LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Visualising Small World Graphs using Agglomerative
Clustering around Nodes of Interest

Fintan McGee

August 23, 2013

A thesis submitted to the University of Dublin, Trinity College in candidacy
for the degree of Doctor of Philosophy in Computer Science.

TRINITY COLLEGE
- & MAR 2014

LIBRARY DUEL™N

Ahea (02 bb

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise
for a degree at this, or any other University, and that unless otherwise stated, is my own

work. I agree that Trinity College Library may lend or copy this thesis upon request.

W
: Tu---

' " n i 5 i . . . o I - "I‘_ . ..:'_'_
I’h‘l.r I l' - - - B f H,*r. n . ‘.. :*I.Jhr‘ r. =L ‘..JI.I 1' _I

i - h ™ . III Ny B . y i III 1 T
! ud B 5 il et ERLL A A R o i A
'I .." I:. N i '.I i):" . "'. = | |' i u-‘_. wF\.\. L g™ : el ol e o .l._' .
i RO TS M -
- |I| - II: I' B - I“-'II”” i o ”"I i- L ‘ I I
a6 - R } ‘ i
L T - ‘ N
T - SRR - _-;.'.i) . o . AN el
| SR P T T | i i -
A e 'a‘-iﬁi'ﬂ"'"-"i R AL , : A e TR
gt T E,“ " may, S I PP ety B : ARy R o
EETE et - n_. i Sy i, I : v A
s g il o N . '3‘-'\,5'1'.""--"-, 4 ; .
2 : ‘ A A
¥ | " .I I

Summary

The difficulty of visualising large graphs lies not just in processing power and display size
but in the inherent visual complexity of a large data-set, as the noise and clutter from large
numbers of nodes and an order of magnitude more of edges negatively impacts the compre-
hensibility of any visualisation. Small world graphs are a classification of graph that occurs
frequently in models of real world networks such as computer systems and social networks.
The overall objective of our research is to allow users to get a better comprehension of the
relationships between data entities in the visualisation of real world systems.

The layout of a graph has a significant impact on its comprehensibility. Automated
layouts may be used to cope with graphs containing a large numbers of nodes and edges.
However, this may only provide a globally optimised layout, and may not necessarily focus
on the nodes which might be of interest of the end user.

We introduce a novel approach for making large small world graphs more comprehen-
sible by decomposing the graph into clusters, using an agglomerative clustering process
based around user defined nodes of interest. We propose using clustering coefficient, a
prominent feature of small world graphs that relates to local graph structure, as a heuristic
to guide the agglomerative clustering process. We validate the effectiveness of our cho-
sen heuristic experimentally against a large range of graphs and in comparison to other
clustering heuristics.

We extend our clustering to generate a clustering hierarchy which reflects the clusters
around the user’s nodes of interest at multiple levels. We utilise this hierarchy to perform a
multilevel layout providing users with a view of the graph, which reflects the relationships
between the clusters defined by the user’s nodes of interest. We also utilise our clustering
hierarchy for edge bundling, a recently popular cluster reduction technique, in the graphs
produced by our layout.

We provide an empirical user evaluation of edge bundling, the first of its kind to our
knowledge. Our results show that while edge bundling negatively impacts understand-
ing of low level node connectivity it does aid in the identification of higher level trends
between clusters. We have also extended edge bundles into three dimensions for stereo-
scopic viewing and evaluated it empirically. Somewhat surprisingly, our results show that
the stereoscopic viewing of edges with three dimensional depth offers no significant benefit

to users.

i] 1
8 ~rih Lt b

', x i -
I"-I]'jl "".

v

e BRTRS

. o LI e . 4.1- |. i - .‘HH ey “
‘H (= :I " o Hﬂ‘.: N ;#”T-'ﬂ.‘ *F‘f.-s-.:'.,h o, 4 F,‘ i _:‘_H' ""F 1N FIJ‘H o I,” -_;TH.E.I-' . ot I.] I IFJ_ 'l-- -“ r‘w-?!lh'
TR ki , i

ﬁhl.uu,,...lu.lli i'v'lhd- e O

T PR N L - F'.. . -q - "i' k.
L w'“.v e *'?" BT
e P i i o bt

" e m "w“' ' o N IR J,'” | R -
| - e . ! . IR ,,,' i o !] L
. il ey Wi W e Mm et R T e g OSSR hﬂl'-tmhri-ﬂf
W ; D R e TR e '.-'.".'
R TR U SPYLTORP T T S PR R S T)
.- I:‘h) ' ; ! . e i AR Qe fi=
v] | L o 1 i L '
. Nl LT Sl T ' . S i
3 .‘,‘ B R i ..1'.”| L L ""”,.' S A \.‘1 B e L Ly
1 ¥ R III III'\ ||I o | : 1 1 |||| H I_il
W) i o i i i o Fy U et .| o .|_
! i b ! : i L e . el .|. i ‘..‘ -|'|..."
, s i ik i) i1 I |I|”I i ‘I | i 1 |-- mﬂ
] ") I 1 1 - II
f
s o
I : ! \f ." !
g |] [’ X Y rII .I .”"_ VA ™
! B : 1] ¥ ‘
‘
|I 1 | i
. :
, e y
R T - :
1 5 1 a e) v II
.
‘
.
‘
:
.
1 v _I i
‘
.
. :
o) I| 1 III 3 |||
II | ' IHIII v | 1
T 1 Sl R T)
il) |I I | g | | I‘II II\
.
.
.
:
II v II vl I
L IH I ‘I)
I‘ I | |
.
.
.
.
:
i
.
.
‘
.
[1 '
‘
.
-
‘
.
.
.
. ‘I] v Ly I 1
. ol .
H‘ : III I|) I‘I . 1 | " . ‘I)
B | i ' .
.
‘
‘
:
:
‘
B
.
v 1 |I H”III :
. , ‘ P R
. [t =1) i T L) .

Acknowledgements

First and foremost I'd like to thank my family for their unconditional support and encour-
agement throughout months and years of my PhD journey.

I believe the role of supervisor is very important and has a big influence on the path of
a PhD. I was very fortunate to have an excellent supervisor, John Dingliana. Without his
advice, support and his seemingly endless patience the submission of this PhD would not
have been possible.

My colleagues in GV2 also played a vital role in this work. I am grateful to them all
for their support, aid in developing experiments, experiment participation, proof reading,
advice and general good company. Special thanks go to Ludovic Hoyet and Sophie Joerg
for consistent moral support throughout and excellent advice and help in the submission
of papers.

Contents

List of Figures

Chapter1 Introduction

11
1.2
1.3
1.4

1.5
1.6

I fo e Do i PR e el T R S R s
Key CORMEBPIE &0 © 03 55 ¢ o s s aie s sn siwh vt senimanss o o slowa
e v S A R B
S L o e e s 2 ! % 3t e mbr sl s % 8 s o s
Reélateel PODHCREOIEL . 0 v aie £l o 6 v 50 o tes o b n 5780 a e e
i IR T R Gl P S M RS

Chapter 2 Background and Related Work

2.1

2.2

25

2.4

I O
211 Graph Visualisations
222 SmallWorldGraphs
2.3 . Graph Centrdlitles ¢ o o s v i dun b n e e s
2.0 | G EARETIERIT | . . s A e e e e e e
Grapli CIUSIErIRG o o & & c0d s b oo e vtk v s § 6s s mios o snnnnsas
221 Clustering Overview
222 CIUSIEIING ADDIOBCHES . ¢« o v v i v v s o o5 vm o nwos onomas
223 Clustering Evaluation
o T S
231 Porce directOdUaYOME .. ¢ .- v civ b s v hh s vn s i s e e
2.3.2 Fruchterman Reingold Layout
2.3.3 Multilevel Layouts
234 HierarchyBased v o die v e s s e e e
235 AlgebraicApproaches0c00viuennn
236 Circolatlayoltsoivvivcnnnvencnionnnsses
GraphWisualisation Bvaluation’. . . . o« o . . oo v i i v i it
249 EvalustionGraphsiiitrninenninnn
242 ‘GraphAesthetics. v v v oo v ivensonas

2.4.3 Evaluating User Performance

CONTENTS ix

35 - (EOgOROUGHID: 'k 5 s B e o s 8w gl st dle & o) 5 it & B ey 41
254 - Bage BUBAIDG . « 5 s s 0 vl wm siisdi e g Gl ae s b pie ime s ls 41

2.6 Three Dimensional Stereoscopic Vision and Graphs 47
2.61 Stereoscopic Displayof Graphs 47

2162, SErEOTENGEIIRE « o « 5 s v s o 6 5 & 5 5,8 v %% ¥ son & & m0s @ 00 G0 49

2.6.3 Three dimensional layoutofgraphs 52

2.7 Implementation of Graph Rendering and Processing 52
371 JGraphics HarAWAre «« |l 5. o 7l s sl SasATS (e 1 gim o e b 53

272 | GEU Frocessifig . . . om0 R e e i m e et n il s 53
Chapter3 Agglomerative Clustering around Nodes of Interest 55
31 Motivation for Clustering 56
5.3 RAMBAWOIE &« 0 ovinv = % v 0% ola 2rs wrbe e ool 2l Do 80 6146 A s |ourihias i 56
AR ene -, & b e 5k Lo N o Bl i e L 57

3.2.2 Clustering Evaluation Metrics oo vov oo s o ansls osies 57

S TR L e P A e 58

3.3 Calculating Average Local Clustering Coefficient 58
3.4 Initial Investigation of Clustering Coefficient 59
340, - IBEOGIEGON. 1 wus cb e mleiss et sl s aabr & e bt ok, s 59

3.4.2 Initial Clustering Algorithm 60

543 Bvaloation Approach e eas s wnannieiels anens 61

Nl —ROEUReR sl ol o o e e TR |l el o N i, A3t Sty 62

3.4.5 Conclusions of our Initial Investigation 72

3.5 Maximising Clustering Coefficient Approach 73
350 - Clustering APPTOachl. . ', s ols = 5% sis s 5 o @ s s & xins oo 73

e CHOSER HBMBIBEGE s & o x sl el s o e e i w5 s e AR e e 73

258 INdal CIASEEBEt LD 0. . . oL v)i v a3 w50 20 o e 5w s e e 75

3.54 Assignmentof Nodesto Clusters . . . o« . cvie o mvs v smw 76

3.6 Clasteringevaluation w1 7o b v el s Nivie Giata i trae i Boia 77
361 Evaltation GIaphs ||« { . 0. s s a sl es s b w8 e oo 77

362 ResultSand AnalyRis . '« L su vwiais s e e n s b o i 78

3.6.3 Comparison with Edge Betweenness Centrality Clustering 86

3.6.4 - Pyvalustion Conclusions s« « s oin s & a8 whe muy ¥ ¢ o s sb 04, 4 1 89

3.7 Historyof Infoviz Data-SetExample« . . .o ouhoeaos e asss 90
3.7.1 Clustering APProdel o . .« o« wx a5 5 ais e nle ss 5 mie sia ke 93

3.7 1+ ICIAStering EVAINREON . b 555 s windal o Ty Kol Jale 375s b 30 30 in el ' s 93

3.8 1 "Conclusions and Pultre Work': &l . . 05 .5 5 § g o o's o e sty siin n e e s .4 99

X CONTENTS

Chapter 4 Graph Layout 101
2l WG LTIV E T 0T TE ol o oh I om0 o e P S 102
4.2 - Related WOTK oo v as i bid aha s oo s se s s o s e wio e s ossions 103
43 Cireular Layout of CIISIEEs | . o oo i s s o5 s s a0 s s v sm o s uns o 103

431 InitialNodeOrdering 104
4.3.2 Cluster Rotation Implementation 106
433 | CICOIBUSHMNG - o i Wk o b e e s e b 6 s e e e e s 107
4.4 Layout and Hierarchy Generation 108
4.41 Generating a clustering hierarchy 108
4.4.2 Hierarchical Clustering Layout 111
443 ‘Multilevel CIaBter Layomt . . .« o « o« sov w5 omim s o 6 sis s 50 o m
A S e e R i ST T 113
451 . Hierarchical LAYOUL . .ot v v v s 4 oo mio s v s sie s aas o u 114
4.5:2 - Multilevel Layomt . o « <o 000 v s w atate s v ade s e s ey 116
4.5.3 Hierarchical EdgeRouting 116
4.6 Conclusionsand Future Work 118
Chapter 5 Edge Routing 121
54 Bdge Bundlng EvaluREEm . o 5 o v s wlion oosiin e g iels e s e 8 122
531 . Evalnation MOotIVaEIOn: . < oo o s o o o0 e oh v s e s e e 122
5..2 Previous Experimental Approaches 123
51.3 EvaluationHypotheses0. ..o oivvreionnssoes 124
5.1.4 Experiment Bundling Approach. 125
515 ExperimentGraphs00ciiinnean. 125
51.6 ExperimentMethodology 128
ShE N AL b s Lkl e b g S e won T e Bl e m i we s E e 131
5.2 Stereoscopic Three Dimensional Edge Bundling 139
S R (e o e S S S A S A 139

5.22 Edge Routing in three Dimensions with stereoscopic viewing . . . 140

523 DebningCUmve DRI | . < 00 i i vuv v oo sie e ennsns 142
5.3 Three Dimensional Bundling Experimental Evaluation 143
L s R T A U 143
5.3.2 Choice of graphs and experiment factors. 144
5.3.3 Initial ExperimentalResults 149
5.3.4 Follow On Path Tracing Experiment 155
San . BRI D 2L L B R L s o S e s s s 2 158
LR R S e DR € AU 160
541 EBdgeBundlingc0c0iieunniiniiennnas 160

5.4.2 'Three Dimensional Stereoscopic Edge Bundling 161

CONTENTS

Chapter 6 Conclusions and Future Work

6.1

6.2

Conclusions
631 GraphClastering . « 5.d s 5 s o 5w s ol s
612 GraphLayout....................
613 EdgeRouting
Butige Witk . : . dcaic o s 006 s o mi i e 5 o b
6.21 GraphClustering
62z, Graph Layout . . . « Soile oo bow Bl v e ts
625 L Edpe ROUWANE « o vl o' o s il atle L6 &

Bibliography

............

............

............

............

163
163
163
164
164
165
165
166
167

169

List of Figures

1.1

1.2

2.1

2.2

2.3

2.4
2.5
2.6

2.7

2.8

2.9

2.10
2.11
2.12
2:13
2.14
2.15
2.16
2.17
2.18

2.19

2.20
2.21

2.22

Minard’s flow map of Napoleon’s Russian Campaign of 1812.
Simple artificial social networkgraph.,,

An undirected graph modelling the social connections of the karate club
studied by Zachary[Zac77]. L.
A simple graph showing the local clustering coefficient of each vertex. . . .
The shortest path between the two green nodes (10 and 4) is via the two
i Lo e R S A AU
A simple graph illustrating the betweenness centrality of each vertex.

A simple graph illustrating the betweenness centrality of edges.

Example of clustered graphs with different MQ values (clusters are denoted

by DoaecololB). ;{0 ol B L A b el e e e e e ae e e
Force Directed Layout of a graph containing 91 vertices.
FM3 multi-level layout example.
A simple circular layout of aionodegraph, ...,
An'example of a balloontreelayout on s oo i bl e s
A clustered circularlayout. L oL
e Rl T T R R o (I R S
A fully random procedurally gerneated graph
A small world graph generated by Watts and Strogatz’ approach
Hierarchical edge bundling, software system example.
Migration example using geometric edge clustering
Edge Clusteringexample
Example image taken from [ZYC*08], showing the effect of Zhou’s Hi-

erarchical edge bundling. The graphs are unbundled in the top row and

bundledinthebottom).
A World War 2 stereoscopeand Case.
Single camera projecion: . . "% <'s s 5w s e s 4 v s s e b e we w e e

SICERO COMErn PEDICCHOR. . J /1y 45 b & v s o in b o s 8 5 5 s e s 5 3

2

2

11

13

25

45
47

LIST OF FIGURES xiii

2.23

3.1

3.2
33

3.4

3.5
3.6

3.7

3.8

3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

3.21

3.22

The vergence angle of the eyes 0 changes depending on the distance to the
objectbeingfocusedon. o L 52

Wikipedia graph with 91 vertices and 567 edges laid out using a simple

force directed algorithm. o L 63
Graph from Figure 3.1 using our approach. 63
The modularity of graphs containing 60 nodes and increasing in density,

using the described clustering approaches for building 4 clusters. 64
Modularity for building s clusters. 65
Modularity for building 6 clusters. 65

The modularity of graphs containing 60 nodes and 240 edges increasing
in clustering coefficient, when clustered using 4 nodes of interest. 66
The modularity of graphs increasing in clustering coefficient, when clus-
tered using s nodesof interest. <« h b e s e s s v g w a s 67

Sports club graph with 100 vertices and 803 edges laid out using a simple

forcedivected alPOBERIN. oL Dl e e i e e s e e i 67
Graph from figure 3.8 using our approach. 68
Layout of the Genealogy of Influencegraph. 70
Clustered layout of the Genealogy of Influencegraph. 71
The number of correctly clusterednodes. 72
A simple illustrative clusteringexample. 76
The average clustering coefficient of test graphs. 78

Evaluation of graphs with 200 Nodes and a density of 0.03 (d; = 3), and an
increasing level of randomness, denoted bypvalue. 79
Evaluation of graphs with 200 Nodes and a density of 0.07 (d; = 7), and an
increasing level of randomness, denoted by pvalue. 81
Evaluation of graphs with 200 Nodes and a density of 0.07 (d; = 7), and an
increasing level of randomness, denoted by pvalue. 82
Evaluation of a graphs with 200 Nodes and a density of 0.51 (d; = 51), and
an increasing level of randomness, denoted by pvalue. 83
Evaluation of a graph with 200 Nodes and a constant input rewiring prob-
ability p= 0., and'an increasing deisity. < 4 4 < oo ¢ b el na 84
Evaluation of a graph with 200 Nodes and a constant input rewiring prob-
ability p = 0.95 ; and an/increasing density. . o « ¢ ws o o i w4 w gl b 86

