
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin 

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and 
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing 
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property 
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR 
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources 
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in 
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal 
conventions. Where specific permission to use material is required, this is identified and such 
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the 
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity 
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising 
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific 
use constraints, details of which may not be explicitly described. It is the responsibility of potential and 
actual users to be aware of such constraints and to abide by them. By making use of material from a 
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the 
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the 
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & 
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from 
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or 
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for 
your research use or for educational purposes in electronic or print form providing the copyright owners 
are acknowledged using the normal conventions. You must obtain permission for any other use. 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has 
been supplied on the understanding that it is copyright material and that no quotation from the thesis 
may be published without proper acknowledgement.



Visualising Small World Graphs using Agglomerative 
Clustering around Nodes of Interest

Fintan McGee 

August 23, 2013

A thesis submitted to the University of Dublin, Trinity College in candidacy 

for the degree of Doctor of Philosophy in Computer Science.



TRINITY COLLEGE 

- < MAR 2014

.LIBRARY DUEL-M

(02-^^



Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise 

for a degree at this, or any other University, and that unless otherwise stated, is my own 

work. I agree that Trinity College Library may lend or copy this thesis upon request.





Summary

The difficulty of visualising large graphs lies not just in processing pow^er and display size 
but in the inherent visual complexity of a large data-set, as the noise and clutter from large 
numbers of nodes and an order of magnitude more of edges negatively impacts the compre­
hensibility of any visualisation. Small world graphs are a classification of graph that occurs 
frequently in models of real world networks such as computer systems and social networks. 
The overall objective of our research is to allow users to get a better comprehension of the 
relationships between data entities in the visualisation of real world systems.

The layout of a graph has a significant impact on its comprehensibility. Automated 
layouts may be used to cope with graphs containing a large numbers of nodes and edges. 
However, this may only provide a globally optimised layout, and may not necessarily focus 
on the nodes which might be of interest of the end user.

We introduce a novel approach for making large small world graphs more comprehen­
sible by decomposing the graph into clusters, using an agglomerative clustering process 
based around user defined nodes of interest. We propose using clustering coefficient, a 
prominent feature of small world graphs that relates to local graph structure, as a heuristic 
to guide the agglomerative clustering process. We validate the effectiveness of our cho­
sen heuristic experimentally against a large range of graphs and in comparison to other 
clustering heuristics.

We extend our clustering to generate a clustering hierarchy which reflects the clusters 
around the user’s nodes of interest at multiple levels. We utilise this hierarchy to perform a 
multilevel layout providing users with a view of the graph, which reflects the relationships 
between the clusters defined by the user’s nodes of interest. We also utilise our clustering 
hierarchy for edge bundling, a recently popular cluster reduction technique, in the graphs 
produced by our layout.

We provide an empirical user evaluation of edge bundling, the first of its kind to our 
knowledge. Our results show that while edge bundling negatively impacts understand­
ing of low level node connectivity it does aid in the identification of higher level trends 
between clusters. We have also extended edge bundles into three dimensions for stereo­
scopic viewing and evaluated it empirically. Somewhat surprisingly, our results show that 
the stereoscopic viewing of edges with three dimensional depth offers no significant benefit 
to users.
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Chapter i

Introduction

WE LIVE IN AN ERA WHERE MORE DATA IS PUBLICLY AVAILABLE THAN EVER BEFORE.

The internet makes large volumes of data searchable, relatable and filterable. Peo­
ple model and enhance their real world social networks through websites such as Facebook 
and Linked-in, and generate further linked content through blogs and services such as twit­
ter. Modern governments often release large volumes of data, ranging from internal emails 
to census results and social statistics. Technological, medical and scientific advances have 
allowed researches to generate huge volumes of information about the low-level workings 
of the universe and the basic genetic code of life. In 2010 Eric Schmidt, CEO of Google, 
claimed that every two days mankind was generating as much information as it had from 
the dawn of civilisation until 2002. While the accuracy of Schmidts claim may be debat­
able, it is clear that more information is produced daily by mankind than ever has been 
prior to this in our history.

In his foreword to Ware’s 2004 book [Waro4] on Information Visualisation, Card suc­
cinctly describes Information Visualisation as “the use of interactive visual representations 
of abstract data to amplify cognition”. Information Visualisation has only emerged as a dis­
tinct field of academic research in the last two decades, but representing data with images 
to help with understanding is not such a recent idea. One of the most widely known visu­
alisations is Minard’s 1869 visualisation of Napoleon’s campaign against Russia, which per 
Edward Tufte “may well be the best statistical graphic ever drawn” [Tufoi]. The visualisa­
tion, seen in figure 1.1 succinctly conveys information about the size of Napoleon’s army, 
the position of the army, the direction of the army’s movement and the weather condition 
over the temporal duration of the campaign in a single graphic.

Graph visualisation often represents data visualisation at its most abstract. In the sim­
plest of terms, graphs can be considered as a mapping of relationships between entities. 
Graphs are often visualised as node-link diagrams, where nodes represent the entities and
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Figure i.i: Minards flow map of Napoleons Russian Campaign of 1812.

/ \

Figure 1.2: A small contrived example of a social social network, where the nodes represent 
people and the edges represent a friendship between two people.

the lines between nodes represent relationships. An example can be seen in figure 1.2. A 
small graph like this is easy to lay out manually and understand, as there are not many 
nodes and only a few connections between them. It is not difficult to see that “Sean” is the 
most popular person (or well connected node). However, when a graph models hundreds 
or thousands of items and orders of magnitude more connections between them, it can 
become very difficult to comprehend or even display on a computer screen. An automated 
layout may be used to cope with large munbers of nodes and edges, however this may only 
provide a globally optimised layout, and may not necessarily focus on the nodes which 
might be of interest to the user.

This thesis concerns providing end users of a graph application the means to rearrange 
graphs around nodes of interest and how best to display the resulting graphs to the user.
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1.1 Motivation

The difficulty of visualising large dense graph data sets lies not just in processing power 
and display size but also in the inherent visual complexity of a large data set. Visualisation 
of large data sets is an outstanding challenge in the field of visualisation in terms of com­
prehending the data as well as scaling algorithms for tasks such as layout and clustering 
[Cheo5, Newo4, Schoy] and many attempts have been made at addressing the visualisa­
tion of large graphs in terms of system scalability and comprehension [FvNo6, ETNG^oS, 
ACJM03, Wil97]. Clutter is defined by Rosenholtz et al [RLMJ05] as “the state in which 
excess items, or their representation or organization, lead to a degradation of performance at 
some task”. Clutter resulting from thousands of nodes and an order of magnitude more of 
edges negatively impacts comprehensibility. Therefore the minimisation of clutter should 
be a concern of any graph visualisation. Graph analysis, clustering and visualisation are 
used to help give users a better understanding of topics such as software engineering [KL08, 
BD07], social networks [Zacyy, ACJM03] computer networks [Wilpy], citation network 
analysis [ET07] and biological structures [ETNG^oS].

Frequently visualisation applications are designed with a specific target domain or dataset 
in mind in mind. Examples of such include computer program visualisation [KL08], vi­
sual exploration of the Internet Movie Database (IMDB) [ACJM03] and visualisation of 
scientific citation networks [ET07]. Such a targeted development of an application is able 
to take advantage of characteristics of the data being visualised. Prior knowledge of the 
structure or characteristics of graph data allows for a targeted choice of cluster or layout 
algorithms that will be most suitable for the data.

Graphs with random edge distributions, where the distribution of edges among the ver­
tices follows a Poisson distribution, are often generated procedurally and used to provide 
insight into graph theory. However, graphs modelling real world systems are not com­
pletely random and often contain an element of structure. We propose that this structure 
can be used by an agglomerative clustering algorithm to generate clusterings of graphs that 
aid in comprehension and layout, based on the user specification of nodes of interest. While 
traditional layout methods such as force directed layouts are very effective when it comes to 
laying out low-density graphs, real world graphs are frequently quite dense[Melo6]. How­
ever as graphs become more dense these layout approaches struggle in terms of aesthetics 
and comprehensibility, as well as in terms of algorithm execution time. The resulting lay­
out can often contain groups of densely connected nodes in unreadable tight clusters with 
a large amount of edge overlaps. Also, while there is often a range of input parameters for 
force directed layouts, the user very often has little control over the final result. Different 
users may require different perspectives, and most layout algorithms do not provide this 
flexibility in terms of influencing the basic layout. We aim to provide the user with the abil­
ity to lay out a graph based around nodes of interest selected by them, to allow different
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perspectives of the same data set to be generated.

The overall objective of our research is to allow users to get a better comprehension 
of the relationships between data entities in the visualisation of real world systems. In 
addition to our clustering and layout, we also evaluate edge routing techniques to show 
how these sort of graphs may be best visualised by a user to reduce the clutter caused by 
the edge density.

1.2 Key Concepts

Graph Visualisation is an extremely broad field covering many related topics. As part of 
this research we have engaged in many different aspects of the fields, such as clustering, lay­
out, edge routing, graph generation, evaluation edge routing and the stereoscopic display 
of graphs. The purpose of graph layout algorithms is to allow for an easier understanding 
of the data by positioning nodes in such a way that the graph is more aesthetically pleasing 
to a user[HJo6]. As well as layout, the routing of edges also plays a large role in compre­
hensibility [WPCM02].

A clustered graph is a graph with recursive clustering structure over the vertices. Eades 
and Feng [EF97] give examples of two dimensional clustered graphs as well as describing 
an approach for visualising a graph with a multilevel clustering hierarchy in three dimen­
sions. In their example, the clustering structure is an attribute of the graphs and vertices. 
However, in many cases, if a graph is to be clustered there may be no intrinsic attribute 
or parameter which describes the clustering hierarchy. Therefore,this structure may need 
to be determined by a clustering algorithm. There are different algorithmic approaches to 
clustering, some of which rely on the underlying structure of the graph, such as Newman 
and Girvan’s top-down divisive clustering [NG04].

The analysis of various different types of networks has shown that many networks 
across different fields have similar characteristics and can be classified as small world graphs 
[WS98, CF09, ACJM03, vHWoSa]. Small world networks are characterised by a high level 
of clustering and short path lengths. The term “small world” is based on the commonly 
known concept of there being six degrees of separation between any two people ahve. It 
does not refer to the size of the graph, so many very large graphs can be considered small 
world graphs. Given the clustered structural nature of small world graphs, a suitable clus­
tering algorithm may prove effective in dividing a large small world graph into more com­
prehensible clusters for visualisation.

Edges are one of the main sources of clutter in dense graphs. Edge Bundling [H0I06]
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is a technique by which an attempt is made to reduce edge clutter by grouping edges to­
gether into “bundles” of curves. Though often cited as a clutter reduction technique, edge 
bundlings claimed effectiveness has little basis in empirical evidence.

Three-Dimensional stereoscopic displays are becoming more widely available as com­
modity hardware. Research has shown [WMo8] that users can more easily comprehend 
large graphs when utilising three dimensional display techniques.

1.3 Contribution

Our goal of improving the comprehensibility of small world graphs has been broken down 
into multiple contributions.

• Our initial contribution is our novel approach to agglomeratively clustering small 
world graphs around nodes of interest. We propose average local clustering coeffi­
cient of a cluster as a heuristic to guide this agglomerative clustering.

• We demonstrate the effectiveness of our chosen heuristic by evaluating it against 
other metrics using a large range of graphs.

• We extend our clustering to generate a hierarchical clustering which reflects the re­
lationships between the clusters created by our approach.

• We utilise our hierarchical clustering to perform a multilevel layout of the graph and 
aid in the routing of edges in the resulting layout. We also demonstrate an approach 
to reduce edge crossings in circularly laid out clustering hierarchies.

• We empirically evaluate "Edge-Bundling” a popular clutter reduction technique, which 
we utilise in our graph presentation.

• To support our evaluation we developed an approach to create procedurally gener­
ated graphs suitable for such experiments.

• We extend edge bundling into three dimensions and empirically evaluate the use of 
three dimensional stereoscopic depth to determine its effectiveness at reducing the 
impact of edge bundling on low level path tracing tasks.

1.4 Scope

The scope of this thesis covers many different aspects of graph presentation. The layout and 
agglomerative clustering of a graph are one form of presentation, the routing of the edges is
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another. The common focus of each of these areas is how to best improve user performance. 
Our scope does not cover a full comparison of all clustering and layout approaches. We 
provide low level evaluations of the techniques described in this thesis. Such evaluations 
yield results which are not domain specific and can be generalised across many fields. High 
level domain specific evaluation experiments, using domain experts as participants, are 
beyond the scope of this thesis.

1.5 Related Publications

Some of the research described in this has previously been peer reviewed and published at 
international conferences. The following papers contain materials which were created as 
part of out research into this Phd. thesis.

1. [MDi2a] An Empirical Study on the Impact of Edge Bundling on User Compre­
hension of Graphs:
Fintan McGee, John Dingliana
Advanced Visual Interfaces 2012 in cooperation with ACM-SIGCHI, Capri Island, 
Italy

2. [MDi2b] VISUALISING SMALLWORLD GRAPHS: Agglomerative clustering of 
Small World Graphs around nodes of interest:
Fintan McGee, John Dingliana;
International Conference on Information Visualisation Theory and Applications 2012 
(IVAPP 2012), Rome, Italy

3. [MDioJAn Evaluation of the use of Clustering Coefficient as a Heuristic for the 
Visualisation of Small World Graphs:
Fintan McGee, John Dingliana;
Theory and Practice of Computer Graphics, UK 2010 (TPCG2010), Sheffield, UK

1.6 Thesis Layout

The rest of this thesis is laid out as follows:

• Chapter two provides a background on graph theory and describes the related work 
for this thesis. An overview of layout, clustering, graph evaluation, edge routing and 
three dimensional stereoscopic visualisation of graphs is also provided along with an 
examination of the state of the art in each.

• Chapter three covers graph clustering techniques. We present a new agglomerative 
clustering to allow users rearrange graphs around nodes of interest. We suggest a
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heuristic, based on the structure of small world graphs and evaluate it against other 
heuristics across a wide range of graphs.

Chapter four covers graph layout. We extend our clustering from chapter three to 
generate a clustering hierarchy. We utilise this clustering hierarchy for multilevel 
layouts of graphs, which reflect the users selected nodes of interest. We also utilise 
this hierarchy to route edges in the resulting graph.

Chapter five examines the role of edge routing in hierarchically clustered graphs. We 
provide an empirical evaluation of edge bundling. We extend edge bundling into 
three dimensions for stereoscopic viewing of graphs and evaluate the impact it has 
on user performance.

Chapter six describes our conclusions and directions for future work.
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Chapter 2

Background and Related Work

Graph visualisation is a broad field of research, covering many topics includ­
ing computer graphics, mathematics, graph theory, art and human perception. In 

this chapter we present the basic concepts necessary to understand what follows, and we 
describe the related research that the chapters following this are built upon.

2.1 Graphs

When the term, “Graph” is used, many people immediately conjure up an image of a vi­
sual representation of a graph, forgetting that underlying this is a mathematical defini­
tion which exists completely independently from any visual interpretation. An undirected 
graph G = (V,E) is defined by a set of vertices v € V = {v„ V2...v„} and a set of edges e e E 
connecting vertices x € V and y e Vwith e{x, y) = e{y, x). If a graph is a weighted graph 
there is an associated numerical weight for each edge w{e{x,y)).

For a directed graph e(x,y) ^ e{y,x). A directed graph can be transformed into an 
undirected graph by ignoring the edge direction. An unweighted graph can be considered 
to be a weighted graph where w(e) = i, Vee£. An edge in a directed graph is considered 
to have one vertex that is the edge source and one that is the edge target. If a vertex is the 
target, the edge is considered an in-edge to that vertex. If a vertex is the source, the edge is 
considered an out-edge edge to that vertex.

In practical terms the vertices of a graph model entities in the real world, and the edges 
model relationships between those entities. Social networks are an often encountered ex­
ample, in which the vertices model people and the edges model a friendship or other social 
relationships between the people. A simple example of a social network can be seen in the 
work done by Zachary [Zac77], in which the members of a karate club were modelled as 
vertices for a graph, and their interactions were modelled as the edges. Zachary was able 
to process this social network to provided information about the future state of the group, 
which split into separate subgroups. Visualisations of this group can be seen in figure 2.1.
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Directed graphs are frequently used to model systems where the direction of the re­
lationship between vertices is important, such as a graph modelling predator and prey 
relationships in an ecosystem. This impacts how a graph can be traversed (i.e. moving 
from one vertex to another following the direction of the edges). However for tasks such 
as the laying out of vertices of a graph, it is often possible to ignore edge direction and still 
achieve a good result. For the remainder of this thesis, we assume all of the graphs that we 
are visualising are undirected graphs. However many of the techniques we use could also 
be applied to directed graphs.

2.1.1 Graph Visualisations

Most frequently graph visualisations take the form of node-hnk diagrams, consisting of 
nodes representing the vertices of the graphs and links between them depicting the edges, 
as can be seen in figure 2.1a. Matrix based visualisations offer an alternative approach (see 
figure 2.1b and for a recent large scale example see [ETNG^oS]). Both approaches offer 
their own challenges. When using a node-link visualisation, the layout of the nodes and 
links has a significant impact on user comprehensibility [Purpy]. Analogous to this for ma­
trix visualisation is vertex ordering. The node link form of visualisation is considered more 
intuitive than the alternative of matrix based layout [GFC04, FvNo6]. Node-link diagrams 
also allow for a more flexible use of the display space, for example the use of hyperbolic or 
three dimensional space for layout [Mun98, WM08]. There are also visualisations which 
take a hybrid approach combining both matrix and node-link visualisation [HFM07]. This 
thesis focuses exclusively on the node-link style of visualisation. Usually when referring to 
a node link style of display, vertices are referred to as nodes, as for most purposes the terms 
node and vertex are inter-changeable.

2.1.2 Small World Graphs

Small world graphs are a category of graphs encountered frequently in models of real world 
systems. Milgram [Mil67] first identified the phenomenon in his work focused on social 
networks. The concept was more recently revived by Watts and Strogatz [WS98] and Watts 
[Wat03] and has been shown to hold true for a variety of networks, such as the relation­
ships between actors and films [ACJM03] as well as computer systems [CF09] and citation 
networks [VH04]. Small world networks are defined by two main characteristics. The first 
concerns the average of the shortest path lengths between each pair of vertices for the en­
tire graph. The second characteristic is the average local clustering coefficient of the graph, 
which is defined as the average of the clustering coefficients for each vertex. To determine 
if a graph can be considered a small world graph, it is compared to a randomly generated 
graph with the same number of vertices and edges. A small world graph will have approx-
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(a) Node-link Visualisation. (b) Matrix Visualisation.

Figure 2.1; An undirected graph modelling the social connections of the karate club studied 
by Zachary[Zac77].

imately the same average path length, but a considerably higher (by orders of magnitude) 
average local clustering coefficient.

To define the average local clustering coefficient of a vertex, we first need to define the 
neighbourhood of a vertex.

Vertex Neighbourhood definition

The neighbourhood of a vertex v , denoted Fy is defined as the set of all vertices adjacent 
to V, not including v itself. We can extend this to a set of vertices defined by an induced 
subgraph S = (Vj,£j) (where Vj c V and £j c £, and E, c (v,, v^), Vv,, Vj e V,, ). An 
induced subgraph is a subgraph where for every edge that exists between nodes in the 
the subgraph at the parent level, there is a corresponding edge at the subgraph level. This 
results in Fs being defined as the set of vertices adjacent to all v e Vj but not including those 
vertices which are part of the subgraph. If S = Fy then it follows Fs = F(Fy) = Fy. The size of 
the neighbourhood of a vertex is often referred to as the degree of a vertex. For a directed 
graph, there is both an in-degree and out-degree associated with each vertex. The in-degree 
is the the number of in-edges and the out degree is the number of out-edges.

Clustering Coefficient Definition

The clustering coefficient for a vertex, denoted by yy, is most commonly defined as the ratio 
of edges connecting the neighbours of a vertex to the maximum number of edges that 
could possibly connect the neighbours of the vertex [Wato3]. The clustering coefficient c



Section 2.1. Graphs 12

for a vertex v in an undirected graph is given by

|£(r>)l 
{‘■)y. =

where |£(rv)| is the magnitude of the set of edges connecting neighbours of the vertex, k 
is the neighbourhood size of the vertex, (i.e.lFvl) and (*”) is maximum possible number of 

edges in Fy. From the above it can be seen that a vertex needs at least two neighbours to 
have a valid clustering coefficient value. For a directed graph the clustering coefficient is 
given by

k(,k-i)

This is due to the fact that a directed graph can have double the amount of edges and 
k{k -1) - The average local clustering coefficient for a graph, often referred to as
the global clustering coefficient of the graph, is given by

yc =
Ev yv

|V|
Figure 2.2 shows a simple graph and the local clustering coefficients associated with each 
node. If a node has a clustering coefficient of 1.0, its neighbourhood can be said to form a 
clique, a set of nodes where each node is adjacent to every other node in the set. As part 
of our clustering discussed in chapter 3 we use the concept of an average cluster cluster­
ing coefficient. The average clustering coefficient of a cluster, reflects the level of inter­
connectivity of nodes within the cluster. Therefore when calculating the clustering coef­
ficient of nodes with a cluster, to generate the average cluster clustering coefficient, only 
neighbours within the same cluster are considered. A graph cluster with a high average 
cluster clustering coefficient, indicates that all of the nodes within the cluster have many 
interconnected neighbours within that cluster.

Average Shortest Path Length

The shortest path between two vertices (often referred to as the geodesic distance) is the 
smallest possible set of vertices it takes to traverse from one vertex to another. Often there 
may be more than one shortest path between a pair of nodes. The average shortest path 
length reflects the connectivity of a graph. As graphs become more dense the average short­
est path length generally decreases, as there are more edges to traverse between vertices. 
Calculating the average shortest path length of a graph requires calculating the shortest 
path length between all possible pairs of nodes, which is a computationally intensive task. 
While Dijkstra’s shortest path algorithm [Dij59] is suitable for finding the shortest paths 
from a single node, it is not efficient for calculating the shortest path for all nodes. Two of
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Figure 2.2: A simple graph showing the local clustering coefficient of each vertex (in brack­
ets). Note that the green node has a coefficient of 1 as all of its neighbours (the blue nodes) 
are connected to each other.

12 J "

Figure 2.3: The shortest path between the two green nodes (10 and 4) is via the two yellow 
nodes (2 and 5)

©...
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the most commonly used algorithms for all pairs shortest part calculations are Johnson’s 
[Johyy] algorithm, which is of complexity 0(| VUEI/o^I V|), and the Floyd-Warshall algo­
rithm [FI062], which is of complexity OdVl^). Due to the relative complexities Johnsons 
algorithm is preferred for less dense graphs, and Floyd-Warshall for more dense ones.

Small World Graph Specific Visualisation Approaches

As so many real world graphs fall within the domain of small world graphs, much re­
search has been done on developing graph clustering and layout techniques specific to 
the small world model. Auber et al. [ACJM03] developed an application called SWViz, 
which provided multi-scale visualisation of small world networks. The author’s observed 
that if networks display small world properties, their highly connected components also 
display small world properties. They utilised this observation to create a multi-scale visual­
isation. The highly connected components are determined by a decomposing the network 
into strongly connected components by removing edges using the edge clustering index 
described in section 2.1.3.

McPherson et flfJMMOos] describe a system for discovering parametric clusters in 
social small world graphs. They describe an application that utilises Markov Clustering 
(described in section 2.2.2) to assign cluster identifiers to nodes. The system provides an 
initial tree based layout of the graph and allows users to resize and colour nodes based on 
attributes (such as node degree and clustering coefficient), as well as selected sub-graphs 
based on attributes. The system allows further clustering by combining node attributes 
such as the previously described cluster identifier, node degree, local clustering coefficient 
or any arbitrary value assigned to a node. These clusters are defined as part of a lay-out tech­
nique referred to as a Self Organising Map which projects form vector of input attributes 
onto a two dimensional grid. This layout is then further enhanced by a customised ver­
sion of the Fruchterman Reingold layout (described in section 2.3.2), which allows for user 
input. McPherson et al. demonstrate this approach providing images of the result when 
clustering a social small world graph. The system can be used for any attributes, not nec­
essarily local clustering coefficient, so it is not clear as to why it could not be used more 
generally than for specifically small world graphs.

Van Ham and Wattenberg [vHWoSa] use edge betweenness centrality (described in 
section 2.1.3) as a basis for building a minimum spanning tree to aid with the layout of small 
world graphs (a minimum spanning tree is a subgraph that contains every vertex and the 
minimal set of edges which does not disconnect the parent graph). The clustered nature 
of small world graphs means that nodes which are unrelated to each other (with a large 
geodesic distance between them) will be positioned further away form each other in the 
spanning tree used as an input to layout. If the edges were distributed evenly or randomly 
there would be no benefit offered in the resulting layout. In van Ham and Wattenberg’s
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Figure 2.4: A simple graph illustrating the betweenness centrality of each vertex.

example nodes which are related to each other by an external classification do appear closer 
to each other in the final graph layout.

The preceding approaches demonstrate that the characteristics of a small world graph 
can be utilised as input into their clustering and layout. We utilise these characteristics for 
our clustering described in chapter 3. Our clustering is also used as an input to our layout 
described in chapter 4.

2.1.3 Graph Centralities

Centrality is a measure of importance of a vertex, or an edge in a graph [Newio]. There 
are many different types of centrality measure, those described here are the most relevant 
subset. Centralities can also be used to guide algorithms for clustering by Newman and 
Girvan [NG04], or layout done by van Ham and Wattenberg [VHWoSb].

Vertex Degree: This is one of the most straightforward centrality measures. For an undi­
rected graph it is the number of edges connected to a vertex, or as stated above the size of 
a vertex’s neighbourhood. For example in the a social network of friendships, the degree 
centrality rates those with more friends as more important.

Vertex Betweenness Centrality: Vertex betweenness centrality is a measure of how many 
shortest paths a vertex appears on. To derive vertex betweenness centrality for all ver­
tices appears to require the complexity of the all pairs shortest paths algorithms men­
tioned previously. However, Brandes [Braoi] has developed an optimised approach which 
is 0(1 VllEl). Figure 2.4 shows a simple graph with the vertex betweenness of each node.

Edge Betweenness Centrality: Edge betweenness centrality is a measure of how many 
shortest paths a specific edge appears on. It can also be calculated in 0(|V||£|) using
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Figure 2.5: A simple graph illustrating the betweenness centrality of edges. The fractional 
values of some edges are a result of them appearing on multiple shortest paths of the same 
length.

an adapted version Brandes algorithm. Figure 2.5 illustrates edge centralities in a simple 
graph.

Local Clustering Coefficient: The local clustering coefficient of a vertex can also be con­
sidered a form of centrality. A vertex with a high clustering coefficient indicates that it is 
part of a strongly connected set of nodes, if the clustering coefficient is 1.0 the vertex is 
part of a clique. As commented by Newman, [Newio], it is similar to vertex betweenness 
centrality in that it reflects the importance of a vertex based on its connections. However 
vertex betweenness centrality extends beyond the vertex’s immediate neighbourhood and 
if a node has a high clustering coefficient, it most likely will have a relatively low vertex be­
tweenness, as its neighbours will offer alternative shorter paths from more distant nodes.

Edge Clustering Index: The clustering coefficient of a node is often also referred to as 
the clustering index. Auber et al. [ACJM03] following on from Chiricota et al [CJM03] use 
a metric, originally defined by Alper[AK95], which generalises the previous definition for 
clustering coefficient for a vertex to apply to edges. This edge clustering index is used by 
Auber et al. to determine the strength of edges within the graph, and thus allows clusters 
to be determined by removing weak edges (those with a low clustering coefficient), similar 
to the way edge betweenness centrality is used by Newman and Girvan [NG04]. Their ap­
proach is as follows: Given an edge consisting of nodes u and v, the edge’s neighbourhood 
is divided into 3 sets. M(u) is the set of nodes that are neighbours of u but not v. M(v) is 
the set of nodes that are neighbours of v but not u. W( w, v) is the set of aU nodes which are 
neighbours of both. Clearly these 3 sets are distinct, however they also may be connected 
by edges which do not contain either m or v (see figure 2.6).

Let s{A,B) denote the strength of connectivity between two set of (distinct) nodes.
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Figure 2.6: An example of the node sets used by Auber et al. [ACJM03] in calculating 
clustering index of an edge e = (u,v)

Let r(A, B) be equal to the number of edges between two nodes in set A and the nodes 
in set B, then s(A,B) = r(A, B)/|A| • |B|. This is in effect calculating the ratio of amount 
of connections between sets A and B and the maximum possible number of connections 
between the set A and B. Note that any edges that go between any 2 of the sets M{u), M(v) 
and W(«, v) are part of a cycle of 4 edges that passes through (u, v). A cycle is a path that 
begin and ends with the same vertex. 4 is the maximum path length of any cycle between 
the sets.

The definition of W'(w, v) means that there are as many cycles of length 3 as there are 
nodes in W(«,v). The proportion of possible length 3 cycles is given by|W(u,v)|/(|M(u)|+ 
\M (v)| +1 W(w, v)|). Summing the ratios calculated for each pair of connected sets, the ra­
tio calculated for the set W(m, v) with itself and the proportion of possible cycles of length 
3, provides the edge clustering index y^.

ye - s(M(u), W(u,v)) + s{W{u,v),M(v)) + s{M{u),M{v))

+s(W(m,v), W(m,v)) + |W(m,v)|/(|M(u)| + |M(v)| + |W(m,v)|)

2.1.4 Graph Edge Density

In their taxonomy of clutter reduction Ellis and Dtx describe clutter as the result of “too 
much data on too small an area of the display” [ED07]. In a dense graph, edge congestion 
is the primary source of clutter. The links in a node link visualisation convey important 
information. However if they become too dense the graph becomes less comprehensible, 
resulting in nodes and other links becoming obscured. In terms of graph theory the density 
of a graph is usually considered to be the ratio of edges to the maximum possible number
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of edges in the graph [CM83]. For an undirected graph this can be described as

\E\
|(y|(|y|-i)/2) (2.1)

A graph is then considered dense in mathematical terms if this ratio approaches 1.0, a graph 
with density 1.0 is called a complete graph. If a graphs density is close to 0.0 it is considered 
to be a sparse graph. However in practical real world examples of graph visualisation, which 
may contain huge numbers of nodes, a density approaching 1.0 is rarely seen. A complete 
graph with 1000 nodes would have 499,500 edges. Visualising a graph approaching this 
level of density using a standard node-link approach would not serve any useful purpose 
as the individual edges would be unreadable.

Another common measure of the density of a graph is the ratio of edges to nodes, 
referred to as the linear density

\E\
di- |V| (2.2)

where |£| denotes the number of edges in the graph. Most real-world graphs have a value 
of di <= 10 [Melo6], which is still enough to cause a large amount of clutter. Mela^on 
et al. [Melo6] give an example of real world graphs which have even higher densities, 
such as web-crawl based graphs with di = 25.57. Given the frequency that dense graphs 
are encountered in the real world it is important to include edge density as part of any 
graph evaluation. It is clear that graph theoretic density scales the number of edges more 
dramatically for a change in vertex count, so for comparison of densities between graphs 
with different node counts linear density provides a clearer comparison.

2.2 Graph Clustering

2.2.1 Clustering Overview

Fades and Feng [EF97] describe clustered graphs as “graphs with recursive clustering struc­
ture over the vertices”. In their work they provide examples of two-dimensional clustered 
graphs and describe an approach for visualising graphs with a multilevel clustering hier­
archy in three dimensions. In their examples, the clustering structure is an attribute of 
the graphs and vertices. However, in many cases if a graph is to be clustered there may 
be no intrinsic attribute or parameter which describes the clustering hierarchy. There are 
many different approaches to graph clustering (or partitioning as it is often referred to). 
Some methods use an algebraic approach, working on a mathematical representation of the 
graph [Chu97]. Other methods such as Edge Betweenness Centrality Clustering [NG04] 
use a graph theoretic based approach, calculating graph theory characteristics of vertices 
or edges that are then used to partition the graph into clusters. Some clustering algorithms.
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such as edge betweenness centrality clustering take a top down, or divisive approach split­
ting the graph into separate clusters. Others take a bottom-up or agglomerative approach, 
merging sets of nodes together to form clusters.

Many approaches generate a flat clustering of the graph, while others produce clustering 
hierarchies. Clustering hierarchies are clusterings where the clusters of a graph are them­
selves recursively clustered into sub-clusters. Graph clustering is a difficult problem that is 
NP complete [NG04]. Algorithmically defined clusters may not match what an authority 
on the graph data believes is a good clustering. In their comparison of graph clustering 
algorithms for recovering software architecture module views, Bittencourt and Guerrero 
[BG09] comment that “fully automated clustering techniques alone cannot recover mod­
ule views in a sensible way”. Schaeffer [Schoy] provides an in depth review of clustering 
methods and related topics.

2.2.2 Clustering Approaches

One of the most widely know forms of clustering is K-means clustering [HW79]. This is a 
very general clustering algorithm that is used for many purposes, not just graph clustering. 
In this approach the data points to be clustered (nodes in the case of a graph) are placed 
randomly in k clusters. The center of gravity of each cluster is calculated and each node 
is assigned to the nearest cluster based on a distance function between data points and a 
cluster’s center of gravity. The distance function is often, but not always, the euclidean dis­
tance. The process is repeated until the changes in clustering falls beneath a pre-determined 
threshold. The vectors used as an input to the distance metric may represent position in 
two or three dimensions, resulting in a geometric clustering. However K-means clustering 
may also be done with a vector of any level of dimensionality, representing other values 
than position in a graph space. For example, in Hopcraft et aVs [HKKS03] use of k-means 
clustering of a citation network, the data point vector used for the distance function rep­
resents the citations between papers, and has as many dimensions as there are citations in 

the paper.
Within graph visualisation, the aim of geometric clustering is to have vertices that are 

geometrically close to each other share a cluster and distant vertices appear in separate 
clusters. K-means clustering is an effective way to accomplish this. An example of such a 
clustering is given by Quigley and Fades’ FADE algorithm [QEoi] in which a quad-tree is 
used alongside a modified force directed algorithm. The clustering provides different levels 
of abstraction at which a graph can be viewed.

