1 Geochemistry of the Phlegraean Fields (Italy) proximal sources for major 2 Mediterranean tephras: implications for the dispersal of Plinian & co-3 ignimbritic components of explosive eruptions

4

Emma L. Tomlinson^{1*}, Ilenia Arienzo², Lucia Civetta^{2,3}, Sabine Wulf⁴, Victoria C.
Smith⁵, Mark Hardiman⁶, Christine S. Lane⁵, Antonio Carandente², Giovanni
Orsi², Mauro Rosi⁷, Wolfgang Müller¹, Matthew F. Thirlwall¹ and Martin A.
Menzies¹

9

¹Department of Earth Sciences, Royal Holloway University of London, Egham,
 U.K.

² Istituto Nazionale di Geofisica e Vulcanologia, sezione di Napoli-Osservatorio
 Vesuviano, Napoli, Italy.

³ Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Napoli, Italy.

15 ⁴GFZ German Research Centre for Geosciences, Section 5.2 – Climate

16 Dynamics and Landscape Evolution, Potsdam, Germany

⁵Research Laboratory for Archaeology and the History of Art, University of

18 Oxford, Oxford, United Kingdom

⁶Centre of Quaternary Research, Department of Geography, Royal Holloway

- 20 University of London, Egham, Surrey, United Kingdom.
- ⁷Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy.
- 22 23

ABSTRACT

24

25 Volcanic activity at Phlegraean Fields, Italy, produced several major marker tephras over a 50 ka period. The caldera forming eruptions of the Campanian 26 27 Ignimbrite (CI) and Neapolitan Yellow Tuff (NYT) are of particular importance for 28 tephrostratigraphy in Europe. Other key eruptions from this source include the 29 Pomici Principali (PP) and the Tufi Biancastri eruptions. We combine analyses of 30 fresh glasses from proximal locations (i.e., juvenile clasts in proximal flow and fall 31 deposits) with data for key tephra layers from Lago Grande di Monticchio, 120 km 32 to the east. The micron-beam major (EMPA) and trace (LA-ICP-MS) element 33 glass dataset allows us to: (a) Distinguish between tephra units produced from 34 the Phlegraean Fields before and during the CI eruption (CI-series), and before 35 and during the NYT and PP eruptions (NYT-series/PP); (b) Discriminate between the CI and the geochemically similar Pre-CI pyroclastic deposits; (c) Separate the 36 NYT from Pre-NYT tephra units, although both major and trace elements do 37 38 show significant overlap. The complex compositional overlap between Pre-NYT 39 tephras may present a problem for tephra correlations in the 14-39 ka time window and may have resulted in incorrect proximal-distal and distal-distal 40 41 correlations. The diagnostic chemical criteria detailed herein permits more 42 accurate matching of distal tephras with their proximal equivalents and hence will 43 improve chronostratigraphy of distal settings and give insight into tephra 44 dispersal. We show that the dispersal of PP tephra was more limited than 45 previously thought. The surge/fall (Lower Member) and subsequent pyroclastic 46 density current (Upper Member) phases of the NYT eruption can be recognised

in distal settings. Both the NYT Lower and Upper Members are found in distal
localities to the east of the Phlegraean Fields, however the Lower Member is
found in the absence of the Upper Member in locations to the far north of
Phlegraean Fields. Chemical compositions of the Plinian and ignimbrite phases
of the CI eruption overlap extensively, but can be distinguished on a plot of Zr-Th.

52

53 Key Words: Tephrostratigraphy, LA-ICP-MS, Campi Flegrei, Campanian 54 Ignimbrite, Neapolitan Yellow Tuff, Lago Grande di Monticchio

55

56 1. INTRODUCTION

57 58 Tephra layers deposited during large explosive volcanic eruptions form important 59 isochronous marker beds in the stratigraphic record, allowing correlation between archaeological, terrestrial, marine and ice records (tephrostratigraphy). In 60 61 addition, if the tephra can be correlated to a source and age of the eruption is 62 well established, distal ash layers can be used as age markers within the 63 stratigraphic record (tephrochronology). Furthermore, a reliable correlation between proximal and distal facies of an eruption deposit allows the eruption 64 volume and tephra dispersal pattern to be reconstructed. Knowledge of these two 65 parameters is important in volcanic hazards assessments and zoning of the 66 67 territory in relation to the expected hazards. This is critical for active, restless and 68 densely populated volcanoes such as the Phlegraean Fields resurgent caldera 69 (Orsi et al., 1996, 1999a, b, 2004, 2009; Costa et al., 2009; Selva et al., 2012).

70

71 Tephra produced during the two most recent caldera forming eruptions at Phlegraean Fields (Fisher et al., 1993; Orsi et al., 1996), the Campanian 72 Ignimbrite (CI, 39.28 ± 0.11 40 Ar/ 39 Ar ka; De Vivo et al., 2001) and the Neapolitan Yellow Tuff (NYT, 14.9 ± 0.4 40 Ar/ 39 Ar ka; Deino et al., 2004), provide important 73 74 75 stratigraphic markers in European Quaternary deposits (e.g. Schmidt et al., 2002; 76 Fedele et al., 2003; Pyle et al., 2006; Giaccio et al., 2008). The CI was the most explosive eruption of the Campanian Volcanic Zone (CVZ) and the largest known 77 78 volcanic event in the Mediterranean region in the last 200 ka (Barberi et al., 79 1978). The CI has been correlated with distal occurrences of the Y-5 tephra in 80 the eastern Mediterranean, central and eastern Europe and Russia (e.g. Keller et 81 al., 1978; Thunell et al., 1979; Paterne et al., 1988; Vezzoli, 1991; Pyle et al., 2006). The CI is linked with layer TM-18 (36.77 varve ka BP) in the Lago Grande 82 di Monticchio sediment core (Wulf et al., 2004). Some 25 ka later, activity in the 83 84 Phlegraean Fields caldera produced the NYT. The NYT has been correlated with the 13.84-14.88 cal ka BP¹ C-2 tephra layer in the Tyrrhenian and Adriatic Seas 85 (Paterne et al., 1988; Calanchi et al., 1998; Siani et al., 2004; Bourne et al., 86

¹ All radiocarbon ages presented here (cal ka BP) have been calibrated using the IntCal09 or Marine09 internationally accepted calibration curves (Reimer et al., 2009) at 2σ . Year 0 is 1950 AD. Please see references for uncalibrated radiocarbon determinations.

87 2010) and with TM-8 (14.12 varve ka BP) in the Lago Grande di Monticchio core (Wulf et al., 2004; 2008). The smaller Pomici Principali (PP, also known as 88 89 Agnano Pomici Principali) eruption dated at 11.92-12.26 cal ka BP (Smith et al., 90 2011) has been correlated with TM-7b (12.18 varve ka BP) in the Lago Grande di 91 Monticchio core (Wulf et al., 2004; 2008) and has also been described in the 92 Adriatic Sea (Paterne et al., 1988; Calanchi et al., 1998; Siani et al., 2004; 93 Bourne et al., 2010) and several lake settings (Magne et al., 2006; Sulpizio et al., 94 2009; Lane et al., 2011).

95

96 Diagnostic glass chemistries for each eruption are essential in order to verify the 97 use of PP, NYT and CI in tephrostratigraphy and tephrochronology. However, both the CI and NYT display chemical zoning in proximal deposits (Orsi et al., 98 99 1992; 1995; Civetta et al., 1997; Pappalardo et al., 2002a). In addition, a number 100 of smaller eruptions at Phlegraean Fields also form stratigraphic markers in 101 Quaternary deposits across the Mediterranean. These smaller eruptions were fed 102 by trachyte and phonolite magmas with similar chemistries to the CI and NYT 103 products. At least twelve Pre-Campanian Ignimbrite (Pre-CI) units are recognised 104 at the Trefola Quarry (Orsi et al., 1996) spanning 59-39 ka (Pappalardo et al., 105 1999). Several of these eruptions produced guite thick (>10 m) proximal 106 pyroclastic fall and density current deposits generated by high-energy explosive 107 eruptions from vents outside the caldera (Orsi et al., 1996). At least 20 distinct 108 tephra layers have been recognised for the same time window in the medial-109 distal Lago Grande di Monticchio core (Wulf et al., 2007).

110

111 Between the CI and NYT eruptions, numerous surges and minor fall deposits 112 were generated from intra-caldera phreatomagmatic eruptions (Orsi et al., 1996). ⁴⁰Ar/³⁹Ar dated eruptions range in age from 30.3 ka (VRa) to 14.6 ka (PRe) 113 114 (Pappalardo et al., 1999). These Pre-NYT units, deposited over a period of 25 ka, 115 are known collectively as Tufi Biancastri (Rittmann, 1950). Several distal tephras 116 are found in this time window. At least 10 Pre-NYT tephra layers are recorded in 117 the Lago Grande di Monticchio core, with TM-9 and TM-15 being the most 118 prominent (Wulf et al., 2004, 2007, 2008). TM-9 is linked to GM1. In distal 119 settings GM1 comprises two tephra layers closely spaced in time and is dated at 120 14.2-16.2 cal ka BP (Siani et al., 2004; Aufgebauer et al., 2012). TM-15 is 121 correlated with the 30-31 cal ka BP Y3, described in marine and terrestrial 122 settings across the central Mediterranean (Zanchetta et al., 2008).

123

124 The aims of this study using Electron Microprobe Analysis (EMPA) and Laser 125 Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) of single 126 glass shards, are: 1) to define the diagnostic major and trace element 127 geochemistry of the PP, NYT and CI glasses and to investigate their 128 compositional heterogeneity; 2) to use these diagnostic geochemisties to 129 investigate the dispersal of the PP, NYT and CI tephra; and 3) to investigate the 130 geochemistry of pyroclastic-fall and flow deposits that predate the CI and the 131 NYT eruptions. Defining diagnostic chemistries of these Pre-CI and Pre-NYT units would not only allow them to be distinguished from the CI and NYT events,but also allows them to be used as stratigraphic markers.

135 2. GEOLOGICAL OUTLINE

136

134

137 The Phlegraean Fields lie in the Campanian Plain along the Tyrrhenian margin of 138 the southern Apennines and is part of the Quaternary potassic province. The 139 Phlegraean Fields comprises a 13 km wide nested caldera in the Gulf of Naples. 140 formed mainly as a consequence of the eruption of the CI and NYT (Orsi et al., 141 1996). The caldera margins are poorly exposed and on the south lie beneath the Bay of Pozzuoli. The Phlegraean Fields has been active since at least 60 ka 142 143 (Pappalardo et al., 1999) and many of the eruptions from the Phlegraean Fields 144 had large Plinian columns (>40 km) that deposited widespread fall and flow units. 145 Numerous eruptions have taken place since the NYT eruption during three 146 epochs of activity (Di Vito et al., 1999) from vents located either along the faults 147 bordering the caldera or along the extensional faults bordering the La Starza 148 resurgent block (Orsi et al., 1996). The most recent eruption produced the Monte 149 Nuovo tuff cone in 1538 AD (D'Oriano et al., 2005).

150

PP was a sub-Plinian to Plinian eruption, which dispersed pumice and ash mainly towards the east (Lirer et al., 2001). PP was dominantly phreatomagmatic and deposited alternating pumice/ash fall units and pyroclastic density currents (Smith et al., 2011), which show a progressive increase in magma discharge rate, as indicated by an increase in grain size and proportion of lithic fragments with stratigraphic height (Lirer et al., 2001). PP magmas are tephri-phonolitic to phonolitic (D'Antonio et al., 2007; Arienzo et al., 2010; Smith et al., 2011).

158

159 The NYT is the largest known trachytic phreato-Plinian eruption, extruding >40 160 km³ dense rock equivalent (DRE) of latitic-to-trachytic magma, (Orsi et al., 1992, 161 1995; Wohletz et al., 1995). Deposits of the NYT are chemically zoned and were 162 produced from three distinct magma batches, which are not related by fractional 163 crystallisation (Orsi et al., 1995). The NYT sequence is divided into a Lower Member (LM) and an Upper Member (UM). The LM comprises a surge deposit 164 165 (LM1) produced from a central vent, overlain by an alternating sequence of 166 phreato-Plinian surge and Plinian fall deposits (LM2-LM13) all erupted from a 167 central vent (Orsi et al., 1995; Orsi et al., 1992; Wohletz et al., 1995). The UM 168 was erupted from multiple vents and deposited as pyroclastic density currents 169 following column collapse (Orsi et al., 1995; Orsi et al., 1992; Wohletz et al., 170 1999). The poorly evolved latitic-trachitic magma dominated the end of the 171 eruption (Orsi et al., 1992; 1995; Wohletz et al., 1995) and is not recorded in the 172 precursor eruptions (Pabst et al., 2008).

173

The CI erupted at least 300 km³ DRE (Fedele et al., 2003) of magma during two major phases. The first phase was Plinian and produced a column that reached a maximum height of 44 km and deposited pumice and ash predominantly to the south-east (Rosi et al., 1999). The second phase accompanied caldera collapse 178 and was characterised by highly inflated pyroclastic density currents that flowed 179 over the sea and crossed mountain ridges in excess of a thousand meters 180 (Fisher et al., 1993; Ort et al., 2003). Breccias were emplaced during the course 181 of the eruption (Fedele et al., 2008). The superposition of the variable and 182 chemically distinct pyroclastic density currents is documented in a core drilled in 183 the northern part of the city of Naples (Pappalardo et al., 2002a). On the basis of 184 the reconstruction of the CI chemical stratigraphy from the drill core, we will refer 185 to the three recognised pyroclastic density currents units as the lower, 186 intermediate and upper flow units. The explosive phases that generated these 187 units were fed by the most differentiated phonolitic magma, the compositionally 188 intermediate and the least differentiated trachytic magmas, respectively (Civetta 189 et al., 1997; Pappalardo et al., 2002a).

190

191 The CI magma chamber was compositionally zoned and is generally considered 192 to have comprised two distinct magmas (trachytic and phonolitic), which mixed 193 during the eruption (Fedele et al., 2008; Arienzo et al., 2009; Civetta et al., 1997; 194 Pappalardo et al., 2002a). There is some debate as to the relationships between 195 the trachytic and phonolitic layers. Some authors have suggested that the 196 phonolitic cap was generated by undercooling and rapid crystallisation of the 197 trachyte magma and later assimilation (Bohrson et al., 2006; Fowler et al., 2007; 198 Pappalardo et al., 2008). Fedele et al., (1008) suggest that the CI magmas in the 199 Breccia Museo formation are related by fractional crystallisation. However, the 200 least and most evolved CI end-member magmas have different Sr- and Nd-201 isotope signatures suggesting that they evolved separately (Arienzo et al., 2009). 202 The least evolved component is seen only at the end of the CI eruption (Arienzo 203 et al., 2009; Pabst et al., 2008). This suggests late recharge of the CI chamber by 204 trachytic magma that crystallised ca. 6 ka before eruption (Arienzo et al., 2011). 205

206 The chemical heterogeneity of the CI and NYT is believed to result mostly from 207 recharge of the shallow reservoir by arrivals of less differentiated magmas and 208 mixing (Orsi et al., 1995; Pabst et al., 2008; Arienzo et al., 2009). In contrast, the 209 Pre-CI and Pre-NYT fall units each have a more restricted compositional range 210 (Pabst et al., 2008). On the basis of geochemical and isotopic data, Pabst et al. 211 (2008) argue that: 1) the Pre-CI eruptions represent distinct magma batches in 212 multiple chambers, the last of which may have provided a mixing end-member for 213 the CI, later influxed by less differentiated, less radiogenic magma; and 2) the 214 Pre-NYT magmas evolved independently from the preceding CI magmatic 215 system. The Pre-CI, CI and Pre-NYT, NYT are decoupled both geochemically 216 and isotopically and show evidence of increasing crustal contamination through 217 time since 60 ka (Di Renzo et al., 2011, D'Antonio et al., 2007; Pappalardo e al., 218 2002b; Pabst et al., 2008; Tonarini et al., 2004).

- 219
- 220 **3. SAMPLES**
- 221 222 3.1 Proximal Samples
- 223

224 The ash/tephra (<2 mm) component of Plinian and co-ignimbrite clouds can be 225 dispersed by tropospheric and stratospheric systems and deposited in distal 226 localities, therefore in our proximal study we have primarily sampled thick fall and 227 flow deposits. Samples from the CI and NYT and several major Pre-CI and Pre-NYT eruptions were taken from well-studied outcrops from various locations in 228 229 the Campanian Region (Fig. 1, Table 1). Numerous smaller eruptions recorded 230 in the stratigraphy at Trefola quarry and elsewhere are described in detail in 231 Pabst et al. (2008) and Pappalardo et al. (2002b).

232

233 The CI and NYT were both sampled at four separate localities; the Pre-CI was 234 sampled at Trefola (TL) guarry and the Pre-NYT at Trefola and Verdolino (VR) 235 quarries and at Ponti Rossi (PR). The PP samples come from Via Pigna. 236 Eruptions were sampled at various levels, except for thin deposits (<2m) where 237 only one representative sample was collected. Details of the eruptions sampled 238 and sample localities are given in Table 1. Thirty pumice/scoria clasts were 239 sampled from each level. Clasts were crushed and clean fragments from the 240 interiors of each individual clast was picked and mounted in 'Stuers EpoFix' 241 epoxy resin.

- 242
- 243

3.2 Lago Grande di Monticchio samples

244

245 We compare the proximal samples to distal tephra preserved within the Lago 246 Grande di Monticchio core, discussed in detail in Narcisi, (1996) and Wulf et al. 247 (2004, 2008). This lake provides an ideal distal archive for Campanian tephra 248 due to its location 120 km east of the Phlegraean Fields (Fig. 1) on the dispersal 249 axis of most eruptions (e.g. Santacroce et al., 2003). The Lago Grande di 250 Monticchio core spans 135 ka and preserves >340 distinct tephra layers, of 251 which >300 are thought to originate from the Campanian region (Wulf et al., 252 2004). The laminated sediments of the lake provide a high-precision varve age 253 record (Wulf et al., 2008). Incremental counting error on Lago Grande di 254 Monticchio varve ages is estimated to be 5-10 % (Brandt et al., 1999; Brauer et 255 al., 2000; Wulf et al., 2008). We have determined the major and trace element 256 compositions of prominent layers from this lake that were previously correlated to 257 the PP (TM-7b), NYT (TM-8) and CI (TM-18-top and TM-18-base) and with key 258 Campanian tephra in the Pre-NYT (TM-9, TM-15) time window. Pumice and 259 glass shards from the Lago Grande di Monticchio tephra lavers were picked and 260 mounted in 'Stuers EpoFix' epoxy resin for analysis. 261

262 4. ANALYTICAL METHODS

263

264 **4.1 Electron Micro-Probe Analysis**

265

266 Major element compositions were determined using Jeol8600 electron 267 microprobe, equipped with 4 wavelength dispersive spectrometers and SamX 268 software, at the Research Laboratory for Archaeology and the History of Art, 269 University of Oxford. An accelerating voltage of 15 kV, low beam current (6 nA), 270 and defocused (10 μ m) beam were used to minimize Na migration. Count times 271 were 30 s, except for Na (10 s) and P and CI (each 60 s). The instrument was 272 calibrated using a suite of appropriate mineral standards. The calibration was 273 verified using a range of secondary glass standards from the Max Planck 274 Institute, Leipzig, Germany. Secondary glass (MPI-DING suite; Jochum et al., 275 2006) and mineral (Smithsonian Institute; Jarosewich, 2002) standards were 276 analysed between and within runs. The PAP absorption correction method was 277 used. Three replicate analyses were made on each sample and analyses with 278 totals of <95 % were discarded. Sample totals are normalised to 100 wt% in all 279 plots and tables. Accuracies of analyses of the MPI-DING glasses are <5 % for concentrations >0.8 wt%; concentrations <0.2 wt% are more qualitative. 280 281 Analytical precision is <10 % relative standard deviation (%RSD) for analytes 282 with concentrations >0.8 wt%. Error bars on plots show 2 s.d. of replicate 283 analyses of StHs6/80-G and ATHO-G.