Evaluation of AC3 vs. Edge betweenness for graphs of increasing random-

Evaluation of test graphs when clustered using Newman and Girvan’s Edge
Betweenness Centrality clustering (EBC) and our clustering coefficient heuris-

o' (ACS) IOTICOMPATISON.: = ;. sar s o < o 4 5% % sl 5 5,5 0w 558 W, o ols @5 3 88

Xiv

3.23
3.24
3.25
3.26
3.27

3.28

3.29

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
5.2

5.3
5.4
5.5

5.6

5.7
5.8
5.9

LIST OF FIGURES

Number of clusters generated using Edge betweenness Centrality Clustering. 88

The infoviz data setlaid outusing FM3. 91
Infoviz edge betweenness centralityexample 92
The infoviz data set split into 4 clusters using the AC3 approach. 94
The infoviz data set split into 4 clusters using the AC3 approach, keyword

Ly e s SO i 97
The infoviz data set split into 4 clusters using the modularity approach,

keyavord highlighted. v oo v u v o v o e e e 98
The infoviz data set split into 4 clusters using the BFS approach, keyword

1 T R A) R it e S 98
A 100 node procedural small world graph clustered around 4 nodes. 103
Node reordering and cluster rotation example 104
A simple example illustrating node reordering with 2 clusters. 105
Node reorderingexample 105
Three level deep hierarchical clusteringexample 107
Hierarchical Clustering, simple example 109
Hierarchy generation example, node assignment 110
Hierarchical force directed layoutexample 112
Multilevel layout processing illustration. 112
100 node small world graph, hierarchy approach. 114
400 node small world graph, hierarchy approach. 115
100 node small world graph, multilevel approach. 116
400 node small world graph, multilevel approach. 117
Hierarchically edge bundled versions of 100 node Small World Graph. . . . 18
Edge experiment dense graphexample. 123

An example of a graph generated for our experiments, rendered with tightly
bDai@elliedues: 1. Ll o, L BBt Bs . s e e s b s s R s B 124
Iustration of the visual impact of different levels of bundling strength . . 129
The impact of bundling on user accuracy and response time (in seconds) . 132
The impact of node count on the effectiveness of bundling for the cluster
CODNCCUHVILY EXPERINCRL. . « 5« v o allos s o o o &5 o & 5.5 5 0 6.0 s & o & 135

The impact of edge density on the effectiveness of bundling for the cluster

CORBECLVITY CRDELIMBIE . -, i s ok 500 o v w6 die 6w mn v 5% 5 5 58 » s 136
Overall Results for the path tracing experiment. 137
Overall Results for the Cluster Connectivity experiment. 138

An example of the three dimensional bundles created by Lambert et al.
R e N R I . o st o e 30 86 8 Fow s 139

LIST OF FIGURES Xv

5.10
5.11
5.12
513
5.14

5.15
5.16

5.17

5.18

5-19
5.20
5.21
5.22

523

Illustration of extension of bundling into3D. 140
Shifting edge points and edge control points. 141
Different types of control point shift. 142
An illustration of the difference between the depth functions. 143
Ilustration of the visual impact of rotating clusters and reordering nodes

INCUSErS B=0.0 . . o . v . v vttt e e e e e e e 145
Mlustration of the impact of adding depth to straight line edges f = 0.0 . . 146
Low density experiment graphexample. 147
Unweighted means of the two significant single factors resulting from the

Analysis Of VAriance for the path tracing experiment. 150
Unweighted means of the accuracy and user time taken for the depth fac-

tors, resulting form the ANOVA for the path tracing experiment. 150
The depth types show significant results when analysed based on layout type. 153
Interaction effects from the cluster connectivity experiment. 155
An experiment random graph shown with and without edge shading. . . . 157
Interaction effects between bundling, layout and depth for the follow on

Pl Bracing EXPErIIENt. . & o\ | o v el il o x s sl His s e e el KR S 159
Interaction effect between bundling, depth and path length for the follow

on path'tracing experiment. c v oW oie s ol v o vna sie b k. . 160

o
iy
i

X TR I S GIRE . it
- L L ‘I_'r'_‘.w.’:'f’f r

RIS I TR : -
| - o b : AT LI B |
T B R ". i SIS " f
i ‘J‘ R TR 4‘”" i _w"- SR P -_'..:” ”H" _,|_".:" |_
. - RLOT 'IH”.I_'I L ".”."'."" o ‘I‘J T "‘. 'J- “Fl'l'r *ﬂ!‘)
e T . e H:" : ‘, S Rt
‘ el L o 1| IR - LR Ir'.-l.:‘. H ..5 .fl:rm-"l
‘ o AL W oy, | B AT
& - i ‘..I'.'.I" U wllog omn
: o O T [e
[n |I|H" IHI L ey - i |
JI II . f | \ L II S B IIII I
: ; : : , PRI
1 J | : ! LRI . '
0t i I
4 et : : L IHI :
g IHHI 5 LT I| II y I" ' L) s LT
. 1l) |” - II :) |“:I ' HI ' i : HI HII : 1
I 'y | |I) | I III V o) e =0) L.
o i Al
. P S
. B R R
FR R Y
NI R ';.' ;
-] et S 1 i .‘ H.""“I,‘-ﬂllﬂ: ‘Hlllﬁ-l i ."F' i ||“|!\ I
LU '.’ P ey e 0 |’.
: IIII l III | 2=l
e el i,
" paly HI“IIE-" I\I\I-F i IH] IH.n
I ol
‘ v S
' i I lel HI 'l)
i i T -
. L Y

Chapter 1

Introduction

E LIVE IN AN ERA WHERE MORE DATA IS PUBLICLY AVAILABLE THAN EVER BEFORE.

The internet makes large volumes of data searchable, relatable and filterable. Peo-
ple model and enhance their real world social networks through websites such as Facebook
and Linked-in, and generate further linked content through blogs and services such as twit-
ter. Modern governments often release large volumes of data, ranging from internal emails
to census results and social statistics. Technological, medical and scientific advances have
allowed researches to generate huge volumes of information about the low-level workings
of the universe and the basic genetic code of life. In 2010 Eric Schmidt, CEO of Google,
claimed that every two days mankind was generating as much information as it had from
the dawn of civilisation until 2002. While the accuracy of Schmidt’s claim may be debat-
able, it is clear that more information is produced daily by mankind than ever has been

prior to this in our history.

In his foreword to Ware’s 2004 book [Waro4] on Information Visualisation, Card suc-
cinctly describes Information Visualisation as “the use of interactive visual representations
of abstract data to amplify cognition”. Information Visualisation has only emerged as a dis-
tinct field of academic research in the last two decades, but representing data with images
to help with understanding is not such a recent idea. One of the most widely known visu-
alisations is Minard’s 1869 visualisation of Napoleon’s campaign against Russia, which per
Edward Tufte “may well be the best statistical graphic ever drawn” [Tufo1]. The visualisa-
tion, seen in figure 1.1 succinctly conveys information about the size of Napoleon’s army,
the position of the army , the direction of the army’s movement and the weather condition

over the temporal duration of the campaign in a single graphic.

Graph visualisation often represents data visualisation at its most abstract. In the sim-
plest of terms, graphs can be considered as a mapping of relationships between entities.
Graphs are often visualised as node-link diagrams, where nodes represent the entities and

Section 2

Cuarte Fiquralive. s peccs smusives o bommss 30,8’ Hosmic Fmpaise. as L. copague 3¢ R ussic. 1812 ~1813
D o K. MR, Draptin. Gl s - it . st .

Fo il B oot it s i g 0 gt Wb 3 b e M e o A
200 gonns. Lo Lo Do i s+ Hosste Lo vt e oo ou dosiomt—
M’:‘u .u,f‘f‘:’; Chiers, declaqur, de<Fezonoac, de Chumbray ol jousl

Tt e fine jogs 5 Lol T Smmtion e Limic -).,,.w...L,‘r..f.."L....

* MOSCOU

SR Phoe 14 8 |

-~ . |
3 |
i

~2an o

—sa'hex™

e s ey e et ass st = — < = o~y — g

Figure 1.1: Minard’s flow map of Napoleon’s Russian Campaign of 1812.

Figure 1.2: A small contrived example of a social social network , where the nodes represent
people and the edges represent a friendship between two people.

the lines between nodes represent relationships. An example can be seen in figure 1.2. A
small graph like this is easy to lay out manually and understand, as there are not many
nodes and only a few connections between them. It is not difficult to see that “Sean” is the
most popular person (or well connected node). However, when a graph models hundreds
or thousands of items and orders of magnitude more connections between them, it can
become very difficult to comprehend or even display on a computer screen. An automated
layout may be used to cope with large numbers of nodes and edges, however this may only
provide a globally optimised layout, and may not necessarily focus on the nodes which
might be of interest to the user.

This thesis concerns providing end users of a graph application the means to rearrange
graphs around nodes of interest and how best to display the resulting graphs to the user.

3 Chapter 1. Introduction

1.1 Motivation

The difficulty of visualising large dense graph data sets lies not just in processing power
and display size but also in the inherent visual complexity of a large data set. Visualisation
of large data sets is an outstanding challenge in the field of visualisation in terms of com-
prehending the data as well as scaling algorithms for tasks such as layout and clustering
[Cheos, Newog, Schoy] and many attempts have been made at addressing the visualisa-
tion of large graphs in terms of system scalability and comprehension [FvNo6, ETNG* 08,
ACJMo3, Wilg7]. Clutter is defined by Rosenholtz et al [RLMJos] as “the state in which
excess items, or their representation or organization, lead to a degradation of performance at
some task”. Clutter resulting from thousands of nodes and an order of magnitude more of
edges negatively impacts comprehensibility. Therefore the minimisation of clutter should
be a concern of any graph visualisation. Graph analysis, clustering and visualisation are
used to help give users a better understanding of topics such as software engineering [KLo8,
BDoy], social networks [Zac77, ACJMo3] computer networks [Wilg7], citation network
analysis [ETo7] and biological structures [ETNG*08].
Frequently visualisation applications are designed with a specific target domain or dataset

in mind in mind. Examples of such include computer program visualisation [KLo8], vi-
sual exploration of the Internet Movie Database (IMDB) [ACJMo3] and visualisation of
scientific citation networks [ETo7]. Such a targeted development of an application is able
to take advantage of characteristics of the data being visualised. Prior knowledge of the
structure or characteristics of graph data allows for a targeted choice of cluster or layout
algorithms that will be most suitable for the data.

Graphs with random edge distributions, where the distribution of edges among the ver-
tices follows a Poisson distribution, are often generated procedurally and used to provide
insight into graph theory. However, graphs modelling real world systems are not com-
pletely random and often contain an element of structure. We propose that this structure
can be used by an agglomerative clustering algorithm to generate clusterings of graphs that
aid in comprehension and layout, based on the user specification of nodes of interest. While
traditional layout methods such as force directed layouts are very effective when it comes to
laying out low-density graphs, real world graphs are frequently quite dense[Melo6]. How-
ever as graphs become more dense these layout approaches struggle in terms of aesthetics
and comprehensibility, as well as in terms of algorithm execution time. The resulting lay-
out can often contain groups of densely connected nodes in unreadable tight clusters with
a large amount of edge overlaps. Also, while there is often a range of input parameters for
force directed layouts, the user very often has little control over the final result. Different
users may require different perspectives, and most layout algorithms do not provide this
flexibility in terms of influencing the basic layout. We aim to provide the user with the abil-
ity to lay out a graph based around nodes of interest selected by them, to allow different

Section 1.2. Key Concepts 4

perspectives of the same data set to be generated.

The overall objective of our research is to allow users to get a better comprehension
of the relationships between data entities in the visualisation of real world systems. In
addition to our clustering and layout, we also evaluate edge routing techniques to show
how these sort of graphs may be best visualised by a user to reduce the clutter caused by

the edge density.

1.2 Key Concepts

Graph Visualisation is an extremely broad field covering many related topics. As part of
this research we have engaged in many different aspects of the fields, such as clustering, lay-
out, edge routing, graph generation, evaluation edge routing and the stereoscopic display
of graphs. The purpose of graph layout algorithms is to allow for an easier understanding
of the data by positioning nodes in such a way that the graph is more aesthetically pleasing
to a user[HJo6]. As well as layout, the routing of edges also plays a large role in compre-
hensibility [WPCMoz2].

A clustered graph is a graph with recursive clustering structure over the vertices. Eades
and Feng [EFg7] give examples of two dimensional clustered graphs as well as describing
an approach for visualising a graph with a multilevel clustering hierarchy in three dimen-
sions. In their example, the clustering structure is an attribute of the graphs and vertices.
However, in many cases, if a graph is to be clustered there may be no intrinsic attribute
or parameter which describes the clustering hierarchy. Therefore,this structure may need
to be determined by a clustering algorithm. There are different algorithmic approaches to
clustering, some of which rely on the underlying structure of the graph, such as Newman

and Girvan’s top-down divisive clustering [NGog4].

The analysis of various different types of networks has shown that many networks
across different fields have similar characteristics and can be classified as small world graphs
[WSg8, CFog, ACJMo3, vHWo08a]. Small world networks are characterised by a high level
of clustering and short path lengths. The term “small world” is based on the commonly
known concept of there being six degrees of separation between any two people alive. It
does not refer to the size of the graph, so many very large graphs can be considered small
world graphs. Given the clustered structural nature of small world graphs, a suitable clus-
tering algorithm may prove effective in dividing a large small world graph into more com-

prehensible clusters for visualisation.

Edges are one of the main sources of clutter in dense graphs. Edge Bundling [Holo6]

5 Chapter 1. Introduction

is a technique by which an attempt is made to reduce edge clutter by grouping edges to-
gether into “bundles” of curves. Though often cited as a clutter reduction technique, edge
bundling’s claimed effectiveness has little basis in empirical evidence.

Three-Dimensional stereoscopic displays are becoming more widely available as com-
modity hardware. Research has shown [WMo8] that users can more easily comprehend

large graphs when utilising three dimensional display techniques.

1.3 Contribution

Our goal of improving the comprehensibility of small world graphs has been broken down

into multiple contributions.

o Our initial contribution is our novel approach to agglomeratively clustering small
world graphs around nodes of interest. We propose average local clustering coeffi-

cient of a cluster as a heuristic to guide this agglomerative clustering.

« We demonstrate the effectiveness of our chosen heuristic by evaluating it against
other metrics using a large range of graphs.

« We extend our clustering to generate a hierarchical clustering which reflects the re-

lationships between the clusters created by our approach.

« We utilise our hierarchical clustering to perform a multilevel layout of the graph and
aid in the routing of edges in the resulting layout. We also demonstrate an approach

to reduce edge crossings in circularly laid out clustering hierarchies.

+ We empirically evaluate “Edge-Bundling” a popular clutter reduction technique, which

we utilise in our graph presentation.

« To support our evaluation we developed an approach to create procedurally gener-

ated graphs suitable for such experiments.

« We extend edge bundling into three dimensions and empirically evaluate the use of
three dimensional stereoscopic depth to determine its effectiveness at reducing the

impact of edge bundling on low level path tracing tasks.

1.4 Scope

The scope of this thesis covers many different aspects of graph presentation. The layout and
agglomerative clustering of a graph are one form of presentation, the routing of the edges is

Section 1.5. Related Publications 6

another. The common focus of each of these areas is how to best improve user performance.
Our scope does not cover a full comparison of all clustering and layout approaches. We
provide low level evaluations of the techniques described in this thesis. Such evaluations
yield results which are not domain specific and can be generalised across many fields. High
level domain specific evaluation experiments, using domain experts as participants, are

beyond the scope of this thesis.

1.5 Related Publications

Some of the research described in this has previously been peer reviewed and published at
international conferences. The following papers contain materials which were created as

part of out research into this Phd. thesis.

1. [MD12a] An Empirical Study on the Impact of Edge Bundling on User Compre-
hension of Graphs:
Fintan McGee, John Dingliana
Advanced Visual Interfaces 2012 in cooperation with ACM-SIGCHI, Capri Island,
Italy

2. [MDi12b] VISUALISING SMALLWORLD GRAPHS: Agglomerative clustering of
Small World Graphs around nodes of interest:
Fintan McGee, John Dingliana;
International Conference on Information Visualisation Theory and Applications 2012
(IVAPP 2012), Rome, Italy

3. [MDi1o]An Evaluation of the use of Clustering Coefficient as a Heuristic for the
Visualisation of Small World Graphs:
Fintan McGee, John Dingliana;
Theory and Practice of Computer Graphics, UK 2010 (TPCGz2010), Sheffield, UK

1.6 Thesis Layout

The rest of this thesis is laid out as follows:

o Chapter two provides a background on graph theory and describes the related work
for this thesis. An overview of layout, clustering, graph evaluation, edge routing and
three dimensional stereoscopic visualisation of graphs is also provided along with an

examination of the state of the art in each.

o Chapter three covers graph clustering techniques. We present a new agglomerative
clustering to allow users rearrange graphs around nodes of interest. We suggest a

Chapter 1. Introduction

heuristic, based on the structure of small world graphs and evaluate it against other

heuristics across a wide range of graphs.

« Chapter four covers graph layout. We extend our clustering from chapter three to
generate a clustering hierarchy. We utilise this clustering hierarchy for multilevel
layouts of graphs, which reflect the users selected nodes of interest. We also utilise
this hierarchy to route edges in the resulting graph.

« Chapter five examines the role of edge routing in hierarchically clustered graphs. We
provide an empirical evaluation of edge bundling. We extend edge bundling into
three dimensions for stereoscopic viewing of graphs and evaluate the impact it has

on user performance.

o Chapter six describes our conclusions and directions for future work.

Section 1.6. Thesis Layout

Chapter 2

Background and Related Work

GRAPH VISUALISATION IS A BROAD FIELD OF RESEARCH, covering many topics includ-
ing computer graphics, mathematics, graph theory, art and human perception. In
this chapter we present the basic concepts necessary to understand what follows, and we

describe the related research that the chapters following this are built upon.