Agglomerative Clustering

Agglomerative clustering is a bottom-up approach to clustering, merging nodes together 
iteratively to form clusters. Depending on the approach clusters can be merged together
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or individual nodes can be added to clusters. When merging nodes and clusters together 
a similarity function is used to determine the suitability of the merge.

Hopcroft et al. [HKKS03] provide an agglomerative clustering of a co-citation network 
as part of their analysis on finding natural communities. They use a snapshot of a citation 
database or approximately 250,000 papers. The nodes in the extracted graph represent pa­
pers and the edges represent citation between them. The function used to determine which 
nodes should be agglomerated together is based on the product of the nodes’ neighbour­
hood sizes, divided by the size of the intersection between the two neighbourhoods. The 
smaller this value, the closer the nodes are together and more suitable they are for merging.

Nodes can be merged together to form a flat clustering or a hierarchical clustering can 
be generated by repeatedly merging clusters as done by Hopcroft et al. This was also done 
by Newman [Newo4] using modularity, a metric utilised by Girvan and Newman in their 
previous work on edge betweenness centrality clustering [NG04], as a guiding heuristic 
for a greedy agglomerative clustering process. This agglomerative clustering produces a 
hierarchy of clusters. Modularity is then used as a metric to determine which level of the 
hierarchical clustering provides the best clustering. Modularity is described in more detail
in section 2.2.3.

Algebraic Clustering

Algebraic methods work on algebraic representations of a graph. The most common al­
gebraic form of a graph is an adjacency matrix. For an undirected unweighted graph 
G = (V,E), the adjacency matrix is a square matrix with |y| rows and columns. Given 
two nodes v, and Vj, i,j < | V"!, the value at entry (v,, Vj) is equal to 1 if (v,, v^) e E, oth­
erwise it is o. Algebraic methods work on this matrix and other algebraic matrices related 
to the graph such as the Laplacian matrix which is derived from the adjacency matrix and 
the degree matrix. The degree matrix of G is a | V| x | V| matrix where the diagonal entries 
(i, i) equal the degree of the node of V. The Laplacian matrix is equal to the adjacency 
matrix minus the degree matrix. The analysis of these matrices and their characteristics, 
such as eigenvalues and eigenvectors, form the basis of the field of spectral graph theory 
[Chu97].

Spectral graph theory partitioning methods are used by Frishman and Tal [FT07] to 
cluster graphs as part of their GPU based layout. Algebraic techniques are also used for 
graph layout, for example the algebraic multigrid method (ACE) of Koren et al [KCH03]. 
Van Dongen’s Markov Clustering (MCL) [vDoo] uses algebraic matrix representations of a 
graph as the transition matrix of the Markov chain used in his clustering approach. Clearly 
algebraic methods can provide many viable clustering approaches for graphs. However, our 
research focuses on graph theoretic approaches as these relate more closely to the visuali­
sation of the graph on a display than the algebraic methods.
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Edge Betweenness Centrality Clustering

Edge Betweenness Centrality Clustering is a divisive graph theoretic graph clustering method 
developed by Newman and Grivan [NG04]. Edge betweenness centrality is a measure of 
how important an edge is within a graph. It is determined by the number of shortest paths 
that an edge appears on out of all shortest paths for the graph as a whole. This algorithm 
is expensive, with a straight forward implementation being in 0(|£|| V^|^), however Bran- 
des [Braoi] proposes an alternative in 0(|£|| Vj). Similarly to Edge betweenness centrality, 
vertex betweenness centrality is defined as a measure of the number of shortest paths on 
which a vertex appears.

Newman and Girvan show that edge betweenness centrality can be used to partition a 
graph into clusters (or as they refer to them communities) based on the graph structure. 
Their approach consists of calculating the edge betweenness centrality for all edges, and re­
moving the edge with the highest value. This is repeated until eventually the graph breaks 
into separate components and ultimately individual vertices. The partitioning at differ­
ent stages of the algorithm is evaluated using modularity as a metric, and the iteration of 
the algorithm which produced the most modular components is used to assign vertices to 
clusters.

2.2.3 Clustering Evaluation

There are many different metrics used to evaluate clusterings. Boutin and Hascoet [BH04] 
discuss many other clustering evaluation approaches (referred to by them as clustering 
validation indices). They note that these evaluations are often difficult to interpret and 
compare. Evaluating the authoritativeness of a clustering is a difficult problem, not always 
readily solvable by a metric. Wu et al. [WHH05] use external clusterings in their evalua­
tion of clustering algorithms for software systems to evaluate their chosen algorithms. They 
use the directory structure of the software system to create an authoritative clustering that 
reflect experts (i.e. the software developer). Clustering evaluation depends on the target 
application of the clustering. Bittencourt and Guerrero [BG09] and Wu et al. [WHH05] 
evaluate clustering algorithms in the domain of software analysis. Their evaluation metrics 
include distribution of cluster size (avoiding singleton clusters and clusters which consist 
of the majority of nodes), clustering stability (the clustering of a graph does not change 
much for a small change of the input graph) and authoritativeness (based on an external 
measure). These metrics are very useful for the the application domain of software eval­
uation, however they are not as suitable for our agglomerative clustering around nodes of 
interest which we describe in chapter 3. We describe next two of the metrics from the liter­
ature (which have also been used as heuristics to guide clustering), which are of relevance 
to our clustering evaluation in chapter 3.
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Modularity

Newman and Girvan [NG04] define a measure of the quality of a division of a network 
graph, referred to as modularity. The measure is used to evaluate their community detec­
tion algorithm (which is essentially a top-down clustering algorithm). The measure has 
also been used in work by Newman [Newo4] as a heuristic value which is to be optimised, 
and hence guides the clustering rather than evaluate the quahty of it. This metric is based 
upon the number of edges that start and end in the same cluster (referred to as communi­
ties in Newman and Girvan’s paper). The modularity, Q, is calculated as

Q = XKe.i-fl?)
i

where e, i is the fraction of all edges that start and end in cluster i and a, is the fraction 
of all edges that terminate in cluster i. A high level of modularity indicates a low number 
of inter-cluster edges. We believe that modularity provides a good metric, that translates 
across apphcation fields.

Modularisation Quantity

Auber et al [ACJM03] and Chiricota et al.[CJMo3] use a quality measure developed by 
Mancoridis et al [MMR'^pS] and utilised in Mancoridis et al’s clustering tool ’’Bunch” [MMCG99]. 
This measure, denoted MQ (Modularisation Quantity) computes a value for any given par­
tition of a graph. Chiricota et al. and Auber et al. use a slightly modified version of MQ 
that is defined only for undirected graphs as an evaluation measure. The MQ value is used 
by the Bunch tool as an function to be optimised to provide a good clustering (rather than 
evaluate one). Let A and B be two sets of disjoint nodes in a graph G = ( V, £), let s equal 
the ratio of edges between the two sets to the maximum possible number of edges between 
the two sets.

Note that this ratio can be calculated for a set with itself For a cluster A in an undirected 
Graph without self linking edges

s(A,A) =
2(e(A,B))
|A|-(|A|-i)

If cluster A is a clique s(A, A) = 1. If none of the nodes in A are connected s(A, A) = o. 
Given a partition (also referred to as a clustering) C = (Q, Q,...., Cp) that divides the 
graph G = (V,E) into p partitions the MQ score for that partition is given by:

MQ(C;G) =
g.,5(c,.c,) Ef.7E?.,„i(c„c,) 

p pip - 0/2
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(a) A tri-partite graph clustered 
so that MQ = -1
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(c) A connected clique no 
matter how partitioned 
will result in MQ = o

(b) A graph consisting on un­
connected cliques clustered so 
that MQ = 1

(d) An example of a connected 
graph with well defined clusters 
, resulting in MQ= 0.96

Figure 2.7: Example of clustered graphs with different MQ values (clusters are denoted by 
node colour)

Essentially this is a measure of the difference between the s ratio of intra-cluster edges 
denoted by 5(C,, C, ) and the s ratio of inter-cluster edges, denoted by 5(C,, Cj). The mini­
mum value of MQ is -1, representing a K-partite graph, where no nodes in a given cluster­
ing are connected to each other, but are connected to every other node in the graph. The 
maximum value is 1, representing a non-connected graph where each cluster is a clique that 
is not connected to any other cluster.

Difference Between Modularity and Modularisation Quantity

The MQ metric differs to Newman and Girvan’s modularity measure. Modularity com­
pares the fraction of all edges that are intra-cluster edges to fraction of all edges that are 
inter-cluster edges. MQ is a measure of the difference between the average ratio of actual 
intra-cluster edges to the maximum amount of intra-cluster edges possible and the average 
ratio of the amount of inter-cluster edges to the maximum amount of inter-cluster edges 
possible. This means that modularity depends purely on the number of edges (which is 
bounded to the number of nodes) and MQ depends on the number of edges and the num­
ber of nodes directly (as the maximum possible number of edges between two clusters is a
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function of the number of vertices).

2.3 Graph Layout

There are many different approaches to graph layout, each with the same aim of produc­
ing an image that is in some way aesthetically pleasing to a user and improving the users 
ability at some task. The different approaches encompass many different representations 
of a graph. Force directed layouts work by modelling a graph as a connected physical sys­
tem. Algebraic approaches work directly on the adjacency matrix representation of a graph. 
Many layout approaches lay out an entire graph at once, while multi-level approaches cre­
ate higher level representations of a graph and lay these out, using them as a basis for the 
positioning of the final graph nodes.

2.3.1 Force directed layouts

One of the most common types of layout is force directed layout. The early force directed 
approach by Fades [Ead84] was based on modelling an undirected graph as a system of 
springs. This was further enhanced by Kamada and Kawai [KK89] by addition of cal­
culating an ideal layout between vertices which are not connected, and formulating the 
layout problem as an energy optimisation problem. Gansner et all [GKN05] have fol­
lowed on from this, replacing Kamada and Kawai’s local Newton-Raphson minimization 
of the energy function with a global approach called majorization from the field of Multi- 
Dimensional Scaling (an approach used for layout by Harel and Koren). Fruchterman and 
Reingold [FR91] developed a physics based algorithm which models attractive and repul­
sive forces between vertices as well as using the concept of a global energy value to limit 
the movement of nodes during layout. GEM[FLM95] is another force directed algorithm 
for undirected graphs where the vertices of the graph are modelled as charges repelling 
each other and the edges are modelled as springs. There are more recent versions of forced 
directed layout which employ a multilevel approach, such as such as GRIP[GKoi], the 
Fast Multi-Scale method of Harel and Koren, [HKoi], and the Fast Multi-pole Multi-Level 
Method of Hachul and Jiinger [HJ05].

2.3.2 Fruchterman Reingold Layout

Force directed layout algorithms work by modelling a graph as a system of attractive and 
repulsive forces between vertices. The positions of the vertices are updated based on these 
forces, until stability is reached. Stability is not guaranteed so some external bounds are 
placed on the size of the forces. One of the most common force directed algorithms is
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Figure 2.8: Force Directed Layout of a graph containing 91 vertices and 567 edges. Each 
node is a unit distance across. The ideal distance K has been set to 15. The grid variant 
version has not been used, so repulsive forces are applied to all nodes regardless of distance 
between them

the Fruchterman-Reingold force directed algorithm [FR91]. This algorithm works on the 
basis of having an ideal distance between connected vertices. This ideal distance, usually 
denoted k is used in the derivation of the attractive and repulsive force between vertices. 
These attractive and repulsive forces cancel each other out when two connected vertices are 
the ideal distance apart. The ideal distance can be considered like the length of a relaxed 
spring between two connected nodes. If the nodes move closer than the ideal distance the 
spring pushes them apart. If the nodes move further away from each other than the ideal 
distance the spring pulls them together. The attractive forces, fa and repulsive forces fr are 
defined as follows:

f.W = j

where d is the distance between a pair of vertices and k is the ideal distance between a pair 
of connected nodes. The forces acting on each individual vertex are calculated as follows. 
The total repulsive force for an individual vertex is calculated by the summation of the 
forces between that vertex and every other vertex in the graph. The total attractive force is 
calculated by the summation of the attractive forces between vertices and every vertex it is 
connected to. The final force for a vertex is the sum of the attractive and repulsive forces, 
and it is this final force which is used to displace the vertex.

CijQEi i*j,Vj€V

Where £,is the set of all edges connect to the vertex i and V is the set of all vertices in the 
graph. The algorithm for calculating the forces for a single vertex can be seen in algorithm 
listing 1.

These calculations are repeated for each vertex over many iterations. An upper bound
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Algorithm 1 Algorithm for calculating Fruchterman-Reingold forces acting on a single 
node

VG V

for all w e V do 
if u ^ w then

S V.position - u.position
V.displacement := v.displacement + (5/|d|) * /r(|5|)

end if 
end for
for all M e V do 

if {u,v} e E then
S := V.position - u.position
v.displacement := v.displacement - (<5/|d|) * /a(|d|)

end if 
end for

on the magnitude of displacement, referred to as the temperature, is set and decreased at 
each iteration, resulting in increasingly smaller adjustments in position until the graph is 
in a stable state, usually determined by when a minimal displacement between iterations 
is reached. This algorithm is used to lay out undirected graphs; however a directed graph 
can also be laid out using this technique simply by ignoring the directionality of edges 
and limiting the number of edges between a pair of vertices to one. One issue with force 
directed algorithms is the algorithmic complexity of the approach. The calculations of 
the repulsive forces requires 0(| V]^) operations and the attractive forces requires 0(|£|) 
operations resulting in a per iteration complexity of

0(|l'|- + |£|)

per iteration. Given that an instance of the layout algorithm may execute several hundred 
iterations, performance can be a significant issue, particularly for large sized graphs. Opti­
misations such as the Grid Variant Algorithm suggested by Fruchterman and Reingold, or 
some of the multilevel approaches reduce complexity of the repulsive forces to 0( | V| +1£|) 
for most practical use cases.

2.3.3 Multilevel Layouts

Multilevel algorithms are an approach which aim to improve the layout of basic force di­
rected algorithm by accelerating the algorithm and giving a global quality to the place­
ment. The concept was introduced by Walshaw [Waloi] and independently also by Harel 
and Koren[HKoi], who refer to is as multi-scale layout. A key part of multilevel algorithms 
is the coarsening phase. A coarse version of a graph is simply an abstracted graph of the 
original, where multiple nodes in the original graph are represented by a single node in the
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Figure 2.9: Layout of the graph from figure 2.8 using Hachul and Jiinger s FM3 multi-level 
layout algorithm with a input inter-node distance of 15 (equivalent to a k value of 15). Each 
node in the image has a radius of 1. The implementation used is the Open Graph Drawing 
Framework [TD0G13] version of the FM3 algorithm

coarse version. A multilevel layout being performed on a graph G = {V,E), produces a 
hierarchy of coarse graphs. The graph with the finest level of detail Go is the original graph. 
Gi is produced by running a coarsening algorithm on Gq. The hierarchy is generated by 
repeated coarsening the graph G, to form G,+, until the minimally sized coarse graph is 
achieved. The approach to coarsening of a graph is a distinguishing factor between many 
different multilevel approaches.

Walshaw utilises an approach known as matching to combine pairs of nodes in order 
to generate a coarse version of a graph. The matching is done by generating a set of graph 
edges known as a maximally independent edge set. This is a subset of all edges in the graph 
with the property that that no 2 edges in the set share a common vertex, (i.e. no two edges 
are adjacent), it is maximal when no more edges can be added to the set without breaking 
this property. All the pairs of nodes defined by the edges in that set are collapsed to form a 
single node in the coarse graph. Therefore, a node at each level of the coarsening hierarchy 
represents two nodes at the level below, except for the bottom level which is the original 
graph.

GRIP [GKoi] generates a coarsened version of a graph Gj from graph ( Gi_i) by applying 
a maximal independent set filtration. A maximal independent set filtration is a subset of 

vertices such that V d V,, V; d V^...Vk-i c V* 0- is a maximal subset of if the 
graph distance between each of its elements is at least 2'~* -1-1, i.e no vertices in the subset 
contain a common edge, and no more vertices can be added without introducing one.

In the coarsening phase of Hachul and Jiinger’s Potential Field Based Multi-level Algo­
rithm (often referred to as FM3) [HJ05], vertices are partitioned into what the authors refer 
to as solar systems, characterising each vertex as sun planet or moon. Each solar system is 
collapsed to the sun node in the next tier of the coarsening hierarchy.



Section 2.3. Graph Layout 28

Frishman and Tal[FTo7] use an algebraic technique called spectral partitioning to par­
tition the graph in to clusters of nodes which can be represented as single nodes in the 
coarser versions of the graph. This is a top down approach to multilevel layouts as op­
posed to the bottom up approach of maximal independent set filtration. The coarsening of 
the graph using spectral partitioning requires post-processing to avoid small disconnected 
clusters, a problem not encountered in the bottom up approaches such as Walshaw’s use of 
vertex matching.

Once the coarsening phase is complete the layout phase applies a layout to each graph in 
the N hierarchy, progressing from the most coarse level GAf_ito the finest Gq. The choice of 
layout algorithm, differs between multilevel approaches, but they all use some variant of the 
force directed model. Part of the advantage of multilevel approaches is that the placement 
of vertices in a more coarse version of a graph provides a good initial placement for the 
layout of the next less coarse graph. The most straightforward strategy is that the nodes in 
graph G, are initially placed at the position corresponding to their representative node in 
the more coarse graph G,+i. This is the approach used by Walshaw, but other approaches 
use different methods. For example Hachul and Jiinger’s method uses their solar system 
structure in graph G, to derive a position for vertices in G;-,.

When laying out a coarse graph as one of the levels of the multilevel layout, care has 
to be taken so that a layout of the graph G, does not completely disrupt the layout of the 
previous more coarse graphs at levels G,_i and above. Walshaw does this by weighting the 
relaxed spring distance k of the Fruchterman-Reingold algorithm based on the level used 
by the previous levels coarse graph.

An example of results of a Hachul and Jiinger’s multi-level layout can be seen in figure 
2.9. The results are similar to the basic Fruchterman-Reingold algorithm, seen in figure 
2.8. This is to be expected as both are force directed algorithms, the difference is that FM3 
offers faster performance and lower algorithmic complexity, particularly for much larger 
graphs.

A more comprehensive list and evaluation of multi-level algorithms can be found in 
Bartel et al.s evaluation of several multilevel algorithmsjBGKMii] as well as Hachul Jiinger’s 
comparison of fast algorithms for drawing large general graphs [HJ06]. Bartel et al. also 
describe many different approaches to graph coarsening and initial node placement in the 
different levels of graph.

2.3.4 Hierarchy Based

Frequently if a graph has an associated hierarchical clustering (i.e. it is a compound graph), 
it can be laid out using a hierarchical geometric approach such as a tree layout, a cone tree, 
a balloon tree or a tree map. These are graphs where the hierarchical nature of the graph 
clustering is embedded in the geometry of the layout. Tree-maps developed by Johnson and



29 Chapter 2. Background and Related Work

Shneiderman [JS91] display data hierarchies (not necessarily graphs with adjacency rela­
tionships outside of the hierarchy) where items in the hierarchy are displayed as subregions 
of their parent items in the hierarchy. Sugiyama’s layout [STT81] is an early hierarchical lay­
out, under which child nodes are positioned in layers beneath their parents is such a way 
as to reduce crossings. Cone Trees[RMC9i] are three dimensional displays of node hierar­
chies where each node is laid out such that it is at the apex of a cone, and all of its children 
in the hierarchy are positioned around the circumference of the base of the cone. Balloon 
trees such as that used by Holten[Holo6] are essentially a projection of a cone tree layout 
onto a 2D plane [CK95]. Each low-level cluster is essentially a circular graph. An example 
of a balloon layout can be seen in figure 2.11. Herman et al cover a variety of tree bases 
layout in their survey of graph visualisation and navigation techniques (200o)[HMMoo].

2.3.5 Algebraic Approaches

Force directed algorithms are not the only approach to graph layout, there are also algebra 
based algorithms for drawing graphs, such as ACE (Algebraic multi grid Computation of 
Eigenvectors)) [KCH03] which uses an algebraic multi-grid optimisation approach as well 
as High Dimensional Embedding (HDE)[HKo2]. HDE creates a drawing (in a conceptual 
sense, this is just a positioning of the nodes) in m dimensions (m is defined as an input) 
and projects it down to a two or three dimensional drawing, for visualisation. The m di­
mensional drawing is created by selecting m vertices from the graph as pivot nodes which 
form the basis of the axes. The position of each node in the graph along an axis is based on 
its graph theoretic distance from the pivot node corresponding to the axis. Once the nodes 
are positioned in the m dimensions, the drawing is projected down to two (or possibly 3) 
dimensions for visualisation using PCA (Principle Component Analysis), a technique by 
which multi-dimensional data is reduced to fewer dimensions. One key advantage of HDE 
is the speed of the algorithm as it has a time complexity of 0(m • [Ej + • | V|). Given that 
m is independent of graph size, complexity only increases linearly with vertex and node 

count.

2.3.6 Circular layouts

Circular layouts are a restrictive but simple approach to geometrically laying out a graph. 
The nodes are evenly spaced around the circumference of the circle with the edges passing 
thorough the interior of the circle, see figure 2.10 for a simple example. As with all graph 
layouts it is desirable to reduce the number of edge crossing [Pur97]. Obviously the number 
of crossings in a graph is dependent on the ordering of the nodes around the circle edges, 
an NP-hard problem to solve [MKNT87]. Many different approaches and heuristics exist 
to produce better circular layouts. Six and Tollis [ST99] order their vertices so that the
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number of edges drawn close to the edge of the circle is maximised. While this does reduce 
the number of crossings, it is not clear that it will make the graph more legible, as for larger 
dense circular drawings, many edges close to the edge of the graph will not only cross, but 
do so with a very acute crossing angle which per Weidong et al. [WSHE08] makes them 
more difficult to read. It is possible to maximise the crossing angles in the circle layout 
using an approach such as that suggested by Nguyen et al [NEHHii], but such a technique 
would not improve matters much as it does not change the sort order of the nodes in the 
circle, and can also result in a slightly misleading visual clustering of the nodes in the circle. 
Baur and Brandes [BB05] developed an ap­
proach to reducing crossing within circular 
layouts, which consists of an intelligent initial 
placement of nodes, followed by a circular sift­
ing approach, which rotates the position of a 
node around the circle circumference, and as­
signing its final position as the one which re­
sulted in the least number of crossings. Ganser 
and Koren [GK07] have developed techniques 
which lower the edge density within a cir­
cular layout. They use a three pronged ap­
proach, consisting of ordering nodes in such 
away that edge lengths are reduced, adapting 
edge bundling for use within a circular layout, 
and routing edges external to the circle using 
curves. Circular graphs can also display clustered hierarchies, as can be seen in figure 2.12 
where the clustering hierarchy is conveyed by the positioning of nodes and the grouping 
of edges.

4

Figure 2.10: A simple circular layout of a 
10 node graph

It is possible that a graph consists of multiple circular layouts. For example different 
clusters within a graph could be laid out as circular sub-graphs, as done in a balloon tree 
layout, or as with approaches such as Topolayout[AMAo7] circle layouts can feature as 
one of multiple approaches utilised in graph layout. When multiple circle layouts are used 
within a graph, inter-circle edges and their crossings should also be considered. Crossing 
can be reduced by rotation of circles as well as ordering of the constituent nodes within the 
circle. Many approaches model physical torque, with the edges to other circles applying a 
rotational force on the source circle. Essentially an energy function is minimised to provide 
a good rotation to a circle. Examples of this include the GEM layout of Frick et al. [FLM95], 
as well as Symeonidis and ToUis [ST04], who use a polar coordinate based form of force 
directed layout.
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Figure 2.11: An example of a balloon tree layout of a 60 node graph. The hierarchy nodes 
are coloured black, connected by the red lines. The hierarchy levels are also circled in green 
to clarify the hierarchy structure .

Figure 2.12: The same graph as in figure 2.11 under a clustered circular layout. The grey 
hierarchy nodes are shown for illustrative purposes.
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Other approaches

Other approaches have included using space-filling curves as a framework for vertices [MM08] 
and genetic algorithms [BBoo] and topology based layout[AMA07]. Space filling curves 
[MM08] position nodes along a curve designed to take up the full graph display space. The 
order of the nodes along the curve is decided by an ordering function, which is dependent 
on a good clustering. The primary advantage of this approach is the speed of layout, which 
makes it much faster than the force directed approaches, particularly for exceptional large 
dense graphs. Barreto and Barbosa’s [BBoo] genetic layout approach uses graph aesthetics 
such as edge crossings and vertex distances to select the input layouts used to create succes­
sive generations or graph layout. Archambault et al’s Topolayout [AMA07] is an innova­
tive approach for the layout of graphs. It decomposes a graph using topological features, to 
form a hierarchy. Topological features are graph structures such as cliques (a set of nodes 
that are fully connected to each other), connected components, and trees. Topolayout uses 
other layout algorithms, such as a basic circular layout and High Dimensional Embedding 
to layout the various topological features at lower levels of the hierarchy, depending on 
which layout is more suitable for the feature. The authors also increase comprehensibility 
by applying edge crossing reduction techniques to the identified features in their graph.

2.4 Graph Visualisation Evaluation

Evaluation is a challenge in the field of visuahsation, be it scientific visualisation, infor­
mation visualisation or graph visualisation. Frequently, graph visualisation paper authors, 
particularly if the topic is the visual presentation of a graph, have to rely solely on displaying 
images of their technique. For example Holten [H0I06, HW09] and Cui [CHH+08] rely 
on the visual presentation of their edge bundling techniques as part of their evaluation. 
Such an approach is necessary, particularly for a technique as visual as edge bundling, but 
it is hmited in the number of cases that can be shown within the space of a paper. Chen 
[Cheos] describes the lack of “intrinsic quality measures” as one of the unsolved visualisa­
tion problems of information visualisation.

The notion of a quality measure that is intrinsic to information visualisation, and hence 
not dependent on the application or subject matter or any external reference point, is im­
portant as it allows a consistent evaluation of quality between an evaluation based on user 
assessment and one based on an evaluation metric. In graph visualisation such intrin­
sic measures, often referred to as aesthetics, do exist. In addition to intrinsic metrics of 
a visualisation, user performance is important as the ultimate goal of visuahsation is to 
aid human understanding. User performance can only be measured by empirical exper­
iment, although it can be shown to correlate with some metrics. For example Purchase’s 
work [Pur97, Pur98, WPCM02] investigating graph aesthetics does so using user experi-
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ments. Empirical evaluation can be done through low level abstract tasks such as indicat­
ing the distance between two vertices in a graph are connected by two or 3 hops [WM05], 
or through higher level domain specific tasks such as considering where a new web page 
should be added to in a websites directory structure [RCMCoo].

When evaluating the real word effectiveness of a clustering or layout technique it can 
be difficult to subjectively quantify its effectiveness without a high level task. This section is 
concerned with describing how intrinsic measures are used and evaluated as well as general 
evaluation techniques.

2.4.1 Evaluation Graphs

when evaluating a technique related to the presentation of a graph, e.g. evaluating a graph 
layout or a visual effect such as the use of colour, it is obviously necessary to chose a graph 
(or graphs) that will be the basis of the experimental evaluation. The choice of graph has 
a very significant role in the experiment. Graphs vary in size structure and density de­
pending on what they are modelling. The choice of graphs should also be suitable for the 
visualisation technique being evaluated. Preferably, it should allow the evaluation of the 
efficacy of the technique under a range of experimental conditions.

In her 2004 paper on the challenges of information visualisation (not specifically graph 
Visualisation), Plaisant [Plao4] suggests the creation of repositories of data and tasks as the 
next step in providing a solution to the problem of information visualisation evaluation. 
In the conclusions of their 2011 state of the art survey on the visual analysis of large graphs 
von Landesberger et al. [vEKS"^!!] comment in their conclusions on the need for more 
taxonomies for aspects of visualisation such as tasks and measures for quality, as well as 
benchmarks for comparing techniques and “although several taxonomies and sample data 
sets exist, a more broader scope of theory and data aspects is needed”. While more and more 
data sets have become available, it is not always clear which data set is the most suitable for 
testing a specific data visualisation approach. A wide range of task specific data sets would 
help standardise graph evaluations across different techniques.

In their evaluation of large graph layout algorithms Hachul and Jiinger [HJ06] used 
11 graphs from real-world graph sets. These real-world graphs consisted of a subset of the 
AT&T graph Library [AT12], a subset of Walshaw’s graph collection [Wali2], and a single 
social network graph of 2113 people.

Using a real-world graph to test a specific visualisation technique is limiting as there is 
no flexibility in graph parameters. Unless the visualisation technique is only targeted at a 
very specific data set, it may not be enough to target it at such a limited range of data. In 
order to evaluate graph visualisation it is often useful to procedurally generate graphs, as 
the characteristics of the graph can be defined beforehand in such a way that the technique 
is tested under a variety of conditions.
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There exist many procedural approaches to generating graphs, and these have been 
used in the past to test graph layout algorithms. Hachul and Junger [HJ06], in addition to 
the real world graphs set, created many graphs using simple procedural approaches. These 
result in graphs which display regular patterns which are apparent by visual inspection 
(depending on layout of course). These patterns are reflected by the names given by the 
graph authors: the snowflake graph, the flower graph and the Sierpinski graphs (based on 
Sierpinski triangles).

Apart from loading real world graphs from external libraries, real world graph data can 
be generated by parsing data sets such as program source code, website links or data-base 
relations. In chapter 3 we present some examples of graphs data created by parsing data 
from Wikipedia. It is very useful to be able to randomly generate large sets of small world 
graphs to analyse the effectiveness of a particular algorithm on graphs with a wide range 
of properties (such as size, edge density, graph clustering coefficient, level of randomness). 
When procedurally generating graphs characteristics can be determined as an input to an 
algorithm which can still generate graphs with some level of randomness. This can allow 
for an algorithm to be tested against a wide range of graphs with different parameters and 
also to be tested against multiple graphs with the same parameters.

Random Graph Generation

One of the earliest common methods of generating graphs is the Erdos-Renyi model [ER59] 
of random graphs, also known as the Poisson Random Graph. While this is one of the best 
known random graph models and has provided many insights into the field of network 
graph theory, it does not accurately reflect the structure of many real world graphs in terms 
of edge distribution. It may not also provide graphs suitable for the evaluations of different 
visualisation approaches, e.g. if an edge routing evaluation depends on different levels of 
edge connectivity between clusters. As mentioned by Lancichinetti et al. [LFR08], cluster 
size edge distribution vary in real world graphs. In section 5.1 we will see an example of 
graphs generated for the specific task of evaluating edge routing in a compound graph 
utilising a distribution of edges not found in a simple Poisson Random Graph.

In some cases, such as evaluating clustering algorithms, it may be desirable to know 
in advance what the optimum clustering of a specific graph is. However graph partition­
ing is an NP complete problem. So for a completely randomly generated graph finding 
the best possible clustering requires analysing all possible permutations of clustering for 
that graph. As graph get larger this becomes more and more impractical. Moussiades and 
Vakali [MV09] propose an approach for generating random graphs where optimal cluster­
ing is known. This is useful when a naturally occurring clustering or community structure 
(as demonstrated in Zachary’s karate club example) is desired from the input graph. How­
ever, if extra constraints are required, such as a specific characteristics, e.g. a high average
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Figure 2.13: A ring lattice of 100 nodes each with a degree of 4, the starting point of the 
Watts and Strogatz’ small world generation algorithm

Figure 2.14: A random graph equivalent to that in figure 2.13, generated using Watts and 
Strogatz’ small world generation algorithm with in input probability of 1.0 and laid out 
using a force directed algorithm. The graph has an average path length of = 3.37636 and an 
average local clustering coefficient of 0.012

local clustering coefficient, or some node based constraints, e.g.limiting node degree, such 
an approach may not be possible.

Random Small World Graph Generation

The small world graphs described in section 2.1 demonstrate characteristics of real world 
graphs. It is possible to procedurally generate small world graphs. We use Watts and Stro­
gatz’ approach for creating small world graphs [WS98] for use in the evaluation of our 
agglomerative clustering in chapter 3. In generating these graphs we have control over the 
graph size, edge density and level of randomness, allowing us to create graphs of various 
degrees of “small world-ness”.

The approach starts with a ring lattice graph of n nodes where every node has k links 
connecting it to its neighbours (i.e. every node has a degree k, resulting in |£| = A:| V|). This 
can be considered a fully structured graph, where a completely random graph could be 
considered full unstructured. Such a lattice with 100 nodes and a degree of 4 is displayed
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Figure 2.15: A small world graph equivalent to that in figure 2.13, generated using Watts 
and Strogatz’ small world generation algorithm with in input probabihty of 0.1 and laid 
out using a force directed algorithm. The graph has an average path length of = 5-53879 
and an average local clustering coefficient of 0.396

in figure 2.13. We consider a specific vertex and consider the edges connecting it to one of 
its neighbours in a clockwise sense. Each edge is rewired to a randomly selected neighbour, 
with a probability of p. Duplicate edges and loops are forbidden. Each vertex in the graph 
is processed in a clockwise order. The input value of p has a large impact on the resulting 
graph. For a value of p = 1.0 the result is a randomly wired graph, as seen in figure 2.14. 
For low values of p (e.g. p = 0.1) the result is a small world graph as displayed in figure 2.15.