284

286

285 **4.2 Laser Ablation Inductively Coupled Plasma Mass Spectrometry**

287 LA-ICP-MS analyses of proximal tephra samples were performed using an 288 Agilent 7500ce coupled to a Resonetics 193 nm ArF excimer laser-ablation 289 system (RESOlution M-50 prototype) with a two-volume ablation cell (Müller et 290 al., 2009) at the Department of Earth Sciences, Royal Holloway University of 291 London. We used 57, 34 and 25 μ m laser spots, depending on the size of the 292 area available for analysis in individual samples. The repetition rate was 5 Hz 293 and the count time was 40 s (200 pulses) on the sample and 40 s on the gas 294 blank (background). Concentrations were calibrated using NIST612 with ²⁹Si as 295 the internal standard. Data reduction was performed manually using Microsoft 296 Excel allowing removal of portions of the signal compromised by the occurrence 297 of microcrysts, full details of the analytical and data reduction methods are given 298 in Tomlinson et al. (2010). Accuracies of analyses of ATHO-G and StHs6/80-G 299 MPI-DING glass analyses are typically <5 %. Reproducibility of ATHO-G 300 analyses is <5 RSD% for all trace elements except for V (ATHO-G) and Gd 301 (StHs6/80-G), which are close to LOD. Relative standard errors (%RSE) for sample tephra analyses are typically <2 %RSE for V, Rb, Y, Zr, Nb, La, Ce, Pr. 302 303 Th, U; and <5% for Ti, Sr, Ba, Nd, Sm, Eu, Gd, <Dy, Er, Yb, Lu and Ta. Full 304 errors (standard deviations and standard errors for individual sample analyses) 305 are given in the supplementary information. For consistency with EMPA error 306 reporting, error bars on plots show 2 s.d. of replicate analyses of StHs6/80-G and 307 ATHO-G.

308

309 **5. RESULTS**

310

Representative major and trace element compositions of proximal pumice glasses are given in Tables 2 and 3 and of distal Lago Grande di Monticchio glass shards in Table 4. The full dataset is available as supplementary data. In this section we will highlight aspects of the chemistry that allow us to distinguish between the eruptive units, thus revealing the chemical features that can be used in proximal-distal correlations. Diagnostic ratios are summarised in Table 5.
 Eruptive units are described in order of increasing age consistent with the order
 of occurrence of tephra with increasing depth in sedimentary records.

- 319 320 **5.1 PP**
- 321

322 The PP glasses are phonolitic (56.58-58.71 wt% SiO₂) and extend into the tephri-323 phonolite field (Fig. 2) with increasing stratigraphic height. There is a negative 324 relationship between SiO₂ and CaO, MgO, FeO and TiO₂; K₂O (7.9-9.3 wt%) 325 slightly increases with increasing SiO₂, while Al₂O₃ (18.5-19.5 wt%), MnO (0.1-326 0.2 wt%) and Na₂O (3.3-3.9 wt%) remain approximately constant (Fig. 3a-f). PP 327 glasses have a low degree of evolution (Zr/Sr = 0.27-0.36 and Eu/Eu $_{N}^{*}$ = 0.65-328 0.94) and are characterised by relatively low Th concentrations (20-29 ppm) with 329 constant ratios of HFSE to Th (Nb/Th = 1.75 ± 0.15 ; Zr/Th = 10.5 ± 0.5 ; Y/Th = 330 1.0 ± 0.1 ; Ta/Th = 0.08 ± 0.01) and high V concentrations (94-132 ppm) (Fig. 4a-331 f).

332

PP glasses overlap extensively with the low SiO₂ component of the NYT- LM and -UM glasses (section 4.2), but have lower MgO (and to a lesser extent FeO) for a given SiO₂ content (Fig. 3a-f). Therefore, the PP and NYT units can be distinguished using major element compostions.

337

338 **5.2 NYT-series (NYT, Pre-NYT)**

339

340 Pre-NYT and NYT glasses show a negative relationship between SiO₂ and CaO. 341 MgO, FeO and TiO₂; K₂O and Na₂O show an inflection at ~60 wt% SiO₂ with 342 Na₂O increasing and K₂O decreasing at higher SiO₂; Al₂O₃ stays approximately 343 constant (Fig. 3a-f). Chlorine is positively correlated with Na₂O. The Pre-NYT 344 units form clusters at the most and least evolved ends of the array, while the NYT 345 itself spans the whole compositional range. The NYT-series glasses have 346 constant ratios of HFSE to Th: Nb/Th = 1.7 ± 0.1 ; Zr/Th = 10.9 ± 0.6 ; Ta/Th = 347 0.08 ± 0.01 . They show low degrees of evolution (Fig. 4b): Eu/Eu*_N = 0.3-1.0, the 348 largest being observed in the Pre-NYT unit TLo; Zr/Sr = 0.2-7 in most NYT-series 349 units and 30-59 in TLo (Fig. 5f). The NYT-series has high V concentrations (20-350 170 ppm, Fig. 5e). 351

- 352 5.2.1 NYT
- 353

354 Glasses from analysed NYT-LM units (LM1, LM3, LM13) form two clusters 355 separated by a distinct compositional gap (LM3 and LM13 both have >3.8 wt% 356 CaO, <59 wt% SiO₂; LM1 has <2.6 wt% CaO and >61 wt% SiO₂). The LM1 glass 357 is a trachyte (Fig. 2), and not strongly evolved (Sr/Zr = 0.4-1.8) with weak 358 anomalies relating to feldspar fractionation (Eu/Eu $_{N}^{*}$ = 0.6-0.9; Sr/Pr_N = 0.8-1.2). 359 The LM3 and LM13 glasses are phono-trachytes (Fig. 2) and also only weakly 360 evolved (Sr/Zr = 0.3-0.4) but with higher incompatible element concentrations 361 and larger Eu and Sr anomalies (Eu/Eu $_{N}^{*}$ = 0.6-0.8; Sr/Pr_N = 0.7-0.9) than LM1.

362 These two clusters represent magma 1 and magma 2 described by Orsi (1995). 363 Glass shards of less differentiated composition (latite to trachyte), corresponding 364 to magma 3 of Orsi et al. (1995), are not seen in this study.

365

366 Glasses from the units of the UM straddle the phonolite-trachyte boundary and 367 span a wide compositional range between the two LM clusters and extend to less 368 evolved compositions, with 56.0–62.1 wt% SiO₂ and 2.0–5.1 wt% CaO (Fig. 3) 369 and Zr/Sr = 0.2-7.3.

370

371 In summary, NYT glasses are characterised by the following compositional 372 features: 373

- 1. Straddle the phono-trachyte boundary at 56.0-62.1 wt% SiO₂.
- 374 2. The analysed LM units are bimodal with a trachytic component (<2.6 wt% 375 CaO and >61 wt% SiO₂) and a phono-trachytic component (>3.8 wt% 376 CaO, <59 wt% SiO₂). 377
 - 3. The UM forms a continuum which overlaps with the two LM clusters and extends to less differentiated compositions.
- 378 379

381

380 5.2.2 Pre-NYT

382 The Pre-NYT units are collectively known as Tufi Biancastri (Rittmann, 1950), 383 however they represent the products of several eruptions. Here we have 384 analysed four Pre-NYT units, these are (youngest to oldest): PRa (16.1 ± 0.2 ⁴⁰Ar/³⁹Ar ka; Pappalardo et al., 1999), VRb, VRa (30.3 ± 0.2 ⁴⁰Ar/³⁹Ar ka; 385 386 Pappalardo et al., 1999) and TLo. The PRa, VRb and TLo units have restricted 387 compositional ranges, while the VRa forms two clusters.

388

389 Glasses from the Pre-NYT PRa are trachytic (Fig. 2) with 62.4 \pm 0.5 wt% SiO₂, 390 and 2.2 ± 0.3 wt% CaO. They are moderately enriched in trace elements (Sr/Zr = 391 1.3 ± 0.4 ; Eu/Eu^{*}_N = 0.68 \pm 0.07; Sr/Pr_N = 0.23 ± 0.09) and overlap with the 392 trachytic NYT, LM1 glasses.

393

394 Glasses from Pre-NYT VRb are trachytic (Fig. 2) with 62.2 \pm 0.4 wt% SiO₂ and 395 2.2 ± 0.2 wt% CaO. In terms of trace elements, the VRb glasses are moderately 396 enriched (Sr/Zr = 1.7 ± 1.2 ; Fig. 5) and largely overlap with the PRa glasses, but 397 show a slightly wider compositional range extending to slightly higher HFSE 398 concentrations and slightly larger feldspar related anomalies (Eu/Eu*N = $0.6 \pm$ 399 0.1; Sr/PrN = 0.20 ± 0.14 ; Fig. 4). Glasses from unit VRb also overlap with the 400 trachytic NYT-LM1.

401

402 Glasses from the Pre-NYT VRa are bimodal (Fig. 2-5). One population is 403 trachytic (62.3 ± 0.4 wt% SiO₂, 2.2 ± 0.1 wt% CaO) with moderate enrichment 404 levels and Eu and Sr anomalies (Sr/Zr = 1.4 ± 1.0 ; Eu/Eu*_N = 0.70 ± 0.15 ; Sr/Pr_N 405 = 0.25 ± 0.14). This cluster overlaps with trachytic NYT-LM1. The second 406 population is phono-trachytic (58.0 \pm 0.5 wt% SiO₂, 4.0 \pm 0.3 wt% CaO), is 407 weakly enriched (Sr/Zr = 0.34 ± 0.02 ; Fig. 5) and has small feldspar related

408 anomalies (Eu/Eu^{*}_N = 0.81 \pm 0.04; Sr/Pr_N = 0.86 \pm 0.04; Fig 4). This cluster 409 overlaps with the phono-trachytic NYT-LM (LM3 + LM13), but extends to slightly 410 higher FeO and MgO for a given SiO₂ concentration, and has slightly lower Sr 411 and Ba concentrations relative to the NYT.

412

413 Glasses from the Pre-NYT unit TLo are trachytic (Fig. 2) with 1.5 ± 0.1 wt% CaO 414 and the highest SiO₂ and Na₂O among the studied Pre-NYT units (63.9 \pm 0.4 415 wt% SiO₂ and 6.0 ± 0.3 wt% Na₂O, respectively). The TLo glasses differ from 416 those of the other NYT-series units, they are highly evolved (Sr/Zr = 30-59), have 417 larger feldspar related anomalies (Eu/Eu^{*}_N = 0.32 ± 0.04 , Sr/Pr_N = 0.011 ± 0.04) 418 and contain higher concentrations of other incompatible elements (Fig 4, 5). The 419 TLo can be distinguished from the NYT on the basis that it has significantly 420 higher HFSE and Th concentrations (Fig 5a,b).

421

428

- 422 In summary:
- 1. It is extremely difficult to distinguish products of the Pre-NYT eruptionsfrom the NYT using major and trace element geochemistry.
- 425 2. The trachytic component of the NYT-LM1 overlaps with the Pre-NYT units
 426 PRa, VRb and the trachytic population of VRa.
 427 3. The phono-trachytic component of the NYT-LM (LM3 and LM13) overlaps
 - 3. The phono-trachytic component of the NYT-LM (LM3 and LM13) overlaps with the phono-trachytic component of Pre-NYT unit VRa.
- 4. VRa is distinctive among the studied Pre-NYT eruptions as it is bimodal. It
 430 can be distinguished from the other studied Pre-NYT units on the basis of
 431 slightly higher MgO and FeO and lower Ba and Sr.
- 432 5. Glasses from the Pre-NYT units have slightly lower V concentrations than433 those from the NYT deposits.
- 434
 435
 435
 436
 6. The compositional overlap within the Pre-NYT coupled with the number of Pre-NYT units, mean that it is difficult to distinguish between the Pre-NYT eruptions.
 - 7. TLo is clearly distinguished from the other Pre-NYT units studied herein, but indicates the occurrence of more evolved Pre-NYT magmas.
- 440 **5.3 CI-series (CI, Pre-CI)**
- 441

437

438

439

442 Pre-CI and CI glasses have a narrow range of CaO, MgO, FeO, TiO₂ (1.3-2.2, 0.26-0.52, 2.4-3.5 and 0.34-0.46 wt%, respectively) for a wide range of SiO₂ 443 444 contents (55-63 wt%) (Fig. 3). Concentrations of SiO₂, Al₂O₃ and K₂O are 445 clustered within the Pre-CI units and the CI fall deposits. Within these units, K_2O 446 and Al_2O_3 decrease with increasing SiO₂; this trend continues in a stepwise 447 manner through the studied Pre-CI units to the CI. Chlorine and Na₂O are also 448 clustered and show a positive correlation, but are slightly higher in the Pre-CI 449 samples relative to CI. In contrast to the Pre-CI units and the CI fall, glasses from 450 the CI lower and intermediate flows have a wider range of SiO₂ contents and 451 SiO_2 is positively correlated with Al_2O_3 and K_2O_2 . Geochemical variation within the 452 CI is consistent with mixing between the evolved CI magma (erupted as both fall 453 and the lower and intermediate flows) and a less evolved magma (Civetta et al.,

454 1997; Arienzo et al., 2009). The CI upper flow, which was deposited at the end of
455 the eruption, is less evolved and isotopically distinct from the rest of the CI-series
456 (Arienzo et al., 2009).

457

458 Incompatible element concentrations define positive linear correlations within the 459 CI-series (Fig. 5), except for those elements that are depleted during feldspar 460 fractionation (Eu, Sr, Ba). Ratios of HFSE to Th are constant within the CI-series 461 glasses (Nb/Th = 2.4 ± 0.3 ; Zr/Th = 13 ± 1 ; Ta/Th = 0.11 ± 0.01). Relative to the 462 NYT-series, the CI-series has a higher Th concentration, higher HFSE contents, 463 higher ratios of HFSE to Th, and low V concentrations (11-26 ppm). The CIseries also has larger Eu anomalies (Eu/Eu $_{N}$ = 0.2-0.5) than in the NYT series. 464 465 The higher degree of evolution of the CI-series can also be seen in the ratio Zr/Sr 466 = 5-84 (Fig. 5f).

- 467
- 468 5.3.1 CI
- 469

470 Glasses from the CI fall and from the lower and intermediate flow units straddle 471 the trachyte-phonolite boundary and overlap extensively in major element 472 composition (Fig. 2,3). In terms of trace elements, the fall is compositionally 473 intermediate to evolved, with Zr/Sr = 5-31 (Fig. 5f) and shows negative anomalies 474 in Sr (Sr/Pr_N = 0.01-0.08) and Eu (Eu/Eu*_N = 0.24–0.34) consistent with feldspar 475 fractionation (Fig. 4c). Glasses from the lower and intermediate flow units overlap 476 widely with those from the fall and are also compositionally intermediate to 477 evolved in composition, with Zr/Sr = 8-28. However, glasses from the lower and 478 intermediate flows lack the most enriched compositions present in the CI fall and 479 feldspar related anomalies are not so prominent (Sr/Pr_N = 0.01-0.04; Eu/Eu*_N = 480 0.27-0.36). Concentrations of incompatible elements that are not affected by 481 feldspar fractionation are typically lower in glasses from the lower and 482 intermediate flows (Th = 41-51, Ba = 15-65; Nb = 13-117) than in the fall (Th = 483 41-62; Ba = 13-105; Nb = 13-136) components of the CI. The fall and flow (lower 484 and intermediate) can be most clearly distinguished on a plot of Zr-Th (Fig. 6). 485

486 The magma feeding the CI upper flow unit is distinctive from the magma feeding 487 the underlying fall and flows, as it is a trachyte (Fig. 2). The CI upper flow glasses 488 have higher concentrations of CaO, MgO, K₂O (2.5, 0.76 and 8.1 wt%, respectively) and V (<64 ppm), and lower Na₂O (2.8-4.9 wt%) than the CI fall and 489 490 lower/intermediate flows (Fig. 3, 5). They have ratios of Na₂O/K₂O <0.6. The 491 analysed glasses extend to poorly evolved compositions with Zr/Sr = 0.4 and 492 negligible Eu and Sr anomalies (Eu/Eu $_{N}^{*}$ = 1.1; Sr/Pr_N = 0.7). Ratios of HFSE to 493 Th are higher than for the glasses from the CI fall and lower and intermediate 494 flows and are transitional, with more evolved samples plotting close to the CI fall 495 and lower/intermediate flow compositions and a less evolved magma 496 composition.

497

498 In summary, the CI analysed glasses are characterised by the following features:

- 499
 1. Glasses from the fall and the lower and intermediate flows straddle the
 500 phono-trachyte boundary and those from the upper flow are trachytic in
 501 composition (e.g. Arienzo et al., 2009; Civetta et al., 1997; Pappalardo et
 502 al., 2002a).
- 503
 503
 504
 504
 505
 505
 506
 2. Glasses from the fall and the lower and intermediate flows have overlapping compositions and show a continuous range from intermediate to evolved compositions, with the flows extending to less evolved compositions. They can be separated on a plot of Zr-Th.
 - 3. Glasses from the upper flow span a range between the CI fall and a less differentiated end-member composition and have Na₂O/K₂O<0.6.
- 509 510 *5.3.2 Pre-Cl*

507

508

511 Pre-CI units (youngest to oldest) TLf, TLc and TLa (58 ± 3 ⁴⁰Ar/³⁹Ar ka: 512 513 Pappalardo et al., 1999) all have narrow compositional ranges in both major and 514 trace elements (Fig. 3, 5), as previously shown by Pabst et al. (2008) on the 515 basis of whole rock compositions. Glasses from the Pre-CI units are phonolitic 516 (Fig. 2) and are distinct from CI eruption glasses in terms of major element 517 composition. The Pre-CI units are characterised by low SiO₂ and high CaO, FeO 518 and Al₂O₃ concentrations relative to the CI. In addition, Na₂O is higher in the Pre-519 CI units than in the fall and flows of the CI. The incompatible elements 520 enrichment in the Pre-CI units decreases in the order TLa>TLc>TLf (Fig. 4d). 521

- 522 The TLf is the last large unit deposited prior to the eruption of the CI. Relative to 523 the other Pre-CI units analysed, the TLf glasses have higher MgO contents and 524 higher K₂O and higher but overlapping SiO₂ and have lower Na₂O and lower but 525 overlapping FeO (Fig 3). In terms of trace element composition, TLf glasses are 526 moderately evolved (Zr/Sr = 8-22) and have a smaller Eu anomaly (Eu/Eu^{*}_N = 527 0.45 ± 0.06) and lower Th and HFSE element concentrations than TLa and TLc. 528 TLf overlaps with the CI evolved component in terms of incompatible element 529 composition, but differs in major elements.
- 530

The TLc glasses have the lowest SiO₂ content of the Pre-CI units analysed (58.6 \pm 0.4 wt%). They are compositionally moderately evolved with moderate feldspar related anomalies (Zr/Sr = 41-58, Eu/Eu*_N = 0.31 \pm 0.03). The TLc glasses overlap strongly with TLa glasses in both major and trace element composition (Fig. 3, 5), the main differences being that TLc glasses have higher Al₂O₃ (19.8 \pm 0.3 wt%), higher but overlapping Th and lower but overlapping ratios of HFSE to Ti (Zr/Ti = 0.32 \pm 0.02; Nb/Ti = 0.063 \pm 0.003; Y/Ti = 0.025 \pm 0.001).

538

The TLa glasses are intermediate between TLc and TLf for all major elements except that it has lower Al_2O_3 (19.6 ± 0.3 wt%). The TLa glasses show a similar degree of chemical evolution to TLc (Zr/Sr = 17-56, Eu/Eu*_N = 0.33 ± 0.06), except for lower Al_2O_3 (19.6 ± 0.3 wt%) and higher but overlapping ratios of HFSE to Ti (Zr/Ti = 0.34 ± 0.01; Nb/Ti = 0.066 ± 0.004; Y/Ti = 0.027 ± 0.001).

13

545 In summary:

- 546
 547
 548
 1. The Pre-Cl units TLa, TLc and TLf are clearly distinguished from the Cl on the basis that they are phonolitic, while the Cl is phonolite-trachyte and have lower SiO₂ and higher CaO, FeO and Al₂O₃ concentrations.
- 549
 550
 550
 551
 552
 2. The Pre-CI units TLa and TLc are similar in major and trace element composition but can be distinguished from each other on the basis of SiO₂, Al₂O₃, Th and ratios of HFSE to Ti.
 552
 3. The Pre-CI unit TLf is distinct from TLa and TLc, it has lower Th. Nb. Y. Zr.
 - 3. The Pre-CI unit TLf is distinct from TLa and TLc, it has lower Th, Nb, Y, Zr, and larger Eu anomalies
 - 4. The possible presence of other Pre-CI units in distal locations means that it may be difficult to confidently distinguish between Pre-CI units.