2.1 Graphs

When the term, “Graph” is used, many people immediately conjure up an image of a vi-
sual representation of a graph, forgetting that underlying this is a mathematical defini-
tion which exists completely independently from any visual interpretation. An undirected
graph G = (V, E) is defined by a set of vertices v € V = {v,,v,...v, } and a set of edges e € E
connecting vertices x € V and y € Vwith e(x, y) = e(y, x). If a graph is a weighted graph
there is an associated numerical weight for each edge w(e(x, y)).

For a directed graph e(x,y) # e(y,x). A directed graph can be transformed into an
undirected graph by ignoring the edge direction. An unweighted graph can be considered
to be a weighted graph where w(e) =1, Ve € E. An edge in a directed graph is considered
to have one vertex that is the edge source and one that is the edge target. If a vertex is the
target, the edge is considered an in-edge to that vertex. If a vertex is the source, the edge is
considered an out-edge edge to that vertex.

In practical terms the vertices of a graph model entities in the real world, and the edges
model relationships between those entities. Social networks are an often encountered ex-
ample, in which the vertices model people and the edges model a friendship or other social
relationships between the people. A simple example of a social network can be seen in the
work done by Zachary[Zacy7], in which the members of a karate club were modelled as
vertices for a graph, and their interactions were modelled as the edges. Zachary was able
to process this social network to provided information about the future state of the group,

which split into separate subgroups. Visualisations of this group can be seen in figure 2.1.

Section 2.1. Graphs 10

Directed graphs are frequently used to model systems where the direction of the re-
lationship between vertices is important, such as a graph modelling predator and prey
relationships in an ecosystem. This impacts how a graph can be traversed (i.e. moving
from one vertex to another following the direction of the edges). However for tasks such
as the laying out of vertices of a graph, it is often possible to ignore edge direction and still
achieve a good result. For the remainder of this thesis, we assume all of the graphs that we
are visualising are undirected graphs. However many of the techniques we use could also

be applied to directed graphs.

2.1.1 Graph Visualisations

Most frequently graph visualisations take the form of node-link diagrams, consisting of
nodes representing the vertices of the graphs and links between them depicting the edges,
as can be seen in figure 2.1a. Matrix based visualisations offer an alternative approach (see
figure 2.1b and for a recent large scale example see [ETNG*08]). Both approaches offer
their own challenges. When using a node-link visualisation, the layout of the nodes and
links has a significant impact on user comprehensibility [Purgy]. Analogous to this for ma-
trix visualisation is vertex ordering. The node link form of visualisation is considered more
intuitive than the alternative of matrix based layout [GFCo4, FvNo6]. Node-link diagrams
also allow for a more flexible use of the display space, for example the use of hyperbolic or
three dimensional space for layout [Mung8, WMo8]. There are also visualisations which
take a hybrid approach combining both matrix and node-link visualisation [HFMoy7]. This
thesis focuses exclusively on the node-link style of visualisation. Usually when referring to
a node link style of display, vertices are referred to as nodes, as for most purposes the terms

node and vertex are inter-changeable.

2.1.2 Small World Graphs

Small world graphs are a category of graphs encountered frequently in models of real world
systems. Milgram [Mil67] first identified the phenomenon in his work focused on social
networks. The concept was more recently revived by Watts and Strogatz [WS98] and Watts
[Wato3] and has been shown to hold true for a variety of networks, such as the relation-
ships between actors and films [ACJMo3] as well as computer systems [CFog] and citation
networks [VHo4]. Small world networks are defined by two main characteristics. The first
concerns the average of the shortest path lengths between each pair of vertices for the en-
tire graph. The second characteristic is the average local clustering coefficient of the graph,
which is defined as the average of the clustering coefficients for each vertex. To determine
if a graph can be considered a small world graph, it is compared to a randomly generated
graph with the same number of vertices and edges. A small world graph will have approx-

11 Chapter 2. Background and Related Work

X u @ 0 :
Y iTane e B
’ G P A 9
. u A X . 5
° - H
[+] anP T
(] SN X
o \ L 1
: T
o o~ -
o= o-
(B Q=
. . 12
° ¥ o :
o= o - I
* ‘0.9 .0 Ba" =
(a) Node-link Visualisation. (b) Matrix Visualisation.

Figure 2.1: An undirected graph modelling the social connections of the karate club studied
by Zachary[Zacy7].

imately the same average path length, but a considerably higher (by orders of magnitude)
average local clustering coefficient.

To define the average local clustering coefficient of a vertex, we first need to define the
neighbourhood of a vertex.

Vertex Neighbourhood definition

The neighbourhood of a vertex v , denoted T, is defined as the set of all vertices adjacent
to v, not including v itself. We can extend this to a set of vertices defined by an induced
subgraph § = (V,, E;) (where V; c V and E; c E, and E; c (v;,v;),Vv;,v; € V,,). An
induced subgraph is a subgraph where for every edge that exists between nodes in the
the subgraph at the parent level, there is a corresponding edge at the subgraph level. This
results in I's being defined as the set of vertices adjacent to all v € V; but not including those
vertices which are part of the subgraph. If § = T, then it follows I's = I'(T,) = I'2. The size of
the neighbourhood of a vertex is often referred to as the degree of a vertex. For a directed
graph, there is both an in-degree and out-degree associated with each vertex. The in-degree

is the the number of in-edges and the out degree is the number of out-edges.

Clustering Coefficient Definition

The clustering coefficient for a vertex, denoted by y,, is most commonly defined as the ratio
of edges connecting the neighbours of a vertex to the maximum number of edges that

could possibly connect the neighbours of the vertex [Wato3]. The clustering coefficient ¢

Section 2.1. Graphs 12

for a vertex v in an undirected graph is given by

_ ()
ey

where |E(T,)| is the magnitude of the set of edges connecting neighbours of the vertex, k

is the neighbourhood size of the vertex, (i.e.|T,|) and (k;) is maximum possible number of
edges in I,. From the above it can be seen that a vertex needs at least two neighbours to
have a valid clustering coefficient value. For a directed graph the clustering coefficient is

given by
. - JE@)
" k(k-1)

This is due to the fact that a directed graph can have double the amount of edges and

k(k-1) = i(kz) The average local clustering coefficient for a graph, often referred to as

the global clustering coefficient of the graph, is given by

N3 Zvyv
Y6 = V|

Figure 2.2 shows a simple graph and the local clustering coefficients associated with each
node. If a node has a clustering coefficient of 1.0, its neighbourhood can be said to form a
clique, a set of nodes where each node is adjacent to every other node in the set. As part
of our clustering discussed in chapter 3 we use the concept of an average cluster cluster-
ing coefficient. The average clustering coefficient of a cluster, reflects the level of inter-
connectivity of nodes within the cluster. Therefore when calculating the clustering coef-
ficient of nodes with a cluster, to generate the average cluster clustering coefficient, only
neighbours within the same cluster are considered. A graph cluster with a high average
cluster clustering coefficient, indicates that all of the nodes within the cluster have many

interconnected neighbours within that cluster.

Average Shortest Path Length

The shortest path between two vertices (often referred to as the geodesic distance) is the
smallest possible set of vertices it takes to traverse from one vertex to another. Often there
may be more than one shortest path between a pair of nodes. The average shortest path
length reflects the connectivity of a graph. As graphs become more dense the average short-
est path length generally decreases, as there are more edges to traverse between vertices.
Calculating the average shortest path length of a graph requires calculating the shortest
path length between all possible pairs of nodes, which is a computationally intensive task.
While Dijkstra’s shortest path algorithm [Dijsg] is suitable for finding the shortest paths
from a single node, it is not efficient for calculating the shortest path for all nodes. Two of

13 Chapter 2. Background and Related Work

(0)

(0.67)

6 (0)

Figure 2.2: A simple graph showing the local clustering coefficient of each vertex (in brack-
ets). Note that the green node has a coefficient of 1 as all of its neighbours (the blue nodes)
are connected to each other.

Figure 2.3: The shortest path between the two green nodes (10 and 4) is via the two yellow
nodes (2 and 5)

Section 2.1. Graphs 14

the most commonly used algorithms for all pairs shortest part calculations are Johnson’s
[Joh77] algorithm, which is of complexity O(|V||E|log|V|), and the Floyd-Warshall algo-
rithm [Flo62], which is of complexity O(|V[*). Due to the relative complexities Johnson’s
algorithm is preferred for less dense graphs, and Floyd-Warshall for more dense ones.

Small World Graph Specific Visualisation Approaches

As so many real world graphs fall within the domain of small world graphs, much re-
search has been done on developing graph clustering and layout techniques specific to
the small world model. Auber et al. [ACJMo3] developed an application called SWViz,
which provided multi-scale visualisation of small world networks. The author’s observed
that if networks display small world properties, their highly connected components also
display small world properties. They utilised this observation to create a multi-scale visual-
isation. The highly connected components are determined by a decomposing the network
into strongly connected components by removing edges using the edge clustering index
described in section 2.1.3.

McPherson et al.[MMOos] describe a system for discovering parametric clusters in
social small world graphs. They describe an application that utilises Markov Clustering
(described in section 2.2.2) to assign cluster identifiers to nodes. The system provides an
initial tree based layout of the graph and allows users to resize and colour nodes based on
attributes (such as node degree and clustering coefficient), as well as selected sub-graphs
based on attributes. The system allows further clustering by combining node attributes
such as the previously described cluster identifier, node degree, local clustering coefficient
or any arbitrary value assigned to a node. These clusters are defined as part of a lay-out tech-
nique referred to as a Self Organising Map which projects form vector of input attributes
onto a two dimensional grid. This layout is then further enhanced by a customised ver-
sion of the Fruchterman Reingold layout (described in section 2.3.2), which allows for user
input. McPherson et al. demonstrate this approach providing images of the result when
clustering a social small world graph. The system can be used for any attributes, not nec-
essarily local clustering coefficient, so it is not clear as to why it could not be used more
generally than for specifically small world graphs.

Van Ham and Wattenberg [VHWo8a] use edge betweenness centrality (described in
section 2.1.3) as a basis for building a minimum spanning tree to aid with the layout of small
world graphs (a minimum spanning tree is a subgraph that contains every vertex and the
minimal set of edges which does not disconnect the parent graph). The clustered nature
of small world graphs means that nodes which are unrelated to each other (with a large
geodesic distance between them) will be positioned further away form each other in the
spanning tree used as an input to layout. If the edges were distributed evenly or randomly
there would be no benefit offered in the resulting layout. In van Ham and Wattenberg’s

15 Chapter 2. Background and Related Work

()]
{12)

N\

. 0)
p ,. 10}
\ v

e
-
\\
N\ N
(1) —— a /(‘“"
v \\\ i ‘\\
Q Bt Q o
{12
.

i

Figure 2.4: A simple graph illustrating the betweenness centrality of each vertex.

p.
3)
)

example nodes which are related to each other by an external classification do appear closer
to each other in the final graph layout.

The preceding approaches demonstrate that the characteristics of a small world graph
can be utilised as input into their clustering and layout. We utilise these characteristics for
our clustering described in chapter 3. Our clustering is also used as an input to our layout
described in chapter 4.

2.1.3 Graph Centralities

Centrality is a measure of importance of a vertex, or an edge in a graph [New1o]. There
are many different types of centrality measure, those described here are the most relevant
subset. Centralities can also be used to guide algorithms for clustering by Newman and
Girvan [NGog4], or layout done by van Ham and Wattenberg [VHWo08b].

Vertex Degree: This is one of the most straightforward centrality measures. For an undi-
rected graph it is the number of edges connected to a vertex, or as stated above the size of
a vertex’s neighbourhood. For example in the a social network of friendships, the degree

centrality rates those with more friends as more important.

Vertex Betweenness Centrality: Vertex betweenness centrality is a measure of how many
shortest paths a vertex appears on. To derive vertex betweenness centrality for all ver-
tices appears to require the complexity of the all pairs shortest paths algorithms men-
tioned previously. However, Brandes [Brao1] has developed an optimised approach which
is O(|V||E|). Figure 2.4 shows a simple graph with the vertex betweenness of each node.

Edge Betweenness Centrality: Edge betweenness centrality is a measure of how many
shortest paths a specific edge appears on. It can also be calculated in O(|V||E|) using

Section 2.1. Graphs 16

10
e - o
/ 710.33 | 3.333 N\ 10.33
\ y y P
N
N 10
/ \ 10.33 3.333 _-10.33 NG

10

o

Figure 2.5: A simple graph illustrating the betweenness centrality of edges. The fractional
values of some edges are a result of them appearing on multiple shortest paths of the same

length.

an adapted version Brandes algorithm. Figure 2.5 illustrates edge centralities in a simple

graph.

Local Clustering Coefficient: The local clustering coefficient of a vertex can also be con-
sidered a form of centrality. A vertex with a high clustering coefficient indicates that it is
part of a strongly connected set of nodes, if the clustering coefficient is 1.0 the vertex is
part of a clique. As commented by Newman, [New1o], it is similar to vertex betweenness
centrality in that it reflects the importance of a vertex based on its connections. However
vertex betweenness centrality extends beyond the vertex’s immediate neighbourhood and
if a node has a high clustering coefficient, it most likely will have a relatively low vertex be-
tweenness, as its neighbours will offer alternative shorter paths from more distant nodes.

Edge Clustering Index: The clustering coefficient of a node is often also referred to as
the clustering index. Auber et al. [ACJMo3] following on from Chiricota et al [CJMo3] use
a metric, originally defined by Alper[AKgs], which generalises the previous definition for
clustering coefficient for a vertex to apply to edges. This edge clustering index is used by
Auber et al. to determine the strength of edges within the graph, and thus allows clusters
to be determined by removing weak edges (those with a low clustering coefficient), similar
to the way edge betweenness centrality is used by Newman and Girvan [NGo4]. Their ap-
proach is as follows: Given an edge consisting of nodes u and v, the edge’s neighbourhood
is divided into 3 sets. M(u) is the set of nodes that are neighbours of u but not v. M(v) is
the set of nodes that are neighbours of v but not u. W (u, v) is the set of all nodes which are
neighbours of both. Clearly these 3 sets are distinct, however they also may be connected
by edges which do not contain either u or v (see figure 2.6).

Let s(A, B) denote the strength of connectivity between two set of (distinct) nodes.

17 Chapter 2. Background and Related Work

Figure 2.6: An example of the node sets used by Auber et al. [ACJMo3] in calculating
clustering index of an edge e = (u,v)

Let r(A, B) be equal to the number of edges between two nodes in set A and the nodes
in set B, then s(A, B) = r(A, B)/|A| - |B|. This is in effect calculating the ratio of amount
of connections between sets A and B and the maximum possible number of connections
between the set A and B. Note that any edges that go between any 2 of the sets M (u) , M(v)
and W (u, v) are part of a cycle of 4 edges that passes through (u, v). A cycle is a path that
begin and ends with the same vertex. 4 is the maximum path length of any cycle between
the sets.

The definition of W (u, v) means that there are as many cycles of length 3 as there are
nodesin W (u,v). The proportion of possible length 3 cycles is given by |[W (u, v)|/(|M (u)|+
|[M(v)|+|W (u,v)|). Summing the ratios calculated for each pair of connected sets, the ra-
tio calculated for the set W (u, v) with itself and the proportion of possible cycles of length
3, provides the edge clustering index y,.

Ye=s(M(u), W(u,v)) +s(W(u,v), M(v)) +s(M(u), M(v))

+s(W(u, v), W(u,v)) + [W(u, v)|/(IM(u)] + [M(v)] + W (4, v)])

2.1.4 Graph Edge Density

In their taxonomy of clutter reduction Ellis and Dix describe clutter as the result of “too
much data on too small an area of the display”’[EDo7]. In a dense graph, edge congestion
is the primary source of clutter. The links in a node link visualisation convey important
information. However if they become too dense the graph becomes less comprehensible,
resulting in nodes and other links becoming obscured. In terms of graph theory the density

of a graph is usually considered to be the ratio of edges to the maximum possible number

Section 2.2. Graph Clustering 18

of edges in the graph [CM83]. For an undirected graph this can be described as

|E|
[(VI(IVI=1)/2)

A graph is then considered dense in mathematical terms if this ratio approaches 1.0, a graph

s

(2.1)

with density 1.0 is called a complete graph. If a graph’s density is close to 0.0 it is considered
to be a sparse graph. However in practical real world examples of graph visualisation, which
may contain huge numbers of nodes, a density approaching 1.0 is rarely seen. A complete
graph with 1000 nodes would have 499,500 edges. Visualising a graph approaching this
level of density using a standard node-link approach would not serve any useful purpose
as the individual edges would be unreadable.

Another common measure of the density of a graph is the ratio of edges to nodes,

referred to as the linear density
_8
V]

where |E| denotes the number of edges in the graph. Most real-world graphs have a value

d, (2.2)

of d; <= 10 [Melo6], which is still enough to cause a large amount of clutter. Melagon
et al. [Melo6] give an example of real world graphs which have even higher densities,
such as web-crawl based graphs with d; = 25.57. Given the frequency that dense graphs
are encountered in the real world it is important to include edge density as part of any
graph evaluation. It is clear that graph theoretic density scales the number of edges more
dramatically for a change in vertex count, so for comparison of densities between graphs
with different node counts linear density provides a clearer comparison.

2.2 Graph Clustering

2.2.1 Clustering Overview

Eades and Feng [EF97] describe clustered graphs as “graphs with recursive clustering struc-
ture over the vertices”. In their work they provide examples of two-dimensional clustered
_ graphs and describe an approach for visualising graphs with a multilevel clustering hier-
archy in three dimensions. In their examples, the clustering structure is an attribute of
the graphs and vertices. However, in many cases if a graph is to be clustered there may
be no intrinsic attribute or parameter which describes the clustering hierarchy. There are
many different approaches to graph clustering (or partitioning as it is often referred to).
Some methods use an algebraic approach, working on a mathematical representation of the
graph [Chugy]. Other methods such as Edge Betweenness Centrality Clustering [NGo4)
use a graph theoretic based approach, calculating graph theory characteristics of vertices
or edges that are then used to partition the graph into clusters. Some clustering algorithms,

19 Chapter 2. Background and Related Work

such as edge betweenness centrality clustering take a top down, or divisive approach split-
ting the graph into separate clusters. Others take a bottom-up or agglomerative approach,
merging sets of nodes together to form clusters.