The combination of the real world-like characteristics of these procedurally generated 
graphs, as well as the ability to control the edge density, graph size and level of structure 
makes these graphs very useful for performing experiments on the efficacy of clustering 
algorithm. In addition to this the non-deterministic aspect of their generation allows for a 
variety of graphs to be generated for the same input parameters.

2.4.2 Graph Aesthetics

One approach to evaluate a graph layout is based on the aesthetics of the resulting lay­
out. Aesthetics in this context refers to measurable attributes which reflect the quality of a 
resulting layout.

Reduction of edge crossing has long been identified as a desirable graph layout aesthetic 
for 2 dimensional graph layouts. Crossing reductions has been used as an approach to 
heuristically improve algorithms for some time. For example Sugiyama [STT81] states that 
“ The greatest difficulty in tracing paths is line crossings” and he uses crossing reduction as a 
step to improve the layout of hierarchies.

Many aesthetics have been postulated, often as part of the goal of a particular graph 
drawing algorithm. These aesthetics have included graph symmetry [Ead84], minimising 
the number of edge crossings [STT81], minimising the number of bends in edges [Tam87],
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and path continuity [WPCM02]. The efficacy of various aesthetics has been evaluated in 
user experiments and some have shown to be more important than others. Purchases 
work [Pur97] has demonstrated that edge crossings are by far the most important aesthetic, 
impacting both user response time and accuracy, with symmetry and edge bends being of 
lesser importance but having significant results. Later work with Ware et al. [WPCM02], 
showed that continuity of paths (i.e. keeping path between more distant nodes that traverse 
multiple edges as straight as possible) is also an important factor.

For many graphs (those which are not planar) crossings cannot be omitted altogether, 
Huang and Fades [WSHE08] demonstrated that maximising the crossing angle so that in­
tersecting edges are perpendicular reduces the negative effects of edge crossing. Huang 
and Huang [HHio] have followed up on this work and demonstrated that 38% of variance 
in performance is attributable to crossing angle and the rest is attributable to the crossing 
number of the graph (in cases where there was a performance variance). So where fur­
ther crossing minimisation is not possible, maximimising crossing angles can be used as a 
secondary aesthetic.

More recent work by Purchase et al. [PPP12] has indicated that when users manually 
create graphs, they use edge crossing reduction as an aesthetics and also align nodes and 
edges to an underlying grid.

2.4.3 Evaluating User Performance

To fully evaluate the effectiveness of any graph algorithm or suggested aesthetics, its benefit 
to the end user needs to be measured. Different tasks to evaluate user performance, and 
implicitly graph comprehensibility, have been suggested.

For experiments considering the impact of graph aesthetics [Purpy] as well as the im­
pact of various graph layout algorithms [Pur98], Purchase utilises a path tracing task (spec­
ifying the shortest path between two nodes), as well as questions concerning the graph 
structure, such as “how many nodes must be removed to disconnect two highlighted nodes?” 
These tasks are designed to reflect the experiment participants understanding of the rela­
tional nature of the graph being displayed.

Ware et al. [WPCM02] use a path tracking task in their evaluation of the aesthetics 
of graph edges. This includes features such as edge crossings, path directness and average 
geometric edge length. For each displayed graph the user is asked to determine the shortest 
path distance between two nodes and is given an option of three, four or five to choose from 
as their answer. The time to answer and error rate is recorded for analysis.

In Ware and Mitchell’s [WM08] experiments on the comprehensibility of 3D graph 
visualisation, they use a path tracing task where the paths distances were limited to either 
two or three hops. In Huang et al.’s [WSHE08] evaluation of the effect of crossing angles 
of a graph, the task is again path tracing with paths of length from four to seven hops
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long. In Huang et al’s study of graph evaluation [HEH08], the authors used path tracing as 
part of an eye-tracking study, as well as questionnaires which were used to evaluate user’s 
perception of node importance and node grouping.

These above experiments involve low level relational tasks which are not domain spe­
cific. For a broader system evaluation, experiments are based on high level, interpretive 
tasks. For example, in Risden et al’s [RCMCoo] study on ease of use of 2D and 3D visuali­
sation of web content, they used a search task related to directory management of a website 
with all of the participants of the experiment having technical experience. Assessing per­
formance at high level tasks which require domain knowledge is difficult. In Purchase et 
al’s study on comprehension of UML diagrams [PMCCoi], the study was limited by the fact 
that university students, given a tutorial on UML diagrams, were used as subjects rather 
than experienced software engineers.

High level tasks are useful for evaluating visualisations designed for specific purposes. 
However it is difficult to generalise any results across general node-link diagrams as the 
high level task itself, or the visualisation application domain, may have a strong influence 
on the graph characteristics. For example the directory structure for Risden et al’s experi­
ment was a tree structure, so it is not clear if their results will generalise to other types of 
graph. Given that domain knowledge also plays a significant role, it may be better to use a 
low level task, such as path tracing, that can be generalised to a higher level task. Table 2.1 
provides a summary of tasks used in previous experiments.

Graph Properties in Previous Experiments

Tables 2.1 shows the size of graphs in previous works. While the largest graph was used by 
Risden et al, the experiment was performed on a single graph, used for a high level task, as 
opposed to a series of graphs or a large size with varying different properties. Therefore it 
is difficult to see how the scale characteristic contributes to the result.

Clearly the choice of graphs for a study reflects the goals of the study. Ware and Mitchell 
[WM08] utilise 4 different graph sizes, with the same varying edge distribution between 
nodes for each size, reusing the same graphs under different viewing conditions for their 
experiment. This reflected the aims of the experiment, which concerned the impact of 
stereoscopic three dimensional viewing as graph size increased. Other evaluations of graph 
aesthetics such as [Pur98, Pur97] use only a single graph in their evaluation. In these 
experiments Purchase evaluated very specific effects of graph layout, and introducing a 
larger range or graphs may have introduced confounding factors. Determining the range 
of graphs to be used as inputs is a difficult issue. If a wide variety of graphs are used, there 
is an increased risk of introducing factors external to those under investigation, which may 
impact results. If only a small number, or single graph is used, results may not generalise 
to graphs with different properties to the ones used for an experiment.
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Study Authors Year Task Goal
Purchase 1998 Path tracing, 

Node removal, 
Edge removal

How long is the shortest path be­
tween two given nodes? How many 
nodes must be removed to discon­
nect two highlighted nodes? How 
many edges must be removed to dis­
connect two highlighted nodes?

Purchase 1997 Path tracing. 
Node removal. 
Edge removal

How long is the shortest path be­
tween two given nodes? How many 
nodes must be removed to discon­
nect two highhghted nodes? How 
many edges must be removed to dis­
connect two highlighted nodes?

Ware and Purchase 2002 Path tracing How many hops between high­
lighted nodes?

Mitchell and Ware 2008 Path tracing How many hops between high­
lighted nodes?

Ware and Franck 1996 Path tracing Does a path exist between nodes?
Risden et al. 2000 Node Inser­

tion
Using the graph to aid in the addi­
tion of new nodes to a hierarchy

Huang et al. 2008 Path tracing Determining the number of links in 
path, measuring the time for a cor­
rect answer, ignoring incorrect ones

Table 2.1: User tasks in previous graph based empirical studies
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Study Authors Year Node Count Edge to Node Ratio Layout
Purchase 1998 16 1.69 Multiple type of 

layout
Purchase 1997 16 1.69 Graph layout was 

derived from the 
aesthetics being 
evaluated

Ware et al. 2002 42 1.0 - 5.0 Force Directed 
With Simulated 
Anneahng

Mitchell and Ware 2008 33. 100, 333, 
and 1000

Max degree of 5 A modified ver­
sion of Force Di­
rected Fruchter- 
man Reingold
layout

Ware and Franck 1996 21-291 1-333 Random Layout
Risden et al 2000 1200 unspecified Hierarchy com­

bined with list 
layout for the pur­
pose of 2D and 
3D comparison

Huang et al 2008 N/A Full
graphs were
not used,
only small
graph-like 
stimuli

N/A N/A

Table 2.2: Graph sizes in previous graph based empirical studies
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2.5 Edge Routing

Keeping edge crossing to a minimum is important for two dimensional graphs. However 
for a graph of any considerable size and density, there will be a significant number of edge 
crossings, and maximising edge crossing angles may be ineffective due to constraints of 
the graph layout or the sheer number of edges. Therefore, a huge number of edge cross­
ings is often unavoidable in a very large dense graph. Example subjects of such graphs 
are complex computer programs and file systems [H0I06, BD07], graphs representing air 
traffic [CHH+08, HW09] (using a map and geometrically fixed nodes). Other approaches 
are necessary to reduce the amount of clutter introduced by a larger volume of edges and 
clarify the paths taken by edges. Edge bundling is a recently popular technique by which 
edges are grouped together and drawn using curves which share a common path from 
their source to destination, if they have a common geometric destination or a common 
conceptual basis. It is often used in dense graphs where straight edges become indistinct 
due to the clutter cause by the number of edges as clutter reduction techniques such as the 
reduction of edge crossings are impractical or ineffective.

2.5.1 Edge Bundling

The edges which contribute to a grouping of edges, referred to as a bundle, may be deter­
mined by graph structure, such as a hierarchy [H0I06, BD07], or the geography of nodes 
[CHH^oS, BD07, HW09]. Once the edges for a specific bundle have been defined, they 
are drawn using curves known as splines. In a spline the individual curve points are calcu­
lated using a polynomial function which interpolates values based on an input set of con­
trol points. There are many different type of splines, however the most commonly utilised 
splines for edge bundling are Bezier curves and B-splines. Other types of curves such as 
/3-splines have be tested [H0I06] but never adopted. Bezier curves are significantly eas­
ier to calculate than B sphnes. The calculations consist of simply multiplying a geometry 
matrix, defining the control points, by a Bezier basis matrix, which defines the polyno­
mial function. This allows long curves to be created using multiple Bezier segments with 
overlapping control points. B-sphnes require a more significant amount of calculation, as 
a different basis has to be worked out for different line segments using the Cox De Boor 
recursive algorithm. However B-splines result in a much higher level of control of the re­
sulting curve and this allows a much more flexible routing. B-splines are a better approach, 
as long as graph size does not result in their computational complexity being an issue. Dif­
ferent approaches to bundling are characterised by how edges are chosen to be bundled 
together, which spline type is used to draw the edges as curves, and how the control points 
are defined for the curves.



Section 2.5. Edge Routing 42

Hierarchical Edge bundling

Developed by Holten, the hierarchical edge bundling algorithm [H0I06] is one of the most 
effective forms of edge bundling. It is, however, limited to compound graphs that are laid 
out in the form of a hierarchy. In the basic form, the nodes of the graph are positioned 
using a hierarchical layout, and hierarchy node positions are utihsed as control points for 
drawing the splines. Piecewise splines are used to draw the edges between nodes. These 
edges are referred to as adjacency edges to discern them form the edges of the hierarchy 
(which are not drawn). The set of control points for the edges is the set of nodes on the 
shortest path between the source and target nodes in the hierarchy. B-Sphnes are chosen 
as the spline representation. Beta splines and Bezier curves were also considered, however 
they were found lacking . Bezier curves did not provide the desired level of control and 
beta splines required extra process to achieve results which were achievable with regular 
B-Splines and an external straightening parameter. This straightening parameter is used 
as two splines with similar sets of control points will overlap, however by adjusting the 
straightening parameter the spline are drawn at slightly different positions. The straight­
ening parameter adjusts the control points of each individual spline that makes up a bundle 
based on their position in the curve and the relative position of the initial and end control 
points. The initial and end control points are the positions of the source and destination 
nodes of the edge. For a curve using N control points, beginning at Pq and ending at Pn-^, 
the straightened position P' of control point P, is given by:

P' = ^ ■ P, + (1 - ^)(P„ + — (Pn-. - Po))

j3 is the straightening parameter. It lies in the range [o, 1.0], with j3 = 0.0 resulting in 
straight lines between curves and j3 = 1.0 resulting in tightly bundled overlapping curves. 
Holten also uses alpha blending of the edges to help convey the density of bundles, and to 
help pick out bundles where large numbers of edges overlap. The edges of the visualised 
graph are directed edges with the direction indicated by a changing colour gradient which 
may also have an impact on the readability, as a differing change in gradient between edges 
may help distinguish them. The results of Holtehs edge bundling approach using two dif­
ferent layouts can be seen in figure 2.16.

In later work, Holten and Van Wijk [HVW08] utilised hierarchical edge bundles as 
a technique to aid in the visual comparison of hierarchically organised data. The edge 
bundles visually emphasize the splits, joins, and relocations of sub-hierarchies between 
data sets being compared.
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(a) Hierarchical circle layout. (b) Radial circle layout.

Figure 2.16: Images taken from [H0I06] visualising a graph showing the structure of a 
software system, using hierarchical edge bundling

(a) Unbundled (b) Bundled, with colour indicating edge 
density

Figure 2.17: Images taken from [CHH'^oS], visualising a graph showing migration between 
states in the U.S., using Cui and Zhou’s geometric edge clustering
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Geometric Edge Clustering

Cui et al. have developed a purely geometric approach to bundling edges [CHH^oS] , 
following on from previous work by Qu et al. [QZW07]. This approach involves generating 
a control mesh for the graph. The control mesh is generated by a Delaunay Triangulation, 
a technique by which geometric space is divided into a set of triangles, based on a set of 
input points. The resulting triangles have the property that no point in the inputs set lies 
within the circum-circle of any of the triangles generated.

A set of input points can be selected by the user or determined automatically. These 
points are not nodes within the graph but points which are to form the vertices of the De­
launay triangulation (edges to be included can be specified too). In the case where the 
mesh is determined automatically the graph is subdivided into a grid and for each cell in 
the grid the number of graph nodes and links passing through are calculated. The authors 
then store the direction of each edge in a feature vector and perform a Kernel Density Es­
timation. This gives them a probability curve of direction for each grid square. If there 
is a strong probability of all curves going is a specific direction then this is the primary 
direction assigned to the square. Grid cells are then merged with cells containing a similar 
primary direction (i.e. the difference between orientations is within some threshold angu­
lar distance). Cells are merged into a larger region until the difference between all primary 
directions is beyond some threshold specified as an input.

Once the mesh is generated actual clustering of the edges begins. For each edge of 
the mesh, one or more control points are generated. The input to the smoothing is the 
points at which the graph edges intersect the mesh triangle edges. The authors use K- 
means clustering of these intersection points to determine the actual control points to be 
used (if only one control point is desired this is in effect the average position). This results 
in noticeably tight bundles (see figure 2.18). However, this can be partially rectified by using 
a higher resolution of grid and adjusting the threshold angle for merging grid squares. Due 
to the kernel density estimate and averaging (and K-means clustering) some edges might be 
periodically be bundled in the wrong direction resulting in difficult to follow meandering 
links in the final visualisations. To overcome this problem, the authors performs local edge 
smoothing. The smoothing is local as it only considering alternate paths for the edge within 
nearby triangle of the mesh. The authors determine which edges need to be smoothed by 
examining a metric which is a combination of the bundled edges angular difference for the 
original straight edge and Euclidean distance difference for the straight edge. The weighting 
of the two quality attributes is decided by the user. Using this metric, poor quality links are 
identified and an alternative is sought by searching the mesh triangles that the edge passes 
through, as well as some of the neighboiu-ing mesh triangles.

It can be seen from the above that this approach is algorithmically more complex than 
hierarchical edge bundling, requiring extra smoothing an less intuitive generation of con-
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Figure 2.18: Example given by Cui[CHH+o8] of Edge clustering by control points: (a) a 
graph with a control mesh, (b) the intersections and the control points and (c) the merged 
graph.

trol points. The results of Cui and Zhou’s approach can be seen in figure 2.17, on a graph 
representing migration patterns between states in the US. This type of graph, where node 
positions are fixed absolutely (as they represent states on a map), benefits the most from 
Cui’s approach as the clustering hierarchy necessary for hierarchical edge bundling is not 
present.

Other Geometric approaches

Zhou et al. [ZYC'^o8] build on Cui’s approach allowing for a 
hierarchical bundling of edges (see figure 2.5.1 for an exam­
ple) using an energy based approach to determine the con­
trol points for the bundled hierarchy edges. The resulting im­
ages bundle edges tightly and care has to be taken about the 
reading of the graph, as the bundled edges could be misin­
terpreted as a visualisation of a hyper edge in a hyper graph.
The authors admit that sometimes the edge direction is not 
always entirely clear. This approach differs to [H0I06] and 
[CHH+08] as when edges share a common path they can 
overlap entirely for some of that path.

Lambert et al [LBAiob] provide an approach that is 
slightly similar to Cui et al. It includes a similar spatial sub­
division, but instead of Cui et als grid it uses a hybrid quad­
tree / Voronoi diagram approach. The grid is also used to 
route edges. The edges of the grid act in a similar manner 
to the Delaunay triangulation performed by Cui et al, how­
ever the strength of these edges is determined by calculating
a shortest path algorithm on the original graph and calculating how many edges from the 
original graph cross each grid edge. The authors have also extended their edge bundling

Figure 2.19: Example im­
age taken from [ZYC'^o8], 
showing the effect of 
Zhou’s Hierarchical edge 
bundhng. The graphs 
are unbundled in the top 
row and bundled in the 
bottom).
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into 3D [LBAioa], displaying 3D edge bundles running across a spherical geographic map 
of earth. The authors also use visual techniques such as bump mapping to aid in the visual 
display of the edges.

Force Directed Edge Bundling

Holten and van Wijk [HW09] also developed an edge bundling approach which has no 
need for a hierarchy, as edges are routed using a force directed algorithm. In this approach, 
edges are subdivided into points that interact with each other in a manner similar to a force 
directed layout. This approach leads to very high levels of bundling so edge compatibility 
measures are used, to determine which edges should be bundled together. Edges are bun­
dled together only if they are compatible in orientation and in length. The resulting edges 
are then smoothed using a Gaussian kernel to adjust the position of the internal points of 
the edges. The strength of the bundhng can be adjusted in manner similar to the bundles 
in [H0I06]. The resulting colour of the edges is determined from a gradient scale related 
to the number of edges intersecting a specific pixel.

Other Occurrences Gansner and Koren [GK07] use edge bundling to reduce clutter as 
part of their improved circular layout. Edges are bundled tightly, merging to a single line, 
leaving the connectivity of node pairs to be inferred by the user based on the order of 
nodes at either end of the bundle. The approach used for winding roads [LBAiob] has also 
been expanded to generate 3D edge bundles for use with spherical geographical layouts 
[LBAioa]. 3D Edge bundling also features as a component of Balzer and Deussen’s level of 
detail visualisation of clustered graphs [BD07]. Edges are grouped together based on inter 
cluster connectivity and divided into segments which are routed together algorithmically. 
Bezier curves are utilised to smooth the resulting edge segments, but are not utilised as 
part of their routing. Pupyrev et al [PNBH12] also use an approach similar to the mesh 
based approach described previously, creating a grid graph for edge routing. This routing 
graph is used to route edges so that they do not obscure nodes, as opposed to Cui et al. who 
use the mesh to generate control points. Bundles are drawn using Bezier curves, which are 
evenly spaced apart (rather than using a straightening parameter), and ordered in such a 
way that edged crossing are reduced. Luo et al. [LLCM12] also utilise a geometry based 
approach using spatial partitioning to bundle edges ijn order to reduce edge ambiguity. 
Their approach is interactive and on demand. Bundhng only takes place in areas of a graph 
where a user desires it, to reduce edge ambiguity and improve readability.

Bundling Interactivity

Approaches such as Cui s geometric edge bundling and Holten’s hierarchical edge bundles 
produce an edge routing which is global for the whole graph. The edge bundling is in-
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teractive in the sense that parameters can be altered and the edge bundling redone. Other 
techniques such as Edgelens [WCG03] distort edges in a local fashion which can be consid­
ered related to bundling. Edge lens distorts edge around a focal point (the lens) using edge 
curvature to allow the user to see any obfuscated data, such as nodes, or to separate closely 
routed edges. Edge lens derives from edge plucking [WC07], which is a technique which 
allows users to interact with edges directly, moving them using the cursor (like plucking a 
guitar string) in order to clarify any ambiguity about their path. Riche et al. describe an 
interactive local bundling approach refered to as link magnets [RDLC12] as part of their 
overview of interactive edge routing approaches. This approach requires user interaction 
to position “magnets” in the graph which distort edges to allow the user to see graph aspects 
more clearly.

2.6 Three Dimensional Stereoscopic Vision and Graphs

Stereoscopic viewing of objects has been know about since the Victorian era. It was iden­
tified by Charles Wheatstone in 1838 [Whe38], who also developed the Wheatstone stere­
oscope (and coined the term stereoscope). A stereoscope is a device which, when used to 
view two images side-by-side, provides the illusion of depth. The images must correspond 
to the left and right eye view of a scene. During World War two, as part of operation Cross­
bow, allied reconnaissance planes took multiple photographs of the landscape of Nazi long 
range missile sites in Europe.

These were then viewed using a stereoscope, of 
the design shown in figure 2.20. The use of stereo­
scopic 3D allowed the allied analysts to measure the 
height of new structures at the site.

2.6.1 Stereoscopic Display of Graphs

Much research has been done in visualising graph 
structures using three dimensional displays [WF96, 
WM08, SM93, HHLio]. Displaying a graph in 
stereoscopic 3D usually requires specialised hard­
ware. Stereoscopic vision depends on delivering a 
different image to each eye. Many approaches re­
quire the user to wear glasses, while a screen displays 
images for both the users left and right eye.

Figure 2.20: A World War 2 stereo­
scope and Case.
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Stereoscopic display approaches

Early promising results on visualising network
graphs in three dimensions was produced by Ware and Franck [WF96] using active shutter 
glasses. Active shutter 3D glasses require a display which alternates between rendering the 
left eye view and right eye view for each frame. The active shutters of the glasses are syn­
chronised with the display frequency so that each eye only sees the frame that is targeted 
at that eye. Passive glasses systems are usually projector based and require overlapping po­
larised projections of each eye image onto the display. The passive glasses act as filters so 
that each eye only sees the image intended for that eye. Most contemporary three dimen­
sions cinema displays utilise passive 3D, which many home television and computer three 
dimensional displays utilise active 3D. Previous generations of shutter glasses were often 
bulky and quite uncomfortable, however more recent consumer oriented products have 
improved the form factor and reduced the size of shutter glasses. It is also possible to dis­
play a three dimensional stereoscopic image without the use of glasses. Auto-stereoscopic 
displays [Delos, HHLio] are a more recent technology at consumer level, however they 
very often require an large number of images to be rendered for each frame, compared to 
the usual two for most other stereoscopic visualisation techniques. This can significantly 
damage interactivity as a high level of scene complexity results in a greatly reduced frame 
rate.

Anaglyph 3D is an alternative to using the complex hardware required for shutter glasses. 
This approach uses red/cyan or similarly coloured glasses on a regular display but with 
specially altered renderings. Anaglyph stereo has been used for three dimensional exper­
iments, for example van Shooten et al. [vSvDZS^io]. However the distracting nature of 
the coloured lenses as well as the loss of colour as an information channel makes anaglyph 
stereo a last resort and only if no other means of stereoscopic vision is possible.

In [WM08], Ware and Mitchell used an adaptation of a Wheatstone mirror stereo­
scope to allow for higher resolution stereoscopic display. This device, rather than requiring 
glasses, requires the user to look into an apparatus where two mirrors reflect images from 
a pair of high resolution displays, one for each eye. While allowing for high resolution 
image that reduces artefacts such as image ghosting, which affect other approaches, this 
apparatus is not practical for everyday user interaction with a display.

Head Tracked displays often go hand in hand with stereoscopic displays and add an 
extra level of immersion for users [WAB93, WF96, HHLio]. When head tracking is used 
the images displayed are updated depending on the position and orientation of the users 
head. Effectively the virtual camera rendering a scene is controlled by the users head mo­
tions. This adds motion parallax which adds to the perception of three dimensionality in 
addition to the stereoscopic effect.

One final option is a head moimted display, which is essentially a large pair of glasses
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with a separate display for each eye as well as a means of head tracking. These devices 
generally require complete immersion in a visualisation by a user and limit interactivity 
with an external stimuli and hence are quite impractical for many real world visualisations.

Stereoscopic and motion depth cues

Both stereoscopic and motion cues provide depth information to the user. However the 
level of contribution of each, as well as the impact of combining both cues, is not consistent 
across all previous work comparing the impact of stereoscopic and motion cues on user 

performance.
Sollenberger and Milgrams experiments [SM93] showed that both motion cues and 

stereoscopic display improve user performance at a tree based path tracing task. The mo­
tion cues were based on rotation of the graph structure back and forth, and their task was 
focused on selecting the correct root node for a tree containing a highlighted leaf node. The 
authors state that the motion cues improver user performance more than the stereoscopic 
cues. Ware et al. [WAB93] conducted a similar experiment, except the rotation was the 
result of head tracking, coupled with the stereoscopic display, and found similar results.

In Ware and Francks 1996 paper [WF96] users performed head tracked path tracing 
tasks on randomly laid out three dimensional graphs. Once again motion is better, but 
stereo also has a strong effect. In later work, from Ware and Mitchell which re-visited the 
topic of stereoscopic display of graph visuahsations [WM05, WM08], the authors used a 
spring embedder layout as opposed to a random layout, as well as a much higher reso­
lution display than previous experiments. They discovered a larger positive effect from 
use of 3D depth cues (both motion and stereoscopic) than previously noted. In particu­
lar, that the viewer could comprehend larger graphs more easily. There was no significant 
difference between motion and stereo cues for novice users (14 of which were used in the 
experiment). In their work on path tracing tasks using depth with multi-view (i.e. auto- 
stereoscopic) displays Hassaine et al’s [HHLio] results show that when comparing motion 
cues, in this case motion parallax as a result of head tracking, combined with stereoscopic 
cues, stereoscopic depth cues play a larger role in user understanding of the graph. The au­
thors postulate that this may be because motion parallax only has an additive effect if there 
is a significant amount of occlusion in the 3D graph rendering. They also note that previous 
work [BPGoo, AGB96] has shown that the benefit of motion parallax and stereopsis de­
pends greatly on context and can be influenced by the task, as well as by the experunental 

procedure.

2.6.2 Stereo rendering

Given a common dual image based approach for stereoscopic display a visualisation ap- 
pUcation must the take the rendering hardware and display hardware into consideration.
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Figure 2.21: A simple single camera set up, the image projected onto the near projection 
plane is that which is seen by the user.

The OpenGL graphics API provides extensions that allow applications to render to sepa­
rate display buffers for the left eye and the right eye. In order for an application to render 
an image to be viewed on a stereoscopic display the scene is rendered from the perspective 
of the left eye and rendered to the left display buffer and then from the perspective of the 
right eye to the right display buffer.

Each display buffer requires a different scene projection to reflect the fact the image 
is targeted to a specific eye. The standard approach to rendering a scene in a visualisa­
tion application is to model a camera with a position and set of orientation vectors in the 
rendering space. A viewing frustum is also defined. This is used to specify the projection 
matrix which maps from the three dimensional model of a scene (which may just be a sim­
ple graph visualisation) to the two dimensional projection plane as seen in figure 2.21. The 
parameters of this frustum can be specified as the position and size of near and far clipping 
planes. Alternatively, these parameters can be defined like those of a camera are, repre­
senting a field of view (also know as aperture) and an aspect ratio, with a maximum and 
minimum viewing distance. The aspect ratio is the proportion of the height of a projection 
plane to the width of the projection plane. In a simple single camera setup the projection 
plane can often be thought of as the near clipping plane of the viewing frustum. As there 
is only a single camera position, the view transformation being applied to the scene needs 
to only consider the camera position and orientation

To render a scene using a stereo camera it is necessary to know the position of each eye 
(which can be determined from a value for the eye separation) as well as build a separate 
viewing frustum for each. Because these viewing frustums have separate origins, but the 
same near and far planes, they are not the symmetric frustums as seen in the single camera
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Figure 2.22: A stereo camera set up. The eye positions are offset along the right vectors of 
the camera by the eye separation value. The overlapping frustums are not symmetrical like 
the frustum used for the single camera eye setup

case (as can be seen in figure 2.22), we also need to define a focal length parameter, which 
is the distance form the camera position to the projection plane. This directly impacts the 
3d effect of stereoscopic viewing. Objects which are closer to the camera than the projec­
tion plane will appear to pop out in front of the display (negative parallax). Objects which 
are further away will recede into it (positive parallax). The matrix which models the view­
ing transformation applied to the rendered scene by the camera also needs to be updated 
between left eye and right eye rendering passes. The camera orientation is the same for 
each eye, however the position of the camera for the left eye rendering and the right eye 
rendering depends on the eye separation.

Eye Strain

The stereoscopic parameters described above can have a significant effect on a users ability 
to perceive the graph as a 3D object. If there is a mismatch in values, such as the eye 
separation being to large relative to the focal length, there may be excess parallax (positive 
or negative) as an object becomes more distant from the focal length. As a result, the 
disparity between the left eye and right eye images is too large and the viewers brain is 
unable to combine them into a 3D object, so the stereoscopic effect is lost.

Even if the viewing setup still allows stereoscopic vision, in many cases the setup can
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Figure 2.23: The vergence angle of the eyes 6 changes depending on the distance to the 
object being focused on.

tax the human visual system so heavily that physical discomfort can occur. One of the main 
causes of this strain is related to a mismatch between the focal length of the eyes and what 
is referred to as the vergence. Vergence describes the convergence of the eye orientation 
when we look at an object. A more distant object will result in a narrower vergence angle 
as can be seen in image 2.23. When a user looks at an image on a stereoscopic display all 
objects are at the same focal length, regardless of how deep they appear to be. The vergence 
angle of an object combined with the disparity between the left eye and right eye images 
does provide enough information for a user to perceive the objects in 3D . However the 
the lack of correct focus information combined with the vergence may be the cause of eye- 
strain that is frequently associated with stereoscopic viewing [WRMW95].

2.6.3 Three dimensional layout of graphs

Many graph layout algorithms can be easily extended from the usual two dimensional lay­
out to three dimensions. For example Ware and Mitchell used an 3D dimensional spring 
layout for their experiments[WMo8]. Extending a force directed layout into three dimen­
sions is a simple case of extending the force vectors and positions of the nodes into three 
dimensions. However three dimensional layout of graphs causes significant issues of oc­
clusion, depending on the viewing angle of the graph.

2.7 Implementation of Graph Rendering and Processing

As described in section 2.1 graphs are most often visualised as node link diagrams. When 
rendering a node Unk diagram, there are many low level technical implementation aspects 
to be considered in order to execute the techniques described in this thesis to render the 
associated graphs to a display. We have developed a graph visualisation application to 
demonstrate and test our approaches. All images in this thesis, unless credited otherwise
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are generated from this application.

Our implementation uses the C++ programming language. This was chosen due to 
the high performance offered, in terms of speed, as well as the wide choice of available 
libraries to support graph analysis and rendering. To aid in our processing of graph data 
we have utilised the BOOST graph library, which offer graph data structures and algo­
rithms. BOOST is a cross-platform open source set of libraries that provides a wide range 
of functionality for C++ application development [Libi2]. For rendering our graphs we use 
OpenGL, a cross platform 3D graphics library.

2.7.1 Graphics Hardware

Hardware accelerated graphics are a common feature of modern commodity PCs. Mod­
ern graphics cards use a Graphics Processing Unit (GPU) with many cores capable of pro­
cessing data in parallel, ideal for accelerating raster based rendering. Modern graphics 
hardware includes specialised memory, separate from main computer memory, that stores 
graphical data, allowing it to be processed by GPUs and displayed quickly. Within OpenGL 
a 3D object or model is specified as a set of vertices (representing points in 3D). These are 
then processed by the Graphics GPU to produce fragments of a (pixel based) raster image. 
These fragments are then processed further, combined into pixels and placed in an area of 
memory called a display buffer. The display buffer data is sent to a display device such as 
a monitor or projector for viewing. OpenGL utilises Vertex Buffer Objects (VBOs), which 
are structures in graphics memory which store the vertices of a 3D object to be drawn. 
Storing graph data in VBOs allows large interactive graphs to be rendered more quickly 
than if the date is passed form main application memory.

2.7.2 GPU Processing

Modern graphics hardware, though originally designed for enhancing 3D rendering per­
formance, is also capable of being used for other computational tasks. It is extremely ben­
eficial when calculations are discrete and capable of being done in parallel, such as the 
calculations of forces acting on an individual node for a force directed layout as seen in Fr- 
ishman and Tal [FT07]. Programmable GPUs allow the user to create small pieces of code 
called shader programs which execute on graphics primitives such as the vertices of a 3D 
model and the pixel fragments of a raster display (and more recently geometric primitives).

In earlier attempts to utilise GPUs to aid in graph layout the GPU was utilised using an 
approach know as General Purpose GPU programming. The performance optimisations 
offered by the GPU are focused on graphics operations and as a result the programming 
model is structured for that specific field. Effectively GPGPU is an approach by which 
an algorithm is disguised as a graphics rendering pass, during which the programmable
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shaders process the input graph data. Rather than outputting a pixel colour to the screen 
buffer, the output information is read back to the CPU and interpreted by the calling pro­
gram. This programming model limits the range of problems that can be ported to the 
GPU.