557 **5.4 Comparing the NYT- and Cl-series**

559 The CI-series (60-39 ka) and the NYT-series/PP (39-12 ka) can be distinguished 560 using both major and trace element compositions. The most diagnostic criteria 561 are:

562 563

564

565

566

567

571

572

553

554

555

556

558

- 1. The NYT-series have higher ratios of CaO/SiO₂, MgO/SiO₂ and TiO₂/SiO₂ and lower Al₂O₃/SiO₂ ratios and lower Na₂O, CI and MnO concentrations relative to the CI-series.
- 2. Ratios of HFSE to Th distinguish members of the NYT-series (Nb/Th = 1.7 \pm 0.1; Zr/Th = 10.9 \pm 0.6; Ta/Th = 0.08 \pm 0.01) and the CI-series (Nb/Th = 2.4 \pm 0.3; Zr/Th = 13 \pm 1; Ta/Th = 0.11 \pm 0.01).
- 568 2.4 ± 0.3 ; Zr/Th = 13 ± 1 ; Ta/Th = 0.11 ± 0.01).5693. The CI-series (Zr/Sr = 5-84) is significantly more evolved than the NYT-570series (Zr/Sr = 0.2-7).
 - 4. Feldspar fractionation signatures are typically larger in the CI-series $(Eu/Eu_N^* = 0.2-0.5)$ than the NYT-series $(Eu/Eu_N^* = 0.3-1.0)$.
- 573 5. Vanadium concentrations are higher in the NYT-series (20-170 ppm) 574 relative to the CI-series (11-26 ppm).
- 575

The NYT-series and CI-series trends appear to converge at the least evolved compositions (low incompatible element concentrations) on trace element plots (Fig.5a-d). Glass compositions from the CI upper flow extend between the CI fall and a composition similar to the least evolved NYT-series magma. Ratios of HFSE to Th in the CI upper flow are lower than for the rest of the CI-series (Table 5) and are also transitional between the CI- and NYT-series.

583 6. DISCUSSION

584

582

585 **6.1 Proximal-distal correlation with Lago Grande di Monticchio tephra**

In the following sections, we compare the proximal data to new major and trace
element data for tephra in the medial-distal Lago Grande di Monticchio archive
(Table 4). We use the diagnostic geochemistries defined proximally and, in some
cases at Lago Grande di Monticchio, to assess distal occurrences of Phlegraean

591 Fields tephra in the literature. This allows an improved understanding of the 592 dispersal of tephra from PP, NYT and CI. A summary of tephra dispersal 593 characteristics is given in table 6.

- 594
- 595 596

6.1.1 Pomici Principali (PP) & C-1/TM-7b

597 Major and trace element analyses indicate that the PP can be distinguished from 598 the NYT-series tephras on the basis of lower MgO and FeO for a given SiO₂ 599 concentration (Fig 3b,c). Trace element compositions of the PP and NYT-series 600 overlap widely (Fig. 4a).

601

The PP is correlated with TM-7b in Lago Grande di Monticchio (Narcisi, 1996; Wulf et al., 2004; Smith et al., 2011). Major and trace element data for TM-7b glasses is given in table 4. TM-7b glasses show a good match with PP for all trace element ratios, including HFSE/Th and elements affected by plagioclase crystallisation (Sr, Ba, Eu) supporting a proximal-distal correlation (Fig.6a). The TM-7b glass analyses span a narrower compositional range than the PP glasses sampled at Via Pigna (Fig. 3-5, 7a).

609

610 The PP has been linked to tephra C-1 in marine cores from the South Adriatic 611 (Paterne et al., 1988; Siani et al., 2004; Calanchi et al., 2008). The tephra 612 compositions reported by Siani et al. (2004) and Calanchi et al. (2008) overlap 613 with the proximal datasets reported herein and in Smith et al. (2010) and with 614 Lago Grande di Monticchio tephra TM-7b (Fig. 8a). The C-1 tephra of Paterne et 615 al. (1988) is more evolved than the proximal samples, but lies on the PP trend 616 with respect to MgO-SiO₂ (Fig. 8a) and is considered to have been sourced from 617 the PP eruption. In contrast, reported occurrences of C-1/PP tephra in the central 618 Adriatic (Bourne et al., 2010; Calanchi et al., 2008) do not correlate with the 619 proximal PP reported here or by Smith et al. (2010). Bourne et al. (2010) report a 620 cryptotephra layer from a central Adriatic core which comprises tephra from both 621 the NYT and PP eruptions, however the reported data all lie on the higher MgO-622 SiO₂ trend of the NYT, Bourne (2012) later correlated this layer with TM-8, rather 623 than TM-7b on the basis of further data. Calanchi et al. (2008) report a tephra in 624 a central Adriatic core, whose geochemistry differs significantly from the proximal 625 PP and TM-7b. The authors linked this tephra to PP on the basis that it is 626 comparable to TM-7a, however this LGM tephra is does not have a PP chemistry 627 (Wulf et al., 2004). The composition of TM-7a overlaps with the NYT-series in 628 MgO-SiO₂. PP is not documented in any Tyrrhenian Sea cores in the study of 629 Paterne et al. (1988). Therefore, we suggest that the PP has not yet been found 630 in the central Adriatic and marine occurrences of the PP are currently confined to 631 the south Adriatic.

632

The PP tephra has also been reported in terrestrial cores, Lake Bled (Slovenia,
Lane et al., 2011), Lake Shkodra (Albania and Montenegro, Sulpizio et al., 2010)
and Lake Accesa (Italy, Mangy et al., 2006). In Lake Bled, 620 km north of
Phlegraean Fields, a cryptotephra correlated to PP shows a good overlap with

637 the proximal data reported here and extends to more evolved compositions 638 (Fig.7a), suggesting that the PP magma spans a wider compositional range than 639 is represented proximally. The reported mean composition of the Lake Shkodra 640 tephra, from a location 440 km east of the Phlegraean Fields, does not lie on the 641 PP compositional trend and appears more similar to the NYT-series classes 642 reported herein. The age of the layer at lake Shkodra is poorly constrained 643 (Sulpizio et al., 2010). Finally, Magny et al. (2006) report two distinct tephra layers with characteristics similar to the PP tephra in a core from Lake Accesa. 644 645 Italy, but neither PP1 nor PP2 is comparable to the proximal PP glass 646 compositions.

647

This re-examination of distal occurrences of the PP suggests that the areal extent of this tephra is limited. The presence of PP tephra in the south Adriatic and absence in the central Adriatic indicates that the PP was dominantly distributed to the east. However, the occurrence of cryptotephra in Lake Bled indicates some dispersal to the north. Distal settings appear to preserve more evolved compositions than are known from the proximal deposits.

654

655 6.1.2 The Neapolitan Yellow Tuff (NYT) & C-2/TM-8

656

657 Major and trace element analyses of proximal glasses indicate that the NYT 658 tephra may be distinguished from the trachytic, geochemically similar Pre-NYT 659 tephras, on the basis of the occurrence of less evolved phono-trachytic 660 compositions, either representing the less differentiated cluster at 57.5-58.5 wt% 661 SiO₂ (NYT-LM) and/or the less differentiated portion (down to 56.0 wt% SiO₂) of 662 the continuous trend (NYT-UM). The Pre-NYT VRa layer is also bimodal with a 663 phono-trachytic component, but the NYT is separated on the basis of lower CaO 664 and FeO (Fig. 3a,c) and higher Ba and Sr. In the following section we assess 665 previously correlated occurrences of the NYT tephra in terms of the dispersal of 666 the LM and UM components.

667

668 The NYT has been correlated with the Lago Grande di Monticchio tephra TM-8 669 (Wulf et al., 2004). The TM-8 glasses (Table 4) have two modes (61.5-62 wt% 670 SiO₂ and 56.0-58.4 wt% SiO₂). The high-SiO₂ TM-8 glasses show a good match 671 to the high-SiO₂ cluster in the NYT-LM, while low-SiO₂ TM-8 glasses overlap with 672 the low-SiO₂ cluster in the NYT-LM. The TM-8 glass compositions extend to less 673 evolved, tephra-phonolitic compositions (lower SiO₂, K₂O, Na₂O and higher FeO, 674 MgO and CaO; Fig. 3) with higher Ba and Sr concentrations and lower Zr/Sr 675 ratios (Fig. 5) consistent with the NYT-UM and there are some shards of 676 intermediate composition (58-61 wt% SiO₂), which are also associated with the 677 NYT-UM. Therefore, both phases of the NYT eruption are recorded at Lago 678 Grande di Monticchio (Fig. 7b,c).

679

The NYT has been correlated to marine tephra C-2 in distal settings up to 250 km
from the Phlegraean Fields in the Tyrrhenian and Adriatic Seas (Paterne et al.,
1988; Bourne et al., 2010; Calanchi et al., 1998; Siani et al., 2004). C-2 is dated

683 at 13.84-14.88 cal ka BP in Adriatic core MD90-917. In each of the Tyrrhenian 684 and Adriatic marine cores, the C-2 layer is characterised by the presence of low-685 silica glasses (<57.5 wt% SiO₂) and by a differentiation trend from phono-686 trachytic, low-SiO₂ to phonolitic, high-SiO₂ compositions (Paterne et al., 1988; 687 Bourne et al., 2010; Calanchi et al., 1998; Siani et al., 2004). This is consistent 688 with a correlation to the NYT rather than any of the geochemically similar Pre-689 NYT layers. Specifically, distal occurrences of NYT tephra in the Tyrrhenian Sea 690 to the west and south-west of Phlegraean Fields and the Adriatic Sea to the east 691 and north-east of Phlegraean Fields may record both the NYT-LM and NYT-UM 692 (Fig.7b). This is clear in the PRAD218 central Adriatic core (Bourne et al., 2010) 693 because compositional data is given for individual glass shards, allowing both the 694 NYT-UM trend and the NYT-LM low- and high SiO₂ clusters to be seen. The C-2 695 tephra data of Paterne (1988), Calanchi et al., (1998) and Siani et al., (2004) 696 appear to be dominated by the NYT-UM, but this is not clear because only mean 697 tephra compositions are given, masking the compositional range and possibly the 698 actual magma comopostion.

699

The NYT tephra has been identified in terrestrial cores from Lake Bled (Slovenia,
Lane et al., 2011) and Längsee, Austria (Schmidt et al., 2002), approximately 620
and 650 km north of Phlegraean Fields, respectively. The correlated tephra
layers are bimodal, with clusters overlapping the phono-trachytic and trachytic
populations in the NYT-LM (Fig.7b).

705

Both the bimodal NYT-LM and the continuous NYT-UM occur in distal localities. The NYT-UM is expected to form thicker tephra layers on the basis of its larger relative volume. The NYT-UM is the dominant NYT tephra in settings to the east and west of the Phlegraean Fields. However, the NYT-LM is found in the absence of the NYT-UM in locations (to date) up to 650 km north of the Phlegraean Fields.

- 712
- 713 *6.1.3 Pre-NYT* 714

715 Numerous eruptions punctuate the time period between the CI and NYT events. 716 five are recorded at Trefola and Verdolino, and nine at Ponti Rossi (Orsi et al., 717 1996). We have analysed four of these Pre-NYT units, the data indicates that this 718 phase of Phlegraean Fields activity is characterised by repeated eruption of very 719 similar trachytic magmas. Tephra from the Pre-NYT eruptions may be widely 720 dispersed, at least 10 Pre-NYT tephra layers are recorded in the Lago Grande di 721 Monticchio core, with TM-9 and TM-15 being the most prominant (Wulf et al., 722 2004; 2007; 2008). Several important distal tephra layers correlated with 723 Phlegraean Fields fall in the Pre-NYT/Tufi Biancastri time window, including 724 GM1, Lagno Amendolare and Y-3. Siani et al. (2004) propose that some 725 previously recognised occurrences of the C-2 tephra layer (NYT) may correlate 726 with GM1, or may contain more than a single tephra, because the close 727 chronology of these events makes them difficult to distinguish stratigraphically.

728

6.1.3.1 TM-9/GM1 has previously been linked (Wulf et al., 2004) to the youngest of the Tufi Biancastri deposits, Ponti Rossi unit PRe dated at 14.6 ± 0.4 ⁴⁰Ar/³⁹Ar ka (Pappalardo et al., 1999), which was not analysed in this study.

732

733 The TM-9 is a 2 cm thick tephra layer with a varve age of 14.56 ka BP from Lago 734 Grande di Monticchio (Wulf et al., 2004, 2008). New major and trace element 735 data for TM-9 glasses are given in Table 4. The major (FeO/CaO) and trace 736 (HFSE/Th: Fig. 5) element ratios of TM-9 glasses are consistent with the NYT 737 series. Like the proximal Pre-NYT units studied here, the TM-9 glass displays a 738 narrow range of major (1.85-1.99 wt% CaO, 62.1-63.1 wt% SiO₂) and trace 739 element compositions. However, TM-9 has higher incompatible trace element 740 concentrations (HFSE and Th) and lower V, Ba and Sr concentrations than any 741 of the similar proximal Pre-NYT products studied here (Fig. 3, 5). When 742 compared to whole rock data for proximal unit PRe (Pappalardo et al., 1999). 743 TM-9 appears to be similar, and lower SiO₂, Na₂O, Rb and Nb and higher FeO, 744 K_2O , V and Ba may be within error given the differing analytical techniques, 745 however glass geochemical data is required to fully assess the TM-9 – PRe 746 correlation suggested by Wulf et al. (2004).

747

748 TM-9 has been linked to GM1 (Wulf et al. 2004). GM1 is thought to be sourced 749 from the Phlegraean fields, but its type locality is a layer on the slopes of 750 Somma-Vesuvius, where it occurs stratigraphically above the Lagno Amendolare 751 deposits (Andronico et al., 1996; Zanchetta et al., 2000). Tephra layers correlated 752 to GM1 are described from the Adriatic Sea, where two layers (14.7 and 15.5 cal 753 ka BP) are found below the C-2/NYT layer (Siani et al., 2004), and from Lake 754 Prespa, Albania where two layers are also described (Aufgebauer et al., 2012). 755 Our data from TM-9 reveals higher Na₂O and lower K₂O relative to published 756 compositions of the GM1 type-site and distal GM1 tephra (Fig.7c,d), therefore we 757 suggest that TM-9 and GM1 may not represent the same Pre-NYT event.

758

6.1.3.2 Lagno Amendolare/TM-10 The type-site for Lagno Amendolare is an
outcrop on the northern flank of Vesuvius, and is characterized by a mix of light
and dark coloured pumice and dated at 15.2-16.5 cal ka BP (Andronico et al.,
1996). A tephra that is correlated to TM-10 is described in the Adriatic Sea (Siani
et al., 2004; Bourne et al., 2010) where it is dated at 16.1-16.9 cal ka BP (Siani et
al., 2004). This layer was not analysed in this study and is not discussed here.

765

7666.1.3.3 Y-3/TM-15 has previously been linked (Wulf et al., 2004) to the Pre-NYT767Tufi Biancastri unit VRa (Di Vito et al., 2008) sampled in this study and dated at768 $30.3 \pm 0.2 \, {}^{40}\text{Ar}/{}^{39}\text{Ar}$ ka (Pappalardo et al., 1999).

769

TM-15 is a 29 cm thick tephra layer with a varve age of 27.26 ka BP from Lago Grande di Monticchio. New major and trace element data for TM-15 glasses are given in Table 4. The major (FeO/CaO) and trace (HFSE/Th) element ratios of TM-15 glasses (Table 4) are consistent with the Pre-NYT series. TM-15 glasses have higher MgO and FeO for a given SiO₂ (Fig. 3), consistent with VRa and partially overlap with the trachytic component of the bimodal VRa (the lower part of the proximal sequence). However, TM-15 extends to lower Al_2O_3 and Na_2O and to higher K₂O and to higher HFSE concentrations (Fig.6d). Therefore, we cannot confirm a correlation between VRa and TM-15. Furthermore, TM-15 lacks a phono-trachytic component, but this may be an artefact of sampling from the base of the visible tephra layer.

781

782 TM-15 has been linked to the distal Y-3 tephra, first described from an Ionian Sea 783 core (Keller 1978). The average major element data of Y-3 from the type-site 784 (Keller et al., 1978) overlaps with the TM-15 field defined in this study (Fig.7e,f). 785 Y-3 tephra has also been described from a number of locations in the 786 Mediterranean basin, including the Balkans (Wagner et al., 2008; Caron et al., 787 2010) and in the Adriatic (Zanchetta et al., 2008; Calanchi et al., 1998; Bourne et 788 al., 2010), Ionian (Kraml, 1997) and Tyrrhenian (Munno and Petrosino, 2004; 789 Paterne et al., 1988) Seas. Of these studies, only the Tyrrhenian Sea data fall 790 within the compositional field of TM-15, while the Adriatic Sea data of Bourne et 791 al., (2010) lie on the same high-FeO and MgO trends but do not overlap with the 792 type site Y-3 type site of Keller (1978). It is possible that further correlations are 793 masked by averaged datasets, however some layers previously linked to Y-3 794 and/or TM-15 may be related to one or more of the other Pre-NYT eruptions.

795

797

796 6.1.4 Campanian Ignimbrite (CI) & Y5/TM-18

The phono-trachytic CI is clearly distinct from the trachytic Pre-CI magmas and has lower CaO and K_2O and higher Na₂O relative to the younger NYT-series magmas.

801

802 The CI is correlated with tephra layer TM-18 in Lago Grande di Monticchio 803 (Narcisi, 1996; Wulf et al., 2004). The TM-18 layer comprises a 17 cm thick basal 804 pumice fall layer overlain by a 9 cm thick layer of vitric ash, interpreted as the co-805 ignimbrite fall deposit generated during the flow phase of the CI eruption by 806 Narcisi (1996) and Wulf et al. (2004). We have analysed the major and trace 807 element composition glasses from of both the basal pumice and the vitric ash 808 components of layer TM-18, here termed TM-18 base and TM-18 top, 809 respectively (Table 4). Compositions of TM-18 base glasses match that of 810 samples from the CI fall (Fig. 6, 7f), while TM-18 top glasses overlap completely 811 with the tephra sampled from the proximal CI lower and intermediate flows (Fig. 812 6, 7e).

813

The CI is correlated with the Y-5 ash layer, which is recognised from marine cores across the Eastern Mediterranean (e.g. Cornell et al., 1983; Keller et al., 1978) and the C-13 layer in the Tyrrhenian Sea (Paterne et al., 1988, Ton-That et al., 2001). The CI is found in terrestrial sites as far as Russia, ~2500 km from the source (Pyle et al., 2006; Giaccio et al, 2008). Costa et al. (2012) have modelled the CI dispersal and show that >3.7 million km² was covered by >5 mm of ash. The Y-5 tephra is significant from both a climatic viewpoint as it occurs near the 821 start of Heinrich event 4 (Ton-That et al., 2001) and an archaeological 822 perspective as it occurs within the timeframe of the European Middle to Upper 823 Palaeolithic transition (~40 ka BP, Fedele et al., 2008). Recorded occurrences of 824 the Y-5 tephra have a bimodal size distribution in some sites up to 1500 km from 825 the source (Cornell et al., 1983; Sparks and Huang, 1980), which may 826 correspond to both the fall and dilute pyroclastic current phases of the CI 827 eruption. The computational model of Costa et al. (2012) indicates that most of 828 the tephra dispersal was associated with the dilute pyroclastic density current 829 phase of the CI eruption.

830

831 Published bulk trace element compositions of distal CI tephra fall from the 832 Aegean (Hardiman et al., 1999; Pyle et al., 2006) and Tyrrhenian (Paterne 1988; 833 Ton-That et al., 2001) seas and from continental settings in Lesvos, Greece 834 (Margari et al., 2007), Dobrogea, Romania (Veres et al., 2012), lakes Ohrid and 835 Prespa, Macedonia (Sulpizio et al., 2010); Crvena Stijena, Montenegro (Morley 836 and Woodward 2011) and Kostenki-Borschevo, Russia (Pyle et al., 2006) lie 837 close to the boundary between CI fall and CI lower and intermediate flow on plots 838 of Zr-Th. Therefore it is not possible to determine whether the fall or flow phase is 839 dominant in these locations. However, these discriminators provide the possibility 840 of further detailing the dispersal of the two main phases of the CI eruption, as full 841 trace element glass datasets become available for distal occurrences of CI 842 tephra.

843

844 The upper flow, represented by the samples from San Marco Evangelista guarry 845 (this work and Arienzo et al., 2009), is considered to have been produced by the 846 last and least energetic eruptive phase of low volume (~20 km³) and high viscosity magma (Civetta et al., 1997). Proximally, the CI upper flow is restricted 847 848 mainly to the Campanian Plain, but may have fuelled detached, dilute co-849 ignimbrite clouds that carried ash distally. A single TM-18 top shard from the 850 distal Lago Grande di Monticchio corresponds to the composition of the CI upper 851 flow. More distally, Sulpizio et al., (2010) report the occurrence of three differently 852 evolved trachytic magmas in Lakes Ohrid and Prespa (Macedonia), one of which 853 corresponds to the upper flow. However, the upper flow is not widely reported in 854 distal settings. We use the ratio of Na₂O/K₂O <0.6 to distinguish the CI Upper 855 Flow in published datasets of distal CI tephra, in cases where compositional data 856 is given for individual glass shards. Cl upper flow tephra is present at Kostenki-857 Borschevo, Russia (Pyle et al., 2006), Dobrogea, Romania (Veres et al., 2012), 858 Crvena Stijena, Montenegro (Morley and Woodward 2011), Lakes Ohrid and 859 Prespa, Macedonia (Sulpizio et al., 2010, Caron et al., 2010, Wagner et al., 2008, 860 Vogel et al., 2010), Lesvos, Greece (Margari et al., 2007) and Philippi, Greece 861 (St.Seymour et al., 2004). In most cases, the CI upper flow only constitutes a 862 minor proportion of the population of CI tephra shards and its presence in other 863 localities may be masked in averaged datasets. Our analysis of published 864 datasets suggests that the CI upper flow is widely present.