Many approaches generate a flat clustering of the graph, while others produce clustering
hierarchies. Clustering hierarchies are clusterings where the clusters of a graph are them-
selves recursively clustered into sub-clusters. Graph clustering is a difficult problem that is
NP complete [NGog4]. Algorithmically defined clusters may not match what an authority
on the graph data believes is a good clustering. In their comparison of graph clustering
algorithms for recovering software architecture module views, Bittencourt and Guerrero
[BGog] comment that “fully automated clustering techniques alone cannot recover mod-
ule views in a sensible way”. Schaeffer [Schoy] provides an in depth review of clustering
methods and related topics.

2.2.2 Clustering Approaches

One of the most widely know forms of clustering is K-means clustering [HW79]. This is a
very general clustering algorithm that is used for many purposes, not just graph clustering.
In this approach the data points to be clustered (nodes in the case of a graph) are placed
randomly in k clusters. The center of gravity of each cluster is calculated and each node
is assigned to the nearest cluster based on a distance function between data points and a
cluster’s center of gravity. The distance function is often, but not always, the euclidean dis-
tance. The process is repeated until the changes in clustering falls beneath a pre-determined
threshold. The vectors used as an input to the distance metric may represent position in
two or three dimensions, resulting in a geometric clustering. However K-means clustering
may also be done with a vector of any level of dimensionality, representing other values
than position in a graph space. For example, in Hopcraft et al's [HKKSo3] use of k-means
clustering of a citation network, the data point vector used for the distance function rep-
resents the citations between papers, and has as many dimensions as there are citations in
the paper.

Within graph visualisation, the aim of geometric clustering is to have vertices that are
geometrically close to each other share a cluster and distant vertices appear in separate
clusters. K-means clustering is an effective way to accomplish this. An example of such a
clustering is given by Quigley and Eades’ FADE algorithm [QEo1] in which a quad-tree is
used alongside a modified force directed algorithm. The clustering provides different levels

of abstraction at which a graph can be viewed.

Agglomerative Clustering

Agglomerative clustering is a bottom-up approach to clustering, merging nodes together
iteratively to form clusters. Depending on the approach clusters can be merged together

Section 2.2. Graph Clustering 20

or individual nodes can be added to clusters. When merging nodes and clusters together
a similarity function is used to determine the suitability of the merge.

Hopcroft et al. [HKKSo3] provide an agglomerative clustering of a co-citation network
as part of their analysis on finding natural communities. They use a snapshot of a citation
database or approximately 250,000 papers. The nodes in the extracted graph represent pa-
pers and the edges represent citation between them. The function used to determine which
nodes should be agglomerated together is based on the product of the nodes’ neighbour-
hood sizes, divided by the size of the intersection between the two neighbourhoods. The
smaller this value, the closer the nodes are together and more suitable they are for merging.

Nodes can be merged together to form a flat clustering or a hierarchical clustering can
be generated by repeatedly merging clusters as done by Hopcroft et al. This was also done
by Newman [Newo4] using modularity, a metric utilised by Girvan and Newman in their
previous work on edge betweenness centrality clustering [NGo4], as a guiding heuristic
for a greedy agglomerative clustering process. This agglomerative clustering produces a
hierarchy of clusters. Modularity is then used as a metric to determine which level of the
hierarchical clustering provides the best clustering. Modularity is described in more detail

in section 2.2.3.

Algebraic Clustering

Algebraic methods work on algebraic representations of a graph. The most common al-
gebraic form of a graph is an adjacency matrix. For an undirected unweighted graph
G = (V,E), the adjacency matrix is a square matrix with |V| rows and columns. Given
two nodes v; and v; , i, j < |V/|, the value at entry (v;, v;) is equal to 1 if (v;,v;) € E, oth-
erwise it is 0. Algebraic methods work on this matrix and other algebraic matrices related
to the graph such as the Laplacian matrix which is derived from the adjacency matrix and
the degree matrix. The degree matrix of G is a |V| x |V| matrix where the diagonal entries
(i,1) equal the degree of the i** node of V. The Laplacian matrix is equal to the adjacency
matrix minus the degree matrix. The analysis of these matrices and their characteristics,
such as eigenvalues and eigenvectors, form the basis of the field of spectral graph theory
[Chugy].

Spectral graph theory partitioning methods are used by Frishman and Tal [FToy] to
cluster graphs as part of their GPU based layout. Algebraic techniques are also used for
graph layout, for example the algebraic multigrid method (ACE) of Koren et al [KCHo3].
Van Dongen’s Markov Clustering (MCL) [vDoo] uses algebraic matrix representations of a
graph as the transition matrix of the Markov chain used in his clustering approach. Clearly
algebraic methods can provide many viable clustering approaches for graphs. However, our
research focuses on graph theoretic approaches as these relate more closely to the visuali-
sation of the graph on a display than the algebraic methods.

21 Chapter 2. Background and Related Work

Edge Betweenness Centrality Clustering

Edge Betweenness Centrality Clustering is a divisive graph theoretic graph clustering method
developed by Newman and Grivan [NGog4]. Edge betweenness centrality is a measure of
how important an edge is within a graph. It is determined by the number of shortest paths
that an edge appears on out of all shortest paths for the graph as a whole. This algorithm
is expensive, with a straight forward implementation being in O(|E||V|*), however Bran-
des [Brao1] proposes an alternative in O(|E|| V). Similarly to Edge betweenness centrality,
vertex betweenness centrality is defined as a measure of the number of shortest paths on

which a vertex appears.

Newman and Girvan show that edge betweenness centrality can be used to partition a
graph into clusters (or as they refer to them communities) based on the graph structure.
Their approach consists of calculating the edge betweenness centrality for all edges, and re-
moving the edge with the highest value. This is repeated until eventually the graph breaks
into separate components and ultimately individual vertices. The partitioning at differ-
ent stages of the algorithm is evaluated using modularity as a metric, and the iteration of
the algorithm which produced the most modular components is used to assign vertices to

clusters.

2.2.3 Clustering Evaluation

There are many different metrics used to evaluate clusterings. Boutin and Hascoét [BHo4]
discuss many other clustering evaluation approaches (referred to by them as clustering
validation indices). They note that these evaluations are often difficult to interpret and
compare. Evaluating the authoritativeness of a clustering is a difficult problem, not always
readily solvable by a metric. Wu et al. [WHHos] use external clusterings in their evalua-
tion of clustering algorithms for software systems to evaluate their chosen algorithms. They
use the directory structure of the software system to create an authoritative clustering that
reflect experts (i.e. the software developer). Clustering evaluation depends on the target
application of the clustering. Bittencourt and Guerrero [BGog] and Wu et al. [WHHos]
evaluate clustering algorithms in the domain of software analysis. Their evaluation metrics
include distribution of cluster size (avoiding singleton clusters and clusters which consist
of the majority of nodes), clustering stability (the clustering of a graph does not change
much for a small change of the input graph) and authoritativeness (based on an external
measure). These metrics are very useful for the the application domain of software eval-
uation, however they are not as suitable for our agglomerative clustering around nodes of
interest which we describe in chapter 3. We describe next two of the metrics from the liter-
ature (which have also been used as heuristics to guide clustering), which are of relevance

to our clustering evaluation in chapter 3.

Section 2.2. Graph Clustering 22

Modularity

Newman and Girvan [NGog4] define a measure of the quality of a division of a network
graph, referred to as modularity. The measure is used to evaluate their community detec-
tion algorithm (which is essentially a top-down clustering algorithm). The measure has
also been used in work by Newman [Newo4] as a heuristic value which is to be optimised,
and hence guides the clustering rather than evaluate the quality of it. This metric is based
upon the number of edges that start and end in the same cluster (referred to as communi-

ties in Newman and Girvan’s paper). The modularity, Q, is calculated as
Q= Z(eii - a;)

Where e;i is the fraction of all edges that start and end in cluster i and g; is the fraction
of all edges that terminate in cluster i. A high level of modularity indicates a low number
of inter-cluster edges. We believe that modularity provides a good metric, that translates

across application fields.

Modularisation Quantity

Auber et al [ACJMo3] and Chiricota et al.[CJMo3] use a quality measure developed by
Mancoridis et al [MMR*98] and utilised in Mancoridis et al's clustering tool "Bunch” [MMCGgg].
This measure, denoted MQ (Modularisation Quantity) computes a value for any given par-
tition of a graph. Chiricota et al. and Auber et al. use a slightly modified version of MQ
that is defined only for undirected graphs as an evaluation measure. The MQ value is used
by the Bunch tool as an function to be optimised to provide a good clustering (rather than
evaluate one). Let A and B be two sets of disjoint nodes in a graph G = (V, E) , let s equal
the ratio of edges between the two sets to the maximum possible number of edges between

the two sets.
e(A, B)

|A| - |B|
Note that this ratio can be calculated for a set with itself. For a cluster A in an undirected
Graph without self linking edges

s(A,B) =

2(e(A, B))

(44) = A qar-)

If cluster A is a clique s(A, A) = 1. If none of the nodes in A are connected s(A, A) = o.
Given a partition (also referred to as a clustering) C = (C,,C,, ..., C,) that divides the
graph G = (V, E) into p partitions the MQ score for that partition is given by:

zf:] S(Ci! Ct) o Zf:ll Z:]’f=i+1 S(Ci’ Cj)

MR p(p-1)/2

23 Chapter 2. Background and Related Work
© o
© o o ° °
© o o ©
° o oo O
® o o o ... o ©

(a) A tri-partite graph clustered
so that MQ = -1

(b) A graph consisting on un-
connected cliques clustered so
that MQ =1

© "o °®,
o SE ° o
&
¢ " o ® e
(#) (%) - °° .. o

(c) A connected clique no
matter how partitioned
will result in MQ = o

(d) An example of a connected
graph with well defined clusters
, resulting in MQ= 0.96

Figure 2.7: Example of clustered graphs with different MQ values (clusters are denoted by
node colour)

Essentially this is a measure of the difference between the s ratio of intra-cluster edges
denoted by s(C;, C;) and the s ratio of inter-cluster edges, denoted by s(C;, C;). The mini-
mum value of MQ is —1, representing a K-partite graph, where no nodes in a given cluster-
ing are connected to each other, but are connected to every other node in the graph. The
maximum value is 1, representing a non-connected graph where each cluster is a clique that

is not connected to any other cluster.

Difference Between Modularity and Modularisation Quantity

The MQ metric differs to Newman and Girvan’s modularity measure. Modularity com-
pares the fraction of all edges that are intra-cluster edges to fraction of all edges that are
inter-cluster edges. MQ is a measure of the difference between the average ratio of actual
intra-cluster edges to the maximum amount of intra-cluster edges possible and the average
ratio of the amount of inter-cluster edges to the maximum amount of inter-cluster edges
possible. This means that modularity depends purely on the number of edges (which is
bounded to the number of nodes) and MQ depends on the number of edges and the num-

ber of nodes directly (as the maximum possible number of edges between two clusters is a

Section 2.3. Graph Layout 24

function of the number of vertices).

2.3 Graph Layout

There are many different approaches to graph layout, each with the same aim of produc-
ing an image that is in some way aesthetically pleasing to a user and improving the users
ability at some task. The different approaches encompass many different representations
of a graph. Force directed layouts work by modelling a graph as a connected physical sys-
tem. Algebraic approaches work directly on the adjacency matrix representation of a graph.
Many layout approaches lay out an entire graph at once, while multi-level approaches cre-
ate higher level representations of a graph and lay these out, using them as a basis for the

positioning of the final graph nodes.

2.3.1 Force directed layouts

One of the most common types of layout is force directed layout. The early force directed
approach by Eades[Ead84] was based on modelling an undirected graph as a system of
springs. This was further enhanced by Kamada and Kawai [KK89] by addition of cal-
culating an ideal layout between vertices which are not connected, and formulating the
layout problem as an energy optimisation problem. Gansner et all [GKNos] have fol-
lowed on from this, replacing Kamada and Kawai’s local Newton-Raphson minimization
of the energy function with a global approach called majorization from the field of Multi-
Dimensional Scaling (an approach used for layout by Harel and Koren). Fruchterman and
Reingold [FRg1] developed a physics based algorithm which models attractive and repul-
sive forces between vertices as well as using the concept of a global energy value to limit
the movement of nodes during layout. GEM[FLMags] is another force directed algorithm
for undirected graphs where the vertices of the graph are modelled as charges repelling
each other and the edges are modelled as springs. There are more recent versions of forced
directed layout which employ a multilevel approach, such as such as GRIP[GKoz1], the
Fast Multi-Scale method of Harel and Koren, [HKo1], and the Fast Multi-pole Multi-Level
Method of Hachul and Jiinger [HJos].

2.3.2 Fruchterman Reingold Layout

Force directed layout algorithms work by modelling a graph as a system of attractive and
repulsive forces between vertices. The positions of the vertices are updated based on these
forces, until stability is reached. Stability is not guaranteed so some external bounds are
placed on the size of the forces. One of the most common force directed algorithms is

25 Chapter 2. Background and Related Work

° °
° A ~
° e °
= e e e ® ° °
° e " e
e)
° e ° ® ° e
° 14 te c ©
e » °
cece . * ° = °
S .
] - o€ ° 4
e °
° ° °
2 » e ©° o °
° °
° Py °
) °
e o »
° gk
b °

Figure 2.8: Force Directed Layout of a graph containing 91 vertices and 567 edges. Each
node is a unit distance across. The ideal distance K has been set to 15. The grid variant
version has not been used, so repulsive forces are applied to all nodes regardless of distance
between them

the Fruchterman-Reingold force directed algorithm [FRo1]. This algorithm works on the
basis of having an ideal distance between connected vertices. This ideal distance, usually
denoted k is used in the derivation of the attractive and repulsive force between vertices.
These attractive and repulsive forces cancel each other out when two connected vertices are
the ideal distance apart. The ideal distance can be considered like the length of a relaxed
spring between two connected nodes. If the nodes move closer than the ideal distance the
spring pushes them apart. If the nodes move further away from each other than the ideal
distance the spring pulls them together. The attractive forces, f, and repulsive forces f, are
defined as follows:

fuld) =%

fldy = =5

where d is the distance between a pair of vertices and k is the ideal distance between a pair

of connected nodes. The forces acting on each individual vertex are calculated as follows.
The total repulsive force for an individual vertex is calculated by the summation of the
forces between that vertex and every other vertex in the graph. The total attractive force is
calculated by the summation of the attractive forces between vertices and every vertex it is
connected to. The final force for a vertex is the sum of the attractive and repulsive forces,

and it is this final force which is used to displace the vertex.

Fi=) fad(viv))- . f(d(v:iV)))
e,‘]'GE,' i#j,VjEV
Where E;is the set of all edges connect to the vertex i and V is the set of all vertices in the
graph. The algorithm for calculating the forces for a single vertex can be seen in algorithm
listing 1.

These calculations are repeated for each vertex over many iterations. An upper bound

Section 2.3. Graph Layout 26

Algorithm 1 Algorithm for calculating Fruchterman-Reingold forces acting on a single
node
veV
forall u eV do
if u+w then
0 := v.position — u.position
v.displacement := v.displacement + (8/|6]) * £,(|6])
end if
end for
forall ueVdo
if {u,v} € E then
0 := v.position — u.position
v.displacement := v.displacement — (8/|6|) * f.(|0])
end if
end for

on the magnitude of displacement, referred to as the temperature, is set and decreased at
each iteration, resulting in increasingly smaller adjustments in position until the graph is
in a stable state, usually determined by when a minimal displacement between iterations
is reached. This algorithm is used to lay out undirected graphs; however a directed graph
can also be laid out using this technique simply by ignoring the directionality of edges
and limiting the number of edges between a pair of vertices to one. One issue with force
directed algorithms is the algorithmic complexity of the approach. The calculations of
the repulsive forces requires O(|V|*) operations and the attractive forces requires O(|E|)

operations resulting in a per iteration complexity of
O(|VI* +E|)

per iteration. Given that an instance of the layout algorithm may execute several hundred
iterations, performance can be a significant issue, particularly for large sized graphs. Opti-
misations such as the Grid Variant Algorithm suggested by Fruchterman and Reingold, or
some of the multilevel approaches reduce complexity of the repulsive forces to O(|V|+|E|)

for most practical use cases.

2.3.3 Multilevel Layouts

Multilevel algorithms are an approach which aim to improve the layout of basic force di-
rected algorithm by accelerating the algorithm and giving a global quality to the place-
ment. The concept was introduced by Walshaw [Walo1] and independently also by Harel
and Koren[HKo1], who refer to is as multi-scale layout. A key part of multilevel algorithms
is the coarsening phase. A coarse version of a graph is simply an abstracted graph of the
original, where multiple nodes in the original graph are represented by a single node in the

27 Chapter 2. Background and Related Work

Figure 2.9: Layout of the graph from figure 2.8 using Hachul and Jiinger’s FM3 multi-level
layout algorithm with a input inter-node distance of 15 (equivalent to a k value of 15). Each
node in the image has a radius of 1. The implementation used is the Open Graph Drawing
Framework [TDoGa3] version of the FM3 algorithm

coarse version. A multilevel layout being performed on a graph G = (V, E), produces a
hierarchy of coarse graphs. The graph with the finest level of detail G, is the original graph.
G, is produced by running a coarsening algorithm on G,. The hierarchy is generated by
repeated coarsening the graph G; to form G;,, until the minimally sized coarse graph is
achieved. The approach to coarsening of a graph is a distinguishing factor between many
different multilevel approaches.

Walshaw utilises an approach known as matching to combine pairs of nodes in order
to generate a coarse version of a graph. The matching is done by generating a set of graph
edges known as a maximally independent edge set. This is a subset of all edges in the graph
with the property that that no 2 edges in the set share a common vertex, (i.e. no two edges
are adjacent), it is maximal when no more edges can be added to the set without breaking
this property. All the pairs of nodes defined by the edges in that set are collapsed to form a
single node in the coarse graph. Therefore, a node at each level of the coarsening hierarchy
represents two nodes at the level below, except for the bottom level which is the original
graph.