Since Frishman and Tal’s work [FT07], GPGPU has been replaced as an approach to 
programming graphics hardware. CUDA (Compute Unified Device Architecture) is an 
programming model realised by nVidia to specifically allow access to programmers to 
graphics hardware for non graphics purposes. It is a C based programming language that, 
while reflecting the underlying multi-core architecture of the GPU, is free of many of the 
restrictions of GPGPU programming.

Harish and Narayanan [HN07] showed the benefit of CUDA for accelerating graph 
algorithms. The authors showed significant benefits using basic CUDA implementations, 
for random general graphs Breadth First Search was 20 to 50 times faster than a corre­
sponding implementation on the GPU. A Single Source Shortest Paths algorithm ran 70 
times faster on the GPU than on the CPU. However such a dramatic performance was not 
seen for graphs which were scale-free. This meant that some vertices had considerably 
more edges than others, which impacted the performance. However the GPU approach 
still outperformed the CPU approach. For an example real world graph of low degree, 
the CPU actually outperformed the GPU. This was as on a low degree graph these algo­
rithms are not easily parallelisable as the graph is almost linear, so the benefit offered by 
GPU parrallelisation is lost. Luo et al [LWHio] have produced an effective Breadth First 
Search algorithm. In terms of layout Godial et al. [GHGH09] have demonstrated a CUDA 
implementation of Hachul and Junger’s Fast multi-pole multi-level Method (FM3)[HJo5] 
which performs at least 20 times faster than the CPU based version and is 30% faster than 
Frishman and Tals GPGPU approach.

CUDA has also been used to optimise other aspects of graph visuahsation than cluster­
ing and layout. For example in Ersoy et aVs Skeleton-Based edge bundling [EHP+11], the 
algorithm for calculating a skeleton structure for graph edges ran 100 times faster using a 
GPU based CUDA solution, when compared to a CPU implementation.



Chapter 3

Agglomerative Clustering around Nodes 
of Interest

As THE AMOUNT OF INFORMATION TO BE VISUALISED by a graph becomes larger or more 
dense, the graph becomes more difficult for a user to comprehend. Use of a clus­

tering structure on top of the classical node-link model can help provide information, as 
nodes that are clustered together have an implicit relationship. A graph may not have an 
intrinsic data structure and any clustering provided by a generic clustering algorithm may 
not align with a user’s task.

In this chapter we present an approach for agglomeratively clustering graphs based on 
user input. As part of our approach a user can specify nodes of interest, which form the 
basis of the clusters. We build clusters around these nodes using a heuristic which we have 
chosen based on the structure of the often encountered Small World Graphs described in 
section 2.1.2.

We chose clustering coefficient, described in section 2.1.2, as a heuristic. We build clus­
ters agglomerative by adding nodes to clusters based on their impact on the resulting av­
erage clustering coefficient of the cluster. If a cluster has a high average cluster clustering 
coefficient, it indicates that all of the nodes within the cluster have many interconnected 
neighbours within that cluster.

Chapter structure: This chapter is structured as follows:

• In sections 3.1 and 3.2 we describe our motivation and the related work for this chap­
ter and in section 3.3 we describe how we calculate clustering coefficients.

• Section 3.4 describes our initial investigations into using clustering coefficient as a 
heuristic to guide the agglomerative clustering around nodes of interest.

• Section 3.5 describes an approach which maximises the average cluster clustering 
coefficient of clusters.
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In section 3.6 we provide a detailed evaluation of our approach across a wide range 
of graphs, comparing it to other heuristics. We also compare our approach to a well 
known top-down clustering algorithm.

In section 3.7 we apply our approach to a benchmark data set and examine the results 
against the existing classification of the nodes.

In section 3.8 we describe our conclusions and potential avenues for future work.

3.1 Motivation for Clustering

Our motivation is to make graphs more comprehensible and we use graph clustering to 
support this aim. We are focusing on small world graphs specifically. This is due to the 
presence of groups of highly connected nodes, the strong likelihood of cluster structures 
within the graph, as well as the common occurrence of small world properties in real world 
networks. If a user is investigating nodes of specific interest to them, reorganising the 
layout of the graph based on the nodes of interest may aid in their analysis. For example a 
user may want to view a graph describing a large program focusing on specific classes, or 
a biologist may wish to view a predator-prey network focusing on certain animals.

The purpose of our clustering approach is to aid in the layout by clustering nodes 
around the user’s nodes of interest. The clustering assigns nodes in such a way that they are 
clustered around nodes that they are more conceptually related to, based on graph struc­
ture. If grouping a node with one node set over another results in a higher heuristic score 
for that cluster, we can infer that the node conceptually belongs more to it. In less dense 
graphs a clustering may be obvious as there will be few links between clusters. However, 
for more dense graphs, useful clusterings may not be so obvious. The density of edges can 
make the graph more difficult to read and the relationships between nodes may be ob­
scured. A node may also have strong relationships with several other nodes, and allowing 
the user to rearrange a graph based on nodes of interest allows the user to see clearly the 
relationships that are most pertinent.

3.2 Related work

The characteristics, origins and relevance of Small World Graph are described in detail in 
section 2.1.2. The background and state of the art of clustering is described in section 2.2.1 
and evaluation techniques for clusterings are described in section 2.2.3. A brief summary 
of cluster and evaluation is provided here to provide context for this chapter.
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3.2.1 Clustering

There are many different approaches to graph clustering (or partitioning as it is often re­
ferred to). Some methods use an algebraic approach, working on a mathematical repre­
sentation of the graph, [FT07, vDoo]. Other methods such as Edge Betweenness Cen­
trality Clustering [NG04] use a graph theoretic based approach, calculating graph the­
ory characteristics of vertices or edges that are then used to partition the graph into clus­
ters. Some clustering algorithms, such as edge betweenness centrality clustering take a 
top down, or divisive approach splitting the graph into separate clusters. Others take a 
bottom-up or agglomerative approach, merging sets of nodes together to form clusters 

[Newo4, HKKS03, QEoi].

3.2.2 Clustering Evaluation Metrics

Newman and Girvan [NG04] define a measure of the quality of a division of a network 
graph, referred to as modularity. The measure is used to evaluate their community de­
tection algorithm (which is essentially a top-down clustering algorithm). The measure has 
also been used in work by Newman [Newo4] as a heuristic value for agglomeratively build­
ing clusters. This metric is based upon the number of edges that start and end in the same 
cluster (referred to as communities in Newman and Girvan’s paper). Auber et al [ACJM03] 
and Chiricota et al. [CJM03] use a quality measure developed by [MMR^98] and utilised in 
their clustering tool “Bunch”. This measure, denoted MQ (Modularisation Quantity) com­
putes a value for any given partition of a graph. Chiricota et al. and Auber et al. use a 
slightly modified version of MQ that is defined only for undirected graphs as an evaluation 
measure. The MQ value is used by the Bunch tool as a function to be optimised to provide 
a good clustering, rather than as a metric to evaluate one. Both modularity and MQ score 
are described in detail in section 2.2.3. Boutin and Hascoet [BH04] discuss many other 
clustering evaluation approaches (referred to by them as clustering validation indices) and 
they note that these evaluations are often difficult to interpret and compare. Bittencourt 
and Guerrero [BG09] and Wu et a/.[WHHo5] evaluate several clustering metrics in the 

context of software system analysis.

In their work on the layout of small world graphs [vHWoSa], van Ham and Wattenberg 
utilised a social network based on the the influences between prominent historical figures, 
the “genealogy of influence” [Lovio]. In this network, individuals are connected if one 
of them was an influence on the work of another. For example Socrates influenced Plato, 
therefore there is an edge between the nodes representing each of these individuals in the 
network. The purpose behind the use of such a network is that the profession of each 
individual provides an extrinsic clustering of nodes, and such a clustering can be used to 
evaluate a layout ( or in our case a clustering).
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3.2.3 Edge Density

In section 2.1.4 we discussed graph density and differentiated between graph theoretic edge 
density and linear density. As mentioned previously, many real world graphs have a, linear 
density value of di <= 10. However some examples such as web-crawl graphs have even 
higher densities, such as web-crawl graphs with d/ = 25.57 [Melo6]. Increasing edge density 
alters the structure of a graph, and impacts the behaviour of a agglomerative clustering 
algorithm. The more dense a graph is, the larger the number of neighbour nodes that are 
available for agglomeration into a cluster. Clearly graph density needs to be considered 
as part of an evaluation of an agglomerative clustering algorithm. It is clear that graph 
theoretic density scales the number of edges more dramatically for a change in vertex count, 
so for comparison of densities between graphs with different node counts linear density 
provides a clear comparison.

Purchase [Pur97] has demonstrated how the crossing of edges is the graph aesthetic 
which affects most human understanding of the graph. Unfortunately, in large dense graphs, 
edge crossings are unavoidable. We hope that by clustering the graph intelligently, strongly 
related nodes will appear closer to each other within the same cluster. This will reduce long 
edges and the likelihood of edge crossings.

3.3 Calculating Average Local Clustering Coefficient

Calculating the clustering coefficient of a single is node is straight forward and is described 
in section 2.1.2. A simple algorithm for calculating the clustering coefficient of an individ­
ual node within a cluster is shown in algorithm 2. The average clustering coefficient of 
a graph, sometimes referred to as the global clustering coefficient, is the sum of all node 
clustering coefficients divided by the number of nodes. The average clustering coefficient 
of a cluster, reflects the level of inter-connectivity of nodes within the cluster. Therefore 
when calculating the clustering coefficient of nodes within a cluster, to generate the aver­
age cluster clustering coefficient, only neighbours within the same cluster are considered.

In our approach, we set the clustering coefficient of a node to zero if it has less than 
two neighbours. Sometimes, as done by Schank and Wagner, clustering coefficient is only 
considered for nodes with more than two neighbours. This results in the global clustering 
coefficient being the sum of all node clustering coefficients, divided by the number of nodes 
which have two or more neighbours.

The calculation of the clustering coefficient for a large set of nodes can be a time con­
suming task. The time taken to calculate the clustering coefficient of a node does not just 
depend on the size of its neighbourhood, but also on the size of the neighbourhood of each 
node in the original node’s neighbourhood. Therefore calculating the clustering coefficient 
for each node in a graph depends not only on the number of vertices | V"! and the number
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of edges |£| but also the distribution of edges in the graph, (see [Newio]). Fortunately the 
clustering coefficient for each node in a graph can be calculated in parallel.

We have implemented the calculation of the clustering coefficient of each node within 
a graph or cluster on the GPU. The result is averaged by the CPU to determine the aver­
age clustering coefficient for the nodes within a cluster. The input data required for this 
algorithm are the nodes within the cluster, and the edge list for the graph. For extremely 
large graph an approximation may preferable, Schank and Wagner [SW05] describe and an 
approach for approximating clustering coefficient quickly. However for building clusters 
agglomeratively using clustering coefficient we will calculate exact values.

Algorithm 2 Algorithm for calculating clustering coefficient of a node within a cluster 

ve Vc
for all u 6 Vc

if {M,v}6£cthen
v.neighbourhoodSize ■- v.neighbourhoodSize + 1
for all w € Vc do

if u ^ w A {u, w} 6 £c A (w, v} e V {v, w} e Ec then
v.neighbourhoodEdgeCount v.neighbourhoodEdgeCount + 1 
{As w is also a neighbour of v}

end if 
end for 

end if 
end for
if V.neighbourhoodSize > 1 then

V.clusteringCoefficient := v.neighbourhoodEdgeCount/v.neighbourhoodSize* 
{v.neighbourhoodSize -1)

else
v.clusteringCoefficient = o

end if

3.4 Initial Investigation of Clustering Coefficient

3.4.1 Introduction

In this section we describe our initial investigation into the use of average cluster clustering 
coefficient as a heuristic. In order to determine its potential we evaluated it against both 
procedurally generated and real-world graphs. Our approach consists of agglomeratively 
merging nodes, one at a time, into the cluster which results in the highest heuristic score 
for the node being clustered.
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3.4.2 Initial Clustering Algorithm

To determine which cluster a node conceptually belongs to, the average clustering coeffi­
cient of a cluster is used as a heuristic. The clustering process is as follows:

1. Specify the nodes of interest used as a basis for clusters.

2. Add one neighbour node to each node of interest to form a basic cluster.

3. Build a list of remaining nodes in the graph, sorted by distance from a node of interest 
and node neighbourhood size.

4. Add each node to the cluster, that has the highest resulting average cluster clustering 
coefficient if the new node is included in the calculation

5. Assign the single neighbour nodes to the clusters of their neighbours.

Each cluster initially only contains a single node of interest, selected by the user. For 
each node of interest a single neighbour is added as the calculation of a clustering coeffi­
cient requires a node to have more than one neighbour. The node added to the cluster is 
the neighbour of the node of interest, with the largest neighbourhood size. This results in 
each cluster containing two connected nodes.

A nodes neighbourhood is the set of nodes which it is directly connected to. The graph 
distance between a node and its neighbours is exactly one. The set of all nodes of the 
graph that have a neighbourhood size large than one and have not already been assigned 
to clusters is then stored in an ordered node list, built by traversing the graph from each 
of the nodes of interest using a breadth first search. Nodes are stored, primarily, in order 
of their increasing graph distances from a node of interest and secondarily by the size of 
the node’s neighbourhood from largest to smallest. Nodes that are connected to only one 
other node (i.e. it has a neighbourhood size of one), are not added to the Ust. The reasoning 
behind this is that a node which only has one neighbour is guaranteed to have a negative 
impact on the local clustering coefficient value of a cluster. Given that the node can only 
ever be added to the cluster that it is connected to, it is added to the cluster that its only 
neighbour is assigned to once all other nodes are assigned.

The motivation for ordering the list secondarily by neighbourhood size is to allow 
nodes of a lower neighbourhood size to be added to a node where as many as possible 
of their neighbours have already been added. If nodes of a large neighbourhood size al­
ready are processed first then any node added is more likely to find several of its neighbour 
nodes already assigned to the cluster. Furthermore, this ordering results in more balanced 
cluster sizes, as it will prevent the clusters which are initially based on more highly con­
nected nodes from taking all the nodes with a small neighbourhood size. A more balanced
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clustering is more likely to result in a more symmetrical graph, which per Purchase’s exper­
iments [Pur97] is a graph aesthetic which affects human understanding (although nowhere 
near as strongly as the number of edge crossings).

In the next stage of the algorithm, the ordered list is iterated through adding each node 
temporarily to a cluster. When a node is added to a cluster the average clustering coefficient 
of the cluster is recalculated to determine the impact of adding the node to the cluster. The 
node is then permanently added to the cluster which has the highest resulting coefficient. 
Finally, once all other nodes have been assigned to a cluster, the single neighbour nodes 
are then assigned to the cluster of their neighbour.

3.4.3 Evaluation Approach

In order to evaluate the effectiveness of the clustering we compare our algorithm to varia­
tions where cluster coefficient impact was not taken into account. For the “Round robin” 
clustering approach, nodes are initially sorted in the same manner as before, but assigned 
to each cluster in a sequential fashion. Nodes are only assigned to clusters which they are 
connected to. A more thoroughly random approach was also taken, by assigning nodes to 
a cluster chosen entirely at random, from a list of all clusters that neighbours of the node 
have already been assigned to. Furthermore we have also evaluated using the change of the 
clustering coefficient (which we refer to as the clustering coefficient delta). In this approach 
nodes are assigned to the least negatively impacted cluster, instead of assigning the node 
to the cluster with the highest resulting cluster clustering coefficient.

Evaluation Graphs

We evaluated our algorithm using a wide variety of graphs. For an evaluation using real 
world data, we generated a set of four graphs, based on connectivity between Wikipedia 
articles. We evaluate these graphs using Newman and Girvans modularity metric.

We also randomly generated small world graphs which are clustered using our ap­
proach and as well as the round robin and random approaches. We used Watts and Stro- 
gatz’ approach for creating small world graphs [WS98] as described in section 2.4.1. These 
randomly generated graphs contained 60 nodes and vary in edges density. We also gener­
ated a second set of 20 graphs of consistent size and density, with an increasing probability 
of rewiring. This results in a set of graphs with a decreasing clustering coefficient. These 
procedurally generated graphs were evaluated based on the modularity of the resulting 

clustering.
In order to analyse how effective the use of the average local clustering coefficient of a 

cluster is in building conceptually related clusters, we created an artificial social network 
data set modelling activities at a sports club. Our model contained 100 nodes each repre­
senting a member of the club. Each member is assigned a level of interest in six activities.
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between o and 1.0. The sum of a member s interest across all activities is equal to 1. In order 
to generate the graph we calculated the Euclidean distance between each member s 6 levels 
of interest. If the Euclidean distance was less than a threshold value of 0.5 we assume, due 
to the common amount of activities, that the members are socially connected. Therefore 
we added an edge to the graph connecting the nodes representing the members. The re­
sulting graph contains 803 edges. Using this graph to evaluate our clustering we can see 
exactly the ratings for each node for each activity and hence determine if they have been 
placed in a conceptually correct cluster. The node of interest selected for each cluster is a 
person who undertakes only one activity with the maximum level of interest. This means 
that each cluster member should have some level of interest in the activity of the node of 
interest.

We also use our algorithm to cluster and layout a real-world social network data set. 
We chose the influence data set [Lovio] as used by van Ham and Wattenberg[vHWo8a]. 
This data set contains prominent figures in the field of art, science and entertainment and 
relates them using ’’influenced by” relationship. The generated graph contains 1929 nodes 
and 4364 edges.

Evaluation Metric

We used Newman and Girvan’s modularity metric [NG04], which is described in section 
2.2.3. Modularity depends solely on the relationships between nodes. Where contextual 
meta-data about the node clustering is available, we use this to determine if the node con­
ceptually fits in with the cluster it is assigned to.

3.4.4 Results

Wikipedia Data Set

The clustering coefficient based, round robin and random algorithms were each run on 
the Wikipedia test graphs, where the four nodes with the highest degree were selected for 
clustering. The random clustering was run three times for each graph and averaged, as 
it resulted in a different clustering each time. The resulting modularity of each graph is 
displayed in Table 3.1. The use of clustering coefficient as a metric produces a significantly 
higher level of modularity than a round robin or random assignment of nodes to clusters.

Randomly Generated Small World Graphs

For the randomly generated small world graphs, we compare the change in modularity over 
graphs of increasing density of edges relative to nodes with the four different approaches. 
We use the clustering coefficient approach, round robin assignment and a random assign­
ment as well as the delta of the clustering coefficient in determining the assignment of
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Figure 3.1; Wikipedia graph with 91 vertices and 567 edges laid out using a simple force 
directed algorithm.

C*tn

Italy’s Acre

Figure 3.2: Graph from Figure 3.1 using our approach.
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IV^I \E\ Clustering
Coefficient

Round
Robin

Random
Average

91 567 0.1279 0.049 0.561
358 3729 0.0931 0.038 0.0424
506 3962 0.1545 0.0692 0.0645

1000 28534 0.0251 0.0038 0.005

Table 3.1: Modularity values for Wikipedia based graph using different approaches to clus­
tering.

60 Nodes, 4 Clusters

“CC Clustering 

•Round Robin 

-CC Delta 

“Randorr

Figure 3.3: The modularity of graphs containing 60 nodes and increasing in density, using 
the described clustering approaches for building 4 clusters.

nodes to clusters. In each case the use of clustering coefficient as a heuristic showed an 
improvement. Figure 3.3 shows the improvement in using clustering coefficient over the 
round robin and random method for creating 4 cluster for a graph with 60 nodes and edge 
density increasing from 120 to 660 edges. On average use of the maximum average cluster­
ing as opposed to the delta of the average clustering coefficient resulted in a more modular 
clustering but the difference is not as distinct as with the other approaches. Similar results 
can be seen for forming 5 or 6 clusters (see Figures 3.4 and 3.5).

We also analysed the effect of altering clustering coefficient for a graph of a given size 
and density. Global clustering coefficient is altered implicitly by changing the rewiring 
probability when generating the graph. As can be seen from figure 3.6 the impact of chang­
ing the global clustering coefficient is not consistent, but use of the clustering coefficient 
as a heuristic still improves modularity even as the graph becomes less small world like.
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60 Nodes, 5 Clusters

-CC Clustering 

> Round Robin 

“CC Delta 

- Random

Figure 3.4: Modularity for building 5 clusters.

Figure 3.5: Modularity for building 6 clusters.
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Figure 3.6: The modularity of graphs containing 60 nodes and 240 edges increasing in 
clustering coefficient, when clustered using 4 nodes of interest.

Clustering Coefficient Round Robin
Soccer 0.9 0.9

Swimming 0.6038 0.5877
Tennis 0.4208 0.5563
Gym 0.565 0.441304

Running 0.9 0.4088
Cycling 0.925 0.010265

Table 3.2: Level of interest in the sport of the node of interest by cluster.

The fluctuation in modularity is a result of the randomness in generating the graphs and 
the fact that the most well connected nodes are automatically selected as nodes of interest, 
which can change significantly for each random graph. It can can be seen in Figure 3.7 that 
a similar result was achieved for 5 clusters.

“CC clustering 

-CX: Delta 

-Round Robin 

• Randonn

Sports Club Data Set

We generated 6 clusters for the sports club data set and compared the use of the clustering 
coefficient approach to the round robin approach. For each cluster we calculated the sum 
of the levels of interest in each activity for each person in the group and normalised this 
value by dividing it by the number of people in the group. In Table 3.2 we display the scores 
for the specific activity associated with the cluster. It can be seen that for every activity apart 
from tennis, use of clustering coefficient results in a equal or better score for the cluster. The 
lower value for tennis compared to using the round robin approach results from a larger 
number of members being interested in tennis, but not as their primary activity.
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Figure 3.7: The modularity of graphs increasing in clustering coefficient, when clustered 
using 5 nodes of interest.

abelle

11a

an
l^ax

Figure 3.8: Sports club graph with 100 vertices and 803 edges laid out using a simple force 
directed algorithm.
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Figure 3.9: Graph from figure 3.8 using our approach.
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Examining the number of members assigned to clusters that they have no interest in 
reveals a clear result. Using the clustering coefficient approach, this only happened for four 
members. Using the round robin approach, 17 members are assigned to clusters where the 
node of interest represents a sport that they have no interest in.

Influence Data Set

Clustering Coefficient Round Robin C.C. Delta
Correct Incorrect Correct Incorrect Correct Incorrect

Actor 286 37 282 41 286 37
Artist 54 154 104 104 59 149
Mathematician 23 147 60 no 47 123
Musician 44 115 68 91 27 132
Philosopher 520 66 183 403 393 191
Scientist 133 350 151 331 40 443
Total 1060 869 848 1081 854 1075
Total % 54.9508 45.0493 43.9606 56.034 44-27164 55.72836

Table 3.3: Correct assignments of nodes by profession to clusters using each approach.

For our analysis of the influence data set each node, representing a person, has been 
labelled with a primary profession (as also done by van Ham and Wattenberg [vHWoSa]). 
The classification by professions were as follows: Actor (including comedians, 321 nodes), 
artist (209 nodes), mathematician (170 nodes), musician (159 nodes), philosopher (586 
nodes) and scientist (484 nodes). The previously described clustering and layout approach 
has been applied to this data set, with the nodes of interest being manually selected as one 
prominent individual from each set. Respectively these individuals were George Carlin, 
Vincent van Gogh, Carl Gustav Jakob Jacobi, Ludvig Van Beethoven, Friedrich Nietzsche, 
and Albert Einstein.

A completely accurate assignment of nodes to clusters based on profession is not ex­
pected as there are many other characteristics which affect relationships between nodes, 
such as indistinct boundaries between professions (particularly for mathematicians, philoso­
phers and scientists). Also the era in which the person chosen as a node of interest lived 
impacts relationships and influence. The selected nodes of interest were chosen as people 
who were strong examples of each field, the nodes representing them were well connected, 
and their professions were more clearly defined. However, choice of node of interest does 
have a large impact on the data set. For example if a more contemporary musician such as 
Miles Davis is marked as a node of interest, many of the classical musicians end up being 
associated with the Philosophers cluster.

The breakdown of the correctness of resulting clusterings, categorised by profession, 
can be seen in Table 3.3. We performed a comparison using the round robin approach 
and clustering coefficient delta approaches of assigning nodes to clusters. It can be seen
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Figure 3.10: Genealogy of Influence graph with 100 vertices and 803 edges laid out using a 
simple force directed algorithm.
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Figure 3.11: Graph from figure 3.10 using our approach. The purpose of this diagram is to 
convey the scale of the data set and to show the impact of clustering on layout. The actual 
results of our approach are described in table 3.3 and figure 3.12



Section 3.4. Initial Investigation of Clustering Coefficient 72

60 ; 

50 4
i

40 j-
i

30

20 f-
10 4 

0

■ Clustering 
Coefficient

■ Round Robin

■ Delta

Figure 3.12: Chart indicating the number of correctly clustered nodes averaged over 20 
different input sets of nodes of interest. The error bars indicate the standard deviation.

from the above tables that using clustering coefficient as a heuristic resulted in nodes being 
assigned to clusters that they were more conceptually related to in terms of profession. It 
is also clear that assigning nodes to the cluster with the largest resulting average clustering 
coefficient categorized the nodes more effectively than using the average local clustering 
coefficient delta or round robin approach.

To verify this we also ran our algorithm over 20 different sets of nodes of interest built 
using popular nodes for each profession. On average the clustering coefficient approach 
was correct 46.9% of the time, the round robin approach 42.5% of the time and the average 
cluster coefficient delta 23.9% of the time (see figure 3.12). The delta approach fared poorly 
as there were many cases where a disproportionately large number of nodes ended up in 
a small number of clusters. The clustering coefficient approach outperformed the round 
robin approach in 17 out of the 20 cases. In the worst of these 3 cases, the round robin ap­
proach scored 1.71% higher than the clustering coefficient approach. In the best case overall 
the clustering coefficient approach scored 11.15% higher than the round robin approach.

3.4.5 Conclusions of our Initial Investigation

It can be seen from the above examples that using clustering coefficient as a heuristic re­
sulted in nodes being assigned to clusters that they were more conceptually related to. It 
is also clear that assigning nodes to the cluster with the largest resulting average clustering 
coefficient categorized the nodes more effectively than using the average local clustering 
coefficient delta. The previous evaluation has been useful in providing an initial evaluation 
of clustering coefficient as a heuristic in a broad range of apphcations, however a more thor­
ough evaluation is required against a larger set of graphs with well defined characteristics, 
as well as a comparison to other heuristics. We provide such an evaluation in the following 
section.
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3.5 Maximising Clustering Coefficient Approach

The preceding work shows us that there is some benefit in using clustering coefficient as 
a heuristic. However the preceding evaluation does not include comparison with other 
heuristics, and the approach is dependent on the sorting of nodes, to provide an order­
ing of addition of nodes to clusters. We have since taken an alternative approach which 
aims to maximise the clustering coefficients by adding the node to a cluster which results 
in a higher cluster clustering coefficient than the addition of any node to any other clus­
ter. This also removes the dependency of using a breadth first search to determine node 
distances from a node of interest, and the requirement for a secondary sort of nodes by 
neighbourhood size. Maximising clustering coefficient regardless of cluster size prevents 
cluster node distribution becoming unfairly balanced. We also use a stronger metric than 
largest degree to determine the second node of a cluster. We also provide a more thorough 
evaluation against a much larger set of graphs.

3.5.1 Clustering Approach

Our newer approach consists of a clustering algorithm which agglomerates clusters, based 
on maximising the heuristic score of the resulting clustering incrementally. We grow the 
clusters around each of the nodes of interest by iteratively adding individual nodes to clus­
ters so that the heuristic score for the graph will be increased as much as possible each 
iteration. In order to evaluate our approach thoroughly we use alternative cluster agglom­
eration heuristics for comparison. We describe our heuristics in the following section, and 
include any impact made to the initial cluster setup and node assignments for these heuris­
tics in the description of our approach.

3.5.2 Chosen Heuristics

For our experiment heuristics we have chosen:

• Modularity, which we denote MOD.

• Modularisation Quantity, which we denote MQ.

• Average cluster clustering coefficient, which we denote AC3.

• Random assignment to a connected cluster, which we denote RAND.

Modularity (MOD)

We have previously used Newman and Girvan’s modularity as a metric and now we also 
use it as a heuristic. Modularity is described in detail in section 2.2.3.
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Modularisation Quantity (MQ)

Modularisation Quantity (MQ) is a measure developed by Mancoridis et a/[MMR^98]and 
utilised in the “Bunch” tool as a function to be optimised to provide a good clustering. 
Auber et al [ACJM03] and Chiricota et al.[CJMo3] use it as a quality metric to evaluate 
clusterings. It is described in more detail in section 2.2.3.

Average Cluster Clustering Coefficient (AC3)

When we calculate the average clustering coefficient of a cluster (AC3 score), we only con­
sider the nodes and their neighbours from within that cluster. The AC3 score of a cluster 
describes how well inter-connected the nodes of a cluster are. This implies that the higher 
the clustering coefficient of a cluster the more strongly related to each other the nodes 
within the cluster are.

Random Assignment (RAND)

In order to provide a comparison clustering in which no heuristic is used, we have also 
implemented a random assignment of nodes to clusters. A node is chosen at random from 
the combined neighbourhood of the clusters and then randomly assigned to one of the 
clusters that it is connected to. The process is then repeated until all nodes are assigned. 
Nodes can only be assigned to clusters in which they have a neighbour, to allow a reasonable 
comparison with the preceding heuristics.

Heuristics as Evaluation Metrics

Each of these heuristics, apart from random assignment, can also act as a quality measure 
to evaluate clusterings of a graph. Therefore we use them not only to create our clusterings 
but also the evaluate the quality of our resulting clusterings. When utilising clustering co­
efficient as a metric we take the average clustering coefficient of each the clusters generated 
so far. This is unlike MOD and MQ as they provide a score for the clustering of the graph 
across all clusters. Therefore a high average of the AC3 score for each cluster does not im­
ply that all clusters have a high average clustering coefficient. A large standard deviation 
between the AC3 score of the clusters indicates that some clusters have been created with a 
low quality of clustering. Therefore we also measure and report the standard deviation of 
the AC3 score for each cluster.

In the cases where a clustering using a heuristic other than clustering coefficient pro­
duces clusters containing only one or two nodes, it is not possible to calculate the AC3 
score of the cluster as a metric. Therefore, in such a case we assign the cluster a clustering 
coefficient of-1.0. This results in a suitably decreased score that reflects the poor quahty of 
the clustering, when rating the graph using the average AC3 score as a metric.



75 Chapter 3. Agglomerative Clustering around Nodes of Interest

Analysis of the average AC3 score and it’s standard deviation will also indicate if there 
is an unjustifiably extreme clustering. If a clustering has resulted in an extreme distribu­
tion of nodes, such that one cluster contains most of the nodes that cluster will have a very 
low clustering coefficient. If some small clusters are formed with very high clustering co­
efficients, the remaining clusters will have much lower values, which will be reflected in 
the standard deviation. These combination of these two metrics avoids the necessity for a 
metric such as Wu et al’s Non Extreme Distribution [WHH05].

3.5.3 Initial Cluster Set Up

The initial set of nodes of interest that are to form the basis of the clustering is selected 
by the user. If our heuristic is either MOD or MQ, or we are using the random approach 
(RAND), we can begin to add further nodes to the clusters once the initial cluster nodes 
have been specified. This is because it is possible to calculate modularity and MQ heuristic 
value, or randomly choose a node, if a cluster contains only 1 node.

However this is not the case for the AC3 heuristic, as we need to have at least two nodes 
existing already in the cluster before we can calculate a valid heuristic value for a new node 
being added. Therefore, before we start adding candidate nodes to the cluster using AC3 as 
a heuristic, we need to add a second node to the cluster of each of the nodes of interest. The 
nodes that are candidates for addition are nodes within the neighbourhood of the node of 
interest.

We would like to add a node that is similar as possible to each of the nodes of interest, so 
we use the Jaccard index of the node of interest and the candidate second node’s respective 
neighbourhoods.

The Jaccard index p of two sets of nodes A and B, is defined as:

p{A,B) =
|A| n |E| 
|A| u |B|

(3-1)

If the node of interest is denoted by v and the candidate node is denoted by u we can write 

the Jaccard index as

p(r(v).r(«)) = r(v)nr(M)
(3.2)r(v)ur(u)

The node which is used as the secondary node of the cluster based around v is the node 
u for which p(r(v), r(M)) is the largest. Ideally we aim to select a node where the neigh­
bourhood Jaccard index is 1. If the node chosen has already been assigned as a neighbour of 
one of the other nodes of interest, we assign the node to the node of interest which results 
in the best Jaccard neighbourhood index. The node of interest with the lower resulting 
Jaccard index is assigned its neighbour node with the next highest resulting Jaccard index. 
If this replacement node has also been assigned, we repeat the revaluation until all nodes
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Figure 3.13: An example considering whether the green node should be clustered with ei­
ther the red or blue clusters using the clustering coefficient heuristic. The green node is 
added to the blue cluster increasing the clusters AC3 score to 0.48. Adding it to the red 
cluster would reduce AC3 score to 0.33. If the MQ or MOD heuristics were used new scores 
would be calculated for the graph as a whole for the addition of each node the cluster. The 
clustering with the highest final score is made permanent.

of interest have been assigned distinct neighbours. Our previous approach simply used the 
largest degree neighbour of a node of interest. Using the Jaccard index ensures that there 
is an overlap in neighbourhoods, and as a result a stronger similarity between the initial 
nodes of the cluster.