865

866 6.1.5 Pre-Campanian Ignimbrite

867

The Pre-CI units described here (TLa, TLc and TLf from Trefola) all have restricted compositional ranges and can be distinguished from the CI on the basis of major element composition.

871

872 Many of the Pre-CI tephra are likelyd to be widely dispersed across the 873 Mediterranean because of their proximal thicknesses and eastward dispersal (Di 874 Vito et al., 2008). West of the Apennines, TLc in the Trefola Quarry has been 875 linked to the Santa Lucia fall deposits with an age 50.95 ± 2.98 cal ka BP on the 876 basis of glass major and whole rock trace element data (Di Vito et al., 2008). The 877 Santa Lucia deposits are widespread and thick in the Apennine area and are also 878 reported in the Camaldoli della Torre core (Santa Lucia) from the southern slopes 879 of Somma-Vesuvius (Di Renzo et al., 2007). However, the EDS glass data for 880 Santa Lucia (Di Vito et al., 2008) differs significantly from the TLc data presented 881 here, having higher CaO, K₂O and MgO and lower Na₂O. The trace element 882 composition of Santa Lucia pumices has lower levels of trace element 883 enrichment relative to TLc.

884

885 6.2 Implications for tephra correlations

886

This study of proximal glass major and trace element geochemistries from the 60-12 ka eruptive sequence of the Phlegraean Fields highlights several issues of relevance for tephrochronology.

- 891 *6.2.1 Exposure*
- 892

Incomplete preservation due to erosion and limited exposure in urban areas at proximal localities means that some tephra units preserved distally may not be recognised proximally. For example, we are unable to identify a proximal equivalent of the distal Lago Grande di Monticchio TM-18-4 and TM-15 tephra layers. For this reason, there is a need for high quality major and trace element glass datasets from high-resolution distal archives such as the Lago Grande di Monticchio, and from other type sites in medial-distal locations.

900

901 *6.2.2 Stratigraphic variation*

902

903 Proximal deposits from the large CI and NYT eruptions show compositional 904 variation with stratigraphic height, reflecting heterogeneous magma systems. The 905 range of geochemistries is an additional feature which can be used to 906 characterise a given eruption for the purpose of correlating tephras. For example 907 we are able to distinguish the Plinian fall and dilute pyroclastic flow phases of the 908 CI, and the lower and Upper Members of the NYT. For this reason, average 909 tephra compositions should not be presented; representative analyses are more 910 informative and whole datasets are desirable. It is critical that samples are taken 911 vertically through distal tephra layers to ensure they are representative.

912

913 *6.2.3 Long lived magma systems*

915 Both the 60-39 ka (CI-series) and 39-14 ka (NYT-series) time windows are 916 characterised by magma systems which erupted several times and produced 917 tephra which either overlap extensively or are indistinguishable in composition. 918 This is also observed for the more recent eruptions from the Phlegraean Fields 919 (Smith et al., 2011). Therefore, it is important to consider other close-in-time and 920 geochemically similar magmas from a potential source volcano when assigning 921 proximal-distal and distal-distal tephra correlations. At the Phlegraean Fields, the proximal Pre-NYT units VRa, VRb and PRa cannot be clearly distinguished using 922 923 major and trace element glass geochemistry. The same holds true for the Pre-CI 924 TLa and TLc. In the absence of a definitive geochemical fingerprint, good 925 stratigraphic, chronological, sedimentological control is required and additional 926 characteristics of the deposit, such as clast shape, external surface, groundmass 927 texture are also important (e.g. Cioni et al., 2008).

929 6.2.4 Petrogenesis

930

928

914

931 The consistency of U, Th, Nb, Ta, Zr, and Y inter-element ratios (Fig. 5) within 932 the CI-series glasses indicates that they share a parental magma, in agreement 933 with the findings of Arienzo et al. (2009), D'Antonio et al. (2007), Di Renzo et al. (2011) and Pabst et al. (2008). Differences between the CI-series magmas 934 935 primarily reflect differing degrees of differentiation, but there is no systematic 936 increase in the degree of differentiation with time, suggesting that the CI-series 937 magmas do not reflect a single evolving magma chamber, but instead reflect 938 distinct magma batches which originated from the parental magma at depth and 939 fractionated in separate shallow reservoirs, as shown by Pabst et al. (2008). This 940 excludes the last erupted magma, the CI upper flow, which is distinct from other 941 magmas in the CI-series. Its composition is less differentiated than the CI fall and 942 the lower and intermediate flows and defines a mixing trend between the CI fall 943 and a less differentiated magma.

944

The NYT-series and the PP glasses have consistent HFSE/Th ratios and likely 945 946 share a similar parent. The NYT-series and PP magmas form compositional 947 clusters and do not define a single differentiation trend. However, these younger 948 magmas have lower U, Th, Nb, Ta, Zr, and Y concentrations and lower HFSE/ Th 949 ratios (Fig. 5) relative to the CI-series, indicating that the NYT-series/PP magmas 950 originated from a different parental magma to the older series. These results 951 agree with previous work suggesting isotopically and geochemically different magmas for the CI-series and the NYT-series/PP (Arienzo et al., 2009; Di Renzo 952 et al., 2007; Di Renzo et al., 2011; Pabst et al., 2008; Pappalardo et al., 1999; 953 954 Pappalardo et al., 2002a; Pappalardo et al., 2002b; D'Antonio et al., 2007; 955 Tonarini et al., 2004). Understanding the petrogenetic processes operating at the 956 Phlegraean Fields means that we can assign an unknown Phlegraean Fields 957 tephra to the appropriate series, even in the absence of a proximal match,

because the HFSE/Th ratio is indicative of a certain parental magma (CI-seriesmagma and NYT-series/PP magma).

960

Where multiple eruptions produce identical tephra, such as the Pre-NYT, it may be possible to define compositional groups. Pabst et al. (2008) identified three distinct Pre-CI magma batches thath were erupted sequentially. Bracketing the age of the first and last occurrence of each compositional group may be useful in providing age constraints on an unknown Phlegraean Fields distal tephra. This could be achieved either by dating of proximal samples or using high-resolution distal archives, such as Lago Grande di Monticchio.

968

969 7. CONCLUSIONS

970

The 60-12 ka eruptive sequence of Phlegraean Fields offers an ideal case study to investigate proximal-distal tephra correlations because of the large number of eruptions recorded proximally and in the medial-distal Lago Grande di Monticchio core. The micron-beam major and trace element glass dataset presented here indicate that:

- 976
- CI-series (60-39 ka) and NYT-series/PP magmas (39-12 ka) were derived from geochemically different magmas, in agreement with previous isotopic studies (Di Renzo et al. (2011), and references therein). HFSE/Th and FeO/CaO ratios are constant within each series, allowing an unknown Phlegraean Fields tephra to be assigned to the appropriate series, even if the exact proximal equivalent is not known.
- 983 2. Tephra from the caldera forming NYT eruption compositionally overlaps with tephra from the smaller Pre-NYT eruptions. The NYT may be 984 985 distinguished by the presence of the bimodal trachytic and phono-trachytic 986 LM and by the UM, which spans a compositional range between trachyte 987 and phonotrachyte. Assessment of published data for distal occurrences 988 of NYT tephra shows that the UM is the dominant NYT tephra in settings 989 to the east and west of Phlegraean Fields. However, the NYT-LM is found 990 in the absence of the NYT-UM in locations to the far north of Phlegraean 991 Fields.
- 3. Magma erupted during the caldera forming CI event straddle the phonotrachyte and is distinct from the preceding, lower volume Pre-CI magmas in major and trace element composition. CI glasses from the Plinian (fall) and the lower and intermediate flow phases of the eruption overlap extensively, but can be separated using a plot of Zr-Th.
- 997
 98
 998
 998
 999
 999
 999
 999
 999
 900
 1000
 1001
 1001
 1002
 905
 906
 907
 908
 909
 909
 909
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900</l

1003distal Phlegraean Fields tephra and therefore constrain its stratigraphic1004position and age.

1005

1006 In addition to insights into the behavior of the magmatic feeding system, 1007 proximal-distal tephra correlations of single eruptions are important for the 1008 assessment of volcanic hazards, for example zoning of territory in relation to 1009 various dangerous eruption phenomena. Proximal-distal tephra correlations allow 1010 more precise estimates of the volume of magma extruded during a single 1011 eruption and, therefore, the definition of the eruption magnitude and intensity. 1012 Knowledge of such parameters for past eruptions of an active volcano is 1013 fundamental to evaluation of the effects of such an eruption on the environment 1014 and on climate. This is particularly relevant for volcanoes located in densely 1015 populated areas, such as the Phlegraean Fields caldera located in the densely 1016 inhabited Neapolitan area of southern Italy. The results of this study will 1017 contribute to the ongoing improvement of current volcanic hazards assessments 1018 (Orsi et al., 2004; 2009; Costa et al., 2009; Selva et al., 2012).

1019

Acknowledgements: This work is funded by the NERC RESET Consortium
(NE/E015905/1). This is paper number ROX/0020. The authors wish to thank
Roberto Sulpizio and two anonymous reviewers for thorough and constructive
feedback; Paul Albert and Chris Satow for useful discussions and Neil Holloway
for sample preparation.

- 1025 1026 **REFERENC**
- 1027

REFERENCES

Arienzo I., Civetta L., Heumann A., Wörner G., and Orsi G. (2009) Isotopic
evidence for open system processes within the Campanian Ignimbrite
(Campi Flegrei, Italy) magma chamber. *B. Volcanol.* **71**(3), 285-300.

- Andronico, D., Calderoni, G., Cioni, R., Donahue, D.J., Marianelli, P., Santacroce,
 R., Sbrana, A., Sulpizio, R. (1996) An Updated Chronostratigraphic Scheme
 of the Last 19,000 Years of Vesuvius Magmatic and Eruptive History. EOS,
 Electronic Supplement to the Member Newspaper of the American
- 1035 Geophysical Union (AGU), November 7 1996, 671-672.
- Arienzo I., Heumann A., Wörner G., Civetta L., and Orsi G. (2011) Processes and
 timescales of magma evolution prior to the Campanian Ignimbrite eruption
 (Campi Flegrei, Italy). *Earth Planet. Sci. Lett.* **306**(3-4), 217-228.
- Arienzo I., Moretti R., Civetta L., Orsi G., and Papale P. (2010) The feeding
 system of Agnano Monte Spina eruption (Campi Flegrei, Italy): Dragging the
 past into present activity and future scenarios. *Chem. Geol.* 270(1-4), 135147.
- 1043 Aufebauer, A., Panagiotopoulos, K., Wagner, B., Schaebitz, F., Viehberg, F.A.,
- 1044 Vogel, H., Zanchetta, G., Sulpizio, R., Leng, M.J. and Damaschke, M. (in 1045 press) Climate and environmental change in the Balkans over the last 17 ka
- 1046 recorded in sediments from Lake Prespa (Albania/F.Y.R. of
- 1047 Macedonia/Greece). *Quatern. Int.*

1048	Barberi F., Innocenti F., Lirer L., Munno R., Pescatore T., and Santacroce R.
1049	(1978) The campanian ignimbrite: a major prehistoric eruption in the
1050	Neapolitan area (Italy). B. Volcanol., Vol. 41, 10-31.
1051	Bohrson W. A., Spera F. J., Fowler S. J., Belkin H. E., De Vivo B., and Rolandi G.
1052	(2006) Chapter 13 Petrogenesis of the Campanian Ignimbrite: implications
1053	for crystal-melt separation and open-system processes from major and
1054	trace elements and Th isotopic data. In Developments in Volcanology, 9(C),
1055	249-288.
1056	Bourne A. J., Lowe J. J., Trincardi F., Asioli A., Blockley S. P. E., Wulf S.,
1057	Matthews I. P., Piva A., and Vigliotti L. (2010) Distal tephra record for the
1058	last ca 105,000 years from core PRAD 1-2 in the central Adriatic Sea:
1059	implications for marine tephrostratigraphy. Quaternary Sci. Rev., 29(23-24),
1060	3079-3094.
1061	Bourne, A.J., (2012) The late Quaternary tephrochronology of the Adriatic Region:
1062	implications for the synchronisation of marine records. University of London,
1063	unpublished PhD Thesis
1064	Brandt U., Nowaczyk N. R., Ramrath A., Brauer A., Mingram J., Wulf S., and
1065	Negendank J. F. W. (1999) Palaeomagnetism of Holocene and Late
1066	Pleistocene sediments from Lago di Mezzano and Lago Grande di
1067	Monticchio (Italy): initial results. Quaternary Sci Rev 18, 961-976.
1068	Brauer A., Mingram J., Frank U., Gunter C., Schettler G., Wulf S., Zolitschka B.,
1069	and Negendank J. F. W. (2000) Abrupt environmental oscillations during the
1070	Early Weichselian recorded at Lago Grande di Monticchio, southern Italy.
1071	<i>Quatern. Int.</i> 73/74 , 79-90.
1072	Calanchi N., Cattaneo A., Dinelli E., Gasparotto G., and Lucchini F. (1998) Tephra
1073	layers in Late Quaternary sediments of the central Adriatic Sea. Mar. Geol.,
1074	149 (1-4), 191-209.
1075	Calanchi, N, Dinelli, E. (2008) Tephrostratigraphy of the last 170 ka in sedimentary
1076	successions from the Adriatic Sea. J. Volcan. Geoth. Res., 177 (1), 81-95.
1077	Caron, B., Sulpizio, R., Zanchetta, G., Siani, G. and Santacroce, R. (2010) The
1078	Late Holocene to Pleistocene tephrostratigraphic record of Lake Ohrid
1079	(Albania). <i>C. R. Geosci.</i> , 342 (96), 453-466.
1080	Cioni R., D'Oriano, C., Bertagnini A. (2008). Fingerprinting ash deposits of small
1081	scale eruptions by their physical and textural features. J. Volcan. Geoth.
1082	<i>Res.</i> 177 , 277-287
1083	Civetta L., Orsi G., Pappalardo L., Fisher R. V., Heiken G., and Ort M. (1997)
1084	Geochemical zoning, mingling, eruptive dynamics and depositional
1085	processes - The Campanian Ignimbrite, Campi Flegrei caldera, Italy. J.
1086	<i>Volcan. Geoth. Res.,</i> 75 (3-4), 183-219.
1087	Cornell W., S. Carey S., and Sigurdsson H. (1983) Computer simulation of
1088	transport and deposition of Campanian Y-5 ash. J. Volcan. Geoth. Res., 17,
1089	89–109.
1090	Costa A., Dell'Erba F., Di Vito M., Isaia R., Macedonio G., Orsi G., Pfeiffer T.
1091	(2009) Tephra fallout hazard assessment at the Campi Flegrei caldera
1092	(Italy) <i>B. Volcan.</i> , 71 , 259-273
1093	Costa, A., Folch, A., Macedonio, G., Giaccio,, B., Isaia, R., Smith, V.C. (2012)

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104	 Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption, <i>Geophys. Res. Lett.</i>, 39 doi:10.1029/2012GL051605. D'Antonio M., Tonarini S., Arienzo I., Civetta L., and Di Renzo V. (2007) Components and processes in the magma genesis of the Phlegraean Volcanic District, Southern Italy. In <i>Cenozoic volcanism in the Mediterranean area</i>, Vol. 418 (ed. L. Beccaluva, G. Bianchini, and M. wilson), pp. 203-220. Geological Society of America Special Publication. De Vivo B., Rolandi G., Gans P. B., Calvert A., Bohrson W. A., Spera F. J., and Belkin H. E. (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). <i>Miner. Petrol.</i>, 73(1-3), 47-65. Deino A. L., Orsi G., de Vita S., and Piochi M. (2004) The age of the Neapolitan
1105	Yellow Tuff caldera-forming eruption (Campi Flegrei caldera Italy) assessed
1106 1107	by Ar-40/Ar-39 dating method. <i>J. Volcan. Geoth. Res.</i> , 133 (1-4), 157-170.
1107	Di Renzo V., Arienzo I., Civetta L., D'Antonio M., Tonarini S., Di Vito M. A., and Orsi G. (2011) The magmatic feeding system of the Campi Flegrei caldera:
1109	Architecture and temporal evolution. <i>Chem. Geol.</i> 281 (3-4), 227-241.
1110	Di Renzo V., Di Vito M. A., Arienzo I., Carandente A., Civetta L., D'Antonio M.,
1111	Giordano F., Orsi G., and Tonarini S. (2007) Magmatic history of Somma-
1112	Vesuvius on the basis of new geochemical and isotopic data from a deep
1113	borehole (Camaldoli della Torre). J. Petrol., 48(4), 753-784.
1114	Di Vito M. A., Isaia R., Orsi G., Southon J., de Vita S., D'Antonio M., Pappalardo
1115	L., and Piochi M. (1999) Volcanism and deformation since 12,000 years at
1116	the Campi Flegrei caldera (Italy). J. Volcan. Geoth. Res., 91(2-4), 221-246.
1117	Di Vito M. A., Sulpizio R., Zanchetta G., and D'Orazio M. (2008) The late
1118	Pleistocene pyroclastic deposits of the Campanian Plain: new insights into
1119	the The late Pleistocene pyroclastic deposits of the Campanian Plain: new
1120	insights into the explosive activity of Neapolitan volcanoes. J. Volcan.
1121	Geoth. Res., 177(1), 19-48.
1122	De Vivo B., Rolandi G., Gans P.B., Calvert A., Bohrson W.A., Spera F.J. and
1123 1124	Belkin H.E. (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). In: De Vivo B, Rolandi G (eds) Mt Somma
1124	Vesuvius and Volcanism of the Campania Plain. Spec Issue Mineral Petrol
1126	73:47–65.
1120	D'Oriano C., Poggianti E., Bertagnini A., Cioni R., Landi P., Polacci M., and Rosi
1128	M. (2005) Changes in eruptive style during the A.D. 1538 Monte Nuovo
1129	eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallisation. B.
1130	<i>Volcan.</i> , 67 , 601-621.
1131	Fedele F. G., Giaccio B., Isaia R., and Orsi G. (2003) The Campanian Ignimbrite
1132	eruption, Heinrich Event 4, and Palaeolithic change in Europe: a high-
1133	resolution investigation. AGU Geophys. Monogr. 139, 301-327.
1134	Fedele F. G., Giaccio B., Isaia R., Orsi G., Carroll M., and Scaillet B. (2007) The
1135	Campanian Ignimbrite Factor: Towards a Reappraisal of the Middle to
1136	Upper Palaeolithic "Transition". In Living Under the Shadow: The Cultural
1137	Impacts of Volcanic Eruptions (ed. J. G. a. R.Torrence), pp. 19-41. Left
1138	Coast Press.

