU. Reevaluating stereo and motion cues for
visualizing graphs in three dimensions. In Proceedings of the 2nd symposium
on Applied perception in graphics and visualization, APGV ’05, pages 51-58,
New York, NY, USA, 2005. ACM.

[WM08] Cohn Ware and Peter MitcheU. Visualizing graphs in three dimensions.
ACM Trans. Appl. Percept., 5(i):i-i5, 2008. 1279642.

[WP90] Steven P. WiUiams and RusseU V. Parrish. New computational control tech­
niques and increased understanding for stereo 3-d displays, volume 1256,
pages 73-82. SPIE, 1990.

i8i Bibliography

[WPCM02] Colin Ware, Helen Purchase, Linda Colpoys, and Matthew McGill. Cogni­
tive measurements of graph aesthetics. Information Visualization, i(2):i03-
110, 2002.

[WRMW95] John P. Wann, Simon Rushton, and Mark Mon-Williams. Natural problems
for stereoscopic depth perception in virtual environments. Vision Research,
Elsevier, 35(i9):273i - 2736,1995.

[WS98] D. Watts and S. Strogatz. CoUective dynamics of ’’small-world” networks.
Nature, (393):440-442,1998.

[WSHE08] Huang Weidong, Hong Seok-Hee, and P. Eades. Effects of crossing angles.
In Visualization Symposium, 2008. PacificVIS ’08. IEEE Pacific, pages 41-46,
2008.

[YuFo8] Grinstein G. Plaisant C. YuFekete, J.-D. The history of infovis. IEEE InfoVis
2004 Contest,, 14(6):i285-i292, 2008.

[Zac77] Wayne W. Zachary. An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, University of New Mexico,

33(4):452-473,1977-

[ZYC'*^o8] Hong Zhou, Xiaoru Yuan, Weiwei Cui, Huamin Qu, and Baoquan Chen.
Energy-based hierarchical edge clustering of graphs. In Visualization Sym­
posium, 2008. PacificVIS ’08. IEEE Pacific, pages 55 -61, march 2008.