3.5.4 Assignment of Nodes to Clusters

Once the initial clusters are created, we store the neighbourhood of each cluster and use 
this as input set of nodes which can be potentially added to a cluster. Given a clustering 
of p clusters C = {Q, C2,..... Cp} where each element of C contains a disjoint subset of 
the graph G = {V,E) such that C, = {vh,v,2, ...v,„}, n - |C,| and C, c V^, we define the 
neighbourhood of a cluster i as

r(c.) = (rG(v0urG(v2)...urG(v„)) (3-3)

Each of the candidate nodes is added temporarily to a cluster and a score based on 
that addition is calculated. The node which maximises the heuristic score of the graph (or 
of each cluster) is permanently added to the cluster. Once a node is added the process is 
repeated until all nodes have been assigned to clusters. The MOD and MQ heuristics are 
scored across all clusters, so once a node is added, the scores will have to be recalculated 
in the next round of assignments. If the AC3 heuristic is being used, only the score of the 
cluster which has had a node added will have changed. The AC3 scores calculated for the 
other clusters and their candidate nodes will be unchanged from previous rounds. This 
allows caching of the results for later reuse, which decreases computation time.
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3.6 Clustering evaluation

3.6.1 Evaluation Graphs

We use Watts and Strogatz’s beta approach for creating small world graphs, described in 
section 2.4.1, for evaluating the effectiveness of the heuristics. This approach allows us to 
create a large set of graphs of various densities and various levels of structure, from regular 
lattices, to small worlds graphs, to completely random graphs. Each graph in our test set 
consists of 200 vertices. We have generated graphs varying the input probability to the beta 
model from 0.5 to 0.95. We have also varied the Edge density of the graph from a graph 
theoretic value of value of d = 0.03 to d = 0.59 , resulting in the most dense graph having 
11,800 edges. This is equivalent to a range of linear edge densities from d; = 3 to d; = 59. 
We have clustered each graph using our described heuristics. Four nodes with the largest 
neighbourhoods have been selected as the nodes of interest, resulting in four clusters. Due 
to the random nature of the graph generation we have averaged each result across 3 graphs 
generated with the same input parameters. Our full test set of data consists of 285 graphs 
for each of the three generation runs. We chart the results of the clustering, for each metric, 
for a sample of two lower density graphs (d/ = 7 and d/ = 3),in figures 3.15 and 3.16, a sample 
of high density graphs in figures 3.18 and 3.17, a sample of the more structured graphs in 
figure 3.19 and a sample of the more random graphs in figure 3.20. The standard deviation 
of the heuristics across the 3 graphs is displayed as the error bounds. The chart displaying 
metric scores for specific densities display a range of graphs progressing from nearly fully 
structured p - 0.05 to nearly full random p = 0.95. The charts displaying metric scores 
for specific levels of structure, with densities ranging from d; = 0.03 to d; = 51. The charts 
displayed in these figures encompass 191 distinct graphs. The maximum number of edges 
the a 200 vertex undirected graph can have is 19,900 which is approximately 100 times the 
number of vertices. This means that for our graph set the linear density is approximately 
100 times the graph theoretic edge density.

Evaluation Graph Clustering Coefficient

Each of the graphs in our evaluation has 200 nodes. The constant node count impacts the 
small world characteristics of the graphs as they become more dense. It can be seen from 
figure 3.14 that, for lower density graphs d/ = 3 (d = 0.03) and d/ = 7 (d = 0.07), there 
is a very large difference between the clustering coefficients of the more structured graphs 
p = 0.1 and the nearly random graphs p = 0.95. However as the graphs become more dense 
the difference diminishes. This is not an effect of the linear density. Instead it is caused be 
the graph theoretic density. At d = 0.5, 50% of all possible connections in the graph will be 
made. This means that many of a nodes neighbours will be connected to each other, even 
if the graph is fully random (hence the clustering coefficent value of approximately 0.5, for
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Figure 3.14: The average clustering coefficient of structured test graphs {p - 0.1) and almost 
fully unstructured test graphs (p = 0.95) across a range of densities. The error bars indicate 
one standard deviation.

graphs with an edge density of 0.5). We include the full range of graphs for our analysis to 
ensure a thorough evaluation, but it is worth bearing in mind that it is at the lower densities 
that the small world characteristics are strongest.

3.6.2 Results and Analysis

The effectiveness of each heuristic differs depending on the density of the graph, how ran­
dom the graph is as a result of the input probability p of the generation algorithm, and 
the metric used for evaluation. In the more dense graphs, it can be seen that the random 
approach of assignment of nodes to clusters generally scores close to zero when evaluated 
using MQ or modularity. This is to be expected as both of these metrics lie in the range 
[-1,1], with zero being equivalent to a clustering with no level of structure. In the less 
dense graphs, sometimes the random approach does score slightiy above zero for a low 
input probability p, when the graphs are less random. This is because of the fact that our 
random approach does rely on nodes to be connected to the clusters they are added to, 
reducing the number of options for less well connected nodes. For higher density graphs 
this is not evident as a node will have a larger set of clusters it can be assigned to.

It is clear from each of these figures that a graph scores well when it is rated with a metric 
that is also used as the heuristic to build the clusters. It also seems surprising that using 
MQ as a heuristic often results in a high average per cluster clustering coefficient, however 
looking at the standard deviation of the per cluster clustering coefficients shows that the
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individual clusters vary wildly in quality. This is a result of a very imbalanced clustering, 
which will not be of benefit to a user if the majority of nodes are placed in a cluster with a 
low average clustering coefficient. This means that the nodes within the cluster will be less 
strongly related to each other.

Lowest Density Graphs (d; = 3)

Figure 3.15 shows the resulting modularity, MQ and clustering coefficient values when the 
algorithm is rvm on graphs of increasing randomness with a relatively low density, d/ = 3. 
Due to the relatively low density, there are fewer nodes to be chosen from when adding 
new nodes to the clusters, so nodes being added to a cluster are more likely to closely relate 
to several of the other nodes within the cluster. This is reflected by the higher scores for 
the random layout approach for each heuristic for a low levels of rewiring probability.

d = 0.03

(a) Resulting graph modularity for each

(c) Resulting average cluster clustering co­
efficient for each heuristic.

(b) Resulting graph MQ score for each 
heuristic.

(d) The standard deviation of the average 
cluster clustering coefficient of each of the 
four clusters for each heuristic.

Figure 3.15: Evaluation of graphs with 200 Nodes and a density of 0.03 (d/ = 3), and an 
increasing level of randomness, denoted by p value.

Rating the graph based on modularity (figure 315a) results in the best results for the 
MOD heuristic with the AC3 approach not far behind for the more structured graphs 
(p = 0.1), but the gap widening as structure randomness increases. The reason for the 
large drop off in clustering coefficient performance is to do with the basis for clustering
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coefficient as a calculation. If a node has less than two neighbours we assign a clustering 
coefficient of 0. In a graph with 200 vertices and 600 edges many nodes will have less 
than two neighbours. Those nodes that have 2 or more neighbours are also quite unlikely 
to have any neighbourhood overlap. The ability to calculate useful clustering coefficients 
depends not only on edge count, but also the edge distribution. When the graph is more 
structured we are more likely to see an overlap in neighbourhood, hence the closeness in 
performance between for the more structure graphs. MQ scores very poorly, while the 
random approach does surprisingly well. This is due to the constraint on nodes only being 
randomly assigned to clusters that they are connected. The low number of connections 
means that node may have only one viable cluster to be added to, each iteration.

Rating the graph based on MQ (figure 3.15b) results in a consistently high score regard­
less of the level of randomness when using MQ as a heuristic. This is true for all densities 
of graph evaluated. Using AC3 as a heuristic results in a low score of 0.2 for the more struc­
tured graphs, which increases while fluctuating as the graph becomes more random. The 
MOD heuristic performs worse starting at approximately 0.1 and diminishing to less than 
0.05.

Rating the graph using AC3 (figure 3.15c), we can see that AC3 and MOD perform best 
and they also perform similarly for the full range of graph structure. The MQ heuristic 
produces lower quality result with a larger variation for each of the 3 input graphs, where 
the other approaches are more consistent in their results. Examining the AC3 of each of the 
clusters created by the MQ heuristic (figure 3.i5d), shows that the quality of the clustering 
is quite poor until the graphs become more random. A large standard deviation of the 
average of the AC3 scores of the 4 clusters indicates that while some clusters have a high 
clustering coefficient others will have a very poor one. This means the MQ does not in 
fact provide a good consistent average cluster clustering coefficient, therefore clusters will 
be created where adjacent nodes do not have many mutual neighbours, and will be less 
conceptually alike.

Conclusions: For graphs of the lowest density (d/ = 3) MOD is the preferred heuristics 
across all levels of structure. However AC3performs very closely in terms of modularity. 
As the graphs become more random modularity becomes the sole preferred heuristic, in 
terms of reducing the number of edge crossings.

Low Density Graphs (d/ = 7)

Figure 3.16 shows the resulting MOD, MQ and AC3 values when the algorithm is run on 
graphs of increasing randomness with a relatively low density, d = 0.07, d; = 7. Due to the 
relatively low density, there are fewer nodes to be chosen from when adding new nodes to 
the clusters, so nodes being added to a cluster are more likely to closely relate to several 
of the other nodes within the cluster. This is reflected by the higher scores for the random
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layout approach for each heuristic for a low levels of rewiring probability.

d = 0.07

(a) Resulting graph modularity for each 
heuristic.

d = 0.07
e
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<« 0 no
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(c) Resulting average cluster clustering co­
efficient for each heuristic.

d = 0.07

(b) Resulting graph MQ score for each

(d) The standard deviation of the average 
cluster clustering coefficient of each of the 
four clusters for each heuristic.

Figure 3.16; Evaluation of graphs with 200 Nodes and a density of 0.07 (d/ = 7), and an 
increasing level of randomness, denoted by p value.

Rating the graph based on MOD (figure 3.16a) results in the best results for the MOD 
heuristic and, once again, the AC3 approach is not far behind. The MQ approach noticeably 
scores similarly to the random approach. Rating the graph based on MQ (figure 3.16b) 
results in a consistently high score regardless of the level of randomness when using MQ 
as a heuristic. Using the average cluster clustering coefficient as a heuristic results in a low 
score of 0.2 for the more structured graphs, but this diminishes toward 0.0 as the graph 
becomes more random, making it no more effective than the random approach. The MOD 
heuristic scores similarly to the AC3 heuristic , for structured graphs and also diminishes, 

but to a lesser degree than the AC3 approach.
Rating the graph using AC3 (figure 3.16c), we can see that AC3 and MOD heuristics 

perform similarly for structured graphs and diverge as the graphs become more random. 
We can also see from the error bounds that the MQ heuristic produces varying results for 
each of the 3 input graphs, where the other approaches are consistent in their results. Even 
with the large error bounds, once the graph becomes sufficiently random, MQ appears to 
provide the highest average AC3 score of the resulting clusters. However, if we look at the 
standard deviation of the AC3 score of each of the clusters created by the MQ heuristic
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(figure 3.i6d), as for the the d/ = 3 set of graphs, we can see that the quality of the clustering 
is very poor and the resulting clusters will not be conceptually alike.

Conclusions: For the test graphs of density di = 7 AC3 and MOD are the preferred 
heuristics when the graph contains structure. As the graphs become more random MOD 
becomes the sole preferred heuristic.

(a) Resulting graph modularity for each 
heuristic.

(b) Resulting graph MQ score for each

(d) The standard deviation of the average 
cluster clustering coefficient of each of the 
four clusters for each heiu-istic.

Figure 3.17: Evaluation of graphs with 200 Nodes and a density of 0.07 (d/ = 7), and an 
increasing level of randomness, denoted by p value.

High Density Graphs (d/ = 23)

Changing the density of the graph has an impact on the performance of each of the heuris­
tics. Figure 3.17 show results for graphs with a high density, d = 0.23, d/ = 23. Rating the 
graphs by the modularity metric, we see that they overall scores are lower than the pre­
vious less dense graphs. We can also see that while AC3 performs much better than the 
random or MQ based heuristics, MOD scores nearly double for most levels of structure. 
When we examine the MQ ratings, we can see MOD and AC3 perform better than before 
as heuristics. This is due to the increased edge density, as more clusters now have a higher 
level of intra-cluster edges, compared to the maximum possible. MOD also out performs 
AC3 in a manner similar to how it did when using modularity as a metric. Modularity MQ
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score scores very highly as expected.

When we rate the graphs based on AC3 score we can see that, as has occurred in the 

other density of graphs, MQ offers an imbalanced clusterings. The AC3 and MOD heuris­

tics perform best and track closely together for all levels of structure.

Conclusions: MOD is the clear preferred heuristic. AC3 performs the second best. It 

results in more inter-cluster edges, indicated by it’s modularity score. However it does also 

form cohesive clusters, as indicated by the average cluster clustering coefficient.

Very High Density Graphs (d/ = 51)

Figure 3.18 show results for graphs with a high density, d = 0.51, d/ = 51. Rating the graphs 

based on modularity (figure 3.18a), we see that overall the scores are lower when compared 

to the less dense graphs. The difference between AC3 and MOD for the structured graphs 

is more pronounced than before.

(a) Resulting graph modularity for each 
heuristic.

d = 0.51

(c) Resulting average cluster clustering co­
efficient for each heuristic.

(b) Resulting graph MQ score for each 
heuristic.

(d) The standard deviation of the average 
cluster clustering coefficient of each of the 
four clusters for each heuristic.

Figure 3.18: Evaluation of a graphs with 200 Nodes and a density of 0.51 (d/ = 51), and an 
increasing level of randomness, denoted by p value.

Rating the graphs based on MQ score (figure 5.3d), we again see the MQ heuristic per­

forms well. A noticeable difference is the improved performance of the AC3 heuristic for 

the more structured graphs. The MOD heuristic performs better relative to AC3 as graphs 

become more random, but the scores are less consistent, with larger standard deviations.
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Rating the graphs based on average AC3 scoreresults in the clustering coefficient heuristic 
performing the best for the more structure graphs. As the graphs become more random, 
the MQ heuristic performance does appear to perform slightly better, but the larger stan­
dard deviation in results across the input graphs reveals it does not do so. Also, as for the 
less dense graphs, the standard deviation of the average AC3 score (figure 3.i8d) of each 
cluster is much higher than the AC3 approach. It is noticeable that for most of the graphs 
the MOD heuristic performs even worse than using the random approach and that the 
clusters generated vary largely in average clustering coefficient.

Conclusions: AC3 is the most consistently high performing heuristic across all metrics. 
MOD results in a large deviation in the AC3 scoret of individual clusters within a graph as 
long as there is some structure in it.

Low Randomness Graphs

p=0.1
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(a) Resulting graph modularity for each 
heuristic.

___ J
(b) Resulting graph MQ score for each 
heuristic.

(c) Resulting average cluster clustering co­
efficient for each heuristic.

(d) The standard deviation of the average 
cluster clustering coefficient of each of the 
four clusters for each heuristic.

Figure 3.19: Evaluation of a graph with 200 Nodes and a constant input rewiring probability 
p = 0.1, and an increasing density.

These are the graphs which exhibit small world properties. Rating the graphs based 
on modularity (figure 3.19a), we see the MOD heuristic score best as expected, however 
the score decreases as the graphs become more dense. AC3 scores best out of the other 
heuristics and also decreases similarly to the modularity approach as the graphs become
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more dense. For the lower density graphs, MOD and AC3 are quite close. When the density 
becomes greater than 0.15, the difference becomes larger, which is also show in figure 3.17a

Using MQ as a heuristic, MOD behaves erratically, with large error bars and scores 
worse than random for the less dense graphs, and similar to random for the more dense 
graphs, with a large standard deviation.

Rating the graphs based on MQ (figure 3.19b), we see the expected high score for MQ. 
Interestingly we see low scores for MOD for both the less dense and most dense graphs, 
however for graphs in the mid range of densities it does improve considerably, just about 
outperforming the clustering coefficient approach.

Looking at the average AC3 score (figure 3.19c), we see clustering coefficient performs 
the best at all densities, with close competition from modularity at lower graph densities. 
The average AC3 rating for the MQ heuristic still exhibits a large standard deviation be­
tween individual clusters (3.19b) for all densities. For more dense graphs, the use of MOD 
as a heuristic performs quite poorly.

Conclusions: The AC3 heuristic performs relatively well across all levels of density for 
all metrics. The closest rival is MOD, which is similarly effective, in terms of average AC3 
score until a density of approximately 0.38 (d/ = 38) is reached. Modularity does provide 
the fewest inter-cluster edges for the full range of densities, but the is quite small for the 
lowest and highest density graphs.

High Randomness Graphs

These are the graphs which exhibit a high level of randomness, and thus exhibit no small 
world properties. These graphs can give us insight into what approaches are affected most 
by the absence of a high clustering coefficient. All heuristics other than modularity per­
form poorly when rated using graph modularity (figure 3.20a). Rating the graph using MQ 
(figure 3.20b), we see, as expected, MQ performs very well, with MOD performing poorly 
but better than random or the AC3.

When we rate the graphs using average AC3 score (figure 3.20c) we see that there are 
some small improvements over RAND using MOD and AC3 as heuristics, and that as graph 
density increases the scores for these approaches increases in a manner similar to the ran­
dom approach. This is to be expected given the random nature of the graph. From this 
figure and figure 5.3d, we can see that when using MQ as a heuristic and rating the final 
clustered graph using MQ, the results are not reliable as they appear to be independent of 
graph randomness and only slightly affected by graph density.

Conclusions: Overall the best heuristic for graphs which are more random and less 
structured appears to be MOD, until the graphs become very dense d - 0.51, (d/ = 51), 
when AC3 becomes marginally better. This is due to the fact that when the graphs become 
extremely dense, the global clustering coefficient of the graph increases.
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(a) Resulting graph modularity for each 
heuristic.

(c) Resulting average cluster clustering co­
efficient for each heuristic.
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(b) Resulting graph MQ score for each 
heuristic.

p=0.95
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(d) The standard deviation of the average 
cluster clustering coefficient of each of the 
four clusters for each heuristic.

Figure 3.20: Evaluation of a graph with 200 Nodes and a constant input rewiring probability 
P = 0.95 , and an increasing density.

3.6.3 Comparison with Edge Betweenness Centrality Clustering

To provide a comparison with a state of the art clustering approach we performed a sim­
ilar analysis on our test data set having applied Edge Betweenness Centrality clustering 
[NG04], using the d/ = 7 and di = 51 densities of graphs. This is a top town clustering 
approach which tries to find naturally occurring clusters within the data. Unlike our ap­
proach, the number of clusters is not usually specified and there is no equivalent of a user 
specifying nodes of interest. However it is an effective algorithm which can distinguish 
the clusters which naturally occur within a small world graph. Tlie algorithm generates a 
hierarchy of partitions. The partitioning with the best modularity score is chosen from this 
hierarchy as the final clustering. This can result in a high number of clusters depending on 
the density and structure of the graph, as can be seen in figure 3.23. In many cases a very 
large number of clusters are created. Therefore, for our comparison we are constraining the 
number of clusters formed by the Newman and Girvan approach to 4, the same number 
used for our agglomerative clustering analysis. Evaluation uses the same approach as that 
used for evaluating our clustering heuristics and the results can be seen in figures 3.21 and 
3-22.
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(d) The standard deviation of the average 
cluster clustering coefficient of each of the 
clusters.

Figure 3.21: Evaluation of test graphs when clustered using Newman and Girvans Edge 
Betweenness Centrality clustering (EBC) and our clustering coefficient heuristic (AC3) for 
comparison. The graphs display the metrics for well structured (p = 0.1) and unstructured 
graphs (p = 0.95) of increasing density, where the number of clusters is constrained to 4.

Lower Density Graphs (d/ = 7)

Compared to the AC3 heuristic agglomerative approach, the cluster count limited version 
of Edge Betweenness Centrality clustering predictably scores higher on modularity (figure 
3.22a). This is as the clustering is not constrained by the user specifying nodes of interest to 
form the basis of clusters and the algorithm is very effective at finding the small amount of 
clusters in the more structured graphs (see figure 3.23). Predictably as the graph becomes 
more random this difference diminishes until the AC3 approach produces cluster with a 
higher level of modularity, as there are fewer naturally occurring communities for more 
random graphs.

For the MQ score, (see figures 3.22b , 3.21b) Edge Betweenness Centrality clustering is 
superior, however the difference is not as large, and once the graphs become less structured 
the performance of the approach drops off significantly. In terms of average AC3 score. 
Edge Betweenness Centrality clustering performs similarly for the more structured graphs 
but drops off significantly as the graphs become more random.

Very dense graphs (d/ = 51)

From figure 3.21 it can be seen that graphs with stronger small world graph characteristics 
modularity is slightiy better for Edge Betweenness Centrality clustering, but the AC3 ap-
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(d) The standard deviation of the average 
cluster clustering coefficient of each of the 
clusters.

Figure 3.22: Evaluation of test graphs when clustered using Newman and Girvans Edge 
Betweenness Centrality clustering (EBC) and our clustering coefficient heuristic (AC3) for 
comparison. The graphs display the metrics for low density (d = 0.07) and the highest 
density graphs (d = 0.51) with an decreasing level of structure (p increasing), where the 
number of clusters is constrained to 4.

(a) Graphs with a constant density. (b) Graphs with a constant rewiring proba­
bility

Figure 3.23: Number of clusters generated using Edge betweenness Centrality Clustering.
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proach performs better once the graphs become slightly more random (at approximately 
p = 0.2, so the underlying structure is still quite strong). However for the MQ score we 
find that, for the more dense graphs, the AC3 heuristic consistently outperforms the Edge 
Betweenness Centrality clustering approach. Our AC3 approach also provides equiva­
lent and better average clustering coefficient for clusters and far higher clustering coef­
ficient values for the more random graphs (due to all of the singleton clusters). Our ap­
proach also maintains more consistently high average AC3 scores for the most dense graphs 
{d > 0.352, di > 35) than Newman and Girvan’s approach. The low standard deviation be­
tween the AC3 scores also indicates that the resulting average cluster clustering coefficient 
is balanced across multiple clusters.

3.6.4 Evaluation Conclusions

Based on the preceding analysis the most consistently effective heuristics for agglomerative 
clustering around nodes of interest are AC3 and MOD. Where a graph has small world 
characteristics, AC3 performs very well and produces clusters with a high average cluster 
clustering coefficient that is balanced across all clusters. The MQ scores for all heuristics 
other than MQ are generally quite low, but the AC3 heuristic does perform well for dense 
graphs and with a high level of structure. The AC3 was also was more stable when run over 
different graphs generated with the same input parameters, as evidenced by the smaller 
error bars on the preceding charts.

Modularity (MOD) also works as an effective heuristic for agglomerative clustering, 
and is more effective than AC3 approach when the graphs become more random. Its effec­
tiveness is mainly in terms of reducing inter-cluster edges (i.e. having a high score when 
rated by modularity), but it also still produces clusters with a high average AC3 score.

It is worth emphasising that the purpose of using the AC3 heuristic is not only to reduce 
inter-cluster edges, it is also provide clusters where a nodes neighbours in a cluster have 
similar relationships to the node. This will not always ahgn with edge crossing reduction 
as a node will be clustered with its neighbours that have a similar neighbourhood, rather 
than with its neighbours that have completely disjoint neighbourhoods.

MQ performed the least successfully of the heuristics when used for agglomerative 
clustering, particularly in terms of producing a high average AC3 score across clusters, 
with a balanced distribution across all clusters.

We also compared our agglomerative approach using AC3 as a heuristic to Newman 
and Girvan’s Edge Betweenness Centrality algorithm, constrained to produce four clus­
ters. The comparison is not a direct one as the agglomerative algorithm focuses on building 
clusters around nodes of interest and the betweenness centrality algorithm defines clusters 
without any such constraints. As expected the Edge Betweenness Centrality clustering al­
gorithm performs very well on structured graphs with low density. However as the graphs
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become more dense the agglomerative algorithm, using AC3 as a heuristic, performs close 
to the level of the centrality algorithm and by some metrics (MQ and AC3 score) it out­
performs the algorithm for graph with a density of d = 0.255, di = 25.373. Given that the 
agglomerative approach is designed to focus around nodes of interest to aid in visualisa­
tion rather than discover communities, we feel our algorithm compares favourably with 
the Edge Betweenness Centrality algorithm.

3.7 History of Infoviz Data-Set Example

In order to further show the practicality of our approach to agglomeratively build clusters 
around nodes of interest, we present an example using a known data set. The “history of 
infoviz” data-set [YuFo8]is a benchmark data set that was originally presented as part of 
the IEEE 2004 Infoviz Data Contest. The nodes of the graph produced from the data set 
represent papers published in the field of visualisation. The edges of the graph represent 
citations between papers in the data set. The graph contains 605 nodes and 1953 edges.

Author information has been provided for each article. 419 of the 605 papers contain 
keywords, which are the original keywords submitted by the authors of the paper. Sanitised 
forms of the keywords,in terms of spelling and similar terminology, have been provided as 
part of the data set. These keyword can be considered an identified set of features, which 
can be used to categorise the nodes. The data set can be seen in figure 3.24. It consists of 
articles from the field of information visualization (often referred to as infoviz) from 1995 
to 2002, as well as the citations between them, which are represented as edges. An example 
of a case study using this graph is given by van Ham [VH04], and the data set has also been 
used as an evaluation dataset for later research such as CiteWiz[ETo7], an application for 
visualising scientific citation networks. As van Ham notes, not all of the provided keywords 
are useful. For example the keyword “information visualisation” is specified for 100 of the 
records, but does not help distinguish the contents of the such papers from the others in 
the data set. The graph can be considered a small world graph as it has an average path 
length of 3.974 and an average local clustering coefficient value of 0.158. An equivalent 
random graph was generated for comparison and had an average path length of 3.657 and 
an average local clustering coefficient value of 0.0115, a full order of magnitude smaller. 
While the linear density of the graph is relatively low compared to some of our experiment 
graphs (di = 3.23) the distribution of edges is different and it can be seen in figure 3.24 that 
the the density of the graph impacts layout, resulting in a very dense core of nodes.
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name " Virtual emrlromnenta £or geographic visualization: potential and challenges 
Subtitle •• i-lan H. HacEachren, Liu^lan Qian, Raytnon Hasters, Robert Edsall, Ryan Baxter, Sven ruhnnann, 
JLdditonal Text ■ collaboration, interactivity, maps, scientific visualization, virtual reality

Figure 3.24: The infoviz data set laid out using Hachul and Jiinger s FM3 multi-level lay­
out algorithm with a input inter-node distance of 15 (equivalent to a k value of 15). Each 
node in the image has a radius of 1. The implementation used is the Open Graph Drawing 
Framework [TD0G13] version of the FM3 algorithm. There are 605 nodes and 1953 edges. 
The text overlay displays the information for the highlighted green node.
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Figure 3.25: The infoviz data set split into 4 clusters using edge betweenness centrality clus­
tering. Each cluster is laid out using our Fruchterman Reingold implementation (utilising 
a k-value of 5 and a grid size of 2k). The colours are used to distinguish the clusters and do 
not imply a relationship with the nodes of interest used for agglomerative clustering.
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Title Keywords Cluster colour
Hierarchical flip zoom­
ing enabling parallel ex­
ploration of hierarchi­
cal visualizations

flip zooming; focus+context visualization; 
hierarchies; information visualization 0

Techniques for non-
Unear magnification 
transformations

data visualisation; domain constraint; 
efficiency; expressiveness; magnifications 
combination; multiple transformations 
combination; nonlinear magnification 
transformations; normal views; piecewise 
linear methods; smooth interpolation

•
Pad++: a zoomable
graphical interface
system

authoring; hypertext; information navi­
gation; information visualization; inter­
active interfaces; multimedia; multiscale 
interfaces; navigation; world wide web; 
zooming

•
IVEE: an environment 
for automatic creation 
of dynamic queries ap­
plications

database query; dynamic queries; infor­
mation exploration; information visual­
ization; tight coupling •

Table 3.4: The nodes of interest for the history of infoviz example.

3.7.1 Clustering Approach

Using the edge betweenness centrality clustering algorithm on this data set produces 91 
clusters. If we limit the number of clusters to a more practical values such as 4, the re­
sulting graph contains 3 small clusters and one very large dense one on as seen in figure 
3.25. Neither result allows the viewer to gain any further insight into the graph. There is no 
selection of nodes as an input to this top down clustering.

Figure 3.26 shows the result of using our AC3 approach to creating four clusters. We 
have selected four papers as nodes of interest, detailed in table 3.4. Each of the papers has a 
list of keywords and has several well connected neighbours. For the figures displaying the 
resxilting graphs we have utilised our own Fruchterman Reingold implementation for the 
cluster layout and have faded the intensity of the inter-cluster edges in order to make the 
internal structure of the clusters more apparent.

3.7.2 Clustering Evaluation

For clustering around the four nodes of interest we utilise our modularity and AC3 ap­
proaches, as well as the random breadth first search approach in order to provide a heuris­
tic free comparison. We omit using MQ score as a heuristic and metric due to its poor 
performance as a heuristic in the previous experiment.



Section 3.7. History of Infoviz Data-Set Example 94

Figure 3.26: The infoviz data set split into 4 clusters using the AC3 approach. Each cluster 
is coloured based on the cluster colour associated with each node of interest, seen in table 
3-4-
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Chosen Heuristic AC3 Score CC std. Dev Mod score
AC3 0.24657 0.0167651 0.251933
MOD 0.176172 0.0174256 0.372124
BFS 0.129411 0.0342558 0.173883

Table 3.5: The results for evaluating the infoviz graphs using the approach from section 3.6. 
The values for the randomised breadth first search are averaged over 3 runs of the clustering 
algorithm.

Heuristic Results

We performed an evaluation on the resulting clusterings using the approach described in 
section 3.6. The resulting scores can be seen in table 3.5. As with the previous experiments 
both the AC3 and Mod heuristics performed best when used as their own evaluation met­
rics. The AC3 score and modularity scores for the randomised breadth first search seem 
quite high for a random approach, particularly given the relatively low linear density of 
the graph. However it is worth noting that 135 of the 605 papers only have a single neigh­
bour. This results in fewer inter-cluster edges (improving modularity) and a higher level 
of interconnectivity of node neighbourhoods (improving the average cluster clustering co­
efficient). Both the AC3 and MOD heuristics show effectiveness when compared to the 
random BPS approach. The AC3 approach provides clusters which are more strongly inter­
connected, with a larger overlap of node neighbourhoods indicated by the high clustering 
coefficient. The MOD approach (which can be seen in figure 3.28) results in lower ratio 
of intra-cluster to inter-cluster edges. The two approaches do provide quite different re­
sults in terms of how the nodes are clustered. For example the bottom right cluster around 
the node “IVEE: an environment for automatic creation of dynamic queries applications” 
contains far more nodes using the MOD approach. It is difficult to determine which is 
preferable for a user without the user of some higher level information, so we also examine 
the distribution of nodes containing a keywords related to each the nodes of interest.

Keyword Results

In order to demonstrate the difference in impact of our agglomerative approaches, we have 
chosen a distinctive keyword from each node of interest. These terms were “focus+context”, 
“hypertext”, “transform” and “query”, (see table 3.6). In order to obtain nodes containing 
both “query” and “queries” as a keyword the search term “quer” was user when selecting 
nodes by keyword.

In figures 3.27,3.28 and 3.29 we have coloured each node related to the specified key­
words. All other nodes are coloured grey and each cluster is in the same relative position 
for each graph rendering. For example, the top left cluster always uses the paper “Pad+-t-: 
a zoomable graphical interface system” as its node of interest. Table 3.7 shows how many
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Keyword Node Count Cluster colour
focus+context 15 Q

transform 7
hypertext 14 s

query 30
query, focus+context 30 #

query, hypertext 30 #

Table 3.6: The cluster colours associated with each keyword. The colours match the colours 
of the original nodes of interest that are associated with each keyword, except for the two 
cases where 2 keyword are applicable to a node.

AC3 MOD BFS
Matching
Cluster

Other
Cluster

Matching
Cluster

Other
Cluster

Matching
Cluster

Other
Cluster

9 5 3 11 9 5
# 17 13 10 20 8 22o 9 6 9 6 9 6
# 3 4 2 5 2 5

1 0 0 1 0 1
1 0 0 1 1 0

Total 40 28 24 44 29 39

Table 3.7: Assignment of keyword nodes to clusters matching the original node of inter­
est. The nodes with 2 matching keyword are considered matching if either of its selected 
keywords are shared with the node of interest in the assigned cluster.

nodes with with the specified keywords were matched to the cluster based around the cor­
responding node of interest. It can be seen that more nodes end up in the same cluster as 
their original node of interest for the AC3 approach than for the modularity approach. For 
example using the modularity approach most of the nodes with the keyword “hypertext” 
(red nodes) end up in the cluster belonging to the node of interest associated with the key­
word “transform” (blue node). When using the AC3 approach most of the nodes associate 
with the term with “query” (Green) are assigned to the correct cluster. Using modularity 
as a heuristic these nodes are distributed across all cluster of the graph. Overall the AC3 
approach assigns 40 of the selected keyword nodes to a cluster with a matching node of 
interest, while the MOD approach only assigns 24. An iteration of the BFS approach even 
out performs the MOD approach in this case. The most probable reason for this is that 
MOD aims aims to reduce the number of inter-cluster crossing, taking into consideration 
the amount of connections between cluster. This may result in adjacent highly connected 
nodes being placed in a cluster together to reduce the number of inter-cluster edges. The 
AC3 approach does not take take inter cluster edge count into consideration, only how well 
a nodes neighbours are interconnected, when a node is being added to a cluster. The BFS 
approach chooses neighbouring nodes at random, independent of their characteristics so
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Figure 3.27: The infoviz data set split into 4 clusters using the AC3 approach. Nodes are 
highlighted by keyword. Their colour corresponds to the colour of the node of interest 
associated to the keyword. The turquoise and magenta nodes represent papers which share 
2 keywords. Each cluster has the same relative postion as in figure3.26.

there is no bias towards well connected nodes being assigned together.