1139	Fedele L., Scarpati C., Lanphere M., Melluso L., Morra V., Perrotta A., and Ricci
1140	G. (2008) The Breccia Museo formation, Campi Flegrei, southern Italy:
1141	geochronology, chemostratigraphy and relationship with the Campanian
1142	Ignimbrite eruption. <i>B. Volcan.</i> , 70 (10), 189-1219.
1143	Fisher R. V., Orsi G., Ort M., and Heiken G. (1993) Mobility of a Large-Volume
1144	Pyroclastic Flow - Emplacement of the Campanian Ignimbrite, Italy. 177(1),
1145	19-48 56 (3), 205-220.
1146	Fowler S. J., Spera F., Bohrson W., Belkin H. E., and De Vivo B. (2007) Phase
1147	equilibria constraints on the chemical and physical evolution of the
1148	campanian ignimbrite. <i>J. Petrol.</i> 48 (3), 459-493.
1149	Giaccio, B., Isaia, R., Fedele, F. G., Di Canzio, E., Hoffecker, J., Ronchitelli, A.,
1150	Sinitsyn, A., Anikovich, M., and Lisitsyn, S. N. (2008). The Campanian
1151	Ignimbrite and Codola tephra layers: two temporal/stratigraphic markers for
1152	the Early Upper Palaeloithic in southern Italy and eastern Europe, J.
1153	Volcan. Geoth. Res., 177, 208–226.
1154	Hardiman J. C. (1999) Deep sea tephra from Nisyros Island, eastern Aegean Sea,
1155	Greece. In Volcanoes in the Quaternary, Vol. 161 (ed. C. R. Firth and W. J.
1156	McGuire), 69-88. Geological Society, London, Special Publications.
1157	Jarosewich, E., 2002. Smithsonian Microbeam Standards. Journal of Research of
1158	the National Institute of Standards and Technology, 107(6): 681–685.
1159	Jochum, K.P. et al., 2006. MPI-DING reference glasses for in situ microanalysis:
1160	New reference values for element concentrations and isotope ratios.
1161	Geochem. Geophy. Geosy., 7(2).
1162	Keller J., Ryan W. B. F., Ninkovich D., and Altherr R. (1978) Explosive volcanic
1163	activity in the Mediterranean over the past 200,000 yr as recorded in deep-
1164	sea sediments. Geol. Soc. Am. Bull. 89(4), 591-604.
1165	Kraml M. (1997) Laser-40Ar/39Ar-Datierungen an distalen marinen Tephren des
1166	jung-quart.aren mediterranen Vulkanismus. Ph.D, Albert-Ludwigs-Universit.
1167	Lane C. S., Andric M., Cullen V. L., and Blockley S. P. E. (2011) The occurrence
1168	of distal Icelandic and Italian tephra in the Lateglacial of Lake Bled,
1169	Slovenia. Quaternary Sci. Rev., 30(9-10), 1013-1018.
1170	Le Bas M. J. and Streckeisen A. L. (1991) The IUGS systematics of igneous rocks.
1171	Journal of the Geological Society 148 (5), 825-833.
1172	Lirer L., Petrosino P., and Alberico I. (2001) Hazard assessment at volcanic fields:
1173	the Campi Flegrei case history. J. Volcan. Geoth. Res., 112(1-4), 53-73.
1174	Magny, M., de Beaulieu, JL., Drescher-Schneider, R., Vannière, B., Walter-
1175	Simonnet, AV., Millet, L., Bossuet, G. and Peyron, O. 2006. Climatic
1176	oscillations in central Italy during the Last Glacial-Holocene transition: the
1177	record from Lake Accesa. J. Quaternary Sci., 21, 311-320.
1178	Mangiacapra A., Moretti R., Rutherford M., Civetta L., Orsi G., and Papale P.
1179	(2008) The deep magmatic system of the Campi Flegrei caldera (Italy).
1180	Geophys. Res. Lett., 35, L21304.
1181	Margari V., Pyle D. M., Bryant C., and Gibbard P. L. (2007) Mediterranean tephra
1182	stratigraphy revisited: Results from a long terrestrial sequence on Lesvos
1183	Island, Greece. J. Volcan. Geoth. Res., 163(1-4), 34-54.

1101	Marley, M.W. and Waadward, J.C. (in press) The Companian Ignimbrity (VE)
1184 1185	Morley, M.W. and Woodward, J.C. (in press) The Campanian Ignimbrite (Y5) tephra at CrvenaStijena Rockshelter, Montenegro. <i>Quaternary Research</i> .
1186	Müller W., Shelley M., Miller P., and Broude S. (2009) Initial performance metrics
1187	of a new custom-designed ArF excimer LA-ICPMS system coupled to a
1188	two-volume laser-ablation cell. J. Anal. Atom. Spectrom., 24(2), 209-214.
1189	Munno R. and Petrosino P. (2004) New constraints on the occurrence of the Y-3
1190	upper Pliestocene tephra marker layer in the Tyrrhenian Sea. <i>II Quaternario</i>
1191	17(1), 11-20.
1192	Narcisi B. (1996) Tephrochronology of a late quaternary lacustrine record from the
1193	Monticchio maar (Vulture volcano, Southern Italy). <i>Quaternary Sci. Rev.,</i>
1194	15 (2-3), 155-165.
1195	Orsi G., Civetta L., D' Antonio M., Di Girolamo P., and Piochi M. (1995) Step-
1196	Filling and Development of a 3-Layer Magma Chamber - the Neapolitan-
1197	Yellow-Tuff Case-History. J. Volcan. Geoth. Res., 67(4), 291-312.
1198	Orsi G., Civetta L., Del Gaudio C., de Vita S., Di Vito M. A., Isaia R., Petrazzuoli
1199	S., Ricciardi G., and Ricco C. (1999a) Short-Term Ground Deformations
1200	and Seismicity in the Nested Campi Flegrei Caldera (Italy): an example of
1201	active block resurgence in a densely populated area. J. Volcan. Geoth.
1202	<i>Res.</i> , 91 , 415-451.
1203	Orsi G., D' Antonio M., de Vita S., and Gallo G. (1992) The Neapolitan Yellow Tuff,
1204	a Large-Magnitude Trachytic PhreatoPlinian Eruption - Eruptive Dynamics,
1205	Magma Withdrawal and Caldera Collapse. J. Volcan. Geoth. Res., 53(1-4),
1206	275-287.
1207	Orsi G., de Vita S., Di Vito M. A., Isaia R., Nave R., and Heiken G. (2003) Facing
1208	volcanic and related hazards in the Neapolitan area. In Earth Sciences in
1209	the Cities: A Reader, Vol. 56 (ed. Heiken G., Fakundiny R., and Sutter J.),
1210	pp. 121-170. Am. Geophys. Un., Sp. Publ. Series.
1211	Orsi G., de Vita S., and Di Vito M. A. (1996) The restless, resurgent Campi Flegrei
1212	nested caldera (Italy): Constraints on its evolution and configuration. J.
1213	<i>Volcan. Geoth. Res.</i> , 74 (3-4), 179-214.
1214	Orsi G., Di Vito M. A., and Isaia R. (2004) Volcanic hazard assessment at the
1215	restless Campi Flegrei caldera. <i>B. Volcanol.,</i> 66 (6), 514-530.
1216	Orsi G., Petrazzuoli S., and Wohletz K. (1999b) Mechanical and thermo-fluid
1217	behaviour during unrest episode at the Campi Flegrei caldera (Italy). <i>J.</i>
1218	<i>Volcan. Geoth. Res.</i> , 91 , 453-470.
1219	Orsi G., Di Vito M.A., Selva J. and Marzocchi W. (2009) Long term forcast of
1220	eruption style and size at Campi Flegrei caldera (Italy). E Planet Sci Let
1221	287 , 265-276
1222	Ort M., Orsi G., Pappalardo L., and Fisher R. (2003) Anisotropy of magnetic
1223	susceptibility studies of depositional processes in the Campanian
1224	Ignimbrite, Italy. <i>B. Volcanol.,</i> 65(1), 55-72.
1225	Pabst S., Worner G., Civetta L., and Tesoro R. (2008) Magma chamber evolution
1226	prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions
1227	(Campi Flegrei, Italy). <i>B. Volcanol.</i> , 70 (8), 961-976.
1228	Pappalardo L., Civetta L., D'Antonio M., Deino A., Di Vito M.A., Orsi G.,
1229	Carandente A., de Vita S., Isaia R., and Piochi M. (1999) Chemical and Sr-

1230	isotopical evolution of the Phlegraean magmatic system before the
1231	Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. J. Volcan.
1232	<i>Geoth. Res.</i> , 91 (2-4), 141-166.
1233	Pappalardo L., Civetta L., de Vita S., Di Vito M. A., Orsi G., Carandente A., and
1234	Fisher R. V. (2002a) Timing of magma extraction during the Campanian
1235	Ignimbrite eruption (Campi Flegrei Caldera). J. Volcan. Geoth. Res., 114(3-
1236	4), 479-497.
1237	Pappalardo L., Ottolini L., and Mastrolorenzo G. (2008) The Campanian Ignimbrite
1238	(southern Italy) geochemical zoning: insight on the generation of a super-
1239	eruption from catastrophic differentiation and fast withdrawal. Contrib.
1240	Mineral. and Petr., 156 (1), 1-26.
1241	Pappalardo L., Piochi M., D'Antonio M., Civetta L., and Petrini R. (2002b)
1242	Evidence for multi-stage magmatic evolution during the past 60 kyr at
1243	Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J. Petrol.,
1244	43 (8), 1415-1434.
1245	Paterne M., Guichard F., and Labeyrie J. (1988) Explosive activity of the South
1246	Italian volcanoes during the past 80,000 years as determined by marine
1240	tephrochronology. J. Volcan. Geoth. Res., 34 (3-4), 153-172.
1248	Paterne M., Guichard F., and Labeyrie J. (1988) Explosive activity of the South
1249	Italian volcanoes during the past 80,000 years as determined by marine
1250	tephrochronology. J. Volcan. Geoth. Res., 34 (3-4), 153-172.
1251	Perrotta A. and Scarpati C. (2003) Volume partition between the Plinian and co-
1252	ignimbrite air fall deposits of the Campanian Ignimbrite eruption. <i>Miner</i>
1253	Petrol., 79 , 67-78.
1254	Polacci M., Pioli L., and Rosi M. (2003) The Plinian phase of the Campanian
1255	Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density
1255	measurements and textural characterization of pumice. B. Volcanol., 65(6),
1250	418-432.
1257	Pyle D. M., Ricketts G. D., Margari V., van Andel T. H., Sinitsyn A. A., Praslov N.
1259	D., and Lisitsyn S. (2006) Wide dispersal and deposition of distal tephra
1260	during the Pleistocene `Campanian Ignimbrite/Y5' eruption, Italy.
1261	Quaternary Sci. Rev., 25 (21-22), 2713-2728.
1262	Reimer P. J., Baillie M. G. L., Bard E., Bayliss A., Beck J. W., Blackwell P. G.,
1263	Bronk Ramsey C., Buck C. E., Burr G. S., Edwards R. L., Friedrich M.,
1264	Grootes P. M., Guiderson T. P., Hajdas I., Heaton T. J., Hogg A. G.,
1265	Hughen K. A., Kaiser K. F., Kromer B., McCormac F. G., Manning S. W.,
1266	Richards D. A., Southon J. R., Talamo S., Turney C. S. M., van der Plicht
1267	J., and Weyhenmeyer C. E. (2009) IntCal09 and Marine09 radiocarbon age
1268	calibration curves, 0-50,000 years cal BP. <i>Radiocarbon</i> 51 (4), 1111-1150.
1269	Rittmann A. (1950) Sintesi geologica dei Campi Flegrei. Boll. Soc. Geol. Ital. 69,
1270	117–177.
1271	Rolandi G., Bellucci F., Heizler M. T., Belkin H. E., and De Vivo B. (2003) Tectonic
1272	controls on the genesis of ignimbrites from the Campanian Volcanic Zone,
1273	southern Italy. Miner. Petrol., Vol. 79, pp. 3-31.

1274	Rosi M., Vezzoli L., Castelmenzano A., and Grieco G. (1999) Plinian pumice fall
1275	deposit of the Campanian Ignimbrite eruption (Phlegraean Fields, Italy).
1276	Journal of Volcanology and Geothermal Research 91(2-4), 179-198.
1277	Santacroce R., Cristofolini R., La Volpe, L., Orsi G., and Rosi M. (2003) Italian
1278	Active Volcanoes. Episodes 26(3), 227-234.
1279	Schmidt R., van den Bogaard C., Merkt J., and Müller J. (2002) A new Lateglacial
1280	chronostratigraphic tephra marker for the south-eastern Alps: The
1281	Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a
1282	regional biostratigraphy and palaeoclimate. Quatern. Int., 88(1), 45-56.
1283	Selva J., Orsi G., Di Vito M.A., Marzocchi W. and Sandri L. (2012) Probability
1284	hazard map for future vent opening at the Campi Flegrei caldera, Italy. B.
1285	<i>Volcan.</i> , 74 , 497-510
1286	Seymour, St K., Christanis, K., Bouzinos, A., Papazisimou, S., Papatheodorou, G.,
1287	Moran, E. and Denes, G., 2004. Tephrostratigraphy and tephrochronology
1288	in the Philippi peat basin, Macedonia, Northern Hellas (Greece). Quatern.
1289	Int., 121 , 53-65.
1290	Siani G., Sulpizio R., Paterne M., and Sbrana A. (2004) Tephrostratigraphy study
1291	for the last 18,000 C-14 years in a deep-sea sediment sequence for the
1292	South Adriatic. Quaternary Science Reviews 23(23-24), 2485-2500.
1293	Smith V. C., Isaia R., and Pearce N. J. (2011) Tephrostratigraphy and glass
1294	compositions of post-15 kyr Campi Flegrei eruptions: implications for
1295	eruption history and chronostratigraphic markers. Quaternary Sci. Rev.
1296	30 (25-26), 638–3660.
1297	Sparks R. S. J. and T.C. H. (1980) The volcanological significance of deep-sea
1298	ash layers associated with ignimbrites. <i>Geol. Mag.</i> 117 , 425–436.
1299	Sulpizio R. (2005). Three empirical methods for the calculation of distal volume of
1300	tephra-fall deposits. <i>J. Volcan. Geoth. Res.</i> , 145 (3-4), 315-336.
1301	Sulpizio R., Zanchetta G., D'Orazio M., Vogel H., Wagner B. (2010)
1302	Tephrostratigraphy and tephrochronology of lakes Ohrid and Prespa,
1303	Balkans. <i>Biogeosciences</i> , 7, 3273-3288.
1304	Sulpizio R., van Welden A., Caron B., Zanchetta G. (2010) The Holocene
1305	tephrostratigraphic record of Lake Shkodra (Albania and Montenegro). J.
1306	<i>Quaternary Sci.</i> , 25 , 633-650.
1307	Sun SS. and McDonough W. F. (1989) Chemical and isotopic systematics of
1308	oceanic basalts: implications for mantle composition and processes. In
1309	Magmatism in Ocean Basins, Vol. 42 (ed. A. D. Saunders, Norry, M.J.), pp.
1310	313-345. Geological Society of London Special Publication.
1311	Thirlwall M. F. (1991) Long-Term Reproducibility of Multicollector Sr and Nd
1312	
	Isotope Ratio Analysis. Chem. Geol. 94(2), 85-104.
1313	Isotope Ratio Analysis. <i>Chem. Geol.</i> 94 (2), 85-104. Thunell R., Federman A., Sparks S., and Williams D. (1979) The age, origin, and
1314	Isotope Ratio Analysis. <i>Chem. Geol.</i> 94 (2), 85-104. Thunell R., Federman A., Sparks S., and Williams D. (1979) The age, origin, and volcanological significance of the Y-5 ash layer in the Mediterranean.
1314 1315	Isotope Ratio Analysis. <i>Chem. Geol.</i> 94 (2), 85-104. Thunell R., Federman A., Sparks S., and Williams D. (1979) The age, origin, and volcanological significance of the Y-5 ash layer in the Mediterranean. <i>Quaternary Research</i> 12 (2), 241-253.
1314 1315 1316	Isotope Ratio Analysis. <i>Chem. Geol.</i> 94 (2), 85-104. Thunell R., Federman A., Sparks S., and Williams D. (1979) The age, origin, and volcanological significance of the Y-5 ash layer in the Mediterranean. <i>Quaternary Research</i> 12 (2), 241-253. Tomlinson E. L., Thordarson T., Muller W., Thirlwall M., and Menzies M. A. (2010)
1314 1315 1316 1317	 Isotope Ratio Analysis. <i>Chem. Geol.</i> 94(2), 85-104. Thunell R., Federman A., Sparks S., and Williams D. (1979) The age, origin, and volcanological significance of the Y-5 ash layer in the Mediterranean. <i>Quaternary Research</i> 12(2), 241-253. Tomlinson E. L., Thordarson T., Muller W., Thirlwall M., and Menzies M. A. (2010) Micro analysis of tephra by LA-ICP-MS - strategies, advantages and
1314 1315 1316	Isotope Ratio Analysis. <i>Chem. Geol.</i> 94 (2), 85-104. Thunell R., Federman A., Sparks S., and Williams D. (1979) The age, origin, and volcanological significance of the Y-5 ash layer in the Mediterranean. <i>Quaternary Research</i> 12 (2), 241-253. Tomlinson E. L., Thordarson T., Muller W., Thirlwall M., and Menzies M. A. (2010)

- Tonarini S., Leeman W. P., Civetta L., D'Antonio M., Ferrara G., and Necco A. 1320 1321 (2004) B/Nb and systematics in the Phlegrean Volcanic District (PVD). J. 1322 Volcan. Geoth. Res., 113, 123-139. 1323 Ton-That T., Singer B., and Paterne M. (2001) 40Ar/39Ar dating of latest 1324 Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications 1325 for global climate records. Earth Planet. Sci. Lett., 184(3-4), 645-658. 1326 Veres, D., Lane, C.S., Timar-Gabor, A., hambach, U., Constantin, D., Szakács, A., 1327 Fülling, A. and Onac, B.P. (in press). The Campanian Ignimbrite/Y5 tephra 1328 layer - A regional stratigraphic marker for Isotope Stage 3 deposits in the 1329 Lower Danube region. Quatern. Int. 1330 Vezzoli L. (1991) Tephra lavers in Bannock Basin (Eastern Mediterranean). Mar. 1331 Geol., 100(1-4), 21-34. 1332 Vogel H., Zanchetta G., Sulpizio R., Wagner B., Nowaczyk N. (2010). A 1333 tephrostratigraphic record for the last glacial-interglacial cycle from Lake 1334 Ohrid, Albania and Macedonia. J.Quaternary Sci., 25, 320-338. 1335 Wagner B., Sulpizio R., Zanchetta G., Wulf S., Wessels M., Daut G., and 1336 Nowaczyk N. (2008) The last 40 ka tephrostratigraphic record of Lake 1337 Ohrid, Albania and Macedonia: a very distal archive for ash dispersal from 1338 Italian volcanoes. J. Volcan. Geoth. Res., 177(1), 71-80. 1339 Wohletz K., Civetta L., and Orsi G. (1999) Thermal evolution of the Phlegraean 1340 magmatic system. J. Volcan. Geoth. Res., 91(2-4), 381-414. 1341 Wohletz K., Orsi G., and de Vita S. (1995) Eruptive Mechanisms of the Neapolitan 1342 Yellow Tuff Interpreted from Stratigraphic, Chemical, and Granulometric 1343 Data. J. Volcan. Geoth. Res., 67, 263-290. 1344 Wulf S., Brauer A., Mingram J., Zolitschka B., and Negendank J. F. W. (2007) 1345 Distal tephras in the sediments of Monticchio maar lakes. In Geologia del 1346 Monte Vulture (ed. C. Principe), pp. 105-122. 1347 Wulf S., Kraml M., Brauer A., Keller J., and Negendank J. F. W. (2004) 1348 Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande 1349 di Monticchio (southern Italy). Quatern. Int., 122, 7-30. 1350 Wulf S., Kraml M., and Keller J. (2008) Towards a detailed distal 1351 tephrostratigraphy in the Central Mediterranean: The last 20,000 yrs record of Lago Grande di Monticchio. J. Volcan. Geoth. Res., 177(1), 118-132. 1352 1353 Zanchetta G., Di Vito M.A., Fallick A. E., and Sulpizio R. (2000) Stable isotopes of 1354 pedogenic carbonates from the Somma-Vesuvius area, Southern Italy, over 1355 the past 18 kyr: paleoclimatic implications. J.Quaternary Sci., 15(8), 813-1356 824. 1357 Zanchetta G., Sulpizio R., Giaccio B., Siani G., Paterne M., Wulf S., and D'Orazio 1358 M. (2008) The Y-3 tephra: A Last Glacial stratigraphic marker for the central 1359 Mediterranean basin. J. Volcan. Geoth. Res., 177(1), 145-154. 1360 Zollo A., Maercklin N., Vassallo M., Dello Iacono D., Virieux J., and Gasparini P. 1361 (2008) Seismic reflections reveal a massive melt layer under Campi Flegrei 1362 volcanic field. Geophys. Res. Lett., 244(35), L12306. 1363 1364 CAPTIONS 1365
 - 31

1366 **Tables**

1367

Table 1: Summary of Phlegraean Fields eruptions and samples studied. Samples used in previous studies 1 - Tortora unpublished MSc thesis; 2 - Pappalardo et al. (1999); 3 - Arienzo et al. (2009), resampled 10/2008; 4 - Polacci et al. (2003).
Ages are from: PP - Smith et al. (2011), NYT- De Vivo et al. (2001), CI - Deino et al. (2004) PRa, VRb and TLa - Pappalardo et al. (1999). Mineral abbreviations: san – sanidine, plg – plagioclase, cpx – clinopyroxene, bt - biotite, mag - magnetite, ap - apatite, ol - olivine.

1375

Table 2: Representative EMPA analyses of volcanic glass selected on basis of CaO (20th, 40th, 60th, 80th percentile for most samples, 33th and 66th percentiles for each mode of bimodal units) and ordered by increasing CaO. Major element totals are normalised to 100 wt%, the pre-normalised total is also given. a) PP, NYT and Pre-NYT eruptions; b) CI and Pre-CI eruptions. The full dataset is given as online supplementary data.

1382

Table 3: Representative LA-ICP-MS analyses of volcanic glass selected on basis
of Sr (20th, 40th, 60th, 80th percentile for most samples, 33th and 66th percentiles
for each mode of bimodal units): a) PP, NYT and Pre-NYT eruptions; b) CI and
Pre-CI eruptions. The full dataset is given as online supplementary data.