GRIP[GKo1] generates a coarsened version of a graph G; from graph (G;_,) by applying
a maximal independent set filtration. A maximal independent set filtration is a subset of
vertices such that V > V,, V, o V,...Vi_, ¢ Vi c @. V; is a maximal subset of V,_, if the
graph distance between each of its elements is at least 2/* + 1, i.e no vertices in the subset
contain a common edge, and no more vertices can be added without introducing one.

In the coarsening phase of Hachul and Jiinger’s Potential Field Based Multi-level Algo-
rithm (often referred to as FM3) [HJos], vertices are partitioned into what the authors refer
to as solar systems, characterising each vertex as sun planet or moon. Each solar system is

collapsed to the sun node in the next tier of the coarsening hierarchy.

Section 2.3. Graph Layout 28

Frishman and Tal[FTo7] use an algebraic technique called spectral partitioning to par-
tition the graph in to clusters of nodes which can be represented as single nodes in the
coarser versions of the graph. This is a top down approach to multilevel layouts as op-
posed to the bottom up approach of maximal independent set filtration. The coarsening of
the graph using spectral partitioning requires post-processing to avoid small disconnected
clusters, a problem not encountered in the bottom up approaches such as Walshaw’s use of
vertex matching.

Once the coarsening phase is complete the layout phase applies a layout to each graph in
the N hierarchy, progressing from the most coarse level Gy_,to the finest G,. The choice of
layout algorithm, differs between multilevel approaches, but they all use some variant of the
force directed model. Part of the advantage of multilevel approaches is that the placement
of vertices in a more coarse version of a graph provides a good initial placement for the
layout of the next less coarse graph. The most straightforward strategy is that the nodes in
graph G; are initially placed at the position corresponding to their representative node in
the more coarse graph G;,,. This is the approach used by Walshaw, but other approaches
use different methods. For example Hachul and Jiinger’s method uses their solar system
structure in graph G; to derive a position for vertices in G,_,.

When laying out a coarse graph as one of the levels of the multilevel layout, care has
to be taken so that a layout of the graph G; does not completely disrupt the layout of the
previous more coarse graphs at levels G;_, and above. Walshaw does this by weighting the
relaxed spring distance k of the Fruchterman-Reingold algorithm based on the level used
by the previous levels coarse graph.

An example of results of a Hachul and Jiinger’s multi-level layout can be seen in figure
2.9. The results are similar to the basic Fruchterman-Reingold algorithm, seen in figure
2.8. This is to be expected as both are force directed algorithms, the difference is that FM3
offers faster performance and lower algorithmic complexity, particularly for much larger
graphs.

A more comprehensive list and evaluation of multi-level algorithms can be found in
Bartel et al.s evaluation of several multilevel algorithms[BGKM11] as well as Hachul Jiinger’s
comparison of fast algorithms for drawing large general graphs [HJo6]. Bartel et al. also
describe many different approaches to graph coarsening and initial node placement in the

different levels of graph.

2.3.4 Hierarchy Based

Frequently if a graph has an associated hierarchical clustering (i.e. it is a compound graph),
it can be laid out using a hierarchical geometric approach such as a tree layout, a cone tree,
a balloon tree or a tree map. These are graphs where the hierarchical nature of the graph
clustering is embedded in the geometry of the layout. Tree-maps developed by Johnson and

29 Chapter 2. Background and Related Work

Shneiderman [JS91] display data hierarchies (not necessarily graphs with adjacency rela-
tionships outside of the hierarchy) where items in the hierarchy are displayed as subregions
of their parent items in the hierarchy. Sugiyama’s layout [STT81] is an early hierarchical lay-
out, under which child nodes are positioned in layers beneath their parents is such a way
as to reduce crossings. Cone Trees|[RMCgi] are three dimensional displays of node hierar-
chies where each node is laid out such that it is at the apex of a cone, and all of its children
in the hierarchy are positioned around the circumference of the base of the cone. Balloon
trees such as that used by Holten[Holo6] are essentially a projection of a cone tree layout
onto a 2D plane [CKgs5]. Each low-level cluster is essentially a circular graph. An example
of a balloon layout can be seen in figure 2.11. Herman et al cover a variety of tree bases

layout in their survey of graph visualisation and navigation techniques (2000)[HMMoo].

2.3.5 Algebraic Approaches

Force directed algorithms are not the only approach to graph layout, there are also algebra
based algorithms for drawing graphs, such as ACE (Algebraic multi grid Computation of
Eigenvectors)) [KCHo3] which uses an algebraic multi-grid optimisation approach as well
as High Dimensional Embedding (HDE)[HKo2]. HDE creates a drawing (in a conceptual
sense, this is just a positioning of the nodes) in m dimensions (m is defined as an input)
and projects it down to a two or three dimensional drawing, for visualisation. The m di-
mensional drawing is created by selecting m vertices from the graph as pivot nodes which
form the basis of the axes. The position of each node in the graph along an axis is based on
its graph theoretic distance from the pivot node corresponding to the axis. Once the nodes
are positioned in the m dimensions, the drawing is projected down to two (or possibly 3)
dimensions for visualisation using PCA (Principle Component Analysis), a technique by
which multi-dimensional data is reduced to fewer dimensions. One key advantage of HDE
is the speed of the algorithm as it has a time complexity of O(m - |E|+ m?-|V|). Given that
m is independent of graph size, complexity only increases linearly with vertex and node

count.

2.3.6 Circular layouts

Circular layouts are a restrictive but simple approach to geometrically laying out a graph.
The nodes are evenly spaced around the circumference of the circle with the edges passing
thorough the interior of the circle, see figure 2.10 for a simple example. As with all graph
layouts it is desirable to reduce the number of edge crossing [Purg7]. Obviously the number
of crossings in a graph is dependent on the ordering of the nodes around the circle edges,
an NP-hard problem to solve [MKNT87]. Many different approaches and heuristics exist
to produce better circular layouts. Six and Tollis [ST99] order their vertices so that the

Section 2.3. Graph Layout 30

number of edges drawn close to the edge of the circle is maximised. While this does reduce
the number of crossings, it is not clear that it will make the graph more legible, as for larger
dense circular drawings, many edges close to the edge of the graph will not only cross, but
do so with a very acute crossing angle which per Weidong et al. [WSHEo08] makes them
more difficult to read. It is possible to maximise the crossing angles in the circle layout
using an approach such as that suggested by Nguyen et al [NEHH11], but such a technique
would not improve matters much as it does not change the sort order of the nodes in the
circle, and can also result in a slightly misleading visual clustering of the nodes in the circle.
Baur and Brandes [BBos] developed an ap-

proach to reducing crossing within circular . ‘

layouts, which consists of an intelligent initial

placement of nodes, followed by a circular sift- ‘ ‘ .

ing approach, which rotates the position of a :

node around the circle circumference, and as-

signing its final position as the one which re- . ! / .
sulted in the least number of crossings. Ganser ‘ :

and Koren [GKojy] have developed techniques . i .
which lower the edge density within a cir-

cular layout. They use a three pronged ap- ‘ ‘

proach, consisting of ordering nodes in such

away that edge lengths are reduced, adaptin
¢ ge length i Figure 2.10: A simple circular layout of a

edge bundling for use within a circular layout, 10 node graph

and routing edges external to the circle using
curves. Circular graphs can also display clustered hierarchies, as can be seen in figure 2.12
where the clustering hierarchy is conveyed by the positioning of nodes and the grouping

of edges.

It is possible that a graph consists of multiple circular layouts. For example different
clusters within a graph could be laid out as circular sub-graphs, as done in a balloon tree
layout, or as with approaches such as Topolayout{AMAo7] circle layouts can feature as
one of multiple approaches utilised in graph layout. When multiple circle layouts are used
within a graph, inter-circle edges and their crossings should also be considered. Crossing
can be reduced by rotation of circles as well as ordering of the constituent nodes within the
circle. Many approaches model physical torque, with the edges to other circles applying a
rotational force on the source circle. Essentially an energy function is minimised to provide
a good rotation to a circle. Examples of this include the GEM layout of Frick et al. [FLMgs],
as well as Symeonidis and Tollis [STo4], who use a polar coordinate based form of force
directed layout.

31 Chapter 2. Background and Related Work

Figure 2.11: An example of a balloon tree layout of a 60 node graph. The hierarchy nodes
are coloured black, connected by the red lines. The hierarchy levels are also circled in green
to clarify the hierarchy structure .

Figure 2.12: The same graph as in figure 2.1 under a clustered circular layout. The grey
hierarchy nodes are shown for illustrative purposes.

Section 2.4. Graph Visualisation Evaluation 32

Other approaches

Other approaches have included using space-filling curves as a framework for vertices] MMo8]
and genetic algorithms [BBoo] and topology based layout{AMAo7]. Space filling curves
[MMo8] position nodes along a curve designed to take up the full graph display space. The
order of the nodes along the curve is decided by an ordering function, which is dependent
on a good clustering. The primary advantage of this approach is the speed of layout, which
makes it much faster than the force directed approaches, particularly for exceptional large
dense graphs. Barreto and Barbosa’s [BBoo] genetic layout approach uses graph aesthetics
such as edge crossings and vertex distances to select the input layouts used to create succes-
sive generations or graph layout. Archambault et al's Topolayout [AMAo7] is an innova-
tive approach for the layout of graphs. It decomposes a graph using topological features, to
form a hierarchy. Topological features are graph structures such as cliques (a set of nodes
that are fully connected to each other), connected components, and trees. Topolayout uses
other layout algorithms, such as a basic circular layout and High Dimensional Embedding
to layout the various topological features at lower levels of the hierarchy, depending on
which layout is more suitable for the feature. The authors also increase comprehensibility

by applying edge crossing reduction techniques to the identified features in their graph.

2.4 Graph Visualisation Evaluation

Evaluation is a challenge in the field of visualisation, be it scientific visualisation, infor-
mation visualisation or graph visualisation. Frequently, graph visualisation paper authors,
particularly if the topic is the visual presentation of a graph, have to rely solely on displaying
images of their technique. For example Holten [Holo6, HWog] and Cui [CHH*08] rely
on the visual presentation of their edge bundling techniques as part of their evaluation.
Such an approach is necessary, particularly for a technique as visual as edge bundling, but
it is limited in the number of cases that can be shown within the space of a paper. Chen
[Cheos] describes the lack of “intrinsic quality measures” as one of the unsolved visualisa-
tion problems of information visualisation.

The notion of a quality measure that is intrinsic to information visualisation, and hence
not dependent on the application or subject matter or any external reference point, is im-
portant as it allows a consistent evaluation of quality between an evaluation based on user
assessment and one based on an evaluation metric. In graph visualisation such intrin-
sic measures, often referred to as aesthetics, do exist. In addition to intrinsic metrics of
a visualisation, user performance is important as the ultimate goal of visualisation is to
aid human understanding. User performance can only be measured by empirical exper-
iment, although it can be shown to correlate with some metrics. For example Purchase’s

work [Purg7, Purg8, WPCMoz] investigating graph aesthetics does so using user experi-

33 Chapter 2. Background and Related Work

ments. Empirical evaluation can be done through low level abstract tasks such as indicat-
ing the distance between two vertices in a graph are connected by two or 3 hops [WMos],
or through higher level domain specific tasks such as considering where a new web page
should be added to in a website’s directory structure [RCMCoo].

When evaluating the real word effectiveness of a clustering or layout technique it can
be difficult to subjectively quantify its effectiveness without a high level task. This section is
concerned with describing how intrinsic measures are used and evaluated as well as general

evaluation techniques.

2.4.1 Evaluation Graphs

When evaluating a technique related to the presentation of a graph, e.g. evaluating a graph
layout or a visual effect such as the use of colour, it is obviously necessary to chose a graph
(or graphs) that will be the basis of the experimental evaluation. The choice of graph has
a very significant role in the experiment. Graphs vary in size structure and density de-
pending on what they are modelling. The choice of graphs should also be suitable for the
visualisation technique being evaluated. Preferably, it should allow the evaluation of the
efficacy of the technique under a range of experimental conditions.

In her 2004 paper on the challenges of information visualisation (not specifically graph
Visualisation), Plaisant [Plao4] suggests the creation of repositories of data and tasks as the
next step in providing a solution to the problem of information visualisation evaluation.
In the conclusions of their 2011 state of the art survey on the visual analysis of large graphs
von Landesberger et al. [VLKS*11] comment in their conclusions on the need for more
taxonomies for aspects of visualisation such as tasks and measures for quality, as well as
benchmarks for comparing techniques and ‘although several taxonomies and sample data
sets exist, a more broader scope of theory and data aspects is needed”. While more and more
data sets have become available, it is not always clear which data set is the most suitable for
testing a specific data visualisation approach. A wide range of task specific data sets would
help standardise graph evaluations across different techniques.

In their evaluation of large graph layout algorithms Hachul and Jiinger [HJo6] used
11 graphs from real-world graph sets. These real-world graphs consisted of a subset of the
AT&T graph Library [AT12], a subset of Walshaw’s graph collection[Wal12], and a single
social network graph of 2113 people.

Using a real-world graph to test a specific visualisation technique is limiting as there is
no flexibility in graph parameters. Unless the visualisation technique is only targeted at a
very specific data set, it may not be enough to target it at such a limited range of data. In
order to evaluate graph visualisation it is often useful to procedurally generate graphs, as
the characteristics of the graph can be defined beforehand in such a way that the technique

is tested under a variety of conditions.

Section 2.4. Graph Visualisation Evaluation 34

There exist many procedural approaches to generating graphs, and these have been
used in the past to test graph layout algorithms. Hachul and Jiinger [HJ06], in addition to
the real world graphs set, created many graphs using simple procedural approaches. These
result in graphs which display regular patterns which are apparent by visual inspection
(depending on layout of course). These patterns are reflected by the names given by the
graph authors: the snowflake graph, the flower graph and the Sierpinski graphs (based on
Sierpinski triangles).

Apart from loading real world graphs from external libraries, real world graph data can
be generated by parsing data sets such as program source code, website links or data-base
relations. In chapter 3 we present some examples of graphs data created by parsing data
from Wikipedia. It is very useful to be able to randomly generate large sets of small world
graphs to analyse the effectiveness of a particular algorithm on graphs with a wide range
of properties (such as size, edge density, graph clustering coefficient, level of randomness).
When procedurally generating graphs characteristics can be determined as an input to an
algorithm which can still generate graphs with some level of randomness. This can allow
for an algorithm to be tested against a wide range of graphs with different parameters and
also to be tested against multiple graphs with the same parameters.

Random Graph Generation

One of the earliest common methods of generating graphs is the Erd6s-Rényi model [ER59]
of random graphs, also known as the Poisson Random Graph. While this is one of the best
known random graph models and has provided many insights into the field of network
graph theory, it does not accurately reflect the structure of many real world graphs in terms
of edge distribution. It may not also provide graphs suitable for the evaluations of different
visualisation approaches, e.g. if an edge routing evaluation depends on different levels of
edge connectivity between clusters. As mentioned by Lancichinetti et al. [LFRo8], cluster
size edge distribution vary in real world graphs. In section 5.1 we will see an example of
graphs generated for the specific task of evaluating edge routing in a compound graph
utilising a distribution of edges not found in a simple Poisson Random Graph.

In some cases, such as evaluating clustering algorithms, it may be desirable to know
in advance what the optimum clustering of a specific graph is. However graph partition-
ing is an NP complete problem. So for a completely randomly generated graph finding
the best possible clustering requires analysing all possible permutations of clustering for
that graph. As graph get larger this becomes more and more impractical. Moussiades and
Vakali [MVog] propose an approach for generating random graphs where optimal cluster-
ing is known. This is useful when a naturally occurring clustering or community structure
(as demonstrated in Zachary’s karate club example) is desired from the input graph. How-

ever, if extra constraints are required, such as a specific characteristics, e.g. a high average

35 Chapter 2. Background and Related Work

A
Zon
S /

/] N
157 N
7
Z
o

WP

\N)a'8'e727 <

o«
AN
/\"lﬁ/

LY

Figure 2.13: A ring lattice of 100 nodes each with a degree of 4, the starting point of the
Watts and Strogatz’ small world generation algorithm

Figure 2.14: A random graph equivalent to that in figure 2.13, generated using Watts and
Strogatz’ small world generation algorithm with in input probability of 1.0 and laid out
using a force directed algorithm. The graph has an average path length of = 3.37636 and an
average local clustering coefficient of 0.012

local clustering coefficient, or some node based constraints , e.g.limiting node degree, such
an approach may not be possible.

Random Small World Graph Generation

The small world graphs described in section 2.1 demonstrate characteristics of real world
graphs. It is possible to procedurally generate small world graphs. We use Watts and Stro-
gatz’ approach for creating small world graphs [WSg¢8] for use in the evaluation of our
agglomerative clustering in chapter 3. In generating these graphs we have control over the
graph size, edge density and level of randomness, allowing us to create graphs of various
degrees of “small world-ness”.

The approach starts with a ring lattice graph of n nodes where every node has k links
connecting it to its neighbours (i.e. every node has a degree k, resulting in |E| = k|V|). This
can be considered a fully structured graph, where a completely random graph could be
considered full unstructured. Such a lattice with 100 nodes and a degree of 4 is displayed

Section 2.4. Graph Visualisation Evaluation 36

Figure 2.15: A small world graph equivalent to that in figure 2.13, generated using Watts
and Strogatz’ small world generation algorithm with in input probability of 0.1 and laid
out using a force directed algorithm. The graph has an average path length of = 5.53879
and an average local clustering coefficient of 0.396

in figure 2.13. We consider a specific vertex and consider the edges connecting it to one of
its neighbours in a clockwise sense. Each edge is rewired to a randomly selected neighbour,
with a probability of p. Duplicate edges and loops are forbidden. Each vertex in the graph
is processed in a clockwise order. The input value of p has a large impact on the resulting
graph. For a value of p = 1.0 the result is a randomly wired graph, as seen in figure 2.14.
For low values of p (e.g. p = 0.1) the result is a small world graph as displayed in figure 2.15.