Infoviz Data Set Conclusions

In terms of evaluating the heuristics using AC3 and MOD as metrics there is no clear supe­
rior heuristic for the infoviz graph. However in examining the distribution of nodes with 
a shared distinctive keyword it is evident that the AC3 approach resulted in more concep­
tually alike clusters. This evaluation provided an illustrative example of the use of the two 
heuristics to guide agglomerative clustering. The resulting clusters do depend on the initial 
choice of nodes and the distribution of keyword related nodes does depend on choice of 
a distinctive keyword. Use of a more vaguely applicable keyword term such as “informa­
tion visualisation” would convey very little information to the user about cluster structure. 
Selection of a node with only one neighbour would most likely not result in clusters that 
are conceptually alike to the node of interest. However, it is evident that given a sensible 
choice of input node and a sensible node classifier, our agglomerative clustering approach, 
using clustering coefficient as a heuristic, provides the user with a different perspective on 
the graph structure which may be an aid to gaining insight.
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Figure 3.28: The infoviz data set split into 4 clusters using the modularity approach (MOD). 
Nodes are highlighted by keyword. Each cluster has the same relative position as in fig- 
ure3.26.

^4 i

Figure 3.29: The infoviz data set split into 4 clusters using the randomised breadth first 
approach. Nodes are highlighted by keyword. Each cluster has the same relative position 
as in figure3.26. This rendering is of the first of the 3 runs using this clustering approach.
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3.8 Conclusions and Future Work

In this chapter we introduced our approach to agglomerative clustering of small world 
graphs around nodes of interest. An important difference between our clustering approach 
and many existing approaches is that we use a set of input nodes specified by the user as 
the basis for building the clustering. Each node of interest specified by the user forms a 
basis or a cluster, which is grown agglomeratively.

We initially suggested that average clustering coefficient of clusters could be an effec­
tive heuristic for our agglomerative clustering, testing its use on a mix of procedurally 
generated and real world graphs. We then evaluated using average clustering coefficient of 
a cluster (AC3) as a heuristic, for agglomerative clustering around nodes of interest. We 
have compared it to using other heuristics to guide to agglomerative process, as well as 
comparing it to an established top down clustering algorithm. We have established that 
the average clustering coefficient of a cluster provides an effective heuristic to guide ag­
glomerative clustering around nodes of interest.

We also provided a practical example using a benchmark dataset. Ihe history of in- 
foviz dataset describes over 600 papers and the citations between them over several years 
in the field of information visuahzation, and exhibits small world graph properties. We 
demonstrated the effectiveness of the AC3 approach to agglomerative clustering, using the 
author s keyword classifications as validation.

One possible avenue for future work is the automation of the selection of nodes of in­
terest to create a more general approach, for when the user does not have nodes of interest 
in mind prior to graph analysis. For practical reasons, in our experiments we automated 
the selection of nodes of interest by selecting nodes based on node degree. This approach 
was purely practical, ensuring that the similar nodes were selected for each run of the al­
gorithm for different graphs. There are other centralities such as vertex betweenness or 
node clustering coefficient which could be used to specify an initial node set for the ag­
glomerative clustering. These centrahties could possibly be used in conjunction with an 
independent set filtration, as used by the GRIP layout algorithm[GKoi], to ensure a distri­
bution of nodes across the diameter of the graph. Any approach used to generate an initial 
node set would need to be thoroughly evaluated experimentally against a wide range of in­
put graphs and varying agglomerative clustering input node sets, to be sure that resulting 
clusterings are of high quality and stable across a range of input graphs. The performance of 
our agglomerative clustering with different sizes of automated initial nodes sets, on graphs 
with different characteristics such as size density and edge distribution could also prove 
significant in terms of automating the input node set.

In terms of further future evaluation, a higher level user qualitative evaluation, based 
around real data and a high level task and a user survey, such as that of Risden et al 
[RCMCoo], would help gauge how useful subject matter expert users find different met-
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rics to guide the agglomeration process. It would also help definitively determine how 
users would use the ability to rearrange graphs around nodes of interest, to aid in a task.



Chapter 4 

Graph Layout

T
he aesthetics of graph layout play a large role in the user understanding of a 

graph visualisation [Pur97]. In the preceding chapter we presented and analysed 
our approach for agglomerative clustering of small world graphs around nodes of interest. 
Our primary contribution of this chapter is the utilisation of our clustering approach, de­
scribed in chapter 3, as the basis for a graph layout which allows for the use of edge routing 
techniques and structures the layout reflecting the relationship between the clusters. Our 
layout approaches are developed from our clustering approach by extending it from a flat 
hierarchy into a hierarchical clustering, making the associated graph a compound graph. 
The different layers of our clustering hierarchy are utilised as an aid to graph layout. The 
hierarchy is also used to route edges using Hierarchical Edge Bundling [H0I06]. We also 
address how to optimise the circular layout of clusters within a clustering hierarchy. This 
approaches described in this chapter are useful for generating graph layouts which reflect 
top level inter-cluster relationships. However laying out complex graphs is a difficult prob­
lem, so we acknowledge that rather than providing a complete solution our approaches 
provide an initial step which may be enhanced by future work.

Chapter structure: The chapter is structured as follows:

• In sections 4.1 and 4.2 we describe our motivation and the related work for this chap­

ter.

• Section 4.3 describes our approach to improving the positioning of nodes in circular 

clusters.

• Section 4.4.1 describes how we extend our flat agglomerative clustering into a clus­
tering hierarchy.

• Section 4.4.2 describes how we layout the cluster hierarchy using a hierarchical lay­

out.
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Section 4.4.3 describes how we layout the cluster hierarchy using a multilevel layout. 

In section 4.5 we show the results of our approach to layout.

4.1 Motivation

When laying out graphs clustered with the approach described in the preceding chapter 
it is possible to lay out the clusters, separately using a force directed approach as we did 
for our influence graph example, in the preceding chapter (see figure 3.11), and as can be 
seen in figure 4.1. While this approach is effective for smaller graphs, there is not much 
information provided for edge routing and no consideration is given for the inter-cluster 
relationships of nodes.

Our motivation is to convey the relationships between the clusters generated based 
on the user’s selection of nodes of interest. We propose that this can be achieved by the 
generation of a hierarchy reflecting the relationships between the graph’s agglomerative 
clusters, and the layout of the graph utilising that hierarchy as an input.
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Figure 4.1: A100 node procedurally created small world graph clustered around 4 nodes of 
interest. The cluster nodes are positioned using a per cluster Fruchterman-Reingold force 
directed layout.

4.2 Related Work

An overview of graph layout approaches is given in section 2.3. Our approaches to the lay­
out or circular clusters are influenced by the circle rotation approaches utihsed by Topolay- 
out [AMA07], [FLM95], as well as Symeonidis and Tollis [ST04]. Edge routing techniques 
are described in section 2.5. Holtehs hierarchical edge bundling technique [H0I06], which 
we utilise in this chapter, is described in section 2.5.1.

Multilevel layouts are described in section 2.3.3. For our multilevel layout we follow 
the approach taken by Walshaw [Waloi] as this was the most suitable for the reuse of our 
clustering as a basis for generating a clustering hierarchy. An approach such as Hachul 
and Jiinger s [HJ05] requires a more complex partitioning of data which was less readily 
adaptable to our clusters, as was the spectral partitioning approach used by Frishman and 
Tal [FT07] and the maximally independent vertex set approach of GRIP [GKoi]. These 
methods are closely entwined to their approaches to graph coarsening in terms of the layout 
phase. We wish to maintain our concept of nodes of interest throughout our multilevel, 
hierarchy. Walshaw’s use of the Fruchterman and Reingold’s force directed layout is also 
suitable for apphcation to our generated hierarchy with the least amount of modification.

4.3 Circular Layout of Clusters

As described in section 2.3.6 circular layouts provide a simple approach to graph layout. 
Figure 4.2a shows a small graph with 3 clusters, each laid out using a circular layout. This 
graph is laid out simply with no consideration given to the number of edge crossing result­
ing from the node positions. We utilise an intelligent initial placement of nodes combined
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(a) Unoptimised layout with 1392 edge in­
tersections and 459 inter-cluster edge inter­
sections.

(b) Optimised layout with 772 edge inter­
sections and 79 inter-cluster edge intersec­
tions.

Figure 4.2: An example small world graph containing 60 nodes and 180 edges, illustrating 
the impact of node reordering combined with cluster rotation. The graph is clustered using 
our approach with clustering coefficient as a heuristic. The three nodes with the largest 
degree have been selected as nodes of interest.

with a force directed rotation of the circular clusters in order to reduce the number of edge 
crossings as illustrated in figure 4.2b. As part of their topology based approach to graph 
layout [AMA07], Archambault et al. utilise force based rotation of circular chques, min­
imising the torque caused by edges terminating outside of the chque, in an approach that 
they have adapted from Frick et ais GEM layout[FLM95].

4.3.1 Initial Node Ordering

We initially place nodes in each cluster is such a way that nodes with inter-cluster edges 
are positioned closer to their neighbour nodes, which lie in other clusters, as shown by the 
simple example in figure 4.3. To initially place nodes we calculate the average position of 
neighbours in other clusters for each node. We assume an even distribution of cluster nodes 
around each clusters circumference. Each node has a potential position in a slot around 
the circumference. Each node is given an ideal position, where a line between the cluster 
center and the average neighbour position intersects the cluster circumference. The nodes 
are sorted in order of ideal position. The nodes are then assigned to the empty slot closest 
to their ideal position. If a node is assigned to a slot which is occupied by a preceding node 
it is assigned to the next available slot. This can lead to multiple nodes with similar ideal 
positions being assigned slots progressively further away form their ideal position as seen 
in figure 4.4b. This effect is counteracted by the rotation phase, as seen in figure 4.4c.
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Figure 4.4: A simple example illustrating node reordering with overlapping ideal node 
positions, combined with rotation.
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4.3.2 Cluster Rotation Implementation

Our approach is a version of the torque calculation of Archambault et al. [AMA07]. It 
is executed after the node ordering phase as this means cluster nodes with neighbours in 
the same cluster will be positioned near each other. It is essentially a force directed layout 
except the forces are not repositioning clusters, but rotating them about their normal axis. 
For our two dimensional graphs, each clusters normal axis is perpendicular to the graph 
plane.

Given a circular clustering of p clusters C = {C,, C^,.....Cp} where each element of C
contains a disjoint subset of the graph G = {V,E) such that C, = {v,i, v,2, ...v,„}, n = |C,| 
and C, c V, for each cluster C; there exists a set of edges which contains the set of all 
edges e, = (v^:, v^) where e C, or Vy € C, but (v^, Vy} i C,, i.e. E'^,, is the set of all inter­
cluster edges which have a node in C, . We denote the set of nodes which have neighbours 
in other clusters as

For each element Cj e we calculate the a vector Vx which indicates the direction 
between v* and average position of Vy, as v*. We average v* for aU edges in E'^,^ that contain 
Vx a We also calculate a vector px describing the position of Vx relative to the center of 
cluster C,. We calculate angle in the range [-n,+n] required to rotate the cluster C,, in 
an anti-clockwise fashion about the cluster normal, so that px is parallel to v*. For a two 
dimensional graph the cluster normal would be constant for all clusters.The final rotation 
applied to the cluster is the average of all such rotations for all e, e .

Algorithm 3 Algorithm for calculating rotation angle for an individual cluster, 
cluster-rotation = o
for all e, = {vx, v^) e E'f. ,Vx e C,, Vy i C,- do 

Vx = Vp.position - Vx.position 
px = V;c.position - Opposition

= getAntiClockwiseAngle(Vx,px) 
cluster-rotation = cluster .rotation + Ug. 

end for
cluster-rotation = cluster-rotation / ICjl

When calculating the angle between Vx and px, we use the dot product of the two vec­
tors , in conjunction with a cross product to ensure that the rotation is anti-clockwise about 
the cluster normal. Applying multiple rounds of node ordering followed by cluster rotation 
will generally reduce node crossings further.

We apply this algorithm iteratively in a manner similar to a standard force directed 
layout. The algorithm is applied to all clusters, each iteration. We also utilise the force 
directed layout concept of a cooling function, to force the rotations to converge to a final 
value.

Our previous examples show simple flat clusterings , however if a clustering hierar-
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(a) Unoptimised, with 7712 total edge inter- (b) Unoptimised, with 2803 total edge in­
sections and 2092 inter-cluster edge inter- tersections and 1926 inter-cluster edge in­
sections. tersections.

Figure 4.5: An example using a three level deep hierarchical clustering of a randomly gen­
erated graph containing 120 nodes and 282 edges. The hierarchy is indicated by the blue 
nodes and lines.

chy is present our approach can be applied in a bottom up fashion, initially applied to the 
leaf clusters and and then to the higher level clusterings as shown in figure 4.5. We will 
utilise this optimisation for some of our hierarchical clustered graphs for our edge routing 
experiments in chapter 5 as well as our hierarchically laid out graphs in section 4.5.

4.3.3 Circular sifting

Our approach to ordering the nodes places them closer to their neighbours external to the 
cluster, reducing edge length, which imphcitly reduces the likelihood of crossings. How­
ever approaches do exist which directly reduce edge crossings. Baur and Brandes’ [BB05] 
circular sifting approach reduces edge crossings by rounds of swapping neighbour nodes 
in the circular layout, using edge crossing count as a heuristic. Such an approach could be 
altered to consider the crossing of inter-cluster edges, rather than internal edge crossings. 
However inter-cluster sifting of edges so a less finitely bound problem, as the reduction of 
crossings based on node order will be strongly dependent on the order of nodes in other 
clusters.
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4.4 Layout and Hierarchy Generation

Inspired by multilevel approaches of Walshaw and others [Waloi, GKoi, HKoi, HJ05] we 
propose two approaches to graph layout, a hierarchical layout approach and a multilevel 
approach. We use our clustering approach to define the coarsest level of graph abstraction. 
We extend our flat agglomerative clustering into a multi-level clustering hierarchy, creating 
less coarse clustering abstractions based on the relationships between the cluster nodes and 
the clusters defined at the hierarchy level above. It is through the relationships of a cluster s 
nodes with other clusters that we maintain the concept of nodes of interest throughout the 
generated graph hierarchy. The clustering hierarchy also provides us with a means to route 
edges in the graph using hierarchical edge bundhng [H0I06].

The hierarchical approach, while laying out clustered abstractions of the graph in de­
creasing levels of coarseness, is not a full multilevel approach as described by Walshaw. 
Our layout algorithms, both force directed and circular, only consider the nodes within 
the current clustering abstraction independently of all other abstractions being laid out. 
Interaction between nodes in different clusters at the same clustering level are prevented 
by strict cluster bounds and a lack of connectivity between clusters which do not have the 
same parent cluster node, and not by definition of node forces and an optimisation grid 
across each entire level as done for multilevel algorithms. While influenced by the ap­
proach of Walshaw et al, particularly in terms of forces between cluster abstractions with 
a common parent, the approach could more accurately be described as a hierarchical lay­
out than a multilevel one. The advantage of this approach over a multilevel approach is that 
hierarchy clusters will always remain close to their parent cluster, allowing for better reuse 
of the hierarchy as an aid to edge routing.

The multilevel approach utilises each level of the generated hierarchy as an abstraction 
of the level below it. Each level is positioned using a force directed layout, and the position 
of the cluster at that level are used to provide initial starting positions for the next level 
of the hierarchy. The forces applied to each level of the hierarchy are modified so that the 
lower level layouts do not disrupt the positions of the higher level layouts.

For both the hierarchical and multilevel approaches we utilise a circular layout of the 
leaf cluster nodes, to avoid the layout of the individual nodes of the original graph disrupt­
ing the previous levels of layout, and allow for the repositioning of nodes with inter-cluster 
edges.

4.4.1 Generating a clustering hierarchy

The initial top level of our hierarchical clustering is done by our agglomerative method 
described in chapter 3. This is the first stage where the user has specified their nodes of 
interest. We aim to replicate the relationship between nodes of interest through the multi-
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(b) Clusters are subdivided based on inter­
cluster relationships

Figure 4.6: A simple example of hierarchical clustering, using 3 clusters. The relationship 
between cluster A b and C are reflected in the sub-clustering of each cluster.

pie levels of the clustering hierarchy. The number of nodes of interest defines the number 
of clusters at the top level. It also defines the maximum number of sub-clusters for each 
top level cluster. Each top level cluster is sub-divided based on which of the other top level 
clusters it’s constituent nodes more conceptually belong to. As a simple example, consider 
a clustering of a graph around 3 nodes of interest as per figure 4.6. Each sub cluster only 
considers the level above it within the hierarchy. For example, cluster A will be subdivided 
into clusters as follows:

• Nodes which have no relationship with nodes outside of A, and can only belong to 
A are assigned to AA

• Nodes which have a stronger conceptual relationship with nodes from cluster B are 

assigned to AB

• Nodes which have a stronger conceptual relationship with nodes from cluster C are 
assigned to AC

Each cluster AA, AB and AC can be subdivided again recursively, based on the rela­
tionships between those sub-clusters. The number of sub-clusters in a subdivision depend 
on how many sibling clusters the cluster being subdivided has. To implement this approach 
to clustering, we need to be able to determine how strongly a node relates to the other peer 
clusters, in a manner similar to how we define our top level clustering.

We describe our hierarchy in terms of levels. Lq is the clustering hierarchy tree root 
and L, is the top level of the clustering hierarchy, representing the clusters defined by our 
agglomerative clustering algorithm. contains all clusters subdivisions of Li. In multilevel
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clusters consist of nodes from the yellow cluster and are assigned to each green cluster 
based on their relationships with the Lj yellow nodes’ two sibling clusters (coloured blue). 
The yellow and blue nodes are siblings because of their common parent, coloured red.

layout terms , L, can be considered a more coarse version of L^. For a given level L,, its 
clusterings represent the relationships between a parent nodes siblings from L,_|. This is 
illustrated in figure 4.7.

If the clustering hierarchy has N levels, it is not correct to say that level L„_i contains 
the full set of graph nodes, as we are not building a balanced hierarchy. Clusters most 
likely have different sizes, resulting in some being further subdivided than others. The 
graph nodes are the leaf nodes of each branch of the clustering hierarchy tree. Repeated 
subdivision of clusters to sizes of one or two nodes, results in some very deep leaf nodes 
and is aesthetically not pleasing in terms of layout so we set a maximum cluster size in 
terms of leaf nodes. If a cluster in a level has less than the maximum number of leaf nodes 
it is not subdivided any further. In addition to the maximum cluster size we also utilise a 
maximum hierarchy depth to avoid the creation of deep leaf nodes.

Cluster Subdivision Function

For our top level clustering we were able to agglomerate nodes to form clusters. However 
for our subsequent clusterings we cannot simply re-run our top level approach at each 
level of the clustering hierarchy. One significant reason is that it would be unrealistic for 
users to specify sub-nodes for each subsequent level, and it would also be difficult for an 
agglomerative approach to reflect previous hierarchy structure. Therefore we are using a 
divisive or top down approach as described above. When a node from L,_i is being assigned 
to a subcluster in L, we assign a score for each subcluster to that node. The node is assigned
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to the L,subcluster that corresponds to the L,_i sub cluster with the highest score. We use 
node inter-cluster degree as a metric to assign a cluster score to each node. We add the node 
to the sub-cluster representing the parent level cluster that it is most strongly connected to. 
In effect this is similar to using modularity, as we are assigning the node to the subcluster, 
corresponding to the parent cluster, that would have resulted in fewest inter-cluster edges.

4.4.2 Hierarchical Clustering Layout

Each level of our hierarchical clustering is laid out using a Force directed algorithm algo­
rithm. We use a weighted version of Fruchterman and Reingold s basic algorithm [FR91]. 
For the layout of nodes within the leaf level clusters we use a circular layout. The circular 
layout is applied to each cluster initially. At this stage we are not concerned with the inter­
cluster edges as the full hierarchy has not been laid out, so no optimisation is necessary. 
The initial circular layout provides us with size bounds for the leaf clusters, which we use 
in determining the spring weights for higher levels.

We apply the force directed layout algorithm on a per level basis in a bottom up ap­
proach. Given N levels of a hierarchy, we begin at Ljv_2 and apply the force directed layout 
algorithm to the child clusters of each cluster in that level. The nodes in each cluster in 
Ln-1 have already been positioned as part of the circular layout. Once the layout of the 
levels clusters is complete, the position of the nodes contained in the cluster are updated 
to reflect the change of the clusters position. The resulting radius of the parent cluster is 
also updated. This process is repeated moving up the hierarchy until finally the clusters 
representing the initial agglomerative clustering (i.e. LJ are positioned as the children of 
Lo.

Our force directed layout of sibling clusters in each hierarchy level uses a weighted ideal 
distance between clusters. We use the cluster radius as a weight, which results in different 
clusters with different radii having a different ideal distance between them. The user can 
also specify a scaling value to be applied to the cluster weights during layout see figure 4.8. 
The sibling clusters being positioned as part of the force directed layout are only considered 
connected if there is an edge between the clusters at a lower level.

4.4.3 Multilevel Cluster Layout

We have also implemented a multilevel algorithm, which rather than laying out the nodes 
of a clustering level as separate sets of sibling nodes, performs a layout of the entire cluster 
level simultaneously. While based of Walshaw’s approach, ours has some fundamental dif­
ferences. Walshaws algorithm uses a bottom up clustering , merging pairs of nodes. This 
ensures a balanced clustering. Our approach is top town and clusters are not even in terms 
of the underlying nodes they represent, nor is the hierarchy balanced in terms of depth.
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(a) Hierarchy force directed layout with no 
scaling (s = 1.0)

(b) Hierarchy force directed layout with 
scaling (s= 1.3)

Figure 4.8: An example of the hierarchical force directed layout on the single level hierarchy 
with different sized clusters, illustrating the effect of scaling the forces.

Level 0

Level 1

Level 2

Level 3

Figure 4.9: An illustration of the processing of different levels as part of the multilevel 
layout for a clustering hierarchy with N = 4 levels. The red nodes are positioned using a 
force directed layout. Next each of the blue clusters is assigned an initial position based on 
its parent red cluster. The blue clusters are positioned using a force directed layout, with 
different ideal spring lengths to the nodes of the previous level. Note that for the lowest 
level of this hierarchy Lj, nodes are extended from if they have no children.
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To ensure a proper layout of the lowest hierarchy level clusters on a N-deep hierarchy, it is 
necessary to extend the hierarchy leaf clusters which are not in level through the hier­
archy, so that all leaf level clusters are represented on level Ln-i> see figure 4.9. Leaf clusters 
are extended to lower levels by duplicating them then assigning the original cluster as the 
parent of the duplicate.

Default spring length: A key component of the force directed layout is the default spring 
length. This value, denoted k, represents the ideal distance between a pair of connected 
nodes, and conceptually represents a spring between two nodes at its rest length. For dif­
ferent levels in the multi-level layout different spring levels are used, this avoids lower level 
layouts disrupting the layout of higher level abstractions. Use of an optimisation grid, usu­
ally proportional in size to the spring forces, at each level also help avoid distant uncon­
nected vertex pairs form disrupting the effects of higher level layout

Walshaw’s approach uses a spring length at each level which is derived from the spring 
utilised at the level above, ki = aki-^, with a = However as part of his clustering
algorithm, every node in level L,_, represents the same amount of nodes in level L; unlike 
our top down clustering. Clusters at any given level will represent different numbers of 
nodes in the main graph. Therefore we apply a weighted force directed layout at each level 

Rather than adjust the k value for each level, we weight the spring distance between 
two cluster clusters in each level using the the number of graph nodes represented by each 
cluster. Given two clusters Q, C2 e L, we weight the default spring distance between them 
as the square root of the sum of the squares of their node counts: fcc,.Ca = \/|QF+|C^, 

where |C,j represents the number of nodes in cluster i, by the number of graph nodes 
represented by |C,|. As the algorithm progresses through the clustering hierarchy levels, 
the number of nodes represented by each cluster gets smaller, as the clusters on level L; 
will contain fewer, or possibly the same amount of nodes as level Li - 1.

We derive our layout temperature and square size for our optimisation grid, for each 
level, based on the maximum spring length kmax between two clusters at that level. We 
have found a values of ^kmax to he effective for grid size and temperature. We cease the 
round of force directed layout when the average displacement for the level reaches 0.01/c.

4.5 Results
We generated two small world graphs using the approach described in section 2.4.1 to 
demonstrate our layouts. These are a 100 node graph with 400 edges and a 400 node graph 
with 1600 edges. We show the resulting graphs under the each layout, as well as in edge 
bundled form. The nodes of interest for each graph were selected based on maximum node 
degree. For the 400 node graph, 5 nodes of interest were selected and a hierarchy depth was 
limited to 5 levels deep and a maximum cluster size of 30 nodes was used. For the 100 node
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• P

Figure 4.10: A layout of the loo-node small world graph clustered around 4 nodes of inter­
est using the hierarchy approach, combined with our node ordering and rotation optimi­
sation. The large blue nodes indicate the nodes of interest.

graph, 4 node of interest were selected and a maximum cluster size of 10 was used. A sin­
gle level agglomerative clustering of the 100 node graph, using a per-cluster force directed 
layout, was shown in figure 4.1.

4.5.1 Hierarchical Layout

The results of using out hierarchical layout on each graph can be seen in figures 4.10 and 
4.11. The hierarchical layout does not consider connections between non-sibling clusters 
at each level, therefore requires the use of our node ordering and rotation optimisation 
to ensure that unconnected clusters are not adjacent to each other in the layout. In both 
figures, it can be seen that clusters that are not in the top tier of the hierarchy are positioned 
quite closely together. This is because the inter-cluster connections between sibling clusters 
in the hierarchy are a reflection of the parent nodes relationship with its siblings. As a result 
there are many connections pulling the clusters together, and the forces cancel each other 
out only when the nodes are very close to each other. Using the scaling factor does not 
alleviate this issues as it scales both the attractive and repulsive forces for every cluster.
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Figure 4.11: A layout of the 400 node small world graph clustered around 5 nodes of interest 
using the hierarchy approach, combined with our node ordering and rotation optimisation. 
The large blue nodes indicate the nodes of interest.
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Figure 4.12: A layout of 100 node small world graph clustered around 4 nodes of interest 
using the multilevel approach. The large blue nodes indicate the nodes of interest.

4.5.2 Multilevel Layout

The multilevel layouts provide a clearer distinction between clusters at all levels of the hi­
erarchy, as can be seen in figures 4.12 and 4.13. Due to the interaction of forces between all 
clusters in a layout level, cluster are well positioned relative to the clusters so there is no 
need for a hierarchical rotation to separate clusters in different branches of the hierarchy.

4.5.3 Hierarchical Edge Routing

Both approaches allowed the hierarchy to be used for edge routing, as can be seen in figure 
4.14. However, the lack of spacing between clusters at lower levels for the hierarchical 
approach obscures the edge bundles, resulting in the multilevel layout being the better 
approach if edge bundling is utilised.
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Figure 4.13: A layout of 400 node small world graph clustered around 5 nodes of interest 
using the multilevel approach. The large blue nodes indicate the nodes of interest.
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(a) Hierarchy layout.
(b) Multilevel layout.

Figure 4.14: Hierarchically edge bundled versions of the 100 nodes small world graphs, 
using a bundling strength of = 0.9.

4.6 Conclusions and Future Work

We have introduced two approaches to graph layout utilising our agglomerative clustering 
as an input. Our approaches both utilise a clustering hierarchy. We built the clustering 
hierarchy based on the relationships between nodes at the top level of the clustering to 
maintain the concept of node of interest throughout the multiple levels. We use this clus­
tering hierarchy as the input for two approaches to graph layout. This hierarchy allows for 
multilevel layout an also provides a structure to allow the routing of edges using hierarchi­
cal edge bundling.

Of our two approaches to graph layout, the multilevel approach is the favoured one, 
due to the superior spacing of clusters at different levels of the clustering hierarchy.

As stated in the introduction to this chapter , laying out complex graphs is a difficult 
problem. The approaches described here are an initial step, and not a complete solution. 
We have illustrated the usefulness of generating a hierarchy to aid in graph layout and edge 
routing. However, further work is required on the weighting of graph nodes for force di­
rected layout for both the hierarchical and multilevel approaches. The limitations of the 
generated clustering hierarchy need to be further examined, particularly in terms of use­
fulness of clustering beyond the initial cluster subdivisions. We also need to examine the 
impact of much larger scales of graph, as well as the practicality of other layouts (such as 
some form of force directed layout) for the nodes of leaf clusters. Another potential av­
enue of research is the usefulness of our layout approach as an initial starting point for 
graph analysis. When a user is analysing a graph, further manual editing of an existing 
layout may help them find answers to their questions about the data the graph represents. 
Research by Purchase et al. [PPP12] suggests that graph drawing systems should integrate
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automatic layout with the users manual editing process. Our approach to layout provides 
a view of graph structure that can be used as a starting point for graph analysis.
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Chapter 5 

Edge Routing

I
N CHAPTER 4 WE DESCRIBED OUR CLUSTERED HIERARCHICAL LAYOUT OF GRAPHS. How­

ever, this is only one aspect of the presentation of a graph to an end user. Often edges 
are the main source of clutter, and as a result they become the main cause of degradation at 
graph analysis tasks. As graphs become more dense, edges obscure each other and become 
difficult to trace, making it more difficult to see the relationships between nodes and spot 
high level trends in edge flow. Force directed layouts, as described in section 2.3 work ex­
ceptionally well for low density graphs, however as density increases force directed layout 
often results in overlapping edges being indiscernible. In order to reduce the clutter asso­
ciated with graph density, the routing of the edges which cause much of the clutter needs 
to be considered.

In section 4.5 some of the graphs were displayed using edge bundling, an edge routing 
technique, described in section 2.5. While this approach has become very popular and has 
led to many variations [H0I06, CHH'^oS, ZYC'^oS, BD07, LBAiob, LBAioa, HW09, GK07, 
PNBHi2, LLCM12, RDLC12], there is a lack of empirical evaluation of edge bundling, with 
much of the existing literature displaying images of the result of their technique, but not a 
formal user evaluation of it. To our knowledge this chapter is the first attempt at such an 
evaluation.

Previous work has also shown that user performance at a low level graph task is im­
proved with three dimensional layout and stereoscopic display of a graph [WF96, WM05, 
SM93, HHLio]. We extended the standard edge bundling technique, so that the bundles 
utilise three dimensional depth, and render them stereoscopically. We have performed a 
second empirical user evaluation using a stereoscopic display to determine if the addition 
of stereoscopic depth improves user performance.

Chapter structure: This chapter is focused on two main concerns. The first is the evalu­
ation of edge bundling in 2D. The second is the extension of edge bundling into 3D and an 
associated evaluation.
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In section 5.1 we describe our evaluation of edge bundling in 2D. This section is further 
broken down as follows;

• In sections 5.1.1, 5.1.2, 5.1.3 and 5.1.4 we describe our evaluation motivation, previous 
experiment approaches, our hypotheses and our choice of edge bundling approach.

• In section 5.1.5 we describe out approach to generating graph suitable for our edge 
routing experiment, as well as how they were displayed to the end user.

• In section 5.1.6 we describe our experiment methodology.

• In section 5.1.7 we provide the results and analysis of our experiment.

In section 5.2 we describe our approach to extending edge bundling into 3D, as well as 
our motivation for utilising stereoscopic 3D. This is followed by an empirical evaluation in 
section 5.3. We describe our conclusions in detail in section 5.4.

5.1 Edge Bundling Evaluation

There is very little empirical data on the impact of effectiveness of edge bundling as a graph 
visualization technique, despite it’s popularity as a graph visualisation technique. There­
fore, we experimentally evaluated the impact of edge bundling on user performance using 
graphs of different size and density, as well as with different levels of bundling on graph 
edges.

5.1.1 Evaluation Motivation

Purchase [Pur97] has demonstrated how the crossing of edges is the graph aesthetic which 
affects most human understanding of a graph. Unfortunately in large dense graphs, edge 
crossings are unavoidable, as once a graph has more than (3I V| - 6) edges, where |y| de­
notes the number of nodes, it is mathematically impossible to lay out the graph in a planar 
fashion such that no edges cross. While Weidong et al. [WSHE08] have shown that the 
maximising of angles where edges cross also helps increase comprehensibility, bundled 
edges can frequently overlap and cross paths and intersect at acute angles. Bundling also 
introduces bends to edges, which have been demonstrated to have a significant effect on 
user errors and an approaching significant effect on user reaction times for low level rela­
tional tasks [Pur97]. Bundled edges also lack the good edge continuity identified by Ware 
et al. [WPCM02] as an important graph aesthetic.
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P-i fe •

Figure 5.1: An example of one of the more dense graphs used in our experiments, di = 5.26.

Edges and Dense Graphs

In section 2.1.4 we discussed graph density and differentiated between graph theoretic edge 
density and linear density. While most real-world graphs have a value of d; <= 10 [Melo6], 
this is still enough to cause a large amount of clutter. Given the frequency that dense graphs 
are encountered in the real world, the fact that bundling is considered a clutter reduction 
technique and the fact that edges can be a major source of clutter in a graph, it is important 
to include edge density as part of our analysis. Therefore for our experiments we consider 
edge density as one of the experiment factors. One of the more dense graphs used in our 
experiments can be seen in figure 5.1, while a smaller lower density one can be seen in 

figure 5.2.