1387

1388 Table 4: Representative major (EMPA) and trace (LA-ICP-MS) element 1389 composition of glass shards from Lago Grande di Monticcio tephra units. 1390

1391Table 5: Key concentrations and ratios for geochemical fingerprinting. *Total1392Alkali (Na2O+K2O) versus Silica (SiO2) (Le Bas and Streckeisen, 1991).

1393

Table 6: Summary of information relevant to proximal-medial-distal correlations. Ages have been calibrated using the IntCal09 or Marine09 internationally accepted calibration curves (Reimer et al., 2009) at 2σ . Year 0 is 1950 AD. Please see references for uncalibrated radiocarbon determinations. Distal tephra occurrences are those supported by this study, in the case of the CI only studies with trace element data are listed.

1401 Figures

1402

Figure 1: a) regional map of study area, inset shows location of: b) Map of field localities modified after Orsi et al. (2003).

1405

Figure 2: Total alkali-silica plot (Le Bas and Streckeisen, 1991) showing the Clseries (red/orange), NYT-series (blues) and PP (green). Also shown are distal
tephra layers from the Lago Grande di Monticchio core (black). Errors are 2 s.d.
calculated using replicate analyses of MPI-DING StHs6/80 glass.

1410

Figure 3: Major element biplots showing normalised compositions of glasses from the CI-series (red/orange), NYT-series (blues) and PP (green). Also shown are distal tephra layers from the Lago Grande di Monticchio core (black). Errors are 2 s.d. calculated using replicate analyses of MPI-DING StHs6/80 glass.

1415

Figure 4: Primitive mantle normalised trace element compositions of a) NYT and PP; and b) Pre-NYT (NYT range shown for comparison); c) CI; and d) Pre-CI (CI range shown for comparison) units. Primitive mantle values are from Sun and McDonough (1989).

1420

Figure 5: Trace element compositions of members of the PP (green), NYT-series
(blues) and CI-series (red/orange). Also shown are distal tephra layers from the
Lago Grande di Monticchio core (black). Reproducibility (2 s.d.) of StHs6/80-G
(S) and ATHO-G (A) analyses are shown.

1425

Figure 6: Discriminating the fall and lower/intermediate phases of the CI using Zr-Th. Line points are 35, 495 and 65, 770.

1428

Figure 7: Trace element compositions of Lago Grande di Monticchio tephras normalised to the average composition (grey field) and compared to representative proximal compositions (10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th Sr percentile where >20 analyses): a) TM-7b and PP; b) TM-8 and NYT-UM; c) TM-8 and NYT-LM; d) TM15 and VRa; e) TM-18 base and CI fall; f) TM-18 top and CI flow – lower/intermediate flow.

1435

Figure 8: Example biplots for assessing proximal distal tephra correlations: a)
PP/TM-7b, MgO-SiO₂; b) NYT/TM-8 CaO-SiO₂; c) GM1/TM-9 K₂O-SiO₂; d)
GM1/TM-9 MgO-SiO₂; e) VRa/TM15/Y3 Na₂O-SiO₂; f) VRa/TM15/Y3 FeO-SiO₂.
Proximal samples (PP in green, NYT-series in blue) and Lago Grande di
Monticchio (black) symbols are as in other plots. Distal marine locations are
shown in red, lake settings in orange.

-
മ
σ
Ť
æ
(O)
-

cpx, bt, mag, minor ap. 50-95% vesicularity.	TLa_08	Poorly sorted fall, base not exposed	Fall		l retola	ΤI	
grey to dark grey, <1% phenocrysts, plg, san,	OCF 9601 A1 ²	>1.1 m pyroclastic flow, with scoria (Orsi et al., 1996).	Flow	58.9± 1.8 ⁴⁰ Ar/ ³⁹ Ar		а	
cpx, bt, mag, minor ap. 60-90% vesicularity	OCF 9601 C1 ²	13.3 m of <1.7m poorly sorted fall layers and subordinate surge beds (Orsi et al., 1996).	Fall			Т	Pre
grey to dark grey, <1% phenocrysts, plg, san,	OCF 9601 C24 ²	2m pyroclastic flow (Orsi et al 1996).	Flow		Tofo	lc	-CI
cpx, bt, mag, minor ap. 60-80% vesicularity.	OCF 9601 F3 ²	3.9 m layered fall (Orsi et al 1996).	Fall			Т	
grey to dark grey, <1% phenocrysts, plg, san,	OCF 9550 ²	4.0 m ignimbrite (Orsi et al 1996).	Flow		Trefola	∏lf	
	CIVOS 0-10 to 70-80 ⁴	0.8 m - inverse graded (Rosi et al., 1999).	Lower fall				
Fall – light grey at base to pink at top, vesicularity 80-90%	CIVOS 80-90 to 100-1104	0.4 m - stratified – Oscillatory, gradual decrease in clast size and increase in lithics (Rosi et al., 1999).	Upper fall		Voscone	Fall	Camp
Flow-white, vesicularity 60-90%	OF 16A_08	0.9 m inverse graded overlain by stratified pumice	Fall	All Al	Acquafidia		bania
<3% phenocrysys, san, plg, cpx, bt, mag, minor ap.	Mond152A2_08 ³	3 m thick, grades from light brown, to reddish, to dark grey (2a, 2b - ignimbrite) (Civetta et al., 1997).	lower flow	39.28 ± 0.11	gono		n Ignir
	Mond15U3 ³	4 m thick, light to dark grey (1- thin laminated /massive, 2a, 2b - massive) (Civetta et al., 1997).	Intermediate flow		Mondragone	Flow	nbrite
Brown-black, ca. 30% phenocrysts, san, plg, cpx, bt, mag, minor ap. Vescicularity >60%.	OF3B/08 ³	2 m thick (base not exposed), ungraded (Arienzo et al., 2009)	Upper flow		San Marco Evangelista		
light beige. <1% phenocrysts, plg, san, cpx, bt, mag, minor ap. 60-80% vesicularity.	OCF 9542 (top) ² OCF 9544 (base) ²	1.4-1.7 m (remobilised) fall with basal surge (Orsi et al., 1996).	ı		Trefola	Tlo	(
henocrysts, plg, san, cpx, bt, mag, minor ap. 60-80% vesicularity.	OCF 9603 A2, OCF 9603 A3 ²	4.5 m surges overlain by 0.23 m pumice fall (Orsi et al., 1996).			Verdolino	Vra	Pre- Tufi bia
light beige. <1% phenocrysts, plg, san, cpx, bt, mag, minor ap. 60-80% vesicularity.	OCF 945 (top), OCF 946 (base) ²	6.0 m alternating fall and surge (Orsi et al., 1996).	ı	28 ka ⁴⁰ Ar/ ³⁹ Ar	Verdolino	VRb	
light beige. <1% phenocrysts, plg, san, cpx, bt, mag, minor ap. 60-80% vesicularity.	OCF 9602 A1 ²	<0.4 m surges with intercalated fall (Orsi et al., 1996).		16.1±0.2 ⁴⁰ Ar/ ³⁹ Ar	Ponti Rossi	PRa	ri)
	NYT TR LM 1	Complex, dominated by laminated surges.	LM1		Trefola		Nea
Yellow-brown, <3% phenocrysts, san, plg, cpx, bt, mag, minor ap. Vesicularity 60-80%.	NYT SS LM 3	Zoned pumice and ash fall, white to grey, normally graded (Woheltz et al., 1995).	LM3	Ţ	San Severino	LM	politar
	NYT 02 SME LM13	Pumice and ash fall, white to grey (Woheltz et al., 1995).	LM13	14.9 ± 0.4	San Marco Evangelista		ı Yello
Yellow and brown, <3% phenocrysts, san, plg, cpx, bt, mag, minor ap. Vesicularity 60- 80%.	NYT PR UM 0301 - 0304	Sequence of ~4 2-4 m thick pyroclastic flows.	UM		Ponti Rossi	UM	w Tuff
Beige to brown/grey, 5-10% phenocrysts, san, plg, cpx, bt, mag, minor ap, ol. Vesicularity 40-80%	PP117 A ¹ PP117 B3 ¹ , PP117 D1 ¹ , PP117 D3 ¹ , PP117 D5 ¹	Sequence of seven pumice fall layers.		11.92-12.26 cal BP	Via Pigna	Fall	Pomici Principali
Clast description	Sample name	Unit description	Unit	Age (ka)	Location		

	Na ₂ O	CaO	FeO	MgO	MnO	AI_2O_3	TiO ₂	I otal SiO ₂	sample	Percen -ile	Event		Ω	K₂O	Na ₂ O	CaO	FeO	MgO	MnO	Al_2O_3	TiO ₂	Total SiO ₂		sample	-tile	Event
8.47 0.46	4.51	1.39	2.95	0.38	0.17	18.29	0.43	96.23 62.93	OF3B/08-30	20			0.58	8.96	3.51	3.67	4.38	1.06	0.14	18.98	0.52	95.03 58.21	F	PP117 A-1	20	
8.76 0.62	4.43	1.55	2.74	0.36	0.21	18.78	0.45	95.95 62.10	OF3B/08-7	40	CI upp		0.51	9.02	3.65	3.78	4.28	1.01	0.12	18.88	0.49	96.63 58.26	Ρ	P117 A-13	40	PP
9.72 0.26	3.39	1.77	3.31	0.76	0.08	18.65	0.44	97.18 61.63	OF3B/08-20	60	CI upper flow		0.51	8.82	3.50	3.91	4.59	1.19	0.19	18.91	0.54	95.05 57.84	Ρ	P117 D3-2	60	Þ
9.82 0.25	3.16	2.09	3.48	0.77	0.09	18.35	0.42	97.00 61.58	OF3B/08-17	80			0.51	8.48	3.54	4.12	4.58	1.27	0.10	19.04		96.51 57.83	PI	P117 D5-27	80	
7.28 0.85	5.89	1.60	2.92	0.32	0.24	18.71	0.41	97.25 61.78	MondOF15U3-13	20	CI Iov		0.50	8.95	4.44	2.30	2.80	0.49	0.15	18.19		97.09 61.75	N	YT PR UM 0301-3	20	
7.35 0.89	6.54	1.66	2.72	0.28	0.15	18.93	0.45	95.21 61.03	Mond152 A2_08- 25	40	CI lower/intermediate flow		0.38	9.93	3.45	2.75	3.45	0.71	0.13	19.01	0.47	97.00 59.72	N	YT PR UM 0301-2	40	ΝΥΤ-υΜ
7.42 0.78	5.75	1.70	2.96	0.35	0.17	18.95	0.42	97.93 61.50	MondOF 15U3-4	60	rmedia		0.33	8.88	3.68	3.45	4.04	1.09	0.22	18.90		99.54 58.90		YT PR UM 0302-2	60	-UM
7.17 0.84	6.36	1.72	2.93	0.32	0.23	18.74	0.45	96.58 61.24	Mond152 A2_08- 19	80	te flow		0.37	8.13	3.40	4.67	5.39	1.55	0.23	19.91		97.64 55.76	N	YT PR UM 0304-17	80	
7.35 0.66	6.18	1.71	2.93	0.32	0.19	19.35	0.47	97.16 60.83	CIVOS 100110-7	20			0.52	9.06	4.35	2.18	2.65	0.40	0.12	18.90		96.91 61.46		NYT TR LM1-1	33	
6.81 0.62	6.12	1.75	2.90	0.33	0.20	19.04	0.44	95.45 61.81	16A_08 -1	40	Ω		0.55	8.62	4.47	2.15	2.90	0.44		• ·		97.77 61.79		NYT TR LM1-7	66	NYT-LM
7.14 0.60	6.11	1.78	2.95	0.34	0.24	19.50	0.46	95.75 60.89	CIVOS 60-70-22	60	fall		0.39	8.25	3.50	4.22	4.87	1.23				98.24 58.19	N	YT 02 SME LM13-6	33	-LM
7.43 0.66	6.13	1.83	2.90	0.33	0.25	18.69	0.40	95.96 61.37	16A_08 -2	80			0.38	8.42	3.56	4.30						97.98 57.61		YT 02 SME LM13-1	66	
7.98 0.76	5.96	2.01	3.26	0.35	0.21	20.00	0.42	99.47 59.05	OCF 9550-13	20			0.46	8.59	4.73	2.13	2.42	0.40				96.29 62.34		DCF 945-3	20	Ŧ
7.90 0.75	5.72	2.08	3.27	0.39	0.23	19.73	0.37	97.18 59.56	OCF 9601 F3-12	40	Pre-(0.40	8.83	4.38					0		95.55 62.21		DCF 946-1	40	Pre-NYT VRI
7.77 0.74	5.88	2.10	3.28	0.39	0.24	19.85		96.77 59.33	OCF 9550-2	60	Pre-CI TLf		0.45									97.17 62.40		DCF 945-1	60	T VRb
7.83 0.73	5.81	2.13	3.30	0.37	0.24	19.84	0.40	97.47 59.36	OCF 9601 F3-9	80			0.46	8.58						-		95.90 62.14	0	DCF 945-9	80	
7.39 0.86	7.11	2.01	3.58	0.31	0.27	19.64	0.40	98.17 58.43	OCF 9601 C24-6	20			0.40	8.37	3.34					•••		99.16 58.33		9603 A3-9	33	п
7.54 0.82	6.72	2.04	3.57	0.30	0.23	19.91	0.38	98.47 58.49	OCF 9601 C24-2	40	Pre-(-		97.58 58.09		9603 A3-8	66	Pre-NY
7.34 0.82	7.16	2.06	3.42	0.29	0.25	19.81		99.18 58.46		60	-CI TLc		0.52		4.32		2.81					96.13 62.59		9603 A2-6	33	/T VRa
		2.11						98.11 58.28	OCF 9601 C24-11	80			0.50		4.24		2.84			-		95.60 62.21		603 A2-10	66	
7.34 0.71	6.89	1.88	3.44	0.32	0.25			96.44 59.11	OCF 9602 A1-8	20			0.45							•		96.63 62.51		OCF9602 A1-19	20	н
7.44 0.80	6.77	1.94	3.43	0.31	0.29	19.71		58.91	OCF 9602 A1-4	40	Pre-Cl		0.51	8.37	4.69		2.58					95.48 62.64		OCF9602 A1-9	40	Pre-NYT PRa
7.40 0.79				0.31		19.64		\$ 100.3 58.75	OCF 9602 A1-10	60	CI TLa		0.41							-		95.63 95.65 95.65		OCF9602 A1-25	60	T PRa
7.20 0.79	6.63	2.04	3.47					3 96.17 59.25		80			0.43		3.89		2.64			·		96.02 962.43 (OCF9602 A1-13	80	
								1	I	I		1	0.64		6.13		2.30			·		95.79 9 64.04 (OCF 9544-2	20	-
													0.66	6.62	6.17		2.51			0.		97.27 63.68		OCF 9544-5	40	Pre-NY ⁻
																	2.31			•••		96.38 63.92		OCF 9542-5	60	T TLo
													0.63	6.83	5.93	1.52	2.35	0.22	0.17	18.22	0.39	95.48 63.75	С	OCF 9542-8	80	

Table(s)

D 2	Np	Zr	×	ស័	Rb	<	Ţ	sample	Percentile	Event	
1680	42	257	24	819	364	100	2451	PP117 D1-30	20		
1780	42	232	22	844	376	110	2719	PP117 08A-20	40	P	
1776	44	265	26	858	368	97	2492	PP117 B3-8c	60	PP	
1802	42	239	24	872	366	110	2773	PP117 08A-2	80		
87 7	59.1	368.4	33	244	393	55	2618	NYT PR UM 0301-13	20		
2022	40	222	20	527	342	86	2505	NYT PR UM 0304-14	40	NYT-UM	
1383	36	226	23	901	319	91	2835	NYT PR UM 0302-14	60	-UN	
1070	34	216	22	1066	320	93	2745	NYT PR UM 0302-5	80		
23	62	396	35	259	386	56	2603	NYT TR LM1-2	33		
111	61	374	33	286	381	58	2601	NYT TR LM1-4	66	NYT-LM	
1301	48	299	28	755	336	119	3272	NYT SS LM3-8	33	-LM	
1151	43	260	25	804	314	135	3386	NYT02 SME LM13-4	66		
30	61	367	34	162	374	53	2632	OCF 945-4	20		
73	62	395	36	176	386	49	2681	OCF 945-8	40	Pre-NYT VRb	
100	55	299	27	248	377	51	2368	OCF 946-9	60	'T VRb	
160	54	338	31	315	358	56	2505	OCF 946-8	80		
1067	41	262	24	736	328	113	3413	OCF 9603 A3-3	66		
1050	39	260	25	708	323	113	3383	OCF 9603 A3-10	33	Pre-NYT VRa	
108	49	325	29	276	356	38	2315	OCF 9603 A2-7	66	T VRa	
77	50	329	29	236	359	37	2291	OCF 9603 A2-10	33		
3 3 3	53	332	30	329	353	56	2489	OCF 9602 A1- 19a	80		
110	55	341	32	272	383	54	2497	OCF 9602 A1-12	60	Pre-NYT PRa	
103	56	351	33	246	380	54	2425	OCF 9602 A1- 14b	40	T PRa	
443	54	328	30	236	376	49	2313	OCF 9602 A1-6a	20		
2	119	840	55	16	527	23	2361	OCF 9544-10	20		
л	111	701	47	19	523	24	2294	OCF 9542-4	40	Pre-NYT TLo	
л	113	766	52	21	476	27	2458	OCF 9542-6	60	T TLo	
л	109	719	50	22	533	24	2484	OCF 9542-10	80		

c	⊒	Ч	F	≚	ш	Dy	۵ ۵	ш	ស	z	P	0 0	5	B	z	Ν	~	S	R	<	-	
-	5	ш	-	0		~	α.	2	д	α.	7	Ð	Ē	ш	σ	7			σ			
						4.5																
7	20	1.8	^LOD	£0D	^LOD	4.4	<lod< td=""><td>2.1</td><td>^LOD</td><td>45</td><td>12</td><td>113</td><td>59</td><td>1780</td><td>42</td><td>232</td><td>22</td><td>844</td><td>376</td><td>110</td><td>2719</td><td></td></lod<>	2.1	^LOD	45	12	113	59	1780	42	232	22	844	376	110	2719	
9	26	2.2	0.4	2.5	2.8	4.9	6.7	2.0	8.4	48	13	121	64	1776	44	265	26	858	368	97	2492	
8	22	1.7	~LOD	^LOD	2.1	4.6	~LOD	2.0	9.6	44	12	117	60	1802	42	239	24	872	366	110	2773	
11	35	2.9	0.4	3.1 3.1	3.2	6.1	7.2	2.0	9.5	61.3	17	161	82.7	87.7	59.1	368.4	3 3 3	244	393	55	2618	
œ	20	1.8	_LOD	2.3	<lod< td=""><td>3.7</td><td>6.8</td><td>₽OD</td><td>_LOD</td><td>40</td><td>1</td><td>106</td><td>56</td><td>923</td><td>40</td><td>222</td><td>20</td><td>527</td><td>342</td><td>86</td><td>2505</td><td></td></lod<>	3.7	6.8	₽OD	_LOD	40	1	106	56	923	40	222	20	527	342	86	2505	
7	21	1.8	0.3	2.0	2.1	4.1	5.3	2.2	7.9	44	12	111	57	1382	36	226	23	901	319	91	2835	
7	20	1.6	0.3	2.0	2.1	4.4	5.7	2.2	7.5	43	12	108	56	1656	34	216	22	1066	320	93	2745	
12	37	3.0	0.5	3.2	3.4	6.7	7.9	2.1	11.4	62	17	166	86	93	62	396	35	259	386	56	2603	
11	35	2.9	0.5	3.2	3.3	6.1	<lod< td=""><td>1.9</td><td>11.2</td><td>59</td><td>16</td><td>159</td><td>83</td><td>144</td><td>61</td><td>374</td><td>3 3</td><td>286</td><td>381</td><td>58</td><td>2601</td><td></td></lod<>	1.9	11.2	59	16	159	83	144	61	374	3 3	286	381	58	2601	
9	29	2.4	0.4	2.9	2.9	5.9	7.3	2.2	10.1	54 54	15	143	72	1321	48	299	28	755	336	119	3272	
8	25	2.0	0.4	2.4	2.5	5.1	6.6	2.1	9.3	51	13	128	65	1454	43	260	25	804	314	135	3386	
9	30	2.4	~LOD	~LOD	3.0	6.3	8.5	~LOD	~LOD	56	17	152	79	39	61	367	34	162	374	53	2632	
12	36	3.0	0.5	ယ အ	3.4	6.6	7.6	2.1	10.8	61	17	168	87	43	62	395	36	176	386	49	2681	
9	25	2.4	~LOD	^LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td>_LOD</td><td>~LOD</td><td>48</td><td>13</td><td>128</td><td>67</td><td>100</td><td>55</td><td>299</td><td>27</td><td>248</td><td>377</td><td>51</td><td>2368</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>_LOD</td><td>~LOD</td><td>48</td><td>13</td><td>128</td><td>67</td><td>100</td><td>55</td><td>299</td><td>27</td><td>248</td><td>377</td><td>51</td><td>2368</td><td></td></lod<></td></lod<>	<lod< td=""><td>_LOD</td><td>~LOD</td><td>48</td><td>13</td><td>128</td><td>67</td><td>100</td><td>55</td><td>299</td><td>27</td><td>248</td><td>377</td><td>51</td><td>2368</td><td></td></lod<>	_LOD	~LOD	48	13	128	67	100	55	299	27	248	377	51	2368	
10	32	2.8	0.4	3.1	3.0	5.7	7.6	2.0	8.8	55	15	145	76	160	54	338	31	315	358	56	2505	
7	21	^LOD	^LOD	^LOD	~LOD	^LOD	~LOD	^LOD	^LOD	39	10	95	48	1267	41	262	24	736	328	113	3413	
œ	22	2.0	0.3	2.5	2.5	4.7	5.9	1.9	8.2	41	11	101	51	1259	39	260	25	708	323	113	3383	(
œ	25	2.2		2.8	2.8	5.2	6.5	1.9	9.3	47	13	125	66	108	49	325	29	276	356	38	2315	
9	27	2.5	0.4	2.9	2.9	5.2	6.3	1.8	7.9	49	13	126	66	74	50	329	29	236	359	37	2291	(
10	3 1	2.6	0.4	3.1	3.0	5.7	6.9	1.9	9.1	52	14	142	74	222	53	332	30	329	353	56	2489	
10	32	2.6	0.4	3.2	3.3	6.4	7.5	2.1	10.4	58	17	149	81	140	55	341	32	272	383	54	2497	(
10	33	2.9	0.4	သ .သ	3.4	6.6	8.0	2.1	11.4	59	17	163	84	103	56	351	33	246	380	54	2425	
10	31	2.6	0.4	2.7	3.2	5.3	8.0	1.8	9.3	54	15	142	72	112	54	328	30	236	376	49	2313	(
26	79	5.1	0.9	6.2	5.4	9.0	9.9	1.2	13.7	85	26	267	148	4	119	840	55	16	527	23	2361	
23	68	4.7	0.8	5.4	4.8	8.2	9.1	1. .1	12.8	77	23	240	126	ъ	111	701	47	19	523	24	2294	
						8.5																
						7.9																
									5.												-	I