The combination of the real world-like characteristics of these procedurally generated
graphs, as well as the ability to control the edge density, graph size and level of structure
makes these graphs very useful for performing experiments on the efficacy of clustering
algorithm. In addition to this the non-deterministic aspect of their generation allows for a

variety of graphs to be generated for the same input parameters.

2.4.2 Graph Aesthetics

One approach to evaluate a graph layout is based on the aesthetics of the resulting lay-
out. Aesthetics in this context refers to measurable attributes which reflect the quality of a
resulting layout.

Reduction of edge crossing has long been identified as a desirable graph layout aesthetic
for 2 dimensional graph layouts. Crossing reductions has been used as an approach to
heuristically improve algorithms for some time. For example Sugiyama [STT81] states that
“The greatest difficulty in tracing paths is line crossings” and he uses crossing reduction as a
step to improve the layout of hierarchies.

Many aesthetics have been postulated, often as part of the goal of a particular graph
drawing algorithm. These aesthetics have included graph symmetry [Ead84], minimising
the number of edge crossings [STT81], minimising the number of bends in edges [Tam8y],

37 Chapter 2. Background and Related Work

and path continuity [WPCMoz]. The efficacy of various aesthetics has been evaluated in
user experiments and some have shown to be more important than others. Purchase’s
work [Purgy] has demonstrated that edge crossings are by far the most important aesthetic,
impacting both user response time and accuracy, with symmetry and edge bends being of
lesser importance but having significant results. Later work with Ware et al. [WPCMoz2],
showed that continuity of paths (i.e. keeping path between more distant nodes that traverse
multiple edges as straight as possible) is also an important factor.

For many graphs (those which are not planar) crossings cannot be omitted altogether,
Huang and Eades [WSHEo08] demonstrated that maximising the crossing angle so that in-
tersecting edges are perpendicular reduces the negative effects of edge crossing. Huang
and Huang [HH1o0] have followed up on this work and demonstrated that 38% of variance
in performance is attributable to crossing angle and the rest is attributable to the crossing
number of the graph (in cases where there was a performance variance). So where fur-
ther crossing minimisation is not possible, maximimising crossing angles can be used as a
secondary aesthetic.

More recent work by Purchase et al. [PPP12] has indicated that when users manually
create graphs, they use edge crossing reduction as an aesthetics and also align nodes and
edges to an underlying grid.

2.4.3 Evaluating User Performance

To fully evaluate the effectiveness of any graph algorithm or suggested aesthetics, its benefit
to the end user needs to be measured. Different tasks to evaluate user performance, and
implicitly graph comprehensibility, have been suggested.

For experiments considering the impact of graph aesthetics [Purgy] as well as the im-
pact of various graph layout algorithms [Purg8], Purchase utilises a path tracing task (spec-
ifying the shortest path between two nodes), as well as questions concerning the graph
structure, such as “how many nodes must be removed to disconnect two highlighted nodes?”
These tasks are designed to reflect the experiment participants understanding of the rela-
tional nature of the graph being displayed.

Ware et al.[WPCMoz2] use a path tracking task in their evaluation of the aesthetics
of graph edges. This includes features such as edge crossings, path directness and average
geometric edge length. For each displayed graph the user is asked to determine the shortest
path distance between two nodes and is given an option of three, four or five to choose from
as their answer. The time to answer and error rate is recorded for analysis.

In Ware and Mitchell's [WMo8] experiments on the comprehensibility of 3D graph
visualisation, they use a path tracing task where the paths distances were limited to either
two or three hops. In Huang et al.s [WSHEo08] evaluation of the effect of crossing angles
of a graph, the task is again path tracing with paths of length from four to seven hops

Section 2.4. Graph Visualisation Evaluation 38

long. In Huang et al’s study of graph evaluation [HEHo08], the authors used path tracing as
part of an eye-tracking study, as well as questionnaires which were used to evaluate user’s
perception of node importance and node grouping.

These above experiments involve low level relational tasks which are not domain spe-
cific. For a broader system evaluation, experiments are based on high level, interpretive
tasks. For example, in Risden et al.s [RCMCoo] study on ease of use of 2D and 3D visuali-
sation of web content, they used a search task related to directory management of a website
with all of the participants of the experiment having technical experience. Assessing per-
formance at high level tasks which require domain knowledge is difficult. In Purchase et
al’s study on comprehension of UML diagrams [PMCCo1], the study was limited by the fact
that university students, given a tutorial on UML diagrams, were used as subjects rather
than experienced software engineers.

High level tasks are useful for evaluating visualisations designed for specific purposes.
However it is difficult to generalise any results across general node-link diagrams as the
high level task itself, or the visualisation application domain, may have a strong influence
on the graph characteristics. For example the directory structure for Risden et al’s experi-
ment was a tree structure, so it is not clear if their results will generalise to other types of
graph. Given that domain knowledge also plays a significant role, it may be better to use a
low level task, such as path tracing, that can be generalised to a higher level task. Table 2.1

provides a summary of tasks used in previous experiments.

Graph Properties in Previous Experiments

Tables 2.1 shows the size of graphs in previous works. While the largest graph was used by
Risden et al, the experiment was performed on a single graph, used for a high level task, as
opposed to a series of graphs or a large size with varying different properties. Therefore it
is difficult to see how the scale characteristic contributes to the result.

Clearly the choice of graphs for a study reflects the goals of the study. Ware and Mitchell
[WMo8] utilise 4 different graph sizes, with the same varying edge distribution between
nodes for each size, reusing the same graphs under different viewing conditions for their
experiment. This reflected the aims of the experiment, which concerned the impact of
stereoscopic three dimensional viewing as graph size increased. Other evaluations of graph
aesthetics such as [Purg8, Purgy] use only a single graph in their evaluation. In these
experiments Purchase evaluated very specific effects of graph layout, and introducing a
larger range or graphs may have introduced confounding factors. Determining the range
of graphs to be used as inputs is a difficult issue. If a wide variety of graphs are used, there
is an increased risk of introducing factors external to those under investigation, which may
impact results. If only a small number, or single graph is used, results may not generalise
to graphs with different properties to the ones used for an experiment.

Chapter 2. Background and Related Work

Study Authors Year | Task Goal
Purchase 1998 | Path tracing, | How long is the shortest path be-
Node removal, | tween two given nodes? How many
Edge removal | nodes must be removed to discon-
nect two highlighted nodes? How
many edges must be removed to dis-
connect two highlighted nodes?
Purchase 1997 | Path tracing, | How long is the shortest path be-
Node removal, | tween two given nodes? How many
Edge removal | nodes must be removed to discon-
nect two highlighted nodes? How
many edges must be removed to dis-
connect two highlighted nodes?
Ware and Purchase | 2002 | Path tracing How many hops between high-
lighted nodes?
Mitchell and Ware | 2008 | Path tracing How many hops between high-
lighted nodes?
Ware and Franck | 1996 | Path tracing Does a path exist between nodes?
Risden et al. 2000 | Node Inser- | Using the graph to aid in the addi-
tion tion of new nodes to a hierarchy
Huang et al. 2008 | Path tracing Determining the number of links in

path, measuring the time for a cor-
rect answer, ignoring incorrect ones

Table 2.1: User tasks in previous graph based empirical studies

Section 2.4. Graph Visualisation Evaluation 40
Study Authors Year | Node Count Edge to Node Ratio | Layout
Purchase 1998 | 16 1.69 Multiple type of
layout
Purchase 1997 | 16 1.69 Graph layout was
derived from the
aesthetics being
evaluated
Ware et al. 2002 | 42 1.0 - 5.0 Force Directed
With Simulated
Annealing
Mitchell and Ware | 2008 | 33, 100, 333, | Max degree of 5 A modified ver-
and 1000 sion of Force Di-
rected Fruchter-
man Reingold
layout
Ware and Franck | 1996 | 21-291 1.333 Random Layout
Risden et al 2000 | 1200 unspecified Hierarchy com-
bined with list
layout for the pur-
pose of 2D and
3D comparison
Huang et al 2008 | N/A Full | N/A N/A
graphs were
not used,
only small
graph-like
stimuli
Table 2.2: Graph sizes in previous graph based empirical studies

41 Chapter 2. Background and Related Work

2.5 Edge Routing

Keeping edge crossing to a minimum is important for two dimensional graphs. However
for a graph of any considerable size and density, there will be a significant number of edge
crossings, and maximising edge crossing angles may be ineffective due to constraints of
the graph layout or the sheer number of edges. Therefore, a huge number of edge cross-
ings is often unavoidable in a very large dense graph. Example subjects of such graphs
are complex computer programs and file systems [Holo6, BDoy], graphs representing air
traffic [CHH*08, HWog] (using a map and geometrically fixed nodes). Other approaches
are necessary to reduce the amount of clutter introduced by a larger volume of edges and
clarify the paths taken by edges. Edge bundling is a recently popular technique by which
edges are grouped together and drawn using curves which share a common path from
their source to destination, if they have a common geometric destination or a common
conceptual basis. It is often used in dense graphs where straight edges become indistinct
due to the clutter cause by the number of edges as clutter reduction techniques such as the

reduction of edge crossings are impractical or ineffective.

2.5.1 Edge Bundling

The edges which contribute to a grouping of edges, referred to as a bundle, may be deter-
mined by graph structure, such as a hierarchy [Holo6, BDoy], or the geography of nodes
[CHH*08, BDo7, HWog]. Once the edges for a specific bundle have been defined, they
are drawn using curves known as splines. In a spline the individual curve points are calcu-
lated using a polynomial function which interpolates values based on an input set of con-
trol points. There are many different type of splines, however the most commonly utilised
splines for edge bundling are Bézier curves and B-splines. Other types of curves such as
B-splines have be tested [Holo6] but never adopted. Bézier curves are significantly eas-
ier to calculate than B splines. The calculations consist of simply multiplying a geometry
matrix, defining the control points, by a Bézier basis matrix, which defines the polyno-
mial function. This allows long curves to be created using multiple Bézier segments with
overlapping control points. B-splines require a more significant amount of calculation, as
a different basis has to be worked out for different line segments using the Cox De Boor
recursive algorithm. However B-splines result in a much higher level of control of the re-
sulting curve and this allows a much more flexible routing. B-splines are a better approach,
as long as graph size does not result in their computational complexity being an issue. Dif-
ferent approaches to bundling are characterised by how edges are chosen to be bundled
together, which spline type is used to draw the edges as curves, and how the control points

are defined for the curves.

Section 2.5. Edge Routing 42

Hierarchical Edge bundling

Developed by Holten, the hierarchical edge bundling algorithm [Holo6] is one of the most
effective forms of edge bundling. It is, however, limited to compound graphs that are laid
out in the form of a hierarchy. In the basic form, the nodes of the graph are positioned
using a hierarchical layout, and hierarchy node positions are utilised as control points for
drawing the splines. Piecewise splines are used to draw the edges between nodes. These
edges are referred to as adjacency edges to discern them form the edges of the hierarchy
(which are not drawn). The set of control points for the edges is the set of nodes on the
shortest path between the source and target nodes in the hierarchy. B-Splines are chosen
as the spline representation. Beta splines and Bézier curves were also considered, however
they were found lacking . Bézier curves did not provide the desired level of control and
beta splines required extra process to achieve results which were achievable with regular
B-Splines and an external straightening parameter. This straightening parameter is used
as two splines with similar sets of control points will overlap, however by adjusting the
straightening parameter the spline are drawn at slightly different positions. The straight-
ening parameter adjusts the control points of each individual spline that makes up a bundle
based on their position in the curve and the relative position of the initial and end control
points. The initial and end control points are the positions of the source and destination
nodes of the edge. For a curve using N control points , beginning at P, and ending at Py_,,

the straightened position P/ of control point P; is given by:

i
N -1

P,-’=ﬁ-P,-+(1—ﬁ)(Po+ (PN—I"PO))

B is the straightening parameter. It lies in the range [0,1.0], with 8 = 0.0 resulting in
straight lines between curves and B = 1.0 resulting in tightly bundled overlapping curves.
Holten also uses alpha blending of the edges to help convey the density of bundles, and to
help pick out bundles where large numbers of edges overlap. The edges of the visualised
graph are directed edges with the direction indicated by a changing colour gradient which
may also have an impact on the readability, as a differing change in gradient between edges
may help distinguish them. The results of Holten’s edge bundling approach using two dif-

ferent layouts can be seen in figure 2.16.

In later work, Holten and Van Wijk [HVWo8] utilised hierarchical edge bundles as
a technique to aid in the visual comparison of hierarchically organised data. The edge
bundles visually emphasize the splits, joins, and relocations of sub-hierarchies between

data sets being compared.

43 Chapter 2. Background and Related Work

(a) Hierarchical circle layout. (b) Radial circle layout.

Figure 2.16: Images taken from [Holo6] visualising a graph showing the structure of a
software system, using hierarchical edge bundling

(a) Unbundled (b) Bundled, with colour indicating edge
density

Figure 2.17: Images taken from [CHH*08], visualising a graph showing migration between
states in the U.S., using Cui and Zhou’s geometric edge clustering

Section 2.5. Edge Routing 44

Geometric Edge Clustering

Cui et al. have developed a purely geometric approach to bundling edges [CHH*08] ,
following on from previous work by Qu et al. [QZWo7]. This approach involves generating
a control mesh for the graph. The control mesh is generated by a Delaunay Triangulation,
a technique by which geometric space is divided into a set of triangles, based on a set of
input points. The resulting triangles have the property that no point in the inputs set lies
within the circum-circle of any of the triangles generated.

A set of input points can be selected by the user or determined automatically. These
points are not nodes within the graph but points which are to form the vertices of the De-
launay triangulation (edges to be included can be specified too). In the case where the
mesh is determined automatically the graph is subdivided into a grid and for each cell in
the grid the number of graph nodes and links passing through are calculated. The authors
then store the direction of each edge in a feature vector and perform a Kernel Density Es-
timation. This gives them a probability curve of direction for each grid square. If there
is a strong probability of all curves going is a specific direction then this is the primary
direction assigned to the square. Grid cells are then merged with cells containing a similar
primary direction (i.e. the difference between orientations is within some threshold angu-
lar distance). Cells are merged into a larger region until the difference between all primary

directions is beyond some threshold specified as an input.

Once the mesh is generated actual clustering of the edges begins. For each edge of
the mesh, one or more control points are generated. The input to the smoothing is the
points at which the graph edges intersect the mesh triangle edges. The authors use K-
means clustering of these intersection points to determine the actual control points to be
used (if only one control point is desired this is in effect the average position). This results
in noticeably tight bundles (see figure 2.18). However, this can be partially rectified by using
a higher resolution of grid and adjusting the threshold angle for merging grid squares. Due
to the kernel density estimate and averaging (and K-means clustering) some edges might be
periodically be bundled in the wrong direction resulting in difficult to follow meandering
links in the final visualisations. To overcome this problem, the authors performs local edge
smoothing. The smoothing islocal as it only considering alternate paths for the edge within
nearby triangle of the mesh. The authors determine which edges need to be smoothed by
examining a metric which is a combination of the bundled edges angular difference for the
original straight edge and Euclidean distance difference for the straight edge. The weighting
of the two quality attributes is decided by the user. Using this metric, poor quality links are
identified and an alternative is sought by searching the mesh triangles that the edge passes

through, as well as some of the neighbouring mesh triangles.

It can be seen from the above that this approach is algorithmically more complex than
hierarchical edge bundling, requiring extra smoothing an less intuitive generation of con-

45 Chapter 2. Background and Related Work

Figure 2.18: Example given by Cui[CHH*08] of Edge clustering by control points: (a) a
graph with a control mesh, (b) the intersections and the control points and (c) the merged
graph.

trol points. The results of Cui and Zhou’s approach can be seen in figure 2.17, on a graph
representing migration patterns between states in the US. This type of graph, where node
positions are fixed absolutely (as they represent states on a map), benefits the most from
Cui’s approach as the clustering hierarchy necessary for hierarchical edge bundling is not
present.

Other Geometric approaches

Zhou et al. [ZYC*08] build on Cui’s approach allowing for a
hierarchical bundling of edges (see figure 2.5.1 for an exam-
ple) using an energy based approach to determine the con-
trol points for the bundled hierarchy edges. The resulting im-
ages bundle edges tightly and care has to be taken about the
reading of the graph, as the bundled edges could be misin-
terpreted as a visualisation of a hyper edge in a hyper graph.

The authors admit that sometimes the edge direction is not e <

cccdeeoecee 6660000

always entirely clear. This approach differs to [Holo6] and

[CHH*08] as when edges share a common path they can

overlap entirely for some of that path. Figure 2.19: Example im-
age taken from [ZYC*08],

Lambert et al [LBA1ob] provide an approach that is showing the effect of
slightly similar to Cui et al.. It includes a similar spatial sub- Zhous Hierarchical edge

division, but instead of Cui et al’s grid it uses a hybrid quad- bundling. ~ The graphs
are unbundled in the top
row and bundled in the
bottom).

tree / Voronoi diagram approach. The grid is also used to
route edges. The edges of the grid act in a similar manner
to the Delaunay triangulation performed by Cui et al., how-
ever the strength of these edges is determined by calculating
a shortest path algorithm on the original graph and calculating how many edges from the
original graph cross each grid edge. The authors have also extended their edge bundling

Section 2.5. Edge Routing 46

into 3D [LBA1oa], displaying 3D edge bundles running across a spherical geographic map
of earth. The authors also use visual techniques such as bump mapping to aid in the visual

display of the edges.

Force Directed Edge Bundling

Holten and van Wijk [HWog] also developed an edge bundling approach which has no
need for a hierarchy, as edges are routed using a force directed algorithm. In this approach,
edges are subdivided into points that interact with each other in a manner similar to a force
directed layout. This approach leads to very high levels of bundling so edge compatibility
measures are used, to determine which edges should be bundled together. Edges are bun-
dled together only if they are compatible in orientation and in length. The resulting edges
are then smoothed using a Gaussian kernel to adjust the position of the internal points of
the edges. The strength of the bundling can be adjusted in manner similar to the bundles
in [Holo6]. The resulting colour of the edges is determined from a gradient scale related

to the number of edges intersecting a specific pixel.