5.1.2 Previous Experimental Approaches

As described in section 2.4.3, empirical evaluations of graph visualisation techniques fre­
quently use a simple low level relational task, such as path tracing or a similar variant, as 
a basis for the evaluation [Pur97, WPCM02, WSHE08, WM08, HVW09]. In some cases, 
such as Risden et al’s work [RCMCoo], a high level task is used, such as determining where 
files should be placed in a directory structure. However, this type of high level evaluation 
usually only applies to a specific visualisation problem and does not necessarily generalise 
to a wider category of visualisation. While path tracing is a simple task, it a common one
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Figure 5.2: An example of a graph generated for our experiments, rendered with tightly 
bundled edges.

within node-link graph analysis. However it is also a very low level specific task and it is 
not the only way in which a graph can be read. For example, if a graph is clustered us­
ing a hierarchy, higher level trends of connectivity can be spotted from the links between 
clusters at different levels of the branches. Knowing that node A is connected to node C 
by a graph distance of two is useful, but also knowing that node A and node C are in two 
very strongly connected clusters may also be useful. These high level trends are important 
in graphs particularly when graph sizes and edge density become large, and the analysis 
for individual paths contributes less to the understanding of the graph as a whole. Other 
approaches than using path tracing tasks exist. For example Huang et al. [WSHE08] inves­
tigate the impact of crossing angles using specifically designed diagrams containing edge 
crossings. Techniques such as eye-tracking and user surveys can also be used [HEH08]. 
These other techniques often provide information on the how and why of a specific effect, 
however evaluation is concerned with the consequences of bundling, not the how and why.

5.1.3 Evaluation Hypotheses

Our primary hypotheses are that bundling improves user comprehension of low level con­
nectivity tasks and also user comprehension of higher level trends. Our secondary hy­
potheses are that bundling improves user performance at both levels as graph size and 
edge density increase, relative to using straight hne edges.

We have performed two user experiments to this end. The first examines user perfor­
mance at a path tracing task to evaluate user comprehension of the connectivity between
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individual nodes. The second examines user understanding of higher level inter-cluster 
connectivity trends, by asking the user to identify which cluster is most strongly connected 
to a highlighted cluster. We performed our experiments using compound graphs of various 
size and density, with different levels of edge bundling and laid out using a simple balloon 
tree layout.

5.1.4 Experiment Bundling Approach

We adopt Holten’s [H0I06] hierarchical approach, described in section 2.5 to edge bundling 
for our experiments. This approach naturally lends itself to the hierarchies we generate as 
part of our multi-level layout described in chapter 4. This approach also does not neces­
sitate any techniques to smooth the curves once they are drawn and allows us to generate 
test graphs which are consistent in bundling for different node sizes and different densities. 
The level of bundling can also be easily controlled as an input parameter to the experiment. 
The clusters of the graphs are also well defined as a result of the use of the clustering hier­
archy, reducing ambiguity in what the user perceives as a cluster and what the experiment 
design defines as a cluster.

5.1.5 Experiment Graphs

We generated graphs for our experiments that reflect practical real world densities. How­
ever the focus of our experiments is on the impact of edge bundling, particularly in terms 
of how well users read bundled inter-cluster edges. Therefore it is the inter-cluster edge 
count that must scale between different edge densities, not just the general edge density. 
As mentioned by Lancichinetti et al. [LFR08], cluster size and edge distribution vary in real 
world graphs. We distribute our inter-cluster edges randomly between clusters, however 
the inter-cluster edge count is determined using a power law so there is a realistically wide 
range of inter-cluster edge counts distributed among the clusters. Adjusting the cluster 
sizes in a similar manner would result in some very large and very small clusters, provid­
ing extra information to the user when determining shortest paths or determining which 
clusters are most strongly connected. Therefore we distribute the nodes amongst the clus­
ters evenly. Undirected compound graphs were used as the basis for the experiment. A 
clustering hierarchy 3 layers deep is used. The first layer contained 4 child nodes, the sec­
ond layer contained 3 children for each of the 4 parent nodes. The actual graph nodes were 
assigned evenly to the 12 third tier hierarchy nodes. The number of nodes in the graph | U] 
is always proportional to the number of leaf-level clusters (12) Avithin the graph, resulting 
in an even number of nodes in each cluster. The graph area for each is directly proportional 
to the number of nodes in the graph to reduce overcrowding of the display space for the 
larger graphs. Each graph is displayed extending the full height of the screen. An example
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of the resulting graphs generated can be seen in figures 5.2 and 5.1. For our test graphs 
we have small, medium and large graphs, using node counts of | V| = 60,120,180. Larger 
sizes than this resulted in the display becoming too crowded, and would have excessively 
impacted user performance, independently of bundling.

Choice of Graph Density The focus of our experiments is on the impact of edge bundling, 
particularly in terms of how well users read bundled inter-cluster edges. It is not appro­
priate to simply assign edges to nodes at random, as such an approach will not necessarily 
result in an even scahng of the number of inter-cluster edges along with graphs size and 
density. The number of inter-cluster edges is the difference between the total number of 
edges and the number of intra-cluster edges and hence is also related to cluster size. We 
denote the number of intra-cluster edges |£j„(| (internal) and the number of inter-cluster 
edges is denoted |£e*f I (external). The number of intra-cluster edges is a result of the inter­
nal cluster density of the graph which we refer to as d(£,„,). We refer to the inter-cluster 
density as the external density, d(Ecxt)- For path-tracing in particular, if the intra-cluster 
edges are so dense that the individual cluster edges form cliques, the participants will be 
able to infer connectivity without considering the internal edge structure of the cluster. 
The same can be said if the cluster’s nodes form disjoint sets, with no edges between them. 
For the experiment to be valid the user will need to be forced to trace edges within a clus­
ter. Towards this end, we fix the intra-cluster density such that each edge is connected to a 
consistent ratio of the other nodes within its cluster, setting the clusters to have an internal 
graph theoretic density d(|£,„(|) = 0.3. Using the linear definition for density d; = |£|/| V^| 
would result in intra-cluster edge count having a differing impact on the likelihood of an 
edge being traceable through a cluster depending on cluster size. This leaves the inter­
cluster graph density as the means by which edge density will change between graphs. We 
can show that for our experiment graphs the only factor determining the maximum possi­
ble value is the node count, allowing us to use the ratio inter-cluster edges to the number of 
vertices as a measure of inter cluster edge density (i.e. d; (Eext) = \^ext\l\ )• Given a graph 
with leaf level clusters forming a clustering C = (cq, c^, ...c„_i) where |C| = «, a cluster i has 
its internal density defined by d{Ei„t)Ci = |£(c,)|/£(c,)„,ax where £(c,)„,ax denotes the 
maximum number of edges possible in the cluster c, . The maximum number of internal 
cluster edges in the graph is defined by

\E.intlmax
|C,|(|C,| -1)
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The maximum possible number of intra-cluster edges is the difference between this and 
the maximum number of edges for the graph as a whole.

-'ext I max ~
|y|(|v|-') -h-ic.km-i)

If we assume, as is the case for our experiment graphs, that each cluster is evenly sized, i.e. 
IV"! = a|C|,a 6 / then \cx\ - iV’l/jCl and

■‘ext\max
imici--)

2|C|

Based on the graph theoretic density, we define the graph external density as d^E^xt) = 
\Eext\l\Eext\max- From above, it is clear the maximum graph theoretic external edge density, 
\Eext\max is proportional to the square of the number of vertices in the graph. If|C| remains 
constant across all graphs, as it does for our experiments, it is the only variable that \Eext\max 
depends on. Therefore we can state that for our experiment graphs di(Eext) - |Fex»|/| V"].

For our path tracing experiment we used three different levels of density. For the cluster 
connectivity experiment we added a fourth level of density, which was not used for the path 
tracing experiment due to the difficulty of the path tracing in such a dense graph. For our 
experiments we wanted to choose values for di(Eext) which visually corresponded to low, 
medium, high and very high densities. Through visual examination of the generated graphs 
we found that values of d; = 1, ^5, Vio and v/20 produced an acceptable visual progression 
of graph density. A larger linear density would not be frequently encountered in real world 
situations with graphs of these sizes and would result in a very crowded presentation of the 
graphs. Linear edge density of less than 1 results in a low necessity for edge bundling for 
our test graphs. A table of our test graph sizes and the resulting density values can be seen 
in table 5.1.

Graph Layout and Display It is very difficult to rate one layout algorithm as being better 
than another in terms of simple relational tasks [Purpy]. We use a simple balloon tree lay­
out, which is essentially a projection of a cone tree layout onto a zD plane [CK95] and it can 
be seen in figures 5.2 and 5.1. This allows us to use a visually consistent layout for each of our 
test graphs. One impact of using this layout is that nodes which are close together in terms 
of graph distance will not necessarily be closely related in terms of geometric distance: 
two nodes which are neighbours may appear on opposite sides of the graph. If we were 
to use a force directed layout, related nodes would appear geometrically closer together. 
However the graph layout would be significantly different between graphs adding an even 
more significant confounding factor when trying to determine the impact of bundling on 
rendering edges. Our experiment graphs were rendered onto a 24” wide screen display.
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IV^I E\ Ei„t\ \Eext dl(Ee) di Task
60 96 5 36 60 1 1.6 1,2
60 170 5 36 134 nA 2.83 1,2
60 226 5 36 190 a/Io 3-77 1,2
60 304 5 36 268 \/^ 5.07 2
120 282 10 162 120 1 2.35 1,2
120 430 10 162 268 n/5 3.58 1,2
120 541 10 162 379 \Ao 4-51 1,2
120 699 10 162 537 y/lO 5.83 2
180 558 15 378 180 1 3.1 1,2
180 780 15 378 402 %/5 4-33 1,2
180 947 15 378 569 \/io 5.26 1,2
180 1183 15 378 805 \/^ 6.57 2

Table 5.1: Experiment Graph properties, and which experiment they were used for.

with full screen anti-aliasing enabled. All of the graph renderings are static, the user was 
not able to manipulate the graph or alter their view of the graph (e.g. using pan or zoom 
functionality). Per Holten [H0I06], we also use alpha blending to allow individual edges 
to be more easily discerned within the bundles, by drawing shorter curves at a higher level 
of opacity than longer curves. Curves within the unbundled = 0.0) drawings are also 
blended based on length. Some of the previously described approaches use colour hue to 
indicate edge direction [H0I06, CHH'^oS] (as the underlying graph is a directed graph) 
or edge density [HW09, LBAiob]. We feel that this may add an extra confounding factor 
to the graphs, therefore all edges are shaded with no hue. The shortest edges are black, 
blended to grey with the white background for longer edges.

Bundling Strength The different levels of edge bundling offered by the implemented ap­
proach do not scale hnearly in their visual impact (see figure 5.4). A bundling level of 
0.25 offers relatively little difference when compared to a bundling level of 0.0 (i.e. straight 
lines with no bundling). We have chosen bundling levels of jS = 0.0,0.7 and 0.9 for the 
path tracing experiment, and the same levels with an additional level of /I = 1.0 (the max­
imum tightness of bundles) for the cluster connectivity experiment. The ^ = 1.0 level of 
bundling is not used in the path tracing experiment as edges will frequently overlap as one 
line, making path tracing impossible in all cases.

5.1.6 Experiment Methodology

For each experiment the participant was shown a sequence of graphs on screen and was 
asked to perform a task specific to that experiment. To ensure the user comprehended the 
task and to reduce the impact of any training effect, the initial six graphs displayed were
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(c) jS = 0.7

Figure 5.3: Illustration of the visual impact of different levels of bundling strength 0.0

is not shown as it simply corresponds to a straight line between nodes.
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training graphs and the participant’s answers for these graphs are not used in the analysis 
of the results. The actual experiment graphs displayed after the training graphs were shown 
in a random order. In order to ensure a rapid response from the participant and to avoid 
excessive experiment durations, each graph was only displayed for at most 20 seconds. The 
expiration of the time limit is considered a wrong answer. The participants were told to 
answer the question as accurately as possible, however if the answer is not clear, to answer 
with what they beheve to be the most hkely correct answer. The experiments were ordered 
so that half of the participants began with experiment 1, the other half with experiment 2. 
Prior to each experiment the user was given an information sheet describing the task for 
the graph, and was also verbally instructed on the task. All experiment participants, bar 2 
from the total of 21, had a background in computer science and had some level of familiarity 
with the node-link display of graphs.

Path Tracing Experiment For the path tracing experiment we have four different factors 
that differentiate the task trials displayed to the user: 3 node counts (small, medium, large) 
X 3 edge densities (low, medium, high) x 3 bundling levels (0.0,0.7,0.9) x 3 path lengths (1, 
2,3). The participant was shown a total of 81 trials. In each trial two nodes were highUghted 
and the user was asked to indicate the shortest path between the highlighted nodes, by 
pressing the corresponding key on the keyboard. The shortest path length between the 
highlighted nodes was always either 1, 2 or 3 and each path length was used once for all 
other combination of factors. The experiment graphs were displayed in a random order. 
The nodes were highlighted by being coloured blue and drawn with a square glyph, while 
the rest of the nodes were red and drawn with a circular glyph (see figure 5.2). This results in 
a pre-attentive effect, reducing the amount of effort the user needs to find the target nodes. 
The highlighted nodes were selected at random from the list of all node pairs that have the 
required shortest path distance between them. An additional constraint was placed so that 
the nodes are contained in separate clusters. This avoids simple cases where participants 
would only have to trace edges within a single cluster.

Cluster Connectivity Experiment For the cluster connectivity experiment the user was 
shown a total of 96 trials presented in random order: 3 node counts (small, medium, large) 
X 4 edge densities (low, medium, high, very high) x 4 bundling levels (0.0, o.7,o.9, 1.0) 
X 2 repetitions (i.e. Each combination of factors was displayed twice). The average score 
and time for the two repetitions was used for the results analysis. In each trial, one cluster 
was highlighted at random and the user was required to left-click on the cluster that was 
most strongly connected to the highlighted one. The most strongly connected cluster is 
the one that shares the most edges with the highlighted cluster. The highlighted cluster 
was coloured blue and the nodes of the cluster were square instead of circular, as can be 
seen in figure 5.1. The rest of the clusters in the graph are coloured based on a random
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selection from a list of colours, in order to make the clusters appear more distinct.

5.1.7 Results

In order to evaluate our hypotheses, we must test for statistically significant differences in 
responses to the factors. We are interested in both Main Effects (i.e., when a particular vari­
able or factor has an overall effect, independently of the other variables); and Interaction 
Effects (i.e., when the effect of a variable differs depending on the level(s) of one or more 
of the other variables). To test for such effects, we use Repeated Measures Analysis of Vari­
ance (ANOVA) on the data from all our experiments. When we find main or interaction 
effects, we explore what is causing these effects further using a Neuman-Keuls post-hoc 
test for pair-wise comparisons of means. We only report effects that are significant at the 
95% level, i.e., where the probability that the difference between means occurred by chance 
is less than 5% (i.e., p < 0.05). When evaluating the user’s accuracy, we score the user 1.0 
for a correct answer and 0.0 for every incorrect answer. The average response times and 
the average accuracy across all participants for both experiments can be seen in figures 5.7 
and 5.8.

Path Tracing Experiment

For this first experiment we performed a 4 way repeated measures ANOVA with within- 
subjects factors: node count x edge density x bundling level x path length. We found that 
users performed significantly worse with both levels of bundling used for the path tracing 
experiment, compared to when the graphs were rendered using straight edges (see 5-4^). 
This clearly contradicts our primary hypothesis that bundling improves the participant’s 
performance at tracing paths. Bundling hindered the participants performance at tracing 
graph paths. This is consistent with prior work which indicated that straight edges and 
path continuity improve the comprehensibility of graph [Pur97, WPCM02]. Bundhng at 
either strength also caused a significant increase in the amount of time taken to answer. 
Tables.2 sums up the noteworthy significant effects.

Our results also contradict our secondary hypotheses as edge bundling did not improve 
the participant’s performance as the graph edge density and graph size increases. There is 
no significant interaction effect (p > 0.05) between bundling and node count in term of 
accuracy or in terms of time. Nor were there any significant interaction effect (p > 0.05) 
for edge density and bundling.

The level of bundling turned out to have a significant impact depending on the path 
length {p = .0003), in that the effectiveness of the tighter level of bundling improved over 
the longer paths. This maybe due to the fact that 3 was the maximum path length available 
to the user for selection, so we cannot say that bundling helps with tracing longer paths.
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(a) Path Tracing Accuracy. (b) Path Tracing Time.

(c) Cluster Connectivity Accuracy. (d) Cluster Connectivity Time.

Figure 5.4: The impact of bundling on user accuracy and response time (in seconds) for 
each of the experiments. The vertical error bars denote +/-1 standard deviation.
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Measure Effect F-test post-hoc
Accuracy Bundling F(2, 40

)=9.8268,
p=.ooo34

The two levels of bundling significantly 
degrade performance when compared to 
straight lines. The performance at each of the 
bundhng levels was identical

Accuracy Node
Count

F(2, 40)
=6.3469, 
p=.00404

The medium and high node counts cause 
a significant deterioration in performance 
when compared to the lowest. There was 
no significant deterioration between the 
medium and large graphs

Accuracy Edge
Density

F(2, 40)
=2-8313.

p=.07079

While there was no significant impact across 
all densities the Neuman-Keuls post-hoc 
analysis revealed that there was an approach­
ing significant differences between the lowest 
edge density and the other two densities (P = 
0.06 for the medium density and p = 0.09 for 
high density)

Accuracy Bundling 
X path 
length

F(4. 80)
=3.8084, 
p=.00694

For the 0.9 level of bundling , participants 
could significantly more easily identify the 
paths of length 2 and 3

Time Bundling F(2, 40)
=11.641, 
p=.00010

Both levels of bundling cause a significant in­
crease in time over straight edges, with no 
significant difference between the bundling 
levels

Time Node
Count

F(2, 40)
=16.357.
p=.00001

Increasing the number of nodes caused a sig­
nificant increase in the amount of time taken, 
however the difference between the medium 
and large size graphs was not significant

Time Edge
Density

F(2, 40)
=46931.
p=.01476

Increasing the number of edges caused a sig­
nificant increase in the amount of time taken, 
however the difference between the medium 
and high density was not significant

Table 5.2: Results for the four way repeated measures ANOVA for the user performance at 
the path tracing task.
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Measure Effect F-test post-hoc
Accuracy Bundling F(3, 6o)=19.o83, 

p=.00000
The only significant difference is using the 
strongest level of bundling = 1.0, which 
significantly damages user performance, and 
the other 3 levels p < 0.0002)

Accuracy Node
Count

F(2, 4o)=i6.765, 
p=.ooooi

There is a significant difference between the 
largest node count and the other two.

Accuracy Edge
Density

F(3, 6o)=27.78i, 
p=.00000

There is a significant difference between all 
four levels of edge density except the medium 
and high levels.

Time Bundling F(3, 6o)=ii.478, 
p=.00000

Bundling significantly improves user re­
sponse time when compared to straight lines. 
There is no significant difference between the 

= 0.7 and = 0.9 levels of bundling and 
the significant further improvement with the 

= 1.0 level of bundling is irrelevant due to 
the significant degradation of performance

Time Node 
Count X 

Bundling

F(6,
12o)=2.738i,
P=.oi576

Significant for (| Vl = 60), where each of the 
bundling levels had significantly shorter re­
sponse times than the straight line edges.

Table 5.3: Results for the ANOVA for the user accuracy and time taken at the cluster con­
nectivity task.

Cluster Connectivity Experiment

For our second experiment we performed a 3 way repeated measures ANOVA with within- 
subjects factors: node count x edge density x bundling level.

The significant effects of this experiment are summarised in table 5.3. Results show 
there is a significant effect for bundling on participant accuracy. Newman-Keuls post-hoc 
analysis show that the only significance is between = 1.0 and the other three bundling 
levels (p < 0.0002). From figure 5.4c it can be seen that the significant effect is a negative 
one, reducing user accuracy. In terms of response time bundling has a positive significant 
effect. Bundling at all levels fi > 0.0 improves response time significantly (p < 0.004). The 
time improvement for = 1.0 is irrelevant due to the reduced accuracy. However, as there 
is no significant difference between the other bundling levels and = 0.0 we can say that, 
with the exception of = 1.0, the cluster connectivity experiments primary hypothesis 
that bundling will improve the participants performance at determining the relationship 
between clusters has been proven true.

Our results also show that our secondary hypotheses were that bundling > 0.0) 
will improve user performance as edge density and node count increase are false. The 
performance of each level of bundling under these conditions can be seen in figures 5.5 
and 5.6. There was no significant interaction effect for bundling and node count in terms of
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Current effect; F(6. 120)-.64604, p=.69318 
3E B=0.0X B=0.7X B=0.9XB«1.0

(a) Accuracy.

Current effect: F(6, 120)»2.7381, p«.01576 
X B=0.0 X B=0.7 X B*0.9 X B=1 .0

(b) Response Time.

Figure 5.5: The impact of node count on the effectiveness of bundling for the cluster con­
nectivity experiment. The vertical error bars denote +/- standard errors.

accuracy (p > 0.69) (Figure 5.5a). There is an effect in terms of response time (p < 0.016) 
(Figure 5.5b). Post hoc analysis showed that for the small node count the time improvement 
was significant (p < 0.015) but the difference dropped below significance for the larger 
graphs. There was no significant interaction effect between bundling and edge density in 
terms of time (p > 0.16) and accuracy (p > 0.06).
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Current effect; F{9, 180)=1.8427. p=.06344 
3E 8-00:5: B-o./XB-ogie-i o

(a) Accuracy.

Current effect: F(9,180)«1.4591, p-.16830 
B*0.0 ^ B*0.7 31 B*0.9 31 B=1.0

(b) Response Time.

Figure 5.6: The impact of edge density on the effectiveness of bundling for the cluster con­
nectivity experiment. The vertical error bars denote +/- standard errors.
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5.2 Stereoscopic Three Dimensional Edge Bundling

We have seen in the previous section that, while edge bundling improved participant re­
sponse times when it comes to recognising high level trends, it does negatively impact 
performances when it comes to a low level connectivity task such as path-tracing. This 
section is concerned with improving on the hmitations of edge bundling by combining it 
with another technique which has shown to improve user performance at a low level path 
tracing task, stereoscopic rendering of a graph[WF96, WM08, SM93, HHLio]. We com­
bine edge bundling with stereoscopic rendering by adding depth to the bundles, behind the 
graph plane. As part of this we determine how to apply depth to the bundles in a consistent 
manner.

Our results show that unfortunately stereoscopic depth is a complex technique, which 
is impacted by many other factors such as occlusion and graph layout, and the extension 
of only edges into 3D does not offer a significant benefit. However, we describe in detail 
our approach and experimental results in order to aid any future work on edge bundling 
and stereoscopic 3D.

5.2.1 Motivation

Previous work on edge routing has focused 
mostly on routing edges in two dimensions 
[H0I06, ZYC^oS, CHH^oS]. There is no exist­
ing evaluation or demonstration of the effect of 
edge bundling in three dimensions. In their work 
on ’3D Edge Bundling for Geographical Data Vi­
sualization” Lambert et al. [LBAioa] put forward 
a three dimensional routing of edge bundles in a 
geographical visualisation, however this is simply 
a case of routing bundles around a globe. Rather

Figure 5.9: An example of the three di- 
than using one dimensional lines, the authors use bundles created hy Lambert
bump mapped three dimensional tubes, as can be et al. [LBAioa] 
seen in figure 5.9. For graphs laid out in three di­
mensions Ware and Mitchell [WM05] have shown that tubes actually significantly reduce 
user performance at path tracing tasks when compared to lines. It is worth nothing that 
Lambert et aVs agglomeration of edges does not allow for path tracing and the tube size 
reflected the number of edges represented, so the choice of cylinders for edge represen­
tation is not based on edge traceability. In their initial analysis of the impact of stereo 
rendering on graph comprehensibility Ware and Franck [WF96] used a random layout, 
in the later work of Ware and Mitchell [WM05] a spring layout algorithm was used. The
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(a) Ordinary 2D bundling. (b) Equivalent 3D bundling (c) Side view of 3D bundling 
The nodes and edges are in 
the same plane

Figure 5.10: Illustration of extension of bundling into 3D.

layout algorithm was selected to allow realistically laid out graphs to be used in evaluation 
experiments, rather than provide any specific aid to graph visualisation.

When bundling edges in a two dimensional graph display, tighter edge bundles reduce 
the clutter on-screen, however they also make the graph less comprehensible. We propose 
that by extending the edges into three dimensions, stereoscopic viewing can allow users to 
more clearly see individual edges within the bundle.

5.2.2 Edge Routing in three Dimensions with stereoscopic viewing

Our approach to using stereoscopic-vievdng does not rely on three-dimension positioning 
of nodes. All of the nodes are laid out in a two dimension plane, resulting in no obstruc­
tion of nodes when viewed from a perpendicular angle. Our aim is to improve the users 
understanding of graphs by extending the edges into 3D. From a two dimensional par­
allel projection of the graph, the bundles will be unchanged, we simply propose to alter 
the depth of the bundles edges perpendicular the to the graph plane. This means that un­
der a perspective projection the bundles splines will appear slightly different (depending 
on the projection parameters) and under the stereoscopic viewing conditions we suggest 
that the individual splines vdll be more distinct to the user. This is not a pure layout of a 
graph in three dimensions, but rather the use of three dimensional space and stereoscopy 
to attempt to reduce ambiguity in edge bundling. We propose that this routing of edges 
combined with stereoscopic viewing will improve user performance at graph tasks.

Adding Depth to Curves

For most two-dimensional graphs an edge is displayed as a one-dimensional line. It may 
be tempting to render edges as three dimensional tubes when drawing graphs in three-
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(a) A tightly bundled graph. (b) Equivalent 3D bundling 
with the curve points shifted.

(c) Equivalent 3D control 
bundling with the control 
points shifted.

Figure 5.11: An illustration of the difference between shifting edge curve points and control 
points. The same graph is viewed from a side view to allow the bundle depth to be seen 
more clearly.

dimensional space, however previous work by Ware and Mitchell [WM05] has shown that 
using tubes produced a higher error rate at a path tracing task, when rendered in stereo­
scopic 3D.

In order to move the edge curves into three dimensions the values of the line segments 
of the curve can be shifted perpendicular to the node plane, or the values of the control 
points of curve can be shifted. If the curve points are simply shifted by a function to de­
termine depth we get the results we see in figure 5.11b. The shift in depth is quite dramatic, 
and equal for every point on the curve, except for the first and last (which lie in the original 
graph plane). To give the depth a more gradual change, the depth could also be controlled 
as the result of a curve depth function. The most straight-forward way to accomplish this 
is to shift the control points that are used to build the curve. The curves points interpolate 
along the b-spline between the control points, producing a smooth curve as can be seen in 
figure 5.11c.

The shape of the resulting curve, perpendicular to the graph plane, depends on the 
number of control points in the curve, and how far each point is pushed back. If we simply 
push back the control points to the desired depth, we end up with a quite square shaped 
curve as can be seen in figure 5.12a, particularly for the longer edges. A smoother, less 
square curve is obtained by linearly shifting back the control points of the curve based 
on their position in the control point vector. The midpoint of the control point vector is 
pushed back the full distance and and control point halfway between the start or end point 
and the midpoint would be pushed back half this distance. In the case where there is no 
midpoint, due to an even number of control points, one is introduced as an average of the 
existing two middle control points.
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(a) Push back control points to a desired 
depth.

(b) Interpolate control points to a specific 
depth and insert an additional control point 
where required.

Figure 5.12; Different types of control point shift, each using hierarchy depth as a depth 
function.

5.2.3 Defining Curve Depth

In addition to the question of how we extend the curves into three dimensions, we need to 
determine by what depth a curve should be shifted to. The notion of depth here describes 
the maximum distance of the curve perpendicular to the graph plane, and parallel to the 
view direction. The most straightforward option is to make depth a function of the curve 
length. We also looked at making depth a function of the number of control points, used by 
the curve, as well as using a more discrete depth function. This allows a number of depth 
planes to be specified and the curve control points snap to the closest depth to one of the 
planes. For example if the curves have a maximum length of 20 units and there are 5 plains 
specified, curves would intersect planes at 5,10,15, 20 units behind the graph plane. Each 
of these approaches can be modified by a multiplier value, which can be used to scale them 
to similar depth ranges.

As part of our bundling, we still use the splines straightening approach taken by Holten. 
This straightening takes place before the curves are shifted into 3D. This is desirable as we 
assume the view direction is perpendicular to the graph plane. The straightening process 
will then straightening the curves perpendicular to the viewing direction, which makes the 
individual splines easier to see for a users perspective.
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(a) Using the hierarchy to de 
termine curve depth.

(b) Using curve length.

Figure 5.13: An illustration of the difference between the depth functions

(c) Constraining depths to 
planes based on length.

5.3 Three Dimensional Bundling Experimental Evaluation

The goal of our experimental evaluation is to determine whether it is possible to improve 
user performance at graph tasks with bundled graphs by extending the edge routing of 
those graphs into three dimensions.

For our stereoscopic experiments we reuse the methodology of our previous edge 
bundhng experiments with some changes. We are re-using the graphs from the experi­
ment described in section 5.1, in order to have the same structure of hierarchical graph as 
before. We adopt the same experiment tasks as well as experimental setup and random 
ordering of graphs as seen in our previous user experiment. The key differences in our 
experiments compared to previous stereoscopic graph experiments [WM08, vSvDZS^io, 

SM93, HHLio], are as follows:

• Our nodes lie in a two dimensional plane, only edges use depth behind the graph 
plane. We are focusing purely on the effect of extending edges into 3D. The position 
of nodes in 3D would provide an extra confounding factor.

• The graph data is clustered.

• The graphs edges are bundled.

5.3.1 Hypothesis

Our previous experiment has show that edge bundling has a negative impact on user per­
formance at path tracing tasks. Our hypothesis is that adding depth information to the 
edge bundles in a direction perpendicular to the graph plane will improve user perfor-
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mance when viewing the graph in stereoscopic 3D. We also hypothesise that there will also 
be benefits for user performance seen for a higher level cluster connectivity graph task.

5.3.2 Choice of graphs and experiment factors

Factors from the Previous Experiment

In our previous experiment we used three different sizes of graph and while there a main ef­
fect resulting from node count there was no interaction between node count and bundling 
(see the results in section 5.1.7). Therefore, for our stereoscopic three dimensional experi­
ments we use a single size of graph, the 120 node graph. The 60 node graph offers a sub­
stantial boost to effectiveness and results in smaller bundles (due to the reduced maximum 
edge density of the graph), which reduces the necessity for the addition of depth to distin­
guish edges. There was no significant different between the 120 and 180 node graph sizes, so 
we omit the larger size from this experiment. In terms of graph density we also reduce the 
number of density levels. However we use two levels as Ware and Mitchell [WM08] have 
shown that the relationship between edge count and node count has an significant impact 
on error rates for path tracing tasks in 3D. In each of our prior experiments there were no 
significant consistent differences between the ^ = 0.7 and ^ = 0.9 levels. Therefore for this 
set of experiments we use a single value of ^ = 0.8 in place of the original two. Intra-cluster 
edges (those beginning and ending in the same cluster) are not extended into 3D.

For the path-tracing experiment the path lengths, as before, are limited to one two or 
three hops. Once again were highlighted the randomly selected node pairs, which cannot 
consist of nodes from the same cluster. A summary of all factors can be seen in table 5.5.

Layout Optimisation

In the previous experiment nodes were positioned in cluster without any concern for their 
relationships with nodes in other clusters. This can raise ambiguity in the flow of edges, 
particularly if an edge needs to pass though the cluster of one of its terminating nodes as 
can be seen in figure 5.14a. We optimised the graph layouts using the method described 
previously (see section 4.3) and provided the users with optimised and unoptimised ver­
sions of each graph. The main purpose of optimising the layout is to reduce the number 
of edge crossings, which is an aesthetic which has been shown to have a significant eflfect 
on user comprehension of graphs [Pur97]. Table 5.4 shows the number of edge crossings 
in each graph before and after optimisations.

Depth Type

For our experiment graphs we use three different setting of depth These are no depth, hi­
erarchy depth and edge length depth. The hierarchy and length depths are calculated as
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(a) Unoptimised layout. (b) Optimised layout.

Figure 5.14; Illustration of the visual impact of rotating clusters and reordering nodes in 
clusters = 0.0

Density Level Edge Count Edge Crossings (Unoptimised) Edge Crossings (Optimised)
low 282 7.917 2,631
Medium 430 21,049 10,128

Table 5.4: Edge Crossing for each layout type
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Factor Count Values Experiment
Layout 2 Un-optimised, Optimised Both
Depth 3 Hierarchy, length, None Both
Path Length 3 1,2,3 Path Tracing Only
Bundling 2 P = 0.0 , ^ = 0.8 Both
Density 2 Medium ( £| = 430), low (|£| = 282) Both

Table 5.5: A summary of the various factors considered for the ANOVA analysis of the 
experiment data.

(b) Side View (for illustrative purposes). 