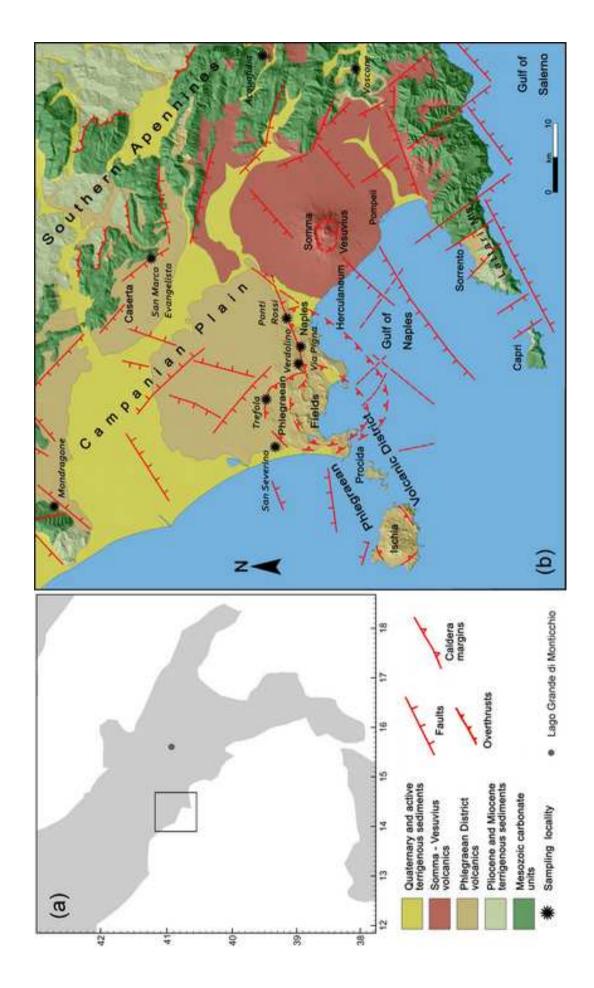
Continues next page

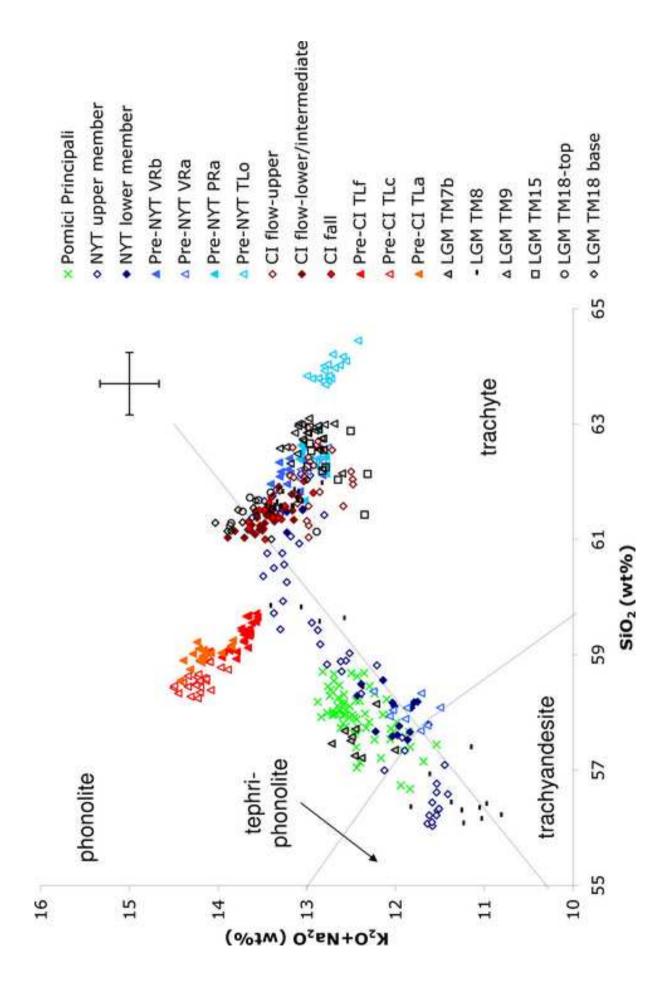
C	Τh	Та	Lu	Чb	Ē	Dy	Gd	Ē	Sm	Nd	Pr	Ce	La	Ва	Np	Zŗ	×	Sr	Rb	<	Ħ	Sample	Percentile	Event
GI	14	1.4	0.3	1.8	1.9	3.7	4.4	2.0	6.1	33	9	83	44	573	29	173	20	378	324	64	2314	OF3B/08-20	80	
10	26	3.2	0.5	3.1	3.2	5.7	7.3	1.6	8.5	51	14	139	72	251	61	335	32	233	373	37	2352	OF3B/08-19	60	CI upp
12	32	3.5	0.5	3.7	3.6	6.6	7.6	1.6	10.4	59	16	162	85	73	74	405	36	71	437	28	2304	OF3B/08-10	40	CI upper flow
18	47	ე. ე	0.7	5.1	5.1	8.9	10.0	1.3	14.4	80	23	232	121	34	114	598	50	42	382	22	2361	OF3B/08-6	20	
18	50	5.4	0.8	5.5	5.2	9.0	10.7	1.4	13.4	80	23	230	119	15	115	610	50	44	436	14	2308	Mond152A2_08-4	80	입이
16	45	5.0	0.8	4.9	5.0	8.6	9.9	1.2	13.2	75	22	219	115	19	110	582	49	39	453	13	2210	Mond15U3-8	60	CI lower/intermediate flow
18	49	5.3	0.7	5.4	5.3	9.3	9.8	1.3	13.5	80	23	229	119	15	113	616	52	28	447	14	2334	Mond15U3-11	40	rmediate
16	43	4.9	0.7	4.6	4.9	8.5	9.9	1.3	11.8	72	22	215	113	17	112	560	46	25	434	13	2275	Mond15U3-2	20	e flow
15	46	5.7	0.7	4.7	4.8	8.5	10.1	1. .1	13.4	73	22	200	115	32	119	660	49	65	420	14	2436	CIVOS 60-70-17	80	
17	50	ე. ე	0.8	5.6	5.5	10.0	11.1	1.2	15.2	85	25	238	128	33	120	660	54	36	487	14	2741	OF 16A_08-10	60	Ω Ω
19	51	5.7	0.8	5.6	5.1	9.7	10.2	1.3	14.7	84	24	235	125	22	119	650	52	33	473	16	2351	CIVOS 100-110-17	40	CI fall
19	50	ភ.ភ	0.8	5.5	5.0	9.4	10.5	1.3	13.8	81	23	231	121	19	117	615	51	25	465	16	2253	CIVOS 100-110-27	20	
15	41	4.6	0.6	4.1	4.4	7.9	9.6	1.7	13.2	72	21	209	106	16	101	527	44	41	447	21	2356	OCF 9601 F3-15	80	
16	45	5.2	0.7	4.7	4.9	8.6	10.1	1.8	13.2	77	23	220	117	9	109	580	47	35	426	21	2501	OCF 9601 F3-12	60	Pre-C
16	45	5.0	0.7	4.8	4.8	8.7	9.6	1.7	12.8	74	21	213	114	9	107	569	47	32	418	21	2532	OCF 9550-15	40	_
16	44	5.0	0.6	4.6	4.7	8.0	9.5	1.6	12.5	74	21	214	111	œ	107	548	46	30	436	22	2380	OCF 9601 F3-13	20	
22	57	6.6	0.9	5.6	6.0	10.0	12.1	1.4	15.4	90	26	267	136	10	144	746	57	15	476	14	2234	OCF 9601 C1-14	80	
22	60	7.0	0.9	6.2	6.0	10.8	12.0	1.6	15.7	93	28	272	142	6	145	762	61	15	460	12	2289	OCF 9601 C24-11	60	Pre-C
21	58	6.8	0.9	6.1	5.8	10.8	11.3	1.5	15.9	94	27	270	141	6	145	751	60	14	453	13	2361	OCF 9601 C24-6	40	Pre-CI TLc
21	53	6.5	0.8	5.5	5.6	10.0	10.5	1.3	14.0	87	25	253	132	6	142	704	56	13	466	12	2164	OCF 9601 C24-15	20	
22	59	6.7	0.9	5.9	6.1	10.7	11.9	1.4	16.3	96	27	277	144	9	145	761	61	16	494	13	2275	TLa_08-2	80	
23	60	6.8	0.9	6.3	6.0	10.7	12.7	1.5	15.9	93	27	275	142	6	146	748	60	15	468	13	2183	OCF 9601 A1-10	60	Pre-(
23	62	7.0	0.9	6.3	6.1	11.0	12.6	1.5	17.4	97	28	282	146	ი	149	768	61	14	460	12	2205	OCF 9601 A1-7	60 40	3 Tla
23	63	7.2	1.0	6.3	6.2	11.3	12.4	1.6	16.9	86	29	289	147	6	151	780	62	14	467	13	2231	OCF 9601 A1-6	20	

ㄷ 굮	Ta	Lu	Чb	Ū.	Dy	Gd	Ē	Sm	Nd	Pr	Ce	La	Ва	٨b	Ŋ	~	Sr	Rb	<	∃	LA-ICP-I	<u>0</u>	K₂0	Na ₂ O	CaO	FeO	MgO	MnO	Al_2O_3	TiO ₂	SiO ₂	Total	EMPA (v	Shard	Sample
22 8	2.7	~LOD	2.1	2.1	4.1	5.8	1.8	7.9	44	12	115	54	1530	39	230	23	736	349	97	2447	MS (ppm)	0.64	8.88	3.63	3.92	4.50	1.20	0.13	19.06	0.52	57.51	96.23	vt. % oxid	7b-4	
19 8	1.9	4OD	1.8	1.8	3.4	5.4	1.5	6.9	38	11	101	50	1399	38	210	21	680	327	91	2290		0.65	8.82	3.40	3.83	4.41	1.13	0.19	18.92	0.49	58.15	95.23	le)	7b-5	
8 8	2.7	4OD	2.1	2.1	4.1	5.8	1.8	7.9	44	12	115	54	1530	39	230	23	736	349	97	2447		0.64	8.88	3.63	3.92	4.50	1.20	0.13	19.06	0.52	57.51	96.23		7b-4	TM-7b (PP)
21 7	1.8	0.3	2.2	2.1	4.1	5.3	1.8	7.6	42	11	104	53	1774	39	218	20	722	268	125	3510		0.69	7.97	4.04	4.07	4.81	1.31	0.12	19.08	0.55	57.35	97.66		7b-8	
29 11	2.5	4OD	2.7	3.0	5.7	8.1	2.6	10.4	59	16	158	78	2195	56	323	30	1104	420	143	3691		0.65	8.70	3.75	3.88	4.48	1.13	0.11	19.07	0.51	57.71	98.07		7b-15	
35 11	3.1 .1	0.5	3.1	3.0	5.5	7.6	2.1	9.2	57	16	150	79	82	58	353	30	282	370	51	2204		0.42	9.03	4.06	2.37	2.35	0.29	0.13	19.13	0.41	61.81	97.09		8-5	
17 5	1.7	0.4	<lod< td=""><td>2.4</td><td>4.6</td><td>5.5</td><td>2.0</td><td>8.4</td><td>40</td><td>11</td><td>86</td><td>50</td><td>1599</td><td>33</td><td>209</td><td>24</td><td>919</td><td>274</td><td>152</td><td>3718</td><td></td><td>0.35</td><td>7.62</td><td>3.19</td><td>5.50</td><td>5.87</td><td>2.08</td><td>0.11</td><td>18.50</td><td>0.59</td><td>56.20</td><td>97.23</td><td></td><td>8-7</td><td>-</td></lod<>	2.4	4.6	5.5	2.0	8.4	40	11	86	50	1599	33	209	24	919	274	152	3718		0.35	7.62	3.19	5.50	5.87	2.08	0.11	18.50	0.59	56.20	97.23		8-7	-
21 7	1.7	0.3	2.1	2.3	4.6	6.3	2.2	8.3	46	12	114	58	2194	37	231	23	1031	303	145	3483		0.39	8.47	3.15	4.89	5.44	1.57	0.08	18.52	0.58	56.90	96.04		8-12	TAN) 8-M.
22 7	1.8	0.4	2.2	2.5	5.2	8.1	2.3	9.6	50	13	122	61	2060	37	229	26	1066	295	173	3828		0.43	7.92	3.05	5.20	5.79	1.91	0.19	18.49	0.64	56.39	96.71		8-9	
34 12	2.8	0.4	3.0	3.1	5.6	7.3	2.1	9.5	57	16	155	81	72	61	369	30	195	402	54	2328		0.56	8.77	4.56	2.22	2.80	0.43	0.11	18.46	0.45	61.63	95.82		8-10	
37 11	3.2	0.5	2.6	2.9	5.8	6.9	1.4	8.5	55	16	152	78	7	66	377	34	44	315	31	1870		0.71	7.60	5.46	1.93	2.40	0.30	0.19	18.00	0.43	62.99	95.31		9-1	
44 14	3.7	0.5	4.2	4.1	6.9	8.6	1.9	10.7	68	18	192	98	12	78	478	40	55	404	37	2557		0.76	7.98	5.33	1.83	2.55	0.27	0.16	18.06	0.48	62.58	99.11		9-34	TM
40 13	3.9	0.6	3.7	3.2	6.1	7.9	1.5	10.7	64	17	177	87	6	74	425	35	45	383	34	2239		0.73	7.80	5.24	1.98	2.49	0.30	0.18	18.13	0.44	62.71	97.49		9-4	TM-9 (Pre-N
41 13	3.9	0.5	3.4	3.8	6.7	7.5	1.7	10.6	65	17	180	88	9	73	431	37	52	390	35	2358		0.71	7.82	5.18	1.88	2.48	0.27	0.15	18.22	0.44	62.85	98.33		9-6	e-NYT)
40 13	3.6	0.5	3.5	သ .သ	6.5	7.0	1.5	10.5	61	18	174	87	6	73	425	36	47	400	35	2443		0.73	7.83	5.22	1.88	2.52	0.24	0.15	18.24	0.45	62.74	98.53		9-7	
30 10	2.6	0.4	2.9	2.9	5.3	6.2	1.8	8.5	49	13	125	66	256	51	339	29	242	335	37	2190		0.67	8.37	4.13	2.15	3.01	0.45	0.12	17.85	0.36	62.88	96.38		15-1	
28 9	2.6	0.4	2.8	2.9	5.2	6.2	1.8	9.5	48	13	123	64	169	49	328	28	257	331	38	2280		0.62	8.66	4.29	2.21	2.95	0.47	0.10	17.83	0.34	62.54	97.70		15-2	TM-
20 7	1.8	0.3	2.1	2.4	4.3	5.5	1.7	7.2	43	10	100	53	306	37	243	23	409	307	44	2188		0.55	9.22	3.77	2.25	3.04	0.56	0.14	17.84	0.37	62.26	95.68		15-3	TM-15 (Pre-NYT)
8 8	2.3		2.4	2.2	4.6	6.7	1.5	8.9	42	11	107	56	402	47	273	24	302	324	44	2173		0.55	8.69	3.62	2.48	3.25	0.60	0.14	18.16	0.37	62.14	96.50		15-4	(TY
6 6	1.6	0.3	2.3	1.9	3.9	4.7	1.7	5.3	35	9	91	48	488	32	232	21	468	260	43	2077		0.56	9.20	3.62	2.41	3.06	0.61	0.12	17.84	0.37	62.19	96.27		15-5	

Continues next page

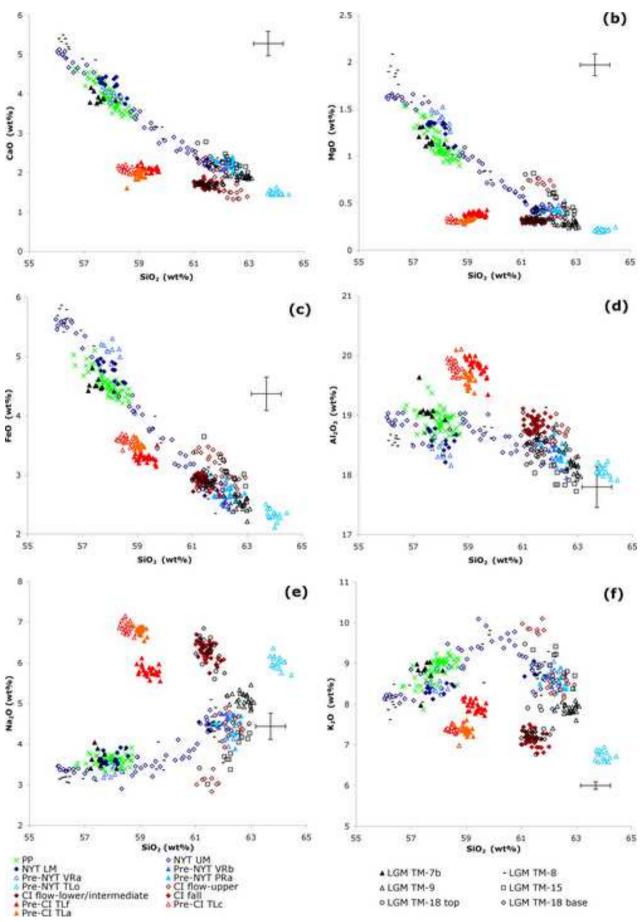
Table(s)