Other Occurrences Gansner and Koren [GKoy] use edge bundling to reduce clutter as
part of their improved circular layout. Edges are bundled tightly, merging to a single line,
leaving the connectivity of node pairs to be inferred by the user based on the order of
nodes at either end of the bundle. The approach used for winding roads [LBA1ob] has also
been expanded to generate 3D edge bundles for use with spherical geographical layouts
[LBA1oa]. 3D Edge bundling also features as a component of Balzer and Deussen’s level of
detail visualisation of clustered graphs [BDojy]. Edges are grouped together based on inter
cluster connectivity and divided into segments which are routed together algorithmically.
Bézier curves are utilised to smooth the resulting edge segments, but are not utilised as
part of their routing. Pupyrev et al [PNBH12] also use an approach similar to the mesh
based approach described previously, creating a grid graph for edge routing. This routing
graph is used to route edges so that they do not obscure nodes, as opposed to Cui et al. who
use the mesh to generate control points. Bundles are drawn using Bézier curves, which are
evenly spaced apart (rather than using a straightening parameter), and ordered in such a
way that edged crossing are reduced. Luo et al. [LLCM12] also utilise a geometry based
approach using spatial partitioning to bundle edges ijn order to reduce edge ambiguity.
Their approach is interactive and on demand. Bundling only takes place in areas of a graph

where a user desires it, to reduce edge ambiguity and improve readability.

Bundling Interactivity

Approaches such as Cui’s geometric edge bundling and Holten’s hierarchical edge bundles
produce an edge routing which is global for the whole graph. The edge bundling is in-

47 Chapter 2. Background and Related Work

teractive in the sense that parameters can be altered and the edge bundling redone. Other
techniques such as Edgelens [WCGo3] distort edges in a local fashion which can be consid-
ered related to bundling. Edge lens distorts edge around a focal point (the lens) using edge
curvature to allow the user to see any obfuscated data, such as nodes, or to separate closely
routed edges. Edge lens derives from edge plucking [WCoy7], which is a technique which
allows users to interact with edges directly, moving them using the cursor (like plucking a
guitar string) in order to clarify any ambiguity about their path. Riche et al. describe an
interactive local bundling approach refered to as link magnets [RDLC12] as part of their
overview of interactive edge routing approaches. This approach requires user interaction
to position “magnets” in the graph which distort edges to allow the user to see graph aspects

more clearly.

2.6 'Three Dimensional Stereoscopic Vision and Graphs

Stereoscopic viewing of objects has been know about since the Victorian era. It was iden-
tified by Charles Wheatstone in 1838 [Whe38], who also developed the Wheatstone stere-
oscope (and coined the term stereoscope). A stereoscope is a device which, when used to
view two images side-by-side, provides the illusion of depth. The images must correspond
to the left and right eye view of a scene. During World War two, as part of operation Cross-
bow, allied reconnaissance planes took multiple photographs of the landscape of Nazi long

range missile sites in Europe.

These were then viewed using a stereoscope, of
the design shown in figure 2.20. The use of stereo-
scopic 3D allowed the allied analysts to measure the

height of new structures at the site.

2.6.1 Stereoscopic Display of Graphs

Much research has been done in visualising graph
structures using three dimensional displays [WF96,
WMo8, SMg3, HHL10]. Displaying a graph in

stereoscopic 3D usually requires specialised hard-

ware. Stereoscopic vision depends on delivering a Figure 2.20: A World War 2 stereo-
different image to each eye. Many approaches re- scope and Case.
quire the user to wear glasses, while a screen displays

images for both the user’s left and right eye.

Section 2.6. Three Dimensional Stereoscopic Vision and Graphs 48

Stereoscopic display approaches

Early promising results on visualising network

graphs in three dimensions was produced by Ware and Franck [WFg6] using active shutter
glasses. Active shutter 3D glasses require a display which alternates between rendering the
left eye view and right eye view for each frame. The active shutters of the glasses are syn-
chronised with the display frequency so that each eye only sees the frame that is targeted
at that eye. Passive glasses systems are usually projector based and require overlapping po-
larised projections of each eye image onto the display. The passive glasses act as filters so
that each eye only sees the image intended for that eye. Most contemporary three dimen-
sions cinema displays utilise passive 3D, which many home television and computer three
dimensional displays utilise active 3D. Previous generations of shutter glasses were often
bulky and quite uncomfortable, however more recent consumer oriented products have
improved the form factor and reduced the size of shutter glasses. It is also possible to dis-
play a three dimensional stereoscopic image without the use of glasses. Auto-stereoscopic
displays [Delos, HHL10] are a more recent technology at consumer level, however they
very often require an large number of images to be rendered for each frame, compared to
the usual two for most other stereoscopic visualisation techniques. This can significantly
damage interactivity as a high level of scene complexity results in a greatly reduced frame
rate.

Anaglyph 3D is an alternative to using the complex hardware required for shutter glasses.
This approach uses red/cyan or similarly coloured glasses on a regular display but with
specially altered renderings. Anaglyph stereo has been used for three dimensional exper-
iments, for example van Shooten et al. [vSvDZS*10]. However the distracting nature of
the coloured lenses as well as the loss of colour as an information channel makes anaglyph
stereo a last resort and only if no other means of stereoscopic vision is possible.

In [WMo8], Ware and Mitchell used an adaptation of a Wheatstone mirror stereo-
scope to allow for higher resolution stereoscopic display. This device, rather than requiring
glasses, requires the user to look into an apparatus where two mirrors reflect images from
a pair of high resolution displays, one for each eye. While allowing for high resolution
image that reduces artefacts such as image ghosting, which affect other approaches, this
apparatus is not practical for everyday user interaction with a display.

Head Tracked displays often go hand in hand with stereoscopic displays and add an
extra level of immersion for users [WABg3, WF96, HHL10]. When head tracking is used
the images displayed are updated depending on the position and orientation of the users
head. Effectively the virtual camera rendering a scene is controlled by the users head mo-
tions. This adds motion parallax which adds to the perception of three dimensionality in

addition to the stereoscopic effect.

One final option is a head mounted display, which is essentially a large pair of glasses

49 Chapter 2. Background and Related Work

with a separate display for each eye as well as a means of head tracking. These devices
generally require complete immersion in a visualisation by a user and limit interactivity

with an external stimuli and hence are quite impractical for many real world visualisations.

Stereoscopic and motion depth cues

Both stereoscopic and motion cues provide depth information to the user. However the
level of contribution of each, as well as the impact of combining both cues, is not consistent
across all previous work comparing the impact of stereoscopic and motion cues on user
performance.

Sollenberger and Milgram’s experiments [SM93] showed that both motion cues and
stereoscopic display improve user performance at a tree based path tracing task. The mo-
tion cues were based on rotation of the graph structure back and forth, and their task was
focused on selecting the correct root node for a tree containing a highlighted leaf node. The
authors state that the motion cues improver user performance more than the stereoscopic
cues. Ware et al. [WAB93] conducted a similar experiment, except the rotation was the
result of head tracking, coupled with the stereoscopic display , and found similar results.

In Ware and FrancK’s 1996 paper [WF96] users performed head tracked path tracing
tasks on randomly laid out three dimensional graphs. Once again motion is better, but
stereo also has a strong effect. In later work, from Ware and Mitchell which re-visited the
topic of stereoscopic display of graph visualisations [WMos, WMo8], the authors used a
spring embedder layout as opposed to a random layout, as well as a much higher reso-
lution display than previous experiments. They discovered a larger positive effect from
use of 3D depth cues (both motion and stereoscopic) than previously noted. In particu-
lar, that the viewer could comprehend larger graphs more easily. There was no significant
difference between motion and stereo cues for novice users (14 of which were used in the
experiment). In their work on path tracing tasks using depth with multi-view (i.e. auto-
stereoscopic) displays Hassaine et al’s [HHL10] results show that when comparing motion
cues, in this case motion parallax as a result of head tracking, combined with stereoscopic
cues, stereoscopic depth cues play a larger role in user understanding of the graph. The au-
thors postulate that this may be because motion parallax only has an additive effect if there
is a significant amount of occlusion in the 3D graph rendering. They also note that previous
work [BPGoo, AGBg6] has shown that the benefit of motion parallax and stereopsis de-
pends greatly on context and can be influenced by the task, as well as by the experimental

procedure.

2.6.2 Stereo rendering

Given a common dual image based approach for stereoscopic display a visualisation ap-
plication must the take the rendering hardware and display hardware into consideration.

Section 2.6. Three Dimensional Stereoscopic Vision and Graphs 50

Up Axis ——

S Forward Axls Projection Far Plane —

S o W Right Axis “— Projection Near Plane

“~— Center of Projection

Figure 2.21: A simple single camera set up, the image projected onto the near projection
plane is that which is seen by the user.

The OpenGL graphics API provides extensions that allow applications to render to sepa-
rate display buffers for the left eye and the right eye. In order for an application to render
an image to be viewed on a stereoscopic display the scene is rendered from the perspective
of the left eye and rendered to the left display buffer and then from the perspective of the
right eye to the right display buffer.

Each display buffer requires a different scene projection to reflect the fact the image
is targeted to a specific eye. The standard approach to rendering a scene in a visualisa-
tion application is to model a camera with a position and set of orientation vectors in the
rendering space. A viewing frustum is also defined. This is used to specify the projection
matrix which maps from the three dimensional model of a scene (which may just be a sim-
ple graph visualisation) to the two dimensional projection plane as seen in figure 2.21. The
parameters of this frustum can be specified as the position and size of near and far clipping
planes. Alternatively, these parameters can be defined like those of a camera are, repre-
senting a field of view (also know as aperture) and an aspect ratio, with a maximum and
minimum viewing distance. The aspect ratio is the proportion of the height of a projection
plane to the width of the projection plane. In a simple single camera setup the projection
plane can often be thought of as the near clipping plane of the viewing frustum. As there
is only a single camera position, the view transformation being applied to the scene needs
to only consider the camera position and orientation

To render a scene using a stereo camera it is necessary to know the position of each eye
(which can be determined from a value for the eye separation) as well as build a separate
viewing frustum for each. Because these viewing frustums have separate origins, but the
same near and far planes, they are not the symmetric frustums as seen in the single camera

51 Chapter 2. Background and Related Work

Positive parallax —

Projection Plane —_
(No Parallax)

Negative Parallax

Figure 2.22: A stereo camera set up. The eye positions are offset along the right vectors of
the camera by the eye separation value. The overlapping frustums are not symmetrical like
the frustum used for the single camera eye setup

case (as can be seen in figure 2.22), we also need to define a focal length parameter, which
is the distance form the camera position to the projection plane. This directly impacts the
3d effect of stereoscopic viewing. Objects which are closer to the camera than the projec-
tion plane will appear to pop out in front of the display (negative parallax). Objects which
are further away will recede into it (positive parallax). The matrix which models the view-
ing transformation applied to the rendered scene by the camera also needs to be updated
between left eye and right eye rendering passes. The camera orientation is the same for
each eye, however the position of the camera for the left eye rendering and the right eye
rendering depends on the eye separation.

Eye Strain

The stereoscopic parameters described above can have a significant effect on a users ability
to perceive the graph as a 3D object. If there is a mismatch in values, such as the eye
separation being to large relative to the focal length, there may be excess parallax (positive
or negative) as an object becomes more distant from the focal length. As a result, the
disparity between the left eye and right eye images is too large and the viewers brain is
unable to combine them into a 3D object, so the stereoscopic effect is lost.

Even if the viewing setup still allows stereoscopic vision, in many cases the setup can

Section 2.7. Implementation of Graph Rendering and Processing 52

Figure 2.23: The vergence angle of the eyes 6 changes depending on the distance to the
object being focused on.

tax the human visual system so heavily that physical discomfort can occur. One of the main
causes of this strain is related to a mismatch between the focal length of the eyes and what
is referred to as the vergence. Vergence describes the convergence of the eye orientation
when we look at an object. A more distant object will result in a narrower vergence angle
as can be seen in image 2.23. When a user looks at an image on a stereoscopic display all
objects are at the same focal length, regardless of how deep they appear to be. The vergence
angle of an object combined with the disparity between the left eye and right eye images
does provide enough information for a user to perceive the objects in 3D . However the
the lack of correct focus information combined with the vergence may be the cause of eye-
strain that is frequently associated with stereoscopic viewing [WRMWgs].

2.6.3 Three dimensional layout of graphs

Many graph layout algorithms can be easily extended from the usual two dimensional lay-
out to three dimensions. For example Ware and Mitchell used an 3D dimensional spring
layout for their experiments[WMo8]. Extending a force directed layout into three dimen-
sions is a simple case of extending the force vectors and positions of the nodes into three
dimensions. However three dimensional layout of graphs causes significant issues of oc-

clusion, depending on the viewing angle of the graph.

2.7 Implementation of Graph Rendering and Processing

As described in section 2.1 graphs are most often visualised as node link diagrams. When
rendering a node link diagram, there are many low level technical implementation aspects
to be considered in order to execute the techniques described in this thesis to render the
associated graphs to a display. We have developed a graph visualisation application to
demonstrate and test our approaches. All images in this thesis, unless credited otherwise

53 Chapter 2. Background and Related Work

are generated from this application.

Our implementation uses the C++ programming language. This was chosen due to
the high performance offered, in terms of speed, as well as the wide choice of available
libraries to support graph analysis and rendering. To aid in our processing of graph data
we have utilised the BOOST graph library, which offer graph data structures and algo-
rithms. BOOST is a cross-platform open source set of libraries that provides a wide range
of functionality for C++ application development [Lib12]. For rendering our graphs we use
OpenGL, a cross platform 3D graphics library.

2.7.1 Graphics Hardware

Hardware accelerated graphics are a common feature of modern commodity PCs. Mod-
ern graphics cards use a Graphics Processing Unit (GPU) with many cores capable of pro-
cessing data in parallel, ideal for accelerating raster based rendering. Modern graphics
hardware includes specialised memory, separate from main computer memory, that stores
graphical data, allowing it to be processed by GPUs and displayed quickly. Within OpenGL
a 3D object or model is specified as a set of vertices (representing points in 3D). These are
then processed by the Graphics GPU to produce fragments of a (pixel based) raster image.
These fragments are then processed further, combined into pixels and placed in an area of
memory called a display buffer. The display buffer data is sent to a display device such as
a monitor or projector for viewing. OpenGL utilises Vertex Buffer Objects (VBOs), which
are structures in graphics memory which store the vertices of a 3D object to be drawn.
Storing graph data in VBOs allows large interactive graphs to be rendered more quickly

than if the date is passed form main application memory.

2.7.2 GPU Processing

Modern graphics hardware, though originally designed for enhancing 3D rendering per-
formance, is also capable of being used for other computational tasks. It is extremely ben-
eficial when calculations are discrete and capable of being done in parallel, such as the
calculations of forces acting on an individual node for a force directed layout as seen in Fr-
ishman and Tal [FTo7]. Programmable GPUs allow the user to create small pieces of code
called shader programs which execute on graphics primitives such as the vertices of a 3D
model and the pixel fragments of a raster display (and more recently geometric primitives).

In earlier attempts to utilise GPUs to aid in graph layout the GPU was utilised using an
approach know as General Purpose GPU programming. The performance optimisations
offered by the GPU are focused on graphics operations and as a result the programming
model is structured for that specific field. Effectively GPGPU is an approach by which
an algorithm is disguised as a graphics rendering pass, during which the programmable

Section 2.7. Implementation of Graph Rendering and Processing 54

shaders process the input graph data. Rather than outputting a pixel colour to the screen
buffer, the output information is read back to the CPU and interpreted by the calling pro-
gram. This programming model limits the range of problems that can be ported to the
GPU.

Since Frishman and Tal’s work [FTo7], GPGPU has been replaced as an approach to
programming graphics hardware. CUDA (Compute Unified Device Architecture) is an
programming model realised by nVidia to specifically allow access to programmers to
graphics hardware for non graphics purposes. It is a C based programming language that,
while reflecting the underlying multi-core architecture of the GPU, is free of many of the
restrictions of GPGPU programming.

Harish and Narayanan [HNoy] showed the benefit of CUDA for accelerating graph
algorithms. The authors showed significant benefits using basic CUDA implementations,
for random general graphs Breadth First Search was 20 to 5o times faster than a corre-
sponding implementation on the GPU. A Single Source Shortest Paths algorithm ran 70
times faster on the GPU than on the CPU. However such a dramatic performance was not
seen for graphs which were scale-free. This meant that some vertices had considerably
more edges than others, which impacted the performance. However the GPU approach
still outperformed the CPU approach. For an example real world graph of low degree,
the CPU actually outperformed the GPU. This was as on a low degree graph these algo-
rithms are not easily parallelisable as the graph is almost linear, so the benefit offered by
GPU parrallelisation is lost. Luo et al [LWH1o0] have produced an effective Breadth First
Search algorithm. In terms of layout Godial et al. [GHGHog] have demonstrated a CUDA
implementation of Hachul and Jiinger’s Fast multi-pole multi-level Method (FM3)[H]Jos]
which performs at least 20 times faster than the CPU based version and is 30% faster than
Frishman and Tal's GPGPU approach.

CUDA has also been used to optimise other aspects of graph visualisation than cluster-
ing and layout. For example in Ersoy et al’s Skeleton-Based edge bundling [EHP*11], the
algorithm for calculating a skeleton structure for graph edges ran 100 times faster using a
GPU based CUDA solution, when compared to a CPU implementation.

Chapter 3

Agglomerative Clustering around Nodes

of Interest

S THE AMOUNT OF INFORMATION TO BE VISUALISED by a graph becomes larger or more
dense, the graph becomes more difficult for a user to comprehend. Use of a clus-
tering structure on top of the classical node-link model can help provide information, as
nodes that are clustered together have an implicit relationship. A graph may not have an
intrinsic data structure and any clustering provided by a generic clustering algorithm may
not align with a user’s task.

In this chapter we present an approach for agglomeratively clustering graphs based on
user input. As part of our approach a user can specify nodes of interest, which form the
basis of the clusters. We build clusters around these nodes using a heuristic which we have
chosen based on the structure of the often encountered Small World Graphs described in
section 2.1.2.