Figure 5.15: Illustration of the impact of adding depth to straight line edges ^ = 0.0

described previously in section 5.2.2. For the no depth option the graph is still rendered 
stereoscopically, but all edges lie in the same plane as the nodes. Regardless of the edge 
length, the depths are scaled so that the furthest control point is 50 units behind the graph 
plane. Therefore the range of depths is the same for both approaches, it is the distribution 
of depths in this range that changes. For the straight edges depth is applied in the exact 
same manner as it is for the bundled edges. To allow this to happen the straight edges are 
not simply end points, drawn with a straight line in between. They are B-splines where the 
control points are set such that the curve is actually a straight line and their depth can be 
modified just like the bundled edges. This results in a v shaped line as can be seen in figure
5.15

Graph Colouring

In our previous experiment, graphs were drawn on a white background, with edges shaded 
from black to grey based on length. Initial tests with the 3D display showed that the
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Figure 5.16: An example of the lower density experiment graph, unoptimised for layout 
and using the same colour scheme as used for the experiment, fi = 0.8.

high contrast and bright white background caused viewer discomfort. To reduce this, the 
colours were inverted and the graphs were displayed on a black background, with edges 
shaded from white to grey based on length, as can be seen in figure 5.16. The billboarded 
glyphs that represent the nodes showed no artefacts when displayed, most likely because 
they were spheres and squares, which would not have a visual disparity between a left eye 
and right eye image.

In our previous experiments, we also shaded edges based on their length in a manner 
similar to Holten [H0I06]. This allowed overdrawn edges to be more distinguishable in a 
two-dimensional rendering. It does also unfortunately make shorter edges more promi­
nent as they appear less faded, in particular if there is hne anti-aliasing, as the more solid 
lines will appear slightly thicker when blended with the background. Furthermore, the at­
tribute that is encoded in the edge translucency is also used to encode the depth in one of 
the experiment depth functions (where edge depth is defined based on length). There is a 
risk of this adding a confounding factor and interfering with user performance as the curve 
depth will now also relate to its translucency. One way avoid such interferences would be to 
remove all alpha blending from the experiment graphs and compare the addition of stereo­
scopic depth to edges to flat graphs without edge shading. However bundling frequently 
uses shading information in many implementations, and there would be a risk of stacking 
the experiment in favour of stereoscopic depth by removing it. The colouring scheme used 
for nodes used is the same as for our previous experiments.
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Display Setup

For our display we used a 55” Samsung LCD 3D television. The 3D effect is created using 
active shutter glasses. The television display frequency for the experiment was 6oHz , re­
sulting in a frame rate of 30Hz for each eye. The display resolution was 1600 x 1200 pixels 
and we rendered in 3D using the OpenGL Quad-Buffered Approach. When graphs were 
displayed on-screen they did not occupy the full height of the display to reduce the effect 
of frame cancellation [Waro4], an effect by which the screen edge appears to occlude the 
graph edge, diminishing the stereoscopic depth effect.

Camera Setup

For our previous experiments we used a perspective projection with an aperture (also know 
as field of view) of 60 degrees and with a standard computer monitor aspect ratio. However 
as described in section 2.6.2 other parameters are required for stereoscopic 3D.

It is possible to view objects on a stereoscopic display such that the depth and protru­
sion from the screen are exaggerated in comparison to what a viewer might experience 
when examining a real world object at a similar scale. However establishing the sort of 
bounds in parameters that allow this type of hyper-stereo and its impact is beyond the 
scope of our research. Therefore we adopt stereoscopic viewing parameters that model the 
scene as if it is a physical object in the real world, in front of the user and occupying the 
same space as the display. This should also reduce any eye strain resulting from differences 
in vergence, image disparity and focal length.

Due to the consistent graph size across experiments the camera is always at the same 
distance from the graph plane. This also allows us to use a constant camera focal length, 
set to 140 units. This is equal to the distance from the user to the display, in centimetres. 
We wish for the graph to pop out of the screen with some negative parallax, therefore we 
display it at 120 units from the user. The graphs were scaled so that their full extents would 
be visible on screen at the viewing distance. To ensure that the edges recede far enough 
from the graph to induce positive parallax, we set the maximum edge control point depth 
to 50 units, resulting in a maximum depth of 30 xmits behind the focal length. This is within 
the practical viewing volume of -25% to +60% of the viewer to screen distance described 
by Williams and Parrish [WP90]. For the eye separation we use 6 units, approximately the 
average interpupillary distance of the human eye. These values were tested by the author 
and gave a satisf)ang 3D effect without any resulting eye-strain, headache or discomfort. 
The range of graphs used for the experiment have a consistent volume and did not require 
any adjustment of these parameters, so they remained static for the length of the experi­
ment. Previous work by Ware et al. [WGP98] and Carvalho [CTD+11] offers approaches 
for dynamic adjustment of stereo parameters which may be useful if a wide range of graph 
sizes were to be used, or to make the stereoscopic effect more pronounced, but was not
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necessary for our experiments.

Participants

24 participants volunteered for our path tracing experiments there were . A 25th partici­
pant was excluded due to issues viewing stereoscopic 3D. All participants, bar one, had a 
background in computer science and had some level of familiarity with node link graphs. 
Each participant viewed each combination of factors once during the experiment. This was 
a total of 72 graphs, in addition to 6 initial training graphs.

21 participants volunteered for our clustering connectivity experiment. 3 additional 
participants were dropped due to an error in the data logging for the experiment. As for the 
path tracing experiment all participants, bar one, had a background in computer science 
and had some level of familiarity with node link graphs. Each participant viewed each 
combination of factors twice and the time and score were averaged across each repetition 
of factors. Each participant viewed a total of 48 graph rendering, in addition to six training 
graphs.

5.3.3 Initial Experimental Results

Significant Results - Path Tracing

For this experiment we performed a 5 way repeated measures ANOVA with within-subjects 
factors: layout x depth x edge density x bundling level x path length.

All significant results for the three dimensional path tracing experiment can be seen in 
tables 5.6 and 5.7. Figure 5.17 shows the significant main effects.

As expected from our previous experiments, graph density and bundling are significant 
main effects. It is clear that bundling across all the graphs still has a significantly negative 
impact (as it it did in the two dimensional edge bundling experiments in section 5.1). There 
is however a notable increase in the effectiveness of the straight line edges (figure 5-i7a), 
when compared to our previous experiments. This difference is not related to the use of 
3D, as it applies to all depth functions and can be attributed to the narrower range of graphs 
and densities used in this experiment.

It can also be seen that there is a large difference in performance between the low and 
medium density graphs (figure 5.17b). The low level of performance across the medium 
density graphs reduces the likelihood of significant results when analysing bundling per­
formance as well as the stereoscopic depth performance. This can be seen clearly in figure 
5.19 where the significant difference between each level of bundling for the different layout 
types changes from p < 0.02 across all graphs to a more significant value of p = 0.001 
across the lower density graphs.
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Current effect F(1, 23)-26 B84 p= 00003 Current effect: F(1, 23)*18,366, p= 00028

(a) Bundling (b) Density

Figure 5.17: Unweighted means of the two significant single factors resulting from the Anal­
ysis Of VAriance for the path tracing experiment. The vertical error bars indicate + / - 
standard errors.

F(2. 48)- 00293. p=,99707 F(2. 48)=4 0888. p-.02380

(a) Accuracy (b) Time(s)

Figure 5.18: Unweighted means of the accuracy and user time taken for the depth factors, 
resulting form the Analysis Of VAriance for the path tracing experiment. The vertical error 
bars indicate + ! - standard errors.
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Effect F-test Comment
Bundling F(i,23)=26.884, 

p=.00003
As shown by the previous experiment bundling sig­
nificantly impacted user accuracy at path tracing

Density F(i,23)=i8.366,
P=.00028

As expected density significantly impacts user per­
formance at path tracing.

Layout ,
Depth

F(2,46)=4.56i4,
p=.oi559

The two different modes of depth (hierarchy and 
length based) are significantly different from each 
other, but not from graphs where no depth was 
used, see figure 5.19a.

Path
Length ,
Bundling

F(2,46)=5.5297,
p=.00705

Newman keuls post hoc analysis showed that for 
answers of Path length 1 or 3 results became sig­
nificantly worse if bundling was used. There was 
no significant difference for path length 2, however 
this length was significantly worse than the other 
path lengths for unbundled edges to begin with.

Bundling,
Density

F(i,23)=6.6957, 
p=.01646

The performance difference between the different 
levels of bundling was much smaller for the higher 
density graphs

Depth, Path
Length,
Bundling

F(4.92)=3-6449. 
p=.00840

The impact of each depth function differed depend­
ing on path depth or bundhng, however no clear 
conclusions can be drawn

Layout,
Depth,
Density

F(2,46)=5.2946,
P=.oo852

As the large density graph impacted performance, 
the impact of layout combined shows as being sig­
nificantly different between densities, see figure 
5.19.

Table 5.6: Results for the ANOVA for the user performance at the path tracing task.
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Effect F-test Comment
Bundling F(l, 23)=6.7222, 

p=.01627
In addition to damaging user accuracy, bundling 
also means that user take longer on average to an­
swer

Path
Length

F(2, 46)=69.207,
p=.00000

As previously seen, longer paths require a longer re­
sponse time

Depth F(2, 46)=4.o688, 
P=.0236o

Post hoc analysis showed that the only statistical 
differences were between the hierarchical depth ap­
proach and length approach (p = 0.039) and the 
hierarchical depth and no depth (p = 0.0252). Hi­
erarchical depth had a negative impact on user re­
sponse time.

Density F(i, 23)=5.9729, 
p=.02261

Density increased time response. This means not 
only did users more likely get the answers wrong 
for the more dense graphs, it took them longer to 
do so.

Bundling,
Path
Length

F(2, 46)=13.125,
p=.00003

Bundling had a strong negative effect for path 
length of 1, a lesser but still negative effect of path 
length 2 and a small improvement for path length 3

Table 5.7: Results for the ANOVA for the user time taken at the path tracing task.

The Impact of Stereoscopic Depth

Performing an initial analysis of the the ANOVA results that the addition of stereoscopic 
depth has not resulted in a significant performance difference across graphs (as seen in 
figure 5.18a), nor is there and interaction effect with density (p = 0.91251). Due to the 
large error bounds as well as the extremely high p value, it looks as if there is no significant 
effect. In terms of time the hierarchy based approach significantly slowed down users by 
approximately half a second (see table 5.7 and figure 5.18b)

However due to the large number of factors there may be some cross-talk (i.e. different 
factors cancel each other out). The ANOVA analysis shows a significant effect for a com­
bination of layout and depth type (p = 0.01559, see figure 5.19a). This significant effect is 
further exaggerated if we consider only the low density renderings (p = 0.00065, see figure 
5.19b).

The previous lack of significant difference, when layout is not taken into consideration, 
is because the effects of each of the depth types (hierarchy and length) partially cancel each 
other out. The effect of no depth (none) is consistent across both layout types. We suspect 
that this occurs because optimising the layout indirectly impacts the depth function for one 
of the depth layout types, that is, when edge depth (edge distance from the graph plane) is 
set based on edge length. It is worth reiterating that regardless of the edge length the depths 
are scaled so that the furthest control point is 50 units behind the graph plane. Therefore
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Current effect: F(2, 46M.5614, p».01559 
31 Unoptimised Layout 31 Optimised Layout

Current effect; F(2. 46)-8.6361, p=.00065 
Unoptimised Layout 31 Optimised Layout

(a) All graphs (b) Low density graphs only

Figure 5.19: The depth types show significant results when analysed based on layout type. 
The significance is even greater when only low density graphs are considered. The vertical 
error bars indicate + / - standard errors.

Depth Function Hierarchy Length None
Hierarchy 0.0260166069832669 0.42277286878992
Length 0.0260166069832669 0.114767729422493
None 0.42277286878992 0.114767729422493

Table 5.8; Newman Keuls post-hoc analysis of path tracing accuracy for unoptimised low 
density graphs.

the range of depths is the same for both approaches, it is the distribution of depths in this 
range that changes. The hierarchy based approach has 3 distinct depths whereas the length 
based approach results in a wide range, in proportion from the length of the shortest to 
the length of the longest. Post-hoc Newman-Keuls analysis show that the only significant 
difference is between the two depth functions as can be see in tables 5.8 and 5.9. There 
were no significant differences between any of the layout types and the absence of 3D edge 
depth. There is also no significant interaction effect between depth and bundling {p - 
0.5742). There were some further interaction effects for user response time which included 
density as an effect. Due to the negative impact of density on accuracy these eflfects are not 
considered (as tracing incorrect paths more quickly is of no benefit to users).

Significant Results - Clustering Connectivity

For this experiment experiment we performed a 5 way repeated measures ANOVA with 
within-subjects factors: layout x depth x edge density x bundling level. Density was the 
only individual factor to provide a main effect, and it did so for both accuracy (p = .ooo5i)and
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Depth Function Hierarchy Length None
Hierarchy 0.0260166069832671 0.231167958289438
Length 0.0260166069832671 0.247430025996758
None 0.231167958289438 0.247430025996758

Table 5.9: Newman Keuls post-hoc analysis of path tracing accuracy for optimised low 
density graphs.

Factor Effect F-test Comment
Acc. Density F(i, 2o)=17.o86, 

p=.ooo5i
As for path tracing, density significantly impacted 
user accuracy

Acc. Layout,
Depth,
Bundling

F(2, 4o)=3.8383,
p=.02986

Acc. Depth,
Bundling,
Density

F(2, 4o)=3.9796, 
P=.02653,

Time Density F(i, 2o)=9.6431, 
P=.oo558

Density increased time response. This means that 
not only did users more likely get the answers 
wrong for the more dense graphs, it took them 
longer to do so.

Table 5.10: Results for the ANOVA for the user accuracy and time taken at the Cluster 
Connectivity task.
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F(2, 40)»3,9796, p-02653 
^ Unbundled 31 Bundled

F(2, 40)*3.8383. p*.029e6 
Unbundled 31 Bundled
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(b) Depth, Bundling, Density

Figure 5.20: The significant interaction effects from the cluster connectivity experiment. 
The vertical error bars indicate + / - standard errors.

time taken {p = .00558). Unlike for our previous experiment, there was no significant main 
effect found for bundling improving user response time, however the value was approach­
ing significance (p = .08619). This can be explained by the smaller number of graphs 
displayed to the user as well as possible interaction effects with other factors. Interaction 
effects were found between layout depth and bundling as well as between depth bundling 
and density see figure 5.20

Depth alone, nor interacting with another single factor, never has a significant impact 
on user performance. The fact that this performance depends on two other factors in such 
a complex manner suggests that it cannot draw any reliable conclusions about its benefit 
in visualising high level trends.

5.3.4 Follow On Path Tracing Experiment

The aim of introducing three dimensional depth was to mitigate the negative impact of 
bundhng on low level path tracing tasks. Due to the result of our three dimensional path 
tracing experiment where there was an interaction effect between the two types of depth 
function, we decided to perform a follow on experiment to clarify the causes of the inter­
action. We aim to validate the effect of optimising layout and depth on user performance 
as was seen in the previous experiment (and can be seen in figure 5.19). As part of this goal 
we altered the experiment as described in the following subsection.

Experiment Changes

Graph Density Graph density is limited to only one type (low) as the negative impact of 
graph density is clear from the preceding experiments.
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Three Dimensional Depth 3D depth is limited to only length based depth and no depth. 
This is due to the negative impact on time by hierarchy depth and is also to allow the user to 
view more rendering within the experiment in order to obtain more statistically significant 
results.

Edge Shading Edge shading was not considered a factor in our previous experiment. 
However, as we are using edge length as a measure to control edge depth and as this is 
the measure used to control the alpha blending of edges, we believe that it might have an 
impact on user performance. We therefore display shaded and unshaded edges to the user. 
An example of an experiment graph both shaded and unshaded can be seen in figure 5.21.

Experiment Graphs A limited set of random graphs was used in our previous exper­
iment and rotated versions of the graphs were displayed to the user. For our follow on 
experiment we created a large set of random graphs structured using the same approach 
as before. The graph set contains two layouts of each graph: one optimised and one unop­
timised. The random nature of the graph generation means that the optimisation process 
can have a wide range of improvements for graphs. Some graphs have a very large edge 
crossing reduction, some have little or none. The average edge crossing reduction across 
all graphs was 55.43% of edge intersections with a standard deviation of 27.41%. The average 
reduction of inter-cluster edge crossings was 17.08%, with a standard deviation of 11%. In 
addition to increasing the number of random graphs, due to participant feed back the trial 
time-out was extended to 30 seconds and participants were allowed enter an answer once 
the time expired.

Participants 14 participants took part in this experiment, all of whom had a background 
in computer science and had some level of familiarity with node link graphs. Each partic­
ipant was shown each combination of factors 3 times, resulting in a total of 144 separate 
graph renderings, in addition to 6 training graphs.

Hypothesis

Our main hypothesis is as for our previous stereoscopic path tracing experiment. We hy­
pothesised that adding depth information to the edge bundles in a direction perpendicular 
to the graph plane will improve user performance at a path tracing task when viewing the 
graph in stereoscopic 3D. If we add depth, perpendicular to the graph plane, to the graph 
edges and view the graph stereoscopically, user performance for path tracing of bundled 
graphs will be improved. We also want to investigate the impact of edge shading, particu­
larly as edge depth is also based on edge length. Therefore we hypothesise that edge shading 
will have a significant impact on the users perception of the bundled edges, resulting in an 
improved level of accuracy, when compared to unshaded edges.
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Figure 5.21: An experiment random graph shown with and without edge shading.

Factor Count Values
Layout 2 Un-optimised, Optimised
Depth 3 length, None
Path Length 3 1,2,3
Bundling 2 = 0.0 , ^ = 0.8
Shading 2 Unshaded,Shaded

Table 5.11: A summary of the various factors considered for the ANOVA analysis of the 
follow-on path tracing experiment.
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Effect F-test Comment
Bundling F(i, 13)=ii2.67, 

p=.00000
As for previous experiment bundling significantly nega­
tively impacts path tracing accuracy.

Bundling,
Path
Length

F(2, 26)=4.3225,
p=.02395

As for previous experiments,there was an interaction ef­
fect between bundling an path length.

Layout,
Bundling,
Depth

F(i, 13)=4.9136,
p=.04509

The interaction effect due to depth is not very strong. 
Newman Keuls post-hoc analysis showed that depth 
is never significantly different for the same levels of 
bundling and layout. Bundling and layout alone approach 
significance (p = 0.068), so we can say depth is not con­
tributing much as part of this interaction

Bundling, 
Depth, Path 
Length

F(2, 26)=6.4849. 
p=.00519

The only combination of other factors that depth is sig­
nificant for is for bundled paths of length 3. The addi­
tion of depth results in accuracy being significantly worse 
ip = 0.0363)

Table 5.12: Significant results for the ANOVA for the participant accuracy at the second 
path tracing experiment.

5.3.5 Results

For this experiment we average the accuracy and time results across the three repetitions 
and performed a 5 way repeated measures ANOVA with within-subjects factors: layout 
X depth X edge density x bundling level x path length. The main significant results are 
summarised in tables 5.12 and 5.13. It is clear from the results that the addition of depth to 
edges does not improve path tracing, whether or not the edges are bundled, as it provided 
no significant difference in user score (p = 0.951). While there were some interaction ef­
fects which included depth, (see figures 5.22, and 5.23), its impact as part of the interaction 
appears to be quite small. Depth also shows a significantly negative impact on time, with 
users averaging 1.37 seconds longer (p = .00467). Edge shading did not play a part in any 
significant effects for accuracy or time. Therefore both of our hypotheses for this experi­
ment have been proven false. We discuss why the addition of stereoscopic depth failed to 
improve participant accuracy at path tracing for our test graphs in our conclusions.



159 Chapter 5. Edge Routing

Effect F-test Comment
Depth F(i, 13)=ii.6i4,

P=.oo467
Three dimensional depth slowed down users by 1.37 sec­
onds on average

Path
Length,

F(2, 26)=49.6i5, 
p=.00000

As for all previous experiments, the larger the geodesic
path, the larger the time taken.

Bundling
Path,
Length

F(2, 26)=23.174,
p=.ooooo

As for our initial stereoscopic experiment bundling had a
strong negative effect for path length of 1, a lesser but still 
negative effect of path length 2 and a small improvement 
for path length 3

Table 5.13: Significant results for the ANOVA for the participant time taken at the second 
path tracing experiment.

Current effect: F(1, 13)=4.9136. p=.04509 
^ No Depth ^ Length Depth

Unopt.

Unbundled

Unopt.

Bundled

Figure 5.22: The significant interaction effect between bundling, layout and depth for the 
foUow on path tracing experiment. The vertical error bars indicate + / - standard errors.
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Current effect; F(2, 26)=6.4849, p=.00519 

Unbundled Bundled

none

Path Length = 1

none

Path Length = 2

none

Path Length = 3

Figure 5.23: The significant interaction effect between bundling, depth and path length for 
the follow on path tracing experiment. The vertical error bars indicate + / - standard errors.

5.4 Conclusions

5.4.1 Edge Bundling

Path Tracing

From our experimental results it is clear that, within the context of our experimental setup, 
bundling does not aid users. It actually hinders them at path tracing tasks, not only in terms 
of accuracy but also in terms of time taken to complete the task. An important caveat 
for this result is that no visual enhancements for the bundling other than translucency 
were used. As previously mentioned, colour is often used in edge bundles. This may have 
a significant effect when it comes to distinguish individual edges within bundles even if 
Holten and van Wijk’s [HVW09] user study on how best to render directed edges indicated 
colouring was not the best option, as this was not in the context of bundled edges. The 
use of colour and depth to aid in the perception of bundles is certainly a topic worthy of 
further work.

Furthermore, the positioning of nodes within clusters relative to bundles and their as­
sociated control points may have a significant impact. Within the experiments, no con­
sideration was given to the routing of bundles around clusters or nodes in order to avoid 
confounding factors between the bundles and straight line graphs. Adjustment to the clus­
ter hierarchy control points, algorithmically or with user intervention, could further reduce 
visual ambiguity that results from this.
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Cluster Connectivity Path Tracing

For recognising high level patterns, bundling offered no significant improvement for in­
termediate levels of bundling, and is a hindrance when the tightest possible bundles are 
used. However bundling does produce a significant positive effect on the time taken to 
answer, without negatively impacting accuracy. Therefore it can be recommended when 
understanding high level connectivity is important. In terms of the level of bundling used 
we found no significant differences between the ^ = 0.7 and ^ = 0.9 levels of bundling for 
path tracing based task or recognising higher level patterns. While the ji = 1.0 does provide 
a clearer view of the graph nodes, it is of no benefit in terms of graph comprehension.

5.4.2 Three Dimensional Stereoscopic Edge Bundling

It is clear from our results that our approach for adding depth to edges did not benefit the 
user, and specifically did not counter the negative impact of edge bundling as was originally 
expected. Depth frequently played a role in interaction effects, but never had a significant 
impact as a measure alone, nor in conjunction with edge bundling. In our initial three 
dimensional path tracing experiment, there was an interaction with layout, in terms of 
edge crossings. To investigate the relationship further we ran an additional experiment, 
where every graph was randomly generated and edge shading was added as a factor. The 
fact that no significant effect was found indicates that the interaction between depth and 
layout in the initial experiment was derived from characteristics of the graph other than the 
layout optimisation. It is clear from this, as well as the fact that depth often interacted with 
multiple other factors, that the role of stereoscopic depth when perceiving edges is subtle 
and relies on characteristics of a graph other than the ones used to define our experiment 
graphs. Another potential source for the lack of significance was the fact that we used quite 
straight forward measures to determine the depth of edges, however a more complex depth 
function may lead to different results.

Previous work has shown the stereoscopic rendering of three dimensional graphs to be 
beneficial [WF96, WM08, SM93, HHLio]. While our work may appear to contradict these 
findings, there is one key characteristic about our approach which differentiates our work 
from the existing literature, and also explains why we saw no benefit where others did. Our 
nodes remained in a flat plane, only the edges were extended into three dimensions. We 
avoided the the positioning of nodes in three dimensions to allow us to evaluate the perfor­
mance of three dimensional edges independently of three dimensional node positioning. 
However, clearly the position of nodes in three dimensions plays an important role in the 
traceability of paths. The continuity of edges in a path being traced is an important graph 
aesthetic [WPCM02]. The fact that our three dimensional edges began and ended perpen­
dicular to the graph plane would have resulted in a lack of three dimensional continuity of 
the path being traced (in addition to the lack of continuity in the two dimensional graph
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plane that bundling can cause).
One potential solution to this would be a clustered graph layout where the clusters lie at 

different stereoscopic depths. This would allow for more continuity between edges and the 
varying positions of the nodes in three dimensions should make the edges joining them 
easier to perceive. Such a layout would have to consider many problems not encountered in 
our experiments, such as the occlusion of nodes, the layout of clusters (as a circular layout 
of cluster nodes may not be useful within a fully three dimensional layout), as well as a new 
method to extend bundling into 3D.



Chapter 6

Conclusions and Future Work

This chapter summarises the conclusions of our research and provides directions for fu­
ture work on visualising dense small world graphs, using agglomerative clustering around 
nodes of interest.

6.1 Conclusions
Graph visualisation is an extremely broad field, covering many subtopics. There is more 
to the visualisation of a graph than an aesthetically pleasing positioning of nodes. To this 
end we examined many different aspects of the field. We examined the clustering of a 
graph around nodes of interest to the user. We showed how such a clustering can be used 
as a basis for laying out a graph. Once a graph node has been positioned the routing of 
edges plays a large role in comprehensibility of a graph, so we also examined edge routing 
techniques providing a thorough evaluation based on user performance at low level tasks. 
For our clustering and layout we predominantly considered small world graphs, as these 
characteristically reflect many real-world graphs and feature a level of structure which we 
believed to be useful for graph clustering. It is also possible to procedurally generate small 
world graphs, where other characteristics such as node count and edge density could be 
altered, to allow for thorough experimentation and validation.

6.1.1 Graph Clustering

In chapter 3 we introduced our approach to agglomerative clustering of small world graphs 
around nodes of interest. An important difference between our clustering approach and 
many existing approaches is that we use a set of input nodes specified by the user as the 
basis for building the clustering. Each node of interest specified by the user forms a basis 
or a cluster, which is grown agglomeratively.

We suggested that average clustering coefficient of clusters could be an effective heuris­
tic for our agglomerative clustering, testing its use on a mix of procedurally generated and
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real world graphs. We then refined our clustering approach further and evaluated it using 
a large range of procedurally created graphs. We also investigated the effects of our clus­
tering approach using a benchmark dataset describing papers in the field of information 
visualisation and the citations between them.

We found that clustering coefficient makes an effective heuristic for agglomeratively 
clustering small world graphs around nodes of interest. We also demonstrated this using 
an example of clustering around four papers of interest in the information visualisation 
data set. For our example case, using clustering coefficient as a heuristic produced clusters 
which were more aligned with the classification of papers by keyword (provided as part of 
the dataset), than when modularity was used as a heuristic. However, modularity, a metric 
relating to the number of edges between clusters, was still a useful heuristic. It provided 
effective results for procedurally generated small world graphs, and also provided effective 
results, compared to other heuristics, for procedurally generated graphs which lacked the 
structure of small world graphs.

6.1.2 Graph Layout

Clustering graphs, using our agglomerative approach, groups nodes together around the 
nodes of interest specified as an input. However this data must still be presented to the 
user. In chapter 4 we discussed approaches to graph layout using a clustering hierarchy. We 
demonstrated how clusters can be laid out using circular layouts and demonstrated how 
inter-cluster edge crossings can be reduced using intelligent initial placement of nodes and 
cluster rotation for hierarchically clustered circle layouts.

In section 4.4 we utilised our agglomerative clustering approach to develop a multi­
level layout. We showed how the relationships between the initial top level clusters can be 
replicated throughout the generated graph hierarchy. We demonstrated two approaches 
to layout, hierarchical and multilevel, that utilised the hierarchical clustering. The layouts 
reinforced the relationships between the clusters formed around the nodes of interest, po­
sitioning sub-clusters closes to the higher level clusters that they were more strongly related 
to. Of the two layout approaches, multilevel layout gave a more appealing result in terms of 
cluster spacing. We also showed how the hierarchy can be utUised to generate hierarchical 
edge bundles, to help clarify the relationships between the clusters.

6.1.3 Edge Routing

Graph layout algorithms primarily position nodes, often giving consideration to the rela­
tionships between nodes, defined by the graph edges. However, most algorithms do not 
directly consider edge routing. This results in edges being a source of clutter for many high 
density graphs. Edge bundhng is a recently popular clutter reduction technique. In chap-
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ter 5 we examined the impact of edge bundling using user experiments, which focused 
on user perception of low level node connectivity, as well as higher level edge trends. The 
hierarchical nature of our layout, described in chapter 4, naturally lends itself to Holtens 
approach of hierarchical edge bundling. We developed an approach for generating hier­
archically clustered graphs for user experiments. In these compound graphs, inter-cluster 
edges were distributed using a power-law and intra-cluster edges were given a flat prob­
ability of distribution. We used our test graphs to validate edge bundling over a range of 
densities and node counts. We showed that while edge bundling negatively impacts a user’s 
ability to trace paths at a low level, it allowed users to recognise higher level trends more 
quickly.

Given that previous work has shown that stereoscopic rendering of graphs laid out in 
three dimensions aids users at a low level path tracing task, we performed experiments to 
determine if stereoscopic viewing could be used to counteract the negative effects asso­
ciated with edge bundling on path tracing. We developed approaches for rendering edges 
with stereoscopic depth for a graph drawn in a flat two dimensional plane, by adding depth 
perpendicular to the graph plane to edges. We performed user experiments, utilising a 
stereoscopic display and active shutter glasses. Our experiments examined the impact of 
different approaches to depth, as well as the impact of shading and layout, with respect 
to the reduction of edge crossing. The resulting data showed no statistically significant 
benefit to using depth when viewed under stereoscopic conditions. Our results illustrate 
the difficulty of utilising three dimensional viewing, in that it’s difficult to characterise any 
performance impact alone based on stereoscopy, independent from other factors such as 
characteristics of the graph.

6.2 Future Work

6.2.1 Graph Clustering

We have demonstrated the effectiveness of our agglomerative approach to graph cluster­
ing, however there are many variations and enhancements possible for future work. Our 
current approach begins with a single node of interest per cluster. It would be possible to 
allow for multiple nodes to be assigned per cluster initially, allowing users to have more 
control over clustering. We have provided a detailed evaluation, however further evalua­
tion is possible. We utilised some established heuristics from the literature and practical 
considerations restricted us from including others. Other metrics are available and new 
ones will most likely be introduced in the future.

A higher level user qualitative evaluation, based around real data and a high level task 
and a user survey, such as that of Risden et al. [RCMCoo], would help gauge how useful 
subject matter expert users find different metrics to guide the agglomeration process. It
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would also help definitively determine how users would use the ability to rearrange graphs 
around nodes of interest, to aid in a task. Such an evaluation is a very significant under­
taking, in terms of time and resources, and was beyond the scope of this thesis.

Another possible improvement would be to automate the selection of nodes of interest 
to create a more general approach, for when the user does not have nodes of interest in 
mind prior to graph analysis. For our experiments in section 3.5, we automated the selec­
tion of nodes of interest by selecting nodes based on node degree. This approach was purely 
practical, ensuring that the similar nodes were selected for each run of the algorithm for 
different graphs. There are other centrahties such as vertex betweenness or node clustering 
coefficient which could be used to specify an initial node set for the agglomerative clus­
tering. These centralities could possibly be used in conjunction with an independent set 
filtration, as used by the GRIP layout algorithm[GKoi], to ensure a distribution of nodes 
across the diameter of the graph. Any approach used to generate an initial node set would 
need to be thoroughly evaluated experimentally against a wide range of input graphs and 
varying agglomerative clustering input node sets, to be sure that resulting clusterings are of 
high quality and stable across a range of input graphs. The performance of our agglomera­
tive clustering with different sizes of automated initial nodes sets, on graphs with different 
characteristics such as size density and edge distribution could also prove significant in 
terms of automating the input node set.

6.2.2 Graph Layout

Our graph layout approaches are an initial step, and not a complete solution. As stated 
in section 4.6 further work is required on the weighting of graph nodes for force directed 
layout. Further analysis is needed on the usefulness of generating a layout using a multilevel 
hierarchy of more than a few levels deep. We also need to examine the impact of much 
larger scales of graph, as well as the practicality of other layouts (such as some form of 
force directed layout) for the nodes of leaf clusters.

Graph layout is one of the largest sub-fields in graph visuahsation, with many publica­
tions focusing solely on the drawing of graphs. There are a wide range of possible layouts, 
many of which could be alternatives to the approaches described in this thesis. There exist 
comparisons of graph layouts such as such as that by Hachul and Jiinger [HJ06] and Bartel 
et al. [BGKMii]. None of the algorithm’s compared are based around specifying an input 
set of nodes, therefore a direct comparison to our approach would be difficult. The suc­
cessful development of an automated node selection set, as just described in section 6.2.1, 
would allow a proper comparison. The extension of edge routing into 3D failed to provide 
us with a significant increase in performance. However, adopting our layout into a 3D ap­
proach, where nodes and clusters are placed a different depths may allow us to reap the 
benefits described by Mitchell and Ware[WMo8].
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6.2.3 Edge Routing

There are many different approaches to bundling, for our evaluation we utilised the Holten’s 
hierarchy based approach [H0I06], which popularised the technique. Holten’s approach 
was suitable for our evaluation as our hierarchical layout approach provides the hierarchy 
structure required for routing edges. Other approaches exist and may fare differently under 
evaluation. Our evaluation of edge routing did not consider node avoidance resulting in 
some nodes being drawn over edges that they are not connected to. It may be possible to 
develop Holten’s technique further, through the introduction of extra control points, so 
that edges bundles avoid nodes that are not part of their source or destination.

Our evaluation of edge bundling with stereoscopic viewing showed that using three 
dimensional depth had no significant impact on user performance. Our approach focused 
on using three dimensional depth for the edges between nodes. Further experimentation 
on utilising edge bundling between clusters at different depths as part of a full three di­
mensional graph layout may produce different results.
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