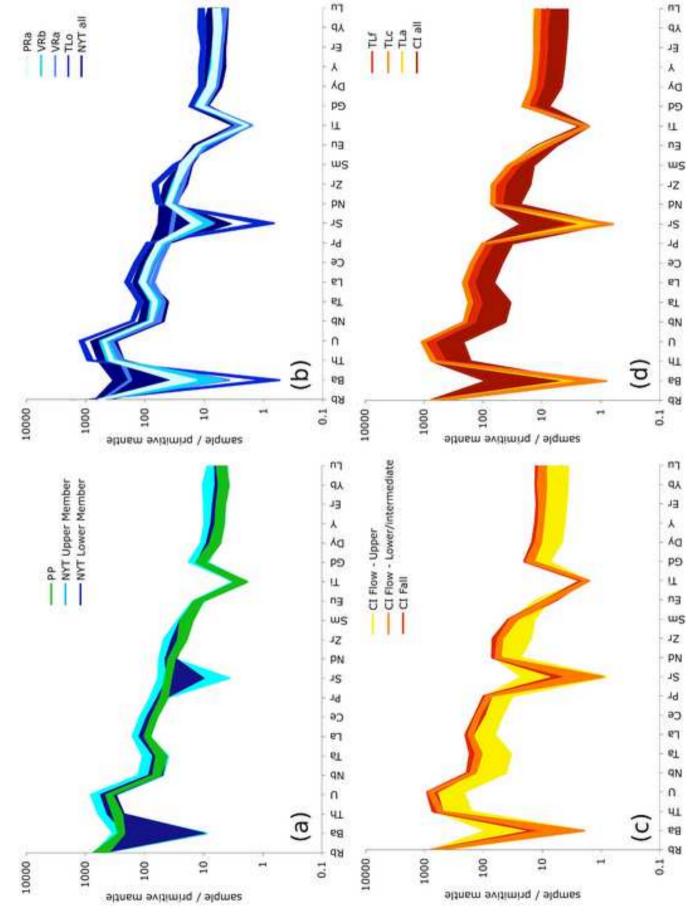

EMPA (Wt. % oxic Total 97.64 SiO2 61.52 TiO2 0.37 Al ₂ O3 18.58 MnO 0.22 MgO 0.30 FeO 3.06 CaO 1.65 Na ₂ O 7.12 CI 0.90 LA-ICP-MS (ppm) 11 Ti 2667 V 18 Rb 452 Sr 29 Y 54 Zr 639 Nb 118 Ba 50 La 124 Ce 241 Pr 23 Nd 81 Sm 15.0 Eu 1.4 Gd 10.8 Dy 5.2 Lu 0.8	Sample - shard 18t-2	FM-18 top 18t-3) (CI co-i <u>c</u> 18t-6	(Cl co-ignimbrite) 18t-6 18t-8	18t-9	18b-4	TM-1 18b-19	TM-18 base (Cl fall) o-19 18b-10 18b-1	CI fall) 18b-14	ב ≡ 4
Ϋ́	(Wt. % oxid	<u>e</u>								
Ϋ́	97.64	97.17	99.00	100.55	97.66	97.95	98.05	9	7.92	
Ϋ́	61.52	61.14	61.54	61.49	61.73	61.15	61.67	61	.29	.29 61.55
Ý	0.37	0.37	0.44	0.42	0.40	0.44	0.45	0	.45	
Ý	18.58	18.18	18.66	18.32	18.21	18.53	18.41	18	20	
Ý	0.22	0.13	0.28	0.20	0.30	0.24	0.19	0	.20	
Ϋ́	0.30	0.81	0.33	0.28	0.32	0.29	0.31	~	0.33	
Ϋ́	3.06	3.39	2.90	2.98	2.84	2.96	2.85	• •	2.86	
Ý	1.65	2.75	1.63	1.66	1.68	1.75	1.63	_	1.75	
Ϋ́	6.28	3.41	6.62	6.38	5.79	6.66	6.42	6	.85	
Ý	7.12	9.48	6.76	7.34	7.85	7.19	7.15	~	.18	
Ϋ́	0.90	0.35	0.83	0.94	0.87	0.79	0.91	~	0.88	
	-MS (ppm)									
	2667		2590	2648	2249	2495	2518	N	478	
	18		15	18	14	14	13		19	
	452		459	448	437	439	430	д	93	
	29		22	43	20	22	18		ð	
	54		56	55	47	54	50		47	
	639		667	643	569	628	626	сл	84	
	118		120	119	103	114	113	_	18	
	50		17	50	24	35	14	_	02	
	124		127	125	110	123	119	_	5	
	241		246	243	213	234	230	N	24	
	23		25	24	21	24	23		24	
	81		87	83	77	81	80		73	
	15.0		15.1	14.1	12.7	14.1	13.1	_	4.7	
	1.4		1.4	1.5	1.3	1.4	1.2	Δ	D	Ŭ
	10.8		10.8	10.6	10.2	9.5	10.2	_	0.5	
	9.1		9.3	9.3	7.7	9.5	8.8	~	3.9 9	
	5.0		5.7	5.0	4.4	5.1	5.0	А	.9	
	5.2		5.5	5.2	4.5	5.7	5.3	(71	N.	
	0.8		0.8	0.8	0.7	0.8	0.8	0	6	
	5.9	1.5	5.9	5.5	5.0	5.2	5.3	(7)	ω	5.3 4.3
			53	51	43	50	48		5	
	50		19	18	15	18	17		18	


Zr/Sr	Eu/Eu _N *	Ba/Sr	V/Th	Y/Ti	Nb/Ti	Ratios for distinguishing between series members (PP/NYT and CI)	<	Q	Ta/Th	Y/Th	Zr/Th	Nb/Th	FeO/CaO	Diagnostic fii	TAS* classification	Units	Range of compositions	Sample
0.27-0.36	0.65-0.94	1.93-2.17	4.3±0.8	0.009 ±0.002	0.016 ±0.003	tinguishing t	107±14	2.3±0.4	0.08 ± 0.01 0.08 ± 0.01	1.00 ± 0.08	10.5 ± 0.5	1.7 ± 0.1	1.2 ± 0.1	Diagnostic fingerprints for PP/NYT-series and CI-series	phonolite	all	variable	РP
0.2-7.3	0.43-1.01	0.3-2.2	3.6±4.3	0.010 ± 0.01	0.017 ±0.01	oetween ser	91±84	0.42±0.13	0.08 ± 0.01	1.00 ± 0.08 1.02 ± 0.19	10.6±0.7	1.7±0.2	1.2 ± 0.2	- PP/NYT-se	phonolite- trachyte	all	variable	NYT-UM
0.29-0.40	0.73-0.84	1.69-1.81	4.9±1.5	0.008 ±0.001	0.013 ±0.002	ies member	126±18	$0.39 \pm 0.03 \ 0.56 \pm 0.06$	0.08 ± 0.01	1.04±	10.8	1.74	1.24	ries and CI-	phonolite- trachyte	LM3, LM13	bim	NYT-LM
1.15-1.75	0.63-0.64	0.33-0.68	1.7 ± 0.4	0.013 ± 0.001	0.023 ±0.000	s (PP/NYT a	57±4	0.56 ± 0.06	±0.01	1.04 ± 0.14	10.8 ± 1.0	1.7±0.2	1.2±0.2	series	trachyte	LM1	bimodal	-'LM
0.92-2.42	0.57-0.75	0.22-0.61	1.7 ± 0.6	0.013 ±0.002	0.023 ±0.002	ind CI)	51±8	0.45 ± 0.06	0.09 ± 0.01	1.01 ± 0.13	11.2 ± 1.1	1.9 ± 0.3	1.2 ± 0.1		trachyte	all	narrow range	Pre-NYT VRb
0.34-0.37	0.76-0.82	1.65-1.78	5.7±1.0	0.007 ±0.000	0.012 ±0.001		121±14	0.42±0.05	0.09 ± 0.01	1.11=	12.1	1.9 ± 0.1	1.3=		phonolite- trachyte	A3	bim	Pre-N
0.34-0.37 0.94-2.58	0.58-0.79	0.18-0.48	1.4 ± 0.3	0.013 ±0.002	0.022 ±0.004		38±5	0.49 ± 0.11	±0.01	1.11 ± 0.11	12.1±0.7	±0.1	1.3 ± 0.1		trachyte	A2	bimodal	Pre-NYT VRa
0.98-1.54	0.62-0.73	0.40-0.68	1.7 ± 0.3	0.013 ±0.001	0.023 ±0.002		53±5	0.47±0.07	0.09 ± 0.01	0.97±0.04	10.7 ± 0.4	$1.8 {\pm} 0.1$	1.3 ± 0.2		trachyte	all	narrow range	Pre-NYT PRa
30-59	0.29-0.35	0.17-0.35	0.3 ± 0.1	0.021 ±0.002	0.048 ±0.006		23±4	0.62±0.06	0.07 ± 0.01	0.97±0.04 0.70±0.06	10.5 ± 0.6	1.6 ± 0.1	1.6 ± 0.2		trachyte	all	narrow range	Pre-NYT TLo
0-39	0.3-1.1	0.4-1.5	0.3-4.7	0.008- 0.021	0.01-0.05		15-64	0.24-0.62	0.10-0.13		11.8-13.4	2.1-2.5	1.3-2.2		trachyte	all	highly variable	CI upper flow
8-28	0.27-0.36	0.23-1.07	0.32±0.08	0.021 ±0.002	0.048 ±0.004		14±2	0,42±0.05 0.49±0.11 0,47±0.07 0.62±0.06 0.24-0.62 0.85±0.07 0.63±0.06 0.75±0.05 0.83±0.06 0.81±0.08	0.09 ± 0.01 0.07 ± 0.01 0.10 $- 0.13$ 0.11 ± 0.01 0.11 ± 0.01 0.11 ± 0.01 0.11 ± 0.01 0.11 ± 0.00	1.0-1.5 1.06±0.06 1.06±0.09 1.06±0.05 1.01±0.05 0.99±0.05	$11.8 - 13.4$ 12.7 ± 0.6 13.2 ± 1.1 12.8 ± 0.5	2.4±0.2	1.8 ± 0.1		trachyte- phonolite	all	variable	CI CI upper lower/inter flow mediate flow
5-31	0.27-0.36 0.24-0.34 0.38-0.52 0.29-0.35	0.23-1.07 0.18-1.15 0.20-0.53 0.40-0.75 0.36-0.74	0.32±0.08 0.32±0.11 0.49±0.07 0.21±0.02 0.21±0.03	0.021 ±0.002	0.047 ±0.005		16±4	0.63±0.06	0.11 ± 0.01	1.06 ± 0.09	13.2 ± 1.1	2.4±0.2	1.6 ± 0.2		trachyte- phonolite	all	variable	CI fall
9-22	0.38-0.52	0.20-0.53	0.49±0.07	0.019 ± 0.001	0.044 ±0.003		21±3	0.75±0.05	0.11 ± 0.01	1.06 ± 0.05	12.8±0.5	2.5±0.2	1.6 ± 0.1		phonolite	all	narrow range	Pre-CI TLf
41-58	0.29-0.35	0.40-0.75	0.21 ± 0.02	0.025 ±0.001	0.063 ±0.003		12±1	0.83±0.06	0.11 ± 0.01	1.01 ± 0.05	12.9±0.6 12.5±0.4	2.5 ± 0.1	1.7 ± 0.1		phonolite	all	narrow range	Pre-CI TLf Pre-CI TLc Pre-CI Tla
17-56	0.29-0.42	0.36-0.74	0.21 ± 0.03	0.027 ±0.001	0.066 ±0.004		13±1	0.81 ± 0.08	0.11 ± 0.00	0.99 ± 0.05	12.5 ± 0.4	2.4 ± 0.1	1.8 ± 0.3		phonolite	all	narrow range	Pre-CI Tla

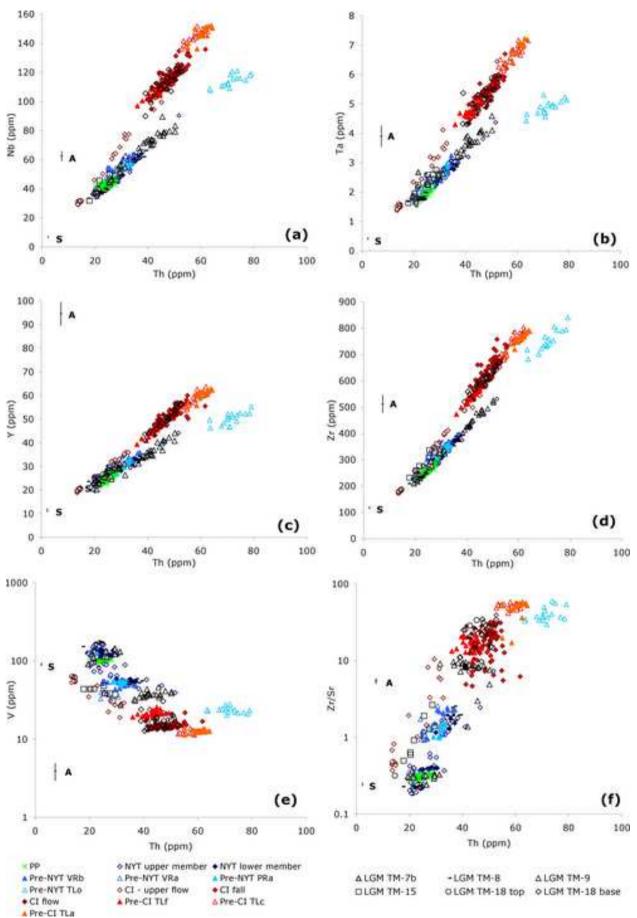
Table(s)

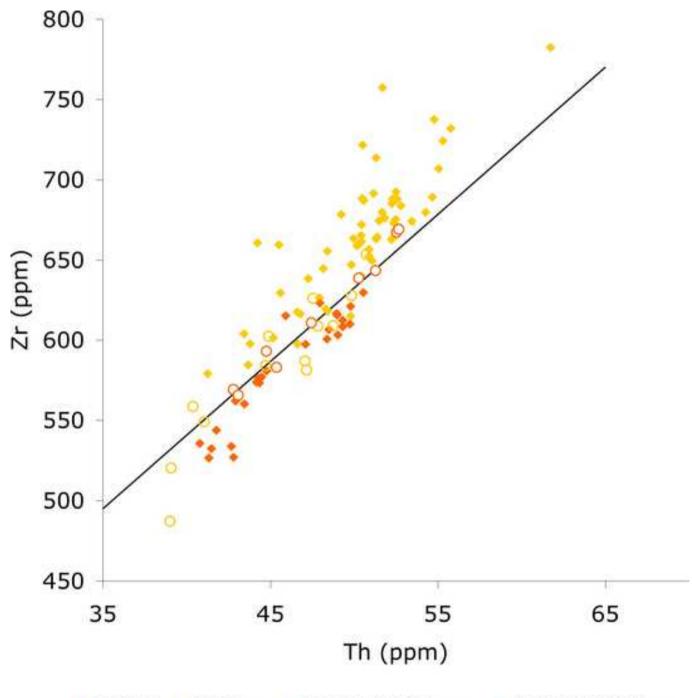
Event NYT	proximal age (cal ka BP) 11.915-12.158 (¹⁴ C) 11.978-12.390 (Ar/Ar) 14.500-15.300 (Ar/Ar)	Smith et al., 2011 0.644 DR Di Vito et al., 1999 0.14 DRE 1.78 bulk Deino et al., 2004 >40 DRE	volume (km ³) and dispersal 0.644 DRE E DiRienzo 0.14 DRE E Lirer, 200 1.78 bulk ENE Sulpizio, >40 DRE NE Orsi, 199	NE E E NE	et al., 2011 2005 2	distal tephra TM-7b L5 C-1 TM-8 L6 C-2	4 core 6 LGM-B/D/E/J KET8218 MD90-917 IN68-5, IN68-9 Bled C LGM-B/D/E/J KET8218 KET8218 KET8218 KET8218 KET8218 CM92-43, PAL94-66,	location Lago Grande di Monticcio South Adriatic South Adriatic South Adriatic Lake Bled, Slovenia Lago Grande di Monticcio South Adriatic Tyrrhenian Central Adriatic	Z M M M Z M M M M direction	Distance thickne (km) 47 mr 120 47 mr 310 visible 330 visible 620 crypto 120 22 mr 310 visible 200, 135 visible 200-240 crypto	Distancethickness(km)47 mm12047 mm310visible330visible620crypto12022 mm310visible200, 135visible240crypto200-240crypto	age (cal ka BP) 11.571-12.789 (varve) 12.003-12.579 (¹⁴ C) 13.414-14.826 (varve)	ka BP) 2.789 2.579 4.826
			>10 DRE >30 DRE	z m m	Woheltz et al., 1995 Woheltz et al., 1995		MILBU-917 Bled C LAENG1	Soutri Auriauc Lake Bled, Slovenia Längsee, Austria	ΖΖΠ	620 650		visible	visible 13.040-14.001 (¹⁴ C) visible
C	39.170-39.390 (Ar/Ar)	Di Vivo et al., 2001 105-210 DRE 200 DRE	105-210 DRE 200 DRE	to S EN	Pyle et al., 2006 Rolandi et al., 2003	TM-18 L12	3 LGM-B/D/E/J OT702-6, JO2004Y5, PR628	Lago Grande di Monticcio Lakes Ohrid and Prespa, Macedonia	m m	120 340		257 (170 mm fall) visible	257 (170 34.934-38.611 mm fall) (varve) visible
			150 DRE 180–280 DRE	NE	Civetta et al., 1997 Costa et al., 2012	Υ-5 C-10	ML01 Kostenki 14, Rudkino TR172-11,19 KET 8003,4	Lesvos, Greece Kostenki-Borschevo, Russia Aegean Tyrrhenian	× S EE E N E	660visible1390visible935, 970visible135visible		visible visible visible	visible visible visible
CI fall			15 bulk 20 bulk	тп	Rosi et al., 1999 Perrotta and Scarpati, 2003								
CI flow			80 bulk 180 bulk	to s ENE	Rosi et al., 1999 Rolandi et al., 2003; Pyle et al., 2006								

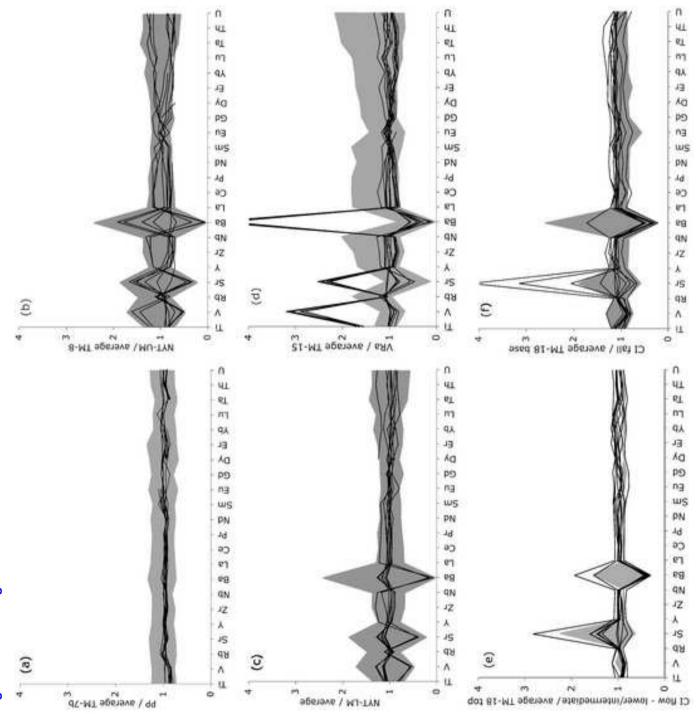

Table(s)



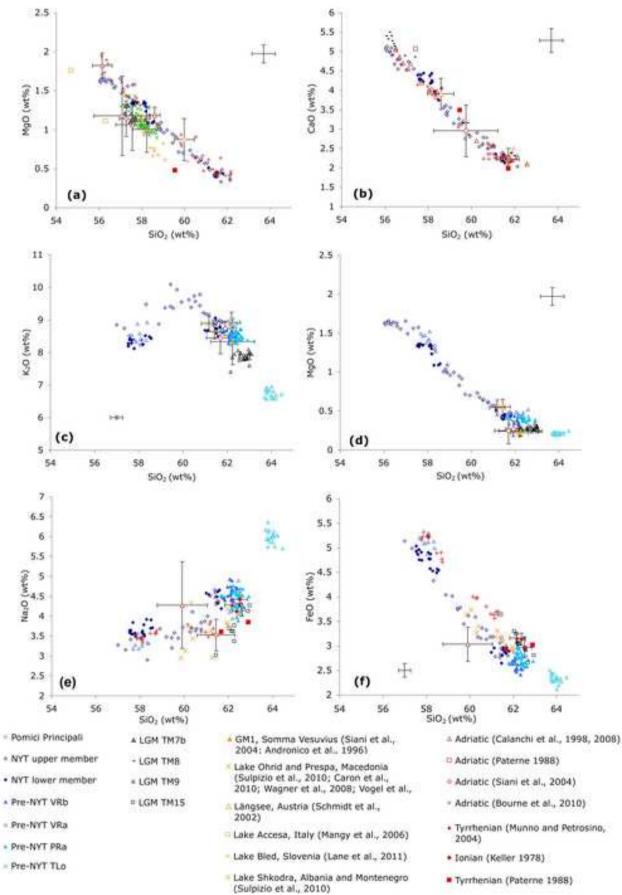
Figure(s) Click here to download high resolution image


Figure(s) Click here to download high resolution image




Figure(s) Click here to download high resolution image

Figure(s) Click here to download high resolution image



CI fall
 CI flow
 LGM TM18 base
 LGM TM18 top

Figure(s) Click here to download high resolution image

- + NYT upper member
- · NYT lower member
- + Pre-NYT VRb
- Pre-NYT VRa
- Pre-NYT PRa
- Pre-NYT TLo

Electronic Annex Click here to download Electronic Annex: Tomlinson_S1 (version 2).xls