We chose clustering coefficient, described in section 2.1.2, as a heuristic. We build clus-
ters agglomerative by adding nodes to clusters based on their impact on the resulting av-
erage clustering coefficient of the cluster. If a cluster has a high average cluster clustering
coefficient, it indicates that all of the nodes within the cluster have many interconnected

neighbours within that cluster.

Chapter structure: This chapter is structured as follows:

« In sections 3.1 and 3.2 we describe our motivation and the related work for this chap-

ter and in section 3.3 we describe how we calculate clustering coefficients.

« Section 3.4 describes our initial investigations into using clustering coefficient as a

heuristic to guide the agglomerative clustering around nodes of interest.

« Section 3.5 describes an approach which maximises the average cluster clustering

coefficient of clusters.

Section 3.1. Motivation for Clustering 56

« In section 3.6 we provide a detailed evaluation of our approach across a wide range
of graphs, comparing it to other heuristics. We also compare our approach to a well

known top-down clustering algorithm.

« Insection 3.7 we apply our approach to a benchmark data set and examine the results

against the existing classification of the nodes.

« In section 3.8 we describe our conclusions and potential avenues for future work.

3.1 Motivation for Clustering

Our motivation is to make graphs more comprehensible and we use graph clustering to
support this aim. We are focusing on small world graphs specifically. This is due to the
presence of groups of highly connected nodes, the strong likelihood of cluster structures
within the graph, as well as the common occurrence of small world properties in real world
networks. If a user is investigating nodes of specific interest to them, reorganising the
layout of the graph based on the nodes of interest may aid in their analysis. For example a
user may want to view a graph describing a large program focusing on specific classes, or
a biologist may wish to view a predator-prey network focusing on certain animals.

The purpose of our clustering approach is to aid in the layout by clustering nodes
around the user’s nodes of interest. The clustering assigns nodes in such a way that they are
clustered around nodes that they are more conceptually related to, based on graph struc-
ture. If grouping a node with one node set over another results in a higher heuristic score
for that cluster, we can infer that the node conceptually belongs more to it. In less dense
graphs a clustering may be obvious as there will be few links between clusters. However,
for more dense graphs, useful clusterings may not be so obvious. The density of edges can
make the graph more difficult to read and the relationships between nodes may be ob-
scured. A node may also have strong relationships with several other nodes, and allowing
the user to rearrange a graph based on nodes of interest allows the user to see clearly the

relationships that are most pertinent.

3.2 Related work

The characteristics, origins and relevance of Small World Graph are described in detail in
section 2.1.2. The background and state of the art of clustering is described in section 2.2.1
and evaluation techniques for clusterings are described in section 2.2.3. A brief summary
of cluster and evaluation is provided here to provide context for this chapter.

57 Chapter 3. Agglomerative Clustering around Nodes of Interest

3.2.1 Clustering

There are many different approaches to graph clustering (or partitioning as it is often re-
ferred to). Some methods use an algebraic approach, working on a mathematical repre-
sentation of the graph, [FToy, vDoo]. Other methods such as Edge Betweenness Cen-
trality Clustering [NGo4] use a graph theoretic based approach, calculating graph the-
ory characteristics of vertices or edges that are then used to partition the graph into clus-
ters. Some clustering algorithms, such as edge betweenness centrality clustering take a
top down, or divisive approach splitting the graph into separate clusters. Others take a
bottom-up or agglomerative approach, merging sets of nodes together to form clusters
[Newo4, HKKSo3, QEo1].

3.2.2 Clustering Evaluation Metrics

Newman and Girvan [NGo4] define a measure of the quality of a division of a network
graph, referred to as modularity. The measure is used to evaluate their community de-
tection algorithm (which is essentially a top-down clustering algorithm). The measure has
also been used in work by Newman [Newo4] as a heuristic value for agglomeratively build-
ing clusters. This metric is based upon the number of edges that start and end in the same
cluster (referred to as communities in Newman and Girvan’s paper). Auber et al [AC]Mo3]
and Chiricota et al. [CJMo3] use a quality measure developed by [MMR*98] and utilised in
their clustering tool “Bunch”. This measure, denoted MQ (Modularisation Quantity) com-
putes a value for any given partition of a graph. Chiricota et al. and Auber et al. use a
slightly modified version of MQ that is defined only for undirected graphs as an evaluation
measure. The MQ value is used by the Bunch tool as a function to be optimised to provide
a good clustering, rather than as a metric to evaluate one. Both modularity and MQ score
are described in detail in section 2.2.3. Boutin and Hascoét [BHo4] discuss many other
clustering evaluation approaches (referred to by them as clustering validation indices) and
they note that these evaluations are often difficult to interpret and compare. Bittencourt
and Guerrero [BGog] and Wu et al.[WHHos] evaluate several clustering metrics in the
context of software system analysis.

In their work on the layout of small world graphs [vHWo8a], van Ham and Wattenberg
utilised a social network based on the the influences between prominent historical figures,
the “genealogy of influence” [Lovio]. In this network, individuals are connected if one
of them was an influence on the work of another. For example Socrates influenced Plato,
therefore there is an edge between the nodes representing each of these individuals in the
network. The purpose behind the use of such a network is that the profession of each
individual provides an extrinsic clustering of nodes, and such a clustering can be used to

evaluate a layout (or in our case a clustering).

Section 3.3. Calculating Average Local Clustering Coefficient 58

3.2.3 Edge Density

In section 2.1.4 we discussed graph density and differentiated between graph theoretic edge
density and linear density. As mentioned previously, many real world graphs have a, linear
density value of d; <= 10. However some examples such as web-crawl graphs have even
higher densities, such as web-crawl graphs with d; = 25.57 [Melo6]. Increasing edge density
alters the structure of a graph, and impacts the behaviour of a agglomerative clustering
algorithm. The more dense a graph is, the larger the number of neighbour nodes that are
available for agglomeration into a cluster. Clearly graph density needs to be considered
as part of an evaluation of an agglomerative clustering algorithm. It is clear that graph
theoretic density scales the number of edges more dramatically for a change in vertex count,
so for comparison of densities between graphs with different node counts linear density
provides a clear comparison.

Purchase [Purgy] has demonstrated how the crossing of edges is the graph aesthetic
which affects most human understanding of the graph. Unfortunately, in large dense graphs,
edge crossings are unavoidable. We hope that by clustering the graph intelligently, strongly
related nodes will appear closer to each other within the same cluster. This will reduce long
edges and the likelihood of edge crossings.

3.3 Calculating Average Local Clustering Coefficient

Calculating the clustering coefficient of a single is node is straight forward and is described
in section 2.1.2. A simple algorithm for calculating the clustering coefficient of an individ-
ual node within a cluster is shown in algorithm 2. The average clustering coefficient of
a graph, sometimes referred to as the global clustering coefficient, is the sum of all node
clustering coefficients divided by the number of nodes. The average clustering coefficient
of a cluster, reflects the level of inter-connectivity of nodes within the cluster. Therefore
when calculating the clustering coefficient of nodes within a cluster, to generate the aver-
age cluster clustering coefficient, only neighbours within the same cluster are considered.

In our approach, we set the clustering coefficient of a node to zero if it has less than
two neighbours. Sometimes, as done by Schank and Wagner, clustering coefficient is only
considered for nodes with more than two neighbours. This results in the global clustering
coefficient being the sum of all node clustering coefficients, divided by the number of nodes
which have two or more neighbours.

The calculation of the clustering coefficient for a large set of nodes can be a time con-
suming task. The time taken to calculate the clustering coefficient of a node does not just
depend on the size of its neighbourhood, but also on the size of the neighbourhood of each
node in the original node’s neighbourhood. Therefore calculating the clustering coefficient

for each node in a graph depends not only on the number of vertices | V| and the number

59 Chapter 3. Agglomerative Clustering around Nodes of Interest

of edges |E| but also the distribution of edges in the graph, (see [New1o]). Fortunately the

clustering coefficient for each node in a graph can be calculated in parallel.

We have implemented the calculation of the clustering coefficient of each node within
a graph or cluster on the GPU. The result is averaged by the CPU to determine the aver-
age clustering coefficient for the nodes within a cluster. The input data required for this
algorithm are the nodes within the cluster, and the edge list for the graph. For extremely
large graph an approximation may preferable, Schank and Wagner[SWos] describe and an
approach for approximating clustering coefficient quickly. However for building clusters

agglomeratively using clustering coefficient we will calculate exact values.

Algorithm 2 Algorithm for calculating clustering coefficient of a node within a cluster

veV,
forall ueV,do
if {u,v} € E, then
v.neighbourhoodSize := v.neighbourhoodSize + 1
forall we V. do
if uswa{u,wheE A{w,v}eE v {v,w}eE,then
v.neighbourhoodEdgeCount := v.neighbourhoodEdgeCount +1
{As w is also a neighbour of v}
end if
end for
end if
end for
if v.neighbourhoodSize > 1then
v.clusteringCoef ficient := v.neighbourhood EdgeCount[v.neighbourhoodSizex
(v.neighbourhoodSize — 1)
else
v.clusteringCoef ficient = o
end if

3.4 Initial Investigation of Clustering Coefficient

3.4.1 Introduction

In this section we describe our initial investigation into the use of average cluster clustering
coefficient as a heuristic. In order to determine its potential we evaluated it against both
procedurally generated and real-world graphs. Our approach consists of agglomeratively
merging nodes, one at a time, into the cluster which results in the highest heuristic score

for the node being clustered.

Section 3.4. Initial Investigation of Clustering Coefficient 60

3.4.2 Initial Clustering Algorithm

To determine which cluster a node conceptually belongs to, the average clustering coeffi-

cient of a cluster is used as a heuristic. The clustering process is as follows:
1. Specify the nodes of interest used as a basis for clusters.
2. Add one neighbour node to each node of interest to form a basic cluster.

3. Build alist of remaining nodes in the graph, sorted by distance from a node of interest

and node neighbourhood size.

4. Add each node to the cluster, that has the highest resulting average cluster clustering

coefficient if the new node is included in the calculation
5. Assign the single neighbour nodes to the clusters of their neighbours.

Each cluster initially only contains a single node of interest, selected by the user. For
each node of interest a single neighbour is added as the calculation of a clustering coeffi-
cient requires a node to have more than one neighbour. The node added to the cluster is
the neighbour of the node of interest, with the largest neighbourhood size. This results in
each cluster containing two connected nodes.

A node’s neighbourhood is the set of nodes which it is directly connected to. The graph
distance between a node and its neighbours is exactly one. The set of all nodes of the
graph that have a neighbourhood size large than one and have not already been assigned
to clusters is then stored in an ordered node list, built by traversing the graph from each
of the nodes of interest using a breadth first search. Nodes are stored, primarily, in order
of their increasing graph distances from a node of interest and secondarily by the size of
the node’s neighbourhood from largest to smallest. Nodes that are connected to only one
other node (i.e. it has a neighbourhood size of one), are not added to the list. The reasoning
behind this is that a node which only has one neighbour is guaranteed to have a negative
impact on the local clustering coefficient value of a cluster. Given that the node can only
ever be added to the cluster that it is connected to, it is added to the cluster that its only
neighbour is assigned to once all other nodes are assigned.

The motivation for ordering the list secondarily by neighbourhood size is to allow
nodes of a lower neighbourhood size to be added to a node where as many as possible
of their neighbours have already been added. If nodes of a large neighbourhood size al-
ready are processed first then any node added is more likely to find several of its neighbour
nodes already assigned to the cluster. Furthermore, this ordering results in more balanced
cluster sizes, as it will prevent the clusters which are initially based on more highly con-
nected nodes from taking all the nodes with a small neighbourhood size. A more balanced

61 Chapter 3. Agglomerative Clustering around Nodes of Interest

clustering is more likely to result in a more symmetrical graph, which per Purchase’s exper-
iments [Purgy] is a graph aesthetic which affects human understanding (although nowhere
near as strongly as the number of edge crossings).

In the next stage of the algorithm, the ordered list is iterated through adding each node
temporarily to a cluster. When a node is added to a cluster the average clustering coefficient
of the cluster is recalculated to determine the impact of adding the node to the cluster. The
node is then permanently added to the cluster which has the highest resulting coefficient.
Finally, once all other nodes have been assigned to a cluster, the single neighbour nodes
are then assigned to the cluster of their neighbour.

3.4.3 Evaluation Approach

In order to evaluate the effectiveness of the clustering we compare our algorithm to varia-
tions where cluster coefficient impact was not taken into account. For the “Round robin”
clustering approach, nodes are initially sorted in the same manner as before, but assigned
to each cluster in a sequential fashion. Nodes are only assigned to clusters which they are
connected to. A more thoroughly random approach was also taken, by assigning nodes to
a cluster chosen entirely at random, from a list of all clusters that neighbours of the node
have already been assigned to. Furthermore we have also evaluated using the change of the
clustering coefficient (which we refer to as the clustering coefficient delta). In this approach
nodes are assigned to the least negatively impacted cluster, instead of assigning the node
to the cluster with the highest resulting cluster clustering coefficient.

Evaluation Graphs

We evaluated our algorithm using a wide variety of graphs. For an evaluation using real
world data, we generated a set of four graphs, based on connectivity between Wikipedia
articles. We evaluate these graphs using Newman and Girvan’s modularity metric.

We also randomly generated small world graphs which are clustered using our ap-
proach and as well as the round robin and random approaches. We used Watts and Stro-
gatz’ approach for creating small world graphs [WS98] as described in section 2.4.1. These
randomly generated graphs contained 60 nodes and vary in edges density. We also gener-
ated a second set of 20 graphs of consistent size and density, with an increasing probability
of rewiring. This results in a set of graphs with a decreasing clustering coefficient. These
procedurally generated graphs were evaluated based on the modularity of the resulting
clustering.

In order to analyse how effective the use of the average local clustering coefficient of a
cluster is in building conceptually related clusters, we created an artificial social network
data set modelling activities at a sports club. Our model contained 100 nodes each repre-
senting a member of the club. Each member is assigned a level of interest in six activities,

Section 3.4. Initial Investigation of Clustering Coefficient 62

between o and 1.0. The sum of a member’s interest across all activities is equal to 1. In order
to generate the graph we calculated the Euclidean distance between each member’s 6 levels
of interest. If the Euclidean distance was less than a threshold value of 0.5 we assume, due
to the common amount of activities, that the members are socially connected. Therefore
we added an edge to the graph connecting the nodes representing the members. The re-
sulting graph contains 803 edges. Using this graph to evaluate our clustering we can see
exactly the ratings for each node for each activity and hence determine if they have been
placed in a conceptually correct cluster. The node of interest selected for each cluster is a
person who undertakes only one activity with the maximum level of interest. This means
that each cluster member should have some level of interest in the activity of the node of
interest.

We also use our algorithm to cluster and layout a real-world social network data set.
We chose the influence data set [Lovio] as used by van Ham and Wattenberg[vHWo8a].
This data set contains prominent figures in the field of art, science and entertainment and
relates them using “influenced by” relationship. The generated graph contains 1929 nodes

and 4364 edges.

Evaluation Metric

We used Newman and Girvan’s modularity metric [NGog4), which is described in section
2.2.3. Modularity depends solely on the relationships between nodes. Where contextual
meta-data about the node clustering is available, we use this to determine if the node con-
ceptually fits in with the cluster it is assigned to.

3.4.4 Results
Wikipedia Data Set

The clustering coefficient based, round robin and random algorithms were each run on
the Wikipedia test graphs, where the four nodes with the highest degree were selected for
clustering. The random clustering was run three times for each graph and averaged, as
it resulted in a different clustering each time. The resulting modularity of each graph is
displayed in Table 3.1. The use of clustering coefficient as a metric produces a significantly
higher level of modularity than a round robin or random assignment of nodes to clusters.

Randomly Generated Small World Graphs

For the randomly generated small world graphs, we compare the change in modularity over
graphs of increasing density of edges relative to nodes with the four different approaches.
We use the clustering coefficient approach, round robin assignment and a random assign-
ment as well as the delta of the clustering coefficient in determining the assignment of

63 Chapter 3. Agglomerative Clustering around Nodes of Interest

Wecie o6 Satiinaier

Figure 3.1: Wikipedia graph with g1 vertices and 567 edges laid out using a simple force
directed algorithm.

octoalts 0} g Tota
Pactle of 'ultntn“m

Bully's Acre
,‘uuﬂu
um-f'-t"r" Fioacne
dusaagh
Jionn mac Cushaill L ; " i; >
'/lrh };m;« e =
€ounty Ottaly 4 /,, ’
ey
i

JA- ph°nlainge
A ed mac Colggen

FIngpe IS a1 g

R T

)
) 47
W\ #illageanglesey/)// Athletic Association
\ 1) et of Jreland Belgae
R\ J{/ 3
W / " $hng
/ = - Green
M e #agous Maximus
‘Founty Louth

Figure 3.2: Graph from Figure 3.1 using our approach.

Section 3.4. Initial Investigation of Clustering Coefficient

64

V]| |E| | Clustering | Round Random
Coefficient | Robin Average
91 567 | 0.1279 0.049 0.561
358 3729 | 0.0931 0.038 0.0424
506 | 3962 | 0.1545 0.0692 0.0645
1000 | 28534 | 0.0251 0.0038 0.005

Table 3.1: Modularity values for Wikipedia based graph using different approaches to clus-
tering.

60 Nodes, 4 Clusters
Y IR S SISO SRR o) S S S
05 |
& 03 === CC Clustering
-
4 é =&~ Round Robin
® o'l ~—#—CC Dehta
~=+=Random
01
Qo
] 005 01 015 02 0.25 03 0.35 04
Q01 S ————— e S
Graph Density

Figure 3.3: The modularity of graphs containing 60 nodes and increasing in density, using
the described clustering approaches for building 4 clusters.

nodes to clusters. In each case the use of clustering coefficient as a heuristic showed an
improvement. Figure 3.3 shows the improvement in using clustering coefficient over the
round robin and random method for creating 4 cluster for a graph with 60 nodes and edge
density increasing from 120 to 660 edges. On average use of the maximum average cluster-
ing as opposed to the delta of the average clustering coefficient resulted in a more modular
clustering but the d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>